
SpyGlass® CDC
Rules Reference Guide

Version N-2017.12-SP2, June 2018

Copyright Notice and Proprietary Information
©2018 Synopsys, Inc. All rights reserved. This Synopsys software and all associated
documentation are proprietary to Synopsys, Inc. and may only be used pursuant to the
terms and conditions of a written license agreement with Synopsys, Inc. All other use,
reproduction, modification, or distribution of the Synopsys software or the associated
documentation is strictly prohibited.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the
United States of America. Disclosure to nationals of other countries contrary to United
States law is prohibited. It is the reader's responsibility to determine the applicable
regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

Trademarks
Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth
at http://www.synopsys.com/company/legal/trademarks-brands.html.
All other product or company names may be trademarks of their respective owners.

Third-Party Links
Any links to third-party websites included in this document are for your convenience
only. Synopsys does not endorse and is not responsible for such websites and their
practices, including privacy practices, availability, and content.

Synopsys, Inc.
690 E. Middlefield Road
Mountain View, CA 94043
www.synopsys.com

Report an Error
The SpyGlass Technical Publications team welcomes your feedback and suggestions on
this publication. Please provide specific feedback and, if possible, attach a snapshot.
Send your feedback to spyglass_support@synopsys.com.

mailto:spyglass_support@synopsys.com

........................... Contents

Preface..43
About This Book .. 43
Contents of This Book ... 44
Typographical Conventions ... 45

Introduction to SpyGlass CDC ...47

Performing SpyGlass CDC Analysis..49
Prerequisites for Performing SpyGlass CDC Analysis............................. 50
Creating SpyGlass CDC Setup .. 51

Specifying Clock Generation Blocks as Black Boxes...................................51
Specifying Clocks and Resets for a Design...52
Generating Clocks and Resets for a Design..52
Using the Setup Manager..56
CDC Analysis based on sg_clock_group ..56

Fixing Clock and Reset Integrity Problems.. 59
Performing CDC Verification.. 60

Unsynchronized Crossings Issues...60
Convergence Issues ...61
Reset Synchronization Issues ..63
Glitch Issues ...64
Signal Width Errors in Synchronized Control Crossings..............................65
Data Hold Issues in Synchronized Data Crossings.....................................66

Debugging CDC Issues .. 68
Using Spreadsheets ...68
Using Incremental Schematic ..70
Viewing Debug Data in Schematic..72
Filtering Violations Based On Instances...75
Solving CDC Issues Common to Multiple Violations...................................79

Parameters in SpyGlass CDC ...81
abstract_validate_express .. 82
v
Synopsys, Inc.

ac_sync_mode .. 85
Valid Combination of Values Specified to the ac_sync_mode Parameter85
Values used by the ac_sync_mode Parameter ..86

all_potential_qual ... 90
allow_any_async_pin.. 91
allow_clock_on_hier_term.. 92
allow_combo_logic.. 93
allow_combo_logic_repeater .. 95
all_convergence_paths ... 96
all_converging_clocks ... 97
allow_enabled_multiflop ... 98
allow_half_sync .. 100
allow_merged_qualifier .. 101
allow_unconstrained_reset_in_rfp.. 103
allow_vhdl_on_clock_path.. 104
async_reset_usage.. 105
auto_detect_datahold01_enable ... 106
autofix_abstract_port ... 107
autofix_dump_allinputs .. 108
cdc_bus_compress .. 109
cdc_compatible ... 111
cdc_dump_assertions.. 112
cdc_effective_bus_verif .. 114
cdc_express .. 115
cdc_gen_unrelated_coherency.. 116
cdc_ignore_multi_domain... 117
cdc_qualifier_depth .. 118
cdc_qualifier_depth_start ... 121
cdc_reduce_pessimism ... 125

Allowed Values of the cdc_reduce_pessimism Parameter126
Inferring Path Polarities After Same Source Reconvergence139

check_bus_bit_convergence ... 141
check_edge ... 142
check_input_coverage .. 143
check_multiclock_bbox ... 144
check_single_source ... 146
vi
Synopsys, Inc.

check_port_setup ..147
check_reset_for_constclock...148
check_qualified_signal_at_soc ..149
clock_edge...150
clock_fanout_max..151
clock_gate_cell ..152
clock_reduce_pessimism ...154
clock_ripple_depth ..165
clock_usage ...166
clocks_pair...168
coherency_check_type...169
convergence_stop_at_mux ..170
conv03_report_seq_conv...172
conv_all_mux_data_pins ...173
conv_clock_reset_path ..174
conv_reset_seq_depth...175
conv_reset_single_data_bit ...176
conv_src_seq_depth ..177

Setting the Value -1 (default).. 177
Setting Value 0 ... 178
Setting a Positive Integer Value ... 179
Points at Which Rule Traversal Stops .. 180

conv_sync_seq_depth..182
conv_sync_seq_depth_opt...184
conv_sync_as_src ..185
CTS_placeholder_cells ...186
compute_num_convergences...187
deassert_mode ..188

Possible Values of the deassert_mode Parameter 188
delay_check_clk_list ..195
delayed_ptr_fifo ..196
disable_inst_grouping ...198
disable_seq_clock_prop...199
dump_detailed_info ...200
dump_sync_info...202
dump_inst_type ...203
vii
Synopsys, Inc.

enable_ac_sync_qualdepth ... 204
enable_block_cfp .. 205
enable_and_sync .. 206
enable_or_sync... 207
enable_clock_gate_sync ... 208
enable_clock_path_crossings.. 209
enable_condition_based_sync... 210
enable_debug_data... 211
enable_delayed_qualifier .. 212
enable_derived_reset.. 214
enable_generated_clocks.. 215
enable_glitchfreecell_detection .. 216
enable_multiflop_sync .. 217
enable_mux_dest_domain .. 218
enable_mux_sync ... 220
enable_reset_cone_spreadsheet... 223
enable_selection ... 224
enable_sim_check_rdc.. 225
enable_sync_check_rdc .. 226
enable_diff_clkdom_rdc.. 227
ignore_qualifier_mismatch_rdc... 228
rdc_reduce_pessimism.. 230
rdc_allow_sync_reset ... 232
report_sync_rdc .. 233
show_unsync_qualifier_rdc .. 235
enable_multiflop_sync .. 236
enable_sync .. 237
expected_ckcells_file .. 238
enable_sync_cell... 239
fa_abstract.. 240
fa_atime.. 242
fa_atsrc... 243
fa_audit... 244
fa_c2c_max_cycles ... 245
fa_enable_crpt .. 246
viii
Synopsys, Inc.

fa_dump_hybrid...247
fa_flopcount...248
fa_hybrid_report_hier..249
fa_grayhold..250
fa_hide_complex_enables..251
fa_hide_complex_expr...253
fa_holdmargin..255
fa_holdmargin_window ...257
fa_ieffort..259
fa_meta ...261
fa_minimize_witness ...262
fa_modulelist ...265
fa_msgmode ..266
fa_multicore...268
fa_num_cores ..269
fa_opt_clock_fsm...270
fa_parallelfile...272
fa_passfail ...275
fa_preprocess_engine..276
fa_propfile ...277
fa_resetoff ...278
fa_scope ..279
fa_seqdepth ...280
fa_vcdtime ...281
fa_vcdfile ...282
fa_vcdfulltrace ...283
fa_verbose ...284
fa_verif_cycles...285
fa_verify_slow_to_fast ..286
fa_vcdscopename ..287
false_path_enable_hier_view ..288
filter_named_clocks...289
filter_named_resets...291
filter_clock_converge_on_cdc..292
formal_setup_rules_check...293
ix
Synopsys, Inc.

format_report ... 294
gen_sync_reset_style_info ... 295
generate_rfp_suppressed_violations .. 296
glitch_check_type ... 297
glitch_on_sync_src ... 299
glitch_on_unconstrained_src .. 300
glitch_protect_cell .. 301
handle_combo_arc .. 303
ignore_bus_clocks .. 304
ignore_bus_resets .. 305
ignore_set_case .. 306
ignore_latches .. 307
ignore_nets_clock_path_file_name... 308
ignore_num_rtl_buf_invs.. 309
ignore_race_thru_latch... 310
infer_constraint_from_abstract_blocks .. 311
master_clock_limit.. 312
msg_inst_mod_report... 314
mux_search_depth.. 317
netlist_name_convention .. 318
no_convergence_check ... 319
num_flops ... 321
num_quasi_seq_elem ... 322
one_cross_per_dest .. 323
prefer_abstract_port... 324

Finding the Source when prefer_abstract_port=yes324
Finding the Source when prefer_abstract_port=no (Default mode)326

prop_clock_thru_quasi_static ... 328
rdc_report_all_resets.. 329
reconvergence_stages .. 330
report_all_clockgate_enables ... 332
report_all_flops... 333
report_all_sync ... 334
report_common_reset... 335
report_conv_type.. 336
x
Synopsys, Inc.

report_derived_reset ...337
report_detail ..338
report_user_defined_clock ..339
reset_cross_seq...340
reset_fanout_max..342
reset_reduce_pessimism ...343

Possible Values to the reset_reduce_pessimism Parameter 343
report_clock_names_sgdc_qualifier10 ..347
report_abstract_module_coverage ..348
report_indirect_port_clock ..349
report_inst_for_netlist...350
report_instance_pin...352
reset_num_flops ..353
reset_placeholder_cells ...354
reset_sync_check ..355
Reset_info09a_filter_on_constant_clock ...356
report_common_clock ...357
report_common_reset ...358
report_clock_tag_names ...359
report_matched_attributes ..360
report_quasi_static_on_clock ..361
report_reset_path_mux ...362
report_sync_clk_for_hier...363
report_top_block_info ...364
reset_synchronize_cells...365
report_uniform_name..367
run_cells_in_cktree_rules..369
same_domain_at_gate...370
same_sync_reset ...372
same_threshold_all_cktree..373
sel_case_analysis_mode..374
show_all_xclock_flops ...376
show_derived_busclocks ...377
show_module_in_spreadsheet...378
show_parent_module_in_spreadsheet ..379
xi
Synopsys, Inc.

show_reconv_paths .. 380
show_source_in_spreadsheet ... 381
reset_sync_depth.. 384
simulator_file_name ... 385
skip_samedom_syncpath .. 386
stop_at_reset.. 387
strict_double_flop ... 388
strict_sync_check.. 389
sync_check_type... 391
synchronize_cells.. 392
synchronize_data_cells ... 393
sync_point_report_limit.. 394
sync_point_selection... 395

Possible Values of the sync_point_selection Parameter395
sync_reset... 402
thru_reset_synchronizer ... 403
unexpected_ckcells_file .. 404
unex_reset_gate_list .. 405
user_group_str ... 406
use_inferred_clocks .. 407
use_inferred_resets .. 409
validate_reduce_pessimism .. 410
valid_enable_type... 414

Tcl Commands in SpyGlass CDC ..415

Clock Domain Crossing Synchronization Schemes.....................417
Conventional Multi-Flop Synchronization Scheme 419
Controlling the Number of Flip-Flops in a Synchronizer Chain 422
Synchronizing Cell Synchronization Scheme.. 423
Synchronized Enable Synchronization Scheme 425
Recirculation MUX Synchronization Scheme.. 428
MUX-Select Sync (Without Recirculation) Synchronization Scheme 431
Delay Signals Synchronization Scheme ... 433
AND Gate Synchronization Scheme ... 434
xii
Synopsys, Inc.

Glitch Protection Cell Synchronization Scheme436
Clock-Gating Cell Synchronization Scheme...438
Qualifier Synchronization Scheme..440

Design Areas where a Qualifier is Not Propagated 441
Crossings with Qualifier Specified for Strict Checking 441

Qualifier Synchronization Scheme Using qualifier -crossing.................442

Using the Clock Setup Window..443
Viewing the Clock Setup Information...445

Clock Sources Section of the Clock Setup Window.................................. 445
Clock Cones Section of the Clock Setup Window 446

Adding Clocks in the Clock Setup Window..448
Generating SGDC Files From the Clock Setup Window..........................449
Filtering Information in the Clock Setup Window.................................451
Viewing Clock Details in HDL Window and Schematic452
Viewing Schematic for Multiple Clocks ...454
Saving Changes in the Clock Setup Window ...455

Working With the Ac_sync_group Rules....................................457
The Ac_sync_group Rules ..458
Objects in the Crossings Reported by Ac_sync_group Rules459

Source ... 459
Destination ... 459
Qualifier ... 459
Potential Qualifier .. 461
Special Cases of Crossings Containing Qualifiers 463

Spreadsheet Support in Ac_sync_group Rules466
Rule-Based Spreadsheet... 466
Message-Based Spreadsheet ... 468
Message-Based Spreadsheet for the Enable Condition Based Flow 473
Spreadsheet Showing Enable Expressions ... 475

The Enable Expression-Based Synchronization Analysis.......................476
Synchronization Requirements to Compute Enable Expressions 478
Generating SVA for Enable Expressions... 480
Spreadsheet Generated for Enable Expression-Based Synchronization Analysis
482

Grouping Messages of the Ac_sync_group Rules..................................483
xiii
Synopsys, Inc.

Instance-Based Grouping..483
User-Specified String-Based Grouping ..484
Viewing Grouped Messages in a Spreadsheet...485
Netlist Bus Merging ..486

Handling of Hanging Nets From Combinational Logic by the
Ac_sync_group Rules .. 488
Reasons for Synchronized Crossings Reported by Ac_sync_group Rules ...
489

Conventional multi-flop Method ...490
Synchronizing Cell Method ..491
Synchronized Abstract Port Method ..491
Qualifier Defined on Destination Method..492
Enable Based Method ...492
Clock Gate Synchronization Method..493
Recirculation Flop Method ...493
Mux-Select Sync Method...493
Synchronization at AND Gate Method ...494
Synchronization at Glitch Protection Cell Method494
Merging with a Valid Inferred Qualifier Method495
No Synchronization (long-delay/quasi-static) Method..............................495
Constant Source Method...496
User-Defined Enable Expression Method..497
Finding Valid Enable Condition Method ..498

Reasons for Unsynchronized Crossings Reported by Ac_sync_group Rules
499

Reason - Sources from different domains converge before being synchronized
500
Reason - Qualifier not found..501
Reason - Conventional multi-flop synchronizer disallowed........................502
Reason - Clock phase difference between destination instance and
synchronizer flop ...502
Reason - Clock domains of destination instance and synchronizer flop do not
match ..503
Reason - Synchronizer flop is the destination flop for another crossing503
Reason - Number of inverters/buffers between sync flops exceeds limit.....504
Reason - Sync reset used in multi-flop synchronizer505
Reason - Destination instance is driving multiple paths505
Reason - Combinational logic used between crossing506
Reason - Specify 'synchronize_data_cells', not 'synchronize_cells' for bus
signals ...507
xiv
Synopsys, Inc.

Reason - Specify 'synchronize_cells', not 'synchronize_data_cells' for single bit
signals ... 507
Reason - Invalid RTL flop/cell used in synchronizer chain......................... 507
Reason - Invalid synchronizer module/cell <name>................................ 508
Reason - Unsynchronized synchronous reset ... 509
Reason - [User-defined qualifier/ Qualifier] merges with another source before
gating logic... 510
Reason - [User-defined qualifier/ Qualifier] merges with another source with
non-deterministic enable condition before gating logic 512
Reason - [User-defined qualifier/Qualifier] merges with the same source
before gating logic ... 513
Reason - Gating logic not accepted .. 514
Reason - Qualifier not accepted: crossing source is the same as source of
qualifier ... 517
Reason - Combinational loops on crossing... 518
Reason - No Enable Condition Selected... 518
Reason - Enable Criteria not satisfied: No destination domain 519
Reason - Enable Criteria not satisfied: No Qualifier found 519
Reason - Enable Criteria not satisfied: gating-type not accepted 520
Reason - Enable Criteria not satisfied: Source reach mux select 521
Reason - Domain Criteria not satisfied: No domain................................. 522
Reason - Domain Criteria not satisfied: Source domain 523

Parameters of the Ac_sync_group Rules ..525
Constraints of the Ac_sync_group Rules ..530
Important Information Regarding the Ac_sync_group Rules532
Limitations of the Ac_Sync_Group Rules..533

Performing Functional Analysis in SpyGlass CDC.......................535
The Functional Validation Methodology..536

Stage 1: Running SpyGlass in the Audit Mode.. 538
Stage 2: Analyzing Design Setup ... 539
Stage 3: Running SpyGlass in the Default Mode..................................... 540
Stage 4: Diagnosing and Fixing Design Bugs ... 541
Stage 5: Running SpyGlass with a Higher CPU Time 542
Stage 6: Concluding Partially-Proved Assertions..................................... 543

Enabling and Disabling Assertions ...545
Property Status Reported during Functional Analysis547
Specifying Properties in a Property File ...549

Property File Format .. 549
xv
Synopsys, Inc.

Property File Example...551
Property File Processing..551

Specifying OVL Constraints ... 552
Prerequisites for Using OVL Constraints ..552
Why Use OVL Constraints? ..553
Examples of Using OVL Constraints ..554
Limitations of Using OVL Constraints ..555

Using Waveform during Functional Analysis.. 557
Viewing VCD Files ..557
Cross-Probing a Net in Waveform through Schematic..............................558

Handling generated_clock Constructs on Library Pins...............559
One Clock Reaches the Source of Generated Clock 560
Multiple Clocks Reach the Source of Generated Clock.......................... 561
Constraints Generated on the Library Pins Defined With generated_clock
562

Reports and Other Files in SpyGlass CDC563
Viewing Reports in GUI ... 566
Specifying the Report to be Generated through a Project File 567
The Clock-Reset-Summary Report ... 568

Section A: Case Analysis Settings Section ...568
Section B: Propagated Control Signals Section.......................................568
Section C: Top 5 Domain Crossing Sources Section.................................569
Section D: Cases not checked for clock domain crossings Section570
Section E: Inferred Control Signals Section ...570
Section F: Clock-Reset Matrix Section ...571
Section G: Black Boxes in Clock Path Section...571

The Clock-Reset-Detail Report... 572
Section A: Clock Crossings Section...572
Section B: Flops with Data pin set to constant value Section....................572
Section C: Filtered/False Clock Crossings Section573
Section D: Summary of Synchronization Techniques Section573

The CKTree Report .. 574
Ac_initstate01 Spreadsheet Report...576

The CKCondensedTree Report ... 581
The RSTree Report .. 582

Types of Leaves in the Reset Tree...582
xvi
Synopsys, Inc.

Nodes in the Reset Tree.. 583
Sample RSTree Report.. 583

The SyncRstTree Report ...584
The PortClockMatrix Report ...585

Sample PortClockMatrix Report.. 587
The SynchInfo Report ..589

Section 1: Synchronized Crossings by 'Conventional Multi-Flop'
synchronization ... 589
Section 2: Synchronized Crossings by Synchronizing Cell Techniques 591
Section 3: Synchronized Resets by Multi-Flop Synchronization 591
Section 4: Synchronized Resets by Reset Synchronizing Cell Technique 592
Section 5: Clock domain crossings for quasi-static signals 592
Section 6: Synchronized Reset Domain Crossings by Conventional Multi-Flop
technique ... 593
Section 7: Synchronized Reset Domain Crossings by Synchronize cell
technique ... 594
Section 8: Synchronized Crossings on Reset Path by 'Conventional Multi-Flop'
synchronization technique... 595
Section 9: Synchronized Crossings on Reset Path by 'synchronize cell'
technique ... 596

The CrossingInfo Report ..597
Section 1: Synchronized Crossings... 597
Section 2: Unsynchronized Crossings due to Destination Instance Driving
Multiple Paths ... 598
Section 3: Unsynchronized Crossings due to Mismatch of Destination and
Synchronizer Instance Clock Domains .. 598
Section 4: Unsynchronized Crossings due to Other Reasons..................... 598

The CKPathInfo Report ..599
The CKSGDCInfo Report ...600

Section A: Names of Clocks Specified By the clock Constraint 601
Section B: Names of Resets Specified By the reset Constraint.................. 601
Section C: Port Names on which set_case_analysis Constraint is Set 601
Section D: Valid Reset Ordering Specified by the define_reset_order Constraint
601
Section E: Modules Specified by the allow_combo_logic Constraint 602
Section F: Signals Specified by the quasi_static Constraint 602
Section G: Output Ports Specified by the output_not_used Constraint 602
Section H: Conventional Multi-Flop Synchronizer Data by the num_flops
Constraint .. 602
Section I: Cells Specified by the network_allowed_cells Constraint 603
xvii
Synopsys, Inc.

Section J: Signals Specified by the qualifier Constraint603
Section K: Modules Specified by the ip_block Constraint..........................603
Section L: FIFO Specified by the fifo Constraint......................................604
Section M: False Path Specified by the cdc_false_path Constraint604
Section N: Top-Level Ports Specified by the abstract_port Constraint604
Section O: Top-Level Input Ports Specified by the input Constraint604
Section P: Top-Level Output Ports Specified by the output Constraint605
Section Q: Top-Level Ports Not Specified by Any Constraint605
Section R: Black Box Data Ports Specified by the abstract_port Constraint .605
Section S: Black Box Ports Specified by the assume_path Constraint605
Section T: Black Box Ports Specified by the signal_in_domain Constraint ...605
Section U: Black Box Data Ports Not Specified by Any Constraint..............605
Section V: Synchronizer Module/Cell Data Specified by the sync_cell Constraint
606
Section W: Reset Synchronizers Specified by the reset_synchronizer Constraint
606
Section X: Isolation Enables Specified by the power_data Constraint606
Section Y: Valid Signals Specified by the gray_signals Constraint606
Section Z: Valid Stop Point for Clocks by the clock_sense Constraint606
Section AA: Signals Specified by the cdc_filter_coherency Constraint607
Section BB: Signals Specified by the generated_clock Constraint607
Section CC: Modules Specified using meta_module Constraint607
Section DD: Hierarchical Instances Specified by the meta_inst Constraint..607
Section EE: Crossings Specified by the reset_filter_path Constraint607
Section FF: Signals Specified by the cdc_attribute Constraint608
Section HH: Values of the quasi_static_style Constraint608

The CDC Report ... 610
Section A..610
Section B..610
Section C..610
Section D ...611
Section E ..611
Section F ..611
Section G ...611
Section H..612
Section I ..612
Files Generated with the CDC Report ..612

The CDC-Summary-Report... 614
Section A..614
Section B..614
Section C..615
xviii
Synopsys, Inc.

Section D ... 616
Section E.. 616
Section F.. 617
Section G ... 618
Section H ... 618
Section I .. 619

The CDC-Detailed-Report ...620
Section A.. 620
Section B.. 621
Section C ... 621
Section D ... 621
Section E.. 622
Section F.. 623
Section G ... 624
Section H ... 625
Section J .. 625
Section K.. 626

The Advanced CDC Report ..627
Section A: Clock Information... 627
Section B: Reset Information .. 628
Section C: Set Case Analysis Settings... 629
Section D: Initial State of the Design.. 629
Section E: Results Summary (Current) ... 629
Section F: Results Summary (Cumulative) .. 631
Section G: Assertion Details .. 631
Difference Between Advanced CDC and SpyGlass TXV Initialization Report 633

The Register Info Report..635
Section A: Clocks in the design.. 635
Section B: Resets in the design ... 635
Section C: Uninitialized Registers (after primary sets/resets are applied)... 635
Section D: Register Information... 635

The NoClockCell-Summary Report..637
The DeltaDelay-Concise Report ..638
The DeltaDelay-Detailed Report ...639
The DeltaDelay02-Detailed Report ...640

Section A.. 640
Section B.. 640
Sample Report .. 640

The DeltaDelay-Summary Report ...642
xix
Synopsys, Inc.

The Ac_sync_group_detail Report... 643
The Ac_sync_qualifier Report.. 644
The Glitch_detailed Report .. 646
The Module Topology Report ... 647
Overconstrain Info File.. 648

Messages Reported in the Overconstrain Info File648
Sample Overconstrain Info File ..648

The CDC Matrix Report .. 650
Section A..650
Section B..650
Section C..651

The Distributed Time Report ... 652
Input Port Constraints File .. 653

abstract_port Constraints for Ports Connected with Multiple Sequential
Elements ..654
abstract_port Constraints for Ports Connected with Sequential Elements ...654
abstract_port Constraints for Multiple Ports Reaching Same Sequential Element
655
abstract_port Constraints for Ports Connected to Data Pin of a Multi-Flop
Structure..656

The adv_cdc Spreadsheet.. 660
adv_cdc_summary_current ...660
adv_cdc_summary_cumulative ..660
adv_cdc_summary_detail ...661

The CrossingMatrix Spreadsheet ... 663
The Ar_cross_analysis01 Spreadsheet .. 667

Details of the Ar_cross_analysis01 Spreadsheet667
The Spreadsheets of the Ac_abstract_validation01 Rule 669

Clock Mismatch Spreadsheet ...669
Clock Domain Mismatch Spreadsheet..670
Case Analysis Mismatch Spreadsheet..671
Quasi static Mismatch Spreadsheet ..672
Data Path Domain Mismatch Spreadsheet ...673
Combo Check Mismatch Spreadsheet..674
Qualifier Mismatch Spreadsheet ...674
Virtual Clocks Mismatch Spreadsheet..675
Reset Mismatch Spreadsheet...677
num_flops Mismatch Spreadsheet ..678

The Ac_abstract_validation02 Spreadsheet... 680
xx
Synopsys, Inc.

Column Details of the Ac_abstract_validation02 Spreadsheet................... 680
Simulator File in SpyGlass CDC...682

Keywords Used in a Simulator File in SpyGlass CDC 682
CSV Files Generated On Running SpyGlass CDC Goals690
RTL Results Difference Utility...693

Run Information .. 694
Top-level Overview of the Result Differences ... 694
Summary Table for Differences in each CDC-detailed-report sections 695
Detailed Difference Report .. 697

Internal Rules in SpyGlass CDC ...699

Rules in SpyGlass CDC...705
Setup Rules..706

Setup_clock01 : Generates information needed for clock setup.......... 707
Setup_clockreset01 : Clocks/Resets must be specified for the design. 713
Setup_library01 : Reports incomplete definition of library pins 716
Setup_CGC : Reports incomplete definition of clock gating cells 722
Setup_quasi_static01 : Reports signals that are likely to be quasi-static

signals in a design ... 726
Setup_port01 : Reports unconstrained ports summary for top-design unit

732
Setup_blackbox01 : Reports unconstrained pins summary for black boxes

738
Setup_check01 : Reports if contradicting constraints are applied on objects

744
Setup_check02 : The signal_in_domain constraint is applied on the objects

on which the abstract_port constraint is already applied...... 747
Setup_req01 : Reports setup matrices.. 749
Ac_topology01 : Generates a module topology report for the blocks

instantiated at the top level... 756
Ac_svasetup01 : Setup issues in SVA constraints............................. 761

Formal Setup Rules ..763
Ac_clockperiod01 : Reports a violation if any of the -period or -edge

argument is not specified in the clock constraint 764
Ac_clockperiod02 : Reports clocks for which period optimization has been

done .. 767
Ac_resetvalue01 : Reports a violation if the -value argument is not
xxi
Synopsys, Inc.

specified for the reset constraint.770
Ac_sanity03 : Reports loops in a design ..773
Ac_sanity04 : Reports over-constraining in a design776
Ac_sanity07 : Reports synchronous clocks having the maximum cycle

count greater than the specified limit................................780
Clock Information Rules .. 784

Clock_info01 : Reports inferred signals that are likely to be clock signals..
785

Clock_info02 : Prints a clock tree for the specified clock signals794
Clock_info03 : Cases not checked for clock domain crossings:

Unconstrained clocks ..799
Clock_info03a : Reports unconstrained clock nets800
Clock_info03b : Reports sequential elements whose data pin is tied to a

constant ...807
Clock_info03c : Reports sequential elements whose clock pin is tied to a

constant ...813
Clock_info05 : Reports clock signals converging on a MUX.................818
Clock_info05a : Reports signals which should be constrained for muxed

clock selection ...825
Clock_info05b : Reports clock signals converging at a combinational gate

other than a MUX...830
Clock_info05c : Reports unconstrained MUXes which do not receive clocks

in all its data inputs..834
Clock_info06 : Reports nets derived from user-specified clocks839
Clock_info07 : Reports user-specified clocks that are derived from other

clocks...844
Clock_info14 : Highlights signals of different domains in different colors...

849
Clock_info15 : Generates the PortClockMatrix report and abstracted model

for input ports ...852
Clock_info16 : Reports clocks converging on a MUX that does not have the

Synopsys infer_mux pragma set on it857
Clock_info17 : Reports all the synchronous clocks present in a hierarchy..

862
Clock_info18 : Reports unconstrained ports.....................................865
Clockmatrix01 : Shows clock relationship matrix..............................871

Reset Information Rules.. 874
Ar_syncrst_setupcheck01 : Reports constant values on functional flip-

flops in the synchronous reset deassert mode875
xxii
Synopsys, Inc.

Ar_syncrstTree : Prints the synchronous reset tree 882
Ar_glitch01 : Glitch in reset paths.. 887
Reset_info01 : Reports signals that are likely to be asynchronous and

synchronous preset and clear signals................................ 894
Reset_info02 : Prints an asynchronous preset and clear tree 900
Reset_info09 : Reports unconstrained asynchronous reset nets and reset

nets tied to a constant value ... 904
Reset_info09a : Reports unconstrained asynchronous reset nets 905
Reset_info09b : Reports asynchronous reset nets that are tied to a

constant value... 909
Clock and Reset Information Rules ..913

Clock_Reset_info01 : Generates the Clock-Reset Matrix................... 914
Reset Synchronization Rules ..918
Using the Reset Domain Crossing (RDC) Flow......................................919

Ac_resetcross01 : Reports invalid reset ordering between sequential
elements of the same clock domain.................................. 924

Ar_resetcross01 : Reports all reset domain crossings between sequential
elements .. 933

Ar_resetcross_matrix01 : Setup_rdc01 : Reports all the potential reset
domain crossings between sequential elements having same
reset domains ... 961

RFPSetup : Reports a violation if the reset_filter_path constraint is not used
to filter reset domain crossings .. 968

SGDC_qualifier23 : qualifier's clocks or resets does not matches with the
clocks and resets of the destination object 970

SGDC_cdc_define_transition01 : Checks for compatible values in
cdc_define_transition ... 977

Ar_cross_analysis01 : Reports clock domain crossings on the reset path
in a design.. 979

Ar_asyncdeassert01 : Reports if reset signal is asynchronously de-
asserted ... 983

Ar_syncdeassert01 : Reports if reset signal is synchronously de-asserted
or not de-asserted at all ... 990

Ar_sync01 : Reports synchronized reset signals in the design 995
Ar_unsync01 : Reports unsynchronized reset signals in the design ... 1002
Reset_sync01 : Reports asynchronous reset signals that are not de-

asserted synchronously .. 1009
Reset_sync02 : Reports asynchronous reset signals that are generated in

asynchronous clock domain or are generated from unconstrained
xxiii
Synopsys, Inc.

source clocks... 1017
Reset_sync03 : Reports multi-flop reset synchronizers in a design ... 1026
Reset_sync04 : Reports asynchronous resets that are synchronized more

than once in the same clock domain 1036
CDC Verification Rules... 1042

Ac_unsync01 : Reports unsynchronized clock domain crossing for scalar
signals.. 1044

Ac_unsync02 : Reports for unsynchronized clock domain crossings for
vector signals .. 1052

Ac_sync01 : Reports synchronized clock domain crossings for scalar signals
1060

Ac_sync02 : Reports synchronized clock domain crossings for vector
signals.. 1065

Ac_coherency06 : Reports signals that are synchronized multiple times in
the same clock domain ... 1070

Ac_repeater01 : Reports invalid repeater insertion in a design......... 1080
Clock_sync05 : Reports primary inputs sampled by multiple clock domains

1097
Ac_crossing01 : Generates the crossing matrix spreadsheet............ 1104
Clock_sync03 : Reports converging signals.................................... 1110
Clock_sync03b : Reports convergence of signals from different domains ..

1111
Clock_sync06 : Reports primary outputs driven by multiple clock domain

flip-flops or latches... 1121
Clock_sync08a : Reports multi-flop synchronized bus-bits where double

flip-flop output bits belong to the same bus 1127
Clock_sync09 : Reports signals that are synchronized more than once in

the same clock domain ... 1131
Ac_cdc01 : Checks data loss on clock domain crossings................... 1138
Ac_cdc01a : Checks data loss for multi flop or sync cell or qualifier

synchronized clock domain crossings 1139
Ac_cdc01b : Checks data loss for crossings synchronized by a technique

other than multi flop, sync cell, or qualifier synchronization
scheme .. 1153

Ac_cdc01c : Checks data loss for unsynchronized clock domain crossings .
1164

Ac_cdc08 : Reports control-bus clock domain crossings which do not follow
gray encoding ... 1175

Ac_clockperiod03 : Reports a set of correlated clocks for which design
xxiv
Synopsys, Inc.

cycle time is greater than threshold value 1184
Ac_conv01 : Reports signals from the same domain that are synchronized

in the same destination domain and converge after any number
of sequential elements ... 1187

Ac_conv02 : Reports same-domain signals that are synchronized in the
same destination domain and converge before sequential
elements. ... 1210

Ac_conv02Setup01 : Setup rule for Ac_conv02............................. 1235
Ac_conv03 : Checks different domain signals synchronized in the same

destination domain and are converging........................... 1237
Ac_conv04 : Checks all the control-bus clock domain crossings that neither

converge nor follow gray encoding 1254
Ac_conv05 : Performs gray-encoding checks on signals................... 1266
Ac_datahold01a : Checks the functional synchronization of synchronized

data crossings ... 1270
Clock_sync03a : Reports signals converging from the same source domain

and are synchronized separately in the same destination domain
1280

Clock Glitch Checking Rules ...1287
Ac_glitch01 : Reports unsynchronized clock domain crossings subject to

glitches because of glitch-prone MUX implementations...... 1288
Ac_glitch02 : Reports clock domain crossings that are subject to glitches

because of a reconverging source 1294
Ac_glitch03 : Reports clock domain crossings subject to glitches...... 1298
Ac_glitch04 : Reports glitches on synchronized data path crossings or

unsynchronized crossings ... 1320
Clock_glitch01 : Reports enable signals that are gating clocks but are not

the output of a flip-flop... 1326
Clock_glitch02 : Reports clocks that are gated without latching their

enable signal properly .. 1330
Clock_glitch03 : Reports clock signals that pass through a MUX and

reconverge back on the same MUX................................. 1336
Clock_glitch04 : Reports flip-flops that converge on a clock pin of a flip-flop

through a combinational logic.. 1340
Clock_glitch05 : Flags asynchronous sources that converge with different

domain clocks ... 1344
Clock Checking Rules ...1350

Clock_check01 : Reports unexpected cells, such as latches, tristate gates,
or XOR/XNOR gates found in a clock tree. 1351
xxv
Synopsys, Inc.

Clock_check02 : Reports high fan-out clock nets that are not driven by any
of the specified placeholder cell...................................... 1356

Clock_check03 : Reports bus bits that are used as clocks................ 1360
Clock_check04 : Reports the usage of both the edges (positive and

negative) of a clock.. 1363
Clock_check05 : Reports deep clock divider chains......................... 1366
Clock_check06a : Reports unexpected cells found in a clock tree 1371
Clock_check06b : Reports the cells in a clock tree that do not have the

same threshold_voltage_group attribute value................. 1375
Clock_check10 : Reports the clock signals that are used as non-clock

signals.. 1379
Clock_converge01 : Reports the clock signal for which multiple fan-outs

converge .. 1390
Clock_hier01 : Reports clock-gating wrapper modules in clock-path.. 1395
Clock_hier02 : Reports combinational wrapper modules in clock-path1399
Clock_hier03 : Reports combinational gates that do have valid wrapper

modules in the clock-path ... 1403
Ac_xclock01 : Reports non-deterministic clock-edges in the presence of

clock-gates ... 1406
Ac_converge01 : Reports signals which are subjected to glitches in clock

path... 1413
Reset Checking Rules .. 1418

Ar_converge01 : Reports asynchronous reset signals that have multiple
converging fan-outs ... 1419

Ar_converge02 : Reports a reset signal which converges on data and reset
pin of same flop... 1429

Reset_check01 : Reports reset signals that are used in a different mode
from their respective synthesis pragmas 1435

Reset_check02 : Reports latches, tristate signals, or XOR/XNOR gates in a
reset tree.. 1438

Reset_check03 : Reports synchronous reset signals that are used as active
high as well as active low.. 1444

Reset_check04 : Reports reset signals that are used asynchronously as
well as synchronously for different flip-flops..................... 1449

Reset_check05 : Reports synchronous resets in a design 1453
Reset_check06 : Reports high fan-out reset nets that are not driven by

placeholder cells .. 1457
Reset_check07 : Reports asynchronous reset pins driven by a

combinational logic or a mux ... 1461
xxvi
Synopsys, Inc.

Reset_check09 : Reports XOR, XNOR, AND, or NAND gates found in a reset
tree ... 1468

Reset_check10 : Reports asynchronous resets used as non-reset signals .
1472

Reset_check11 : Reports asynchronous resets that are used as both
active-high and active-low .. 1483

Reset_check12 : Reports flip-flops, latches, and sequential elements that
do not get an active reset during power on a reset 1490

Reset_overlap01 : Reset reaches another reset............................. 1498
Clock and Reset Checking Rules ...1501

Clock_Reset_check01 : Reports unwanted cells found in clock or reset
networks .. 1502

Clock_Reset_check02 : Reports potential race conditions between flip-
flop output and its clock/reset pin 1506

Clock_Reset_check03 : Reports potential race condition between flip-flop
clock and reset pins ... 1514

Delta Delay Rules ...1518
Clock_delay01 : Reports flip-flop pairs whose data path delta delay is less

than the difference in their clock path delta delays 1519
Clock_delay02 : Reports unbalanced clock trees 1524
DeltaDelay01 : Flags flip-flops/latches, which may have different delta

clock delay values.. 1527
DeltaDelay02 : Reports flip-flops that can cause simulation problems due

to delta delay issues .. 1533
NoClockCell : Reports any logic found in clock trees........................ 1543
PortTimeDelay : Reports ports with missing or unexpected time delay

settings .. 1547
Block Constraint Generation Rules ...1554

Ac_blksgdc01 : Migrates top-level constraints of SpyGlass CDC solution to
block-level boundaries.. 1555

Block Abstraction Rules ...1566
Ac_abstract01 : Generates SpyGlass CDC constraints for block abstraction

1567
Block Constraint Validation Rules...1582

Ac_abstract_validation01 : Reports block abstraction mismatch with top
level design .. 1585

Ac_abstract_validation02 : Mismatch between the abstract block and
top-level design... 1640

SGDC_abstract_mapping01 : Reports clock mapping of an abstract view
xxvii
Synopsys, Inc.

1662
SGDC_clock_validation01 : Reports unconstrained clock ports of an

abstract view... 1666
SGDC_clock_domain_tag : Reports clock constraints whose -tag and -

domain fields have the same name 1669
SGDC_clock_validation02 : Reports clock ports of an abstract view, which

are not driven from top-level clocks................................ 1671
SGDC_clock_domain_validation01 : Reports same domain clock ports of

an abstract view driven from different top-level clock domains ..
1674

SGDC_clock_domain_validation02 : Reports different domain clock
ports of an abstract view being driven from the same top-level
clock domain ... 1678

SGDC_set_case_analysis_validation01 : Reports a violation if the
constant value simulated from the top-level does not match with
the constant value specified in a block-level constraint file. 1681

SGDC_set_case_analysis_validation02 : Reports missing constants
between top and block.. 1685

SGDC_set_case_analysis_validation03 : Reports top module output
ports on which user defined set_case_analysis value differs from
value obtain from propagation 1689

SGDC_reset_filter_path_validation01 : Reports block-level
reset_filter_path constraints which do not have a matching top-
level reset_filter_path constraint 1692

SGDC_reset_validation01 : Reports unconstrained reset ports of an
abstract view... 1696

SGDC_reset_validation02 : Reports abstract-view reset ports that are not
driven by top-level resets.. 1700

SGDC_reset_validation03 : Reports conflicting top and block level
asynchronous and synchronous reset types 1703

SGDC_reset_validation04 : Reports the conflicting active value specified
on a reset port of an abstract view 1707

SGDC_virtualclock_validation01 : Reports mapping of block level virtual
clocks with top-level clocks ... 1710

SGDC_input_validation01 : Reports incorrect clock domain specified on
block ports by using the input constraint 1716

SGDC_input_validation02 : Reports unconstrained abstract-view input
ports driven by sequential outputs 1719

SGDC_num_flops_validation01 : Reports the same top-level domain
reaching to clocks specified in the -from_clk and -to_clk
xxviii
Synopsys, Inc.

arguments of the num_flops constraint for an abstract view
1722

SGDC_num_flops_validation02 : Reports conflicting values specified in
the num_flops constraint of an abstract view and the top-level for
the same clock pair .. 1726

SGDC_output_validation01 : Reports incorrect clock domains specified
on block ports by using the output constraint 1729

SGDC_output_validation02 : Reports unconstrained abstract-view output
ports driving sequential inputs....................................... 1732

SGDC_abstract_port_validation01 : Reports the incorrect clock domain
specified on block ports by using the abstract_port constraint ...
1735

SGDC_abstract_port_validation02 : Reports incorrect usage of the -sync
argument of the abstract_port constraint 1738

SGDC_abstract_port_validation03 : Reports invalid clocks specified in
the -from or -to arguments of the abstract_port constraint 1741

SGDC_abstract_port_validation04 : Reports if abstract-view ports
specified by the -combo no argument of the abstract_port
constraint are driven by combinational logic 1745

SGDC_qualifier_validation01 : Reports same top-level domain reaching
to clocks specified in the -from_clk and -to_clk arguments of the
qualifier constraint for an abstract view 1752

SGDC_qualifier_validation02 : Reports unconstrained abstract-view
ports driven from a valid qualifier 1755

SGDC_cdc_false_path_validation01 : Reports same top-level domain
reaching to clocks specified in the -from and -to arguments of the
cdc_false_path constraint for an abstract view................. 1760

SGDC_define_reset_order_validation01 : Reports block ports with
define_reset_order constraint which are not driven by top-level
reset net .. 1763

SGDC_define_reset_order_validation02 : Reports the same top-level
reset reaching to the resets specified by the -from and -to
arguments of the define_reset_order constraint for an abstract
view... 1765

SGDC_quasi_static_validation01 : Reports unconstrained quasi_static
ports of an abstract view .. 1768

SGDC_quasi_static_validation02 : Reports quasi-static ports, which are
not driven from top-level quasi-static signals, of an abstract view
1772

SGDC_quasi_static_validation03 : Reports top module output ports on
xxix
Synopsys, Inc.

which user has defined quasi_static value but none of the
quasi_static constraint is propagated to 1775

Synchronous Reset Verification Rules ... 1778
Ar_syncrstactive01 : Polarity on synchronous reset usage mismatches

with -active field in sync_reset_style constraint................ 1779
Ar_syncrstcombo01 : Combinational logic in synchronous reset path

mismatches with -combo field in sync_reset_style constraint
1783

Ar_syncrstload01 : Load on synchronous reset exceeds the specified max
load ... 1786

Ar_syncrstload02 : Load on synchronous reset less than the specified
minimum load ... 1791

Ar_syncrstpragma01 : Pragma specification on synchronous reset usage
mismatches with -pragma field in sync_reset_style constraint...
1795

Ar_syncrstrtl01 : Usage of synchronous reset is not detected in condition
of first if statement .. 1799

Must Rules... 1802
Ac_abs01 : Reports the result of abstraction applied on functional checks .

1822
Ac_init01 : Does initial setup for Advanced SpyGlass CDC Solution rules...

1825
Ac_initseq01 : Initialization sequences of multiple signals should be of the

same length .. 1829
Ac_initstate01 : Reports initial state of the design 1831
Ac_license01 : Reports rules that did not run due to unavailability of the

Advanced_CDC or the cdc_dynamic_jitter_analysis license 1839
Ac_multitop01 : Reports a violation in case of multiple top-level design

units .. 1842
Ac_upfsetup02 : Reports when appropriate isolation/level shifter strategy

on domain element is not specified................................. 1844
Ac_report01 : Reports statistics of properties and functional constraints...

1851
Ac_sanity01 : Reports an error if there is any issue in the property file. ...

1854
Ac_sanity02 : Reports nets that have multiple drivers..................... 1856
Ac_sanity06 : Reports any issue found in distributed computing flow 1859
AllowComboLogicSetup : Reports if the modules specified by the

allow_combo_logic constraint are not used by any crossing1867
xxx
Synopsys, Inc.

Clock_check07 : Reports clock domains that reach another clock domain.
1869

Param_clockreset02 : Reports if an incorrect value is specified to the
num_flops parameter ... 1873

FalsePathSetup : Reports cases in which the cdc_false_path constraint is
not used by any crossing in the design 1875

Param_clockreset04 : Reports if an incorrect value is specified for the
cdc_reduce_pessimism, clock_reduce_pessimism, or
reset_reduce_pessimism parameter 1877

Param_clockreset05 : Reports if the simulator_file_name parameter is
not specified or an invalid value is specified to this parameter...
1880

Param_clockreset06 : Reports if the unexpected_ckcells_file and
expected_ckcells_file parameters are specified together.... 1883

Param_clockreset07 : Reports conflicting values specified with the
ac_sync_mode parameter ... 1885

Propagate_Clocks : Propagates clocks and displays a portion of the clock
tree ... 1887

Propagate_Resets : Propagates resets and displays a portion of the reset
tree ... 1896

QualifierSetup : Reports if the qualifier constraint does not synchronize
any clock domain crossing in a design 1901

ResetSynchronizerSetup : Reset_synchronizer mentioned as -ignore is
not used to ignore inferred synchronization 1905

Reset_check08 : Reports reset signals that are constrained by using the
set_case_analysis constraint ... 1908

SGDC_allow_combo_logic01 : Reports if no argument is specified in the
allow_combo_logic constraint .. 1911

SGDC_allow_combo_logic02 : Reports if different arguments are used in
different specifications of the allow_combo_logic constraint1913

SGDC_cdc_false_path01 : Reports a violation if non-existent objects are
specified in the -from argument of the cdc_false_path constraint
1915

SGDC_cdc_false_path02 : Reports a violation if non-existent objects are
specified in the -to argument of the cdc_false_path constraint ..
1918

SGDC_cdc_false_path03 : Reports a violation if non-existent objects are
specified in the -through argument of the cdc_false_path
constraint ... 1920

SGDC_cdc_false_path04 : Reports a violation if wildcard names specified
xxxi
Synopsys, Inc.

in the -from, -to, or -through argument of the cdc_false_path
constraint does not match with the name of any object in a
design .. 1922

SGDC_cdc_false_path05 : Reports a violation if no argument is specified
with the cdc_false_path constraint 1925

SGDC_cdc_false_path06 : Checks type mismatch in the arguments of the
cdc_false_path constraint.. 1927

SGDC_cdc_false_path07 : Checks for existence of the -from_type and -
to_type arguments of the cdc_false_path constraint 1930

SGDC_cdc_false_path08 : Reports if a terminal is specified with -from or
-to field and connected net of that terminal connects to multiple
possible sources or destinations 1932

SGDC_cdc_false_path09 : Reports if objects specified with fields -
from_obj/to_obj are not driven by clocks specified with -
from_clk/-to_clk fields .. 1934

SGDC_clockreset02 : Reports a violation if an invalid clock is specified in
the -clock argument of the input or output constraint 1936

SGDC_clocksense01 : Reports for an incorrect value in the -pins argument
of the clock_sense constraint... 1940

SGDC_clocksense02 : Reports for the -tag argument of the clock_sense
constraint if the tag is not associated with a real clock 1942

SGDC_clocksense03 : Reports if a virtual clock is specified in the -tag
argument of the clock_sense constraint 1944

SGDC_define_reset_order01 : Reports a violation if an invalid object is
specified in the -from argument of the define_reset_order
constraint ... 1946

SGDC_define_reset_order02 : Reports a violation if an invalid object is
specified in the -to argument of the define_reset_order
constraint ... 1948

SGDC_define_reset_order03 : Reports a violation if an invalid reset is
specified in the -from argument of the define_reset_order
constraint ... 1950

SGDC_define_reset_order04 : Reports a violation if an invalid reset is
specified in the -to argument of the define_reset_order
constraint ... 1953

SGDC_define_reset_order05 : Checks for bidirectional reset ordering
specified by the define_reset_order constraint 1956

SGDC_deltacheck_ignore_instance01 : Reports a violation if an invalid
instance is specified in the -name argument of the
deltacheck_ignore_instance constraint 1959
xxxii
Synopsys, Inc.

SGDC_deltacheck_ignore_module01 : Reports a violation if an invalid
module is specified in the -name argument of the
deltacheck_ignore_module constraint 1961

SGDC_deltacheck_start01 : Reports a violation if an invalid object is
specified in the -name argument of the deltacheck_start
constraint ... 1963

SGDC_deltacheck_start02 : Reports a violation if a non-integer value is
specified in the -value argument of the deltacheck_start
constraint ... 1965

SGDC_deltacheck_stop_instance01 : Reports a violation if an invalid
instance is specified in the -name argument of the
deltacheck_stop_instance constraint............................... 1967

SGDC_deltacheck_stop_module01 : Reports a violation if an invalid
module is specified in the -name argument of the
deltacheck_stop_module constraint................................ 1969

SGDC_deltacheck_stop_signal01 : Reports a violation if an invalid object
is specified in the -name argument of the deltacheck_stop_signal
constraint ... 1971

SGDC_fifo01 : Reports a violation if no argument is specified with the fifo
constraint ... 1973

SGDC_fifo02 : Reports if an incorrect object is specified in the -rd_data
argument of the fifo constraint 1975

SGDC_fifo03 : Reports if an incorrect object is specified in the -wr_data
argument of the fifo constraint 1977

SGDC_fifo04 : Reports if an incorrect object is specified in the -rd_ptr
argument of the fifo constraint 1979

SGDC_fifo05 : Reports if an incorrect object is specified in the -wr_ptr
argument of the fifo constraint 1981

SGDC_fifo06 : Reports if an incorrect value is specified in the -memory
argument of the fifo constraint 1983

SGDC_fifo07 : Reports if the -wr_data argument is not specified with the -
rd_data argument of the fifo constraint........................... 1985

SGDC_fifo08 : Reports if the -rd_data argument is not specified with the -
wr_data argument of the fifo constraint 1987

SGDC_fifo09 : Reports if the -rd_ptr argument is not specified with the -
wr_ptr argument of the fifo constraint 1989

SGDC_fifo10 : Reports if the -wr_ptr argument is not specified with the -
rd_ptr argument of the fifo constraint............................. 1991

SGDC_fifo11 : Reports a violation if the wildcard name specified by an
argument of the fifo constraint does not match with any object in
xxxiii
Synopsys, Inc.

the design... 1993
SGDC_fifo12 : Reports a violation if no FIFO memory could be inferred from

the object specified by an argument of the fifo constraint .. 1995
SGDC_fifo13 : Reports a violation in case of a width mismatch of read and

write pointers of a user-defined FIFO.............................. 1997
SGDC_fifo14 : Reports invalid user-defined FIFOs........................... 1999
SGDC_generated_clock03 : Either of the -divide_by or -multiply_by

argument of generated_clock should be specified 2001
SGDC_generated_clock04 : Incorrect value for the -multiply_by

argument of the generated_clock constraint 2003
SGDC_generated_clock05 : Incorrect value for the -divide_by argument

of the generated_clock constraint................................... 2005
SGDC_generated_clock06 : Sanity checks for the generated_clock

constraint ... 2007
SGDC_gray_signals01 : Checks presence of multiple scalar signals in

gray_signals constraint ... 2013
SGDC_gray_signals02 : Checks whether the signals specified by the

gray_signals constraint are driven by a clock 2015
SGDC_gray_signals03 : Checks if the signals specified by the gray_signals

constraint are in the same clock domain.......................... 2018
SGDC_input01 : Reports a violation if a non-existing object is specified in

the -name argument of the input constraint 2021
SGDC_input02 : Reports a violation if a non-existent port or net is specified

in the -clock argument of the input constraint 2023
SGDC_input03 : Reports if an invalid port or net is specified in the -clock

argument of the input constraint 2025
SGDC_input05 : Conflicting input constraints specified for a path 2027
SGDC_inputoutput01 : The input / output constraint is defined on internal

nets ... 2030
SGDC_network_allowed_cells01 : Reports a violation if an invalid value

is specified in the -type argument of the network_allowed_cells
constraint ... 2033

SGDC_network_allowed_cells02 : Reports a violation if a non-existing
net is specified in the -from argument of the
network_allowed_cells constraint 2035

SGDC_noclockcell01 : Reports a violation if an invalid object is specified in
the -name argument of the noclockcell_start constraint 2037

SGDC_noclockcell03 : Reports a violation if a non-existing module is
specified in the -name argument of the noclockcell_stop_module
xxxiv
Synopsys, Inc.

constraint ... 2039
SGDC_noclockcell04 : Reports a violation if a non-existing instance is

specified in the -name argument of the
noclockcell_stop_instance constraint 2041

SGDC_numflops01 : Reports a violation if no argument is specified in the
num_flops constraint.. 2043

SGDC_numflops03a : Existence check for non-hierarchical name with '-
from_clk' field of constraint 'num_flops' 2045

SGDC_numflops03b : Reports a violation if an invalid hierarchical net or
pin name is specified in the -from_clk argument of the num_flops
constraint ... 2047

SGDC_numflops03c : Reports a violation if an invalid clock is specified in
the -from_clk argument of the num_flops constraint......... 2049

SGDC_numflops04 : Reports a violation if an invalid clock is specified in
the -to_clk argument of the num_flops constraint 2051

SGDC_numflops05 : Reports if the domain specified by the -from_domain
argument of the num_flops constraint does not exist 2053

SGDC_numflops06 : Reports if the domain specified by the -to_domain
argument of the num_flops constraint does not exist 2056

SGDC_numflops07 : Reports if an incorrect value is specified in the -
to_period argument of the num_flops constraint 2059

SGDC_numflops08 : Reports if an incorrect value is specified in the -value
argument of the num_flops constraint 2061

SGDC_numflops09 : Reports if an incorrect value is specified in the -
default argument of the num_flops constraint.................. 2063

SGDC_numflops10 : Reports a violation if the -value and -default
arguments of the num_flops constraint are specified together...
2065

SGDC_numflops11 : Reports a violation for overlapping specifications of
the num_flops constraint .. 2067

SGDC_numflops13 : Checks the -lib argument of the num_flops constraint
2069

SGDC_numflops14 : Checks the -cell argument of the num_flops
constraint ... 2071

SGDC_noclockcell02 : Reports a violation if invalid objects are specified by
the -name argument of the noclockcell_stop_signal constraint ..
2073

SGDC_output01 : Reports a violation if a non-existent object is specified in
the -name argument of the output constraint 2076
xxxv
Synopsys, Inc.

SGDC_output02 : Reports invalid non-hierarchical names specified to the -
clock argument of the output constraint 2078

SGDC_output03 : Reports inout ports for which both input and output
constraints are specified ... 2080

SGDC_output04 : Reports invalid hierarchical names specified to the -clock
argument of the output constraint 2082

SGDC_output_not_used01 : Existence check for '-name' field of
constraint 'output_not_used' ... 2084

SGDC_porttimedelay01 : Reports if an invalid design unit is specified in
the -name argument of the port_time_delay constraint 2086

SGDC_qualifier01 : Reports a violation if a non-existent object is specified
in the -name argument of the qualifier constraint 2088

SGDC_qualifier02a : Reports a violation if an invalid clock is specified in
the -from_clk argument of the qualifier constraint 2090

SGDC_qualifier02b : Reports a violation if a non-existent hierarchical
object is specified in the -from_clk argument of the qualifier
constraint ... 2092

SGDC_qualifier02c : Reports a violation if a non-existent object is
specified in the -from_clk argument of the qualifier constraint...
2094

SGDC_qualifier03a : Reports a violation if invalid clock names are
specified in the -to_clk argument of the qualifier constraint2096

SGDC_qualifier03b : Reports a violation if a non-existent hierarchical
object is specified in the -to_clk argument of the qualifier
constraint ... 2098

SGDC_qualifier03c : Reports a violation if a non-existent object is
specified in the -to_clk argument of the qualifier constraint2100

SGDC_qualifier04 : Reports a violation if an invalid domain is specified in
the -from_domain argument of the qualifier constraint...... 2102

SGDC_qualifier05 : Reports a violation if an invalid domain is specified in
the -to_domain argument of the qualifier constraint 2104

SGDC_qualifier06 : Reports a violation if an incorrect value is specified in
the -type argument of the qualifier constraint 2106

SGDC_qualifier08 : Reports a violation if the wildcard name specified by
the -name argument of the qualifier constraint does not match
with any object in the design ... 2108

SGDC_qualifier09 : Reports a violation if none of the -from_clk, -
from_domain, -from_obj, or -ignore arguments of the qualifier
constraint are specified... 2110

SGDC_qualifier10 : Reports a violation if the domain specified by the -
xxxvi
Synopsys, Inc.

from_clk/from_domain and -to_clk/to_domain arguments of the
qualifier constraint are same ... 2113

SGDC_qualifier11 : Reports a violation if a qualifier is not defined at the
destination output of a clock domain crossing 2116

SGDC_qualifier12 : Reports a violation if the clock/domain specified by the
-to_clk or -to_domain argument of the qualifier constraint does
not match with the clock/domain of the destination instance of
the qualifier .. 2119

SGDC_qualifier13 : Reports if an incorrect clock or domain is specified in
the -from_clk or -from_domain argument of the qualifier
constraint ... 2123

SGDC_qualifier15 : Existence check for the -name or -enable arguments of
the qualifier constraint.. 2127

SGDC_qualifier16 : Existence check for valid signal names specified to the
-enable argument of the qualifier constraint 2129

SGDC_qualifier18 : qualifier -ignore specified on a net that is the part of a
loop ... 2131

SGDC_quasi_static01 : Reports a violation if an invalid net is specified in
the -name argument of the quasi_static constraint 2134

SGDC_quasi_static_style01 : Reports multiple specifications of the
quasi_static_style constraint. .. 2136

SGDC_quasi_static_style02 : Reports if no argument is specified in the
quasi_static_style constraint. .. 2138

SGDC_reset_filter_path01 : Reports if no argument is specified to the
reset_filter_path constraint ... 2140

SGDC_reset_filter_path02a : Reports if a non-existent object is specified
to the -clock argument of the reset_filter_path constraint . 2142

SGDC_reset_filter_path02b : Reports a violation if an invalid clock is
specified to the -clock argument of the reset_filter_path
constraint ... 2144

SGDC_reset_filter_path02c : Reports if a virtual clock is specified to the
-clock argument of the reset_filter_path constraint........... 2146

SGDC_reset_filter_path03a : Reports if a non-existent object is specified
to the -from_rst argument of the reset_filter_path constraint ...
2148

SGDC_reset_filter_path03b : Reports if an invalid reset is specified to the
-from_rst argument of the reset_filter_path constraint...... 2150

SGDC_reset_filter_path03c : Reports if a virtual reset is specified to the
-from_rst argument of the reset_filter_path constraint...... 2152

SGDC_reset_filter_path04a : Reports if a non-existent object is specified
xxxvii
Synopsys, Inc.

to the -to_rst argument of the reset_filter_path constraint 2154
SGDC_reset_filter_path04b : Reports if an invalid reset is specified to the

-to_rst argument of the reset_filter_path constraint 2156
SGDC_reset_filter_path05a : Reports if a non-existent object is specified

to the -from_obj argument of the reset_filter_path constraint ...
2158

SGDC_reset_filter_path06a : Reports if a non-existent object is specified
to the -to_obj argument of the reset_filter_path constraint 2160

SGDC_reset_filter_path_validation01 : Reports block-level
reset_filter_path constraints which do not have a matching top-
level reset_filter_path constraint 2162

SGDC_reset_synchronizer01 : Reports a violation if the net/port/
hierarchical terminal specified by the -name argument of the
reset_synchronizer constraint is not found....................... 2166

SGDC_reset_synchronizer02 : Reports if the synchronized output
specified by the -name argument of the reset_synchronizer
constraint is not present in the path of reset specified the -reset
argument.. 2169

SGDC_reset_synchronizer03 : Reports a violation if the net/port/
hierarchical terminal specified by the -reset argument of the
reset_synchronizer constraint does not exist.................... 2173

SGDC_reset_synchronizer04 : Reports if an invalid reset is specified by
the -reset argument of the reset_synchronizer constraint .. 2176

SGDC_reset_synchronizer05 : Reports if the net/port/hierarchical
terminal specified by the -clock argument of the
reset_synchronizer constraint does not exist in the design. 2179

SGDC_reset_synchronizer06 : Reports if an invalid clock is specified by
the -clock argument of the reset_synchronizer constraint .. 2182

SGDC_reset_synchronizer07 : Reports if an invalid value is specified in
the -value argument of the reset_synchronizer constraint.. 2185

SGDC_reset_synchronizer08 : Checks if the synchronized output
specified by the -name argument of reset_synchronizer
constraint is unused. .. 2187

SGDC_reset_synchronizer09 : Reports duplicate reset_synchronizer
constraint specifications.. 2191

SGDC_reset_synchronizer10 : Reports conflicting reset_synchronizer
constraint specifications.. 2194

SGDC_signal_in_domain01 : Reports a violation if a non-existent module
is specified in the -name argument of the signal_in_domain
constraint ... 2197
xxxviii
Synopsys, Inc.

SGDC_signal_in_domain02 : Reports a violation if a non-existent pin is
specified in the -domain argument of the signal_in_domain
constraint ... 2199

SGDC_signal_in_domain03 : Reports a violation if a non-existent pin is
specified in the -signal argument of the signal_in_domain
constraint ... 2201

SGDC_signal_in_domain04 : The object specified in the -name argument
of the signal_in_domain constraint is not a black box........ 2203

SGDC_sgclkgroup01 : Invalid tag specified to the -group1 argument of the
sg_clock_group constraint... 2205

SGDC_sgclkgroup02 : Invalid tag specified to the -group2 argument of the
sg_clock_group constraint... 2207

SGDC_sgclkgroup03 : Same tag specified to the -group1 and -group2
arguments of the sg_clock_group constraint.................... 2209

SGDC_sync_cell02a : Reports if an incorrect non-hierarchical clock name
is specified in the -from_clk argument of the sync_cell constraint
2211

SGDC_sync_cell02b : Reports if an incorrect hierarchical clock name is
specified in the -from_clk argument of the sync_cell constraint .
2213

SGDC_sync_cell02c : Reports invalid clocks specified by the -from_clk
argument of the sync_cell constraint 2215

SGDC_sync_cell03a : Reports if an incorrect clock name is specified in the
-to_clk argument of the sync_cell constraint.................... 2217

SGDC_sync_cell03b : Reports invalid clocks specified by the -to_clk
argument of the sync_cell constraint 2219

SGDC_sync_cell04 : Reports if same domain clocks are specified in the -
from_clk and -to_clk arguments of the sync_cell constraint2221

SGDC_sync_cell05 : Reports a violation if an invalid domain is specified in
the -from_domain argument of the sync_cell constraint 2224

SGDC_sync_cell06 : Reports a violation if an invalid domain is specified in
the -to_domain argument of the sync_cell constraint........ 2227

SGDC_sync_cell07 : Reports if the same domain is specified in the -
to_domain and -from_domain arguments of the sync_cell
constraint ... 2230

SGDC_sync_cell08a : Reports if an incorrect value is specified in the -
from_period argument of the sync_cell constraint 2232

SGDC_sync_cell08b : Reports a violation if an invalid period value is
specified in the -from_period argument of the sync_cell
constraint ... 2234
xxxix
Synopsys, Inc.

SGDC_sync_cell09a : Reports if an incorrect value is specified in the -
to_period argument of the sync_cell constraint 2237

SGDC_sync_cell09b : Reports a violation if an invalid period value is
specified in the -to_period argument of the sync_cell constraint
2239

SGDC_sync_cell10 : Reports sync_cell constraint specifications that cover
the same clock-domain crossing..................................... 2242

SGDC_virtualclock01 : Reports a virtual clock specified in combination
with other real or virtual clock in abstract_port constraint.. 2245

SGDC_virtualclock02 : Reports same virtual clock in abstract_port
constraint specified on both input & output port of a module.....
2247

SGDC_virtualclock03 : Reports virtual clocks that have the same name as
the domain name specified in the -domain argument of the clock
constraint ... 2249

SignalTypeSetup : Checks the signal specified by the -name argument of
the signal_type constraint ... 2251

SyncCellSetup : Reports a violation if the sync_cell constraint does not
synchronize any crossing in the current design................. 2253

SGDC_clock_path_wrapper_module01 : Reports user-defined wrapper
modules in the clock-path ... 2255

Rule Grouping in SpyGlass CDC ... 2258

Terminologies in SpyGlass CDC ...2259
Properties ... 2260
Assertions ... 2261
Clock Cycle Count and Sequential Depth.. 2262
Design Period .. 2264
Initial State ... 2265
Functional Flip-Flop... 2266
Reset Flip-Flop .. 2267
Reset Cone .. 2268
Synchronous Clocks .. 2269
Repeaters.. 2270
Derived Resets .. 2271
Control Signals .. 2272
Design Assumptions .. 2273
xl
Synopsys, Inc.

Appendix:
SGDC Constraints ..2275

SpyGlass Design Constraints Used by SpyGlass CDC2276
xli
Synopsys, Inc.

xlii
Synopsys, Inc.

Preface
About This Book
The SpyGlass® CDC Rules Reference guide describes the SpyGlass rules
that report useful clock and reset information.
43
Synopsys, Inc.

Contents of This Book

Preface
Contents of This Book
The SpyGlass CDC Rules Reference guide has the following sections:

Chapter Describes...
Introduction to SpyGlass CDC Provides an introduction to the

SpyGlass CDC solution.
Performing SpyGlass CDC Analysis Provides an overview on performing

SpyGlass CDC analysis.
Working With the Ac_sync_group
Rules

Provides details on working with the
Ac_sync_group rules.

Performing Functional Analysis in
SpyGlass CDC

Provides details on performing
functional analysis in SpyGlass
CDC.

Handling generated_clock
Constructs on Library Pins

Provides details on working with the
generated_clock constructs.

Using the Clock Setup Window Provides details on working with the
Clock Setup window.

Clock Domain Crossing
Synchronization Schemes

Provides details on various clock
domain synchronization schemes in
SpyGlass CDC.

Tcl Commands in SpyGlass CDC Provides information on the
SpyGlass CDC Tcl commands.

Reports and Other Files in
SpyGlass CDC

Provides details on SpyGlass CDC
reports.

Parameters in SpyGlass CDC Provides details on SpyGlass CDC
parameters.

Rules in SpyGlass CDC Provides details on SpyGlass CDC
rules.

Terminologies in SpyGlass CDC Provides the meaning of various
terminologies used in SpyGlass
CDC.

Internal Rules in SpyGlass CDC Provides information on the
SpyGlass CDC rules that are
automatically run on certain
conditions.

Appendix: SGDC Constraints Provides the list of SGDC
constraints used in SpyGlass CDC.
44
Synopsys, Inc.

Typographical Conventions

Preface
Typographical Conventions
This document uses the following typographical conventions:

The following table describes the syntax used in this document:

To indicate Convention Used
Program code OUT <= IN;

Object names OUT

Variables representing
objects names

<sig-name>

Message Active low signal name '<sig-name>' must end
with _X.

Message location OUT <= IN;

Reworked example
with message removed

OUT_X <= IN;

Important Information NOTE: This rule...

Syntax Description
[] (Square brackets) An optional entry
{ } (Curly braces) An entry that can be specified once or multiple

times
| (Vertical bar) A list of choices out of which you can choose

one

... (Horizontal
ellipsis)

Other options that you can specify
45
Synopsys, Inc.

Typographical Conventions

Preface
46
Synopsys, Inc.

Introduction to SpyGlass
CDC
SpyGlass® CDC solution is used to detect issues related with Clock Domain
Crossings (CDC) in a design. It ensures that proper synchronization is
added in the circuit to avoid such issues.

For example, it detects the following problems associated with clock-
domain crossings:
 Issues related to metastability

 Issues related to complex synchronizers

 Issues related to reset synchronization

 Issues related with the implementation of clocks, resets, and crossings

 Data hold in fast-to-slow crossings

 Data correlation and race conditions

SpyGlass CDC solution provides the above information in the form of rule
messages, reports, and related files.

NOTE: The SpyGlass CDC solution has an associated methodology document. It is
recommended to read that document to learn the recommended approach to use
SpyGlass CDC solution.
47
Synopsys, Inc.

Introduction to SpyGlass CDC
48
Synopsys, Inc.

Performing SpyGlass
CDC Analysis
SpyGlass CDC analysis enables you to identify CDC issues in your design.

During SpyGlass CDC analysis, you run SpyGlass CDC goals in different
stages. In each stage, fix the reported violations and move to the next
stage. Using this step-wise approach enables you to reach a handful of
CDC issues that need consideration.

If you do not follow this step-wise approach, you may see large number of
CDC violations, majority of which appear due to incorrect setup or not
fixing violations of the previous stages.

Before performing SpyGlass CDC analysis, check the Prerequisites for
Performing SpyGlass CDC Analysis.

SpyGlass CDC analysis is divided in the following stages:
1. Creating SpyGlass CDC Setup

2. Fixing Clock and Reset Integrity Problems

3. Performing CDC Verification

4. Debugging CDC Issues
49
Synopsys, Inc.

Prerequisites for Performing SpyGlass CDC Analysis

Performing SpyGlass CDC Analysis
Prerequisites for Performing SpyGlass CDC
Analysis

The prerequisites for performing SpyGlass CDC analysis are as follows:
 Run the design-read process successfully.

 Ensure that the design contains minimum number of unintended black
boxes.

 Provide the corresponding technology libraries (.lib) for instantiated
technology library cells in the design.

 Specify information about the clocks in the design, and also resets (if
possible).
It is recommended to gather this information from design specifications,
IPs, or chip leads before starting SpyGlass CDC run.
SpyGlass CDC provides assistance in automatically detecting clocks and
resets if you do not have access to this information. For details, see
Generating Clocks and Resets for a Design.

NOTE: You can run the SpyGlass CDC solution with the basepolicy so license feature
that is used for all base products. However, you cannot use this feature for CDC
Verification Rules, CDC Verification Rules, and Delta Delay Rules. For these rules
and schemes, you need the Advanced_CDC and adv_checker license
features.

Also note that if the Advanced_CDC license is not checked out in save
mode and a CDC rule that requires the Advanced CDC license is run in the
restore run, SpyGlass runs in force save mode under the
use_advcdc_features 1 goal specific option.

The following example illustrates the usage of this goal-specific option:

set_goal_option use_advcdc_features 1
50
Synopsys, Inc.

Creating SpyGlass CDC Setup

Performing SpyGlass CDC Analysis
Creating SpyGlass CDC Setup
Creating a setup means specifying design information, such as clocks,
resets, and stop modules before Performing CDC Verification.

The quality of setup dictates the quality of SpyGlass CDC analysis. A wrong
or incomplete setup may result in many false violations or mask a real
design bug.

You create a setup by:
 Specifying Clock Generation Blocks as Black Boxes

 Specifying Clocks and Resets for a Design

 Generating Clocks and Resets for a Design

 Using the Setup Manager

Specifying Clock Generation Blocks as Black Boxes

Performing SpyGlass CDC analysis on internal of clock-generation blocks
considerably complicates and adds little to the value of overall SpyGlass
CDC analysis.

Mark such blocks as black boxes unless you have detailed SGDC
constraints to define the clock characteristics of these blocks.

To mark such blocks as black boxes, specify them to the following
command in a project file:

set_option stop <blocks>

Once you mark such blocks as black boxes:
 Specify the clock constraints on the output pins of these blocks.

 Define clock outputs in the same domain unless the clocks are not
harmonically related.
This is explained in the following figure:
51
Synopsys, Inc.

Creating SpyGlass CDC Setup

Performing SpyGlass CDC Analysis
FIGURE 1. Defining Clock Outputs as in the Same Domain

Specifying Clocks and Resets for a Design

If you know clocks and resets in your design, specify them by performing
the following steps:
1. Define clocks and resets by using the clock and reset constraints,

respectively, in an SGDC file.
2. Analyze your design by running goals from the SpyGlass CDC solution

methodology.
3. Examine The Clock-Reset-Summary Report.

In this report, Section D: Cases not checked for clock domain crossings Section
lists the unconstrained clocks.

4. Modify the SGDC file to specify the clock signals reported in The Clock-
Reset-Summary Report.

5. Repeat step 2 with the SGDC file modified in the previous step.

Generating Clocks and Resets for a Design

If you do not know clocks and resets in the design, generate them by
performing the following steps:
1. Run the cdc_setup goal.

in out
PLL

clk1 clk2

current_design top
clock -name top.clk2

current_design top
assume_path -name PLL -input in -output out

OR

SGDC file

clock -name top.clk1 -domain d1

clock -name top.clk1 -domain d1
52
Synopsys, Inc.

Creating SpyGlass CDC Setup

Performing SpyGlass CDC Analysis
This step creates the autoclocks.sgdc and autoresets.sgdc file containing
SGDC constraints for inferred clocks and resets, respectively.

2. Review and modify the generated SGDC files.
These files may include some control signals in addition to real clocks
and resets. Therefore, you must review each inferred clock and reset in
these files and remove signals that are not real candidates for clocks
and resets.
It is recommended that you view the Setup_clock01 and Reset_info01 rule
messages to review such inferred signals.

3. Specify the modified autoclocks.sgdc and autoresets.sgdc files in the
SpyGlass run, and analyze your design by running the required goals.

Understanding the Generated SGDC Files

Consider the following structure of the autoclocks.sgdc and autoresets.sgdc
files generated after running the structure_audit goal:

//autoclocks.sgdc
current_design <du-name>
{clock -name <clk-name> -domain domain <num>

}

//autoresets.sgdc
current_design <du-name>
{reset -name <async-rst-name> -value <value>}
{reset -name -sync <sync-rst-name> -value <value>}

The arguments of the above commands are explained below:

Argument Description
<du-name> Specifies a module name (for Verilog designs) or a design

unit name in the <entity-name>.<arch-name> format
(for VHDL designs)

<clk-name> Specifies a clock signal name
53
Synopsys, Inc.

Creating SpyGlass CDC Setup

Performing SpyGlass CDC Analysis
Viewing the Generated clock Constraints

Each clock constraint specifies a new clock in a new clock domain (specified
by the -domain argument). The clock is attached to the net specified by
the -name argument. This net can be anywhere in the hierarchy.

The -value argument is provided for compatibility with SpyGlass DFT
solution analysis and is not used by the SpyGlass CDC solution analysis.

NOTE: The clock constraints information is printed in the Section B: Propagated Control
Signals Section of The Clock-Reset-Summary Report.

Viewing the Generated reset Constraints

Each reset constraint specifies a new reset. The reset is attached to the
node specified by the name in the name argument. This name should be a
net name that can be anywhere in the hierarchy.

The -value argument is provided for compatibility with SpyGlass DFT
solution analysis and is not used by the SpyGlass CDC solution analysis.
Possible values of the -value argument can be 0, 1, or x.

NOTE: You normally will not be modifying the reset lines in the generated autoresets.sgdc

<async-rst-name> Specifies an asynchronous reset signal name.
For each clock signal reported in the autoclocks.sgdc file,
a unique domain name is assigned to that clock.
For top-level nets, <clk-name> and <async-rst-name>
are simple names. For nets at any other level,
<clk-name> and <async-rst-name> are full hierarchical
names.
For each reset signal reported, the inferred active reset
value is also reported.

<sync-rst-name> Specifies a synchronous reset signal name.
For each clock signal reported in the autoclocks.sgdc file,
a unique domain name is assigned to that reset.
For top-level nets, <clk-name> and <sync-rst-name> are
simple names. For nets at any other level, <clk-name>
and <sync-rst-name> are full hierarchical names.
For each reset signal reported, the inferred active reset
value is also reported.

Argument Description
54
Synopsys, Inc.

Creating SpyGlass CDC Setup

Performing SpyGlass CDC Analysis
file.

NOTE: The reset constraint information is printed in the Section B: Propagated Control
Signals Section of The Clock-Reset-Summary Report.

Modifying Clock Domains in the Generated SGDC Files

By default, clock constraints generated in the autoclocks.sgdc file are
assumed from a separate clock domain. In this case, the CDC Verification
Rules report a violation for clock domain crossings between each pair of
clock signals.

However, the tool may consider some clock signals in a design to be from
the same domain. In this case, the tool assumes no synchronization issues
in data transfer between flip-flops triggered by such clock signals.

You can supply such clock domain information by modifying the clock
domain information to clock keyword lines in the Design Constraints file.

Modify the values of the -domain argument of clock keyword lines to a
valid string or clock name so that all clocks of the same clock domain have
the same value of the -domain argument.

For example, the following specification indicates that two clock signals
clk1 and clk2 are of the same domain (named A) and one clock signal
clk3 is of a different domain (named B):

current_design myDU
clock -name clk1 -domain A
clock -name clk2 -domain A
clock -name clk3 -domain B

Then, all clock crossings between one of clk1 and clk3 or clk2 and
clk3 are candidates for clock domain crossings. Clock crossings between
clk1 and clk2 are not reported because they are in the same clock
domain (domain A).

The -domain argument is optional in the clock constraints. If you do
not specify it, the name of the clock domain is assumed as the clock name.
Therefore, the following specification indicates that the two clock signals
clk1 and clk2 of the same domain (named clk1) and one clock signal
55
Synopsys, Inc.

Creating SpyGlass CDC Setup

Performing SpyGlass CDC Analysis
clk3 is of a different domain (named clk3):

current_design myDU
clock -name clk1 -domain clk1
clock -name clk2 -domain clk1
clock -name clk3

Then, all clock crossings between one of clk1 or clk2 and clk3 are
candidates for clock domain crossings.

Using the Setup Manager

The setup manager enables you to create a setup by:
 Extracting and completing clocks and reset definitions.

 Configuring black boxes.

 Setting boundary (IO) assumptions.

 Defining acceptable synchronization practices for a design or project.

To create a setup, perform the following steps:
1. Load the design in SpyGlass Console.
2. Perform the design-read in process.
3. Select the Goal Setup and Run tab.
4. Select the clock_reset_integrity goal under the Select Goal tab.
5. Click on the Setup Goal tab.
6. Start the setup wizard of the setup manager.
7. Follow all the steps of the setup manager.

The setup is considered complete if there are zero errors and zero
warnings.

CDC Analysis based on sg_clock_group

While performing timing analysis, a Static Timing Analysis (STA) tool
considers all the clock pairs that are synchronous to each other unless an
async relation is explicitly specified between them by using the
set_clock_group or set_false_path constraint. As STA considers
56
Synopsys, Inc.

Creating SpyGlass CDC Setup

Performing SpyGlass CDC Analysis
only two clocks at a time, there is no ambiguity. SpyGlass, however, tries
to compute clock domains by considering all the clocks and the involved
constraints.

Consider the relationship between the three clocks as shown in the figure
below.

FIGURE 2.

In the above figure, since the foo_clk clock is synchronous to both the
other clocks, foo_clk1 and foo_clk2, it should be assigned in the
same domain as the other two. However, foo_clk1 and foo_clk2 are
asynchronous so they cannot be assigned in the same domain.

If you assign foo_clk1 and foo_clk2 in different domains to make
them asynchronous, which would result in foo_clk being asynchronous
to either foo_clk1 or foo_clk2, the clock domains would look similar
to as shown below:

clock -name "clk" -domain d0 -edge { "0.000000"
"2.500000"} -period 5 -tag foo_clk
clock -name "clk1" -domain d0 -edge { "0.000000"
"10.000000"} -period 20 -tag foo_clk1
clock -name "clk2" -domain d1 -edge { "0.000000"
"20.000000"} -period 40 -tag foo_clk2

However, since this does not help specify the exact clock relationships,
SpyGlass provides the sg_clock_group constraint that you can use to specify
exact clock relationships. For the purpose of the example described above,
use the following constraint specification to specify asynchronous
57
Synopsys, Inc.

Creating SpyGlass CDC Setup

Performing SpyGlass CDC Analysis
relationship between foo_clk1 and foo_clk2.

sg_clock_group -group1 foo_clk1 -group2 foo_clk2

The clock_<top
name>_clock_relationship_matrix_<n>.csv file is generated
and shows the relationship between the clocks as shown the figure below.

58
Synopsys, Inc.

Fixing Clock and Reset Integrity Problems

Performing SpyGlass CDC Analysis
Fixing Clock and Reset Integrity Problems
This step ensures that clocks and resets are properly defined, and they are
free of glitches, race conditions, and other hazards.

You must fix clock and reset integrity problems by running the
clock_reset_integrity goal.
59
Synopsys, Inc.

Performing CDC Verification

Performing SpyGlass CDC Analysis
Performing CDC Verification
CDC verification means detecting CDC problems in a design.

To perform CDC verification, perform the following steps:
1. Set the required parameters.

For details on all parameters of SpyGlass CDC solution, see Parameters in
SpyGlass CDC.

2. Run goals, such as cdc_verify and cdc_verify_struct, to
detect a large spectrum of CDC problems.

You may initially find a large number of CDC violations. It is important to
approach them in a systematic way so that you quickly reach a handful of
issues that need consideration.

The following issues cover a majority of important violations:
 Unsynchronized Crossings Issues

 Convergence Issues

 Reset Synchronization Issues

 Glitch Issues

 Signal Width Errors in Synchronized Control Crossings

 Data Hold Issues in Synchronized Data Crossings

For all the other violations, search the SpyGlass CDC documentation for a
violation by its rule name. For details, see Rules in SpyGlass CDC.

Unsynchronized Crossings Issues

First look at the unsynchronized domain crossings reported by Ac_unsync01
and Ac_unsync02 rules.

These rules report the areas of potential synchronization failures at clock
domain crossings. To understand more about the likely problems, see
Reasons for Synchronized Crossings Reported by Ac_sync_group Rules and
Reasons for Unsynchronized Crossings Reported by Ac_sync_group Rules.

To understand on how to debug these issues, see Debugging CDC Issues.

To get more specific details on rule violations, see Ac_sync01, Ac_sync02,
Ac_unsync01, and Ac_unsync02.
60
Synopsys, Inc.

Performing CDC Verification

Performing SpyGlass CDC Analysis
The following example shows the unsynchronized crossing issue:

FIGURE 3. Unsynchronized crossing causing metastability problem

Convergence Issues

Convergence issues can occur when multiple signals cross from one
domain to another but they are separately synchronized. For example,
consider the following figures:

Output B becomes metastable whenever
input A violates setup and hold time

Intermediate voltage value
can cause incorrect value
downstream

Clk_B samples A while it is changing

Initially
metastable

May remain
metastable

Intermediate voltage
value fanning
out
61
Synopsys, Inc.

Performing CDC Verification

Performing SpyGlass CDC Analysis
FIGURE 4. Convergence Issues

In the above figures, even though X4 and Y4 are separately and correctly
synchronized, you cannot be sure if they will have simultaneously valid
values when they reconverge.

In addition, convergence and coherency checks of reset control
synchronizers are performed by the Ac_conv rules when the
coherency_check_type parameter is set to reset as shown in the following
62
Synopsys, Inc.

Performing CDC Verification

Performing SpyGlass CDC Analysis
figure.

FIGURE 5. Convergence Issues of Reset Control Synchronizers

For information on such types of violations, see Ac_conv01, Ac_conv02,
Ac_conv03, Ac_conv04, and Ac_conv05.

For information on debugging such issues, see Debugging CDC Issues.

Reset Synchronization Issues

For such issues, check the Ar_* rule violations. These rules report
violations for synchronizing asynchronous reset signals.

As resets are usually single-bit signals, you might expect them to be
reported under Ac_sync01. However, resets typically require different
synchronization techniques. For example, asynchronous resets can be
asserted asynchronously, but they must be deasserted synchronously.

For example, the following figure shows a reset that deasserts
synchronously:

C1

D1

C2
S1

C1

D2

C2
S2
63
Synopsys, Inc.

Performing CDC Verification

Performing SpyGlass CDC Analysis
FIGURE 6. Reset that Deasserts Synchronously

In the above figure, the reset is properly synchronized, but it deasserts
synchronously.

For information on these violations, see Ar_asyncdeassert01,
Ar_syncdeassert01, Ar_sync01, and Ar_unsync01.

For information on debugging such issues, see Debugging CDC Issues.

The Ar_cross_analysis01 rule performs crossing detection and
synchronization checks and reports all the clock domain crossings in the
reset path in a design. Users do not need to specify reset definitions in the
constraints file as is required by the Ar_sync rules.

Glitch Issues

Check for any violation reported by Ac_glitch* or Clock_glitch*
rules.

These rules highlight glitch-prone logic that can lead to problems very
similar to synchronization issues.

For example, the following figure shows the reconverging combinational
logic that is prone to glitch:
64
Synopsys, Inc.

Performing CDC Verification

Performing SpyGlass CDC Analysis
FIGURE 7. Glitch-prone reconverging combinational logic

For information on these violations, see Ac_glitch01, Ac_glitch03,
Clock_glitch02, Clock_glitch03, Clock_glitch04, Clock_converge01, and
Reset_sync01.

For information on debugging such issues, see Debugging CDC Issues.

Signal Width Errors in Synchronized Control Crossings

Check for the Ac_cdc01 rule violation.

Such violations indicate potential problems in signals or data crossing
typically from a fast clock domain to a slower clock domain where the data
sent may have already changed by the time the capturing clock arrives.

The following figure shows the example of signal width issue:
65
Synopsys, Inc.

Performing CDC Verification

Performing SpyGlass CDC Analysis
FIGURE 8. Example of a signal width issue

For information on debugging such issues, see Debugging CDC Issues.

Data Hold Issues in Synchronized Data Crossings

Check for the Ac_datahold01a violation.

The signals reported by such violations are present where a data
synchronization structure is used but is not functioning correctly.

Consider the scenario shown in the following figure:

Check if the signal A will be held long enough to
be captured by F2

The signal A not help long enough
for the slow clock clk_B
66
Synopsys, Inc.

Performing CDC Verification

Performing SpyGlass CDC Analysis
FIGURE 9. Incorrectly Synchronized Data Crossings

The above scenario depicts incorrectly synchronized data crossings. Here,
the data is changing while the enable is active.

For information on debugging such issues, see Debugging CDC Issues.
67
Synopsys, Inc.

Debugging CDC Issues

Performing SpyGlass CDC Analysis
Debugging CDC Issues
Before debugging, ensure that the analysis is set up correctly. For details,
see Creating SpyGlass CDC Setup.

If you are running SpyGlass CDC on a reasonable size design, you are
likely to see a large number of violations. Most of these violations are
because of:
 Incorrect or incomplete setup.

 Configuration signals that should not typically be reported as CDC
errors.

You can remove these violations in a systematic way, leaving only a
handful of potential real problems that you need to consider.

NOTE: Never deal with CDC issues by waiving violations. There is a significant danger that
you will mask a real problem if you follow that approach.

You can debug CDC issues by:
 Using Spreadsheets

 Using Incremental Schematic

 Viewing Debug Data in Schematic

 Filtering Violations Based On Instances

 Solving CDC Issues Common to Multiple Violations

Using Spreadsheets

When there are many violations, a significant percentage of these
violations appear from a few number of root causes. The recommended
way to analyze them is by using the spreadsheet viewer.

Perform the following steps to use the spreadsheet viewer for debugging
many violations:
1. Open the Spreadsheet Viewer

2. Filter and Sort Data

3. Check for Common Reasons or Sources

4. Filter Signals by Source
68
Synopsys, Inc.

Debugging CDC Issues

Performing SpyGlass CDC Analysis
Open the Spreadsheet Viewer

Open the spreadsheet by right-clicking on the violation header and
selecting the Spreadsheet Viewer option from the shortcut menu.

Filter and Sort Data

Use filtering and sorting in the spreadsheet view to isolate common factors
between violations.

To filter or sort data, right-click on a column header and select an
appropriate option from the shortcut menu, as shown in the following
figure:

FIGURE 10. Filtering and Sorting in the Spreadsheet

Check for Common Reasons or Sources

Look for common reasons or common sources in the spreadsheet.
69
Synopsys, Inc.

Debugging CDC Issues

Performing SpyGlass CDC Analysis
These will most probably point to a single root cause.

Filter Signals by Source

If you are using a naming methodology for static signals, filter by source
name in the spreadsheet.

For example, the following figure shows how you can specify the filter
criteria (_cfg) for sources:

FIGURE 11. The Custom Filter Dialog

To open the above dialog, select the Custom option from the shortcut
menu shown in Figure 10.

View the filtered list and address the root cause to eliminate a large
number of violations.

Using Incremental Schematic
70
Synopsys, Inc.

Debugging CDC Issues

Performing SpyGlass CDC Analysis
A schematic enables you to understand and isolate root cause of a
violation.

You can view the schematic of multiple related violations appearing in a
spreadsheet. To do so, perform the following steps:
1. Select the violations in the spreadsheet by keeping the <Ctrl> keyboard

key pressed.
2. Open the Incremental Schematic by performing any of the following

actions:
 Click the link in the Schematic column of a row in the spreadsheet.

 Click the Incremental Schematic button from the spreadsheet toolbar.

The following figure shows the incremental schematic:

FIGURE 12. The Incremental Schematic Window

Cross probing from schematic to RTL and vice-versa occurs automatically.
71
Synopsys, Inc.

Debugging CDC Issues

Performing SpyGlass CDC Analysis
Tips to Use the Incremental Schematic

Following are some useful tips:
 Use the legend to know the colors used to identify domains and

qualifiers.
 Always run the Info_Case_Analysis rule to see propagation of constant

values in the schematic.
 Right-click on any net (and not on a pin) and select the Show Debug

Data->Clock-reset option to see clock and domain information.
For details, see Viewing Debug Data in Schematic.

 Expand the hierarchy boundaries can by double-clicking on the
boundary edges.

 Trace the inputs and outputs by double-clicking on the object whose
inout/output needs to be traced.

 Trace the inputs and outputs by using appropriate right-click menu
options in the schematic to trace to flip-flops, latches, inputs, outputs,
and modules.

Viewing Debug Data in Schematic

While debugging SpyGlass CDC solution violations in the schematic, the
following information is very useful:
 Clock domain information on nets in the clock path

 Reset domain information on nets in the reset path

 Clock domain information on nets in data or control paths in the design

 Quasi_static information on nets in data or control paths in the design

NOTE: You must set the value of the enable_debug_data parameter to yes to view the
above debug data for SpyGlass CDC solution rules.

To view such debug data in the schematic, right-click on a net and select
the Show Debug Data->Clock-reset option from the shortcut menu. When
you select this option, a sub-menu appears displaying the following
options:
 Clock

Select this option to view clock information on nets present in the clock
72
Synopsys, Inc.

Debugging CDC Issues

Performing SpyGlass CDC Analysis
path, as shown in the following figure:

FIGURE 13. The Clock Domain Data Dialog

The Propagate_Clocks rule computes the above information.
This option is enabled only for nets that are present in the clock-path of
the design.

 Reset
Select this option to view reset information on nets present in the reset
path, as shown in the following figure:

FIGURE 14. The Reset Domain Data Dialog

The Propagate_Resets rule computes the above information.
In the above figure, Type refers to the reset type, and Active value
represents the initial value of reset sources.
This option is enabled only for nets that are present in the reset-path of
73
Synopsys, Inc.

Debugging CDC Issues

Performing SpyGlass CDC Analysis
the design.
 Domain in data/control paths

Select this option to view clock-domain information on nets in the data
or control paths of the design, as shown in the following figure:

FIGURE 15. The Data/Control Path Domain Data Dialog

In the above figure, Internal Domain Tag refers to an internal tag that is
computed while performing clock propagation and Quasi static refers to
paths that have quasi static property.
Data/control path can have the following types of clock-domains:
 User-specified clock-domain: This category includes primary, black

box and derived clocks. For such cases, SpyGlass displays the
user-specified clock name.

 Merged clock domain: If more than one clock is converging on a gate,
a merged domain is created internally. In such cases, SpyGlass
displays the user-specified list of clocks.

 Virtual clock domain: If a virtual clock is associated with a primary
port of a block instance port, SpyGlass displays the user-specified
virtual clock name.

 Quasi_static
Select this option to check if the net is quasi_static in the data or control
path of the design, as shown in the following figure:
74
Synopsys, Inc.

Debugging CDC Issues

Performing SpyGlass CDC Analysis
FIGURE 16. The quasi_static Debug Data Dialog

Filtering Violations Based On Instances

While working on large designs, designers are assigned certain design
instances. In such cases, designers need to focus on the violations
reported on specific instances.

To help designers quickly locate the violations on specific instances,
SpyGlass CDC provides the instance-based filtering mechanism. In this
mechanism, designers can filter violations based on an instance.

To filter violations based on an instance, perform the following steps:
1. Specify the following command in a project file:

set_option enable_module_based_reporting yes

2. Select the Tree Viewer option from the View menu.
The following figure shows the tree viewer:
75
Synopsys, Inc.

Debugging CDC Issues

Performing SpyGlass CDC Analysis
FIGURE 17. The tree viewer

Ensure that the Instance View option is selected in the tree viewer.
3. Right-click on an instance (say F3 in Figure 17) in the instance view and

select the Show Messages of Instance option from the shortcut menu.
After performing this step, violations are filtered based on the F3
instance. This is shown in the following figure:

Tree viewer
76
Synopsys, Inc.

Debugging CDC Issues

Performing SpyGlass CDC Analysis
FIGURE 18. GUI view before filtering violations based on instances

NOTE: You can filter violations based on the destination instance or based on the com-
mon module containing the destination and its source by using the msg_inst_-
mod_report parameter.
In addition to the Instance Hierarchy view, violations also get filtered
under Msg Tree view, as shown below:

Right-click on F3 and select Show Messages of Instance
option from the shortcut menu

Violations filtered based on F3
77
Synopsys, Inc.

Debugging CDC Issues

Performing SpyGlass CDC Analysis
FIGURE 19.

Clearing the Filter

To clear the filter and restore the previous view in which all violations of
the top-level design appear, right-click in the Message Tree and select
the Clear Message Filter option from the shortcut menu, as shown in the
following figure:

FIGURE 20. Clearing the filter

All violations reported on the
top-level design
(14 warnings and
5 informational messages)

All violations reported on the
F3 instance
(1 warning and
1 informational message)

After filtering violations
78
Synopsys, Inc.

Debugging CDC Issues

Performing SpyGlass CDC Analysis
Saving Messages

To save the violation messages, right-click on the Message Tree pane and
select the Save Message List option.

NOTE: In SpyGlass Explorer, you can save messages for the selected hierarchies. For
additional information, see SpyGlass Explorer User Guide.

Solving CDC Issues Common to Multiple Violations

In case of large number of SpyGlass CDC violations, most of them appear
from the following:
 Incorrect setup

 Apparent problems that can be safely ignored

This section describes the following root cause problems that are common
to many violations:
 Crossings Originating From or Ending on a Black Box

 Incorrect Case Analysis Settings

 Source Flip-Flops Generating Static Signals

 Noise

You should consider addressing the above problems first before focusing on
rule-specific problems.

Once you solve the above problems and rerun SpyGlass CDC, you should
see substantially smaller and more manageable set of issues.

NOTE: Never deal with CDC issues by waving violations. There is a significant danger you
will mask a real problem if you follow that approach.

Crossings Originating From or Ending on a Black Box

SpyGlass CDC analysis depends on the following:
 Being able to trace through paths

 Some level of functional understanding

A black box defeats both the above objectives in the upstream and
downstream of the black box.
79
Synopsys, Inc.

Debugging CDC Issues

Performing SpyGlass CDC Analysis
To remove this issue, specify constraints to provide SpyGlass CDC with a
partial model, as described below:
 Assign a domain to the black box pin reported in a crossing by using:

 The abstract_port constraint on the black box output.

 The signal_in_domain constraint on the black box input.

 Model a feed through path from the input of the black box to the output
of the black box by using the assume_path constraint.

Incorrect Case Analysis Settings

Check if the specified set_case_analysis constraints are set correctly for this
analysis.

For example, you may see false violations because all functional and all
test modes are simultaneously active when actually many of these modes
will never be active simultaneously.

Source Flip-Flops Generating Static Signals

If a source flip-flop generates a predominantly static signal, no
synchronization may be required. This is likely to be the case for
configuration signals that are typically set up at power-on/boot time and
then not changed again.

Ask the chip architect to get guidance on which signals fall in this group,
and declare such signals by using the quasi_static constraint.

Noise

One of the major challenges in SpyGlass CDC verification is to manage high
number of violations. You can reduce noise through specific setup and
setup check steps.
80
Synopsys, Inc.

Parameters in SpyGlass
CDC
This section provides detailed information on the parameters used in
SpyGlass CDC solution. You can set these parameters by using the
following command in Atrenta Console and Tcl:

set_parameter <parameter_name> <parameter_value>

For more information on setting the parameters, refer to the SpyGlass Tcl
Interface User Guide and Atrenta Console User Guide.
81
Synopsys, Inc.

abstract_validate_express

Parameters in SpyGlass CDC
abstract_validate_express
Enables the Ac_abstract_validation01 rule to validate only user-specified
block assumptions with respect to the top-level block.

This way, missing block assumptions are not checked resulting in less noise
during the SpyGlass CDC Hierarchical Verification Flow.

By default, the parameter is set to none. Set the parameter to one of the
supported values to enable express mode for the specified mismatch type.

The following table shows the type of issues reported and not reported by
the Ac_abstract_validation01 rule when this parameter is set to yes:

Validation Issue Violations Reported Violations Not Reported

Qualifier Mismatch Violation reported if
block-level qualifier does
not match with the top-
level qualifier

• No violation reported if
a qualifier reaches a
block port from top
level but it is not
defined at the block
level.

• No CDC SoC abstract
auto update flow
occurs

Combo Check Mismatch Violation reported if top
level has a
combinational logic but
combo -no is specified at
the block level

CDC SoC abstract auto
update flow disabled

Virtual Clocks Mismatch Violation reported if
virtual clocks are not
mapped because of
conflicting domains

No violation reported if
virtual clocks are not
mapped because no top-
level domain reaches to
the block port

Case Analysis Mismatch Violation reported if:
• There is a conflicting

constant value with
respect to top level or
block level.

• set_case_analysis is
specified at block
level but no value
reaches to the
top-level port.

No violation reported
when set_case_analysis is
specified at top level but
no set_case_analysis is
defined at block level.
82
Synopsys, Inc.

abstract_validate_express

Parameters in SpyGlass CDC
Reset Mismatch Violation reported if:
• Top-level reset

reaches at block level
but no reset is
specified at block
level, and vice-versa.

• Top level
asynchronous reset
reaches a port
specified as a
synchronous reset at
block level.

• There is a conflict in
the value of reset
with respect to the
top level and block
level.

No violation reported
when a synchronous reset
reaches a block port
defined as an
asynchronous reset.

Clocks Mismatch Violation reported if:
• Top-level clock

reaches a block port
for which no clock is
defined, and
vice-versa.

• Same domain clock
ports of an abstract
view are driven from
different top-level
clock domains

No violation reported if
different domain clock
ports of an abstract view
are driven from the same
top-level clock domain.

Quasi Static Mismatch Violation reported if
quasi_static is defined at
block level and no
top-level quasi_static
signal reaches that block
port.

No violation reported if
top-level quasi_static
signal reaches a block port
where quasi_static was
not defined.

Issues related with
cdc_false_path,
define_reset_order, and
num_flops

- No violation reported for
any issue with these
constraints.

Used by Ac_abstract_validation01, Ac_abstract_validation02

Options none, all, clock_domain, quasi_static, case_analysis,
reset, virtual_clock, auto_qualifier, num_flops, yes,
no

Validation Issue Violations Reported Violations Not Reported
83
Synopsys, Inc.

abstract_validate_express

Parameters in SpyGlass CDC
Default value no
Default Value in
GuideWare2.0

yes

Example
Console/Tcl-based usage set_parameter abstract_validate_express yes

Usage in goal/source
files

-abstract_validate_express=yes
84
Synopsys, Inc.

ac_sync_mode

Parameters in SpyGlass CDC
ac_sync_mode
Specifies the mode in which The Ac_sync_group Rules should run for data
crossings.

This parameter accepts the following values:

You must specify a specific combination of the above values to this
parameter. For details, see Valid Combination of Values Specified to the
ac_sync_mode Parameter.

Valid Combination of Values Specified to the ac_sync_mode
Parameter

Consider the following table:

Based on the above table, the following points describe the usage of the
values that should be specified to the ac_sync_mode parameter:
 You must specify one value from each row.

 Do not specify a combination of values from the same row.

strict_gate soft_gate strict_qual_logic soft_qual_logic

Used by The Ac_sync_group Rules

Options strict_gate, soft_gate, strict_qual_logic,
soft_qual_logic

Default value strict_gate, strict_qual_logic
Example
Console/Tcl-based usage set_parameter ac_sync_mode "soft_gate,

soft_qual_logic"

Usage in goal/source
files

-ac_sync_mode="soft_gate, soft_qual_logic"

Column A (default values) Column B
Row A strict_gate soft_gate
Row B strict_qual_logic soft_qual_logic
85
Synopsys, Inc.

ac_sync_mode

Parameters in SpyGlass CDC
For example, do not specify strict_gate and soft_gate together. Similarly,
do not specify strict_qual_logic and soft_qual_logic together.

 If you do not specify any value to this parameter, default values under
column A of each row are considered.

 If you specify only one value, SpyGlass internally picks a default value
also from the other row.
For example, if you specify strict_gate or soft_gate only, SpyGlass
internally picks strict_qual_logic also. Similarly, if you specify
strict_qual_logic or soft_qual_logic, SpyGlass internally picks strict_gate
also.

Values used by the ac_sync_mode Parameter

You can set the ac_sync_mode parameter to any of the following values:

You must use a specific combination of the above options. For details, see
Valid Combination of Values Specified to the ac_sync_mode Parameter.

strict_gate

When the ac_sync_mode parameter is set to strict_gate, The
Ac_sync_group Rules consider the following schemes as valid synchronization
schemes:
 Synchronized Enable Synchronization Scheme

 Recirculation MUX Synchronization Scheme and MUX-Select Sync (Without
Recirculation) Synchronization Scheme

 Clock-Gating Cell Synchronization Scheme

 AND Gate Synchronization Scheme

 Glitch Protection Cell Synchronization Scheme

strict_gate soft_gate strict_qual_logic soft_qual_logic
86
Synopsys, Inc.

ac_sync_mode

Parameters in SpyGlass CDC
soft_gate

When the ac_sync_mode parameter is set to soft_gate, the following
occurs:
 All synchronization schemes listed with the strict_gate option are

considered valid, and the corresponding parameters are not required for
the specified rules.

 A source signal is considered as synchronized even if a synchronizer is
converging on any kind of instance before reaching to a destination
instance.

For example, consider the following figure in which a synchronizer is
converging with a source signal at a XOR gate before reaching to a
destination instance:

FIGURE 1. Setting the ac_sync_mode parameter is set to soft_gate

In the above figure, the source signal is considered valid if the
ac_sync_mode parameter is set to soft_gate. By default, it is

Clock domain crossing

clk1

clk1 clk2 clk2

clk2
87
Synopsys, Inc.

ac_sync_mode

Parameters in SpyGlass CDC
considered as invalid synchronization and is reported by the Ac_unsync01
and Ac_unsync02 rules.

strict_qual_logic

Set the ac_sync_mode parameter to strict_qual_logic to ensure that
a synchronizer should be converging directly with the source signal on a
valid gate. A gate is considered as valid based on the strict_gate and
soft_gate values of this parameter.

For example, the following figure is the valid scenario in which a
synchronizer is converging directly with the source signal on the AND gate:

FIGURE 2. Valid scenario when ac_sync_mode is set to strict_qual_logic

However, the above scenario turns invalid if the synchronizer merges with
some other same domain source before convergence. This is shown in the
following figure:

c1 c2

c1

source1

c2

destination

synchronizer
88
Synopsys, Inc.

ac_sync_mode

Parameters in SpyGlass CDC
FIGURE 3. Invalid scenario when ac_sync_mode is set to strict_qual_logic

soft_qual_logic

Set the ac_sync_mode parameter to soft_qual_logic to allow a
synchronizer to merge with some other same domain sources before
convergence with the source signal.

For example, the scenario in Figure 3 is a valid scenario when the
ac_sync_mode parameter is set to soft_qual_logic.

c1 c2

c1

source1

c2

destination

synchronizer

c1

source2
89
Synopsys, Inc.

all_potential_qual

Parameters in SpyGlass CDC
all_potential_qual
Shows all Potential Qualifier signals, per destination, in the spreadsheet of
The Ac_sync_group Rules.

By default, this parameter is set to no and only one of the potential
qualifiers is shown in the spreadsheet.

Set this parameter to yes to show all the potential qualifiers in the
spreadsheet.

Used by The Ac_sync_group Rules

Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter all_potential_qual yes

Usage in goal/source
files

-all_potential_qual=yes
90
Synopsys, Inc.

allow_any_async_pin

Parameters in SpyGlass CDC
allow_any_async_pin
Considers a flip-flop to be asserted if both reset and clear pins assert that
flip-flop.

By default, this parameter is set to yes and a flip-flop is considered as
asserted if any of the clear or reset pins assert that flip-flop.

Used by Reset_check12
Options yes, no
Default value yes
Example
Console/Tcl-based usage set_parameter allow_any_async_pin no

Usage in goal/source
files

-allow_any_async_pin=no
91
Synopsys, Inc.

allow_clock_on_hier_term

Parameters in SpyGlass CDC
allow_clock_on_hier_term
In the qualifier constraint, the -from_clk and -to_clk arguments can
be specified on hierarchical terminals for module scoping. Set the
allow_clock_on_hier_term parameter to yes to enable this
behavior. By default, this parameter is set to no.

Used by All Clock Synchronization, Reset Synchronization,
Ac_resetcross01, Ar_resetcross01

Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter allow_clock_on_hier_term yes

Usage in goal/source
files

-allow_clock_on_hier_term=yes
92
Synopsys, Inc.

allow_combo_logic

Parameters in SpyGlass CDC
allow_combo_logic
Specifies if combinational logic (including transparent latches, such as an
enable latch) is allowed in the data transfer path between the flip-flops at
the clock domain crossing synchronized by the Conventional Multi-Flop
Synchronization Scheme.

NOTE: If you specify the allow_combo_logic constraint, preference is given to the
constraint instead of this parameter.

Default Value (no)

By default, this parameter is set to no so that:

 No combinational logic is not allowed in the data transfer path.

 Such clock crossings are reported as unsynchronized.
NOTE: It is recommended that the value of this parameter is set to yes to avoid missing

glitch issues in the design.

Alternate Value (yes)

Set this parameter to yes to ignore the combinational logic in the data
transfer path between the flip-flops at clock domain crossings. In this case:
 Such crossings are checked for synchronization based on the

Conventional Multi-Flop Synchronization Scheme.
 Run the Ac_glitch03 rule to report the issues related to glitch prone

combinational logic in synchronized crossings.

When to Use allow_combo_logic Constraint Instead of this Parameter

If you want to allow combinational logic in specific modules, use the
allow_combo_logic constraint instead of the allow_combo_logic
parameter.
93
Synopsys, Inc.

allow_combo_logic

Parameters in SpyGlass CDC
Used by Clock_sync03a, Clock_sync03b, Clock_sync08a,
Clock_sync09, Ac_glitch03, Ac_cdc01a, Ac_cdc01b,
Ac_cdc01c, Ac_cdc08, Ac_conv01, Ac_conv02,
Ac_conv03, Ac_conv04, Ac_crossing01, Ac_sync02,
Ac_sync01, Ac_unsync02, and Ac_unsync01

Options yes, no
Default value no
Default Value in
GuideWare2.0

yes

Example
Console/Tcl-based usage set_parameter allow_combo_logic yes

Usage in goal/source
files

-allow_combo_logic=yes
94
Synopsys, Inc.

allow_combo_logic_repeater

Parameters in SpyGlass CDC
allow_combo_logic_repeater
Allows combinational logic between source/destination and Repeaters.

By default, such logic is not allowed and repeater insertion is reported as
invalid by the Ac_repeater01 rule if combinational logic is present between
source/destination and Repeaters.

However, no combinational logic is allowed between Repeaters irrespective
of the value of this parameter.

Used by Ac_repeater01

Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter allow_combo_logic_repeater yes

Usage in goal/source
files

-allow_combo_logic_repeater=yes
95
Synopsys, Inc.

all_convergence_paths

Parameters in SpyGlass CDC
all_convergence_paths
Configures the Clock_sync03a and Clock_sync03b rules to report all the
convergence points in a path.

By default, these rules report only the last convergence point in a path.

Using this Parameter May Result in Noise

If there are multiple convergences on the same path, the Clock_sync03a and
Clock_sync03b rules report convergence on the last gate in the path, which
covers all the converging signals.

Therefore, it is recommended not to use this parameter because it may
lead to noise and increase in run time and memory.

Used by Clock_sync03a and Clock_sync03b
Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter all_convergence_paths yes

Usage in goal/source
files

-all_convergence_paths=yes
96
Synopsys, Inc.

all_converging_clocks

Parameters in SpyGlass CDC
all_converging_clocks
Configures the Clock_info05 rule to report all the clocks converging on a
mux.

By default, only two clocks converging on a mux are reported. If the
all_converging_clocks parameter is set to yes, the Clock_info05
rule reports information about all input pins of a mux, in the clock_info05
spreadsheet, if at least two clocks converge at two different input pins.

Used by Clock_info05

Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter all_converging_clocks yes

Usage in goal/source
files

-all_converging_clocks=yes
97
Synopsys, Inc.

allow_enabled_multiflop

Parameters in SpyGlass CDC
allow_enabled_multiflop
Specifies if flip-flops with explicit enables should be considered as
destination or synchronizer flip-flops in Conventional Multi-Flop
Synchronization Scheme.

Set this parameter to yes, no (default), or same_enable as explained below:

yes

Set this option to consider flip-flops with explicit enables or mux-enabled
flip-flops as destination or synchronizer flip-flops in Conventional Multi-Flop
Synchronization Scheme.

no (default)

Set this option to ignore flip-flops with explicit enables as destination or
synchronizer flip-flops in Conventional Multi-Flop Synchronization Scheme.

For example, consider the scenario shown in the following figure
(allow_enabled_multiflop set to no):

FIGURE 4. Flip-Flops with Explicit Enable

In the above scenario, the crossing is reported as unsynchronized because
the synchronizer flip-flop has an explicit enable pin.

same_enable

Set this option to consider a multi-flop synchronizer as destination or a
synchronizer flip-flop in Conventional Multi-Flop Synchronization Scheme if all
the synchronizer flip-flops have the same enable signal.

In addition, mux-enabled flip flops are considered for the Conventional Multi-
Flop Synchronization Scheme if select pin of all the muxes driven by same
98
Synopsys, Inc.

allow_enabled_multiflop

Parameters in SpyGlass CDC
enable signal.

For example, consider the scenario shown in the following figure
(allow_enabled_multiflop set to same_enable):

FIGURE 5. Multi-flop synchronizer as destination or synchronizer flip-flop

In the above scenario, the crossing is reported as synchronized because all
the synchronizer flip-flops of the multi-flop structure have the same enable
signal.

Used by Ac_sync02, Ac_sync01, Ac_unsync02, Ac_unsync01,
Ac_coherency06

Options yes, no, same_enable
Default value no
Example
Console/Tcl-based usage set_parameter allow_enabled_multiflop yes

Usage in goal/source
files

-allow_enabled_multiflop=yes
99
Synopsys, Inc.

allow_half_sync

Parameters in SpyGlass CDC
allow_half_sync
Specifies if half synchronizers should be considered as valid synchronizers
in the Conventional Multi-Flop Synchronization Scheme.

When some of the synchronizer flip-flops (the destination flip-flop and the
synchronizing flip-flop(s)) are triggered at different edges of the same
clock, the synchronizer is called a half synchronizer.

By default, half synchronizers are allowed.

Set the allow_half_sync parameter to no so that half synchronizers
are not treated as valid synchronizers.

Used by Clock_sync03a, Clock_sync03b, Clock_sync08a,
Clock_sync09, Ac_cdc01a, Ac_cdc01b, Ac_cdc01c,
Ac_conv01, Ac_conv02, Ac_conv03, Ac_cdc08,
Ac_crossing01, Ac_sync02, Ac_sync01, Ac_unsync02,
Ac_unsync01, Ac_coherency06

Options yes, no
Default value yes
Example
Console/Tcl-based usage set_parameter allow_half_sync no

Usage in goal/source
files

-allow_half_sync=no
100
Synopsys, Inc.

allow_merged_qualifier

Parameters in SpyGlass CDC
allow_merged_qualifier
When a Qualifier merges with a source, then by default, the output of
convergence is considered as a valid qualifier to qualify other sources.

For example, consider the scenario shown in the following figure:

FIGURE 6. Qualifier Merging with a Source

In the above scenario, the output of convergence is considered as a valid
qualifier by default such that when this output converges with the src2
source, the out1 output is considered as a valid qualifier.

The default behavior (allow_merged_qualifier parameter is set to
yes) holds true for the sources that are Control Signals.

Set the allow_merged_qualifier parameter to no such that the
out1 output is not considered as a valid qualifier.

You can set the allow_merged_qualifier parameter to strict
such that when this output converges with the src2 source, the out1

in1

clk1

in2

clk1

in3

clk1

src1

src2

clk2

clk2

qualifier

qualifier merging with
the src1 source

output of convergence

out1
101
Synopsys, Inc.

allow_merged_qualifier

Parameters in SpyGlass CDC
output is considered as a valid qualifier if either:
 The blocking value on the convergence output (where a qualifier and

source are merging) can also structurally block other sources. The
blocking value on the convergence output is propagated through buffers
and inverters only.

 Source is specified as a control signal by using the signal_type
constraint.

Used by Ac_sync01, Ac_sync02, Ac_unsync01, Ac_unsync02,
and Ar_cross_analysis01

Options yes, no, strict
Default value yes
Example
Console/Tcl-based usage set_parameter allow_merged_qualifier no

Usage in goal/source
files

-allow_merged_qualifier=no
102
Synopsys, Inc.

allow_unconstrained_reset_in_rfp

Parameters in SpyGlass CDC
allow_unconstrained_reset_in_rfp
By default, a net without reset constraint is not allowed in the
reset_filter_path constraint. Set this parameter to yes to enable the
reset_filter_path constraint to accept unconstrained resets.

Used by Ar_cross_analysis01, Reset_sync02

Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter

allow_unconstrained_reset_in_rfp yes

Usage in goal/source
files

-allow_unconstrained_reset_in_rfp=yes
103
Synopsys, Inc.

allow_vhdl_on_clock_path

Parameters in SpyGlass CDC
allow_vhdl_on_clock_path
Configures the NoClockCell rule to report Verilog constructs in clock trees.

By default, this parameter is set to no and the NoClockCell rule does not
check the type of constructs in the clock trees.

Set this parameter to yes to enable the NoClockCell rule to report the use
of Verilog constructs in the clock trees.

Used by NoClockCell

Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter allow_vhdl_on_clock_path yes

Usage in goal/source
files

-allow_vhdl_on_clock_path=yes
104
Synopsys, Inc.

async_reset_usage

Parameters in SpyGlass CDC
async_reset_usage
Specifies signal types to be reported for non-reset usage by the
Reset_check10 rule.

The values accepted by this parameter are described in the following table
(you can specify a comma-separated list of these values):

Value Description
data
(default value)

Specifies that the asynchronous reset signals used as data
signals at flip-flops/sequential elements should be reported

control Specifies that the asynchronous reset signals used as control
signals at flip-flops/sequential elements should be reported

port Specifies that the asynchronous reset signals reaching to
primary ports should be reported

bbox Specifies that the asynchronous reset signals reaching to input
of black boxes should be reported

libcell Specifies that the asynchronous reset signals reaching to a
library cell instance that does not have a functional view should
be reported

all Specifies that the all the above types of reset signals should be
reported

Used by Reset_check10

Options Comma-separated list of possible values
Default value data
Example
Console/Tcl-based usage set_parameter async_reset_usage "data,bbox"

Usage in goal/source
files

-async_reset_usage="data,bbox"
105
Synopsys, Inc.

auto_detect_datahold01_enable

Parameters in SpyGlass CDC
auto_detect_datahold01_enable
Enables the quantification flow in Ac_datahold01a rule. The quantification
flow enables data synchronization analysis based on the qualifier search in
the transitive input cone of a gate that receives the source. Set this
parameter to no to reuse the enable expressions from the Ac_sync rule.

Used by Ac_datahold01a
Options yes, no
Default value yes
Example
Console/Tcl-based usage set_parameter auto_detect_datahold01_enable

no

Usage in goal/source
files

-auto_detect_datahold01_enable=no
106
Synopsys, Inc.

autofix_abstract_port

Parameters in SpyGlass CDC
autofix_abstract_port
Enables the SGDC_qualifier_validation02 and SGDC_abstract_port_validation04
rules to automatically fix the reported abstract_port constraints in the
context of SoC.

For details, see Automatically Fixing the abstract_port Constraint of the Reported
Port.

Used by SGDC_qualifier_validation02 and
SGDC_abstract_port_validation04

Options yes, no
Default value yes
Example
Console/Tcl-based usage set_parameter autofix_abstract_port yes

Usage in goal/source
files

-autofix_abstract_port=yes
107
Synopsys, Inc.

autofix_dump_allinputs

Parameters in SpyGlass CDC
autofix_dump_allinputs
While using the CDC SoC abstract auto-update flow in the SoC
validation run, you can control the generation of block abstract_port
constraints by using this parameter.

By default, the value of this parameter is set to yes and all the input side
abstract_port constraints and modified constraints are generated for
abstract views.

Set this parameter to no to generate only modified constraints.

Used by SGDC_qualifier_validation02 and
SGDC_abstract_port_validation04

Options yes, no
Default value yes
Example
Console/Tcl-based usage set_parameter autofix_dump_allinputs no

Usage in goal/source
files

-autofix_dump_allinputs=no
108
Synopsys, Inc.

cdc_bus_compress

Parameters in SpyGlass CDC
cdc_bus_compress
Controls the number of bits of vector signals for rule checking.

The following table describes how the specification of different values to
this parameter controls the number of bits of vector signals for rule
checking:

TABLE 1 Possible values of the cdc_bus_compress parameter

Parameter Value Functionality

The Ac_glitch03 value is
specified (default)

The Ac_glitch03 rule performs glitch checks
only on one bit of the destination flip-flop

The Ac_cdc01 value is specified
(default)

The Ac_cdc01 rule group checks for data
loss only on one bit of the destination flip-
flop

The Ac_glitch03 value is not
specified

The Ac_glitch03 rule performs glitch checks
on all the bits of the destination flip-flop.
This increases the run-time.

The DeltaDelay02 value is
specified

The DeltaDelay02 checks only one bit of the
source bus.

The DeltaDelay02 value is not
specified

The DeltaDelay02 checks all the bits of the
source bus.
This may increase the memory
consumption.

The Ac_sync_data value is
specified

The Ac_sync02 and Ac_unsync02 rules
report violations with respect to the merged
destination vector signals of only
synchronized crossings.

The Ac_unsync value is
specified

The Ac_sync02 and Ac_unsync02 rules
report violations with respect to the merged
destination vector signals of only
unsynchronized crossings.
109
Synopsys, Inc.

cdc_bus_compress

Parameters in SpyGlass CDC

The Ac_sync_control value is
specified

The Ac_sync02 and Ac_unsync02 rules
report violations with respect to the merged
destination vector signals of only control
crossings.

The none value is specified This is equivalent to not specifying any of
the values mentioned in this table

Used by Ac_glitch03, Ac_cdc01, and DeltaDelay02
Options Comma separated list of one or more of the Possible

values of the cdc_bus_compress parameter.
Default value Ac_glitch03, Ac_cdc01
Example
Console/Tcl-based usage set_parameter cdc_bus_compress DeltaDelay02

Usage in goal/source
files

-cdc_bus_compress=DeltaDelay02

TABLE 1 Possible values of the cdc_bus_compress parameter

Parameter Value Functionality
110
Synopsys, Inc.

cdc_compatible

Parameters in SpyGlass CDC
cdc_compatible
Makes the rules mentioned in the following table dependant on the
Clock_sync* rules data instead of The Ac_sync_group Rules data.

By default, data of The Ac_sync_group Rules is used.

Used by Ac_conv01, Ac_conv02, Ac_conv03, Ac_glitch01,
Ac_glitch02, Ac_cdc01a, Ac_cdc01b, Ac_cdc01c,
Ac_cdc08

Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter cdc_compatible yes

Usage in goal/source
files

-cdc_compatible=yes
111
Synopsys, Inc.

cdc_dump_assertions

Parameters in SpyGlass CDC
cdc_dump_assertions
Generates SystemVerilog Assertions (SVA) corresponding to SpyGlass CDC
rules and Design Assumptions specified in an SGDC file.

SGDC Constraints for Which Assertions are Generated

Assertions are generated for the following constraints:

Rules for Which Partially-Proved Assertions are Generated

Assertions are generated for partially proved properties of the following
rules:

Running the Design in the Audit Mode

On using the cdc_dump_assertions parameter with the fa_audit
parameter, the design is run in the audit mode, and SVA is generated for
the Passed, Failed and Partially Proved assertions.

Setting cdc_dump_assertions to sva

When you set the cdc_dump_assertions parameter to sva, SpyGlass
generates the following files in the test_reports/clock-reset/assertions/ directory.
These files contain all the data in the SVA format for the simulators.

quasi_static input reset (Asynchronous reset)
clock abstract_port signal_in_domain
set_case_analysis

Ac_datahold01a Ac_cdc01 Ac_conv02

Files for Rules Files for Constraints Description
sva_rules_prop_<top>_bind.sv sva_assumptions_<top>_bind.sv Common bind file

for all simulators
sva_rules_prop _<top>_vcs.sv sva_assumptions_<top>_vcs.sv SVA file for VCS

simulator
112
Synopsys, Inc.

cdc_dump_assertions

Parameters in SpyGlass CDC
If the design is not a pure Verilog design, you need to specify the test
bench name and design instance name in the SGDC file by using the
meta_design_hier constraint.

You can choose the simulation initialization and functional window in which
the assertions generated should be tested. See the documentation of the
monitor_time constraint for details.

Pass this file to the third-party tools to check if the data is valid in the
context of the design.

Used by Ac_datahold01a, Ac_cdc01, and Ac_conv02

Options sva
Default value ""

Example
Console/Tcl-based usage set_parameter cdc_dump_assertions "sva"

Usage in goal/source
files

-cdc_dump_assertions="sva"
113
Synopsys, Inc.

cdc_effective_bus_verif

Parameters in SpyGlass CDC
cdc_effective_bus_verif
Configures the Ac_datahold01a rule to perform efficient and complete
SpyGlass CDC verification of all the bits of destination sources with the
same destination enable expression.

When you set this parameter to Ac_datahold01a, The Ac_sync_group
Rules report bus merged violations and the Ac_datahold01a rule generates a
single property for all the bits of destination sources with the same
destination enable expression.

When this parameter is set to none, the Ac_datahold01a rule checks for
data hold on any one source bit.

Used by Ac_datahold01a

Options Ac_datahold01a, none
Default value none
Example
Console/Tcl-based usage set_parameter cdc_effective_bus_verif

Ac_datahold01a

Usage in goal/source
files

-cdc_effective_bus_verif=Ac_datahold01a
114
Synopsys, Inc.

cdc_express

Parameters in SpyGlass CDC
cdc_express
Reduces SpyGlass runtime based on the following values specified to this
parameter:

 yes

Runtime is reduced by disabling the following:
 Schematic and violation messages related to propagation of clocks

(Propagate_Clocks rule)
 Clock propagation related checks, such as Clock_converge01,

Clock_delay02, Clock_check06a, Clock_check06b, and Clock_check07
rules.

 peakmem

SpyGlass CDC reduces the peak memory requirement of the SpyGlass
run. This does not impact SpyGlass results, but this may slightly
increase runtime.

Used by All SpyGlass CDC rules
Options yes, no, peakmem
Default value no
Example
Console/Tcl-based usage set_parameter cdc_express yes

Usage in goal/source
files

-cdc_express=yes
115
Synopsys, Inc.

cdc_gen_unrelated_coherency

Parameters in SpyGlass CDC
cdc_gen_unrelated_coherency
Generates the unrelated_coherent_signals.sgdc file that
contains the cdc_filter_coherency and the gray_signals constraints for every
Ac_conv02 violation that has at least one vector bus along with either one or
more scalar signal or one or more vector buses.

By default the sgdc file is not generated. Set this parameter to yes to
generate the file.

Used by Ac_conv02, Ac_conv02Setup01

Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter cdc_gen_unrelated_coherency yes

Usage in goal/source
files

-cdc_gen_unrelated_coherency=yes
116
Synopsys, Inc.

cdc_ignore_multi_domain

Parameters in SpyGlass CDC
cdc_ignore_multi_domain
Set the cdc_ignore_multi_domain parameter to data_path to enable
synchronization analysis of a data path clock domain crossing involving
multiple source domains. By default, the parameter is set to none.

Used by The Ac_sync_group Rules

Options none, data_path
Default value none
Example
Console/Tcl-based usage set_parameter cdc_ignore_multi_domain

data_path

Usage in goal/source
files

-cdc_ignore_multi_domain=data_path
117
Synopsys, Inc.

cdc_qualifier_depth

Parameters in SpyGlass CDC
cdc_qualifier_depth
Enables The Ac_sync_group Rules to search for Qualifier or Potential Qualifier
through a sequential logic by specifying a sequential depth.

The following table describes the logic behind the usage of this parameter.

Positive Integer Value

Consider the following figure:

Sequential Depth Sequential depth is the number of sequential elements
between the qualifier point till the point of
synchronization.

Qualifier Point Qualifier point is the start point to search for a Qualifier or
Potential Qualifier behind a crossing.

Setting a Qualifier Point To set a qualifier point in a multi-flop control crossing, use
the cdc_qualifier_depth_start parameter.
In a crossing other than a multi-flop control crossing, a
qualifier point is determined based on the following:
• For a sync cell crossing, the qualifier point is the Q pin

of the last sequential element within the sync cell
boundary.

• For the qualifier crossing (Qualifier Synchronization
Scheme Using qualifier -crossing), the qualifier point is
the Q pin of the destination instance.

• For the specified qualifier constraint, the qualifier point
is the point where this constraint is applied.

• For the specified abstract_port constraint, the qualifier
point is the point where this constraint is applied.

Values accepted by the
cdc_qualifier_depth parameter

The cdc_qualifier_depth parameter accepts a Positive
Integer Value, 0, or -1.
118
Synopsys, Inc.

cdc_qualifier_depth

Parameters in SpyGlass CDC
FIGURE 7. Example of using the cdc_qualifier_depth parameter

In the above figure:
 If the cdc_qualifier_depth_start parameter is set to num_flop (default value)

then p1 becomes the qualifier point till which a qualifier is searched
while traversing back from destination.
Therefore, the minimum depth specified to the
cdc_qualifier_depth parameter should be 7 so that
qualifier1 can be searched.

qualifier1

qualifier2

source

destination

qualifier3

(Conventional multi-flop qualifier)

(qualifier -crossing)

Qualifier point (p1)

num_flops -from_clk c1 -to_clk c2 -value 3

Qualifier point (p3)

(Sync cell qualifier)

Qualifier point (p2)
119
Synopsys, Inc.

cdc_qualifier_depth

Parameters in SpyGlass CDC
 If the cdc_qualifier_depth_start parameter is set to sync_chain then p2 is
the qualifier point.
Therefore, the minimum depth specified to the
cdc_qualifier_depth parameter should be 2 so that
qualifier2 can be searched.

 If you have specified the qualifier -crossing constraint for qualifier3,
specify the minimum depth as 3 to the cdc_qualifier_depth_start
parameter to search for this qualifier.

-1

Disables the depth-based search scheme and reports first found Qualifier.

Used by The Ac_sync_group Rules, Ac_datahold01a

Options -1, 0, positive integer value
Default value -1
Example
Console/Tcl-based usage set_parameter cdc_qualifier_depth 6

Usage in goal/source
files

-cdc_qualifier_depth=6
120
Synopsys, Inc.

cdc_qualifier_depth_start

Parameters in SpyGlass CDC
cdc_qualifier_depth_start
Specifies the start point (qualifier point) in a multi-flop control crossing
to search for a Qualifier or Potential Qualifier behind the crossing.

The value specified to this parameter is used by the cdc_qualifier_depth
parameter to specify a depth for qualifier search.

This parameter accepts three values: num_flop (default value), sync_chain,
and dest.

num_flop (default value)

Specify num_flop so that the starting point of qualifier search is from the
limit set by the num_flops constraint or the num_flops parameter.

For example, in the following figure, the Q pin of f3 is the starting point
(qualifier point) for qualifier search.

Assuming that there are two sequential elements in the combinational
logic, the depth of the qualifier point is 4. Therefore, to search for the q1
qualifier, the minimum depth specified to the cdc_qualifier_depth parameter
should be 4.

Used by The Ac_sync_group Rules, Ac_datahold01a

Options num_flop, sync_chain, dest
Default value num_flop
Example
Console/Tcl-based usage set_parameter cdc_qualifier_depth_start dest
Usage in goal/source
files

-cdc_qualifier_depth_start=dest
121
Synopsys, Inc.

cdc_qualifier_depth_start

Parameters in SpyGlass CDC
FIGURE 8. cdc_qualifier_depth_start parameter set to num_flop

sync_chain

Specify sync_chain so that the last flip-flop of the synchronization chain
is the starting point beyond which a qualifier should be searched.

For example, in the following figure, the Q pin of f5 is the starting point
(qualifier point) for qualifier search.

Assuming that there are two sequential elements in the combinational
logic, the depth of the qualifier point is 2. Therefore, to search for the q2
qualifier, the minimum depth specified to the cdc_qualifier_depth parameter
should be 2.

c2
c1 c2

q1 qualifier

c1

f1 f2 f3 f4 f5

num_flops -from_clk c1 -to_clk c2 -value 3

Synchronizer chain
 post synchronization
flip-flop chain

Combinational logic
containing 2 sequential
elements

Qualifier point

q2 qualifier
122
Synopsys, Inc.

cdc_qualifier_depth_start

Parameters in SpyGlass CDC
FIGURE 9. cdc_qualifier_depth_start parameter set to sync_chain

dest

Specify dest so that destination is the starting point beyond which a
qualifier should be searched.

For example, in the following figure, the Q pin of f1 is the starting point
(qualifier point) for qualifier search.

Assuming that there are two sequential elements in the combinational
logic, the depth of the qualifier point is 6. Therefore, to search for the q1
qualifier, the minimum depth specified to the cdc_qualifier_depth parameter
should be 6.

c2
c1 c2

q1 qualifier

c1

f1 f2 f3 f4 f5

num_flops -from_clk c1 -to_clk c2 -value 3

Synchronizer chain
 post synchronization
flip-flop chain

Combinational logic
containing 2 sequential
elements

Qualifier point

q2 qualifier
123
Synopsys, Inc.

cdc_qualifier_depth_start

Parameters in SpyGlass CDC
FIGURE 10. cdc_qualifier_depth_start parameter set to dest

c2
c1 c2

q1 qualifier

c1

f1 f2 f3 f4 f5

num_flops -from_clk c1 -to_clk c2 -value 3

Synchronizer chain
 post synchronization
flip-flop chain

Combinational logic
containing 2 sequential
elements

Starting point for
qualifier search

q2 qualifier
124
Synopsys, Inc.

cdc_reduce_pessimism

Parameters in SpyGlass CDC
cdc_reduce_pessimism
Specifies if:
 The Clock_sync08a, Clock_sync09, Ac_sync01, Ac_sync02, Ac_unsync01, and

Ac_unsync02 rules ignore clock domain crossings involving black box
instances or clock domain crossings with destinations having unused,
hanging, or blocked outputs.
The Clock_sync03a, Clock_sync03b, Ac_conv01, Ac_conv02, and Ac_conv03
rules do not perform convergence checks on such ignored crossings.

 The Clock_sync03a and Clock_sync03b rules report convergence on multi-
bit arithmetic macros, sync resets, or D-En convergence on flip-flops.

Used by Clock_sync03a, Clock_sync03b, Clock_sync08a,
Clock_sync09, Clock_info05, Clock_info15,
Setup_port01, Clock_info16, Ac_conv01, Ac_conv02,
Ac_conv03, Ac_cdc01a, Ac_cdc01b, Ac_cdc01c,
Ac_cdc08, Ac_crossing01, Ac_sync01, Ac_sync02,
Ac_unsync01, Ac_unsync02, Ac_coherency06,
Ar_sync01, Ar_unsync01, Reset_sync02,
Reset_check10, Reset_info01, Ar_asyncdeassert01,
Ar_syncdeassert01, Ac_glitch03, Setup_req01,
Param_clockreset04, Propagate_Clocks,
Ar_unsync01, Ac_glitch03, Clock_converge01,
Ar_converge01, Clock_glitch05, Ar_resetcross01

Options Any combination of the Allowed Values of the
cdc_reduce_pessimism Parameter as a comma-
separated list or using the + (plus) character to
append to the default value.

Default value mbit_macro, no_convergence_at_syncreset,
no_convergence_at_enable

Example
125
Synopsys, Inc.

cdc_reduce_pessimism

Parameters in SpyGlass CDC
Allowed Values of the cdc_reduce_pessimism Parameter

The allowed values of the cdc_reduce_pessimism parameter are bbox,
output_not_used, hanging_net, mbit_macro (default),
no_convergence_at_syncreset (default), no_convergence_at_enable (default),
skip_unused_paths, ignore_multi_domain, use_multi_arc, clock_crossing,
const_source, glitch_on_vck_port, remove_redundant_logic, unmodeled_bbox,
lockup_latch, no_unate_reconv, allow_quasi_static, clock_on_ports,
stop_conv_at_seq_lib, and all.

bbox

Clock domain crossings involving black box instances are ignored.

output_not_used

Clock domain crossings with destinations having unused and blocked
outputs are ignored.

For example, consider the scenario shown in the following figure:

Console/Tcl-based usage The following specifications are the same:
set_parameter cdc_reduce_pessimism
mbit_macro,no_convergence_at_syncreset,no_co
nvergence_at_enable,bbox,hanging_net

set_parameter cdc_reduce_pessimism
+bbox,hanging_net

The + character must be the first character when
specified. Therefore, bbox,hanging_net+ is incorrect.

Usage in goal/source
files

-cdc_reduce_pessimism=
"mbit_macro,no_convergence_at_syncreset,no_c
onvergence_at_enable,bbox,hanging_net"
126
Synopsys, Inc.

cdc_reduce_pessimism

Parameters in SpyGlass CDC
FIGURE 11. Blocked destination output

In the above scenario, if the cdc_reduce_pessimism parameter is set
to output_not_used, the destination output is blocked and the crossing
is not reported.

hanging_net

Clock domain crossings with destinations having hanging outputs are
ignored.

mbit_macro (default)

Convergence on multi-bit arithmetic macros is not reported. (Traversal
beyond the macro is also stopped.)

no_convergence_at_syncreset (default)

Convergence on sync reset is not reported

no_convergence_at_enable (default)

D-En convergence on flip-flop is not reported.

0

blocked destination output as one of the inputs
of the AND gate is tied to 0

source destination
127
Synopsys, Inc.

cdc_reduce_pessimism

Parameters in SpyGlass CDC
skip_unused_paths

Hanging or blocked paths from destination flip-flops are ignored while
checking for multi-flop synchronizers. Any combinational logic is ignored
while checking for hanging or blocked paths.

For example, consider the scenario shown in the following figure:

FIGURE 12. Hanging nets from destination flip-flop

In the above scenario, if the cdc_reduce_pessimism parameter is set
to skip_unused_paths, the w1 and w2 hanging nets are ignored and
the f1 flip-flop is considered as a synchronizer flip-flop.

ignore_multi_domain

Crossings are reported as synchronized by the Ac_sync01 and Ac_sync02
rules when a synchronizer is present in the destination domain and sources
from different clock domains converge before reaching the destination
domain.

If you do not specify this option, such crossings are reported as
unsynchronized by the Ac_unsync01 and Ac_unsync02 rules.

w1

w2

Hanging
nets

f1
128
Synopsys, Inc.

cdc_reduce_pessimism

Parameters in SpyGlass CDC
For example, the crossing shown in the following figure is considered as
synchronized if ignore_multi_domain is specified to the
cdc_reduce_pessimism parameter:

FIGURE 13. cdc_reduce_pessimism set to ignore_multi_domain

In addition, the above structure of Conventional Multi-Flop Synchronization
Scheme is not allowed to be a valid qualifier for any other data crossing if
ignore_multi_domain is specified to the cdc_reduce_pessimism
parameter.

use_multi_arc

Allows multiple related-pin support in complex library cells.

For example, consider the following figure:

S1

S2

c1

c2

D1 D2

c3 c3
129
Synopsys, Inc.

cdc_reduce_pessimism

Parameters in SpyGlass CDC
FIGURE 14.

In the above example, the crossing is missed if the related pin of the in1
input pin is only clk1, although in1 is related to both the clk1 and
clk2 clock pins.

However, if you specify the use_multi_arc value to the
cdc_reduce_pessimism parameter, a new merged domain is created
internally for the in1 input pin. Therefore, such crossings are detected.

clock_crossing

Detects the crossings for the cases where a defined clock (i_ck_src in
the figure below) of a domain (src in this case) reaches the data pin of a
sequential element that is driven by another defined clock (i_ck_dst in
the figure below) of another domain (dst in this case).

clk1

D Q

Flip-Flop

in1

clk1

clk2

out

Lib Cell
130
Synopsys, Inc.

cdc_reduce_pessimism

Parameters in SpyGlass CDC
FIGURE 15.

const_source

Considers constant sequential elements for SpyGlass CDC analysis.

By default, SpyGlass CDC analysis is not performed on the data pin of a
sequential element if that pin is tied to a constant value or is driven by the
set_case_analysis constraint.

For the synchronized crossings containing such elements, the Ac_sync01
and Ac_sync02 reports the method "Source is constant" in the
violation message and spreadsheet. For details, see Constant Source Flop
Synchronization Scheme.

glitch_on_vck_port

Enables glitch checking by the Ac_glitch03 rule on unsynchronized crossings
where:
 The destination port has a virtual domain.

clock -name i_ck_src -domain src -period 2 -edge {0 1}
clock -name i_ck_dst -domain dst -period 10 -edge {0 5}

// SGDC File
131
Synopsys, Inc.

cdc_reduce_pessimism

Parameters in SpyGlass CDC
 The destination-port type is specified as control by using the
signal_type constraint.

Figure 236 shows the example of such crossing.

remove_redundant_logic

Specify this option to:
 Ignore the reporting of the Ac_conv01, Ac_conv02, Ac_conv03 and

Clock_glitch05 rule violations on converging nets if they are hanging.
 Ignore the crossings (synchronized or unsynchronized) containing

hanging destinations.
The following table describes the types of hanging destinations:

The following rules are impacted if you specify the
remove_redundant_logic option to the cdc_reduce_pessimism
parameter.
Ac_conv01, Ac_conv02, Ac_conv03, Ac_unsync01, Ac_unsync02, Ac_sync01,
Ac_sync02, Ac_datahold01a, Ar_sync01, Ar_unsync01, Ar_asyncdeassert01,

Hanging Destination Type Description
Sequential cell A sequential cell is considered as a hanging

destination if:
• All the outputs related to the input pin of

the cell are hanging.
• The output is related to the input pin

through timing arc or functional arc.
• The input pin makes a crossing with the

source pin.
Black box A sequential black box is considered as a

hanging destination if:
• No abstract port definition is present on the

black box.
• No assume_path constraint is defined on

the black-box pin that makes a crossing.
• All the outputs of the black box are

hanging.
Flip-flop, latch, or a
synchronous cell

A Flip-flop, latch, or a synchronous cell is
considered as a hanging destination if its
output is hanging.
132
Synopsys, Inc.

cdc_reduce_pessimism

Parameters in SpyGlass CDC
Ar_syncdeassert01, Clock_sync05, Reset_check12, Clock_glitch05, and
Reset_sync02.

unmodeled_bbox

Suppresses The Ac_sync_group Rules violations for the crossings involving
un-modeled black box pins.

A black box pin is considered as un-modeled if no SGDC constraint is
defined on it.

For example, consider the following scenario in which the Ac_unsync01 rule
reports three violations for the crossings involving un-modeled black box
pin bbox:

FIGURE 16.

current_design test
clock -name clk1 -domain d1 -tag t1
clock -name clk2 -domain d2 -tag t2
clock -name clk3 -domain d3 -tag t3

abstract_port -module bbox -ports in1 -clock clk1
signal_in_domain -name bbox -domain clk2 -signal in2

SGDC File
133
Synopsys, Inc.

cdc_reduce_pessimism

Parameters in SpyGlass CDC
To suppress the above violations, set the cdc_reduce_pessimism parameter
to unmodeled_bbox. This way, none of The Ac_sync_group Rules will
report any violation for the crossings involving bbox.

lockup_latch

If a destination drives the path having a lockup latch that makes a crossing
unsynchronized, you can ignore such path by specifying the
lockup_latch value to the cdc_reduce_pessimism parameter.

For example, consider the following figure:

FIGURE 17.

In the above figure, the destination has multiple fan-outs having the
following paths:

 Path1 that is directly connected to a lockup latch
134
Synopsys, Inc.

cdc_reduce_pessimism

Parameters in SpyGlass CDC
 Path2 that is connected to a lockup latch through some allowable
combinational logic

In the above case, specify the lockup_latch value to the
cdc_reduce_pessimism parameter to suppress the Ac_sync01 violation
indicating that the destination is driving multiple paths.

For the multi-flop synchronizers, the Ar_sync01 rule treats the lockup latch
paths in the same way as they are treated by The Ac_sync_group Rules.

However, the above rules report a violation if the destination drives another
path (say Path3) that is directly connected to another flip-flop or a non-
allowable combinational logic.

no_unate_reconv

Specify the no_unate_reconv value to the cdc_reduce_pessimism
parameter to configure the Ac_glitch03, Clock_converge01, and Ar_converge01
rules to report violations related with same source reconvergence when the
reconverging paths have different polarities or at least one path has an
unknown polarity. This is explained in the following topics:
 Case 1 - Reconverging Paths with Different Polarities

 Case 2 - At Least One Reconverging Path with an Unknown Polarity

 Case 3 - Reconverging Paths with the Same Polarity

For information on determining the polarities of reconverging paths, see
Inferring Path Polarities After Same Source Reconvergence.

Case 1 - Reconverging Paths with Different Polarities

Consider the following circuit for which the Ar_converge01 rule reports a
violation:
135
Synopsys, Inc.

cdc_reduce_pessimism

Parameters in SpyGlass CDC
FIGURE 18. Example of Reconverging Paths with Different Polarities

In the above circuit, the reconverging paths A and B have different
polarities. This is explained below.

Initially, consider RST is 0. Therefore:
 A of AND gate = 0, B of AND gate = 1

 Q of AND gate will be 0

When RST changes from 0 to 1:
 Due to different delay in the inverter path, the value 1 may not reach

the B input of the AND gate at the same time as that of A.
 The output of AND gate is 1 as the intermediate value.

 When 0 reaches the B input, the output becomes 0.

This implies that the output of AND will be 010 whereas it was never
expected to be 1.

NOTE: For information on the cases in which a reconverging path attains an inverted
polarity, see Inferring Path Polarities After Same Source Reconvergence.

Case 2 - At Least One Reconverging Path with an Unknown Polarity

Consider the following circuit for which the Ar_converge01 rule reports a
violation:
136
Synopsys, Inc.

cdc_reduce_pessimism

Parameters in SpyGlass CDC
FIGURE 19.

In the above circuit, an unknown polarity reaches the path A because of
some logic within the black box. Therefore, a violation is reported for such
reconvergence.

NOTE: For information on the cases in which a reconverging path attains an unknown
polarity, see Inferring Path Polarities After Same Source Reconvergence.

Case 3 - Reconverging Paths with the Same Polarity

Consider the following circuit for which the Ar_converge01 rule does NOT
report a violation:

FIGURE 20. Example of Reconverging Paths with Same Polarities

In the above circuit, the reconverging paths A and B have the same
polarity. This is explained below.

If RST changes from 0 to 1 then:
137
Synopsys, Inc.

cdc_reduce_pessimism

Parameters in SpyGlass CDC
 Due to different delay in the buffer path, the value 1 may not reach the
B input of the AND gate at the same time as that of A.

 The output of AND gate is 0 as the intermediate value.

 When 1 reaches to the B input, the output becomes 1.

This implies that the output of AND will be 001, which is a glitch-free
output because the intermediate output does not take an unexpected
value.

NOTE: For information on the cases in which a reconverging path attains a non- inverted
polarity, see Inferring Path Polarities After Same Source Reconvergence.

allow_quasi_static

Specify this value to the cdc_reduce_pessimism parameter to allow
combinational logic between synchronizer flip-flops if this combinational
logic is a probable buffer path, that is one of the inputs of this logic is quasi
static.

Consider the following schematic:

FIGURE 21.

current_design top
clock -name clk1
clock -name clk2

quasi_static -name in3

// constr.sgdc

Synchronizer flip-flops

set_parameter cdc_reduce_pessimism "+allow_quasi_static"
Project File
138
Synopsys, Inc.

cdc_reduce_pessimism

Parameters in SpyGlass CDC
In the above schematic, the in3 input of the combinational logic between
the synchronizer flips-flops is quasi static. Since the cdc_reduce_pessimism
parameter is set to allow_quasi_static, Ac_unsync01 does not report
any unsynchronized crossing between the source and destination flip-flops.

clock_on_ports

Specify this value to the cdc_reduce_pessimism parameter to enable the
Clock_info05 and Clock_info16 rules to report clock convergence on a mux if
the output of the mux is captured by a port.

 stop_conv_at_seq_lib

Specify the stop_conv_at_seq_lib value to the cdc_reduce_pessimism
parameter to stop synchronizer propagation across sequential library cells
in rules Ac_conv01 and Ac_conv03.

all

Considers all the Allowed Values of the cdc_reduce_pessimism Parameter.

Inferring Path Polarities After Same Source Reconvergence

The following table describes how the polarities of reconverging paths are
determined:

Cases when polarity is
inverting

Cases when polarity is non-
inverting

Cases when polarity is
unknown

Odd number of inverter,
NAND, NOR gates (could be
inferred from RTL or a lib cell)

Even number of inverter, NAND,
or NOR gates

Black box pins specified
without abstract_port
-path_logic <buf | inv>

Any library cell (AND, OR,
MUX, ANDOR, ORAND, buffer,
and tristate) where the input
pin is inverted

AND, OR, MUX, buffer, or tri-
state

Library cells without
functional arc
139
Synopsys, Inc.

cdc_reduce_pessimism

Parameters in SpyGlass CDC
XOR for which another pin is
defined as 1

XOR for which another pin is
defined as 0

RTL macros, such as adder
and comparator

XNOR for which another pin is
defined as 0

XNOR for which another pin is
defined as 1

XOR/XNOR without any
constant pin

Library cells AOI (And-Or-
inverter) or OAI (Or-And-
inverter)

ANDOR or ORAND library cells.
These are the cells that have
only AND and OR gate.

A combinational or
sequential loop

Black box or abstract block
specified with abstract_port
-path_logic inv

Sequential elements Any combinational or
sequential library cell that is
not mentioned in the first
two columns.
For example, such cells could
be a half adder or an
arithmetic cell.

Inverted sequential element,
such as CGC and PAD cell

Clock gating cells

A library cell for which the
inversion on the input/output
is interpreted and taken into
account during polarity
calculation

PAD cells
Black box or abstract block
specified with abstract_port
-path_logic buf
A library cell for which the
inversion on the input/output is
interpreted and taken into
account during polarity
calculation

Cases when polarity is
inverting

Cases when polarity is non-
inverting

Cases when polarity is
unknown
140
Synopsys, Inc.

check_bus_bit_convergence

Parameters in SpyGlass CDC
check_bus_bit_convergence
Specifies whether bus signals should be checked for convergence by the
Clock_sync03a rule.

By default, bus signals are not checked for convergence. Set the
check_bus_bit_convergence parameter to yes to report converging
bus signals.

Used by Clock_sync03a
Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter check_bus_bit_convergence yes

Usage in goal/source
files

-check_bus_bit_convergence=yes
141
Synopsys, Inc.

check_edge

Parameters in SpyGlass CDC
check_edge
Configures the Ac_clockperiod01 rule to report a violation based on whether
the -period or -edge argument of the clock constraint is specified.

By default, this parameter is set to yes and the Ac_clockperiod01 rule
reports a violation if any of the -period or -edge argument is not
specified.

Set this parameter to no such that the Ac_clockperiod01 rule reports a
violation if none of the -period or -edge argument is specified.

Used by Ac_clockperiod01
Options yes, no
Default value yes
Example
Console/Tcl-based usage set_parameter check_edge no

Usage in goal/source
files

-check_edge=no
142
Synopsys, Inc.

check_input_coverage

Parameters in SpyGlass CDC
check_input_coverage
Configures the Clock_info18 rule to report a violation only for input ports of
the top-level design unit.

By default, this argument is set to no and this rule reports violations for
unconstrained input and output ports in the top-level design.

Used by Clock_info18
Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter check_input_coverage yes

Usage in goal/source
files

-check_input_coverage=yes
143
Synopsys, Inc.

check_multiclock_bbox

Parameters in SpyGlass CDC
check_multiclock_bbox
Shows the violations for the crossings in which a destination black box
receives multiple clocks but no SGDC constraint is defined on any of the
black-box data pins receiving the clocks.

For example, consider the following scenario in which the Ac_unsync01 rule
reports the crossing in which the destination black box (bbox) does not
have any SGDC constraint specified on any of its data pins:

FIGURE 22.

To show the above violation in which none of the data pins (in1) of the
destination black box (bbox) is constrained, set this parameter to yes.

current_design test

clock -name clk1 -domain d1 -tag T1
clock -name clk2 -domain d2 -tag T2
clock -name clk3 -domain d3 -tag T3

#signal_in_domain -name bbox -domain clk1 -signal out1
#signal_in_domain -name bbox -domain clk2 -signal out2
#signal_in_domain -name bbox -domain clk1 -signal in1

Constraints on the destination clock pins are commented out

SGDC File
144
Synopsys, Inc.

check_multiclock_bbox

Parameters in SpyGlass CDC
Used by Ac_sync01, Ac_sync02, Ac_unsync01, Ac_unsync02,
Ac_glitch03, Clock_sync03a, Clock_sync03b,
Clock_sync08a, Clock_sync09, Setup_req01,
Ac_crossing01

Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter check_multiclock_bbox yes

Usage in goal/source
files

-check_multiclock_bbox=yes
145
Synopsys, Inc.

check_single_source

Parameters in SpyGlass CDC
check_single_source
Enables the Ac_glitch02 to consider all the sources of a destination for rule
checking.

By default, this rule considers one source per destination.
NOTE: SpyGlass considers this parameter only when the cdc_compatible parameter is set

to no.

Used by Ac_glitch02

Options yes, no
Default value yes
Example
Console/Tcl-based usage set_parameter check_single_source no

Usage in goal/source
files

-check_single_source=no
146
Synopsys, Inc.

check_port_setup

Parameters in SpyGlass CDC
check_port_setup
Configures the Setup_port01 rule to check the constraining of input, inout,
or output or all ports.

By default, the Setup_port01 rule checks constraining of input and inout
ports for top-design units. Use this parameter to configure the rule to
perform the checking on input, inout, or output or all ports. Inout ports are
always checked, regardless of the value of this parameter.

Used by Setup_port01

Options input|output|all
Default value input
Example
Console/Tcl-based usage set_parameter check_port_setup output

Usage in goal/source
files

-check_port_setup=output
147
Synopsys, Inc.

check_reset_for_constclock

Parameters in SpyGlass CDC
check_reset_for_constclock
Specifies if the Clock_info03c rule checks for set and preset pins on flop
whose clock pin is tied to constant value.

Used by Clock_info03c

Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter check_reset_for_constclock yes

Usage in goal/source
files

-check_reset_for_constclock=yes
148
Synopsys, Inc.

check_qualified_signal_at_soc

Parameters in SpyGlass CDC
check_qualified_signal_at_soc
Configures the Ac_abstract_validation01 rule to not report data-mismatch
violations if a qualified signal reaches to abstract block input having same
domain as the destination domain.

By default, the parameter is set to no. Set the parameter to yes to not
report such data-mismatch violations.

In addition, if the parameter is set to yes, the Ac_abstract01 rule reports
abstract_port -sync_inactive for the qualified signal if a
qualified signal reaches to output port.

Used by Ac_abstract_validation01, Ac_abstract01

Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter check_qualified_signal_at_soc

yes

Usage in goal/source
files

-check_qualified_signal_at_soc=yes
149
Synopsys, Inc.

clock_edge

Parameters in SpyGlass CDC
clock_edge
Sets the edge type for the Clock_check04 rule.

By default, the Clock_check04 rule expects the positive edge of clocks to
be used in a design and reports all clock descriptions that have the
negative edge specified. Set the clock_edge parameter to negative to
report clock descriptions that have the positive edge specified.

NOTE: Only one instance is reported for each clock. For example, if clk1 uses negative
edge at several places, only one instance is reported.

Used by Clock_check04
Options positive, negative
Default value positive
Example
Console/Tcl-based usage set_parameter clock_edge negative

Usage in goal/source
files

-clock_edge=negative
150
Synopsys, Inc.

clock_fanout_max

Parameters in SpyGlass CDC
clock_fanout_max
Specifies the maximum fan-out limit of clocks in a design for the
Clock_check02 rule.

By default, the Clock_check02 rule reports clock nets that have a fan-out
greater than 24 and are not driven by instances of cells specified by the
CTS_placeholder_cells parameter.

You can change this fan-out limit as per your requirement.
NOTE: The Clock_check02 rule is run only when placeholder cells are specified using

CTS_placeholder_cells parameter.

Used by Clock_check02
Options Positive integer value
Default value 24
Example
Console/Tcl-based usage set_parameter clock_fanout_max 10

Usage in goal/source
files

-clock_fanout_max=10
151
Synopsys, Inc.

clock_gate_cell

Parameters in SpyGlass CDC
clock_gate_cell
Specifies the clock-gating cell names for the Clock-Gating Cell Synchronization
Scheme. These cell names exist in the clock path of the destination flip-
flops in clock-domain crossings. A crossing is considered to be
synchronized if a multi-flop synchronizer exists in the other fan-in (pin not
connected to clock) of the clock-gating cell.

NOTE: If the Clock-Gating Cell Synchronization Scheme is disabled using the
enable_clock_gate_sync parameter, these clock gate cells will not be considered.

Set the enable_mux_dest_domain parameter to eliminate the need

Used by Clock_sync03a, Clock_sync03b, Clock_sync08a,
Clock_sync09, Ac_crossing01, Ac_conv01,
Ac_conv02, Ac_conv03, Ac_cdc01a, Ac_cdc01b,
Ac_cdc01c, Ac_cdc08, Ac_sync02, Ac_sync01,
Ac_unsync02, Ac_unsync01, Clock_hier01,
Clock_hier02, Clock_hier03

Options Comma or space-separated list of clock-gating cell
names.
Wildcard characters (* [zero or more] and ? [single
character match]) can be used in cell names.

Default value NULL
Example
Console/Tcl-based usage set_parameter clock_gate_cell CG01

You can specify multiple clock cell names as shown
below:
set_parameter clock_gate_cell "CG01,CG02"

The following specification matches all cell names
that start with CG:
set_parameter clock_gate_cell CG*

The following specification matches all three
character cell names that start with CG:
set_parameter clock_gate_cell CG?

Usage in goal/source
files

-clock_gate_cell=CG01,CG02
152
Synopsys, Inc.

clock_gate_cell

Parameters in SpyGlass CDC
for a synchronizer where the clock-gating cell driving the first flip-flop in
the destination domain has the other input pin (not connected to the clock)
in the destination domain.
153
Synopsys, Inc.

clock_reduce_pessimism

Parameters in SpyGlass CDC
clock_reduce_pessimism
Use this parameter to:
 Control Clock Propagation through MUX Select and Latch Enable Pin

 Control Clock Propagation from the Output of a Derived Flip-Flop Through a MUX
Select Pin

 Infer Clocks in a Design

 Include the generated_clock Constraints for all the Master Clocks

 Check the Enable Condition of a CGC Cell

 Suppress Clock_info05 Violations for Converging Clocks of the Same Domain

 Control Clock propagation from the Output of a Flip-Flop

Used by Clock_sync03a, Clock_sync03b, Clock_sync08a,
Clock_sync09, Ac_crossing01, Ac_conv01,
Ac_conv02, Ac_conv03, Ac_cdc01a, Ac_cdc01b,
Ac_cdc01c, Ac_cdc08, Clock_check04,
Clock_check05, Clock_glitch02, Clock_glitch03,
Clock_converge01, Propagate_Clocks, Clock_info05,
Clock_info16, Ac_sync02, Ac_sync01, Ac_unsync02,
Clock_info03a and Ac_unsync01

Options latch_en, mux_sel, mux_sel_derived, all,
all_potential_clocks, all_master_clocks,
check_enable_for_glitch, single_input_output_bbox,
stop_derived_at_random_logic, and
ignore_same_domain

You can specify multiple values through a
comma-separated list. Alternatively, use the + (plus)
character to append a value to the default value.

Default value latch_en, check_enable_for_glitch, mux_sel_derived
Example
154
Synopsys, Inc.

clock_reduce_pessimism

Parameters in SpyGlass CDC
Control Clock Propagation through MUX Select and Latch Enable Pin

To enable or disable clock propagation through MUX select pins and latch
enable pins, specify any of the values to this parameter:

NOTE: Clock propagation continues through the MUX select pin when the MUX inputs are
tied to a constant value through the set_case_analysis constraint irrespective of
any value specified to the clock_reduce_pessimism parameter.

Control Clock Propagation from the Output of a Derived Flip-Flop
Through a MUX Select Pin

To disable clock propagation from the output of a derived flip-flop through

Console/Tcl-based usage Use any of the following specifications to disable
clock propagation through both the latch enable pin
and the MUX select pin:
set_parameter clock_reduce_pessimism 'all'
set_parameter clock_reduce_pessimism
'latch_en,mux_sel'

set_parameter clock_reduce_pessimism
'+mux_sel'

(The + character must be the first character when
specified. Therefore, 'mux_sel+' is incorrect.)

Note: To enable clock propagation through both the
MUX select pin and the latch enable pin, set this
parameter as a null value, as shown below:
set_parameter clock_reduce_pessimism ''

Usage in goal/source
files

-clock_reduce_pessimism='all'

Allowed value Clock propagation
 through
 latch enable pin

Clock propagation
 through
 MUX select pin

latch_en (default) Disabled Enabled
mux_sel Enabled Disabled
all Disabled Disabled
155
Synopsys, Inc.

clock_reduce_pessimism

Parameters in SpyGlass CDC
the MUX select pin, specify the mux_sel_derived value to the
clock_reduce_pessimism parameter.

By default, this value is already set for the clock_reduce_pessimism
parameter, and therefore, clock propagation is disabled by default.

Consider the following figure:

FIGURE 23.

In the above figure, the c2, c3, and c4 clocks reach the F2 flip-flop.
However, the c1 clock is not propagated through the MUX select pin
because the default value of the clock_reduce_pessimism parameter is
mux_sel_derived.

To enable the propagation of the c1 clock in addition to the c2, c3, and
c4 clocks, remove the value mux_sel_derived from the
clock_reduce_pessimism parameter.

Infer Clocks in a Design

To infer the clocks other than the clocks inferred by setting the
use_inferred_clocks parameter to yes or running the Clock_info01 rule:

 Specify the all_potential_clocks value to the
clock_reduce_pessimism parameter.

c1

c2

c3

c4

c1 does not propagate

(Because clock_reduce_pessimism is set to
mux_sel_derived by default)

c2, c3, and c4 propagates

by default.

F1

F2
156
Synopsys, Inc.

clock_reduce_pessimism

Parameters in SpyGlass CDC
 Set the value of the use_inferred_clocks parameter to yes or run the
Clock_info01 rule.

When you set the above values, then while inferring clocks, if SpyGlass
encounters a two-input gate in which one of the input is a definite clock, it
infers that clock as well as considers the other input to infer more clocks.

For example, consider the following figure:

FIGURE 24. Input of the AND Gate is a Definite Clock

In the above figure, one of the inputs (P1) of the AND gate is a definite
clock. Therefore, SpyGlass infers this clock. However, to also infer P2 as a
clock, set this parameter to all_potential_clocks.

Include the generated_clock Constraints for all the Master Clocks

To include the generated_clock constraints for derived clocks with respect to
all the master clocks reaching the source of derived clocks, set the
clock_reduce_pessimism parameter to all_master_clocks.

By default, the generated_clock constraint for a derived clock is included
with respect to any one master clock reaching to the source of the derived
clock.

These constraints are included in the generated_clocks.sgdc and
cdc_setup_generated_clocks.sgdc files when the use_inferred_clocks parameter
is set to yes.

For example, consider the following figure in which multiple master clocks,
c1, c2, and c3 reach the source clock srcClk:
157
Synopsys, Inc.

clock_reduce_pessimism

Parameters in SpyGlass CDC
FIGURE 25. Multiple master clocks reaching a source clock

In the above scenario, if you set the clock_reduce_pessimism parameter to
all_master_clocks, the generated_clock constraints are dumped with
respect to all the master clocks, as shown below:

generated_clock -name out1 -source srcClk -master_clock T1
-divide_by 2 -tag GT1 -add

generated_clock -name out1 -source srcClk -master_clock T2
 -divide_by 2 -tag GT2 -add

generated_clock -name out1 -source srcClk -master_clock T3
 -divide_by 2 -tag GT3 -add

Check the Enable Condition of a CGC Cell

To enable the Clock_glitch02 rule to check for the enable condition of a CGC
cell, specify the check_enable_for_glitch value to the
clock_reduce_pessimism parameter.

If you do not specify this value, only structure correctness of a CGC cell is
checked and the enable condition is not checked.

Suppress Clock_info05 Violations for Converging Clocks of the Same

c1

c2

c3

srcClk

ff1 ff2
out1

// SGDC File:
clock -name c1 -period 15 -domain d1 -tag T1
clock -name c2 -period 15 -domain d2 -tag T2
clock -name c3 -period 10 -domain d3 -tag T3
158
Synopsys, Inc.

clock_reduce_pessimism

Parameters in SpyGlass CDC
Domain

To suppress Clock_info05 violations for the same domain clock signals that
converge on a MUX when no set_case_analysis constraint is applied on the
MUX select pin, specify the ignore_same_domain value to the
clock_reduce_pessimism parameter.

Detect the Output of the Single-Input-Output Black Box As a Clock

By default, the output of the Single-Input-Single-Output pin (SISO) black
box is not considered as a clock. Only the output of the Multiple-Input-
Output-pin black box is considered as a clock.

To also consider the output of a SISO black box as a clock, set the
clock_reduce_pessimism parameter to single_input_output_bbox.

For example, consider the following figure:

FIGURE 26.

In the above scenario, if you do not set the clock_reduce_pessimism
parameter to single_input_output_bbox, the Clock_info01 rule
reports the BBOX output (newClk1) as the clock candidate.

However, if you set clock_reduce_pessimism parameter to
159
Synopsys, Inc.

clock_reduce_pessimism

Parameters in SpyGlass CDC
single_input_output_bbox, the Clock_info01 rule reports the SISO
output (newClk2) as the clock candidate (in addition to newClk1).

In this case, if you set the use_inferred_clocks parameter to yes, the
Propagate_Clocks message appears indicating that the newClk2 clock is
propagated.

However, if the input of the SISO black box is a clock (clk2 in Figure 26),
Clock_check07 message appears indicating that the clk2 clock has reached
the clock of another domain, and therefore, halting its propagation.

Control Clock propagation from the Output of a Flip-Flop

To disable clock-propagation beyond a flip-flop that the clock reaches
(except under conditions described below), specify the
stop_derived_at_random_logic value to the
clock_reduce_pessimism parameter.

By default, this value is NOT set for the clock_reduce_pessimism
parameter.

The stop_derived_at_random_logic value impacts clock
propagation and analysis as follows:
 Output of a sequential element is considered as derived clock only when

it reaches the clock pin of other sequential elements directly or through
the following gates:
 Clock Gating Cell

 Inputs of a MUX

 Buffers and Inverters
Propagation is halted for all other combinational logic. See Examples.

 In case of multiple paths, if the output of a sequential element (F1)
reaches the clock pin in at least one path (F3) directly or through above
mentioned gates, the output of the sequential element is considered a
derived clock and the clock is propagated to all the sequential elements
(F2 & F3) by skipping all the gates.
160
Synopsys, Inc.

clock_reduce_pessimism

Parameters in SpyGlass CDC
FIGURE 27.

 If any of the disable_seq_clock_prop,
sdc_generated_clocks, or enable_generated_clocks
parameters are enabled, then primary clocks are not propagated beyond
sequential elements. Specify the generated_clock constraint on
sequential outputs so that the generated_clocks are propagated
irrespective of the stop_derived_at_random_logic switch.

Examples
Example 1 - Only CLK2/D2 propagates forward. CLK1/D1 is stopped at
the flop.

FIGURE 28.

Example 2 - Forward Propagation of two indirect clocks. Clock_info03a
161
Synopsys, Inc.

clock_reduce_pessimism

Parameters in SpyGlass CDC
flags flop(F3) not receiving the clock.

FIGURE 29.

Example 3 - N1(D1), N2(D2) and CLK3(D3) is propagated by default. You
can stop CLK3(D3) in this case by using the following parameter:

set_parameter clock_reduce_pessimism +mux_sel

FIGURE 30.

Example 4 - All clocks, CLK1, CLK2, and CLK3, are propagated by default.
You can stop propagation of clock on MUX-select (CLK3) by using the
following parameter:
162
Synopsys, Inc.

clock_reduce_pessimism

Parameters in SpyGlass CDC
set_parameter clock_reduce_pessimism +mux_sel

FIGURE 31.

Example 5 - Forward Propagation of 2 indirect clocks through Clock Gating
Cell. CLK2/D2 propagates while CLK1 does not propagate

FIGURE 32.
163
Synopsys, Inc.

clock_reduce_pessimism

Parameters in SpyGlass CDC
Example 6 - Generated clocks C1/D1 and C2/D2 propagating through
MUX but stopped when merging with direct clock C3/D3.

FIGURE 33.
164
Synopsys, Inc.

clock_ripple_depth

Parameters in SpyGlass CDC
clock_ripple_depth
Sets the maximum allowed ripple clock-divider depth for the Clock_check05
rule.

By default, the Clock_check05 rule reports ripple clock-dividers that are at
least two levels deep. Use the clock_ripple_depth parameter to set a
different number.

Used by Clock_check05
Options Positive integer value
Default value 2
Example
Console/Tcl-based usage set_parameter clock_ripple_depth 4

In this case, the clock_ripple_depth parameter
reports ripple clock-dividers with 5 or more flip-flops.

Usage in goal/source
files

-clock_ripple_depth=4
165
Synopsys, Inc.

clock_usage

Parameters in SpyGlass CDC
clock_usage
Specifies the signal types to be reported for non-clock usage by the
Clock_check10 rule.

The clock_usage parameter can take the following values:

By default, the clock_usage parameter is set to the following value:

data,control,reset,bbox,others

The above value specifies that the Clock_check10 rule should report the
clock signals that are used as data, control, reset, black box and other
signals at flip-flops and sequential elements. You can set this parameter to
a comma-separated list of values specified in the above table.

Value Indicates
data Clock signals used as data signals at flip-flops, latches, and

sequential elements should be reported.
control Clock signals used as control signals at flip-flops, tristates, and

sequential elements should be reported.
reset Clock signals used as reset signals at flip-flops, latches, and

sequential elements should be reported.
port Clock signals reaching to primary ports should be reported.
bbox Clock signals reaching to input of black boxes that have

abstract_port defined, should be reported.
others Clock signals reaching to library cell inputs of type others (types

excluding clock, control, and reset) should be reported.
For example, the read address of a memory cell.

derived Clock signals will be propagated further from derived flip-flops or
latch enable pin (if the clock_reduce_pessimism parameter
is set to mux_sel) and a violation is reported if the clock signals
are used as non-clock signals.
Note: This parameter must be specified in combination with at least
one of the above values.

all All the above types of clock signals should be reported.
166
Synopsys, Inc.

clock_usage

Parameters in SpyGlass CDC
Used by Clock_check10

Options Comma separated list of one or more of the following
values:
data, control, reset, port, bbox, others, derived, all

Default value data,control,reset,bbox,others
Example
Console/Tcl-based usage set_parameter clock_usage "data,bbox"

In this case, the Clock_check10 rule reports clock
signals used as data signals or at black box ports
where abstract_port is defined.

Usage in goal/source
files

-clock_usage="data,bbox"
167
Synopsys, Inc.

clocks_pair

Parameters in SpyGlass CDC
clocks_pair
Specifies clock signal pairs for the Clock_info05 rule to check for
convergence on a MUX.

For example, for pairs of clock signals refclk, busclk, coreclk, and
apiclk, a message is reported only if pairs refclk and busclk or
coreclk and apiclk converge on a MUX.

Used by Clock_info05
Options Comma-separated list of clock signal names in pairs
Default value NULL
Example
Console/Tcl-based usage set_parameter clocks_pair

"refclk,busclk,coreclk,apiclk"

Usage in goal/source
files

-clocks_pair=refclk,busclk,coreclk,apiclk
168
Synopsys, Inc.

coherency_check_type

Parameters in SpyGlass CDC
coherency_check_type
Specifies if the control crossings on data path and reset path are checked
for convergences and coherency issues.

By default only data path is checked for convergences/coherency. Set this
parameter to reset to check control crossings on reset path for
convergences/coherency.

Specify both the values in a comma-separated format to check the control
crossings on both data path and reset path for convergences/coherency.

Used by Ac_conv01, Ac_conv02, Ac_conv03, Ac_coherency06
Options control, reset
Default value control
Example
Console/Tcl-based usage set_parameter coherency_check_type

control,reset

Usage in goal/source
files

-coherency_check_type=control,reset
169
Synopsys, Inc.

convergence_stop_at_mux

Parameters in SpyGlass CDC
convergence_stop_at_mux
Specifies that convergences should not be propagated to mux outputs.

If the value of this parameter is set to yes, propagation of relevant signals
will stop whenever an RTL mux is encountered.

For example, consider the scenario shown in the following figure:

FIGURE 34. Controlling MUX Convergence

In the above scenario, if you set the convergence_stop_at_mux
parameter to yes, convergence of q23_reg, q13_reg, and q33_reg
on the MUX is not propagated further.

This parameter can be used to reduce the pessimism of propagation across
muxes.

Used by Ac_conv01, Ac_conv02, Ac_conv03

Options yes, no
Default value no
Example
170
Synopsys, Inc.

convergence_stop_at_mux

Parameters in SpyGlass CDC
Console/Tcl-based usage set_parameter convergence_stop_at_mux yes

Usage in goal/source
files

-convergence_stop_at_mux=yes
171
Synopsys, Inc.

conv03_report_seq_conv

Parameters in SpyGlass CDC
conv03_report_seq_conv
Specifies whether the Ac_conv03 rule propagates synchronizers past
sequential elements.

By default, the value of this parameter is set to no, and the Ac_conv03
does not propagate synchronizers past sequential elements. Set this
parameter to yes to enable this rule to propagate synchronizers past
sequential elements.

Used by Ac_conv03
Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter conv03_report_seq_conv yes

Usage in goal/source
files

-conv03_report_seq_conv=yes
172
Synopsys, Inc.

conv_all_mux_data_pins

Parameters in SpyGlass CDC
conv_all_mux_data_pins
Specifies if the Ac_conv02 rule propagates synchronizers through all data
pins of muxes for convergence detection.

By default, the value of this parameter is set to no, and the Ac_conv02 rule
does not propagates synchronizers through all data pins of muxes for
convergence detection.

Used by Ac_conv02
Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter conv_all_mux_data_pins yes

Usage in goal/source
files

-conv_all_mux_data_pins=yes
173
Synopsys, Inc.

conv_clock_reset_path

Parameters in SpyGlass CDC
conv_clock_reset_path
Enables or disables the synchronizer propagation through the clock and
reset pin for convergence detection.

For example, consider the scenario shown in the following figure:

FIGURE 35. Enabling or disabling synchronizer propagation

In the above scenario, if the conv_clock_reset_path parameter is
set to yes, SYNC2 synchronizer propagates through the CLR and Q pin of
SYNC2_A_reg flip-flop.

Set this parameter to no to stop the propagation at the CLR pin.

Used by Ac_conv01, Ac_conv02, Ac_conv03
Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter conv_clock_reset_path yes

Usage in goal/source
files

-conv_clock_reset_path=yes
174
Synopsys, Inc.

conv_reset_seq_depth

Parameters in SpyGlass CDC
conv_reset_seq_depth
Specifies the number of sequential elements beyond which a reset can
propagate across a data terminal to determine reset convergence reported
by the Ar_converge02 rule.

For example, consider that this parameter is set to 3 in Figure 297. In this
case, the Ar_converge02 rule reports reset convergence after traversing
through three sequential elements. However, if this parameter is set to 2,
this rule stops traversal at Y and therefore, no reset convergence is
reported.

Used by Ar_converge02
Options Positive integer value
Default value 2
Example
Console/Tcl-based usage set_parameter conv_reset_seq_depth 4

Usage in goal/source
files

-conv_reset_seq_depth=yes
175
Synopsys, Inc.

conv_reset_single_data_bit

Parameters in SpyGlass CDC
conv_reset_single_data_bit
When a reset signal reaches a data bus, this parameter controls if the
Ar_converge02 rule should traverse from one or all the bits of the data bus on
sequential elements to detect reset convergence.

By default, this parameter is set to no and sequential traversal occurs from
all the bits of a data bus.

Set this parameter to yes to allow sequential traversal from one bit of a
data bus. Note that setting this value reduces runtime.

Used by Ar_converge02
Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter conv_reset_single_data_bit yes

Usage in goal/source
files

-conv_reset_single_data_bit=yes
176
Synopsys, Inc.

conv_src_seq_depth

Parameters in SpyGlass CDC
conv_src_seq_depth
Specifies the maximum number of sequential elements (sequential depth)
till which the Ac_conv01/Ac_conv02 rules should traverse while detecting the
common net of the source of synchronizers.

The following topics covers the details of this parameter:
 Setting the Value -1 (default)

 Setting Value 0

 Setting a Positive Integer Value

 Points at Which Rule Traversal Stops

Setting the Value -1 (default)

The value -1 of the conv_src_seq_depth parameter implies that the
Ac_conv01/Ac_conv02 rule checks whether the same source signal diverges
and is driving multiple converging synchronizers. This is shown in the
following figure:

Used by Ac_conv01/Ac_conv02

Options Positive integer value
Default value -1
Example
Console/Tcl-based usage set_parameter conv_src_seq_depth 4

Usage in goal/source
files

-conv_src_seq_depth=4
177
Synopsys, Inc.

conv_src_seq_depth

Parameters in SpyGlass CDC
FIGURE 36. conv_src_seq_depth parameter set to -1

In the above case, the Ac_conv01/Ac_conv02 rules do not traverse any
sequential element including the source of synchronized crossings.

Setting Value 0

The value 0 of the conv_src_seq_depth parameter covers the
functionality of the -1 value. In addition, the Ac_conv01/Ac_conv02 rules
traverse only combinational elements in the fan-in cone of sources of
synchronizers to determine the common net driving these sources.

These rules do not traverse any sequential element except the source of
synchronized crossing.

Sync1

Sync2

source Logic
178
Synopsys, Inc.

conv_src_seq_depth

Parameters in SpyGlass CDC
FIGURE 37. conv_src_seq_depth parameter set to 0

Setting a Positive Integer Value

Consider the following scenario in which this parameter is set to 4:

Logic

-1

-1

00

00

(Depth annotated by the numbers in red)
179
Synopsys, Inc.

conv_src_seq_depth

Parameters in SpyGlass CDC
FIGURE 38. Example of using the conv_src_seq_depth parameter

In the above scenario, the depth of Path1 (from Src1 to S1) is 2, and
the depth of Path2 (from Src2 to S1) is 4. Since both these depths lie
within the depth (4) set by the conv_src_seq_depth parameter, S1 is
detected as the common net and the Ac_conv01 rule reports S1 as the
common net in its violation.

However, if you specify the depth as 3 to this parameter, traversal on
Path2 stops at f2 and, therefore, S1 is not detected as the common net.
In this case, the Ac_conv01 rule reports a violation without reporting any
common net.

Points at Which Rule Traversal Stops

use the parameter.

Depth 1

Depth 2S1

Sync1

Sync2

Src1

Src2

set_parameter conv_src_seq_depth 4

conv_sync_seq_depth
To specify a limit for Depth 1 and Depth2,

Path1

Path2

(Depth annotated by the numbers in red)

0111122

01113344 2

f2

f1

-1

-1
180
Synopsys, Inc.

conv_src_seq_depth

Parameters in SpyGlass CDC
The traversal stops at following design elements:
 Clock and reset pins of flip-flops

 Scan EN and scan input pins

 Black boxes that are not defined by the assume_path constraint

 Sequential arcs of complex library cells that are without a functional arc

 Blocking path
181
Synopsys, Inc.

conv_sync_seq_depth

Parameters in SpyGlass CDC
conv_sync_seq_depth
Specifies the maximum number of sequential elements (sequential depth)
to be considered for the propagation of synchronizers.

A sequential depth is considered between the output pin of a destination
flip-flop till the point of convergence. The flip-flop chain for a conventional
multi-flop type of qualifier is considered as an additional depth.

For example, consider the following scenario in which this parameter is set
to 3:

FIGURE 39. Example of using the conv_sync_seq_depth parameter

In the above scenario, propagation from Path1 to the AND gate is valid
as the sequential depth of Path1 lies within the specified depth of 3.

However, the depth of Path2 is greater than the specified depth.
Therefore, no Ac_conv01 violation is reported on the convergence of this
path on the AND gate.

set_parameter conv_sync_seq_depth 3

Path 1

Path 2

Depth 1

Depth 2

Source

use the parameter.conv_src_seq_depth
To specify a limit for Depth 1 and Depth2,
182
Synopsys, Inc.

conv_sync_seq_depth

Parameters in SpyGlass CDC
Used by Ac_conv01

Options Positive integer value
Default value 0
Example
Console/Tcl-based usage set_parameter conv_sync_seq_depth 4

Usage in goal/source
files

-conv_sync_seq_depth=4
183
Synopsys, Inc.

conv_sync_seq_depth_opt

Parameters in SpyGlass CDC
conv_sync_seq_depth_opt
Improves the runtime performance of the Ac_conv01 rule when the
conv_sync_seq_depth parameter is set to 1.

Set this parameter to yes to improve the runtime. By default, it is set to
no.

Used by Ac_conv01

Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter conv_sync_seq_depth_opt yes

Usage in goal/source
files

-conv_sync_seq_depth_opt=yes
184
Synopsys, Inc.

conv_sync_as_src

Parameters in SpyGlass CDC
conv_sync_as_src
Checks convergence for synchronizers that are also used as a source in
other crossings.

By default, the Ac_conv01, Ac_conv02, and Ac_conv03 rules ignore such
synchronizers.

NOTE: When this parameter is set to yes, SpyGlass run time is expected to increase.

Used by Ac_conv01, Ac_conv02, Ac_conv03
Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter conv_sync_as_src yes

Usage in goal/source
files

-conv_sync_as_src=yes
185
Synopsys, Inc.

CTS_placeholder_cells

Parameters in SpyGlass CDC
CTS_placeholder_cells
(Mandatory) Specifies names of the placeholder cells for the Clock_check02
rule.

NOTE: The Clock_check02 rule is not run if you do not specify the names of placeholder
cells using the CTS_placeholder_cells parameter.

Used by Clock_check02
Options Comma or space-separated list of placeholder cells
Default value NULL
Example
Console/Tcl-based usage set_parameter CTS_placeholder_cells

"BUF1,BUF2"

Usage in goal/source
files

-CTS_placeholder_cells=BUF1,BUF2
186
Synopsys, Inc.

compute_num_convergences

Parameters in SpyGlass CDC
compute_num_convergences
Specifies the number of convergences to be computed in Ac_conv01,
Ac_conv02, and Ac_conv03 rules for the same set of synchronizers.

By default this parameter is set to 1 and only one convergence is
computed. Set this parameter to any positive integer less than 11 to
specify the number of convergences to be computed for the same set of
synchronizers.

NOTE: If this parameter is not specified during SpyGlass goal run, the num_convergences
argument in the get_cdc_coherency TCL command cannot be used.

Used by Ac_conv01, Ac_conv02, Ac_conv03

Options Any positive integer less than 11
Default value 1
Example
Console/Tcl-based usage set_parameter compute_num_convergences

5

Usage in goal/source
files

-compute_num_convergences =5
187
Synopsys, Inc.

deassert_mode

Parameters in SpyGlass CDC
deassert_mode
Configures the Ar_asyncdeassert01 and Ar_syncdeassert01 rules to perform
different types of reset deassertion checking based on different values
specified to this parameter.

Possible Values of the deassert_mode Parameter

The deassert_mode parameter accepts the following values:
 allow_divergence_convergence

 allow_preset_domain

 allow_assume_path_thru_bbox

 derived_flop

 none

 all

allow_divergence_convergence

Specify this value to the deassert_mode parameter to enable SpyGlass to
traverse all the paths (divergence and convergence cases). In this case,
asynchronous paths of different domains from functional flip-flops are
given priority.

For example, consider the following figure:

Used by Ar_asyncdeassert01, Ar_syncdeassert01

Options Comma-separated list of Possible Values of the
deassert_mode Parameter

Default value none
Example
Console/Tcl-based usage set_parameter deassert_mode

"allow_divergence_convergence,allow_preset_dom
ain"

Usage in goal/source files -deassert_mode=
"allow_divergence_convergence,allow_preset_dom
ain"
188
Synopsys, Inc.

deassert_mode

Parameters in SpyGlass CDC
FIGURE 40.

In the above example, by default, SpyGlass traverses path1 to reach
sync1 (of clock domain clk1). As path1 converges on the AND gate that
reaches the sequential block of the same clock domain clk1, SpyGlass
reports the Ar_syncdeassert01 violation.

To enable SpyGlass consider the alternate path, Path2, set the
deassert_mode parameter to allow_divergence_convergence.
SpyGlass then traverses path2 to reach sync2 (clock domain clk2). As
path2 converges on the AND gate that reaches the sequential block of the
different clock domain clk1, SpyGlass reports the Ar_asyncdeassert01
violation. The following figure shows the schematic of the
Ar_asyncdeassert01 rule for this example in which path2 is highlighted in
blue:

rst1 path divergence
into path2 (in sync2)
and path1 in sync1)

path1 and path2
converge on the
AND gate
189
Synopsys, Inc.

deassert_mode

Parameters in SpyGlass CDC
FIGURE 41.

allow_preset_domain

Specify this value to the deassert_mode parameter to enable SpyGlass
check all the previous preset adjacent flip-flops.

For example, consider the following schematic of the Ar_syncdeassert01
rule:

rst1 path divergence
into path2 (in sync2)
and path1 (in sync1)

path1 and path2
converge on the
AND gate
190
Synopsys, Inc.

deassert_mode

Parameters in SpyGlass CDC
FIGURE 42.

In the above example, by default, the preset sequential block is not
considered. Therefore, in this scenario the Ar_syncdeassert01 message
appears.

To consider the preset sequential block, set the deassert_mode parameter to
allow_preset_domain. In this case, the Ar_asyncdeassert01 violation
appears. The following figure shows the schematic of the Ar_syncdeassert01
rule in this case:

FIGURE 43.
191
Synopsys, Inc.

deassert_mode

Parameters in SpyGlass CDC
allow_assume_path_thru_bbox

Specify this value to the deassert_mode parameter so that rule propagation
does not stop at the following types of black boxes:
 The black box specified by the assume_path constraint

 Single-Input-Single-Output pin (SISO) black box

For example, consider the following schematic:

FIGURE 44.

In the above example, SpyGlass stops propagation beyond the BB1 black
box, and therefore reports the Ar_syncdeassert01 message.

To continue propagation beyond BB1, set the deassert_mode parameter to

assume_path -name BBOX -input in1 -output out1
SGDC
192
Synopsys, Inc.

deassert_mode

Parameters in SpyGlass CDC
allow_assume_path_thru_bbox. In this case, the Ar_asyncdeassert01
reports a violation. The following figure shows the Ar_syncdeassert01 rule
schematic in this case:

FIGURE 45.

derived_flop

Set the value of the deassert_mode parameter to derived_flop to
enable the Ar_asyncdeassert01 and the Ar_syncdeassert01 rules to report
violations on derived flops as well.

assume_path -name BBOX -input in1 -output out1
SGDC
193
Synopsys, Inc.

deassert_mode

Parameters in SpyGlass CDC
none

This is default value of the deassert_mode parameter that indicates that
none of the following values are specified:
 allow_divergence_convergence

 allow_preset_domain

 allow_assume_path_thru_bbox

all

Set this value to the deassert_mode parameter to consider all of the
following values to configure the behavior of Ar_syncdeassert01 and
Ar_asyncdeassert01 rules:
 allow_divergence_convergence

 allow_preset_domain

 allow_assume_path_thru_bbox
194
Synopsys, Inc.

delay_check_clk_list

Parameters in SpyGlass CDC
delay_check_clk_list
Specifies a list of clock names to be checked by the Clock_delay01 rule.

By default, the delay_check_clk_list parameter is set to all and
the Clock_delay01 rule checks for all clocks specified using the clock
constraints.

Set the delay_check_clk_list parameter to a comma-separated list
of clock source names to have the Clock_delay01 rule to check for only these
clocks.

Used by Clock_delay01
Options Comma or space-separated list of clock source names

or all
Default value all
Example
Console/Tcl-based usage set_parameter delay_check_clk_list "clk1,clk2"

Usage in goal/source files -delay_check_clk_list=clk1,clk2
195
Synopsys, Inc.

delayed_ptr_fifo

Parameters in SpyGlass CDC
delayed_ptr_fifo
Enables detection of FIFOs with delayed read or write pointers.

Set the delayed_ptr_fifo parameter to yes when the read/write
pointers are delayed and the multiplexer inside the memory is one-hot or
implemented using gates, as shown in the following figure.

FIGURE 46. FIFO Detection with Delayed Read or Write Pointers

Used by Clock_sync03a, Clock_sync03b, Clock_sync08a,
Clock_sync09, Ac_crossing01, Ac_conv01,
Ac_conv03, Ac_sync02, Ac_sync01, Ac_unsync02,
Ac_unsync01

Options yes, no
Default value no

delayed
write ptr

D

CP

Q Combinational
Logic

D

CP

 Q

D

CP

EN

Q

Combinational
Logic

D

CP

Q

D

CP

Q

write ptr

read ptr
delayed
read ptr

mem0_reg[0]

Combinational
Logic

MUX in memory
implemented using gates
196
Synopsys, Inc.

delayed_ptr_fifo

Parameters in SpyGlass CDC
Example
Console/Tcl-based usage set_parameter delayed_ptr_fifo yes

Usage in goal/source
files

-delayed_ptr_fifo=yes
197
Synopsys, Inc.

disable_inst_grouping

Parameters in SpyGlass CDC
disable_inst_grouping
Specifies if Instance-Based Grouping should be disabled.

By default, this parameter is set to no and messages of the
Ac_sync_group rules are grouped based on instance names of source
and destination signal hierarchies.

Set this parameter to yes to disable such grouping.

Used by Ac_sync02, Ac_sync01, Ac_unsync02, and
Ac_unsync01

Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter disable_inst_grouping yes

Usage in goal/source
files

-disable_inst_grouping=yes
198
Synopsys, Inc.

disable_seq_clock_prop

Parameters in SpyGlass CDC
disable_seq_clock_prop
Disables propagation of clocks beyond flip-flops. In this case, you can
specify generated clocks in an SGDC file.

By default, the disable_seq_clock_prop parameter is set to no and
clock propagation continues beyond flip-flops.

Used by Propagate_Clocks
Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter disable_seq_clock_prop yes

Usage in goal/source
files

-disable_seq_clock_prop=yes
199
Synopsys, Inc.

dump_detailed_info

Parameters in SpyGlass CDC
dump_detailed_info
Specifies if the supported rules include detailed information in the
corresponding rule/message-based spreadsheet.

By default, the dump_detailed_info parameter is set to none, and
none of the supported rule includes detailed information in the generated
spreadsheets.

Set the value of this parameter to one of the following values to enable the
corresponding rule to include detailed information in the generated
spreadsheets:

 Ac_abstract_validation02_combo: Set the
dump_detailed_info parameter to the
Ac_abstract_validation02_combo value to enable the
Ac_abstract_validation02 rule to generate a message-based
spreadsheet for Combo check mismatch violations.

 Ac_abstract_validation02_quasi: Set the
dump_detailed_info parameter to the
Ac_abstract_validation02_quasi value to enable the
Ac_abstract_validation02 rule to generate a message-based
spreadsheet for Quasi-static mismatch violations.

 Clock_sync05: Set the dump_detailed_info parameter to
Clock_sync05 to generate a message-based spreadsheet for
Clock_sync05 violations containing all the signals in which input port
is sampled.

 Clock_sync06: Set the dump_detailed_info parameter to
Clock_sync06 to generate a message-based spreadsheet for
Clock_sync06 violations containing all the signals that are driving the
output port.

 Clock_sync05a: Set the dump_detailed_info parameter to
Clock_sync05a to generate a message-based spreadsheet for
Clock_sync05a violations containing all the signals in which input port
is sampled.

 Clock_sync06a: Set the dump_detailed_info parameter to
Clock_sync06a to generate a message-based spreadsheet for
200
Synopsys, Inc.

dump_detailed_info

Parameters in SpyGlass CDC
Clock_sync06a violations containing all the signals that are driving the
output port.

 Reset_sync04: Set the dump_detailed_info parameter to
Reset_sync04 to generate a message-based spreadsheet for
Reset_sync04 violations listing the reset synchronizers.

Used by Ac_abstract_validation02, Clock_sync05,
Clock_sync06, Reset_sync04

Options none, all, Ac_abstract_validation02_combo,
Ac_abstract_validation02_quasi, Clock_sync05,
Clock_sync06, Clock_sync05a, Clock_sync06a,
Reset_sync04

Default value none
Example
Console/Tcl-based usage set_parameter dump_detailed_info

Ac_abstract_validation02_combo

Usage in goal/source
files

-dump_detailed_info
Ac_abstract_validation02_combo=dump_inst_typ
e

201
Synopsys, Inc.

dump_sync_info

Parameters in SpyGlass CDC
dump_sync_info
Generates The SynchInfo Report and The CrossingInfo Report.

Based on the following values of this parameter, different information is
generated in these reports:

 no (default)
These reports are not generated.

 yes

These reports show limited information for the crossings containing
source and destination flip-flops.

For example, when this parameter is set to yes, the Section 1 of The
SynchInfo Report shows only the last flip-flop in the synchronizer chain
instead of all the flip-flops. To view all the flip flops, set this parameter
to detailed or detailed_mod.

 detailed

These reports show detailed information for the crossings containing
source and destination flip-flops.

For example, when this parameter is set to detailed, the Section 1 of
The SynchInfo Report shows all the flip-flops in the synchronizer chain.

 detailed_mod

The SynchInfo Report shows detailed information for the crossings
containing source and destination flip-flops. In addition, the flip-flops in
the synchronizer chain are shown with their respective module names.

Used by Reset_sync03, Reset_sync04, The Ac_sync_group
Rules, Ar_resetcross01

Options yes, no, detailed, detailed_mod
Default value no
Example
Console/Tcl-based usage set_parameter dump_sync_info yes

Usage in goal/source
files

-dump_sync_info=yes
202
Synopsys, Inc.

dump_inst_type

Parameters in SpyGlass CDC
dump_inst_type
Specifies the type of instances to be reported by The SynchInfo Report and
The CrossingInfo Report.

By default, the dump_inst_type parameter is set to all, and the
destinations and synchronizers that are flip-flops, latches, or sequential
cells are dumped in these reports.

Set the value of this parameter to flop to dump only those destinations
and synchronizers that are flip-flops.

Used by Reset_sync03, Ar_resetcross01
Options flop, all
Default value all
Example
Console/Tcl-based usage set_parameter dump_inst_type flop

Usage in goal/source
files

-dump_inst_type=flop
203
Synopsys, Inc.

enable_ac_sync_qualdepth

Parameters in SpyGlass CDC
enable_ac_sync_qualdepth
Enables reporting of Qualifier Name and Qualifier Depth in a Message-Based
Spreadsheet of The Ac_sync_group Rules.

By default, this parameter is set to no, and such information is not shown
in the spreadsheet.

NOTE: The value of this parameter is assumed to be yes when the cdc_qualifier_depth
parameter is set to a value other than -1.

Used by Ac_sync01, Ac_sync02, Ac_unsync01, and
Ac_unsync02

Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter enable_ac_sync_qualdepth yes

Usage in goal/source
files

-enable_ac_sync_qualdepth=yes
204
Synopsys, Inc.

enable_block_cfp

Parameters in SpyGlass CDC
enable_block_cfp
Generates block-level cdc_false_path constraints during block abstraction.
By default, the parameter is set to no and the constraints are not
generated during abstraction.

Used by CDC verification rules
Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter enable_block_cfp yes

Usage in goal/source
files

-enable_block_cfp=yes
205
Synopsys, Inc.

enable_and_sync

Parameters in SpyGlass CDC
enable_and_sync
Enables the AND Gate Synchronization Scheme. In this scheme, the
destination flip-flop should be driven directly by an AND gate where the
other input (input pin not connected to the source flip-flop) of the AND
gate should be driven by a primary port or should be synchronized to the
destination clock domain.

For Ac_sync02, Ac_sync01, Ac_unsync02, and Ac_unsync01 rules, this
parameter also allows OR, NAND, and NOR gates in addition to an AND
gate.

By default, this scheme is disabled.

Used by Clock_sync03a, Clock_sync03b, Clock_sync08a,
Clock_sync09, Ac_crossing01, Ac_conv01,
Ac_conv02, Ac_conv03, Ac_cdc01a, Ac_cdc01b,
Ac_cdc01c, Ac_cdc08, Ac_sync02, Ac_sync01,
Ac_unsync02, Ar_resetcross01, and Ac_unsync01

Options yes, no
Default value no
Default Value in
GuideWare2.0

yes

Example
Console/Tcl-based usage set_parameter enable_and_sync yes

Usage in goal/source
files

-enable_and_sync=yes
206
Synopsys, Inc.

enable_or_sync

Parameters in SpyGlass CDC
enable_or_sync
Enables the OR Gate based synchronization in the For Data path crossings:
Reset Enable Logic based Synchronization Scheme for RDC (Mux, AND, OR,
Glitch Protect Cell). In this scheme, the destination flip-flop should be
driven directly by an OR gate where the other input (input pin not
connected to the source flip-flop) of the OR gate should be driven by a
primary port or should be synchronized to the destination reset or clock
domain.

By default, this scheme is disabled.

Used by Ar_resetcross01, Ar_resetcross_matrix01

Options yes, no
Default value no
Default Value in
GuideWare2.0

no

Example
Console/Tcl-based usage set_parameter enable_or_sync yes

Usage in goal/source
files

-enable_or_sync=yes
207
Synopsys, Inc.

enable_clock_gate_sync

Parameters in SpyGlass CDC
enable_clock_gate_sync
Enables the Clock-Gating Cell Synchronization Scheme. By default, the
parameter is set to yes and the scheme is enabled.

Used by Clock_sync03a, Ac_sync02, Ac_sync01,
Ac_unsync02, Ac_unsync01, Clock_hier01,
Clock_hier02, Ar_resetcross01, and Clock_hier03

Options yes, no
Default value yes
Example
Console/Tcl-based usage set_parameter enable_clock_gate_sync no

Usage in goal/source
files

-enable_clock_gate_sync=no
208
Synopsys, Inc.

enable_clock_path_crossings

Parameters in SpyGlass CDC
enable_clock_path_crossings
Enables reporting of crossings for sources present in a clock path of a
destination instance.

By default, this parameter is set to no and potential sources in a clock path
of flip-flops are not identified.

Used by Ac_sync01, Ac_sync02, Ac_unsync01, and
Ac_unsync02

Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter enable_clock_path_crossings

yes

Usage in goal/source
files

-enable_clock_path_crossings=yes
209
Synopsys, Inc.

enable_condition_based_sync

Parameters in SpyGlass CDC
enable_condition_based_sync
NOTE: This parameter is deprecated. Please use the sync_check_type parameter instead of

this parameter.

Enables The Enable Expression-Based Synchronization Analysis.

By default, this parameter is set to no, and data synchronization analysis
occurs based on the qualifier search in the transitive input cone of a gate
that receives a source. This approach checks for proper enable condition
that ensures correct transfer of source data.

Used by The Ac_sync_group Rules
Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter enable_condition_based_sync yes

Usage in goal/source
files

-enable_condition_based_sync=yes
210
Synopsys, Inc.

enable_debug_data

Parameters in SpyGlass CDC
enable_debug_data
Enables annotation of debug information, such as clock, reset, quasi_static
signals, and domain information on nets in the schematic. For details, see
Viewing Debug Data in Schematic.

By default, the value of this parameter is set to no, and annotation of
debug information in the schematic is disabled. Set the value of this
parameter to yes to view such information.

Used by All SpyGlass CDC solution rules
Options yes, no
Default value no
Default Value in
GuideWare2.0

yes

Example
Console/Tcl-based usage set_parameter enable_debug_data yes

Usage in goal/source
files

-enable_debug_data=yes
211
Synopsys, Inc.

enable_delayed_qualifier

Parameters in SpyGlass CDC
enable_delayed_qualifier
NOTE: This parameter has been deprecated. Use the cdc_qualifier_depth parameter.

Enables The Ac_sync_group Rules to search for Qualifier or Potential Qualifier
through sequential and/or combinational logic.

This parameter accepts three values: yes, no, and strict.

Consider the following figure:

FIGURE 47. Example of using the enable_delayed_qualifier parameter

Based on the above scenario, The Ac_sync_group Rules search for different
Qualifier or Potential Qualifier, which are connected to the destination, based
on the following values of this parameter:

c2

q2

c1 c2

q1

c1

combinational logic

sequential logic

c1 c2

q3

c1 c2

f1

f2

num_flops -to_domain d1 -value 2
212
Synopsys, Inc.

enable_delayed_qualifier

Parameters in SpyGlass CDC
 yes

In this case, The Ac_sync_group Rules search for Qualifier or Potential
Qualifier beyond sequential and combinational logic.

Therefore, in Figure 47, these rules detect the q1, q2, and q3 qualifiers.

 no

In this case, The Ac_sync_group Rules search for Qualifier or Potential
Qualifier beyond combinational logic. The rules do not traverse beyond
sequential logic in this case to search for qualifiers.

In addition, the rules consider any flip-flop (in this case f1) that is
beyond the synchronization chain limit (in this case 2) set by the
num_flops constraint.

Therefore, in Figure 47, these rules detect the q1 and q2 qualifiers.

 strict

In this case, The Ac_sync_group Rules search for Qualifier or Potential
Qualifier beyond combinational logic. The rules do not traverse beyond
sequential logic in this case to search for qualifiers.

In addition, the rules disallow any flip-flop (in this case f1) that is
beyond the synchronization chain limit (in this case 2) set by the
num_flops constraint.

Therefore, in Figure 47, these rules detect the q2 qualifier.

Used by The Ac_sync_group Rules

Options yes, no, strict
Default value yes
Example
Console/Tcl-based usage set_parameter enable_delayed_qualifier no

Usage in goal/source
files

-enable_delayed_qualifier=no
213
Synopsys, Inc.

enable_derived_reset

Parameters in SpyGlass CDC
enable_derived_reset
Specifies if resets are propagated through derived resets.

By default, resets propagate through derived reset path. Set the value of
the enable_derived_reset parameter to no to stop resets from
propagating through possible derived reset paths.

Used by Propagate_Resets
Options yes, no
Default value yes
Example
Console/Tcl-based usage set_parameter enable_derived_reset no

Usage in goal/source
files

-enable_derived_reset=no
214
Synopsys, Inc.

enable_generated_clocks

Parameters in SpyGlass CDC
enable_generated_clocks
Set this parameter to yes to:

 Consider generated_clock constraints specified in an SGDC file during
SpyGlass analysis.

 Dump derived-clocks information in the form of generated_clock
constraints in the generated_clocks.sgdc and
cdc_setup_generated_clocks.sgdc files when the use_inferred_clocks
parameter is set to yes.

 Stop clock propagation beyond sequential elements so that the derived
clock specified by the generated_clock constraint is propagated beyond
sequential elements.

Used by All SpyGlass CDC rules
Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter enable_generated_clocks yes

Usage in goal/source
files

-enable_generated_clocks=yes
215
Synopsys, Inc.

enable_glitchfreecell_detection

Parameters in SpyGlass CDC
enable_glitchfreecell_detection
Enables reporting of glitch-free multiplexers in a design.

Information about glitch-free multiplexers is reported in the The CDC-
Detailed-Report (Section K) and The CDC-Summary-Report (Section I).

Used by The Ac_sync_group Rules, Ar_sync01, Ar_unsync01,
Clock_info05

Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter

enable_glitchfreecell_detection yes

Usage in goal/source
files

-enable_glitchfreecell_detection=yes
216
Synopsys, Inc.

enable_multiflop_sync

Parameters in SpyGlass CDC
enable_multiflop_sync
Controls the Conventional Multi-Flop Synchronization Scheme.

By default, this scheme is enabled. The following table describes all the
possible options of the parameter:

Options Description
control Enables multiflop based synchronization for clock crossings/

Ac_sync rules.
reset Enables multiflop based synchronization for reset synchronizers

which affects Ar_sync rules.
all Enables multiflop based synchronization for control and reset

schemes.
yes Enables multiflop based synchronization only for control

schemes.
no Disables multiflop based synchronization for control and reset

Used by Clock_sync03a, Clock_sync03b, Clock_sync08a,
Clock_sync09, Ac_crossing01, Ac_conv01,
Ac_conv02, Ac_conv03, Ac_cdc01a, Ac_cdc01b,
Ac_cdc01c, Ac_cdc08, Ac_sync02, Ac_sync01,
Ac_unsync02, and Ac_unsync01

Options control, reset, all, yes, no
Default value yes
Example
Console/Tcl-based usage set_parameter enable_multiflop_sync no

Usage in goal/source
files

-enable_multiflop_sync=no
217
Synopsys, Inc.

enable_mux_dest_domain

Parameters in SpyGlass CDC
enable_mux_dest_domain
Specifies that the following clock domain crossings should be considered
synchronized under the Recirculation MUX Synchronization Scheme,
Synchronized Enable Synchronization Scheme, Glitch Protection Cell
Synchronization Scheme, AND Gate Synchronization Scheme, and Clock-Gating
Cell Synchronization Scheme:
 Clock crossings where the first flip-flop in the destination clock domain

is driven by a MUX where the select signal belongs to the destination
domain (that is, driven by a flip-flop of the destination domain).

 Clock crossings where the enable signal of the first flip-flop in the
destination clock domain belongs to the destination domain (that is,
driven by a flip-flop of the destination domain).

 Clock crossings where the Glitch protection cell that is driving the first
flip-flop in the destination domain has the other input pin (not
connected to the source) in the destination domain.

 Clock crossing where the AND gate that is driving the first flip-flop in
destination domain has the other input pin (not connected to source flip-
flop) in the destination domain.

 Clock crossings where the clock-gating cell that is driving the first flip-
flop in the destination domain has the other input pin (not connected to
the clock) in the destination domain.

When the enable_mux_dest_domain parameter is set, it is sufficient
to have a destination domain signal instead of the synchronizer driving the
enable signal. This parameter accepts a comma-separated list of any of the
following values:

Value Description
mux Works for Recirculation-mux Synchronization Scheme
enable Works for Synchronized Enable Synchronization Scheme
gp Works for Glitch Protection Cell Synchronization scheme
cg Works for Clock-Gating Synchronization scheme
and Works for AND Gate Synchronization scheme
all All the above schemes
none Indicates parameter is turned off
218
Synopsys, Inc.

enable_mux_dest_domain

Parameters in SpyGlass CDC
yes Provided for backward compatibility; same as all
no Provided for backward compatibility; same as none

Used by Clock_sync03a, Clock_sync03b, Clock_sync08a,
Clock_sync09, Ac_crossing01, Ac_conv01, Ac_conv02,
Ac_conv03, Ac_cdc01a, Ac_cdc01b, Ac_cdc01c,
Ac_cdc08

Options all, none, or a comma-separated list of valid values
Default value none
Example
Console/Tcl-based usage set_parameter enable_mux_dest_domain "mux,gp"

Usage in goal/source
files

-enable_mux_dest_domain="mux,gp"

Value Description
219
Synopsys, Inc.

enable_mux_sync

Parameters in SpyGlass CDC
enable_mux_sync
Enables or disables the following schemes:
 Recirculation MUX Synchronization Scheme

 MUX-Select Sync (Without Recirculation) Synchronization Scheme.

Following are the valid values of the enable_mux_sync parameter:

 recirculation (default)
Enables the Recirculation MUX Synchronization Scheme. See Figure 5.

 mux_select

Enables the MUX-Select Sync (Without Recirculation) Synchronization Scheme.
See Figure 6.

 all

Enables both the above schemes.

 strict

Enables both the above schemes with a restriction on the MUX-Select
Sync (Without Recirculation) Synchronization Scheme. The restriction is that
in this scheme, the data line that is free of source should not be tied to a
constant or supply. It should only be coming from a destination domain.
Therefore, the scenario shown in Figure 5 is valid in this case. However,
the scenario shown in the following figure is not valid in this case:
220
Synopsys, Inc.

enable_mux_sync

Parameters in SpyGlass CDC
FIGURE 48. MUX-Select Sync (Without Recirculation) Synchronization Scheme

 none

Disables both the specified schemes.

Used by Clock_sync03a, Clock_sync03b, Clock_sync08a

Clock_sync09, Ac_crossing01, Ac_conv01,
Ac_conv02, Ac_conv03, Ac_cdc01a, Ac_cdc01b,
Ac_cdc01c, Ac_cdc08, Ac_sync02, Ac_sync01,
Ac_unsync02, Ac_unsync01, Ar_resetcross01

Options none, recirculation, mux_select, all, strict
Default value recirculation

Clock domain crossing

0

clk1

clk1

w

clk2

Crossing not considered as synchronized as
enable_mux_sync is set to strict but
the data line tied to a constant
221
Synopsys, Inc.

enable_mux_sync

Parameters in SpyGlass CDC
Default Value in
GuideWare2.0

all

Example
Console/Tcl-based usage set_parameter enable_mux_sync all

Usage in goal/source
files

-enable_mux_sync=all
222
Synopsys, Inc.

enable_reset_cone_spreadsheet

Parameters in SpyGlass CDC
enable_reset_cone_spreadsheet
Specifies if a message-based spreadsheet is generated for each violation
message reported by the Ar_unsync01, Ar_asyncdeassert01, and Reset_sync02
rules. The generated spreadsheet includes all similar flops that are
candidates for the reported violation.

By default, the spreadsheet is not generated. Set this parameter to yes to
enable SpyGlass CDC to generate a spreadsheet for each violation
message reported by the Ar_unsync01, Ar_asyncdeassert01, and Reset_sync02
rules.

Used by Ar_unsync01, Ar_asyncdeassert01, Reset_sync02
Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter enable_reset_cone_spreadsheet

yes

Usage in goal/source
files

-enable_reset_cone_spreadsheet=yes
223
Synopsys, Inc.

enable_selection

Parameters in SpyGlass CDC
enable_selection
This parameter is deprecated. Use the sync_point_selection parameter
instead of this parameter.
224
Synopsys, Inc.

enable_sim_check_rdc

Parameters in SpyGlass CDC
enable_sim_check_rdc
Specifies if the Ar_resetcross01 rule should perform simulation to check that
when the source reset is active, the destination clock is switched off so that
no metastability is captured at the destination.

By default, such simulation checks are performed by this rule. Set this
parameter to no to disable these simulation checks.

Used by Ar_resetcross01

Options yes, no
Default value yes
Example
Console/Tcl-based usage set_parameter enable_sim_check_rdc no

Usage in goal/source
files

-enable_sim_check_rdc=no
225
Synopsys, Inc.

enable_sync_check_rdc

Parameters in SpyGlass CDC
enable_sync_check_rdc
NOTE: It is recommended that enable_sync_check_rdc is not used because rdc

synchronization checks are enabled by default now. You can set multi-flop
synchronizaton scheme to on/off for RDC by using the enable_multiflop_sync
parameter. Use the qualifier -rdc and the sync_cell -rdc constraints to enable other
synchronization schemes for RDC.

NOTE:

Specifies if the Ar_resetcross01 rule should check if the destination is
synchronized by any of the following synchronization schemes:
 For Control path crossings: Conventional Multi-Flop Synchronization Scheme

(for RDC)

 For Control path crossings: Synchronizing Cell Synchronization Scheme (for
RDC)

Set this parameter to no to not consider the above schemes.

Used by Ar_resetcross01

Options yes, no
Default value yes
Example
Console/Tcl-based usage set_parameter enable_sync_check_rdc no

Usage in goal/source
files

-enable_sync_check_rdc=no
226
Synopsys, Inc.

enable_diff_clkdom_rdc

Parameters in SpyGlass CDC
enable_diff_clkdom_rdc
Specifies if the Ar_resetcross01 rule should report reset domain crossings
having different clock domains in source and destination.

Set this parameter to yes to report reset domain crossings having different
clock domains.

Used by Ar_resetcross01, Setup_rdc01
Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter enable_diff_clkdom_rdc yes

Usage in goal/source
files

-enable_diff_clkdom_rdc=yes
227
Synopsys, Inc.

ignore_qualifier_mismatch_rdc

Parameters in SpyGlass CDC
ignore_qualifier_mismatch_rdc
Use this parameter to enable/disable checks to identify mismatches in
qualifier's reset domains with that of destination object in reset domain
crossing.

By default, if there is any mismatch in reset of the qualifier to that of
destination object, the SGDC_qualifier23 rule reports an Error message
and the qualifier is considered as invalid, and an unsynchronized RDC
crossing is reported.

You can set the ignore_qualifier_mismatch_rdc parameter to yes and use
the reset_filter_path constraint between the qualifier and destination
object to ignore such reset mismatches. In this case, the qualifier is
considered as valid and SpyGlass reports this crossing as synchronized. For
example, consider the following schematic:

FIGURE 49.

In the above case, the qualifier is driven by the r3 reset and the destination
is driven by the r2 reset. Therefore, this qualifier is considered as invalid.
However, to enable SpyGlass consider this qualifier as valid and report the
crossing as synchronized, you can use the ignore_qualifier_mismatch_rdc
228
Synopsys, Inc.

ignore_qualifier_mismatch_rdc

Parameters in SpyGlass CDC
parameter as shown below:

set_parameter ignore_qualifier_mismatch_rdc yes
reset_filter_path -from_rst r3 -to_rst r2

Used by Ar_resetcross01
Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter ignore_qualifier_mismatch_rdc

yes

Usage in goal/source
files

-ignore_qualifier_mismatch_rdc=yes
229
Synopsys, Inc.

rdc_reduce_pessimism

Parameters in SpyGlass CDC
rdc_reduce_pessimism
Use this parameter to enable the Ar_resetcross01 rule to ignore reset-
domain crossings in some scenarios.

The check to find reset-domain crossings between source and destinations
is relaxed. For example, consider two source resets R1 and R2 and two
destination resets R2 and R3. To ignore reset-domain crossings for each
source destination pair, you would need to define either the
reset_filter_path or the define_reset_order SGDC constraints for
each of the following combinations:
 R1 -> R2

 R1-> R3

 R2 -> R3

Alternatively, you can set this parameter to reset_filter, define the
reset_filter_path or the define_reset_order SGDC constraint for only
one of the following combinations:
 R1 -> R2, or

 R1 -> R3

By default, the parameter is set to none and no reset-domain crossings are
ignored.

Set this parameter to qualifier to relax the matching criteria of source
resets and destination resets with the resets mentioned in -from_rst and
-to_rst attribute of the qualifier constraints.

For example, consider the following qualifier constraint:

qualifier -name qual -from_rst R1 R2 -to_rst R3 R4 -rdc

In the above specification, if the parameter is not set to qualifier, the
qualifier constraint will synchronize only the reset domain crossings with
the specified combination of resets at the source and destination.

You can set the parameter to qualifier to relax the strict matching
criteria and allow the qualifier constraint to synchronize any combination of
reset domain crossings between the source (R1, R2) and the destination
(R3, R4) resets.

Set this parameter to exclusive to waive or synchronize an RDC crossing
by using a combination of different constraints such as quasi_static_rdc,
reset_filter_path and define_reset_order.
230
Synopsys, Inc.

rdc_reduce_pessimism

Parameters in SpyGlass CDC
Used by Ar_resetcross01
Options reset_filter, exclusive, qualifier, none
Default value none
Example
Console/Tcl-based usage set_parameter rdc_reduce_pessimism

reset_filter

Usage in goal/source
files

-rdc_reduce_pessimism=reset_filter
231
Synopsys, Inc.

rdc_allow_sync_reset

Parameters in SpyGlass CDC
rdc_allow_sync_reset
This parameter enables SpyGlass CDC to consider synchronous resets as
equivalent of asynchronous resets for performing RDC checks. Use this
parameter to specify synchronous resets, in addition to asynchronous
resets, in the -to_rst argument of the reset_filter_path constraint.

By default, the value is set to none and synchronous resets specified in the
-to_rst argument of the reset_filter_path constraint are not
considered by the Ar_resetcross01 rule.

Set the parameter to endpoint to enable this support at end points of RDC
crossings.

Set this parameter to both to enable this support at end points as well as
destination of RDC crossings.

Used by Ar_resetcross01, Ar_resetcross_matrix01
Options none, endpoint, both
Default value none
Example
Console/Tcl-based usage set_parameter rdc_allow_sync_reset both

Usage in goal/source
files

-rdc_allow_sync_reset=both
232
Synopsys, Inc.

report_sync_rdc

Parameters in SpyGlass CDC
report_sync_rdc
Specifies the way sources should be reported by the Ar_resetcross01 rule
when the destination is synchronized by any RDC synchronization
schemes.

Values Accepted by the report_sync_rdc Parameter

The following table describes the values accepted by this parameter:

Example of the report_sync_rdc Parameter

Consider the following violations reported by the Ar_resetcross01 rule when
this parameter is set to all:

FIGURE 50.

In the above figure, all the sources reaching the synchronized destination
top.F4.q are reported.

Value Description
all (default value) Specify this value to report all the sources

reaching the synchronized destination.
none Specify this value to disable reporting of any

source.
233
Synopsys, Inc.

report_sync_rdc

Parameters in SpyGlass CDC
Used by Ar_resetcross01

Options all, none
Default value all
Example
Console/Tcl-based usage set_parameter report_sync_rdc none

Usage in goal/source
files

-report_sync_rdc=none
234
Synopsys, Inc.

show_unsync_qualifier_rdc

Parameters in SpyGlass CDC
show_unsync_qualifier_rdc
Specifies if the reason and potential qualifiers for unsynchronized reset-
domain crossings are reported by the Ar_resetcross01 rule.

This parameter enables you to debug unsynchronized reset-domain
crossings. Set this parameter to yes to report the reason and potential
qualifiers for unsynchronized reset-domain crossings.

Set this parameter to backward to report a reduced set of reasons for
invalid qualifier and invalid convergence.

Used by Ar_resetcross01

Options yes, no, backward
Default value yes
Example
Console/Tcl-based usage set_parameter show_unsync_qualifier_rdc yes

Usage in goal/source
files

-show_unsync_qualifier_rdc=yes
235
Synopsys, Inc.

enable_multiflop_sync

Parameters in SpyGlass CDC
enable_multiflop_sync
Controls the Conventional Multi-Flop Synchronization Scheme.

By default, this scheme is enabled. The following table describes all the
possible options of the parameter:

Options Description
control Enables multiflop based synchronization for clock crossings/

Ac_sync rules.
reset Enables multiflop based synchronization for reset synchronizers

which affects Ar_sync rules.
rdc Enables multiflop based synchronization for reset domain

crossings which affects the Ar_resetcross01.
all Enables multiflop based synchronization for control, reset, and

rdc schemes.
yes Enables multiflop based synchronization only for control and rdc

schemes.
no Disables multiflop based synchronization for control, reset, and

rdc

Used by Clock_sync03a, Clock_sync03b, Clock_sync08a,
Clock_sync09, Ac_crossing01, Ac_conv01,
Ac_conv02, Ac_conv03, Ac_cdc01a, Ac_cdc01b,
Ac_cdc01c, Ac_cdc08, Ac_sync02, Ac_sync01,
Ac_unsync02, Ar_resetcross01, and Ac_unsync01

Options control, reset, rdc, all, yes, no
Default value yes
Example
Console/Tcl-based usage set_parameter enable_multiflop_sync no

Usage in goal/source
files

-enable_multiflop_sync=no
236
Synopsys, Inc.

enable_sync

Parameters in SpyGlass CDC
enable_sync
Specifies whether the Synchronized Enable Synchronization Scheme is run. By
default, the scheme is always run.

The Synchronized Enable Synchronization Scheme considers all those clock
crossings where the destination domain flip-flop is an enabled flip-flop. A
crossing is marked as synchronized if either of the following conditions is
met:
 The enable pin is driven by a signal synchronized to the destination

clock domain.
 A valid synchronizer exists in any one of the paths driving the enable pin

and signals in all other paths are driven either by primary ports or by
destination clock domain flip-flops.

Used by Clock_sync03a, Clock_sync03b, Clock_sync08a,
Clock_sync09, Ac_crossing01, Ac_conv01,
Ac_conv02, Ac_conv03, Ac_cdc01a, Ac_cdc01b,
Ac_cdc01c, Ac_cdc08, Ac_sync02, Ac_sync01,
Ac_unsync02, Ar_resetcross01, and Ac_unsync01

Options yes, no
Default value yes
Example
Console/Tcl-based usage set_parameter enable_sync no

Usage in goal/source
files

-enable_sync=no
237
Synopsys, Inc.

expected_ckcells_file

Parameters in SpyGlass CDC
expected_ckcells_file
Specifies the name of the file containing the list of cells that are allowed in
clock trees checked by the Clock_check06a rule.

By default, the expected_ckcells_file parameter is not set. You
can set this parameter to one or more file names that contain names of
allowed cells.

Specifying the List of Allowed Cells

Create an ASCII file containing the names of allowed cells (one name in
each line) and specify it with the expected_ckcells_file parameter.

In the ASCII file:
 You can use Perl regular expressions to specify the names of multiple

cells. For example, to refer to the cells cell1, cell2, cell3, and
cell4, you can specify cell.*.

 You can use // style or # style comments.

Used by Clock_check06a, Ar_resetcross01
Options Comma or space-separated list of file names
Default value NULL
Example
Console/Tcl-based usage set_parameter expected_ckcells_file

"cells1.list,cells1.list"

Usage in goal/source
files

-expected_ckcells_file=cells1.list,cells1.list
238
Synopsys, Inc.

enable_sync_cell

Parameters in SpyGlass CDC
enable_sync_cell
Specifies the synchronizer cells that should be considered as valid
synchronizers if they are driving the enable pin of the destination flip-flop
in the Synchronized Enable Synchronization Scheme or the synchronizer cells
driving the MUX select pin in the Recirculation MUX Synchronization Scheme
and MUX-Select Sync (Without Recirculation) Synchronization Scheme.

Used by Clock_sync03a, Clock_sync03b, Clock_sync08a,
Clock_sync09, Ac_crossing01, Ac_conv01,
Ac_conv02, Ac_conv03, Ac_cdc01a, Ac_cdc01b,
Ac_cdc01c, Ac_cdc08, and Ac_datahold01a

Options Comma or space-separated list of synchronizer cells
Default value NULL
Example
Console/Tcl-based usage set_parameter enable_sync_cell

"Sync_cell1,Sync_cell2"

Usage in goal/source
files

-enable_sync_cell=Sync_cell1,Sync_cell2
239
Synopsys, Inc.

fa_abstract

Parameters in SpyGlass CDC
fa_abstract
Functional analysis of a property depends on the size and complexity of its
fan-in cone. Usage of this parameter applies a context-sensitive
abstraction technique to reduce complex verification problem into a simpler
and solvable problem.

If you have partially proved properties reported by the rules listed in the
table below, this parameter may help in concluding such properties.

A list of valid values for the parameter, fa_abstract, is given below:

Values Description
Ac_cdc08 Enable abstraction for the rule Ac_cdc08
Clock_sync03a Enable abstraction for the rule Clock_sync03a
Ac_conv02 Enable abstraction for the Ac_conv02 rule
Ac_glitch03 Enable abstraction for the rule Ac_glitch03
Ac_datahold01a Enable abstraction for the rule Ac_datahold01a

When you set the value of the fa_abstract parameter to
Ac_datahold01a, failure cannot be determined, and such
cases are reported as partially-proved.
In such cases, check the failing properties without the
fa_abstract parameter.

all Enable abstraction for the rules Ac_cdc08, Ac_conv02,
Clock_sync03a, and Ac_glitch03

none Disable abstraction for the rules Ac_cdc08, Ac_conv02,
Clock_sync03a, and Ac_glitch03

Used by Ac_cdc08, Ac_conv02, Clock_sync03a, and
Ac_glitch03

Options all, none, or a comma-separated list of the following
rule names:
Ac_handshake01, Ac_cdc08, Ac_conv02,
Clock_sync03a, Ac_fifo01, and Ac_glitch03

Default value Ac_handshake01,Ac_glitch03
Example
240
Synopsys, Inc.

fa_abstract

Parameters in SpyGlass CDC
Console/Tcl-based usage set_parameter fa_abstract all

Usage in goal/source
files

-fa_abstract=all
241
Synopsys, Inc.

fa_atime

Parameters in SpyGlass CDC
fa_atime
Specifies the CPU time (in seconds) consumed by the tool to perform
functional analysis per assertion.

The default run time is set to 20 seconds per assertion. This run time is for
a 1GHz processor. The time is scaled for different processor speeds.

NOTE: If you specify less time to this parameter, the RCA debug data spreadsheet may not
get generated due to incomplete functional analysis.

Used by CDC Verification Rules
Options Positive integer value
Default value 20
Example
Console/Tcl-based usage set_parameter fa_atime 100

Usage in goal/source
files

-fa_atime=100
242
Synopsys, Inc.

fa_atsrc

Parameters in SpyGlass CDC
fa_atsrc
Specifies if the Ac_cdc08 and Clock_sync03a rules should check for gray-
encoding at the output of source instance.

By default, these rules check for gray-encoding at the input of the
destination instance with respect to the source clock.

Used by Ac_cdc08 and Clock_sync03a

Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter fa_atsrc yes

Usage in goal/source
files

-fa_atsrc=yes
243
Synopsys, Inc.

fa_audit

Parameters in SpyGlass CDC
fa_audit
NOTE: This parameter will be deprecated in a future SpyGlass release. Use the

fa_msgmode parameter instead of this parameter.

Enables some SpyGlass CDC solution rules to explore assertion checking
opportunities in a design without performing actual formal analysis.

When the fa_audit parameter is set to yes, SpyGlass does not perform
functional analysis. However, messages of these rules are still reported.

When the fa_audit parameter is not set (default is no), SpyGlass CDC
solution performs functional analysis.

On passing cdc_dump_assertions with fa_audit, the design is run in
audit mode, and SVA for all assertions of the following rules is
generated:
 Ac_datahold01a

 Ac_cdc01

 Ac_conv02

Used by CDC Verification Rules
Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter fa_audit yes

Usage in goal/source
files

-fa_audit=yes
244
Synopsys, Inc.

fa_c2c_max_cycles

Parameters in SpyGlass CDC
fa_c2c_max_cycles
Sets a limit for the Maximum Cycle Count checked by the Ac_sanity07 rule.

Used by Ac_sanity07

Options Positive integer value
Default value 100
Example
Console/Tcl-based usage -fa_c2c_max_cycles=50

Usage in goal/source
files

set_parameter fa_c2c_max_cycles 50
245
Synopsys, Inc.

fa_enable_crpt

Parameters in SpyGlass CDC
fa_enable_crpt
Configures SpyGlass CDC rules to generate a spreadsheet showing details
of SVA constraints affecting each rule violation.

For information on this spreadsheet, refer to the Using SystemVerilog
Assertions application note.

Used by Refer to the Using SystemVerilog Assertions application
note

Options yes, no
Default value no
Example
Console/Tcl-based
usage

set_parameter fa_enable_crpt yes

Usage in goal/source
files

-fa_enable_crpt = yes
246
Synopsys, Inc.

fa_dump_hybrid

Parameters in SpyGlass CDC
fa_dump_hybrid
Specifies if SVA should be generated for all the types of assertions, such as
pass, failed and partially-proved.

By default, SVA is generated only for partially-proved assertions.

Set this parameter to all to generate SVA for all the types of assertions,
and set it to none to disable SVA generation. Set it to +fail to generate
SVA for failed and partially-proved assertions.

Used by Ac_datahold01a, Ac_cdc01, Ac_conv02
Options none, all, or comma-separated list of partial, fail, or

+fail
Default value partial
Example
Console/Tcl-based usage set_parameter fa_dump_hybrid partial,fail

Usage in goal/source
files

-fa_dump_hybrid=partial,fail
247
Synopsys, Inc.

fa_flopcount

Parameters in SpyGlass CDC
fa_flopcount
Specifies a maximum number of flip-flops so that an input cone of
SpyGlass CDC solution properties can be abstracted by cutting the logic
behind the specified number of flip-flops in that cone.

While running SpyGlass CDC solution analysis on full-chips, the cone of
SpyGlass CDC solution properties can be very complex in terms of number
of flip-flops. This results in significant time spent on verification.

To circumvent this problem, use this parameter to limit the number of flip-
flops to abstract input cones. Using this parameter also increases the
chances of getting properties concluded.

It is recommended that you use this parameter only for partially-proved
properties because usage of this parameter may help in concluding such
properties.

NOTE: If you use this parameter for properties that are failing, such properties may be
reported as partially proved. Therefore, it is recommended that you use this
parameter only on partially proved properties by using the fa_propfile parameter.

By default, this parameter is set to -1, which indicates that an input cone
will not be abstracted by cutting the logic behind a specific number of flip-
flops in the cone of SpyGlass CDC solution properties.

NOTE: If you specify any invalid value to this parameter, the default value (-1) is
considered.

Used by CDC Verification Rules
Options -1 or a positive integer value greater than 0
Default value -1
Example
Console/Tcl-based usage set_parameter fa_flopcount 2

Usage in goal/source
files

-fa_flopcount=2
248
Synopsys, Inc.

fa_hybrid_report_hier

Parameters in SpyGlass CDC
fa_hybrid_report_hier
Specifies if the supported rules report the top-level hierarchical names in
the SVA Hybrid flow.

By default, the parameter is set to no and the object names generated in
SVA are flat names. Set this parameter to yes to enable the supported
rules to report the top-level hierarchical names in the SVA Hybrid flow.

Used by Ar_resetcross01, Propagate_Clocks,
Propagate_Resets, Ac_datahold01a, Ac_cdc01,
Ac_conv02, Ac_glitch03, Ac_clock_relation01

Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter fa_hybrid_report_hier yes

Usage in goal/source
files

-fa_hybrid_report_hier=yes
249
Synopsys, Inc.

fa_grayhold

Parameters in SpyGlass CDC
fa_grayhold
Specifies if converging synchronizers are checked for data hold.

By default, the Ac_conv02 and Ac_conv04 rules only check the destination
instance inputs for gray encoding with respect to the source clock. Set the
value of the fa_grayhold parameter to yes, so that the Ac_conv02 and
Ac_conv04 rules also check the destination instance outputs for gray-
encoding with respect to the destination clock to ensure that the data is
held properly.

Used by Ac_conv02, Ac_conv04
Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter fa_grayhold yes

Usage in goal/source
files

-fa_grayhold=yes
250
Synopsys, Inc.

fa_hide_complex_enables

Parameters in SpyGlass CDC
fa_hide_complex_enables
NOTE: This parameter is deprecated. Please use the fa_hide_complex_expr parameter

instead of this parameter.

Hides complex enable expressions generated in The Hybrid CDC Flow.

During SVA generation in this flow, in some cases, the SVA generated for
the Ac_datahold01a rule refers to an enable expression that is very complex
and makes the hybrid model look unreadable. For such cases, the string
<complex enable expression> is generated instead of the actual enable
expression and the SVA assertion is commented. The following example
shows this string:

//DATAHOLD_Check_mod #(1, "SpyGlass - Ac_datahold01a failure
(./test.v:68): DataHold failure (Source:top.data11[0],
Destination:top.q1)") ADVCDC_datahold_1 (
.data(top.data11[0]),
.enable(<complex enable expression>),
.src_clk(top.clk1),
.des_clk(top.clk2),
.rst((!top.reset)));

//DATAHOLD_Check_mod #(1, "SpyGlass - Ac_datahold01a failure
(./test.v:132): DataHold failure (Source:top.data21,
Destination:top.q2)") ADVCDC_datahold_2 (
.data(top.data21),
.enable(<complex enable expression>),
.src_clk(top.clk1),
.des_clk(top.clk2),
.rst((!top.reset)));

To generate the actual enable expression, set this parameter to no.

Used by Ac_datahold01a

Options yes, no
Default value yes
Example
251
Synopsys, Inc.

fa_hide_complex_enables

Parameters in SpyGlass CDC
Console/Tcl-based usage set_parameter fa_hide_complex_enables no

Usage in goal/source
files

-fa_hide_complex_enables=no
252
Synopsys, Inc.

fa_hide_complex_expr

Parameters in SpyGlass CDC
fa_hide_complex_expr
Hides complex expressions in the Hybrid flow.

By default, SpyGlass generates SVA data for partially analyzed assertions
of the following rules:
 Ac_datahold01a

 Ac_cdc01

 Ac_conv02

 Ac_glitch03

In some cases, the SVA data might refer to an expression that is very
complex and makes the hybrid model unreadable. The
fa_hide_complex_expr parameter is used to configure if such
expressions are generated or not. The following table shows the various
values of the fa_hide_complex_expr parameter and the
corresponding behavior.

For the Ac_datahold01a rule, if the enable expression is complex, the
string <complex enable expression> is written instead of the
actual enable expression in the Ac_datahold01a SVA assertion. Set this
parameter to no to generate the actual enable expression.

Parameter Value Description
yes (Default Value) Does not generate data for expression containing

complex macros such as adder and subtractor
suppress_macros Does not generate data for expressions containing

complex macros as well as simple macros such as
incrementers

no Generates data for all expressions

Used by Ac_datahold01a

Options yes, no, suppress_macros
Default value yes
Example
253
Synopsys, Inc.

fa_hide_complex_expr

Parameters in SpyGlass CDC
Console/Tcl-based usage set_parameter fa_hide_complex_expr no

Usage in goal/source
files

-fa_hide_complex_expr=no
254
Synopsys, Inc.

fa_holdmargin

Parameters in SpyGlass CDC
fa_holdmargin
Controls the hold margins between data and clock (Ac_cdc01 rule).

In addition to the hold margin requirement, the tool requires the minimum
setup margin of one clock edge.

For example, consider the scenario shown in the following figure:

FIGURE 51. Controlling the data hold margin between data and clock

In the above scenario, you can specify the hold time so that after the clock

Value Description
0 No hold margin is required. This means that the data should hold

until the next active edge of the verification clock.
1 A minimum hold margin of one clock edge is required with respect

to each data change. This means that the data should hold strictly
over the next active edge of the verification clock.

clk1

D

clk2

data

Scenario

Waveform

setup time
hold time (0 or 1)

data

clk2
255
Synopsys, Inc.

fa_holdmargin

Parameters in SpyGlass CDC
edge, data remains stable for the specified hold time.

Used by Ac_cdc01a, Ac_cdc01b, Ac_cdc01c
Options 0, 1
Default value 1
Example
Console/Tcl-based usage set_parameter fa_holdmargin 0

Usage in goal/source
files

-fa_holdmargin=0
256
Synopsys, Inc.

fa_holdmargin_window

Parameters in SpyGlass CDC
fa_holdmargin_window
Controls data enable sequencing, as checked by the Ac_datahold01a rule.

The following table describes the meaning of each value accepted by this
parameter:

NOTE: Clock edges mentioned in the above refer to a positive or negative edge of any clock
in the fan-in cone of the crossing.

For example, consider the scenario shown in the following figure:

Used by Ac_datahold01a
Options 0, 1
Default value 0
Example
Console/Tcl-based usage set_parameter fa_holdmargin_window 0

Usage in goal/source
files

-fa_holdmargin_window=0

Value Description
0 Data change can exactly coincide with the enable change.
1 A minimum margin of one clock edge is required between data and

enable change.
257
Synopsys, Inc.

fa_holdmargin_window

Parameters in SpyGlass CDC
FIGURE 52. Controlling margin between the data and enable change

In the above scenario, you can use the fa_holdmargin_window
parameter to control the margin (0 or 1) between the data and enable
change.

data

enable

<margin> <margin>

<margin> = 0 or 1
258
Synopsys, Inc.

fa_ieffort

Parameters in SpyGlass CDC
fa_ieffort
This parameter is used to change the effort of the tool put in initial state
search during design simulation.

By default, during initial state search, the tool first applies asynchronous
set/resets on a design and then performs clocked simulation.

Clock Simulation

Clocked simulation is performed for a fixed number of cycles (200 cycles)
until any of the following occurs:
 A non-X value reaches on all flip-flops.

 No improvement is observed for a fixed number of consecutive cycles
(also referred to as waste cycles).

This waste cycle number is 10 for the reset simulation stage, and it is 20
for the data simulation stage.

If you set the value of the fa_ieffort parameter to a positive integer
value (say, N), the tool performs the following steps:
1. It multiplies the simulation cycle count and waste cycle count with N

(which in effect multiplies the time spent in initial state search by N).
2. It deactivates sets/resets, applies random values to the input ports, and

performs clocked simulation for the total number of cycles calculated in
the above step.

The tool performs the above steps over and above the default behavior of
applying asynchronous set/resets on a design and then performing clocked
simulation.

Setting the fa_ieffort parameter to a negative value (-1 to -3)
produces different results, as explained in the following table:

Value Result
-1 Complete initial state search is skipped all together
-2 Initial state of all flip-flops to forced to 0
-3 Initial state of all flip-flops is forced to 1
259
Synopsys, Inc.

fa_ieffort

Parameters in SpyGlass CDC
Used by CDC Verification Rules
Options -3 to any positive integer value
Default value 0
Example
Console/Tcl-based usage set_parameter fa_ieffort 2

Usage in goal/source
files

-fa_ieffort=2
260
Synopsys, Inc.

fa_meta

Parameters in SpyGlass CDC
fa_meta
Use this parameter to enable formal modeling of metastability in CDC
Verification Rules.

If the fan-in of an assertion has a signal that is synchronized using the
Conventional Multi-Flop Synchronization Scheme, SpyGlass injects metastability
if the following conditions are met:
 There is a change in the asynchronous data and no change in the

synchronous data at the source side of the crossing.
 The source and destination clock edges of the crossing occur at the

same time.

Used by CDC Verification Rules
Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter fa_meta yes

Usage in goal/source
files

-fa_meta=yes
261
Synopsys, Inc.

fa_minimize_witness

Parameters in SpyGlass CDC
fa_minimize_witness
Minimizes a witness when insignificant signals for a failure are removed.
This enables you to identify the signals that should be ignored while
analyzing a witness in the Waveform Viewer.

A signal may be insignificant for the entire witness depth and is shown red
in the Waveform Viewer, or the signal may be significant for some cycles
and is marked as don't-care for rest of the cycles.

Consider the design and its constraints as shown in the following figure:

FIGURE 53.
262
Synopsys, Inc.

fa_minimize_witness

Parameters in SpyGlass CDC
In the above design, in1 is constrained to 0 during a functional rule check.

When this parameter is set to yes, then after minimization:

 in3 is shown as irrelevant for all the cycles because in1 was
constrained to 0.

 in2 is shown as don't care for all the cycles except for third cycle.

 in4 is shown as don't care for some cycles.

The above changes are shown in the Waveform Viewer in the following
figures:

FIGURE 54.
263
Synopsys, Inc.

fa_minimize_witness

Parameters in SpyGlass CDC
FIGURE 55.

Used by CDC Verification Rules
Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter fa_minimize_witness yes

Usage in goal/source
files

-fa_minimize_witness=yes
264
Synopsys, Inc.

fa_modulelist

Parameters in SpyGlass CDC
fa_modulelist
Specifies a list of modules for which the functional analysis is to be
performed.

By default, SpyGlass analyzes the user-defined properties and implicit
properties for all design units in the user design. If you specify some
particular design units with the fa_modulelist parameter, SpyGlass
analyzes only the specified design units at the highest level. Properties at
lower levels of the specified design units or in the remaining design units of
the user design are not analyzed. However, the complete design is
considered while determining the fan-in/fan-out of signals being checked.

Used by CDC Verification Rules
Options Space-separated or comma-separated list of design

unit names enclosed in double quotes
Default value NULL
Example
Console/Tcl-based usage set_parameter fa_modulelist "Fsm Fsm_always"

set_parameter fa_modulelist "Fsm,Fsm_always"

Usage in goal/source
files

-fa_modulelist=Fsm Fsm_always
-fa_modulelist=Fsm,Fsm_always
265
Synopsys, Inc.

fa_msgmode

Parameters in SpyGlass CDC
fa_msgmode
Specifies how assertions reported by the CDC Verification Rules should be
dumped.

This parameter accepts the following values:

 fail: Only the Failed assertions are reported.

 pass: Only the Passed assertions are reported.

 pp: Only the Partially Proved assertions are reported.

 all: All the assertions, such as Failed, Passed, and Partially Proved are
reported.

 no_msg: Messages of CDC Verification Rules are dumped only in the
adv_cdc.rpt and adc_cdc.prp files. No message of these rules is dumped
in the moresimple.rpt and spyglass.vdb files.

 none: Messages of CDC Verification Rules are dumped in the
moresimple.rpt and spyglass.vdb files. No message of these rules is
dumped in the adv_cdc.rpt or adv_cdc.prp file.
In addition, no Assertions are dumped in this case.

 audit: Messages of CDC Verification Rules are dumped in the
adv_cdc.rpt, adc_cdc.prp, moresimple.rpt, and spyglass.vdb files.
Assertions in this case are dumped only when the cdc_dump_assertions is
set to sva.

Used by CDC Verification Rules
Options all, none, or a combination of fail, pp

(partially proved), pass, no_msg, and audit as
a comma-separated or space-separated list.
The none option is used to disable functional
analysis. This is most useful for the Clock_sync03a,
Ac_conv02, and Ac_glitch03 rules, which perform
functional as well as structural checks. When you set
the value of this parameter to none, these rules are
reported with the DISABLED status.

Default value fail, pp, coverage
266
Synopsys, Inc.

fa_msgmode

Parameters in SpyGlass CDC
Default Value in
GuideWare2.0

all (in the cdc/cdc_verify goal)
none (in the cdc/cdc_verify_struct goal)

Example
Console/Tcl-based usage set_parameter fa_msgmode "pp,pass"

Usage in goal/source
files

-fa_msgmode=pp,pass
267
Synopsys, Inc.

fa_multicore

Parameters in SpyGlass CDC
fa_multicore
Specifies if SpyGlass should invoke its multi core engine to solve complex
assertions that are otherwise hard to solve.

It is recommended to use this feature on machines that have multiple
cores.

Since using the multi core engine may be memory intensive, it is
recommended to run SpyGlass initially without enabling this engine. After
the first run is complete, use the Propfile flow (fa_propfile) to run only the
unsolved assertions with this engine and with a higher value of fa_atime.

NOTE: When this parameter to yes, an average depth of zero may get reported for some
partially analyzed assertions.

Used by CDC Verification Rules
Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter fa_multicore yes

Usage in goal/source
files

-fa_multicore=yes
268
Synopsys, Inc.

fa_num_cores

Parameters in SpyGlass CDC
fa_num_cores
Optimizes multi-core engines for the given CPU cores.

The value specified to this parameter specifies the number of cores to be
used by a multi-core engine.

The value of 0 means that all available cores can be used.

Used by CDC Verification Rules
Options 0, 2, 4, 8
Default value 0
Example
Console/Tcl-based usage set_parameter fa_num_cores 4

Usage in goal/source
files

-fa_num_cores=4
269
Synopsys, Inc.

fa_opt_clock_fsm

Parameters in SpyGlass CDC
fa_opt_clock_fsm
Optimizes user-specified clock periods so that simpler clock FSMs can be
created and the ratio between periods of synchronous clocks may be
maintained.

Synchronous clocks are the clocks belonging to the same domain.

The following examples show how different values of this parameter modify

Used by CDC Verification Rules
Options Following are the options:

• sync
Specify this option to optimize synchronous clock
periods such that the ratio between periods of
clocks belonging to the same domain can be
maintained.

• both
Specify this option to optimize synchronous clocks
such that their original ratios are maintained.
This option also optimizes asynchronous clocks.
This optimization occurs to further reduce Design
Period and Design Cycle.

• none
Specify this option to turn off clock FSM
optimization.
When you specify this option, SpyGlass rounds-off
clock periods to the nearest multiple of 0.5,
irrespective of whether clocks are synchronous or
asynchronous.
The drawback of specifying this option is that it
rounds-off clock periods to lower the design cycle.
Although this results in faster functional analysis,
this also results in loss of original ratio between
clock periods.

Default value sync
Example
Console/Tcl-based usage set_parameter fa_opt_clock_fsm both

Usage in goal/source
files

-fa_opt_clock_fsm=both
270
Synopsys, Inc.

fa_opt_clock_fsm

Parameters in SpyGlass CDC
the original SGDC file:

Original SGDC clock -name c1 -domain d1 -period 3.3
clock -name c2 -domain d1 -period 6.58
clock -name c3 -domain d1 -period 9.889
clock -name c4 -domain d2 -period 0.4
clock -name c5 -domain d2 -period 0.79

 (default)
clock -name c1 -domain d1 -period 3.3
clock -name c2 -domain d1 -period 6.6
clock -name c3 -domain d1 -period 9.9
clock -name c4 -domain d2 -period 0.4
clock -name c5 -domain d2 -period 0.8

Original SGDC modified to the following:

clock -name c1 -domain d1 -period 3.2
clock -name c2 -domain d1 -period 6.4
clock -name c3 -domain d1 -period 9.6
clock -name c4 -domain d2 -period 0.4
clock -name c5 -domain d2 -period 0.8

Original SGDC modified to the following:

Original SGDC modified to the following:

clock -name c1 -domain d1 -period 3.5
clock -name c2 -domain d1 -period 6.5
clock -name c3 -domain d1 -period 10
clock -name c4 -domain d2 -period 0.5
clock -name c5 -domain d2 -period 1.0

(Design Period: 79.2)

(Design Period: 19.2)

(Design Period: 910)

set_parameter fa_opt_clock_fsm sync

set_parameter fa_opt_clock_fsm both

set_parameter fa_opt_clock_fsm none
271
Synopsys, Inc.

fa_parallelfile

Parameters in SpyGlass CDC
fa_parallelfile
Specifies a configuration file for distributed runs of Advanced SpyGlass CDC
solution rules over several machines.

The configuration file is an ASCII text file that contains specific lines for
different methods, as described below:

 The lsf method contains the following lines:

LOGIN_TYPE: lsf
MAX_PROCESSES: <num>
LSF_CMD: <bsub-command>

The following table describes the arguments and keywords of the above
method:

NOTE: To know the runtime details of SpyGlass CDC rules that are run on same or dif-
ferent machines, refer to The Distributed Time Report.

NOTE: In a parallel file specified by the fa_parallelfile parameter, the -I, -
Ip, and -Is options of the bsub command are not allowed in the LSF_CMD
keyword. This is because while running the bsub command, SpyGlass inter-
nally passes the -K option, which is mandatory for running parallel assertion
runs. However, the bsub command does not allow the -K option along with
the -I, -Ip, and -Is options. Therefore, if you specify these options, parallel
assertions are not run, and the assertion status may remain partially-proved.

The following is an example of the lsf method:

Argument/Keyword Description
<num> Specifies the maximum number of processes to

be spawned.
<bsub-command> Specifies the LSF invocation command.

(default is bsub).

SpyGlass generates details of the bsub command,
which is used in parallel LSF runs, in a log file. This
information is useful while debugging.
To generate complete information of the bsub
command, set the fa_verbose parameter to 2.
272
Synopsys, Inc.

fa_parallelfile

Parameters in SpyGlass CDC
LOGIN_TYPE: lsf
MAX_PROCESSES: 3
LSF_CMD: bsub -q “normal | priority”

In the above example, the -q option is used to specify the queue as
normal or priority.

The LSF_CMD command should contain necessary options required to
run the bsub command in a particular environment. In most cases, the
bsub options that are required to launch the main SpyGlass run should
be passed through LSF_CMD so that child processes launched on bsub
are run using the same bsub options.

 The rsh and ssh methods contain the following lines:

LOGIN_TYPE: rsh | ssh
MAX_PROCESSES: <num>

MACHINES:

<machine1-name>[:<num-processes>]
<machine2-name>[:<num-processes>]
...

The arguments and keywords of the above method are explained below:

 Specify the value of the LOGIN_TYPE keyword as rsh or ssh as
per your requirement.

 The <num> argument for the MAX_PROCESSES keyword specifies
the maximum number of processes to be spawned.

 The <machine1-name>, <machine2-name>,... arguments refer
to the machine names.

 The <num-process> argument refers to the number of processes
to be spawned on the specified machine. By default, the value of this
argument is 1.

NOTE: Each spawned process uses one Advanced_CDC license.

NOTE: If any issues are found in the parallel file, the Ac_sanity06 reports a violation.

By default, this parameter is not set to any value and, therefore,
distributed runs are not enabled.
273
Synopsys, Inc.

fa_parallelfile

Parameters in SpyGlass CDC
Used by CDC Verification Rules
Options File name
Default value ""
Example
Console/Tcl-based usage set_parameter fa_parallelfile

'machinelist.txt'

Usage in goal/source
files

-fa_parallelfile='machinelist.txt'
274
Synopsys, Inc.

fa_passfail

Parameters in SpyGlass CDC
fa_passfail
Specifies if SpyGlass CDC solution should check properties for proof,
failure, or both.

The allowed values of the fa_passfail parameter are as follows:

Use the fa_passfail parameter as per your design characteristics.
Setting it to pass or fail may result in improved run-time performance.
In all cases, both "Proved" and "Failed" cases are reported.

Value Description
pass Enables pass-centric checking.

Specify this value if you expect more properties to pass in
your design.

fail Enables fail-centric checking.
Specify this value if you expect more properties to fail in
your design.

both (Default) Enables both pass-centric and fail-centric checking.

Used by CDC Verification Rules
Options pass, fail, both
Default value both
Example
Console/Tcl-based usage set_parameter fa_passfail pass

Usage in goal/source
files

-fa_passfail=pass
275
Synopsys, Inc.

fa_preprocess_engine

Parameters in SpyGlass CDC
fa_preprocess_engine
Specifies the optimization techniques, such as isomorphic reduction and re
timing to be used during functional verification.

By default, the retiming optimization technique is used.

Used by CDC Verification Rules
Options none, retime, iso, all
Default value retime
Example
Console/Tcl-based usage set_parameter fa_preprocess_engine iso

Usage in goal/source
files

-fa_preprocess_engine=iso
276
Synopsys, Inc.

fa_propfile

Parameters in SpyGlass CDC
fa_propfile
Specifies a property file that contains properties to be checked for
verification. Functional analysis is done only for the properties that are
enabled in the specified property file.

SpyGlass CDC solution generates the adv_cdc.prp property file in the
<run-dir>/spyglass_reports/clock-reset directory. This file contains all the
properties analyzed in the current run. However, only the partially proved
properties are enabled in the file so that you can perform incremental run
by using this file through this parameter.

Used by CDC Verification Rules
Options Name of property file
Default value NULL
Example
Console/Tcl-based usage set_parameter fa_propfile adv_cdc.prp

Usage in goal/source
files

-fa_propfile=adv_cdc.prp
277
Synopsys, Inc.

fa_resetoff

Parameters in SpyGlass CDC
fa_resetoff
Disables all user-supplied reset constraints. By default, all user-supplied
reset constraints are applied.

Used by CDC Verification Rules
Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter fa_resetoff yes

Usage in goal/source
files

-fa_resetoff=yes
278
Synopsys, Inc.

fa_scope

Parameters in SpyGlass CDC
fa_scope
Defines the scope of functional analysis.

By default, the fa_scope parameter is set to chip and the complete fan-
in cone of the assertion is taken into account.

Set the fa_scope parameter to block to have SpyGlass CDC solution
cut all signals in the fan-in cone (except clocks and resets) at the sub-
module boundary in which the assertion is formed. All those signals at the
boundary of the sub-module are then treated as primary inputs for
functional analysis.

Used by CDC Verification Rules
Options chip, block
Default value chip
Example
Console/Tcl-based usage set_parameter fa_scope block

Usage in goal/source
files

-fa_scope=block
279
Synopsys, Inc.

fa_seqdepth

Parameters in SpyGlass CDC
fa_seqdepth
Specifies a maximum sequential depth so that an input cone of SpyGlass
CDC solution properties can be abstracted by cutting the logic behind the
specified depth in that cone.

While performing SpyGlass CDC solution analysis on full-chips, the cone of
SpyGlass CDC solution properties can be very complex in terms of a
sequential depth. This results in significant time spent for verification.

To circumvent this problem, use this parameter to limit the sequential
depth to abstract input cones. Limiting the sequential depth also increases
the chances of getting properties concluded.

It is recommended that you use this parameter only for partially-proved
properties because usage of this parameter may help in concluding such
properties.

NOTE: If you use this parameter for properties that are failing, such properties may be
reported as partially proved. Therefore, it is recommended that you use this
parameter only on partially proved properties by using the fa_propfile parameter.

Setting this parameter to -1 indicates that an input cone will not be
abstracted by cutting the logic behind a specific depth in the cone of
SpyGlass CDC solution properties.

NOTE: If you specify any invalid value to this parameter, the default value (-1) is
considered.

Used by CDC Verification Rules
Options -1 or a positive integer value greater than 0
Default value -1
Example
Console/Tcl-based usage set_parameter fa_seqdepth 2

Usage in goal/source
files

-fa_seqdepth=2
280
Synopsys, Inc.

fa_vcdtime

Parameters in SpyGlass CDC
fa_vcdtime
This parameter is deprecated. Use the simulation_data constraint instead of
this parameter.
281
Synopsys, Inc.

fa_vcdfile

Parameters in SpyGlass CDC
fa_vcdfile
This parameter is deprecated. Use the simulation_data constraint instead of
this parameter.
282
Synopsys, Inc.

fa_vcdfulltrace

Parameters in SpyGlass CDC
fa_vcdfulltrace
Specifies the type of data that is to be dumped to the VCD file. It specifies
whether all signals or only user signals in the fan-in cone of an assertion
are dumped in the VCD file. You can set the fa_vcdfulltrace
parameter to the following values:

Value Description
no Only the flip-flop output signals and primary inputs in the

fan-in cone of an assertion are written to the VCD file
usernets (default) All the user nets in the fan-in cone of an assertion are

written to the VCD file
allnets All internally generated nets along with the user-defined

signals in the fan-in cone of an assertion are written to the
VCD file

Used by CDC Verification Rules
Options no, usernets, allnets
Default value usernets
Default Value in
GuideWare2.0

allnets

Example
Console/Tcl-based usage set_parameter fa_vcdfulltrace allnets

Usage in goal/source
files

-fa_vcdfulltrace=allnets
283
Synopsys, Inc.

fa_verbose

Parameters in SpyGlass CDC
fa_verbose
Specifies the verbosity level of SpyGlass CDC solution messages printed at
the standard output.

You can set the fa_verbose parameter to values 0 (default), 1, 2, and 3.
The higher the value, more messages are printed.

Used by CDC Verification Rules
Options 0, 1, 2, 3,4
Default value 0
Example
Console/Tcl-based usage set_parameter fa_verbose 2

Usage in goal/source
files

-fa_verbose=2
284
Synopsys, Inc.

fa_verif_cycles

Parameters in SpyGlass CDC
fa_verif_cycles
Specifies the maximum number of verification cycles for a clock.

By default, the value of this parameter is set to 1024, and the
Ac_clockperiod03 rule reports clocks for which total number of verification
cycles is greater than 1024.

You can specify any positive integer value to specify a different maximum
number of verification cycles.

Used by Ac_clockperiod03
Options Positive integer value greater than 2 and less than

65535
Default value 1024
Example
Console/Tcl-based usage set_parameter fa_verif_cycles 100

Usage in goal/source
files

-fa_verif_cycles=100
285
Synopsys, Inc.

fa_verify_slow_to_fast

Parameters in SpyGlass CDC
fa_verify_slow_to_fast
By default, data loss is checked only for fast-to-slow crossings. When this
parameter is set to a specific number, data loss is also checked for slow-to-
fast crossings where the percentage of the slow clock-period with reference
to the fast clock-period is greater than this number.

Used by CDC Verification Rules
Options Positive integer value greater than or equal to 0
Default value 100
Example
Console/Tcl-based usage set_parameter fa_verify_slow_to_fast 80

Usage in goal/source
files

-fa_verify_slow_to_fast=80
286
Synopsys, Inc.

fa_vcdscopename

Parameters in SpyGlass CDC
fa_vcdscopename
This parameter is deprecated. Use the simulation_data constraint instead of
this parameter.
287
Synopsys, Inc.

false_path_enable_hier_view

Parameters in SpyGlass CDC
false_path_enable_hier_view
By default, hierarchical terminals are not supported correctly in the
cdc_false_path constraint. For example, if the cdc_false_path constraint is
specified on a hierarchical terminal, SpyGlass CDC moves that constraint
on the connected net of the hierarchical terminal.

Set the false_path_enable_hier_view parameter to yes to
correctly support hierarchical terminals where the specified cdc_false_path
constraint is retained on the hierarchical terminal itself.

Used by Ac_sync01, Ac_sync02, Ac_unsync01, and
Ac_unsync02, and Ar_cross_analysis01

Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter false_path_enable_hier_view

yes

Usage in goal/source
files

-false_path_enable_hier_view=yes
288
Synopsys, Inc.

filter_named_clocks

Parameters in SpyGlass CDC
filter_named_clocks
Specifies a list of strings such that SpyGlass does not infer clocks whose
names contain the specified strings.

By default, SpyGlass infers clocks if their names contain the string clk,
clock, or ck, even if you specify these strings to the
filter_named_clocks parameter. To disable the inferring of such
clocks, specify no_default_list to this parameter along with the other
strings to be ignored. Refer to the example in the table below for further
clarity.

Used by Clock_info01, Clock_info03c, Clock_info05,
Clock_info05a, Clock_info06, Clock_info07,
Clock_info14, Clock_info16, Propagate_Clocks,
Clock_sync03a, Clock_sync03b, Clock_sync05,
Clock_sync06, Clock_sync08a, Clock_sync09,
Reset_sync01, Reset_sync02, Reset_sync03,
Reset_sync04, DeltaDelay01, DeltaDelay02,
Clock_check02, Clock_check03, Clock_check04,
Clock_check05, Clock_check06a, Clock_check06b,
Clock_check07, Clock_glitch01, Clock_glitch02,
Clock_glitch03, Clock_Reset_info01,
Clock_converge01, Ac_conv01, Ac_conv02,
Ac_conv03, Clock_info05b, Clock_Reset_check01,
Clock_Reset_check01, Clock_info02, Clock_info03a,
Ac_sync02, Ac_sync01, Ac_unsync02, Ac_unsync01,
Ac_xclock01, Ac_coherency06, Ar_resetcross01

Options Comma or space-separated list of strings
Default value rst, reset, scan, set
Example
289
Synopsys, Inc.

filter_named_clocks

Parameters in SpyGlass CDC
Console/Tcl-based usage set_parameter filter_named_clocks "rst,scan"

In this case, if the name of a clock contains the rst or
scan string and it does not contain the clk, clock, or
ck string, SpyGlass does not infer such clocks.

However, if the name contains the rst or scan string
as well as the clk, clock, or ck string, SpyGlass infers
such clocks. In this case, specify no_default_list
along with rst and scan to this parameter, as shown
below, to disable the inferring of such clocks:
set_parameter filter_named_clocks
"rst,scan", no_default_list

Usage in goal/source
files

-filter_named_clocks=rst,scan
290
Synopsys, Inc.

filter_named_resets

Parameters in SpyGlass CDC
filter_named_resets
Specifies a list of strings such that SpyGlass does not infer asynchronous
resets whose names contain the specified strings.

By default, SpyGlass infers resets if their names contain the string rst,
reset, set, or res, even if you specify these strings to the
filter_named_resets parameter. To disable the inferring of such
resets, specify no_default_list to this parameter along with the other
strings to be ignored. Refer to the example in the table below for further
clarity.

Used by Clock_Reset_info01, Propagate_Resets,
Reset_info01, Reset_info02, Reset_info09a,
Reset_sync01, Reset_sync03, Reset_sync04,
Reset_check04, Reset_check06, Reset_check10,
Reset_check11, Ac_cdc01a, Ac_cdc01b, Ac_cdc01c,
Ac_cdc08, Ac_conv02, Ar_sync01, Ar_unsync01,
Ar_asyncdeassert01, Ar_resetcross01, and
Ar_syncdeassert01

Options Comma or space-separated list of strings,
no_default_list

Default value clk, clock, scan
Example
Console/Tcl-based usage set_parameter filter_named_resets "clk,scan"

In this case, if the name of a reset contains the clk or
scan string and it does not contain the rst, reset, set,
or res string, SpyGlass does not infer such resets.

However, if the name contains the clk or scan string
as well as the rst, reset, set, or res string, SpyGlass
infers such resets. In this case, specify
no_default_list along with clk and scan to this
parameter, as shown below, to disable the inferring
of such resets:
set_parameter filter_named_resets
"clk,scan", no_default_list

Usage in goal/source
files

-filter_named_resets=clk,scan
291
Synopsys, Inc.

filter_clock_converge_on_cdc

Parameters in SpyGlass CDC
filter_clock_converge_on_cdc
Filters clock signals that converge on a mux that is reaching the source or
destination of a CDC crossing.

Set the filter_clock_converge_on_cdc parameter to yes to enable the
Clock_info05 rule to report only the clock signals that converge on a Mux
that is reaching the source or destination of a CDC crossing.

Used by Clock_info05
Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter filter_clock_converge_on_cdc

yes

Usage in goal/source
files

-filter_clock_converge_on_cdc=yes
292
Synopsys, Inc.

formal_setup_rules_check

Parameters in SpyGlass CDC
formal_setup_rules_check
Runs the Ac_clockperiod02, Ac_initstate01, Ac_sanity01, Ac_sanity02,
Ac_sanity06, and Ac_init01 rules, even without enabling the advanced
SpyGlass CDC solution rules. This is used in formal setup step.

By default, the value of this parameter is set to no, and the above-
specified rules are not run. Set the value of this parameter to yes to run
these rules.

Used by Ac_clockperiod02, Ac_initstate01, Ac_sanity01,
Ac_sanity02, Ac_sanity06, and Ac_init01

Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter formal_setup_rules_check yes

Usage in goal/source
files

-formal_setup_rules_check=yes
293
Synopsys, Inc.

format_report

Parameters in SpyGlass CDC
format_report
Specifies that the text in the reports of SpyGlass CDC solution should get
wrapped up. By default, the width of each column in the reports is
dependent on the length of information. You can format the display of
information by wrapping up the text by setting the format_report
parameter to yes.

Used by Propagate_Clocks, Clock_info01, Clock_info02,
Reset_info01, Clock_info03a, Clock_info03b,
Clock_info03c, Clock_info15,Clock_Reset_info01,
Reset_check04, Reset_sync03, Setup_clockreset01,
Clock_check06a, Clock_check06b, Clock_check07,
Ac_crossing01, Ac_sync01, Ac_sync02, Ac_unsync01,
and Ac_unsync02

Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter format_report yes

Usage in goal/source
files

-format_report=yes
294
Synopsys, Inc.

gen_sync_reset_style_info

Parameters in SpyGlass CDC
gen_sync_reset_style_info
Specifies whether the spreadsheet generated by the Reset_info01 should
contain the following information about synchronous resets:
 Load

 Presence of combinational logic in reset path

 Polarity

 Presence of the sync_set_reset pragma

 Reset usage in first if of sequential block

You can use this information to specify the sync_reset_style constraint for
pruning synchronous reset detection.

Used by Reset_info01

Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter gen_sync_reset_style_info yes

Usage in goal/source
files

-gen_sync_reset_style_info=yes
295
Synopsys, Inc.

generate_rfp_suppressed_violations

Parameters in SpyGlass CDC
generate_rfp_suppressed_violations
By default, the reset_filter_path constraint waives the rule violations for the
rules specified in the -type argument of the constraint. For example, if
the -type argument is set to reset_sync02, the Reset_sync02 rule will
not report violations for the reset paths specified in this constraint.

Set the generate_rfp_suppressed_violations parameter to a
supported rule to generate a report of the such suppressed rule violations.
The report is generated with the <rule-name>.filtered.csv name.

The information included in the <rule-name>.filtered.csv file is
similar to the information in the corresponding rule-based spreadsheet
except for the WAIVED column which is replaced by the SGDC-REF
column in the <rule-name>.filtered.csv file.

However, the Reset_sync02.filtered.csv report includes the
following additional columns:

 RESET-DRIVER - Lists the driver flop/black box/port that drives the
RESET signal

 SOURCE-RESET - Lists primary resets, if it is defined on the RESET-
DRIVER or is driving the reset/clear pin of RESET-DRIVER

 SGDC-REF - Lists the file name and line number of all reset_filter_path
constraints that helped to filter the corresponding violation

Used by Ar_resetcross01, Ar_sync01, Ar_unsync01,
Reset_sync02, Ar_syncdeassert01,
Ar_unsyncdeassert01

Options none, sync, deassert, reset_sync02, all
Default value none
Example
Console/Tcl-based usage set_parameter

generate_rfp_suppressed_violations sync,
reset_sync02

Usage in goal/source
files

-generate_rfp_suppressed_violations=sync,
reset_sync02
296
Synopsys, Inc.

glitch_check_type

Parameters in SpyGlass CDC
glitch_check_type
Defines the type of crossings that need to be considered by the Ac_glitch02
and Ac_glitch03 rules.

The allowed values for the glitch_check_type parameter are as
follows:

Value Indicates
sync_control (default) Consider both synchronized and unsynchronized

crossings using Conventional Multi-Flop
Synchronization Scheme or Synchronizing Cell
Synchronization Scheme along with a combinational
logic in the crossing path. In these crossings, the
Ac_glitch02 rule checks are performed irrespective of
whether the allow_combo_logic constraint is specified.

unsync Consider all unsynchronized crossings.
all sync_control+unsync (The Ac_glitch02 and

Ac_glitch03 rules are checked on all the
unsynchronized crossings as well as synchronized
crossings using multi-flop or synchronize_cells
schemes along with a combinational logic in the
crossing path)

Used by Ac_glitch02, Ac_glitch03
Options A combination of allowed values as a comma-

separated list or using the + (plus) character to
append to the default value

Default value sync_control
Example
297
Synopsys, Inc.

glitch_check_type

Parameters in SpyGlass CDC
Console/Tcl-based usage The following specifications are equivalent:
set_parameter glitch_check_type all
set_parameter glitch_check_type
"sync_control,unsync"

set_parameter glitch_check_type +unsync

The + character must be the first character when
specified. Therefore, ‘unsync+’ is incorrect.

Usage in goal/source
files

-glitch_check_type=all
-glitch_check_type=sync_control, unsync
-glitch_check_type=+unsync
298
Synopsys, Inc.

glitch_on_sync_src

Parameters in SpyGlass CDC
glitch_on_sync_src
Specifies if synchronous sources present in the input cone of a destination
signal should be considered for glitch checking.

Used by Ac_glitch03
Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter glitch_on_sync_src yes

Usage in goal/source
files

-glitch_on_sync_src=yes
299
Synopsys, Inc.

glitch_on_unconstrained_src

Parameters in SpyGlass CDC
glitch_on_unconstrained_src
Specifies if unconstrained ports present in the input cone of a destination
signal should be considered for glitch checking.

Used by Ac_glitch03
Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter glitch_on_unconstrained_src

yes

Usage in goal/source
files

-glitch_on_unconstrained_src=yes
300
Synopsys, Inc.

glitch_protect_cell

Parameters in SpyGlass CDC
glitch_protect_cell
Specifies glitch protection cell names for the Glitch Protection Cell
Synchronization Scheme. These cell names exist in the clock path of the
destination flip-flops in clock-domain crossings. A crossing is considered as
synchronized if a multi-flop synchronizer exists in the other fan-in (pin not
connected to the source flip-flop) of the glitch protect cell.

Set the enable_mux_dest_domain parameter to eliminate the need
for a synchronizer where the glitch protection cell driving the first flip-flop

Used by Clock_sync03a, Clock_sync03b, Clock_sync08a,
Clock_sync09, Ac_crossing01, Ac_conv01,
Ac_conv02, Ac_conv03, Ac_cdc01a, Ac_cdc01b,
Ac_cdc01c, Ac_cdc08, Ac_sync02, Ac_sync01,
Ac_unsync02, Ar_resetcross01, and Ac_unsync01

Options Comma or space-separated list of cell names
enclosed in double quotes. You can also use wildcard
characters (* [zero or more] and ? [single character
match]) in the cell names.

Default value NULL
Example
Console/Tcl-based usage set_parameter glitch_protect_cell GP01

You can specify multiple cell names as shown below:
set_parameter glitch_protect_cell
"GP01,GP02,GP03"

The following specification matches all cell names
that start with GP:
set_parameter glitch_protect_cell GP*

The following specification matches all 3 character
cell names that start with GP:
set_parameter glitch_protect_cell GP?

Usage in goal/source
files

-glitch_protect_cell=GP01
-glitch_protect_cell=”GP01,GP02,GP03”
-glitch_protect_cell=GP*
-glitch_protect_cell=GP?
301
Synopsys, Inc.

glitch_protect_cell

Parameters in SpyGlass CDC
in the destination domain has the other input pin (not connected to the
source) in the destination domain.
302
Synopsys, Inc.

handle_combo_arc

Parameters in SpyGlass CDC
handle_combo_arc
Enables clock and reset propagation through a combinational arc present in
the sequential library cells.

By default, this parameter is set to no and clock/reset propagation is
stopped if SpyGlass encounters any pin other than the clock of a sequential
library cell.

Set this parameter to yes so that the clock/reset propagates from an input
pin of a sequential library cell if a combinational timing arc is specified from
that pin to any output pin of the cell.

Used by Clock and Reset Information Rules, Clock Information
Rules, CDC Verification Rules, Clock Checking Rules,
Clock and Reset Checking Rules, Clock Glitch
Checking Rules

Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter handle_combo_arc yes

Usage in goal/source
files

-handle_combo_arc=yes
303
Synopsys, Inc.

ignore_bus_clocks

Parameters in SpyGlass CDC
ignore_bus_clocks
Specifies whether the Clock_info01 rule ignores vector signals of bus-width
more than or equal to the specified number while deciding clock candidates
during auto detection of clocks.

By default, the ignore_bus_clocks parameter is set to 1024 and only
vector signals of bus width less than 1024 bits are considered as clock
candidates.

Set the ignore_bus_clocks parameter to any positive integer number
to have the Clock_info01 rule ignore all vector signals of bus width equal to
or more than that number.

Set the ignore_bus_clocks parameter to no to consider all the vector
signals.

Set the ignore_bus_clocks parameter to yes to have the
Clock_info01 rule ignore all vector signals.

Used by Clock_info01
Options yes, no, a positive integer value
Default value 1024
Example
Console/Tcl-based usage set_parameter ignore_bus_clocks 512

The above example considers vector signals of width
less than 512

set_parameter ignore_bus_clocks yes
The above example ignores all vector signals

set_parameter ignore_bus_clocks no
The above example considers all the vector
signals.

Usage in goal/source
files

-ignore_bus_clocks=512
-ignore_bus_clocks=yes
-ignore_bus_clocks=no
304
Synopsys, Inc.

ignore_bus_resets

Parameters in SpyGlass CDC
ignore_bus_resets
By default (ignore_bus_resets parameter is yes), asynchronous
vector resets, which are not struct nets, are:

 Not reported in the autoresets.sgdc and
generated_resets.sgdc files by the Reset_info01 rule

 Not automatically detected if the use_inferred_resets is set to yes

 Not automatically detected by the Ar_converge02 rule

Set the ignore_bus_resets parameter to no to enable detection and
reporting of asynchronous vector resets.

Used by Reset_info01, Propagate_Resets, Ar_converge02,
Ar_glitch01

Options yes, no
Default value yes
Example
Console/Tcl-based usage set_parameter ignore_bus_resets no

Usage in goal/source
files

-ignore_bus_resets=no
305
Synopsys, Inc.

ignore_set_case

Parameters in SpyGlass CDC
ignore_set_case
Specifies that the set_case_analysis constraint be ignored for
simulation or block path traversal for the specified rules.

Currently, only the Ar_glitch01 rule uses this parameter.

NOTE: The ignore_set_case parameter takes rule names in comma separated
format. The rules specified with the ignore_set_case parameter ignore the
set_case_analysis constraint for simulation or block path traversal.

Used by Ar_glitch01
Options Ar_glitch01, none
Default value none
Example
Console/Tcl-based usage set_parameter ignore_set_case Ar_glitch01

Usage in goal/source
files

-ignore_set_case=Ar_glitch01
306
Synopsys, Inc.

ignore_latches

Parameters in SpyGlass CDC
ignore_latches
Specifies whether the rules using this parameter should ignore signals
ending on latch enable terminals while deciding candidate clocks.

By default, the ignore_latches parameter is set to yes and such
signals ending on the latch enable terminals are ignored. Set this
parameter to no to consider such signals as clock candidates.

Used by Clock_info01, Clock_info03a, Clock_info03b,
Clock_info03c, Clock_check01

Options yes, no
Default value yes
Example
Console/Tcl-based usage set_parameter ignore_latches no

Usage in goal/source
files

-ignore_latches=no
307
Synopsys, Inc.

ignore_nets_clock_path_file_name

Parameters in SpyGlass CDC
ignore_nets_clock_path_file_name
Specifies the file containing hierarchical names of nets (one name per line)
so that SpyGlass halts clock propagation along the path when any of these
nets is encountered.

By default, SpyGlass reads a file named ignore_nets_clock_path.txt if found in the
current directory for the net names. Use the
ignore_nets_clock_path_file_name parameter to specify a
different file in the same or different location.

NOTE: Wildcard characters (* [zero or more] and ? [single character match]) and escape
characters can be used to specify net names in this file. For example, the names,
clk*1 and \clk@2, are valid net names.

Used by Clock_sync03a, Clock_sync03b, Clock_sync08a,
Clock_sync09, Ac_crossing01, Ac_conv01,
Ac_conv02, Ac_conv03, Ac_cdc01a, Ac_cdc01b,
Ac_cdc01c, Ac_cdc08

Options File name
Default value ignore_nets_clock_path.txt in the current working

directory
Example
Console/Tcl-based usage set_parameter

ignore_nets_clock_path_file_name nets.txt

Usage in goal/source
files

-ignore_nets_clock_path_file_name=nets.txt
308
Synopsys, Inc.

ignore_num_rtl_buf_invs

Parameters in SpyGlass CDC
ignore_num_rtl_buf_invs
Specifies the maximum number of inferred buffers or inverters that are
allowed in a data transfer path between flip-flops at a clock domain
crossing or between flip-flops in a multi-flop synchronizer.

By default, all buffers and inverters are allowed.

Set the ignore_num_rtl_buf_invs parameter to one to allow one,
two to allow two, or none to disallow all buffers and inverters.

Used by Clock_sync03a, Clock_sync03b, Clock_sync08a,
Clock_sync09, Ac_crossing01, Ac_conv01, Ac_conv02,
Ac_conv03, Ac_cdc01a, Ac_cdc01b, Ac_cdc01c,
Ac_cdc08, Ac_sync02, Ac_sync01, Ac_unsync02, and
Ac_unsync01, Ar_resetcross01

Options one, two, many, or none
Default value many
Example
Console/Tcl-based usage set_parameter ignore_num_rtl_buf_invs two

The above example specifies that a maximum of two
buffers or inverters are allowed.

Usage in goal/source
files

-ignore_num_rtl_buf_invs=two
309
Synopsys, Inc.

ignore_race_thru_latch

Parameters in SpyGlass CDC
ignore_race_thru_latch
Specifies whether the Clock_Reset_check02 rule should ignore cases where a
latch exists in the feedback path between the flip-flop's output pin and its
clock pin while detecting race conditions.

By default, the ignore_race_thru_latch parameter is set to no and
the Clock_Reset_check02 rule reports such cases.

Used by Clock_Reset_check02
Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter ignore_race_thru_latch yes

Usage in goal/source
files

-ignore_race_thru_latch=yes
310
Synopsys, Inc.

infer_constraint_from_abstract_blocks

Parameters in SpyGlass CDC
infer_constraint_from_abstract_blocks
Specifies if the supported rules infer clock, reset, set_case_analysis from
similar constraint defined in abstracted blocks.

By default, the infer_constraint_from_abstract_blocks parameter
is set to none and the constraints are not inferred.

Used by Clock_info01, Reset_info01
Options none, clock, reset, sca
Default value none
Example
Console/Tcl-based usage set_parameter

infer_constraint_from_abstract_blocks clock

Usage in goal/source
files

-infer_constraint_from_abstract_blocks=clock
311
Synopsys, Inc.

master_clock_limit

Parameters in SpyGlass CDC
master_clock_limit
Specifies the maximum number of master clocks for which the
generated_clock constraints should be dumped for derived clocks when
multiple master clocks reach the source of derived clocks.

These constraints are dumped in the generated_clocks.sgdc and
cdc_setup_generated_clocks.sgdc files when clocks are inferred automatically
after you set the use_inferred_clocks parameter to yes.

Consider the following figure in which multiple clocks, c1 (tag T1), c2 (tag
T2), and c3 (tag T3) reach the source of the derived clock out1:

FIGURE 56. Multiple master clocks reaching a source clock

In the above example, if you set the master_clock_limit parameter
to 2, the generated_clock constraints are dumped with respect to any two
master clocks:

generated_clock -name out1 -source srcClk -master_clock T1
-divide_by 2 -tag GT1 -add

generated_clock -name out1 -source srcClk -master_clock T2
-divide_by 2 -tag GT2 -add

This parameter is applicable when the value of the clock_reduce_pessimism

c1

c2

c3

srcClk

ff1 ff2
out1

// SGDC File:
clock -name c1 -period 15 -domain d2 -tag T1
clock -name c2 -period 15 -domain d2 -tag T2
clock -name c3 -period 10 -domain d2 -tag T3
312
Synopsys, Inc.

master_clock_limit

Parameters in SpyGlass CDC
parameter is set to all_master_clocks.

Set this parameter to -1 if generated_clock constraints for a derived clock is
to be generated in generated_clocks.sgdc with respect to all master clocks
reaching its source.

Used by All SpyGlass CDC rules
Options Integer greater than 0
Default value 1000
Example
Console/Tcl-based usage set_parameter master_clock_limit 800

Usage in goal/source
files

-master_clock_limit=800
313
Synopsys, Inc.

msg_inst_mod_report

Parameters in SpyGlass CDC
msg_inst_mod_report
Specifies whether Filtering Violations Based On Instances should be done on
the destination instance/module or the common instance/module
containing both source and destination.

By default, filtering is done based on the destination instance/module. Set
this parameter to all to filter violations based on the common instance/
module containing the destination and its source.

For example, consider the following schematic of the design in which CDC
reports a violation on the destination present in the F3 instance:

FIGURE 57.

Now, if the msg_inst_mod_report parameter is set to auto, violations
are filtering based on the destination instance F3, as shown in the
following figure:

top
314
Synopsys, Inc.

msg_inst_mod_report

Parameters in SpyGlass CDC
FIGURE 58. Filtering when msg_inst_mod_report is set to auto

When you set this parameter to all, violations are filtered based on the
top module because it is the common module containing the F3
destination and its source F1 (see Figure 57). The following figure shows
the tree view in which filtering occurs based on top (instead of F3 as
shown in Figure 58):

FIGURE 59. Filtering when msg_inst_mod_report is set to all

The msg_inst_mod_report parameter for the Ar_resetcross01 rule
supports the following options:
 des - Reports the name of the destination parent module only

 src - Reports the name of the source parent module only

Violations filtered
based on F3

Violations filtered
based on top
315
Synopsys, Inc.

msg_inst_mod_report

Parameters in SpyGlass CDC
 all - Reports the common parent for the destination and the source

 any - Reports the name of the source and the destination parent
modules

 auto - Same as the value des. Reports the name of the destination
parent module only.

Used by All SpyGlass CDC rules
Options auto, all
Default value auto
Example
Console/Tcl-based usage set_parameter msg_inst_mod_report all

Usage in goal/source
files

-msg_inst_mod_report=all
316
Synopsys, Inc.

mux_search_depth

Parameters in SpyGlass CDC
mux_search_depth
Specifies the logic depth that will be explored by the Ac_glitch01 rule for
implicit MUX detection. The logic search is performed on all possible
combinations of the gates within a crossing.

By default, the parameter value is set to 6. Increasing the value of this
parameter may cause run-time increase.

Used by Ac_glitch01
Options Positive integer value greater than 1
Default value 6
Example
Console/Tcl-based usage set_parameter mux_search_depth 4

Usage in goal/source
files

-mux_search_depth=4
317
Synopsys, Inc.

netlist_name_convention

Parameters in SpyGlass CDC
netlist_name_convention
Specifies a naming convention of generated net in netlist designs.

Based on the naming convention specified, the Ac_unsync01/Ac_unsync02
and Ac_sync01/Ac_sync02 rules merge the violating nets.

The following examples explain the usage of this parameter:

 Consider a scenario in which violations are reported for abc_1_qx1
and abc_2_qx1 nets. If you specify
netlist_name_convention=" _qx1", only one violation is
reported for the abc_[1:2]_qx1 net.

 Consider a scenario in which violations are reported for w1 and w2 nets.
If you specify netlist_name_convention="", only one violation is
reported for the wr[1:2] net.

NOTE: By default, this parameter is not active. You must specify it explicitly to enable
naming convention.

NOTE: Do not specify netlist bus-merged names in an SGDC file because they are
irrelevant to RTL.

Used by Ac_sync01, Ac_sync02, Ac_unsync01, and
Ac_unsync02

Options String value
Default value No value (this parameter is inactive by default)
Example
Console/Tcl-based usage set_parameter netlist_name_convention "_qx1"

Usage in goal/source
files

-netlist_name_convention="_qx1"
318
Synopsys, Inc.

no_convergence_check

Parameters in SpyGlass CDC
no_convergence_check
Specifies a comma or space-separated list of net names that should not be
checked for convergence by the Clock_sync03a, Clock_sync03b, Ac_conv01,
Ac_conv02, and Ac_conv03 rules.

If convergence is found on a specified gate, violation is not reported on
that gate if its output net has been specified through this parameter.

For example, consider the scenario shown in the following figure:

FIGURE 60. Specifying nets not to be checked for convergence

For the above scenario, consider that you set the following parameter:

set_parameter no_convergence_check "out"

In this case, the convergence on the AND gate is not reported.
NOTE: If you specify nets by using the no_convergence_check constraint as well as the

no_convergence_check parameter, SpyGlass considers the nets specified
by both the constraint and parameter.

Used by Clock_sync03a, Clock_sync03b, Ac_conv01,
Ac_conv02, and Ac_conv03

Options Comma or space-separated list of net names
319
Synopsys, Inc.

no_convergence_check

Parameters in SpyGlass CDC
Default value NULL
Example
Console-based usage set_parameter no_convergence_check

"top.U1.net1,top.net2"

Usage in goal/source
files

-no_convergence_check=top.U1.net1,top.net2
320
Synopsys, Inc.

num_flops

Parameters in SpyGlass CDC
num_flops
Specifies the minimum number of flip-flops required for synchronizing a
signal using the Conventional Multi-Flop Synchronization Scheme.

By default, the Conventional Multi-Flop Synchronization Scheme marks those
clock crossings as synchronized where two flip-flops are in a
synchronization flip-flop arrangement. Set the num_flops parameter to a
positive integer number to specify a different number (more than 2).

Used by Clock_sync03a, Clock_sync03b, Clock_sync08a,
Clock_sync09, Ac_crossing01, Ac_conv01,
Ac_conv02, Ac_conv03, Ac_conv04, Ac_cdc01a,
Ac_cdc01b, Ac_cdc01c, Ac_cdc08, Ac_sync02,
Ac_sync01, Ac_unsync02, Ac_unsync01,
Ac_coherency06

Options Positive integer value greater than 1
Default value 2
Example
Console/Tcl-based usage set_parameter num_flops 4

The above example specifies that at least four flip-
flops should be used in the Conventional Multi-Flop
Synchronization Scheme.

Usage in goal/source
files

-num_flops=4
321
Synopsys, Inc.

num_quasi_seq_elem

Parameters in SpyGlass CDC
num_quasi_seq_elem
Specifies the sequential element depth, in numbers, that should be
considered when traversing the fanout traversal for the quasi_static
constraint. By default, the quasi_static constraint does not propagate
through any flops/sequential elements.

Set the num_quasi_seq_elem parameter to a positive integer greater
than or equal to zero to specify the depth. Set the parameter to -1 to
propagate the constraint through infinite number of flops/sequential
elements.

Used by All rules that use the quasi_static constraint
Options An integer greater than or equal to -1
Default value 0
Example
Console/Tcl-based usage set_parameter num_quasi_seq_elem 2

The above example specifies that the quasi_static
fanout traversal happens for 2 level depth of
sequential elements in the path. At the 3rd level of
depth, it stops the traversal.

Usage in goal/source
files

-num_quasi_seq_elem=2
322
Synopsys, Inc.

one_cross_per_dest

Parameters in SpyGlass CDC
one_cross_per_dest
By default, only one clock crossing (first found) is marked for each
destination (flip-flop, latch, black box, or primary output port) by the rules
even if there are more than one possible crossing from different sources.

Set the one_cross_per_dest parameter to no to report all clock
crossings on each destination. Then, the Clock Synchronization rules report
a synchronization status message between each source and destination.

Used by Clock_sync03a, Clock_sync03b, Clock_sync08a,
Clock_sync09, Ac_crossing01, Ac_conv01,
Ac_conv02, Ac_conv03, Ac_cdc01a, Ac_cdc01b,
Ac_cdc01c, Ac_cdc08

Options yes, no
Default value yes
Example
Console/Tcl-based usage set_parameter one_cross_per_dest no

Usage in goal/source
files

-one_cross_per_dest=no
323
Synopsys, Inc.

prefer_abstract_port

Parameters in SpyGlass CDC
prefer_abstract_port
Specifies the process of finding the source of a crossing reported by The
Ac_sync_group Rules.

For details, see the following topics:
 Finding the Source when prefer_abstract_port=yes

 Example - prefer_abstract_port=yes

 Finding the Source when prefer_abstract_port=no (Default mode)

 Example - prefer_abstract_port=no

Finding the Source when prefer_abstract_port=yes

If both the assume_path and abstract_port constraints defined on the output
pin of a black box, preference is given to the abstract_port constraint if the
domain of the black box output pin is different from the destination
domain. In this case, the black is considered as the source.

However, if the domain of the black box output pin is same as the
destination domain, the assume_path constraint is considered to find the
sources behind the black box.

Prerequisites: The assume_path and abstract_port constraints should be
defined on the black box.

For details, see the example below.

Example - prefer_abstract_port=yes

Consider the following figure showing the design and SGDC files:

Used by The Ac_sync_group Rules

Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter prefer_abstract_port yes

Usage in goal/source
files

-prefer_abstract_port=yes
324
Synopsys, Inc.

prefer_abstract_port

Parameters in SpyGlass CDC
FIGURE 61.

In the above example, to find a source, The Ac_sync_group Rules traverse
back from the destination (F2.q) and stops traversal at the out1 pin of
b1.

Reason to stop traversal at out1: The out1 port of b1 receives the
clk1 clock of the d1 domain. Although, in1 and out1 are connected
through the path defined by the assume_path constraint, preference is given
to the abstract_port constraint and out1 is considered it as the source.

Crossing reported between F2.q and out1: The Ac_unsync01 reports
the following violation in this case:

Unsynchronized Crossing: destination flop top.F2.q, clocked by
top.clk2, source black-box top.b1_out1, clocked by top.clk1.
Reason: Qualifier not found [Total Sources: 1 (Number of source

Top-level SGDC

current_design top
clock- name clk1 -domain d1
clock -name clk2 -domain d2
sgdc -import block block.sgdc

current_design block
clock -name clk -domain d1
assume_path -name block -input in1 -output out1
abstract_port -module block -ports out1 -clock clk

block.sgdc
325
Synopsys, Inc.

prefer_abstract_port

Parameters in SpyGlass CDC
domains: 1)]

Finding the Source when prefer_abstract_port=no (Default
mode)

While traversing back from the destination to find a source, preference is
always given to the assume_path constraint even if the abstract_port
constraint is defined.

For details, see the example below.

Example - prefer_abstract_port=no

Consider the following figure showing the design and SGDC files:

FIGURE 62.

In the above example, to find a source, The Ac_sync_group Rules traverse

Top-level SGDC

current_design top
clock- name clk1 -domain d1
clock -name clk2 -domain d2
sgdc -import block block.sgdc

current_design block
clock -name clk -domain d1
assume_path -name block -input in1 -output out1
abstract_port -module block -ports out1 -clock clk

block.sgdc
326
Synopsys, Inc.

prefer_abstract_port

Parameters in SpyGlass CDC
back from the destination (F2.q of the d2 domain), ignores the b1 black
box, and stops traversal at F1.q of the d1 domain.

Reason to continue traversal at out1: The prefer_abstract_port
parameter is set to no. Therefore, The Ac_sync_group Rules ignore the
abstract_port constraint applied on out1 encountered in the path and
preference is given to the assume_path constraint.

Crossing reported between F2.q and F1.q: Ac_unsync01 reports the
following violation in this case:

Unsynchronized Crossing: destination flop top.F2.q, clocked by
top.clk2, source flop top.F1.q, clocked by top.clk1. Reason:
Qualifier not found [Total Sources: 1 (Number of source
domains: 1)]
327
Synopsys, Inc.

prop_clock_thru_quasi_static

Parameters in SpyGlass CDC
prop_clock_thru_quasi_static
Enables the propagation of clock signals through quasi static path.

By default, the parameter is set to no. Set this parameter to yes to allow
propagation of clock signal through quasi static path.

Used by Clock_info03a, Clock_info03c, Clock_info05,
Clock_info05a, Clock_info06, Clock_info07,
Clock_info14, Clock_info16, Propagate_Clocks,
Clock_sync03a, Clock_sync03b, Clock_sync05,
Clock_sync06, Clock_sync08a, Clock_sync09,
Reset_sync01, Reset_sync02, Reset_sync03,
Reset_sync04, Reset_check07, DeltaDelay01,
DeltaDelay02, Clock_check02, Clock_check03,
Clock_check04, Clock_check05, Clock_check06a,
Clock_check06b, Clock_check07, Clock_glitch01,
Clock_glitch02, Clock_glitch03, Clock_Reset_info01,
Clock_converge01, Ac_conv01, Ac_conv02,
Ac_conv03, Clock_info05b, Clock_Reset_check01,
Clock_Reset_check01, Clock_info02, Clock_info03a,
Ac_sync02, Ac_sync01, Ac_unsync02, Ac_unsync01,
Ac_xclock01, Setup_quasi_static01, Clock_hier01,
Clock_hier02, Clock_hier03, Ac_coherency06,
SGDC_clock_path_wrapper_module01

Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter prop_clock_thru_quasi_static

yes

Usage in goal/source
files

-prop_clock_thru_quasi_static=yes
328
Synopsys, Inc.

rdc_report_all_resets

Parameters in SpyGlass CDC
rdc_report_all_resets
Enables the Ar_resetcross01 rule to report all resets in the reset domain
crossing in rule-based spreadsheet.

By default, the parameter is set to no and the rule does not report all
resets in the rule-based spreadsheet.

Used by Ar_resetcross01
Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter rdc_report_all_resets yes

Usage in goal/source
files

-rdc_report_all_resets=yes
329
Synopsys, Inc.

reconvergence_stages

Parameters in SpyGlass CDC
reconvergence_stages
Specifies the maximum number of flip-flops allowed in the fan-out path of
a synchronized signal as checked by the Clock_sync03a and Clock_sync03b
rules.

By default, the reconvergence_stages parameter is set to 0. In this
case, only combinational logic is allowed between the synchronized signals
and the instance on which the convergence is taking place.

In case there is a sequential logic between the synchronized signals and
the convergence point, set the reconvergence_stages parameter to a
positive integer number to specify the maximum depth of sequential logic
allowed in the path.

The above rules do not report a violation if the number of flip-flops in the
re-convergence path is more than the specified value.

Consider the following example:

FIGURE 63. Allowing maximum two flip-flops in the fan-out path of a synchronized
signal

clk1

Convergence Point

clk2

clk1

clk2

in1

in2

A

B

Z

Two levels of sequential logic
330
Synopsys, Inc.

reconvergence_stages

Parameters in SpyGlass CDC
The above figure shows two synchronized signals A and B that are
converging on an AND gate after traversing two levels of sequential logic.
In this case, the Clock_sync03a rule reports a violation when the
reconvergence_stages parameter is set to 2. The rule does not
report a violation when the parameter is set to a value less than equal to 1.

Used by Clock_sync03a and Clock_sync03b
Options 0 or positive integer value
Default value 0
Example
Console/Tcl-based usage set_parameter reconvergence_stages 2

Usage in goal/source
files

-reconvergence_stages=2
331
Synopsys, Inc.

report_all_clockgate_enables

Parameters in SpyGlass CDC
report_all_clockgate_enables
Enables the Clock_glitch01 and Clock_glitch02 rules to report all the enable
nets that are directly merging with a clock signal.

By default, the parameter is set to no and the rules do not report all the
enable nets.

Used by Clock_glitch01 and Clock_glitch02
Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter report_all_clockgate_enables

yes

Usage in goal/source
files

-report_all_clockgate_enables=yes
332
Synopsys, Inc.

report_all_flops

Parameters in SpyGlass CDC
report_all_flops
Enables the Reset_sync02 and Ar_converge02 rules to list all affected flip-
flops that are reset in an asynchronous domain.

By default, these rules report one message for each asynchronous reset
signal that is generated in every asynchronous clock domain. Using the
report_all_flops parameter enables these rules to report all the flip-
flops whose resets are generated in asynchronous domains.

Used by Reset_sync02 and Ar_converge02
Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter report_all_flops yes

Usage in goal/source
files

-report_all_flops=yes
333
Synopsys, Inc.

report_all_sync

Parameters in SpyGlass CDC
report_all_sync
Generates a spreadsheet corresponding to each violation message of the
Clock_sync09 rule. The generated spreadsheet displays all destinations
where source is being synchronized.

By default, the value of this parameter is set to no, and no such
spreadsheet is generated. Set the value of this parameter to yes to
generate such a spreadsheet.

Used by Clock_sync09
Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter report_all_sync yes

Usage in goal/source
files

-report_all_sync=yes
334
Synopsys, Inc.

report_common_reset

Parameters in SpyGlass CDC
report_common_reset
Enables the Reset_info09a rule to find the common reset source by skipping
buffers/inverters and MUX/combo gates acting as buffer. By default, the
parameter is set to no.

Used by Reset_info09a
Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter report_common_reset yes

Usage in goal/source
files

-report_common_reset=yes
335
Synopsys, Inc.

report_conv_type

Parameters in SpyGlass CDC
report_conv_type
Enables the Clock_sync03b rule to report convergence from the
synchronized, unsynchronized, and standalone flip-flops or a combination
of any of these flip-flops.

Possible Values of the report_conv_type Parameter

The possible values are described in the following table:

Value Indicates
sync (default value) Convergence from synchronized signals are reported
unsync Convergence from unsynchronized signals are reported
nocross Convergence from standalone flip-flops are reported
all All the values are applied

Used by Clock_sync03b
Options Any combination of the allowed values as a comma-

separated list or using the + (plus) character to
append to the default value.

Default value sync
Example
Console-based usage set_parameter report_conv_type sync,unsync

The above statement is equivalent to the following:
set_parameter report_conv_type +unsync

Tcl-based usage set_parameter report_conv_type sync unsync

Usage in goal/source
files

-report_conv_type=sync,unsync
336
Synopsys, Inc.

report_derived_reset

Parameters in SpyGlass CDC
report_derived_reset
Specifies if the Reset_check04 and Reset_check10 rules should report
violations for asynchronous Derived Resets.

See Cases of Reporting Asynchronous Derived Resets by the Reset_Check10 Rule.

By default, none of these rules report violations for such resets.

Used by Reset_check04, Reset_check10

Options Reset_check04, Reset_check10, none, or comma-
separated list of Reset_check04 and Reset_check10

Default value none
Example
Console/Tcl-based usage set_parameter report_derived_reset

Reset_check04

Usage in goal/source
files

-report_derived_reset=Reset_check04
337
Synopsys, Inc.

report_detail

Parameters in SpyGlass CDC
report_detail
Specifies if all the violations should be reported for each clock or only one
violation should be reported per clock.

By default, this parameter is set to all and the Clock_check10 and the
Setup_library01 rules report all the violations.

Set this parameter to Clock_check10 to report all the violations of the
Clock_check10 rule and a reduced number of violations of the Setup_library01
rule.

Set this parameter to Setup_library01 to report all the violations of
the Setup_library01 rule and a reduced number of violations of the
Clock_check10 rule.

Set this parameter to none to report a reduced number of violations of
both the rules.

Used by Clock_check10, Setup_library01

Options Comma-separated list of rule names, all, none
Default value all
Example
Console/Tcl-based usage set_parameter report_detail none

Usage in goal/source
files

-report_detail=none
338
Synopsys, Inc.

report_user_defined_clock

Parameters in SpyGlass CDC
report_user_defined_clock
By default, the violation messages reported by the Clock_Reset_check02 rule
includes the clock object of the parent hierarchy instead of the clock that is
highlighted in the RTL viewer and the incremental schematic.

Set the report_user_defined_clock parameter to yes to enable the
Clock_Reset_check02 rule to report the clock that is highlighted in the RTL
viewer and schematic.

Used by Clock_Reset_check02
Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter report_user_defined_clock yes

Usage in goal/source
files

-report_user_defined_clock=yes
339
Synopsys, Inc.

reset_cross_seq

Parameters in SpyGlass CDC
reset_cross_seq
Specifies whether clock-domain crossings to the asynchronous reset pins of
complex library cells should be reported. Complex library cells are cells that
have sequential attributes but are not detected as a simple flop/latch or
clock gating cell.

By default, such crossings are not reported. To report such crossings, set
this parameter to yes.

Example of Using the reset_cross_seq Parameter

In the following figure, the Ac_unsync01 rule reports the crossing to the
asynchronous reset pin CN of the library cell when this parameter is set to
yes:

FIGURE 64.

Used by CDC Verification Rules
Options yes, no

current_design test
clock -name clk1
clock -name clk2
input -name srst -clock vclk

SGDC File
340
Synopsys, Inc.

reset_cross_seq

Parameters in SpyGlass CDC
Default value no
Example
Console/Tcl-based usage set_parameter reset_cross_seq yes

Usage in goal/source
files

-reset_cross_seq=yes
341
Synopsys, Inc.

reset_fanout_max

Parameters in SpyGlass CDC
reset_fanout_max
Specifies the maximum fan-out limit of the resets in a design.

The default fan-out limit is 24, which means that and the Reset_check06
rule reports the reset nets that have the fan-out greater than 24 and they
are not driven by the instances of the cells specified by the
reset_placeholder_cells parameter.

NOTE: The Reset_check06 rule runs only when you specify the names of placeholder cells
using reset_placeholder_cells parameter.

Used by Reset_check06
Options Positive integer value
Default value 24
Example
Console/Tcl-based usage set_parameter reset_fanout_max 10

Usage in goal/source
files

-reset_fanout_max=10
342
Synopsys, Inc.

reset_reduce_pessimism

Parameters in SpyGlass CDC
reset_reduce_pessimism
Specifies the criteria to infer resets other than the resets inferred by
setting the use_inferred_resets parameter to yes or by running the
Reset_info01 rule.

For information on the values accepted by this parameter, see Possible
Values to the reset_reduce_pessimism Parameter.

Possible Values to the reset_reduce_pessimism Parameter

The reset_reduce_pessimism parameter accepts the following values:

Used by Propagate_Resets, Reset_info01, Reset_info02,
Reset_check03, Reset_check04, Reset_check06,
Reset_check10, Reset_check11, Reset_sync01,
Reset_sync03, Reset_sync04, Ar_sync01,
Ar_unsync01, Ar_syncdeassert01,
Ar_asyncdeassert01, Ac_cdc01a, Ac_cdc01b,
Ac_cdc01c, Ac_cdc08, Ac_conv02, Ac_glitch03,
Ac_datahold01a, Ac_conv04, Ac_conv05,
Setup_req01, Param_clockreset04, Ar_resetcross01

Options Combination of Possible Values to the
reset_reduce_pessimism Parameter as a comma-
separated list or using the + (plus) character to
append to the default value.

Default value filter_unused_synchronizer, same_data_reset_flop
Example
Console/Tcl-based usage set_parameter reset_reduce_pessimism

"+all_potential_resets"

Usage in goal/source
files

-
reset_reduce_pessimism="+all_potential_reset
s"

filter_unused_synchronizer
(default value)

same_data_reset_flop (default value)

all_potential_resets remove_overlap
343
Synopsys, Inc.

reset_reduce_pessimism

Parameters in SpyGlass CDC
filter_unused_synchronizer (default value)

When this value is specified to the reset_reduce_pessimism parameter,
multi-flop structures using the same reset are not reported by the
Ar_unsync01 and Ar_asyncdeassert01 rules when the output of such
structures is not further used as a reset in a design.

For example, consider the following scenario:

FIGURE 65. reset_reduce_pessism set to filter_unused_synchronizer

In the above scenario, by default, the Ar_unsync01 and Ar_asyncdeassert01
rules do not report a violation when the output is not used as a reset in the
design.

same_data_reset_flop (default value)

When this value is specified to the reset_reduce_pessimism parameter, the
Reset_check10 violations are not reported if both the data pin and the clear
pin/preset pin of a flip-flop is receiving the same reset.

all_potential_resets

When this value is specified to the reset_reduce_pessimism parameter and

filter_reset_resync syncrst_gate_const_check
none all

in

rst

clk1

rst output not being used further

output
344
Synopsys, Inc.

reset_reduce_pessimism

Parameters in SpyGlass CDC
the value of the use_inferred_resets parameter to yes (or run the
Reset_info01 rule), then while inferring resets, if SpyGlass encounters a
two-input gate in which one of the inputs is a definite reset, it infers that
reset as well as considers the other input to infer more resets.

For example, consider the following figure:

FIGURE 66. Specifying Criteria to Infer Resets in a Design

In the above figure, one of the inputs of the AND gate is a definite reset,
that is P1. Therefore, SpyGlass infers this reset. However, to also enable
SpyGlass infer P2 as the reset, set this parameter to
all_potential_resets.

remove_overlap

When this value is specified to the reset_reduce_pessimism parameter:
 The following violations are suppressed as they are already covered by

the Reset_sync02 rule:
 Different domain synchronizer violation of the Ar_unsync01 rule

 Domain-mismatch violation of the Ar_asyncdeassert01 rule
By default, when a reset drives different domain flip-flops, the
Reset_sync02, Ar_unsync01, and Ar_asyncdeassert01 rules report
violations. This may result in noise.
345
Synopsys, Inc.

reset_reduce_pessimism

Parameters in SpyGlass CDC
 Deassertion checks on end flip-flops by the Ar_asyncdeassert01 /
Ar_syncdeassert01 rules are suppressed when the flip-flops are not
synchronized.
The deassertion checks are performed only when a proper reset
synchronizer is in place.

filter_reset_resync

When this value is specified to the reset_reduce_pessimism parameter,
SpyGlass CDC does not report the Reset_sync04 rule violations if the reset
signal and the synchronizer are in the same clock domain.

syncrst_gate_const_check

When this value is specified to the reset_reduce_pessimism parameter,
SpyGlass CDC treats AND/NOR gates as equivalent to buffer if other gate
pin is sensitized to constant due to set_case_analysis while propagating
the synchronized resets in the design.

all

When this value is specified to the reset_reduce_pessimism parameter, all the
Possible Values to the reset_reduce_pessimism Parameter are considered.

none

When this value is specified to the reset_reduce_pessimism parameter, none
of the Possible Values to the reset_reduce_pessimism Parameter is considered.
346
Synopsys, Inc.

report_clock_names_sgdc_qualifier10

Parameters in SpyGlass CDC
report_clock_names_sgdc_qualifier10
Enables the SGDC_qualifier10 rule not include the clock/domain names in
the violation message.

By default, the parameter is set to yes and the SGDC_qualifier10 rule
includes the clock/domain names in the violation message.

Used by SGDC_qualifier10
Options yes, no
Default value yes
Example
Console/Tcl-based usage set_parameter

report_clock_names_sgdc_qualifier10 no

Usage in goal/source
files

-report_clock_names_sgdc_qualifier10=no
347
Synopsys, Inc.

report_abstract_module_coverage

Parameters in SpyGlass CDC
report_abstract_module_coverage
Enables the Setup_blackbox01 rule to report coverage of abstracted
modules.

By default, the parameter is set to no and SpyGlass CDC does not report
the coverage of abstracted module by rule Setup_blackbox01.

Used by Setup_blackbox01
Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter

report_abstract_module_coverage yes

Usage in goal/source
files

-report_abstract_module_coverage=yes
348
Synopsys, Inc.

report_indirect_port_clock

Parameters in SpyGlass CDC
report_indirect_port_clock
Generates the enhanced PortClockMatrix Report that should generate the
following:
 Information of the clocks indirectly connected to the input/output ports

 Information of the clocks directly connected to the input/output ports

By default, this parameter is set to no, and the PortClockMatrix Report
generates information of the clocks directly connected to the input/output
ports only.

Used by Clock_info15
Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter report_indirect_port_clock yes

Usage in goal/source
files

-report_indirect_port_clock=yes
349
Synopsys, Inc.

report_inst_for_netlist

Parameters in SpyGlass CDC
report_inst_for_netlist
Specifies whether the output net name of an instance should be reported.

By default, this parameter is set to no, and the output net name of an
instance is reported.

Set this parameter to yes to enable reporting in the following manner:

 For netlist designs, violating instance name is reported instead of the
net name.

 For RTL designs, leaf-level net name is reported instead of the top-level
net.

 For vector terminals, the rules report a violation at the connected nets.
NOTE: The violations reported by the rules on the instance names are bit blasted because

the instance names cannot be merged.

Used by The parameter is used by the following rules:
Ac_cdc01a, Ac_cdc01b, Ac_cdc01c, Clock_check01,
Clock_check05, Clock_converge01, Clock_delay01,
Clock_delay02, Clock_glitch04, Clock_info03b,
Clock_info03c, Clock_info05, Clock_info16,
Clock_Reset_check02, Clock_Reset_check03,
Clock_sync03a, Clock_sync03b, Clock_sync05,
Clock_sync06, Clock_sync08a, Clock_sync09,
DeltaDelay01, DeltaDelay02, Reset_sync01,
Reset_sync02, Reset_sync03, Reset_sync04,
Reset_check02, Reset_check03, Reset_check04,
Reset_check07, Reset_check09, Reset_check10,
Reset_check11, Reset_check12, NoClockCell,
Clock_info17, Clock_info02, Reset_info02,
Ac_sync02, Ac_sync01, Ac_unsync02, Ac_unsync01,
Ac_conv01, Ac_conv02, Ac_conv03, and
Ar_converge02, Ar_resetcross01
The parameter is also used by the following reports:
The Clock-Reset-Summary Report, The CKTree
Report, The Clock-Reset-Detail Report, The RSTree
Report, The Advanced CDC Report, and The
DeltaDelay-Detailed Report

Options yes, no, inst_name
Note: The value inst_name is applicable only when
the report_uniform_name parameter is set to yes.
350
Synopsys, Inc.

report_inst_for_netlist

Parameters in SpyGlass CDC
Default value no
Example
Console/Tcl-based usage set_parameter report_inst_for_netlist yes

Usage in goal/source
files

-report_inst_for_netlist=yes
351
Synopsys, Inc.

report_instance_pin

Parameters in SpyGlass CDC
report_instance_pin
Specifies if instance pins of a netlist design should appear in the violation
message of SpyGlass CDC rules.

Allowed Values of the report_instance_pin Parameter

The allowed values of this parameter are described in the following table:

Value Description
yes Specify this value to enable The Ac_sync_group Rules report

instance-pin names.
no (default value) Specify this value to report the output-net name of an

instance instead of the instance-pin name.
bbox Specify this value so that The Ac_sync_group Rules report

the black-box pin of the source and destination of a crossing
of an RTL or a netlist design.

seqCell Specify this value so that The Ac_sync_group Rules report
the library sequential-cell pin of the source and destination
of a crossing of an RTL or a netlist design.

flop Specify this value so that The Ac_sync_group Rules report
the flip-flop pin of the source and destination of a crossing
for a netlist design.
This value has no impact on RTL designs.

latch Specify this value so that The Ac_sync_group Rules report
the latch pin of the source and destination of a crossing for
a netlist design.
This value has no impact on RTL designs.

Used by The Ac_sync_group Rules, Ac_coherency06, and
Ac_datahold01a

Options yes, no, bbox, seqCell, flop, latch, all
Default value no
Example
Console/Tcl-based usage set_parameter report_instance_pin yes

Usage in goal/source
files

-report_instance_pin=yes
352
Synopsys, Inc.

reset_num_flops

Parameters in SpyGlass CDC
reset_num_flops
Specifies the minimum number of flip-flops required for synchronizing a
reset signal.

By default, the value of this parameter is set to 2, and SpyGlass uses two
flip-flops to synchronize reset signals.

You can specify any positive integer value, greater than one, to this
parameter to specify a different number of flip-flops.

Used by Clock Checking Rules
Options Positive integer value greater than 1
Default value 2
Example
Console/Tcl-based usage set_parameter reset_num_flops 3

Usage in goal/source
files

-reset_num_flops=3
353
Synopsys, Inc.

reset_placeholder_cells

Parameters in SpyGlass CDC
reset_placeholder_cells
Specifies a comma or space-separated list of placeholder cells driving reset
nets with a higher fan-out.

NOTE: The Reset_check06 rule is not run if you do not specify placeholder cells by using
this parameter.

Used by Reset_check06

Options Comma or space-separated list of placeholder cells
Default value NULL
Example
Console/Tcl-based usage set_parameter reset_placeholder_cells

"BUF1,BUF2"

Usage in goal/source
files

-reset_placeholder_cells=BUF1,BUF2
354
Synopsys, Inc.

reset_sync_check

Parameters in SpyGlass CDC
reset_sync_check
Disables deassertion checks in reset synchronizers.

By default, this parameter is set to strict and the Reset_sync01 and
Reset_sync03 rules check for deassertion on the reset source.

Set this parameter to soft to perform deassertion checks on the reset/
clear pin of flip-flops instead of reset source. In this case, do not provide
the set_case_analysis constraint settings on the other signals present in
cone of reset/clear pins of flip-flops.

Used by Reset_sync01, Reset_sync03

Options strict, soft
Default value strict
Example
Console/Tcl-based usage set_parameter reset_sync_check soft

Usage in goal/source
files

-reset_sync_check=soft
355
Synopsys, Inc.

Reset_info09a_filter_on_constant_clock

Parameters in SpyGlass CDC
Reset_info09a_filter_on_constant_clock
Filters violation messages of the Reset_info09a rule for flops whose clock pin
is receiving a constant value.

By default, this parameter is set to no and the violation messages of the
Reset_info09a rule for flops whose clock pin is receiving a constant value are
reported.

Set this parameter to yes to filter such messages.

Used by Reset_info09a

Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter

Reset_info09a_filter_on_constant_clock yes

Usage in goal/source
files

-Reset_info09a_filter_on_constant_clock=yes
356
Synopsys, Inc.

report_common_clock

Parameters in SpyGlass CDC
report_common_clock
Reports the common clock source by ignoring buffer or inverter, CGC clock
pin, MUX/combo gates that act as buffer.

Set this parameter to yes to report common clock sources.

Used by Clock_info03a
Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter report_common_clock yes

Usage in goal/source
files

-report_common_clock=yes
357
Synopsys, Inc.

report_common_reset

Parameters in SpyGlass CDC
report_common_reset
Reports the common reset source skipping buf/inv and MUX/combo gates
acting as buffer.

By default, this parameter is set to no. Set this parameter to yes to report
the common reset source skipping buf/inv and MUX/combo gates acting as
buffer.

Used by Reset_info09a

Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter report_common_reset yes

Usage in goal/source
files

-report_common_reset=yes
358
Synopsys, Inc.

report_clock_tag_names

Parameters in SpyGlass CDC
report_clock_tag_names
Reports the clock tag name in the CKTree.rpt report. By default, the
parameter is set to no and the clock object name is included in the
CKTree.rpt report.

Set this parameter to yes to report the clock tag name in the CKTree.rpt
report.

If this parameter is set to yes, the Clock_info05, Clock_info05a, Clock_info05b,
Clock_info05c rules report the logical names of the clocks in the violation
message. In addition, a new column, named CLOCK TAG NAMES, is added
in the rule-based spreadsheet of the rules which lists the clock tag names.

Used by The CKTree Report, Clock_info05, Clock_info05a,
Clock_info05b, and Clock_info05c

Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter report_clock_tag_names yes

Usage in goal/source
files

-report_clock_tag_names=yes
359
Synopsys, Inc.

report_matched_attributes

Parameters in SpyGlass CDC
report_matched_attributes
Enables the Ac_abstract_validation02 rule report matched clocks in the
messages related to data path domain mismatch issues.

Set this parameter to yes to enable the rule report the matched clocks as
shown in the following message:

Data Path Domain Mismatch: Top-level clocks 'vck2vck3',
blocklevel clocks 'NA', matched-clocks 'top.block_vck1(vck1)',
block port 'rst1', block instance 'top.block' (block: 'BLOCK1')

Used by Ac_abstract_validation02

Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter report__matched_attributes yes

Usage in goal/source
files

-report__matched_attributes=yes
360
Synopsys, Inc.

report_quasi_static_on_clock

Parameters in SpyGlass CDC
report_quasi_static_on_clock
Specifies the rule that should report a violation when a quasi_static signal
is reaching to the clock pin of a flop.

By default, the Clock_info03a rule reports a violation when a quasi_static
signal is reaching to the clock pin of a flop. Set the
report_quasi_static_on_clock parameter to Clock_info03c to enable
the Clock_info03c rule to report a violation in this case.

Used by Clock_info03a Clock_info03c
Options Clock_info03a, Clock_info03c
Default value Clock_info03a
Example
Console/Tcl-based usage set_parameter report_quasi_static_on_clock

Clock_info03c

Usage in goal/source
files

-report_quasi_static_on_clock=Clock_info03c
361
Synopsys, Inc.

report_reset_path_mux

Parameters in SpyGlass CDC
report_reset_path_mux
Specifies if the Reset_check07 rule should report a violation when the
asynchronous set/reset pins of a sequential element are driven by a
multiplexer.

By default, such violations are not reported. Set this parameter to yes to
report such violations.

Used by Reset_check07

Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter report_reset_path_mux yes

Usage in goal/source
files

-report_reset_path_mux=yes
362
Synopsys, Inc.

report_sync_clk_for_hier

Parameters in SpyGlass CDC
report_sync_clk_for_hier
Specifies the list of hierarchies for which top-level synchronous clock
signals should be reported.

Using Wildcard Expressions While Specifying Hierarchies

Consider the following example:

set_parameter report_sync_clk_for_hier "top.U*.U?"

Based on the expression specified in the above example, the matching and
non matching hierarchies are specified in the following table:

Matching Hierarchies Non Matching Hierarchies
top.U1.U2
top.U11.U2

top.X1.U2
top.U1.U

Used by Clock_info17
Options Comma-separated list of hierarchy names
Default value NULL
Example
Console/Tcl-based usage set_parameter report_sync_clk_for_hier

"top.U1.U2,top.U3.U4"

Usage in goal/source
files

-report_sync_clk_for_hier=top.U1.U2,top.U3.U4
363
Synopsys, Inc.

report_top_block_info

Parameters in SpyGlass CDC
report_top_block_info
Specifies if the SGDC_abstract_mapping01 rule reports clock domain and tag
information for an abstracted instance in the clock mapping spreadsheet.

By default, the clock mapping spreadsheet shows clock domains and tags.

Set this parameter to 'no' to stop reporting of information about the clock
domains and tags in the clock mapping spreadsheet.

Used by SGDC_abstract_mapping01
Options yes, no
Default value yes
Example
Console/Tcl-based usage set_parameter report_top_block_info yes

Usage in goal/source
files

-report_top_block_info=yes
364
Synopsys, Inc.

reset_synchronize_cells

Parameters in SpyGlass CDC
reset_synchronize_cells
Specifies a comma or space-separated list of synchronizer cells that are
considered as valid synchronizers for asynchronous reset signals.

By default, the reset_synchronize_cells parameter is not set.

NOTE: Combinational logic is not allowed in the reset path before it is synchronized using
the synchronizer cells specified by this parameter.

When is a Reset Considered as Synchronized?

If an asynchronous reset is generated from a synchronizer module
specified by this parameter, the reset is considered as synchronized and is
not reported by the Reset_sync01 rule.

When is a Reset Not Considered as Synchronized?

If all the paths from a reset signal do not have synchronizers, the reset
signal is not considered as synchronized and the Reset_sync01 rule reports
violations for all the flip-flops, which are using this reset signal.

Using Wildcard Expressions to Specify Synchronizer Cells

The following example shows the usage of wildcard expressions:

set_parameter reset_synchronize_cells "sy?c2"
set_parameter reset_synchronize_cells "sync*"

For details on using wildcard characters, refer to the Using Regular
Expressions and Wildcard Characters topic of the Atrenta Console User
Guide.

Used by Reset_sync01, Reset_sync02, Reset_sync03,
Reset_sync04, Reset_check07, Reset_check10,
Ar_asyncdeassert01, Ar_syncdeassert01, Ar_sync01,
and Ar_unsync01

Options Comma or space-separated list of synchronizer cells
Default value NULL
Example
365
Synopsys, Inc.

reset_synchronize_cells

Parameters in SpyGlass CDC
Console/Tcl-based usage set_parameter reset_synchronize_cells
"sync1,sync2"

Usage in goal/source
files

-reset_synchronize_cells=sync1,sync2
366
Synopsys, Inc.

report_uniform_name

Parameters in SpyGlass CDC
report_uniform_name
By default, the naming format of design objects, such as flip-flops, latches,
and black boxes reported in the violation messages and reports of
SpyGlass CDC are not consistent. SpyGlass CDC uses the top-level name
or the hierarchical name of the design object depending on the object and
the rule reporting the violation.

The report_uniform_name parameter enables a consistent naming
format of design objects in all the violation messages and reports.

The following table describes the naming format for RTL design objects
under the influence of this parameter and other parameters:

The following table describes the naming format for Netlist design objects
under the influence of this parameter and other parameters:

report_uniform_name
=yes

report_uniform_name
=yes and
report_inst_for_netlist
=yes

report_inst_for_netlist
=inst_name and
report_uniform_name
=yes

report_instance_pin
=yes and
report_uniform_na
me=yes

RTL name format for a flip-flop
Leaf-level output net
name

Leaf-level output net
name

Instance name Pin name
(<hier-inst>.<pin>
)

RTL name format for a complex library cell with or without functional arc
Pin name
(<hier-inst>.<pin>)

Pin name
(<hier-inst>.<pin>)

Pin name
(<hier-inst>.<pin>)

Pin name
(<hier-inst>.<pin>
)

RTL name format for a black box
Hierarchical pin name
(<hier-inst>.<pin>)

Pin name
(<hier-inst>.<pin>)

Pin name
(<hier-inst>.<pin>)

Pin name
(<hier-inst>.<pin>
)

RTL name format for a primary port
Port name Port name Port name Port name
367
Synopsys, Inc.

report_uniform_name

Parameters in SpyGlass CDC
report_uniform_name=yes report_inst_for_netlist=yes
and
report_uniform_name=yes

report_instance_pin =yes and
report_uniform_name=yes

Netlist name format for a flip-flop
Leaf-level output net name Instance name Pin name (<hier-inst>.<pin>)
Netlist name format for a complex library cell with or without functional arc
Pin name
(<hier-inst>.<pin>)

Pin name (<hier-inst>.<pin>) Pin name (<hier-inst>.<pin>)

Netlist name format for a black box
Pin name (<hier-
inst>.<pin>)

Pin name (<hier-inst>.<pin>) Pin name (<hier-inst>.<pin>)

Netlist name format for a primary port
Port name Port name Port name

Used by All SpyGlass CDC Rules
Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter report_uniform_name yes

Usage in goal/source
files

-report_uniform_name=yes
368
Synopsys, Inc.

run_cells_in_cktree_rules

Parameters in SpyGlass CDC
run_cells_in_cktree_rules
Generates The CKPathInfo Report.

By default, this parameter is set to no and this report is not generated.

Used by The CKPathInfo Report
Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter run_cells_in_cktree_rules yes

Usage in goal/source
files

-run_cells_in_cktree_rules=yes
369
Synopsys, Inc.

same_domain_at_gate

Parameters in SpyGlass CDC
same_domain_at_gate
Optimizes the inference of domain on clock merging gates. Syou can
specify the following allowed values:

 same_mux_sel_gate: MUX which are receiving same set of input
domains and have same select signal are given same domain

 any_gate: Any gate where same set of clocks of different domains are
merging are given same domain

 no: No optimization is performed

By default, this parameter is set to no and no optimization is performed.

Used by Clock_info03a, Clock_info03c, Clock_info05,
Clock_info05a, Clock_info06, Clock_info07,
Clock_info14, Clock_info16, Propagate_Clocks,
Clock_sync03a, Clock_sync03b, Clock_sync05,
Clock_sync06, Clock_sync08a, Clock_sync09,
Reset_sync01, Reset_sync02, Reset_sync03,
Reset_sync04, Reset_check07, DeltaDelay01,
DeltaDelay02, Clock_check02, Clock_check03,
Clock_check04, Clock_check05, Clock_check06a,
Clock_check06b, Clock_check07, Clock_glitch01,
Clock_glitch02, Clock_glitch03, Clock_Reset_info01,
Clock_converge01, Ac_conv01, Ac_conv02,
Ac_conv03, Clock_info05b, Clock_Reset_check01,
Clock_Reset_check01, Clock_info02, Clock_info03a,
Ac_sync02, Ac_sync01, Ac_unsync02, Ac_unsync01,
Ac_xclock01, Setup_quasi_static01, Clock_hier01,
Clock_hier02, Clock_hier03,
SGDC_clock_path_wrapper_module01,
Ac_coherency06, Ar_resetcross01

Options same_mux_sel_gate, any_gate, no
Default value no
Example
Console/Tcl-based usage set_parameter same_domain_at_gate

same_mux_sel_gate

Usage in goal/source
files

-same_domain_at_gate=same_mux_sel_gate
370
Synopsys, Inc.

same_domain_at_gate

Parameters in SpyGlass CDC
371
Synopsys, Inc.

same_sync_reset

Parameters in SpyGlass CDC
same_sync_reset
Configures CDC Verification Rules to report a violation for the cases where
different synchronous reset is used to synchronize destination domain
flip-flops.

For example, consider the following scenario:

FIGURE 67. same_sync_reset example

For the above scenario, if you set the same_sync_reset parameter to
yes, the CDC Verification Rules report a violation because a different
synchronous reset srst1 reaches the destination.

NOTE: For this parameter to work, set the sync_reset parameter to yes.

Used by CDC Verification Rules
Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter same_sync_reset yes

Usage in goal/source
files

-same_sync_reset=yes

srst1 srst2

c1 c2 c2
372
Synopsys, Inc.

same_threshold_all_cktree

Parameters in SpyGlass CDC
same_threshold_all_cktree
Enables the Clock_check06b rule to check if master library cells of cell
instances in all clock trees have a common value for the
threshold_voltage_group library attribute.

By default, the Clock_check06b checks for each clock tree separately. Set
the same_threshold_all_cktree parameter to yes to check for all
clock trees together.

Used by Clock_check06b
Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter same_threshold_all_cktree yes

Usage in goal/source
files

-same_threshold_all_cktree=yes
373
Synopsys, Inc.

sel_case_analysis_mode

Parameters in SpyGlass CDC
sel_case_analysis_mode
Causes the Setup_clock01 rule to detect probable unconstrained mux-select
signals in the clock path where the set_case_analysis settings are required.

This parameter accepts the following values:
 sequential (default value)

By default, this parameter is set to sequential, and the Setup_clock01
rule generates the following objects in the fan-in cone of mux-select
signals in the auto_case_analysis.sgdc file under the spyglass_reports/clock-
reset/ directory:

 source

When this parameter is set to source, the Setup_clock01 rule goes
beyond sequential elements to find primary ports, black box outputs,
and undriven nets.
If the input of a sequential element is tied to a constant, the
Setup_clock01 rule stops propagation on its output, and the output is
saved in the auto_case_analysis.sgdc file.

 direct

When this parameter is set to direct, the Setup_clock01 rule dumps
the nets that are directly connected to the mux select pins.
If a connected net is a SpyGlass-generated internal net, it is not
dumped.

Primary ports Black box outputs
Undriven nets Output of sequential elements

Used by Setup_clock01
Options direct, source, sequential
Default value sequential
Example
374
Synopsys, Inc.

sel_case_analysis_mode

Parameters in SpyGlass CDC
Console/Tcl-based usage set_parameter sel_case_analysis_mode
"direct"

Usage in goal/source
files

-sel_case_analysis_mode="direct"
375
Synopsys, Inc.

show_all_xclock_flops

Parameters in SpyGlass CDC
show_all_xclock_flops
Specifies whether the Ac_xclock01 rule should generate a spreadsheet (see
Figure 280) showing violations on a per net basis.

If you set this parameter to no, this rule does not generate any
spreadsheet. In this case, this rule reports only one of the rule-violating
instances along with the total violation count.

Used by Ac_xclock01
Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter show_all_xclock_flops yes

Usage in goal/source
files

-show_all_xclock_flops=yes
376
Synopsys, Inc.

show_derived_busclocks

Parameters in SpyGlass CDC
show_derived_busclocks
Enables the Clock_check03 rule to report violations for the bus-bit signals
present in the derived clock path.

By default, the value of this parameter is set to no, and the Clock_check03
rule reports violations for only those bus-bit signals that are in the primary
clock path.

Set this parameter to yes to also report violations for bus-bit signals that
are in derived clock path.

Used by Clock_check03
Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter show_derived_busclocks yes

Usage in goal/source
files

-show_derived_busclocks=yes
377
Synopsys, Inc.

show_module_in_spreadsheet

Parameters in SpyGlass CDC
show_module_in_spreadsheet
Generates the following data in the spreadsheet of the The Ac_sync_group
Rules.
 The module containing both the source and destination of a crossing

 Parent instances of the source and destination instances that are
interacting with each other

By default, the value of this parameter is set to no, and the above data is
not generated. Set the value of this parameter to yes to generate such
data.

Used by Ac_sync02, Ac_sync01, Ac_unsync02, and
Ac_unsync01

Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter show_module_in_spreadsheet yes

Usage in goal/source
files

-show_module_in_spreadsheet=yes
378
Synopsys, Inc.

show_parent_module_in_spreadsheet

Parameters in SpyGlass CDC
show_parent_module_in_spreadsheet
Adds the PARENT_MODULE column in the rule-based spreadsheet of the
supported rules.

By default, the value of this parameter is set to no, and the
PARENT_MODULE column is not included in the spreadsheet.

The parameter reports the SOURCE_PARENT_MODULE,
DESTINATION_PARENT_MODULE, and PARENT_MODULE depending on
the value of msg_inst_mod_report parameter.

Used by Ac_conv01, Ac_conv02, Ac_conv03, Ac_conv04,
Ac_conv05, Ac_glitch01, Ac_glitch02, Ac_glitch03,
Ac_glitch04, Ac_coherency06, Ac_sync01,
Ac_sync02, Ac_unsync01, Ac_unsync02,
Clock_info05, Clock_info05a, Clock_info05b,
Clock_info05c, Ar_resetcross01

Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter

show_parent_module_in_spreadsheet yes

Usage in goal/source
files

-show_parent_module_in_spreadsheet=yes
379
Synopsys, Inc.

show_reconv_paths

Parameters in SpyGlass CDC
show_reconv_paths
Causes the Clock_sync03a and Clock_sync03b to highlight only converging
signals in the schematic and the gate where they are converging.

By default, these rules highlight the complete path from converging signals
to the gate where they are converging. Highlighting complete path may be
run-time intensive.

Therefore, to reduce the run time by avoiding schematic data generation
for the convergence paths, set this parameter to no. In this case, only
converging signals and the gate where they are converging are highlighted.

Used by Clock_sync03a and Clock_sync03b
Options yes, no
Default value yes
Example
Console/Tcl-based usage set_parameter show_reconv_paths no

Usage in goal/source
files

-show_reconv_paths=no
380
Synopsys, Inc.

show_source_in_spreadsheet

Parameters in SpyGlass CDC
show_source_in_spreadsheet
Controls whether the sources of synchronizers should be displayed in the
message-based spreadsheet of the Ac_conv01, Ac_conv02, or Ac_conv03
rules or linked to the spreadsheet of The Ac_sync_group Rules.

NOTE: This parameter works only when you run The Ac_sync_group Rules.

The following topics describe the impact of the values (yes or no) of this
parameter on SpyGlass CDC analysis:
 Setting the show_source_in_spreadsheet Parameter To no

 Setting the show_source_in_spreadsheet Parameter To yes (default)

Setting the show_source_in_spreadsheet Parameter To no

If this parameter is set to no, a link appears in the spreadsheet of the
Ac_conv01, Ac_conv02, or Ac_conv03 rules. This link points to the
message-based spreadsheet of The Ac_sync_group Rules showing the source
of synchronizers. This is shown in the following figure:
381
Synopsys, Inc.

show_source_in_spreadsheet

Parameters in SpyGlass CDC
FIGURE 68. Link in spreadsheet when show_source_in_spreadsheet is set to no

Setting the show_source_in_spreadsheet Parameter To yes (default)

If this parameter is set to yes or if The Ac_sync_group Rules are not run, the
sources of synchronizers appear in the message-based spreadsheet of the
Ac_conv01, Ac_conv02, or Ac_conv03 rules. This is shown in the following
figure:

Click this link to open the Ac_sync01
spreadsheet showing the source of synchronizers
382
Synopsys, Inc.

show_source_in_spreadsheet

Parameters in SpyGlass CDC
FIGURE 69. Sources of synchronizers appearing in Ac_conv02 spreadsheet

Used by Ac_conv01, Ac_conv02, and Ac_conv03

Options yes, no
Default value yes
Example
Console/Tcl-based usage set_parameter show_source_in_spreadsheet no

Usage in goal/source
files

-show_source_in_spreadsheet=no
383
Synopsys, Inc.

reset_sync_depth

Parameters in SpyGlass CDC
reset_sync_depth
Specifies the number of flip-flops that are the part of the longest reset
synchronizer chain in a design.

This parameter is used for propagation of an active value of a reset in a
design. The Ar_asyncdeassert01 and Ar_syncdeassert01 rules internally use this
information for classification of resets to synchronous or asynchronous
deasserted resets.

Used by Ar_asyncdeassert01 and Ar_syncdeassert01
Options Positive integer value greater than 0
Default value 8
Example
Console/Tcl-based usage set_parameter reset_sync_depth 20

Usage in goal/source
files

-reset_sync_depth=20
384
Synopsys, Inc.

simulator_file_name

Parameters in SpyGlass CDC
simulator_file_name
Specifies a Simulator File that contains simulator-specific delta-delay
information for RTL constructs.

The DeltaDelay01 and DeltaDelay02 rules assume that the simulator-specific
delta delay for the constructs other than those specified in the simulator
mode file is zero.

Used by DeltaDelay01, DeltaDelay02
Options Simulator file name
Default value NULL
Example
Console/Tcl-based usage set_parameter simulator_file_name delayfile

Usage in goal/source
files

-simulator_file_name=delayfile
385
Synopsys, Inc.

skip_samedom_syncpath

Parameters in SpyGlass CDC
skip_samedom_syncpath
Skips the same domain sequential elements while searching synchronizers
for particular synchronization schemes.

You can specify a synchronization scheme by setting this parameter to the
following values:

You can specify a comma-separated list of any of the above values (except
all and none) to specify multiple synchronization schemes.

When this parameter is set, all the same domain sequential cells are
skipped in the fan-in to find the synchronizer.

Value Synchronization Scheme
mux Recirculation MUX Synchronization Scheme and MUX-Select Sync

(Without Recirculation) Synchronization Scheme
enable Synchronized Enable Synchronization Scheme
gp Glitch Protection Cell Synchronization Scheme
and AND Gate Synchronization Scheme
cg Clock-Gating Cell Synchronization Scheme
all All the above-mentioned synchronization schemes
none (Default) None of the synchronization schemes

Used by CDC Verification Rules
Options all, none, or comma-separated list of any of the

following values:
mux, enable, and, gp, and cg

Default value none
Example
Console/Tcl-based usage set_parameter skip_samedom_syncpath "cg,gp"

Usage in goal/source
files

-skip_samedom_syncpath="cg,gp"
386
Synopsys, Inc.

stop_at_reset

Parameters in SpyGlass CDC
stop_at_reset
Specifies whether to continue propagation of the reset reaching another
reset in its path.

By default, reset propagation does not happen.

Used by All the SpyGlass CDC rules that use resets
Options yes, no
Default value yes
Example
Console/Tcl-based usage set_parameter stop_at_reset no

Usage in goal/source
files

-stop_at_reset=no
387
Synopsys, Inc.

strict_double_flop

Parameters in SpyGlass CDC
strict_double_flop
Marks those clock crossings as synchronized under the Conventional Multi-
Flop Synchronization Scheme where another flip-flop exists between the
source flip-flop and the destination flip-flop and its clock signal is inverse of
the clock signal of the source flip-flop.

Used by Clock_sync03a, Clock_sync03b, Clock_sync08a,
Clock_sync09, Ac_crossing01, Ac_conv01,
Ac_conv02, Ac_conv03, Ac_cdc01a, Ac_cdc01b,
Ac_cdc01c, Ac_cdc08, Ac_sync02, Ac_sync01,
Ac_unsync02, Ac_unsync01

Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter strict_double_flop yes

Usage in goal/source
files

-strict_double_flop=yes
388
Synopsys, Inc.

strict_sync_check

Parameters in SpyGlass CDC
strict_sync_check
By default, the strict_sync_check parameter is set to no. If the
parameter is set to yes, the synchronization schemes are affected as
described below:
 Conventional Multi-Flop Synchronization Scheme

 Allows combinational logic between the synchronizer flip-flops only if
the combinational logic is case-sensitized to be equivalent to buffers
or inverters. By default, combinational logic is not allowed.
For example, consider the following figure in which one of the inputs
of the AND gate is tied to a constant (case-sensitized):

FIGURE 70. Combinational logic case-sensitized to be equivalent to buffer or
inverter

In the above scenario, the AND gate is considered as a buffer.
 Allows combinational logic between the source and destination

flip-flops if the combinational logic is case-sensitized to be equivalent
to buffers or inverters.
For example, consider the following figure in which one of the inputs
of the AND gate is tied to a constant (case-sensitized):

c1 c2
c2

1'b1
389
Synopsys, Inc.

strict_sync_check

Parameters in SpyGlass CDC
FIGURE 71. Combinational logic case-sensitized to be equivalent to buffer or
inverter

In the above scenario, the AND gate is considered as a buffer.
Transparent latches (enabled latch) are also considered as
combinational elements.

 Synchronizing Cell Synchronization Scheme

Allows combinational logic between the source and destination flip-flops
if the combinational logic is case-sensitized to be equivalent to buffers/
inverters. See Figure 71.
Transparent latches (enabled latch) are also considered as
combinational elements.

Used by Clock_sync03a, Clock_sync03b, Clock_sync08a,
Clock_sync09, Ac_crossing01, Ac_conv01,
Ac_conv02, Ac_conv03, Ac_cdc01a, Ac_cdc01b,
Ac_cdc01c, Ac_cdc08, Ac_sync02, Ac_sync01,
Ac_unsync02, Ac_unsync01, Ac_datahold01a,
Ac_glitch03, Ac_coherency06

Options yes, no
Default value no
Default Value in
GuideWare2.0

yes

Example
Console/Tcl-based usage set_parameter strict_sync_check yes

Usage in goal/source
files

-strict_sync_check=yes

c1 c2 c2

1'b1

source destination
390
Synopsys, Inc.

sync_check_type

Parameters in SpyGlass CDC
sync_check_type
Specifies the signal type that is considered as a valid candidate for
synchronizing the source of a data crossing reported by the clock
synchronization rules.

Supported Values

This parameter accepts the following values:

 qual_only: Enables data synchronization analysis based on the
qualifier search in the transitive input cone of a gate that receives the
source. This allows crossing detection synchronization using schemes
specified in Clock Domain Crossing Synchronization Schemes.

 enable_with_qual: Allows a qualifier as a valid enable for The
Enable Expression-Based Synchronization Analysis.

 enable_with_des_dom: Allows the destination of a crossing as a
valid enable for The Enable Expression-Based Synchronization Analysis.

Used by The Ac_sync_group Rules
Options Supported Values
Default value qual_only
Example
Console/Tcl-based usage set_parameter sync_check_type

enable_with_qual

Usage in goal/source
files

-sync_check_type=enable_with_qual
391
Synopsys, Inc.

synchronize_cells

Parameters in SpyGlass CDC
synchronize_cells
Specifies cells that are considered as valid synchronizers for scalar source
domain signals for the Synchronizing Cell Synchronization Scheme.

If the cell is soft (contains logic), the domain crossing must occur on a flip-
flop for this method to be recognized.

You can use wildcard characters while specifying cell names. For details,
refer to the Using Regular Expressions and Wildcard Characters topic of the
Atrenta Console User Guide.

NOTE: If the synchronize_cells parameter is defined and the sync_cell
constraint is specified with the -from_clk/to_clk/from_domain/
to_domain arguments, then the sync_cell constraint is honored for the
specific clock/domain pair. For other clock/domain pairs, the
synchronize_cells parameter is honored.
However if the sync_cell -name constraint is used without any argument,
then it is honored by default and the parameter is ignored.

NOTE: This parameter is not applicable for data crossings. It is applicable for control
crossings.

Used by Clock_sync03a, Clock_sync03b, Clock_sync08a,
Clock_sync09, Ac_crossing01, Ac_conv01,
Ac_conv02, Ac_conv03, Ac_conv04, Ac_cdc01a,
Ac_cdc01b, Ac_cdc01c, Ac_cdc08, Ac_sync02,
Ac_sync01, Ac_unsync02, Ac_unsync01,
Ac_coherency06

Options Comma or space-separated list of synchronizer cells
enclosed in double quotes

Default value NULL
Example
Console/Tcl-based usage set_parameter synchronize_cells

"sync1,sync2"

set_parameter synchronize_cells "sy?c2"
set_parameter synchronize_cells "sync*"

Usage in goal/source
files

-synchronize_cells="sync1,sync2"
392
Synopsys, Inc.

synchronize_data_cells

Parameters in SpyGlass CDC
synchronize_data_cells
Specifies the cells that are considered as valid synchronizers for source
domain vector control signals for the Synchronizing Cell Synchronization
Scheme.

If the cell is soft (that is, contains logic), the domain crossing must occur
on a flip-flop for this method to be recognized.

You can use wildcard characters while specifying cell names. For details on
using wildcard characters, refer to the Using Regular Expressions and
Wildcard Characters topic of the Atrenta Console User Guide.

NOTE: This parameter is not applicable for data crossings. It is applicable only for control
crossings.

Used by Clock_sync03a, Clock_sync03b, Clock_sync08a,
Clock_sync09, Ac_crossing01, Ac_conv01,
Ac_conv02, Ac_conv03, Ac_conv04, Ac_cdc01a,
Ac_cdc01b, Ac_cdc01c, Ac_cdc08, Ac_sync02,
Ac_sync01, Ac_unsync02, Ac_unsync01

Options Comma or space-separated list of synchronizer cells
enclosed in double quotes

Default value NULL
Example
Console/Tcl-based usage set_parameter synchronize_data_cells

"sync1,sync2"

set_parameter synchronize_data_cells "sy?c2"
set_parameter synchronize_data_cells "sync*"

Usage in goal/source
files

-synchronize_data_cells="sync1,sync2"
393
Synopsys, Inc.

sync_point_report_limit

Parameters in SpyGlass CDC
sync_point_report_limit
Specifies the maximum number of enable points (to be shown in the
Message-Based Spreadsheet for the Enable Condition Based Flow) at which a
crossing could be synchronized.

Use this parameter during The Enable Expression-Based Synchronization
Analysis.

This parameter is effective when both the following conditions are true:

 The sync_point_selection parameter is set to none.

 The sync_check_type parameter is set to enable_with_qual or
enable_with_des_dom

Used by The Ac_sync_group Rules
Options Integer greater or equal to 2
Default value 5
Example
Console/Tcl-based usage set_parameter sync_point_report_limit 3

Usage in goal/source
files

-sync_point_report_limit=3
394
Synopsys, Inc.

sync_point_selection

Parameters in SpyGlass CDC
sync_point_selection
Specifies the enable signal that should be considered for synchronization in
The Enable Expression-Based Synchronization Analysis.

NOTE: This parameter is effective only when the sync_check_type parameter is set to
enable_with_qual or enable_with_des_dom.

Possible Values of the sync_point_selection Parameter

This parameter accepts the following values:

first

Set this value to consider the first possible enable signal (from source)
where a crossing could be synchronized. For example, consider the
following schematic:

Used by The Ac_sync_group Rules
Options Possible Values of the sync_point_selection

Parameter
Default value first
Example
Console/Tcl-based usage set_parameter sync_point_selection last

Usage in goal/source
files

-sync_point_selection=last

first last none gp_sync all
395
Synopsys, Inc.

sync_point_selection

Parameters in SpyGlass CDC
FIGURE 72.

In the above schematic, en1_out is considered for synchronization.

last

Set this value to consider the last possible enable signal (from source)
where a crossing could be synchronized. For example, consider the
following schematic:

FIGURE 73.

en1_out

en7_out
396
Synopsys, Inc.

sync_point_selection

Parameters in SpyGlass CDC
In the above schematic, en7_out is considered for synchronization.

none

Set this value to consider multiple possible enable signals (from
destination) at which the crossing could be synchronized. To set the
number of such enable signals, use the sync_point_report_limit parameter.

From the multiple enable signals reported, select the enable signal which is
right candidate for synchronization for the crossing. Specify that enable
signal by using the qualifier constraint in the next SpyGlass run to get the
crossing synchronized.

For example, consider the following spreadsheet when the value of the
sync_point_report_limit parameter is set to 3:

FIGURE 74.

In the above spreadsheet, note the value 3 reported in the Enable Count
column. This value indicates three possible enable points (from
destination) where a source can get synchronized. To view the details of
these points, click on 3. This displays the following spreadsheet showing
the details of these points:
397
Synopsys, Inc.

sync_point_selection

Parameters in SpyGlass CDC
FIGURE 75.

gp_sync

This value is equivalent to the none value of this parameter
(sync_point_selection) such that SpyGlass does not report any synchronized
crossing but reports possible enable signals that could synchronize a
crossing.

Specifying this value additionally enables SpyGlass to report crossings as
synchronized (instead of unsynchronized) in which an enable signal merges
with the source at the gate specified by the glitch_protect_cell parameter.

For example, consider the design shown in the following figure:
398
Synopsys, Inc.

sync_point_selection

Parameters in SpyGlass CDC
FIGURE 76.

For the above design, the Ac_unsync01 rule reports an unsynchronized
crossing when the sync_point_selection parameter is set to none. In this
case, this rule generates the following spreadsheets showing the possible
enable signal that could synchronize the crossing:
399
Synopsys, Inc.

sync_point_selection

Parameters in SpyGlass CDC
FIGURE 77. Spreadsheets of unsynchronized crossings when sync_point_selection
is set to none

To report the crossing shown in Figure 76 as synchronized, set the
sync_point_selection parameter is set to gp_sync. The following figure
shows the spreadsheet generated by the Ac_sync01 rule reporting
synchronized crossing in this case:

FIGURE 78. Spreadsheet of synchronized crossing when sync_point_selection is
set to gp_sync

Click this link to open another spreadsheet
showing possible enable signal, as shown
below:
400
Synopsys, Inc.

sync_point_selection

Parameters in SpyGlass CDC
all

This value is used only in the Hybrid CDC flow and the effective bus
verification flow. Use this parameter to list the complete enable expression
in the above two flows.

Note that the effective bus verification flow is enabled when you use the
cdc_effective_bus_verif parameter.
401
Synopsys, Inc.

sync_reset

Parameters in SpyGlass CDC
sync_reset
Allows a synchronous reset to be used for destination domain flip-flops
including the synchronizer flip-flops. As a result, maximum of one gate of
the type AND/NAND/OR/NOR is allowed at the crossing and between the
flip-flops of a multi-flop synchronizer.

If same synchronous resets are not used in the destination domain
flip-flops including synchronizer flip-flops, capture such cases by setting
the same_sync_reset parameter to yes.

By default, no gates are allowed in the data transfer path between the
flip-flops at clock domain crossings or the data paths around synchronizing
flip-flops.

NOTE: It is recommended that you specify a synchronous reset using the reset constraint
with -sync argument (reset –sync) instead of using the sync_reset
parameter. This is because this parameter allows any single combinational gate that
might not be a synchronous reset gate.

Used by Clock_sync03a, Clock_sync03b, Clock_sync08a,
Clock_sync09, Ac_crossing01, Ac_conv01,
Ac_conv02, Ac_conv03, Ac_conv04, Ac_cdc01a,
Ac_cdc01b, Ac_cdc01c, Ac_cdc08, Ac_sync02,
Ac_sync01, Ac_unsync02, Ac_unsync01,
Ac_coherency06, Ar_resetcross01

Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter sync_reset yes

Usage in goal/source
files

-sync_reset=yes
402
Synopsys, Inc.

thru_reset_synchronizer

Parameters in SpyGlass CDC
thru_reset_synchronizer
Specifies if the Reset_check07 rule reports a violation for reset
synchronizers that are driven by a combinational logic or mux.

Set this parameter to no so that the Reset_check07 rule does not report
violations for any reset synchronizers that are driven by a combinational
logic or mux.

Used by Reset_check07
Options yes, no
Default value yes
Example
Console/Tcl-based usage set_parameter thru_reset_synchronizer no

Usage in goal/source
files

-thru_reset_synchronizer=no
403
Synopsys, Inc.

unexpected_ckcells_file

Parameters in SpyGlass CDC
unexpected_ckcells_file
Specifies the name of the file containing the list of cells that are not
allowed in the clock trees checked by the Clock_check06a rule.

Specifying the List of Disallowed Cells

Create an ASCII file containing the names of disallowed cells (one name in
each line) and specify it with the unexpected_ckcells_file
parameter.

In the ASCII file:
 You can use Perl regular expressions to specify the names of multiple

cells. For example, to refer to cells cell1, cell2, cell3, and
cell4, you can specify cell.*.

 You can use // style or # style comments.

Used by Clock_check06a
Options Comma or space-separated list of file names
Default value NULL
Example
Console/Tcl-based usage set_parameter unexpected_ckcells_file

"cells1.list,cells2.list"

Usage in goal/source
files

-
unexpected_ckcells_file=cells1.list,cells2.l
ist
404
Synopsys, Inc.

unex_reset_gate_list

Parameters in SpyGlass CDC
unex_reset_gate_list
Specifies a list of disallowed cell names on a reset net.

The disallowed cell names should be given as they appear in schematic. For
netlist designs, specify the cell names as mentioned in the .lib files. For
black boxes, specify the name of black box master module.

NOTE: The Reset_check09 rule checks for any cells with the XOR, XNOR, AND, and NAND
functions even if you specify the list of disallowed gates. Checking for these cell
types cannot be disabled.

Used by Reset_check09
Options Comma or space-separated list of disallowed cell

names
Default value NULL
Example
Console/Tcl-based usage set_parameter unex_reset_gate_list

"RTL_AND,RTL_NOT"

Usage in goal/source
files

-unex_reset_gate_list=RTL_AND,RTL_NOT
405
Synopsys, Inc.

user_group_str

Parameters in SpyGlass CDC
user_group_str
Specifies a comma or space-separated list of strings based on which the
messages of The Ac_sync_group Rules are grouped. For details on this type
of grouping, see User-Specified String-Based Grouping.

NOTE: Strings specified in this parameter are case-sensitive. Therefore, specifying
user_group_str=cfg will not match the strings, such as Cfg and CFG.

Used by The Ac_sync_group Rules

Options Comma or space-separated list of strings
Default value ""
Example
Console/Tcl-based usage set_parameter user_group_str cfg

Usage in goal/source
files

-user_group_str=cfg
406
Synopsys, Inc.

use_inferred_clocks

Parameters in SpyGlass CDC
use_inferred_clocks
Specifies whether SpyGlass CDC solution rules should use auto-generated
clock information (generated by the Clock_info01 rule) in addition to any
user-defined clocks (specified using the clock constraint in a .sgdc file).

Setting use_inferred_clocks to yes

When you set this parameter to yes, SpyGlass CDC infers clock candidates
by going backward from the clock pins of sequential elements.

However, if a combinational logic is present in the clock path, all its inputs
may be considered as the clock candidates and using them in analysis may
produce faulty results. Therefore, it is not recommended that you use this
parameter.

If you do not know the clocks in your design, find the clocks by using the
methodology described in the SpyGlass CDC Methodology User Guide.

Used by Clock_info03a, Clock_info03c, Clock_info05,
Clock_info05a, Clock_info06, Clock_info07,
Clock_info14, Clock_info16, Propagate_Clocks,
Clock_sync03a, Clock_sync03b, Clock_sync05,
Clock_sync06, Clock_sync08a, Clock_sync09,
Reset_sync01, Reset_sync02, Reset_sync03,
Reset_sync04, Reset_check07, DeltaDelay01,
DeltaDelay02, Clock_check02, Clock_check03,
Clock_check04, Clock_check05, Clock_check06a,
Clock_check06b, Clock_check07, Clock_glitch01,
Clock_glitch02, Clock_glitch03, Clock_Reset_info01,
Clock_converge01, Ac_conv01, Ac_conv02,
Ac_conv03, Clock_info05b, Clock_Reset_check01,
Clock_Reset_check01, Clock_info02, Clock_info03a,
Ac_sync02, Ac_sync01, Ac_unsync02, Ac_unsync01,
Ac_xclock01, Setup_quasi_static01, Clock_hier01,
Clock_hier02, Clock_hier03,
SGDC_clock_path_wrapper_module01,
Ac_coherency06, Ar_resetcross01

Options yes, no
Default value no
Example
407
Synopsys, Inc.

use_inferred_clocks

Parameters in SpyGlass CDC
Console/Tcl-based usage set_parameter use_inferred_clocks yes

Usage in goal/source
files

-use_inferred_clocks=yes
408
Synopsys, Inc.

use_inferred_resets

Parameters in SpyGlass CDC
use_inferred_resets
By default, the use_inferred_resets parameter is not set.

Set the parameter to yes to specify that the other reset rules should use
the auto-generated reset information in addition to any user-defined resets
(specified using the reset constraint in a .sgdc file).

Used by Propagate_Resets, Reset_info02, Reset_sync01,
Reset_sync03, Reset_sync04, Reset_check03,
Reset_check04, Reset_check06, Reset_check07,
Reset_check10, Reset_check11, Ac_cdc01a,
Ac_cdc01b, Ac_cdc01c, Ac_cdc08, Ac_conv02,
Ar_sync01, Ar_unsync01, Ar_asyncdeassert01,
Ar_syncdeassert01, Reset_sync01, Ar_resetcross01

Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter use_inferred_resets yes

Usage in goal/source
files

-use_inferred_resets=yes
409
Synopsys, Inc.

validate_reduce_pessimism

Parameters in SpyGlass CDC
validate_reduce_pessimism
Configures the Ac_abstract_validation01 and SGDC_virtualclock_validation01
rules to ignore reporting on the block ports that are hanging, or have a
constant or quasi static signal reaching on them.

Specify any of the following values to this parameter:

Value Description
hanging_net No Clocks Mismatch, Clock Domain Mismatch,

Reset Mismatch, Data Path Domain Mismatch,
or Qualifier Mismatch checks are performed on
the hanging block ports.

constant No Clocks Mismatch, Clock Domain Mismatch,
Reset Mismatch, Data Path Domain Mismatch,
or Qualifier Mismatch checks are performed on
block ports that are receiving a constant
signal.

quasi_static No Clocks Mismatch, Clock Domain Mismatch,
Reset Mismatch, Data Path Domain Mismatch,
or Qualifier Mismatch checks are performed on
block ports that are receiving quasi static
signal.

ignore_domain_overconstraint No Data Path Domain Mismatch is reported
when all the top-level domains reaching to the
block-level port gets mapped to the block level
abstract_port constraint specified on that port,
but there are some extra unmapped block-
level abstract_port constraints remaining on
block port.
For details, see Example 2.

none All validation checks are performed.
all No Clocks Mismatch, Clock Domain Mismatch,

Reset Mismatch, Data Path Domain Mismatch,
or Qualifier Mismatch checks are performed on
block ports that are hanging or are receiving
constant or quasi static signal.
410
Synopsys, Inc.

validate_reduce_pessimism

Parameters in SpyGlass CDC
Example 1

Consider the following figure:

FIGURE 79. Example of the validate_reduce_pessimism parameter

For the above example, consider that the
validate_reduce_pessimism parameter is set as:

validate_reduce_pessimism hanging_net,quasi_static

In this case, the Ac_abstract_validation01 rule does not report Data Path
Domain Mismatch for in1 (hanging port) and in2 (quasi static signal
reaching on it).

However, the Ac_abstract_validation01 rule will report Quasi Static Mismatch
for the in2 net.

Example 2

Consider the following figure in which two abstract_port constraints with the
clk1 and clk2 clocks are defined on the p1 abstract-block port:

block

top

clk

in1

// block SGDC:
abstract_port ports in1 -clock clk
abstract_port ports in2 -clock cl

in2

quasi static net
411
Synopsys, Inc.

validate_reduce_pessimism

Parameters in SpyGlass CDC
FIGURE 80.

In the above figure, p1 receives the signal of the clk1 domain that
matches with the following abstract_port constraint on p1:

abstract_port -port p1 -clock clk1 -scope cdc

Therefore, all the top-level domains get mapped to the block-level
constraints. However, the following extra abstract_port constraint is present
at the block level:

abstract_port -port p1 -clock clk2 -scope cdc

Therefore, Data Path Domain Mismatch violation is reported for clk2.

To suppress the violation, set the validate_reduce_pessimism
parameter to ignore_domain_overconstraint.

Used by Ac_abstract_validation01 and
SGDC_virtualclock_validation01

Options hanging_net, constant, quasi_static, none, all
Default value none
Default Value in
GuideWare2.0

all

Example

mod1clk1

p1

abstract_port -ports P1 -module mod1 -clock clk1 -scope cdc
abstract_port -ports P1 -module mod1 -clock clk2 -scope cdc

Top-level clock clk1
reching the abstract-block port p1
412
Synopsys, Inc.

validate_reduce_pessimism

Parameters in SpyGlass CDC
Console/Tcl-based usage set_parameter validate_reduce_pessimism
constant

Usage in goal/source
files

-validate_reduce_pessimism=constant
413
Synopsys, Inc.

valid_enable_type

Parameters in SpyGlass CDC
valid_enable_type
NOTE: This parameter is deprecated. Use the sync_check_type parameter instead of this

parameter.

Specifies the signal that should be considered as a valid enable in The
Enable Expression-Based Synchronization Analysis.

By default, a qualifier is considered as a valid enable. Set this parameter to
dest to consider a destination as a valid enable.

NOTE: This parameter works only when the enable_condition_based_sync parameter is set
to yes.

Used by The Ac_sync_group Rules
Options dest, qual
Default value qual
Example
Console/Tcl-based usage set_parameter valid_enable_type dest

Usage in goal/source
files

-valid_enable_type=dest
414
Synopsys, Inc.

Tcl Commands in
SpyGlass CDC
The following Tcl commands are pertaining to SpyGlass CDC:

Command Description
get_cdc Creates a list of clock domain crossings (in the current

design) that match certain criteria
get_cdc_coherency Returns the collection of Ac_conv issues based on field

values
get_cdc_glitch Creates a collection of clock domain crossings (in the

current design) that may have glitches and match
certain criteria

get_paths Reports complete paths between the specified start and
end points

report_cdc Reports clock domain crossing details
report_cdc_coherency Displays the collection of coherency/convergence issues

reported by the get_cdc_coherency Tcl command
report_cdc_glitch Reports clock domain crossing with glitches
report_paths Reports elements in a defined path in the current

design
415
Synopsys, Inc.

Tcl Commands in SpyGlass CDC
416
Synopsys, Inc.

Clock Domain Crossing
Synchronization
Schemes
A synchronization scheme is a method to synchronize a clock-domain
crossing in a design.

The following synchronization schemes are considered by SpyGlass CDC:

Synchronization scheme Crossings that are considered as synchronized
Conventional Multi-Flop
Synchronization Scheme

Where flip-flops are in a synchronization flip-flops
arrangement

Synchronizing Cell Synchronization
Scheme

Where the destination object is an instance of a
synchronizing cell specified by the sync_cell constraint,
synchronize_cells parameter, or
synchronize_data_cells parameter

Synchronized Enable Synchronization
Scheme

Where the first flip-flop in the destination clock domain
is enabled by a signal synchronized to the destination
clock, and the clock crossing is in the data path.

Recirculation MUX Synchronization
Scheme

Where the first flip-flop in the destination clock domain
is driven by a MUX.

MUX-Select Sync (Without
Recirculation) Synchronization Scheme

Similar to the Recirculation MUX Synchronization
Scheme, but the MUX is not a recirculation MUX

Delay Signals Synchronization Scheme Where the crossing is in the fan-out of the signals
specified by the quasi_static constraint.

AND Gate Synchronization Scheme Where AND gates exist in the data path of the crossing
417
Synopsys, Inc.

Clock Domain Crossing Synchronization Schemes
Glitch Protection Cell Synchronization
Scheme

Where the first flip-flop in the destination domain is
driven by the instance of a glitch protection cell and an
input pin of the cell is synchronized by synchronizer
flip-flops

Clock-Gating Cell Synchronization
Scheme

Where the clock path of the flip-flop has a clock-gating
cell and an input pin of the cell is synchronized

Qualifier Synchronization Scheme Where a valid qualifier specified by the qualifier
constraint reaches the source or destination of the
crossing depending on its type

Qualifier Synchronization Scheme
Using qualifier -crossing

Where the qualifier -crossing constraint is specified on
the crossing output

Synchronization scheme Crossings that are considered as synchronized
418
Synopsys, Inc.

Conventional Multi-Flop Synchronization Scheme

Clock Domain Crossing Synchronization Schemes
Conventional Multi-Flop Synchronization
Scheme

This scheme marks those clock crossings as synchronized where flip-flops
are in a synchronization flip-flops arrangement. You can set the number of
flip-flops in the synchronization chain by using the num_flops constraint. For
details, see Controlling the Number of Flip-Flops in a Synchronizer Chain.

The following figure shows the example of this scheme:

FIGURE 1. Conventional Multi-flop Synchronization Scheme

In the above scheme, the destination object can also be a latch.

To disable this scheme, set the enable_multiflop_sync parameter to no.

The following table shows how you can customize this scheme by using
SpyGlass-CDC parameters and constraints:

clk2
clk1

Clock domain crossing

 ignore_num_rtl_buf_invs parameter applicable here.
reset constraint with -sync option applicable here.
 strict_sync_check parameter applicable here.
 allow_combo_logic constraint applicable here.
 num_flops constraint applicable here.

419
Synopsys, Inc.

Conventional Multi-Flop Synchronization Scheme

Clock Domain Crossing Synchronization Schemes
Parameter / Constraint Customizing the scheme

num_flops constraint By default, this scheme marks those clock crossings
as synchronized where two flip-flops are in a
synchronization flip-flops arrangement.
Use the num_flops constraint to specify a different
number. For details, see Controlling the Number of
Flip-Flops in a Synchronizer Chain.

allow_combo_logic
constraint

By default, this scheme reports clock crossings with
combinational logic in the data transfer path
between flip-flops at clock domain crossing as
unsynchronized.
Use the allow_combo_logic constraint to ignore
combinational logic. Transparent latches (enabled
latch) are also considered as combinational
elements.

output_not_used
constraint

By default, the two-flip-flop synchronization
strategy fails in the following cases:
• If the output of a flip-flop in the synchronization

chain is connected to a primary output (ignoring
buffers and inverters).
Use output_not_used to specify the name of the
primary output port so that the connection is
ignored while checking for synchronization.

• If the output of the destination flip-flop has more
than one fan-out.
However, this scheme allows multiple fan-outs
when a fan-out is blocked or when a fan-out is
connected to a primary output port and that port
is specified using output_not_used constraint.-
420
Synopsys, Inc.

Conventional Multi-Flop Synchronization Scheme

Clock Domain Crossing Synchronization Schemes
allow_half_sync
parameter

Unset the allow_half_sync parameter (that is, set to
no) to ignore half synchronizers.
By default, this scheme allows half synchronizers as
valid synchronizers.

strict_double_flop
parameter

Set the strict_double_flop parameter to mark only
those clock crossings as synchronized where
another flip-flop exists between the source flip-flop
and the destination flip-flop and its clock signal is
the inverse of the source flip-flop’s clock signal.
This scheme requires that all objects at the clock
crossings must be flip-flops except the source object
that can be a black box instance if the
strict_double_flop parameter is not specified.

Parameter / Constraint Customizing the scheme
421
Synopsys, Inc.

Controlling the Number of Flip-Flops in a Synchronizer
Chain

Clock Domain Crossing Synchronization Schemes
Controlling the Number of Flip-Flops in a
Synchronizer Chain

Consider the following figure:

FIGURE 2. Controlling the number of flip-flops in a synchronizer chain

In the above scenario, the number of flip-flops allowed in the synchronizer
chain is 3 as the value of the num_flops constraint is 3. Therefore, f1, f2,
and f3 are considered the part of the synchronizer chain, and the
structure in the blue dotted line in the above figure is considered as a
qualifier.

In this case, the f4 and f5 flip-flops are the part of post synchronization
flip-flop chain, and are overall considered as a part of the synchronization
flip-flop chain of this multi-flop synchronous qualifier.

c2
c1 c2

qualifier

c1

f1 f2 f3 f4 f5

num_flop -from_clk c1 -to_clk c2 -value 3

Synchronizer chain
 post synchronization
flip-flop chain
422
Synopsys, Inc.

Synchronizing Cell Synchronization Scheme

Clock Domain Crossing Synchronization Schemes
Synchronizing Cell Synchronization Scheme
This scheme marks those clock crossings as synchronized in which the
destination object is an instance of a synchronizing cell specified by any of
the following:
 The sync_cell constraint

 The synchronize_cells parameter
Use this parameter to specify control synchronization cells for scalar
control crossings, that is crossings in which the destination signal is
described with no bus index or range.

 The synchronize_data_cells parameter
Use this parameter to specify data synchronizer cells for vector control
crossings, that is crossings in which the destination signal is described
with a bus index or range.

The following figure shows the crossing synchronized by this scheme:

FIGURE 3. Synchronizing Cell Synchronization Scheme

In this scheme:
 The source object should be a flip-flop or a black box instance

clk2clk1

Clock domain crossing

Sync Cell
instance

 strict_sync_check parameter applicable here.
 allow_combo_logic constraint applicable here.

423
Synopsys, Inc.

Synchronizing Cell Synchronization Scheme

Clock Domain Crossing Synchronization Schemes
 The destination object should be any of the following:

 A design unit instance (soft instance)
That is, a design object can be a cell instance that contains a
functional description.

 A black box instance (hard instance)
That is, a design object can be a cell instance that contains no
functional description.

This distinction is significant because unlike hard instances, soft
instances specified by using the sync_cell constraint or by using the
synchronize_cells or synchronize_data_cells parameters must be
determined to describe a flip-flop for each destination bit. Otherwise,
the control crossing is not considered as synchronized by this scheme.
424
Synopsys, Inc.

Synchronized Enable Synchronization Scheme

Clock Domain Crossing Synchronization Schemes
Synchronized Enable Synchronization Scheme
This scheme marks those clock crossings as synchronized where the first
flip-flop in the destination clock domain is enabled by a signal synchronized
to the destination clock and the clock crossing is in the data path.

The clock domain crossing is marked as synchronized if either of the
following conditions is met:
 The enable pin is driven by a signal synchronized to the destination

clock domain.
 A valid synchronizer exists in any one of the paths driving the enable pin

and signals in all other paths are driven either by primary ports or
destination clock domain flip-flops and there is no unsynchronized
crossing in any of the paths.
425
Synopsys, Inc.

Synchronized Enable Synchronization Scheme

Clock Domain Crossing Synchronization Schemes
FIGURE 4. Synchronization Through Common Enable Scheme

This scheme allows the source object to be a flip-flop or a black box
instance. All other objects must be flip-flops.

This scheme also allows transparent latches between the enable
synchronizer and the destination flip-flop enable.

This scheme also considers a clock crossing to be synchronized if:
 The enable pin of the destination flip-flop is driven by nets coming from

the same clock domain as the destination flip-flop when the
enable_mux_dest_domain parameter is set.

clk2

clk1

enable

 ignore_num_rtl_buf_invs parameter applicable here.
 sync_reset parameter applicable here.
 strict_sync_check parameter applicable here
 allow_combo_logic constraint applicable here

clk1

426
Synopsys, Inc.

Synchronized Enable Synchronization Scheme

Clock Domain Crossing Synchronization Schemes
 The enable pin of the destination flip-flop is driven by an instance of a
synchronizer cell specified using the enable_sync_cell parameter.

By default, this scheme is always run. Unset the enable_sync parameter to
disable this scheme.
427
Synopsys, Inc.

Recirculation MUX Synchronization Scheme

Clock Domain Crossing Synchronization Schemes
Recirculation MUX Synchronization Scheme
This scheme marks those clock crossings as synchronized where the first
flip-flop in the destination clock domain is driven by a MUX. The clock
domain crossing happens through one of the MUX input pins and the other
MUX input pin is driven by the destination flip-flop output.

The clock domain crossing is marked as synchronized if either of the
following conditions is met:
 The MUX select pin is driven by a signal synchronized to the destination

clock domain.
 A valid synchronizer exists in any one of the paths driving the MUX

select pin and signals in all other paths are driven either by primary
ports or the destination clock domain flip-flops and there is no
unsynchronized crossing in any of the paths.
428
Synopsys, Inc.

Recirculation MUX Synchronization Scheme

Clock Domain Crossing Synchronization Schemes
FIGURE 5. Synchronization Through Common Select Scheme

This scheme allows the source object to be a flip-flop or a black box
instance. All other objects must be flip-flops.

This scheme also allows transparent latches between the select pin
synchronizer and the select pin of MUX.

By default, this scheme is always run. Use the enable_mux_sync parameter
to disable this scheme.

Set the enable_mux_dest_domain parameter to consider those clock
crossings as synchronized where the first flip-flop in the destination clock

clk2

clk1

Clock domain crossing

 ignore_num_rtl_buf_invs parameter applicable here.
 sync_reset parameter applicable here.
 strict_sync_check parameter applicable here
 allow_combo_logic constraint applicable here

clk1

w
429
Synopsys, Inc.

Recirculation MUX Synchronization Scheme

Clock Domain Crossing Synchronization Schemes
domain is driven by a MUX where the select signal belongs to the
destination domain (that is, driven by a flip-flop of the destination
domain).

This scheme also considers a clock crossing to be synchronized if the select
pin of MUX is driven by an instance of a synchronizer cell specified using
the enable_sync_cell parameter.

This scheme rule should be run when the corresponding synchronization
strategy is acceptable.
430
Synopsys, Inc.

MUX-Select Sync (Without Recirculation) Synchronization Scheme

Clock Domain Crossing Synchronization Schemes
MUX-Select Sync (Without Recirculation)
Synchronization Scheme

This scheme is the same as the Recirculation MUX Synchronization Scheme
except for the following differences:
 The MUX need not be a recirculation MUX.

 All select signals of the MUX must be individually synchronized in the
destination domain.

 At least one data line of the MUX should be free of source and that data
line should be either coming from a destination domain or should be tied
to a constant or supply. See Figure 6.
To restrict this behavior by allowing only destination domain and not
allowing a constant or supply, set the enable_mux_sync parameter to
strict.

The following figure shows the example of a crossing synchronized by this
scheme:
431
Synopsys, Inc.

MUX-Select Sync (Without Recirculation) Synchronization
Scheme

Clock Domain Crossing Synchronization Schemes
FIGURE 6. MUX-Select Sync (Without Recirculation) Synchronization Scheme

This scheme allows transparent latches between the select pin
synchronizer and the select pin of MUX.

By default, this scheme is not run. Set the enable_mux_sync parameter to
mux_select, strict, or all to run this scheme.

clk2

clk1

Clock domain crossing

clk1

w

clk2
432
Synopsys, Inc.

Delay Signals Synchronization Scheme

Clock Domain Crossing Synchronization Schemes
Delay Signals Synchronization Scheme
This scheme marks those clock crossings as synchronized that are in the
fan-out of signals specified by using the quasi_static keyword in a design
constraints file.

FIGURE 7. Synchronization of Long Delay Signals Scheme

This scheme allows the source object and destination object to be a flip-
flop or a black box instance.

This scheme is run only when you supply a valid quasi_static
constraint in a design constraints file.

NOTE: The common parameters are not applicable for this scheme.

clk1 clk2

Clock Domain Crossing

L
o
n
g

433
Synopsys, Inc.

AND Gate Synchronization Scheme

Clock Domain Crossing Synchronization Schemes
AND Gate Synchronization Scheme
The AND Gate Synchronization Scheme checks for synchronization at AND
gates in the data path of a clock domain crossing.

FIGURE 8. AND Gate Synchronization Scheme

This scheme marks those clock crossings as synchronized where:
 The first flip-flop in the destination domain is directly driven by an AND

gate.
 The other input (input pin not connected to source flip-flop) of the AND

gate is synchronized by synchronizer flip-flops in the destination domain
clock or any destination domain signal without synchronizer if
enable_mux_dest_domain parameter is set to yes.

This scheme allows combinational logic between the synchronizer and the
input pin of the AND gate in data path. In this case, the fan-in cone of the
combinational logic should be coming either from the destination domain or

clk2clk1

Clock domain crossing

clk1 clk2 clk2
434
Synopsys, Inc.

AND Gate Synchronization Scheme

Clock Domain Crossing Synchronization Schemes
from the primary ports. Transparent latches (enabled latch) are also
considered as combinational elements.

This synchronization scheme is enabled by the enable_and_sync parameter.
435
Synopsys, Inc.

Glitch Protection Cell Synchronization Scheme

Clock Domain Crossing Synchronization Schemes
Glitch Protection Cell Synchronization Scheme
The Glitch Protection Cell Synchronization Scheme marks those clock
domain crossings as synchronized where:
 The first flip-flop in the destination domain is driven by an instance of a

glitch protection cell (specified using the glitch_protect_cell parameter)
 The other input (input pin not connected to source flip-flop) of the glitch

protection cell instance is synchronized by the synchronizer flip-flops in
the destination domain clock or any destination domain signal without
synchronizer if enable_mux_dest_domain parameter is set to yes.

FIGURE 9. Glitch Protection Cell Synchronization Scheme

This scheme allows combinational logic between the synchronizer and the
input pin of the glitch protection cell instance in data path. However, there
should be no other glitch protection cell instance between the glitch
protection cell connected to the synchronizer and the destination flip-flop.
Transparent latches (enabled latch) are also considered as combinational
elements.

clk2clk1

Clock domain crossing

clk1 clk2 clk2

Glitch
Protection
CellEN
436
Synopsys, Inc.

Glitch Protection Cell Synchronization Scheme

Clock Domain Crossing Synchronization Schemes
This scheme runs only when you specify the glitch_protect_cell parameter
with valid value.

The scheme supports the input and set_case_analysis constraints.
437
Synopsys, Inc.

Clock-Gating Cell Synchronization Scheme

Clock Domain Crossing Synchronization Schemes
Clock-Gating Cell Synchronization Scheme
The Clock-Gating Cell Synchronization Scheme marks those clock domain
crossings as synchronized where:
 The clock path of the destination flip-flop has a clock-gating cell, and

 The other input (input pin not connected to clock) of the clock-gating
cell instance is synchronized or is coming from destination domain
signals, if enable_mux_dest_domain parameter is set to yes.

FIGURE 10. Clock-Gating Cell Synchronization Scheme

This scheme allows combinational logic between the synchronizer and the
input pin of the clock-gating cell instance in the clock path. There should be
no other combinational gate between the clock-gating cell instance and the
clock pin of the destination flip-flop. Transparent latches (enabled latch)
are also considered as combinational elements.

The clock-gating cells are identified in any of the following three ways:
 A clock-gating cell instantiated from a .lib file has an attribute,

clock_gating_integrated_cell.

clk1

clk1 clk2 clk2

clk2 Clock-
Gating
CellEN
438
Synopsys, Inc.

Clock-Gating Cell Synchronization Scheme

Clock Domain Crossing Synchronization Schemes
 Clock-gating cell names are specified with the clock_gate_cell parameter.

 Clock-gating structures are automatically identified from the RTL.
SpyGlass identifies the following structures at RTL:
 CGLP structure (Positive edge triggered clock-gating), as shown

below:

FIGURE 11. CGLP Structure

 CGLN structure (Negative edge triggered clock-gating), as shown
below:

FIGURE 12. CGLN Structure

Output of the latch may also have an extra OR gate for scan-enable. Such
a structure will also be recognized.

This synchronization scheme is enabled by the enable_clock_gate_sync
parameter.
439
Synopsys, Inc.

Qualifier Synchronization Scheme

Clock Domain Crossing Synchronization Schemes
Qualifier Synchronization Scheme
The Qualifier Synchronization Scheme marks those clock domain crossings
as synchronized where a valid qualifier specified by the qualifier constraint
reaches the source or destination of the crossing depending on its type.

A valid qualifier can be:
 A primary port.

 Output of a black box.

 Output of a sequential element belonging to source domains if the type
specified in the qualifier constraint is src.

 Output of a sequential element belonging to destination domains if the
type specified in the qualifier constraint is des.

 Output of a combinational element that has only source or destination
domains in the fan-in cone, depending on the type of the qualifier

This scheme helps in reducing false violations by providing qualifiers that
may not be automatically identified. It is checked after checking all the
other synchronization schemes.

The following figure shows the crossing synchronized by this scheme:

FIGURE 13. Qualifier Synchronization Scheme

If a qualifier reaches the pin of a source or destination instance other than
preset/clear, that crossing is considered as synchronized by this scheme.

The instance where a qualifier reaches should be a sequential element or
an output port. If the instance is a black box, this scheme ignores it.
However, this scheme considers cases where a qualifier reaches a
440
Synopsys, Inc.

Qualifier Synchronization Scheme

Clock Domain Crossing Synchronization Schemes
destination flip-flop instance and source is a black box or vice-versa.

Design Areas where a Qualifier is Not Propagated

A qualifier propagates forward in the design to trace crossings. Propagation
stops at the following design areas:
 At source or destination flip-flops of clock-domain crossings

 At the output of a sequential element belonging to a domain other than
source if the type specified in the qualifier constraint is src

 At the output of a sequential element belonging to a domain other than
destination if the type specified in the qualifier constraint is des

 At blocked paths

 At black boxes specified without assume_path

 At memories

 At the reset pin of sequential elements

Crossings with Qualifier Specified for Strict Checking

If you specify the -strict option of the qualifier constraint for a qualifier,
the constraint behavior will be different from the default behavior of this
scheme.
 It requires enable, recirculation, AND-based logic, GP cell, and clock

gate cell controlled by qualifier; no other logic will be accepted.
Use the enable_and_sync, enable_mux_sync, enable_clock_gate_sync,
enable_sync, and glitch_protect_cell parameters to enable/disable
particular schemes.

 If the qualifier is output of destination flip-flop or synchronizer output of
a crossing, then it would match the source instance domain with
-from_clk/-from_domain specified in qualifier constraint.
441
Synopsys, Inc.

Qualifier Synchronization Scheme Using qualifier -cross-
ing

Clock Domain Crossing Synchronization Schemes
Qualifier Synchronization Scheme Using
qualifier -crossing

Consider that you use a qualifier specified by the qualifier -crossing
constraint on a crossing output. In this case, the crossing is considered as
synchronized.

For example, consider the following figure:

FIGURE 14. Qualifier Synchronization Scheme Using qualifier -crossing

In the above figure, the crossing is considered as synchronized when the
-crossing argument of the qualifier constraint has been specified.

Synchronized crossing
442
Synopsys, Inc.

Using the Clock Setup
Window
The clock setup information refers to the information related to Clock
Sources Section of the Clock Setup Window and Clock Cones Section of the Clock
Setup Window in a design. Viewing this information enables you to
understand the clock architecture of your design.

To view the clock setup information, double-click on the violation of the
Setup_clock01 rule. The SpyGlass Clock Setup window appears showing the
clock setup information.

The following figure shows the SpyGlass Clock Setup window:
443
Synopsys, Inc.

Using the Clock Setup Window
FIGURE 1. The Clock Setup Window

In the above window, when you click on a clock in the Clock Sources Section
of the Clock Setup Window view, its corresponding clock cones appear in the
Clock Cones Section of the Clock Setup Window view. Similarly, when you select
a clock cone in the Clock Cones Section of the Clock Setup Window view, the
clocks of the selected cone appear in the Clock Sources Section of the Clock
Setup Window view.
444
Synopsys, Inc.

Viewing the Clock Setup Information

Using the Clock Setup Window
Viewing the Clock Setup Information
The clock setup information in The Clock Setup Window is divided in the
following sections:
 Clock Sources Section of the Clock Setup Window

 Clock Cones Section of the Clock Setup Window

Clock Sources Section of the Clock Setup Window

The Clock Sources view shows information about clocks in a design. This
information is categorized under the following fields:

Field Description
Clock Specifies the clock name.
Domain Specifies the name of the clock domain.

If the domain name is not specified in the clock constraint,
the domain name is the same as the clock name.
If the domain name is not specified for a virtual clock,
sg_virtual string gets appended to the domain name.

In this field, when you click on a domain name, the button
appears. Click this button to view all domain names in a
drop-down list.

Period Displays the clock period (in nanoseconds) if the period is
specified in the clock constraint.

Edge Displays the edge list specified by the clock constraint.
Clock Type Displays the clock type, such as Primary, Black box, derived,

and virtual.
If the clock type is Black box, you can set constraints, such
as assume_path and abstract_port on it.
To set constraints, click on Black box to display the
Constraints Editor window.

Clock Cones Displays the number of clock cones associated with the
source clock.
When you click the clock cone number, the clock cones
associated with the source clock appears in the Clock Cones
Section of the Clock Setup Window window.
445
Synopsys, Inc.

Viewing the Clock Setup Information

Using the Clock Setup Window
Clock Cones Section of the Clock Setup Window

The Clock Cones view displays information about the clock cones present in
a design. This view appears when you double-click a clock in the Clock
Sources Section of the Clock Setup Window view.

The Clock Cones view contains information under the following fields:

Mux Selects Displays the count of select pins of all muxes that lie in the
clock path.
When you click the mux-select number, the mux selects
associated with the source clock appear in the Mux Selects
window. These mux selects are determined based on the
value specified by the sel_case_analysis_mode parameter.

Latch/Flop Specifies if the clock is driving flip-flops, latches, or both.
Possible values appearing in this field are latch, flop, all, and
none.

Source Displays the SGDC/SDC file containing the clock.
When you click the file name, the line of the source code in
the SGDC/SDC file containing the clock is highlighted in the
HDL window.
However, if the clock is inferred automatically, the text Auto-
Inferred appears in this field.

DFT mode Displays a drop-down list showing the testclock and atspeed
options.
Based on the value selected in this list, SpyGlass adds either
of the following arguments to the clock constraint while
generating SGDC:
-testclock
-testclock -atspeed

Additional Option Enables you to specify additional options, such as -fflimit and
value to the clock constraint.

Field Description
446
Synopsys, Inc.

Viewing the Clock Setup Information

Using the Clock Setup Window
Field Description
Clock Cone Shows the name of the clock cone associated with the clock

selected in the Clock Sources Section of the Clock Setup Window
view.

Num Flops Shows the number of flip-flops (F)/ latches (L)/ black boxes (B),
or sequential cells (C) connected to the clock cone.

Source clocks Shows the number of source clocks associated with the clock
cone.
When you click on a value in this field, the source clocks appear
in the Clock Sources Section of the Clock Setup Window view.

Mux Select Shows the count of select pins of all muxes that lie in the fan-in
cone of the clock cone node.
When you click a value in this field, the mux selects associated
with the clock cone appear in the Mux Selects window
447
Synopsys, Inc.

Adding Clocks in the Clock Setup Window

Using the Clock Setup Window
Adding Clocks in the Clock Setup Window
A design may contain elements for which no clock is defined.

To define clocks on such elements using The Clock Setup Window, select the
File > Add Clocks menu option in this window or click on the tool bar of
this window.

The Add Clocks dialog appears in which you specify details, such as name
of the clock, domain, and clock period.
448
Synopsys, Inc.

Generating SGDC Files From the Clock Setup Window

Using the Clock Setup Window
Generating SGDC Files From the Clock Setup
Window

To generate an SGDC file containing the clock constraints for the clocks in
The Clock Setup Window, perform any of the following actions in this window:
 Select the File > Save As SGDC menu option.

 Click the Save As SGDC link in the tool bar.

On performing the above actions, a dialog appears in which specify the
name and path of the file to be generated.

The following figure shows The Clock Setup Window and the SGDC file
generated for the information in this window:
449
Synopsys, Inc.

Generating SGDC Files From the Clock Setup Window

Using the Clock Setup Window
FIGURE 2. SGDC Generated from the Clock Setup Window

current_design "top"
clock -name "top.clk[0]" -domain "top.clk[0]" -tag SG_AUTO_TAG_2
clock -name "top.clk[1]" -domain "top.clk[1]" -tag SG_AUTO_TAG_3
clock -name "top.clk[2]" -domain "top.clk[2]" -tag SG_AUTO_TAG_1

SGDC generated
450
Synopsys, Inc.

Filtering Information in the Clock Setup Window

Using the Clock Setup Window
Filtering Information in the Clock Setup
Window

You can set filters on each column of The Clock Setup Window to view
selective information.

To filter information in a column, right-click on the column header. A
shortcut menu appears showing the list of valid values in that column. By
default, All is selected. Select the option you want to display.

In addition, you can also set custom filters using the Custom option from
the shortcut menu. The following figure shows the Custom Filter dialog for
the column clock:

FIGURE 3. Specifying Custom Filters in the Clock Setup Window
451
Synopsys, Inc.

Viewing Clock Details in HDL Window and Schematic

Using the Clock Setup Window
Viewing Clock Details in HDL Window and
Schematic

When you click on a clock in the Clock Sources Section of the Clock Setup
Window view of The Clock Setup Window, the following occurs:
 The line of the source code containing the clock is highlighted in the HDL

window.
For virtual clocks, the line number in the corresponding SGDC file is
highlighted in the HDL window.

 The clock information is highlighted in the Incremental Schematic
window.
The schematic shows abstracted groups, that contains
combinational-logic (excluding MUX) in the clock path. The following
figure shows abstract groups:

FIGURE 4. Abstract Groups in Schematic

Double-click on a group to show/hide the logic. The following figure shows
some expanded abstract groups:
452
Synopsys, Inc.

Viewing Clock Details in HDL Window and Schematic

Using the Clock Setup Window
FIGURE 5. Expanded Abstract Groups
453
Synopsys, Inc.

Viewing Schematic for Multiple Clocks

Using the Clock Setup Window
Viewing Schematic for Multiple Clocks
To view the schematic of multiple clocks appearing in the Clock Sources
Section of the Clock Setup Window view of The Clock Setup Window, perform the
following steps:
1. Select multiple clocks by keeping the Ctrl key pressed.
2. Open the Incremental Schematic window.
3. Select the Edit -> Set Display Mode -> Complete option in the

Incremental Schematic window.
This step sets the incremental schematic mode to enable the view of
complete schematic for all the selected clocks. If you do not set this
mode, an overlapping schematic appears.
454
Synopsys, Inc.

Saving Changes in the Clock Setup Window

Using the Clock Setup Window
Saving Changes in the Clock Setup Window
On closing The Clock Setup Window after modifications, the SpyGlass
Warning dialog appears that prompts you to save the changes.

On clicking Yes in this dialog, the CSV file is updated with the changes. This
ensures that the changes are visible even when you open the SpyGlass
Clock Setup window the next time. However, on making the changes, the
original content of the CSV file is overwritten and cannot be retrieved.
455
Synopsys, Inc.

Saving Changes in the Clock Setup Window

Using the Clock Setup Window
456
Synopsys, Inc.

Working With the
Ac_sync_group Rules
The Ac_sync_group Rules report different types of synchronized and
unsynchronized crossings in a design.

This section covers the following topics:
 The Ac_sync_group Rules

 Objects in the Crossings Reported by Ac_sync_group Rules

 Spreadsheet Support in Ac_sync_group Rules

 The Enable Expression-Based Synchronization Analysis

 Grouping Messages of the Ac_sync_group Rules

 Handling of Hanging Nets From Combinational Logic by the Ac_sync_group
Rules

 Reasons for Synchronized Crossings Reported by Ac_sync_group Rules

 Reasons for Unsynchronized Crossings Reported by Ac_sync_group Rules

 Parameters of the Ac_sync_group Rules

 Constraints of the Ac_sync_group Rules

 Important Information Regarding the Ac_sync_group Rules

 Limitations of the Ac_Sync_Group Rules
457
Synopsys, Inc.

The Ac_sync_group Rules

Working With the Ac_sync_group Rules
The Ac_sync_group Rules
The following rules belong to the Ac_sync_group:

NOTE: You can waive the message of the above rules by using the waive -ip constraint,
only if both source and destination are the part of the specified IP.

Rule Name Description
Ac_sync01 Reports asynchronous clock domain crossings for scalar signals

that have all the sources synchronized
Ac_sync02 Reports asynchronous clock domain crossings for vector signals

that have all sources synchronized
Ac_unsync01 Reports asynchronous clock domain crossings for scalar signals

that have at least one unsynchronized source
Ac_unsync02 Reports asynchronous clock domain crossings for vector signals

having at least one source that is unsynchronized
458
Synopsys, Inc.

Objects in the Crossings Reported by Ac_sync_group Rules

Working With the Ac_sync_group Rules
Objects in the Crossings Reported by
Ac_sync_group Rules

The following objects are involved in the clock-domain crossings reported
by The Ac_sync_group Rules:
 Source

 Destination

 Qualifier

 Potential Qualifier

Source

It is a source instance or a port of a clock-domain crossing having different
clock domains from that of destination.

As multiple sources can converge on a combinational logic before reaching
the destination, the number of sources per destination can be more than
one.

Destination

It is a destination instance or a port of a clock-domain crossing.

Qualifier

It is a signal that synchronizes a data crossing.
Typically, this will be a conventional multi-flop, synchronizing cell, user-
defined qualifiers, or abstract_port synchronized crossing.
To qualify or synchronize a data crossing, a qualifier signal converges
with the source signal before reaching the destination or synchronizes
the destination through enable or clock pin. This is applicable only for
data crossings.
The following figure shows a qualifier signal:
459
Synopsys, Inc.

Objects in the Crossings Reported by Ac_sync_group
Rules

Working With the Ac_sync_group Rules
FIGURE 1. Advanced Usage

Types of Qualifiers

There are two types of qualifiers, Detected Qualifier and User-Defined Qualifier.

Detected Qualifier

It refers to a SpyGlass-inferred signal that is synchronized by using
Conventional Multi-Flop Synchronization Scheme (B1 in Figure 1) or
Synchronizing Cell Synchronization Scheme.

This signal can qualify or synchronize a data crossing if it satisfies the
following conditions:
460
Synopsys, Inc.

Objects in the Crossings Reported by Ac_sync_group Rules

Working With the Ac_sync_group Rules
 It has source signals (A1 in Figure 1) from a single clock domain.

 It is converging with the source of a data crossing (A2 in Figure 1) at a
valid point, which can be one of the following:
 Enable pin of destination

 Clock pin of destination
In this case, the qualifier is present in the enable pin of a clock-gating
cell that is driving a destination clock.

 A valid gate

A gate is considered as valid based on the strict_gate and
soft_gate options of the ac_sync_mode parameter.

 It is converging with the source of a data crossing (A2 in Figure 1)
having the same clock domain as that of its source (A1 in Figure 1).

User-Defined Qualifier

Refers to a signal that is provided in any of the following ways:
 A user-defined qualifier specified by using the qualifier constraint

 A user defined abstract_port constraint with the -sync active
argument

In this constraint, the -from argument should have the same
source-domain clock list as that of a source signal, and the -to
argument should have the same destination-domain clock list as that of
a destination flip-flop.

Potential Qualifier

Signal that fails to synchronize the source signal of data crossing due to
the presence of invalid logic at the point of convergence with source, or the
signal is not synchronized itself.

For example, the following figure illustrates the case of invalid gate
convergence:
461
Synopsys, Inc.

Objects in the Crossings Reported by Ac_sync_group
Rules

Working With the Ac_sync_group Rules
FIGURE 2. Invalid Gate Convergence

The following figure illustrates the scenario in which a synchronizer is
missing:
462
Synopsys, Inc.

Objects in the Crossings Reported by Ac_sync_group Rules

Working With the Ac_sync_group Rules
FIGURE 3. Missing Synchronizer

Potential qualifier inferred by the SpyGlass is the one whose destination
satisfies the following conditions:

 Destination has source signals (A1 in Figure 2 / Figure 3) from the same
domain.

 Destination is synchronized but converges with source at an invalid gate
(G2 in Figure 2).

 Destination is an unsynchronized scalar signal (B1 in Figure 3).

Potential qualifier helps in identifying the cause of failure. If the failure is
rectified, it may turn into a valid qualifier.

Special Cases of Crossings Containing Qualifiers

The following points describe special cases of synchronized and
unsynchronized crossings through qualifiers:
 Crossing contains multiple qualifiers existing for a source

Consider the following figure in which multiple qualifiers exist for a
463
Synopsys, Inc.

Objects in the Crossings Reported by Ac_sync_group
Rules

Working With the Ac_sync_group Rules
source:

FIGURE 4. Missing Synchronizer

In the above case, first convergence of the source with a qualifier is
occurring at the AND gate. By default, this gate is not considered as
valid, and synchronization is reported with the second qualifier at the
recirculation-mux.

However, if the ac_sync_mode parameter is set to strict_gate with
the enable_and_sync parameter set to yes, or the ac_sync_mode
parameter is set to soft_gate, the AND gate is considered as a valid
gate. In this situation, synchronization of the source is reported at the
first valid convergence, that is, with the first qualifier at the AND gate.

 Valid qualifier converges with an unsynchronized crossing
before merging with a source
Consider the following figure showing such a scenario:

qualifier1

qualifier2

AND

Source

Destination
464
Synopsys, Inc.

Objects in the Crossings Reported by Ac_sync_group Rules

Working With the Ac_sync_group Rules
FIGURE 5. Missing Synchronizer

In the above case, the source is reported as a valid synchronized
crossing by the Ac_sync01 and Ac_sync02 rules.

qualifier

unsynchronized crossing

OR

Source

Destination
465
Synopsys, Inc.

Spreadsheet Support in Ac_sync_group Rules

Working With the Ac_sync_group Rules
Spreadsheet Support in Ac_sync_group Rules
The Ac_sync_group rules generate the following types of spreadsheets
(in CSV format):
 Rule-Based Spreadsheet

 Message-Based Spreadsheet

Rule-Based Spreadsheet

A rule-based spreadsheet is a global spreadsheet that displays all violations
for a rule in separate rows.

This spreadsheet displays one source per destination for a clock-domain
crossing. To view details of all sources, view the Message-Based Spreadsheet.

Opening the Rule-Based Spreadsheet

To open the rule-based spreadsheet, right-click on the rule header in the
Results pane, and select the Open Spreadsheet option from the shortcut
menu.

Sample Rule-Based Spreadsheet

The following figure shows the rule-based spreadsheet of the Ac_unsync01
rule:
466
Synopsys, Inc.

Spreadsheet Support in Ac_sync_group Rules

Working With the Ac_sync_group Rules
FIGURE 6. Rule-Based Spreadsheet

Details of each column of the rule-based spreadsheet are described in the
following table:

Column Name Description
ID Specifies a unique ID for a violation
SOURCE Specifies the name of a source net or source

instance
SOURCE CLOCK Specifies the name of the clock reaching the

source
DEST. Specifies the name of a destination net or

destination instance
DEST. CLOCK Specifies the name of the clock reaching the

destination
467
Synopsys, Inc.

Spreadsheet Support in Ac_sync_group Rules

Working With the Ac_sync_group Rules
NOTE: If you run The Ac_sync_group Rules in the batch mode, the rule-based spreadsheet
contains an additional column, CSV File. This column shows the path of the
corresponding Message-Based Spreadsheet. Refer to this column to correlate the
row of the rule-based spreadsheet with the corresponding message-based
spreadsheet.

Message-Based Spreadsheet

A message-based spreadsheet displays details of a violation selected from
the Rule-Based Spreadsheet.

By default, the violation message of The Ac_sync_group Rules reports one
source per destination for a clock-domain crossing. To view details of all
sources per destination, view the message-based spreadsheet. These
details appear in the following order in this spreadsheet:
1. Details of a destination (bus-merged destinations, if applicable)
2. Details of all sources (bus-merged sources, if applicable)
3. Details of all user-defined qualifiers (if any exists for the crossing)
4. Details of all detected qualifiers (if any exists for the crossing)
5. Details of all potential qualifiers if the data crossing is unsynchronized

Each of the above details appears in a separate row.

REASON / METHOD For the Ac_unsync01 and Ac_unsync02 rules, the
name of the column is REASON. This column
displays the reason for unsynchronized crossing.

For the Ac_sync01 and Ac_sync02 rules, the name
of the column is METHOD. This column displays the
synchronization method for synchronizing clock
domain crossings.

TOTAL SOURCES Specifies the total number of sources involved in a
crossing

TOTAL SOURCE DOMAINS Specifies the total number of source domains
involved in a crossing

WAIVED Specifies if the reported violation is waived

Column Name Description
468
Synopsys, Inc.

Spreadsheet Support in Ac_sync_group Rules

Working With the Ac_sync_group Rules
Opening the Message-Based Spreadsheet

To view this spreadsheet, perform any of the following actions:
 Click the link in the ID column of the Rule-Based Spreadsheet to view

details of the violation corresponding to that ID.
 Double-click on the violation message in the Results pane.

Sample Message-Based Spreadsheet

The following figure shows the message-based spreadsheet that appears
when you click the link 14 from the ID column of the rule-based
spreadsheet shown in Figure 6:
469
Synopsys, Inc.

Spreadsheet Support in Ac_sync_group Rules

Working With the Ac_sync_group Rules
FIGURE 7. Message-Based Spreadsheet

Details of each column of the above spreadsheet are described in the
following table:
470
Synopsys, Inc.

Spreadsheet Support in Ac_sync_group Rules

Working With the Ac_sync_group Rules
Column Name Description
Schematic Displays a link to the schematic of the violation
Type Specifies any of the following object types:

• Source signal, such as flip-flop, latch, black box,
or primary input

• Destination signal, such as flip-flop, latch, black
box, or primary input

• Type of qualifier, such as detected qualifier,
user-defined qualifier, or potential qualifier.
In case of a vector qualifier, the text vector
appears before the qualifier type.

Signal Name Specifies the name of destination signal, source
signal, or qualifier net

Failure Reason Specifies the reason for unsynchronized crossing.
This column appears in the spreadsheet of the
Ac_unsync01 and Ac_unsync02 rules only.

For synchronized sources reported by the
Ac_unsync01 and Ac_unsync02 rules, this column
shows N.A.

Synchronization Scheme Specifies the name of the synchronization method
used to synchronize a source crossing.

For unsynchronized sources reported by the
Ac_unsync01 and Ac_unsync02 rules, this column
shows N.A.

Qualifier Name See Qualifier Name and Qualifier Depth in a
Message-Based Spreadsheet.
This column appears only if the
enable_ac_sync_qualdepth parameter is set to
yes.

Qualifier Depth See Qualifier Name and Qualifier Depth in a
Message-Based Spreadsheet.
This column appears only if the
enable_ac_sync_qualdepth parameter is set to
yes.

Clock Names Specifies the name of clocks reaching the
destination signal, source signal, or qualifier
471
Synopsys, Inc.

Spreadsheet Support in Ac_sync_group Rules

Working With the Ac_sync_group Rules
Qualifier Name and Qualifier Depth in a Message-Based Spreadsheet

In the message-based spreadsheet of The Ac_sync_group Rules, qualifier
name and qualifier depth are reported based on the object type in the Type
column of this spreadsheet.

This is described in the following table:

Using the Clock Domain Tag

This is an internal tag that is computed while performing clock propagation
in a design. It is useful in case multiple clocks are converging and then
reaching to a sequential instance. For example, consider the following
figure:

Internal Clock Domain Tag Specifies a unique tag number generated for a
clock net connected to a sequential element or a
black box.
For details, see Using the Clock Domain Tag.

User defined qualifiers Specifies the nets defined by the qualifier
constraint.

Type Column Qualifier Name Column Qualifier Depth Column
Destination - -
Synchronized source Name of a qualifier Sequential depth of

qualifier for the
synchronized source

Unsynchronized source - -
Qualifier/Potential
Qualifier

- Maximum Sequential
depth of a qualifier used
by any source

Column Name Description
472
Synopsys, Inc.

Spreadsheet Support in Ac_sync_group Rules

Working With the Ac_sync_group Rules
FIGURE 8. Missing Synchronizer

In the above figure, source and destinations are receiving both CLK1 and
CLK2 but through different paths. Therefore, there is a clock-domain
crossing. This would not be clear from the clock names columns in the
spreadsheet because both source and destination would show CLK1 and
CLK2. In this case, the internal domain tag would be useful. It would be
different for both source and destination because clocks are converging on
different paths.

Viewing Schematic Through the Spreadsheet

The view the schematic of a crossing, click the link in the Schematic
column of the spreadsheet and then click in the spreadsheet tool bar.

Message-Based Spreadsheet for the Enable Condition
Based Flow

The message-based spreadsheet generated for The Enable Expression-Based
473
Synopsys, Inc.

Spreadsheet Support in Ac_sync_group Rules

Working With the Ac_sync_group Rules
Synchronization Analysis is similar to the Message-Based Spreadsheet
generated in the normal flow of The Ac_sync_group Rules. The only difference
is that in the enable condition based flow, the following additional columns
are generated:
 Enable Candidate

It shows the enable expression computed at the point where the source
is synchronized. This expression appears only when the crossing is
synchronized.

 Enable Count
It shows the possible points between source and destination where a
crossing could be synchronized. To control the maximum count, use the
sync_point_report_limit parameter.

The following figure shows the example of the message-based spreadsheet
generated in the enable condition based flow:

FIGURE 9.

In the above spreadsheet, when you select 2 in the Enable Count column,
474
Synopsys, Inc.

Spreadsheet Support in Ac_sync_group Rules

Working With the Ac_sync_group Rules
the Spreadsheet Showing Enable Expressions appears.

Spreadsheet Showing Enable Expressions

The following figure shows this spreadsheet that appears when you click
the number in the Enable Count column of the Message-Based
Spreadsheet for the Enable Condition Based Flow:

FIGURE 10.

The above spreadsheet shows the enable conditions and the terminals on
which these conditions are computed.
475
Synopsys, Inc.

The Enable Expression-Based Synchronization Analysis

Working With the Ac_sync_group Rules
The Enable Expression-Based Synchronization
Analysis

Data synchronization analysis by SpyGlass requires an enable expression
that blocks the transfer of source data when the source data is changing.

To enable SpyGlass compute such expressions, set the sync_check_type
parameter to enable_with_qual or enable_with_des_dom.

You can also generate SVA for the computed enable expressions that you
can validate in other simulator tools. For details, see Generating SVA for
Enable Expressions.

The following figure shows the flow of enable expression-based
synchronization analysis:
476
Synopsys, Inc.

The Enable Expression-Based Synchronization Analysis

Working With the Ac_sync_group Rules
FIGURE 11.

The following figures show different enable expressions (E) computed for
the AND gates and the mux:
477
Synopsys, Inc.

The Enable Expression-Based Synchronization Analysis

Working With the Ac_sync_group Rules
FIGURE 12.

For details on this feature, see the following topics:
 Synchronization Requirements to Compute Enable Expressions

 Generating SVA for Enable Expressions

 Spreadsheet Generated for Enable Expression-Based Synchronization Analysis

Synchronization Requirements to Compute Enable
Expressions

Following are the requirements for the enable expression-based
synchronization analysis:
 Domain requirement

 Synchronizer/qualifier requirement

 Depth requirement

 Enable selection

The following figure captures the above requirements:

X=0

Y=1
Z

source destination

in1
source

destination
in2
in3
in4

Enable expression:

SEL

E = !SEL

Enable expression: E = in2 & in3 & in4
478
Synopsys, Inc.

The Enable Expression-Based Synchronization Analysis

Working With the Ac_sync_group Rules
FIGURE 13. Synchronization Requirements to Compute Enable Expressions

Domain requirement

The enable signal (E) should be in the destination domain. That is, all the
sequential elements driving E should be in the destination domain, as
shown in Figure 13.

Synchronizer/qualifier requirement

A multi-flop synchronizer (Qualifier1 in Figure 13) must be present in
the transitive fan-in cone of the crossing to indicate that the signal for

Source Destination

c1

c2

Qualifier1

Destination domain signal

c2

in1

E

D

EN

c2
479
Synopsys, Inc.

The Enable Expression-Based Synchronization Analysis

Working With the Ac_sync_group Rules
transferring a source or destination is from the source domain and getting
synchronized to the destination.

You can relax this approach by replacing the qualifier requirement with a
destination domain signal (destination domain signal in Figure 13) in the
fan-in. Enable this approach by setting the sync_check_type parameter to
enable_with_des_dom.

Depth requirement

At least one path from the enable signal (E) to destination (D) does not
have any sequential element, as shown in Figure 13.

Enable selection

You can set a valid synchronization point by specifying the gate with a valid
enable.

Set the sync_point_selection parameter to first, last, or none to set the
synchronization point. If you specify the value as none, set the limit by
using the sync_point_report_limit parameter.

If you do not set any limit, SpyGlass reports the first five enables starting
from destination, and reports the enable conditions of these enables in the
Spreadsheet Showing Enable Expressions.

Generating SVA for Enable Expressions

SpyGlass generates SVA for the crossings having some valid expressions in
the crossing path. It also generates SVA for the user-specified expressions
in the qualifier constraint.

To enable SVA generation, set the sync_point_selection parameter to none.

Example of Generated SVA for Enable Expressions

Consider the following files specified for SpyGlass analysis:
480
Synopsys, Inc.

The Enable Expression-Based Synchronization Analysis

Working With the Ac_sync_group Rules
Based on the above files, SpyGlass generates SVA for the VCS simulator:

VCS

module Assertion_mod();
wire spyglass_assert;
`include "spyglass_dynamic_setup.v"
`include "spyglass_expr.v"

DATAHOLD_Check_mod #("SpyGlass - DataHold failure for user
specified qualifier enable (top.v:13) - Source:top.src1.q,
Destination:top.des.q") dataholdcheckinst1
(.data((top.en_out)), .enable(top.src1_out),
.src_clk(top.clk1), .des_clk(top.clk2), .rst(1'b0));

DATAHOLD_Check_mod #("SpyGlass - DataHold failure for user
specified qualifier enable (top.v:13) - Source:top.src2.q,
Destination:top.des.q") dataholdcheckinst2
(.data((!(top.en_out))), .enable(top.src2_out),
.src_clk(top.clk1), .des_clk(top.clk2), .rst(1'b0));

module top(input in1, in2, clk1, clk2, output out);
FLOP src1(in1, clk1, src1_out);
FLOP src2(in2, clk1, src2_out);
FLOP sync(in1, clk2, en_out);

wire w1;
assign w1 = en_out ? src1_out : src2_out;
FLOP des(w1, clk2, out);
endmodule

module FLOP(input d, clk, output reg q);
always@(posedge clk)
 q <= d;
endmodule

//top.v

current_design top
clock -name clk1 -domain d1
clock -name clk2 -domain d2

//top.sgdc
481
Synopsys, Inc.

The Enable Expression-Based Synchronization Analysis

Working With the Ac_sync_group Rules
Spreadsheet Generated for Enable Expression-Based
Synchronization Analysis

The following spreadsheets are generated for the enable expression-based
synchronization analysis:
 Message-Based Spreadsheet for the Enable Condition Based Flow

 Spreadsheet Showing Enable Expressions
482
Synopsys, Inc.

Grouping Messages of the Ac_sync_group Rules

Working With the Ac_sync_group Rules
Grouping Messages of the Ac_sync_group
Rules

Many violations are related in such a way that by analyzing and fixing one
or a few violations, a large number of other related violations may get
automatically fixed. You can group such violations so that they appear
under a single group in the GUI and reports.

You can group or merge messages by using any of the following
approaches:
 Instance-Based Grouping

 User-Specified String-Based Grouping

 Netlist Bus Merging

Instance-Based Grouping

In this type of grouping, messages are grouped based on instance names
of source and destination signals.

Instance-based grouping occurs if the following conditions hold true:
 Destination signals of different crossings are mapped to the same net of

a module.
 Each source in different crossings is mapped to the same net of a

module.

Consider an example of the following two types of crossings:

Now consider that m1 is an instance of the M module, n1 and n2 are
instances of the N module, and p1 and p2 are the instances of the P
module.

In this case, the same destination net, net1, and same source, SRC1, are
reported through two leaf-level instances of the same module. Therefore,
grouping will happen in this case.

Crossing 1:
Destination: top.m1.n1.p1.net1
Source: top.m1.n1.SRC1

Crossing 2:
Destination: top.m1.n1.p2.net1
Source: top.n2.SRC1
483
Synopsys, Inc.

Grouping Messages of the Ac_sync_group Rules

Working With the Ac_sync_group Rules
To disable this type of grouping, set the disable_inst_grouping parameter to
yes.

The following figure shows an example of an instance-based grouping:

FIGURE 14. Instance-Based Grouping

NOTE: In addition, messages are grouped for collection objects, such as VHDL record type.
For example, violations reported on all the members of a VHDL record are grouped
together.

User-Specified String-Based Grouping

In this case, messages in which source or destination signals match the
string specified by the user_group_str parameter are grouped together.

If there are multiple sources, all sources should match the string before
they are considered for grouping.

The following figure shows a grouping when the user_group_str
parameter is set to cfg:
484
Synopsys, Inc.

Grouping Messages of the Ac_sync_group Rules

Working With the Ac_sync_group Rules
FIGURE 15. User-Specified String-Based Grouping

Note the following points about this type of grouping:
 It is given preference over instance-based grouping.

 It is case-sensitive.

Viewing Grouped Messages in a Spreadsheet

Grouped messages in a spreadsheet appear as shown in the following
figure:
485
Synopsys, Inc.

Grouping Messages of the Ac_sync_group Rules

Working With the Ac_sync_group Rules
FIGURE 16. Grouped Messages in a Spreadsheet

In the above figure, click the + sign to view all the grouped messages.

Netlist Bus Merging

In this case, destination signal names matching the same suffix specified
by the netlist_name_convention parameter are merged together and
reported as a single message.

In addition, source names matching the same suffix are also merged in the
spreadsheet viewer.

For example, consider that the value of the
netlist_name_convention parameter is set to x. In this case,
destination signals top.u1.sig_1x, top.u1.sig_2x, and
top.u1.sig_3x are merged together and only one message is displayed
that shows the name as top.u1.sig_[1:3]x.

The following figure shows this type of merging:

Messages grouped
486
Synopsys, Inc.

Grouping Messages of the Ac_sync_group Rules

Working With the Ac_sync_group Rules
FIGURE 17. Netlist Bus Merging

If you set the netlist_name_convention parameter to "", the following signals
are merged together:

top.u1.sig_1, top.u2.sig_2, and top.u3.sig_3

As a result of netlist bus merging, the Ac_sync01 rule violations are
reported under the Ac_sync02 rule violations. Similarly, the Ac_unsync01 rule
violations are reported under the Ac_unsync02 rule violations.
487
Synopsys, Inc.

Handling of Hanging Nets From Combinational Logic by
the Ac_sync_group Rules

Working With the Ac_sync_group Rules
Handling of Hanging Nets From Combinational
Logic by the Ac_sync_group Rules

Consider the scenario shown in the following figure:

FIGURE 18. Hanging net after combinational logic

In the above scenario, by default, The Ac_sync_group Rules do not ignore the
hanging net coming from a combinational logic and do not report the multi-
flop structure as synchronized.

When you set the cdc_reduce_pessimism parameter to
skip_unused_paths, The Ac_sync_group Rules ignore the hanging net
and report the multi-flop structure as synchronized with the following
synchronization reason:

Destination instance is driving multiple paths

src_flop dest_flop

Multi-flop
synchronizer
structure

Hanging net

sync_flop
488
Synopsys, Inc.

Reasons for Synchronized Crossings Reported by Ac_sync_group Rules

Working With the Ac_sync_group Rules
Reasons for Synchronized Crossings Reported
by Ac_sync_group Rules

A source is considered as synchronized if it is synchronized through any of
the synchronization schemes mentioned in the following table:

Synchronization Scheme Synchronization Method Reported in the Method
Column of the Rule-Based Spreadsheet

Conventional Multi-Flop
Synchronization Scheme

Methods reported:
• Conventional multi-flop for metastability

technique
• Conventional multi-flop (library-cell) for

metastability technique
• Conventional multi-flop synchronizer is hanging
For details, see Conventional multi-flop Method.

Synchronizing Cell
Synchronization Scheme

Method reported: Synchronizing cell (cell name :
'<cellname>')

For details, see Synchronizing Cell Method.
Synchronized Abstract Port
Synchronization Scheme

Method reported: Synchronized Abstract Port

For details, see Synchronized Abstract Port Method.

Qualifier Synchronization Scheme
Using qualifier -crossing

Method reported: qualifier '<net-name>' defined on
destination

For details, see Qualifier Defined on Destination Method.

Synchronized Enable
Synchronization Scheme

Methods reported:
• Enable Based Synchronizer
• Enable Based User-Defined Qualifier
For details, see Enable Based Method.

Clock-Gating Cell Synchronization
Scheme

Methods reported:
• Clock Gate Synchronization (library clock-gating

cell)
• Clock Gate Synchronization (auto-detected clock-

gating)
• Clock Gate Synchronization (user-defined clock-

gating cell)
• Clock Based User-defined Qualifier
For details, see Clock Gate Synchronization Method.
489
Synopsys, Inc.

Reasons for Synchronized Crossings Reported by Ac_syn-
c_group Rules

Working With the Ac_sync_group Rules
Conventional multi-flop Method

Recirculation MUX
Synchronization Scheme

Methods reported:
• Recirculation flop
• Recirculation flop (user-defined qualifier)
For details, see Recirculation Flop Method.

MUX-Select Sync (Without
Recirculation) Synchronization
Scheme

Methods reported:
• Mux-select sync
• Mux-select sync (user-defined qualifier)
For details, see Mux-Select Sync Method.

AND Gate Synchronization
Scheme

Methods reported:
• Synchronization at AND gate
• Synchronization at And gate (user-defined

qualifier)
For details, see Synchronization at AND Gate Method.

Glitch Protection Cell
Synchronization Scheme

Methods reported:
• Synchronization at Glitch Protection Cell
• Synchronization at Glitch Protection Cell (user-

defined qualifier)
For details, see Synchronization at Glitch Protection Cell
Method.

Synchronizer present in data path
of a destination

Methods reported:
• Merges with valid inferred qualifier
• Merges with valid user-defined qualifier
For details, see Merging with a Valid Inferred Qualifier
Method.

Delay Signals Synchronization
Scheme

Method reported: does not require synchronization
(long-delay/quasi-static)
For details, see No Synchronization (long-delay/quasi-static)
Method.

Constant Source Flop
Synchronization Scheme

Method reported: Source is constant
For details, see Constant Source Method.

- Method reported: User-defined enable expression
For details, see User-Defined Enable Expression Method.

- Method reported: Valid enable condition found
For details, see Finding Valid Enable Condition Method.

Synchronization Scheme Synchronization Method Reported in the Method
Column of the Rule-Based Spreadsheet
490
Synopsys, Inc.

Reasons for Synchronized Crossings Reported by Ac_sync_group Rules

Working With the Ac_sync_group Rules
The following methods appear in the METHOD column of the Rule-Based
Spreadsheet of the Ac_sync01 and Ac_sync02 rules when all the sources
reaching to the destination belong to the same domain and are
synchronized by Conventional Multi-Flop Synchronization Scheme:

Conventional multi-flop for metastability technique

The following method appears if there is a multi-flop chain inside a library
cell:

Conventional multi-flop (library-cell) for
metastability technique

However, if the output of the synchronizer is hanging, the following method
is reported:

Conventional multiflop synchronizer is hanging

Synchronizing Cell Method

The following method appears in the METHOD column of the Rule-Based
Spreadsheet of the Ac_sync01 and Ac_sync02 rules when all the sources
reaching to the destination belong to the same domain and the sources are
synchronized by Synchronizing Cell Synchronization Scheme:

Synchronizing cell (cell name : '<cellname>')

The destination in this case is an instance of a synchronizing cell specified
by using the synchronize_cells parameter, the synchronize_data_cells
parameter, or the sync_cell constraint.

Synchronized Abstract Port Method

The following method appears in the METHOD column of the Rule-Based
Spreadsheet of the Ac_sync01 and Ac_sync02 rules when a source,
synchronized by the Synchronized Abstract Port Synchronization Scheme,
is coming from a black box or a port and it is defined as synchronized by
using the abstract_port -sync active constraint.

Synchronized Abstract Port

The following figure shows the scenario in which this method is reported:
491
Synopsys, Inc.

Reasons for Synchronized Crossings Reported by Ac_syn-
c_group Rules

Working With the Ac_sync_group Rules
FIGURE 19. Synchronized Abstract Port Synchronization Scheme

Qualifier Defined on Destination Method

The following method appears in the METHOD column of the Rule-Based
Spreadsheet of the Ac_sync01 and Ac_sync02 rules if a qualifier crossing is
defined by the qualifier constraint with the -crossing argument (Qualifier
Synchronization Scheme Using qualifier -crossing):

qualifier '<net-name>' defined on destination

Enable Based Method

One of the following methods appears in the METHOD column of the Rule-
Based Spreadsheet of the Ac_sync01 and Ac_sync02 rules when all sources,
synchronized by the Synchronized Enable Synchronization Scheme, reach the
destination at the data pin, and the qualifier resides at the enable pin path
of the destination instance:

 Enable Based Synchronizer

 Enable Based User-Defined Qualifier

In this case, all the sources must belong to the same clock domain.

NOTE: By default, the Synchronized Enable Synchronization Scheme is enabled. Set the
enable_sync parameter to no to disable this scheme.
492
Synopsys, Inc.

Reasons for Synchronized Crossings Reported by Ac_sync_group Rules

Working With the Ac_sync_group Rules
Clock Gate Synchronization Method

One of the following methods appears in the METHOD column of the Rule-
Based Spreadsheet of the Ac_sync01 and Ac_sync02 rules when all sources,
synchronized by the Clock-Gating Cell Synchronization Scheme, reach the
destination at the data pin or enable pins, and the qualifier resides at the
enable path of a clock-gating cell:

 Clock Gate Synchronization (library clock-gating
cell)

 Clock Gate Synchronization (auto-detected
clock-gating)

 Clock Gate Synchronization (user-defined
clock-gating cell)

 Clock Based User-defined Qualifier

In such cases, all the sources must belong to the same clock domain.

NOTE: By default, the Clock-Gating Cell Synchronization Scheme is enabled. Set the
enable_clock_gate_sync parameter to no to disable this scheme.

Recirculation Flop Method

One of the following methods appears in the METHOD column of the Rule-
Based Spreadsheet of the Ac_sync01 and Ac_sync02 rules if a qualifier resides
at the mux-select path and converges with the source at the MUX before
reaching the destination:

 Recirculation flop

 Recirculation flop (user-defined qualifier)

In this case, a clock domain crossing occurs through one of the MUX input
pins, and the other MUX input pin is driven by the same destination flip-
flop output. This is known as the Recirculation MUX Synchronization Scheme.

NOTE: By default, this scheme is enabled. Set the enable_mux_sync parameter to none
to disable this scheme.

Mux-Select Sync Method
493
Synopsys, Inc.

Reasons for Synchronized Crossings Reported by Ac_syn-
c_group Rules

Working With the Ac_sync_group Rules
One of the following methods appears in the METHOD column of the Rule-
Based Spreadsheet of the Ac_sync01 and Ac_sync02 rules if a qualifier resides
at the MUX-select path and converges with the source at the MUX before
reaching the destination:

 Mux-select sync

 Mux-select sync (user-defined qualifier)

In this case, the MUX is without recirculation. Clock domain crossing occurs
through one of the MUX input pins, and the other MUX input pin is driven
by a signal in the same destination domain or a constant signal. This is
known as the MUX-Select Sync (Without Recirculation) Synchronization Scheme.

NOTE: By default, this scheme is disabled. Set the enable_mux_sync parameter to
mux_select or all to enable this scheme. Alternatively, set the
ac_sync_mode parameter to soft_gate.

Synchronization at AND Gate Method

One of the following methods appears in the METHOD column of the Rule-
Based Spreadsheet of the Ac_sync01 and Ac_sync02 rules when a qualifier,
synchronized by the AND Gate Synchronization Scheme, converges with the
source at an AND/NAND gate before reaching to the destination:

 Synchronization at AND gate

 Synchronization at And gate (user-defined
qualifier)

NOTE: By default, this scheme is disabled. Set the enable_and_sync parameter to yes to
enable this scheme. Alternatively, set the ac_sync_mode parameter to
soft_gate.

Synchronization at Glitch Protection Cell Method

One of the following methods appears in the METHOD column of the Rule-
Based Spreadsheet of the Ac_sync01 and Ac_sync02 rules if a qualifier,
synchronized by the Glitch Protection Cell Synchronization Scheme, converges
with a source at a glitch gating cell before reaching to the destination:

 Synchronization at Glitch Protection Cell
494
Synopsys, Inc.

Reasons for Synchronized Crossings Reported by Ac_sync_group Rules

Working With the Ac_sync_group Rules
 Synchronization at Glitch Protection Cell (user-
defined qualifier)

You can specify names of glitch protection cells for this scheme by using
the glitch_protect_cell parameter.

Merging with a Valid Inferred Qualifier Method

One of the following methods appears in the METHOD column of the Rule-
Based Spreadsheet of the Ac_sync01 and Ac_sync02 rules if a qualifier,
Synchronizer present in data path of a destination,
converges with the source at a valid gate before reaching the destination:

 Merges with valid inferred qualifier

 Merges with valid user-defined qualifier

A gate is considered as valid if any of the following conditions hold true:
 The gate is an OR/NOR gate, and the enable_and_sync parameter to yes.

 The gate is any combinational gate, and the ac_sync_mode parameter is
set to soft_gate.

The following figure shows the scenario in which this method is reported:

FIGURE 20. Synchronizer present in data path of a destination

No Synchronization (long-delay/quasi-static) Method

The following method appears in the METHOD column of the Rule-Based
Spreadsheet of the Ac_sync01 and Ac_sync02 rules if the path from a source to
destination has a net on which you have specified the quasi_static
495
Synopsys, Inc.

Reasons for Synchronized Crossings Reported by Ac_syn-
c_group Rules

Working With the Ac_sync_group Rules
constraint:

does not require synchronization (long-delay/quasi-
static)

In this case, the crossing is synchronized by the Delay Signals
Synchronization Scheme.

Constant Source Method

The following method appears in the METHOD column of the Rule-Based
Spreadsheet of the Ac_sync01 and Ac_sync02 rules if the data pin of a
sequential element (source) in a crossing is tied to a constant value:

Source is constant

SpyGlass CDC analysis for such sequential elements is performed only
when the cdc_reduce_pessimism parameter is set to const_source. This
scheme is called the Constant Source Flop Synchronization Scheme.

Constant Source Flop Synchronization Scheme

In this scheme, SpyGlass CDC analysis for sequential elements (whose
data pin is tied to a constant) is performed only when the
cdc_reduce_pessimism parameter is set to const_source.

Consider the following scenario:
496
Synopsys, Inc.

Reasons for Synchronized Crossings Reported by Ac_sync_group Rules

Working With the Ac_sync_group Rules
FIGURE 21.

In the above scenario, the data pin of the f1 flip-flop is tied to a constant.
Therefore, SpyGlass reports the method "Source is constant" in the
violation message and spreadsheet.

User-Defined Enable Expression Method

The following method appears in the METHOD column of the Rule-Based
Spreadsheet of the Ac_sync01 and Ac_sync02 rules during The Enable
Expression-Based Synchronization Analysis when you specify a qualifier by
using the qualifier -enable <enable-expr> constraint:

User-defined enable expression

For example, this method appears in the following scenario where the
qual net is specified as the qualifier:

set_case_analysis -name in1 -value 0
// SGDC File

// Project File
 set parameter cdc_reduce_pessimism const_source
497
Synopsys, Inc.

Reasons for Synchronized Crossings Reported by Ac_syn-
c_group Rules

Working With the Ac_sync_group Rules
FIGURE 22.

Finding Valid Enable Condition Method

The following method appears in the METHOD column of the Rule-Based
Spreadsheet of the Ac_sync01 and Ac_sync02 rules during The Enable
Expression-Based Synchronization Analysis when a crossing is synchronized
and a valid enable condition is found for that crossing:

Valid enable condition found

clk1

net qual

clk1 clk2

clk2

clk2
clk3

net n1

net n3

(qualifier)

net n2

net n4

clk1, clk3 => d1 domain
clk2 => d2 domain

// SGDC File

qualifier -enable "qual" -from_obj "n1" -to_obj "n2"
498
Synopsys, Inc.

Reasons for Unsynchronized Crossings Reported by Ac_sync_group Rules

Working With the Ac_sync_group Rules
Reasons for Unsynchronized Crossings
Reported by Ac_sync_group Rules

The following are the reasons (starting from highest priority) for
unsynchronized crossings reported by the Ac_unsync01 and Ac_unsync02
rules:
 Reason - Sources from different domains converge before being synchronized

 Reason - Qualifier not found

 Reason - Conventional multi-flop synchronizer disallowed

 Reason - Clock phase difference between destination instance and synchronizer
flop

 Reason - Clock domains of destination instance and synchronizer flop do not
match

 Reason - Synchronizer flop is the destination flop for another crossing

 Reason - Number of inverters/buffers between sync flops exceeds limit

 Reason - Sync reset used in multi-flop synchronizer

 Reason - Destination instance is driving multiple paths

 Reason - Combinational logic used between crossing

 Reason - Specify 'synchronize_data_cells', not 'synchronize_cells' for bus signals

 Reason - Specify 'synchronize_cells', not 'synchronize_data_cells' for single bit
signals

 Reason - Invalid RTL flop/cell used in synchronizer chain

 Reason - Invalid synchronizer module/cell <name>

 Reason - Unsynchronized synchronous reset

 Reason - [User-defined qualifier/ Qualifier] merges with another source before
gating logic

 Reason - [User-defined qualifier/Qualifier] merges with the same source before
gating logic

 Reason - Gating logic not accepted

 Reason - Qualifier not accepted: crossing source is the same as source of
qualifier

 Reason - Combinational loops on crossing
499
Synopsys, Inc.

Reasons for Unsynchronized Crossings Reported by
Ac_sync_group Rules

Working With the Ac_sync_group Rules
 Reason - No Enable Condition Selected

 Reason - Enable Criteria not satisfied: No destination domain

 Reason - Enable Criteria not satisfied: No Qualifier found

 Reason - Enable Criteria not satisfied: gating-type not accepted

 Reason - Enable Criteria not satisfied: Source reach mux select

 Reason - Domain Criteria not satisfied: No domain

 Reason - Domain Criteria not satisfied: Source domain

Reason - Sources from different domains converge before
being synchronized

This reason is reported when sources from multiple domains reach the
destination without being synchronized by valid qualifiers.

Sometimes this problem could be an attempt to qualify with an incorrectly
synchronized qualifier (or a qualifier that is correctly synchronized but is
not recognized by SpyGlass CDC - in which case you should use the qualifier
constraint to mark that signal).

The following figure shows the scenario in which this method is reported:

FIGURE 23. Sources from different domains converge before being synchronized
500
Synopsys, Inc.

Reasons for Unsynchronized Crossings Reported by Ac_sync_group Rules

Working With the Ac_sync_group Rules
The crossing may have a conventional multi-flop structure, synchronizing
cell structure (specified by the synchronize_cells parameter, the
synchronize_data_cells parameter, or the sync_cell constraint), handshake,
FIFO structures, or any other synchronization structure.

Reason - Qualifier not found

This reason is reported in any of the following cases:
 When SpyGlass is not able to find any synchronizing structure at the

destination of a crossing, there is a possibility that a qualifier should
have been present but either the designer forgot to add it or connect it
properly, or SpyGlass is not able to find that qualifier.
If you know that the crossing is controlled by a valid qualifier, mark the
qualifying signal by using the qualifier constraint.
The following figure shows the scenario in which this method is
reported:

FIGURE 24. Qualifier not found

In the above scenario, no synchronous pattern is found for the crossing
and SpyGlass can also not find any possibility of a control line.

 When a source converges with an invalid qualifier at some gate.

 When a source converges with an unsynchronized qualifier crossing
defined by the qualifier -crossing constraint.

Source flop Destination flop
501
Synopsys, Inc.

Reasons for Unsynchronized Crossings Reported by
Ac_sync_group Rules

Working With the Ac_sync_group Rules
Reason - Conventional multi-flop synchronizer disallowed

This reason appears when the Conventional Multi-Flop Synchronization Scheme
is disabled by setting the enable_multiflop_sync parameter to no. In this
case, all the crossings that were reported as synchronized by using the
Conventional Multi-Flop Synchronization Scheme (unless those crossings are
synchronized further using any other synchronization scheme) are
considered as unsynchronized.

This scheme considers all those clock crossings where the destination
domain flip-flop is followed by a chain of flip-flops in the same domain.

Reason - Clock phase difference between destination
instance and synchronizer flop

This reason is reported when the destination is synchronized by
Conventional Multi-Flop Synchronization Scheme, but there is a clock phase
difference between the destination instance and the synchronized flip-flop.
Such cases are checked only when the allow_half_sync parameter is set to
no.

The following figure illustrates the scenario in which SpyGlass reports this
reason:

FIGURE 25. Clock phase difference between destination instance and synchronizer
flip-flop

Source flop Destination flop

Synchronizer flop
502
Synopsys, Inc.

Reasons for Unsynchronized Crossings Reported by Ac_sync_group Rules

Working With the Ac_sync_group Rules
Reason - Clock domains of destination instance and
synchronizer flop do not match

This reason is reported when the destination is synchronized by
Conventional Multi-Flop Synchronization Scheme, but clock domains of the
destination instance and the synchronizer flip-flop do not match.

The following figure illustrates the scenario in which SpyGlass reports this
reason:

FIGURE 26. Clock domains of destination instance and synchronizer flip-flop do
not match

Reason - Synchronizer flop is the destination flop for
another crossing

This reason is reported when the destination is synchronized by
Conventional Multi-Flop Synchronization Scheme, but the synchronizer flip-flop
is also the destination flip-flop for another crossing.

Such cases occur when another source is feeding the synchronizer flip-flop
through an enable line or through a logic at the data input.

The following figure illustrates the scenario in which SpyGlass reports this
reason:

Source flop

Destination flop
Synchronizer flop
503
Synopsys, Inc.

Reasons for Unsynchronized Crossings Reported by
Ac_sync_group Rules

Working With the Ac_sync_group Rules
FIGURE 27. Synchronizer flip-flop is the destination flip-flop for another crossing

In the above figure, Synchronizer flop is the destination flip-flop for
Source flop2.

Reason - Number of inverters/buffers between sync flops
exceeds limit

This reason is reported when the destination is synchronized by
Conventional Multi-Flop Synchronization Scheme, but the number of buffers/
inverters between synchronous flip-flops exceeds the limit specified by the
ignore_num_rtl_buf_invs parameter.

For example, in the scenario shown in the following figure, if the
ignore_num_rtl_buf_invs parameter is set to 1, a violation will be reported:

Source flop1

Source flop2

Destination flop

Synchronizer flop
504
Synopsys, Inc.

Reasons for Unsynchronized Crossings Reported by Ac_sync_group Rules

Working With the Ac_sync_group Rules
FIGURE 28. Number of inverters/buffers between sync flip-flops exceeds limit

Reason - Sync reset used in multi-flop synchronizer

This reason is reported when the destination is synchronized by
Conventional Multi-Flop Synchronization Scheme but a synchronous reset is
present between synchronizer flip-flops, and either the reset -sync
constraint is not specified or the sync_reset parameter is not set to yes.

In such cases, a single AND/OR gate is present between the synchronizing
flip-flops, and they may be present because of a synchronous reset that is
used but not declared.

The following figure illustrates the scenario in which SpyGlass reports this
reason:

FIGURE 29. Sync reset used in multi-flop synchronizer

Reason - Destination instance is driving multiple paths

This reason is reported when multiple fan-outs are present in the

Source flop Destination flop Synchronizer flop
505
Synopsys, Inc.

Reasons for Unsynchronized Crossings Reported by
Ac_sync_group Rules

Working With the Ac_sync_group Rules
destination instance output, and each of these paths may or may not have
a synchronization structure.

The following figure illustrates a scenario in which SpyGlass reports this
reason:

FIGURE 30. Destination instance is driving multiple paths

In the above figure, any logic using the output of the first flip-flop will be
using metastable value, thereby causing crossing as unsynchronized.

Reason - Combinational logic used between crossing

This reason is reported when the destination is synchronized by
Conventional Multi-Flop Synchronization Scheme, Synchronizing Cell
Synchronization Scheme, or defined by the qualifier -crossing constraint,
but there is a combinational logic present between the source and
destination and the allow_combo_logic constraint or the allow_combo_logic
parameter is not specified for this crossing.

The following figure illustrates the scenario in which SpyGlass reports this
reason:

Source flop
Destination flop

Synchronizer flop
506
Synopsys, Inc.

Reasons for Unsynchronized Crossings Reported by Ac_sync_group Rules

Working With the Ac_sync_group Rules
FIGURE 31. Combinational logic used between crossing

Such logic can cause a glitch to be captured by destination.

Reason - Specify 'synchronize_data_cells', not
'synchronize_cells' for bus signals

This reason is reported if you specify a cell used to synchronize a single-bit
signal, but the cell is found connected to a multi-bit signal. This is either a
design issue or a setup problem.

Reason - Specify 'synchronize_cells', not
'synchronize_data_cells' for single bit signals

This reason is reported if you specify a cell used to synchronize a multi-bit
signal, but the cell is found connected to a single bit signal. This is either a
design error or a setup problem.

Reason - Invalid RTL flop/cell used in synchronizer chain

A destination may be synchronized by Conventional Multi-Flop Synchronization
Scheme, but any of the synchronizer flip-flops used in the synchronizer
chain is not among the allowed cells specified by the num_flops constraint.

SpyGlass reports such cases with one of the following failure reasons in the

Source flop Destination flop Synchronizer flop
507
Synopsys, Inc.

Reasons for Unsynchronized Crossings Reported by
Ac_sync_group Rules

Working With the Ac_sync_group Rules
message and spreadsheet:

 Invalid RTL flop used in synchronizer chain

 Invalid cell <cell-name> used in synchronizer chain

For example, consider that you specify the following constraint:

num_flops -to_clk clk2 -value 3 -cells FD2

In the above example, the allowed cell in the synchronizer chain for the
clk2 clock is FD2.

Now consider that the synchronizer chain contain also contains another cell
FD1 in addition to FD2, as shown in the following figure:

FIGURE 32. Synchronizer Chain

In the above case, SpyGlass reports the following reason:

Invalid cell FD1 used in synchronizer chain

Reason - Invalid synchronizer module/cell <name>

SpyGlass reports this reason when a destination matches with the
synchronized cell modules specified by the sync_cell constraint, but the
clock, domain, or period does not match.

For example, consider the following constraints:

sync_cell -name sync_latch_2 -to_clk clk2
sync_cell -name sync_latch_1 -to_clk clk3
508
Synopsys, Inc.

Reasons for Unsynchronized Crossings Reported by Ac_sync_group Rules

Working With the Ac_sync_group Rules
Now consider the following figure:

FIGURE 33. Invalid synchronizer module/cell

In the above figure, the destination latch matches with the synchronized
cell module, sync_latch_1, specified by the sync_cell constraint.
However, this destination is clocked by the clk2 clock that does not match
with the clk3 clock specified for sync_latch_1 in the sync_cell
constraint. Therefore, SpyGlass reports the following reason in this case:

Invalid synchronizer module/cell sync_latch_1

Reason - Unsynchronized synchronous reset

This reason is reported when a synchronous reset is not synchronized by
Conventional Multi-Flop Synchronization Scheme or Synchronizing Cell
Synchronization Scheme. Such reset sources are not checked for data
synchronization and are reported as unsynchronized.

The following schematic shows the scenario in which this reason is
reported:
509
Synopsys, Inc.

Reasons for Unsynchronized Crossings Reported by
Ac_sync_group Rules

Working With the Ac_sync_group Rules
FIGURE 34. Unsynchronized synchronous reset

Reason - [User-defined qualifier/ Qualifier] merges with
another source before gating logic

This reason is reported when a qualifier merges with another source before
reaching the gating logic whose other input is driven by the source of the
crossing.

The following figure shows the scenario in which SpyGlass reports this
reason:

Qualifier for the
s2_reg source

Synchronous reset
510
Synopsys, Inc.

Reasons for Unsynchronized Crossings Reported by Ac_sync_group Rules

Working With the Ac_sync_group Rules
FIGURE 35. Qualifier merging with another source

In Figure 156, SpyGlass reports a crossing between S1 and D1 as
unsynchronized because a qualifier is merging with the source. To debug/
fix such unsynchronized crossings, consider the following scenarios:
 If SrcSignal is reported synchronized with the qualifier, SrcSignal is

scalar, and the allow_merged_qualifier (default yes) parameter is
specified to yes, SpyGlass reports the crossing between S1 and D1 as
synchronized.

 If SrcSignal is reported synchronized with the qualifier, SrcSignal is
vector, and the allow_merged_qualifier (default yes) parameter is
specified to yes, and the constraint signal_type -type control is specified
on the SrcSignal, SpyGlass reports the crossing between S1 and D1 as
synchronized.

 If SrcSignal is unsynchronized with the qualifier, debug the reasons for
unsynchronized crossing source SrcSignal by using its failure reasons as
reported by SpyGlass.
511
Synopsys, Inc.

Reasons for Unsynchronized Crossings Reported by
Ac_sync_group Rules

Working With the Ac_sync_group Rules
Reason - [User-defined qualifier/ Qualifier] merges with
another source with non-deterministic enable condition
before gating logic

This reason is reported when a qualifier merges with another source before
reaching the gating logic with non-deterministic enable condition, whose
other input is driven by the source of the crossing.

The following figure shows the scenario in which SpyGlass reports this
reason:

FIGURE 36. Qualifier Merging with a Source

In the above scenario, if the allow_merged_qualifier parameter is set to
strict, the blocking value is 0 at the output of convergence because of
the AND gate where the src1 source and qualifier are getting merged.
Therefore, the qualifier can block src1 with blocking value 0 at the AND
gate. This value is propagated further through buffers and inverters and
the same 0 value reaches the input of the OR gate, which cannot block

in1

clk1

in2

clk1

in3

clk1

src1

src2

clk2

clk2

qualifier

qualifier merging with
the src1 source

output of convergence

out1
512
Synopsys, Inc.

Reasons for Unsynchronized Crossings Reported by Ac_sync_group Rules

Working With the Ac_sync_group Rules
another source src2. Therefore, src2 is reported as unsynchronized with
the following reason:

[User-defined qualifier/Qualifier] merges with another source
with nondeterministic enable condition before gating logic

When the buffer in the path is replaced by an inverter, the crossing is
reported as synchronized because the blocking value at the input of the OR
gate will be '1', which can now block the source.

Reason - [User-defined qualifier/Qualifier] merges with the
same source before gating logic

This reason is reported when a source diverges and the diverged source
path merges with a valid qualifier before re-converging.

For example, SpyGlass reports this reason in the following scenario where
S1 is diverging and one of the diverged path merges with a qualifier before
re-converging on the AND gate.

FIGURE 37. Diverging Source merging with a valid qualifier before
reconverging
513
Synopsys, Inc.

Reasons for Unsynchronized Crossings Reported by
Ac_sync_group Rules

Working With the Ac_sync_group Rules
Reason - Gating logic not accepted

When a source converges with a valid qualifier signal at an invalid
combinational gate, SpyGlass reports such cases with one of the following
failure reasons in the message and spreadsheet:

 Gating logic not accepted: gate-type invalid

For example, SpyGlass reports this reason in the following scenario as
the qualifier merges with the XOR gate, which is considered invalid:

FIGURE 38. Qualifier merging with the XOR gate

 Gating logic not accepted: source drives MUX select
input

For example, SpyGlass reports this reason in the following scenario as
the S2 source drives the mux select input because of which the Q1
qualifier does not synchronize the S1 source:
514
Synopsys, Inc.

Reasons for Unsynchronized Crossings Reported by Ac_sync_group Rules

Working With the Ac_sync_group Rules
FIGURE 39. Source driving the MUX select input

 Gating logic not accepted: source and [qualifier/
user-defined qualifier] drive MUX data inputs

For example, SpyGlass reports this reason in the following scenario as
the Q1 qualifier drives the mux data input rather than the mux select
pin. As a result, the Q1 qualifier does not synchronize the S1 source.
515
Synopsys, Inc.

Reasons for Unsynchronized Crossings Reported by
Ac_sync_group Rules

Working With the Ac_sync_group Rules
FIGURE 40. Source and qualifier driving MUX data inputs

 Gating logic not accepted: only sources drive MUX
data inputs; at least one destination domain signal
should drive a MUX data input

For example, SpyGlass reports this reason in the following scenario as
no destination domain signal is detected on the data pins of the mux.
516
Synopsys, Inc.

Reasons for Unsynchronized Crossings Reported by Ac_sync_group Rules

Working With the Ac_sync_group Rules
FIGURE 41. Only sources driving MUX data inputs

In the above scenario, at least one destination domain signal should
drive the mux data pin for the Q1 qualifier to synchronize the S1 source.

Reason - Qualifier not accepted: crossing source is the
same as source of qualifier

This reason appears when the source of a crossing and the source of a
qualifier crossing is same. In such cases, the qualifier is not considered as
a valid qualifier. This is because the source acts as both data and control
signal in the data crossing.

The qualifier in such cases can be synchronized by either of the Conventional
Multi-Flop Synchronization Scheme, Synchronizing Cell Synchronization Scheme,
or Qualifier Synchronization Scheme Using qualifier -crossing.

For example, consider the following schematic:
517
Synopsys, Inc.

Reasons for Unsynchronized Crossings Reported by
Ac_sync_group Rules

Working With the Ac_sync_group Rules
FIGURE 42.

In the above schematic, src1 is the source signal to both the des1
destination and the qual1 qualifier. Therefore, qual1 is not considered as
a valid qualifier.

Reason - Combinational loops on crossing

This reason is reported when a combinational loop is present in the
crossing path. In this case, a qualifier drives one gate in the loop while the
source drives another gate.

Reason - No Enable Condition Selected

This reason is reported during The Enable Expression-Based Synchronization
Analysis when both the following conditions hold true:

 The sync_point_selection parameter is set to user.

 A possible point exists in the source to destination paths where valid
synchronizing signal is reaching.
This scenario is shown in the following schematic:
518
Synopsys, Inc.

Reasons for Unsynchronized Crossings Reported by Ac_sync_group Rules

Working With the Ac_sync_group Rules
FIGURE 43.

Reason - Enable Criteria not satisfied: No destination
domain

This reason is reported during The Enable Expression-Based Synchronization
Analysis when both the following conditions hold true:

 The sync_check_type parameter is set to
enable_with_des_dom.

 A crossing is unsynchronized as the source is not merging with any valid
destination domain signal in its path.

This scenario is shown in Figure 44.

Reason - Enable Criteria not satisfied: No Qualifier found

This reason is reported during The Enable Expression-Based Synchronization
Analysis when both the following conditions hold true:
519
Synopsys, Inc.

Reasons for Unsynchronized Crossings Reported by
Ac_sync_group Rules

Working With the Ac_sync_group Rules
 The sync_check_type parameter is set to enable_with_qual.

 A crossing is unsynchronized as the source is not merging with any valid
qualifier in its path.

This scenario is shown in the following schematic:

FIGURE 44.

Reason - Enable Criteria not satisfied: gating-type not
accepted

This reason is reported during The Enable Expression-Based Synchronization
Analysis when the requirement of an enable is satisfied, but one of the
following conditions is true:
 The enable is reaching an unacceptable gate, such as XOR, OR, or AND

gate.

 The enable_and_sync parameter is not set to yes.

The following schematic shows the scenario in which this reason is
reported:
520
Synopsys, Inc.

Reasons for Unsynchronized Crossings Reported by Ac_sync_group Rules

Working With the Ac_sync_group Rules
FIGURE 45.

Reason - Enable Criteria not satisfied: Source reach mux
select

This reason is reported during The Enable Expression-Based Synchronization
Analysis when one the mux select line is receiving along with the valid
enable signal.

This scenario is shown in the following schematic:
521
Synopsys, Inc.

Reasons for Unsynchronized Crossings Reported by
Ac_sync_group Rules

Working With the Ac_sync_group Rules
FIGURE 46.

Reason - Domain Criteria not satisfied: No domain

This reason appears if one of the enable terminals of a synchronizing gate
is not receiving any domain.

For example, in the following figure, the C pin of the AND gate does not
receive any domain:
522
Synopsys, Inc.

Reasons for Unsynchronized Crossings Reported by Ac_sync_group Rules

Working With the Ac_sync_group Rules
FIGURE 47.

Reason - Domain Criteria not satisfied: Source domain

This reason appears when one of the enable terminals of a synchronizing
gate is receiving the source domain.

For example, in the following figure, the src1 and src2 sources have the
same domain:
523
Synopsys, Inc.

Reasons for Unsynchronized Crossings Reported by
Ac_sync_group Rules

Working With the Ac_sync_group Rules
FIGURE 48.
524
Synopsys, Inc.

Parameters of the Ac_sync_group Rules

Working With the Ac_sync_group Rules
Parameters of the Ac_sync_group Rules
The following are the common parameters used by the Ac_sync_group
rules:

 ac_sync_mode: Default value is strict_gate,
strict_qual_logic. Set this parameter to specify a mode in which
rule should run to check data crossings. Other possible values are
soft_gate, soft_qual_logic.

 all_potential_qual: Default value is no. Set this parameter to yes to show
all potential qualifiers in the spreadsheet of this rule.

 allow_combo_logic: Default value is no. Set this parameter to yes to
ignore combinational logic in the data transfer path between flip-flops at
clock domain crossing.

 allow_enabled_multiflop: Default value is no. Set this parameter to yes to
consider enabled flip-flops as destination or synchronizer flip-flops in
conventional multi-flop synchronization scheme. Other possible value is
same_enable.

 allow_half_sync: Default value is yes. Set this parameter to no to not
treat half synchronizers as valid synchronizers.

 allow_merged_qualifier: Default is yes. When a qualifier merges with a
source, the output of the convergence is not considered as a valid
qualifier to qualify other sources. However, if the source is a control
signal, the convergence output may still act as a qualifier.
By default, such convergence outputs are considered as valid qualifiers.
Set this parameter to no to disallow them from being considered as
qualifiers.

 cdc_bus_compress: Default value is Ac_glitch03. Set this parameter
to DeltaDelay02 to check all the bits of the source bus by the
DeltaDelay02 rule. For information on the other possible values, see Possible
values of the cdc_bus_compress parameter.

 cdc_qualifier_depth: Default value is -1. Specify a positive integer value
indicating the depth of sequential logic till which a qualifier should be
searched.

 cdc_qualifier_depth_start: Default value is num_flop. Set this parameter
to sync_chain so that the last flip-flop of the synchronization chain is
525
Synopsys, Inc.

Parameters of the Ac_sync_group Rules

Working With the Ac_sync_group Rules
the starting point beyond which a qualifier should be searched. Other
possible value is dest.

 cdc_reduce_pessimism: Default value is mbit_macro,
no_convergence_at_syncreset,
no_convergence_at_enable. Set this parameter to an appropriate
value to ignore clock domain crossings involving black box instances and
clock domain crossings with destinations having unused, hanging, or
blocked outputs. For possible values, see Allowed Values of the
cdc_reduce_pessimism Parameter.

 check_multiclock_bbox: Default value is no. Set this parameter to yes to
show violations for the crossings in which a destination black box
receives multiple clocks but no SGDC constraint is defined on any of the
black-box data pins receiving the clocks.

 clock_gate_cell: Default value is NULL. Specify a comma or
space-separated list of clock-gating cell names.

 clock_reduce_pessimism: Default value is latch_en,
mux_sel_derived, check_enable_for_glitch. Set the value
of this parameter to mux_sel to stop traversal of this rule when a clock
signal reaches a MUX. Other possible values are all,
all_potential_clocks, and ignore_same_domain.

 delayed_ptr_fifo: Default value is no. Set this parameter to yes when the
read/write pointers are delayed and the multiplexer inside the memory
is one-hot or implemented using gates.

 disable_inst_grouping: Default value is no. Set this parameter to yes to
disable Instance-Based Grouping of messages of this rule.

 disable_seq_clock_prop: Default value is no. Set this parameter to yes to
disable propagation of clocks beyond flip-flops.

 dump_inst_type: Default value is all. Set this parameter to flop to
generate destinations and synchronizers that are flip-flops in The
SynchInfo Report and The CrossingInfo Report.

 dump_sync_info: Default value is no. Set this parameter to yes to
generate The SynchInfo Report and The CrossingInfo Report reports in the
default format. Other possible values are no, detailed, and
detailed_mod.
526
Synopsys, Inc.

Parameters of the Ac_sync_group Rules

Working With the Ac_sync_group Rules
 enable_ac_sync_qualdepth: Default value is no. Set this parameter to yes
to report qualifier name and qualifier depth in the Message-Based
Spreadsheet.

 enable_and_sync: Default value is no. Set this parameter to yes to
enable the AND Gate Synchronization Scheme.

 enable_clock_gate_sync: Default value is yes. Set this parameter to no to
disable the Clock-Gating Cell Synchronization Scheme.

 enable_clock_path_crossings: Default value is no. Set this parameter to
yes to identify potential sources in a clock path of flip-flops.

 enable_delayed_qualifier: Default value is yes. Set this parameter to no
to disable searching for qualifiers and potential qualifiers through a
combinational logic. Other possible value is strict.

 enable_glitchfreecell_detection: Default value is no. Set this parameter to
yes to report glitch-free multiplexers in a design.

 false_path_enable_hier_view: Default value is no. Set this parameter to
yes to correctly support hierarchical terminals where the specified
cdc_false_path constraint is retained on the hierarchical terminal itself.

 sync_point_report_limit: Default value is 5. Set this parameter to an
integer (greater or equal to 2) to specify the maximum number of
enable points (to be shown in the Message-Based Spreadsheet for the
Enable Condition Based Flow) at which a crossing could be synchronized.

 enable_mux_sync: Default value is recirculation. Set this parameter
to an appropriate value to enable a particular synchronization scheme.
Other possible values are none, mux_select, and all.

 enable_sync: Default value is yes. Set this parameter to no to disable
the Synchronized Enable Synchronization Scheme.

 filter_named_clocks: Default value is rst, reset, scan, set. Set this
parameter to a list of strings.

 format_report: Default value is no. Set this parameter to yes to wrap
text in the reports generated by the SpyGlass CDC solution.

 glitch_protect_cell: Default value is NULL. Specify a comma or
space-separated list of glitch protection cell names for the Glitch
Protection Cell Synchronization Scheme.
527
Synopsys, Inc.

Parameters of the Ac_sync_group Rules

Working With the Ac_sync_group Rules
 ignore_num_rtl_buf_invs: Default value is many. Set this parameter to
one to allow one buffer and inverter. Other possible values are two and
none.

 netlist_name_convention: By default, this parameter is not set to any
value. Set this parameter to a string value to specify a naming
convention for a generated net in netlist designs.

 num_flops: Default value is 2. Set this parameter to a positive integer
value greater than one to specify a minimum number of flip-flops
required for synchronizing a signal by using the Conventional Multi-Flop
Synchronization Scheme.

 prefer_abstract_port: Default value is no. Set this parameter to yes to
consider a black box as the source on which the assume_path and
abstract_port constraints are applied.

 report_inst_for_netlist: Default value is no. Set this parameter to yes to
report violating instance name in case of netlist designs and leaf-level
net name for RTL designs.

 report_instance_pin: Default value is no. Set this parameter to yes to
report the name of instance pin of a netlist design. Other possible values
are flop, latch, bbox, seqCell, and all.

 reset_cross_seq: Default value is no. Set this parameter to yes to report
clock-domain crossings to the asynchronous reset pins of complex
library cells.

 show_module_in_spreadsheet: Default value is no. Set this parameter to
yes to generate module and instance data in the generated
spreadsheet.

 sta_based_clock_relationship: Default value is no. Set this
parameter to yes to compute domains based on the specification of the
sg_clock_group constraint.

 strict_double_flop: Default value is no. Set this parameter to yes to mark
clock crossings as synchronized.

 strict_sync_check: Default value is no. Set this parameter to yes if scan
flip-flops are present.

 sync_check_type: Default value is qual_only. Set this parameter to
enable_with_qual to allow a qualifier as a valid enable for The
528
Synopsys, Inc.

Parameters of the Ac_sync_group Rules

Working With the Ac_sync_group Rules
Enable Expression-Based Synchronization Analysis. Other possible value is
enable_with_des_dom.

 sync_point_selection: Default value is first. Set this parameter to last
to consider the last possible enable signal (from source) where a
crossing could be synchronized. Other possible values are none and
gp_sync.

 sync_reset: Default value is no. Set this parameter to yes to allow at
most one gate of an AND/NAND/OR/NOR type to be the synchronous
reset for the flip-flop that follows.

 synchronize_cells: Default value is NULL. Specify a list of cells to this
parameter that are considered as valid synchronizers for scalar source
domain signals for the Synchronizing Cell Synchronization Scheme.

 synchronize_data_cells: Default value is NULL. Specify a list of cells to this
parameter that are considered as valid synchronizers for source domain
vector signals for the Synchronizing Cell Synchronization Scheme.

 use_inferred_clocks: Default value is no. Set this parameter to yes to
use auto-generated clock information.

 user_group_str: By default, this parameter is not set to any value. Set
this parameter to a comma or space-separated list of strings based on
which messages of the Ac_sync_group rules are grouped.

 fa_multicore: Default value is no. Set this parameter to yes to invoke
the multi core engine of SpyGlass for solving complex assertions.

 fa_meta: Default value is no. Set this parameter to yes to enable formal
modeling of metastability.

 cdc_ignore_multi_domain: Default value is none. Set this parameter to
data_path to enable synchronization analysis of a data path clock
domain crossing involving multiple source domains.

 show_parent_module_in_spreadsheet: Adds the PARENT_MODULE column
in the rule-based spreadsheet of the supported rules.
529
Synopsys, Inc.

Constraints of the Ac_sync_group Rules

Working With the Ac_sync_group Rules
Constraints of the Ac_sync_group Rules
The following are the common constraints used by the Ac_sync_group
rules:
 abstract_port (Optional): Use this constraint to define abstracted

information for block ports.
NOTE: The Ac_sync_group rules report violations on blackbox input/output ports if the

abstract_port constraint is defined with the -end argument.

 allow_combo_logic (Optional): Use this constraint to allow combinational
logic between crossings only if the logic is within the modules specified
by using this constraint.

 assume_path (Optional): Use this constraint to specify paths through
black box instances.

 cdc_false_path (Optional): Use this constraint to specify false paths so
that clock-domain crossings along these paths are ignored for
rule-checking.

 clock (Optional): Use this constraint to specify clock signals in a design.

 fifo (Optional): Use this constraint to specify FIFO information.

 input (Optional): Use this constraint to specify clock domain at input
ports.

 ip_block (Optional): Use this constraint to specify IP blocks in your
design.

 num_flops (Optional): Use this constraint to specify a minimum number
of flip-flops required in a synchronizer chain.

 output (Optional): Use this constraint to specify clock domain at output
ports.

 qualifier (Optional): Use this constraint to specify a qualifier for
synchronizing a clock domain crossing.

 quasi_static (Optional): Use this constraint to specify signals whose value
is predominantly static.

 signal_type (Optional): Use this constraint to specify the signal type
(control or data).
530
Synopsys, Inc.

Constraints of the Ac_sync_group Rules

Working With the Ac_sync_group Rules
 sync_cell (Optional): Use this constraint to specify synchronizer cells that
should be considered valid for crossings that contain the specified
frequencies, source/destination clocks, or domains.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

 sg_clock_group (Optional): Use this constraint to define asynchronous
relationship between clocks.
531
Synopsys, Inc.

Important Information Regarding the Ac_sync_group
Rules

Working With the Ac_sync_group Rules
Important Information Regarding the
Ac_sync_group Rules

Note the following points for the Ac_sync_group rules:

 If a destination black box is not modeled by using either abstract_port or
sync_cell constraint or the synchronize_cells parameter and the black box
has multiple domain clocks reaching to it, such black boxes are not
checked for crossing detection. However, a crossing check is performed
if the black box receives a single clock.

 If you have specified a destination black box pin by using the
abstract_port constraint, this black box is considered as an abstracted
model and no crossing checks are performed on it as a destination.

 If a destination black box pin is a vector terminal, a violation is reported
on the nets connected to these black box vector pins that will be bus-
merged.

 If a destination signal is specified as a control signal by using the
signal_type constraint, it is checked only for the control synchronization
schemes.

 If a destination signal is specified as a data signal by using the
signal_type constraint, it is checked only for the data synchronization
schemes.
532
Synopsys, Inc.

Limitations of the Ac_Sync_Group Rules

Working With the Ac_sync_group Rules
Limitations of the Ac_Sync_Group Rules
The Ac_sync_group rules have following limitations:

 These rules do not detect crossings if a sequential library cell with a
combinational arc for a pin is present between a source and destination.

 These rules do not consider the following constraint specification:

qualifier -type src

 These rules may report false crossings with an IO pad cell present
between the source and destination.

 These rules analyze inside library cells for accurate synchronization
checking. It is not supported for a library cell that has a pin, which
diverges and converges back inside the library cell.
533
Synopsys, Inc.

Limitations of the Ac_Sync_Group Rules

Working With the Ac_sync_group Rules
534
Synopsys, Inc.

Performing Functional
Analysis in SpyGlass
CDC
While performing structural analysis of a design, SpyGlass may not detect
functional bugs in the design. For example, structural analysis may report
about a missing synchronizer in a crossing. However, even after inserting
the synchronizer, the design may not function as expected. In such cases,
structural analysis cannot identify the issues causing the unexpected
design behavior. To identify such issues, you should perform functional
analysis.

Functional analysis (also known as The Functional Validation Methodology)
checks the design functionality and detects design bugs. For example,
functional analysis can be:
 Checking for gray encoding of the vector signal that is crossing a clock

domain.
 Checking for correct functionality of a handshake scheme.

 Checking for FIFO overflow and underflow conditions.
535
Synopsys, Inc.

The Functional Validation Methodology

Performing Functional Analysis in SpyGlass CDC
The Functional Validation Methodology
Functional validation methodology is the sequence of steps that enables
you to check the functional correctness of a design.

To check the functional correctness of a design, you begin by identifying
the design functionality to be tested. Such design functionality is known as
a property. Once you identify Properties, you write directives to the formal
verification tool to verify the given property. Such directives are known as
Assertions. You then verify the assertions and debug the reported violations
that indicate the Passed, Failed, and Partially Proved properties.

For large designs, this methodology enables you to converge to the best
possible outcome (highest number of Passed properties and all the bugs
detected) in short time.

The functional validation methodology consists of the following stages:
 Stage 1: Running SpyGlass in the Audit Mode

 Stage 2: Analyzing Design Setup

 Stage 3: Running SpyGlass in the Default Mode

 Stage 4: Diagnosing and Fixing Design Bugs

 Stage 5: Running SpyGlass with a Higher CPU Time

 Stage 6: Concluding Partially-Proved Assertions

The following diagram is the recommended methodology for functional
validation using SpyGlass:
536
Synopsys, Inc.

The Functional Validation Methodology

Performing Functional Analysis in SpyGlass CDC
FIGURE 1. Functional Validation Methodology - Basic Usage

Stage 1: Running SpyGlass in the Audit Mode)

Stage 2: Analyzing Design Setup

Checks
concluded?

Change setup

No

Stage 3: Running SpyGlass in the Default Mode

Yes

Correct setup?

EXIT

Yes

Large Design?

No

Stage 4: Diagnosing and Fixing
Design Bugs

All bugs found
and fixed?

EXIT

Yes

- Partition the design and
analyze in blocks
- Reduce the rule set
- Reduce the number of
analysis per rule

Yes No

Satisfactory
Results? EXIT

Yes

Stage 5: Running SpyGlass with a Higher CPU Time

No

To Advanced Usage

No
537
Synopsys, Inc.

The Functional Validation Methodology

Performing Functional Analysis in SpyGlass CDC
FIGURE 2. Functional Validation Methodology - Advanced Usage

NOTE: All incremental runs should use the Property file created in the previous run.

Stage 1: Running SpyGlass in the Audit Mode

In the audit mode, you generate a list of Assertions of a design without
performing functional analysis on these assertions.

The following figure shows the flow of this stage:

From Basic Usage

Satisfactory
Results? EXIT

Yes

Run with the fa_passfail option

No

Satisfactory
Results? EXIT

Yes

No

Analyze causes of
unsuccessful proving

Introduce functional constraints to
help proving

Satisfactory
Results? EXIT

Yes

No

Retry all options with higher fa_atime
538
Synopsys, Inc.

The Functional Validation Methodology

Performing Functional Analysis in SpyGlass CDC
FIGURE 3. Flow during the Audit Mode

Stage 2: Analyzing Design Setup

Analyze the design information described in the following table:

set_parameter fa_audit yes
Run SpyGlass in the audit mode

The adv_cdc.prp file is generated
This file contains SpyGlass-generated Assertions.

View the generated assertions in
the Property Manager dialog

Menu option to open this dialog:
 Tools-> Property Manager -> clock-reset

Enable or disable assertions
In the Property Manager dialog, enable the
assertions that you want to functionally verify in the

For details, see . Enabling and Disabling Assertions.

Change the name of the adv_cdc.prp file

The changes made in this dialog are saved in
the adv_cdc.prp file.

in the spyglass_reports/clock-reset/
directory

Reason to change the file name:

After every formal-analysis run, adv_cdc.prp
generated in the last run is overwritten with the
latest run results.
 If you want to use the adv_cdc.prp file that you
modified through the Property Manager dialog,
change its name before the next run so that it is
not overwitten.
Pass the modified file through the fa_propfile
parameter in the next run, which is

-fa_audit=yes

next SpyGlass run.

Stage 3: Running SpyGlass in the Default Mode
539
Synopsys, Inc.

The Functional Validation Methodology

Performing Functional Analysis in SpyGlass CDC
Stage 3: Running SpyGlass in the Default Mode

In this stage, SpyGlass verifies the generated Assertions.

The following figure shows the flow of this stage:

Design
Information

Analysis

Clocks Perform the following analysis of the clocks in the design:
• Check clock definitions in the design.

If a clock definition is not reported correctly, define the clock in an SGDC
file.

• Check for the automatically generated clocks.
For a clock source that is not user-defined, SpyGlass generates a default
clock running at 100MHz with a rising edge at 0 and a falling edge at 5ns.
Look at such automatically-generated clocks and correct and/or add
attributes such as clock frequencies. Specify this information in an SGDC
file to be specified to the next SpyGlass run.

• Refer to the schematic and RTL back annotations can be used to visualize
all clock sources and destination registers.

• After constraint or design modifications, SpyGlass can be launched again,
with the fa_audit parameter, to explore and further tune the clock
definition until a correct clock definition is obtained.

Resets Explore the reset signals of your design. Make sure that all reset signals are
listed and the attributes are correct (active high or active low, hard reset or
soft reset).

Initial state Look for registers that are not initialized (registers at “x”).
Non-initialized registers can cause false failure because they will be assigned
to the convenient value to make a property fail. Provide SpyGlass Design
Constraints (reset signals, reset vector, initial state) to help initializing the
registers. You may also want to validate the correctness of the initial state.

Properties Explore the extracted properties of your design from adv_cdc.prp file.
Statistics after audit can be used to determine a functional exploration
strategy for a design. You may decide to validate each rule or set of rules
separately if the number of rules is too high. You can estimate the
complexity, coverage, run time memory requirements, etc.
540
Synopsys, Inc.

The Functional Validation Methodology

Performing Functional Analysis in SpyGlass CDC
FIGURE 4. Flow during the Default Mode of functional analysis

Stage 4: Diagnosing and Fixing Design Bugs

Based on Assertions verification during Stage 3: Running SpyGlass in the
Default Mode, SpyGlass reports appropriate violations of different status,
such as Passed, Failed, and Partially Proved.

Assuming the setup is correct (Stage 2: Analyzing Design Setup), diagnose a
violation in the following order:
 Reading the Violation Message

 Examining RTL and Corresponding Schematic Diagram

 Examining Waveform Showing a Concise Trace of the Violation

set_parameter fa_audit noRun SpyGlass in the default mode

Property file

-fa_audit=no

specified?
No

Yes

SpyGlass validates assertions from SpyGlass validates assertions from
the adv_cdc.prp file generated in
the current SpyGlass run.

the property file specified by the
 parameter.fa_propfile

SpyGlass generates the adv_cdc.prp file
incorporating results of the current run.
541
Synopsys, Inc.

The Functional Validation Methodology

Performing Functional Analysis in SpyGlass CDC
Reading the Violation Message

Each violation message provides the following types of information that
help you identify the cause of a bug:
 Type of problem

For example, if the problem is specific to clock-crossing data loss issue
or a gray-code failure.

 Involved signals and their values at the time of failure
This is the list of signals that enable you to diagnose the problem. For
example, the signal may be the bus on which gray-coding is checked.

Examining RTL and Corresponding Schematic Diagram

When you double click on a violation message, the RTL code containing the
problem is highlighted in the HDL Viewer. Explore the RTL code surrounding
the reported signals to find the exact cause of the violation.

You can cross-probe to the schematic from the RTL to view the graphical
format of the design area containing the problem.

Examining Waveform Showing a Concise Trace of the Violation

For complex bugs involving many signals and rooted deep in the sequential
space, the message and RTL/schematic viewer may not suffice to find the
exact cause of a bug.

In such cases, view the waveform to know the cause of functional bug. For
details on using the waveform, see Using Waveform during Functional Analysis.

Stage 5: Running SpyGlass with a Higher CPU Time

If during Stage 4: Diagnosing and Fixing Design Bugs, you are not able to
detect the bug, increase the CPU time that SpyGlass uses to analyze
Assertions.

With a higher CPU time (also known as atime), chances for proving an
assertion are high.

Specify a higher CPU time by using the fa_atime parameter.
542
Synopsys, Inc.

The Functional Validation Methodology

Performing Functional Analysis in SpyGlass CDC
Stage 6: Concluding Partially-Proved Assertions

Even after Stage 5: Running SpyGlass with a Higher CPU Time, some Assertions
remain in the Partially Proved state. The reason for this can be Complex
Assertions and/or Large and Complex Design.

Complex Assertions

Complex assertions are the assertions that require monitoring of signals for
hundreds of cycles.

One way to conclude such assertions is to explore the design starting from
various initial states. In this case, chose an initial state to take the design
closer to failing conditions. For example, if an assertion is set to check for
FIFO overflow, push data into the FIFO so the FIFO is almost full before the
overflow check is launched.

Large and Complex Design

A check may not be completely analyzed because of High Design Cycle and/
or Large Design.

High Design Cycle

In case of multiple clocks in a design, hundreds or thousands of cycles may
be required before all clocks are again lined the same way as the starting
cycle. This number defines the design cycle. If the design cycle is high, it
becomes difficult to conclude Assertions.

Refer to Design Period for more information on design cycle.

For the cases in which clock periods are slightly misaligned resulting in a
high design cycle, slight modification in clock periods can drastically bring
down the design cycle, thereby increasing the chances of formal results to
be concluded.

For example, consider the following clock specifications:

clock -name clk1 -period 10.5
clock -name clk2 -period 19.5

The above clock specifications result in a high design period and design
cycle, that is, 136.5 and 37, respectively.
543
Synopsys, Inc.

The Functional Validation Methodology

Performing Functional Analysis in SpyGlass CDC
To reduce the design period and design cycle in this case, change the clock
periods, as shown below:

clock -name clk1 -period 10
clock -name clk2 -period 20

Now the design period is reduced to 20 and the design cycle is reduced to
4.

Large Design

Large design does not necessarily imply difficult assertion check. The
complexity of a check depends on the complexity of the cone of influence
of combined assertion and logic involved in the assertion.

The complexity cannot be measured by gate count or register count only; it
also depends on the implicit complexity of the transition logic.

Consequently, a perceived complex check in a large design may be solved
faster than a perceived simple check in a smaller design. Only extensive
exploration of the assertion and the design (including SpyGlass
performance limitations can help in concluding that a check/design is
complex and the check cannot be fully analyzed.
544
Synopsys, Inc.

Enabling and Disabling Assertions

Performing Functional Analysis in SpyGlass CDC
Enabling and Disabling Assertions
While debugging CDC issues, you may want to focus on the violations of
specific assertions, such as Passed, Failed, or Partially Proved.

In such cases, use The Property Manager dialog to select and/or deselect
assertions so that these changes are saved in the property file. In the next
SpyGlass run, pass that property file to run the selected assertions.

To open the Property Manager dialog, select Tools -> Property Manager ->
Clock-Reset menu option. the following figure shows the Property Manager
window:

FIGURE 5. The Property Manager dialog

The above dialog shows the names of rules whose violations contain
assertion status.

Click on the Edit button adjacent to a rule name to enable and/or disable
assertions of that rule. For example, the following figure shows the
assertion details of the violations reported by the Ac_cdc01a rule:
545
Synopsys, Inc.

Enabling and Disabling Assertions

Performing Functional Analysis in SpyGlass CDC
FIGURE 6. Selecting and deselecting assertions

In the above dialog, select and/or deselect assertions and click OK. The
changes are saved to the property file.

Next time when you run SpyGlass and pass that property file, the
violations of the selected assertions are reported.
546
Synopsys, Inc.

Property Status Reported during Functional Analysis

Performing Functional Analysis in SpyGlass CDC
Property Status Reported during Functional
Analysis

The functional analysis rules may report the status of Properties as any of
the following based on whether a property file could be generated for those
properties:
 Passed

 Failed

 Partially Proved

 Others (Internal-Error)

 Others (Constraints-Conflict)

 Not-Analyzed

Passed

A property is considered as passed when SpyGlass is able to generate a
property file for that property. For details, refer to Specifying Properties in a
Property File.

For example, for a property to pass, at least one design state should be
reachable in which the property is valid. In all such cases, a sequence of
input vectors can be generated (known as witness), which will lead to that
particular design state. If it is possible to generate a witness for a property,
the property or assertion holds true (or in other words it passes).

Failed

A property is considered as failed when the property file for that property
cannot be generated under any circumstances. For details, refer to
Specifying Properties in a Property File.

Witness

A witness is the input sequence that eventually makes Assertions true
while satisfying the given constraints throughout the path.

For example, for a property to pass, at least one design state should be
reachable in which the property is valid. In all such cases, a sequence of
input vectors can be generated, which will lead to that particular design
state. This sequence is known as “Witness”. Therefore, if it is possible to
547
Synopsys, Inc.

Property Status Reported during Functional Analysis

Performing Functional Analysis in SpyGlass CDC
generate a witness for a property, the property or assertion holds true, that
it is passed.

However, if it is not possible to generate a single witness under the given
constraints, the property or the assertion fails.

Partially Proved

A property is considered as partially-proved when SpyGlass cannot find the
property file for that property and also cannot guarantee that a Specifying
Properties in a Property File is not possible.

Others (Internal-Error)

A property is considered as Others (Internal-Error) when the value of the
design cycle for the clocks in that property cone exceeds the threshold
value of 65535.

Others (Constraints-Conflict)

A property is reported as Others (Constraints-Conflict) when constraints in
the property cone are not satisfiable.

Not-Analyzed

A property is reported as Not-Analyzed when it is switched off in the
property file and not analyzed during functional verification.
548
Synopsys, Inc.

Specifying Properties in a Property File

Performing Functional Analysis in SpyGlass CDC
Specifying Properties in a Property File
Specify Properties in a property file (.prp), and pass this file to SpyGlass by
using the fa_propfile parameter.

A property file is used for incremental validation purpose. You modify the
property file generated in the current run by Enabling and Disabling
Assertions. For example, you can disable the previously validated assertions
and then launch an incremental run in which you pass the modified
property file so that the previously validated assertions are not reanalyzed.

Property File Format

A property file has assertion information based on rules in the following
format:

RuleName: <rule-name>
<selection> <type> <status> <file-name> <line-num> <hier>

[<info>]
...
RuleName: <rule-name>
...

Where:

<rule-name>

The name of the SpyGlass rule.

<selection>

Set to on when the assertion/constraint is enabled or off when the
assertion/constraint is disabled.

<type>

The property type is Assertion in SpyGlass CDC.

<status>

Indicates the assertion status. The status values are given below:
549
Synopsys, Inc.

Specifying Properties in a Property File

Performing Functional Analysis in SpyGlass CDC
NOTE: The status for constraints is indicated as NA.
NOTE: Internal errors occur in case a design cycle reaches a value higher than 65535.

NOTE: The properties with status Partially Proved are reported with selection on and
the properties with all other status are reported with selection off. You can
modify the selection as required for the next run.

NOTE: The Others (Constraints-Conflict) status is reported in case of over-constraining
found while evaluating any particular assertion.

<file-name> and <line-num>

The location of the assertion.

<hier>

The design hierarchy where the assertion/constraint was checked.

<info>

Printed for selected rules only. The details are described under the
respective rules.

<status> Value Indicates that the assertion
PROVED Proved in the current run
FAILED Failed in the current run
Partially-Proved Partially-proved in the current run
Others (Constraints-Conflict) Constraints conflict in the current run
Others (Internal-Error) Internal error in the current run
Not-Analyzed Not analyzed in the current run or a previous

run
[PROVED] Proved in a previous run
[FAILED] Failed in a previous run
[Partially-Proved] Partially-proved in a previous run
[Others (Constraints-Conflict)] Constraints conflict in a previous run
[Others (Internal-Error)] Internal error in a previous run
550
Synopsys, Inc.

Specifying Properties in a Property File

Performing Functional Analysis in SpyGlass CDC
Property File Example

The contents of a typical property file are shown in the following example:

RuleName: Ac_cdc01a
off Assertion FAILED ../src/test.v 559 top.U1
[SFlop:top.U1.Q1 SClk:top.clk1 DFlop:top.U1.Q2
DClk:top.clk2]
...

on Assertion Partially-Proved ../src/test.v 563 top.U21
[SFlop:top.U21.Q12 SClk:top.clk21 DFlop:top.U21.Q22
DClk:top.clk2]

off Assertion PROVED ../src/test.v 586 top.U45
[SFlop:top.U45.Q_45 SClk:top.clk_45 DFlop:top.U45.Q_46
DClk:top.clk_46]
...

Property File Processing

SpyGlass processes a property file in the following ways:
1. SpyGlass skips checking for a rule when a related assertion is not found

in the design. The Ac_sanity01 rule message is reported for the rule. No
information is printed in the property file for such rules. The remaining
rules are still processed as applicable.

2. The attributes of assertions in the property file override the attributes of
assertions in the HDL instances. For instance, if a design assertion
(functional constraint) is specified as a functional constraint (assertion)
in the property file, SpyGlass processed it as a functional constraint
(assertion).

3. Any assertion/constraint instantiated in a design that is not present in
the property file or is explicitly disabled in the property file is ignored for
functional analysis.

4. If SpyGlass is run with a property file provided, the new property file
generated is based on the existing property file incorporating the results
of the current run. Therefore, design properties that are not in the
original property file do not appear in the new property file.
551
Synopsys, Inc.

Specifying OVL Constraints

Performing Functional Analysis in SpyGlass CDC
Specifying OVL Constraints
The CDC Verification Rules support OVL constraints.

Refer to Accellera Standard Open Verification Library (Version Oct 2002) of
properties that can be instantiated in a design as a functional constraint.
Any OVL constraint inserted in the RTL code by the user is considered as a
user-provided functional constraint. Example: assert_range().

You can specify OVL constraints in any of the following ways:
 By embedding OVL constraints directly in an RTL file.

 By specifying OVL constraints in a separate file. For details, refer to the
Separate File OVL Support section of the SpyGlass Auto Verify Rules
Reference Guide.

NOTE: Please note the following points:

 SpyGlass CDC solution uses OVL as constraints only. Therefore, from SpyGlass
CDC solution perspective, you need to always set the value of
property_type to 1 so that OVL constraints are honored by SpyGlass CDC
solution.

 options in OVL 1.0 has been renamed to property_type in OVL 2.0.

 SpyGlass CDC solution honors both OVL 1.0 and OVL 2.0.

Prerequisites for Using OVL Constraints

If you are using OVL constraints, then while creating custom goals for CDC
Verification Rules, you should append the following lines in the custom goal
file:

-sgdc $SPYGLASS_HOME/auxi/policy_data/Clock-Reset/verif.sgdc

-lib accellera_vlog $SPYGLASS_HOME/auxi/ovl/precompile/
$SPYGLASS_PLATFORM/accellera_verilog

-lib accellera $SPYGLASS_HOME/auxi/ovl/precompile/
$SPYGLASS_PLATFORM/accellera_vhdl
552
Synopsys, Inc.

Specifying OVL Constraints

Performing Functional Analysis in SpyGlass CDC
Why Use OVL Constraints?

For formal analysis, it is recommended that you use a block to chip level
approach, that is, you should clean up block-level violations first, and then
run formal checks at chip level.

While resolving block-level violations, you might notice some dependencies
between certain blocks.

For example, some logic may be generated in the B1 block and the output
of this block feeds the B2 block. However, when you run formal checks on
the B2 block by treating this block as the top module, ports of this block
would become primary inputs. This is incorrect because, as per the design
characteristics, it is made sure that these ports were always being fed from
output of the B1 block, and therefore, these ports were expected to behave
in a particular fashion and were not purely primary inputs.

Therefore, you need to constraint the inputs of this block or else the formal
tool would report false failures.

Using set_case_analysis constraint is one of the simplest ways in SpyGlass
by which you can constraint your logic.

However, using this constraint has the following limitations:
 You can use this constraint to set a net to either 0 or 1 for the entire

run.
 This constraint does take any clock or reset into account.

You can overcome the above limitations by using OVL constraints. OVL,
with its set of standard predefined constraints, provides you the flexibility
to constraint your design.

The assert_gray Constraint

Use the assert_gray constraint to ensure that the value of the specified
expression is gray-encoded.

The usage of the assert_gray constraint is as follows:

// Usage: assert_gray #(severity, width, options, loop)

The parameters of the above constraint are described in the following
553
Synopsys, Inc.

Specifying OVL Constraints

Performing Functional Analysis in SpyGlass CDC
table:

The arguments of the assert_gray constraint are described in the
following table:

The following example shows the usage of the assert_gray constraint:

assert_gray #(0, 2, 1, 1) gray_inst(clk1,1'b1, reg1);

Examples of Using OVL Constraints

The following are some examples of using the OVL constraints:
 Consider that you specify the following OVL constraint on a design on

which you want to run the Ac_cdc08 rule:

// Usage: assert_gray #(severity, width, options, loop)

assert_gray #(0, 2, 1, 1) gray_inst(clk1,1'b1, reg1); //

Parameter Description
severity Specifies the severity, such as ERROR and WARNING.

This parameter is not used by the SpyGlass CDC solution.
width Specifies the width of the bus on which gray-encoding check is

to be performed.
options This parameter is used as a constraint or assertion.

For SpyGlass CDC solution, it is used as a constraint and,
therefore, this parameter should be set to 1.

loop If this parameter is set to 0 then 00->01->01->11->10 is not
considered as gray-encoded. However, if it is set to 1 then the
above sequence of transitions is considered as gray-encoded.

Parameter Description
clock Specifies the clock on which to the gray-encoding check should

be performed
reset Specifies a reset net
register Specifies the register on which the gray-encoding check should

be performed
554
Synopsys, Inc.

Specifying OVL Constraints

Performing Functional Analysis in SpyGlass CDC
3rd argument -> OVL constraint

The above command constrains the reg1 register so that is
gray-encoded. As a result, the Ac_cdc08 rule reports the status as
PASSED.

For details on the assert_gray constraint, see The assert_gray
Constraint.

 Consider that you specify the following OVL constraint on a design on
which you want to run the Ac_cdc01 rule:

//Syntax : assert_cycle_sequence #(severity, num_cks,
necessary_condition, options)

assert_cycle_sequence #(0, 6, 1, 1)
assumeSequenceZeroOne(clk1, rst, {D == `ZERO, D == `ZERO,
D == `ZERO, D == `ZERO, D == `ZERO, D == `ONE});

The above command constrains D so that D is 0 for five cycles and is 1
for one cycle.

Limitations of Using OVL Constraints

Writing OVL constraints in VHDL is currently not supported.

The workaround for this problem is to specify the required OVL constraints
in Verilog in a separate file, and pass that file to the tool by using the
following command in a project file:

set_option ovl_verilog { <OVL-file> }
555
Synopsys, Inc.

Specifying OVL Constraints

Performing Functional Analysis in SpyGlass CDC
The following example shows the OVL file used for a VHDL design:

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.Numeric_Std.ALL;
library accellera;
use accellera.ovl_assert.all;

entity gray is
port (
clk1, clk2, rst : in std_logic;
in1 : in std_logic_vector(1 downto 0);
out1 : out std_logic_vector(1 downto 0));

end entity;

architecture gray_arc of gray is
signal reg1,reg2 : std_logic_vector(1 downto 0);

end architecture;

......

...

attach_properties gray:gray_arc
begin_ovl
assert_gray #(0, 2, 1, 1) gray_inst(clk1, 1'b1, reg1);

end_ovl

VHDL File (test.vhd)

OVL File (verilog_ovl_file.ovl)

read_file -type vhdl test.vhd
set_option ovl_verilog { verilog_ovl_file.ovl }

Project File Command
556
Synopsys, Inc.

Using Waveform during Functional Analysis

Performing Functional Analysis in SpyGlass CDC
Using Waveform during Functional Analysis
Waveform Viewer is the SpyGlass analysis tool used to perform root cause
analysis of a functional bug in a design.

When a property fails (status reported as Failed), SpyGlass generates a
Specifying Properties in a Property File for the failure. This witness is the
sequence of events from the initial state of a design/sub-design to the time
when a bug appears. This witness can be generated as the set of
simulation vectors in the VCD format,
<advance-cdc-rule-name>.<counter>.vcd. For example, Ac_fifo01.2.vcd
(See Viewing VCD Files).

Each event or time frame in VCD corresponds to an edge of a clock
relevant to the violation (for more detailed description of clock cycles and
clock edge count, see Clock Cycle Count and Sequential Depth).

When you select a violation, then besides RTL back annotation and
schematic highlight, a waveform viewer is launched displaying the VCD
content. The presence of a waveform display is indicated by the waveform
icon in front of a violation.

Viewing VCD Files

The details of a VCD file and its corresponding display in the Waveform
Viewer window are described below:
 A VCD file contains values of all the signals lying in the fan-in cone of an

assertion, starting from time 0 till the failure depth.
 The exact time stamp of failure is highlighted by a red vertical marker in

the Waveform Viewer window. (See Figure 7)
 By default, only the most relevant signals in the failing assertion are

shown in the Waveform Viewer window to avoid cluttering of signals.
You can view other signals in the fan-in cone by performing any of the
following actions in the Waveform Viewer window:
 Click on any net, and select its fan-in / fan-in cone.

 Select the View->Show and Hide Signals menu option.
This displays the Show or Hide Signals dialog in which you can select
the signals you want to view.
557
Synopsys, Inc.

Using Waveform during Functional Analysis

Performing Functional Analysis in SpyGlass CDC
The following figure displays the details of a sample VCD file in the
Waveform Viewer window:

FIGURE 7. Waveform Viewer Window Displaying the Details of a Sample VCD File

In addition to the VCD files generated for a rule, the adv_cdc_init_seq.vcd
file is also generated corresponding to the Ac_initstate01 rule, which reports
the initial state of a design.

Cross-Probing a Net in Waveform through Schematic

While debugging the waveform of a failed property (violation witness),
perform the following steps to cross-probe a net in the waveform from
schematic:
1. Open the Waveform Viewer window.
2. Open the incremental schematic.
3. <Ctrl>+click on a net in the schematic while tracing the fan-in of the

violating logic.

After performing the above steps, the selected net is cross-probed in
waveform viewer if it exists in the VCD generated by the tool. If that net
does not impact the violation, SpyGlass reports a message indicating that
the net does not exist in VCD.
558
Synopsys, Inc.

Handling
generated_clock
Constructs on Library
Pins
Consider the following example of a library pin declaration:

generate_clock(o1) {
clock_pin : o1
master_pin : in1;
divide_by : 2

}

In the above example, the o1 pin is considered as a generated clock when
its source pin in1 receives a clock.

The domain assignment for such generated clocks happen as per the
following rules:
 One Clock Reaches the Source of Generated Clock

 Multiple Clocks Reach the Source of Generated Clock
559
Synopsys, Inc.

One Clock Reaches the Source of Generated Clock

Handling generated_clock Constructs on Library Pins
One Clock Reaches the Source of Generated
Clock

Consider the following figure:

FIGURE 1.

In the above figure, one clock (clk1) reaches the in1 pin (master pin of
o1 on which generated_clock construct is defined). Therefore, the
domain of the clk1 clock is assigned to the o1 clock.

clk1 in1
o1

o2

o3

(generated_clock)

generated_clock(o1) {
 clock_pin : o1;
 master_pin : in1;
 multiplied_by : 1;
 duty_cycle : 50.000000;
 }

Library-pin definition on which
generated_clock construct is assigned
560
Synopsys, Inc.

Multiple Clocks Reach the Source of Generated Clock

Handling generated_clock Constructs on Library Pins
Multiple Clocks Reach the Source of Generated
Clock

Consider the following figure:

FIGURE 2.

In the above figure, different domain clocks reach to source pin in1 of the
generated clock o1.

By default, SpyGlass picks the domain of any one source clock and assigns
that domain to the generated clock.

To assign the merged domain (domain 3‘) to the generated clock o1,
set the value of the clock_reduce_pessimism parameter to
all_master_clocks.

in1
o1

o2

o3

(generated_clock)clk1 (domain 0`)

clk2 (domain 1`)
clk3 (domain 2`)

(domain 3`)
561
Synopsys, Inc.

Constraints Generated on the Library Pins Defined With
generated_clock

Handling generated_clock Constructs on Library Pins
Constraints Generated on the Library Pins
Defined With generated_clock

The Setup_clock01 rule generates the following constraints for the library
pins on which the generated_clock construct is defined:
 clock

This constraint is generated when the enable_generated_clocks parameter
is set to no.
This constraint is saved in the cdc_setup_clocks.sgdc file in the
spyglass_reports/clock-reset directory.

 generated_clock

This constraint is generated when the enable_generated_clocks parameter
is set to yes.
This constraint is saved in the cdc_setup_generated_clocks.sgdc file in
the spyglass_reports/clock-reset directory.
562
Synopsys, Inc.

Reports and Other Files
in SpyGlass CDC
The SpyGlass CDC solution generates the following reports:

Report Name Description
Clock-Reset-Summary Provides information on clocks, resets, unconstrained

clock nets, and clock-domain crossings in a design.
Clock-Reset-Detail Provides information on the following:

• Synchronized and unsynchronized clock domain
crossings

• Crossings filtered by using the cdc_false_path
constraint

• Flip-flops that have their data pin tied to a constant
• Synchronization techniques

CKTree Shows clock hierarchy in a tree-like format (also called
clock tree).

CKCondensedTree Shows a condensed clock tree in which unlike the
CKTree report, this report shows the number of leaves
instead of actually listing the leaves.

RSTree Shows set/reset trees in a design.
SyncRstTree Shows synchronous set/reset trees in a design.
PortClockMatrix Provides information on constraints coverage of ports.
563
Synopsys, Inc.

Reports and Other Files in SpyGlass CDC
SynchInfo Provides information on destinations and synchronizers
involved in different synchronization schemes.

CrossingInfo Provides information on source and destination flip-
flops for all synchronized and unsynchronized
crossings.

CKPathInfo Provides information on clock cells on clock paths.
CKSGDCInfo Provides information on user-specified constraints.
CDC-report Provides summary on design, design setup, and

verification results.
CDC-summary Provides a concise summary of the design, design

setup, and verification results. It is similar to The CDC
Report with some extra information.

CDC-detailed Provides a concise summary of the design, design
setup, and verification results. It is similar to The CDC
Report with some extra information.

adv_cdc Provides information that helps you to analyze the
cause of a bug and helps you to gather functional
analysis statistics.

adv_reg Provides information on clocks, resets, and registers in
a design.

NoClockCell-Summary Provides information on the objects specified by the
noclockcell_start, noclockcell_stop_instance,
noclockcell_stop_module, and noclockcell_stop_signal
constraints.

DeltaDelay-Concise Shows a list of delta delay values for each clock in a
design and number of flip-flops and latches for each
delta delay value.

DeltaDelay-Detailed Shows a list of delta delays for each clock, net names of
flip-flops for each delay value, and net names of latches
for each delay value.

DeltaDelay02-Detailed Shows a list of flip-flops that can cause simulation
problems due to delta delay issues.

DeltaDelay-Summary Provides information on objects specified by the
deltacheck_start, deltacheck_stop_instance,
deltacheck_stop_module, deltacheck_stop_signal
constraints.

Ac_sync_group_detail Shows details of violations reported by the Ac_sync02,
Ac_sync01, Ac_unsync02, and Ac_unsync01 rules.

Report Name Description
564
Synopsys, Inc.

Reports and Other Files in SpyGlass CDC
NOTE: By default, the width of each column in the reports is dependent on the length of
information. You can format the display of information by wrapping up the text by
setting the format_report parameter to yes.

Ac_sync_qualifier Shows all the control-crossing synchronizers with their
qualifiers usage status in synchronizing data crossings.

Glitch_detailed Shows a summary of all the sources that are crossing
destinations and contain glitch-related issues.

Module_Topology Shows the dependency of modules in a design.
distributed_time Shows run time details of SpyGlass CDC rules that are

run in parallel on same or different machines.

Report Name Description
565
Synopsys, Inc.

Viewing Reports in GUI

Reports and Other Files in SpyGlass CDC
Viewing Reports in GUI
The SpyGlass CDC reports are saved in the spyglass_reports/clock-reset/
directory under the current working directory.

To view a report, perform any of the following actions:
 Select the required report from the Tools -> Reports menu option.

 Click in the Results pane under the Analyze Results tab, and select
the required report from the clock-reset menu.

 Specify the report to be generated by using the report command in a
project file.

 Specify the report to be generated by using the Reports Name option
under the Set Read Options tab.
566
Synopsys, Inc.

Specifying the Report to be Generated through a Project File

Reports and Other Files in SpyGlass CDC
Specifying the Report to be Generated through
a Project File

Specify the report to be generated by using any the following commands in
a project file:

 set_option report <report-name>

 set_goal_option report <report-name>

where, <report_name> can be any of the following report names
depending on the report to be generated:

For more information on generating reports, refer to Generating Reports
section in the Atrenta Console Reference Guide.

Ac_sync_group_detail Ac_sync_qualifier CDC-detailed-report
CDC-report CDC-summary-report CKCondensedTree
CKPathInfo CKSGDCInfo module_topology
CKTree Clock-Reset-Detail Clock-Reset-Summary
CrossingInfo DeltaDelay-Concise DeltaDelay-Detailed
DeltaDelay-Summary DeltaDelay02-Detailed NoClockCell-Summary
PortClockMatrix RSTree SyncRstTree
SynchInfo cdc_matrix
567
Synopsys, Inc.

The Clock-Reset-Summary Report

Reports and Other Files in SpyGlass CDC
The Clock-Reset-Summary Report
The Clock-Reset-Summary report provides an overview of primary
setup issues in constraints as well as signals causing most of the clock
domain crossing issues.

This report contains the following sections:

Section A: Case Analysis Settings Section

This section of The Clock-Reset-Summary Report lists the names and value
settings for case analysis-related signals specified by using the
set_case_analysis constraint.

Section B: Propagated Control Signals Section

This section of The Clock-Reset-Summary Report lists information of
propagated clock and reset signals in different sections, as described
below.

The Propagated Clock Signals Section

This section is available in any of the following conditions:
 You have specified the clock constraint.

 You have run the Clock_info01 rule with the use_inferred_clocks parameter
set to yes).

This section provides the following information:

Section A: Case Analysis Settings
Section

Section B: Propagated Control Signals
Section

Section C: Top 5 Domain Crossing
Sources Section

Section D: Cases not checked for clock
domain crossings Section

Section E: Inferred Control Signals
Section

Section F: Clock-Reset Matrix Section

Section G: Black Boxes in Clock Path
Section
568
Synopsys, Inc.

The Clock-Reset-Summary Report

Reports and Other Files in SpyGlass CDC
 Clock name (hierarchical)

 Number of flip-flops driven on positive, negative, and unknown edges

 Whether there is gating in the clock tree

 Total number of signals crossing to other clock domains (if the
Ac_sync_group group rules are run)

 Number of signals crossing to other clock domains involving black boxes
(if the Ac_sync_group group rules are run)

The Propagated Reset Signals Section

This section is available in any of the following conditions:
 You have specified the reset constraints.

 You run the Reset_info01 rule with the use_inferred_resets parameter set
to yes)

This section provides the following information:
 Reset name (hierarchical), if the reset is propagated

 Number of synchronous reset used, asynchronous set used and
asynchronous reset used, only if Reset_check04 rule is run.

Section C: Top 5 Domain Crossing Sources Section

This section of The Clock-Reset-Summary Report lists top five source signals
in a domain crossing.

These signals are arranged in the descending order based on the number
of crossings driven by these signals.

This section displays the source signal name, total number of crossings
driven by this source signal, and the number of crossings driven by this
source signal involving black boxes.

In case of netlist designs, if the report_inst_for_netlist parameter is set to
yes, the source column displays the source instance name. Otherwise, the
details of the section are the same as in case of RTL designs.
569
Synopsys, Inc.

The Clock-Reset-Summary Report

Reports and Other Files in SpyGlass CDC
Section D: Cases not checked for clock domain crossings
Section

This section of The Clock-Reset-Summary Report lists the names of clock nets
of unconstrained flip-flops and flip-flops with constant inputs, the number
of flip-flops connected to such clock nets, and the name and type of source
clock, if any, in the design after the Clock_info03 rule has run.

See Section B: Flops with Data pin set to constant value Section of The Clock-
Reset-Detail Report for details on flip-flops with constant inputs.

A clock net is assumed to be not participating in clock domain crossing
checks under any of the following conditions:
 The clock has not been specified using the clock keyword in a SpyGlass

Design Constraints file (reported by the Clock_info03a rule).
 A flip-flop triggered by the clock net has a constant input (reported by

the Clock_info03b rule).
 A set_case_analysis specification is overriding the clock (reported by the

Clock_info03c rule).

You should examine this section carefully to ensure all possible problems
are resolved. Otherwise, you may overlook potential domain crossing
issues.

Section E: Inferred Control Signals Section

This section of The Clock-Reset-Summary Report shows the following
information:
 Clocks that are found in forward propagation of the clocks specified in

the SGDC file or inferred using the use_inferred_clocks parameter.
The inferred clock signal sub section contains the following:
 Clock name (hierarchical)

 Clock type (Primary, Derived, Black box, Gated, Undriven, or Virtual)

 Black box master module and clock pin name (for black box type)

 Clock drivers (for Derived or Gated types)
570
Synopsys, Inc.

The Clock-Reset-Summary Report

Reports and Other Files in SpyGlass CDC
 Resets that are found in forward propagation of the resets specified in
the SGDC file or inferred using the use_inferred_resets parameter.
The inferred reset signal sub section contains the following:
 Reset name (hierarchical)

 Reset type (Primary, Derived, black box, Gated, or Undriven)

 Reset drivers (for Derived or Gated types)

In addition, the clock_sig.csv and reset_sig.csv files are also generated in the
current working directory. These files can be imported into a spreadsheet
application, such as Microsoft Excel.

Section F: Clock-Reset Matrix Section

This section of The Clock-Reset-Summary Report lists the clock domain-to-
reset use matrix as generated by the Clock_Reset_info01 rule.

Section G: Black Boxes in Clock Path Section

This section of The Clock-Reset-Summary Report lists the clock, the black box
design unit, and the black box terminal that lies in the path of the clock.

Use this information to set the assume_path constraint.
571
Synopsys, Inc.

The Clock-Reset-Detail Report

Reports and Other Files in SpyGlass CDC
The Clock-Reset-Detail Report
The Clock-Reset-Detail report shows the following information:

 Details of synchronized and unsynchronized clock domain crossings
based on each source-destination clock pair

 Details of clock domain crossings filtered by using the cdc_false_path
constraint

 Number of times different synchronization schemes are used in the
design

This report contains the following sections:

When the The Ac_sync_group Rules are run, data for this report is fetched
from the Ac_sync_group rules and all sources per destination are
considered by default because the Ac_sync_group rules report all the
sources.

Section A: Clock Crossings Section

This section of The Clock-Reset-Detail Report shows the following information
for each pair of clocks in a design:
 List of unsynchronized crossings reported by the Ac_unsync01 or

Ac_unsync02 rule
 List of synchronized crossings (along with synchronization scheme)

reported by the Ac_sync01 or Ac_sync02 rule

For RTL designs, this section shows the output net of flip-flops. For netlist
designs, if the report_inst_for_netlist parameter is set to yes, this section
shows the flip-flop names.

Section B: Flops with Data pin set to constant value Section

Section A: Clock Crossings Section Section B: Flops with Data pin set to
constant value Section

Section C: Filtered/False Clock
Crossings Section

Section D: Summary of Synchronization
Techniques Section
572
Synopsys, Inc.

The Clock-Reset-Detail Report

Reports and Other Files in SpyGlass CDC
This section of The Clock-Reset-Detail Report shows the list of output nets of
flip-flops that do not take part in synchronization checks because their data
pin is tied to a constant value when the Clock_info03b rule is run.

For RTL designs, this section shows the output net of flip-flops. For netlist
designs, if the report_inst_for_netlist parameter is set to yes, this section
shows flip-flop names.

Section C: Filtered/False Clock Crossings Section

This section of The Clock-Reset-Detail Report shows a list of clock-domain
crossings that were ignored because the cdc_false_path or cdc_filter_path
constraint was set on these paths.

It also shows the SGDC file name and its line number where these
constraints are specified.

Section D: Summary of Synchronization Techniques
Section

This section of The Clock-Reset-Detail Report shows a list of synchronization
schemes, their status (enabled/disabled), and the number of clock
crossings detected by each scheme in the design.

This section also lists the total number of synchronized and unsynchronized
clock crossings.

NOTE: The number of clock crossings is calculated after exploring the bus-bits.
573
Synopsys, Inc.

The CKTree Report

Reports and Other Files in SpyGlass CDC
The CKTree Report
The CKTree report is generated when you run the Clock_info02 rule and
shows clock trees in a design. It considers any case analysis conditions, if
specified.

This report is generated if you specify the clock constraints or enable
SpyGlass to use the clocks inferred by the Clock_info01 rule.

The CKTree report shows the clock hierarchy in a tree-like format. The
leaves in the clock tree can be one of the following:
 A register inferred from the RTL

The hierarchical name of the registered net is shown along with the
polarity of the clock at that point.

NOTE: In RTL designs, output net of flip-flops is reported. In case of netlist designs, if
the report_inst_for_netlist parameter is set to yes, the flip-flop names are
reported. Otherwise, the details of the section are the same as in the case of
RTL designs.

 A black box
The hierarchical name of the black box instance is annotated with its
master name, the name of the pin connected to the clock, the polarity of
the clock, and (black box) suffix to indicate that this is a black box
instance.

 A latch inferred from the RTL
The hierarchical name of the latched net is shown along with the polarity
of the clock and (Latch) suffix to indicate that this is latched net. For
a latch to be a leaf, the enable pin of the latch should be connected to
the clock.

NOTE: In RTL designs, output net of flip-flops is reported. In case of netlist designs, if
the report_inst_for_netlist parameter is set to yes, the flip-flop names are
reported. Otherwise, the details of the section are the same as in the case of
RTL designs.

 A sequential leaf cell
The hierarchical name of the sequential instance, which is neither known
to be a flip-flop nor a latch, is annotated with its master name, the
name of the pin connected to the clock, the polarity of the clock and
(Sequential Logic Cell) suffix to indicate that this is a
574
Synopsys, Inc.

The CKTree Report

Reports and Other Files in SpyGlass CDC
sequential leaf cell.

The intermediate nodes of a clock tree can be one of the following:
 A net

The hierarchical name of the net found while walking along a path from
the root of the clock tree to a leaf is shown.

 A register inferred from the RTL
This is possible when the register is a divide-by-two counter used to
divide the clock frequency by two. The hierarchical name of the
registered net is shown along with the polarity of the clock at that point.

If the same intermediate node is observed more than once on different
paths from root to leaves, then the sub-tree beyond this node is shown
only after its first occurrence in the tree. For the other occurrences, a
reference to the sub-tree is shown. This rule is recursively followed for the
sub-trees also.

An example of a clock tree shown in the CKTree report is as follows:

ROOT CLOCK: top.in1
‘-- (1)top.w5

‘-- (2)top.w3
|-- (3)top.out2 (-)
`-- (3)top.w2

`-- (4)top.out (+)

In the report, the Root Clock name is shown in the
<Instance.Object_Name> format. Therefore, in designs with multiple
levels of pin hierarchies, the Root Clock name reported is very long. To
reduce the length of the clock name in such cases, use the
report_clock_tag_names parameter to report the clock tag names instead of
the clock object names in the CKTree.rpt report.

For example, if the report_clock_tag_names parameter is not used,
a Root Clock is reported as:

ROOT CLOCK: top.clk

When you use the report_clock_tag_names parameter, the Root
Clock is reported as:

ROOT CLOCK: t1
575
Synopsys, Inc.

The CKTree Report

Reports and Other Files in SpyGlass CDC
The (+)/(-) suffix to a flip-flop output net name indicates the clock polarity
reaching the flip-flop.

When present, the (x) suffix indicates that clock polarity could not be
uniquely determined.

Ac_initstate01 Spreadsheet Report

The Ac_initstate01 rule generates the Ac_initistate01.csv file that contains
details about the initialized and uninitialized sequential elements. This file
also displays a non-default value for each pin.

This spreadsheet contains two tabs that show details of initialized and
uninitialized sequential elements. By default, the tab for uninitialized
sequential elements is selected.

To open this spreadsheet, double-click on the violation of the Ac_initstate01
rule.

The following figure shows the Ac_initistate01.csv for initialized sequential
elements:

FIGURE 1. Spreadsheet report listing initialized sequential elements

The following figure shows the Ac_initistate01.csv for uninitialized sequential
elements:
576
Synopsys, Inc.

The CKTree Report

Reports and Other Files in SpyGlass CDC
FIGURE 2. Spreadsheet report listing uninitialized sequential elements

If the reset or set value of a pin is 0 or 1, the corresponding schematic
shows the path of that value. For example, if the reset and set value is 0,
the schematic will display the path.

To open the schematic, click 1 in the ID column in the spreadsheet and

then click the button. The following figure shows the schematic
highlighting the path:

FIGURE 3. Ac_initstate01 Example
577
Synopsys, Inc.

The CKTree Report

Reports and Other Files in SpyGlass CDC
Details of the Ac_initstate01 Spreadsheet

Details of various columns of the Ac_initstate01 Spreadsheet are described
in the following table:

Column Name Description
NAME Specifies a sequential element name.

If a sequential cell is a flip-flop, latch, or clock-gating cell,
this column displays bus-merged output net name. Else,
library instance pins are displayed.
This column supports cross-probing to incremental
schematic, which highlights a sequential instance along with
terminals/pins that have a non-default value in the
remaining columns.

MODULE Specifies the name of a leaf-level parent module of a
sequential element.

ASYNC RESET Specifies an asynchronous reset value.
This value can be any of the following:
• 1: This value is displayed when the last value on a reset

pin of a sequential instance with active low reset is 1
during initial state detection.

• 0: This value is displayed when the last value on a reset
pin of a sequential instance with an active high reset is 0
during initial state detection.

• X: This value is displayed when the last value on a reset
pin of a sequential instance is X during initial state
detection.

• -: This is a default value, and it is displayed when a
reset pin does not exist or does not have an unexpected
value during initial state detection.

ASYNC SET This is similar to the ASYNC RESET column with the
difference that in this case, the Ac_initstate01 rule checks
asynchronous set pin instead of asynchronous reset pin.

CLOCK This column displays any of the following values based on
different conditions:
• -: This value is displayed if there has been toggling from

0 to 1 or from 1 to 0 during initial state detection.
• 1: This value is displayed when a clock pin is stuck at 1.
• 0: This value is displayed when a clock pin is stuck at 0.
• X: This value is displayed when a clock pin is stuck at X.
• Comma separated list of

<clkPinName>:<clkTermValue> is displayed when a
sequential element contains multiple clock pins.
578
Synopsys, Inc.

The CKTree Report

Reports and Other Files in SpyGlass CDC
NOTE: The value U instead of X is used for hanging pins in the spreadsheet. The X value is
a default value for simulation through a design is initialized for simulation in the
Ac_initstate01 rule.

ENABLE This column displays any of the following values based on
different conditions:
• 1: This value is displayed when the last value on an

enable pin of a sequential instance with active low enable
is 1 during initial state detection.

• 0: This value is displayed when the last value on an
enable pin of a sequential instance with active high
enable is 0 during initial state detection.

• X: This value is displayed when the last value on an
enable pin of a sequential instance is X during initial
state detection.

• -: (Default value): This value is displayed whenever an
enable pin does not exist or does not have an
unexpected value during initial state detection.

The Ac_initstate01 rule checks for enable pins of a flip-flop
and scan enable pins of sequential library cells.

DATA This column displays any of the following values based on
different conditions:
• X: This value is displayed when the last value on a data

pin of a sequential instance is X during initial state
detection.

• -: (Default value) This value is displayed whenever a
data pin does not have an unexpected value during initial
state detection.

The Ac_initstate01 rule checks for data and scan data pins.
OTHERS This column displays any of the following values based on

different conditions:
• YES: This value is displayed when a sequential cell is

uninitialized and the Ac_initstate01 rule could not find a
possible reason in an asynchronous reset, set, clock, load
or data field.

• NO: This value is displayed when any one of the field is a
non-default.

CLOCK NAME Name of the clock that is driving the clock pin of the
corresponding sequential element

RESET NAME Name of the reset that is driving the clock pin of the
corresponding sequential element

Column Name Description
579
Synopsys, Inc.

The CKTree Report

Reports and Other Files in SpyGlass CDC
580
Synopsys, Inc.

The CKCondensedTree Report

Reports and Other Files in SpyGlass CDC
The CKCondensedTree Report
The CKCondensedTree report shows condensed clock trees in a design.

This report is similar to The CKTree Report except that the
CKCondensedTree report shows the number of leaves instead of
actually listing the leaves.

This report is generated when you run the Clock_info02 rule and when any
of the following conditions hold true:
 If you have specified the clock constraints

 If you have enabled SpyGlass to use the clocks inferred by the
Clock_info01 rule.

This report also considers any case analysis conditions, if specified.

The equivalent CKCondensedTree report for the example shown in The
CKTree Report is as follows:

ROOT CLOCK: top.in1
`-- (1)top.w5

`-- (2)top.w3
|-- (3)Leaf Cells : 1
`-- (3)top.w2

`-- (4)Leaf Cells : 1
581
Synopsys, Inc.

The RSTree Report

Reports and Other Files in SpyGlass CDC
The RSTree Report
The RSTree report shows the set/reset trees in a design. It also considers
any case analysis conditions, if specified.

This report is generated when you run the Reset_info02 rule and when any
of the following conditions hold true:
 If you have specified the reset constraints

 If you have enabled SpyGlass to infer resets by using the
use_inferred_resets parameter

Types of Leaves in the Reset Tree

The RSTree report has the set/reset hierarchy shown in a tree-like
format. The leaves on the tree can be one of the following:

Register Inferred from RTL

The hierarchical name of the registered net is shown along with the
polarity of the reset at that point.

NOTE: In RTL designs, output net of flip-flops is reported. In case of netlist designs, if
the report_inst_for_netlist parameter is set to yes, the flip-flop names are
reported. Otherwise, the details of the section are the same as in the case of
RTL designs.

Black Box

The hierarchical name of the black box instance is annotated with its
master name, the name of the pin connected to the reset, the polarity of
the reset, and (BB) suffix to indicate that this is a black box instance.

Latch Inferred from RTL

The hierarchical name of the latched net is shown along with the polarity
of the reset and (L) suffix to indicate that this is latched net. For a latch
to be a leaf, the data pin of the latch should be connected to the reset.
582
Synopsys, Inc.

The RSTree Report

Reports and Other Files in SpyGlass CDC
NOTE: In RTL designs, output net of flip-flops is reported. In case of netlist designs, if
the report_inst_for_netlist parameter is set to yes, the flip-flop names are
reported. Otherwise, the details of the section are the same as in the case of
RTL designs.

Sequential Leaf Cell

The hierarchical name of the sequential instance, which is neither known
to be a flip-flop nor a latch, is annotated with its master name, the
name of the pin connected to the reset, the polarity of the reset and
(SLC) suffix to indicate that this is a sequential leaf cell.

Nodes in the Reset Tree

The intermediate nodes of a set/reset tree can be the hierarchical name of
the net that is found while walking along a path from the root of the tree to
a leaf.

If the same intermediate node is observed more than once on different
paths from root to leaves, then the sub-tree beyond this node is shown
only after its first occurrence in the tree. For the other occurrences, a
reference to the sub-tree is shown. This rule is recursively followed for the
sub-trees also.

Sample RSTree Report

An example of a set/reset tree shown in the RSTree report is as follows:

==
ROOT RESET: top.rst1
`-- (1)top.instance1.out (+)
==
ROOT RESET: top.rst2
|-- (1)top.instance2.out (+)
`-- (1)top.instance3.out (+)
583
Synopsys, Inc.

The SyncRstTree Report

Reports and Other Files in SpyGlass CDC
The SyncRstTree Report
The SyncRstTree report shows the synchronous set/reset trees in a
design. It also considers any case analysis conditions, if specified.

This report is generated when you run the Ar_syncrstTree rule and specify
the reset -sync constraints.

The nodes and type of leaves generated in this report are similar to The
RSTree Report. For details, see Types of Leaves in the Reset Tree and Nodes in
the Reset Tree.

Sample SyncRstTree Report

Following is the sample SyncRstTree report:

==
ROOT SRESET: top.in3
`-- (1)top.bbRst
 `-- (2)top.t2 (+)
==
ROOT SRESET: top.in4
`-- (1)top.in
 `-- (2)top.inn
 `-- (3)top.temp4
 `-- (4)top.t4 (-)
584
Synopsys, Inc.

The PortClockMatrix Report

Reports and Other Files in SpyGlass CDC
The PortClockMatrix Report
The PortClockMatrix report lists primary port names, port attributes,
and clock names of flip-flops connected to them (directly or indirectly).

This report is generated by the Clock_info15 rule, and it displays the
following information:
 Input ports with the clocks of connected flip-flops

 Output ports with the clocks of flip-flops generating them

 Inout ports with clocks of connected flip-flops driving or driven by these
ports

 Input or output ports related to pure combinational paths are shown
without any direct clocks. However, if the report_indirect_port_clock
parameter is set to yes, the following types of ports with indirect clocks
(if any) are also reported:
 Input port that is going to an output port through pure combinational

path and is also going to a registered output.
 Output port that is driven by an input port through pure

combinational path and is also coming from a registered input.
585
Synopsys, Inc.

The PortClockMatrix Report

Reports and Other Files in SpyGlass CDC
FIGURE 4. Output port driven by an input port through combinational path

These ports are reported with additional clock domains of the registered
output/input port, respectively.

 Ports with special attributes, such as unconnected ports, or ports that
are constrained by the set_case_analysis constraint, clock ports,
synchronous or asynchronous reset ports, or blocked ports, are reported
without any clocks.

The following table describes various types of attributes reported by
PortClockMatrix report and their interpretations:

Attribute Type Port Type Situation and Interpretation
unconnected input, output, inout The port is hanging

const_value:<x> input, output, inout The port is constrained with
set_case_analysis, where x is the value of
set_case_analysis

clock input The port is a clock port. The clock can be
user-defined or automatically-inferred.
586
Synopsys, Inc.

The PortClockMatrix Report

Reports and Other Files in SpyGlass CDC
NOTE: Only one attribute is reported for a port even though it can satisfy multiple
scenarios. The attribute precedence is from top to bottom with respect to port type.

Sample PortClockMatrix Report

The sample PortClockMatrix report is shown below:

* Input Port - Clock Matrix *

S. No. Input Attribute Direct Clocks Indirect Clocks

1. d[5] unconnected - -
2. clk1 clock - -
3. clk2 clock - -

sync_reset input The port is a synchronous reset port. The
reset can be user-defined.

reset input The port is an asynchronous reset port.
The reset can be user-defined or
automatically-inferred.

blocked input All the paths from the port are blocked
input, output, inout a) Only direct clocks are present:

There are no pure combinational paths
from this port to any other port.
b) Only indirect clocks are present:-
There exists only pure combinational from
this port to other ports.
c) Both are present:
Some pure combinational paths + some
direct clocks.
d) None are present:
For output port, all paths driving this port
are blocked or have no direct clocks. For
input and inout ports, they are either
driving a pure combinational circuit or not
reaching flip-flop data or load pin.

Attribute Type Port Type Situation and Interpretation
587
Synopsys, Inc.

The PortClockMatrix Report

Reports and Other Files in SpyGlass CDC
4. clk3 clock - -
5. clk4 clock - -
6. rst1 reset - -
7. rst2 sync_reset - -
8. sr unconnected - -
9. d[0] - top.clk1, top.clk4 -
10. d[1] - top.clk2 -
11. d[2] - top.clk2, top.clk3 -
12. d[3] - top.clk4 -
13. d[4] - top.clk3 -
14. tm - - top.clk3

NOTE: The sample report shown above is generated with the report_indirect_port_clock
parameter set to yes.
588
Synopsys, Inc.

The SynchInfo Report

Reports and Other Files in SpyGlass CDC
The SynchInfo Report
By default, the SynchInfo report shows the destinations and
synchronizers that are flip-flops, latches, or sequential cells. Set the value
of the dump_inst_type parameter to flop to show only destinations and
synchronizers that are flip-flops.

NOTE: This report is generated when the dump_sync_info parameter is set to yes,
detailed, or detailed_mod.

This SynchInfo report consists of the following sections:

Section 1: Synchronized Crossings by 'Conventional Multi-
Flop' synchronization

This section of The SynchInfo Report shows the following information:
 Hierarchical instance names of source and destination instances

 The last synchronizer flip-flop for all clock crossings synchronized by the
Conventional Multi-Flop Synchronization Scheme if the dump_sync_info
parameter is set to yes.

Section 1: Synchronized Crossings by
'Conventional Multi-Flop'
synchronization

Section 2: Synchronized Crossings by
Synchronizing Cell Techniques

Section 3: Synchronized Resets by
Multi-Flop Synchronization

Section 4: Synchronized Resets by Reset
Synchronizing Cell Technique

Section 5: Clock domain crossings for
quasi-static signals

Section 6: Synchronized Reset Domain
Crossings by Conventional Multi-Flop
technique

Section 7: Synchronized Reset
Domain Crossings by Synchronize cell
technique

Section 8: Synchronized Crossings on
Reset Path by 'Conventional Multi-Flop'
synchronization technique

Section 9: Synchronized Crossings on
Reset Path by 'synchronize cell'
technique
589
Synopsys, Inc.

The SynchInfo Report

Reports and Other Files in SpyGlass CDC
 All the flip-flops in the synchronization chain if the dump_sync_info
parameter is set to detailed.
The following figure shows the flip-flops in the synchronization chain:

FIGURE 5.

 All the flip-flops in the synchronization chain with the module name
appended to each flip-flop name if the dump_sync_info parameter is set
to detailed_mod.
The following figure shows the flip-flop names appended with their
module name:

FIGURE 6. Module name RTL_FD printed with the flip-flop name

 Number of flip-flops in the synchronizer chain

This section is generated when The Ac_sync_group Rules are run, and at least
one violation is reported by either of these rules.
590
Synopsys, Inc.

The SynchInfo Report

Reports and Other Files in SpyGlass CDC
Section 2: Synchronized Crossings by Synchronizing Cell
Techniques

This section of The SynchInfo Report lists all the synchronized crossings
synchronized by the synchronized cell technique. These details are
generated when the dump_sync_info parameter is set to yes, detailed,
or detailed_mod.

This section is generated when The Ac_sync_group Rules are run and at least
one violation is reported by either of these rules.

NOTE: The dump_inst_type parameter does not affect this section.

Section 3: Synchronized Resets by Multi-Flop
Synchronization

This section of The SynchInfo Report shows the number of flip-flops in a
synchronizer chain and the name of the synchronizing clock.

In addition, based on the following values specified to the dump_sync_info
parameter, this section generates the following information:

 detailed

List of all the flip-flops in the synchronization chain in the Synchronizer
Flop(s) column.

 detailed_mod

 List of all the flip-flops in the synchronization chain in the
Synchronizer Flop(s) column.

 The module name appended to the flip-flop name in the Synchronizer
Flop(s) column.

 yes

Name of the first synchronizer flip-flop.

This section is generated when at least one of the following rules is run and
at least one violation is reported by these rules:
591
Synopsys, Inc.

The SynchInfo Report

Reports and Other Files in SpyGlass CDC
Section 4: Synchronized Resets by Reset Synchronizing
Cell Technique

This section of The SynchInfo Report lists all the reset signals synchronized
by reset synchronizing cell technique. These details are generated when
the dump_sync_info parameter is set to yes, detailed, or
detailed_mod.

This section is generated when at least one of the following rules is run and
at least one violation is reported by these rules:

NOTE: The dump_inst_type parameter does not affect this section.

Section 5: Clock domain crossings for quasi-static signals

This section of The SynchInfo Report lists source and destination for all
quasi-static crossings.

This section is generated when The Ac_sync_group Rules are run and at least
one violation is reported by either of these rules.

Reset_sync02 Reset_sync03 Reset_sync04 Reset_check04

Reset_check10 Reset_check07 Clock_info15 Ar_sync01

Ar_unsync01 Ar_asyncdeassert01 Ar_syncdeassert01

Reset_sync02 Reset_sync03 Reset_sync04 Reset_check04

Reset_check10 Reset_check07 Clock_info15 Ar_sync01

Ar_unsync01 Ar_asyncdeassert0
1

Ar_syncdeassert
01
592
Synopsys, Inc.

The SynchInfo Report

Reports and Other Files in SpyGlass CDC
Section 6: Synchronized Reset Domain Crossings by
Conventional Multi-Flop technique

This section of The SynchInfo Report is generated only when the
Ar_resetcross01 rule is run. It shows the following information:
 Hierarchical instance names of the source, source reset, destination,

destination reset, and synchronizer flip-flops for all the reset crossings
synchronized by For Control path crossings: Conventional Multi-Flop
Synchronization Scheme (for RDC).

 The last synchronizer flip-flop for all clock crossings synchronized by the
For Control path crossings: Conventional Multi-Flop Synchronization Scheme
(for RDC) if the dump_sync_info parameter is set to yes.

 All the flip-flops in the synchronization chain if the dump_sync_info
parameter is set to detailed.

 Details of the crossings containing source and destination flip-flops and
the module names of the flip-flops in the synchronizer chain if the
dump_sync_info parameter is set to detailed_mod.

The example of this section is shown below:
593
Synopsys, Inc.

The SynchInfo Report

Reports and Other Files in SpyGlass CDC
FIGURE 7. Section 6 of the SynchInfo Report

Section 7: Synchronized Reset Domain Crossings by
Synchronize cell technique

This section of The SynchInfo Report is generated only when the
Ar_resetcross01 rule is run.

It shows the hierarchical instance names of the source, source reset,
destination, destination reset, and synchronizer flip-flops for all the reset
crossings synchronized by the For Control path crossings: Synchronizing Cell
Synchronization Scheme (for RDC).

These details are generated when the dump_sync_info parameter is set to
yes, detailed, or detailed_mod.

The example of this section is shown below:
594
Synopsys, Inc.

The SynchInfo Report

Reports and Other Files in SpyGlass CDC
FIGURE 8. Section 7 of the SynchInfo Report

Section 8: Synchronized Crossings on Reset Path by
'Conventional Multi-Flop' synchronization technique

This section of The SynchInfo Report shows the following information:
 Hierarchical instance names of source and destination instances

 The last synchronizer flip-flop for all the crossings in reset path
synchronized by the Conventional Multi-Flop Synchronization Scheme if
the dump_sync_info parameter is set to yes.

 All the flip-flops in the synchronization chain if the dump_sync_info
parameter is set to detailed. The following figure shows the flip-flop
names appended with their module name:

FIGURE 9. Section 8 of the SynchInfo Report

 All the flip-flops in the synchronization chain with the module name
appended to each flip-flop name if the dump_sync_info parameter is set
to detailed_mod.

This section is generated when the Ar_cross_analysis01 rule is run, and at
595
Synopsys, Inc.

The SynchInfo Report

Reports and Other Files in SpyGlass CDC
least one violation is reported by the rule.

Section 9: Synchronized Crossings on Reset Path by
'synchronize cell' technique

This section of The SynchInfo Report lists all the synchronized crossings in
reset path synchronized by the synchronized cell technique. These details,
as shown in the following figure, are generated when the dump_sync_info
parameter is set to yes, detailed, or detailed_mod.

FIGURE 10. Section 9 of the SynchInfo Report

This section is generated when Ar_cross_analysis01 rule is run, and at least
one violation is reported by the rule.
596
Synopsys, Inc.

The CrossingInfo Report

Reports and Other Files in SpyGlass CDC
The CrossingInfo Report
The CrossingInfo report lists the source and destination flip-flops for
all synchronized and unsynchronized clock crossings.

By default, the CrossingInfo report generates destinations and
synchronizers that are flip-flops, latches, or sequential cells. Set the value
of the dump_inst_type parameter to flop to dump only those destinations
and synchronizers that are flip-flops.

NOTE: This report is generated when the dump_sync_info parameter is set to yes or
detailed.

NOTE: Refer to The Ac_sync_group_detail Report to view all the synchronized and
unsynchronized crossings reported by The Ac_sync_group Rules.

This report is divided into the following sections:

All the above sections are generated when the Ac_sync_group group
rules are run, and at least one violation is reported by either of these rules.

Section 1: Synchronized Crossings

This section of The CrossingInfo Report shows the following information:
 A list of source and destination instances in synchronized crossings.

 The name of a synchronizing technique.
These details are generated when the dump_sync_info parameter is set to
yes or detailed.

Section 1: Synchronized Crossings Section 2: Unsynchronized Crossings due
to Destination Instance Driving Multiple
Paths

Section 3: Unsynchronized Crossings
due to Mismatch of Destination and
Synchronizer Instance Clock
Domains

Section 4: Unsynchronized Crossings due
to Other Reasons
597
Synopsys, Inc.

The CrossingInfo Report

Reports and Other Files in SpyGlass CDC
Section 2: Unsynchronized Crossings due to Destination
Instance Driving Multiple Paths

This section of The CrossingInfo Report shows the following information:
 A list of hierarchical instance names of source and destination instances

for the crossings that are unsynchronized because the destination
instance drives multiple paths.
These details are generated when the dump_sync_info parameter is set to
yes.

 A list of potential synchronizer flip-flops when the dump_sync_info
parameter is set to detailed.

Section 3: Unsynchronized Crossings due to Mismatch of
Destination and Synchronizer Instance Clock Domains

This section of The CrossingInfo Report shows the following information:
 A list of hierarchical instance names of source and destination instances

for crossings that are unsynchronized due to the mismatch of clock
domains of destination instance and synchronizer.
These details are generated when the dump_sync_info parameter is set to
yes.

 A list of potential synchronizer flip-flops when the dump_sync_info
parameter is set to detailed.

Section 4: Unsynchronized Crossings due to Other Reasons

This section of The CrossingInfo Report lists unsynchronized crossings due to
reasons other than those specified in sections 2 and 3.

These details are generated when the dump_sync_info parameter is set to
yes or detailed.
598
Synopsys, Inc.

The CKPathInfo Report

Reports and Other Files in SpyGlass CDC
The CKPathInfo Report
The CKPathInfo report shows a list of cell names instantiated in clock
paths.

It lists cell names and the number of instances found for each clock in the
design.

The CKPathInfo report contains the following sections:
 RTL Cells

This section lists the RTL cells that are instantiated in the clock paths.
 Other Cells

This section lists all other cells that are instantiated in the clock paths.

If either of RTL or other type of cells are not present in the clock paths, the
corresponding section is displayed in the report. For example, if RTL cells
are not instantiated, the CKPathInfo report will display only the Other Cells
section.

NOTE: The CKPathInfo Report is enabled by the run_cells_in_cktree_rules parameter.
599
Synopsys, Inc.

The CKSGDCInfo Report

Reports and Other Files in SpyGlass CDC
The CKSGDCInfo Report
The CKSGDCInfo Report lists the user-specified SpyGlass design constraints
information in the following sections:
 Section A: Names of Clocks Specified By the clock Constraint

 Section B: Names of Resets Specified By the reset Constraint

 Section C: Port Names on which set_case_analysis Constraint is Set

 Section D: Valid Reset Ordering Specified by the define_reset_order Constraint

 Section E: Modules Specified by the allow_combo_logic Constraint

 Section F: Signals Specified by the quasi_static Constraint

 Section G: Output Ports Specified by the output_not_used Constraint

 Section H: Conventional Multi-Flop Synchronizer Data by the num_flops
Constraint

 Section I: Cells Specified by the network_allowed_cells Constraint

 Section J: Signals Specified by the qualifier Constraint

 Section K: Modules Specified by the ip_block Constraint

 Section L: FIFO Specified by the fifo Constraint

 Section M: False Path Specified by the cdc_false_path Constraint

 Section N: Top-Level Ports Specified by the abstract_port Constraint

 Section O: Top-Level Input Ports Specified by the input Constraint

 Section P: Top-Level Output Ports Specified by the output Constraint

 Section Q: Top-Level Ports Not Specified by Any Constraint

 Section R: Black Box Data Ports Specified by the abstract_port Constraint

 Section S: Black Box Ports Specified by the assume_path Constraint

 Section T: Black Box Ports Specified by the signal_in_domain Constraint

 Section U: Black Box Data Ports Not Specified by Any Constraint

 Section V: Synchronizer Module/Cell Data Specified by the sync_cell Constraint

 Section W: Reset Synchronizers Specified by the reset_synchronizer Constraint

 Section X: Isolation Enables Specified by the power_data Constraint

 Section Y: Valid Signals Specified by the gray_signals Constraint

 Section Z: Valid Stop Point for Clocks by the clock_sense Constraint
600
Synopsys, Inc.

The CKSGDCInfo Report

Reports and Other Files in SpyGlass CDC
 Section AA: Signals Specified by the cdc_filter_coherency Constraint

 Section BB: Signals Specified by the generated_clock Constraint

 Section CC: Modules Specified using meta_module Constraint

 Section DD: Hierarchical Instances Specified by the meta_inst Constraint

 Section EE: Crossings Specified by the reset_filter_path Constraint

 Section FF: Signals Specified by the cdc_attribute Constraint

 Section HH: Values of the quasi_static_style Constraint

NOTE: This report shows single dimensional names for multi-dimensional arrays.

Section A: Names of Clocks Specified By the clock
Constraint

This section of The CKSGDCInfo Report shows the list of hierarchical clock
names specified by using the clock constraint.

Section B: Names of Resets Specified By the reset
Constraint

This section of The CKSGDCInfo Report shows the list of hierarchical names of
all the synchronous and asynchronous reset signals specified by using the
reset constraint. It also reports its type and active value.

Section C: Port Names on which set_case_analysis
Constraint is Set

This section of The CKSGDCInfo Report shows the list of ports, hierarchical
terminals, and their corresponding constant values specified by using the
set_case_analysis constraint.

Section D: Valid Reset Ordering Specified by the
define_reset_order Constraint
601
Synopsys, Inc.

The CKSGDCInfo Report

Reports and Other Files in SpyGlass CDC
This section of The CKSGDCInfo Report shows the list of reset order that
determines the flow of data from one reset to another reset as specified by
using the define_reset_order constraint.

This section is generated only when the Ar_resetcross01 rule is
enabled.

Section E: Modules Specified by the allow_combo_logic
Constraint

This section of The CKSGDCInfo Report shows the list of modules specified by
the allow_combo_logic constraint.

If a wildcard is used, SpyGlass reports all the matching modules one by
one referring to the same line in the SGDC file.

Section F: Signals Specified by the quasi_static Constraint

This section of The CKSGDCInfo Report shows the list of hierarchical signal
names specified by the quasi_static constraint.

If a wildcard is used, SpyGlass reports all the matching nets one by one
referring to the same line in the SGDC file.

Section G: Output Ports Specified by the output_not_used
Constraint

This section of The CKSGDCInfo Report shows the list of output ports
specified by using the output_not_used constraint.

Section H: Conventional Multi-Flop Synchronizer Data by
the num_flops Constraint

This section of The CKSGDCInfo Report shows the list of hierarchical clock
names specified by using the num_flops constraint.

If only the default value is specified, that value is generated with "default"
602
Synopsys, Inc.

The CKSGDCInfo Report

Reports and Other Files in SpyGlass CDC
in the bracket.

Clock and domain names (whichever is specified in the constraint) appear
in the same column.

Section I: Cells Specified by the network_allowed_cells
Constraint

This section of The CKSGDCInfo Report shows the list of cell names specified
by the network_allowed_cells constraint.

If a wildcard is used, all the matching cell names, which exist in the
specified clock/reset network, are generated in the report. If you have not
specified the -type argument, all the matching cell names from the entire
design are listed.

This section is generated only when the Clock_Reset_check01 rule is
enabled.

Section J: Signals Specified by the qualifier Constraint

This section of The CKSGDCInfo Report shows the list of hierarchical names of
nets that are inferred by using the qualifier constraint.

If wildcard is used, SpyGlass reports all the matching nets one by one with
the same from/to clock.

If the qualifier constraint is specified as a hierarchical terminal or through
module/port format, its connected net is displayed.

Clock and domain names (whichever is specified in the constraint) are
generated in the same column.

Section K: Modules Specified by the ip_block Constraint

This section of The CKSGDCInfo Report shows the list of all modules and their
corresponding instances that are inferred by using the ip_block constraint.

This section also shows the total count of crossings waived in each
instance. Each crossing is counted separately, when multiple sources
converge on the same destination. In addition, vectored signals are also
603
Synopsys, Inc.

The CKSGDCInfo Report

Reports and Other Files in SpyGlass CDC
counted based on the total number of bits involved in the crossings.

Section L: FIFO Specified by the fifo Constraint

This section of The CKSGDCInfo Report shows the list of memory and
hierarchical read/write pointers that are inferred by the using the fifo
constraint.

If a memory is specified, its inferred read/write pointers also are shown
and vice-versa. In case of partial FIFOs, only inferred memory names are
reported even though user has specified read/write pointers in the
constraint.

Section M: False Path Specified by the cdc_false_path
Constraint

This section of The CKSGDCInfo Report shows the list of signals inferred by
using the cdc_false_path constraint.

If wildcard is used, this section shows all the matching signals.

Section N: Top-Level Ports Specified by the abstract_port
Constraint

This section of The CKSGDCInfo Report shows the list of top-level ports
specified by using the abstract_port constraint.

Section O: Top-Level Input Ports Specified by the input
Constraint

This section of The CKSGDCInfo Report shows the list of all the top-level input
ports specified by using the input constraint.
604
Synopsys, Inc.

The CKSGDCInfo Report

Reports and Other Files in SpyGlass CDC
Section P: Top-Level Output Ports Specified by the output
Constraint

This section of The CKSGDCInfo Report shows the list of all the top-level
output ports specified by using the output constraint.

Section Q: Top-Level Ports Not Specified by Any Constraint

This section of The CKSGDCInfo Report shows the list of top-level ports that
are not specified by any of the input, output, clock, reset (asynchronous
reset), set_case_analysis, or abstract_port constraints.

Section R: Black Box Data Ports Specified by the
abstract_port Constraint

This section of The CKSGDCInfo Report shows the list of black box ports
specified by the abstract_port constraint.

Section S: Black Box Ports Specified by the assume_path
Constraint

This section of The CKSGDCInfo Report shows the list of black box ports
specified by the assume_path constraint.

Section T: Black Box Ports Specified by the
signal_in_domain Constraint

This section of The CKSGDCInfo Report shows the list of black box ports
specified by the signal_in_domain constraint.

Section U: Black Box Data Ports Not Specified by Any
Constraint
605
Synopsys, Inc.

The CKSGDCInfo Report

Reports and Other Files in SpyGlass CDC
This section of The CKSGDCInfo Report shows the list of black box ports that
not specified by any of assume_path, clock, reset, set_case_analysis, or
abstract_port constraints.

Section V: Synchronizer Module/Cell Data Specified by the
sync_cell Constraint

This section of The CKSGDCInfo Report shows the list of all the sync_cell
constraints.

Section W: Reset Synchronizers Specified by the
reset_synchronizer Constraint

This section of The CKSGDCInfo Report shows information, such as
synchronizer name, reset source, and synchronizer clock of valid
reset_synchronizer constraints.

Section X: Isolation Enables Specified by the power_data
Constraint

This section of The CKSGDCInfo Report shows information about isolation
enable signals specified in a UPF file. Information under this section is
generated when you run the Ac_psetup01 rules.

Section Y: Valid Signals Specified by the gray_signals
Constraint

This section of The CKSGDCInfo Report shows information about valid signals
specified using the gray_signals constraint.

Section Z: Valid Stop Point for Clocks by the clock_sense
Constraint
606
Synopsys, Inc.

The CKSGDCInfo Report

Reports and Other Files in SpyGlass CDC
This section of The CKSGDCInfo Report shows valid stop points for clock
specified by using the clock_sense constraint.

Section AA: Signals Specified by the cdc_filter_coherency
Constraint

This section of The CKSGDCInfo Report shows signals specified by using the
cdc_filter_coherency constraint.

Section BB: Signals Specified by the generated_clock
Constraint

This section of The CKSGDCInfo Report shows signals specified by using the
generated_clock constraint.

Section CC: Modules Specified using meta_module
Constraint

This section of The CKSGDCInfo Report shows modules specified by the
meta_module constraint.

Section DD: Hierarchical Instances Specified by the
meta_inst Constraint

This section of The CKSGDCInfo Report shows the hierarchical instances
specified by the meta_inst constraint.

Section EE: Crossings Specified by the reset_filter_path
Constraint

This section of The CKSGDCInfo Report shows the filtered-out reset crossings
607
Synopsys, Inc.

The CKSGDCInfo Report

Reports and Other Files in SpyGlass CDC
specified reset_filter_path constraint.

Section FF: Signals Specified by the cdc_attribute
Constraint

This section of The CKSGDCInfo Report shows the mutually-exclusive and
unrelated signals specified by using the cdc_attribute constraint. The
following example shows this section of the report:

FIGURE 11.

Section HH: Values of the quasi_static_style Constraint

This section of The CKSGDCInfo Report shows the values of the various
options of the quasi_static_style constraint. The following example shows
this section of the report:
608
Synopsys, Inc.

The CKSGDCInfo Report

Reports and Other Files in SpyGlass CDC
FIGURE 12. Values of the quasi_static_style Constraint
609
Synopsys, Inc.

The CDC Report

Reports and Other Files in SpyGlass CDC
The CDC Report
The CDC Report provides a concise summary of the design, design setup,
and verification results in the following sections:

Along with this report, SpyGlass generates some additional files. For
details, see Files Generated with the CDC Report.

Section A

This section of The CDC Report shows the run information, such as:
 Performance information, such as total run time and peak memory of

SpyGlass run.
 User-defined parameter values.

Section B

This section of The CDC Report lists the design information, such as:
 Count of flat instances.

 Total number of black boxes.

Section C

This section of The CDC Report displays the design setup information, such
as:
 Count of different types of clocks, such as user-defined clocks, user-

defined generated clocks, virtual clocks, black box clocks, and inferred
clocks.

 Count of different types of resets, such as user-defined resets and black
box resets.

Section A Section B Section C Section D Section E
Section F Section G Section H Section I
610
Synopsys, Inc.

The CDC Report

Reports and Other Files in SpyGlass CDC
 Count of different types of user-specified constraints.

Section D

This section of The CDC Report shows the setup audit information that you
should review to sign off SpyGlass CDC setup.

This section shows the count of messages generated by rules that ensure
the following:
 Registers are properly clocked and reset

 No clocks are defined in the fan-out of other clocks.

 All input ports are associated with clocks or these ports are constrained.

You should not have any messages reported for the above situations.
Therefore, all the counts reported in this section should ideally be zero to
ensure a setup sign off.

Section E

This section of The CDC Report shows the information related to structural
SpyGlass-CDC violations. For example, it shows the following:
 Count of messages generated by the rules that ensure that there are no

metastability problems across clock domains.
 Count of synchronized and unsynchronized clock crossings in a design.

For signing off SpyGlass CDC verification, all the counts (other than the
count of synchronized clock crossings) reported in this section should
ideally be zero.

Section F

This section of The CDC Report shows the count of different types of
qualifiers used to synchronize data crossings.

The count of qualifiers appear regardless of the data they synchronize.

Section G
611
Synopsys, Inc.

The CDC Report

Reports and Other Files in SpyGlass CDC
This section of The CDC Report shows the count of message of the rules that
ensure the following:
 There are no issues with correlated signals crossing clock domains.

 There is no data loss for signals crossing a faster clock domain to a
slower clock domain.

 Complex synchronizers, such as FIFO and Handshake are working
properly.

Section H

This section of The CDC Report shows the count of messages of the rules
that ensure the following:
 Resets are properly synchronized before they assert any register in the

design.
 Resets are deasserted properly.

Section I

This section of The CDC Report shows the count of violations of different
types of mismatches, such as Clock Domain Mismatch and Reset Mismatch
reported during abstract-view validation.

For information on these violations, see Rule-based spreadsheet -
Ac_abstract_validation01.csv generated by the Ac_abstract_validation01 rule.

Files Generated with the CDC Report

Along with The CDC Report, SpyGlass also generates comma-separated data
files (<rule-name>.csv) for the following rules:

Clock_info03a Clock_info05 Clock_info05a Clock_info05b
Clock_check03 Clock_check04 Clock_check05 Clock_check07
Ac_unsync01 Ac_unsync02 Clock_sync03 Clock_sync05
Clock_sync06 Ac_cdc08 Clock_sync09 Ac_sanity04
612
Synopsys, Inc.

The CDC Report

Reports and Other Files in SpyGlass CDC
Ac_sync02 Ac_sync01 Ac_clockperiod01 Ac_clockperiod02
Ac_clockperiod03 Ac_resetvalue01
613
Synopsys, Inc.

The CDC-Summary-Report

Reports and Other Files in SpyGlass CDC
The CDC-Summary-Report
This report provides a concise summary of the design, design setup, and
verification results. It is similar to The CDC Report with some extra
information.

The following sections describe the extra information displayed with
respect to The CDC Report:

Section A

This section of The CDC-Summary-Report shows the following information in
addition to the information in Section A of The CDC Report:
 Goals run

 The run type, such as save-restore

 The machine used

The following example shows this section of The CDC-Summary-Report:

===
Section A. Run Information:
==
Goal(s) : Setup, Struct, Functional
Run Type : save-restore=no
Total Time (in sec) : 14
Memory used (in KB) : 1030980
Machine used : ugo

Section B

This section of The CDC-Summary-Report shows the following information in

Section A Section B Section C Section D
Section E Section F Section G Section H
Section I
614
Synopsys, Inc.

The CDC-Summary-Report

Reports and Other Files in SpyGlass CDC
addition to the information in Section B of The CDC Report:
 Number of registers

 Number of primary inputs

 Number of primary outputs

 Number of IO pad cells

The following example shows this section of The CDC-Summary-Report:

===
Section B. Design Information:
==
Number of flat Instances in design : 34
Number of registers in design : 18
Number of primary inputs : 17
Number of primary outputs : 11
Number of black-boxes (AnalyzeBBox) : 3
Black-boxes without definition or synthesis error (ErrorAnalyzeBBox) : 1
Number of IO Pad cells : 1

Section C

This section of The CDC-Summary-Report shows the following information in
addition to the information in Section C of The CDC Report:
 Number of abstract views

 Number of user-defined synchronous resets

 Number of each constraint reported by The CKSGDCInfo Report

The following example shows this section of The CDC-Summary-Report:

===
Section C. Setup Information:
==
User defined Parameter values : 5
Number of abstract models : 3
Number of total clocks : 5
615
Synopsys, Inc.

The CDC-Summary-Report

Reports and Other Files in SpyGlass CDC
Number of user defined clocks : 4
Number of user defined generated clocks : 0
Number of user defined virtual clocks : 1
Number of inferred clocks : 0

Section D

This section of The CDC-Summary-Report shows the following information in
addition to the information in Section D of The CDC Report:
 Number of library cells that are not fully constrained

The following example shows this section of The CDC-Summary-Report:

===
Section D. Setup Errors:
==
Number of registers missing clock definition (Clock_info03a) : 0
Number of clock convergences on unselected MUX(Clock_info05) : 0
Number of clock convergences at non-mux gate (Clock_info05b) : 0
Number of multi-definition on clock (Clock_check07) : 0
Number of registers missing asynchronous reset definition(Reset_info09a): 1

Number of Constant functional flops in synchronous reset de-assert
mode(Ar_syncrst_setupcheck01) : 0
Number of primary ports not associated with clocks (Setup_port01)
 : 3(17.65 %)
Number of black-boxes not fully constrained (Setup_blackbox01) : 1
Number of library-cells not fully constrained (Setup_library01) : 0

For details, refer to following files:

 - Setup_blackbox01.csv

Section E

This section of The CDC-Summary-Report shows the following information in
addition to the information in Section E of The CDC Report:
616
Synopsys, Inc.

The CDC-Summary-Report

Reports and Other Files in SpyGlass CDC
Total number of clock domain crossings (synchronized and
unsynchronized).

The following example shows this section of The CDC-Summary-Report:

===
Section E. CDC Analysis and Verification:
==
Number of Clock Domain Crossings : 3
Number of Unsynchronized Crossings : 2
Number of scalar (Single-bit) crossings (Ac_unsync01) : 2
Number of vector (Multi-bit) crossings (Ac_unsync02) : 0
Number of Synchronized Crossings : 1
Number of Scalar (Single-bit) Crossings (Ac_sync01) : 1
Number of Vector (Multi-bit) Crossings (Ac_sync02) : 0
Glitches in synchronized control crossing paths (Ac_glitch03) : 0

For more details, refer to following files:

 - Ac_sync01.csv
 - Ac_unsync01.csv

Section F

This section of The CDC-Summary-Report is same as Section F of The CDC
Report.

The following example shows this section of The CDC-Summary-Report:

===
Section F. Asynchronous Reset Analysis and Verification:
==
Asynchronous resets without reset synchronizers (Ar_unsync01) : 1
Asynchronous resets with reset synchronizers (Ar_sync01) : 0
Asynchronous resets with asynchronous deassertion (Ar_asyncdeassert01: 1
Asynchronous resets with synchronous deassertion (Ar_syncdeassert01) : 0
Asynchronous resets synchronized multiple times in same domain
(Reset_sync04) : 0
Asynchronous resets generated from a different domain (Reset_sync02) : 0
Invalid reset ordering between same domain registers (Ac_resetcross01)
617
Synopsys, Inc.

The CDC-Summary-Report

Reports and Other Files in SpyGlass CDC
 : 0
For more details, refer to following files:

 - Ar_unsync01.csv
 - Ar_asyncdeassert01.csv

Section G

This section of The CDC-Summary-Report is same as Section G of The CDC
Report.

The following example shows this section of The CDC-Summary-Report:

===
Section G. Hierarchical Verification : Abstraction Validation:
==
Abstract model mismatch with top (Ac_abstract_validation01) : 4
Case Analysis Mismatch : 4
No of blocks(block instances) with abstract model mismatches : 1(3)
Clock mapping of an abstracted instance (SGDC_abstract_mapping01) : 0
For more details, refer to following files:

 - Ac_abstract_validation01.csv

Section H

This section of The CDC-Summary-Report shows the following information in
addition to the information in Section H of The CDC Report:
 Number of clocks with the delta delay mismatches

 Number of clocks with the shoot-through problem

The following example shows this section of The CDC-Summary-Report:

===
Section H. DeltaDelay Verification:
==
Number of clocks with delta delay mismatches (DeltaDelay01) : 0
Number of clocks with shoot-through problem (DeltaDelay02) : 0
==
618
Synopsys, Inc.

The CDC-Summary-Report

Reports and Other Files in SpyGlass CDC
Section I

This section of The CDC-Summary-Report shows information about the
glitch-free multiplexers in a design.

The following example shows this section of The CDC-Summary-Report:

===
Section I. Glitch Free Cell:
==
--
S. No. Glitch Free Type Constraint on Mux Mux Name
 Select Pin Specified
--
1. Recirculating N.A. top.rtlc_I15
2. Clock Switching No top.rtlc_I13
3. Reset synchronization bypass Yes top.rtlc_I17
4. Reset synchronization bypass No top.rtlc_I19
--
==
619
Synopsys, Inc.

The CDC-Detailed-Report

Reports and Other Files in SpyGlass CDC
The CDC-Detailed-Report
This report provides a concise summary of the design, design setup, and
verification results. It is similar to The CDC Report with some extra
information.

SpyGlass CDC provides the RTL Results Difference Utility that you can use to
identify the differences in the results generated by two SpyGlass CDC runs.
This utility uses the The CDC-Detailed-Report to show the difference between
the two runs. For details on this utility, refer the RTL Results Difference
Utility section.

The following sections describe the extra information displayed with
respect to The CDC Report:

Section A

This section of The CDC-Detailed-Report shows the run information, such as:
 Types of goals run

 The type of run, such as save-restore

 Total time taken to run the design

 Total peak memory

 User-specified parameters

 Name of the machine on which goals are run

The following example shows this section of The CDC-Detailed-Report:

===
Section A. Run Information:
===
Goal(s) : Setup, Struct, Functional
Run Type : save-restore=no
Total Time (in sec) : 14

Section A Section B Section C Section D
Section E Section F Section G Section H
Section J Section K
620
Synopsys, Inc.

The CDC-Detailed-Report

Reports and Other Files in SpyGlass CDC
Memory used (in KB) : 1030980
Machine used : ugo

Section B

This section of The CDC-Detailed-Report shows the design information, such
as:
 Detailed information on flat instances, flip-flops, primary inputs and

outputs in the design
 Detailed information on black boxes and IO pad cells

The following example shows this section of The CDC-Detailed-Report:

==
Section B. Design Information:
===
Number of black-boxes : 5
--
S. No. Black-box name Present in Clock Path
--
1. test.b1 Yes
2. test.b2 Yes
3. test.absxx No
4. test.abs2 No
5. test.abs3 No
--

Section C

This section of The CDC-Detailed-Report shows the setup information, such
as:
 Total clocks and resets in the design

 User-defined parameters and constraints

Section D
621
Synopsys, Inc.

The CDC-Detailed-Report

Reports and Other Files in SpyGlass CDC
This section of The CDC-Detailed-Report shows the setup errors, such as
clock, reset, and constraint-related design violations.

The following example shows this section of The CDC-Detailed-Report:

===
Section D. Setup Errors:
===
Number of primary port constraints data associated with clocks
(Setup_port01) : 10

S. No. Port Name Port Direction Status Constraint(s)

1. "reset" input partially constrained "reset"
 (suggested constraint
 abstract_port)

2. "in1" input fully constrained "input"

Number of black-boxes not fully constrained (Setup_blackbox01): 1

S. No. ID BLACK-BOX NUMBER OF PERCENTAGE UNCONSTRAINED WAIVED
 NAME PINS OF PINS
--
1. 1C BBOX 6 0.00 no
--

Section E

This section of The CDC-Detailed-Report shows the information related to
SpyGlass CDC analysis and verification.

This information includes the results of the rules, which ensure that:
 There is no metastability problem across clock domains.

 All the crossings involving quasi-static signals have been analyzed.

 There is no issue with the correlated signals crossing clock domains.
622
Synopsys, Inc.

The CDC-Detailed-Report

Reports and Other Files in SpyGlass CDC
 There is no data loss for the signal crossing a fast clock domain to a slow
clock domain.

The following example shows this section of The CDC-Detailed-Report:

===
Section E. CDC Analysis and Verification:
===
Number of Clock Domain Crossings : 3
a. Number of unsynchronized crossings : 2
 i. Number of scalar(Single-Bit) crossings (Ac_unsync01 : 2
--
S.No. Dest. Dest. Source Source Failure Sync.Scheme
 Name Clock Names Name Clock Reason
 Names

1. t.out3 "t.clk1" t.dstFF "t.clk2" Qualifier not found N.A.
2. t.FF2 "t.clk2" t.FF1 "t.clk1" Qualifier not found N.A.
--

The report also includes the waived violations of the rules in the Waived
Msg column.

Section F

This section of The CDC-Detailed-Report shows the information related to
SpyGlass asynchronous reset analysis and verification.

This information includes the results of the rules, which ensure that:
 Asynchronous resets have been properly synchronized in each domain.

 Asynchronous resets have been de-asserted properly.

 All the registers have been properly reset.

The following example shows this section of The CDC-Detailed-Report:

===
Section F. Asynchronous Reset Analysis and Verification:
==
Asynchronous resets without reset synchronizers (Ar_unsync01) : 1
--
623
Synopsys, Inc.

The CDC-Detailed-Report

Reports and Other Files in SpyGlass CDC
S.No. ID RESET PINTYPE INSTANCE CLOCK(s) REASON WAIVED
--
1. 18 t.rst clear t.rstF2 "t.clk2" "Missing synchronizer" no
--
...
...
 Asynchronous resets with asynchronous deassertion (Ar_asyncdeassert01)
: 1

S.No. ID RESET PINTYPE INSTANCE CLOCK(s) REASON WAIVED
--
1. 19 t.rst clear t.rstF2 "t.clk2" "Improper deassertion" no

Section G

This section of The CDC-Detailed-Report shows the information related to
SpyGlass CDC verification (abstract validation).

This information includes the results of the rules, which ensure that all the
abstracted blocks are in sync with the top-level constraints.

The following example shows this section of The CDC-Detailed-Report:

===
Section G. Hierarchical Verification : Abstraction Validation:
==
Number of abstract model mismatch with top (Ac_abstract_validation01 : 3
--

S.No. ID Block-Name Block Problem Count WAIVED CSV FILE
 Instance Type
 Name
--
--
1. 26 ABS test.abs Case Analysis 2 no abs/eg.csv
 Mismatch
--
624
Synopsys, Inc.

The CDC-Detailed-Report

Reports and Other Files in SpyGlass CDC
Section H

This section of The CDC-Detailed-Report shows the information related to
delta-delay verification.

This information includes the results of the rules, which verify delta-clock
delays on flip-flops and latches.

The following example shows this section of The CDC-Detailed-Report:

==
Section H. DeltaDelay Verification:
==
Delta Delay Concise Report(DeltaDelay01)
Clock --> test.clk1:
**
* Delay Number of Flops Number of Latches *
**
 0 4 0
**|

Clock --> test.clk2:
**
* Delay Number of Flops Number of Latches *
**
 0 6 0
**

Section J

This section of The CDC-Detailed-Report shows the signals involved in
convergence issues (reported by Ac_conv01, Ac_conv02, and Ac_conv03) but
suppressed by the cdc_attribute constraint.

The following example shows this section of The CDC-Detailed-Report:

===
Section J. Filtered signal convergence:
==
--
S. No. Unrelated/Exclusive Signals Type SGDC File:Line
625
Synopsys, Inc.

The CDC-Detailed-Report

Reports and Other Files in SpyGlass CDC
--
1. top.f5 Ac_conv02 test.sgdc:6
 top.f3
2. top.dest[1:0] Ac_conv02 test.sgdc:7
3. top.f8 Ac_conv01 test.sgdc:6
 top.f5
 top.f3
4. top.dest[1:0] Ac_conv01 test.sgdc:7
 top.f8
--

Section K

This section of The CDC-Detailed-Report shows the glitch-free multiplexers
found in a design.

The following example shows this section of The CDC-Detailed-Report:

===
Section K. Glitch Free Cell:
==
--
S. No. Glitch Free Type Constraint on Mux Mux Name
 Select Pin Specified
--
1. Recirculating N.A. top.rtlc_I15
2. Clock Switching No top.rtlc_I13
3. Reset synchronization bypass Yes top.rtlc_I17
4. Reset synchronization bypass No top.rtlc_I19
--
==
626
Synopsys, Inc.

The Advanced CDC Report

Reports and Other Files in SpyGlass CDC
The Advanced CDC Report
The Advanced CDC report, adv_cdc.rpt, provides information to help you
analyze the cause of a bug or to gather functional analysis statistics.

This report is automatically generated when you run any of the CDC
Verification Rules.

The Advanced CDC report contains the following sections:

Section A: Clock Information

This section of The Advanced CDC Report shows a summary of clock
definitions as reported by the Propagate_Clocks rule. The Design Period is also
reported in this section.

Each clock is reported in the following format:

<clk-name>: <clk-period>; <clk-source>; <clk-edge>;<edge-
list>; <num-flops-posedge>; <num-flops-negedge>;

Where:

<clk-name>

The clock name.

<clk-period>

The clock period (specified using the -period argument of the clock
constraint).

<clk-source>

SGDC is printed for clocks that have been specified in a SpyGlass Design

Section A: Clock Information Section B: Reset Information
Section C: Set Case Analysis Settings Section D: Initial State of the Design
Section E: Results Summary
(Current)

Section F: Results Summary
(Cumulative)

Section G: Assertion Details
627
Synopsys, Inc.

The Advanced CDC Report

Reports and Other Files in SpyGlass CDC
Constraints file using the clock constraint. For automatically-inferred
clocks, Auto-Inferred is printed.

<clk-edge>

The starting clock edge (Rising or Falling).

<edge-list>

The clock edge list (specified using the -edge argument of the clock
constraint).

<num-flops-posedge>

The number of flip-flops triggered by the clock on the positive edge.

<num-flops-negedge>

The number of flip-flops triggered by the clock on the negative edge.

User-specified clocks and automatically-inferred clocks are reported under
separate headings. A separate file named adv_cdc.reg reports controlling
clocks for individual registers. See The Register Info Report for details of the
adv_cdc.reg file.

This section also contains the Design Period in terms of number of fastest
clock cycles and non-overlapping clock edges.

Section B: Reset Information

This section of The Advanced CDC Report shows resets that are used in initial
state detection and for functional analysis.

User-specified resets and automatically-inferred resets are reported under
separate headings.

Each reset is reported in the following format:

<reset-name> ; Active High | Active Low : [soft reset]

All the resets are assumed to be hard resets unless marked as soft resets.
All hard resets are deactivated during functional analysis. The soft resets
are used only in initial state search and are not deactivated during
functional analysis. A separate file named adv_cdc.reg reports controlling
resets for individual registers. See The Register Info Report for details of the
628
Synopsys, Inc.

The Advanced CDC Report

Reports and Other Files in SpyGlass CDC
adv_cdc.reg file.

Section C: Set Case Analysis Settings

This section of The Advanced CDC Report shows a summary of
set_case_analysis constraints that have been applied on the design through
the SGDC file.

Each set_case_analysis constraint is reported in the following format:

<net-name> ; <net-value>

Where:

<net-name>

The net name specified by the set_case_analysis constraint in an SGDC file.
For scalar nets, the exact name as specified in the SGDC is shown. For
vector nets, the hierarchical name of the net is shown.

<net-value>

The specified value of the net.

Section D: Initial State of the Design

This section of The Advanced CDC Report lists the initial state statistics of the
design along with the reset percentage.

This section reports a summary of initial state as reported in the
Ac_initstate01 rule.

A separate file named adv_cdc.reg reports initial state assignments for
individual registers. See The Register Info Report for details of the
adv_cdc.reg file.

Section E: Results Summary (Current)

This section of The Advanced CDC Report lists the statistics of the assertions
formed for each rule.

The analysis statistics are reported as listed below:
629
Synopsys, Inc.

The Advanced CDC Report

Reports and Other Files in SpyGlass CDC
 General analysis statistics, such as:

 Number of properties passed

 Number of properties failed

 Number of properties partially proved

 Number of properties that are not analyzed

On running SpyGlass with the fa_audit parameter set to yes,
functional analysis is skipped and all properties are marked as
Not-Analyzed.

 Number of the following types of assertions:

 Number of assertions that encountered conflicting constraints in
its fan-in cone.

 Number of assertions that were not analyzed because design cycle
was huge or an NTP conversion did not happen properly.

 Total number of properties in the design

 Rules table
A table of the following format is reported for current run:

The Passed column shows the number of properties that are proven
TRUE. The Failed column shows the number of properties that are
proven FALSE. The Partially Proved column shows the number of
properties that are not concluded. The Average Depth is the average

Rule Name Passe
d

Faile
d

Partially
Proved
(Average
Depth)

Not
Analyzed

Others Total

Ac_cdc01a 4 3 0 0 0 7
Ac_cdc01b 0 1 0 0 0 1
Ac_cdc01c 0 0 3(65) 4 0 7
Ac_cdc08 2 1 0 0 1 4
Ac_fifo01 1 2 1 0 0 4
Ac_handshake01 0 0 0 1 0 1
Ac_handshake02 0 0 1 0 0 1
TOTAL 7 7 5 5 1 25
630
Synopsys, Inc.

The Advanced CDC Report

Reports and Other Files in SpyGlass CDC
depth of all the properties that are not concluded.

Section F: Results Summary (Cumulative)

This section of The Advanced CDC Report lists the summary of the cumulative
set of assertions formed in the current run and the information of earlier
runs in the property file. This section is generated when you specify a
property file using the fa_propfile parameter.

A rules table is also printed in this section. This table has the cumulative
results for the current run and the earlier runs’ information in the property
file.

Section G: Assertion Details

This section of The Advanced CDC Report lists the assertion details for each
rule. Based on the type of assertion, a detailed report is generated as
follows:
 For FAILED assertion:

RuleName: <rule-name>
(<module-name>), <assertion-details>, <file-name>,
<line-number> (<VCD-file-name>):
FAILED through depth <cycle-depth> (<depth>)

 For Partially-Proved assertion:

RuleName: <rule-name>
(<module-name>), <assertion-details>, <file-name>,
<line-number> (<VCD-file-name>):
Partially-Proved through depth <cycle-depth> (<depth>)
[Flop-Count:<flop-count>, Design-Cycle:<design-cycle>]

 For PROVED assertion:

RuleName: <rule-name>
(<module-name>), <assertion-details>, <file-name>,
<line-number>: PROVED

 For Internal-Error assertion:

RuleName: <rule-name>
631
Synopsys, Inc.

The Advanced CDC Report

Reports and Other Files in SpyGlass CDC
(<module-name>), <assertion-details>, <file-name>,
<line-number>: Others(Internal-Error)

NOTE: Internal errors are reported if the design cycle reaches a value greater than
65535.

NOTE: For the Ac_datahold01a rule, the Internal-Error status also appears if the design
contains a black box and the assume_path constraint is specified between the
source and destination of a clock-domain crossing.

 For assertions that found conflicting constraints:

RuleName: <rule-name>
(<module-name>), <assertion-details>, <file-name>,
<line-number>: Others(Constraints-Conflict)

When you double-click on a violation message that displays the Others
(Constraints-Conflict) assertion, a dialog appears displaying
details of constraints conflict, as shown in the following figure:

FIGURE 13. Details of constraints conflict

For rules reporting such kinds of assertions, a separate file is generated
that contains details of constraints conflict shown in the above dialog.
The name of this file is in the following format:

<rule-name>.<ID>.OverConstrainInfo

The <cycle-depth> argument specifies the number of cycles of the
fastest clock till the assertion was evaluated.

The <depth> argument specifies the verification depth (number of cycles
632
Synopsys, Inc.

The Advanced CDC Report

Reports and Other Files in SpyGlass CDC
of the cumulative clocks) involved in verification till the assertion was
evaluated.

NOTE: The depth information reported for a Partially Proved property indicates that the
property was still being analyzed at the reported depth when the analysis of the
property was stopped. Therefore, it is possible that a property is reported as
Partially Proved at a certain depth in a SpyGlass run and is reported as FAILED at
the same depth in another run with a different set of SpyGlass options.

The <flop-count> argument specifies the number of flops present in
the input cone of the property. In general, the complexity of solving a
property is proportional to number of flops in the input cone. The number
reported for the flop count is dependent on the engine and may vary based
on the engine being run. It is an estimate of the property size.

The number of flops considered for solving a property can be limited by the
fa_flopcount parameter. It is reported for a partially-proved property in the
adv_cdc.rpt report.

NOTE: The value of parameter fa_flopcount is not honored on control paths and all
the flops present in such paths are considered.

The <design-cycle> argument indicates the number of clock cycles
completed during verification for an unsolved property. The design-cycle is
proportional to the complexity of solving a property. It is reported for a
partially-proved property in the adv_cdc.rpt report.

Difference Between Advanced CDC and SpyGlass TXV
Initialization Report

Information generated in the Advanced CDC report and SpyGlass TXV
solution initialization report (/spyglass_reports/txv/0.init) has the following
differences:
 Difference in information related with clocks

 SpyGlass CDC solution report does not contain generated clocks.
However, this information is present in the report of SpyGlass TXV
solution.

 SpyGlass CDC solution report shows clocks that have not been used
on any flip-flop. However, SpyGlass TXV solution report does not
show such clocks.
633
Synopsys, Inc.

The Advanced CDC Report

Reports and Other Files in SpyGlass CDC
 Difference in information related with latches

 For SpyGlass TXV solution, latches are counted as sequential
elements while calculating an initialization percentage. This can
result in a different sequential element count and a different
initialization percentage, as shown below:
Initialization percentage in SpyGlass TXV = (Number of initialized
sequential elements) /(Total no of sequential elements including
latches) * 100
Initialization percentage in SpyGlass CDC = (Number of initialized
flip-flops) /(Total no of flops) * 100

 Difference in information related with resets

 If a reset is specified twice in an SGDC file, SpyGlass CDC solution
report shows that reset twice, while SpyGlass TXV solution report
shows it once.

 SpyGlass CDC solution report shows resets that have not been used
on any flip-flop, while SpyGlass TXV solution report does not show
such resets.

 Difference in sequential element initialization list
For a design containing complex clocks, different precision levels of
clock periods in SpyGlass TXV solution and SpyGlass CDC solution may
result in different clocks edges. This can cause a difference in the
initialization of sequential elements in the two products.
For example, clock period for a clock with its period as 6.66667 could be
treated differently in the SpyGlass TXV solution and SpyGlass CDC
solution due to different precision levels in the two products, which can
cause a difference in initialization results.
634
Synopsys, Inc.

The Register Info Report

Reports and Other Files in SpyGlass CDC
The Register Info Report
The Register Info report, adv_cdc.reg, provides information on clocks, resets
and registers in a design.

It is automatically generated when you run any of the CDC Verification Rules.

It contains the following sections:

Section A: Clocks in the design

This section of The Register Info Report lists all the clocks in a design.

An integer ID number is assigned to each clock signal. Section D: Register
Information shows Clock ID numbers of such clocks instead of the actual
clock names.

Section B: Resets in the design

This section of The Register Info Report lists all the synchronous and
asynchronous resets in a design.

An integer ID number is assigned to each reset signal. Section D reports
these Reset ID numbers instead of actual reset names.

Section C: Uninitialized Registers (after primary sets/resets
are applied)

This section of The Register Info Report lists the uninitialized registers after
applying primary sets/resets.

Section D: Register Information

Section A: Clocks in the design Section B: Resets in the design
Section C: Uninitialized Registers
(after primary sets/resets are applied)

Section D: Register Information
635
Synopsys, Inc.

The Register Info Report

Reports and Other Files in SpyGlass CDC
This section of The Register Info Report lists register information used for
functional analysis.

Initial values are as inferred after applying primary sets/resets and/or after
random simulation.
636
Synopsys, Inc.

The NoClockCell-Summary Report

Reports and Other Files in SpyGlass CDC
The NoClockCell-Summary Report
The NoClockCell-Summary report shows the following information:
 Details of nets specified as start points using the noclockcell_start

constraints
 Details of ports/pins/nets specified as stop points using the

noclockcell_stop_signal constraints
 Details of modules specified as stop points using the

noclockcell_stop_module constraints
 Details of instances specified as stop points using the

noclockcell_stop_instance constraints
637
Synopsys, Inc.

The DeltaDelay-Concise Report

Reports and Other Files in SpyGlass CDC
The DeltaDelay-Concise Report
The DeltaDelay-Concise report displays the following information:
 Different delta delay values for each clock in a design.

 Number of flip-flops and latches for each delta delay value.

This report is generated when the DeltaDelay01 rule is run.

Following is the example showing the list of delays in the DeltaDelay-
Concise report:

==
Clock --> top.clk:
**
Delay Number of Flops Number of Latches
**
24 8 0
26 8 0
29 8 0
31 8 0
37 8 0
39 8 0

**
638
Synopsys, Inc.

The DeltaDelay-Detailed Report

Reports and Other Files in SpyGlass CDC
The DeltaDelay-Detailed Report
The DeltaDelay-Detailed report shows the following information:
 List of different delta delays for each clock

 Net names of flip-flops for each delay value

 Net names of latches for each delay value

For netlist designs, if the report_inst_for_netlist parameter is set to yes, the
instance names of flip-flops/latches are shown. Otherwise, net names are
shown.

An example of a list of delays shown in the DeltaDelay-Detailed report is as
follows:

==
Clock --> top.clk:

Delay --> 24:
Flop: top.I2.r_ff1[0]
Flop: top.I2.r_ff1[1]
Flop: top.I2.r_ff1[2]
Flop: top.I2.r_ff1[3]
Flop: top.I2.r_ff1[4]
Flop: top.I2.r_ff1[5]
Flop: top.I2.r_ff1[6]
Flop: top.I2.r_ff1[7]

Delay --> 26:
Flop: top.I2.r_ff2[0]
Flop: top.I2.r_ff2[1]
Flop: top.I2.r_ff2[2]
Flop: top.I2.r_ff2[3]
Flop: top.I2.r_ff2[4]
Flop: top.I2.r_ff2[5]
Flop: top.I2.r_ff2[6]
Flop: top.I2.r_ff2[7]

==
639
Synopsys, Inc.

The DeltaDelay02-Detailed Report

Reports and Other Files in SpyGlass CDC
The DeltaDelay02-Detailed Report
The DeltaDelay02-Detailed report lists flip-flops that can cause simulation
problems due to delta delay issues. The report contains the following
sections:
 Section A

 Section B

Section A

This section of The DeltaDelay02-Detailed Report lists flip-flops that do not
have explicit physical delay to avoid simulation problems.

Section B

This section of The DeltaDelay02-Detailed Report lists derived clocks that have
an explicit delay statement.

Sample Report

A sample DeltaDelay02-Detailed report is as follows:

==
A. Flops which do not have explicit physical delay to avoid
simulation problems

 S. No. Clock Name Flop Name

 1. test.clk1 test.src1
 test.src2

640
Synopsys, Inc.

The DeltaDelay02-Detailed Report

Reports and Other Files in SpyGlass CDC
B. Derived clocks which have explicit delay statement

 S. No. Clock Name Flop Name

 1. test.clk1 test.der_clk

641
Synopsys, Inc.

The DeltaDelay-Summary Report

Reports and Other Files in SpyGlass CDC
The DeltaDelay-Summary Report
The DeltaDelay-Summary report provides the following details:
 Details of nets specified as start points using the deltacheck_start

constraints or the default start nets if deltacheck_start constraint is not
used

 Details of ports/pins/nets specified as stop points using the
deltacheck_stop_signal constraints

 Details of modules specified as stop points using the
deltacheck_stop_module constraints

 Details of instances specified as stop points using the
deltacheck_stop_instance constraints

 Maximum and minimum delta clock delay values

 Total number and checked number of flip-flops and latches
642
Synopsys, Inc.

The Ac_sync_group_detail Report

Reports and Other Files in SpyGlass CDC
The Ac_sync_group_detail Report
The Ac_sync_group_detail report contains the details of all the violations
reported by the Ac_sync02, Ac_sync01, Ac_unsync02, and Ac_unsync01 rules.

This report contains the following sections:
 A. Unsynchronized Vector Signal Crossings

This section lists the unsynchronized crossings reported by the
Ac_unsync02 rule.

 B. Unsynchronized Scalar Signal Crossings
This section lists the unsynchronized crossings reported by the
Ac_unsync01 rule.

 C. Synchronized Vector Signal Crossings
This section lists the synchronized crossings reported by the Ac_sync02
rule.

 D. Synchronized Scalar Signal Crossings
This section lists synchronized crossings reported by the Ac_sync01 rule.
643
Synopsys, Inc.

The Ac_sync_qualifier Report

Reports and Other Files in SpyGlass CDC
The Ac_sync_qualifier Report
The Ac_sync_qualifier report is generated by the Ac_sync01 and Ac_sync02
rules.

This report categorizes Qualifier into the following sections:
 Section A that reports qualifiers that synchronize data crossings.

 Section B that reports qualifiers that do not synchronize data crossings.

If a user-defined qualifier or abstract_port constraint is specified, the
following information appears in this report:
 The qualifier name appears as a destination name and the qualifier clock

name appears as a destination clock.

 The "-" symbol appears for a source name and clock names.

 The reported synchronization scheme appears in the last column.

This report shows all the qualifiers reaching to a synchronizing gate even
though the spreadsheet of the Ac_sync01 and Ac_sync02 rules shows only
one qualifier.

NOTE: Please note the following points:

 Bus-merged qualifiers are reported in Section A when any of the bits of the
qualifier are used to synchronize data crossings.

 Unused qualifiers specified by the abstract_port constraint are not reported in
Section B.

The sample report is shown below:
644
Synopsys, Inc.

The Ac_sync_qualifier Report

Reports and Other Files in SpyGlass CDC
FIGURE 14. The Ac_sync_qualifier Report

You can also view this report in a spreadsheet (.csv) format. This
spreadsheet file (Ac_sync_qualifier.csv) is generated under the /
spyglass_reports/clock-reset/ directory.
645
Synopsys, Inc.

The Glitch_detailed Report

Reports and Other Files in SpyGlass CDC
The Glitch_detailed Report
The Glitch_detailed report is generated by the Ac_glitch03 rule.

This report contains a consolidated summary of all the sources that are
crossing destinations and contain glitch-related issues.

The sample Glitch_detailed report is shown below:

FIGURE 15. The Glitch_detailed Report

You can also view this report in a spreadsheet (.csv) format. This
spreadsheet file (Glitch_detailed.csv) is generated under the
<current-working-directory>/spyglass_reports/clock-reset/ directory.
646
Synopsys, Inc.

The Module Topology Report

Reports and Other Files in SpyGlass CDC
The Module Topology Report
The module_topology report generated by the Ac_topology01 rule shows
dependency between instances in a design.

Figure 16 and Figure 19 show the sample module_topology reports.

Use this report to perform top-down constraint migration in a correct order
based on the dependency of instances shown in this report. For details, see
Example Code and/or Schematic.

This report shows the following information:
 Name of instances in a design

 Name of the modules of instances

 Topological order of instances
It refers to a numeric value depicting dependency between instances.
If there is no cyclic dependency between instances, a unique
topological order is assigned to each instance based on which you can
determine the sequence in which top-down constraint migration should
be done for instances. For details, see Example 1.
If there is cyclic dependency between instances, same topological
order is assigned to such instances. For details, see Example 2. In such
cases, check the verification order to determine the sequence in which
top-down constraint migration should be done for instances.

 Verification order of instances
It refers to a numeric value depicting dependency between instances.
Based on this value, you can determine the sequence in which top-down
constraint migration should be done for instances.
The difference between topological order and verification order is that in
case of cyclic dependency between instances, topological order for
instances is same whereas verification order for each instance is unique.
647
Synopsys, Inc.

Overconstrain Info File

Reports and Other Files in SpyGlass CDC
Overconstrain Info File
SpyGlass CDC solution consolidates all user-specified and generated
constraints and applies them together.

However, if any conflicting constraints are found during advanced SpyGlass
CDC solution rule-checking, an overconstrain info file is generated that
contains details of conflicting constraints.

The name of this file is in the following format:

<rule-name>.<ID>.OverConstrainInfo
NOTE: If you run the Ac_sanity04 rule, the file name is OverConstrain.info, and not

Ac_sanity04.<ID>.OverConstrainInfo.

Messages Reported in the Overconstrain Info File

This file contains the following messages:
 Comb-loop involving net '<net-name>' is unstable

 Reset constraint on net '<net-name>'
The reset can be an asynchronous reset or a synchronous reset.

 set_case_analysis constraint on net '<net-name>'

 OVL constraint '<name>' FILE: <file-name>, Line: <line-num>

 Some constraints cannot be satisfied simultaneously at depth
<cycledepth> (<depth>)
This message appears if the time taken during message generation for
the Overconstrain Info file exceeds the time-out limit.

Sample Overconstrain Info File

Consider the following design on which Ac_cdc01c rule-checking is done:
648
Synopsys, Inc.

Overconstrain Info File

Reports and Other Files in SpyGlass CDC
FIGURE 16. Design for which Overconstrain Info File is Being Generated

For the above design, the following Ac_cdc01c.1.OverConstrainInfo file is
generated:

Following constraints cannot be satisfied simultaneously at
depth 0(0):

 Comb-loop involving net 'top.loop' is unstable

loop

clk_fast clk_slow

QW
649
Synopsys, Inc.

The CDC Matrix Report

Reports and Other Files in SpyGlass CDC
The CDC Matrix Report
The CDC Matrix report (cdc_matrix.rpt) shows details of SpyGlass-CDC
attributes and whether they follow the limits set by the cdc_matrix_attributes
constraint. This report is generated by the Setup_req01 rule.

NOTE: You must specify the cdc_matrix_attributes constraint to generate this report.

The purpose of viewing this report is to check the health of SpyGlass-CDC
setup before proceeding with SpyGlass CDC verification.

If the limit of the CDC attributes exceeds the prescribed limit, fix the issues
that are causing the limit to exceed. This way, you can ensure that the
design statistics (in the form of attributes) are good enough to proceed
with SpyGlass CDC verification.

For information on generating this report and its path, see Viewing Reports in
GUI and Specifying the Report to be Generated through a Project File.

This report contains the following sections:

Section A

This section of The CDC Matrix Report shows a summary of SpyGlass-CDC
attributes and whether they follow the limit set by the cdc_matrix_attributes
constraint.

Refer to Figure 15 to view the sample report.

Section B

This section of The CDC Matrix Report shows the name of the destination to
which sources more than the specified limit are reaching.

This section is not generated if you set the -src_per_dest_limit argument of
the cdc_matrix_attributes constraint to -1.

Refer to Figure 15 to view the sample report.

Section A Section B Section C
650
Synopsys, Inc.

The CDC Matrix Report

Reports and Other Files in SpyGlass CDC
Section C

This section of The CDC Matrix Report shows details of top five clock pairs for
which the number of crossings between them exceeds the limit specified by
the -crossing_per_clock_pair_limit argument of the cdc_matrix_attributes
constraint.

This section is not generated if you set this argument to -1.

Refer to Figure 15 to view the sample report.
651
Synopsys, Inc.

The Distributed Time Report

Reports and Other Files in SpyGlass CDC
The Distributed Time Report
The distributed time report (distributed_time.rpt) shows run time details of
SpyGlass CDC rules that are run in parallel on same or different machines.

The run time details include the information, such as:
 Pack ID

Assertions reported by SpyGlass CDC rules are grouped into chunks
called packs. Each pack is assigned a unique pack ID.

 Number of assertions in a pack

 CPU time and wall clock time consumed by each pack

 Machine name for a pack

The sample distributed time report is shown below:

RuleName PackID Machine Assertions CPU Time Wall Clk Overall
 Time CPU Time
--
Ac_cdc01a 1 machine_1 4 21 22
 1 machine_3 4 30 36
 2 machine_2 2 16 18
 67
--
Ac_cdc01b 1 machine_1 5 44 44
 1 machine_3 5 45 54
 2 machine_1 5 44 9
 3 machine_4 1 11 14
 144
--
Ac_cdc01c 1 machine_1 6 34 34
 1 machine_2 6 34 34
 2 machine_4 1 7 7
 75
--
652
Synopsys, Inc.

Input Port Constraints File

Reports and Other Files in SpyGlass CDC
Input Port Constraints File
When you run the Clock_info15 or the Setup_port01 rule, SpyGlass CDC
generates the following SGDC file containing abstract_port constraints
generated for input ports of a block:

<wdir>/<project-name>/<goal-path>/spyglass_reports/clock-reset/<top-
level>_input_abstract.sgdc

For example, consider the scenario in which the IN1 input port is sampled
into the CK1 clock domain inside the BLK block. In this case, SpyGlass
CDC solution generates the following constraint:

abstract_port -scope cdc -module BLK -ports IN1 -clock CK1

Note the following points:

 The abstract_port -ignore constraints is generated if all the fan-out of
an input port are hanging or blocking.

 The abstract_port constraint is not generated in the following cases:

 If an input port is connected to an unconstrained output port through
pure combinational logic only.

 If an input port is defined by using the quasi_static constraint.

 If an input port is connected to the data or enable pin of a sequential
element that is constrained by the clock constraint, the domain of this
sequential element is assigned in the generated abstract_port constraint.

 Input ports that are defined by user-defined constraints, such as clock,
quasi_static, or set_case_analysis, are not included in the input port
constraints file.

SpyGlass CDC solution generates different abstract_port constraint
specifications based on different scenarios, as described in the following topics:

 abstract_port Constraints for Ports Connected with Multiple Sequential Elements

 abstract_port Constraints for Ports Connected with Sequential Elements

 abstract_port Constraints for Multiple Ports Reaching Same Sequential Element

 abstract_port Constraints for Ports Connected to Data Pin of a Multi-Flop
Structure
653
Synopsys, Inc.

Input Port Constraints File

Reports and Other Files in SpyGlass CDC
abstract_port Constraints for Ports Connected with Multiple
Sequential Elements

If an input port is connected to multiple flip-flops sampled in multiple clock
domains, SpyGlass CDC solution generates abstract_port constraint
specifications for each clock domain.

However, if different clocks are in the same domain, only one abstract_port
constraint specification is generated with any such clocks.

For example, consider the scenario shown in the following figure:

FIGURE 17. Design for Which the abstract_port Constraint is Being Generated

For the above case, the following constraints are generated:

abstract_port -scope cdc -module BLK -ports in1 -clock clk1
abstract_port -scope cdc -module BLK -ports in1 -clock clk2

abstract_port Constraints for Ports Connected with
Sequential Elements

If an input port is connected to a sequential element clocked by multiple
clocks, SpyGlass CDC solution generates one abstract_port constraint
specification containing multiple clocks.
654
Synopsys, Inc.

Input Port Constraints File

Reports and Other Files in SpyGlass CDC
For example, consider the scenario shown in the following figure:

FIGURE 18. Design for Which the abstract_port Constraint is Being Generated

For the above case, the following constraint is generated:

abstract_port -scope cdc -module BLK -ports in1 -clock clk1
clk2

abstract_port Constraints for Multiple Ports Reaching Same
Sequential Element

If multiple input ports reach to the same sequential element, SpyGlass
CDC solution generates abstract_port constraint specifications in which the
domain of the sequential element is assigned to such input ports:

For example, consider the scenario shown in the following figure:
655
Synopsys, Inc.

Input Port Constraints File

Reports and Other Files in SpyGlass CDC
FIGURE 19. Design for Which the abstract_port Constraint is Being Generated

For the above case, the following constraints are generated:

abstract_port -scope cdc -module BLK -ports in1 -clock clk1
abstract_port -scope cdc -module BLK -ports in2 -clock clk1

abstract_port Constraints for Ports Connected to Data Pin
of a Multi-Flop Structure

If an input port is connected to the data pin of a control synchronizer (see
Conventional Multi-Flop Synchronization Scheme and Synchronizing Cell
Synchronization Scheme), SpyGlass CDC solution assigns clock domains as a
virtual clock to the generated abstract_port constraint specifications and set
the -combo argument of these specifications to no and the -combo_ifn
argument to the clock associated with the synchronizer.

NOTE: During abstract_port constraint generation, SpyGlass CDC solution considers the
following parameters and constraints while detecting a multi-flop structure:

The following points cover different cases in which an input port is
connected to the data pin of a multi-flop structure:

Parameters sync_reset, allow_combo_logic, strict_sync_check,
ignore_num_rtl_buf_invs, num_flops, synchronize_cells, and
synchronize_data_cells

Constraints reset -sync, allow_combo_logic, num_flops, sync_cell
656
Synopsys, Inc.

Input Port Constraints File

Reports and Other Files in SpyGlass CDC
 If multiple inputs drive the same control synchronizer and the
allow_combo_logic parameter is set to yes, all ports are assigned to the
same virtual clock in the generated abstract_port constraint
specifications.
For example, consider the scenario shown in the following figure:

FIGURE 20. Design for Which the abstract_port Constraint is Being Generated

For the above example, the following constraints are generated:

abstract_port -scope cdc -module BLK -ports a -clock VCK1 -
combo_ifn ck2 -combo no

abstract_port -scope cdc -module BLK -ports b -clock VCK1 -
combo_ifn ck2 -combo no

 If the P1 port, as shown in the following figure, reaches the F1 control
synchronizer in one path and a single flip-flop F2 in another path, the
abstract_port constraint is generated only for single flip-flops:
657
Synopsys, Inc.

Input Port Constraints File

Reports and Other Files in SpyGlass CDC
FIGURE 21. Design for Which the abstract_port Constraint is Being Generated

For the above example, the following constraint is generated:

abstract_port -scope cdc -module BLK -ports P1 -clock C1
-combo_ifn C2 -combo no

 If the P2 port, as shown in the following figure, reaches to the F1 control
synchronizer in one path and to multiple single flip-flops [F2, F3] in
other paths, abstract_port constraint specifications are generated for
each clock domain on single flip-flops and the -combo argument is set
to no:

FIGURE 22. Design for Which the abstract_port Constraint is Being Generated
658
Synopsys, Inc.

Input Port Constraints File

Reports and Other Files in SpyGlass CDC
For the above example, the following constraints are generated:

abstract_port -scope cdc -module BLK -ports P2 -clock C4 -
combo no
abstract_port -scope cdc -module BLK -ports P2 -clock C5 -
combo no

 If the P1 input port, as shown in the following figure, reaches to the F3
single flip-flop in one path and to multiple control synchronizers [F1, F2]
in other paths, a single abstract_port constraint specification is generated
containing a virtual clock and the -combo argument is set to no.

FIGURE 23. Design for Which the abstract_port Constraint is Being Generated

For the above example, the following constraint is generated:

abstract_port -scope cdc -module BLK -ports P1 -clock vclk
-combo no
659
Synopsys, Inc.

The adv_cdc Spreadsheet

Reports and Other Files in SpyGlass CDC
The adv_cdc Spreadsheet
This spreadsheet displays results of formal SpyGlass CDC analysis. It
provides a quick summary of formal results under different tabs so that
you do not need to explicitly open the adv_cdc.prp file and The Advanced
CDC Report to view formal results.

This spreadsheet contains the following tabs:
 adv_cdc_summary_current

 adv_cdc_summary_cumulative

 adv_cdc_summary_detail

adv_cdc_summary_current

This spreadsheet shows the statistics of different assertions for each formal
rule that is run. This data is same as the data displayed in Section E: Results
Summary (Current) of The Advanced CDC Report.

In the coverage-driven flow, this spreadsheet shows coverage details under
additional columns, such as Coverage-0%, Coverage-1-99%, and
Coverage-100%.

The following figure shows the example of this spreadsheet:

FIGURE 24. Example of the adv_cdc_summary_current spreadsheet

adv_cdc_summary_cumulative

This spreadsheet shows the summary of the cumulative set of assertions
formed in the current run and the information of earlier runs based on a
property file. This data is same as the data displayed in Section F: Results
660
Synopsys, Inc.

The adv_cdc Spreadsheet

Reports and Other Files in SpyGlass CDC
Summary (Cumulative) of The Advanced CDC Report.

In the coverage-driven flow, this spreadsheet shows coverage details under
additional columns, such as Coverage-0%, Coverage-1-99%, and
Coverage-100%.

The following figure shows the example of this spreadsheet:

FIGURE 25. Example of the adv_cdc_summary_cumulative spreadsheet

adv_cdc_summary_detail

This spreadsheet shows detailed information on the assertions for each
formal rule that is run. This data is same as the data displayed in Section G:
Assertion Details of The Advanced CDC Report.

In the coverage-driven flow, this spreadsheet also shows the percentage of
coverage.

The following figure shows the example of this spreadsheet:
661
Synopsys, Inc.

The adv_cdc Spreadsheet

Reports and Other Files in SpyGlass CDC
FIGURE 26. Example of the adv_cdc_summary_detail spreadsheet
662
Synopsys, Inc.

The CrossingMatrix Spreadsheet

Reports and Other Files in SpyGlass CDC
The CrossingMatrix Spreadsheet
The CrossingMatrix spreadsheet shows the summary of crossings per clock
pair with their clock domains.

View this spreadsheet to check the overall SpyGlass CDC risk on a design,
crossings congestion area, and setup issues causing unusual crossing
distribution.

This spreadsheet is generated in the spyglass_reports/clock-reset/
Ac_crossing directory.

For details on this spreadsheet, see the following topics:
 Data Fetched in the CrossingMatrix.csv Spreadsheet

 Information Format in the CrossingMatrix.csv Spreadsheet

 Example of the CrossingMatrix.csv Spreadsheet

Data Fetched in the CrossingMatrix.csv Spreadsheet

When the The Ac_sync_group Rules are run, data for this report is fetched
from the Ac_sync_group rules and all sources per destination are
considered by default because the Ac_sync_group rules report all the
sources.

Information Format in the CrossingMatrix.csv Spreadsheet

Information per clock crossing pairs appears in the following format in the
spreadsheet:

<a>/, <c>/<d>

where,

 <a> is the count of Ac_unsync01/Ac_unsync02 messages.

 is the count of total unsynchronized crossings that exist for the
clock crossing pair.

 <c> is the count of Ac_sync01/Ac_sync02 messages.

 <d> is the count of total synchronized crossings that exist for a clock
crossing pair.

NOTE: and <d> may be different from <a> and <c> in case multiple clocks are
reaching to crossing instances.
663
Synopsys, Inc.

The CrossingMatrix Spreadsheet

Reports and Other Files in SpyGlass CDC
For details, see Sample Spreadsheet generated by Ac_sync_group rules.

Example of the CrossingMatrix.csv Spreadsheet

Consider the following design:

FIGURE 27. Design on which the Ac_crossing01 Rule is being Run

When you run the Ac_crossing01 rule on the above design, The
CrossingMatrix Spreadsheet is generated. Now based on the rules enabled,
such as Ac_sync_group rules, different clock pair information is shown
in the spreadsheet.

Sample Spreadsheet generated by Ac_sync_group rules

The following figure shows the crossing matrix spreadsheet generated
when the Ac_sync_group is enabled:
664
Synopsys, Inc.

The CrossingMatrix Spreadsheet

Reports and Other Files in SpyGlass CDC
FIGURE 28. Crossing Matrix Spreadsheet

The above spreadsheet shows information per clock crossing pairs in the
following format:

<a>/, <c>/<d>

Where:

 <a> is the total number of Ac_unsync01 and Ac_unsync02 messages for
the given clock pair.

 is the total number of crossings for this clock pair for all the
sources involved in the crossing.

 <c> is the total number of Ac_sync01 and Ac_sync02 violation messages
for the given clock pair.

 <d> is the total number of crossings for this clock pair for all the
sources involved in the crossing.

Description of the above format for each clock pair in this example is
described below:

 For the clock pair clk1-clk5
665
Synopsys, Inc.

The CrossingMatrix Spreadsheet

Reports and Other Files in SpyGlass CDC
 Three violations of the Ac_unsync01 rule are reported in this case, and
all sources are considered between the clk1-clk5 clock pair.

Therefore, the value of <a> and is 3 and 6, respectively.

 No Ac_sync01/Ac_sync02 violation is reported in this case.

Therefore, the value of <c> and <d> is 0.

 For the clk2-clk5 clock-pair

No violation is reported for this clock pair and all sources are considered.
Therefore, the value of <a> and is 0 and 6, respectively.
666
Synopsys, Inc.

The Ar_cross_analysis01 Spreadsheet

Reports and Other Files in SpyGlass CDC
The Ar_cross_analysis01 Spreadsheet
The Ar_cross_analysis01 spreadsheet contains information of all the
asynchronous clock domain crossings on the reset path in a design.

To view this spreadsheet, double-click on the violation of the
Ar_cross_analysis01 rule.

The following figure shows the example of this spreadsheet:

FIGURE 29. Sample Ar_cross_analysis01 Spreadsheet

Details of the Ar_cross_analysis01 Spreadsheet

The following table describes the column details of the Ac_cross_analysis
spreadsheet:
Column Name Description
Schematic ID Specifies the unique ID for a violation.
Crossing Status Specifies the crossing status, such as synchronized scalar

or unsynchronized vector.
Destination Type(Pin
Type)

Specifies the type of the destination object.
The object type can be:
• Source signal, such as flip-flop, latch, black box, or

primary input
• Destination signal, such as flip-flop, latch, black box,

or primary input
• Type of qualifier, such as detected qualifier, user-

defined qualifier, or potential qualifier.
In case of a vector qualifier, the text vector appears
before the qualifier type.
The 'Pin Type' can be 'clear' or 'preset' to distinguish the
crossings of clear and preset pins of the same instance.

Destination Name Specifies the name of the destination.
667
Synopsys, Inc.

The Ar_cross_analysis01 Spreadsheet

Reports and Other Files in SpyGlass CDC
Source Type Specifies the type of the source object.
The object type can be:
• Source signal, such as flip-flop, latch, black box, or

primary input
• Destination signal, such as flip-flop, latch, black box,

or primary input
• Type of qualifier, such as detected qualifier, user-

defined qualifier, or potential qualifier.
In case of a vector qualifier, the text vector appears
before the qualifier type.

Source Name Specifies the name of the source.
Destination Clock
Name

Specifies the name of the clocks reaching the destination
signal.

Destination Domain Specifies the destination domain.
Source Clock Names Specifies the name of the clocks reaching the source

signal.
Source Domain Specifies the source domain.
Failure Reason Specifies the reason for unsynchronized crossing.
Sync Scheme Specifies the name of the synchronization method used

to synchronize a crossing.
Qualifier Type Specifies whether the qualifier is user defined or

internally detected.
Qualifier Name Specifies the name of the qualifier in the crossing.
Qualifier Depth Specifies the qualifier depth.
Waived Specifies if the violation is waived
Comments Specifies user comments, if any.

Column Name Description
668
Synopsys, Inc.

The Spreadsheets of the Ac_abstract_validation01 Rule

Reports and Other Files in SpyGlass CDC
The Spreadsheets of the
Ac_abstract_validation01 Rule

The Ac_abstract_validation01 rule generates the following spreadsheets:

NOTE: If you run Ac_abstract_validation01 in the batch mode, the rule-based spreadsheet
contains an additional column, CSV File. This column shows the path of the
corresponding message-based spreadsheet. Refer to this column to correlate the
row of the rule-based spreadsheet with the corresponding message-based
spreadsheet.

Clock Mismatch Spreadsheet

Based on Example - Clock Mismatch, the following spreadsheet appears
showing Clocks Mismatch:

FIGURE 30. The Clock Mismatch Spreadsheet

The following table describes the details of the columns of the above
spreadsheet:

Clock Mismatch Spreadsheet Clock Domain Mismatch Spreadsheet
Case Analysis Mismatch
Spreadsheet

Quasi static Mismatch Spreadsheet

Data Path Domain Mismatch
Spreadsheet

Combo Check Mismatch Spreadsheet

Qualifier Mismatch Spreadsheet Virtual Clocks Mismatch Spreadsheet
Reset Mismatch Spreadsheet
669
Synopsys, Inc.

The Spreadsheets of the Ac_abstract_validation01 Rule

Reports and Other Files in SpyGlass CDC
Clock Domain Mismatch Spreadsheet

For Clock Domain Mismatch, the Ac_abstract_validation01 rule generates two
types of spreadsheets based on the following cases:
 Same domain block level clocks connected to different domain top-level clocks

 Different domain block level clocks connected to same domain top-level clocks

Same domain block level clocks connected to different domain top-level clocks

Based on Example 1 - Clock Domain Mismatch, the following spreadsheet
appears showing Clock Domain Mismatch:

FIGURE 31. The Clock Domain Mismatch Spreadsheet

The following table describes the details of the columns of the above
spreadsheet:

Column Name Description
ID Specifies a unique ID for a violation
Block Port Name Specifies the clock port of a block
Block Clock Defined Specifies if the clock constraint is specified for the clock

port of the clock.
Top Clock Specifies the name of the top-level clock

Column Name Description
ID Specifies a unique ID for a violation
Block Domain Specifies the domain of the abstract view
670
Synopsys, Inc.

The Spreadsheets of the Ac_abstract_validation01 Rule

Reports and Other Files in SpyGlass CDC
Different domain block level clocks connected to same domain top-level clocks

Based on Example 2 - Clock Domain Mismatch, the following spreadsheet
appears showing Clock Domain Mismatch:

FIGURE 32. The Clock Domain Mismatch Spreadsheet

The following table describes the details of the columns of the above
spreadsheet:

Case Analysis Mismatch Spreadsheet

Based on Example - Case Analysis Mismatch, the following spreadsheet
appears showing information related to Case Analysis Mismatch:

Block Clocks Specifies the clock on the abstract view
Top Clocks Specifies the name of the top-level clock

Column Name Description
ID Specifies a unique ID for a violation
Block Clocks Specifies the clock on the abstract view
Top Clocks Specifies the name of the top-level clock
Top Internal Domain
Tag

Specifies a unique tag number generated for the
top-level clock net connected to a sequential element or
a black box.
For details, see Using the Clock Domain Tag.

Column Name Description
671
Synopsys, Inc.

The Spreadsheets of the Ac_abstract_validation01 Rule

Reports and Other Files in SpyGlass CDC
FIGURE 33. The Case Analysis Mismatch Spreadsheet

The following table describes the details of the columns of the above
spreadsheet:

Quasi static Mismatch Spreadsheet

Based on Example - Quasi Static Mismatch, the following spreadsheet appears
showing information related to Quasi Static Mismatch:

FIGURE 34. The Quasi static Mismatch Spreadsheet

The following table describes the details of the columns of the above
spreadsheet:

Column Name Description
ID Specifies a unique ID for a violation
Port Name Specifies the name of the port on the abstract view
Block Value Specifies the set_case_analysis value on the port of the

abstract view
Top Value Specifies the case_analysis_value propagated at the top-

level
672
Synopsys, Inc.

The Spreadsheets of the Ac_abstract_validation01 Rule

Reports and Other Files in SpyGlass CDC
Data Path Domain Mismatch Spreadsheet

Based on Example - Data Path Domain Mismatch, the following spreadsheet
appears showing information related to Data Path Domain Mismatch:

FIGURE 35. The Data Path Domain Mismatch Spreadsheet

The following table describes the details of the columns of the above
spreadsheet:

Column Name Description
ID Specifies a unique ID for a violation
Port Name Specifies the name of the port on the abstract view
Block port
quasi_static

Specifies if the quasi_static constraint is defined on the port
of the abstract view

Top quasi_static Specifies if a top-level quasi_static signal is reaching the
port of the abstract view

Column Name Description
ID Specifies a unique ID for a violation
Port Name Specifies the name of the port on the abstract view
Block Domain(s) Specifies the unmatched clock domain of the abstract view
Top Domain(s) Specifies the unmatched top-level clock domain
673
Synopsys, Inc.

The Spreadsheets of the Ac_abstract_validation01 Rule

Reports and Other Files in SpyGlass CDC
Combo Check Mismatch Spreadsheet

Based on Example - Combo Check Mismatch, the following spreadsheet
appears showing information related to Combo Check Mismatch:

FIGURE 36. The Combo Check Mismatch Spreadsheet

The following table describes the details of the columns of the above
spreadsheet:

Qualifier Mismatch Spreadsheet

Based on Example - Qualifier Mismatch, the following spreadsheet appears
showing information related to Qualifier Mismatch:

Column Name Description
ID Specifies a unique ID for a violation
Port Name Specifies the name of the port on the abstract view
Block Combo Specifies if a block-level combinational logic exists
Top Combo Specifies if a top-level combinational logic exists that reaches

the block port
674
Synopsys, Inc.

The Spreadsheets of the Ac_abstract_validation01 Rule

Reports and Other Files in SpyGlass CDC
FIGURE 37. The Qualifier Mismatch Spreadsheet

The following table describes the details of the columns of the above
spreadsheet:

Virtual Clocks Mismatch Spreadsheet

For Virtual Clocks Mismatch, the Ac_abstract_validation01 rule generates two
types of spreadsheets based on the following cases:

Column Name Description
ID Specifies a unique ID for a violation
Port Name Specifies the name of the port on the abstract view
Block Source Clock Specifies the clock name associated with the pin

(-from argument) of the unmatched abstract_port
constraint

Block Destination Clock Specifies the clock names associated with the pin (-to
argument) of the unmatched abstract_port constraint

Top Source Clock Specifies the source clock of the unmatched
synchronizer at the top level

Top Destination Clock Specifies the destination clock of the unmatched
synchronizer at the top level

Block Sync Type Specifies the -sync argument of the abstract_port
constraint

Top Sync Type Specifies the sync type of the top-level synchronizer.
If it is control type synchronizer, active appears in
the spreadsheet. Else, inactive appears.
675
Synopsys, Inc.

The Spreadsheets of the Ac_abstract_validation01 Rule

Reports and Other Files in SpyGlass CDC
 Mismatch due to no top-level domain available

 Mismatch due to conflict top-level domains

Mismatch due to no top-level domain available

Based on Example 1 - Virtual Clocks Mismatch, the following spreadsheet
appears showing information related to Virtual Clocks Mismatch:

FIGURE 38. The Virtual Clocks Mismatch Spreadsheet

The following table describes the details of the columns of the above
spreadsheet:

Mismatch due to conflict top-level domains

Based on Example 2 - Virtual Clocks Mismatch, the following spreadsheet
appears showing information related to Virtual Clocks Mismatch:

Column Name Description
ID Specifies a unique ID for a violation
Virtual Clock Name Specifies the name of virtual clock on the abstract view
Port Name Specifies the name of the port of the abstract view
Top Clocks Specifies the name of the top-level clock
Top Internal Clock
Domain Tag

Specifies a unique tag number generated for the top-level
clock net connected to a sequential element or a black
box.
For details, see Using the Clock Domain Tag.
676
Synopsys, Inc.

The Spreadsheets of the Ac_abstract_validation01 Rule

Reports and Other Files in SpyGlass CDC
FIGURE 39. The Virtual Clocks Mismatch Spreadsheet

The following table describes the details of the columns of the above
spreadsheet:

Reset Mismatch Spreadsheet

Based on Example - Reset Mismatch, the following spreadsheet appears
showing information related to Reset Mismatch:

Column Name Description
ID Specifies a unique ID for a violation
Virtual Clock Name Specifies the name of virtual clock on the abstract view
Port Name Specifies the name of the port of the abstract view
Top Clocks Specifies the name of the top-level clock
Top Internal Clock
Domain Tag

Specifies a unique tag number generated for the top-level
clock net connected to a sequential element or a black
box.
For details, see Using the Clock Domain Tag.
677
Synopsys, Inc.

The Spreadsheets of the Ac_abstract_validation01 Rule

Reports and Other Files in SpyGlass CDC
FIGURE 40. The Reset Mismatch Spreadsheet

The following table describes the details of the columns of the above
spreadsheet:

num_flops Mismatch Spreadsheet

Based on Example - num_flops Mismatch, the following spreadsheet appears
showing information related to num_flops Mismatch:

Column Name Description
ID Specifies a unique ID for a violation
Port Name Specifies the port of the abstract view
Top Reset Specifies the name of the top-level reset
Block Reset Type Specifies if the reset on the abstract view is synchronous

reset or asynchronous reset
Top Reset Type Specifies if the top-level reset is synchronous reset or

asynchronous reset
Block Reset Value Specifies the value of the reset on the abstract view
Top Reset Value Specifies the value of the top-level reset
678
Synopsys, Inc.

The Spreadsheets of the Ac_abstract_validation01 Rule

Reports and Other Files in SpyGlass CDC
FIGURE 41. The num_flops Mismatch Spreadsheet

The following table describes the details of the columns of the above
spreadsheet:

Column Name Description
ID Specifies a unique ID for a violation
Block num_flops
Source Clock

Specifies the top-level clock port on which the num_flops
constraint is defined

Block num_flops
Destination Clock

Specifies the abstract block’s clock port on which the
num_flops constraint is defined

Block Value Specifies the value of the num_flops constraint defined on
the abstract block’s clock port

Top Value Specifies the value of the num_flops constraint defined on
the top-level clock port
679
Synopsys, Inc.

The Ac_abstract_validation02 Spreadsheet

Reports and Other Files in SpyGlass CDC
The Ac_abstract_validation02 Spreadsheet
This spreadsheet shows all the types of mismatches reported by the
Ac_abstract_validation02 rule. To view this spreadsheet, double-click on
the violation of the Ac_abstract_validation02 rule.

Figure 42 shows the example of this spreadsheet:

FIGURE 42.

See Column Details of the Ac_abstract_validation02 Spreadsheet for a
description of the columns included in the Ac_abstract_validation02
Spreadsheet.

In the above spreadsheet, the violations appear block wise. First, all the
violations of one block appear followed by the violations of another block.

Column Details of the Ac_abstract_validation02
Spreadsheet

The following table describes the column details of the
Ac_abstract_validation02 spreadsheet:
680
Synopsys, Inc.

The Ac_abstract_validation02 Spreadsheet

Reports and Other Files in SpyGlass CDC
Column Name Description
ID Specifies the unique ID for a violation.
Block Instance Name Specifies the instance name of the abstract block.
Block Name Specifies the name of the abstract block.
Block Port Name(s) Specifies the name of the port on the abstract

block.
Mismatch Type Specifies the type of mismatch between the

abstract block and the top-level design.
There can be different types of mismatches, such
as clocks mismatch, clock domain mismatch, and
reset mismatch. For information on all the types of
mismatches, refer to the documentation of the
Ac_abstract_validation01 rule in the CDC Rules
Reference Guide.

Unmatched Top Attribute Specifies the name of the top-level attribute, such
as clock or reset that does not match with the
block-level attribute.

Unmatched Block Attribute Specifies the name of the block-level attribute,
such as clock or reset that does not match with the
top-level attribute.

Matched Attribute Specifies the matching attributes, such as clocks or
resets in the case of domain level mismatch.

Waived Specifies if the violation is waived
Comments Specifies user comments, if any.
681
Synopsys, Inc.

Simulator File in SpyGlass CDC

Reports and Other Files in SpyGlass CDC
Simulator File in SpyGlass CDC
A simulator file (used by the DeltaDelay01 and DeltaDelay02 rules) contains
simulator-specific delta-delay information for RTL constructs.

It is an ASCII file that contains statements (one statement per line) in the
following format:

<language>:<keyword>:<deltadelayvalue>

Where <language> is the HDL language, such as VHDL or Verilog (case-
insensitive) and <keyword> is the statement type. For details on
keywords, see Keywords Used in a Simulator File in SpyGlass CDC.

Specifying a Simulator File

Use the simulator_file_name parameter to specify a simulator file.

Sample Simulator File

The simulator_file.txt file is the sample simulator file present in the
SPYGLASS_HOME/policies/clock directory.

You can directly use this file in the SpyGlass run or modify it to specify
different delay values for different simulators.

Keywords Used in a Simulator File in SpyGlass CDC

The following table describes the keywords used in a simulator file:

Keyword VHDL Verilog
signal_assignment_01 Indicates concurrent signal

assignments, as in the following
example:
t0 <= i0;

Not available
682
Synopsys, Inc.

Simulator File in SpyGlass CDC

Reports and Other Files in SpyGlass CDC
signal_assignment_02 Indicates sequential signal
assignments, as in the following
example:
process (clk)
begin
if (clk'event and clk ='1')

t0 <= i0;
end if
end process

Not available

signal_assignment_03 Indicates assignments in
procedures, as in the following
example:
procedure convert (

signal i0: in std_logic;
signal t0: out std_logic)

is
begin
...
t0 <= i0;
...
end convert;

Not available

variable_assignment_01 Indicates variable assignments, as
in the following example:
t0 := i0;

Not available

port_connection_01 Indicates direct connection of an
input port to an input pin of a
VHDL design unit instance, as in
the following example:
entity entity_name is

port(
i0: in std_logic;
t0: out std_logic);

end entity_name;
architecture ...
...
U1: module_name
PORT MAP (

i0_in => i0,
t0_out => t0);

...

Indicates direct
connection of a register
to an input pin of a
VHDL design unit
instance, as in the
following example:
...
reg i0;
...
module_name U1 (
.i0_in (i0),
.t0_out (t0)

);
...

Keyword VHDL Verilog
683
Synopsys, Inc.

Simulator File in SpyGlass CDC

Reports and Other Files in SpyGlass CDC
port_connection_02 Indicates direct connection of an
output port to an output pin of a
VHDL design unit instance, as in
the following example:
entity entity_name is

port(
i0: in std_logic;
t0: out std_logic);

end entity_name;
architecture ...
...
U1: module_name
PORT MAP (

i0_in => i0,
t0_out => t0);

...

Indicates direct
connection of a wire to
an input pin of a VHDL
design unit instance, as
in the following
example:
...
wire i0;
...
module_name U1 (
.i0_in (i0),
.t0_out (t0)

);
...

port_connection_03 Indicates a signal connected to an
input pin of a VHDL design unit
instance, as in the following
example:
...
signal clock : std_logic;
...
U1: module_name
PORT MAP (

clock => clock,
reset => reset,
i0_in => i0,
t0_out => t0);

...

Indicates direct
connection of a wire to
an output pin of a VHDL
design unit instance, as
in the following
example:
...
wire t0;
...
module_name U1 (
.i0_in (i0),
.t0_out (t0)

);
...

Keyword VHDL Verilog
684
Synopsys, Inc.

Simulator File in SpyGlass CDC

Reports and Other Files in SpyGlass CDC
port_connection_04 Indicates a signal connected to an
output pin of a VHDL design unit
instance, as in the following
example:
...
signal t0 : std_logic;
...
U1: module_name
PORT MAP (

clock => clock,
reset => reset,
i0_in => i0,
t0_out => t0);

...

Indicates direct
connection of a Verilog
input port to an input
pin of a VHDL design
unit instance, as in the
following example:
module top(i0, t0);
input i0;
output t0;

...
vhdl_du_name U1 (
.i0_in (i0),
.t0_out (t0));

...

port_connection_05 Indicates direct connection of an
input port to an input pin of a
Verilog design unit instance, as in
the following example:
entity entity_name is
port(
i0: in std_logic;
t0: out std_logic);
end entity_name;
architecture ...
...
U1: verilog_module_name
PORT MAP (
i0_in => i0,
t0_out => t0);

Indicates direct
connection of a Verilog
output port to an output
pin of a VHDL design
unit instance, as in the
following example:
module top(i0, t0);
input i0;
output t0;

...
vhdl_du_name U1 (
.i0_in (i0),
.t0_out (t0));

...

Keyword VHDL Verilog
685
Synopsys, Inc.

Simulator File in SpyGlass CDC

Reports and Other Files in SpyGlass CDC
port_connection_06 Indicates direct connection of an
output port to an output pin of a
Verilog design unit instance, as in
the following example:
entity entity_name is
port(
i0: in std_logic;
t0: out std_logic);
end entity_name;
architecture ...
...
U1: verilog_module_name
PORT MAP (
i0_in => i0,
t0_out => t0);

Not available

port_connection_07 Indicates a signal connected to an
input pin of a Verilog design unit
instance, as in the following
example:
…
signal clock : std_logic;
...
U1: verilog_module_name
PORT MAP (
clock => clock,
reset => reset,
i0_in => i0,
t0_out => t0)

Not available

Keyword VHDL Verilog
686
Synopsys, Inc.

Simulator File in SpyGlass CDC

Reports and Other Files in SpyGlass CDC
port_connection_08 Indicates a signal connected to an
output pin of a Verilog design unit
instance, as in the following
example:
...
signal t0 : std_logic;
...
U1: verilog_module_name
PORT MAP (
clock => clock,
reset => reset,
i0_in => i0,
t0_out => t0);

Not available

procedure_01 Indicates the connection of a
signal to an input of a procedure,
as in the following example:
...
signal i1: std_logic;
signal t1: std_logic;
...
convert (i1,t1);
...
procedure convert (

signal i0: in std_logic;
signal t0: out std_logic;

) is
...

Not available

procedure_02 Indicates the connection of a
signal to an output of a procedure,
as in the following example:
...
signal i1: std_logic;
signal t1: std_logic;
...
convert (i1,t1);
...
procedure convert
(signal i0: in std_logic;
signal t0: out std_logic;)
is ...

Not available

Keyword VHDL Verilog
687
Synopsys, Inc.

Simulator File in SpyGlass CDC

Reports and Other Files in SpyGlass CDC
procedure_03 Indicates the connection of an
input port to an input of a
procedure, as in the following
example:
entity entity_name is

port(
i1: in std_logic;
t1: out std_logic);

end entity_name;
architecture ...
...
convert (i1,t1);
...
procedure convert (

signal i0: in std_logic;
signal t0: out std_logic;

) is ...

Not available

ve_continous_assignment_01 Not Available Indicates the continuous
assignment, as in
following example:
wire buf_clk;
assign buf_clk =
clk;

ve_blocking_assignment_01 Not Available Indicates the blocking
assignment as in
following example:
reg div_clk;
always @(posedge
clk)
div_clk = clk;

ve_nonblocking_assignment_01 Not Available Indicates the non
blocking assignment as
in following example:
reg div_clk;
always @(posedge
clk)
div_clk <= clk;

Keyword VHDL Verilog
688
Synopsys, Inc.

Simulator File in SpyGlass CDC

Reports and Other Files in SpyGlass CDC
procedure_04 Indicates the connection of an
output port to an output of a
procedure, as in the following
example:
entity entity_name is

port(
i1: in std_logic;
t1: out std_logic);

end entity_name;
architecture ...
...
convert (i1,t1);
...
procedure convert (

signal i0: in std_logic;
signal t0: out std_logic;

) is ...

Not available
Keyword VHDL Verilog
689
Synopsys, Inc.

CSV Files Generated On Running SpyGlass CDC Goals

Reports and Other Files in SpyGlass CDC
CSV Files Generated On Running SpyGlass
CDC Goals

The following CSV files are generated when you run a SpyGlass CDC goal:
 resets.csv

Contains details of all the user-defined resets. The following example
shows the data in this spreadsheet:

RESET, VALUE
conv.rst1, 1
conv.rst2, 0

 clocks.csv
Contains details of all the user-defined clocks. The following example
shows the data in this spreadsheet:

CLOCK,TAG,DOMAIN,PERIOD
conv1.c1,,domain1,3
conv1.c2,,domain2,5
conv1.c3,,domain3,5

 set_case_analysis.csv
Contains details of all the user-defined set_case_analysis constraints. The
following example shows the data in this spreadsheet:

SIGNAL,VALUE
in2,0

 bbClocks.csv
Contains details of all the user-defined black box clocks. The following
example shows the data in this spreadsheet:

CLK-NAME,BB-NAME
top.q2,bbox
top.d1,bbox

 cdc_false_path.csv
Contains details of all the user-defined cdc_false_path constraints. The
following example shows the data in this spreadsheet:

FROM,THROUGH,TO,FROM-TYPE,TO-TYPE
clk1,,clk2,data,data
690
Synopsys, Inc.

CSV Files Generated On Running SpyGlass CDC Goals

Reports and Other Files in SpyGlass CDC
 assume_path.csv
Contains details of all the user-defined assume_path constraints. The
following example shows the data in this spreadsheet:

BB NAME,INPUT,OUTPUT
BB,A,Z

 reset_sig.csv
Contains reset-net details, such as reset name, its type, and its driver
reset if it is gated or a generated reset. The following example shows
the data in this spreadsheet:

Reset,Type,Drivers
conv1.rst,PRIMARY

 clock_sig.csv
Contains details of all clock net, its name, its type and its driver clocks in
case it is gated or generated clock (summary of clock sources in a
design)

Clock,Type,Drivers
top.clk1,PRIMARY
top.clk2,PRIMARY
top.clk_1,GATED,"top.clk1,top.clk2"

 fileList.csv
Specifies the path of the SGDC file containing details of all the user-
defined constraints.

 parameterList.csv
Specifies the list of user-defined parameters and their values. The
following example shows the data in this spreadsheet:

PARAMETER, VALUE
-conv03_report_seq_conv, yes

 Block_Summary.csv
Shows the summary of the block on which SpyGlass is run. The
following example shows the data in this spreadsheet:

Set-Case-Analysis,0
Assume-path,0
CDC-False-Path,0
691
Synopsys, Inc.

CSV Files Generated On Running SpyGlass CDC Goals

Reports and Other Files in SpyGlass CDC
Total Time,26
Total flat instances,0
Clocks,2
Domains,2
BB Clocks,0
Resets,0
BB Resets,0
Clock re-definitions(Clock_check07),0
Abstract model mismatch with
top(Ac_abstract_validation01),2
692
Synopsys, Inc.

RTL Results Difference Utility

Reports and Other Files in SpyGlass CDC
RTL Results Difference Utility
The RTL Results Difference utility enables you to identify the differences
between two SpyGlass CDC runs. The sg_results_diff.pl file uses the The
CDC-Detailed-Report generated by the two SpyGlass runs and presents the
differences in HTML format.

To run this utility, use the sg_results_diff.pl command. The following
syntax shows the usage:

%sg_results_diff.pl

-version1_report < CDC-detailed-report of run1>
-version2_report < CDC-detailed-report of run2>
-outfile <file-name>
-alldata

Table 1 describes the arguments in the above syntax:

TABLE 1 Arguments of the sg_results_diff.pl Utility

The utility generates the diff.html file in the current working directory.
The following figure shows a sample report.

Argument Description
-version1_report Specifies the path to the CDC-detailed-report.rpt file

generated in the first SpyGlass CDC run
-version2_report Specifies the path to the CDC-detailed-report.rpt file

generated in the second SpyGlass CDC run
-outfile (Optional) Specifies the path of the HTML file generated by the

sg_results_diff.pl utility. By default, the
diff.html file is generated in the current working
directory.

-alldata (Optional) Specifies if the attributes that did not change between
the two SPyGlass runs should be included in the HTML
report. By default, only the attributes that have
changed between the two runs are listed in the HTML
report.
693
Synopsys, Inc.

RTL Results Difference Utility

Reports and Other Files in SpyGlass CDC
FIGURE 43. Sample diff.html file

The generated report consists of the following sections:
 Run Information

 Top-level Overview of the Result Differences

 Summary Table for Differences in each CDC-detailed-report sections

 Detailed Difference Report

Run Information

This section lists the data in Section A of the CDC-Detailed report
generated in the two SpyGlass runs as shown in Figure 255.

Top-level Overview of the Result Differences

This section gives an summarizes the count of differences between the
CDC-Detailed reports generated in the two SpyGlass runs. The following
figure shows the Top-level Overview of the Result
Differences section of the diff.html file:
694
Synopsys, Inc.

RTL Results Difference Utility

Reports and Other Files in SpyGlass CDC
FIGURE 44. Top-level Overview of the Result Differences sections

Summary Table for Differences in each CDC-detailed-report
sections

This section shows a summary table for each CDC-detailed-report section
with an additional column for the following:
 Run 1 only

 Run 2 only

 Both in Run 1 and Run 2 (with same attributes)

 Both in Run 1 and Run 2 (with different attributes)
695
Synopsys, Inc.

RTL Results Difference Utility

Reports and Other Files in SpyGlass CDC
The following figure shows Summary Table for Differences in
each CDC-detailed-report sections:

FIGURE 45. Summary Table for Differences in each CDC-detailed-report sections

You can click the links for additional details about the information contained
in the report. For example, clicking the Number of User defined
Parameter Values link in the report lists the parameters used for
running SpyGlass.

You can click each parameter to get information on the parameter values
used for each SpyGlass run in a tabular format as shown in the following
696
Synopsys, Inc.

RTL Results Difference Utility

Reports and Other Files in SpyGlass CDC
figure:

FIGURE 46. Parameter Values

Detailed Difference Report

This section consists of the following four sub-sections:
 In Run1 only

 In Run2 only

 Both in Run1 and Run2(with different attributes)

 Both in Run1 and Run2(with same attributes)

The following figures shows the Both in Run1 and Run2(with
different attributes) section of the diff.html file:
697
Synopsys, Inc.

RTL Results Difference Utility

Reports and Other Files in SpyGlass CDC

FIGURE 47. Both in Run1 and Run2(with different attributes) section

This section contains detailed information about the differences between
the two SpyGlass runs. The sg_results_diff.pl utility highlights the
differences in red. For example, the above figure shows that the
Qualifier Depth attribute of the Ac_unsync01 rule was set to 0 and
2 in the first and second SpyGlass runs respectively.
698
Synopsys, Inc.

Internal Rules in
SpyGlass CDC
There are certain internal rules that run by default. The following table
describes such rules.

Prerequisite Rule Description
_cdc_save_license01 This rule performs license related operations for advanced

SpyGlass CDC rules/features that require additional license
in the enable_save_restore mode.

Ac_setOvlDataInSynthesis This rule populates the required OVL data in the synthesis
engine.
It is applicable when OVL constraints are used in the
SpyGlass run.

Clock_exit01 This rule performs internal memory clean up operations
when all the SpyGlass CDC rules have performed the
required functionality.

Ac_psync_init This rule collects the metastability-related information on
the source and destination signals of isolation enables from
the design on which the Ac_punsync01 and Ac_psync01
rules are run.

Ac_upfsetup01 This rule collects the power domain and isolation enable
data specified in the UPF format for the design on which the
Ac_punsync01 and Ac_psync01 rules are run.
699
Synopsys, Inc.

Internal Rules in SpyGlass CDC
Ac_upfsetup02 It is enabled when the Ac_punsync01 and
Ac_psync01 rules are run.
This rule reports a violation in the following cases:
• If an element specified to the set_isolation/

set_level_shifter commands does not belong to any
domain.

• If an inout port/pin is specified to the set_isolation/
set_level_shifter command.

• If multiple isolation/level-shifter strategies are specified
for the same domain element.

top_vs_block_val_prereq This rule populates relevant data for the validation rules.
AcOvlRtl This rule is run when OVL assumptions are specified in the

design.
It extracts initial values from the initial block and modify
the object model for the ovl_error task.

_deltaDelayNom This rule retains the port for the modules for which port
delays are to be considered by the DeltaDelay01/
DeltaDelay01 rules.

_deltaDelay This rule parses the simulator file specified by the
simulator_file_name parameter.
The delay values are stored and used by the DeltaDelay01
rule.

_constrCoverage This rule computes the constraint coverage for black boxes
in the design and also computes the constraint coverage for
the top-level design unit.
This information is used by the constraint-coverage
reporting rules, such as Setup_blackbox01, Setup_port01,
and Clock_info18.

Ar_sync_init This rule collects reset synchronization and reset
deassertion information for the reset synchronization rules,
such as Ar_sync01 and Reset_sync02.

_clock_hier_rules This rule is the parent rule for the Clock_hier01,
Clock_hier02, Clock_hier03, and
SGDC_clock_path_wrapper_module01 rules.

_propagate_cdcAttrib This rule propagates data of the cdc_attribute constraint.
_debugData This rule creates clock-domain information for nets in the

data and control paths in a design.
CDCSet_License01 This rule checks the licensing for the CDC setup manager.

Prerequisite Rule Description
700
Synopsys, Inc.

Internal Rules in SpyGlass CDC
_sync_qualifier This rule detects whether a signal crossing clock domain
has been synchronized by the qualifier constraint. It is used
by clock synchronization rules.

_synci This rule detects for synchronization by handshake. It is
used by clock synchronization rules

_sync_and This rule detects for synchronization at AND gates (based
on the enable_and_sync parameter) in the data path of a
clock domain crossing. It is used by clock synchronization
rules.

_sync_gp This rule detects for valid multi-flop synchronizer in the
other fan-in (pin not connected to the source flip-flop) of a
glitch protection cell in the data path (based on the
glitch_protect_cell parameter).

_sync_clock This rule detects for valid multi-flop synchronizers in the
other fan-in (pin not connected to clock) of clock gating
cells (based on the clock_gate_cell parameter).
It is used by clock synchronization rules.

_syncg This rule detects for synchronization where the following
configuration exists:
• The source flip-flop has a recirculation mux with the mux

select pin acting as the source clock.
• The destination flip-flop has a recirculation mux with the

mux select pin acting as the destination clock.
• There exists a flip-flop between the source flip-flop and

the destination flip-flop that is clocked by the source
clock with an inverted phase.

_syncd This rule detects the following synchronization schemes:
• Synchronized Enable Synchronization Scheme
• Recirculation MUX Synchronization Scheme
• MUX-Select Sync (Without Recirculation)

Synchronization Scheme
_syncdw This rule detects DesignWare FIFOs.

This rule is used by the clock synchronization rules.
_syncUDfifo This rule detects user-defined FIFOs in a design (based on

the fifo constraint). It is used by the clock synchronization
rules.

_syncfifo This rule detects FIFO in the design. It is used by the clock
synchronization rules.

_fifo01 This rule reports read and write pointers of FIFOs.

Prerequisite Rule Description
701
Synopsys, Inc.

Internal Rules in SpyGlass CDC
_syncb This rule detects whether a clock domain crossing is
synchronized by the Conventional Multi-Flop
Synchronization Scheme.
This rule is used by the clock synchronization rules.

_syncc This rule detects whether a clock domain crossing is
synchronized by the user-specified synchronizing cell.
This rule is used by the clock synchronization rules.

_syncreset_prop This rule propagates synchronous resets in a design and
computes the information that is used by other reset
related rules.

Reset_prop This rule propagates asynchronous resets in one go for
domain computation.
The resets specified by the reset constraint or those
inferred automatically (when use_inferred_resets
parameter is set to yes) are propagated across the design.
The gated and derived resets are automatically detected
and propagated.
This information is useful for analysis of reset domain
crossings and other resets related checks.

Clock_prop This rule propagates clocks in one go for domain
computation.
The clocks specified by the clock constraint or those
inferred automatically (when use_inferred_clocks
parameter is set to yes) are propagated across the design.
The gated and derived clocks are automatically detected
and propagated.
This information is useful for analysis of clock domain
crossings and other clock related checks.

Pragma_setupb This rule populates information about the top-level
modules. This information is used by the Clock_setup02
rule.

Pragma_setupa This rule runs when the Reset_check01 and Clock_info16
rules are run.
It populates relevant data structures for these rules.

Clock_setup01 This rule reads various parameters that are used in
SpyGlass CDC and populates its internal data structures.

Clock_setup02 This rule reads clocks and resets from SGDC files and
identifies if the design is a netlist design.

_abstract_port This rule populates data for the abstract_port constraint.

Prerequisite Rule Description
702
Synopsys, Inc.

Internal Rules in SpyGlass CDC
_syncCellDelayedQualifier This rule runs if the sync_cell constraint is specified.
It tags all the instances inside this constraint when
cdc_qualifier_depth is specified as 0.

_rstSyncCellInst This rule runs if the parameter is reset_synchronize_cells
specified.
It tags all the instances that lie inside the modules specified
by this parameter.

_ipblock This rule runs if the ip_block constraint is specified.
It tags all the instances inside IP blocks.

_allowInst This rule runs if the allow_combo_logic constraint is
specified.
It tags all the instances that are allowed as combo logic.

_portReten This rule runs if the allow_combo_logic constraint is
specified.
It retains the port for the modules specified by this
constraint.

_portRetenClocknReset This rule runs if the clock and reset constraints are
specified.
It retains the ports for the pins specified by these
constraints.

Prerequisite Rule Description
703
Synopsys, Inc.

Internal Rules in SpyGlass CDC
704
Synopsys, Inc.

Rules in SpyGlass CDC
The SpyGlass CDC solution provides the following types of rules:

Setup Rules Formal Setup Rules
Clock Information Rules Reset Information Rules
Clock and Reset Information Rules Reset Synchronization Rules
CDC Verification Rules Clock Glitch Checking Rules
Clock Checking Rules Reset Checking Rules
Clock and Reset Checking Rules Delta Delay Rules
Block Constraint Generation Rules Block Abstraction Rules
Block Constraint Validation Rules Synchronous Reset Verification Rules
Must Rules
705
Synopsys, Inc.

Setup Rules

Rules in SpyGlass CDC
Setup Rules
The SpyGlass CDC solution has the following setup rules:

Rule Reports
Setup_clock01 Information needed for Clock Setup.
Setup_clockreset01 Setup issues related with clocks or asynchronous resets.
Setup_library01 Library cells with incomplete definitions
Setup_quasi_static01 Signals that are likely to be quasi-static signals in a

design
Setup_port01 Summary of unconstrained ports for a top-level design

unit
Setup_blackbox01 Summary of unconstrained pins for black boxes
Setup_check01 Reports if contradicting constraints are applied on

objects
Setup_check02 The signal_in_domain constraint is applied on the

objects on which the abstract_port constraint is applied.
Setup_req01 Status in the CDC Matrix Report to show if SpyGlass

CDC setup requirements are followed as per the limits
set by the cdc_matrix_attributes constraint

Ac_topology01 Status in The Module Topology Report that shows the
dependency among the modules that are
instantiated at the top level.

Ac_svasetup01 Setup issues in SVA
706
Synopsys, Inc.

Setup Rules

Rules in SpyGlass CDC
Setup_clock01
Generates information needed for clock setup

When to Use

Use this rule to view clock sources, clock enables, and clock cones
information in a design.

Description

The Setup_clock01 rule generates a clock setup view that shows
information about clock sources, clock enables, and clock cones in a
design.

The following figure shows the example of clock sources and clock cones:

FIGURE 1. Example of Clock Sources and Clock Cones

You can view the clock setup view in the Clock Setup window. For details,
see Using the Clock Setup Window.

NOTE: By default, this rule is switched off. To enable this rule, specify the set_goal_option

ck1

ck2

ck3

ck4

clock
sources

clock cones
707
Synopsys, Inc.

Setup Rules

Rules in SpyGlass CDC
addrules {Setup_clock01} command in the project file or run the cdc_setup goal
available under the SpyGlass CDC solution methodology.

Parameter(s)

 clock_reduce_pessimism: Default value is latch_en, mux_sel_derived,
check_enable_for_glitch. Set the value of this parameter to
mux_sel to stop traversal of this rule when a clock signal reaches a
MUX. Other possible values are all, all_potential_clocks, and
ignore_same_domain.

 master_clock_limit: The default value is 1000. Set this parameter to limit
the number of master clocks for which the generated_clock constraint
should be dumped for a derived clock.

 enable_generated_clocks: Default value is no. Set this parameter to yes
to dump generated_clock constraints for derived clocks.

Constraint(s)

set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

Messages and Suggested Fix

This rule reports the following message:

[SCLK01] [INFO] For design '<design-name>', '<num-clks>' source
clock(s) and '<num-clk-cones>' clock cone node(s) are
identified

The arguments of the above message are explained below:

Potential Issues

None

Consequences of Not Fixing

Argument Description
<design-name> Top-level design unit name
<num-clks> Number of clock sources
<num-clk-cones> Number of clock cones
708
Synopsys, Inc.

Setup Rules

Rules in SpyGlass CDC
None

How to Debug and Fix
You can use this rule to analyze clock tree, and tune clock definitions.

Perform the following steps in the Clock Setup window:
1. Confirm that all the listed clocks are correct.
 Explore the clock tree to understand the clock architecture of your

design that helps you to define correct clocks.
 Remove or add clocks, as required.

2. Confirm that all clocks are properly constrained.
 Review all clock domains, and make sure they are correct.

 Review and define their frequencies as needed.
3. Define case analysis to constraint the clock tree.

In this step, the auto_case_analysis.sgdc file is generated that contains the
set_case_analysis constraints generated for mux-select and clock enable
signals in the clock path. Review this SGDC file, and specify a value in
the -value field after un-commenting the required constraints.

4. Save the clocks constraints.
After making all modifications, save constraints in an SGDC file by using
the Generate SGDC as option.

Example Code and/or Schematic

Consider the following RTL code:

module test(input in,clk1,clk2,clk3,en1,en2,en3,output
out1,out2);

reg src, dest;

assign tt = en1;
assign qq = ~tt;
assign and1 = clk1 & qq;
assign and2 = and1 & clk3;
assign and3 = and2 & en3;
assign pp = en2;
assign rr = ~pp;
assign mux_out = (rr) ? clk2 : clk1;
709
Synopsys, Inc.

Setup Rules

Rules in SpyGlass CDC
always @ (posedge and3)
begin
 src <= in;
end

always @ (posedge mux_out)
begin
 dest <= in;
end
endmodule

When you run the Setup_clock01 rule on the above example and double-
click on the message of this rule in GUI, the Clock Setup window is
displayed. The following figure illustrates the Clock Setup window describing
various sections in the window:

FIGURE 2. The Clock Setup Window

In the above window, you can explore the clock tree for a clock of your
interest. In addition, you can add, remove, or modify clock information
from this setup window.
710
Synopsys, Inc.

Setup Rules

Rules in SpyGlass CDC
Default Severity Label

Info

Rule Group

SETUP

Reports and Related Files

This rule generates the following files in the spyglass_reports/clock-reset/
directory:
 auto_case_analysis.sgdc

This file contains the set_case_analysis constraints generated for mux-
select and clock enable signals in the clock path.
Use the sel_case_analysis_mode parameter to detect probable mux select
and clock enable signals in the clock path where set_case_analysis
settings are required, and save such signals in this file.
The sample auto_case_analysis.sgdc file is shown below:

current_design "test"

##
########### Dumping Mux Selects in clock path ############

##

##set_case_analysis -name "test.en2" -value 0/1

##

Dumping clock enables of Combinational gates in clock
path#

##

##set_case_analysis -name "test.en1" -value 0/1
##set_case_analysis -name "test.en3" -value 0/1

In this file, the constraints generated are commented so that you can
review them. After reviewing the generated constraints, you can
uncomment the required constraints and specify the value in the -value
field.
711
Synopsys, Inc.

Setup Rules

Rules in SpyGlass CDC
 cdc_setup_clocks.sgdc
Contains the clock constraints reported by this rule.
This file generates different information based on the following
conditions:
 If you have not provided any SGDC file, this file contains

automatically-inferred clocks.
 If you have specified both SGDC file and the use_inferred_clocks

parameter, both SGDC clocks and clocks automatically-inferred for
the rest of the sequential elements (which do not receive SGDC
clocks) are dumped in this file.

 cdc_setup_generated_clocks.sgdc
Contains the generated_clock constraints. This file is generated only if the
enable_generated_clocks parameter set to yes.
This file generates different information based on the following
conditions:
 If you do not specify any SGDC file, this file contains automatically-

inferred generated clocks in the form of generated_clock constraints.
 If you specify an SGDC file and also set the use_inferred_clocks

parameter to yes, this file contains the following information:

 generated_clock constraints based on the information in the
specified SGDC file.

 generated_clock constraints that are inferred automatically for the
remaining sequential elements for which no clock information is
provided in the specified SGDC file.

If you have provided only SGDC file, only those clocks are dumped in this
file. In this case, there is no difference between the user-defined SGDC file
and the generated SGDC file.
712
Synopsys, Inc.

Setup Rules

Rules in SpyGlass CDC
Setup_clockreset01
Clocks/Resets must be specified for the design

When to Use

Use this rule to check for setup issues related with clocks or asynchronous
resets.

NOTE: The Setup_clockreset01 rule is a pre-requisite rule and runs by default.

Description

The Setup_clockreset01 rule reports a violation if all the following
conditions hold true:

For Clocks

 If no clock definition is specified either by using the clock constraint or
by setting the use_inferred_clocks parameter to yes

 Clocks are present in the design.

 Rules that require clocks as input are enabled in the SpyGlass run.

For Asynchronous Resets

 If no reset definition is specified either by using the reset constraint or
by setting the use_inferred_resets parameter to yes

 Asynchronous resets are present in the design.

 Rules that require asynchronous resets as input are enabled in the
SpyGlass run.

Parameter(s)

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

 use_inferred_resets: Default value is no. Set this parameter to yes to use
auto-generated reset information.

Constraint(s)

 clock (Optional): Use this constraint to specify clock signals in a design.

 reset (Optional): Use this constraint to specify reset signals in a design.
713
Synopsys, Inc.

Setup Rules

Rules in SpyGlass CDC
Messages and Suggested Fix

The following message appears when clocks or resets are not specified for
the design <design-name>:

[WARNING] <Clocks | Resets> have not been specified for the
design '<design-name>'

Potential Issues
This violation appears if your design does not contain any defined clock or
reset.

Consequences of Not Fixing
If you do not fix this violation, rules enabled in current SpyGlass run that
require clocks/asynchronous reset as input are ignored and no checking is
done by these rules.

How to Debug and Fix
To fix this violation, specify clock and reset signals for your design in any of
the following ways:
 Clocks signals

 By using the clock constraint

 By setting the use_inferred_clocks parameter to yes

 Resets signals

 By using the reset constraint

 By setting the use_inferred_resets parameter to yes

Example Code and/or Schematic

Consider a crossing between the clk1 and clk2 clocks that should be
reported by the Ac_unsync01/Ac_unsync02 rule.

Also consider that you do not specify the clock constraint or set the
use_inferred_clocks parameter to yes, but you enable the Ac_unsync01/
Ac_unsync02 rule in the current run.

In this case, the Ac_unsync01/Ac_unsync02 rule does not perform any rule-
714
Synopsys, Inc.

Setup Rules

Rules in SpyGlass CDC
checking and the Setup_clockreset01 rule reports a violation for missing
clocks.

Default Severity Label

Warning

Rule Group

INFORMATION

Reports and Related Files

No report or related file
715
Synopsys, Inc.

Setup Rules

Rules in SpyGlass CDC
Setup_library01
Reports incomplete definition of library pins

When to Use

Use this rule to detect library cells of incomplete definition.

Prerequisite

Specify a library cell by using any of the following project-file commands:

read_file -type gateslib <library-file>
read_file -type sglib <SGLIB-file>

Description

The Setup_library01 rule reports a violation for a library cell of incomplete
definition.

Library Cells of Incomplete Definition

A library cell is considered of incomplete definition in any of the following
cases:
 If any clock pin (specified by the related_pin attribute) that is

associated with the input and output pins of a library cell is not driven by
a top-level clock

 If a library pin has multiple timing arcs but no mode selection is
provided

The summary of such pins appear in the Rule-Based Spreadsheet of the
Setup_library01 Rule, and the details of these pins appear in the Message-
Based Spreadsheet of the Setup_library01 Rule.

Parameter(s)

 report_detail: Default is all. The parameter supports the Clock_check10
and the Setup_library01 rules. Set this parameter to a supported rule to
report all the violations of the specified rule and a reduced set of
violations of the other supported rule. Other possible value is none.
716
Synopsys, Inc.

Setup Rules

Rules in SpyGlass CDC
Constraint(s)

None

Messages and Suggested Fix

Message 1

The following message appears for Library Cells of Incomplete Definition:

[SLibrary1_1] [ERROR]'<num>' (<percentage>%) pin(s) for
instance '<instance-name>' of library cell '<lib-cell-name>'
have incomplete definition

The arguments of the above message are explained below:

Potential Issues
This violation appears if your design contains Library Cells of Incomplete
Definition.

Consequences of Not Fixing
If you do not fix this violation, some valid clock-domain crossings may not
occur in the design. That may produce undesired results.

How to Debug and Fix
Review Message-Based Spreadsheet of the Setup_library01 Rule and check the
rows in red.

If the information reported in such rows is intentional, ignore this violation.

Argument Description
<num> Number of library pins of incomplete definition.

To understand the pins of incomplete definition, see
Description of this rule.

<percentage> Percentage of library pins of incomplete definition.
<instance-name> Name of the instance having the library cell containing pins

of incomplete definition
<lib-cell-name> Name of the library cell containing pins of incomplete

definition
717
Synopsys, Inc.

Setup Rules

Rules in SpyGlass CDC
Else, check design connections and SGDC file to see if an incorrect value is
propagating to the library pin.

For example, if a quasi static value is reaching to the clock pin of a library
cell, check if that value is intentional. If it is not intentional, check if you
have incorrectly specified the quasi_static constraint on a signal that is
leading to this quasi static value on the clock pin.

Message 2

The following message appears if all pins of a library cell have complete
definition:

[SLibrary1_2] [INFO] All the pins have complete definition for
instance '<instance-name>' of library cell 'lib-cell>'

Potential Issues
Not applicable.

Consequences of Not Fixing
Not applicable.

How to Debug and Fix
Not applicable.

Example Code and/or Schematic

See Rule-Based Spreadsheet of the Setup_library01 Rule and Message-Based
Spreadsheet of the Setup_library01 Rule.

Default Severity Label

Error

Rule Group

SETUP
718
Synopsys, Inc.

Setup Rules

Rules in SpyGlass CDC
Reports and Related Files

The Setup_library01 rule generates the Rule-Based Spreadsheet of the
Setup_library01 Rule and Message-Based Spreadsheet of the Setup_library01
Rule.

Rule-Based Spreadsheet of the Setup_library01 Rule

This spreadsheet shows the summary of library pins containing incomplete
definition.

The following figure shows the rule-based spreadsheet of the
Setup_library01 rule:

FIGURE 3. Rule-Based Spreadsheet of the Setup_library01 Rule

The details of the above spreadsheet are described in the following table:

Message-Based Spreadsheet of the Setup_library01 Rule

This spreadsheet shows details of all the library pins of a library cell. The
pins with incomplete definition appear in red, as shown in the following
figure:

Column Name Description
LIB CELL Name of the complex sequential library cell
INST NAME Name of the instance containing the complex

sequential library cell
NUMBER OF PINS Total number of pins of complex sequential library cell
PERCENTAGE OF PINS
UNCONSTRAINED

Percentage of library pins of incomplete definition

WAIVED Specifies if the reported violation is waived
719
Synopsys, Inc.

Setup Rules

Rules in SpyGlass CDC
FIGURE 4. The Setup_library01 Spreadsheet

In the above spreadsheet, row 7 shows the details of the library pins of
incomplete definition. To understand pins of incomplete definition, see
Library Cells of Incomplete Definition.

The details of all the fields of the above spreadsheet are given below:

Field Description
Pin Name Specifies the name of the library pin. You can click

a pin in the Pin Name column to refer to the
schematic.

Type Specifies the type, such as input and output of the
library pin.

Clock Pins Specifies the clock pin associated with the data pin
of the library pin. In addition, it shows the clock
pins selected in the current run as "selected". If
you use - cdc_reduce_pessimism =
use_multi_arc, it shows all arcs as "selected".

Top-level Clocks (domains) Specifies the top-level clock reaching the clock pin.
If the associated clock pin is driven by a constant,
a hanging net, a quasi-static signal, or an
unconstrained clock signal, that is reported in this
column.

Multiple Timing Arc Without
Mode Selection

Specifies yes or no to indicate if multiple arcs are
selected for the library pin
720
Synopsys, Inc.

Setup Rules

Rules in SpyGlass CDC
The Setup_library01 rule generates the spyglass_reports/clock-
reset/Setup_library01/<libcell-name>.sgdc file that contains the
abstract_port constraints for all the library cell pins which have clocks
specified by using the related_pin attribute.

For combinational arcs, the rule generates abstract_port -path_type
combo. You can specify the abstract_port constraint for the pins that do
not have the related_pin attribute in the description.

The Setup_library01 rule generates the spyglass_reports/clock-
reset/stop_lib_module_list file that contains the configuration to
make these library cell (for which sgdc are dumped by the rule) act as
black-box in subsequent runs.

set_option stop "<library cell name>"
…

In subsequent runs, you can pass the above file to make the library cells
act as black-box along with the generated SGDC files for those library cells
to provide the constraints. This is required because otherwise you cannot
specify the abstract_port constraint for library cells directly.
721
Synopsys, Inc.

Setup Rules

Rules in SpyGlass CDC
Setup_CGC
Reports incomplete definition of clock gating cells

When to Use

Use this rule to detect clock gating cells of incomplete definition.

Prerequisite

Specify a clock gating cell by using any of the following project-file
commands:

read_file -type gateslib <library-file>
read_file -type sglib <SGLIB-file>

Description

The Setup_CGC rule reports a violation for a clock gating cell of incomplete
definition.

Clock Gating Cells of Incomplete Definition

A CGC is considered as incompletely defined if proper attributes are not set
for at least one of the pins of the cell. The must use attributes are:
 clock_gate_clock_pin

 clock_gate_enable_pin

 clock_gate_out_pin

The summary of such pins appear in the Rule-Based Spreadsheet of the
Setup_CGC Rule, and the details of these pins appear in the Message-Based
Spreadsheet of the Setup_CGC Rule.

Parameter(s)

None

Constraint(s)

None
722
Synopsys, Inc.

Setup Rules

Rules in SpyGlass CDC
Messages and Suggested Fix

Message 1

The following message appears for Clock Gating Cells of Incomplete Definition:

[SCgc_error] [ERROR] '<num>' (<percentage>%) pin(s) of clock
gating cell '<clock-gate-cell-name>' have incomplete definition

The arguments of the above message are explained below:

Potential Issues
This violation appears if your design contains Clock Gating Cells of Incomplete
Definition.

Consequences of Not Fixing
If you do not fix this violation, some clocks may not be propagated and
some valid clock-domain crossings may not occur in the design. That may
produce undesired results.

How to Debug and Fix
Review Message-Based Spreadsheet of the Setup_CGC Rule and check the pins
without any information on 'Type' column.

If the information reported in such rows is intentional, ignore this violation.
Else, check the clock gating cell file and verify if all the pin attributes are
properly specified or not.

Example Code and/or Schematic

See Rule-Based Spreadsheet of the Setup_CGC Rule and Message-Based

Argument Description
<num> Number of clock gating cell pins of incomplete definition.

To understand the pins of incomplete definition, see
Description of this rule.

<percentage> Percentage of clock gating cell pins of incomplete definition.
< clock-gate-cell-
name>

Name of the clock gating cell containing pins of incomplete
definition.
723
Synopsys, Inc.

Setup Rules

Rules in SpyGlass CDC
Spreadsheet of the Setup_CGC Rule.

Default Severity Label

Error

Rule Group

SETUP

Reports and Related Files

The Setup_CGC rule generates the Rule-Based Spreadsheet of the Setup_CGC
Rule and Message-Based Spreadsheet of the Setup_CGC Rule.

Rule-Based Spreadsheet of the Setup_CGC Rule

This spreadsheet shows the summary of clock gating cell pins containing
incomplete definition.

The following figure shows the rule-based spreadsheet of the Setup_CGC
rule:

FIGURE 5. Rule-Based Spreadsheet of the Setup_CGC Rule

The details of the above spreadsheet are described in the following table:

Column Name Description
CLOCK GATING CELL Name of the clock gating cell
NUMBER OF PINS Total number of pins of clock gating cell
PERCENTAGE OF
UNDETECTED PINS

Percentage of clock gating cell pins of incomplete
definition

WAIVED Specifies if the reported violation is waived
724
Synopsys, Inc.

Setup Rules

Rules in SpyGlass CDC
Message-Based Spreadsheet of the Setup_CGC Rule

This spreadsheet shows details of all the pins of a clock gating cell as
shown in the following figure:

FIGURE 6. The Setup_CGC Spreadsheet

In the above spreadsheet, row 2 and 4 shows the details of the clock
gating cell pins of incomplete definition. To understand pins of incomplete
definition, see Clock Gating Cells of Incomplete Definition.

The details of all the fields of the above spreadsheet are given below:

Field Description
Pin Name Specifies the name of the clock gating cell pin.
Type Specifies the type of clock gating cell pin. Possible

types are, clock, enable, output or data.
725
Synopsys, Inc.

Setup Rules

Rules in SpyGlass CDC
Setup_quasi_static01
Reports signals that are likely to be quasi-static signals in a design

When to Use

Use this rule to identify quasi-static signals in a design.

Prerequisites

Following are the prerequisites for using this rule:
 Specify clock signals in any of the following ways:

 By using the clock constraint.

 By setting the use_inferred_clocks parameter to yes to use
auto-generated clock signals.

 By using a combination of both the above methods.

 Use the Advanced_CDC license feature.

Description

The Setup_quasi_static01 rule infers quasi-static signals in a design, and
generates the quasi_static constraints for such signals in the
auto_quasi_static.sgdc file.

You must review the quasi_static constraints in this file and use them in the
subsequent SpyGlass CDC runs.

Conditions to Consider a Signal as Quasi Static

By default, the Setup_quasi_static01 rule considers a signal as quasi static
if all the following conditions hold true:
 If the signal is the source of clock-domain crossings.

 If the signal drives at least 10 sequential elements.

 If the signal has at least one clock-domain in the fan-out cone.

Use the quasi_static_style constraint to specify different criteria based on
which SpyGlass infers quasi-static signals.
726
Synopsys, Inc.

Setup Rules

Rules in SpyGlass CDC
Rule Exceptions

Following are the exception of the Setup_quasi_static01 rule:
 This rule ignores the following types of signals:

 Signals that are specified as synchronous resets by using the reset
-sync constraint.

 Signals that are specified as quasi-static by using the quasi_static
constraint.

 If a signal is connected to a black box pin on which no abstract_port
constraint is defined, SpyGlass generates the quasi_static constraint for
such signal in a commented form in the auto_quasi_static.sgdc file.
Check this constraint to see if you want to define such signal as
quasi-static.

 If multi-dimensional signals used inside generate blocks are inferred
as quasi-static by this rule, the generated auto_quasi_static.sgdc file may
contain incorrect bus-merged name strings.
Review such signals from the generated file before declaring them as
quasi-static, and append an escape character wherever required.
To see an example of using an escape character, refer to the Handling
Nets declared in a Sequential Block topic of Atrenta Console User Guide.

Parameter(s)

None

Constraint(s)

 quasi_static_style (Optional): Use this constraint to specify a criterion
based on which SpyGlass infers quasi-static signals in a design.

 reset -sync (Optional): Use this constraint to specify reset signals in a
design.

 quasi_static (Optional): Use this constraint to specify signals whose value
is predominantly static.

 set_case_analysis (Optional): Use this constraint to specify case-analysis
signals.

 clock (Optional): Use this constraint to specify clock signals.
727
Synopsys, Inc.

Setup Rules

Rules in SpyGlass CDC
Messages and Suggested Fix

The following message appears after this rule generates the
auto_quasi_static.sgdc file containing the quasi_static constraints:

[SQs1_1] [INFO] For design '<design-name>', '<num>'
quasi_static constraint(s) inferred

Where, <num> refers to the number of quasi_static constraints generated.

Potential Issues
Not applicable.

Consequences of Not Fixing
If quasi-static signals are not properly constrained in a design by using the
quasi_static constraint, SpyGlass may not analyze clock-domain crossings
correctly. As a result:
 SpyGlass may report false violations resulting in noise due to missing

quasi_static constraint.
 SpyGlass may not report a crossing if the quasi_static constraint is

defined on a net that is not static.

How to Debug and Fix
Check the auto_quasi_static.sgdc and Setup_quasi_static01_<top-level-
design>.csv files to identify quasi static signals inferred for your design.

Review the generated quasi_static constraints for these signals from the
auto_quasi_static.sgdc file before using them in subsequent SpyGlass CDC
runs.

Example Code and/or Schematic

Consider that you specify the following quasi_static_style constraint in an
SGDC file for a design:

quasi_static_style -min_seq_fanouts 3 -min_domain_fanouts 3
-names "quasi*"

When you specify the above constraint, SpyGlass infers signals as
quasi-static if they match all the following criteria:
728
Synopsys, Inc.

Setup Rules

Rules in SpyGlass CDC
 The signal has the fan-out and domain count as 3.

 The signal name starts with the string quasi.

 The signal is the source of a clock domain crossing (as the
-check_all_signals argument of the quasi_static_style constraint is
not specified).

SpyGlass generates the details of the inferred quasi-static signals in the
Setup_quasi_static01_<top-level-design> spreadsheet and the
auto_quasi_static.sgdc file, as described below:

 Setup_quasi_static01_<top-level-design>.csv
This is a spreadsheet file, as shown in the following figure:

FIGURE 7. Spreadsheet Generated by the Setup_quasi_static01 Rule

The above spreadsheet lists the inferred quasi-static signals that match
the criteria specified by the quasi_static_style constraint and the module
in which these signals are found.
The spreadsheet also contains the Sequential Fanout Count and
Domain Count fields when the -report_full_count is specified in
the quasi_static_style constraint. When bits of quasi-static signals are
reported as bus-merged, the maximum sequential count and its
corresponding domain count is reported from the merged bits in the
spreadsheet.
You can also view such signals in the schematic. For example, to view
the test.sb1.quasi signal in the schematic, click 1 in the Schematic
column of the above spreadsheet and then click . The schematic
showing this signal appears, as shown in the following figure:
729
Synopsys, Inc.

Setup Rules

Rules in SpyGlass CDC
FIGURE 8. Schematic of the Setup_quasi_static01 Rule Violation

The above schematic shows the path from the quasi-static signal till one
of the sequential cell.

 auto_quasi_static.sgdc
This file contains the quasi_static constraints generated for the
quasi-static signals inferred by the Setup_quasi_static01 rule.
All the quasi_static constraints for a module are grouped together.
The following file is generated in this example:

current_design test

###Module Name :: submod
quasi_static -name "test.sb1.quasi"
quasi_static -name "test.sb1.quasi12"

Default Severity Label

Info

Rule Group

INFORMATION

Reports and Related Files

 auto_quasi_static.sgdc
For details, see auto_quasi_static.sgdc
730
Synopsys, Inc.

Setup Rules

Rules in SpyGlass CDC
 Setup_quasi_static01_<top-level-design>.csv
For details, see Setup_quasi_static01_<top-level-design>.csv.
731
Synopsys, Inc.

Setup Rules

Rules in SpyGlass CDC
Setup_port01
Reports unconstrained ports summary for top-design unit

When to Use

Use this rule while performing the setup for block or SoC verification.

Prerequisites

Specify clock signals in any of the following ways:
 By using the clock constraint.

 By setting the use_inferred_clocks parameter to yes to use
auto-generated clock signals.

 By using a combination of both the above methods.

Description

The Setup_port01 rule:
 Reports the number of top-level input, inout and output ports that are

not fully constrained. The details of constraint specification on each port
are mentioned in The CKSGDCInfo Report, which is located in
spyglass_reports directory.
A port is considered constrained if the following constraints are defined:
clock, reset, set_case_analysis, abstract_port, input, output, qualifier, or
quasi_static.

 Generates abstract_port constraints on the input ports of a block. These
constraints are generated in the Input Port Constraints File.

 Generates abstract_port constraints for input paths that drive the
unconstrained path, blocked path, and hanging path. For example, the
following constraint is generated for unconstrained path:

abstract_port –ports i1 -ignore –comment “unconstrained
clock”

 Generates abstract_port constraints for a path that drives a flop clocked
by internal clock. For example, the following constraint is generated:

abstract_port –ports i1 –clock SG_VIRT_CLK_1

 Generates abstract_port constraints for the inout ports. For example,
consider the following schematic:
732
Synopsys, Inc.

Setup Rules

Rules in SpyGlass CDC
FIGURE 9.

In this case, the Setup_port01 rule generates the following constraints:

abstract_port -ports P2 -scope cdc -clock C1 # no change
abstract_port -ports P1 -scope cdc -clock C1 -start
-direction input # new constraint

Consider another example where top-level inout port P2 is connected to
inout pin BP2 of BLK as shown in the following schematic:

FIGURE 10.

In the above case, the following table summarizes the constraints
generated by the Setup_port01 rule:
733
Synopsys, Inc.

Setup Rules

Rules in SpyGlass CDC
Default Rule Behavior

This rule has the following default behavior:
 reset or qualifier signals are reported as partially constrained, unless you

specify abstract_port also.
 This rule checks only input and inout ports. To check output ports, set

the check_port_setup parameter.
 For a bus port, all the bits of the bus are counted separately.

Parameter(s)

check_port_setup: Default is input. Set the value to output to check output
ports. Set the value to all to check input, inout, and output ports. Inout
ports are always checked, regardless of this parameter setting.

Constraint(s)

 qualifier (Optional): Use this constraint to specify a qualifier for
synchronizing a clock domain crossing.

 reset -sync (Optional): Use this constraint to specify reset signals in a
design.

User-specified constraints Setup_port01 generated
constraints

abstract_port -ports BP2 -clock C1
-direction input

abstract_port -ports P2 -clock
C1 -direction input

abstract_port -ports BP2 -
clock C1 -direction output

No constraint generated because
no fanout found for top-level port
P2

abstract_port -ports BP2 -clock C1
-direction input
abstract_port -ports BP2 -clock C2
-direction output

abstract_port -ports P2 -clock
C1 -direction input

abstract_port -ports BP2 -clock C1
no direction provided

A sanity error is reported for BP2
constraint and Setup_port01 does
generate any constraint

No constraint on BP2 No constraint is generated for P2
734
Synopsys, Inc.

Setup Rules

Rules in SpyGlass CDC
 quasi_static (Optional): Use this constraint to specify signals whose value
is predominantly static.

 set_case_analysis (Optional): Use this constraint to specify case-analysis
signals.

 clock (Optional): Use this constraint to specify clock signals.

 abstract_port (Optional): Use this constraint to define abstracted
information for block ports.

 input (Optional): Use this constraint to specify clock domain at input
ports.

 output (Optional): Use this constraint to specify a clock domain at output
ports.

Messages and Suggested Fix

Message 1

The following message appears after this rule checks for unconstrained
ports in a top-design unit:

[SPort1_1] [ERROR] Port coverage for top design unit <design-
name> is: <num-ports> (<percentage-of-ports>) port(s) not fully
constrained

Potential Issues
The potential issues are as follows:
 When the severity of this violation message is INFO, there are no

potential issues because all ports are fully constrained.
 When the severity of this violation message is ERROR, some ports are

not fully constrained. Therefore, such violations should be resolved.

Consequences of Not Fixing
If some of the ports are unconstrained in the setup, the SpyGlass CDC
analysis performed might not be accurate.

How to Debug and Fix
Double-click the message to view a spreadsheet that contains the
735
Synopsys, Inc.

Setup Rules

Rules in SpyGlass CDC
constraint information for each port. Review this spreadsheet for all ports
that display unconstrained, partially constrained, incorrect
constraint, partially constrained (suggested -combo no), or combo
path in the Status column.

You can click a port in the Port Name column to refer to the schematic. You
can also refer the constraints by clicking a constraint in the Constraint(s)
column.

FIGURE 11. The Setup_port01 Spreadsheet

Message 2

The following message appears to indicate that the Input Port Constraints File
is generated:

[SPort1_2] [INFO] Abstracted sgdc file for input ports of block
'<block-name>' is generated

Potential Issues
Not applicable

Consequences of Not Fixing
Not applicable

How to Debug and Fix
Not applicable
736
Synopsys, Inc.

Setup Rules

Rules in SpyGlass CDC
Example Code and/or Schematic

Not applicable

Default Severity Label

Error/Info

Rule Group

Setup

Reports and Related Files

 The CKSGDCInfo Report

 Input Port Constraints File
737
Synopsys, Inc.

Setup Rules

Rules in SpyGlass CDC
Setup_blackbox01
Reports unconstrained pins summary for black boxes

When to Use

Use this rule while performing the setup for SoC-level and when black
boxes are present in the designs that have not been modeled using
abstraction.

Prerequisites

Specify clock signals in any of the following ways:
 By using the clock constraint.

 By setting the use_inferred_clocks parameter to yes to use auto
generated clock signals.

 By using a combination of both the above methods.

Description

The Setup_blackbox01 rule reports a summary of black box pins (input and
output) showing the status of whether they are fully or partially
constrained.

Conditions to Consider a Black-Box Input Pin as Fully Constrained

An input pin is considered as constrained if:
 The following constraints are defined on it:

assume_path, abstract_port, signal_in_domain, quasi_static, clock, reset,
set_case_analysis, or

 A top-level clock, reset, or a constant value is reaching the input pins.

Conditions to Consider a Black-Box Output Pin as Fully Constrained

An output is considered as constrained if the following constraints are
defined on it:

clock, reset, set_case_analysis, abstract_port, assume_path, signal_in_domain,
qualifier, or quasi_static.
738
Synopsys, Inc.

Setup Rules

Rules in SpyGlass CDC
Salient Features of the Setup_Blackbox01 Rule

This rule has the following features:
 It checks for only those black boxes that are not provided through

abstract views.
 It reports the reset or qualifier signals as partially constrained, unless you

specify abstract_port also.
 It checks for the abstract_port and qualifier constraints only on the output

pins.
 Generates abstract_port constraints for each type of block in the design.

These constraints are generated in separate files in the spyglass_reports/
clock-reset/Setup_blackbox01/ directory. For example,
spyglass_reports/clock-reset/Setup_blackbox01/<block-
type>_bbox_model.sgdc file is generated for the <block-type> block.

 It reports bits of a bus port separately.
For example, consider the following declaration of a bus port:

output [4:0] out4;

For the above port, this rule reports the status bits separately in the
Setup_blackbox01 rule spreadsheet, as shown in the following figure:

FIGURE 12. Reporting each bit of a bus port - The Setup_blackbox01 rule

 It checks on the first instance of a black box and ignores the remaining
instances of the same black box.

Parameter(s)

report_abstract_module_coverage: Default value is no. Set this parameter to
yes to enable SpyGlass CDC report the coverage of abstracted module.
739
Synopsys, Inc.

Setup Rules

Rules in SpyGlass CDC
Constraint(s)

 qualifier (Optional): Use this constraint to specify a qualifier for
synchronizing a clock domain crossing.

 reset -sync (Optional): Use this constraint to specify reset signals in a
design.

 quasi_static (Optional): Use this constraint to specify signals whose value
is predominantly static.

 set_case_analysis (Optional): Use this constraint to specify case-analysis
signals.

 clock (Optional): Use this constraint to specify clock signals.

 abstract_port (Optional): Use this constraint to define abstracted
information for block ports.

 input (Optional): Use this constraint to specify clock domain at input
ports.

 output (Optional): Use this constraint to specify a clock domain at output
ports.

 assume_path (Optional): Use this constraint to specify paths through
black box instances.

 signal_in_domain (Optional): Use this constraint to specify a domain for
output pins of black box instances.

Messages and Suggested Fix

Message 1

The following message appears after this rule checks for the black box
input and output pins that are not fully constrained:

[SBbox1_1] [WARNING] Port coverage for black box '<black-box-
name>' (instance: <instance-name>): '<num-ports>'
('<percentage-ports>') pin(s) not fully constrained.

Potential Issues
The following potential issues:
 When the severity of this violation message is INFO, there are no

potential issues because all pins are fully constrained.
740
Synopsys, Inc.

Setup Rules

Rules in SpyGlass CDC
 When the severity of this violation message is WARNING, some pins are
not fully constrained. Therefore, such violations should be resolved.

Consequences of Not Fixing
If some of the pins of a black box are unconstrained in the setup, SpyGlass
CDC analysis performed might not be accurate.

How to Debug and Fix
Check the black box details by performing the following steps:
1. Right-click on the rule-short help in the message window, and select the

Spreadsheet Viewer option from the shortcut menu.
The rule-based spreadsheet appears showing all the violations of the
Setup_blackbox01 rule. The following figure shows the rule-based
spreadsheet:

FIGURE 13. Rule-based spreadsheet of the Setup_blackbox01 rule

This spreadsheet displays a summary of the coverage of all the black
boxes in the design.

2. Check the details, such as fully or partially constrained pins of a black
box by clicking the link in the ID column of the black box.
This displays the message-based spreadsheet for the selected black
box.
The following figure shows the message-based spreadsheet for
BlackBox1 in Figure 13. You can click a pin in the Pin Name column to
refer to the schematic and a constraint in the Constraint(s) column to
refer to the constraint.
741
Synopsys, Inc.

Setup Rules

Rules in SpyGlass CDC
FIGURE 14. Message-based spreadsheet of the Setup_blackbox01 rule

You can also invoke the above spreadsheet by double-clicking on the
violation of the Setup_blackbox01 rule.

3. In the above spreadsheet, review the pins for which the status is
unconstrained or partially constrained.
For these pins, specify appropriate constraints, such as:
 assume_path: If a path exists between the input and output pins of a

black box, use this constraint to specify the path.
 signal_in_domain: If a clock reaches the black box pin, use this

constraint to specify the clock for the pin.
 quasi_static: If a quasi static signal in a black box reaches the

boundary of the black box, use this constraint to specify that signal.
 clock/reset: If a clock or a reset signal in a black box reach the

boundary of the black box, use these constraints.
 set_case_analysis: If a constant value from a black box propagates to

its boundary, specify that value using this constraint.
 qualifier: If a qualifier in a black box reaches its boundary, use this

constraint to specify the qualifier signal.

Message 2

The following message appears when all the pins of a black box are fully
constrained:

[SBbox1_2] [INFO] Port coverage for black box '<black-box-
742
Synopsys, Inc.

Setup Rules

Rules in SpyGlass CDC
name>' (instance: <instance-name>): '<num-ports>'
('<percentage-ports>') pin(s) are fully constrained.

Potential Issues
This message appears when your design contains a black box with all its
pins fully constrained.

Consequences of Not Fixing
Not applicable

How to Debug and Fix
Double-click on the violation of this rule to check the constraints applied on
black box pins. These details appear in the message-based spreadsheet as
shown in Figure 14.

Example Code and/or Schematic

See How to Debug and Fix of this rule.

Default Severity Label

Info/Warning

Rule Group

Setup

Reports and Related Files

 The CKSGDCInfo Report: Shows the details of constraint specification on
each black box pin.

 Spreadsheet: See How to Debug and Fix.
743
Synopsys, Inc.

Setup Rules

Rules in SpyGlass CDC
Setup_check01
Reports if contradicting constraints are applied on objects

When to Use

Use this rule while performing the setup for block or SoC verification.

Description

The Setup_check01 rule reports a violation if a combination of multiple
constraints, listed as ‘Yes’ in the table below, is specified on a design
object.

In the table above, a ‘No’ indicates that the Setup_check01 rule does not
report a violation if both the constraints mentioned in the corresponding
row and column headings are specified on a design object.

For example, the Setup_check01 rule reports a violation if both the
quasi_static and the clock constraints are specified on a design object.
Similarly, the rule does not report a violation if the quasi_static and the
abstract_port constraints are specified on a design object.

Note that the Setup_check01 rule reports a violation if the set_case_analysis
constraint is specified together with any of the constraints mentioned in the
table above.

clock/
generated
_clock

reset set_ca
se_an
alysis

quasi_
static

abstract_port
and input/
output

signal_in
_domain

qualifier

clock/
generated_clock

- Yes Yes Yes No No Yes

reset Yes - Yes No No No Yes
set_case_analysi
s

Yes Yes - Yes Yes Yes Yes

quasi_static Yes No Yes - No No Yes
abstract_port and
input/output

No No Yes No - Yes No

signal_in_domain No No Yes No Yes - No
qualifier Yes Yes Yes Yes No No -
744
Synopsys, Inc.

Setup Rules

Rules in SpyGlass CDC
Parameter(s)

None

Constraint(s)

 clock: (Optional): Use this constraint to specify clock signals.

 generated_clock: (Optional): Use this constraint to specify generated/
derived clocks.

 reset (Optional): Use this constraint to specify reset signals in a design.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

 quasi_static (Optional): Use this constraint to specify signals whose value
is predominantly static.

 abstract_port (Optional): Use this constraint to define abstracted
information for block ports.

 input (Optional): Use this constraint to specify clock domain at input
ports.

 output (Optional): Use this constraint to specify a clock domain at output
ports.

 signal_in_domain (Optional): Use this constraint to specify a domain for
output pins of black box instances.

 qualifier (Optional): Use this constraint to specify a qualifier for
synchronizing a clock domain crossing.

Messages and Suggested Fix

The Setup_check01 rule reports a violation message that mentions both
the constraints specified on a design object. For example, the following
message appears if both the set_case_analysis and quasi_static constraints
are specified on a design object:

[WARNING] Both set_case_analysis and quasi_static constraints
have been specified on '<object-name>'

Consequences of Not Fixing
If you do not fix the violations reported by the Setup_check01 rule, the
745
Synopsys, Inc.

Setup Rules

Rules in SpyGlass CDC
set_case_analysis constraint takes priority over the other constraint. For
example in the above mentioned case, the set_case_analysis constraint
takes priority over the quasi_static constraint.

How to Debug and Fix
To fix these violations, specify either of the two constraints on the violating
design object.

Example Code and/or Schematic

Not applicable

Default Severity Label

Warning

Rule Group

SETUP

Reports and Related Files

No report or related file
746
Synopsys, Inc.

Setup Rules

Rules in SpyGlass CDC
Setup_check02
The signal_in_domain constraint is applied on the objects on which
the abstract_port constraint is already applied.

When to Use

Use this rule while performing the setup for block or SoC verification.

Description

The Setup_check02 rule reports a violation if you apply the signal_in_domain
constraint on the objects on which the abstract_port constraint is already
applied.

Parameter(s)

None

Constraint(s)

 abstract_port (Optional): Use this constraint to define abstracted
information for block ports.

 signal_in_domain (Optional): Use this constraint to specify a domain for
output pins of black box instances.

Messages and Suggested Fix

The following message appears if the signal_in_domain constraint is
specified on the objects on which the abstract_port constraint is already
applied:

[WARNING] Both signal_in_domain and abstract_port constraint
have been specified on '<object-name>'

Consequences of Not Fixing
If you do not fix this violation, the signal_in_domain constraint on the
reported object is ignored during SpyGlass analysis.

How to Debug and Fix
To fix this violation, do not specify the signal_in_domain constraint on the
747
Synopsys, Inc.

Setup Rules

Rules in SpyGlass CDC
objects on which the abstract_port constraint is applied.

Example Code and/or Schematic

Not applicable

Default Severity Label

Warning

Rule Group

SETUP

Reports and Related Files

No report or related file
748
Synopsys, Inc.

Setup Rules

Rules in SpyGlass CDC
Setup_req01
Reports setup matrices

When To Use

Use this rule while Creating SpyGlass CDC Setup to check the health of the
SpyGlass CDC setup.

Prerequisites

Set the limits for SpyGlass-CDC attributes by using the cdc_matrix_attributes
constraint.

Description

The Setup_req01 rule generates The CDC Matrix Report to show if SpyGlass
CDC setup requirements are followed as per the limits set by the
cdc_matrix_attributes constraint.

This rule provides an overview of the SpyGlass CDC setup of the design
before Performing CDC Verification. The rule generates SpyGlass CDC specific
statistics (in the form of CDC attributes) to check the health of the setup
and reports a violation if the statistics exceed the limits specified by the
cdc_matrix_attributes constraint.

Knowing the CDC attributes information while Creating SpyGlass CDC Setup
enables you to fix issues that cause the limit to exceed. This way, you can
ensure that the SpyGlass CDC specific statistics are good enough to
proceed with Performing CDC Verification.

Parameter(s)

 cdc_reduce_pessimism: Default value is mbit_macro,
no_convergence_at_syncreset, no_convergence_at_enable.
Set this parameter to an appropriate value to ignore clock domain
crossings involving black box instances and clock domain crossings with
destinations having unused, hanging, or blocked outputs. For possible
values, see Allowed Values of the cdc_reduce_pessimism Parameter.

 check_multiclock_bbox: Default value is no. Set this parameter to yes to
show violations for the crossings in which a destination black box
receives multiple clocks but no SGDC constraint is defined on any of the
black-box data pins receiving the clocks.
749
Synopsys, Inc.

Setup Rules

Rules in SpyGlass CDC
 reset_reduce_pessimism: Default value is
filter_unused_synchronizer, same_data_reset_flop. Set the
value of this parameter to all_potential_resets to detect all the
potential resets in a design. For information on the other possible
values, see Possible Values to the reset_reduce_pessimism Parameter.

Constraint(s)

cdc_matrix_attributes (Mandatory): Use this constraint to set a limit for
SpyGlass-CDC attributes.

Messages and Suggested Fix

Message 1

The following message appears to specify the number <num> of CDC
attributes that exceed the prescribed limit:

[AcM1_2] [ERROR] <num> prescribed setup requirements violated

Potential Issues
This violation appears when certain CDC attributes are beyond the limit set
by the cdc_matrix_attributes constraint.

If the Exceeded Limit column of Section A of The CDC Matrix Report shows the
value No, no potential issues are considered as the CDC attributes are
within the prescribed limit.

Consequences of Not Fixing
Based on the attribute that has exceeded the specified limit, the
comprehensive SpyGlass CDC analysis may contain noise and may have
high performance requirement.

For example, consider that you specify 10 clocks but The CDC Matrix Report
reports 14 clocks. In this case, more clock domain crossings are reported
using these extra four clocks. Therefore, analyze and verify if the reported
clocks are correct.

How to Debug and Fix
Perform the following steps to fix the issues caused due to exceeded limit:
750
Synopsys, Inc.

Setup Rules

Rules in SpyGlass CDC
1. Review clocks or generated clocks.
Analyze the unexpected clocks by reviewing the following:
 Clocks specified in the given SGDC file

 Automatically-generated clocks reported in autoclocks.sgdc when the
use_inferred_clocks parameter is set to yes

 Propagate_Clocks violation

 The CKTree Report

2. Review asynchronous resets.
Analyze the unexpected asynchronous resets by reviewing the
following:
 Resets specified in the given SGDC file

 Automatically-generated resets reported in autoresets.sgdc when the
use_inferred_resets parameter is set to yes

 Propagate_Resets violation

 The RSTree Report

3. Review synchronous resets. Analyze the unexpected synchronous resets
by reviewing the following:
 Resets specified in the given SGDC file

 The SyncRstTree Report

4. Review domain limit.
Check if you have specified correct domains for clocks.

5. Review the crossings or source per destination or crossing per clock pair
limit
If the number of crossings per destination or per clock pair is very high
and exceeds the limit, there are high chances that the setup is incorrect.
Therefore, check if you have specified correct constraints, such as
quasi_static and set_case_analysis.

Message 2

The following message appears to specify that all the SpyGlass-CDC
attributes follow the prescribed limit:

[AcM1_1] [INFO] All prescribed setup requirements met
751
Synopsys, Inc.

Setup Rules

Rules in SpyGlass CDC
Potential Issues
Not applicable

Consequences of Not Fixing
Not applicable

How to Debug and Fix
Not applicable

Example Code and/or Schematic

Consider the following files specified for SpyGlass analysis:
752
Synopsys, Inc.

Setup Rules

Rules in SpyGlass CDC
For the above example, the Setup_req01 rule generates the following
cdc_matrix report:

module dff (data, clk, reset, q);
input data, clk, reset ;
output q;
reg q;
always @ (posedge clk)
if (~reset) begin
q <= 1'b0;
end
else begin
q <= data;
end

endmodule
module top(data,clk1,clk2,clk3,clk4,
clk5,clk6,clk7,clk8,reset1,reset2,reset3,q);
input data, clk1, clk2,clk3,clk4,clk5,clk6,
clk7,clk8,reset1,reset2,reset3;
output q;
wire gateClk1,
r1,r2,r3,r4,r5,r6,r7,r8,r9,r10,r11,r12,r13,
r14,r15,r16,r17,r18,gateClk2,gateClk3,

assign r8=r1 || r2 || r3;
 assign r9=r4 || r5 || r6 || r7;
 assign r10=r8 & r9;
assign gateClk1=r12 || r13 || r14;
assign gateClk2=r15 & r16 & r17;
assign gateClk3=gateClk1 & gateClk2;
 dff U1(data,clk1,reset1,r1);
 dff U2(data,clk1,reset2,r2);
 dff U3(data,clk3,reset1,r3);
 dff U4(data,clk1,reset1,r4);
 dff U5(data,clk2,reset2,r5);
 dff U6(data,clk2,reset1,r6);
 dff U7(data,clk4,reset1,r7);
 dff U8(r10,clk3,reset3,r11);
 dff U9(r11,clk4,reset2,r12);
 dff U10(r11,clk4,reset2,r13);
 dff U11(r11,clk4,reset2,r14);
 dff U12(r11,clk5,reset2,r15);
 dff U13(r11,clk4,reset2,r16);
 dff U14(r11,clk7,reset2,r17);

dff U15(gateClk3,clk5,reset1,r18);
dff U16(r18,clk6,reset2,q);
dff U17(r18,clk7,reset2,q);
dff U18(r18,clk6,reset1,q);

endmodule

//test.v

current_design top
clock -name clk1 -domain d1
clock -name clk2 -domain d2
clock -name clk3 -domain d3
clock -name clk4 -domain d4
clock -name clk5 -domain d5
clock -name clk6 -domain d6
clock -name clk7 -domain d7
reset -name reset1 -sync

//test.sgdc

current_design top
cdc_matrix_attributes
-src_clock_limit 2
-gen_clock_limit 2
-sync_reset_limit 1
-async_reset_limit 1
-domain_limit 1
-crossing_limit 8
-src_per_dest_limit 0
-crossing_per_clock_pair_limit 0

//attributes.sgdc

gateClk4,gateClk5;
753
Synopsys, Inc.

Setup Rules

Rules in SpyGlass CDC
FIGURE 15. The CDC Matrix Report

For information on the sections in the above report, see The CDC Matrix
Report.

Default Severity Label

Error | Info
754
Synopsys, Inc.

Setup Rules

Rules in SpyGlass CDC
Rule Group

SETUP

Reports and Related Files

The CDC Matrix Report
755
Synopsys, Inc.

Setup Rules

Rules in SpyGlass CDC
Ac_topology01
Generates a module topology report for the blocks instantiated at
the top level

When To Use

Use this rule to during the top-down constraint generation for blocks and
generation of abstract views of blocks.

Description

The Ac_topology01 rule generates The Module Topology Report that shows
the dependency among the modules that are instantiated at the top level.

Checking this dependency helps you to identify the modules for which the
top-down constraint migration should be done first followed by generating
their abstract view. For details, see Example Code and/or Schematic.

The Need to Know Blocks Dependency

Top-down constraint generation works at the SoC level, and therefore,
requires loading the entire design. This may cause capacity issues for large
SoC designs.

This arises the need to perform top-down constraint generation in steps so
that all the blocks are not considered for top-down constraint generation in
one go.

So the need is to generate constraints for blocks one-by-one using the top-
down constraint migration. However, you cannot pick blocks in a random
order as there can be dependency among the blocks. To know this
dependency, the Ac_topology01 rule is used.

Parameter(s)

None

Constraint(s)

None

Messages and Suggested Fix

This rule reports the following message:
756
Synopsys, Inc.

Setup Rules

Rules in SpyGlass CDC
[INFO] Module topology for design '<design-name>' generated.
Refer to report module_topology.rpt for details

Potential Issues
Not applicable

Consequences of Not Fixing
Not applicable

How to Debug and Fix
Not applicable

Example Code and/or Schematic

Example 1

Consider the following file specified for SpyGlass analysis:

For the above example, the Ac_topology01 rule generates the following
module_topology report:

module top(in1, in2 , in3, out1, out2);
input in1, in2 , in3;
output out1, out2;
wire b1_out1,b1_out2;
wire b2_out1,b2_out2;
block b1(.in1(in1), .in2(in2), .out1(b1_out1), .out2(b1_out2));
block b2(.in1(b1_out1), .in2(b1_out2), .out1(b2_out1), .out2(b2_out2));
block b3(.in1(b2_out1), .in2(b2_out2), .out1(out1), .out2(out2));

endmodule

module block(in1, in2 ,out1, out2);
input in1, in2;
output out1, out2;
assign out1 = in1 & in2;
assign out2 = in1 & in2;

endmodule
757
Synopsys, Inc.

Setup Rules

Rules in SpyGlass CDC
FIGURE 16. The Module Topology Report

In the above report, the Topological order of instances indicates the following
dependency between the b1, b2, and b3 instances:

FIGURE 17. Example of module dependency

Top-Down Constraint Migration Based on module_topology Report
Based on the dependency shown in Figure 17, generate constraint for
instances in the sequence described in the following steps:
1. Black box the b2 and b3 modules and generate constraints for b1 by

using the top-down constraint migration.
Once the constraints for A are generated, generate the abstract view for
b1.

2. Black box the b1 and b3 modules and generate constraints for b2 by
using the top-down constraint migration and the abstract view of b1.
Once the constraints for b2 are generated, generate the abstract view
for b2.

3. Black box the b1 and b2 modules and generate constraints for b3 by
using the top-down constraint migration and the abstract views of b1
and b2.
Once the constraints for b3 are generated, generate the abstract view
for b3.

b1 b2 b3
758
Synopsys, Inc.

Setup Rules

Rules in SpyGlass CDC
Example 2

Consider the following figure showing dependency between instances:

FIGURE 18. Modules Dependency

In the above example, the b1, b2, and b3 instances have circular
dependency. Therefore, they are assigned the same topological order as 1
in The Module Topology Report.

However, topological ordering is possible between b4 and b5 as b5 is
dependent on b4. So b4 and b5 are assigned the ordering as 4 and 5,
respectively.

The following figure shows The Module Topology Report for this scenario:

FIGURE 19. Modules Dependency

Based on the Verification order of instances in the above report, perform
top-down constraint migration similar to the steps described in Top-Down
Constraint Migration Based on module_topology Report.

b1 b2 b3

b4 b5
759
Synopsys, Inc.

Setup Rules

Rules in SpyGlass CDC
Default Severity Label

Info

Rule Group

SETUP

Reports and Related Files

The Module Topology Report
760
Synopsys, Inc.

Setup Rules

Rules in SpyGlass CDC
Ac_svasetup01
Setup issues in SVA constraints

When to Use

Use this rule to parse SVA constraints and report issues related with these
constraints.

Prerequisites

Specify the following project-file command:

set_option enableSVA yes

Description

The Ac_svasetup01 rule parses SVA constraints and reports issues related
with these constraints.

For details, refer to the Using SystemVerilog Assertions application note.

Parameter(s)

None

Constraint(s)

None

Messages and Suggested Fix

This rule reports different messages based on the issues in SVA
constraints. All these messages are described in the Using SystemVerilog
Assertions application note.

Potential Issues

Refer to the Using SystemVerilog Assertions application note.

Consequences of Not Fixing
Refer to the Using SystemVerilog Assertions application note.

How to Debug and Fix
Refer to the Using SystemVerilog Assertions application note.
761
Synopsys, Inc.

Setup Rules

Rules in SpyGlass CDC
Example Code and/or Schematic

Refer to the Using SystemVerilog Assertions application note.

Default Severity Label

Warning

Rule Group

SETUP

Reports and Related Files

No report or related file
762
Synopsys, Inc.

Formal Setup Rules

Rules in SpyGlass CDC
Formal Setup Rules
The SpyGlass Formal Setup rules are as follows:

The Formal Setup Rules are used for the setup of the CDC Verification Rules.
These rules are run through SpyGlass CDC solution Setup Manager and are
also a part of the cdc_verify goal. Please refer to SpyGlass CDC solution
Methodology Guide for details.

Rule Reports
Ac_clockperiod01 Any of the missing -period or -edge arguments of the clock

constraint.
Ac_clockperiod02 Clocks whose periods are optimized by SpyGlass for lower

design cycle. This helps in faster functional analysis.
Ac_resetvalue01 Missing -value field of the reset constraint defined in an

SGDC file
Ac_sanity01 Issues with the user-specified property files (using the

fa_propfile parameter)
Ac_sanity02 Non-tristate nets that have multiple drivers
Ac_sanity03 Loops in the design
Ac_sanity04 Over-constraining in a design
Ac_sanity06 Issues in distributed computing flow
763
Synopsys, Inc.

Formal Setup Rules

Rules in SpyGlass CDC
Ac_clockperiod01
Reports a violation if any of the -period or -edge argument is not
specified in the clock constraint

When to Use

Use this rule to detect clocks for which any of the period or edge value is
not defined.

Prerequisites

Enable this rule by specifying the following command in a project file:

set_goal_option addrules Ac_clockperiod01

By default, this rule is switched off.

Description

The Ac_clockperiod01 rule reports a violation if any of the -period or
-edge argument is missing in the clock constraint.

You must specify both the arguments to the clock constraint.

By default, SpyGlass considers the value 10 ns for a period and a half duty
cycle for an edge.

Parameter(s)

check_edge: The default value is yes. Set this parameter to no to report a
violation if none of the -period or -edge argument is specified.

Constraint(s)

clock (Mandatory): Use this constraint to specify clock signals.

Messages and Suggested Fix

The following message appears if any of the -period or -edge argument is
missing in the clock constraint:

[AcCP1_1] [WARNING] For top design unit '<du-name>', <period |
edge> is not defined for <num> (<percentage>%) clocks. Refer
file: '<file-name>' for details
764
Synopsys, Inc.

Formal Setup Rules

Rules in SpyGlass CDC
The arguments of the above message are explained below:

Potential Issues
This violation appears if your design contains clocks for which any of the
period or edge value is not defined.

Consequences of Not Fixing
Clocks defined without any of the period or edge value may result in
inaccurate functional analysis.

Secondly, for the same period clock crossings, the Ac_cdc01 rules perform
data hold checks. However, if it is the case of automatically-inferred
periods, the Ac_cdc01 rule checks are not performed on such crossings.
This may result in wrong analysis of a design as cases of potential data loss
may get missed in such cases.

How to Debug and Fix
To debug this violation, perform the following steps:
1. Open the Spreadsheet Viewer of this rule.
2. In the spreadsheet, check the clocks for which the Period and/or Edge list

columns are blank.
3. Add appropriate values in the -period and -edge arguments for such

clocks in their clock constraint specification in the SGDC file.

Example Code and/or Schematic

Consider the following specification of the clock constraint in an SGDC file:

clock -name clk1 -value rtz

Argument Description
<du-name> Name of the design unit
<num> Number of clocks for which the period/edge is not defined
<percentage> Percentage of clocks for which period/edge has not been

defined
<file-name> Name of the spreadsheet file
765
Synopsys, Inc.

Formal Setup Rules

Rules in SpyGlass CDC
In the above case, the Ac_clockperiod01 reports a violation as no period
and edge is defined for the clk1 clock.

Default Severity Label

Warning

Rule Group

ADV_CLOCKS

Report and Related File

 The CDC Report

 Ac_clockperiod01.csv: This file contains details of clock names, their
periods, and edge list.
766
Synopsys, Inc.

Formal Setup Rules

Rules in SpyGlass CDC
Ac_clockperiod02
Reports clocks for which period optimization has been done

When to Use

Use this rule to detect clocks whose period values are optimized.

Prerequisites

 Enable this rule by using the following command in a project file:

set_goal_option addrules Ac_clockperiod02

 Run any of the CDC Verification Rules or set the formal_setup_rules_check
parameter to yes.

Description

The Ac_clockperiod02 rule reports clocks whose periods are optimized by
SpyGlass for lower design cycle. This helps in faster functional analysis.

Parameter(s)

None

Constraint(s)

clock (Mandatory): Use this constraint to specify clock signals in your
design.

 Messages and Suggested Fix

The following message appears if period values of clocks have been
optimized:

[AcCP2_1] [INFO] For top design unit '<du-name>', Period has
been rounded for <num> (<percentage>) clocks. Refer file:
'<file-name>' for details

The arguments of the above message are explained below:
767
Synopsys, Inc.

Formal Setup Rules

Rules in SpyGlass CDC
Potential Issues
This violation appears if your design contains clocks for which period values
have been optimized.

Consequences of Not Fixing
Optimization of period values may result in a slight mismatch in expected
results.

How to Debug and Fix
To debug the violation of this rule, perform the following steps:
1. Open the Spreadsheet Viewer for this rule.
2. In the spreadsheet, check the clocks whose periods have been

optimized by SpyGlass for lower design cycle.
3. Review and modify the period/edge list in the clock constraint

specification in the SGDC file if the periods are to be adjusted correctly
to maintain the initial clock period ratio.

Example Code and/or Schematic

Consider an example in which the clock periods of two clocks belonging
to the same domain are 3.33 and 6.61. In this case, SpyGlass may
optimize the clock periods to 3.33 and 6.66, respectively, to optimize
the design period and design cycle. This rule reports such clocks in a
design.

Default Severity Label

Info

Rule Group

ADV_CLOCKS

Argument Description
<du-name> Name of the design unit
<num> Number of clocks whose period values are optimized
<percentage> Percentage of clocks whose period values are optimized
<file-name> Name of the spreadsheet file
768
Synopsys, Inc.

Formal Setup Rules

Rules in SpyGlass CDC
Report and Related File

 The CDC Report

 Ac_clockperiod02.csv: This file contains details of clocks, their actual
period values, and their optimized values.
769
Synopsys, Inc.

Formal Setup Rules

Rules in SpyGlass CDC
Ac_resetvalue01
Reports a violation if the -value argument is not specified for the
reset constraint.

When to Use

Use this rule to detect resets for which no active value is specified.

Prerequisites

Enable this rule by using the following command in a project file:

set_goal_option addrules Ac_resetvalue01

By default, this rule is switched off.

Description

The Ac_resetvalue01 rule reports a violation if the -value argument of the
reset constraint is not specified.

By default, SpyGlass assumes the value of such resets to be active high.

Parameter(s)

None

Constraint(s)

reset (Mandatory): Use this constraint to specify reset signals.

 Messages and Suggested Fix

The following message appears to report design units that have resets
without active values:

[AcRv1_1] [WARNING] For top design unit '<du-name>', active
value is not defined for <num> (<percentage>%) resets. Refer
file: '<file-name>' for details

The arguments of the above message are explained below:
770
Synopsys, Inc.

Formal Setup Rules

Rules in SpyGlass CDC
Potential Issues
This violation appears if your design contains resets for which no active
value is defined.

Consequences of Not Fixing
Resets without a proper active value may result in inaccurate functional
analysis.

During functional analysis, resets are turned off and put into an inactive
state. Therefore, if there is a reset for which the active value is incorrectly
provided, the entire functional analysis can go wrong.

How to Debug and Fix
To debug the violation of this rule, perform the following steps:
1. Open the Spreadsheet Viewer window of this rule.
2. In the spreadsheet, check the resets for which the value column is blank.
3. Specify the correct active value in the -value field for such resets in their

reset constraint specification in the SGDC file.

Example Code and/or Schematic

Consider the following reset constraint specification:

reset -name r1

For the above example, the Ac_resetvalue01 rule reports a violation as the
-value argument is not specified for the reset constraint.

Default Severity Label

Warning

Argument Description

<du-name> Name of the design unit

<num> Number of resets for which the active value is not specified

<percentage> Percentage of resets for which the active value is not
specified

<file-name> Name of the spreadsheet file
771
Synopsys, Inc.

Formal Setup Rules

Rules in SpyGlass CDC
Rule Group

ADV_CLOCKS

Report and Related File

 The CDC Report

 Ac_resetvalue01.csv: This spreadsheet file contains details of resets and their
type (synchronous/asynchronous).
772
Synopsys, Inc.

Formal Setup Rules

Rules in SpyGlass CDC
Ac_sanity03
Reports loops in a design

When to Use

Use this rule during functional analysis to detect loops in a design.

Prerequisites

Use the Advanced_CDC and adv_checker licenses for running this rule.

Description

The Ac_sanity03 rule reports the following loops in a design:
 All combinational loops

 Loops involving clock to Q, preset to Q, or clear to Q paths of a flip-flop

If you want to check over constraining due to unstable combinational
loops, run the Ac_sanity04 rule.

NOTE: By default, this rule is not run.

Parameter(s)

None

Constraint(s)

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

 clock (Optional): Use this constraint to specify clock signals in a design.

 reset (Optional): Use this constraint to specify reset signals in a design.

Messages and Suggested Fix

The following message appears if a loop involving the net <net-name> is
present in a design:

[WARNING] Loops involving net '<net-name>' detected

In the above message, name of the first-found user net, <net-name>, in
an unstable loop is reported. In case of internally generated nets,
<synth_gen_net> is displayed.
773
Synopsys, Inc.

Formal Setup Rules

Rules in SpyGlass CDC
Potential Issues
This violation appears if your design contains loops.

Consequences of Not Fixing
Functional analysis cannot be performed in the presence of unstable
combinational loops.

How to Debug and Fix
Not applicable

Example Code and/or Schematic

Consider the following design containing a combinational loop:

FIGURE 20. Loops in a Design

The Ac_sanity03 rule reports a violation in the above case.

Default Severity Label

Warning
774
Synopsys, Inc.

Formal Setup Rules

Rules in SpyGlass CDC
Rule Group

ADV_CLOCKS

Reports and Related Files

No related files and reports
775
Synopsys, Inc.

Formal Setup Rules

Rules in SpyGlass CDC
Ac_sanity04
Reports over-constraining in a design

When to Use

Use this rule in the pre-layout phase of a design to detect over-constraining
in the design.

Prerequisites

Following are the prerequisites for running this rule:
 Run any of the CDC Verification Rules while running this rule.

 Use the Advanced_CDC and adv_checker licenses for running this
rule.

Description

The Ac_sanity04 rule reports over-constraining in a design that can arise in
any of the following situations:
 If there are conflicting set_case_analysis and reset constraints on the

same net
Functional analysis is done with an inactive value of a reset. Therefore,
if a reset active value and set_case_analysis are set to the same value for
the same net, this rule reports a violation.

 If there are conflicting set_case_analysis and clock constraints on the
same net

 If there are conflicting reset and clock constraints on the same net

 If there are unstable combinational loops

 If there are conflicting OVL constraints
NOTE: By default, the Ac_sanity04 rule is switched off.

Parameter(s)

None

Constraint(s)

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.
776
Synopsys, Inc.

Formal Setup Rules

Rules in SpyGlass CDC
 reset (Optional): Use this constraint to specify reset signals in a design.

 clock (Optional): Use this constraint to specify clock signals in a design.

Messages and Suggested Fix

The following message appears if a set of conflicting constraints are
specified for a design:

[ERROR] There are conflicting constraints. Refer
file:'<file-name>' for details

Where <file-name> is the name of the file containing the conflicting
constraints information.

Potential Issues
This violation appears if a set of conflicting constraints are specified for a
design.

Consequences of Not Fixing
If you do not fix this violation, the rule does not perform any formal checks
and may stop further processing.

How to Debug and Fix
To fix this violation, identify conflicting constraints in the Overconstrain Info
File and resolve them.

Example Code and/or Schematic

Example 1

Consider the following constraints specified for a design:

set_case_analysis -name top.rst -value 0
reset -name top.rst -value 0

For the above example, the Ac_sanity04 rule reports a violation because
the active value specified by the reset and the set_case_analysis constraint is
same for the same net.
777
Synopsys, Inc.

Formal Setup Rules

Rules in SpyGlass CDC
Example 2

Consider the following constraints specified for a design:

clock -name clk1 -period 5
reset -name clk1 -value 0

For the above example, the Ac_sanity04 rule reports a violation because of
the conflicting reset and clock constraints on the same net.

Example 3

Consider the following figure:

FIGURE 21. Example of an Unstable Combinational Loop

For the above example, the Ac_sanity04 rule reports a violation because of
the presence of an unstable combinational loop.

Example 4

Consider the following files specified during SpyGlass analysis:

clkfast clkslow

unstable combinational loop
778
Synopsys, Inc.

Formal Setup Rules

Rules in SpyGlass CDC
For the above example, the Ac_sanity04 rule reports a violation because of
conflicting OVL constraints.

Default Severity Label

Error

Rule Group

ADV_CLOCKS

Reports and Related Files

Overconstrain Info File

module top(input D,clk1,clk2,rst,output reg q);
reg w;
always @(posedge clk1 or negedge rst)
 if(!rst)
 w<=1'b0;
 else w<=D;
always @(posedge clk2 or negedge rst)
 if(!rst)
 w<=1 'b0;
 else q<=w;
assert_proposition #(0,1) constraint (1'b1,!rst); //Ties rst to 0
endmodule

//Verilog File

current_design top

clock -name clk1 -period 5
clock -name clk2 -period 10
reset -name rst -value 0

//SGDC file
779
Synopsys, Inc.

Formal Setup Rules

Rules in SpyGlass CDC
Ac_sanity07
Reports synchronous clocks having the maximum cycle count
greater than the specified limit

When to Use

Use this rule during functional analysis to detect the clocks having the
Maximum Cycle Count greater than the specified limit.

Prerequisites

Specify clock signals by using the clock constraint.

Description

The Ac_sanity07 rule reports the same domain synchronous clocks for
which the Maximum Cycle Count is greater than the limit set by the
fa_c2c_max_cycles parameter.

Cycle Count

A cycle count refers to the number of clock edges required to synchronize
two clocks.

NOTE: Edge calculation is done with respect to the lower bound of the design period.

Maximum Cycle Count

The maximum cycle count is the total Cycle Count of the fastest clock and
the slowest clock.

The fastest clock refers to the clock having the minimum period value and
the slowest clock refers to the clock having the maximum period value.

Parameter(s)

fa_c2c_max_cycles: The default value is 100. Specify a positive integer value
to set a limit for the Maximum Cycle Count.

Constraint(s)

clock (Mandatory): Use this constraint to specify clock signals in a design.
780
Synopsys, Inc.

Formal Setup Rules

Rules in SpyGlass CDC
Messages and Suggested Fix

The following message appears if the Maximum Cycle Count of the same
domain synchronous clocks exceeds the limit specified by the
fa_c2c_max_cycles parameter:

[WARNING] Clocks from domain '<domain-name>' have max cycle
'<max-cycle-count>', which is greater than the specified limit
of '<limit>'

Potential Issues
This violation appears if your design contains same domain synchronous
clocks for which the Maximum Cycle Count is greater than the limit specified
by the fa_c2c_max_cycles parameter.

Consequences of Not Fixing
If you do not fix this violation, the Design Period may be high resulting in a
bad QoR of CDC Verification Rules.

How to Debug and Fix
To fix this violation, modify the clock periods of the fastest and/or the
slowest clocks such that the total number of edges (Maximum Cycle Count)
of these clocks comes within the limit set by the fa_c2c_max_cycles
parameter.

NOTE: Modify the clock periods such that they are multiples of each other.

See Example Code and/or Schematic.
781
Synopsys, Inc.

Formal Setup Rules

Rules in SpyGlass CDC
Example Code and/or Schematic

//constr.sgdc

Calculating the maximum cycle count:

Set the fa_c2c_max_cycles parameter to 50

Reason for violation:

Specify constr.sgdc to SpyGlass and

SpyGlass calculates the

The Ac_sanity07 rule reports

Fix the reported violation

clock -name C1 -period 4.5 -domain D1
clock -name C2 -period 7.5 -domain D1
clock -name C3 -period 10 -domain D1

maximum cycle count

a violation The maximum cycle count 58 exceeds the
limit 50 set by the fa_c2c_max_cycles parameter.

How to fix the violation:
Decrease the maximum cycle count by decreasing
total edges of fastest and the slowest clocks.

Action:
 Change the period value of the C1 clock from 4.5 to 5.

Result:

clock -name C1 -period 5 -domain D1

= 90 (4.5, 10)
Edges of C1 = {0, 2.25, 4.5, 6.75, 90}
Number of edges of C1 within the design period = 40
Edges of C3 = {0, 5, 10, 15,90}
Number of edges of C3 within the design period = 18
Total number of edges of C1 and C3 = 40+18 = 58

Design period between fastest clock C1 and slowest clock C3
 = 10 (5, 10)
Edges of C1 = {0, 2.5, 5, 7.5}
Number of edges of C1 within the design period = 4
Edges of C3 = {0, 5}
Number of edges of C3 within the design period = 2
Total number of edges of C1 and C3 = 4+2 = 6

Design period between fastest clock C1 and slowest clock C3

Conclusion:

Maximum cycle count = 58

The maximum cycle count reduced from 58 to 6.
This number is within the specified limit of 50.
782
Synopsys, Inc.

Formal Setup Rules

Rules in SpyGlass CDC
Default Severity Label

Warning

Rule Group

ADV_CLOCKS

Reports and Related Files

No report or related file
783
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
Clock Information Rules
The SpyGlass CDC solution has the following rules for generating clock
information:

Rule Reports
Clock_info01 Clock candidates in the design
Clock_info02 Prints the clock tree for specified clock signals
Clock_info03 Runs Clock_info03a, Clock_info03b, and Clock_info03c rules
Clock_info03a Unconstrained clock nets
Clock_info03b Flip-flops/latches where the data pins are tied to a constant

value
Clock_info03c Flip-flops or latches where the clock/enable pin is set to a

constant
Clock_info05 MUX descriptions where two or more clock signals converge
Clock_info05a Signals on which the set_case_analysis should be set to

control MUXed clock selection
Clock_info05b Combinational gates other than MUXes where two or more

clock signals converge
Clock_info06 Clocks that are derived from specified clocks after frequency

division
Clock_info07 Specified clocks that are derived from other clocks after

frequency division
Clock_info14 Generates the data required to highlight specified clock

domains in GUI windows using different colors
Clock_info15 Generates clock domain information for primary ports
Clock_info16 MUX descriptions without the Synopsys infer_mux pragma

set where two or more clock signals converge
Clock_info17 Reports all synchronous clocks present inside a particular

hierarchy
Clock_info18 Reports the number and percentage of input and output ports

that are not constrained using input and output constraints
784
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
Clock_info01
Reports inferred signals that are likely to be clock signals

When to Use

Use this rule to:
 Find clocks in your design.

 View schematic back-annotation information, which is useful in
distinguishing clocks from clock-gating logic.

Description

The Clock_info01 rule reports different types of clocks in a design.

This rule traces back clock/enable signals of sequential elements till one of
the following is reached:

Clock candidates reported by this rule can be:
 Used by other SpyGlass CDC solution rules.

 Used to verify that your design has all intended clock signals.

Parameter(s)

 clock_reduce_pessimism: Default value is latch_en, mux_sel_derived,
check_enable_for_glitch. Set the value of this parameter to
mux_sel to stop traversal of this rule when a clock signal reaches a

Traced to Clock Type
Primary inputs or undriven output pins of a library cell
that have a defined clock attribute

Primary Clocks

Black box instances and instances of ASIC cells whose
functional description is not available

Black box Clocks

Outputs of flip-flops and instances of ASIC cells Derived Clocks
Hanging nets, clocks derived from disabled latches and
tristates

Undriven Clocks

Outputs of latches or tristate or combinational gates if
the fan-in of the gate does not have a Primary, black
box, Derived, or Undriven clock

Gated Clock
785
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
MUX. Other possible values are all, all_potential_clocks, and
ignore_same_domain.

 ignore_latches: Default value is yes. Set this parameter to no to consider
signals ending at latch enable terminals while deciding clock candidates

 ignore_bus_clocks: Default value is 1024. Set this parameter to any
positive integer value to ignore all vector signals of bus width greater or
equal to that number. Other possible values are yes and no.

 master_clock_limit: The default value is 1000. Set this parameter to limit
the number of master clocks for which the generated_clock constraint
should be generated.

 filter_named_clocks: Default value is rst reset, scan, set. Set this
parameter to a list of strings.

 enable_generated_clocks: Default value is no. Set this parameter to yes
to dump generated_clock constraint for derived clocks.

 handle_combo_arc: Default value is no. Set this parameter to yes so that
the clock/reset propagates from an input pin of a sequential library cell
if a combinational timing arc is specified from that pin to any output pin
of the cell.

 infer_constraint_from_abstract_blocks: Default value is no. Set this
parameter to a supported value to enable the supported rules infer
clock, reset, set_case_analysis constraints from similar constraint
defined in abstracted blocks.

Constraint(s)

set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

Messages and Suggested Fix

Message 1

The following message appears at the location where a clock candidate
<clk-name> of type <clk-type> is first used in a design:

[INFO] Candidate clock: <clk-name> of type: <clk-type>

Where <clk-type> can be Primary Clock, Derived Clock, Gated
Clock, or Undriven Clock.
786
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
NOTE: If the clock is a black box, Message 2 is reported.

Potential Issues
This violation appears if your design contains clocks, such as primary
clocks, derived clocks, gated clocks, or undriven clocks.

Consequences of Not Fixing
None

How to Debug and Fix
For information on debugging, click How To Debug and Fix.

Message 2

The following message appears at the location where a clock candidate
<clk-name> of black box type is first used in a design:

[INFO] Candidate clock: <clk-name> of type: Blackbox Clock
(cell name: <bb-du-name>)

Where <bb-du-name> is name of the black box cell name.

Potential Issues
This violation appears if your design contains clocks of a black box type.

Consequences of Not Fixing
None

How To Debug and Fix
To debug the violation reported by this rule, perform the following steps:
1. Open the spyglass_reports/clock-reset/autoclocks.sgdc file, and review the

clocks reported as probable clocks.
2. View the Incremental Schematic of the violation message.
3. In the schematic, check the clock that displays path of the clock till one

sequential element to which it is driving.
4. If this is not a real clock, remove this clock from the SGDC file.
5. Copy the final SGDC file to desired location.
6. You can also view case analysis settings along with the violation of this

rule.

You can run this rule to find clocks in a design. In addition, the schematic
back-annotation information generated by this rule is useful in
distinguishing clocks from a clock-gating logic.
787
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
If you do not want to view messages by this rule, do not run this rule or
waive this rule.

Example Code and/or Schematic

This rule detects all types of clock candidates in the following example:

module top (d, q, clk1, sr);
input [3:0]d;
input clk1, sr;
output [3:0]q;

reg [3:0]q;
reg clk3;
wire clk2, clk4, w1;

BB I1(clk1, clk2, w1);

always @(posedge clk1)
q[0] = d[0];

always @(negedge clk2)
q[1] = d[1];

always @(posedge clk3)
q[2] = d[2];

always @(posedge clk1)
if (sr==1)
clk3 = 0;

else
clk3 = ~clk3;

always @(posedge clk4)
q[3] = d[3];

endmodule

In the above example:
 The clk1 clock signal of the q[0] flip-flop can be traced to the primary

input, clk1. Therefore, this rule reports the following message:
788
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
Candidate clock: top.clk1 of type: Primary Clock

Following is the modular schematic for this message:

FIGURE 22. Example 1 - Modular Schematic for Clock_info01 Rule Violation

 The clk2 clock signal of the q[1] flip-flop can be traced to the output
of a black box instance, I1, of the BB black box. Therefore, this rule
reports the following message:

Candidate clock: top.clk2 of type: BlackBox Clock (cell
name:BB)

Following is the modular schematic for this message:
789
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
FIGURE 23. Example 2 - Modular Schematic for Clock_info01 Rule Violation

 The clk3 clock signal of the q[2] flip-flop can be traced to the output
of a flip-flop. Therefore, this rule reports the following message:

Candidate clock: top.clk3 of type: Derived Clock

Following is the modular schematic for this message:
790
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
FIGURE 24. Example 3 - Modular Schematic for Clock_info01 Rule Violation

 The clk4 clock signal of the q[3] flip-flop is a hanging net. Therefore,
this rule reports the following message:

Candidate clock: top.clk4 of type: Undriven Clock

Following is the modular schematic for this message:
791
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
FIGURE 25. Example 4 - Modular Schematic for Clock_info01 Rule Violation

Schematic Details

The Clock_info01 rule highlights the path from a clock source to a clock pin
of a flip-flop.

Default Severity Label

Info

Rule Group

FIND

Reports and Related Files

 The Clock-Reset-Summary Report

 autoclocks.sgdc
This file contains the following information:
 All primary and black box clocks with their respective domain names
792
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
 Gated clocks that are output of latches
Definite and probable clocks are reported in separate sections in this
file.
A clock is reported as definite when it directly connects to a clock pin
of a flip-flop or through a combinational logic where there is only one
definite path existent (constrained by the set_case_analysis
constraint). All other clocks are reported as probable.
Undriven clocks are not reported in the autoclocks.sgdc file as clocks are
not expected to be undriven.

 generated_clocks.sgdc
This file is an SGDC format file that contains information about derived
clocks. These clocks are not reported in the autoclocks.sgdc file.
Such clocks can be controlled only through their respective source
clocks (primary clocks or black box clocks).
This file contains information about derived clocks in the form of the
following constraints:
 clock

This constraint is generated if the enable_generated_clocks parameter
is set to no.

 generated_clock

This constraint is generated if the enable_generated_clocks parameter
is set to yes.
If the source clock of the generated clock has multiple master clocks,
the generated_clock constraint is generated for one master clock.
However, if all_master_clocks is specified to the
clock_reduce_pessimism parameter, the generated_clock constraints are
generated with respect to all the master clocks.
To set a limit of maximum number of master clocks for which the
generated_clock constraints should be generated, use the
master_clock_limit parameter.
793
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
Clock_info02
Prints a clock tree for the specified clock signals

When to Use

Use this rule to view a clock tree that hierarchically lists various clocks in
your design.

Prerequisites

Specify clock signals by using the clock constraint and/or the
use_inferred_clocks parameter.

Description

The Clock_info02 rule prints a clock tree displaying clock signals in your
design.

NOTE: This is a runtime-intensive rule. Therefore, you are recommended not to run this
rule in general. You should run this rule only when you view a clock tree.

Rule Functioning

While traversing a design to generate clock trees, this rule does not
traverse beyond sequential objects and black box instances found in the
path. If you specify a library cell without a function that can be inferred as
a sequential cell, this rule does not traverse beyond this cell instance.
However, for combinational library cells, this rule traverses beyond the cell
instance.

Depending upon the complexity of the library cell and its fan-out logic, the
traversal through all outputs of the library cell instance may take too long
and may result in a long runtime.

Therefore, it is recommended that you do not provide a library cell
definition for such design units, such as memory gate cells for which the
corresponding outputs are not expected to be driving clock nets in any
case.

Parameter(s)

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.
794
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
 filter_named_clocks: Default value is rst, reset, scan, set. Set this
parameter to a list of strings.

 handle_combo_arc: Default value is no. Set this parameter to yes so that
the clock/reset propagates from an input pin of a sequential library cell
if a combinational timing arc is specified from that pin to any output pin
of the cell.

 same_domain_at_gate: Default value is no. Set the value of the
parameter to an allowed value to optimize the inference of domains on
clock merging gates.

Constraint(s)

 clock (Optional): Use this constraint to specify clock signals.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

Messages and Suggested Fix

The following message appears to indicate that a clock tree has been
generated:

[INFO] Clock Tree generated

Potential Issues
None

Consequences of Not Fixing
None

How to Debug and Fix
To debug the violation of this rule, perform the following steps:
1. Click on the message in the GUI. The design clock tree appears, as

shown in the following figure:
795
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
FIGURE 26. Clock Tree Generated by the Clock_info02 Rule

2. Explore the clock tree by expanding a clock of your interest.
For leaf-level cells, such as flip-flops, latches, and black boxes, the
triggering clock edge is indicated as + for positive edge and - for
negative edge.

3. Open The CKTree Report to view data in a text format.
4. Open The CKCondensedTree Report to view a condensed view of the tree

that shows only sequential instance count at each level.
5. Use the Propagate_Clocks rule if you are interested in viewing Incremental

Schematic of a clock.

Example Code and/or Schematic

Consider the following design file and SGDC file provided as input for
SpyGlass analysis:
796
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
After running SpyGlass analysis, double-click on the violation of the
Clock_info02 rule. The following clock tree appears:

FIGURE 27. Example - Clock Tree Generated by the Clock_info02 Rule

module test (d,clk1,clk2,q);
input d,
 clk1,

 clk2;
output q;
wire d,
 clk1,
 clk2;
reg q1, //internal reg
 q2, //internal reg
 q;
always @(posedge clk1)
begin
q1 <=d;
end
always @(negedge clk2)
begin
q2 <=q1;
end
always @(posedge clk2)
begin
q <= q2;
end
endmodule

// test.v

current_design test

clock -name clk1 -domain d1

clock -name clk2 -domain d2
-testclock

// constr.sgdc
797
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
Default Severity Label

Info

Rule Group

FIND

Report and Related File

 The CKTree Report

 The CKCondensedTree Report
798
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
Clock_info03
Cases not checked for clock domain crossings: Unconstrained
clocks

Description

The Clock_info03 rule runs the Clock_info03a, Clock_info03b, and
Clock_info03c rules.
799
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
Clock_info03a
Reports unconstrained clock nets

When to Use

Use this rule to identify cases that are not checked for clock domain
crossings due to unconstrained clock nets.

Description

The Clock_info03a rule reports a violation in the following cases:
 If a clock net is driven by a combinational logic that blocks a clock

defined in an SGDC file:

FIGURE 28. Clock_info03a Rule - Example 1

 If a clock net is driven by a signal that is a clock candidate but is not
defined in an SGDC file, and the use_inferred_clocks parameter is set to
no:

clk

Here the clock is getting
//SGDC File

set_case_analysis -name in -value 0
clock -name clk -domain d1

in(0)

blocked because of the
set_case_analysis value
800
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
FIGURE 29. Clock_info03a Rule - Example 2

 If a clock net is driven by a black box and a clock defined in an SGDC file
is reaching to this black box. Such clock is not propagated beyond the
black box.

FIGURE 30. Clock_info03a Rule - Example 3

 If the design contains an unconnected clock net:

FIGURE 31. Clock_info03a Rule - Example 4

clk

The clk clock is not defined
//SGDC File
clock -name c1 -domain

in the SGDC file.

set_parameter use_inferred_cloc
//Project File

clk

//SGDC File
clock -name clk -domain

black box
clk clk_out

clk

//SGDC File
clock -name clk -domain

Unconnected clock net
801
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
 If a clock net is driven by a latch output and the clock_reduce_pessimism
parameter includes latch_en:

5

FIGURE 32. Clock_info03a Rule - Example 5

Rule Exceptions

This rule does not report a violation if you specify clock signals in any of the
following ways:
 By using the clock constraint

 By setting the use_inferred_clocks parameter to yes to use
auto-generated clock signals

 By using a combination of both the above methods

Parameter(s)

 ignore_latches: Default value is yes. Set this parameter to no to consider
signals ending at latch enable terminals.

 filter_named_clocks: Default value is rst, reset, scan, set. Set this
parameter to a list of strings.

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
the auto-generated clock information.

 handle_combo_arc: Default value is no. Set this parameter to yes so that
the clock/reset propagates from an input pin of a sequential library cell
if a combinational timing arc is specified from that pin to any output pin
of the cell.

 cdc_reduce_pessimism: Default value is latch_en, mux_sel_derived,
check_enable_for_glitch. Set the value of this parameter to
mux_sel to stop traversal of this rule when a clock signal reaches a

clk

//SGDC File
clock -name clk -domain d1

EN CP

Latch Flip-flop

// Project File
set_parameter clock_reduce_pessimism latch_en
802
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
MUX. Other possible values are all, all_potential_clocks, and
ignore_same_domain.

 report_common_clock: Default value is no. Set this parameter to yes to
report common clock source. If there is any buffer or inverter in the
input side of the clock-pin of a flop, the rule ignores it and reports the
next available net.

 same_domain_at_gate: Default value is no. Set the value of the
parameter to an allowed value to optimize the inference of domains on
clock merging gates.

 same_domain_at_gate: Default value is no. Set the value of the
parameter to an allowed value to optimize the inference of domains on
clock merging gates.

Constraint(s)

 clock (Optional): Use this constraint to specify clock signals.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

Messages and Suggested Fix

The following message appears at the location where an instance has
unconstrained clock <clk-name> reaching to it:

[WARNING] Clock-Net '<clk-name>' is unconstrained

Potential Issues
This violation appears if your design contains unconstrained clock nets for
flip-flops, latches, and sequential cells in a design.

Consequences of Not Fixing
If you do not fix this violation, clock domain crossing checks are not
checked for unconstrained sequential elements.

In addition, if a clock is blocked and it does not reach to sequential
elements, SpyGlass may generate incorrect functional results.

How to Debug and Fix
To debug the violation of this rule, perform the following steps:
1. View the Incremental Schematic of the violation message.
2. Back-trace the clock net that is reported as un-constrained.
803
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
Perform appropriate actions based on the following possibilities:
 The reported net is driven by a black box, and the clock defined in the

SGDC file is reaching to the input of this black box. This typically
happens with a PLL or similar clock generation cells.
Action: Set the assume_path constraint or specify the clock constraint
on the output of a black box. However, make sure that you set a
domain for that clock to be the same domain as the clock driving the
input of the black box.
This can also happen in a gate-level netlist if you miss to supply a
gate-library (defining that gate) to SpyGlass. Ensure that you
compile the library by using the SpyGlass library compiler before
using it.

 The reported net is unconnected.
Action: Update the design.

 The reported net is driven by combinational logic that blocks the
clock defined in the SGDC file.

Action: Enable Show Case Analysis in the Incremental Schematic window,
and check if constant propagation blocks the defined clock net.

 The reported net was driven by a signal that is a clock candidate, but
is not defined in the SGDC file.
Action: Refer to the messages of the Propagate_Clocks rule.

3. You can also view the list of unconstrained clock nets in Section D of The
Clock-Reset-Summary Report.

Example Code and/or Schematic

Consider the following files specified for SpyGlass analysis:
804
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
For the above example, the Clock_info03a rule reports a violation as the
top2.clk clock-net is unconstrained.

The schematic of this violation is shown in the following figure:

FIGURE 33. Schematic of Clock_info03a Rule Violation

To fix this violation, constraint the clk1 input port.

Schematic Details

The Clock_info03a rule highlights the path from a clock net to a flip-flop
clock pin or a latch enable pin.

module top2(d,d1,in,q,q1,clk1,clk2);
 input d,d1,clk1,clk2,in;
 output q,q1;
 wire clk = clk1 & in;
 reg q,q1;
 always @(posedge clk)
 q<=d;
 always @(posedge clk1)
 q1<=d1;
endmodule

// test.v

current_design top1
clock -name "top1.clk"

set_case_analysis

current_design top
clock -name "top.clock"

current_design top2
clock -name "top2.clk2"

 -name top1.en -value 0

// constraints.sgdc
805
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
Default Severity Label

Warning

Rule Group

INFORMATION

Reports and Related Files

The Clock-Reset-Summary Report
806
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
Clock_info03b
Reports sequential elements whose data pin is tied to a constant

When to Use

Use this rule to identify cases that are not checked for clock domain
crossings as the data pin of a flip-flop/latch is tied to a constant.

Description

The Clock_info03b reports flip-flops and latches that cannot change value
because of any of the following reasons, and therefore are not checked for
clock domain crossings:
 Data is tied to a constant and no clear or reset.

 Data is tied to a 0 and only a clear pin.

 Data is tied to a 1 and only a set pin.

The following figure shows such flip-flops:

FIGURE 34. Data Pin of Flip-Flops Tied to a Constant Value

Such sequential elements are checked for clock domain crossings only if
they contain asynchronous set/clear pins.

Rule Functioning in Case of Flip-Flops with a Reset Pin

For flip-flops with a reset pin, this rule functions in the following manner:
 Reports flip-flops with a clear pin if the data pin is tied to 0, as shown in

the following figure:

clk

'0'

clk

'1'
807
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
FIGURE 35. Flip-Flop with a Clear Pin and the Data Pin Tied to 0

A violation appears in the above scenario because the output always
remains 0 irrespective of the value at clock and clear pins.

 Reports flip-flops with a preset pin if the data pin is tied to 1, as shown
in the following figure:

FIGURE 36. Flip-Flop with a Preset Pin and the Data Pin Tied to 1

A violation appears in the above scenario because the output always
remains 1 irrespective of the value at clock and preset pins.

 Does not report flip-flops with a clear pin if the data pin is tied to 1, as
shown in the following figure:

FIGURE 37. Flip-Flop with a Clear Pin and the Data Pin Tied to 1

clk

'0' '0'

rst clear pin

clk

'1' '1'

rst preset pin

clk

'1' '1'

rst clear pin
808
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
No violation appears in the above scenario because when the clear pin
changes from 1 to 0, the output will change to 1 at the next clock
positive/negative edge.

 Does not report flip-flops with a preset pin if the data pin is tied to 0, as
shown in the following figure:

FIGURE 38. Flip-Flop with a Preset Pin and the Data Pin Tied to 0

No violation appears in the above scenario because when the preset pin
changes from 1 to 0, the output will change to 0 at the next clock
positive/negative edge.

Parameter(s)

ignore_latches: Default value is yes. Set this parameter to no to consider
signals ending on latch enable terminals.

Constraint(s)

set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

Messages and Suggested Fix

The following message appears at the location where the output of a
sequential element <name> (type <type>) triggered by a clock
<clk-name> is set when its data pin is tied to a constant value
<value>:

[INFO] Data pin of <type> <name>, clocked by <clk-name>, is
tied to constant value <value>

Where <type> can be flop, latch, or library-cell.

NOTE: For RTL designs, <name> is the name of the output net of the flip-flop/latch/

clk

'0' '0'

rst preset pin
809
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
clock-gating cell. For netlist designs, if the report_inst_for_netlist parameter is set
to yes, <name> is <inst-name>.<data-pin-name>. Otherwise, the
message details are same as for the RTL designs.

Potential Issues
This violation appears if your design contains flip-flops and latches that
cannot change values.

Consequences of Not Fixing
If you do not fix this violation, clock domain crossing violations are not
reported for flip-flops and latches that cannot change value.

How to Debug and Fix
To debug the violation of this rule, perform the following steps:
1. View the Incremental Schematic of the violation message.
2. Enable Show Case Analysis to see constant propagation in the schematic

that is causing the data input to be constant.
Check the case analysis settings carefully.

If the constant value of data pin is intentional, disable/waive this rule. Else,
change the logic.

Example Code and/or Schematic

Consider the following files specified during SpyGlass analysis:
810
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
For the above example, the Clock_info03b rule reports a violation as the
data pin of the top.temp flip-flop is tied to a constant value 0.

The schematic of this violation is shown below:

FIGURE 39. Schematic of Clock_info03b Rule Violation

module top(clk,ck,clock,q,q1);
input clk,ck,clock;
output q,q1;
reg q;
reg q1;
wire CLK;

reg temp;

assign CLK = clk & ck;
wire d,d1;
assign d = 1'b0;
assign d1 = 1'b1;

always @(posedge CLK)
{q,temp}<={temp,d};

always @(posedge CLK)
 q1<=d1;

endmodule

// test.v

current_design top1
clock -name "top1.clk"

set_case_analysis

current_design top
clock -name "top.clock"

current_design top2
clock -name "top2.clk2"

 -name top1.en -value 0

// constraints.sgdc
811
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
Schematic Highlight

The Clock_info03b rule highlights the data path of a flip-flop, latch, or
clock-gating cell whose data pin is tied to a constant value.

Default Severity Label

Info

Rule Group

INFORMATION

Reports and Related Files

 The Clock-Reset-Summary Report

 The Clock-Reset-Detail Report
812
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
Clock_info03c
Reports sequential elements whose clock pin is tied to a constant

When to Use

Use this rule to check correctness of SpyGlass CDC solution setup.

Prerequisites

Specify clock signals in any of the following ways:
 By using the clock constraint

 By setting the use_inferred_clocks parameter to yes to use
auto-generated clock signals

 By using a combination of both the above methods

Description

The Clock_info03c rule reports sequential elements for which a clock pin is
set to a constant. See Figure 40.

In this case, the clock pin of reported flip-flops, latches, or sequential
library cells is:
 Constrained by case analysis settings (specified using the

set_case_analysis constraint).
 Connected to supply nets.

 Connected to tied-off/tied-on cells.

Such sequential elements are not checked for clock domain crossings.

Parameter(s)

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
the auto-generated clock information.

 ignore_latches: Default value is yes. Set this parameter to no to consider
signals ending at latch enable terminals while deciding clock candidates.

 filter_named_clocks: Default value is rst, reset, scan, set. Set this
parameter to a list of strings.

 check_reset_for_constclock: Specifies if the Clock_info03c rule checks
for set and preset pins on flop whose clock pin is tied to constant value.
813
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
 report_quasi_static_on_clock: Specifies the rule that should report a
violation when a quasi_static signal is reaching to the clock pin of a flop.

 same_domain_at_gate: Default value is no. Set the value of the
parameter to an allowed value to optimize the inference of domains on
clock merging gates.

Constraint(s)

 clock (Optional): Use this constraint to specify clock signals.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

Messages and Suggested Fix

Message 1

The following message appears at the location where a flip-flop, latch, or a
sequential cell <name>, triggered by a clock pin of a clock net,
<clk-net>, is set when that clock pin is tied to a constant and the clock
net is other than the supply net:

[INFO] Clock pin <clk-net>, of <flip-flop | latch | library
cell> <name>, is <tied to constant value> | <driven by
quasi_static signal>

Here, <clk-net> can be a hierarchal name of a clock pin instead of a
clock net if the clock net is a supply net.

Potential Issues
This violation appears if your design contains sequential elements for which
the clock pin is tied to a constant.

Consequences of Not Fixing
If you do not fix this violation, clock domain crossing is not checked for
such sequential elements.

In addition, such constant clocks may be unintentional constant clocks
whose presence in a design may result in functional issues.
814
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
How to Debug and Fix
To debug the violation of this rule, perform the following steps:
1. View the Incremental Schematic of the violation message.
2. Enable Show Case Analysis and see the constant propagation in the

schematic that is causing the clock to be constant.
Check the case analysis settings carefully.

Message 2

If the check_reset_for_constclock parameter is set to yes, the rule reports
the following messages:
 If a flop has only reset pins:

Clock pin <clk-net>, of <flip-flop | latch | library cell>
<name>, <tied to constant value 0|1> | <driven by quasi_static
signal> and it has asynchronous reset(s) (''<pin1-
name>":<status>, "<pin2-name>":<status>, …)

 If a flop has only preset pins:

Clock pin <clk-net>, of <flip-flop | latch | library cell>
<name>, <tied to constant value 0|1> | <driven by quasi_static
signal> and it has asynchronous set(s) ("<pin1-name>":<status>,
…)

 If a flop has both reset and preset pins:

Clock pin <clk-net>, of <flip-flop | latch | library cell>
<name>, <tied to constant value 0|1> | <driven by quasi_static
signal> and it has asynchronous reset(s) (''<pin1-
name>":<status>, "<pin2-name>":<status>, …) and asynchronous
set(s) ("<pin1-name>":<status>, …)

Where, status can be any of the following:
 UNCONNECTED

 CONNECTED

 CONSTANT ACTIVE

 CONSTANT INACTIVE

Example Code and/or Schematic

Consider the following files specified during SpyGlass analysis:
815
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
In the above example, the top1.clk clock pin of the top1.q flip-flop is
tied to constant value. This is shown in the following schematic:

FIGURE 40. Schematic of Clock_info03c Rule Violation

To fix this violation, apply appropriate constant value on the en signal to
enable the clock signal.

Schematic Details

The Clock_info03c rule highlights the path from a clock pin to a net where
the constant value is implied.

Default Severity Label

Info

current_design top1
clock -name "top1.clk"

set_case_analysis

current_design top
clock -name "top.clock"

current_design top2
clock -name "top2.clk2"

 -name top1.en -value 0

// constraints.sgdc
module top1(d,en,q,clk1);
 input d,clk1,en;
 output q;
 wire clk = clk1 & en;
 reg q;
 always @(posedge clk)
 q<=d;
endmodule

// test.v
816
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
Rule Group

INFORMATION

Reports and Related Files

The Clock-Reset-Summary Report
817
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
Clock_info05
Reports clock signals converging on a MUX

When to Use

Use this rule to detect muxes on which multiple clock signals converge.

Prerequisites

Specify clock signals in any of the following ways:
 By using the clock constraint

 By setting the use_inferred_clocks parameter to yes to use auto-
generated clock signals

 By using a combination of both the above methods

Description

The Clock_info05 rule reports MUX descriptions where two or more clock
signals converge. See Figure 42.

By default, this rule reports a violation if the output of the MUX (where
clocks converge) is captured by the clock pin of a sequential element. If
you set the cdc_reduce_pessimism parameter to clock_on_ports, this rule
also reports a violation if the MUX output is captured by a port.

Difference Between Reporting of the Clock_info05 and Clock_info05b
Violations

The Clock_info05 rule reports a violation when the output of a MUX reaches
the clock pin of any flip-flop, whereas the Clock_info05b rule reports
combinational gates other than MUX gates where two or more clocks
converge.

Suppressing Clock_info05 Violations for Same Domain Clock Signals

To suppress Clock_info05 violations for the same domain clock signals that
converge on a MUX when no set_case_analysis constraint is applied on the
MUX select pin, specify the following clock_reduce_pessimism parameter
setting:

set_parameter clock_reduce_pessimism +ignore_same_domain
818
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
Rule Exceptions

This rule does not report a violation if the output of such muxes does not
drive a clock pin of a sequential element, as shown in the following figure:

FIGURE 41. Clock_info05 Rule Exception

Parameter(s)

 clocks_pair: Default value is NULL. Specify a list of clock signal names in
pairs to this parameter.

 clock_reduce_pessimism: Default value is latch_en, mux_sel_derived,
check_enable_for_glitch. Set the value of this parameter to
mux_sel to stop traversal of this rule when a clock signal reaches a
MUX. Other possible values are all, all_potential_clocks, and
ignore_same_domain.

 cdc_reduce_pessimism: Default value is mbit_macro,
no_convergence_at_syncreset, no_convergence_at_enable.
Set the value of this parameter to clock_on_ports to report muxes
where clocks converge and the mux output is captured by a clock pin or
a port. For possible values, see Allowed Values of the cdc_reduce_pessimism
Parameter.

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

 filter_named_clocks: Default value is rst, reset, scan, set. Set this
parameter to a list of strings.

in(0)

sel

clk2

clk1

(0) Flip-flop

clock -name clk1 -domain d1
clock -name ck2 -domain d2
set_case_analysis -name in -value 0

// SGDC File
819
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
 enable_glitchfreecell_detection: Default value is no. Set this parameter to
yes to report glitch-free multiplexers in a design.

 handle_combo_arc: Default value is no. Set this parameter to yes so that
the clock/reset propagates from an input pin of a sequential library cell
if a combinational timing arc is specified from that pin to any output pin
of the cell.

 all_converging_clocks: Default value is no. Set this parameter to yes to
report all the clocks converging on a mux.

 filter_clock_converge_on_cdc: Filters clock signals that converge on a mux
that is reaching the source or destination of a CDC crossing.

 same_domain_at_gate: Default value is no. Set the value of the
parameter to an allowed value to optimize the inference of domains on
clock merging gates.

 show_parent_module_in_spreadsheet: Adds the PARENT_MODULE column
in the rule-based spreadsheet of the supported rules.

Constraint(s)

 clock (Optional): Use this constraint to specify clock signals.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

Messages and Suggested Fix

Message 1

The following message appears at the location of a MUX description where
clocks (<clk1-name> and <clk2-name>) converge:

[INFO] Clock signals <clk1-name> and <clk2-name> converge at
mux <obj-type> <inst-name>. Missing set_case_analysis
constraint on control signal <control-net-name>

Details of the arguments of the above violation message are described in
the following table:
820
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
Potential Issues
This violation appears if multiple clocks reach to a MUX that does not have
the set_case_analysis constraint specified on its select pin.

Consequences of Not Fixing
If an appropriate mode is not specified, a design is not configured in the
desired functional or test mode. This may result in inaccurate clock domain
crossings analysis.

How to Debug and Fix
To debug the violation reported by this rule, perform the following steps:
1. Open the Spreadsheet Viewer window to view the clock-pairs affected by

the same MUX select signal.
2. View the Incremental Schematic of the violation message.
3. In the schematic, check the MUX where clock signals converge with the

un-constrained select signal.

To find the signals that need to be constrained, perform the following
steps:
1. Turn on the Setup_clock01 rule and look for the auto_case_analysis.sgdc file in

the current working directory.
2. Review each constraint in the generated SGDC file.
3. Copy the relevant constraints in current SGDC file.

Argument Description
<control-net-name> The hierarchical name of the source net of the MUX

select pin.
<obj-type> output in case of RTL designs.

instance in case of netlist designs if the
report_inst_for_netlist parameter is set to yes.
Otherwise, it is output.

<inst-name> <hier-out-net-name> in case of RTL designs.
This is the hierarchical name of the net connected to
the MUX output.
<hier-inst-name> in case of netlist designs if
the report_inst_for_netlist parameter is set to yes.
Otherwise, it is same as in case of RTL designs.
821
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
Alternatively, you can perform the following steps to find the signals that
need to be constrained:
1. Back-trace the select-signal in the Incremental Schematic window of the

Clock_info05 violation message till it hits the input ports, black box
outputs, or flip-flops.

2. Apply the set_case_analysis constraint on appropriate signals in the SGDC
file.

If signals or connected nets are already constrained, perform the following
steps:
1. Enable Show Case Analysis in Incremental Schematic window.

This schematic should show where constant propagation is blocked or
takes 'x' value.

2. Apply correct constant value to signals by using set_case_analysis
constraint.

Message 2

The following message is reported when the all_converging_clocks
parameter is set to yes and if at least two clocks converge at two different
input pins.

[Info] <num_converging_clocks> Clock signals converge at mux
output <mux_output>. Missing set_case_analysis constraint on
the control signal <select_net>

Details of the arguments of the above violation message are described in
the following table:

Potential Issues
This violation appears if multiple clocks reach to a MUX that does not have
the set_case_analysis constraint specified on its select pin.

Consequences of Not Fixing

Argument Description
<num_converging_clocks> The number of clocks converging on a mux

<mux_output> Name of the mux where clocks are converging

<select_net> Name of the signal on which the
set_case_analysis constraint is missing
822
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
If the set_case_analysis constraint is not specified on the select pin, it may
result in inaccurate clock domain crossings analysis.

How to Debug and Fix
To debug the violation reported by this rule, specify the set_case_analysis
constraint on the select pin.

Example Code and/or Schematic

Consider the following files specified in SpyGlass analysis:

For the above example, the Clock_info05 rule reports a violation as the
clk1 and clk2 clock signals converge on a MUX in the clock path of the
test.q flip-flop. This is shown in the following schematic:

module test(clk1,clk2,sel,d,in,q);
input clk1;
input clk2;
input d,in;
input sel;
output q;
reg q;
reg temp_clk;
always@(posedge clk2)
 temp_clk <= in;

assign clk = (sel)?clk1:temp_clk;
always@(posedge clk)
 q <= d;
endmodule

current_design test
clock -name clk1 -domain d1
clock -name clk2 -domain d2

// constraints.sgdc// test.v
823
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
FIGURE 42. Schematic of Clock_info05 Rule Violation

To fix this violation, constraint the sel select signal to enable propagation
of an appropriate clock signal.

Schematic Highlight

The Clock_info05 rule highlights paths from different clock sources to MUX
input terminals in different colors.

Default Severity Label

Info

Rule Group

INFORMATION

Report and Related File

 clock_info05.csv: This is a rule-based spreadsheet that contains details of
violations of this rule. The last column in the report lists the name of the
corresponding message-based spreadsheet.

 clock_info05_<unique-number>.csv: This is a message-based spreadsheet
that contains details of a particular violation of this rule.
824
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
Clock_info05a
Reports signals which should be constrained for muxed clock
selection

When to Use

Use this rule to detect signals on which the set_case_analysis constraint
should be applied to control clock selection at muxes.

Prerequisites

Specify clock signals in any of the following ways:
 By using the clock constraint

 By setting the use_inferred_clocks parameter to yes to use auto-
generated clock signals

 By using a combination of both the above methods

Description

The Clock_info05a rule reports signals on which the set_case_analysis
constraint should be set to control muxed clock selection.

During execution, this rule traverses back from a clock pin of sequential
elements till a MUX output pin is found. Then it reports the net connected
to a select pin of the MUX (ignoring buffers and inverters) if constant value
is not seen on MUX select path.

Rule Exceptions

This rule does not report a violation if all data inputs of a MUX are
connected to a constant and the clock signal reaches the select pin of the
MUX, as shown in the following figure:

FIGURE 43. Clock_info05a Rule Exception

clk

in2(0)

in1(0)
Flip-flop

clock -name clk -domain d1

set_case_analysis -name in1 -value 0

// SGDC File

set_case_analysis -name in2 -value 0
825
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
Parameter(s)

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

 filter_named_clocks: Default value is rst, reset, scan, set. Set this
parameter to a list of strings.

 report_clock_tag_names: Default value is no. Set this parameter to yes to
enable the rule report the logical names of the clocks in the violation
message.

 same_domain_at_gate: Default value is no. Set the value of the
parameter to an allowed value to optimize the inference of domains on
clock merging gates.

 show_parent_module_in_spreadsheet: Adds the PARENT_MODULE column
in the rule-based spreadsheet of the supported rules.

Constraint(s)

 clock (Optional): Use this constraint to specify clock signals.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

Messages and Suggested Fix

The following message appears for a signal <sig-name> on which the
set_case_analysis constraint should be set to control MUXed clock
selection:

[INFO] Inferred signal on which to set a set_case_analysis for
muxed clock selection: <sig-name>

NOTE: If <sig-name> is an internally generated net name, the following message is
displayed instead of the net name:

(complex expression) - User needs to identify from schematic'
is displayed.

Potential Issues
The violation appears if a clock hits a MUX that has no set_case_analysis
defined on its select pin.

Consequences of Not Fixing
826
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
A design is not configured in the desired functional or test mode if an
appropriate mode is not specified. This may result in an inaccurate clock
domain crossings analysis.

How to Debug and Fix

To debug the violation reported by this rule, open the Spreadsheet Viewer
window to view a list of signals that can be constrained with the
set_case_analysis constraint.

If internal net names are reported, perform the following steps:
1. View the Incremental Schematic of the violation message.
2. Back-trace the select signal path till it hits the input ports, black box

outputs, or flip-flops.
3. Apply set_case_analysis constraint on appropriate signals in the SGDC

file.

If the signals or connected nets are already constrained, perform the
following steps:
1. Run the Info_Case_Analysis rule.
2. View the schematic along with the violation rule.

The schematic should show where constant propagation is blocked or
takes 'x' value.

3. Apply correct constant value to signals by using the set_case_analysis
constraint.

Example Code and/or Schematic

Consider the following files specified in SpyGlass analysis:
827
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
In the above example, the Clock_info05a rule reports a violation as no
set_case_analysis constraint is set on the test.cntrl signal. This is shown
in the following schematic:

FIGURE 44. Schematic of Clock_info05a Rule Violation

To fix this violation, apply the set_case_analysis constraint on one or both
the sel1 and sel2 select pins so that appropriate clocks are propagated
through the MUX.

Schematic Details

The Clock_info05a rule highlights the path from a MUX output to a clock
pin of a flip-flop.

module test(clk1,clk2,sel1,sel2,in1,out);

input clk1,clk2;
input sel1,sel2;
input in1;
output reg out;
wire mclk;
assign cntrl = sel1 & sel2;
assign mclk = (cntrl)? clk1 : clk2;
always@(posedge mclk)
 out <= in1;

endmodule

current_design test
clock -name clk1
clock -name clk2

// constraints.sgdc// test.v
828
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
Default Severity Label

Info

Rule Group

INFORMATION

Reports and Related Files

Clock_info05a.csv: This file is generated in the <wdir>/spyglass_reports/
clock-reset/ directory.
829
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
Clock_info05b
Reports clock signals converging at a combinational gate other
than a MUX

When to Use

Use this rule to detect clock signals converging on a combinational gate
other than a MUX.

Prerequisites

Specify clock signals in any of the following ways:
 By using the clock constraint

 By setting the use_inferred_clocks parameter to yes to use auto-
generated clock signals

 By using a combination of both the above methods

Description

The Clock_info05b rule reports clock signals that converge on a
combinational gate other than a MUX.

NOTE: The Clock_info05 rule reports MUX gates where two or more clocks converge.

Parameter(s)

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

 filter_named_clocks: Default value is rst, reset, scan, set. Set this
parameter to a list of strings.

 handle_combo_arc: Default value is no. Set this parameter to yes so that
the clock/reset propagates from an input pin of a sequential library cell
if a combinational timing arc is specified from that pin to any output pin
of the cell.

 report_clock_tag_names: Default value is no. Set this parameter to yes to
enable the rule report the logical names of the clocks in the violation
message.

 same_domain_at_gate: Default value is no. Set the value of the
parameter to an allowed value to optimize the inference of domains on
clock merging gates.
830
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
 show_parent_module_in_spreadsheet: Adds the PARENT_MODULE column
in the rule-based spreadsheet of the supported rules.

Constraint(s)

 clock (Optional): Use this constraint to specify clock signals.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

 quasi_static (Optional): Specify this constraint on a clock signal to
suppress the Clock_info05b rule violation for the convergence using that
clock signal.

Messages and Suggested Fix

The following message appears at the location of a combinational gate
other than a MUX gate where clocks <clk-name-list> converge:

[INFO] Clock Signals '<clk-name-list>' converge at
combinational gate

Potential Issues
This violation appears if you design contains multiple clocks that reach to a
combinational gate other than a MUX.

Consequences of Not Fixing
Your design may not be configured in the desired functional or test mode if
an appropriate mode is not specified. This may result in inaccurate clock
domain crossings analysis.

How to Debug and Fix
To debug the violation of this rule, perform the following steps:
1. View the Incremental Schematic of the violation message.
2. In the schematic, view the combinational gate and connected clock

signals.
3. Review the convergence gate, and make sure that it is intentional.

Otherwise, change the logic to eliminate it.
4. You can also view case analysis settings along with the violation of this

rule.
831
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
Example Code and/or Schematic

Consider the following files specified in SpyGlass analysis:

In the above example, two clock-signals converge on the AND gate in the
clock path of the q_reg flip-flop. This is shown in the following schematic:

FIGURE 45. Schematic of Clock_info05b Rule Violation

To fix this violation, apply the set_case_analysis constraint on the en signal
to block further propagation of the clk1 clock.

module test(clk1,d,q,clk2,en);
input clk1;
input clk2;
input d;
input en;
output q;
reg q;
reg clock;
wire fclk;
wire tclk;
assign clockby2 = !clock;
always@(posedge clk1)
 clock <= clockby2;
assign tclk = clock&en;
assign fclk = tclk & clk2;
always@(posedge fclk)
 q <= d;

endmodule

// test.v

current_design test
clock -name clk1 -domain d1
clock -name clk2 -domain d2

// constraints.sgdc
832
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
Schematic Details

The Clock_info05b rule highlights path from clock signals through a
combinational gate to a clock pin of a sequential element (one of the
sequential elements in case of paths existing to clock pins of multiple
sequential elements).

Default Severity Label

Info

Rule Group

INFORMATION

Report and Related File

No related reports or files
833
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
Clock_info05c
Reports unconstrained MUXes which do not receive clocks in all its
data inputs

When to Use

Use this rule to detect unconstrained MUXes which do not receive clocks in
all its data inputs.

Description

It reports a violation when not all the pins of a MUX receive clocks from
top-level when the MUX output reaches to a clock pin of sequential
elements. It is mandatory to have following conditions satisfied:
 One clock reaching to at least one data pin of the MUX

 At least one pin which is unblocked (non-constant and non-quasi)
without any clock reaching to it

The rule reports one violation per mux and it shows the message
spreadsheet as below.

Where,
 <Pin Name> shows the name of input pin of a MUX

 <Pin Type> shows the data or control
834
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
 <Pin Info> shows "Clock", "Blocked", "Constant", "Quasi-Static",
"Unblocked data", "Hanging" or "N.A.". For some cases, it can be all
except "Unblocked data".

 <Clock(s)> shows top-level clocks reaching to the data pin in case of
clock.

The rule spreadsheet shows information in the following format:

FIGURE 46.

Where,
 <DATA-INPUT-COUNT> shows the count of unblocked data inputs

which needs action from user.

Parameter(s)

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

 report_inst_for_netlist: Default value is no. Set this parameter to yes to
report violating instance name in case of netlist designs and leaf-level
net name for RTL designs.

 report_clock_tag_names: Default value is no. Set this parameter to yes to
enable the rule report the logical names of the clocks in the violation
message.
835
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
 show_parent_module_in_spreadsheet: Adds the PARENT_MODULE column
in the rule-based spreadsheet of the supported rules.

Constraint(s)

 clock (Optional): Use this constraint to specify clock signals.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

 quasi_static (Optional): Specify this constraint on a clock signal to
suppress the Clock_info05b rule violation for the convergence using that
clock signal.

Messages and Suggested Fix

The following message appears at the location of an unconstrained MUX
which does not receive clocks in all its data inputs:

[WARNING] No clock is reaching to <count> data <input|inputs>
of unconstrained MUX <output|instance> <output name>

Potential Issues
This violation appears if you design contains unconstrained MUXes which
do not receive clocks in all its data inputs.

Consequences of Not Fixing
This may result in inaccurate clock domain crossings analysis.

How to Debug and Fix
To debug the violation of this rule, either connect all data pins to clock
sources or tie constant to MUX select lines.

Example Code and/or Schematic

Consider the following files specified in SpyGlass analysis:
836
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
In the above example, the Clock_info05c rule reports a violation as only
one clock signal is received on one of the MUX inputs. This is shown in the
following schematic:

FIGURE 47. Schematic of Clock_info05b rule violation

To fix the violation, either connect all data pins to clock sources or tie
constant to MUX select lines.

Schematic Details

The Clock_info05c rule highlights the data pins in different colors based on
following categories:
837
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
CLOCK, UNBLOCKED-DATA, BLOCKED-DATA, CONSTANT, QUASI-STATIC

Default Severity Label

Warning

Rule Group

INFORMATION

Report and Related File

No related reports or files
838
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
Clock_info06
Reports nets derived from user-specified clocks

When to Use

Use this rule to detect nets derived from user-specified clock signals.

Prerequisites

Specify clock signals in any of the following ways:
 By using the clock constraint

 By setting the use_inferred_clocks parameter to yes

 By using a combination of both the above methods

Description

The Clock_info06 rule reports nets that are derived from the user specified
clocks after frequency division.

Performing Frequency Division Checks

Frequency division checks are limited to a factor of 2. The Clock_info06
rule reports only those clock dividers (frequency division by 2) in a design
that match with any of the following topologies:
 Divide By 2 - Topology 1

This topology is described in the following example and the equivalent
circuit that follows:

module divBy2_T1(clock, clockby2, out, in);
input clock, in;
output clockby2, out;

reg clk, out;

assign clockby2 = !clk;
always @(posedge clock)
clk = clockby2;

always @(posedge clockby2)
839
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
out <= in;
endmodule

FIGURE 48. Divide By 2 - Topology 1

 Divide By 2 - Topology 2
This topology is described in the following example and the equivalent
circuit that follows:

module divBy2_T2(clock, clockby2, data, out);
input clock, data;
output clockby2, out;
reg clockby2, out;

always @(posedge clock)
clockby2 = !clockby2;

always @(posedge clockby2)
out <= data;

endmodule

clock
(user-specified)

clockby2clk
(derived)

in out
840
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
FIGURE 49. Divide By 2 - Topology 2

NOTE: For both the topologies, buffers or buffer equivalents in term of inverters are
allowed in any of the paths.

Parameter(s)

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

 handle_combo_arc: Default value is no. Set this parameter to yes so that
the clock/reset propagates from an input pin of a sequential library cell
if a combinational timing arc is specified from that pin to any output pin
of the cell.

 same_domain_at_gate: Default value is no. Set the value of the
parameter to an allowed value to optimize the inference of domains on
clock merging gates.

Constraint(s)

 clock (Optional): Use this constraint to specify clock signals in a design.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

Messages and Suggested Fix

The following message appears at the location where the signal
<net-name>, which is derived from the user-specified clock signal
<clk-name>, is first set:

clockby2
(derived)

data out

clock
(user-specified)
841
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
[INFO] Clock '<net-name>' is derived from user-specified clock
'<clk-name>'

Potential Issues
This violation appears when the user-specified clocks propagate in the
design after frequency division.

Consequences of Not Fixing
Not applicable

How to Debug and Fix
Not applicable

Example Code and/or Schematic

Consider the following schematic:

FIGURE 50. Schematic of Clock_info06 Rule Violation

In the above schematic, clock is derived from the user-specified clock
clk1. Therefore, the Clock_info06 rule reports a violation.

Schematic Details

The Clock_info06 highlights the following paths in different colors:
 The path from the source clock to the dividing clock pin of a flip-flop

 The path from the dividing output of a flip-flop back to its input pin
842
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
 The path from the divided clock to any one sequential element

Default Severity Label

Info

Rule Group

INFORMATION

Reports and Related Files

No report or related file
843
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
Clock_info07
Reports user-specified clocks that are derived from other clocks

When to Use

Use this rule to identify correct usage of clocks defined in a design.

Prerequisites

Specify clock signals in any of the following ways:
 By using the clock constraint

 By setting the use_inferred_clocks parameter to yes to use automatically
generated clock signals

 By using a combination of both the above methods

Description

The Clock_info07 rule reports user-specified clocks that are derived from
other clocks after frequency division.

Frequency division checks are limited to a factor of 2. The Clock_info07
rule reports only those clock dividers (frequency division by 2) in a design
that match any of the specified topologies (as described in the Clock_info06
rule).

NOTE: Please note the following points:

 The Clock_info06 rule reports clocks derived from user-specified clocks after
frequency division whereas the Clock_info07 rule reports user-specified clocks
that are derived from other clocks after frequency division.

 Primary clocks are automatically propagated through frequency dividers.
Therefore, derived clocks have the same domain as the primary clocks.
Specifying derived clocks in an SGDC file can result in a conflict.

Parameter(s)

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

 handle_combo_arc: Default value is no. Set this parameter to yes so that
the clock/reset propagates from an input pin of a sequential library cell
if a combinational timing arc is specified from that pin to any output pin
of the cell.
844
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
 same_domain_at_gate: Default value is no. Set the value of the
parameter to an allowed value to optimize the inference of domains on
clock merging gates.

Constraint(s)

 clock (Optional): Use this constraint to specify clock signals in a design.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

Messages and Suggested Fix

The following message appears at the location where the user-specified
clock signal <derived-net-name> is derived from another clock
<clock-net-name>:

[INFO] User-specified clock '<derived-net-name>' is derived
from clock '<clock-net-name>'

Potential Issues
Not applicable

Consequences of Not Fixing
Not applicable

How to Debug and Fix
Not applicable

Example Code and/or Schematic

Example 1

Consider the following example:

module divBy2_T1(clock, clockby2, out, in);
input clock, in;
output clockby2, out;
reg clk, out;
assign clockby2 = !clk;
845
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
always @(posedge clock)
clk = clockby2;

always @(posedge clockby2)
out <= in;

endmodule

The following figure shows the circuit of this example:

FIGURE 51. Scenario 1 of Clock_info07 Rule Violation

For the above example, the Clock_info07 rule reports the following
violation when the clk signal specified by the clock constraint is analyzed:

User-specified clock 'divBy2_TI.clk' is derived from clock
'divBy2_TI.clock'

Example 2

Consider the following example:

module divBy2_T2(clock, clockby2, data, out);
input clock, data;
output clockby2, out;
reg clockby2, out;
always @(posedge clock)
clockby2 = !clockby2;

always @(posedge clockby2)
out <= data;

endmodule

clock
(user-specified)

clockby2clk
(derived)

in out
846
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
The following figure shows the circuit of this example:

FIGURE 52. Scenario 2 of Clock_info07 Rule Violation

For the above example, the Clock_info07 rule reports the following
violation when the clockby2 signal specified by the clock constraint is
analyzed:

User-specified clock 'divBy2_T2.clockby2' is derived from clock
'divBy2_T2.clock'

Schematic Details

The Clock_info07 rule highlights the following information in different
colors in the schematic:
 The path from the source clock to the dividing clock pin of a flip-flop

 The path from the dividing output of a flip-flop back to its input pin

Default Severity Label

Info

Rule Group

INFORMATION

clockby2
(derived)

data out

clock
(user-specified)
847
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
Reports and Related Files

No report or related file
848
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
Clock_info14
Highlights signals of different domains in different colors

When to Use

Use this rule to analyze clock distribution in a design.

Prerequisites

Specify clock signals in any of the following ways:
 By using the clock constraint

 By using auto-generated clock signals by setting the use_inferred_clocks
parameter to yes

 By using a combination of both the above methods

Description

The Clock_info14 rule highlights clock domains in different colors in RTL
and schematic.

A different color is used to highlight clock domains to distinguish them from
each other. Signals where two or more clock domains merge are shown in a
color different from the color of the merging clock domains. You can set the
color scheme as per your requirements.

This rule is also used to view clock crossings in a design. If signals on two
sides of an assignment statement are shown in different colors in the RTL,
it indicates a clock crossing.

Parameter(s)

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
automatically generated clock information.

 same_domain_at_gate: Default value is no. Set the value of the
parameter to an allowed value to optimize the inference of domains on
clock merging gates.

Constraint(s)

 clock (Optional): Use this constraint to specify clock signals.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.
849
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
Messages and Suggested Fix

The following message appears when clock domains in the design unit
<du-name> are identified and are highlighted in different colors:

[INFO] Clock domain highlight information populated for <du-
name>

Potential Issues
Not applicable

Consequences of Not Fixing
Not applicable

How to Debug and Fix
Not applicable

Example Code and/or Schematic

Consider the following schematic of a violation of this rule:

FIGURE 53. Schematic of Clock_info14 Rule Violation

In the above schematic, the paths of clk1 and clk2 are highlighted in
different colors. In addition, the net connected to the out port is
850
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
highlighted in a different color because the paths of clk1 and clk2 merge
on this net.

Default Severity Label

Info

Rule Group

INFORMATION

Reports and Related Files

No report or related file
851
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
Clock_info15
Generates the PortClockMatrix report and abstracted model for
input ports

When to Use

Use this rule to view clock domain information for primary ports.

Prerequisites

Specify clock signals in any of the following ways:
 By using the clock constraint.

 By using auto-generated clock signals by setting the use_inferred_clocks
parameter to yes

 By using a combination of both the above methods

Description

The Clock_info15 rule generates the following:
 Clock domain information for primary ports in The PortClockMatrix Report

 Constraints on input ports in the Input Port Constraints File

However, constraints are not generated on the input ports that are
already specified by any user-defined constraint, such as clock,
quasi_static, or set_case_analysis.
Use the generated constraints in the SoC flow for block-level SpyGlass
CDC solution verification and abstraction.

Parameter(s)

 report_indirect_port_clock: Default value is no. Set this parameter to yes
to generate an enhanced PortClockMatrix report, which also shows clocks
that are indirectly connected to input/output ports.

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

 cdc_reduce_pessimism: Default value is mbit_macro,
no_convergence_at_syncreset, no_convergence_at_enable.
Set this parameter to an appropriate value to ignore clock domain
crossings involving black box instances and clock domain crossings with
destinations having unused, hanging, or blocked outputs. Other possible
852
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
values are bbox, output_not_used, hanging_net,
skip_unused_paths, and all.

Constraint(s)

 clock (Optional): Use this constraint to specify clock signals.

 input (Optional): Use this constraint to specify clock domain at input
ports.

 abstract_port (Optional): Use this constraint to define abstracted
information for block ports.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

Messages and Suggested Fix

Message 1

The following message appears to indicate that port clock information has
been generated:

[ClkI15_1] [INFO] Port-clock information generated for
PortClockMatrix report

Potential Issues
None

Consequences of Not Fixing
Information in the SGDC file and port-clock matrix should be consistent. If
it is not consistent, ensure that such mismatch is intentional. Otherwise, it
may result in incorrect SpyGlass CDC solution analysis.

How to Debug and Fix
To debug the violation of this rule, open The PortClockMatrix Report and check
the following:
 Ports for which direct/indirect clocks are mentioned

Search the input constraint for such ports in the SGDC file. If it is not
defined, add it with correct clock name. If it is defined with a different
clock, review and modify it appropriately.

 Ports for which direct/indirect clocks are not mentioned
Such ports are connected to pure combinational paths, and may need to
853
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
be reviewed.
Review the ports defined as blocked/unconnected, and make sure it is
as expected.

Message 2

The following message appears to indicate that port clock information has
been generated:

[ClkI15_2] [INFO] Abstracted sgdc file for input ports of block
'<block-name>' is generated

Potential Issues
None

Consequences of Not Fixing
None

How to Debug and Fix
None

Message 3

The following message appears to indicate that port clock information for
the block <block-name> is not generated:

[ClkI15_3] [INFO] Abstracted sgdc file for input ports of block
'<block-name>' is not generated

Potential Issues
None

Consequences of Not Fixing
None

How to Debug and Fix
None

Example Code and/or Schematic

Example 1 - The PortClockMatrix Report Generation

Consider the following example:

module flop(D,C,Q);
854
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
input D,C;
output Q;
reg Q;
always @ (posedge C)
Q<=D;

endmodule

module top(I1, C1, C2, O1);
input I1,C1,C2;
output O1;
reg O1;
wire w = C2 & C1;
flop F1(I1, w, O1);

endmodule

For the above example, the Clock_info15 rule generates the following
report containing clock domain information for primary ports:

**
 Input Port - Clock Matrix

--
S. No. Input Attribute Direct Clocks

--
1. C1 clock
2. C2 clock
3. I1 top.C1, top.C2
--

**
 Output Port - Clock Matrix
**
--
S. No. Output Attribute Direct Clocks
--
1. O1 top.C1, top.C2
--
855
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
Default Severity Label

Info

Rule Group

INFORMATION

Related Reports

 The PortClockMatrix Report

 Input Port Constraints File

 The SynchInfo Report
856
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
Clock_info16
Reports clocks converging on a MUX that does not have the
Synopsys infer_mux pragma set on it

When to Use

Use this rule to detect MUXes on which multiple clocks converge, but no
Synopsys infer_mux pragma is defined for the MUX in the RTL.

Prerequisites

Specify clock signals in any of the following ways:
 By using the clock constraint

 By using the automatically generated clocks after setting the
use_inferred_clocks parameter to yes

 By using a combination of both the above methods

Description

The Clock_info16 rule reports a violation when two or more clocks
converge on a MUX for which no Synopsys infer_mux pragma is defined
in the RTL.

By default, this rule reports a violation if the output of the MUX (where
clocks converge) is captured by the clock pin of a sequential element. If
you set the cdc_reduce_pessimism parameter to clock_on_ports, this rule
also reports a violation if the MUX output is captured by a port.

Rule Exceptions

This rule does not report a violation if the output of MUXes does not drive a
clock pin of a sequential element.

Parameter(s)

 clock_reduce_pessimism: Default value is latch_en, mux_sel_derived,
check_enable_for_glitch. Set the value of this parameter to
mux_sel to stop traversal of this rule when a clock signal reaches a
MUX. Other possible values are all, all_potential_clocks, and
ignore_same_domain.
857
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
 cdc_reduce_pessimism: Default value is mbit_macro,
no_convergence_at_syncreset, no_convergence_at_enable.
Set the value of this parameter to clock_on_ports to report muxes
where clocks converge and the mux output is captured by a clock pin or
a port. For possible values, see Allowed Values of the cdc_reduce_pessimism
Parameter.

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

 report_inst_for_netlist: Default value is no. Set this parameter to yes to
report violating instance name in case of netlist designs and leaf-level
net name for RTL designs.

 handle_combo_arc: Default value is no. Set this parameter to yes so that
the clock/reset propagates from an input pin of a sequential library cell
if a combinational timing arc is specified from that pin to any output pin
of the cell.

 same_domain_at_gate: Default value is no. Set the value of the
parameter to an allowed value to optimize the inference of domains on
clock merging gates.

Constraint(s)

 clock (Optional): Use this constraint to specify clock signals in a design.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

Messages and Suggested Fix

The following message appears at the location of a MUX description where
the clocks <clk1-name> and <clk2-name> converge, but no Synopsys
infer_mux pragma is set for the MUX:

[INFO] Clock signals <clk1-name> and <clk2-name> converge at
mux <obj-type> <inst-name> (control signal <control-net-name>),
which does not have a synopsys infer_mux pragma set on it

The arguments of the above message are explained below:
858
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
Potential Issues
This violation appears if your design contains multiple clock signals that
converge on a MUX, and the Synopsys infer_mux pragma is not set on
the MUX in the RTL.

Consequences of Not Fixing
If you do not fix this violation, some synthesis tools may optimize the MUX
logic. As a result, analysis may be different between RTL and synthesized
netlist.

How to Debug and Fix
To fix this violation, check the RTL block reported by this rule and apply the
Synopsys infer_mux pragma on the MUX.

Example Code and/or Schematic

Consider the following files specified during SpyGlass analysis:

Argument Description
<control-net-name> The hierarchical name of the source net of the MUX

select pin
<obj-type> output in case of RTL designs.

instance in case of netlist designs if the
report_inst_for_netlist parameter is set to yes.
Otherwise, it is output.

<inst-name> <hier-out-net-name> in case of RTL designs.
This is the hierarchical name of the net connected to the
MUX output
<hier-inst-name> in case of netlist designs if the
report_inst_for_netlist parameter is set to yes.
Otherwise, it is same as in case of RTL designs.
859
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
For the above example, the Clock_info16 rule reports a violation for the
line highlighted in red.

The following figure shows the schematic for this violation:

FIGURE 54. Schematic of Clock_info16 Rule Violation

To fix this violation, specify the infer_mux pragma on the case statement
in the RTL, as shown below:

case (mode) // synopsys infer_mux

This will ensure that the MUX is not optimized during synthesis.

// test.v

module top(sys_clk, test_clk, in, mode, out);
input sys_clk, test_clk, in, mode;
output out;
reg w_clk, out;
always@(sys_clk, test_clk)
begin
 case(mode) // no pragma defined
 2'b0 : w_clk = sys_clk;
 2'b1 : w_clk = test_clk;
 endcase
end
always @(posedge w_clk)
 out <= in;
endmodule

// constraints.sgdc

current_design top
clock -name sys_clk -domain d1
clock -name test_clk -domain d2
860
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
Schematic Details

This rule highlights the paths from different clock sources to the MUX input
terminals.

Default Severity Label

Info

Rule Group

INFORMATION

Reports and Related Files

No report or related file
861
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
Clock_info17
Reports all the synchronous clocks present in a hierarchy

When to Use

Use this rule to check multiple Synchronous Clocks in a hierarchy.

Prerequisites

Specify a list of hierarchies for which Synchronous Clocks should be reported
by using the report_sync_clk_for_hier parameter.

Description

The Clock_info17 rule reports all Synchronous Clocks present in a hierarchy.

You must run this rule for the following reasons:
 This rule is important for physical design and is relevant for physical

sub-chips only.
 Timing closure of sub-chips that has multiple synchronous input clocks

is difficult because the closure is dependent on how well clocks are
balanced.

Rule Exceptions

The Clock_info17 rule does not report a violation if a clock and its
corresponding derived clock is used in a particular hierarchy even though
they are synchronous to each other.

Parameter(s)

report_sync_clk_for_hier: Default value is NULL. Specify a comma-separated
list of hierarchies for which top-level synchronous clock signals should be
reported.

Constraint(s)

set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.
862
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
Messages and Suggested Fix

The following message appears when multiple Synchronous Clocks <clk-
net-list> are used in the hierarchy <hier-name>:

[INFO] Hierarchy '<hier-name>' receives synchronous clocks
'<clk-net-list>'

Potential Issues
This message appears if a design hierarchy receives multiple Synchronous
Clocks.

Consequences of Not Fixing
Not applicable

How to Debug and Fix
This is an informational rule.

Open the schematic of this rule to see multiple clocks from the same
domain reaching to a particular hierarchy.

Example Code and/or Schematic

Consider the following schematic of this rule:
863
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
FIGURE 55. Schematic of Clock_info17 Rule Violation

For the above example, the Clock_info17 rule reports a violation because
the clk1 and clk2 clocks of the same domain d1 are reaching to the
instance inst_1.

Schematic Details

This rule highlights the path of primary clocks till the clock pin of a
sequential element inside the hierarchy.

Default Severity Label

Info

Rule Group

INFORMATION

Reports and Related Files

No report or related file

current_design top
clock -name clk1 -domain d1
clock -name clk2 -domain d1

// constr.sgdc
864
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
Clock_info18
Reports unconstrained ports

When to Use

Use this rule to detect ports for which no SGDC constraint is specified.

Description

The Clock_info18 rule reports a violation if input, output, or black box ports
are not specified through any SGDC constraint.

This rule reports the following information:
 The number and percentage of top-level input and output ports that are

not constrained by any of the input, output, clock, reset, set_case_analysis,
or abstract_port constraints.

 The number and percentage of ports of all black boxes in a design that
are neither:
 Constrained by using any of the clock, reset, abstract_port,

assume_path, or signal_in_domain constraints, nor
 Hanging, nor

 Net connected to the output port of that black box is blocked.

For a bus port, all bits of the bus are counted separately.

Parameter(s)

check_input_coverage: Default value is no. Set this parameter to yes to
report violations only for the unconstrained input ports in the top-level
design.

Constraint(s)

None

Messages and Suggested Fix

Message 1

The following message appears if input and output ports are not
constrained:
865
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
[ClkI18_1] [WARNING] For top design unit '<design-name>',
'<num-input-ports>' ('<per-input-ports>') input port(s) and
'<num-output-ports>' ('<per-output-ports>') output ports are
unconstrained. Refer report CKSGDCInfo for details

The arguments of the above message are explained below:

Potential Issues
This violation appears if your design contains input and output ports that
are not constrained by using any of the input, output, clock, reset,
set_case_analysis or abstract_port constraint.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass CDC verification ignores top-level
input and output ports that are not constrained by using any of the
specified constraint.

How to Debug and Fix
To fix this violation, specify input and output ports of a design by using any
of the input, output, clock, reset, set_case_analysis or abstract_port constraint.

Message 2

The following message appears if all the input and output ports are

Argument Description
<design-name> Name of the top design unit
<num-input-ports> Number of input ports that are not constrained with

input constraint
<per-input-ports> Percentage of input ports that are not constrained with

input constraint
<num-output-ports> Number of output ports that are not constrained with

output constraint
<per-output-ports> Percentage of output ports that are not constrained

with output constraint
866
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
constrained:

[ClkI18_2] [INFO] All ports in the top design unit '<du-name>'
are constrained using either 'input', 'output', 'clock',
'reset', 'set_case_analysis' or 'abstract_port' constraints.
Refer report CKSGDCInfo for details

Potential Issues
Not applicable

Consequences of Not Fixing
Not applicable

How to Debug and Fix
Not applicable

Message 3

The following warning message appears if black box ports are not
constrained:

[ClkI18_3] [WARNING] For black box '<black-box-name>', '<num-
ports>' ('<percentage-ports>') port(s) are unconstrained. Refer
report CKSGDCInfo for details

The arguments of the above message are explained below:

Potential Issues
This violation appears if black box ports of a design are not specified
through any of the clock, reset, abstract_port, or assume_path constraint.

Argument Description
<black-box-name> Name of a black box
<num-ports> Total number of unconstrained black box ports
<percentage-ports> Percentage of ports not constrained
867
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
Consequences of Not Fixing
If you do not fix this violation, SpyGlass ignores the black box input and
output ports that are not specified through any of the specified constraint.

How to Debug and Fix
To fix this violation, specify black box ports by using any of the clock, reset,
abstract_port, or assume_path constraint.

Message 4

The following message appears if all ports of the black box
<black-box-name> are constrained:

[ClkI18_4] [INFO] All the ports of the black-box '<black-box-
name>' have been constrained. Refer report CKSGDCInfo for
details

Potential Issues
Not applicable

Consequences of Not Fixing
Not applicable

How to Debug and Fix
Not applicable

Message 5

The following message appears if input and output ports are not
constrained:

[ClkI18_5] [WARNING] For top design unit '<design-name>',
'<num-input-ports>' ('<per-input-ports>') input port(s) are
unconstrained. Refer report CKSGDCInfo for details
868
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
The arguments of the above message are explained below:

Potential Issues
This violation appears if your design contains input ports that are not
constrained by using any of the input, clock, reset, set_case_analysis or
abstract_port constraint.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass CDC verification ignores top-level
input ports that are not constrained by using any of the specified
constraints.

How to Debug and Fix
To fix this violation, specify input ports of a design by using any of the
input, output, clock, reset, set_case_analysis or abstract_port constraints.

Message 6

The following message appears if all the input ports are constrained:

[ClkI18_6] [INFO] All input ports in the top design unit '<du-
name>' are constrained using either 'input', 'clock', 'reset',
'set_case_analysis' or 'abstract_port' constraints. Refer
report CKSGDCInfo for details

Potential Issues
Not applicable

Argument Description
<design-name> Name of the top design unit
<num-input-ports> Number of input ports that are not constrained with

input constraint
<per-input-ports> Percentage of input ports that are not constrained with

input constraint
869
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
Consequences of Not Fixing
Not applicable

How to Debug and Fix
Not applicable

Example Code and/or Schematic

Consider the following files specified during SpyGlass analysis:

In the above example, the input port mode and the output port out are not
specified through any constraint. Therefore, the Clock_info18 rule reports a
warning.

Default Severity Label

Info | Warning

Rule Group

INFORMATION

Reports and Related Files

The CKSGDCInfo Report

// test.v

module top(ck1, ck2, in, mode, out);
input ck1, ck2, in, mode;
output out;
 …
…

endmodule

// constraints.sgdc

current_design top
clock -name ck1 -domain d1
clock -name ck2 -domain d2
abstract_port -module top -ports in

-clock ck1
870
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
Clockmatrix01
Shows clock relationship matrix

When to Use

Use this rule to see the clock relationships in a design.

Description

The Clockmatrix01 rule generates a spreadsheet report listing the clock
relationships defined in the SGDC file for all clocks in the design. If the
sg_clock_group constraint is used, the clock domain is inferred based on
the sg_clock_group constraint.

The spreadsheet is saved in the SpyGlass_reports directory.

Parameter(s)

sta_based_clock_relationship: Default value is no. Set this
parameter to only_scg or scg_functional to enable the
Clockmatrix01 rule to generate the clock relationship spreadsheet based
on the sg_clock_group constraint.

Constraint(s)

 clock: Use this constraint to specify clock signals.

 generated_clock: (Optional): Use this constraint to specify generated/
derived clocks.

 sg_clock_group (Optional): Use this constraint to define asynchronous
relationship between clocks.

Messages and Suggested Fix

Message 1

The following message appears when the spreadsheet is generated:

[INFO] Clock Relation Matrix for design <design_name>, based on
the sg_clock_group constraints defined in the SGDC

Potential Issues
871
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
Not applicable

Consequences of Not Fixing
Not applicable

How to Debug and Fix
Not applicable

Example Code and/or Schematic

Consider the following SGDC file:

FIGURE 56. Example SGDC file

In the above example, the spreadsheet generated by the Clockmatrix01
rule shows that the clk1 and clk2 as asynchronous and all other clocks
are synchronous as shown in the figure below.

FIGURE 57. Spreadsheet Generated by the Clockmatrix01 rule
872
Synopsys, Inc.

Clock Information Rules

Rules in SpyGlass CDC
Default Severity Label

Info

Rule Group

INFORMATION

Reports and Related Files

This rule generates the
clock_<design_name>_clock_relationship_matrix.csv file in the
spyglass_reports/clock-reset directory.
873
Synopsys, Inc.

Reset Information Rules

Rules in SpyGlass CDC
Reset Information Rules
The SpyGlass CDC solution has the following rules for generating reset
information:

Rule Reports
Ar_syncrst_setupcheck01 Reports constant value on functional flip-flops in

synchronous reset deassert mode
Reset_info01 Asynchronous and synchronous preset and clear

candidates in the design
Ar_glitch01 Detects glitch-prone circuits
Reset_info02 Prints the preset/clear tree for specified preset/

clear signals
Reset_info09a Unconstrained asynchronous reset nets

Reset_info09b Asynchronous reset nets that are tied to constant
value
874
Synopsys, Inc.

Reset Information Rules

Rules in SpyGlass CDC
Ar_syncrst_setupcheck01
Reports constant values on functional flip-flops in the synchronous
reset deassert mode

When to Use

Use this rule to verify polarity of user-defined synchronous resets.

Prerequisites

Specify the Advanced_CDC and adv_checker licenses for running this
rule.

Description

The Ar_syncrst_setupcheck01 rule reports a violation if a synchronous
reset leads to a constant value on a Functional Flip-Flop in the deassert
mode.

The enable_const_prop_thru_seq command is always on, and
therefore, the reset values are propagated beyond the sequential
elements.

NOTE: The Ar_syncrst_setupcheck01 rule check is performed only for flops that have
synchronous resets and not for flops with asynchronous resets.

Rule Exceptions

This rule does not report a violation in the following cases:
 When a Functional Flip-Flop is tied to a constant value in any of the

following ways:
 Constrained by the set_case_analysis constraint

 Connected to supply nets

 Connected to tied-off or tied-on cells

 When the constant 1 reaches to the enable pin during the deassert
mode, no violation is reported on the enable pin.

 When the enable is 0 and a constant reaches on the data pin during the
deassert mode, no violation is reported on the data pin.
875
Synopsys, Inc.

Reset Information Rules

Rules in SpyGlass CDC
Parameter(s)

 report_inst_for_netlist: Default value is no. Set this parameter to yes to
report violating instance name in case of netlist designs and leaf-level
net name for RTL designs.

 enable_debug_data: Default value is no. Set this parameter to yes to
view debug information.

 use_inferred_resets: Default value is no. Set this parameter to yes to use
auto-generated reset information.

Constraint(s)

 reset (Mandatory): Use this constraint with the -sync argument to
specify synchronous reset signals in your design.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

Messages and Suggested Fix

Message 1

The following message appears if the <type> pin of the <element-
name> element is held constant at the deassertion of the <reset-name>
synchronous reset:

[SRST01] [ERROR] At deassertion of synchronous reset '<reset-
name>','<type>' pin of '<element-name>' is held constant at
'<value>'

The arguments of the above message are explained below:

Argument Description
<reset-name> User-specified or automatically-inferred reset signal
876
Synopsys, Inc.

Reset Information Rules

Rules in SpyGlass CDC
Potential Issues
This violation appears if a synchronous reset in the design leads to
constant value on a Functional Flip-Flop in the deassert mode. See Case 1.

Consequences of Not Fixing
If you do not fix this violation, a constant value reaches the Functional Flip-
Flop during deassertion of the synchronous reset signal.

How to Debug and Fix
To debug this violation, open the incremental schematic. Check the resets
that are causing the flip-flops to be in deassert mode at inactive values.

To fix this violation, correct the values of the resets in the SGDC file.

Message 2

The following message appears if you do not specify an active value for the
<reset-name> synchronous reset in the SGDC file:

[SRST03] [ERROR] Active value for synchronous reset '<reset-
name>' is not specified in SGDC

<type> The possible values are data and enable

<element-name> Is the output net name of the instance that is held constant
during the deassertion of the synchronous reset.

For RTL designs, this argument is the name of the output
net of the corresponding flip-flop or latch.

For library cells which do not have functional attributes, such
as memory cells, this argument is the name of the input pin.

For netlist designs, if the report_inst_for_netlist parameter
is set to yes, this argument is the instance name otherwise
it is the same as in case of RTL designs.

Argument Description
877
Synopsys, Inc.

Reset Information Rules

Rules in SpyGlass CDC
Potential Issues
This violation appears if you do not specify an active value for a
synchronous reset in the design.

Consequences of Not Fixing
If you do not fix this violation then incorrect value of synchronous reset
may cause some of the functional flip-flops to be held constant during the
deassertion.

How to Debug and Fix
To fix this violation, specify an active value of the reset in the SGDC file.

Message 3

The following message appears if you specify the <reset-val> active
value that is not supported for the <reset-name> synchronous reset:

[SRST04] [ERROR] Unsupported active value '<reset-val>'
specified for synchronous reset '<reset-name>' is ignored

The arguments of the above message are explained below:

Potential Issues
This violation appears if you specify an active value that is not supported
for a synchronous reset in the design. For example, the value X is not
supported.

Consequences of Not Fixing
If you do not fix this violation then incorrect value of synchronous reset

Argument Description

<reset-name> User-specified or automatically-inferred reset signal

<reset-val> Active value of the reset specified in the SGDC file
878
Synopsys, Inc.

Reset Information Rules

Rules in SpyGlass CDC
may cause some of the functional flip-flops to be held constant during the
deassertion.

How to Debug and Fix
To fix this violation, specify a valid active value of the reset in the SGDC
file.

Message 4

The following message appears if during deassertion of the
<reset-name> synchronous reset, the data pin of the
<element-name> element is held constant because of an unknown value
reaching the enable pin of a Functional Flip-Flop:

[SRST02] [WARNING] Data pin of '<element-name>' may be held
constant at '<constant-value>' either due to deassertion of
synchronous reset '<reset-name>' or data tied to constant

Potential Issues
This violation appears if the enable reaching the enable pin of a Functional
Flip-Flop is unknown, and the data pin of the flip-flop becomes constant
when a synchronous reset deasserts. For details, see Case 3.

Consequences of Not Fixing
If you do not fix this violation, a constant value reaches the Functional Flip-
Flop.

How to Debug and Fix
To debug this violation, open the incremental schematic. Check the resets
that are causing the flip-flops at inactive values.

To fix this violation, correct the values of the resets in the SGDC file.

Example Code and/or Schematic

Consider the scenario shown in the following figure:
879
Synopsys, Inc.

Reset Information Rules

Rules in SpyGlass CDC
FIGURE 58.

In the above scenario, the Ar_syncrst_setupcheck01 rule violation (error,
warning, or no violation) depends on three cases: Case 1, Case 2, and Case
3.

Case 1

For the scenario shown in Figure 58, consider that you set the value of
enable to 1, as shown below:

set_case_analysis -name enable -value 1

In this case, during deassertion of the synchronous reset rst, the value 1
reaches to the D pin of the f1 flip-flop and EN becomes 0. Since the
constant on D is due to synchronous reset deassertion only, the
Ar_syncrst_setupcheck01 rule reports an error (Message 1).

Case 2

For the scenario shown in Figure 58, consider that you set the value of
enable to 0, as shown below:

set_case_analysis -name enable -value 0

D

EN

rst

in

enable

f1

reset -name rst -sync -value 0
set_case_analysis -name in -value 1

// constr.sgdc
880
Synopsys, Inc.

Reset Information Rules

Rules in SpyGlass CDC
In this case, the Ar_syncrst_setupcheck01 rule does not report any
violation because the constant reaching at the enable path is generated by
the set_case_analysis constraint instead of reset deassertion.

Case 3

For the scenario shown in Figure 58, consider that you do not specify any
value for enable.

Since the value of enable is unknown, the Ar_syncrst_setupcheck01 rule
reports a warning (Message 4) only if the rst reset is present in the input
cone of enable. Since this holds true in Figure 58, a warning appears.

However, if rst was not present in the input cone of enable, this rule
would not have reported a violation.

Default Severity Label

Error

Rule Group

SETUP

Reports and Related Files

A spreadsheet file containing all violations of this rule
881
Synopsys, Inc.

Reset Information Rules

Rules in SpyGlass CDC
Ar_syncrstTree
Prints the synchronous reset tree

When to Use

Use this rule to detect all the flip-flops with synchronous resets (reset -
sync).

Prerequisites

Specify resets by using the reset constraint with the -sync argument.

Description

The Ar_syncrstTree rule generates a synchronous reset tree for the
synchronous resets (reset -sync) specified in an SGDC file.

Rule Exceptions

While traversing the design to generate a reset tree, this rule does not
traverse beyond the following objects:
 Black box objects that are specified without assume_path

 Sequential elements that are not flip-flops

Parameter(s)

use_inferred_clocks: Default value is no. Set this parameter to yes to use
the auto-generated clock information.

Constraint(s)

reset (Mandatory): Use this constraint with the -sync argument to specify
synchronous reset signals in your design.

Messages and Suggested Fix

The following message appears to indicate that a synchronous reset tree is
generated:

[INFO] Synchronous Reset Tree generated.
882
Synopsys, Inc.

Reset Information Rules

Rules in SpyGlass CDC
Potential Issues
None

Consequences of Not Fixing
None

How to Debug and Fix
To debug the violation of this rule, perform the following steps:
1. Double-click on the message in GUI.

This displays the design Sync Reset Tree window, as shown in the
following figure:

FIGURE 59. The Design Reset Tree Window

2. Review the reset tree and the sequential cells/black boxes driven by it.
The reset tree shows a reset polarity for each leaf-level cell, such as a
flip-flop, a latch, or a black box. In the reset tree:
 The (+) suffix indicates a positive reset polarity.
883
Synopsys, Inc.

Reset Information Rules

Rules in SpyGlass CDC
 The (-) suffix indicates a negative reset polarity.

 The (x) suffix indicates that reset polarity could not be uniquely
determined.

Example Code and/or Schematic

Consider the following files specified for SpyGlass analysis:
884
Synopsys, Inc.

Reset Information Rules

Rules in SpyGlass CDC
For the above example, the Ar_syncrstTree rule generates the following
reset tree:

 module top(clk,d, in1, in2, in3,in4);
 input clk,d, in1, in2, in3, in4;
 reg t1, t2, t3, Q, t4;
 wire temp1, temp2, temp3,temp4;
 always @ (clk)
 begin
 if (clk == 1'b1)
 Q <= d;
 end // End Latch

 always@(posedge clk)
 if(Q)
 t1 = 1'b0;
 else
 t1 = d;
BB C1(in1,in2,temp2,temp3);
wire bbRst= temp2 & in3;
always@(posedge clk)
 if(bbRst)
 t2 = 1'b0;
 else
 t2 = d;
always@(posedge clk)
 if(temp1)
 t3 = 1'b0;
 else
 t3 = d;
wire in = !in4;
wire inn = in;
FD1 A(.D(inn),.CP(clk),.Q(temp4));
always@(posedge clk)
 if(temp4)
 t4 = 1'b0;
 else
 t4 = d;

 endmodule

module BB(in1,in2,q1,q2);
input in1,in2;
output q1,q2;

endmodule

//test.v // constr.sgdc

current_design top
reset -sync -name in3
reset -sync -name in4
885
Synopsys, Inc.

Reset Information Rules

Rules in SpyGlass CDC
FIGURE 60. Synchronous reset tree generated by the Ar_syncrstTree rule

Default Severity Label

Info

Rule Group

FIND

Reports and Related Files

The SyncRstTree Report
886
Synopsys, Inc.

Reset Information Rules

Rules in SpyGlass CDC
Ar_glitch01
Glitch in reset paths

When To Use

Use this rule to detect glitch-prone reset circuits.

Description

Some glitches on the reset pin of a flip-flop might result in a metastable
state. For example, consider an active low reset pin. A glitch of the form
010 on the logic driving the reset pin does not result in a metastable state.
However, a glitch of the form 101 on the reset pin can cause metastable
behavior.

Intuitively, a 010 glitch cannot cause a metastable state because after the
transient transition to 1, the flip-flop would return to the reset state of 0
although it might produce a temporary output of 1 on the Q pin of the flop
as shown in the following figure:

FIGURE 61.

However, as shown in the above figure, a 101 glitch can cause
metastability because the flip-flop can be in two possible states after the
glitch (either 0 if the glitch was long enough to cause the flip-flop to reset
887
Synopsys, Inc.

Reset Information Rules

Rules in SpyGlass CDC
its value or 1 if the glitch wasn't long enough for the flip-flop to reset its
value). Note that this analysis assumes that data and clock pins of the flop
are not changing at the same time as reset pin.

NOTE: Spyglass CDC provides the Reset_check07 rule that reports presence of
combinational logic on reset paths. Similarly, when a reset diverges and converges
back, it is reported by the Ar_converge01 rule. These two rules detect specific
structures in reset path that are prone to glitch. The Ar_glitch01 rule detects all the
possible cases where multiple input changes at the input of the reset pin and can
result in glitch.

The Ar_glitch01 rule reports glitch-prone reset logic.

Consider the following logic driving the active-low reset pin of a flip-flop:

FIGURE 62.

In the above logic, multiple input changes at the input of the reset pin can
result in a 101 glitch when:
 The steady value of a function before and after the change is equal to 1,

and
 There is an intermediate transition (say t) that the function can pass

through while changing values so that the value of the function at t is 0.

For example, the transition in Figure 62 happens from a'bc (011) to abc'
(110). During this transition, if c changes to 0 before a changes to 1, the
intermediate transition a'bc'(010) occurs, which generates an
intermediate value of 0. As this transition sequence results in the 101
transition on the active-low reset pin, the flip-flop can become metastable.
888
Synopsys, Inc.

Reset Information Rules

Rules in SpyGlass CDC
Resets Considered by the Ar_Glitch01 Rule

The Ar_glitch01 rule considers all the inferred reset signals in the reset
paths for glitch checking. For example, this rule infers the following resets:
 Primary resets specified by the reset constraint. This scenario is shown

in the following schematic:

FIGURE 63.

 Derived Resets

 Resets from the output of the flip-flops without any preset/clear reset
pin, as explained in the following figure:

FIGURE 64.

 Resets from the output of a black box. This scenario is shown in the
following figure:

/ SGDC File:
reset -name rst -value 0

D

CP
CP

reset Considered for Ar_glitch01
rule checking
889
Synopsys, Inc.

Reset Information Rules

Rules in SpyGlass CDC
FIGURE 65.

Parameter(s)

 report_inst_for_netlist: Default value is no. Set this parameter to yes to
report violating instance name in case of netlist designs and leaf-level
net name for RTL designs.

 use_inferred_resets: Default value is no. Set this parameter to yes to use
auto-generated reset information.

 ignore_set_case: Default value is none. Set this parameter to
Ar_glitch01 to ignore simulation of block path traversal performed by
set_case_analysis constraint.

 ignore_bus_resets: Default value is yes. Set this parameter to no to
generate reset vector nets, which are not struct nets, in the
autoresets.sgdc and the generated_resets.sgdc file.

Constraint(s)

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

 reset (Optional): Use this constraint to specify reset signals in your
design.

Messages and Suggested Fix

The following message appears if the design contains a glitch-prone logic:
890
Synopsys, Inc.

Reset Information Rules

Rules in SpyGlass CDC
[WARNING] Signal <signal-name> driving <pin-name> pin of
element <element-name> has glitch

The arguments of the above message are explained below:

Potential Issues
This violation appears if your design contains glitch-prone reset logic.

Consequences of Not Fixing
If you do not fix this violation, your design will contain metastability issues.

Example Code and/or Schematic

Consider the following files specified for SpyGlass analysis:

For the above example, the Ar_glitch01 rule reports the following three

Argument Description
<signal-name> Name of the net driving the reset/set pin of a flip-flop
<pin-name> Set/reset pin of a flip-flop or latch (active low or active

high)
<element-name> Name of the flip-flop or latch

module top(d[1:0],clk1,clk2,sel,rst1,

input clk1,clk2,rst1,rst2,rst3,sel;
input [1:0] d;
output reg [1:0] q;

wire ff3,q5;
reg q3,q4,q2_2,q3_2,q_2,w1;

assign ff3 = rst1 & rst2;
assign q5 = ff3 || rst3;

always @(posedge clk1 or posedge q5)
if(q5 == 1'b1)
q <= 2'b00;
else
q <= d;

endmodule

// test.v

 rst2,rst3,q[1:0]);
current_design top

clock -name clk1
clock -name clk2

reset -name rst1 -value 0
reset -name rst2 -value 0
reset -name rst3 -value 0

// constr.sgdc
891
Synopsys, Inc.

Reset Information Rules

Rules in SpyGlass CDC
violations:

Violation 1: Signal top.rst1 driving 'clear' pin of element
'top.q[1:0]' has glitch

Violation 2: Signal top.rst2 driving 'clear' pin of element
'top.q[1:0]' has glitch

Violation 3: Signal top.rst3 driving 'clear' pin of element
'top.q[1:0]' has glitch

For violation 1, the Incremental Schematic is as follows:
schematic

FIGURE 66. Schematic of the Ar_glitch01 rule violation

Schematic Highlight

Path from the specified reset to the set/reset pin of the flip-flop/latch/
sequential cell.

Default Severity Label

Warning

Rule Group

ADV_CLOCKS
892
Synopsys, Inc.

Reset Information Rules

Rules in SpyGlass CDC
Reports and Related Files

No report or related file
893
Synopsys, Inc.

Reset Information Rules

Rules in SpyGlass CDC
Reset_info01
Reports signals that are likely to be asynchronous and synchronous
preset and clear signals

When to Use

Use this rule to find asynchronous and synchronous preset and clear
signals in a design.

Description

The Reset_info01 rule reports asynchronous and synchronous preset and
clear signals in a design.

This rule identifies the following types of asynchronous/synchronous preset
or clear signals:

The following figure shows the scenario in which this rule reports a
violation:

FIGURE 67. The Reset_info01 Rule Violation

In the above scenario, in1 is used asynchronously as it reaches the
asynchronous reset pin of the flip-flop. Therefore, the Reset_info01 rule
reports a violation in this case.

Traced to Reset Type
Primary inputs Primary Presets/Clears
Black box instances and instances of ASIC cells
whose functional description is not available

Black box Presets/Clears

Outputs of flip-flops Derived Presets/Clears
Hanging nets Undriven Presets/Clears
Outputs of latches or tristate gates Gated Preset/Clear

in1
894
Synopsys, Inc.

Reset Information Rules

Rules in SpyGlass CDC
Rule Exceptions

This rule does not report presets or clears tied to a constant value in a
design or specified as a constant signal by using the set_case_analysis
constraint.

Parameter(s)

 filter_named_resets: Default value is clk, clock, scan. Specify a list of
strings to auto-infer asynchronous resets that do not match the
specified strings.

 ignore_bus_resets: Default value is yes. Set this parameter to no to
generate reset vector nets, which are not struct nets, in the
autoresets.sgdc and the generated_resets.sgdc file.

 cdc_reduce_pessimism: Default value is mbit_macro,
no_convergence_at_syncreset, no_convergence_at_enable.
Set this parameter to an appropriate value to ignore clock domain
crossings involving black box instances and clock domain crossings with
destinations having unused, hanging, or blocked outputs. For possible
values, see Allowed Values of the cdc_reduce_pessimism Parameter.

 reset_reduce_pessimism: Default value is
filter_unused_synchronizer, same_data_reset_flop. Set the
value of this parameter to all_potential_resets to detect all the
potential resets in a design. For information on the other possible
values, see Possible Values to the reset_reduce_pessimism Parameter.

 handle_combo_arc: Default value is no. Set this parameter to yes so that
the clock/reset propagates from an input pin of a sequential library cell
if a combinational timing arc is specified from that pin to any output pin
of the cell.

 infer_constraint_from_abstract_blocks: Default value is no. Set this
parameter to a supported value to enable the supported rules infer
clock, reset, set_case_analysis constraints from similar constraint
defined in abstracted blocks.

Constraint(s)

 sync_reset_style (Optional): When a primary, black box, undriven, or
gated type reset does not follow synchronous reset style specified by
895
Synopsys, Inc.

Reset Information Rules

Rules in SpyGlass CDC
this constraint, the Reset_info01 rule does not report such source
resets. In addition, the autoresets.sgdc file also contains these kind of
resets in a commented form.

 reset (Optional): Use this constraint to specify reset signals in your
design.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

Messages and Suggested Fix

Message 1

The following message appears at the location where an asynchronous
preset candidate <rst-name> of type <rst-type> is first used in a
design:

[RstI1_1] [INFO] Candidate <Set | Clear>: <rst-name> of type
<rst-type>

Where <rst-type> can be:

 Primary Set, BlackBox Set, Derived Set, or Undriven Set for set
type of signals.

 Primary Clear, BlackBox Clear, Derived Clear, or Undriven
Clear for Clear type of signals.

Potential Issues
This violation appears if your design contains an asynchronous preset
signals or asynchronous clear signal.

Consequences of Not Fixing
None

How to Debug and Fix
For information on debugging, click How to Debug and Fix.

Message 2

The following message appears at the location where a synchronous preset
candidate <rst-name> of type <rst-type> is first used in the design:
896
Synopsys, Inc.

Reset Information Rules

Rules in SpyGlass CDC
[RstI1_2] [INFO] Candidate synchronous <Set | Clear>: <rst-
name> of type <rst-type>

Where <rst-type> can be:

 Primary Synchronous Set, BlackBox Synchronous Set,
Derived Synchronous Set, or Undriven Synchronous Set for
Set type of signals.

 Primary Synchronous Clear, BlackBox Synchronous Clear,
Derived Synchronous Clear, or Undriven Synchronous Clear
for clear type of signals.

Potential Issues
This violation appears if your design contains a synchronous preset or clear
signal.

Consequences of Not Fixing
None

How to Debug and Fix
For information on debugging, click How to Debug and Fix.

How to Debug and Fix
To debug the violation of this rule, perform the following steps:
1. Open the spyglass_reports/clock-reset/autoresets.sgdc file to review the resets

reported as probable resets.
2. View the Incremental Schematic for each reset reported by this rule.
3. If this is not a real reset, remove it from the SGDC file and copy the final

SGDC file to the desired location.
4. You can also view case analysis settings along with the violation of this

rule.

Example Code and/or Schematic

Consider the following design file given as an input for SpyGlass analysis:

module top(data, out, clock, reset, enable);
input data, clock, reset, enable;
output out;
reg out;
897
Synopsys, Inc.

Reset Information Rules

Rules in SpyGlass CDC
wire rst;
wire w1, w2;
assign w1 = reset;
assign w2 = enable;
assign rst = w1 & w2;
bbox I1(rst, data);
always @(posedge clock or posedge rst)
if(rst)
out <= 0;

else
out <= data;

endmodule

For the above example, the Reset_info01 rule reports the top.enable and
top.reset signals.

The following schematic shows the path from the reset source to the reset
pin of the flip-flop for the top.enable signal:

FIGURE 68. Schematic of the Reset_info01 Rule Violation

Schematic Details

The Reset_info01 rule highlights the path from a reset source to a reset pin
of a flip-flop in the schematic.

Rule Group

FIND
898
Synopsys, Inc.

Reset Information Rules

Rules in SpyGlass CDC
Default Severity Label

Info

Reports and Related Files

 The Clock-Reset-Summary Report

 autoresets.sgdc: This file contains all primary resets and black box
presets/clears specified in an SGDC format.

NOTE: Undriven presets/clears are not reported in the autoresets.sgdc file as presets/clears
are not expected to be undriven.

 generated_resets.sgdc: This file contains all derived presets/clears.
NOTE: Resets that are categorized as definite and probable are reported in autore-

sets.sgdc and generated_resets.sgdc files only.

 A spreadsheet file that contains the following two tabs:

 Asynchronous Reset: This tab contains primary and black box
asynchronous reset and its active value (similar to autoresets.sgdc)

 Synchronous Reset: This tab contains primary and black box
synchronous reset and its active value (similar to
generated_resets.sgdc)

If the gen_sync_reset_style_info parameter is set to yes, this spreadsheet
also shows the following information:
 Load

 Presence of combinational logic in reset path

 Polarity

 Presence of the sync_set_reset pragma

 Reset usage in first if of sequential block
899
Synopsys, Inc.

Reset Information Rules

Rules in SpyGlass CDC
Reset_info02
Prints an asynchronous preset and clear tree

When to Use

Use this rule to generate a reset tree.

Prerequisites

Specify reset signals by using the reset constraint or the use_inferred_resets
parameter.

Description

The Reset_info02 rule prints a preset/clear tree for the specified preset/
clear signals.

Rule Exceptions

While traversing a design to generate reset trees, this rule does not
traverse beyond following objects:
 Black box pins without assume_path

 Sequential library cells without a functional arc

 Pins other than the resets of sequential elements

Parameter(s)

 use_inferred_resets: Default value is no. Set this parameter to yes to use
auto-generated reset information.

 filter_named_resets: Default value is clk, clock, scan. Specify a list of
strings to auto-infer asynchronous resets that do not match the
specified strings.

 reset_reduce_pessimism: Default value is
filter_unused_synchronizer, same_data_reset_flop. Set the
value of this parameter to all_potential_resets to detect all the
potential resets in a design. For information on the other possible
values, see Possible Values to the reset_reduce_pessimism Parameter.
900
Synopsys, Inc.

Reset Information Rules

Rules in SpyGlass CDC
Constraint(s)

 reset (Optional): Use this constraint to specify reset signals.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

Messages and Suggested Fix

The following message appears to indicate that a reset tree is generated:

[INFO] Reset Tree generated

Potential Issues
None

Consequences of Not Fixing
None

How to Debug and Fix
To debug the violation of this rule, perform the following steps:
1. Click on the message in GUI.

This displays the design Reset Tree window, as shown in the following
figure:

FIGURE 69. The Design Reset Tree Window

2. Review the reset tree and the sequential cells/black boxes driven by it.
901
Synopsys, Inc.

Reset Information Rules

Rules in SpyGlass CDC
The reset tree shows a reset polarity for each leaf-level cell, such as a
flip-flop, a latch, or a black box. In the reset tree:
 The (+) suffix indicates a positive reset polarity.

 The (-) suffix indicates a negative reset polarity.

 The (x) suffix indicates that reset polarity could not be uniquely
determined.

The reset tree report is generated in a text format under ./
spyglass_reports.

Example Code and/or Schematic

Consider the following design file given as an input for SpyGlass analysis
(the use_inferred_resets parameter is set to yes in this case):

module top(data, out, clock, reset, enable);
input data, clock, reset, enable;
output out;
reg out;
wire rst;
wire w1, w2;
assign w1 = reset;
assign w2 = enable;
assign rst = w1 & w2;
bbox I1(rst, data);
always @(posedge clock or posedge rst)
if(rst)
out <= 0;

else
out <= data;

endmodule

After SpyGlass analysis, double-click on the message of the Reset_info02
rule. The following reset tree is generated:
902
Synopsys, Inc.

Reset Information Rules

Rules in SpyGlass CDC
FIGURE 70. The Design Reset Tree Window

Default Severity Label

Info

Rule Group

FIND

Reports and Related Files

The RSTree Report
903
Synopsys, Inc.

Reset Information Rules

Rules in SpyGlass CDC
Reset_info09
Reports unconstrained asynchronous reset nets and reset nets tied
to a constant value

Description

The Reset_info09 rule runs Reset_info09a and Reset_info09b rules.
904
Synopsys, Inc.

Reset Information Rules

Rules in SpyGlass CDC
Reset_info09a
Reports unconstrained asynchronous reset nets

When to Use

Use this rule to check correctness of setup for reset checks by detecting
unconstrained asynchronous nets in a design.

Description

The Reset_info09a rule reports unconstrained asynchronous reset nets.

The following nets are considered as unconstrained:
 Reset nets that are not specified in the constraints file.

 Reset nets that are specified in the constraints file, but are not
propagated due to the presence of some unspecified cells.

Parameter(s)

 use_inferred_resets: Default value is no. Set this parameter to yes to use
auto-generated reset information.

 filter_named_resets: Default value is clk, clock, scan. Specify a list of
strings to auto-infer asynchronous resets that do not match the
specified strings.

 Reset_info09a_filter_on_constant_clock: Default value is no. Set this
parameter to yes to report violation messages of the Reset_info09a
rule for flops whose clock pin is receiving a constant value.

 report_common_reset: Default value is no. Set this parameter to yes to
enable the Reset_info09a rule to find the common reset source by
skipping buffers/inverters and MUX/combo gates acting as buffer.

Constraint(s)

set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

Messages and Suggested Fix

The following message appears at the location of a flip-flop instance where
a net <net-name> connected to a reset pin is unconstrained:
905
Synopsys, Inc.

Reset Information Rules

Rules in SpyGlass CDC
[INFO] Reset net <net-name> is unconstrained

Potential Issues
This violation appears if your design contains either of the following:
 Reset nets that are not specified in an SGDC file

 Reset nets that are specified in an SGDC file but are not propagated
because of blocked paths

Consequences of Not Fixing
If all sequential elements in a design are not controlled by external resets,
you may get incorrect functional results.

It might also have impact on other reset-related rule checking if the issues
reported by this rule are not fixed.

How to Debug and Fix
To debug the violation of this rule, perform the following steps:
1. View the Incremental Schematic of the violation message.
2. Back-trace the reset net that is reported as un-constrained.

Perform appropriate actions based on the following possibilities:
 The reported net is driven by a black box, and the reset defined in

the SGDC file is reaching to this black box.
Action: Set the assume_path constraint.

 The reported net is unconnected.
Action: Update the design.

 The reported net is driven by a combinational logic that blocks the
reset defined in the SGDC file.

Action: Enable Show Case Analysis in the Incremental Schematic window,
and view if constant propagation blocks the defined reset net.

 The reported net was driven by the signal that is a reset candidate,
but it not defined in the SGDC file.
Action: Refer to the messages of the Propagate_Resets rule.

Example Code and/or Schematic

Consider the following files specified in SpyGlass analysis:
906
Synopsys, Inc.

Reset Information Rules

Rules in SpyGlass CDC
For the above example, the Reset_info09a rule reports a violation as the
test.nrst reset net is unconstrained. This is shown in the following
schematic:

FIGURE 71. Schematic of the Reset_info09a Rule Violation

To fix this violation, perform the following actions:
 Provide a functional definition of the BUF library cell for propagation of

the rst signal.

 Apply the following reset constraint on a net connected to the output pin
of BUF:

reset -name nrst -value 0

module test(clk1,rst,in,out);
input clk1,rst,in;
output reg out;

BUF B1(.A(rst),.Z(nrst));

always@(posedge clk1 or negedge nrst)
 if(!nrst)
 out <= 1 'b0;
 else
 out <= in;
endmodule

// test.v

current_design test
reset -name rst

// constraints.sgdc
907
Synopsys, Inc.

Reset Information Rules

Rules in SpyGlass CDC
Schematic Details

The Reset_info09a rule highlights the path from an unconstrained reset net
to the flip-flop reset pin in schematic.

Default Severity Label

Info

Rule Group

INFORMATION

Reports and Related Files

No report and related file
908
Synopsys, Inc.

Reset Information Rules

Rules in SpyGlass CDC
Reset_info09b
Reports asynchronous reset nets that are tied to a constant value

When to Use

Use this rule to detect asynchronous reset nets in a design that are tied to
constant value.

Description

The Reset_info09b rule reports asynchronous resets (specified in an SGDC
file or automatically-inferred) that are tied to an active or inactive constant
value.

Asynchronous reset nets are tied to a constant value in any of the following
ways:
 Constrained by set_case_analysis constraint

 Connected to supply nets

 Connected to tied-off/on cells

Consider the scenario shown in the following figure:

FIGURE 72. The rst reset connected to a tied-off cell

In the above scenario, the Reset_info09b rule reports a violation for the
rst reset as it is connected to a tied-off cell.

Parameter(s)

use_inferred_resets: Default value is no. Set this parameter to yes to use

Flip-Flop/Sequential Element

Clear/preset pinrst

Tied-off

module
909
Synopsys, Inc.

Reset Information Rules

Rules in SpyGlass CDC
auto-generated reset information.

Constraint(s)

 assume_path (Optional): Use this constraint to specify paths through
black box instances.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

 sgdc: (Optional): Use this constraint to specify a block-level SGDC file to
be imported or specify blocks for which block-level SGDC file is to be
generated.

Messages and Suggested Fix

The following message appears at the location of a flip-flop instance where
the reset net <net-name> is tied to its inactive/active value with a
constant value <value>:

[INFO] Reset net <net-name> is tied to its inactive value with
a constant value <0|1>

[ERROR] Reset net <net-name> is tied to its active value with a
constant value <0|1>

Potential Issues
This violation appears if your design contains sequential elements whose
reset or set pin is tied to constant value.

Consequences of Not Fixing
Such constant resets may be unintentional constant resets in your design
and may result in functional issues.

How to Debug and Fix
To debug the violation of this rule, perform the following steps:
1. View the Incremental Schematic of the violation message.
2. Enable Show Case Analysis to check constant propagation in the

schematic that is causing the reset to be constant.
3. Check the case analysis settings.
910
Synopsys, Inc.

Reset Information Rules

Rules in SpyGlass CDC
Example

Consider the following files specified in SpyGlass analysis:

In the above example, the Reset_info09b rule reports a violation as the
test.reset reset net is tied to constant value 1. This is shown in the
following schematic:

FIGURE 73. Schematic of the Reset_info09b Rule Violation

To fix this violation, review and change the supply net connected to the OR
gate.

Schematic Details

The Reset_info09b rule highlights the path from a reset pin to a net where

module test(clk1,in,out,rst,preset);

input clk1;
input in,rst,preset;
output out;
reg t1;
wire reset,en;
assign en = 1'b1; // tied at inactive value
assign reset = rst | en;
always@(posedge clk1 or negedge reset) // RTL flip-flop
 if(!reset)
 t1 <= 1'b0;
 else
 t1 <= in;
 assign out = t1;

endmodule

// test.v // constraints.sgdc

current_design test
clock -name clk1
reset -name rst
911
Synopsys, Inc.

Reset Information Rules

Rules in SpyGlass CDC
the constant value is implied.

Default Severity Label

Info

Rule Group

INFORMATION

Reports and Related Files

No report or related file
912
Synopsys, Inc.

Clock and Reset Information Rules

Rules in SpyGlass CDC
Clock and Reset Information Rules
The SpyGlass CDC solution has the following rule for generating clock and
reset information:

Rule Reports
Clock_Reset_info01 SpyGlass CDC solution usage matrix
913
Synopsys, Inc.

Clock and Reset Information Rules

Rules in SpyGlass CDC
Clock_Reset_info01
Generates the Clock-Reset Matrix

When to Use

Use this rule to find the clock domains of a design where an asynchronous
reset is applied and vice-versa.

Prerequisites

Specify clock signals in any of the following ways:
 By using the clock constraint

 By setting the use_inferred_clocks parameter to yes to use auto-
generated clock signals

 By using a combination of both the above methods

Specify reset signals in any of the following ways:
 By using the reset constraint

 By setting the use_inferred_resets parameter to yes to use auto-
generated clock signals

 By using a combination of both the above methods

Description

The Clock_Reset_info01 rule generates a clock-reset usage matrix for the
specified clock and preset/clear signals.

Parameter(s)

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
the auto-generated clock information.

 use_inferred_resets: Default value is no. Set this parameter to yes to use
the auto-generated reset information.

 filter_named_clocks: Default value is rst, reset, scan, set. Set this
parameter to a list of strings.

 filter_named_resets: Default value is clk, clock, scan. Specify a list of
strings to auto-infer asynchronous resets that do not match the
specified strings.
914
Synopsys, Inc.

Clock and Reset Information Rules

Rules in SpyGlass CDC
 same_domain_at_gate: Default value is no. Set the value of the
parameter to an allowed value to optimize the inference of domains on
clock merging gates.

Constraint(s)

 clock (Optional): Use this constraint to specify clock signals.

 reset (Optional): Use this constraint to specify reset signals.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

Message Details

The following message appears when this rule is run:

[INFO] Clock-Reset Matrix information generated for Clock-
Reset-Summary report

Potential Issues
None

Consequences of Not Fixing
None

How to Debug and Fix
To debug the violation of this rule, perform the following steps:
1. Open The Clock-Reset-Summary Report, and refer to Section F: Clock-Reset

Matrix Section.
2. Look along a column length-wise to know the clock names and domains

where a particular reset is used.
3. Look along row-wise to know the asynchronous resets used in a

particular domain.

The Clock_Reset_info01 rule is an informational rule. Since, this rule
generates information for The Clock-Reset-Summary Report, not running it
would mean that the corresponding report section is not generated.

Example Code and/or Schematic

Consider a module, myDU, with the following clock-reset usage:

 clk1 and preset1 are used together.
915
Synopsys, Inc.

Clock and Reset Information Rules

Rules in SpyGlass CDC
 clk1 & clk2 are used with preset12.

 clk2 and rst2 are used together.

 clk1 or clk2 is not used with rst3.

 clk3 is not used with any of preset1, preset12, or rst2.

 clk3 and rst3 are used together.

The clk1 and clk2 clocks are in the same domain, and the clk3 clock is
in a different domain.

Now consider that you specify the following design constraints
specifications while analyzing your design:

current_design myDU
clock -name myDU.clk1 -domain A
clock -name myDU.clk2 -domain A
clock -name myDU.clk3 -domain B
reset -name myDU.preset1 -value 1
reset -name myDU.preset12 -value 1
reset -name myDU.rst2 -value 1
reset -name myDU.rst3 -value 1

In the above scenario, this rule generates the following matrix for each
design unit:

Resets myDU.preset1 myDU.preset12 myDU.rst2 myDU.rst3
===
Domains
 A myDU.clk1 myDU.clk1,myDU.clk2 myDU.clk2 -
 B - - - myDU.clk3

The dash character (-) in a matrix cell indicates that there is no interaction
between clock-domain and reset signal.

Default Severity Label

Info

Rule Group

INFORMATION
916
Synopsys, Inc.

Clock and Reset Information Rules

Rules in SpyGlass CDC
Reports and Related Files

Section F: Clock-Reset Matrix Section of The Clock-Reset-Summary Report
917
Synopsys, Inc.

Reset Synchronization Rules

Rules in SpyGlass CDC
Reset Synchronization Rules
The SpyGlass CDC solution has the following rules for checking reset
synchronization status:

Rule Reports

Ar_resetcross01 Reset domain crossings between sequential elements of
the same clock domain

Ar_asyncdeassert01 Reports if reset signal is asynchronously de-asserted
Ar_syncdeassert01 Reports if reset signal is synchronously de-asserted or

not de-asserted at all
Ar_sync01 Reports synchronized reset signals in the design
Ar_unsync01 Reports unsynchronized reset signals in the design
Reset_sync01 Asynchronous reset signals that are not de-asserted

synchronously with the corresponding clock signal
Reset_sync02 Asynchronous resets used in a clock domain and

generated in one of its asynchronous clock domains
Reset_sync03 Multi-flop reset synchronizers in the design
Reset_sync04 Asynchronous resets synchronized more than once in the

same clock domain
SGDC_cdc_define_tr
ansition01

Checks for compatible values in cdc_define_transition
918
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
Using the Reset Domain Crossing (RDC) Flow
NOTE: The RDC flow works only with the Advanced_RDC license feature.

The Ar_resetcross01 rule reports a warning for the reset-domain crossings
between the sequential elements of the same clock domain. Such crossings
may cause metastability issues.

However, if you know the crossings that do not cause metastability issues,
you can filter such crossings to reduce noise from the Ar_resetcross01 rule.

To filter RDCs, specify an enable condition for these crossings by using the
qualifier constraint so that these crossings are qualified as
synchronized. Such crossings are then reported as informational messages
instead of warnings.

For details, see Enhancements to the qualifier Constraint and Example of
Specifying an Enable Condition.

The Setup_rdc01 identifies reset domain crossings that have the same
asynchronous resets at both the source and destination but with side
inputs in between the resets.

The Ac_resetcross01 rule reports invalid reset ordering between sequential
elements of the same clock domain.

The RFPSetup rule reports a violation if the reset_filter_path constraint is
not used to filter reset domain crossings. The SGDC_qualifier23 rule perform
sanity checks related to the qualifier constraint.

The following table lists the parameters that support the RDC flow.

The The SynchInfo Report report shows the synchronized RDCs.

Enhancements to the qualifier Constraint

To filter a reset-domain crossing reported by the Ar_resetcross01 rule,

enable_sim_check_rdc enable_sync_check_rdc
ignore_qualifier_mismatch_rdc rdc_reduce_pessimism
show_unsync_qualifier_rdc enable_multiflop_sync
enable_diff_clkdom_rdc report_sync_rdc
rdc_allow_sync_reset
919
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
specify an enable condition by using one of the Syntax of the qualifier
Constraint in the RDC Flow.

In this syntax, -name (existing argument) and -rdc (new argument) of
the qualifier constraint are the mandatory arguments. All the new
arguments are described in the topic, New Arguments of the qualifier
Constraint.

The -name argument accepts the name of an enable signal to be used to
filter reset-domain crossings. See Example of Specifying an Enable Condition.

While specifying an enable signal, ensure the following:
 The enable signal should be either in the same clock domain as the

destination element (that is, driven in the same clock domain) or driven
from a port or black box for which no clock domain is specified.

 The enable signal should be either in the same destination reset domain
(that is, driven in the same reset domain as that of the destination
element) or driven from a port/black box for which no reset domain is
specified.

New Arguments of the qualifier Constraint

The qualifier constraint is enhanced to support the following new
arguments:
 -rdc (Mandatory)

Use this argument to enable the RDC flow in which you can specify an
enable signal to filter reset-domain crossings.

 -from_rst <src-rst> (Optional)
Use this argument to specify the source reset in a reset-domain
crossing.

 -to_rst <dest-rst> (Optional)
Use this argument to specify the destination reset in a reset-domain
crossing.

See also:
 Arguments Applicable in the RDC Flow

 Arguments Invalid in the RDC Flow
920
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
Syntax of the qualifier Constraint in the RDC Flow

The following usages of the qualifier constraint are applicable in the RDC
flow:

Arguments Applicable in the RDC Flow

The following existing arguments of the qualifier constraint are
applicable in this flow:

Arguments Invalid in the RDC Flow

The following existing arguments of the qualifier constraint are not
applicable in this flow:

Usage 1:

qualifier
-rdc
-name
-from_rst
-to_rst

Usage 2:

qualifier
-rdc
-name
from_rst
-to_rst
-to_clk

Usage 3:

qualifier
-rdc
-name
-from_rst
-to_rst
-to_domain

Usage 4:

qualifier
-rdc
-name
-from_obj
-to_obj

-rdc -from_rst -to_rst -to_clk -to_domain
-from_obj -to_obj -name

-from_clk -from_domain -thru_obj -crossing -type
-enable -ignore -strict
921
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
Example of Specifying an Enable Condition

Consider the example shown in the following figure:

FIGURE 74. Schematic showing invalid reset crossings

To filter the above-reported crossing so that it is not reported as invalid,
specify an enable signal for the crossing by using the following qualifier
constraint:

current_design top1
clock -name clk1
reset -name r1 -value 0
reset -name r2 -value 0

SGDC File:

Violation schematic showing invalid reset crossings
between the r1 and r2 resets
922
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
qualifier -from_rst r1 -to_rst r2 -name qual -rdc

The above constraint qualifies the crossing between the r1 and r2 resets as
synchronized. Therefore, these crossings are reported as synchronized by
the Ar_resetcross01 rule.

The following figure shows the reporting of these crossings as synchronized
after you specify an enable signal using the qualifier constraint:

FIGURE 75. Crossings reported as synchronized crossings
923
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
Ac_resetcross01
Reports invalid reset ordering between sequential elements of the
same clock domain

When to Use

Use this rule when different asynchronous resets are used in flip-flops,
which are connected in the data path.

Prerequisites

Specify the following information before running this rule:
 Specify reset signals by using the reset constraint.

 Enable this rule by specifying the set_goal_option addrules
{Ac_resetcross01} command in a project file.

Description

The details of the Ac_resetcross01 rule are covered under the following
topics:
 Reason for the Ac_resetcross01 Rule Violation

 Features of the Ac_resetcross01 Rule

 Rule Exceptions

NOTE: The Ac_resetcross01 rule will be deprecated in a future release. The functionality of
the Ac_resetcross01 rule is covered by the Ar_resetcross01 rule.

Reason for the Ac_resetcross01 Rule Violation

The Ac_resetcross01 rule reports a violation if there are paths between two
sequential elements that are clocked by the same clock domain but have
different asynchronous resets/sets. Such scenario is shown in the following
figure:
924
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
FIGURE 76. Scenario for the Ac_resetcross01 Rule Violation

In the above figure, there is always a possibility of set/clear on the first
flip-flop while the second flip-flop is active.

Features of the Ac_resetcross01 Rule

The Ac_resetcross01 rule has the following features:
 This rule checks only if both the connected sequential elements are

clocked by the same clock domain. If the clock domains are different,
the Ac_unsync01/Ac_unsync02 and Ac_sync01/Ac_sync02 rules
report a violation.

 This rule ignores combinational logic between sequential elements.

 This rule stops traversal on black boxes, sequential elements, blocked
paths, and primary ports.

 This rule checks for flip-flops, latches, or other sequential library cells
that have asynchronous set or reset pins.

 This rule checks if there is a path between sequential elements through
data or enable pins. For clock paths, this rule continues propagation
beyond clock gate enables.

RST

D

CLK

Q

RST

D

CLK

Q

CLK

RESET1 RESET2
925
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
 Reset propagation on the sequential elements is used by the
Propagate_Resets rule.

 This rule checks for both preset and clear pins of sequential element.

 If multiple resets reach to sequential elements and a reset is different
for both source and destination, this rule reports violation with respect
to the resets that are different.

Rule Exceptions

This rule does not report a violation for the cases in which:
 A reset is always inactive because of the set_case_analysis

constraint or power/ground connections.
 A destination instance does not have a preset or clear pin.

Parameter(s)

 report_inst_for_netlist: Default value is no. Set this parameter to yes to
report violating instance name in case of netlist designs and leaf-level
net name for RTL designs.

 filter_named_resets: Default value is clk, clock, scan. Specify a list of
strings to automatically infer asynchronous resets that do not match the
specified strings.

 filter_named_clocks: Default value is rst, reset, scan, set. Set this
parameter to a list of strings.

 report_all_reset_cross: Default value is no. Set this parameter to
yes to report violations on reset crossings in which the destination
receives no clear/set signal.

 report_for_single_busbit: Default value is no. Set this parameter to
yes to report violations for single bit of a bus.

 reset_reduce_pessimism: Default value is
filter_unused_synchronizer, same_data_reset_flop. Set the
value of this parameter to all_potential_resets to detect all the
potential resets in a design. For information on the other possible
values, see Possible Values to the reset_reduce_pessimism
Parameter.
926
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
 handle_combo_arc: Default value is no. Set this parameter to yes so that
the clock/reset propagates from an input pin of a sequential library cell
if a combinational timing arc is specified from that pin to any output pin
of the cell.

Constraint(s)

 reset (Mandatory): Use this constraint to specify reset signals in a
design.

 define_reset_order (Optional): Use this constraint to specify a reset order,
which determines the flow of data from one reset to another reset.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

Messages and Suggested Fix

Message 1

The following message appears at the location where an invalid reset
ordering is found between the source output net and the destination output
net:

[WARNING] Invalid reset ordering detected from <cell-type>
'<src-net>' (Reset: '<source-reset>') to <cell-type> '<dest-
net>' (Reset: <dest-reset>) that are clocked by '<clock-name>'

NOTE: If the report_inst_for_netlist parameter is set to yes, Message 2 is reported.

The arguments of the above message are explained below:

Potential Issues

Argument Description
<cell-type> It can be flop, latch, or sequential cell.
<src-net> Source output net
<source-reset> Source reset
<dest-net> Destination output net
<dest-reset> Destination reset
<clock-name> Comma-separated list of clock names reaching the

destination flip-flop
927
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
This violation appears if your design contains flip-flops that are connected
in a data path, but are triggered by different asynchronous resets.

Consequences of Not Fixing
If you do not fix this violation, it may result in setup/hold violations at the
destination flip-flop because of an asynchronous reset trigger on the source
flip-flop.

How to Debug and Fix
To debug and fix this violation, perform the following steps:
 Open the incremental schematic of the violation.

 Analyze the Reset Cone of the source and destination flip-flops in the
schematic.

 If the order of resets is such that the destination flip-flop is reset first,
define it as a valid reset order by using the define_reset_order
constraint.
For example, the following schematic shows a valid reset order:

FIGURE 77. Example of a valid reset order

In the above example, specify the following constraint to define a valid
reset order:

define_reset_order -from r1 -to r2
928
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
 However, if the order of resets is not known or if the source flip-flop is
reset first, make necessary corrections in the design so that no setup/
hold violations are reported.

Message 2

The following message appears when the report_inst_for_netlist
parameter is set to yes, and an invalid reset ordering is found from the
source instance pin to the destination instance pin:

[WARNING] Invalid reset ordering detected from <cell-type>
instance pin '<src-pin>' (Reset: '<src-reset>') to <cell-type>
instance pin '<dest-pin>' (Reset: <dest-reset>) that are
clocked by '<clock-name>'

The arguments of the above message are explained below:

Potential Issues
See Potential Issues.

Consequences of Not Fixing
See Consequences of Not Fixing.

How to Debug and Fix
See How to Debug and Fix.

Argument Description
<cell-type> It can be flop, latch, or sequential cell.
<src-pin> Source instance pin
<src-reset> Reset reaching source
<dest-pin> Destination instance pin
<dest-reset> Reset reaching destination
<clock-name> Comma-separated list of clock names reaching the destination

flip-flop
929
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
Example Code and/or Schematic

Consider the following files specified during SpyGlass analysis:

For the above example, the Ac_resetcross01 rule reports a violation
because of an invalid reset ordering present between the t1 flip-flop (reset
rst1) and the t2 flip-flop (reset rst2).

The following figure shows the spreadsheet generated in this case:

FIGURE 78. Spreadsheet generated by the Ac_resetcross01 rule

module test(clk1,clk2,clk3,rst1,rst2,in1,in2,q1,q2);
input clk1,clk2,clk3;
input rst1,rst2;
input in1,in2;
output q2,q1;
reg t1,t2,t3;
always@(posedge clk1 or negedge rst1)
 if(!rst1)
 t1 <= 1'b0;
 else
 t1 <= in1;
always@(posedge clk2 or posedge rst2)
 if(rst2)
 t2 <= 1'b0;
 else
 t2 <= t1;

always@(posedge clk3 or posedge rst2)
 if(rst2)
 t3 <= 1'b0;
 else
 t3 <= in2;
assign q1 = t2;
assign q2 = t3;
endmodule

// test.v

current_design test

clock -name clk1 -domain d1
clock -name clk2 -domain d1
clock -name clk3 -domain d1

reset -name rst1 -async
reset -name rst2 -async

// constr.sgdc
930
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
To view the schematic of the violation shown in the above spreadsheet,
click the link 5 in the ID column of the above spreadsheet and then click

.

The following figure shows the schematic of this violation:

FIGURE 79. Schematic of the Ac_resetcross01 Rule Violation

Schematic Details

The Ac_resetcross01 rule highlights the following information in the
schematic:
 Source instance and its reset path

 Destination instance and its reset path

 Path between source and destination instance

Default Severity Label

Warning
931
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
Rule Group

ADV_CLOCKS

Reports and Related Files

 The CKSGDCInfo Report

 Ac_resetcross01.csv. See Figure 78.
932
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
Ar_resetcross01
Reports all reset domain crossings between sequential elements

When to Use

Use this rule when different asynchronous resets are used in flip-flops,
which are connected in the data path.

Prerequisites

Specify the following information before running this rule:
 Specify reset signals by using the reset constraint.

 Enable this rule by specifying the set_goal_option addrules
{Ar_resetcross01} command in a project file.

 Use the Advanced_RDC license.

Description

The details of the Ar_resetcross01 rule are covered under the following
topics:
 Reason for the Ar_resetcross01 Rule Violation

 Features of the Ar_resetcross01 Rule

 Reducing Noise Due to the Ar_resetcross01 Violations

 Rule Exceptions

Reason for the Ar_resetcross01 Rule Violation

The Ar_resetcross01 rule reports a violation if there are paths between two
sequential elements that have different asynchronous resets/sets. Such
scenario is shown in the following figure:
933
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
FIGURE 80. Scenario for the Ar_resetcross01 Rule Violation

In the above figure, there is always a possibility of set/clear on the first
flip-flop while the second flip-flop is active.

Reasons for Unsynchronized Crossings Reported by Ar_resetcross01

The Ar_resetcross01 rule reports unsynchronized crossings because of the
following reasons (starting from the highest priority):

Reason - Gating logic not accepted: qualifier merges with reconverging source

Reason - Gating logic not accepted: qualifier convergence is invalid

Reason - Gating logic not accepted: qualifier invalid

Reason - Gating logic not accepted: gate-type invalid

Reason - Qualifier not propagated: clock reaching at qualifier does not match
destination

Reason - Qualifier not propagated: reset reaching at qualifier does not match
destination

Reason - Qualifier not found

NOTE: These reasons are reported only if the show_unsync_qualifier_rdc parameter is set
to yes.

RST

D

CLK

Q

RST

D

CLK

Q

CLK

RESET1 RESET2
934
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
 Reason - Gating logic not accepted: qualifier merges with reconverging
source
This reason is reported when a source diverges and the diverged source
path merges with a valid qualifier before re-converging. For example,
SpyGlass reports this reason in the scenario shown in Figure 79 where
s1_reg is diverging and one of the diverged path merges with the
qualifier before re-converging on the AND gate.

FIGURE 81. Qualifier merges with reconverging source

 Reason - Gating logic not accepted: qualifier convergence is invalid
This reason is reported when the source and qualifier converges at any
gate but in an invalid manner. For example, as shown in the following
figure, in a Mux-Select based Synchronization scheme, even if a Mux is
a valid gate for source and qualifier convergence but this reason is
reported if:
 Any source drives the MUX select input

 None of the Mux data pin is without source

 No qualifier drives the MUX select input

If the show_unsync_qualifier_rdc parameter is set to backward, only the
above reason is reported. If the parameter is set to yes, the invalid
qualifier convergence reason is replaced with one of the following
specific reasons:
935
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
"Gating logic not accepted: source drives MUX select
input";

"Gating logic not accepted: source and qualifier drive MUX
data inputs";

"Gating logic not accepted: only sources drive MUX data
inputs; atleast one destination domain signal should drive
a MUX data input";

FIGURE 82. Invalid qualifier convergence

 Reason - Gating logic not accepted: qualifier invalid
This reason is reported when attributes, such as source or destination
clock/reset/object, specified with the qualifier constraint does not match
with the source/destination data for a RDC crossing.
If the show_unsync_qualifier_rdc parameter is set to backward, only the
above reason is reported. If the parameter is set to yes, the invalid
qualifier reason is replaced with one of the following specific reasons:

Gating logic not accepted: destination object does not
936
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
match qualifier constraint";

"Gating logic not accepted: source object does not match
qualifier constraint";

"Gating logic not accepted: destination clock does not
match qualifier constraint";

"Gating logic not accepted: source clock does not match
qualifier constraint";

"Gating logic not accepted: destination reset does not
match qualifier constraint";

"Gating logic not accepted: source reset does not match
qualifier constraint";

 Reason - Gating logic not accepted: gate-type invalid
This reason is reported when a source converges with a valid qualifier
signal at an invalid combinational gate.
For example, SpyGlass reports this reason in the following scenario as
the qualifier merges with the XOR gate, which is considered invalid:

FIGURE 83. Invalid gate type
937
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
 Reason - Qualifier not propagated: clock reaching at qualifier does not
match destination
This reason is reported if clock(s) reaching at the qualifier does not
match with the clock(s) of the destination object that is involved in reset
domain crossing.

 Reason - Qualifier not propagated: reset reaching at qualifier does not
match destination
This reason is reported if reset(s) reaching at the qualifier does not
match with the reset(s) of the destination object that is involved in reset
domain crossing.

 Reason - Qualifier not found
This reason is reported when SpyGlass cannot find any synchronizing
structure at the destination of a crossing. This is reported in case of a
missing qualifier or if SpyGlass cannot find the qualifier.

Features of the Ar_resetcross01 Rule

The Ar_resetcross01 rule has the following features:
 This rule ignores combinational logic between sequential elements.

 This rule stops traversal on black boxes, sequential elements, blocked
paths, and primary ports.

 This rule checks for sources flip-flops, latches, black boxes, ports, or
other sequential library cells that have asynchronous set or reset pins.

 This rule checks for destinations having flip-flops or latches.

 This rule checks if there is a path between sequential elements through
data or enable pins. For clock paths, this rule continues propagation
beyond clock gate enables.

 Reset propagation on the sequential elements is used by the
Propagate_Resets rule.

 This rule checks for both preset and clear pins of sequential element.

 If multiple resets reach to sequential elements and a reset is different
for both source and destination, this rule reports violation with respect
to the resets that are different.

 This rule reports an informational message if a crossing is synchronized
by any of the following methods:
938
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
 For Control path crossings: Conventional Multi-Flop Synchronization Scheme
(for RDC)

To disable this rule to consider synchronization from this scheme, set
the expected_ckcells_file parameter to no.

 For Control path crossings: Synchronizing Cell Synchronization Scheme (for
RDC)

To disable this rule to consider synchronization from this scheme, set
the expected_ckcells_file parameter to no.

 For Data path crossings: Synchronized Enable Synchronization Scheme (for
RDC)

To disable this rule to consider synchronization from this scheme, set
the enable_sync parameter to no.

 For Data path crossings: Reset Enable Logic based Synchronization Scheme
for RDC (Mux, AND, OR, Glitch Protect Cell)

To disable this rule to consider synchronization from this scheme, set
the enable_mux_sync parameter, enable_or_sync parameter, or the
enable_and_sync parameter, as applicable, to no.

 For Data path crossings: Clock-Gating Cell Synchronization Scheme (for
RDC)

To disable this rule to consider synchronization from this scheme, set
the enable_clock_gate_sync parameter to no.

 This rule does not report any violation message if a crossing is
synchronized by the following method:
 Dynamically switching off the destination clock

SpyGlass performs simulation by applying active values on source
resets and checks if it is blocking the destination clock. If the
destination clock is found switched off, metastability due to assertion
of source reset will not be captured by destination.
To disable this rule to perform the above simulation, set the
enable_sim_check_rdc parameter to no.

 This rule checks only if the destination has either preset or clear pin.

Reducing Noise Due to the Ar_resetcross01 Violations

SpyGlass CDC provides the following approaches to reduce noise in the
939
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
Ar_resetcross01 rule. These approaches do not reduce the number of
violations but reports unsynchronized crossings as synchronized. Use the
following approaches to reduce noise pertaining to control path crossings
and data path crossings:
 For Control path crossings: Conventional Multi-Flop Synchronization Scheme

(for RDC)

 For Control path crossings: Synchronizing Cell Synchronization Scheme (for
RDC)

 For Data path crossings: Synchronized Enable Synchronization Scheme (for
RDC)

 For Data path crossings: Reset Enable Logic based Synchronization Scheme for
RDC (Mux, AND, OR, Glitch Protect Cell)

 For Data path crossings: Clock-Gating Cell Synchronization Scheme (for RDC)

 Specifying the Paths of Reset Crossings as False Paths (No violations are
reported when this approach is used)

 Setting the report_sync_rdc parameter to none. (No violations are
reported when this approach is used)

For Control path crossings: Conventional Multi-Flop
Synchronization Scheme (for RDC)
This scheme marks those reset domain crossings as synchronized where
flip-flops are in a synchronization flip-flops arrangement. You can set the
number of flip-flops in the synchronization chain by using the num_flops
constraint.

The following figure shows an example of this scheme:
940
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
FIGURE 84. Adding multi-flop synchronization to reduce Ar_resetcross01
violations

In the above figure, the D2 flip-flop is acting as the synchronizer for the
reset crossing.

To disable this scheme, set the enable_multiflop_sync parameter to no.

By default, two flip-flops are considered as a valid synchronizer structure.
To set a greater number of synchronizer flip-flops, use the num_flops
constraint. Ensure to specify the -rdc argument with the num_flops
constraint in this case.

For Control path crossings: Synchronizing Cell Synchronization
Scheme (for RDC)
This scheme marks those reset domain crossings as synchronized in which
the destination object is an instance of a synchronizing cell specified the
sync_cell constraint.

The following figure shows the example of a crossing synchronized by this
scheme:

C1

D D2

RST2

RST1

C1

S

Reset domain crossing
941
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
FIGURE 85. Synchronizing Cell Synchronization Scheme

To consider a reset crossing as synchronized, specify the destination
instance as a synchronizing cell by using the sync_cell constraint with
the -rdc argument.

In this scheme:
 The destination object should be any of the following:

 A design unit instance (soft instance)
That is, a design object can be a cell instance that contains a
functional description.

 A black box instance (hard instance)
That is, a design object can be a cell instance that contains no
functional description.

This distinction is significant because unlike hard instances, soft
instances specified by using the sync_cell constraint must be
determined to describe a flip-flop for each destination bit. Otherwise,
the control crossing is not considered as synchronized by this scheme.

For Data path crossings: Synchronized Enable Synchronization
Scheme (for RDC)
This scheme marks those reset domain crossings as synchronized where

Reset domain crossing

Sync Cell
instance

C1C1

RST1 RST2
942
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
the first flip-flop in the destination reset domain is enabled by a signal
synchronized to the destination reset and the reset crossing is in the data
path.

The reset domain crossing is marked as synchronized if the following
conditions are met:
 Enable pin is driven by a signal synchronized to the destination.

 Qualifier signal is merging at this enable pin.

 Qualifier signal should be either in the same destination reset domain or
driven from a port/bbox that does not have a specified domain.

 Qualifier signal should either be in the same destination clock domain
(i.e. driven in same clock domain as that of the destination element) or
driven from a port/bbox that does not have a specified domain.

 The enable_sync parameter is set to yes.

By default, this scheme is always run. Set the enable_sync parameter to
no to disable this scheme.

The following figure shows the example of a crossing synchronized by this
scheme:

FIGURE 86. Synchronized Enable Synchronization Scheme

For Data path crossings: Reset Enable Logic based Synchronization
Scheme for RDC (Mux, AND, OR, Glitch Protect Cell)
943
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
This includes following types of synchronization schemes:
 Recirculation-Mux based Synchronization scheme

 Mux-Select based Synchronization scheme

 Glitch Protect Cell based Synchronization scheme

 AND based Synchronization scheme

 OR based Synchronization scheme

The Reset Enable Logic based Synchronization Scheme for RDC (Mux, AND,
OR, Glitch Protect Cell) marks those reset domain crossings as
synchronized where the destination flip flop in a RDC is driven by a Macro.
A Macro can be any of glitch-protect-cell, and gate, or gate, mux gate or
recirculation mux gate.

The reset domain crossing is marked as synchronized if the following
conditions are met:
 Source to destination path must be blocked at Macro pin (which acts as

its enable).
 This enable pin of the macro should be driven by a signal (qualifier)

synchronized to the destination.
 Qualifier signal should be either in the same destination reset domain or

driven from port/BBox which have no domain specified.
 Qualifier signal should be either in the same destination clock domain

(i.e. driven in same clock domain as that of destination element), or
driven from port/bbox which have no domain specified.

The Glitch Protect Cell based sync scheme is supported when macro/gating
cell is provided by using the glitch_protect_cell parameter.

The Mux-based sync scheme is supported when the enable_mux_sync
parameter is set to support mux and recirculation mux based
synchronization (depending upon the value of this parameter).

The AND based sync scheme is supported when the enable_and_sync
parameter is set to yes.

The OR based sync scheme is supported when the enable_or_sync
parameter is set to yes.

The following figure shows the example of a crossing synchronized by this
scheme:
944
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
FIGURE 87. Reset Enable Logic based Synchronization Scheme for RDC

For Data path crossings: Clock-Gating Cell Synchronization Scheme
(for RDC)
The Clock-Gating Cell Synchronization Scheme marks those reset domain
crossings as synchronized where:
 The clock path of the destination flip-flop has a clock-gating cell.

 The enable pin of clock-gating-cell is driven by a signal synchronized to
the destination.

 Qualifier signal should be merging at this enable pin.

 Qualifier signal should either be in the same destination reset domain or
driven from a port/bbox that does not have a specified domain.

 Qualifier signal should be either in same destination clock domain (i.e.
driven in same clock domain as that of destination element) or driven
from a port/bbox that does not have a specified domain.

 This scheme is supported when the enable_clock_gate_sync
parameter is set to yes.

The following figure shows the example of a crossing synchronized by this
scheme:
945
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
FIGURE 88. Clock-Gating Cell Synchronization Scheme

Specifying the Paths of Reset Crossings as False Paths
To suppress the Ar_resetcross01 rule checking on certain paths, specify
those paths by using the reset_filter_path constraint.

Rule Exceptions

This rule does not report a violation for the cases in which:
 A reset is always inactive because of the set_case_analysis

constraint or power/ground connections.
 A destination instance does not have a preset or clear pin.

 A crossing is found synchronized by simulation checks.

Parameter(s)

 dump_sync_info: Default value is no. Set this parameter to yes to
generate The SynchInfo Report and The CrossingInfo Report
reports in the default format. Other possible values are no, detailed,
and detailed_mod.

 dump_inst_type: Default value is all. Set this parameter to flop to
generate destinations and synchronizers that are flip-flops in The
SynchInfo Report and The CrossingInfo Report.
946
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
 report_inst_for_netlist: Default value is no. Set this parameter to yes to
report violating instance name in case of netlist designs and leaf-level
net name for RTL designs.

 filter_named_resets: Default value is clk, clock, scan. Specify a list of
strings to automatically infer asynchronous resets that do not match the
specified strings.

 filter_named_clocks: Default value is rst, reset, scan, set. Set this
parameter to a list of strings.

 report_all_reset_cross: Default value is no. Set this parameter to
yes to report violations on reset crossings in which the destination
receives no clear/set signal.

 report_for_single_busbit: Default value is no. Set this parameter to
yes to report violations for single bit of a bus.

 reset_reduce_pessimism: Default value is
filter_unused_synchronizer, same_data_reset_flop. Set the
value of this parameter to all_potential_resets to detect all the
potential resets in a design. For information on the other possible
values, see Possible Values to the reset_reduce_pessimism
Parameter.

 expected_ckcells_file: Default value is yes. Set this parameter to no to
ignore the For Control path crossings: Conventional Multi-Flop Synchronization
Scheme (for RDC) and For Control path crossings: Synchronizing Cell
Synchronization Scheme (for RDC) for synchronizing the destination.

 enable_sim_check_rdc: Default value is yes. Set this parameter to no to
disable simulation to check if the destination clock is switched off (while
the source reset is active) so that no metastability is captured at the
destination.

 report_sync_rdc: Default value is all. Set this parameter to one to
report only one source of the synchronized destination. Other possible
value is none.

 cdc_reduce_pessimism: Default value is mbit_macro,
no_convergence_at_syncreset, no_convergence_at_enable.
Set this parameter to an appropriate value to ignore clock domain
crossings involving black box instances and clock domain crossings with
destinations having unused, hanging, or blocked outputs. For possible
values, see Allowed Values of the cdc_reduce_pessimism
Parameter.
947
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
 handle_combo_arc: Default value is no. Set this parameter to yes so that
the clock/reset propagates from an input pin of a sequential library cell
if a combinational timing arc is specified from that pin to any output pin
of the cell.

 sync_reset: Default value is no. Set this parameter to yes to allow at
most one gate of an AND/NAND/OR/NOR type to be the synchronous
reset for the flip-flop that follows.

 ignore_num_rtl_buf_invs: Default value is many. Set this parameter to
one to allow one buffer and inverter. Other possible values are two and
none.

 enable_multiflop_sync: Default value is yes. Set this parameter to no to
disable the For Control path crossings: Conventional Multi-Flop Synchronization
Scheme (for RDC).

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

 use_inferred_resets: Default value is no. Set this parameter to yes to use
auto-generated reset information.

 enable_diff_clkdom_rdc: Default value is no. Set this parameter to yes to
report reset domain crossings having different clock domains.

 glitch_protect_cell: Default value is NULL. Specify a comma or
space-separated list of glitch protection cell names for the For Data path
crossings: Reset Enable Logic based Synchronization Scheme for RDC (Mux,
AND, OR, Glitch Protect Cell).

 enable_and_sync: Default value is no. Set this parameter to yes to
enable the For Data path crossings: Reset Enable Logic based Synchronization
Scheme for RDC (Mux, AND, OR, Glitch Protect Cell).

 enable_or_sync: Default value is no. Set this parameter to yes to enable
the For Data path crossings: Reset Enable Logic based Synchronization Scheme
for RDC (Mux, AND, OR, Glitch Protect Cell).

 enable_mux_sync: Default value is recirculation. Set this parameter
to an appropriate value to enable a particular synchronization scheme.
Other possible values are none, mux_select, and all.

 enable_sync: Default value is yes. Set this parameter to no to disable
the For Data path crossings: Synchronized Enable Synchronization Scheme (for
RDC).
948
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
 enable_clock_gate_sync: Default value is yes. Set this parameter to no to
disable the For Data path crossings: Clock-Gating Cell Synchronization Scheme
(for RDC).

 show_unsync_qualifier_rdc: Default value is no. Set this parameter to yes
to report enable and potential qualifiers for unsynchronized RDC
crossings.

 rdc_reduce_pessimism: Default value is none. Set this parameter to
reset_filter so that the Ar_resetcross01 rule ignores reset domain
crossings in some specific scenarios.

 ignore_qualifier_mismatch_rdc: Default value is no. Set this parameter to
yes to report clock and reset mismatches between the qualifier and the
destination object of a reset-domain crossing.

 rdc_report_all_resets: Default value is no. Set this parameter to yes to
enable the Ar_resetcross01 rule to report all resets in the reset domain
crossing in rule-based spreadsheet.

 same_domain_at_gate: Default value is no. Set the value of the
parameter to an allowed value to optimize the inference of domains on
clock merging gates.

 rdc_allow_sync_reset: Default value is none. Set the value of the
parameter to both specify synchronous resets, in addition to
asynchronous resets, in the -to_rst argument of the
reset_filter_path constraint.

 show_parent_module_in_spreadsheet: Adds the PARENT_MODULE column
in the rule-based spreadsheet of the supported rules.

 msg_inst_mod_report: Default value is auto. Set the value of the
parameter to one of the supported values for the Ar_resetcross01 rule to
specify the source or the destination parent module to report in the csv.

 fa_hybrid_report_hier: Default value is no. Set the value of the parameter
to yes to enable the supported rules to report the top-level hierarchical
names in the SVA Hybrid flow.

Constraint(s)

 reset (Mandatory): Use this constraint to specify reset signals in a
design.

 clock (Optional): Use this constraint to specify clock signals in your
design.
949
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
 define_reset_order (Optional): Use this constraint to specify a reset order,
which determines the flow of data from one reset to another reset.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

 num_flops (Optional): Use this constraint to specify the minimum
number of flip-flops required in a synchronizer chain.

 sync_cell (Optional): Use this constraint to specify synchronizer cells that
should be considered valid for crossings that contain specified
frequencies, source/destination clocks, or domains.

 reset_filter_path (Optional): Use this constraint to specify false paths so
that reset crossings along these paths are ignored from rule checking.

 abstract_port (Optional): Use the -reset argument of this constraint to
specify the reset name assigned to the port of an abstract view.

 qualifier (Optional): Use this constraint with the -rdc argument to specify
a qualifier for synchronizing a reset domain crossing.

Messages and Suggested Fix

Message 1

The following message appears to report an invalid reset crossing:

[WARNING] Unsynchronized reset crossing detected from <cell-
type> '<src-net>' (Reset: '<source-reset>') to <cell-type>
'<dest-net>' (Reset: <dest-reset>) that are clocked by '<clock-
name>'

The arguments of the above message are explained below:

Argument Description
<cell-type> It can be flop, latch, or sequential cell.
<src-pin> Source instance pin
<src-reset> Reset reaching source
<dest-pin> Destination instance pin
<dest-reset> Reset reaching destination
<clock-name> Comma-separated list of clock names reaching the destination

flip-flop
950
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
Potential Issues
See Potential Issues.

Consequences of Not Fixing
See Consequences of Not Fixing.

How to Debug and Fix
See How to Debug and Fix.

Message 2

The following message appears to report an invalid reset crossing:

[WARNING] Unsynchronized reset crossing detected from <cell-
type> '<src-net>' (Reset: '<source-reset>') to <cell-type>
'<dest-net>' (Reset: <dest-reset>) that are clocked by '<clock-
name>'. Reason: <unsync-reason>

The arguments of the above message are explained below:

Potential Issues
See Potential Issues.

Consequences of Not Fixing
See Consequences of Not Fixing.

Argument Description
<cell-type> It can be flop, latch, or sequential cell.
<src-pin> Source instance pin
<src-reset> Reset reaching source
<dest-pin> Destination instance pin
<dest-reset> Reset reaching destination
<clock-name> Comma-separated list of clock names reaching the destination

flip-flop
<unsync-reason> Reason for unsynchronized crossing
951
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
How to Debug and Fix
See How to Debug and Fix.

Message 3

The following informational message appears to indicate a synchronized
reset crossing:

[INFO] Synchronized reset crossing detected from <cell-type>
'<src-net>' (Reset: '<source-reset>') to <cell-type> '<dest-
net>'(Reset: <dest-reset>), that are clocked by '<clock-name>',
by method <synchronization-method>

The arguments of the above message are explained below:

Potential Issues
Not applicable

Consequences of Not Fixing
Not applicable

How to Debug and Fix
Not applicable

Argument Description
<cell-type> It can be flop, latch, or sequential cell.
<src-net> Source instance net
<source-reset> Reset reaching source
<dest-net> Destination instance net
<dest-reset> Reset reaching destination
<clock-name> Comma-separated list of clock names reaching the destination

flip-flop
<synchronization-
method>

Reason for synchronized crossing
952
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
Message 4

The following message appears to report an invalid reset crossing:

[WARNING] Unsynchronized reset crossing detected from <cell-
type> '<src-net>' (Reset: '<source-reset>', Clock: '<source-
clock>') to <cell-type> '<dest-net>' (Reset: <dest-reset>,
Clock: '<dest-clock>')

The arguments of the above message are explained below:

Potential Issues
See Potential Issues.

Consequences of Not Fixing
See Consequences of Not Fixing.

How to Debug and Fix
See How to Debug and Fix.

Message 5

The following message appears to report an invalid reset crossing:

[WARNING] Unsynchronized reset crossing detected from <cell-
type> '<src-net>' (Reset: '<source-reset>', Clock: '<source-
clock>') to <cell-type> '<dest-net>' (Reset: <dest-reset>,

Argument Description
<cell-type> It can be flop, latch, or sequential cell.
<src-pin> Source instance pin
<src-reset> Reset reaching source
<dest-pin> Destination instance pin
<dest-reset> Reset reaching destination
<source-clock> Comma-separated list of source clock names reaching the

destination flip-flop
<dest-clock> Comma-separated list of destination clock names reaching the

destination flip-flop
953
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
Clock: '<dest-clock>'). Reason: <unsync-reason>

The arguments of the above message are explained below:

Potential Issues
See Potential Issues.

Consequences of Not Fixing
See Consequences of Not Fixing.

How to Debug and Fix
See How to Debug and Fix.

Message 6

The following informational message appears to indicate a synchronized
reset crossing:

[INFO] Synchronized reset crossing detected from <cell-type>
'<src-net>' (Reset: '<source-reset>', Clock: '<source-clock>')
to <cell-type> '<dest-net>'(Reset: <dest-reset>, Clock: '<dest-
clock>'), by method <synchronization-method>

The arguments of the above message are explained below:

Argument Description
<cell-type> It can be flop, latch, or sequential cell.
<src-pin> Source instance pin
<src-reset> Reset reaching source
<dest-pin> Destination instance pin
<dest-reset> Reset reaching destination
<source-clock> Comma-separated list of source clock names reaching the

destination flip-flop
<dest-clock> Comma-separated list of destination clock names reaching the

destination flip-flop
<unsync-reason> Reason for unsynchronized crossing
954
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
Potential Issues
Not applicable

Consequences of Not Fixing
Not applicable

How to Debug and Fix
Not applicable

Example Code and/or Schematic

The following schematic shows the violation of the Ar_resetcross01 rule:

Argument Description
<cell-type> It can be flop, latch, or sequential cell.
<src-net> Source instance net
<source-reset> Reset reaching source
<dest-net> Destination instance net
<dest-reset> Reset reaching destination
<source-clock> Comma-separated list of source clock names reaching the

destination flip-flop
<dest-clock> Comma-separated list of destination clock names reaching the

destination flip-flop
<synchronization-
method>

Reason for synchronized crossing
955
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
FIGURE 89.

In the above example, the Ar_resetcross01 violation appears because of
the invalid reset ordering between the F1.q flip-flop (reset r1) and the
F2.q flip-flop (reset r3).

Default Severity Label

Warning

Rule Group

ADV_CLOCKS

Reports and Related Files

 The CKSGDCInfo Report

 Ar_resetcross01.csv
956
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
Ar_resetcross_matrix01
You can generate a spreadsheet for Reset Domain Crossing Matrix View by
running the Ar_resetcross_matrix01 rule.

When to Use

Use this rule to generate a spreadsheet containing the summary of
synchronized and unsynchronized crossings between each pair of resets.

Prerequisites

Before running this rule:
 Use the Advanced_RDC license feature

 Run Ar_resetcross01 rule

Description

The Ar_resetcross_matrix01 rule reports all the reset domain crossings,
which are extracted by Ar_resetcross01 rule, in a design. For information
on this spreadsheet, see Reports and Related Files.

View this spreadsheet to identify any unexpected reset-domain crossings
(RDC), overall RDC risk in a design, reset domain crossings congestion
area, setup issues causing unusual crossing distribution, and understand
the architecture of these crossings.

Parameter(s)

 report_for_single_busbit: Default value is no. Set this parameter
to yes to report violations for single bit of a bus.

 report_all_reset_cross: Default value is no. Set this parameter to
yes to report violations on reset domain crossings in which the
destination receives no clear/set signal.

 enable_sync_check_rdc: Default value is yes. Set this parameter to no to
ignore the Conventional Multi-Flop Synchronization Scheme (for RDC)
and Synchronizing Cell Synchronization Scheme (for RDC) for
synchronizing the destination.

 enable_sim_check_rdc: Default value is yes. Set this parameter to no to
disable simulation to check if the destination clock is switched off (while
the source reset is active) so that no metastability is captured at the
destination.
957
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
 report_sync_rdc: Default value is all. Set this parameter to one to
report only one source of the synchronized destination. Other possible
value is none.

 handle_combo_arc: Default value is no. Set this parameter to yes to
enable the clock/reset to propagate from an input pin of a sequential
library cell if a combinational timing arc is specified from that pin to any
output pin of the cell.

 sync_reset: Default value is no. Set this parameter to yes to allow at
most one gate of an AND/NAND/OR/NOR type to be the synchronous
reset for the flip-flop that follows.

 ignore_num_rtl_buf_invs: Default value is many. Set this
parameter to one to allow one buffer and inverter. Other possible values
are two and none.

 enable_multiflop_sync: Default value is yes. Set this parameter to no to
disable the Conventional Multi-Flop Synchronization Scheme.

 use_inferred_clocks: Default value is no. Set this parameter to yes
to use auto-generated clock information.

 use_inferred_resets: Default value is no. Set this parameter to yes
to use auto-generated reset information.

 rdc_allow_sync_reset: Default value is none. Set the value of the
parameter to both specify synchronous resets, in addition to
asynchronous resets, in the -to_rst argument of the
reset_filter_path constraint.

Constraint(s)

 reset_filter_path (Optional): Use this constraint to specify false
paths so that reset domain crossings along these paths are ignored from
rule checking.

 define_reset_order (Optional): Use this constraint to specify a reset
order, which determines the flow of data from one reset to another
reset.

 num_flops (Optional): Use this constraint to specify the minimum
number of flip-flops required in a synchronizer chain.
958
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
 sync_cell (Optional): Use this constraint to specify synchronizer cells
that should be considered valid for crossings that contain specified
frequencies, source/destination clocks, or domains.

 reset (Optional): Use this constraint to specify reset signals in a
design.

 clock (Optional): Use this constraint to specify clock signals in a
design.

 abstract_port (Optional): Use the -reset argument of this
constraint to specify the reset name assigned to the port of an abstract
view.

Messages and Suggested Fix

This rule reports the following informational message:

[INFO] '<num>' Reset Domain Crossings identified for '<reset-
num>' resets for design '<top-name>'

Potential Issues
Not applicable

Consequences of Not Fixing
Not applicable

How to Debug and Fix
To open the spreadsheet, double-click the message.

Analyze the reset domain crossings shown in the spreadsheet to:
 Check any unexpected reset-domain crossing.

 Check the overall RDC risk in a design.

 Understand the architecture of these crossings.

Example Code and/or Schematic

See Reports and Related Files.
959
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
Default Severity Label

Info

Reports and Related Files

The Ar_resetcross_matrix01 rule generates the ResetCrossingMatrix.csv
spreadsheet. This spreadsheet is a matrix-like structure in which each
column and row header lists all the resets.

The following figure shows a sample spreadsheet generated by this rule:

FIGURE 90.

In the above spreadsheet:
 A hyphen (-) indicates no reset-domain crossing.

 The value pair (<unsync>,<sync> format) indicates a reset domain
crossing.
For example, this spreadsheet indicates zero unsynchronized crossing
and two synchronized crossings between the r2 and r4 resets.
Similarly, there is one unsynchronized and one synchronized crossing
between the r2 and r3 resets.

Destination resets

Source resets
960
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
Setup_rdc01
Reports all the potential reset domain crossings between
sequential elements having same reset domains

When to Use

Use this rule to identify reset domain crossings that have the same
asynchronous resets at both the source and destination but with side
inputs in between the resets.

Prerequisites

Specify the following information before running this rule:
 Specify reset signals by using the reset constraint.

 Enable this rule by specifying the set_goal_option addrules
{Ar_resetcross01, Setup_rdc01} command in a project file.

 Use the Advanced_RDC license.

Description

Unlike the Ar_resetcross01 rule, the Setup_rdc01 rule reports cases where
the resets are the same at both the source and destination reset domain
crossings and side inputs exist between the resets.

The Setup_rdc01 rule allows you to define the reset_filter_path constraint
to filter out desired reset crossings by using the source reset, destination
reset, source object, destination object, or the clock.

The details of the Setup_rdc01 rule are covered under the following topics:
 Reason for the Setup_rdc01 Rule Violation

 Features of the Setup_rdc01 Rule

 Reducing Noise Due to the Setup_rdc01 Violations

 Rule Exceptions

Reason for the Setup_rdc01 Rule Violation

The Setup_rdc01 rule reports a violation if there are paths between two
sequential elements which are clocked by the same clock domain and have
the same asynchronous resets/sets but side inputs in between the resets
exist as shown in the following figure:
961
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
FIGURE 91. Scenario for the Setup_rdc01 Rule Violation

Features of the Setup_rdc01 Rule

The Setup_rdc01 rule has the following features:
 This rule ignores combinational logic between sequential elements.

 This rule stops traversal on black boxes, sequential elements, blocked
paths, and primary ports.

 This rule checks for sources flip-flops, latches, black boxes, ports, or
other sequential library cells that have asynchronous set or reset pins.

 This rule checks for destinations having flip-flops or latches.

 This rule checks if there is a path between sequential elements through
data or enable pins. For clock paths, this rule continues propagation
beyond clock gate enables.

 Reset propagation on the sequential elements is used by the
Propagate_Resets rule.

 This rule checks for both preset and clear pins of sequential element.

 This rule checks only if the destination has either preset or clear pin.

ST

D

CLK

Q

RST

D

CLK

Q

CLK

RESET1
Side Input
962
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
Reducing Noise Due to the Setup_rdc01 Violations

Use the following approaches to reduce noise due to the Setup_rdc01
violations:
 Specifying the Paths of Reset Crossings as False Paths

 Setting the report_sync_rdc parameter to none.

Specifying the Paths of Reset Crossings as False Paths
To suppress the Setup_rdc01 rule checking on certain paths, specify those
paths by using the reset_filter_path constraint.

Rule Exceptions

This rule does not report a violation for the cases in which:
 A reset is always inactive because of the set_case_analysis

constraint or power/ground connections.
 A destination instance does not have a preset or clear pin.

 A crossing is found synchronized by simulation checks.

Parameter(s)

 dump_sync_info: Default value is no. Set this parameter to yes to
generate The SynchInfo Report and The CrossingInfo Report
reports in the default format. Other possible values are no, detailed,
and detailed_mod.

 dump_inst_type: Default value is all. Set this parameter to flop to
generate destinations and synchronizers that are flip-flops in The
SynchInfo Report and The CrossingInfo Report.

 report_inst_for_netlist: Default value is no. Set this parameter to
yes to report violating instance name in case of netlist designs and leaf-
level net name for RTL designs.

 filter_named_resets: Default value is clk, clock, scan. Specify a
list of strings to automatically infer asynchronous resets that do not
match the specified strings.

 filter_named_clocks: Default value is rst, reset, scan, set. Set
this parameter to a list of strings.
963
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
 report_all_reset_cross: Default value is no. Set this parameter to
yes to report violations on reset crossings in which the destination
receives no clear/set signal.

 report_for_single_busbit: Default value is no. Set this parameter to
yes to report violations for single bit of a bus.

 reset_reduce_pessimism: Default value is
filter_unused_synchronizer, same_data_reset_flop. Set the
value of this parameter to all_potential_resets to detect all the
potential resets in a design. For information on the other possible
values, see Possible Values to the reset_reduce_pessimism
Parameter.

 enable_sim_check_rdc: Default value is yes. Set this parameter to no to
disable simulation to check if the destination clock is switched off (while
the source reset is active) so that no metastability is captured at the
destination.

 report_sync_rdc: Default value is all. Set this parameter to one to
report only one source of the synchronized destination. Other possible
value is none.

 cdc_reduce_pessimism: Default value is mbit_macro,
no_convergence_at_syncreset, no_convergence_at_enable.
Set this parameter to an appropriate value to ignore clock domain
crossings involving black box instances and clock domain crossings with
destinations having unused, hanging, or blocked outputs. For possible
values, see Allowed Values of the cdc_reduce_pessimism
Parameter.

 handle_combo_arc: Default value is no. Set this parameter to yes so
that the clock/reset propagates from an input pin of a sequential library
cell if a combinational timing arc is specified from that pin to any output
pin of the cell.

 sync_reset: Default value is no. Set this parameter to yes to allow at
most one gate of an AND/NAND/OR/NOR type to be the synchronous
reset for the flip-flop that follows.

 ignore_num_rtl_buf_invs: Default value is many. Set this parameter
to one to allow one buffer and inverter. Other possible values are two
and none.
964
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
 use_inferred_clocks: Default value is no. Set this parameter to yes
to use auto-generated clock information.

 use_inferred_resets: Default value is no. Set this parameter to yes
to use auto-generated reset information.

 enable_diff_clkdom_rdc: Default value is no. Set this parameter to yes to
report reset domain crossings having different clock domains.

Constraint(s)

 reset (Mandatory): Use this constraint to specify reset signals in a
design.

 clock (Optional): Use this constraint to specify clock signals in your
design.

 define_reset_order (Optional): Use this constraint to specify a reset
order, which determines the flow of data from one reset to another
reset.

 set_case_analysis (Optional): Use this constraint to specify case
analysis conditions.

 reset_filter_path (Optional): Use this constraint to specify false
paths so that reset crossings along these paths are ignored from rule
checking.

Messages and Suggested Fix

Message 1

The following message appears to report an invalid reset crossing:

[Warning] Potential invalid reset ordering detected from <cell-
type> '<src-net>' (<source-reset>) to <cell-type> '<destnet>'

(Reset: <dest-reset>) having same reset '<reset>', that are
clocked by '<clock-name>'

The arguments of the above message are explained below:

Argument Description
<cell-type> It can be flop, latch, or sequential cell.
<src-net> Source instance net
<source-reset> Reset reaching source
965
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
Potential Issues
This violation appears if your design contains flip-flops that are connected
in a data path, but are triggered by the same asynchronous resets.

Consequences of Not Fixing
If you do not fix this violation, it may result in setup/hold violations at the
destination flip-flop because of the presence of side inputs between the
source and the destination resets.

How to Debug and Fix
To debug and fix this violation, perform the following steps:
 Open the incremental schematic of the violation.

 Analyze the Reset Cone of the source and destination flip-flops in the
schematic.

 If the source and destination are coming at the same time and the side
inputs are not causing issues in the reset assertions, filter the violation
by using the define_reset_order or the reset_filter_path
constraint.

Example Code and/or Schematic

The following schematic shows the violation of the Setup_rdc01 rule:

<destnet> Destination instance net
<dest-reset> Reset reaching destination
<clock-name> Comma-separated list of clock names reaching the destination

flip-flop

Argument Description
966
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
FIGURE 92.

In the above example, the Setup_rdc01 violation appears because of the
side input between the resets of the Src1 source and the Dest1
destination.

Default Severity Label

Warning

Rule Group

ADV_CLOCKS

Reports and Related Files

 The CKSGDCInfo Report

ST

D

CLK

Q

RST

D

CLK

Q

CLK

RESET1
Side Input

Src1 Dest1
967
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
RFPSetup
Reports a violation if the reset_filter_path constraint is not used to
filter reset domain crossings

When to Use

Use this rule for reset_filter_path setup check

Prerequisites

Specify the reset_filter_path constraint.

Description

The RFPSetup rule reports a violation if the reset_filter_path
constraint is not used to filter any reset domain crossing in the current
design.

Parameter(s)

None

Constraint(s)

reset_filter_path (Mandatory): Use this constraint to specify reset
paths so that the reset domain crossings across these paths are ignored
from SpyGlass analysis.

Messages and Suggested Fix

The following message appears if the reset_filter_path constraint is not
used to filter any reset domain crossing.

[WARNING] 'reset_filter_path' constraint is not used to filter
any crossing in the current design <current_design>

Potential Issues

This violation appears if a reset_filter_path constraint is mentioned in
the .sgdc file but is not used to filter any reset domain crossing in the
current design.

Consequences of Not Fixing
968
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
If you do not fix this violation, SpyGlass ignores the specific constraint.

How to Debug and Fix

To fix this violation, specify a correct reset_filter_path constraint for
existing reset domain crossings.

Example Code and/or Schematic

Consider the following constraints specification:

current_design "top"
clock -name "top.clk"
reset -name r1
reset -name r2
reset -name r3
reset_filter_path -from_rst w1 -to_rst r3

For the above example, the RFPSetup rule reports a violation because the
from_rst reset is incorrect.

Default Severity Label

Warning

Rule Group

Non-fatal must rule

Reports and Related Files

No report or related file
969
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
SGDC_qualifier23
qualifier's clocks or resets does not matches with the clocks and
resets of the destination object

When to Use

Use this rule to perform sanity checks related to the qualifier
constraint.

Prerequisites

Specify the qualifier constraint.

Description

The SGDC_qualifier23 rule reports a violation if the reset/clock driving the
enable signal (qualifier -rdc) is different from the reset/clock of the
sequential element which it encounters during forward propagation.

The SGDC_qualifier23 rule does not report a violation if an enable signal
reaches at least one sequential element whose reset/clock matches with
that of the enable signal.

However, the rule reports a violation if multiple resets drive the enable
signal.

By default, qualifier is not propagated further if any mismatch is found
between enable signal and the sequential element.

You can use the ignore_qualifier_mismatch_rdc parameter so that the
SGDC_qualifier23 rule does not stop the qualifier propagation and reports
a violation with Warning severity instead of an Error severity in this case.
For example, consider the following schematic:
970
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
FIGURE 93.

Also consider the following constraints:

qualifier -name q3 -rdc //(qualifies path from q1_reg to
q2_reg)
reset_filter_path -from_rst rst3 -to_rst rst2 //(filters out
RDC from q3_reg to q2_reg)

In the above schematic, qualifier flop and destination resets are different.
In this case, if ignore_qualifier_mismatch_rdc set to yes and reset_filter_path
is used to filter non issues, which removes RDC between them, the qualifier
is considered as valid. Therefore in this case, the reset domain crossing
between q1_reg and q2_reg is reported as Synchronized by User defined
And gate based qualifier if the enable_and_sync parameter is set to yes.

Parameter(s)

ignore_qualifier_mismatch_rdc: Default value is no. Set the value to yes to
not stop qualifier propagation and report a Warning message instead of an
Error message.
971
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
Constraint(s)

qualifier (Mandatory): Use this constraint to specify a qualifier for
synchronizing a clock domain crossing.

Messages and Suggested Fix

Message 1

The following message appears when the clock reaching the qualifier signal
does not match with the destination clock:

[WARNING] Constraint 'qualifier': Clock <clk_name> reaching at qualifier
<qual_net_name> does not match with the clock <dest_clk_name> of
destination object <dest_obj>, Qualifier is not propagated

Potential Issues

This violation appears if you have specified the qualifier constraint on
the wrong net/terminal/port.

Consequences of Not Fixing
If you do not fix this violation, the qualifier might be considered as invalid.
This might not be the intended behavior.

How to Debug and Fix
To fix this violation, ensure that the qualifier constraint is defined on
the correct net/terminal/port.

Message 2

The following message appears when the reset reaching the qualifier signal
does not match with the destination reset:

[WARNING] Constraint 'qualifier': Reset <reset_name> reaching at qualifier
<qual_net_name> does not match with the reset <dest_rst_name> of
destination object <dest_obj>

Potential Issues

This violation appears if you have specified the qualifier constraint on
the wrong net/terminal/port.
972
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
Consequences of Not Fixing
If you do not fix this violation, the qualifier might be considered as invalid.
This might not be the intended behavior.

How to Debug and Fix

To fix this violation, ensure that the qualifier constraint is defined on
the correct net/terminal/port.

Message 3

The following message appears when the clock reaching the qualifier signal
does not match with the destination clock:

[ERROR] Constraint 'qualifier': Clock <clk_name> reaching at qualifier
<qual_net_name> does not match with the clock <dest_clk_name> of
destination object <dest_obj>, Qualifier is not propagated

Potential Issues

This violation appears if you have specified the qualifier constraint on
the wrong net/terminal/port.

Consequences of Not Fixing
If you do not fix this violation, the qualifier is considered as invalid. This
might not be the intended behavior.

How to Debug and Fix
To fix this violation, ensure that the qualifier constraint is defined on
the correct net/terminal/port.

Message 4

The following message appears when the reset reaching the qualifier signal
does not match with the destination reset:
973
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
[ERROR] Constraint 'qualifier': Reset <reset_name> reaching at qualifier
<qual_net_name> does not match with the reset <dest_rst_name> of
destination object <dest_obj>; Qualifier is not propagated

Potential Issues

This violation appears if you have specified the qualifier constraint on
the wrong net/terminal/port.

Consequences of Not Fixing
If you do not fix this violation, the qualifier is considered as invalid. This
might not be the intended behavior.

How to Debug and Fix

To fix this violation, ensure that the qualifier constraint is defined on
the correct net/terminal/port.

Message 5

The following message appears when multiple resets are found in the fanin
cone of the qualifier signal:

[ERROR] Constraint 'qualifier : <reset_count> Resets (<reset_name1>,
<reset_name2>, ...) in the fanin cone of the qualifier <qual_net_name>,
Qualifier propagation is stopped

Potential Issues
This violation appears when multiple resets are found in the fanin cone of
the qualifier signal.

Consequences of Not Fixing
If you do not fix this violation, the qualifier is considered as invalid. This
might not be the intended behavior.

How to Debug and Fix
974
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
To fix this violation, ensure that the qualifier constraint is defined on
the correct net/terminal/port.

Message 6

The following message appears when when multiple resets are found in the
fanin cone of the qualifier signal:

[WARNING] Constraint 'qualifier : <reset_count> Resets (<reset_name1>,
<reset_name2>, ...) in the fanin cone of the qualifier <qual_net_name>,
Qualifier is still propagated

Potential Issues
This violation appears when multiple resets are found in the fanin cone of
the qualifier signal.

Consequences of Not Fixing
If you do not fix this violation, the qualifier might be considered as invalid.
This might not be the intended behavior.

How to Debug and Fix

To fix this violation, ensure that the qualifier constraint is defined on
the correct net/terminal/port.

Example Code and/or Schematic

Consider the example shown in the following figure:

The following schematic shows the violation of the SGDC_qualifier23 rule:
975
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
FIGURE 94.

In the above example, the SGDC_qualifier23 violation appears because of
the mismatch of the C2 clock reaching the qual qualifier with that of the
destination clock C1.

Default Severity Label

Warning

Rule Group

Non-fatal must rule

Reports and Related Files

No report or related file

C1

D

RST2
RST1

C1

S

RST3

qual
C2
976
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
SGDC_cdc_define_transition01
Checks for compatible values in cdc_define_transition

When to Use

Use this rule to check for incompatible values in the cdc_define_transition
constraint.

Description

This rule is run by default when the cdc_define_transition constraint is
specified.

The SGDC_cdc_define_transition01 rule checks for incompatible values in
the cdc_define_transition constraint. It reports the cases where both 00 and
11 are provided in the -type argument of the cdc_define_transition
constraint.

Parameter(s)

None

Constraint(s)

 cdc_define_transition (Mandatory): Used to specify the permitted
transitions of any net.

Messages and Suggested Fix

The following message appears:

[ERROR] Constraint "cdc_define_transition" cannot accept both
00 and 11 for same net

Potential Issues

This violation is reported because you have specified both 00 and 11 glitch
for the same net in the -type argument of the cdc_define_transition
constraint.

Consequences of Not Fixing

The net on which the constraint has been applied will not be checked for
glitch.
977
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
How to Debug and Fix

Review the0 cdc_define_transition constraint specification.

Example Code and/or Schematic

The SGDC_cdc_define_transition01 rule reports a violation for the following
constraint specification because both 00 and 11 have been defined for the
same net:

cdc_define_transition -name top.A -type {00, 11}

Default Severity Label

Error

Rule Group

None

Reports and Related Files

No report or related file
978
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
Ar_cross_analysis01
Reports clock domain crossings on the reset path in a design

When to Use

Use this rule to identify all asynchronous clock domain crossings on reset
paths in a design.

Prerequisites

The prerequisites of using this rule are as follows:
 Enable this rule by specifying the set_goal_option addrules

{Ar_cross_analysis01} command in a project file.

 Use the Advanced_CDC license.

Description

If a source from an asynchronous clock domain reaches the asynchronous
preset or clear pin of a sequential element, it may cause metastability
issues. The Ar_cross_analysis01 rule performs crossing detection and
synchronization checks and reports all the clock domain crossings on reset
paths in a design.

This rule reports all the reset path crossings in the form of a spreadsheet in
The Ar_cross_analysis01 Spreadsheet.

Parameter(s)

 All the parameters of The Ac_sync_group Rules

Constraint(s)

 All the constraints of The Ac_sync_group Rules

Messages and Suggested Fix

Message 1

The following message appears to report unsynchronized and synchronized
crossings:

[ERROR] Design <design-name> contains unsynchronized and
synchronized crossings
979
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
Potential Issues
This violation appears if there is a clock domain crossing in the reset path
and the destination is not properly synchronized leading to metastability.

Consequences of Not Fixing
Same as the Consequences of Not Fixing of the Ar_unsync01 rule.

How to Debug and Fix
To fix this violation, add a proper synchronization circuit for the signal in
the reset path.

Message 2

The following message appears to report unsynchronized crossings:

[ERROR] Design <design-name> contains unsynchronized crossing

Potential Issues
This violation appears if there is a clock domain crossing in the reset path
and the destination is not properly synchronized leading to metastability.

Consequences of Not Fixing
Same as the Consequences of Not Fixing of the Ar_unsync01 rule.

How to Debug and Fix
To fix this violation, add a proper synchronization circuit for the signal in
the reset path.

Message 3

The following info message appears to report synchronized crossings:

[ERROR] Design <design-name> contains synchronized crossing

Potential Issues
This is an informational message that reports asynchronous clock domain
crossings in the reset path for which all the sources are synchronized.

Consequences of Not Fixing
Not applicable

How to Debug and Fix
980
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
Not applicable

Example Code and/or Schematic

Consider the following code in the SGDC file and the schematic:

FIGURE 95. SGDC file and Schematic

For the above example, the Ar_cross_analysis01 rule reports synchronized
crossings.

To view the details of these crossings, double-click on the violation of this
rule to open The Ar_cross_analysis01 Spreadsheet.

Default Severity Label

Info

Rule Group

ADV_CLOCKS
981
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
Reports and Related Files

 The Ar_cross_analysis01 Spreadsheet

 The SynchInfo Report
982
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
Ar_asyncdeassert01
Reports if reset signal is asynchronously de-asserted

When To Use

Use this rule to perform metastability checks at a Functional Flip-Flop.

Prerequisites

The Ar_asyncdeassert01 rule works only with the Advanced_CDC and
adv_checker license features.

Description

The Ar_asyncdeassert01 rule reports reset/preset pins of sequential
elements that are asynchronously de-asserted because of the following
reasons:
 Improper De-assertion

The Functional Flip-Flop is not synchronously de-asserted for the inactive
value of the reset signal, as shown in the following example:

FIGURE 96. Improper De-assertion

 Domain-mismatch
Domain mismatch occurs in any of the following cases:
 The clock domain of a Reset Flip-Flop does not match the clock domain

of a Functional Flip-Flop.

clk

rst

en

Functional flip-flop
983
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
 If a reset is constrained by using the input constraint the clock
specified by the -clock argument is not in the domain of the clock of
the Functional Flip-Flop.

The following figure shows an example of domain mismatch:

FIGURE 97. Domain Mismatch

 Unconstrained source clock
The clock of a Reset Flip-Flop is unconstrained. The following figure shows
an example of an unconstrained clock:

FIGURE 98. Unconstrained Clock

In the above example, the ck pin is not constrained by using the clock

clk1

rst

Functional flip-flop

clk2

Reset flip-flop

clk

rst

ck

Reset flip-flop
Black box
984
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
constraint.

This rule reports one flip-flop per Reset Cone. You can expand the reset
cone in the schematic to view other flip-flops or set the
enable_reset_cone_spreadsheet parameter to yes to list all the flip-flops for
the violation in a spreadsheet.

Parameter(s)

 deassert_mode: Default value is none. Set this parameter to a comma-
separated list of Possible Values of the deassert_mode Parameter to filter
violations of this rule.

 use_inferred_resets: Default value is no. Set this parameter to yes to use
auto-generated reset information.

 report_inst_for_netlist: Default value is no. Set this parameter to yes to
report violating instance name in case of netlist designs and leaf-level
net name for RTL designs.

 enable_debug_data: Default value is no. Set this parameter to yes to
view debug information.

 reset_sync_depth: Default value is 8. Set this parameter to a positive
integer value to specify the number of flip-flops that are a part of the
longest reset synchronizer chain in a design.

 reset_synchronize_cells: Default value is NULL. Specifies a
comma-separated list of synchronizer cell names that are considered as
valid synchronizers for asynchronous reset signals.

 filter_named_resets: Default value is clk, clock, scan. Specify a list of
strings to auto-infer asynchronous resets that do not match the
specified strings.

 cdc_reduce_pessimism: Default value is mbit_macro,
no_convergence_at_syncreset, no_convergence_at_enable.
Set this parameter to an appropriate value to ignore clock domain
crossings involving black box instances and clock domain crossings with
destinations having unused, hanging, or blocked outputs. For possible
values, see Allowed Values of the cdc_reduce_pessimism Parameter.

 reset_reduce_pessimism: Default value is
filter_unused_synchronizer, same_data_reset_flop. Set the
value of this parameter to all_potential_resets to detect all the
985
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
potential resets in a design. For information on the other possible
values, see Possible Values to the reset_reduce_pessimism Parameter.

 handle_combo_arc: Default value is no. Set this parameter to yes so that
the clock/reset propagates from an input pin of a sequential library cell
if a combinational timing arc is specified from that pin to any output pin
of the cell.

 enable_reset_cone_spreadsheet: Default value is no. Set this parameter to
yes to enable SpyGlass CDC to generate a spreadsheet for each
violation message reported by the Ar_unsync01, Ar_asyncdeassert01, and
Reset_sync02 rules. The generated spreadsheet includes all similar flops
that are candidates for the reported violation.

Constraint(s)

 assume_path: (Optional) Use this constraint to specify paths that exist
between the input pins and the output pins of black boxes.

 set_case_analysis: (Optional) Use this constraint to specify case analysis
settings in a design.

 input (Optional): Use this constraint to specify clock domain at input
ports.

 clock (Optional): Use this constraint to specify clock signals.

 reset (Optional): Use this constraint to specify reset signals.

 abstract_port (Optional): Use this constraint to define abstracted
information for block ports.

 reset_synchronizer (Optional): Use this constraint to specify a reset
synchronizer signal along with its asserted reset value.

 reset_filter_path: (Optional) Use this constraint to specify reset paths so
that the reset crossings across these paths are ignored from SpyGlass
analysis.

Messages and Suggested Fix

Message 1

This rule reports the following message:

[RstAD1_1] [ERROR] Reset signal '<sig-name>' for '<pin-name>'
pin of <element-type> '<element-name>', is asynchronously de-
asserted relative to clock signal '<clock-signal>'. Reason:
986
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
<reason>.

The arguments of the above message are explained below:

Potential Issues
This violation appears if your design contains asynchronous reset signals
that are asserted asynchronously but are not de-asserted synchronously
with the corresponding clock signal.

Consequences of Not Fixing
Same as the Consequences of Not Fixing of the Reset_sync01.

How to Debug and Fix
To fix this violation, perform any of the following actions based on your
requirement:
 Use the reset_synchronize_cells parameter to specify a black box, library

cell, or a module that has a custom reset synchronizer.
 Use the input constraint to specify input constraint on reset source if it

is synchronized outside the block.
 Use the reset_synchronizer constraint to specify a net/port <check from

definition>

Argument Description
<sig-name> User-specified or automatically-inferred reset signal
<pin-name> Can be clear or set
<element-type> Can be flop or latch
<element-name> For netlist designs, if the report_inst_for_netlist parameter

is set to yes, <element-name> is the output pin name of a
functional flip-flop. Else, it is output net of Functional Flip-
Flop.

<clock-signal > Clock driving the Functional Flip-Flop

<reason> Can be one of the following:
• Improper de-assertion
• Unconstrained clock source
987
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
Message 2

This rule reports the following message:

[RstAD1_2] [ERROR] Reset signal '<sig-name>' for '<pin-name>'
pin of <element-type> '<element-name>', is asynchronously de-
asserted relative to clock signal '<clock-signal>'. Reason:
Domain mismatch. Source clock: <source-clock>

The arguments of the above message are explained below:

Potential Issues
See Potential Issues.

Consequences of Not Fixing
Same as the Consequences of Not Fixing of the Reset_sync01.

How to Debug and Fix
See How to Debug and Fix.

Example Code and/or Schematic

Consider the following schematic:

Argument Description
<sig-name> User-specified or automatically-inferred reset signal
<pin-name> Can be clear or set
<element-type> Can be flop or latch
<element-name> For netlist designs, if the report_inst_for_netlist parameter

is set to yes, <element-name> is the output pin name of a
functional flip-flop. Else, it is output net of Functional Flip-
Flop.

<clock-signal > Clock driving the Functional Flip-Flop

<source-clock> Source clock name
988
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
FIGURE 99. Schematic of the Ar_asyncdeassert01 Rule Violation

In this case, the reset may or may not be de-asserted synchronously
depending upon the sequencing of the en enable and the rst reset.

De-assertion in this case is asynchronous if en is 0.

Default Severity Label

Error

Rule Group

Ar_sync_group

Reports and Related Files

The SynchInfo Report
989
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
Ar_syncdeassert01
Reports if reset signal is synchronously de-asserted or not de-
asserted at all

When To Use

Use this rule to perform metastability checks at a Functional Flip-Flop.

Prerequisites

The Ar_syncdeassert01 rule works only with the Advanced_CDC and
adv_checker license features.

Description

The Ar_syncdeassert01 rule reports reset/preset pins of sequential
elements when they satisfy any of following conditions:
 If a reset is specified by using the input constraint and it is used by a

flip-flop whose domain matches with the domain of a clock specified by
the -clock argument of the input constraint. An example is shown in
the following figure:

FIGURE 100. Scenario 1 - Ar_syncdeassert01 Rule Violation

 If at least one Reset Flip-Flop exists in the path of a reset and a Functional
Flip-Flop. The functional flip-flop is de-asserted appropriately for the
inactive value of the specified reset, as shown in the following figure:

clk

rst

input -name rst -clock clk
990
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
FIGURE 101. Scenario 2 - Ar_syncdeassert01 Rule Violation

 If its path is blocked such that the Functional Flip-Flop is never
deasserted.

This rule reports one flip-flop per Reset Cone. You can expand the reset
cone in the schematic to view other flip-flops.

Parameter(s)

 deassert_mode: Default value is none. Set this parameter to a comma-
separated list of Possible Values of the deassert_mode Parameter to filter
violations of this rule.

 reset_num_flops: Default value is 2. Specify a positive integer value,
greater than one, to specify different number of flip-flops.

 reset_synchronize_cells: Default value is NULL. Specifies a
comma-separated list of synchronizer cell names that are considered as
valid synchronizers for asynchronous reset signals.

 use_inferred_resets: Default value is no. Set this parameter to yes to use
auto-generated reset information.

 report_inst_for_netlist: Default value is no. Set this parameter to yes to
report violating instance name in case of netlist designs and leaf-level
net name for RTL designs.

 enable_debug_data: Default value is no. Set this parameter to yes to
view debug information.

clk

clk

rst
991
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
 reset_sync_depth: Default value is 8. Set this parameter to a positive
integer value to specify the number of flip-flops that are a part of the
longest reset synchronizer chain in a design.

 filter_named_resets: Default value is clk, clock, scan. Specify a list of
strings to auto-infer asynchronous resets that do not match the
specified strings.

 cdc_reduce_pessimism: Default value is mbit_macro,
no_convergence_at_syncreset, no_convergence_at_enable.
Set this parameter to an appropriate value to ignore clock domain
crossings involving black box instances and clock domain crossings with
destinations having unused, hanging, or blocked outputs. For possible
values, see Allowed Values of the cdc_reduce_pessimism Parameter.

 reset_reduce_pessimism: Default value is
filter_unused_synchronizer, same_data_reset_flop. Set the
value of this parameter to all_potential_resets to detect all the
potential resets in a design. For information on the other possible
values, see Possible Values to the reset_reduce_pessimism Parameter.

 handle_combo_arc: Default value is no. Set this parameter to yes so that
the clock/reset propagates from an input pin of a sequential library cell
if a combinational timing arc is specified from that pin to any output pin
of the cell.

Constraint(s)

 assume_path: (Optional) Use this constraint to specify paths that exist
between the input pins and the output pins of black boxes.

 set_case_analysis: (Optional) Use this constraint to specify case analysis
settings in a design.

 input (Optional): Use this constraint to specify clock domain at input
ports.

 clock (Optional): Use this constraint to specify clock signals.

 reset (Optional): Use this constraint to specify reset signals.

 reset_synchronizer (Optional): Use this constraint to specify a reset
synchronizer signal along with its asserted reset value.

 abstract_port (Optional): Use this constraint to define abstracted
information for block ports.
992
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
 reset_filter_path: (Optional) Use this constraint to specify reset paths so
that the reset crossings across these paths are ignored from SpyGlass
analysis.

Messages and Suggested Fix

This rule reports the following message:

[INFO] Reset signal <sig-name>' for '<pin-name>' pin of
<element-type> '<element-name>', synchronously de-asserts
relative to clock signal '<clock-signal>'

The arguments of the above message are explained below:

Potential Issues
Not applicable

Consequences of Not Fixing
Not applicable

How to Debug and Fix
This is an informational rule. Disable or waive this rule if not required.

Example Code and/or Schematic

Consider the following schematic:

Argument Description
<sig-name> User-specified or automatically-inferred asynchronous

reset signal
<pin-name> Can be clear or set
<element-type> Can be flop or latch
<element-name> For netlist design, if the report_inst_for_netlist parameter

is specified, it is the output pin name of functional flop.
Otherwise, it is output net name of the functional flop.

<clock-signal > Clock signal driving the Reset Cone.
993
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
FIGURE 102. Schematic of the Ar_syncdeassert01 Rule Violation

In this case, the reset may or may not be de-asserted synchronously
depending upon the sequencing of the en enable and the rst reset.

De-assertion in this case is synchronous if en is 1.

Default Severity Label

Info

Rule Group

Ar_sync_group

Reports and Related Files

The SynchInfo Report
994
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
Ar_sync01
Reports synchronized reset signals in the design

When To Use

Use this rule to check reset synchronization issues in your design.

Prerequisites

The Ar_sync01 rule works only with the Advanced_CDC and adv_checker
license features.

Description

The Ar_sync01 rule reports reset pins of flip-flops that have at least one
reset synchronizer in any of the paths between an asynchronous reset
source and flip-flops.

This rule reports one flip-flop per Reset Cone. You can expand the reset
cone in the schematic to view other flip-flops.

Synchronization Methods Reported by this Rule

This rule reports the following synchronization methods in its violation
message:
 Multi-flop reset synchronizer

This synchronization method is reported if a multi-flop synchronizer
chain is found between a reset source and a flip-flop, as shown in the
following figure:
995
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
FIGURE 103. Multi-Flop Synchronizer Chain between Reset Source and Flip-Flop

 Reset constrained by using the input constraint

This synchronization method is reported if an input constraint has been
specified on a reset source. In this case, the clock domain specified by
the input constraint matches with the clock domain of the flip-flop where
it is used as a reset.

 User-defined reset synchronizer

This synchronization method is reported if a reset synchronizer specified
by the reset_synchronize_cells parameter or by the reset_synchronizer
constraint is found between a reset source and a flip-flop.

Reporting of Hanging Nets

Consider the scenario shown in the following figure:
996
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
FIGURE 104. Hanging Net

In the above scenario, by default, the Ar_sync01 rule does not ignore
the hanging net coming from a combinational logic and does not report
the grey area as valid synchronization.
When you set the cdc_reduce_pessimism parameter to
skip_unused_paths, the Ar_sync01 rule ignores the hanging net and
considered the grey area as valid synchronization.

NOTE: By default, this rule is switched off.

Parameter(s)

 reset_synchronize_cells: Default value is NULL. Specifies a
comma-separated list of synchronizer cell names that are considered as
valid synchronizers for asynchronous reset signals.

 reset_num_flops: Default value is 2. Specify a positive integer value,
greater than one, to specify different number of flip-flops.

 use_inferred_resets: Default value is no. Set this parameter to yes to use
auto-generated reset information.

Hanging net

rst
997
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
 report_inst_for_netlist: Default value is no. Set this parameter to yes to
report violating instance name in case of netlist designs and leaf-level
net name for RTL designs.

 enable_debug_data: Default value is no. Set this parameter to yes to
view debug information.

 enable_glitchfreecell_detection: Default value is no. Set this parameter to
yes to report glitch-free multiplexers in a design.

 filter_named_resets: Default value is clk, clock, scan. Specify a list of
strings to auto-infer asynchronous resets that do not match the
specified strings.

 cdc_reduce_pessimism: Default value is mbit_macro,
no_convergence_at_syncreset, no_convergence_at_enable.
Set this parameter to an appropriate value to ignore clock domain
crossings involving black box instances and clock domain crossings with
destinations having unused, hanging, or blocked outputs. Other possible
values are bbox, output_not_used, hanging_net,
skip_unused_paths, and all.

 reset_reduce_pessimism: Default value is
filter_unused_synchronizer, same_data_reset_flop. Set the
value of this parameter to all_potential_resets to detect all the
potential resets in a design. For information on the other possible
values, see Possible Values to the reset_reduce_pessimism Parameter.

 handle_combo_arc: Default value is no. Set this parameter to yes so that
the clock/reset propagates from an input pin of a sequential library cell
if a combinational timing arc is specified from that pin to any output pin
of the cell.

Constraint(s)

 abstract_port (Optional): Use this constraint to define abstracted
information for block ports.

 input (Optional): Use this constraint to specify clock domain at input
ports.

 clock (Optional): Use this constraint to specify clock signals.

 reset (Optional): Use this constraint to specify reset signals.
998
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
 reset_synchronizer (Optional): Use this constraint to specify a reset
synchronizer signal along with its asserted reset value.

 num_flops -reset (Optional): Use this constraint to specify a minimum
number of flip-flops required in a synchronizer chain.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

 reset_filter_path: (Optional) Use this constraint to specify reset paths so
that the reset crossings across these paths are ignored from SpyGlass
analysis.

Messages and Suggested Fix

This rule reports the following message for one flip-flop on a per net basis:

[INFO] Reset signal '<sig-name>' for '<pin-name>' pin of
<object-type> '<object-name>', clocked by '<clock-name>', is
synchronized by method: <method>

The arguments of the above message are explained below:

Potential Issues
Not applicable

Consequences of Not Fixing

Argument Description
<sig-name> Reset signal name
<pin-name> Can be clear or set
<object-type> Object type, such as flop, latch, or library-cell
<object-name> For a netlist design, it refers to the output pin name of

reporting flip- flop if the report_inst_for_netlist is specified.
Else, it refers to the output net name.

<clock-name> Clock signal of the reporting flip-flop
<method> Any of the following synchronization method:

• Multi-flop reset synchronize
• User-defined reset synchronizer
• Reset constrained through input constraint
• Reset constrained through abstract_port constraint
999
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
Not applicable

How to Debug and Fix
This is an informational rule. Disable or waive this rule if you do not want to
view its messages.

Example Code and/or Schematic

Consider the following schematic of this rule:

FIGURE 105. Schematic of the Ar_sync01 Rule Violation

In the above example, a multi-flop reset synchronizer is present between
the reset source and flip-flop.

Schematic Highlight

Following details are highlighted in different colors:
 Reset path

 Destination flop

 Reset synchronizer used for synchronizing a flop

Default Severity Label

Info
1000
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
Rule Group

Ar_sync_group

Reports and Related Files

The SynchInfo Report
1001
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
Ar_unsync01
Reports unsynchronized reset signals in the design

When To Use

Use this rule to check reset synchronization issues in your design.

Prerequisites

The Ar_unsync01 rule works only with the Advanced_CDC and
adv_checker license features.

Description

The Ar_unsync01 rule reports reset pins of flip-flops that do not have a
reset synchronizer in any of the paths between an asynchronous reset
source and flip-flops.

This rule reports following reasons in the violation message:
 Missing synchronizer

This reason is reported if a reset synchronizer is not present in any of
the paths.

 Different domain synchronizer
This reason is reported if a reset synchronizer of different domain is
present, as shown in the following figure:

FIGURE 106. Different Domain Synchronizer
1002
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
 Invalid reset synchronizer
This reason is reported if an invalid reset synchronizer is present.
A reset synchronizer is considered invalid in the following cases:
 When multiple fan-out of flip-flops in a synchronizer chain are

present, as shown in the following figure:

FIGURE 107. Multiple fan-outs of flip-flops in a synchronizer chain

 Number of flip-flops in a chain are less than the value specified by the
reset_num_flops parameter.
For example, this rule reports a violation when the reset_num_flops
parameter is set to 3 in the following scenario:

rst
1003
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
FIGURE 108. Number of Flip-Flops in a chain Less than the Value Specified

This rule reports one flip-flop per Reset Cone. You can expand the reset
cone in the schematic to view other flip-flops or set the
enable_reset_cone_spreadsheet parameter to yes to list all the flip-flops for
the violation in a spreadsheet.

NOTE: By default, this rule is switched off.

Parameter(s)

 reset_synchronize_cells: Default value is NULL. Specifies a
comma-separated list of synchronizer cell names that are considered as
valid synchronizers for asynchronous reset signals.

 reset_num_flops: Default value is 2. Specify a positive integer value,
greater than one, to specify different number of flip-flops.

 use_inferred_resets: Default value is no. Set this parameter to yes to use
auto-generated reset information.

 report_inst_for_netlist: Default value is no. Set this parameter to yes to
report violating instance name in case of netlist designs and leaf-level
net name for RTL designs.

 enable_debug_data: Default value is no. Set this parameter to yes to
view debug information.
1004
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
 enable_glitchfreecell_detection: Default value is no. Set this parameter to
yes to report glitch-free multiplexers in a design.

 filter_named_resets: Default value is clk, clock, scan. Specify a list of
strings to auto-infer asynchronous resets that do not match the
specified strings.

 cdc_reduce_pessimism: Default value is mbit_macro,
no_convergence_at_syncreset, no_convergence_at_enable.
Set this parameter to an appropriate value to ignore clock domain
crossings involving black box instances and clock domain crossings with
destinations having unused, hanging, or blocked outputs. For possible
values, see Allowed Values of the cdc_reduce_pessimism Parameter.

 reset_reduce_pessimism: Default value is
filter_unused_synchronizer, same_data_reset_flop. Set the
value of this parameter to all_potential_resets to detect all the
potential resets in a design. For information on the other possible
values, see Possible Values to the reset_reduce_pessimism Parameter.

 handle_combo_arc: Default value is no. Set this parameter to yes so that
the clock/reset propagates from an input pin of a sequential library cell
if a combinational timing arc is specified from that pin to any output pin
of the cell.

 enable_reset_cone_spreadsheet: Default value is no. Set this parameter to
yes to enable SpyGlass CDC to generate a spreadsheet for each
violation message reported by the Ar_unsync01, Ar_asyncdeassert01, and
Reset_sync02 rules. The generated spreadsheet includes all similar flops
that are candidates for the reported violation.

Constraint(s)

 input (Optional): Use this constraint to specify clock domain at input
ports.

 clock (Optional): Use this constraint to specify clock signals.

 reset (Optional): Use this constraint to specify reset signals.

 reset_synchronizer (Optional): Use this constraint to specify a reset
synchronizer signal along with its asserted reset value.

 num_flops -reset (Optional): Use this constraint to specify a minimum
number of flip-flops required in a synchronizer chain.
1005
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
 set_case_analysis: (Optional) Use this constraint to specify case analysis
settings in a design.

 reset_filter_path: (Optional) Use this constraint to specify reset paths so
that the reset crossings across these paths are ignored from SpyGlass
analysis.

Messages and Suggested Fix

This rule reports the following message for one flip-flop on a per net basis:

[ERROR] Reset signal '<sig-name>' for '<pin-name>' pin of
<object-type> '<object-name>', clocked by '<clock-name>', is
unsynchronized by reason: <reason>

The arguments of the above message are explained below:

Potential Issues
This violation appears if a reset synchronizer is missing in your design or
the design contains a reset synchronizer that is not well built.

Consequences of Not Fixing
See the Consequences of Not Fixing of the Reset_sync01.

Argument Description
<sig-name> Reset signal name
<pin-name> Pin name
<object-type> Object type, such as flop, latch, or library-cell
<object-name> Name of a flip-flop, latch, or a library cell

(This rule reports a violation for one flip-flop on a
per net basis.)

<clock-name> Clock name
<reason> Any of the following synchronization reason:

• Missing synchronizer
• Invalid reset synchronizer
• Different domain synchronizer
1006
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
How to Debug and Fix
To fix this violation, add a proper synchronization circuit for the reset
signal.

Example Code and/or Schematic

Consider the following schematic of a violation that is reported because of
an invalid reset synchronizer:

FIGURE 109. Schematic of the Ar_unsync01 Rule Violation

The above violation appears when the reset_num_flops parameter is set to
3.

To fix this violation, increase the synchronizer flip-flop chain to 3 flip-flops.

Schematic Highlight

Following details are highlighted in the schematic:
 Reset path

 Destination flop

 Reset synchronizer used for synchronizing a flop

Default Severity Label

Error
1007
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
Rule Group

Ar_sync_group

Reports and Related Files

 The SynchInfo Report

 Ar_unsync01.csv: This is the rule-based spreadsheet that contains
details of all violations of this rule.
You can double-click a row in the spreadsheet to see a list of all the flops
that are in the same reset cone as the flop listed in the row. Note that
this list is available only if the enable_reset_cone_spreadsheet parameter
set to yes.
1008
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
Reset_sync01
Reports asynchronous reset signals that are not de-asserted
synchronously

NOTE: The Reset_sync01 rule will be deprecated in a future release. The rule is not
included in CDC GuideWare goals now and do not perform checks until specifically
included in the user-defined goal options. In this case, the rule performs the checks
and SpyGlass includes a deprecation message in both the spyglass.out and
spyglass.log files.

When to Use

Use this rule to detect asynchronous reset signals that are not de-asserted
synchronously.

NOTE: It is recommended to use the Ar_unsync01 and Ar_asyncdeassert01 rules instead of
this rule.

Prerequisites

Specify reset signals in any of the following ways:
 By using the reset constraint

 By setting the use_inferred_resets parameter to yes to use auto-
generated reset signals

 By using a combination of both the above methods

Specify clock signals in any of the following ways:
 By using the clock constraint

 By setting the use_inferred_clocks parameter to yes to use auto-
generated clock signals

 By using a combination of both the above methods

Description

The Reset_sync01 rule reports asynchronous reset signals that are
asserted asynchronously but are not de-asserted synchronously with the
corresponding clock signal.

This rule considers an asynchronous reset as synchronized if:
 It is specified by using the input constraint and
1009
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
 It is used by a flip-flop where the domain of the flip-flop matches with
the domain of a clock specified in the -clock argument of the input
constraint.

This rule reports one flip-flop per Reset Cone. You can expand the reset
cone in the schematic to view other flip-flops.

Rule Behavior While Traversing from an Asynchronous Reset Source

While traversing forward from an asynchronous reset source to find
synchronizer modules:
 If all paths from an asynchronous reset signal do not have

synchronizers, the reset signal is not considered as synchronized and
the Reset_sync01 rule reports violations for such reset signal used in
the design.

 This rule skips buffers, inverters, and sensitized paths before a
synchronizer while traversing forward from a reset source.

Rule Exceptions

Following are the exceptions to the Reset_sync01 rule:
 It does not check asynchronous reset signals that are not asserted

asynchronously.
 When all flip-flops are asynchronously de-asserted by a reset, this rule

reports all of them except the synchronizer chain flip-flops with respect
to any one clock of a design.
In such cases, use the Ar_sync_group rules instead of the Reset_sync01
rule.

Checks Performed by the Reset_sync01 Rule

This rule performs the following checks:
 It checks for cases in which clock domain of flip-flops, where

asynchronous reset is being used, is same as the clock domain of an
input port of a reset (if specified), or clock domain of a flip-flop/latch/
black box, which is generating the reset. If the domain is not same,
rule-checking will be done by the Reset_sync02 rule rather than the
Reset_sync01 rule.
1010
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
 It checks whether an asynchronous reset signal is properly synchronized
with respect to the same clock domain (as shown in the following figure)
to ensure its synchronous de-assertion:

FIGURE 110. Check done by the Reset_sync01 Rule

In the above example, the rst_n reset signal is not used directly. It is
synchronized with the clk clock to a synchronized reset signal
reset_n, which is then used for all flip-flops triggered by the clk clock.
In the above example, if the set_case_analysis constraint is used to set
the value of en to 1, this rule does not report any violation. However,
this rule reports a violation if the constraint is not specified for the
enable net, en.
While checking for de-assertion, this rule uses inactive value of
synchronous resets present in the cone of the asynchronous reset.

clk

rst_n

reset_n

clk

clk
tied to constant (1)

en
1011
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
Parameter(s)

 reset_synchronize_cells: Default value is NULL. Specifies a
comma-separated list of synchronizer cell names that are considered as
valid synchronizers for asynchronous reset signals.

 reset_sync_check: Default value is strict. Set this parameter to soft
to start de-assertion check on reset/clear pin of flip-flops instead of
reset source so that you are not required to provide the set_case_analysis
settings on other signals present in the cone of reset/clear pins of flip-
flops.

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

 use_inferred_resets: Default value is no. Set this parameter to yes to use
auto-generated reset information.

 report_inst_for_netlist: Default value is no. Set this parameter to yes to
report violating instance name in case of netlist designs and leaf-level
net name for RTL designs.

 filter_named_resets: Default value is clk, clock, scan. Specify a list of
strings to auto-infer asynchronous resets that do not match the
specified strings.

 filter_named_clocks: Default value is rst, reset, scan, set. Set this
parameter to a list of strings.

 reset_reduce_pessimism: Default value is
filter_unused_synchronizer, same_data_reset_flop. Set the
value of this parameter to all_potential_resets to detect all the
potential resets in a design. For information on the other possible
values, see Possible Values to the reset_reduce_pessimism Parameter.

 same_domain_at_gate: Default value is no. Set the value of the
parameter to an allowed value to optimize the inference of domains on
clock merging gates.

Constraint(s)

 reset (Optional): Use this constraint to specify reset signals.

 set_case_analysis (Optional): Use this constraint to specify case analysis
signals.
1012
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
 input (Optional): Use this constraint to specify clock domain at input
ports.

 clock (Optional): Use this constraint to specify clock signals.

 num_flops -reset (Optional): Use this constraint to specify a minimum
number of flip-flops required in a synchronizer chain.

Messages and Suggested Fix

The following message appears for reset signal <rst-name> of flip-flop
<flop-name> that is not de-asserted synchronously with the
corresponding clock signal <clk-name>:

[WARNING] Reset signal '<rst-name>' for flop '<flop-name>' is
not synchronously de-asserted relative to clock signal
'<clk-name>'

NOTE: The above message is reported for one flip-flop per cone where the issue is present.

The arguments of the above message are explained below:

Potential Issues
This violation appears if your design contains asynchronous reset signals
that are asserted asynchronously but are not de-asserted synchronously
with the corresponding clock signal.

Consequences of Not Fixing
If an asynchronous reset signal is de-asserted asynchronously, the
following problems may arise:
 Violation of reset recovery time

Argument Description
<rst-name> Hierarchical name of the asynchronous reset signal
<flop-name> For netlist designs, if the report_inst_for_netlist parameter is

set to yes, <flop-name> refers to the name of the flip-flop
instance. Otherwise, <flop-name> is the name of the
output net of the flip- flip-flop that is not de-asserted
synchronously.

<clk-name> Name of the destination clock
1013
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
Reset recovery time refers to the minimum time required between a
reset signal being de-asserted and a clock signal going high again.
Missing a recovery time can cause signal integrity or metastability
problems with the registered data outputs.

 Reset removal may occur in different clock cycles for different sequential
elements
Slight difference in propagation delays in either or both the reset signal
and the clock signal can cause registers or flip-flops to exit the reset
state before other sequential element.

How to Debug and Fix

To debug the violation of this rule, view the Incremental Schematic of the
violation message.

Perform the following steps to find the root cause of the problem:
1. Check if the combinational logic is present between the last

synchronizer flip-flop and the flip-flop where it is used as a reset.
This is not allowed if the combinational logic is not acting as a buffer/
inverter and not allowing reset value to propagate.

Enable Show Case Analysis in the schematic to check the constant value
propagation. You may need to constraint the path by using
set_case_analysis constraints.

2. Check if combinational logic is present between reset source and the
synchronizer flip-flop.
This is not allowed if the combinational logic is not acting as a buffer/
inverter and not allowing reset value to propagate. Enable Show Case
Analysis in the schematic to check the constant value propagation. You
may need to constraint the path by using set_case_analysis constraints.

3. If you specify reset synchronizer cell, verify whether all the fan-out
paths of reset net reaches reset synchronizer cell after ignoring
inverters and buffers.
Set the reset_sync_check parameter to soft for the rule to perform de-
assertion check on reset/clear pin of flip-flops instead of the reset
source.
You may specify the input constraint on a reset port for the rule to
assume these ports to be synchronized for the specified clock domain.
1014
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
4. You can also view case analysis settings along with the violation of this
rule.

There are several ways an asynchronous reset can be synchronized into
the domain of a clock against which it will reset. A simple approach is to
pass the reset through a metastability (for example, double flip-flop)
structure synchronized to the clock. Another approach is to insert an
additional flip-flop clocked on a negative edge of the clock, adding a half-
cycle offset between the clock and the reset, further reducing chances of
setup time problems between clock and reset.

If you want to assert reset asynchronously and de-assert synchronously,
consider using a parallel OR and flip-flop structure, as shown in the
following example:

...
assign final_reset = raw_reset || sync_reset;
always @(posedge clk)
sync_reset <= raw_reset;

Example Code and/or Schematic

Consider the following schematic of a violation reported by the
Reset_sync01 rule:

FIGURE 111. Schematic of the Reset_sync01 Rule Violation

In the above example, when the rst reset signal is de-asserted, the
synchronized output does not de-assert the out1 flip-flop due to
unconstrained en input of the rtlc_I2 AND gate.

To fix this violation, constraint the en input of the rtlc_I2 AND gate to
1015
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
value 1. This will lead to propagation of synchronous output to the out1
flip-flop.

Schematic Details

The Reset_sync01 rule highlights the path from a reset signal to a reset pin
of any one flip-flop.

Default Severity Label

Warning

Rule Group

SYNCHRONIZATION

Reports and Related Files

Reset_sync01.csv
1016
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
Reset_sync02
Reports asynchronous reset signals that are generated in
asynchronous clock domain or are generated from unconstrained
source clocks

When to Use

Use this rule to detect asynchronous reset signals that are used in a
particular clock domain but are generated in an asynchronous clock domain
or are generated from an unconstrained source clock.

Prerequisites

Specify clock signals in any of the following ways:
 By using the clock constraint

 By setting the use_inferred_clocks parameter to yes to use auto-
generated clock signals

 By using a combination of both the above methods

Specify reset signals in any of the following ways to identify valid reset
synchronization structures in a design:
 By using the reset constraint

 By setting the use_inferred_resets parameter to yes to use auto-
generated reset signals

In such cases, the Reset_sync02 rule does not report a violation for reset
pins of flip-flops that are a part of valid reset synchronizers.

Description

The Reset_sync02 rule reports violations for:
 Asynchronous Resets Generated in Asynchronous Clock Domains.

 Asynchronous Resets Generated from Unconstrained Source Clock.

Asynchronous Resets Generated in Asynchronous Clock Domains

The Reset_sync02 rule reports violations for asynchronous resets that are
used in a particular clock domain but are generated in an asynchronous
clock domain.
1017
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
The following figure shows an example in which this rule reports a
violation:

FIGURE 112. Scenario for the Reset_sync02 Rule Violation

This rule reports any one flip-flop per Reset Cone with respect to each clock
domain. If a cone is driving multiple domains, this rule reports one
violation per clock domain. You can expand the reset cone in the schematic
to view other flip-flops or set the enable_reset_cone_spreadsheet parameter
to yes to list all the flip-flops for the violation in a spreadsheet.

Asynchronous Resets Generated from Unconstrained Source Clock

The Reset_sync02 rule reports violations for an unconstrained clock of a
Reset Flip-Flop. The following figure shows the example of an unconstrained
clock:
1018
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
FIGURE 113. Unconstrained Clock

In the above example, the ck pin is not constrained by the clock constraint.

Rule Functioning

The Reset_sync02 functions in the following manner:
1. It traverses from each asynchronous reset pin till an input port, a flip-

flop output pin, a latch output pin, or a black box pin (ignoring
combinational logic) is reached.

2. It reports a violation if the clock domain of a parent flip-flop of a reset
signal is not same as the clock domain of the input port (if specified),
flip-flop, latch, or black box (the clock domain of the first found clock
signal connected to the black box is used).

Parameter(s)

 report_all_flops: Default value is no. Set this parameter to yes to report
all flip-flops whose resets are generated in asynchronous domains.

 use_inferred_clocks: Default value is no. Set this parameter to yes to
auto-detect clock signals.

 filter_named_clocks: Default value is rst, reset, scan, set. Set this
parameter to a list of strings.

clk

rst

ck

Reset flip-flop
Black box
1019
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
 reset_synchronize_cells: Default value is NULL. Specify a
comma-separated list of synchronizer cell names that are considered as
valid synchronizers for asynchronous reset signals.

 reset_num_flops: Default value is 2. Specify a positive integer value,
greater than one, to specify different number of flip-flops.

 cdc_reduce_pessimism: Default value is mbit_macro,
no_convergence_at_syncreset, no_convergence_at_enable.
Set this parameter to an appropriate value to ignore clock domain
crossings involving black box instances and clock domain crossings with
destinations having unused, hanging, or blocked outputs. For possible
values, see Allowed Values of the cdc_reduce_pessimism Parameter.

 handle_combo_arc: Default value is no. Set this parameter to yes so that
the clock/reset propagates from an input pin of a sequential library cell
if a combinational timing arc is specified from that pin to any output pin
of the cell.

 enable_reset_cone_spreadsheet: Default value is no. Set this parameter to
yes to enable SpyGlass CDC to generate a spreadsheet for each
violation message reported by the Ar_unsync01, Ar_asyncdeassert01, and
Reset_sync02 rules. The generated spreadsheet includes all similar flops
that are candidates for the reported violation.

 allow_unconstrained_reset_in_rfp: Default value is no. Set this parameter
to yes to enable the reset_filter_path constraint to accept unconstrained
resets.

 generate_rfp_suppressed_violations: Default in none. Set this parameter to
a supported rule to generate a report of the such suppressed rule
violations.

 same_domain_at_gate: Default value is no. Set the value of the
parameter to an allowed value to optimize the inference of domains on
clock merging gates.

Constraint(s)

 abstract_port (Optional): Use this constraint to specify a clock domain on
resets.

 clock (Optional): Use this constraint to specify clock signals.

 input (Optional): Use this constraint to specify clock domain at input
ports.
1020
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
 reset (Optional): Use this constraint to specify reset signals.

 num_flops with the -reset argument (Optional): Use this constraint to
specify a minimum number of flip-flops required in a synchronizer chain.

 reset_synchronizer (Optional): Use this constraint to specify a reset
synchronizer signal along with its asserted reset value.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

 reset_filter_path: (Optional) Use this constraint to specify reset paths so
that the reset crossings across these paths are ignored from SpyGlass
analysis.

Messages and Suggested Fix

Message 1

The following message appears for reset signal <rst-name> of flip-flop of
clock domain <clkdomain1-name> when the reset signal is being
generated in an asynchronous clock domain <clkdomain2-name>:

[WARNING] Reset signal '<rst-name>' used to reset <obj-type>
'<inst-name>' (domain '<clkdomain1-name>') is generated from
domain '<clkdomain2-name>'

The arguments of the above message are explained below:

Potential Issues
This violation appears if your design contains asynchronous reset signals
that are generated in an asynchronous clock-domain.

Argument Description
<obj-type> signal in case of RTL designs.

flop in case of netlist designs, if the report_inst_for_netlist
parameter is set to yes. Otherwise, it is signal

<inst-name> <flip-flop/latch-output-net-name> in case of
RTL designs.
<flip-flop/latch-inst-name> in case of netlist
designs, if the report_inst_for_netlist parameter is set to yes.
Otherwise, it is same as in case of RTL designs
1021
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
Consequences of Not Fixing
If you do not fix this violation, there can be in metastability issues in your
design.

How to Debug and Fix

To debug the violation of this rule, view the Incremental Schematic of the
violation message.

Perform the following steps to find the root cause of the problem:
1. Verify whether the clock domain for both the reset generator flip-flop

and the flip-flop where it is used as a reset is same.
You can view the details of clocks reaching to the clock net (connected
to the flip-flop clock pin) by performing the following steps:
a. Right-click on the clock net connected to the flip-flop clock pin in the
 Incremental Schematic window.

b. Select the Show Debug Data->Clock-reset option from the shortcut
 menu.

This option is enabled if the enable_debug_data parameter is set to
yes.

2. Enable Show Case Analysis in the schematic to check if set_case_analysis
constraint is missing on any of the paths that should be blocked.

3. If the reset generator is expected to be a part of reset synchronizer, run
and analyze the Ar_sync01 and Ar_unsync01 rules to verify whether it is
detected as a reset synchronizer.

You may specify the input constraint on a reset port for the rule to assume
these ports to be synchronized for the specified clock domain.

Message 2

The following message appears for reset signal <rst-name> of flip-flop of
clock domain <clkdomain1-name> when the reset signal is generated
from an unconstrained clock:

[WARNING] Reset signal '<rst-name>' used to reset <obj-type>
'<inst-name>' (domain '<clkdomain1-name>') is generated from
unconstrained clock

Potential Issues
1022
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
This violation appears if your design contains asynchronous reset signals
that are generated from an unconstrained clock.

Consequences of Not Fixing
If you do not fix this violation, there can be in metastability issues in your
design.

How to Debug and Fix
See How to Debug and Fix.

Example Code and/or Schematic

Consider the following spreadsheet that shows the details of all the
violations reported by the Reset_sync02 rule:

FIGURE 114. Spreadsheet generated by the Reset_sync02 rule

In the above spreadsheet, each row represents one violation. You can
double-click a row in the spreadsheet to see a list of all the flops that are in
the same reset cone as the flop listed in the row. For example, double-
clicking the row with ID 6 in the sample spreadsheet shown above, all flops
that are in the same reset cone as the test.q flop are shown in a separate
spreadsheet. Note that this list is available only if the
enable_reset_cone_spreadsheet parameter set to yes.

To view the schematic of a violation (say ID 7), click the link 7 in the above

spreadsheet and then click . The following schematic appears:
1023
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
FIGURE 115. Schematic of the Reset_sync02 Rule Violation

In the above schematic, the top.trst asynchronous reset is generated in
the asynchronous clock domain clk and is used in the clk2 clock domain.

To fix this violation, add a reset synchronization logic of the clk2 clock
domain between the output of the trst flip-flop and the pre pin of the
temp flip-flop to synchronously de-assert the trst flip-flop.

Schematic Details

The Reset_sync02 rule highlights the following information in a different
color:
 Clock path of a flip-flop generating an asynchronous reset

 Path from a flip-flop generating a reset signal to the flip-flop set/reset
pin where it is being used

 Clock path of a flip-flop where a reset is being used

 Destination flip-flop where the reset is being used

Default Severity Label

Warning

Rule Group

SYNCHRONIZATION
1024
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
Reports and Related Files

 Reset_sync02.csv. See Figure 114.

 The SynchInfo Report
1025
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
Reset_sync03
Reports multi-flop reset synchronizers in a design

NOTE: The Reset_sync03 rule will be deprecated in a future release. The rule is not
included in CDC GuideWare goals now and do not perform checks until specifically
included in the user-defined goal options. In this case, the rule performs the checks
and SpyGlass includes a deprecation message in both the spyglass.out and
spyglass.log files.

When to Use

Use this rule to detect multi-flop reset synchronizers in a design.
NOTE: It is recommended to use the Ar_sync01 and Ar_syncdeassert01 rules instead of

this rule.

Prerequisites

Specify reset signals in any of the following ways:
 By using the reset constraint

 By setting the use_inferred_resets parameter to yes to use auto-
generated reset signals

 By using a combination of both the above methods

Specify clock signals in any of the following ways:
 By using the clock constraint

 By setting the use_inferred_clocks parameter to yes to use auto-
generated clock signals

 By using a combination of both the above methods

Description

The Reset_sync03 rule reports a violation if a multi-flop reset synchronizer
is present in a design.

This rule reports one flip-flop per Reset Cone. You can expand the reset
cone in the schematic to view other flip-flops.
1026
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
Checks Performed

This rule performs the following checks if a multi-flop synchronizer output
is reaching to an asynchronous set/reset pin of flip-flops:
 If a reset signal is de-asserted properly (as shown in the following

figure), it is reported as an informational message.

FIGURE 116. Reset Signal De-asserted Properly

 If de-assertion fails, it is reported as a warning. De-assertion may fail
due to following reasons:
 De-assertion circuit is improper even after having multi-flop

synchronizer.
 Multiple clocks are reaching to either synchronizer flip-flops or flip-

flops where reset is being used.
 set_case_analysis settings have not been provided, as shown in the

following figure:

clk

rst_n

reset_n

clk

clktied to constant (1)
1027
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
FIGURE 117. set_case_analysis Constraint not Specified for the Enable

In the above example, the set_case_analysis constraint has not been
specified for the enable en.
While checking for de-assertion, the Reset_sync03 rule uses inactive
value of synchronous resets present in the cone of the asynchronous
reset.

NOTE: There may be some overlap with Reset_sync01 rule violations in case of a de-
assertion failure.

Parameter(s)

 reset_sync_check: Default value is strict. Set this parameter to soft
to start de-assertion check on reset/clear pin of flip-flops instead of
reset source so that you are not required to provide set_case_analysis
settings on other signals present in cone of reset/clear pins of flip-flops.

clk

rst_n

reset_n

clk

clk
tied to constant (1)

en
1028
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
 reset_synchronize_cells: Default value is NULL. Specifies a
comma-separated list of synchronizer cell names that are considered as
valid synchronizers for asynchronous reset signals

 use_inferred_resets: Default value is no. Set this parameter to yes to use
auto-generated reset information.

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

 report_inst_for_netlist: Default value is no. Set this parameter to yes to
report violating instance name in case of netlist designs and leaf-level
net name for RTL designs.

 filter_named_resets: Default value is clk, clock, scan. Specify a list of
strings to auto-infer asynchronous resets that do not match the
specified strings.

 filter_named_clocks: Default value is rst, reset, scan, set. Set this
parameter to a list of strings.

 reset_reduce_pessimism: Default value is
filter_unused_synchronizer, same_data_reset_flop. Set the
value of this parameter to all_potential_resets to detect all the
potential resets in a design. For information on the other possible
values, see Possible Values to the reset_reduce_pessimism Parameter.

 same_domain_at_gate: Default value is no. Set the value of the
parameter to an allowed value to optimize the inference of domains on
clock merging gates.

Constraint(s)

 abstract_port (Optional): Use this constraint to specify a clock domain on
resets.

 clock (Optional): Use this constraint to specify clock signals.

 reset (Optional): Use this constraint to specify reset signals.

 set_case_analysis (Optional): Use this constraint to specify case-analysis
conditions.

 num_flops -reset (Optional): Use this constraint to specify a minimum
number of flip-flops required in a synchronizer chain.
1029
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
Messages and Suggested Fix

Message 1

The following informational message appears for reset signal <rst-
name> of flip-flop <flip-flop-name> that is de-asserted properly:

[RSync3_1] [INFO] Reset signal '<rst-name>' for flop '<flip-
flop-name>' is synchronously de-asserted relative to clock
signal '<clk-name>' (reset synchronizer: '<sync-flip-flop-
name>')

Potential Issues
This violation appears if your design contains a reset signal that is
synchronously de-asserted by using multi-flop synchronizer relative to a
clock of a reset flip-flop.

Consequences of Not Fixing
None

How to Debug and Fix
For information on debugging, click How to Debug and Fix.

Message 2

The following informational message appears for reset signal <rst-
name> of flip-flop <flip-flop-name> if the reset signal is
synchronized by the user-defined synchronizer cells specified using the
reset_synchronize_cells parameter:

[RSync3_2] [INFO] Reset signal '<rst-name>' for flop '<flip-
flop-name>' is synchronously de-asserted (User defined reset
synchronizer)

Potential Issues
This violation appears if your design contains a reset signal that is
synchronously de-asserted by using a user-defined reset synchronizer.

Consequences of Not Fixing
None

How to Debug and Fix
For information on debugging, click How to Debug and Fix.
1030
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
Message 3

The following warning message appears for reset signal <rst-name> of
flip-flop <flip-flop-name> if the reset signal is not de-asserted
properly and a multi-flop synchronizer is detected:

[RSync3_3] [WARNING] Reset signal '<rst-name>' for flop
'<flip-flop-name>' is synchronized by '<sync-flip-flop-
name>' but is not synchronously de-asserted relative to clock
signal '<clk-name>'

The arguments of the above message are explained below:

Potential Issues
This violation is reported when a multi-flop synchronizer is present in the
reset path but the reset signal is not de-asserted synchronously.

Consequences of Not Fixing
If you do not fix this violation, the following issues may appear in the
design:
 Reset recovery time violation

 Reset removal may occur in different clock cycles for different sequential
elements.

How to Debug and Fix
Debug the violation based on the type of violation reported, as described
below:

Argument Description
<rst-name> Name of the reset signal
<flip-flop-name> For RTL designs, <flip-flop-name> is the name of the

output net of the flip- flip-flop. For netlist designs, if
the report_inst_for_netlist parameter is set to yes,
<flip-flop-name> is the name of the flip-flop instance.
Otherwise, the message details are same as for the
RTL designs.

<sync-flip-flop-name> Name of the reset synchronizer
<clk-name> Name of the destination clock
1031
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
 Reset signal is properly de-asserted synchronously either by multi-flop
reset synchronizer in the design or by user-specified reset synchronizer
This is an informational message and does not require debugging.

 The reset signal is not properly de-asserted

To debug this violation message, view the Incremental Schematic of the
violation message.
The following figure illustrates the schematic of this rule:

FIGURE 118. Schematic of the Reset_sync03 Rule Violation

In the schematic, you will notice that when the reset signal rst_n is de-
asserted, the synchronized output does not de-assert the flip-flop
q_reg due to unconstrained input in2 of AND gate rtlc_I2.

Perform the following steps to find the root cause of the problem:
1. Check if the combinational logic is present between the last

synchronizer flip-flop and the flip-flop where it is used as a reset.
This is not allowed if the combinational logic is not acting as buffer/
inverter and not allowing reset value to propagate. Enable Show Case
Analysis in the schematic to check the constant value propagation. You
may need to constraint the path by using set_case_analysis constraint.

2. Check if combinational logic is present between reset source and the
synchronizer flip-flop.
This is not allowed if the combinational logic is not acting as buffer/
inverter and not allowing reset value to propagate. Enable Show Case
Analysis in the schematic to check the constant value propagation. You
1032
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
may need to constraint the path by using the set_case_analysis
constraint.
You may set the reset_sync_check parameter to soft for the rule to
perform de-assertion check on reset/clear pin of flip-flops instead of the
reset source.

3. Multiple clocks are reaching to either synchronizer flip-flops or the flip-
flops where reset is being used.
You may view the details of clocks reaching to the clock net (connected
to the flip-flop clock pin) by performing the following steps:
a. Right-click on the clock net connected to the flip-flop clock pin in the

Incremental Schematic window.
b. Select the Show Debug Data->Clock-reset option from the shortcut

menu.
This option is enabled when the enable_debug_data parameter is set to
yes.

You may need to specify set_case_analysis constraints to allow
propagation of only one of the clocks.

4. If you have specified reset synchronizer cell, verify whether all the
fan-out paths of the reset net reaches reset synchronizer cell after
ignoring inverters and buffers.
You may view the details of clocks reaching to the clock net (connected
to the flip-flop clock pin) by specifying the input constraint on a reset
port for the rule to assume these ports to be synchronized for the
specified clock domain.

5. You can also view case analysis settings along with the violation of this
rule.

Example Code and/or Schematic

Consider the following schematic of a violation reported by the
Reset_sync03 rule:
1033
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
FIGURE 119. Schematic of the Reset_sync03 Rule Violation

In the above example, when the rst reset signal is de-asserted, the
synchronized output does not de-assert the out1 flip-flop due to
unconstrained en input of the rtlc_I2 AND gate.

To fix this violation, constraint the en input of the rtlc_I2 AND gate to
value 1. This will lead to propagation of synchronous output to the out1
flip-flop.

Schematic Details

The Reset_sync03 rule highlights each of the following in a different color:
 Reset synchronizer and their reset path

 Path from output of set/reset of synchronizer flip-flop to the set/reset
pin of the flip-flop where it is being used as reset

Rule Severity

Info/Warning

Rule Group

SYNCHRONIZATION
1034
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
Reports and Related Files

The SynchInfo Report
1035
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
Reset_sync04
Reports asynchronous resets that are synchronized more than once
in the same clock domain

When to Use

Use this rule to detect the usage of distributed reset synchronization
schemes, where reset synchronizers are placed at multiple hierarchies.

Prerequisites

Specify the following details before running this rule:
 Specify reset signals in any of the following ways:

 By using the reset constraint

 By using the automatically-generated reset signals when the
use_inferred_resets parameter is set to yes

 By using a combination of both the above methods

 Specify clock signals in any of the following ways:

 By using the clock constraint

 By using the automatically-generated clock signals when the
use_inferred_clocks parameter is set to yes

 By using a combination of both the above methods

Description

The Reset_sync04 rule reports a violation for asynchronous resets that are
synchronized multiple times in the same clock domain.

This rule reports any two destinations on which a source reset is
synchronized in the same domain.

The following figure shows the scenario in which this rule reports a
violation:
1036
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
FIGURE 120. Scenario for the Reset_sync04 Rule Violation

This rule checks for the presence of multi-flop synchronizers irrespective of
whether synchronous de-assertion is happening properly or not.

If more than two synchronizers exist in the same clock domain, any two
synchronizers are reported by the Reset_sync04 rule.

Rule Exceptions

The Reset_sync04 rule does not check for resets that are synchronized by
the synchronize cells specified by the reset_synchronize_cells parameter.

Constraint(s)

 clock (Optional): Use this constraint to specify clock signals in a design.

 reset (Optional): Use this constraint to specify reset signals in a design.

 num_flops -reset (Optional): Use this constraint to specify a minimum
number of flip-flops required in a synchronizer chain.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

CLK

CLR

CLK

CLK

CLKCLK

CLK
1037
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
Parameter(s)

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
automatically-generated clock information.

 use_inferred_resets: Default value is no. Set this parameter to yes to use
automatically-generated reset information.

 report_inst_for_netlist: Default value is no. Set this parameter to yes to
report violating instance name in case of netlist designs and leaf-level
net name for RTL designs.

 filter_named_resets: Default value is clk, clock, scan. Specify a list of
strings to automatically infer asynchronous resets that do not match the
specified strings.

 filter_named_clocks: Default value is rst, reset, scan, set. Set this
parameter to a list of strings.

 reset_reduce_pessimism: Default value is
filter_unused_synchronizer, same_data_reset_flop. Set the
value of this parameter to all_potential_resets to detect all the
potential resets in a design. For information on the other possible
values, see Possible Values to the reset_reduce_pessimism Parameter.

 handle_combo_arc: Default value is no. Set this parameter to yes so that
the clock/reset propagates from an input pin of a sequential library cell
if a combinational timing arc is specified from that pin to any output pin
of the cell.

 same_domain_at_gate: Default value is no. Set the value of the
parameter to an allowed value to optimize the inference of domains on
clock merging gates.

 dump_detailed_info: Default value is none. Set this parameter to a
supported value to enable the rule to include detailed information in the
generated rule/message-based spreadsheet.

Messages and Suggested Fix

The following message appears for the reset signal <rst-name> if it is
synchronized at multiple synchronizers in the same clock domain
<clk-name>:

[WARNING] Asynchronous reset signal '<rst-name>' is
synchronized at least twice (at '<sync-flop1-name>' and
1038
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
'<sync-flop2-name>') relative to the clock signal '<clk-
name>'

Where, <sync-flop1-name> and <sync-flop2-name> are two of
the many synchronizers at which the reset signal is synchronized.

NOTE: For RTL designs, <sync-flop1-name> and <sync-flop2-name> are the
names of the output net of the flip-flops. For netlist designs, if the
report_inst_for_netlist parameter is set to yes, these are the names of the flip-flop
instances. Otherwise, the message details are same as for the RTL designs.

Potential Issues
This violation appears if your design contains a reset signal that is
synchronized at multiple synchronizers in the same clock domain.

Consequences of Not Fixing
If you do not fix this violation, reset removal may happen in different clock
cycles for different synchronizers.

Slight differences in propagation delays in the reset signal or the clock
signal can result in different values at the output of different synchronizers.
This may result in data coherency issues.

How to Debug and Fix
To fix this violation, synchronize the reset signal once and then use it.

Example Code and/or Schematic

Consider the following schematic of a violation reported by this rule:
1039
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
FIGURE 121. Schematic for the Reset_sync04 Rule Violation

In the above example, the Reset_sync04 rule reports a violation because
the reset signal rst is being synchronized by the following reset
synchronizer chains:
 The chain consisting of the instance w1_reg and w2_reg

 The chain consisting of the instance w3_reg and w4_reg

To fix this violation, remove any one synchronizer chain so that the
modified design contains only one reset synchronizer.

Schematic Details

The Reset_sync04 rule highlights each of the following information in a
different color:
 Instance chain of the first synchronizer

 Instance chain of the second synchronizer

Default Severity Label

Warning
1040
Synopsys, Inc.

Using the Reset Domain Crossing (RDC) Flow

Rules in SpyGlass CDC
Rule Group

SYNCHRONIZATION

Reports and Related Files

The SynchInfo Report
1041
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
CDC Verification Rules
The following table lists the Clock-Domain Crossings (CDC) verification
rules:

Rule Reports
Ac_unsync01 Asynchronous clock domain crossings for scalar signals that

have at least one unsynchronized source
Ac_unsync02 Asynchronous clock domain crossings for vector signals

having at least one unsynchronized source
Ac_sync01 Asynchronous clock domain crossings for scalar signals that

have all the sources synchronized.
Ac_sync02 Asynchronous clock domain crossings for vector signals that

have all sources synchronized
Ac_coherency06 Reports signals that are synchronized more than once in the

same clock domain
Clock_sync05 Multi-sample inputs
Ac_crossing01 Generates spreadsheet for Crossing Matrix view
Clock_sync03 Runs the Clock_sync03a and Clock_sync03b rules
Clock_sync03b Reports convergence of signals from different domains
Clock_sync06 Multi-transition outputs
Clock_sync08a Bus-bits that are not synchronized using the recommended

techniques (specific case)
Clock_sync09 Signals at clock domain crossings that are synchronized at

more than one place
Ac_conv01 Same-domain signals that are synchronized with multi-flop

and sync-cell synchronizers to another domain and that are
converging after any number of sequential elements

Ac_conv03 Different-domain signals that are synchronized with multi-
flop and sync-cell synchronizers to another domain and that
are converging before encountering a sequential element

Advanced Clock Functional Verification Rules
Ac_cdc01 Runs the Ac_cdc01a, Ac_cdc01b, and Ac_cdc01c rules
1042
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
To learn how to use Advanced Functional Verification Rules, see Performing
Functional Analysis in SpyGlass CDC.

Note that while running these rules, formal modeling of a port is done with
respect to the first clock in following cases:
 If multiple clocks are specified for the same port through the

abstract_port constraints
 If multiple abstract_port constraints are applied on the same port with

different clocks

Ac_cdc01a Fast-to-slow clock crossings where the data generated by
the source register (fast clock) is not stable long enough for
the destination register (slow clock) to properly capture the
data when the clock crossing is found to be synchronized by
the multi-flop synchronization scheme

Ac_cdc01b Fast-to-slow clock crossings where the data generated by
the source register (fast clock) is not stable long enough for
the destination register (slow clock) to properly capture the
data when the clock crossing is found to be synchronized by
a scheme other than the multi-flop synchronization scheme

Ac_cdc01c Fast-to-slow clock crossings where the data generated by
the source register (fast clock) is not stable long enough for
the destination register (slow clock) to properly capture the
data when the clock crossing is found to be un-synchronized

Ac_cdc08 Synchronized multi-bit control buses where the bus is not
Gray encoded

Ac_clockperiod03 Clocks with design cycles greater than the threshold value
Ac_conv02 Same-domain signals that are synchronized with multi-flop

and sync-cell synchronizers to another domain and that are
converging before encountering a sequential element

Ac_conv04 All the control bus clock domain crossings that do not follow
gray encoding

Ac_conv05 The status of gray encoding check performed on the signals
specified by the gray_signals constraint

Ac_datahold01a Reports synchronized data clock domain crossings where
data can be unstable

Clock_sync03a Reports convergence of signals from same source domain
separately synchronized in a single destination domain

Rule Reports
1043
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Ac_unsync01
Reports unsynchronized clock domain crossing for scalar signals

When to Use

Use this rule to find unsynchronized clock domain crossings for scalar
signals in a design.

Prerequisites

Specify the following details before running this rule:
 Specify the Advanced_CDC and adv_checker license features.

 Specify clock signals in any of the following ways:

 By using the clock constraint

 By using the automatically-generated clock information after setting
the use_inferred_clocks parameter to yes

Description

The Ac_unsync01 rule reports asynchronous clock domain crossings for the
scalar signals having at least one unsynchronized source.

This rule also reports the reason for unsynchronized crossings. For details,
see Reasons for Unsynchronized Crossings Reported by Ac_sync_group Rules and
Reasons for Synchronized Crossings Reported by Ac_sync_group Rules.

This rule belongs to The Ac_sync_group Rules.
NOTE: The Ac_unsync01 rule is switched off by default.

Parameter(s)

See Parameters of the Ac_sync_group Rules.

Constraint(s)

See Constraints of the Ac_sync_group Rules.

Messages and Suggested Fix

The following message appears when an unsynchronized crossing is
detected between a source and destination:
1044
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
[AcUSync1_1] [ERROR] Unsynchronized Crossing: destination
<type1> <name1>, clocked by <clock-name1>, source <type2>
<name2>, clocked by <clock-name2>. Reason: <reason> [Total
Sources: <count1> (Number of source domains: <count2>)]

The arguments of the above message are explained below:

Potential Issues
This violation appears if an unsynchronized data transfer occurs between
different domain scalar signals.

Consequences of Not Fixing
If you do not fix this violation, unsynchronized crossings may cause
metastability issues in a design. This may cause functional issues resulting

Argument Description
<type1> Can be flip-flop, latch, black box, or primary output
<name1> By default, destination net name is reported.

However, if the report_inst_for_netlist parameter is set to
yes, destination instance name is reported for netlist
designs. To report the hierarchical pin name of the
destination instance, set the report_instance_pin parameter
to yes.

<clock-name1> One of the clock that is reaching the destination
<type2> flip-flop, latch, black box, or primary output
<name2> By default, source net name is reported.

However, if the report_inst_for_netlist parameter is set to
yes, source instance name is reported for netlist designs. To
report the hierarchical pin name of the source instance, set
the report_instance_pin parameter to yes.

<clock-name2> One of the clock that is reaching the source
<reason> Failure reason. For details, see Reasons for Unsynchronized

Crossings Reported by Ac_sync_group Rules.

<count1> Total number of sources involved in a crossing. Each bus
group is counted as a single source.

<count2> Total number of source domains involved in the crossing
1045
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
in chip failure.

How to Debug and Fix
If the number of violations is huge (say thousands of violations), the setup
is possibly incorrect and incomplete. For such cases, see Debugging Large
Number of Violations.

To perform the root cause analysis of the problem, perform the following
steps:
1. If both source and destination instances reside in an IP module, specify

the ip_block constraint for the module.
2. If the crossing involves a black box, ensure that the black box is

configured properly with either of the following settings:
 A domain is assigned to the black box pin (use the abstract_port

constraint
 A pin is defined as a feed through for the black box (use the

assume_path constraint)
If you do not want to view black box crossings, set the
cdc_reduce_pessimism parameter to bbox.

3. Check if the crossing output is blocked, unused, or hanging.
Use the cdc_reduce_pessimism parameter if you do not want to view such
crossings.

4. If the source flip-flop is a static signal, no synchronization may be
required. Declare such signal by using the quasi_static or cdc_false_path
constraint.

5. Analyze the violation from the failure reason reported in the violation
message.
For details on the reason, see Reasons for Unsynchronized Crossings
Reported by Ac_sync_group Rules topic.

6. View the Incremental Schematic of the violation message to analyze the
cause of failure.

7. Based on the source and destination flip-flops, perform appropriate
actions as described below:
 If the source flip-flop is a control signal and there is no valid

synchronizer, determine the cause by exploring the destination
flip-flop and fix it by inserting synchronizer flip-flops in the crossing.
1046
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
 If this is a data crossing, perform appropriate actions as described
below:
 If the crossing is from the memory of an asynchronous FIFO (for

example, SpyGlass CDC solution did not automatically recognized
the structures), specify the fifo constraint to let SpyGlass CDC
solution know about this asynchronous FIFO.

 If the crossing involves a handshake (for example, SpyGlass CDC
solution did not automatically identified the handshake), specify
the qualifier constraint for handshake control line (for example, the
synchronized request).

 For any other ad-hoc data synchronization, identify the signal in
charge of data crossing synchronization. For details, see Identifying
the Signal in Charge of Data-Crossing Synchronization.

8. If there are crossings that you do not want to review, waive them by
using the cdc_false_path constraint.

9. You can also view case analysis settings along with the violation of this
rule.

Identifying the Signal in Charge of Data-Crossing Synchronization
Perform an appropriate action based on the following situations:
 If the control signal is not synchronized

Action: Insert a synchronizer.
 If the synchronized control signal is controlling the crossing through an

AND gate
Action: Set the enable_and_sync parameter to yes to allow this
synchronization scheme.

 If the synchronized control signal is controlling the crossing through
gates other than the following:
 Enable of a destination flip-flop

 Selection of a recirculation MUX around the destination flip-flop

 Clock-gating cell at the destination flip-flop
Action: Follow the standard data synchronization techniques to avoid
glitches on the crossing.
1047
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Debugging Large Number of Violations
Open the spreadsheet of this rule. See Spreadsheet Support in Ac_sync_group
Rules.

To debug violations through the spreadsheet, perform the following
actions:
 Cross-probe to RTL code and view schematic of the violation.

 Use filtering and sorting to debug the related messages.
You can filter messages based on source and destination clock pairs,
failure reason, and crossing module for easy debug.

 Waive or apply cdc_false_path constraint directly from the spreadsheet.

Example Code and/or Schematic

Consider the following rule-based spreadsheet generated by the
Ac_unsync01 rule:

FIGURE 122. Rule-Based Spreadsheet of the Ac_unsync01 Rule

The above spreadsheet shows the details of all violations (in separate
rows) reported by the Ac_unsync01 rule.

To view details of each violation, click the link in the ID column
corresponding to a particular violation in the above spreadsheet.

When you click this link, the message-based spreadsheet appears. For
example, when you click 14 in the ID column of the above spreadsheet, the
following spreadsheet appears:
1048
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
FIGURE 123. Message-Based Spreadsheet of the Ac_unsync01 Rule

The above spreadsheet provides details of the violation selected in the
rule-based spreadsheet. These details include the following:
 All sources of the destination

 Source clock names

 Synchronization or unsynchronized status for each source and clock
domain tag

 All valid qualifiers synchronizing the source signals
1049
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
 Potential qualifier signals, which when synchronized make a source as
synchronized

To view the schematic of the violation reported in the above spreadsheet,
click the link in the Schematic column of a row in the spreadsheet and then
click in the toolbar of the spreadsheet window.

For example, the following figure shows the schematic of the
unsynchronized crossing containing the top.s6 source flip-flop:

FIGURE 124. Schematic of the Ac_unsync01 Rule Violation

Schematic Details

The Ac_unsync01 rule highlights the following information in different
colors in the schematic:
 Source clock and the source instance or port

 Destination clock and the destination instance or port

 Crossing path including combination logic

 Qualifier signal, multi-flop synchronizer, or any other valid synchronizer

 Potential qualifier signal converging with the source

Default Severity Label

Error
1050
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Rule Group

Ac_sync_group

Reports and Related Files

 Ac_unsync01.csv: This is a Rule-Based Spreadsheet that contains details of
all violations of this rule.

 ac_unsync_<unique-number>.csv: This is a Message-Based Spreadsheet that
contains details of a particular violation of this rule.

 The Ac_sync_group_detail Report

 The Ac_sync_qualifier Report

 The CrossingInfo Report

 The SynchInfo Report

 The Clock-Reset-Summary Report

 The Clock-Reset-Detail Report
1051
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Ac_unsync02
Reports for unsynchronized clock domain crossings for vector
signals

When to Use

Use this rule to find unsynchronized clock domain crossings for vector
signals in a design.

Prerequisites

Specify the following details before running this rule:
 Specify the Advanced_CDC and adv_checker license features.

 Specify clock signals in any of the following ways:

 By using the clock constraint

 By using the automatically-generated clock information after setting
the use_inferred_clocks parameter to yes

Description

The Ac_unsync02 rule reports asynchronous clock domain crossings for
vector signals that have at least one unsynchronized source.

This rule also reports the reason for unsynchronized crossings. For
information on the reasons, see Reasons for Unsynchronized Crossings
Reported by Ac_sync_group Rules and Reasons for Synchronized Crossings
Reported by Ac_sync_group Rules.

This rule belongs to The Ac_sync_group Rules.
NOTE: The Ac_unsync02 rule is switched off by default.

Parameter(s)

See Parameters of the Ac_sync_group Rules.

Constraint(s)

See Constraints of the Ac_sync_group Rules.
1052
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Message Details

The following message appears when an unsynchronized crossing is
detected between a source and destination:

[AcUSync2_1] [ERROR] Unsynchronized Crossing: destination
<type1> <name1>, clocked by <clock-name1>, source <type2>
<name2>, clocked by <clock-name2>. Reason: <reason> [Total
Sources: <count1> (Number of source domains: <count2>)]

The arguments of the above message are explained below:

Potential Issues
This violation appears if an unsynchronized data transfer occurs between
different domain vector signals.

Argument Description
<type1> Can be flip-flop, latch, black box, or primary output
<name1> By default, destination net name is reported.

However, if the report_inst_for_netlist parameter is set to
yes, destination instance name is reported for netlist
designs. To report the hierarchical pin name of the
destination instance, set the report_instance_pin parameter
to yes.

<clock-name1> One of the clock that is reaching the destination
<type2> Can be flip-flop, latch, black box, or primary output
<name2> By default, source net name is reported.

However, if the report_inst_for_netlist parameter is set to
yes, source instance name is reported for netlist designs. To
report the hierarchical pin name of the source instance, set
the report_instance_pin parameter to yes.

<clock-name2> One of the clock that is reaching the source
<reason> Failure reason. For details on failure reasons, see Reasons

for Unsynchronized Crossings Reported by Ac_sync_group
Rules.

<count1> Total number of sources involved in a crossing. Each bus
group is counted as a single source.

<count2> Total number of source domains involved in the crossing
1053
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Consequences of Not Fixing
If you do not fix this violation, unsynchronized crossings may cause
metastability issues in a design. This may cause functional issues resulting
in chip failure.

How to Debug and Fix
If the number of violations is huge (say thousands of violations), the setup
is possibly incorrect and incomplete. For such cases, refer to the Debugging
Large Number of Violations topic.

To debug and fix this violation, perform the following steps:
1. If both source and destination instances reside in an IP module, specify

the ip_block constraint for the module.
2. If the crossing involves a black box, ensure that the black box is

configured properly with either of the following settings:
 A domain is assigned to the black box pin (use the abstract_port

constraint
 A pin is defined as a feed through for the black box (use the

assume_path constraint)
If you do not want to view black box crossings, use cdc_reduce_pessimism
parameter.

3. Check if the crossing output is blocked, unused, or hanging.
Use the cdc_reduce_pessimism parameter if you do not want to view such
crossings.

4. If the source flip-flop is a static signal, no synchronization may be
required. Declare such signal by using the quasi_static or cdc_false_path
constraint.

5. Analyze the violation from the failure reason reported in the violation
message.
For details on each failure reason, see Reasons for Unsynchronized
Crossings Reported by Ac_sync_group Rules topic.

6. View the Incremental Schematic of the violation message to analyze the
cause of failure.
1054
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
7. Based on source and destination flip-flops, perform appropriate actions
as described below:
 If the source flip-flop is a control signal and there is no valid

synchronizer, determine the cause by exploring the destination
flip-flop and fix it by inserting synchronizer flip-flops in the crossing.

 If this is a data crossing, perform appropriate actions as described
below:
 If the crossing is from the memory of an asynchronous FIFO (for

example, SpyGlass CDC solution did not automatically recognized
the structures), specify the fifo constraint to let SpyGlass CDC
solution know about this asynchronous FIFO.

 If the crossing involves a handshake (for example, SpyGlass CDC
solution did not automatically identified the handshake), specify
the qualifier constraint for handshake control line (for example, the
synchronized request).

 For any other ad-hoc data synchronization, identify the signal in
charge of data crossing synchronization. For details, see Identifying
the Signal in Charge of Data-Crossing Synchronization.

8. If there are crossings that you do not want to review, waive them by
using the cdc_false_path constraint.

9. You can also view case analysis settings along with the violation of this
rule.

Identifying the Signal in Charge of Data-Crossing Synchronization
Perform the following actions based on the following cases:
 If the control signal is not synchronized

Action: Insert a synchronizer.
 If the synchronized control signal is controlling the crossing through an

AND gate
Action: Set the enable_and_sync parameter to allow this synchronization
scheme.

 If the synchronized control signal is controlling the crossing through
gates other than the following:
 Enable of a destination flip-flop
1055
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
 Selection of a recirculation MUX around the destination flip-flop

 Clock-gating cell at the destination flip-flop
Action: Follow standard data synchronization techniques to avoid
glitches on the crossing.

Example Code and/or Schematic

Consider the following rule-based spreadsheet generated by the
Ac_unsync02 rule:

FIGURE 125. Rule-Based Spreadsheet of the Ac_unsync02 Rule

In the above rule-based spreadsheet, click B in the ID column to display
the message-based spreadsheet, as shown in the following figure:
1056
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
FIGURE 126. Message-Based Spreadsheet of the Ac_unsync02 Rule

The above spreadsheet shows the following details:
 All sources of the destination

 Source clock names

 Synchronization or unsynchronized status for each source and clock
domain tag

 All valid qualifiers synchronizing the source signals

 Potential qualifier signals, which when synchronized make a source as
synchronized

To view the schematic of the violation reported in the above spreadsheet,
click the link in the Schematic column of a row in the spreadsheet and then
click in the toolbar of the spreadsheet window.
1057
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
For example, the following figure shows the schematic of the
unsynchronized crossing containing the top.s4 source flip-flop:

FIGURE 127. Schematic of the Ac_unsync02 Rule Violation

Schematic Details

The Ac_unsync02 rule highlights the following information in different
colors in the schematic:
 Source clock and the source instance or port

 Destination clock and the destination instance or port

 Crossing path including combination logic

 Qualifier signal, multi-flop synchronizer, or any other valid synchronizer

 Potential qualifier signal converging with the source

Default Severity Label

Error

Rule Group

Ac_sync_group
1058
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Reports and Related Files

 Ac_unsync02.csv: This is a Rule-Based Spreadsheet that contains details of
all violations of this rule.

 ac_unsync_<unique-number>.csv: This is a Message-Based Spreadsheet that
contains details of a particular violation of this rule.

 The Ac_sync_group_detail Report

 The Ac_sync_qualifier Report

 The CrossingInfo Report

 The SynchInfo Report

 The Clock-Reset-Summary Report

 The Clock-Reset-Detail Report
1059
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Ac_sync01
Reports synchronized clock domain crossings for scalar signals

When to Use

Use this rule to find synchronized clock domain crossings for scalar signals
in a design.

Prerequisites

Specify the following details before running this rule:
 Specify the Advanced_CDC and adv_checker license features.

 Specify clock signals in any of the following ways:

 By using the clock constraint

 By using the automatically-generated clock information after setting
the use_inferred_clocks parameter to yes

Description

The Ac_sync01 rule reports asynchronous clock domain crossings for scalar
signals that have all sources synchronized.

To know about the cases in which a source is considered as synchronized,
see Reasons for Synchronized Crossings Reported by Ac_sync_group Rules.

NOTE: Please note the following points:

 The Ac_sync01 rule belongs to The Ac_sync_group Rules.
 The Ac_sync01 rule is switched off by default.

Parameter(s)

See Parameters of the Ac_sync_group Rules.

Constraint(s)

See Constraints of the Ac_sync_group Rules.
1060
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Messages and Suggested Fix

Message 1

The following message appears at the line where the destination of type
<type1> object of clock domain <clock-name1> receives a signal from
source of type <type2> object of clock domain <clock-name2>:

[AcSync1_1] [INFO] Synchronized Crossing: destination <type1>
<name1>, clocked by <clock-name1>, source <type2> <name2>,
clocked by <clock-name2>, by method: <method> [Total Sources:
<count1> (Number of source domains: <count2>)]

The arguments of the above message are explained below:

Potential Issues
Not applicable

Argument Description
<type1> flip-flop, latch, black box, or primary output
<name1> By default, destination net name is reported.

However, if the report_inst_for_netlist parameter is set to
yes, destination instance name is reported for netlist
designs. To report the hierarchical pin name of the
destination instance, set the report_instance_pin parameter
to yes.

<clock-name1> One of the clock that is reaching the destination
<type2> flip-flop, latch, black box, or primary output
<name2> By default, source net name is reported.

However, if the report_inst_for_netlist parameter is set to
yes, source instance name is reported for netlist designs.
To report the hierarchical pin name of the source instance,
set the report_instance_pin parameter to yes.

<clock-name2> One of the clock that is reaching the source
<method> Synchronization method
<count1> Total number of sources involved in a crossing. Each bus

group is counted as a single source.
<count2> Total number of source domains involved in the crossing
1061
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Consequences of Not Fixing
Not applicable

How to Debug and Fix
This is an informational rule that reports asynchronous clock domain
crossings for scalar signals for which all sources are synchronized.

To view details of such crossings to check if everything is as intended, see
the following:
 Rule-Based Spreadsheet

 Message-Based Spreadsheet

 Schematic. See Viewing Schematic Through the Spreadsheet

If you do not want to view the message of this rule, waive or disable this
rule.

Example Code and/or Schematic

Consider the following rule-based spreadsheet generated for the
Ac_sync01 rule:

FIGURE 128. Rule-Based Spreadsheet of the Ac_sync01 Rule
1062
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
The above spreadsheet shows the details of all violations (in separate
rows) of the Ac_sync01 rule.

To view further details of each violation, click the link in the ID column
corresponding to a particular violation in the above spreadsheet.

When you click this link, another spreadsheet appears. For example, when
you click 5 in the ID column of the above spreadsheet, the following
spreadsheet appears:

FIGURE 129. Message-Based Spreadsheet of the Ac_sync01 Rule

To view the schematic of the violation reported in the above spreadsheet,
click the link in the Schematic column and then click in the tool bar of
the spreadsheet window.

For example, the following figure shows the schematic of the synchronized
crossing containing the top.s3 source flip-flop:

FIGURE 130. Schematic of the Ac_sync01 Rule Violation

Schematic Details

The Ac_sync01 rule highlights the following information in different colors
in the schematic:
1063
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
 Source clock and the source instance or port

 Destination clock and the destination instance or port

 Crossing path including combination logic

 Qualifier signal, multi-flop synchronizer, or any other valid synchronizer

Default Severity Label

Info

Reports and Related Files

 Ac_sync01.csv: This is a Rule-Based Spreadsheet that contains details of all
violations of this rule.

 ac_sync_<unique-number>.csv: This is a Message-Based Spreadsheet that
contains details of a particular violation of this rule.

 The Ac_sync_group_detail Report

 The Ac_sync_qualifier Report

 The CrossingInfo Report

 The SynchInfo Report

 The Clock-Reset-Summary Report

 The Clock-Reset-Detail Report
1064
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Ac_sync02
Reports synchronized clock domain crossings for vector signals

When to Use

Use this rule to find synchronized clock domain crossings for vector signals
in a design.

Prerequisites

Specify the following details before running this rule:
 Specify the Advanced_CDC and adv_checker license features.

 Specify clock signals in any of the following ways:

 By using the clock constraint

 By using the automatically-generated clock information after setting
the use_inferred_clocks parameter to yes

Description

The Ac_sync02 rule reports asynchronous clock domain crossings for
vector signals that have all sources synchronized.

To know the cases in which a source is considered as synchronized, see
Reasons for Synchronized Crossings Reported by Ac_sync_group Rules.

NOTE: Please note the following points:

 The Ac_sync02 rule belongs to The Ac_sync_group Rules.
 The Ac_sync02 rule is switched off by default.

Parameter(s)

See Parameters of the Ac_sync_group Rules.

Constraint(s)

See Constraints of the Ac_sync_group Rules.

Messages and Suggested Fix

The following message appears at the line where the destination of type
<type1> object of the clock domain <clock-name1> receives a signal
from source of type <type2> object of the clock domain <clock-
1065
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
name2>:

[AcSync2_1] [INFO] Synchronized Crossing: destination <type1>
<name1>, clocked by <clock-name1>, source <type2> <name2>,
clocked by <clock-name2>, by method: <method> [Total Sources:
<count1> (Number of source domains: <count2>)]

The arguments of the above message are explained below:

Potential Issues
Not applicable

Consequences of Not Fixing
Not applicable

Argument Description
<type1> flip-flop, latch, black box, or primary output
<name1> By default, destination net name is reported.

However, if the report_inst_for_netlist parameter is set to
yes, destination instance name is reported for netlist
designs. To report the hierarchical pin name of the
destination instance, set the report_instance_pin parameter
to yes.

<clock-name1> One of the clock that is reaching the destination
<type2> flip-flop, latch, black box, or primary output
<name2> By default, source net name is reported.

However, if the report_inst_for_netlist parameter is set to
yes, source instance name is reported for netlist designs.
To report the hierarchical pin name of the source instance,
set the report_instance_pin parameter to yes.

<clock-name2> One of the clock that is reaching the source
<method> Synchronization method
<count1> Total number of sources involved in a crossing. Each bus

group is counted as a single source.
<count2> Total number of source domains involved in the crossing
1066
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
How to Debug and Fix
This is an informational rule that reports asynchronous clock domain
crossings for vector signals for which all sources are synchronized.

To view details of such crossings to check if everything is as intended, see
the following:
 Rule-Based Spreadsheet

 Message-Based Spreadsheet

 Schematic. See Viewing Schematic Through the Spreadsheet

If you do not want to view the message of this rule, waive or disable this
rule.

Example Code and/or Schematic

Consider the following rule-based spreadsheet generated for the
Ac_sync02 rule:

FIGURE 131. Rule-Based Spreadsheet of the Ac_sync02 Rule

In the above spreadsheet, total number of sources in the crossing is
displayed as 4. However, the SOURCES column of this spreadsheet displays
only one source.

To view details of all sources in the crossing reported in the above
spreadsheet, click the link in the ID column of the above spreadsheet.
When you click this link, the message-based spreadsheet appears showing
details of all sources and the qualifier synchronizing these sources. The
following figure shows this spreadsheet:
1067
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
FIGURE 132. Message-Based Spreadsheet of the Ac_sync02 Rule

To view the schematic of a crossing containing a particular source, click in
the Schematic column of a row corresponding to that source, and then click

 in the toolbar of the spreadsheet window.

For example, the following figure shows the schematic of the synchronized
crossing containing the top.s2 source:

FIGURE 133. Schematic of the Ac_sync02 Rule Violation

Schematic Details

The Ac_sync02 rule highlights the following information in different colors
1068
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
in the schematic:
 Source clock and the source instance or port

 Destination clock and the destination instance or port

 Crossing path including combination logic

 Qualifier signal, multi-flop synchronizer, or any other valid synchronizer

Default Severity Label

Info

Reports and Related Files

 Ac_sync02.csv: This is a Rule-Based Spreadsheet that contains details of all
violations of this rule.

 ac_sync_<unique-number>.csv: This is a Message-Based Spreadsheet that
contains details of a particular violation of this rule.

 The Ac_sync_group_detail Report

 The Ac_sync_qualifier Report

 The CrossingInfo Report

 The SynchInfo Report

 The Clock-Reset-Summary Report

 The Clock-Reset-Detail Report
1069
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Ac_coherency06
Reports signals that are synchronized multiple times in the same
clock domain

When to Use

Use this rule to detect signals that are synchronized multiple times in the
same clock domain.

Description

The Ac_coherency06 rule reports signals that are synchronized multiple
times in the same clock domain by using any of the following
synchronization schemes:
 Conventional Multi-Flop Synchronization Scheme

 Synchronizing Cell Synchronization Scheme

 Qualifier Synchronization Scheme Using qualifier -crossing

The following figure shows the rule-violating scenario:

FIGURE 134. Scenario for the Ac_coherency06 Rule Violation

In the above figure, src1 is synchronized multiple times in the same
domain by using the Conventional Multi-Flop Synchronization Scheme.

src1

out1

out2c1

c2
1070
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Rule Features

Following are the features of the Ac_coherency06 rule:
 It reports one violation per source per destination domain.

 It uses synchronization information from the Ac_sync01 and Ac_sync02
rules.

Rule Exceptions

The Ac_coherency06 rule does not report a violation in the following cases:
 If a source is quasi-static.

 If a source is synchronized by using enable based synchronization
schemes (that is, schemes other than the schemes mentioned in
Description).

 If at one place, a source is synchronized by using control
synchronization schemes (the schemes mentioned in Description) and at
another place, it is synchronized by using an enable based
synchronization scheme (that is, a scheme other than the schemes
mentioned in Description).
Such scenario is shown in the following figure:

FIGURE 135. Scenario for the Ac_coherency06 Rule Exception
1071
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
In the above figure, the S1 source is synchronized by using Conventional
Multi-Flop Synchronization Scheme at D1. However, it is synchronized by
using enable-based synchronization at D2.

 If a source goes to multiple destinations within the same synchronizing
cell.
Such scenario is shown in the following figure:

FIGURE 136. Scenario for the Ac_coherency06 Rule Exception

Parameter(s)

 allow_combo_logic: Default value is no. Set this parameter to yes to
ignore combinational logic in the data transfer path between flip-flops at
clock domain crossing.

 num_flops: Default value is 2. Set this parameter to a positive integer
value greater than one to specify a minimum number of flip-flops
required for synchronizing a signal by using the Conventional Multi-Flop
Synchronization Scheme.

 handle_combo_arc: Default value is no. Set this parameter to yes so that
the clock propagates from an input pin of a sequential library cell if a

src1
c1

SYNC cell
1072
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
combinational timing arc is specified from that pin to any output pin of
the cell.

 ignore_num_rtl_buf_invs: Default value is many. Set this parameter to
one to allow one buffer and inverter. Other possible values are two and
none.

 enable_debug_data: Default value is no. Set this parameter to yes to
view debug information.

 sync_reset: Default value is no. Set this parameter to yes to allow at
most one gate of an AND/NAND/OR/NOR type to be the synchronous
reset for the flip-flop that follows.

 synchronize_cells: Default value is NULL. Specify a list of cells to this
parameter that are considered as valid synchronizers for scalar source
domain signals for the Synchronizing Cell Synchronization Scheme.

 filter_named_clocks: Default value is rst, reset, scan, set. Set this
parameter to a list of strings.

 allow_half_sync: Default value is yes. Set this parameter to no to not
treat half synchronizers as valid synchronizers.

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

 strict_sync_check: Default value is no. Set this parameter to yes if scan
flip-flops are present.

 cdc_reduce_pessimism: Default value is mbit_macro,
no_convergence_at_syncreset, no_convergence_at_enable.
Set this parameter to an appropriate value to ignore clock domain
crossings involving black box instances and clock domain crossings with
destinations having unused, hanging, or blocked outputs. For possible
values, see Allowed Values of the cdc_reduce_pessimism Parameter.

 allow_enabled_multiflop: Default value is no. Set this parameter to yes to
consider enabled flip-flops as destination or synchronizer flip-flops in
conventional multi-flop synchronization scheme. Other possible value is
same_enable.

 report_instance_pin: Default value is no. Set this parameter to yes to
report the name of instance pin of a netlist design. Other possible values
are flop, latch, bbox, seqCell, and all.
1073
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
 reset_cross_seq: Default value is no. Set this parameter to yes to report
clock-domain crossings to the asynchronous reset pins of complex
library cells.

 coherency_check_type: Default value is control. Set this parameter to
reset to check coherency issues of reset path signals only.

 show_parent_module_in_spreadsheet: Adds the PARENT_MODULE column
in the rule-based spreadsheet of the supported rules.

 same_domain_at_gate: Default value is no. Set the value of the
parameter to an allowed value to optimize the inference of domains on
clock merging gates.

Constraint(s)

 abstract_port (Optional): Use this constraint to define abstracted
information for block ports.

 allow_combo_logic (Optional): Use this constraint to allow combinational
logic between crossings only if the logic is within the modules specified
by using this constraint.

 cdc_false_path (Optional): Use this constraint to specify false paths so
that clock-domain crossings along these paths are ignored for rule-
checking.

 clock (Optional): Use this constraint to specify clock signals.

 ip_block (Optional): Use this constraint to specify IP blocks in your
design.

 num_flops (Optional): Use this constraint to specify a minimum number
of flip-flops required in a synchronizer chain.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

 sync_cell: (Optional): Use this constraint to specify synchronizer cells
that should be considered valid for crossings that contain specified
frequencies, source/destination clocks, or domains.

 qualifier (Optional): Use this constraint to specify a qualifier for
synchronizing a clock domain crossing.

 quasi_static (Optional): Use this constraint to specify signals whose value
is predominantly static.
1074
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Messages and Suggested Fix

The following message appears for a source <sig-name> that is
synchronized at two places in the same clock domain:

[AcCoh6_1] [WARNING] Source <type> '<source-name>' is
synchronized <destination-count> (at '<destination-list>') in
the same destination domain

The arguments of the above message are explained below:

Potential Issues
This violation appears if a source is synchronized multiple times in the
same domain.

Consequences of Not Fixing
Not fixing this violation may result in:
 Data coherency issues if synchronized destinations driven by the same

source converge.
 A higher gate count as this is an excessive synchronization.

Such designs are not reusable as there is a great risk of chip failure due to

Argument Description
<type> Refers to a source type. It can be flop, latch,

library-cell, port, or black-box.

<source-name> Refers to the name of the source signal.

By default, source net name is reported.
However, if the report_inst_for_netlist parameter is set
to yes, source instance name is reported for netlist
designs. To report the hierarchical pin name of the
source instance, set the report_instance_pin parameter
to yes.

<destination-count> Refers to the count of total destinations sampling the
reported source.
Each bus bit is counted separately.

<destination-list> Refers to the name of destinations sampling the source.
1075
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
potential convergence problem.

How to Debug and Fix
To debug the violation of this rule, perform the following steps:
1. Open the rule-based spreadsheet.

To open this spreadsheet, right-click on the rule-name header in the
Results pane, and select the Spreadsheet Viewer option from the
shortcut menu.
For details on this spreadsheet, see Rule-based spreadsheet -
Ac_coherency06.csv.

2. Click on a violation in the rule-based spreadsheet to open the
message-based spreadsheet attached to each source. For details on this
spreadsheet, see Message-based spreadsheet - Ac_coherency06_<num>.csv.

3. Start debugging domain-wise using the schematic that will show the
source being synchronized at multiple destinations of the same domain.
Alternatively, select the path of a particular destination and you can see
the source getting synchronized to particular destinations selectively.

4. To fix the violation, synchronize the signal once and then distribute it.

Example Code and/or Schematic

Consider the following rule-based spreadsheet of the Ac_coherency06 rule:

FIGURE 137. Rule-Based Spreadsheet of the Ac_coherency06 Rule

In the above spreadsheet, click on the link in the ID column to view the
message-based spreadsheet of this violation.

The following figure shows the message-based spreadsheet in this case:
1076
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
FIGURE 138. Message-Based Spreadsheet of the Ac_coherency06 Rule

To view the source flip-flop and its clock path in the schematic, click on the
link in the ID column of the source and open the schematic. Following is
the schematic in this case:

FIGURE 139. Schematic of the Ac_coherency06 Rule Violation

Schematic Details

The Ac_coherency06 rule highlights the following details in schematic:
1077
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
 Source flip-flop and its clock path

 Destination flip-flops of a one domain and their clock paths

 Crossing path

 Path of the synchronizers of the highlighted destinations

Default Severity Label

Warning

Rule Group

SYNCHRONIZATION

Reports and Related Files

 Rule-based spreadsheet - Ac_coherency06.csv
Each row of this spreadsheet shows one violation per source per
destination domain. See Figure 137.
The details of columns of this spreadsheet are described below:

 Message-based spreadsheet - Ac_coherency06_<num>.csv
This spreadsheet shows details of destinations of the same domain (one
destination per row). See Figure 138.
The details of columns of this spreadsheet are described below:

Column Description
ID Specifies a unique ID for a violation.
SOURCE Specifies the name of the source signal that is

synchronized multiple times in the same domain.
DEST.COUNT Specifies the number of destination signals in the

crossing.
DEST.DOMAIN Specifies the domain of the destination signals.
DEST.CLOCK TAG
WAIVED Specifies if the reported violation is waived
1078
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Column Description
Schematic Shows a link to the schematic
Type Specifies the type of source or destination in the

crossing.
Signal Name Specifies the name of source or destination

signal in the crossing.
Clock Names Specifies the name of the clock domain.
Tag Names Specifies the clock tag name.
Internal Clock Domain Tag Specifies a unique tag number generated for a

clock net connected to a sequential element or a
black box.
For details, see Using the Using the Clock
Domain Tag.

Synchronization Method Specifies the scheme used to synchronize the
crossing.
1079
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Ac_repeater01
Reports invalid repeater insertion in a design

When to Use

Use this rule to check if Repeaters are correctly inserted in a design.

Prerequisites

Specify Repeaters in the design by using the repeater constraint.

Description

The details of the Ac_repeater01 rule are covered under the following
topics:
 Reason for the Ac_repeater01 Rule Violation

 Cases of Invalid Repeaters

 Rule Exceptions

Reason for the Ac_repeater01 Rule Violation

The Ac_repeater01 rule reports a violation if Repeaters are not correctly
placed between the flip-flop paths of source and destination.

Note the following points:
 There is no limit on the number of repeater instances in the repeater

chain.
 No synchronization checks are performed for repeater crossings.

 No filtering mechanism, other than waivers, is available to remove the
Ac_repeater01 rule violation.

Cases of Invalid Repeaters

Consider the following figure:
1080
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
FIGURE 140. Example of Repeaters in a Design

In the above figure, the repeater insertion is considered as invalid if any of
the following conditions hold true:
 Repeater Clock Coming From a Different Top-Level Source Clock

 Repeater Clock is Asynchronous To Source and/or Destination Clock

 Same Top-Level Source Clock for Source, Destination, and Repeater Clock

 Chain of Repeater Flip-Flops Clocked by Different Clocks

Repeater Clock Coming From a Different Top-Level Source Clock

If cr is coming from a different top-level source clock other than the top-
level source clocks of both cx and cy, but their domains are same,
repeater insertion is considered as invalid.

This scenario is shown in the following figure:

source destination

R1 Rn

cx cr

cy
- cr is the repeater clock
- cx is the source clock
- cy is the destination clock
1081
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
FIGURE 141.

Repeater Clock is Asynchronous To Source and/or Destination
Clock

If cr is asynchronous to cx or cy or both, repeater insertion is considered
as invalid.

The following figure shows the scenario in which the clock of the repeater
chain (r1 and r2) is asynchronous to both source and destination flip-
flops:

current_design top
clock -name clk1 -domain A
clock -name clk2 -domain A
clock -name clk3 -domain A
repeater -names "Repea*"

// SGDC file

(cx) (cr)

(cy)
1082
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
FIGURE 142.

Same Top-Level Source Clock for Source, Destination, and Repeater
Clock

If cx, cy, and cr have the same top-level source clock but these clocks use
different clock gating or divider logic, repeater insertion is considered as
invalid.

For example, in the following figure, different clock logic is used between
repeater and source:

(cx)

(cr)

(cy)
1083
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
FIGURE 143.

Chain of Repeater Flip-Flops Clocked by Different Clocks

If the chain of repeater flip-flops is clocked by different clocks (multiple cr
in this case), repeater insertion is considered as invalid.

This scenario is shown in the following figure:

FIGURE 144. Repeaters clocked by different clocks

current_design top
clock -name clk1 -domain A
clock -name clk2 -domain A
clock -name clk3 -domain A
repeater -names "Repea*"

// SGDC file

(cx)
(cr)

(cy)

(cx)
(cr)

(cr)

(cy)
1084
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
In the above figure, the r1 and r2 repeaters are clocked by different clock
domains.
 If the repeater type is different in the repeater chain. That is, if repeater

instances are in a different hierarchy or their parent modules are
different.
See Example Code and/or Schematic.

 If combinational logic is present between the source flip-flop and
repeater chain, destination flip-flop and repeater chain, or between
repeaters in the repeater chain.
The following figure shows the scenario in which combinational logic is
present between the destination flip-flop and repeater chain:

FIGURE 145.

Rule Exceptions

The Ac_repeater01 rule does not report any violation if the repeater chain
ends up on a top-level output port (specified by the abstract_port/output
constraints), black box, or a hanging net.

Parameter(s)

 allow_combo_logic_repeater: Default value is no. Set this parameter to
yes to allow combinational logic between source/destination and
Repeaters.

 reset_cross_seq: Default value is no. Set this parameter to yes to report
clock-domain crossings to the asynchronous reset pins of complex
library cells.

(cx)

(cr)

(cy)
1085
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Constraint(s)

repeater (Mandatory): Use this constraint to specify Repeaters in a design.

Messages and Suggested Fix

Message 1

The following message appears in case of an invalid repeater insertion:

[ERROR] Invalid repeater insertion: destination <dest-type>
<dest-name>, clocked by '<dest-clock>'. Reason: '<reason>'
[Total Sources: '<total-sources>']

The arguments of the above message are explained below:

The following table describes different failure reasons reported by the
Ac_repeater01 rule:

Argument Description
<dest-type> Specifies the type of destination.

The types can be flop, latch, or library-cell.
<dest-name> Specifies the name of the output net of the hierarchical

source.
In case of an unknown library cell, this column shows the
input net name. When the report_inst_for_netlist parameter
is set to yes, it shows hierarchical pin name.

<dest-clock> Specifies the hierarchical net/pin name of the destination
clock.

<reason> Specifies the reason for incorrect repeater insertion. See
Table 1.

<total-sources> Specifies the total number of source signals reaching the
destination.
1086
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
TABLE 1 Failure Reasons Reported by the Ac_repeater01 rule

S. No. Failure Reason Cause for the failure reason
(in reference with Figure 140)

1 Different synchronous clock
used for repeater

If cr is coming from a different top-
level source other than the top-level
sources of both cx and cy, but their
domains are same.
See Figure 141.

2 Asynchronous clock used
between repeater and
destination

If cr is asynchronous to cy.

3 Asynchronous clock used
between repeater and source

If cr is asynchronous to cx.

4 Repeater clock is
asynchronous to both source
and destination

If cr is asynchronous to both cx and
cy.
See Figure 142.

5 Different clock logic used
between repeater and
destination

If cx, cy, and cr have the same top-
level source but cy and cr use
different:
• Clock-gating schemes (one of the

scheme does not have gating or
they have different CGC cells).

• Clock dividers.
• Clock net ignoring buffers and

inverters.

6 Different clock logic used
between repeater and source

Same as above.
See Figure 143.

7 Repeaters with different
clocks

If the chain of repeater slip-flops is
clocked by different clocks (multiple
cr).
See Figure 144.
1087
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Potential Issues
This violation appears when the design contains invalid Repeaters. For
details, see Cases of Invalid Repeaters.

Consequences of Not Fixing
If you do not fix this violation, the design may not meet the desired timing
requirements.

How to Debug and Fix
To debug and fix this violation, perform the following steps:
1. Open the Rule-Based Spreadsheet of this rule by right-clicking on the rule

summary in the Message pane and selecting the Open Spreadsheet
option.

2. From this spreadsheet, click on the violation to debug.
This displays the Message-Based Spreadsheet showing details of the
violation selected in the Rule-Based Spreadsheet.

3. Analyze the failure reasons shown in the Message-Based Spreadsheet and
check the Incremental Schematic of the violation to see the cause of
failure.

8 Different type of repeaters
used

If the repeater type is different in the
chain of repeater flip-flops.
See Example Code and/or Schematic.

9 Combo logic present If combinational logic is present
between:
• Source and repeater.
• Repeater and destination.
• Repeaters in the chain of repeater

flip-flops.
See Figure 145.

TABLE 1 Failure Reasons Reported by the Ac_repeater01 rule

S. No. Failure Reason Cause for the failure reason
(in reference with Figure 140)
1088
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
4. Based on the failure reason, perform appropriate actions described
below:
 For the failure reasons from 1 to 7 shown in Table 1, synchronize the

clocks of source-repeater-destination chain from the same top-level
clock.

 For the failure reason 8 shown in Table 1, use repeater instantiation
from the same repeater module.

 For the failure reason 8 shown in Table 1, use the
allow_combo_logic_repeater parameter to allow combinational logic
between source/destination and repeater instances.
If combinational logic is present between the repeater chain, modify
the design to remove such logic between the repeater chain.

Message 2

The following informational message appears when the repeater insertion
is valid:

[INFO] Valid repeater insertion: destination <dest-type> <dest-
name>, clocked by '<dest-clock>' [Total Sources: '<total-
sources>']

Potential Issues
Not applicable

Consequences of Not Fixing
Not applicable

How to Debug and Fix
Not applicable

Example Code and/or Schematic

Example 1 - Invalid Repeater Insertion

Consider the following files specified for SpyGlass analysis:
1089
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
For the above example, the Ac_repeater01 rule reports a violation
indicating different repeater types used.

The following figure shows the rule-based spreadsheet that appears when
you right-click on the rule summary in the Message pane and select the
Open Spreadsheet option:

FIGURE 146.

The above spreadsheet shows the summary of violations of the
Ac_repeater01 rule. To know details of the above violation, click 9 in the ID
column to open the message-based spreadsheet, as shown in the following
figure:

module top(input d,clk1,clk2,clk3,output q1,q2);
reg w1, w2, w3,w4, q1,q2;
always@(posedge clk3)
 w1<=d;
Repeater1 r1(w1, clk3, w2);
Repeater2 r2(w2, clk3, w3);
always@(posedge clk3)
 q1<=w3;
endmodule

module Repeater1(input in, clk, output reg out);
always@(posedge clk)
 out<=in;
endmodule

module Repeater2(input in, clk, output reg out);
always@(posedge clk)
 out<=in;

endmodule

// test.v

current_design top
clock -name clk1
clock -name clk2
clock -name clk3
repeater -names "Repea*"

// test.sgdc
1090
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
FIGURE 147.

The following figure shows the schematic of the above violation that
indicates the usage of different repeater types:

FIGURE 148.

To fix this violation, use instantiation from the same repeater module for
the repeater chain. For details, see Example 2 - Valid Repeater Insertion.

Example 2 - Valid Repeater Insertion

Consider the following files specified for SpyGlass analysis:
1091
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
For the above example, the Ac_repeater01 rule reports an informational
message indicating valid repeater insertion in a design.

The following figure shows the Message-Based Spreadsheet generated in this
case:

FIGURE 149.

In the above spreadsheet, no failure reason is reported as this is the case
of a valid repeater insertion. The following figure shows the schematic in
this case:

module top(input d,clk1,clk2,clk3,output q1,q2);
reg w1, w2, w3,w4, q1,q2;
always@(posedge clk3)
 w1<=d;
Repeater1 r1(w1, clk3, w2);
Repeater1 r2(w2, clk3, w3);
always@(posedge clk3)
 q1<=w3;

endmodule

module Repeater1(input in, clk, output reg out);
always@(posedge clk)
 out<=in;

endmodule

module Repeater2(input in, clk, output reg out);
always@(posedge clk)
 out<=in;

endmodule

// test.v

current_design top
clock -name clk1
clock -name clk2
clock -name clk3
repeater -names "Repe*"

// test.sgdc
1092
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
FIGURE 150. Valid repeater insertion

Default Severity Label

Error

Report and/or Related Files

The Ac_repeater01 rule generates the Rule-Based Spreadsheet, Message-
Based Spreadsheet, and Rule-Based CSV.

Rule-Based Spreadsheet

This spreadsheet shows the summary of all the violations reported by the
Ac_repeater01 rule. The following figure shows the example of the rule-
based spreadsheet:
1093
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
FIGURE 151.

The following table describes the details of the columns of the above
spreadsheet:

Message-Based Spreadsheet

This spreadsheet of the Ac_repeater01 rule shows the details of the
violation selected in the Rule-Based Spreadsheet of this rule.

Column Name Description
TYPE Specifies the type of destination.

The types can be flop, latch, or library-cell.
DESTINATION Specifies the name of the output net of the

hierarchical source.
In case of an unknown library cell, this column shows
the input net name. When the report_inst_for_netlist
parameter is set to yes, it shows hierarchical pin
name.

DESTINATION CLOCK(S) Specifies the hierarchical net/pin name of the
destination clock.

REASON Specifies the reason for incorrect repeater insertion.
TOTAL SOURCES Specifies the total number of source signals reaching

the destination.
WAIVED Specifies if the reported violation is waived.
1094
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
The following figure shows the example of a message-based spreadsheet
of the Ac_repeater01 rule:

FIGURE 152.

The first row in the above spreadsheet shows the destination instance and
the remaining rows shows all the sources of that destination.

The following table describes the details of the columns of the above
spreadsheet:

Column Name Description
Signal Type Specifies the type as Destination flop or Source flop.
Signal Name Specifies the source or destination name.
Clocks Specifies the source or destination clocks.
1095
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Rule-Based CSV

The Ac_repeater_rule.csv file shows the following consolidated information

Source name, source clocks, destination name, destination clocks, repeater
names (repeater clocks), and failure reason

The following example shows the contents of a rule-based CSV file:

ID,Source Name,Source Clocks,Destination Name,Destination
Clocks,Repeater Names (Repeater clocks),Failure Reason

1,'top.w1',"top.clk3",'top.q1',"top.clk3"," top.w3
(top.clk3)\n top.w2 (top.clk3)\n ","Different type of
repeaters used"

Repeater Name
(Repeater Clocks)

Specifies the name of repeaters and their corresponding
clocks.

Failure Reason Specifies the reason for invalid repeater insertion.

Column Name Description
1096
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Clock_sync05
Reports primary inputs sampled by multiple clock domains

When to Use

Use this rule to check if a primary input port is sampled by multiple clock
domains (MSD).

Prerequisites

Specify clock signals in any of the following ways:
 By using the clock constraint.

 By setting the use_inferred_clocks parameter to yes to enable
auto-generation of clock signals.

 By using a combination of both the above methods.

Description

The Clock_sync05 rule reports primary inputs that are sampled by more
than one of the following elements clocked by different clock domains:
 D inputs, load enable, set/reset pins of sequential elements

 A non-clock pin of a black box

 A primary output port

This rule skips combinational logic between primary inputs and the
above-specified elements.

Example of an MSD

The following figure shows an example of an MSD:
1097
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
FIGURE 153. Example of MSD

NOTE: Transparent latches (enabled latch) are also considered as combinational elements.

This rule reports any two different domain flip-flops sampled by a port. You
can expand the schematic to view other sampled flip-flops.

Rule Exceptions

The Clock_sync05 rule does not report a violation if the primary input
signal:
 Is defined by using the input or abstract_port constraint.

 Drives a quasi-static flip-flop.

Parameter(s)

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

 filter_named_clocks: Default value is rst, reset, scan, set. Set this
parameter to a list of strings.

 reset_cross_seq: Default value is no. Set this parameter to yes to report
clock-domain crossings to the asynchronous reset pins of complex
library cells.

clka

clkb

Multi-Sample
domain signal

clka and clkb are in different clock domains.
1098
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
 same_domain_at_gate: Default value is no. Set the value of the
parameter to an allowed value to optimize the inference of domains on
clock merging gates.

 dump_detailed_info: Default value is none. Set this parameter to a
supported value to enable the rule to include detailed information in the
generated rule/message-based spreadsheet.

Constraint(s)

 clock (Optional): Use this constraint to specify clock signals.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

 quasi_static (Optional): Use this constraint to specify signals whose value
is predominantly static.

 sg_clock_group (Optional): Use this constraint to define asynchronous
relationship between clocks.

Messages and Suggested Fix

The following message appears at the location where a primary input
<port-name> is sampled by two destination instances or ports of
different clock domains:

[WARNING] Primary input signal '<port-name>' is sampled by
multiple clock-domains, clock '<clk1-name>' (at '<type>'
'<name1>') and clock '<clk2-name>' (at '<type>' <name2>')

The arguments of the above message are explained below:

Argument Description

<port-name> Primary input signal

<type> flip-flop, latch, library-cell pin, black box pin, or output port
1099
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Potential Issues
This violation appears if your design contains a primary input port that
drives multiple sequential elements, black box input pins, or primary
output ports from different domains.

Consequences of Not Fixing
As input port belongs to a single clock domain, therefore, one of the
destination instances latching the input port introduces metastability in a
block/design.

If you do not fix this issue, design undergoes through metastability
resulting in chip failure.

How to Debug and Fix

To debug the violation of this rule, view the Incremental Schematic of the
violation message.

The following figure illustrates a sample schematic for this rule:

<clk1-name>
and
<clk2-name>

Destination domain clocks where the input signal is being
sampled

<name1> and
<name2>

• Names of output nets of the corresponding flip-flop/
latch.

<instance-name> in case of netlist designs, if the
report_inst_for_netlist parameter is set to yes. Otherwise,
it is <inst-output-name>.
• Names of input pin for black box and library-cells
• Name of an output port

Argument Description
1100
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
FIGURE 154. Schematic of the Clock_sync05 Rule Violation

In the schematic, you will see that the input is driving flip-flops from
multiple clock domains.

To find the root cause of the problem, perform the following steps:
1. Enable Show Case Analysis in the schematic and check if set_case_analysis

constraint is missing on any of the paths that should be blocked.
2. If the port is static, you may specify the quasi_static constraint to remove

the violations.
3. If the input port does not belong to any of the domain by which it is

being sampled, make sure that synchronizers are present to
synchronize such input port on all the paths. Otherwise, it is better to
first latch the input port in the domain it belongs to and then distribute it
to synchronizers.

4. You can also view case analysis settings along with the violation of this
rule.

Example Code and/or Schematic

The following figure illustrates a sample schematic of a violation reported
by this rule:
1101
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
FIGURE 155. Schematic of the Clock_sync05 Rule Violation

To fix this violation, perform appropriate actions depending upon different
situations, as described below:
 If in2 belongs to the clk1 domain, add a synchronizer of the clk1

domain for the inSlow_reg flip-flop.

 If in2 belongs to the clk2 domain, add a synchronizer of the clk2
domain for \bus_data_reg[0].

Schematic Details

The Clock_sync05 rule highlights the following paths in different colors in
schematic:
 Path from primary input to one of its sampling flip-flops/latches for each

clock domain
 Path from its clock source to the clock pin of that sampling flip-flop/latch

Default Severity Label

Warning

Rule Group

SYNCHRONIZATION
1102
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Reports and Related Files

No report and related file.
1103
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Ac_crossing01
Generates the crossing matrix spreadsheet

When to Use

Use this rule to view a summary of crossings per pair of clocks along with
their clock domains.

Prerequisites

Specify the following information before running this rule:
 Use the Advanced_CDC and adv_checker license features.

 Enable the Ac_sync_group rules to get corresponding information by
respective rules.

 Specify the following command in a project file to run this rule:

set_goal_option addrules {Ac_crossing01}

By default, this rule is switched off.

Description

The Ac_crossing01 rule generates The CrossingMatrix Spreadsheet that shows
a summary of crossings per pair of clocks along with their clock domains.

Parameter(s)

 fa_multicore: Default value is no. Set this parameter to yes to invoke the
multi core engine of SpyGlass for solving complex assertions.

 fa_meta: Default value is no. Set this parameter to yes to enable formal
modeling of metastability.

 enable_multiflop_sync: Default value is yes. Set this parameter to no to
disable the Conventional Multi-Flop Synchronization Scheme.

 cdc_reduce_pessimism: Default value is mbit_macro,
no_convergence_at_syncreset, no_convergence_at_enable.
Set this parameter to an appropriate value to ignore clock domain
crossings involving black box instances and clock domain crossings with
destinations having unused, hanging, or blocked outputs. For possible
values, see Allowed Values of the cdc_reduce_pessimism Parameter.
1104
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
 clock_reduce_pessimism: Default value is latch_en, mux_sel_derived,
check_enable_for_glitch. Set the value of this parameter to
mux_sel to stop traversal of this rule when a clock signal reaches a
MUX. Other possible values are all, all_potential_clocks, and
ignore_same_domain.

 check_multiclock_bbox: Default value is no. Set this parameter to yes to
show violations for the crossings in which a destination black box
receives multiple clocks but no SGDC constraint is defined on any of the
black-box data pins receiving the clocks.

 reset_cross_seq: Default value is no. Set this parameter to yes to report
clock-domain crossings to the asynchronous reset pins of complex
library cells.

Constraint(s)

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

 cdc_false_path (Optional): Use this constraint to specify false paths so
that clock-domain crossings along these paths are ignored for
rule-checking.

Messages and Suggested Fix

The following message appears to indicate that the crossing matrix
spreadsheet is generated:

[INFO] CrossingMatrix spreadsheet generated for design
'<design-name>'

Potential Issues
Not applicable

Consequences of Not Fixing
Not applicable

How to Debug and Fix
Not applicable
1105
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Example Code and/or Schematic

Consider the design shown in the following modular schematic:

FIGURE 156. Design on which the Ac_crossing01 Rule is being Run

When you run the Ac_crossing01 rule on the above design, the
CrossingMatrix.csv spreadsheet is generated. Now based upon the rules
enabled, such as Ac_sync_group rules, different clock pair information is
shown in the spreadsheet.

Sample Spreadsheet generated by Ac_sync_group rules

The following figure shows the crossing matrix spreadsheet generated
when the Ac_sync_group is enabled:
1106
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
FIGURE 157. Crossing Matrix Spreadsheet

The above spreadsheet shows information per clock crossing pairs in the
following format:

<a>/, <c>/<d>

Where:

 <a> is the total number of Ac_unsync01 and Ac_unsync02 messages for
the given clock pair.

 is the total number of crossings for this clock pair for all the
sources involved in the crossing.

 <c> is the total number of Ac_sync01 and Ac_sync02 violation messages
for the given clock pair.

 <d> is the total number of crossings for this clock pair for all the
sources involved in the crossing.

Description of the above format for each clock pair in this example is
described below:
 For the clock pair clk1-clk5
1107
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
 Three violations of the Ac_unsync01 rule are reported in this case, and
all sources are considered between the clk1-clk5 clock pair.

Therefore, the value of <a> and is 3 and 6, respectively.

 No Ac_sync01/Ac_sync02 violation is reported in this case.

Therefore, the value of <c> and <d> is 0.

 For the clk2-clk5 clock-pair
No violation is reported for this clock pair and all sources are considered.
Therefore, the value of <a> and is 0 and 6, respectively.

Default Severity Label

Info

Rule Group

ADV_CLOCKS

Reports and Related Files

CrossingMatrix.csv

This spreadsheet is generated in the spyglass_reports/clock-reset/Ac_crossing
directory.

It shows clock-related details, and provides an indication of overall
SpyGlass CDC solution risk in a design, crossings congestion area, and
setup issues causing unusual crossing distribution.

Information per clock crossing pairs appears in the following format in the
spreadsheet:

<a>/, <c>/<d>

where,

 <a> is the count of Ac_unsync01/Ac_unsync01 messages.

 is the count of total unsynchronized crossings that exist for the
clock crossing pair.

 <c> is the count of Ac_sync01/Ac_sync02 messages.

 <d> is the count of total synchronized crossings that exist for a clock
crossing pair.
1108
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
NOTE: and <d> may be different from <a> and <c> in case multiple clocks are
reaching to crossing instances.

For details, see Sample Spreadsheet generated by Ac_sync_group rules.
1109
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Clock_sync03
Reports converging signals.

The Clock_sync03 rule runs the Clock_sync03a and Clock_sync03b rules.
1110
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Clock_sync03b
Reports convergence of signals from different domains

NOTE: The Clock_sync03b rule will be deprecated in a future release. The rule is not
included in CDC GuideWare goals now and do not perform checks until specifically
included in the user-defined goal options. In this case, the rule performs the checks
and SpyGlass includes a deprecation message in both the spyglass.out and
spyglass.log files.

When to Use

Use this rule to check convergence of different domain signals.
NOTE: It is recommended to use the Ac_conv03 rule instead of this rule.

Prerequisites

Specify clock signals in any of the following ways:
 By using the clock constraint.

 By setting the use_inferred_clocks parameter to yes to enable
auto-generation of clock signals

 By using a combination of both the above methods

Description

The Clock_sync03b rule reports convergence of signals that come from
different domains.

Such signals may be:
 Synchronized in different domains by using Conventional Multi-Flop

Synchronization Scheme or Synchronizing Cell Synchronization Scheme

 Unsynchronized

 Singular flip-flop outputs

In case of convergence of signals other than singular flip-flop outputs, this
rule reports a violation if one of the following conditions is true:
 If signals are coming from the same source domain but different

destination domains
 If signals are coming from different source domains but same

destination domain
1111
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
 If signals are coming from different source and destination domains

You must avoid all such convergences irrespective of whether signals are
gray-encoded or not.

The following figure shows an example of signals from different domains
converging together.

FIGURE 158. Convergence of Signals from Different Source Domain

The following figure shows an example of signals coming from two different
sources that may or may not be synchronized and/or may converge after
layers of sequential logic.

Clk1

Clk2

Rule-violating Signal

Combinational logic
1112
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
FIGURE 159. Convergence of Different Sources that may or may not be
Synchronized

Guidelines for Using Parameters with the Clock_sync03b Rule

Using certain combination of parameters with this rule can make this rule
run time and memory intensive. The following guidelines can help in
reducing run time:
 If there are multiple convergences on the same path, then by default,

this rule reports convergence on the last gate in the path that covers all
the converging signals.
The following figure shows an example of convergence of multiple
signals.

Clk2

Clk2

Clk1

Clk3

Rule-violating Signal

Combinational logic
1113
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
FIGURE 160. Multiple Convergences on Same Path

In the above example, by default, the Clock_sync03b rule reports
convergence only on Gate2, which covers convergence of all signals:
Signal1, Signal2, and Signal3.

However, if the all_convergence_paths parameter is set to yes, the rule
will report both Gate1 and Gate2, where Signal1 and Signal2 are
reported at Gate1. These signals are also covered in convergence at
Gate2. Therefore, it is recommended not to use the
all_convergence_paths parameter as its usage may result in noise and
increase run time and memory.

 Specifying a high value to the reconvergence_stages parameter may
result in increases run time. In such case, ensure that the value of this
parameter is set appropriately.

 To reduce run time, set the show_reconv_paths parameter to no. This
avoids schematic data generation for convergence paths. In this case,
only converging signals and the gate where they are converging is
highlighted.

Clk1 Clk2

Clk1 Clk3

Clk1 Clk4

Gate1

Gate2

Signal1

Signal2

Signal3
1114
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
 Do not specify the check_bus_bit_convergence parameter with the
Clock_Sync03b rule as this may result in inaccurate results.

Rule Exceptions

The Clock_sync03b rule has the following exceptions:
 It does not report convergences of vector signals.

This rule reports convergence only if a signal reaches on a MUX select
pin along with signals reaching one or more MUX input pins.

 It does not report convergence of synchronized signals at sequential
cells.

 It does not report a violation when synchronizers are a part of the same
FIFO memory.

Parameter(s)

 reconvergence_stages: Default value is 0. Set this parameter to a positive
integer value to specify the maximum number of flip-flops allowed in the
fan-out path of a synchronizing signal.

 no_convergence_check: Default value is NULL. Specify net names that
should not be checked for convergence.

 report_conv_type: Default value is sync. Set this parameter to all to
report convergence from synchronized signals, unsynchronized signals,
and standalone flip-flops. Other possible values are sync, unsync, and
nocross.

NOTE: This rule reports violation if an input port defined in a different domain converges
with other signals.

 cdc_reduce_pessimism: Default value is mbit_macro,
no_convergence_at_syncreset, no_convergence_at_enable.
Set this parameter to an appropriate value to ignore clock domain
crossings involving black box instances and clock domain crossings with
destinations having unused, hanging, or blocked outputs. For possible
values, see Allowed Values of the cdc_reduce_pessimism Parameter.

 clock_reduce_pessimism: Default value is latch_en, mux_sel_derived,
check_enable_for_glitch. Set the value of this parameter to
mux_sel to stop traversal of this rule when a clock signal reaches a
1115
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
MUX. Other possible values are all, all_potential_clocks, and
ignore_same_domain.

 check_multiclock_bbox: Default value is no. Set this parameter to yes to
show violations for the crossings in which a destination black box
receives multiple clocks but no SGDC constraint is defined on any of the
black-box data pins receiving the clocks.

 sync_reset: Default value is no. Set this parameter to yes to allow at
most one gate of an AND/NAND/OR/NOR type to be the synchronous
reset for the flip-flop that follows.

 all_convergence_paths: Default value is no. Set this parameter to yes to
report all convergence paths.

 show_reconv_paths: Default value is yes. Set this parameter to no to
highlight only converging signals and the gate where the signals are
converging. This reduces runtime.

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

 allow_enabled_multiflop: Default value is no. Set this parameter to yes to
consider enabled flip-flops as destination or synchronizer flip-flops in
conventional multi-flop synchronization scheme. Other possible value is
same_enable.

 filter_named_clocks: Default value is rst, reset, scan, set. Set this
parameter to a list of strings.

 enable_multiflop_sync: Default value is yes. Set this parameter to no to
disable the Conventional Multi-Flop Synchronization Scheme.

 reset_cross_seq: Default value is no. Set this parameter to yes to report
clock-domain crossings to the asynchronous reset pins of complex
library cells.

 same_domain_at_gate: Default value is no. Set the value of the
parameter to an allowed value to optimize the inference of domains on
clock merging gates.

Constraint(s)

 clock (Optional): Use this constraint to specify clock signals in a design.

 ip_block (Optional): Use this constraint to specify IP blocks in your
design.
1116
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
 cdc_false_path (Optional): Use this constraint to specify false paths so
that clock-domain crossings along these paths are ignored for rule
checking.

 quasi_static (Optional): Use this constraint to specify signals whose value
is predominantly static.

 no_convergence_check (Optional): Use this constraint to specify nets that
should not be checked for convergence.

NOTE: If you specify nets by using the no_convergence_check constraint as well as the
no_convergence_check parameter, SpyGlass considers the nets specified by
both the constraint and parameter.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

Messages and Suggested Fix

The following message appears at a location where two or more signals
converge on a net <net-name>:

[WARNING] <obj-type> '<sig-name>' converge on '<net-name>'.

The arguments of the above message are explained below:

Argument Description

<obj-type> Signals in case of RTL designs.
Instances in case of netlist designs, if the
report_inst_for_netlist parameter is set to yes. Otherwise,
it is Signals

<sig-name> Comma-separated list of signal names in case of RTL
designs.
Comma-separated list of instances in case of netlist
designs, if the report_inst_for_netlist parameter is set to
yes. Otherwise, it is list of signal names

<inst-name> <out-net-name> of converging instance in case of
RTL designs.
<inst-name> of converging instance in case of netlist
designs, if the report_inst_for_netlist parameter is set to
yes. Otherwise, it is <out-net-name>
1117
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Potential Issues
This violation appears when different domain signals converge.

Consequences of Not Fixing
Convergence of synchronizers from different domains can result in data
coherency issues and may cause chip failure.

How to Debug and Fix
Convergence of synchronizers from the different domains can cause data
coherency. View the Incremental Schematic of the violation message to
analyze the path of convergence of synchronizers.

Based on the information viewed in the schematic, perform appropriate
actions, as described below:
 If convergence is being reported for signals that are in an IP, specify the

ip_block constraint for the IP if you do not want to report within the IP.
 If convergence is for static signals, use the cdc_false_path or quasi_static

constraints.
 If the path of synchronizers confirms that synchronizers cannot

functionally control the converging net at the same time, the violation
can be waived.

 If some of the intermediate nets in the path confirm exclusivity between
synchronizers, you can specify such nets by using the
no_convergence_check parameter.

To check clock domains of different source signals, right-click on the source
net in the Incremental Schematic window and select the Show Debug Data-
>Clock-reset option from the shortcut menu. This option is enabled when
you set the enable_debug_data parameter to yes.

In some cases, convergence of synchronizers from different domains may
be required. In such cases, you should modify your design to ensure that
there is no glitch or any coherency issue.

Example Code and/or Schematic

Consider the following schematic of a violation reported by the
Clock_sync03b rule:
1118
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
FIGURE 161. Schematic of the Clock_sync03b Rule Violation

In the above example, two different domain source signals, src1 and src2
that are synchronized in the same domain by using Conventional Multi-Flop
Synchronization Scheme are converging on an AND gate.

To fix this violation, remove the convergence.

Convergence between signals coming from different domains is a serious
issue. You should analyze your design carefully for such cases to check why
such convergence is required, and avoid such convergences if possible.

Schematic Details

The Clock_sync03b rule highlights the following information in different
colors in the schematic:
 Path from each destination flip-flop to the converging gate

 Instance on which convergence is taking place

If the show_reconv_paths parameter is set to no, the rule highlights only
converging signals and the gate where they are converging. It does not
show the complete path.

Default Severity Label

Warning

Rule Group

SYNCHRONIZATION
1119
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Reports and Related Files

None
1120
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Clock_sync06
Reports primary outputs driven by multiple clock domain flip-flops
or latches

When to Use

Use this rule to check if a primary output port is driven by multiple clock
domains.

Prerequisites

Specify clock signals in any of the following ways:
 By using the clock constraint.

 By setting the use_inferred_clocks parameter to yes to enable
auto-generation of clock signals.

 By using a combination of both the above methods.

Description

The Clock_sync06 rule reports primary outputs that are driven by more
than one of the following elements clocked by different clock domains:
 D inputs or load enable inputs of sequential elements

 A non-clock pin of a black box

 A primary output port

The following figure shows an example of MTD:
1121
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
FIGURE 162. Example of MTD

This rule reports any two different domain flip-flops driving a port. You can
expand the schematic to view other flip-flops driving the port.

Rule Exceptions

The Clock_sync06 rule does not report a violation if an output port:
 Is already defined by using the output constraint.

 Is driven by a quasi-static flip-flop.

Parameter(s)

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

 filter_named_clocks: Default value is rst, reset, scan, set. Set this
parameter to a list of strings.

 reset_cross_seq: Default value is no. Set this parameter to yes to report
clock-domain crossings to the asynchronous reset pins of complex
library cells.

 same_domain_at_gate: Default value is no. Set the value of the
parameter to an allowed value to optimize the inference of domains on
clock merging gates.

clka

clkb

Multi-Transition
domain signal

clka and clkb are in different clock domains.
1122
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
 dump_detailed_info: Default value is none. Set this parameter to a
supported value to enable the rule to include detailed information in the
generated rule/message-based spreadsheet.

Constraint(s)

 clock (Optional): Use this constraint to specify clock signals.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

 quasi_static (Optional): Use this constraint to specify signals whose value
is predominantly static.

 sg_clock_group (Optional): Use this constraint to define asynchronous
relationship between clocks.

Messages and Suggested Fix

The following message appears at the location where a primary output
<port-name> is driven by instances of different clock domains:

[WARNING] Primary output signal '<port-name>' is in the fan-out
cone of multiple clock-domains, clock '<clk1-name>' (at <type>
'<name1>') and clock '<clk2-name>' (at <type> '<name2>')

The arguments of the above message are explained below:

Argument Description

<port-name> Primary output signal

<type> flip-flop, latch, library-cell pin, black box pin, or input port

<clk1-name>
and
<clk2-name>

Different domain clocks driving the output signal

<name1> and
<name2>

• Names of output nets of the corresponding flip-flop/
latch.

<instance-name> in case of netlist designs, if the
report_inst_for_netlist parameter is set to yes. Otherwise,
it is <inst-output-name>.
• Names of output pin for black box and library-cells
• Name of an input port
1123
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Potential Issues
This violation appears if your design contains a primary output port that is
driven by multiple sequential elements, black box input pins, or primary
output ports from different domains.

Consequences of Not Fixing
If you do not fix this violation, metastability conditions may arise in your
design resulting in chip failure.

Metastability conditions arise because an output port that is fed by multiple
clock domains eventually feeds a destination that is outside the block
boundary. As this port is driven by multiple clock domains, the destination
sampling such output port goes metastable.

How to Debug and Fix

To debug the violation of this rule, view the Incremental Schematic of the
violation message.

The following illustrates a sample schematic for this rule:

FIGURE 163. Schematic of the Clock_sync06 Rule Violation

In the schematic, you will see that the output is being driven by flip-flops
from multiple clock domains.

To find the root cause of the problem, perform the following steps:
1. Enable Show Case Analysis in the schematic and check if set_case_analysis

constraint is missing on any of the paths that should be blocked.
2. If the port is static, you may specify quasi_static constraint to remove the

violations.
1124
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
3. If the output port does not belong to any of the domain by which it is
being fed, make sure that synchronizers are present to synchronize such
asynchronous signals before they reach the output port.

4. You can also view case analysis settings along with the violation of this
rule.

To fix this problem, synchronize signals from separate domains into one
domain and then use that domain to drive the output port. In cases where
this is not possible, that is there is a need to multiplex signals heavily onto
limited pins, disable/waive this rule.

Example Code and/or Schematic

Consider the following schematic of a violation of this rule:

FIGURE 164. Schematic of the Clock_sync06 Rule Violation

To fix the above violation, either synchronize out21_reg into the clk2
domain or synchronize out11_reg into the clk1 domain before
convergence at the AND gate.

Schematic Details

The Clock_sync06 rule highlights the following paths in different colors in
schematic:
 Path from one of its source flip-flops/latches to the primary output for

each clock domain
 Path from its clock source to the clock pin of that source flip-flop/latch

Default Severity Label

Warning
1125
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Rule Group

SYNCHRONIZATION

Reports and Related Files

No report and related file
1126
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Clock_sync08a
Reports multi-flop synchronized bus-bits where double flip-flop
output bits belong to the same bus

When to Use

Use this rule to review synchronization used for bus signals.

Prerequisites

Specify clock signals in any of the following ways:
 By using the clock constraint.

 By setting the use_inferred_clocks parameter to yes to enable auto-
generation of clock signals.

 By using a combination of both the above methods.

Description

The Clock_sync08a rule reports bus-bits that are synchronized by using the
Conventional Multi-Flop Synchronization Scheme, and the output signals of the
destination flip-flop and synchronizing flip-flops are bits of the same bus or
are part of FIFO read/write pointers.

NOTE: Please note the following:

 Do not separately synchronize each bit by using standard control
synchronization techniques, such as Conventional Multi-Flop Synchronization
Scheme.

Parameter(s)

 cdc_reduce_pessimism: Default value is mbit_macro,
no_convergence_at_syncreset, no_convergence_at_enable.
Set this parameter to an appropriate value to ignore clock domain
crossings involving black box instances and clock domain crossings with
destinations having unused, hanging, or blocked outputs. For possible
values, see Allowed Values of the cdc_reduce_pessimism Parameter.

 clock_reduce_pessimism: Default value is latch_en, mux_sel_derived,
check_enable_for_glitch. Set the value of this parameter to
mux_sel to stop traversal of this rule when a clock signal reaches a
MUX. Other possible values are all, all_potential_clocks, and
ignore_same_domain.
1127
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
 check_multiclock_bbox: Default value is no. Set this parameter to yes to
show violations for the crossings in which a destination black box
receives multiple clocks but no SGDC constraint is defined on any of the
black-box data pins receiving the clocks.

 allow_enabled_multiflop: Default value is no. Set this parameter to yes to
consider enabled flip-flops as destination or synchronizer flip-flops in
conventional multi-flop synchronization scheme. Other possible value is
same_enable.

 use_inferred_clocks: Default value is no. Set this parameter to yes to
automatically generated clock information.

 report_inst_for_netlist: Default value is no. Set this parameter to yes to
report violating instance name in case of netlist designs and leaf-level
net name for RTL designs.

 enable_multiflop_sync: Default value is yes. Set this parameter to no to
disable the Conventional Multi-Flop Synchronization Scheme.

 reset_cross_seq: Default value is no. Set this parameter to yes to report
clock-domain crossings to the asynchronous reset pins of complex
library cells.

 same_domain_at_gate: Default value is no. Set the value of the
parameter to an allowed value to optimize the inference of domains on
clock merging gates.

Constraint(s)

 input (Optional): Use this constraint to specify clock domain at input
ports.

 clock (Optional): Use this constraint to specify clock signals in a design.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

 cdc_false_path (Optional): Use this constraint to suppress clock domain
crossing checks for false paths.

 quasi_static (Optional): Use this constraint to specify signals whose value
is predominantly static.

Messages and Suggested Fix

The following message appears when a bit of the bus <bus-name> is
1128
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
synchronized by using a non-recommended technique:

[CSync8a_1] [WARNING] Bus '<bus-name>' is synchronized using
"conventional multi-flop for metastability technique"
(Destination: '<dest-name>')

NOTE: For RTL designs, <dest-name> is the name of the output net of the corresponding
flip-flop. For netlist designs, if the report_inst_for_netlist parameter is set to yes,
<dest-name> is the name of the flip-flop instance. Otherwise, the message details
are same as for the RTL designs.

Potential Issues
This violation appears if your design contains a bus that is either a FIFO
pointer or it synchronized by using Conventional Multi-Flop Synchronization
Scheme where the destination flip-flops and all the synchronizer flip-flops
are a part of the same bus.

Consequences of Not Fixing
If you do not fix this violation, buses are not properly synchronized. This
may result in data coherency issues.

In general, buses that are synchronized by using Conventional Multi-Flop
Synchronization Scheme, where destination flip-flops and all the synchronizer
flip-flops are a part of the same bus, are FIFO pointers. Such cases are
intentional and do not result in any issue in the design.

How to Debug and Fix
To debug and fix this violation, view the incremental schematic of the
violation and analyze the reported issue.

If the reported issue is intentional, waive the message. Else, use a
common enable technique to transfer data or gray-code the bus.

Example Code and/or Schematic

The following figure illustrates a scenario in which this rule reports a
violation:
1129
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
FIGURE 165. Clock_sync08a Rule Violating Scenario

In the above case, the bus-bits are synchronized by using the Conventional
Multi-Flop Synchronization Scheme, and the output signals of the destination
flip-flop and synchronizing flip-flops are bits of the same bus.

Schematic Details

The Clock_sync08a rule highlights the following paths in the schematic:
 Path from the source (flip-flop, black box, or primary input) to the

destination (flip-flop, black box, or primary output).
 Path from its clock source to the clock pin of the source flip-flop/black

box. The source flip-flop/black box will be highlighted in the same color
as the source clock.

 Path from its clock source to the clock pin of the destination flip-flop/
black box. The destination flip-flop/black box will be highlighted in the
same color as the destination clock.

 The synchronizer (Conventional Multi-Flop) for the clock crossings found
to be synchronized.

Default Severity Label

Warning

Rule Group

SYNCHRONIZATION

Reports and Related Files

Clock_sync08a.csv

src_bus[0] addr[0] addr[1]
1130
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Clock_sync09
Reports signals that are synchronized more than once in the same
clock domain

When to Use

Use this rule to detect signals that are synchronized more than once in the
same clock domain.

NOTE: It is recommended to use the Ac_coherency06 rule instead of this rule.

Description

The Clock_sync09 rule reports signals at clock domain crossings that are
synchronized more than once in the same clock domain by using the
Conventional Multi-Flop Synchronization Scheme or Qualifier Synchronization
Scheme Using qualifier -crossing.

The following figure shows such a scenario:

FIGURE 166. Scenario of the Clock_sync09 Rule Violation

In the above figure, src1 is synchronized multiple times in the same
domain by using the Conventional Multi-Flop Synchronization Scheme.

This rule reports any two destinations on which a source is synchronized in
the same domain. Set the report_all_sync parameter to yes to report all
destinations with respect to a source.

src1

out1

out2
1131
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Rule Exceptions

The Clock_sync09 does not a report violation in the following cases:
 When both synchronizers are a part of same FIFO memory

 When there is a common qualifier for both synchronizers of type
Synchronized Enable Synchronization Scheme, AND Gate Synchronization
Scheme, Glitch Protection Cell Synchronization Scheme, MUX-Select Sync
(Without Recirculation) Synchronization Scheme, Clock-Gating Cell
Synchronization Scheme

 When a common user-defined qualifier is used to synchronize for both
destinations

Parameter(s)

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

 report_all_sync: Default value is no. Set this parameter to yes to
generate a spreadsheet displaying all destinations where a source is
being synchronized.

 cdc_reduce_pessimism: Default value is mbit_macro,
no_convergence_at_syncreset, no_convergence_at_enable.
Set this parameter to an appropriate value to ignore clock domain
crossings involving black box instances and clock domain crossings with
destinations having unused, hanging, or blocked outputs. For possible
values, see Allowed Values of the cdc_reduce_pessimism Parameter.

 clock_reduce_pessimism: Default value is latch_en, mux_sel_derived,
check_enable_for_glitch. Set the value of this parameter to
mux_sel to stop traversal of this rule when a clock signal reaches a
MUX. Other possible values are all, all_potential_clocks, and
ignore_same_domain.

 check_multiclock_bbox: Default value is no. Set this parameter to yes to
show violations for the crossings in which a destination black box
receives multiple clocks but no SGDC constraint is defined on any of the
black-box data pins receiving the clocks.

 allow_enabled_multiflop: Default value is no. Set this parameter to yes to
consider enabled flip-flops as destination or synchronizer flip-flops in
conventional multi-flop synchronization scheme. Other possible value is
same_enable.
1132
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
 filter_named_clocks: Default value is rst, reset, scan, set. Set this
parameter to a list of strings.

 enable_multiflop_sync: Default value is yes. Set this parameter to no to
disable the Conventional Multi-Flop Synchronization Scheme.

 reset_cross_seq: Default value is no. Set this parameter to yes to report
clock-domain crossings to the asynchronous reset pins of complex
library cells.

 same_domain_at_gate: Default value is no. Set the value of the
parameter to an allowed value to optimize the inference of domains on
clock merging gates.

Constraint(s)

 clock (Optional): Use this constraint to specify clock signals.

 input (Optional): Use this constraint to specify clock domain at input
ports.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

 cdc_false_path (Optional): Use this constraint to suppress clock domain
crossing checks for false paths.

 quasi_static (Optional): Use this constraint to specify signals whose value
is predominantly static.

Messages and Suggested Fix

The following message appears for a source <sig-name> that is
synchronized at two places in the same clock domain:

[CSync9_1] [WARNING] Source <type> <obj-type> "<inst-name>" is
synchronized at least twice (at <type> "<name1>" and <type>
"<name2>")

The arguments of the above message are explained below:
1133
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Potential Issues
This violation appears if a source is synchronized multiple times in the
same domain.

Consequences of Not Fixing
Not fixing this violation may result in:
 Data coherency issues if synchronized destinations driven by the same

source converge.
 A higher gate count as this is an excessive synchronization.

Such designs are not reusable as there is a great risk of chip failure due to
potential convergence problem.

How to Debug and Fix
To debug the violation of this rule, perform the following steps:
1. View the Incremental Schematic of the violation message.

The following figure illustrates a sample schematic for this rule:

Argument Description

<type> Specifies the synchronization element type, which can be
flip-flop or black box or port

<obj-type> output in case of RTL designs.
instance in case of netlist designs, if the
report_inst_for_netlist parameter is set to yes. Otherwise,
it is output

<inst-name> <inst-out-net-name> in case of RTL designs.
<inst-name> in case of netlist designs, if the
report_inst_for_netlist parameter is set to yes. Otherwise,
it is same as in case of RTL designs

<name1> and
<name2>

Specifies the names of the synchronization elements.
NOTE: For RTL designs, <name1> and <name2> are
names of the output nets of the corresponding flip-flops.
For netlist designs, if the report_inst_for_netlist parameter
is set to yes, these are the names of the flip-flop instances.
Otherwise, the message details are same as for the RTL
designs.
1134
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
FIGURE 167. Schematic of the Clock_sync09 Rule Violation

In the schematic, you will see the same source signal feeding to two
different synchronizers, where synchronizers are in the same domain.

2. If one of the synchronized lines is blocked, unused, hanging, or static,
you may waive the violation by using the cdc_reduce_pessimism
parameter, or cdc_false_path or quasi_static constraints.

3. To fix this problem, synchronize the signal once and then distribute it.

Example Code and/or Schematic

Consider the following schematic of a violation reported by the
Clock_sync09 rule:
1135
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
FIGURE 168. Schematic of the Clock_sync09 Rule Violation

In the above example, the src1 source signal is getting synchronized in
the same domain at multiple points, des1 and des2, by using Conventional
Multi-Flop Synchronization Scheme.

To fix this violation, synchronize the src1 source only once and then
distribute it at multiple places.

Schematic Details
The Clock_sync09 rule highlights the following paths in schematic:
 Path from a source (flip-flop, black box, or primary input) to a

destination (flip-flop, black box, or primary output). The source flip-flop/
black box is highlighted in the same color as the source clock.

 Path from a clock source to a clock pin of a source flip-flop/black box.
The destination flip-flop/black box is highlighted in the same color as the
destination clock.

 The synchronizer for the clock crossings found to be synchronized

Default Severity Label

Warning

Rule Group

SYNCHRONIZATION
1136
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Reports and Related Files

No report and related file
1137
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Ac_cdc01
Checks data loss on clock domain crossings

The Ac_cdc01 rule group runs the Ac_cdc01a, Ac_cdc01b, and Ac_cdc01c
rules.
1138
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Ac_cdc01a
Checks data loss for multi flop or sync cell or qualifier synchronized
clock domain crossings

When to Use

Use this rule to identify clock domain crossings that are prone to data loss.

Prerequisites

Following are the prerequisites:
 Use the Advanced_CDC and adv_checker license.

 Specify a clock period for at least one clock in an SGDC file.
When you specify a clock period for at least one clock, SpyGlass assigns
the default period 10 to the clocks for which no clock period is defined.

Description

The details of the Ac_cdc01a rule are covered under the following topics:
 Checks Performed by the Ac_cdc01a Rule

 Types of Synchronized Crossings Checked by the Ac_cdc01a Rule

 Rule Exceptions

Checks Performed by the Ac_cdc01a Rule

The Ac_cdc01a rule checks the following by default:
 Fast-to-slow crossings only, and

 Same period clocks.

To check for slow-to-fast crossings, set the fa_verify_slow_to_fast parameter.

Consider the following scenario in which data passes from fast-to-slow
clock domain crossing:
1139
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
FIGURE 169. Data Passing from Fast-to-Slow Clock Domain Crossing

In the above scenario, there is a high possibility of data loss, as shown in
the following figure:

FIGURE 170. Data Loss from Fast-to-Slow Clock Domain Crossing

To avoid data loss in such cases, use an extender to extend source data for
at least a full cycle of the destination clock.

The following figure shows how this issue can be fixed:

clk_fast clk_slow

Data transfer

q_data

Data loss

clk_slow

clk_fast

q_data
1140
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
FIGURE 171. Fix the Data Loss Issue

Types of Synchronized Crossings Checked by the Ac_cdc01a Rule

The Ac_cdc01a rule checks for crossings that are synchronized by using
any of the following techniques:
 Conventional Multi-Flop Synchronization Scheme

 Qualifier Synchronization Scheme Using qualifier -crossing

 Synchronizing Cell Synchronization Scheme

Corresponding to each source data transition (including sources modeled
using abstract ports), an active destination clock edge should always arrive
with sufficient margin with reference to the source data to capture it
properly. By default, the check is performed by assuming a setup and hold
margin of one clock edge. The required margin can be controlled by using
the fa_holdmargin parameter.

Rule Exceptions

The Ac_cdc01a rule does not check for read/write pointers of
automatically-inferred FIFOs in a design. Currently, it checks for
user-defined FIFO, library cell based FIFOs, and DW FIFOs.

Parameter(s)

 allow_combo_logic: Default value is no. Set this parameter to yes to
ignore combinational logic in the data transfer path between flip-flops at
clock domain crossing.

 num_flops: Default value is 2. Set this parameter to a positive integer
value greater than one to specify a minimum number of flip-flops

clk_fast clk_slow

Data transfer

q_data

Extender
1141
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
required for synchronizing a signal by using the Conventional Multi-Flop
Synchronization Scheme.

 sync_reset: Default value is no. Set this parameter to yes to allow at
most one gate of an AND/NAND/OR/NOR type to be the synchronous
reset for the flip-flop that follows.

 fa_audit: Default value is no. Set this parameter to yes to not perform
functional analysis.

 fa_dump_hybrid: Default value is partial. Set this parameter to all to
generate SVA for all the types of assertions (pass, fail, partially-proved).
The other possible value are pass, fail, +fail, and none.

 fa_holdmargin: Default value is 1. Set this parameter to 0 to control hold
margins between data and clock.

 fa_msgmode: Default value is fail, pp, coverage. Set this parameter
to all to report all the types of assertions. Other possible values are
no_msg, audit, and none.

 fa_num_cores: Default value is 0. Specify 2, 4, or 8 to specify the number
of cores to be used by a multi-core engine.

 fa_preprocess_engine: Default value is retime. Set this parameter to iso
to use the isomorphic reduction technique to optimize functional
verification. Other possible values are none and all.

 filter_named_resets: Default value is clk, clock, scan. Specify a list of
strings to auto-infer asynchronous resets that do not match the
specified strings.

 synchronize_cells: Default value is NULL. Specify a list of cells to this
parameter that are considered as valid synchronizers for scalar source
domain signals for the Synchronizing Cell Synchronization Scheme.

 synchronize_data_cells: Default value is NULL. Specify a list of cells to this
parameter that are considered as valid synchronizers for source domain
vector signals for the Synchronizing Cell Synchronization Scheme.

 cdc_dump_assertions: Default value is "". Set this parameter to sva to
generate SystemVerilog Assertions (SVA) corresponding to the rules and
the design assumptions specified in an SGDC file.

 fa_multicore: Default value is no. Set this parameter to yes to invoke the
multi core engine of SpyGlass for solving complex assertions.
1142
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
 fa_meta: Default value is no. Set this parameter to yes to enable formal
modeling of metastability.

 fa_verify_slow_to_fast: Default is 100. By default, data loss is checked
only for fast-to-slow crossings. When this parameter is set to a specific
number, data loss is also checked for slow-to-fast crossings where the
percentage of the slow clock-period with reference to the fast clock-
period is greater than this number.

 enable_multiflop_sync: Default value is yes. Set this parameter to no to
disable the Conventional Multi-Flop Synchronization Scheme.

 cdc_reduce_pessimism: Default value is mbit_macro,
no_convergence_at_syncreset, no_convergence_at_enable.
Set this parameter to an appropriate value to ignore clock domain
crossings involving black box instances and clock domain crossings with
destinations having unused, hanging, or blocked outputs. For possible
values, see Allowed Values of the cdc_reduce_pessimism Parameter.

 clock_reduce_pessimism: Default value is latch_en, mux_sel_derived,
check_enable_for_glitch. Set the value of this parameter to
mux_sel to stop traversal of this rule when a clock signal reaches a
MUX. Other possible values are all, all_potential_clocks, and
ignore_same_domain.

 reset_reduce_pessimism: Default value is
filter_unused_synchronizer, same_data_reset_flop. Set the
value of this parameter to all_potential_resets to detect all the
potential resets in a design. For information on the other possible
values, see Possible Values to the reset_reduce_pessimism Parameter.

 cdc_compatible: Default value is no. Set this value to yes to make the
rules mentioned in the Used by section dependant on the Clock_sync*
rules data rather than The Ac_sync_group Rules data.

 reset_cross_seq: Default value is no. Set this parameter to yes to report
clock-domain crossings to the asynchronous reset pins of complex
library cells.

 cdc_bus_compress: Default value is Ac_glitch03, Ac_cdc01. Set this
value to one or more values mentioned in Possible values of the
cdc_bus_compress parameter to control the number of bits of vector
signals for rule checking.
1143
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
 fa_hybrid_report_hier: Default value is no. Set the value of the parameter
to yes to enable the supported rules to report the top-level hierarchical
names in the SVA Hybrid flow.

Constraint(s)

 clock (Mandatory): Use this constraint to specify clock signals.

 reset (Optional): Use this constraint to specify reset signals.

 set_case_analysis: (Optional): Use this constraint to specify case-analysis
signals.

 sync_cell: (Optional): Use this constraint to specify synchronizer cells
that should be considered valid for crossings that contain specified
frequencies, source/destination clocks, or domains.

 monitor_time (Optional): Use to specify the design initialization time
frames during simulation. The rest of the simulation time is considered
as the design's functional time.

 meta_design_hier (Optional): Use to specify the test bench name and
design instance name in the SGDC file.

 cdc_false_path (Optional): Use this constraint to suppress clock domain
crossing checks for false paths.

 quasi_static (Optional): Use this constraint to specify signals whose value
is predominantly static.

Messages and Suggested Fix

Message 1

The following message appears for the FAILED or Others
(Constraints-Conflict) status for a clock-domain crossing between a
fast and a slow clock:

[AcCdc1a_1] [ERROR] Fast('<clk1-name>') to slow('<clk2-name>')
clock crossing('<flop1-name>' to '<flop2-name>') detected. Data
hold check: <FAILED | Others (Constraints-Conflict)>

The arguments of the above message are explained below:
1144
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
TABLE 2 Arguments of Ac_cdc01a

NOTE: For RTL designs, <flop1-name> and <flop2-name> are names of the output
nets of the corresponding flip-flops. For netlist designs, if the
report_inst_for_netlist parameter is set to yes, <flop1-name> and <flop2-
name> are names of the flip-flop instances. Otherwise, the message details are
same as for the RTL designs.

Potential Issues
This violation appears if your design contains an active destination clock
edge that does not arrive with a sufficient margin with respect to source
data.

Consequences of Not Fixing
If you do not fix this violation, data transferred from a source clock to a
destination clock may not be captured properly.

How to Debug and Fix

Open the Waveform Viewer window corresponding to the message, and check
the marker that appears on the waveform.

This rule requires a minimum setup and hold margin of clock edges
(specified by parameter fa_holdmargin) with respect to each source data
change. By default, the value of this parameter is one, which indicates that
for each source data change, a minimum setup and hold margin of one
clock edge is required. If you know that your source data does not need to
hold this long, you may change the value of the fa_holdmargin
parameter to 0.

For example, consider the following Waveform Viewer window:

Argument Description

<clk1-name> Source clock name

<clk2-name> Destination clock name

<flop1-name> Source clock domain flip-flop

<flop2-name> Destination clock domain flip-flop
1145
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
FIGURE 172. The Waveform Viewer Window

In the above waveform, the source data, in2_tmp[2], does not hold for
one cycle of destination clock (with the default value of fa_holdmargin set to
1), and therefore causing a fail to appear. Data loss can be seen from the
output net, in2[2], which fails to capture the source data, in2_tmp[2].

This rule checks for the same frequency clocks as well (provided that the
period field of the clock is also specified).

Reasons for Failure

Some of the reasons that may cause false failures are as follows:
 Presence of a potential reset/clear signal causing such violation.

 In this case, provide the reset/clear in the constraint file as a reset.

 The setup (clock, reset, set_case_analysis, input constraints) is not correct
and complete.

 In this case, use Formal Setup Rules to check for the correctness of the
setup.

 The initial state values in the waveform viewer are not correct.
1146
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Provide correct initial state in the constraints file or provide a VCD file
from which an initial state can be loaded.

Message 2

The following message appears for the partially-proved status for a clock-
domain crossing between a fast and a slow clock:

[AcCdc1a_2] [WARNING] Fast('<clk1-name>') to slow('<clk2-
name>') clock crossing('<flop1-name>' to '<flop2-name>')
detected. Data hold check:Partially-Proved

For information on arguments of the above message, see Table 2.

Potential Issues
This violation appears if your design contains an active destination clock
edge that does not arrive with a sufficient margin with respect to source
data.

Consequences of Not Fixing
If you do not fix this violation, data transferred from a source clock to a
destination clock may not be captured properly.

How to Debug and Fix
The partially-proved status appears when SpyGlass is not able to conclude
(falsify or prove) data hold check in the given amount of time. In this case,
try the following options to enable SpyGlass do the analysis:
 Increase assertion run-time by using the fa_atime parameter.

 Use incremental analysis approach by using the fa_propfile parameter.

 Use the fa_abstract parameter that applies abstraction technique to
reduce complex verification problem into simpler and solvable problem.

Message 3

The following message appears for the passed status for a clock-domain
crossing between a fast and a slow clock:

[AcCdc1a_3] [INFO] Fast('<clk1-name>') to slow('<clk2-name>')
clock crossing('<flop1-name>' to '<flop2-name>') detected. Data
hold check:Passed

For information on arguments of the above message, see Table 2.

Potential Issues
Not applicable
1147
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Consequences of Not Fixing
Not applicable

How to Debug and Fix
This is an informational message and does not require debugging.

By default, SpyGlass does not show data hold checks that passed the
verification. To view them, set the fa_msgmode parameter to all or pass.

Message 4

The following message appears for the FAILED or Others
(Constraints-Conflict) status a clock-domain crossing between a
slow and a fast clock:

[AcCdc1a_4] [ERROR] Slow('<clk1-name>') to fast('<clk2-name>')
clock crossing('<flop1-name>' to '<flop2-name>') detected. Data
hold check: <FAILED | Others (Constraints-Conflict)>

For information on arguments of the above message, see Table 2.

Potential Issues
See Potential Issues.

Consequences of Not Fixing
See Consequences of Not Fixing.

How to Debug and Fix
See How to Debug and Fix.

Message 5

The following message appears for the partially-proved status for a clock-
domain crossing between a slow and a fast clock:

[AcCdc1a_5] [WARNING] Slow('<clk1-name>') to fast('<clk2-
name>') clock crossing('<flop1-name>' to '<flop2-name>')
detected. Data hold check:Partially-Proved

For information on arguments of the above message, see Table 2.

Potential Issues
See Potential Issues.

Consequences of Not Fixing
1148
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
See Consequences of Not Fixing.

How to Debug and Fix
See How to Debug and Fix.

Message 6

The following message appears for the passed status for a clock-domain
crossing between a slow and a fast clock:

[AcCdc1a_6] [WARNING] Slow('<clk1-name>') to fast('<clk2-
name>') clock crossing('<flop1-name>' to '<flop2-name>')
detected. Data hold check:Passed

For information on arguments of the above message, see Table 2.

Potential Issues
Not applicable

Consequences of Not Fixing
Not applicable.

How to Debug and Fix
See How to Debug and Fix.
1149
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Example Code and/or Schematic

Consider the following files specified for SpyGlass analysis:

For the above example, the Ac_cdc01a rule reports a violation for the fast-
to-slow clock domain crossing from SRC_Q to SYNC_Q. The following
spreadsheet shows the details of this violation:

FIGURE 173. Spreadsheet generated by the Ac_cdc01a rule

Following is the Waveform Viewer showing the cause of this violation:

module top(input src_clk, des_clk, INPUT, output reg OUTPUT);
reg SRC_Q, SYNC_Q;
always @(posedge src_clk)
 SRC_Q <= INPUT;
always @(posedge des_clk)
 begin
 SYNC_Q <= SRC_Q;
 OUTPUT <= SYNC_Q;
 end
endmodule

// test.v

current_design top

clock -name src_clk -period 10
clock -name des_clk -period 20

// constr.sgdc
1150
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
FIGURE 174. Waveform Viewer showing the cause for Ac_cdc01 violation

The following figure shows the schematic of this violation:

FIGURE 175. Schematic of the Ac_cdc01a rule

Back Annotations

 HDL: Show a slow clock domain register in the HDL

 Schematic: This rule highlights the following details in the schematic:
1151
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
 Path from the source object to the destination object

 Path from its clock source to the clock pin of the source object. The
source object will be highlighted in the same color as the source
clock.

 Path from its clock source to the clock pin of the destination object.
The destination object will be highlighted in the same color as the
destination clock.

 The synchronizer for the clock crossings found to be synchronized

Rule Severity

The rule severity varies according to the assertion status as follows:
 FAILED: Error

 Partially-Proved: Warning

 PASSED: Info

 Others(Constraints-Conflict): Error

Rule Group

ADV_CLOCKS

Report and Related Files

 Ac_cdc01a.csv: All violations of the Ac_cdc01a rule are generated in this
spreadsheet file. See Figure 173.

 Ac_cdc01a.<ID>.OverConstrainInfo: This file contains details of
conflicting constraints. For details, see Overconstrain Info File.
1152
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Ac_cdc01b
Checks data loss for crossings synchronized by a technique other
than multi flop, sync cell, or qualifier synchronization scheme

When to Use

Use this rule to identify clock domain crossings that are prone to data loss.

Prerequisites

Following are the prerequisites:
 Use the Advanced_CDC and adv_checker license.

 Specify a clock period for at least one clock in an SGDC file.
When you specify a clock period for at least one clock, SpyGlass assigns
the default period 10 to the clocks for which no clock period is defined.

Description

The Ac_cdc01b rule checks the following by default:
 Fast-to-slow crossings only, and

 Same period clocks.

To include slow-to-fast crossings, set the fa_verify_slow_to_fast parameter.

Consider the following scenario in which data passes from fast-to-slow
clock domain crossing:

FIGURE 176. Data Passing from Fast-to-Slow Clock Domain Crossing

In the above scenario, there is a high possibility of data loss, as shown in
the following figure:

clk_fast clk_slow

Data transfer

q_data
1153
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
FIGURE 177. Data Loss from Fast-to-Slow Clock Domain Crossing

To avoid data loss in such cases, use an extender to extend source data for
at least a full cycle of the destination clock.

The following figure shows how this issue can be fixed:

FIGURE 178. Fix the Data Loss Issue

Types of Crossings Checked by the Ac_cdc01b Rule

The Ac_cdc01b rule checks crossings that are NOT synchronized using any
of the following techniques:
 Conventional Multi-Flop Synchronization Scheme

 Qualifier Synchronization Scheme Using qualifier -crossing

Data loss

clk_slow

clk_fast

q_data

clk_fast clk_slow

Data transfer

q_data

Extender
1154
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
 Synchronizing Cell Synchronization Scheme

Corresponding to each source data transition (including sources modeled
using abstract ports), an active destination clock edge should always arrive
with sufficient margin with reference to the source data to capture it
properly. By default, the check is performed by assuming a setup and hold
margin of one clock edge. The required margin can be controlled by using
the fa_holdmargin parameter.

Parameter(s)

 fa_audit: Default value is no. Set this parameter to yes to not perform
functional analysis.

 fa_msgmode: Default value is fail, pp, coverage. Set this parameter
to all to report all the types of assertions. Other possible values are
no_msg, audit, and none.

 fa_holdmargin: Default value is 1. Set this parameter to 0 to control hold
margins between data and clock.

 report_inst_for_netlist: Default value is no. Set this parameter to yes to
report violating instance name in case of netlist designs and leaf-level
net name for RTL designs.

 enable_mux_dest_domain: Default value is none. Set this parameter to
none to turn off this parameter. Other possible values are mux, enable,
gp, cg, and, all, yes, and no.

 enable_mux_sync: Default value is recirculation. Set this parameter
to an appropriate value to enable a particular synchronization scheme.
Other possible values are none, mux_select, and all.

 enable_sync: Default value is yes. Set this parameter to no to disable
the Synchronized Enable Synchronization Scheme.

 fa_dump_hybrid: Default value is partial. Set this parameter to all to
generate SVA for all the types of assertions (pass, fail, partially-proved).
The other possible value are pass, fail, +fail, and none.

 cdc_dump_assertions: Default value is "". Set this parameter to sva to
generate SystemVerilog Assertions (SVA) corresponding to the rules and
the design assumptions specified in an SGDC file.

 fa_multicore: Default value is no. Set this parameter to yes to invoke the
multi core engine of SpyGlass for solving complex assertions.
1155
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
 fa_meta: Default value is no. Set this parameter to yes to enable formal
modeling of metastability.

 fa_num_cores: Default value is 0. Specify 2, 4, or 8 to specify the number
of cores to be used by a multi-core engine.

 fa_verify_slow_to_fast: Default is 100. By default, data loss is checked
only for fast-to-slow crossings. When this parameter is set to a specific
number, data loss is also checked for slow-to-fast crossings where the
percentage of the slow clock-period with reference to the fast clock-
period is greater than this number.

 synchronize_cells: Default value is NULL. Specify a list of cells to this
parameter that are considered as valid synchronizers for scalar source
domain signals for the Synchronizing Cell Synchronization Scheme.

 synchronize_data_cells: Default value is NULL. Specify a list of cells to this
parameter that are considered as valid synchronizers for source domain
vector signals for the Synchronizing Cell Synchronization Scheme.

 enable_multiflop_sync: Default value is yes. Set this parameter to no to
disable the Conventional Multi-Flop Synchronization Scheme.

 cdc_reduce_pessimism: Default value is mbit_macro,
no_convergence_at_syncreset, no_convergence_at_enable.
Set this parameter to an appropriate value to ignore clock domain
crossings involving black box instances and clock domain crossings with
destinations having unused, hanging, or blocked outputs. For possible
values, see Allowed Values of the cdc_reduce_pessimism Parameter.

 clock_reduce_pessimism: Default value is latch_en, mux_sel_derived,
check_enable_for_glitch. Set the value of this parameter to
mux_sel to stop traversal of this rule when a clock signal reaches a
MUX. Other possible values are all, all_potential_clocks, and
ignore_same_domain.

 reset_reduce_pessimism: Default value is
filter_unused_synchronizer, same_data_reset_flop. Set the
value of this parameter to all_potential_resets to detect all the
potential resets in a design. For information on the other possible
values, see Possible Values to the reset_reduce_pessimism Parameter.

 cdc_compatible: Default value is no. Set this value to yes to make the
rules mentioned in the Used by section dependant on the Clock_sync*
rules data rather than The Ac_sync_group Rules data.
1156
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
 reset_cross_seq: Default value is no. Set this parameter to yes to report
clock-domain crossings to the asynchronous reset pins of complex
library cells.

 fa_preprocess_engine: Default value is retime. Set this parameter to iso
to use the isomorphic reduction technique to optimize functional
verification. Other possible values are none and all.

 cdc_bus_compress: Default value is Ac_glitch03, Ac_cdc01. Set this
value to one or more values mentioned in Possible values of the
cdc_bus_compress parameter to control the number of bits of vector
signals for rule checking.

 fa_hybrid_report_hier: Default value is no. Set the value of the parameter
to yes to enable the supported rules to report the top-level hierarchical
names in the SVA Hybrid flow.

Constraint(s)

 clock (Optional): Use this constraint to specify clock signals in a design.

 reset (Optional): Use this constraint to specify reset signals in a design.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

 monitor_time (Optional): Use to specify the design initialization time
frames during simulation. The rest of the simulation time is considered
as the design's functional time.

 meta_design_hier (Optional): Use to specify the test bench name and
design instance name in the SGDC file.

 cdc_false_path (Optional): Use this constraint to suppress clock domain
crossing checks for false paths.

 quasi_static (Optional): Use this constraint to specify signals whose value
is predominantly static.

Messages and Suggested Fix

Message 1

The following message appears for the FAILED or Others
(Constraints-Conflict) status of a clock-domain crossing between a
fast and a slow clock:
1157
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
[AcCdc1b_1] [ERROR] Fast ('<clk1-name>') to slow ('<clk2-name>')
clock crossing ('<flop1-name>' to '<flop2-name>') detected. Data hold
check: <FAILED | Others (Constraints-Conflict)>

For information on arguments of the above message, see Table 2.

Potential Issues
This violation appears if your design contains an active destination clock
edge that does not arrive with a sufficient margin with respect to the
source data.

Consequences of Not Fixing
If you do not fix this violation, data transferred from a source clock to a
destination clock may not be captured properly.

How to Debug and Fix
Corresponding to each source data transition (including sources modeled
using abstract ports), an active destination clock edge should always arrive
with sufficient margin with respect to the source data in order to capture it
properly.

For details on debugging, see How to Debug and Fix of the Ac_cdc01a rule.

Message 2

The following message appears to indicate the partially-proved status of a
clock-domain crossing between a fast and a slow clock:

[AcCdc1b_2] [WARNING] Fast ('<clk1-name>') to slow ('<clk2-
name>') clock crossing ('<flop1-name>' to '<flop2-name>') detected.
Data hold check:Partially-Proved

For information on arguments of the above message, see Table 2.

Potential Issues
See Potential Issues of the Ac_cdc01a rule.

Consequences of Not Fixing
See Consequences of Not Fixing of the Ac_cdc01a rule.

How to Debug and Fix
1158
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
See How to Debug and Fix of the Ac_cdc01a rule.

Message 3

The following message appears to indicate the passed status of a clock-
domain crossing between a fast and a slow clock:

[AcCdc1b_3] [INFO] Fast ('<clk1-name>') to slow ('<clk2-name>')
clock crossing ('<flop1-name>' to '<flop2-name>') detected.
Data hold check:PASSED

For information on arguments of the above message, see Table 2.

Potential Issues
Not applicable

Consequences of Not Fixing
Not applicable

How to Debug and Fix
See How to Debug and Fix of the Ac_cdc01a rule.

Message 4

The following message appears for the FAILED or Others
(Constraints-Conflict) status a clock-domain crossing between a
slow and a fast clock:

[AcCdc1b_4] [ERROR] Slow('<clk1-name>') to fast('<clk2-name>')
clock crossing('<flop1-name>' to '<flop2-name>') detected. Data
hold check: <FAILED | Others (Constraints-Conflict)>

For information on arguments of the above message, see Table 2.

Potential Issues
This violation appears if your design contains an active destination clock
edge that does not arrive with a sufficient margin with respect to the
source data.

Consequences of Not Fixing
If you do not fix this violation, data transferred from a source clock to a
destination clock may not be captured properly.
1159
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
How to Debug and Fix
Corresponding to each source data transition (including sources modeled
using abstract ports), an active destination clock edge should always arrive
with sufficient margin with respect to the source data in order to capture it
properly.

For details on debugging, see How to Debug and Fix of the Ac_cdc01a rule.

Message 5

The following message appears to indicate the partially-proved status of a
clock-domain crossing between a slow and a fast clock:

[AcCdc1b_5] [WARNING] Slow('<clk1-name>') to fast('<clk2-
name>') clock crossing('<flop1-name>' to '<flop2-name>')
detected. Data hold check: Partially-Proved

For information on arguments of the above message, see Table 2.

Potential Issues
See Potential Issues of the Ac_cdc01a rule.

Consequences of Not Fixing
See Consequences of Not Fixing of the Ac_cdc01a rule.

How to Debug and Fix
See How to Debug and Fix of the Ac_cdc01a rule.

Message 6

The following message appears to indicate the passed status of a clock-
domain crossing between a slow and a fast clock:

[AcCdc1b_6] [WARNING] Slow('<clk1-name>') to fast('<clk2-
name>') clock crossing('<flop1-name>' to '<flop2-name>')
detected. Data hold check: Passed

For information on arguments of the above message, see Table 2.

Potential Issues
Not applicable

Consequences of Not Fixing
1160
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Not applicable

How to Debug and Fix
See How to Debug and Fix of the Ac_cdc01a rule.

Example Code and/or Schematic

Consider the following files specified for SpyGlass analysis:

For the above example, the Ac_cdc01b rule reports a violation for fast-to-
slow clock domain crossing between SRC_Q and OUTPUT. The following
spreadsheet shows the details of this violation:

FIGURE 179. Spreadsheet generated by the Ac_cdc01b rule

Following is the Waveform Viewer showing the cause of this violation:

module top(input src_clk, des_clk, INPUT, ENABLE, output reg OUTPUT);
reg SRC_Q, ENABLE_SYNC1, ENABLE_SYNC2, ENABLE_OUT;
always @(posedge src_clk)
 begin
 SRC_Q <= INPUT;
 ENABLE_OUT <= ENABLE;
 end
always @(posedge des_clk)
 begin
 ENABLE_SYNC1 <= ENABLE_OUT;
 ENABLE_SYNC2 <= ENABLE_SYNC1;
 end
always @(posedge des_clk)
 if (ENABLE_SYNC2)
 OUTPUT <= SRC_Q;
endmodule

// test.v

current_design top

clock -name src_clk -period 10
clock -name des_clk -period 20

// constr.sgdc
1161
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
FIGURE 180. Waveform Viewer showing the cause for Ac_cdc01b violation

The following figure shows the schematic of this violation:

FIGURE 181. Schematic of the Ac_cdc01b rule
1162
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Back annotations

 In HDL, this rule highlights the slow clock domain register.

 In the schematic, this rule highlights:

 The path from the source object to the destination object.

 The path from its clock source to the clock pin of the source object.
The source object will be highlighted in the same color as the source
clock.

 The path from its clock source to the clock pin of the destination
object. The destination object will be highlighted in the same color as
the destination clock.

 The synchronizer for the clock crossings found to be synchronized.

Default Severity Label

The rule severity varies according to the assertion status as follows:
 FAILED: Error

 Partially-Proved: Warning

 PASSED: Info

 Others(Constraints-Conflict): Error

Rule Group

ADV_CLOCKS

Reports and Related Files

 Ac_cdc01b.csv. See Figure 179.

 Ac_cdc01b.<ID>.OverConstrainInfo: This file contains details of conflicting
constraints. For details, see Overconstrain Info File.
1163
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Ac_cdc01c
Checks data loss for unsynchronized clock domain crossings

When to Use

Use this rule to identify clock domain crossings that are prone to data loss.

Prerequisites

Following are the prerequisites:
 Use the Advanced_CDC and adv_checker license.

 Specify a clock period for at least one clock in an SGDC file.
When you specify a clock period for at least one clock, SpyGlass assigns
the default period 10 to the clocks for which no clock period is defined.

Description

The Ac_cdc01c rule checks crossings that are unsynchronized. By default,
the type of crossings checked are:
 Fast-to-slow crossings only, and

 Same period clocks.

To include slow-to-fast crossings, set the fa_verify_slow_to_fast parameter.

Corresponding to each source data transition (including sources modeled
using abstract ports), an active destination clock edge should always arrive
with sufficient margin with reference to the source data to capture it
properly. By default, the check is performed by assuming a setup and hold
margin of one clock edge. The required margin can be controlled by using
the fa_holdmargin parameter.

Parameter(s)

 allow_combo_logic: Default value is no. Set this parameter to yes to
ignore combinational logic in the data transfer path between flip-flops at
clock domain crossing.

 num_flops: Default value is 2. Set this parameter to a positive integer
value greater than one to specify a minimum number of flip-flops
required for synchronizing a signal by using the Conventional Multi-Flop
Synchronization Scheme.
1164
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
 sync_reset: Default value is no. Set this parameter to yes to allow at
most one gate of an AND/NAND/OR/NOR type to be the synchronous
reset for the flip-flop that follows.

 fa_audit: Default value is no. Set this parameter to yes to not perform
functional analysis.

 fa_dump_hybrid: Default value is partial. Set this parameter to all to
generate SVA for all the types of assertions (pass, fail, partially-proved).
The other possible value are pass, fail, +fail, and none.

 fa_msgmode: Default value is fail, pp, coverage. Set this parameter
to all to report all the types of assertions. Other possible values are
no_msg, audit, and none.

 fa_num_cores: Default value is 0. Specify 2, 4, or 8 to specify the number
of cores to be used by a multi-core engine.

 fa_holdmargin: Default value is 1. Set this parameter to 0 to control hold
margins between data and clock.

 report_inst_for_netlist: Default value is no. Set this parameter to yes to
report violating instance name in case of netlist designs and leaf-level
net name for RTL designs.

 enable_mux_dest_domain: Default value is none. Set this parameter to
none to turn off this parameter. Other possible values are mux, enable,
gp, cg, and, all, yes, and no.

 enable_mux_sync: Default value is recirculation. Set this parameter
to an appropriate value to enable a particular synchronization scheme.
Other possible values are none, mux_select, and all.

 enable_sync: Default value is yes. Set this parameter to no to disable
the Synchronized Enable Synchronization Scheme.

 synchronize_cells: Default value is NULL. Specify a list of cells to this
parameter that are considered as valid synchronizers for scalar source
domain signals for the Synchronizing Cell Synchronization Scheme.

 synchronize_data_cells: Default value is NULL. Specify a list of cells to this
parameter that are considered as valid synchronizers for source domain
vector signals for the Synchronizing Cell Synchronization Scheme.

 cdc_dump_assertions: Default value is "". Set this parameter to sva to
generate SystemVerilog Assertions (SVA) corresponding to the rules and
the design assumptions specified in an SGDC file.
1165
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
 fa_multicore: Default value is no. Set this parameter to yes to invoke the
multi core engine of SpyGlass for solving complex assertions.

 fa_meta: Default value is no. Set this parameter to yes to enable formal
modeling of metastability.

 fa_verify_slow_to_fast: Default is 100. By default, data loss is checked
only for fast-to-slow crossings. When this parameter is set to a specific
number, data loss is also checked for slow-to-fast crossings where the
percentage of the slow clock-period with reference to the fast clock-
period is greater than this number.

 enable_multiflop_sync: Default value is yes. Set this parameter to no to
disable the Conventional Multi-Flop Synchronization Scheme.

 cdc_reduce_pessimism: Default value is mbit_macro,
no_convergence_at_syncreset, no_convergence_at_enable.
Set this parameter to an appropriate value to ignore clock domain
crossings involving black box instances and clock domain crossings with
destinations having unused, hanging, or blocked outputs. For possible
values, see Allowed Values of the cdc_reduce_pessimism Parameter.

 clock_reduce_pessimism: Default value is latch_en, mux_sel_derived,
check_enable_for_glitch. Set the value of this parameter to
mux_sel to stop traversal of this rule when a clock signal reaches a
MUX. Other possible values are all, all_potential_clocks, and
ignore_same_domain.

 reset_reduce_pessimism: Default value is
filter_unused_synchronizer, same_data_reset_flop. Set the
value of this parameter to all_potential_resets to detect all the
potential resets in a design. For information on the other possible
values, see Possible Values to the reset_reduce_pessimism Parameter.

 cdc_compatible: Default value is no. Set this value to yes to make the
rules mentioned in the Used by section dependant on the Clock_sync*
rules data rather than The Ac_sync_group Rules data.

 reset_cross_seq: Default value is no. Set this parameter to yes to report
clock-domain crossings to the asynchronous reset pins of complex
library cells.

 fa_preprocess_engine: Default value is retime. Set this parameter to iso
to use the isomorphic reduction technique to optimize functional
verification. Other possible values are none and all.
1166
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
 cdc_bus_compress: Default value is Ac_glitch03, Ac_cdc01. Set this
value to one or more values mentioned in Possible values of the
cdc_bus_compress parameter to control the number of bits of vector
signals for rule checking.

 fa_hybrid_report_hier: Default value is no. Set the value of the parameter
to yes to enable the supported rules to report the top-level hierarchical
names in the SVA Hybrid flow.

Constraint(s)

 clock (Optional): Use this constraint to specify clock signals in a design.

 reset (Optional): Use this constraint to specify reset signals in a design.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

 monitor_time (Optional): Use to specify the design initialization time
frames during simulation. The rest of the simulation time is considered
as the design's functional time.

 meta_design_hier (Optional): Use to specify the test bench name and
design instance name in the SGDC file.

 cdc_false_path (Optional): Use this constraint to suppress clock domain
crossing checks for false paths.

 quasi_static (Optional): Use this constraint to specify signals whose value
is predominantly static.

Messages and Suggested Fix

Message 1

The following message appears for the FAILED or Others
(Constraints-Conflict) status for a clock-domain crossing between a
fast and a slow clock:

[AcCdc1c_1] [ERROR] Fast('<clk1-name>') to slow('<clk2-name>')
clock crossing('<flop1-name>' to '<flop2-name>') detected. Data
hold check: <FAILED | Others (Constraints-Conflict)>

For information on arguments of the above message, see Table 2.

Potential Issues
This violation appears if your design contains an active destination clock
1167
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
edge that does not arrive with a sufficient margin with respect to the
source data.

Consequences of Not Fixing
If you do not fix this violation, data transferred from a source clock to a
destination clock may not be captured properly.

How to Debug and Fix
Corresponding to each source data transition (including sources modeled
using abstract ports), an active destination clock edge should always arrive
with sufficient margin with respect to the source data in order to capture it
properly.

For details on debugging, see How to Debug and Fix of the Ac_cdc01a rule.

Message 2

The following message appears to indicate the partially-proved status of a
clock-domain crossing between a fast and a slow clock:

[AcCdc1c_2] [WARNING] Fast('<clk1-name>') to slow('<clk2-
name>') clock crossing('<flop1-name>' to '<flop2-name>')
detected. Data hold check: Partially-Proved

For information on arguments of the above message, see Table 2.

Potential Issues
See Potential Issues of the Ac_cdc01a rule.

Consequences of Not Fixing
See Consequences of Not Fixing of the Ac_cdc01a rule.

How to Debug and Fix
See How to Debug and Fix of the Ac_cdc01a rule.

Message 3

The following message appears to indicate the passed status of a clock-
domain crossing between a fast and a slow clock:

[AcCdc1c_3] [INFO] Fast ('<clk1-name>') to slow ('<clk2-name>')
1168
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
clock crossing ('<flop1-name>' to '<flop2-name>') detected.
Data hold check: Partially-Proved

For information on arguments of the above message, see Table 2.

Potential Issues
Not applicable

Consequences of Not Fixing
Not applicable

How to Debug and Fix
See How to Debug and Fix of the Ac_cdc01a rule.

Message 4

The following message appears for the FAILED or Others
(Constraints-Conflict) status for a clock-domain crossing between a
slow and a fast clock:

[AcCdc1c_4] [ERROR] Slow('<clk1-name>') to fast('<clk2-name>')
clock crossing('<flop1-name>' to '<flop2-name>') detected. Data
hold check: <Failed | Others (Constraints-Conflict)>

For information on arguments of the above message, see Table 2.

Potential Issues
This violation appears if your design contains an active destination clock
edge that does not arrive with a sufficient margin with respect to the
source data.

Consequences of Not Fixing
If you do not fix this violation, data transferred from a source clock to a
destination clock may not be captured properly.

How to Debug and Fix
Corresponding to each source data transition (including sources modeled
using abstract ports), an active destination clock edge should always arrive
with sufficient margin with respect to the source data in order to capture it
1169
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
properly.

For details on debugging, see How to Debug and Fix of the Ac_cdc01a rule.

Message 5

The following message appears to indicate the partially-proved status of a
clock-domain crossing between a slow and a fast clock:

[AcCdc1c_5] [WARNING] Slow('<clk1-name>') to fast('<clk2-
name>') clock crossing('<flop1-name>' to '<flop2-name>')
detected. Data hold check: Partially-Proved

For information on arguments of the above message, see Table 2.

Potential Issues
See Potential Issues of the Ac_cdc01a rule.

Consequences of Not Fixing
See Consequences of Not Fixing of the Ac_cdc01a rule.

How to Debug and Fix
See How to Debug and Fix of the Ac_cdc01a rule.

Message 6

The following message appears to indicate the passed status of a clock-
domain crossing between a slow and a fast clock:

[AcCdc1c_6] [INFO] Slow('<clk1-name>') to fast('<clk2-name>')
clock crossing('<flop1-name>' to '<flop2-name>') detected. Data
hold check: Passed

For information on arguments of the above message, see Table 2.

Potential Issues
Not applicable

Consequences of Not Fixing
Not applicable

How to Debug and Fix
See How to Debug and Fix of the Ac_cdc01a rule.
1170
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Example Code and/or Schematic

Example 1

Consider the following files specified for SpyGlass analysis:

For the above example, the Ac_cdc01c rule reports a violation for fast-to-
slow clock domain crossing between SRC_Q and OUTPUT. The following
spreadsheet shows the details of this violation:

FIGURE 182. Spreadsheet generated by the Ac_cdc01c rule

Following is the Waveform Viewer showing the cause of this violation:

current_design top

clock -name src_clk -period 10
clock -name des_clk -period 20

// constr.sgdc

module top(input src_clk, des_clk, INPUT, output reg OUTPUT);
reg SRC_Q;

always @(posedge src_clk)
 SRC_Q <= INPUT;

always @(posedge des_clk)
 OUTPUT <= SRC_Q;
endmodule

// test.v
1171
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
FIGURE 183. Waveform Viewer showing the cause for Ac_cdc01c violation

The following figure shows the schematic of this violation:

FIGURE 184. Schematic of the Ac_cdc01c rule

Back annotations

 In HDL, this rule highlights the slow clock domain register

 In the schematic, this rule highlights the following information:

 Path from the source object to the destination object
1172
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
 Path from its clock source to the clock pin of the source object. The
source object will be highlighted in the same color as the source
clock.

 Path from its clock source to the clock pin of the destination object.
The destination object will be highlighted in the same color as the
destination clock.

Example 2

Consider the following files specified for SpyGlass analysis:

In the above example, the source of the data is an input port.

Due to the abstract_port constraints on the input ports in1 (slower clock
abc.clk1) and in2 (faster virtual clock clk3), the data is travelling from
the fast clock to the slow clock, thereby resulting in the possibility of data
loss. Therefore, the Ac_cdc01c rule reports the following violation:

Fast('clk3') to slow('abc.clk2') clock crossing (from 'in2' to
'abc.out') detected. Data hold check:FAILED,test.v, 11

Default Severity Label

The rule severity varies according to the assertion status as follows:

module abc(clk1, clk2, in1, in2, out);
input clk1, clk2, in1, in2;
output out;
wire r3;
reg out;
assign r3 = in1 & in2;
always@(posedge clk2)

 out = r3;
endmodule

test.v

 current_design abc
clock -name abc.clk1 -value rtz -period 30 -edge 0 15
clock -name abc.clk2 -value rtz -period 20 -edge 0 10
clock -tag clk3 -value rtz -period 10 -edge 0 5
abstract_port -ports abc.in1 -clock abc.clk1
abstract_port -ports abc.in2 -clock clk3

constraints.clock
1173
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
 FAILED: Error

 Partially-Proved: Warning

 PASSED: Info

 Others(Constraints-Conflict): Error

Rule Group

ADV_CLOCKS

Report and Related Files

 All violations of the Ac_cdc01c rule are stored in the spreadsheet file,
Ac_cdc01c.csv. See Figure 182.

 Ac_cdc01c.<ID>.OverConstrainInfo: This file contains details of conflicting
constraints. For details, see Overconstrain Info File.
1174
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Ac_cdc08
Reports control-bus clock domain crossings which do not follow
gray encoding

When to Use

Use this rule to detect control buses that cross a synchronized
clock-domain crossing, but do not follow gray encoding.

Prerequisites

The Ac_cdc08 rule works only with the Advanced_CDC and adv_checker
license features.

Description

The Ac_cdc08 rule reports synchronized control-bus clock domain crossings
that do not follow gray encoding.

The Ac_cdc08 rule checks only those multi-bit control buses that are
synchronized based on the following synchronization schemes:
 The Conventional Multi-Flop Synchronization Scheme

 The Synchronizing Cell Synchronization Scheme provided you have specified
the synchronizer cells by using the synchronize_cells parameter (for cells
whose output pin is connected to a scalar net) or by using the
synchronize_data_cells parameter (for cells for which an output pin is
connected to a vector net).

 Qualifier Synchronization Scheme Using qualifier -crossing

Parameter(s)

 fa_audit: Default value is no. Set this parameter to yes to not perform
functional analysis.

 fa_msgmode: Default value is fail, pp, coverage. Set this parameter
to all to report all the types of assertions. Other possible values are
no_msg, audit, and none.

 fa_abstract: Default value is Ac_handshake01, Ac_glitch03. Set the value
of this parameter to Ac_cdc08 to enable abstraction for this rule. Other
possible values are all, none or a list of any of rules:
Ac_handshake01, Ac_cdc08, Ac_conv02, Clock_sync03a, Ac_fifo01, and
1175
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Ac_glitch03.
 fa_atsrc: Default value is no. Set this parameter to yes to check for

gray-encoding at an output of a source instance.
 fa_num_cores: Default value is 0. Specify 2, 4, or 8 to specify the number

of cores to be used by a multi-core engine.
 synchronize_cells: Default value is NULL. Specify a list of cells to this

parameter that are considered as valid synchronizers for scalar source
domain signals for the Synchronizing Cell Synchronization Scheme.

 synchronize_data_cells: Default value is NULL. Specify a list of cells to this
parameter that are considered as valid synchronizers for source domain
vector signals for the Synchronizing Cell Synchronization Scheme.

 filter_named_resets: Default value is clk, clock, scan. Specify a list of
strings to auto-infer asynchronous resets that do not match the
specified strings.

 fa_multicore: Default value is no. Set this parameter to yes to invoke the
multi core engine of SpyGlass for solving complex assertions.

 fa_meta: Default value is no. Set this parameter to yes to enable formal
modeling of metastability.

 enable_multiflop_sync: Default value is yes. Set this parameter to no to
disable the Conventional Multi-Flop Synchronization Scheme.

 cdc_reduce_pessimism: Default value is mbit_macro,
no_convergence_at_syncreset, no_convergence_at_enable.
Set this parameter to an appropriate value to ignore clock domain
crossings involving black box instances and clock domain crossings with
destinations having unused, hanging, or blocked outputs. For possible
values, see Allowed Values of the cdc_reduce_pessimism Parameter.

 clock_reduce_pessimism: Default value is latch_en, mux_sel_derived,
check_enable_for_glitch. Set the value of this parameter to
mux_sel to stop traversal of this rule when a clock signal reaches a
MUX. Other possible values are all, all_potential_clocks, and
ignore_same_domain.

 reset_reduce_pessimism: Default value is
filter_unused_synchronizer, same_data_reset_flop. Set the
value of this parameter to all_potential_resets to detect all the
potential resets in a design. For information on the other possible
values, see Possible Values to the reset_reduce_pessimism Parameter.
1176
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
 cdc_compatible: Default value is no. Set this value to yes to make the
rules mentioned in the Used by section dependant on the Clock_sync*
rules data rather than The Ac_sync_group Rules data.

 reset_cross_seq: Default value is no. Set this parameter to yes to report
clock-domain crossings to the asynchronous reset pins of complex
library cells.

 fa_preprocess_engine: Default value is retime. Set this parameter to iso
to use the isomorphic reduction technique to optimize functional
verification. Other possible values are none and all.

Constraint(s)

 clock (Mandatory): Use this constraint to specify clock signals.

 reset (Optional): Use this constraint to specify reset signals in your
design.

 set_case_analysis (Optional): Use this constraint to specify case-analysis
signals.

 input (Optional): Use this constraint to specify clock domain at input
ports.

 cdc_false_path (Optional): Use this constraint to suppress clock domain
crossing checks for false paths.

 quasi_static (Optional): Use this constraint to specify signals whose value
is predominantly static.

Messages and Suggested Fix

Message 1

The following message reports the FAILED or Others (Constraints-
Conflict) status when a control bus crosses a synchronized
clock-domain crossing but does not follow gray encoding:

[AcCdc8_1] [ERROR] Control bus '<bus-name>' is crossing clock
domain. Gray encoding check: <FAILED | Others (Constraints-
Conflict)>

Potential Issues
This violation appears if a control bus crossing a clock-domain crossing
1177
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
does not follow gray encoding.

Consequences of Not Fixing
Gray-encoding is useful for data correlation. If you do not use gray
encoding, data may be lost.

How to Debug and Fix

Open the Waveform Viewer window corresponding to the message, and check
the marker that appears on the waveform.

This marker is positioned at a point where more than one bits are found
changing in the same cycle, thereby violating gray encoding. Therefore,
this specific transition is a witness to the failure.

For example, consider the following Waveform Viewer window:

FIGURE 185. The Waveform Viewer Window

In the above waveform, the marker appears at a point where the in2
signal transitions from 6 to 1 (110 -> 001), thereby violating gray
encoding protocol.

Reasons for Failure

Some of the reasons that may cause false failures are as follows:
 Presence of a potential reset/clear signal causing such violation.
1178
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
 In this case, provide the reset/clear in the constraint file as a reset.

 The setup (clocks, resets, set_case_analysis, input constraints) is not
correct and complete.

 In this case, use Formal Setup Rules to check for the correctness of the
setup.

 The initial state values in the waveform viewer are not correct.
In this case, provide a correct initial state in the constraints file or
provide a VCD file from which an initial state can be loaded.

Message 2

The following message reports the Partially-Proved status when a
control bus crosses a synchronized clock-domain crossing but does not
follow gray encoding:

[AcCdc8_2] [WARNING] Control bus '<bus-name>' is crossing clock
domain. Gray encoding check: Partially-Proved

Potential Issues
This violation appears if a control bus crossing a clock-domain crossing
does not follow gray encoding.

Consequences of Not Fixing
Gray-encoding is useful for data correlation. If you do not use gray
encoding, data may be lost.

How to Debug and Fix

The Partially-Proved status appears when SpyGlass is not able to
conclude (falsify or prove) gray encoding check in the given amount of
time.

In this case, you need to help the tool complete the analysis. You may try
following options for better results:
 Increase assertion run-time by using the fa_atime parameter.

 Use incremental analysis approach by using the fa_propfile parameter.
1179
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
 Use the fa_abstract parameter that applies abstraction technique to
reduce complex verification problem into simpler and solvable problem.

Message 3

The following message reports the PASSED status when a control bus
crosses a synchronized clock-domain crossing but does not follow gray
encoding:

[AcCdc8_3] [INFO] Control bus '<bus-name>' is crossing clock
domain. Gray encoding check: PASSED

Potential Issues
Not applicable

Consequences of Not Fixing
Not applicable

How to Debug and Fix
This is an informational message and does not require debugging.

 By default, SpyGlass does not show bus crossing clock domains that
passed the verification. To view them, set the fa_msgmode parameter to
all or pass.

Example Code and/or Schematic

Consider the following scenario in which this rule reports a violation:
1180
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
FIGURE 186. Scenario of the Ac_cdc08 Rule Violation

In the above scenario, the Ac_cdc08 rule reports a violation if the output of
source flip-flops are not gray-encoded.

To fix this violation, provide a gray-encoding logic at the source of the flip-
flops, as shown in the following figure:

clk2clk1

Domain BDomain A

Clock Domain Crossing Synchronizer

Violation

clk2

clk1 clk2 clk2Combinational
Logic

q[0]

q[1]

out[0]

out[1]

d[0]

d[1]
1181
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
FIGURE 187. Gray-Encoding Logic at the Source of the Flip-Flops

Back annotations

 HDL: Shows a bus in the source code

 Schematic: Following details are highlighted in the schematic:

 Path from the source object to the destination object.

 Path from its clock source to the clock pin of the source object. The
source object will be highlighted in the same color as the source
clock.

 Path from its clock source to the clock pin of the destination object.
The destination object will be highlighted in the same color as the
destination clock.

 The synchronizer for the clock crossings found to be synchronized.

 Waveform: Shows the control bus (input to the destination flip-flops or
output of the source flip-flops) and the source clock.

Default Severity Label

The rule severity varies according to the assertion status as follows:
 FAILED: Error

clk2clk1

Domain BDomain A

Clock Domain Crossing Synchronizer

No violation

Gray Encoding
Logic

clk2

clk1 clk2 clk2Combinational
Logic

q[0]

q[1]

out[0]

out[1]

d[0]

d[1]
1182
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
 Partially-Proved: Warning

 PASSED: Info

 Others(Constraints-Conflict): Error

Rule Group

ADV_CLOCKS

Report and Related File

Ac_cdc08.<ID>.OverConstrainInfo: This file contains details of conflicting
constraints. For details, see Overconstrain Info File.
1183
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Ac_clockperiod03
Reports a set of correlated clocks for which design cycle time is
greater than threshold value

When to Use

Use this rule to detect correlated clocks for which design cycle time
exceeds the specified threshold value.

Prerequisites

Enable this rule by using the following command in a project file:

set_goal_option addrules Ac_clockperiod03

By default, this rule is switched off.

Description

The Ac_clockperiod03 rule reports correlated clocks for which design cycle
is greater than the specified threshold value.

Correlated clocks are clocks that interact with one another and are present
in the fan-in cone of a particular assertion.

Parameter(s)

 fa_verif_cycles: Default value is 1024. Set the value of this parameter to
a positive integer value (greater than 2 and less than 65535) to specify
a maximum number of verification cycles for a clock.

 reset_cross_seq: Default value is no. Set this parameter to yes to report
clock-domain crossings to the asynchronous reset pins of complex
library cells.

 fa_preprocess_engine: Default value is retime. Set this parameter to iso
to use the isomorphic reduction technique to optimize functional
verification. Other possible values are none and all.

Constraint(s)

set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.
1184
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Messages and Suggested Fix

The following message appears for correlated clocks for which design cycle
is greater than a threshold value:

[WARNING] Design cycle for clocks '<list>' exceeds the
threshold. Refer file: '<file-name>' for details

The arguments of the above message are explained below:

Potential Issues
This violation appears if there are some assertions with a fan-in cone that
contain huge asynchronous clocks.

Consequences of Not Fixing
If you do not fix this violation, design cycle computation process, and
functional analysis process becomes slow. In such cases, the following may
happen:
 Concluding rate of assertions go down with more assertions being

reported as Partially Proved.
 If the design cycle time exceeds the threshold value, all assertions are

reported under the Others(Internal-Error) category.

How to Debug and Fix
To debug the violation of this rule, perform the following steps:
1. Open the Spreadsheet Viewer for this rule.
2. In the spreadsheet, view the list of correlated clocks for which design

cycle is greater than a threshold value specified using the fa_verif_cycles
parameter.

3. Specify periods of clocks in such a way so that they are multiples of
each other. Try to ensure that the collective design cycle is low.

4. For better formal results, it is recommended to decrease the value of the
fa_verif_cycles parameter and maintain clock period values such
that the collective design cycle stays lower than the threshold value.

Argument Description

<list> List of clocks whose design cycle is greater than the
threshold value

<file-name> Name of the spreadsheet file
1185
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Example Code and/or Schematic

Consider the following clock constraint specifications in an SGDC file:

clock -name clk1 -period 1
clock -name clk2 -period 4
clock -name clk3 -period 3000

In the above example, the Ac_clockperiod03 rule does not report any
violation if an assertion contains the clk1 and clk2 clocks in its fan-in.

However, this rule reports a violation if an assertion contains the clk1 and
clk3 clocks in its fan-in and if the fa_verif_cycle parameter is set to
its default value,1024.

Default Severity Label

Warning

Rule Group

ADV_CLOCKS

Report and Related File

Ac_clockperiod03.csv: This file contains details of correlated clocks and
their design cycle.
1186
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Ac_conv01
Reports signals from the same domain that are synchronized in the
same destination domain and converge after any number of
sequential elements

When to Use

Use this rule to check sequential convergences of same-domain signals
synchronized in the same destination domain.

Description

The details of the Ac_conv01 rule are covered under the following topics:
 Reason for the Ac_conv01 Rule Violation

 Features of the Ac_conv01 Rule

 Handling MUXes by the Ac_conv01 Rule

 Rule Exceptions

Reason for the Ac_conv01 Rule Violation

The Ac_conv01 rule reports a violation for two cases, Case 1 and Case 2.

Case 1
The Ac_conv01 rule reports same source signals that converge after
satisfying the following conditions:
 Signals from the same source domain are synchronized in the same

destination domain.
 Signals are synchronized by using the Conventional Multi-Flop

Synchronization Scheme, Synchronizing Cell Synchronization Scheme, or
Qualifier Synchronization Scheme Using qualifier -crossing.

 Synchronized signals converge after any number of sequential elements
on some net of a design.

The same source signals are further analyzed to determine whether a
specific signal in the fan-in cone is driving these signals or the same signal
is getting synchronized multiple times. You can control the depth of this
fan-in cone through the conv_src_seq_depth parameter.

The following figure shows the example of convergence of signals coming
from the same clock domains:
1187
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
FIGURE 188. Convergence of Signals from Same Source Domain Converging after
Sequential Elements

Case 2
The Ac_conv01 rule also reports a violation when a signal diverges and
then converges and after diverging, it is synchronized by the same-domain
synchronizers on the divergent paths.

The following figure shows such scenario:

Outputs of synchronizers

clk2clk1

clk2clk1

Rule violating
signal

Seen as abstracted
group in Incremental
Schematic
1188
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
FIGURE 189. Example- The Ac_conv01 Rule Violation

The Ac_conv01 rule reports sequential convergence for bus-merged
destination names. But the schematic and depth is calculated for any one
representative bit of this bus-merged destination name. However, it may
happen that the representative bit has the depth 0 and a non-
representative bit has a non-zero depth due to which it is considered as
sequential convergence. Therefore, it might seem as a combinational
convergence from depth/schematic, which is reported in sequential
convergence.

Features of the Ac_conv01 Rule

Following are the salient features of this rule:
 It reports only one violation if the same set of signals converge in more

than one path.
 It allows flip-flops in the output cone synchronizing signals.

 When convergence occurs at multiple points in a path, it reports a
violation at a point that has maximum number of converging signals.

clk1

Signal diverging

clk2

Same-domain synchronizers
synchronizing the diverged signal

Synchronized signals

Ac_conv01
violation

converging

clk2

Synchronized signals traversing
through sequential elements
before converging
1189
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
 It checks for both scalar and bus synchronized signals.

 It reports violations on the closest point, as shown in the following
figure:

FIGURE 190. Ac_conv01 Rule Violation Reported on the Closest Point

In the above example, the Ac_conv01 rule reports violation at G1, which is
closest to the converging signals.

NOTE: If same convergence is seen on two nets, this rule reports convergence on a net
closest to the converging signal.

 It reports a violation on internal nets if the output cone of that net is
blocked due to set_case_analysis or design power/ground.

Handling MUXes by the Ac_conv01 Rule

On encountering a mux, this rule propagates convergences of all the data
input and control inputs. For example, in the following figure, the

Outputs of synchronizers

clk2clk1

clk2clk1

Rule violating
signal

G1

G2
1190
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
convergence on the mux is propagated to the AND gate:

FIGURE 191.

In the above scenario, the Ac_conv01 rule reports a violation at the AND
gate for the sync2, sync4, and sync6 synchronizers.

Rule Exceptions

This rule has the following exceptions:
 By default, this rule ignores convergence of clock domain crossing

signals specified by the cdc_false_path constraint.
 This rule does not report convergence if two data crossings having same

control line are converging.
For example, this rule does not report any convergence in the following
scenario:
1191
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
FIGURE 192. Ac_conv01 Rule Exception - No Violation on Any Convergence

However, if the two data crossings have a different control line, this rule
reports convergence for the control signals, as shown in the following
figure:

clk1

clk2

clk1

clk2

EN

S1

clk1

clk2
EN

NO VIOLATION
1192
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
FIGURE 193. Ac_conv01 Rule Violation on Convergence of Control Signals

Parameter(s)

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

 no_convergence_check: Default value is NULL, which means that this rule
checks all nets for convergence. Specify net names that should not be
checked for convergence.

clk1

clk2

clk1

clk2

EN

S1

clk1

clk2

clk1

clk2

EN

S2

Violation for
convergence of
S1 and S2
1193
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
 convergence_stop_at_mux: Default value is no. Set this parameter to yes
to stop propagation of relevant signals whenever an RTL mux is
encountered.

 report_inst_for_netlist: Default value is no. Set this parameter to yes to
report violating instance name in case of netlist designs and leaf-level
net name for RTL designs.

 filter_named_clocks: Default value is rst, reset, scan, set. Set this
parameter to a list of strings.

 conv_sync_as_src: Default value is no. Set this parameter to yes to
check convergence for synchronizers that are also used as a source in
other crossings.

 conv_clock_reset_path: Default value is no. Set this parameter to yes to
enable convergence detection of the synchronizer propagation through
the clock and reset pin.

 conv_sync_seq_depth: Default value is 0. Specify a positive integer value
to set the sequential depth to be considered for propagation of
synchronizers.

 conv_sync_seq_depth_opt: Default value is no. Set this parameter to yes
to improve the runtime performance of the Ac_conv01 rule when the
conv_sync_seq_depth parameter is set to 1.

 conv_src_seq_depth: Default value is -1. Specify a positive integer value
to set the sequential depth to be skipped while detecting the common
net of the source of synchronizers. Other possible value is 0.

 enable_multiflop_sync: Default value is yes. Set this parameter to no to
disable the Conventional Multi-Flop Synchronization Scheme.

 cdc_reduce_pessimism: Default value is mbit_macro,
no_convergence_at_syncreset, no_convergence_at_enable.
Set this parameter to stop_conv_at_seq_lib to stop synchronizer
propagation across sequential library cell. For possible values, see
Allowed Values of the cdc_reduce_pessimism Parameter.

 clock_reduce_pessimism: Default value is latch_en, mux_sel_derived,
check_enable_for_glitch. Set the value of this parameter to
mux_sel to stop traversal of this rule when a clock signal reaches a
MUX. Other possible values are all, all_potential_clocks, and
ignore_same_domain.
1194
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
 cdc_compatible: Default value is no. Set this value to yes to make the
rules mentioned in the Used by section dependant on the Clock_sync*
rules data rather than The Ac_sync_group Rules data.

 fa_num_cores: Default value is 0. Specify 2, 4, or 8 to specify the number
of cores to be used by a multi-core engine.

 show_source_in_spreadsheet: Default value is yes. Set this parameter to
no to generate a link from the spreadsheet of the Ac_conv01, Ac_conv02,
or Ac_conv03 rules to the message-based spreadsheet of The
Ac_sync_group Rules showing the source of synchronizers.

 reset_cross_seq: Default value is no. Set this parameter to yes to report
clock-domain crossings to the asynchronous reset pins of complex
library cells.

 fa_preprocess_engine: Default value is retime. Set this parameter to iso
to use the isomorphic reduction technique to optimize functional
verification. Other possible values are none and all.

 delayed_ptr_fifo: Default value is no. Set this parameter to yes when the
read/write pointers are delayed and the multiplexer inside the memory
is one-hot or implemented using gates.

 enable_and_sync: Default value is no. Set this parameter to yes to
enable the AND Gate Synchronization Scheme.

 enable_mux_dest_domain: Default value is none. Set this parameter to
none to turn off this parameter. Other possible values are mux, enable,
gp, cg, and, all, yes, and no.

 enable_mux_sync: Default value is recirculation. Set this parameter
to an appropriate value to enable a particular synchronization scheme.
Other possible values are none, mux_select, and all.

 enable_sync: Default value is yes. Set this parameter to no to disable
the Synchronized Enable Synchronization Scheme.

 enable_sync_cell: Default value is Default value is NULL. Set this
parameter to a list of synchronizer cells.

 glitch_protect_cell: Default value is NULL. Specify a comma or
space-separated list of glitch protection cell names for the Glitch
Protection Cell Synchronization Scheme.

 ignore_nets_clock_path_file_name: Default value is
ignore_nets_clock_path.txt. Specify a file containing hierarchical names of
1195
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
nets (one name per line) so that SpyGlass halts clock propagation along
the path when any of these nets is encountered.

 ignore_num_rtl_buf_invs: Default value is many. Set this parameter to
one to allow one buffer and inverter. Other possible values are two and
none.

 num_flops: Default value is 2. Set this parameter to a positive integer
value greater than one to specify a minimum number of flip-flops
required for synchronizing a signal by using the Conventional Multi-Flop
Synchronization Scheme.

 one_cross_per_dest: Default value is yes. Set this parameter to no to
report all unsynchronized clock crossings for a destination.

 strict_double_flop: Default value is no. Set this parameter to yes to mark
clock crossings as synchronized.

 strict_sync_check: Default value is no. Set this parameter to yes if scan
flip-flops are present.

 synchronize_cells: Default value is NULL. Specify a list of cells to this
parameter that are considered as valid synchronizers for scalar source
domain signals for the Synchronizing Cell Synchronization Scheme.

 synchronize_data_cells: Default value is NULL. Specify a list of cells to this
parameter that are considered as valid synchronizers for source domain
vector signals for the Synchronizing Cell Synchronization Scheme.

 sync_reset: Default value is no. Set this parameter to yes to allow at
most one gate of an AND/NAND/OR/NOR type to be the synchronous
reset for the flip-flop that follows.

 compute_num_convergences: Default value is 1. The maximum possible
value for compute_num_convergences is 10. Set this parameter to
any integer to specify the number of convergences to be computed for
the same set of synchronizers.

 coherency_check_type: Default value is control. Set this parameter to
reset to check convergence issues on control crossings of reset paths
only.

 show_parent_module_in_spreadsheet: Adds the PARENT_MODULE column
in the rule-based spreadsheet of the supported rules.

 same_domain_at_gate: Default value is no. Set the value of the
parameter to an allowed value to optimize the inference of domains on
clock merging gates.
1196
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Constraint(s)

 cdc_filter_coherency (Optional): Use this constraint to specify points at or
beyond which no convergence of signals should be reported.

 no_convergence_check (Optional): Use this constraint to specify nets that
should not be checked for convergence.

NOTE: If you specify nets by using the no_convergence_check constraint as well as the
no_convergence_check parameter, SpyGlass considers the nets specified by both
the constraint and parameter.

 cdc_attribute (Optional): Use this constraint to specify mutually exclusive
and unrelated signals such that convergence-related violations are
suppressed for such signals.

NOTE: The cdc_attribute constraint is the preferred constraint over the
cdc_filter_coherency and the no_convergence_check constraints to specify
unrelated signals.

 clock (Optional): Use this constraint to specify clock signals.

 ip_block (Optional): Use this constraint to specify IP blocks in your
design.

 cdc_false_path (Optional): Use this constraint to specify false paths so
that clock-domain crossings along these paths are ignored for rule-
checking.

 quasi_static (Optional): Use this constraint to specify signals whose value
is predominantly static.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

 num_flops (Optional): Use this constraint to specify the minimum
number of flip-flops required in a synchronizer chain.

 output_not_used (Optional): Use this constraint to specify a primary
output port.

 reset (Optional): Use this constraint to specify reset signals in a design.

 signal_in_domain (Optional): Use this constraint to specify a domain for
output pins of black box instances.

 sync_cell (Optional): Use this constraint to specify synchronizer cells that
should be considered valid for crossings that contain specified
frequencies, source/destination clocks, or domains.
1197
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
 allow_combo_logic (Optional): Use this constraint to allow combinational
logic between crossings only if the logic is within the modules specified
by using this constraint.

Messages and Suggested Fix

Message 1

The following message appears at the location where same domain signals
converge:

[WARNING] [AcCv1_1] <num> synchronizers <sig-names> converge on
<gate-type> '<gate-name>'

The arguments of the above message are explained below:

Potential Issues
This violation appears when multiple same domain synchronized signals
converge. The convergence may also occur after a sequential logic.

Consequences of Not Fixing
Convergence between synchronized signals may lead to data coherency
issues and may cause chip failure.

How to Debug and Fix
To debug and fix this violation, perform the following steps:

Argument Description
<num> Number of synchronized signals
<sig-names> Comma separated list of synchronized destination output

net names.
When the design is a netlist design and the
report_inst_for_netlist parameter is set to yes, the rule
reports a comma-separated list of synchronized
destination output instance names.

<gate-type> Gate type, such as MUX, combinational gate, flop,
latch, sequential library-cell, or black-
box

<gate-name> Name of the gate output on which convergence occurs.
When the report_inst_for_netlist parameter is set to yes,
the instance pin is reported.
1198
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
1. Open Rule-based spreadsheet - Ac_conv01.csv to view a summary of all the
violations of this rule.
Each row in this spreadsheet summarizes one violation.

2. In the rule-based spreadsheet, click on the ID column of the violation to
be debugged. The message-based spreadsheet appears showing the
violation details.
For details on this spreadsheet, see Message-based spreadsheet -
ac_conv_<num>.csv.

3. View the schematic of the violation by clicking on the link in the
Schematic column of the message-based spreadsheet.

4. Based on the information in the spreadsheet and the schematic, perform
appropriate actions, as described below:
 If convergence is reported for signals that are in an IP and you do not

want violations to be reported within the IP, specify that IP in the
ip_block constraint.

 If convergence is for static signals, use the cdc_false_path or
quasi_static constraints.

 If the path of synchronizers confirms that synchronizers cannot
functionally control the converging net at the same time, waive the
violation.

 If some of the intermediate nets in the path confirm exclusivity
between the synchronizers, specify such nets to the
no_convergence_check parameter.

 If convergence is happening at a mux, you may use the
convergence_stop_at_mux parameter to stop propagation of
convergences beyond the mux output.

 If you want to stop propagation of convergences beyond a particular
net, pin, or instance, specify such net, pin, or instance to the
-stop_points argument of the cdc_filter_coherency constraint.

 If you do not want convergence to be reported at a particular net,
pin, or instance, specify such net, pin, or instance to the
-conv_gates argument of the cdc_filter_coherency constraint.

 If you do not want convergence to be reported for certain set of
signals, pins, or instances, which are either destination or sources,
specify such set of signals, pins, or instances to the -unrelated
argument of the cdc_filter_coherency constraint.
1199
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Message 2

The following message appears at the location where same domain signals
converge:

[WARNING] [AcCv1_1_coherency01] <num> synchronizers <sig-names>
converge on <gate-type> '<gate-name>' (same source divergence)

Potential Issues
This violation appears when a signal diverges, gets synchronized by the
same domain synchronizers in the divergent paths, traverses through a
sequential logic, and finally converges.

Consequences of Not Fixing
Such convergence may cause data coherency issues that may cause chip
failure.

How to Debug and Fix
See How to Debug and Fix.

Example Code and/or Schematic

Example 1 - Same Source domain Convergence (Without Any Common
Diverging Source Net)

Consider the following schematic of a violation reported by the Ac_conv01
rule:
1200
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
FIGURE 194. Schematic of the Ac_conv01 Rule Violation

In the above example, three same domain synchronizers, sync1, sync3,
and sync5 synchronized in the same domain by the Conventional Multi-Flop
Synchronization Scheme are converging on an AND gate after the sequential
logic.

The Rule-based spreadsheet - Ac_conv01.csv and Message-based spreadsheet -
ac_conv_<num>.csv for this violation is shown in the following figures:

FIGURE 195. Rule-Based Spreadsheet of the Ac_conv01 Rule
1201
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
FIGURE 196. Message-Based Spreadsheet of the Ac_conv01 Rule

To fix this violation, remove the convergence.

Schematic Details

The Ac_conv01 rule highlights the paths from the converging signals to the
signal on which they converge. Different colors are used to highlight the
following:
 The net on which convergence is reported

 The paths from the output of synchronizers to the net on which
convergence is reported

 Synchronizers

 Crossing paths from sources to destination

 Sources of synchronizers.

 Same source reconvergence, that is the path from diverging net till
source of the synchronizer (optional)

Example 2 - Same Source Divergence

Consider the following rule-based spreadsheet of the Ac_conv01 rule:
1202
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
FIGURE 197. Same Source Divergence - Rule-Based Spreadsheet (Ac_conv01)

NOTE: For information on the columns of the above spreadsheet, see Rule-based
spreadsheet - Ac_conv01.csv.

In the above spreadsheet, the first row shows details of the violation
related to same source divergence. Click the ID column of this row to open
the message-based spreadsheet of this violation. The following figure
shows the message-based spreadsheet:

FIGURE 198. Same Source Divergence - Message-Based Spreadsheet
(Ac_conv01)

NOTE: For information on the columns of the above spreadsheet, see Message-based
spreadsheet - ac_conv_<num>.csv.

The following figure shows the schematic of the violation shown in the
above spreadsheet:
1203
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
FIGURE 199. Same Source Divergence - Schematic (Ac_conv01)

The above schematic shows the divergence and then convergence of the
src1 source that is synchronized in the same domain.

Example 3 - Common Net Driving Multiple Sources

In the spreadsheet shown in Figure 197, the second row shows the details
of the violation indicating a common net detected from a sequential fan-in
cone. This net drives multiple sources of converging synchronizers.

The following figure shows the message-based spreadsheet of this
violation:

FIGURE 200. Message-Based Spreadsheet- The Ac_conv01 rule

NOTE: For information on the columns of the above spreadsheet, see Message-based
1204
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
spreadsheet - ac_conv_<num>.csv.

The following figure shows the schematic of the above violation in which a
common net is driving multiple sources:

FIGURE 201.

Default Severity Label

Warning

Rule Group

ADV_CLOCKS

Report and Related Files

The Ac_conv01 rule generates the Rule-based spreadsheet - Ac_conv01.csv,
Message-based spreadsheet - ac_conv_<num>.csv, and Ac_conv_detail.rpt.

Rule-based spreadsheet - Ac_conv01.csv

This spreadsheet shows all the Ac_conv01 rule violations in separate rows.

To open this spreadsheet, right-click on the rule-name header in the
Results pane, and select the Spreadsheet Viewer option from the shortcut
menu.

NOTE: This spreadsheet is generated in the spyglass_reports/clock-reset/ directory.

Figure 197 shows this spreadsheet. The details of each column of this
spreadsheet are described below:
1205
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
TABLE 3 Columns in a Rule-Based Spreadsheet (Ac_conv01)

Column Description
ID Specifies a unique ID for a violation.
CONVERGING GATE Specifies the name of the converging gate.
GATE TYPE Specifies the type of converging gate.
NUMBER OF
SYNCHRONIZERS

Specifies the number of synchronizers present in the
path of the converging gate.

SOURCE
DIVERGENCE

Specifies if converging synchronizers are driven by a
common source net.
Possible values reported in this column are:
• Direct: At least one source of synchronized

crossing is driving multiple synchronizers.
See Example 2 - Same Source Divergence.

• Combinational: At least one common net is
detected from combinational fan-in cone traversal,
which drives multiple sources of converging
synchronizers.

• Sequential: At least one common net is detected
from sequential fan-in cone traversal, which drives
multiple sources of converging synchronizers.

• no: No common net exists
SCALAR SOURCE Specifies Yes or No indicating if the source of all the

synchronized crossings is scalar or not.
For example, in Figure 194, yes is reported as src1,
src2, and src3 are scalar sources.

MAX. DEPTH Specifies the maximum synchronizer depth from any
synchronizer to a converging point. This is an integer
value.
For example, in Figure 194, the maximum number of
sequential elements present between sync4 and o1
are 2.

MIN. DEPTH Specifies the minimum synchronizer depth from any
synchronizer to a converging point. This is an integer
value.

AVG DEPTH Specifies the average depth from a source to a
converging point. This is a float value.
For example, in Figure 194, Total depth is 3 (2+0+1)
and number of sources is 3. Therefore, the average
depth shown in the spreadsheet in Figure 197 is 1.
1206
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
NOTE: If you run the Ac_conv01 rule in the batch mode, the rule-based spreadsheet
contains an additional column, CSV File. This column shows the path of the
corresponding Message-based spreadsheet - ac_conv_<num>.csv. Refer to this
column to correlate the row of the rule-based spreadsheet with the corresponding
message-based spreadsheet.

Message-based spreadsheet - ac_conv_<num>.csv

This spreadsheet shows details of the selected violation.

To open this spreadsheet, click on the link in the ID column of the
rule-based spreadsheet. Alternatively, double-click on the violation of this
rule from GUI.

NOTE: This spreadsheet is generated in the spyglass_reports/clock-reset/Ac_conv01/
directory.

Figure 198 shows this spreadsheet. In this spreadsheet, there is a separate
row for each converging destination signal.

The details of each column of this spreadsheet are described below:

SAME DEPTH
CONVERGENCE

Specifies yes when multiple synchronizers exist with
the same depth in convergence.
Else, the value No is reported.
For example, in Figure 194, no is reported as the
paths have different depths: 0,1, and 2.

WAIVED Specifies if the reported violation is waived.

Column Description
1207
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
TABLE 4 Columns in a Message-Based Spreadsheet (Ac_conv01)

NOTE: In the message-based spreadsheet, some column values are not applicable for the
row of type "Converging Gate". The cells in such columns have the value "-".

Ac_conv_detail.rpt

The Ac_conv_detail report contains details of all the violations detected by
the Ac_conv01, Ac_conv02, and Ac_conv03 rules. The report is not
generated by default. Specify set_option report Ac_conv_detail in
the project file to generate this report.

The report consists of following sections:

Column Description
Schematic Shows a link for schematic.
Type Specifies any of the following types:

• Converging Gate
• Destination flop
• Destination latch
• Destination library-cell
• Destination black-box
• Destination port

The first row is for a converging gate.
Signal Name Specifies the name of the signal.
Sequential Depth Specifies the depth from a synchronizer till the

converging gate.
Source(s) Specifies the source of the signal.
Diverging Net(s) (Optional) Specifies the name of the common net

that drives multiple sources. For details, see Example
3 - Common Net Driving Multiple Sources.
Note that this column appears only in case of a
common net driving multiple sources.

Destination Clock(s) Specifies the destination clock of the signal.
Source Clock(s) Specifies the source clocks of the signal.
File:Line Specifies the design file name and line number where

the information pertaining to each row in this
spreadsheet is present
1208
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
 Section A: Lists the sequential convergence of same-domain signals
synchronized in the destination domain (Ac_conv01)

 Section B: Lists the combinational convergence of same-domain signals
synchronized in the same destination domain (Ac_conv02)

 Section C: Convergence of different-domain signals synchronized in the
same destination domain(Ac_conv03)

The following figure shows a sample Ac_conv_detail report.

FIGURE 202. Sample Ac_conv_detail Report
1209
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Ac_conv02
Reports same-domain signals that are synchronized in the same
destination domain and converge before sequential elements.

When to Use

Use this rule to check combinational convergences of the same domain
signals synchronized in the same destination domain.

Prerequisites

Following are the prerequisites for running this rule:
 Specify clock signals in any of the following ways:

 By using the clock constraint.

 By setting the use_inferred_clocks parameter to yes to enable
auto-generation of clock signals.

 By using a combination of both the above methods.

 Use the Advanced_CDC and adv_checker licenses for running this
rule.

Description

The details of the Ac_conv02 rule are covered under the following topics:
 Reasons for the Ac_conv02 Rule Violation

 Checking the Gray Encoding of Converging Signals

 Features of the Ac_conv02 Rule

 Handling MUXes by the Ac_conv02 Rule

Reasons for the Ac_conv02 Rule Violation

The Ac_conv02 rule reports same source signals that converge after
satisfying the following properties:
 Signals from the same source domain are synchronized in the same

destination domain.
 The signals are synchronized using Conventional Multi-Flop Synchronization

Scheme, Synchronizing Cell Synchronization Scheme, or Qualifier
Synchronization Scheme Using qualifier -crossing.
1210
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
 Synchronized signals converge before encountering a sequential
element (a flip-flop, latch, or sequential library cell).

The same source signals are further analyzed to determine whether a
specific signal in the fan-in cone is driving these signals or the same signal
is getting synchronized multiple times. You can control the depth of this
fan-in cone through the conv_src_seq_depth parameter.

The following figure shows an example of convergence of signals coming
from same source clock domains.

FIGURE 203. Convergence of Signals from Same Source Domain Converging after
Sequential Elements

The Ac_conv02 rule also reports a violation when a signal diverges and
then converges. After diverging, the signal is synchronized by the same-
domain synchronizers on divergent paths. In this case, the synchronized
signal from each divergent path does not encounter any sequential
element (flip-flop, latch, or sequential library cell) before converging.

The following figure shows such scenario of the Ac_conv02 rule violation:

Outputs of synchronizers

clk2clk1

clk2clk1

Rule violating
signal
1211
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
FIGURE 204. Example- The Ac_conv02 Rule Violation

Checking the Gray Encoding of Converging Signals

The Ac_conv02 rule functionally verifies if converging signals are gray-
encoded. A set of signals are gray-encoded if at most one of the signal
change values between two consecutive clock cycles. The result of this
check can be any one of the following:
 PASSED: Indicates that signals are gray-encoded.

 FAILED: Indicates that signals are violating gray-encoding.

 PP: Indicates that the gray-encoding property was partially proved. In
this case, SpyGlass is not able to prove or falsify the property in the
specified time.

 DISABLED: Indicates that functional check for gray-encoding could not
be performed.
Following are some of the possible reasons for which the functional
check is performed for gray encoding:

clk1

Signal diverging

clk2

clk2

Same-domain synchronizers
synchronizing the diverged signal

Synchronized signal

Ac_conv02
violation

converging on a
combinational element
1212
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
 Non-availability of advanced SpyGlass CDC solution license

 Presence of multi-top design

 Over-constraining

 fa_msgmode parameter is set to none

 Converging nets have two or more domains converging in their fan-in

 Destination is a synchronizer black box instance

Specialized Gray Encoding Check on FIFO

Previously, to check gray encoding, usually the following two steps were
used:
1. Run structural rules: Previously, you used to run structural rules (such

as the cdc_verify_struct goal), analyze the violations, and then apply
the recommended constraint (such as, the cdc_filter_coherency constraint
for Ac_conv02) to suppress the violations.

2. Run formal rules: Then, you used to run the formal rules (such as the,
cdc_verify goal) with the above created structural constraints, to
perform necessary formal checks.

For example, consider the below schematic where bus sync[0:3] merges
with sync_1. In this case, the Ac_conv02 rule reports convergence on
(sync[0:3],sync_1) in structural run.
1213
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
FIGURE 205.

In the above case, after running the structural rules, you could:
 Check gray encoding on (sync[0:3],sync_1). For this, you run the

formal rules.
 Check gray encoding on sync[0:3] as well - To check this, you used to

specify the gray_signals constraint on sync[0:3], which was read by the
Ac_conv05 rule and the signal was checked for gray encoding.

The Ac_conv02 rule also supports specialized gray encoding checks. You
can now use the cdc_gen_unrelated_coherency parameter to
generate an SGDC file, which contains the cdc_filter_coherency and the
gray_signals constraints. The generated file, as shown below, contains
constraints for Ac_conv02 violations that have at least one vector bus
along with either one or more scalar signal or one or more vector buses:

Convergence Point <ConvergencePointNameInViolation>

current_design <design top name>
cdc_filter_coherency -unrelated <list of synchronizers
converging in Ac_conv02>
gray_signals -name <vector-bus-in-above-constraint-if-
applicable>
gray_signals -name <next-vector-bus-in-above-constraint-if-
1214
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
applicable>

….

For the scenario described above, the following SGDC file is generated
when the cdc_gen_unrelated_coherency parameter is set to yes:

cdc_filter_coherency -unrelated sync[0:3] sync_1
gray_signals -name sync[0:3]

You can comment or uncomment the above constraints and use it in the
next formal run. In the subsequent run, the Ac_conv02 rule violations are
suppressed due to the -unrelated argument and the Ac_conv05 rule
checks for gray encoding on the signals specified with the gray_signals
constraint.

If you want to check both (sync[0:3],sync_1) and sync[0:3] in the above-
mentioned schematic, comment the corresponding
cdc_filter_coherency -unrelated constraint in the generated file.

When you set the cdc_gen_unrelated_coherency parameter to yes,
the Ac_conv02Setup01 rule reports the following info message for the
generated SGDC file:

SGDC file generated for design: <designRootName> using
candidate combinational convergence

You can click the info message to load the sgdc file in RTL and constraint
file viewer. You can then edit the file and use it in the next run.

Features of the Ac_conv02 Rule

Following are the features of this rule:
 It reports only one violation if same set of signals converge in more than

one path.
 When the convergence happens at multiple points in a path, this rule

reports a violation at a point that has most number of signals
converging.

 It ignores convergence of clock domain crossing signals specified by the
cdc_false_path constraint

 It checks both scalar and bus signals

 It does not allow flip-flops in the output cone of synchronizing signals. It
reports only combinational convergences.
1215
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
 It reports a violation on internal nets if the output cone of that net is
blocked due to set_case_analysis or design power/ground.

Handling MUXes by the Ac_conv02 Rule

The Ac_conv02 rule treats muxes in a special way. On encountering RTL
muxes, this rule propagates convergences of only one data input and all
control inputs. If several data inputs have convergences, one of them is
selected randomly.

The rule uses this scheme to minimize the number of false convergences
reported by this rule.

Note that convergences from different data inputs of the mux are not
viable functionally because control inputs select one of them at a time.

Parameter(s)

 no_convergence_check: Default value is NULL. Specify net names that
should not be checked for convergence.

 convergence_stop_at_mux: Default value is no. Set this parameter to yes
to stop the propagation of relevant signals whenever an RTL mux is
encountered.

 conv_sync_as_src: Default value is no. Set this parameter to yes to
check convergence for synchronizers that are also used as a source in
other crossings.

 conv_src_seq_depth: Default value is -1. Specify a positive integer value
to set the sequential depth to be skipped while detecting the common
net of the source of synchronizers. Other possible value is 0.

 conv_clock_reset_path: Default value is no. Set this parameter to yes to
enable convergence detection of the synchronizer propagation through
the clock and reset pin.

 fa_audit: Default value is no. Set this parameter to yes to not perform
functional analysis.

 fa_dump_hybrid: Default value is partial. Set this parameter to all to
generate SVA for all the types of assertions (pass, fail, partially-proved).
The other possible value are pass, fail, +fail, and none.
1216
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
 fa_grayhold: Default value is no. Set this parameter to yes to checks for
gray-encoding at the output of a destination instance with respect to a
destination clock.

 fa_msgmode: Default value is fail, pp, coverage. Set this parameter
to all to report all the types of assertions. Other possible values are
no_msg, audit, and none.

 fa_num_cores: Default value is 0. Specify 2, 4, or 8 to specify the number
of cores to be used by a multi-core engine.

 fa_atime: Default value is 20. Set this parameter to a positive integer
value to specify a time that the tool should take to perform functional
analysis per assertion.

 fa_abstract: Default value is Ac_handshake01, Ac_glitch03. Set the value
of this parameter to Ac_cdc08 to enable abstraction for this rule. Other
possible values are all, none or a list of any of rules:
Ac_handshake01, Ac_cdc08, Ac_conv02, Clock_sync03a, Ac_fifo01, and
Ac_glitch03.

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

 report_inst_for_netlist: Default value is no. Set this parameter to yes to
report violating instance name in case of netlist designs and leaf-level
net name for RTL designs.

 filter_named_resets: Default value is clk, clock, scan. Specify a list of
strings to auto-infer asynchronous resets that do not match the
specified strings.

 filter_named_clocks: Default value is rst, reset, scan, set. Set this
parameter to a list of strings.

 cdc_dump_assertions: Default value is "". Set this parameter to sva to
generate SystemVerilog Assertions (SVA) corresponding to the rules and
the design assumptions specified in an SGDC file.

 fa_multicore: Default value is no. Set this parameter to yes to invoke the
multi core engine of SpyGlass for solving complex assertions.

 fa_meta: Default value is no. Set this parameter to yes to enable formal
modeling of metastability.

 enable_multiflop_sync: Default value is yes. Set this parameter to no to
disable the Conventional Multi-Flop Synchronization Scheme.
1217
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
 cdc_reduce_pessimism: Default value is mbit_macro,
no_convergence_at_syncreset, no_convergence_at_enable.
Set this parameter to an appropriate value to ignore clock domain
crossings involving black box instances and clock domain crossings with
destinations having unused, hanging, or blocked outputs. For possible
values, see Allowed Values of the cdc_reduce_pessimism Parameter.

 clock_reduce_pessimism: Default value is latch_en, mux_sel_derived,
check_enable_for_glitch. Set the value of this parameter to
mux_sel to stop traversal of this rule when a clock signal reaches a
MUX. Other possible values are all, all_potential_clocks, and
ignore_same_domain.

 reset_reduce_pessimism: Default value is
filter_unused_synchronizer, same_data_reset_flop. Set the
value of this parameter to all_potential_resets to detect all the
potential resets in a design. For information on the other possible
values, see Possible Values to the reset_reduce_pessimism Parameter.

 cdc_compatible: Default value is no. Set this value to yes to make the
rules mentioned in the Used by section dependant on the Clock_sync*
rules data rather than The Ac_sync_group Rules data.

 show_source_in_spreadsheet: Default value is yes. Set this parameter to
no to generate a link from the spreadsheet of the Ac_conv01, Ac_conv02,
or Ac_conv03 rules to the message-based spreadsheet of The
Ac_sync_group Rules showing the source of synchronizers.

 reset_cross_seq: Default value is no. Set this parameter to yes to report
clock-domain crossings to the asynchronous reset pins of complex
library cells.

 fa_preprocess_engine: Default value is retime. Set this parameter to iso
to use the isomorphic reduction technique to optimize functional
verification. Other possible values are none and all.

 allow_half_sync: Default value is yes. Set this parameter to no to not
treat half synchronizers as valid synchronizers.

 clock_gate_cell: Default value is NULL. Set the value of this parameter to
a comma or space-separated list of clock-gating cell names for the Clock-
Gating Cell Synchronization Scheme.

 enable_and_sync: Default value is no. Set this parameter to yes to
enable the AND Gate Synchronization Scheme.
1218
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
 enable_mux_dest_domain: Default value is none. Set this parameter to
none to turn off this parameter. Other possible values are mux, enable,
gp, cg, and, all, yes, and no.

 enable_mux_sync: Default value is recirculation. Set this parameter
to an appropriate value to enable a particular synchronization scheme.
Other possible values are none, mux_select, and all.

 enable_sync: Default value is yes. Set this parameter to no to disable
the Synchronized Enable Synchronization Scheme.

 enable_sync_cell: Default value is Default value is NULL. Set this
parameter to a list of synchronizer cells.

 glitch_protect_cell: Default value is NULL. Specify a comma or
space-separated list of glitch protection cell names for the Glitch
Protection Cell Synchronization Scheme.

 ignore_nets_clock_path_file_name: Default value is
ignore_nets_clock_path.txt. Specify a file containing hierarchical names of
nets (one name per line) so that SpyGlass halts clock propagation along
the path when any of these nets is encountered.

 num_flops: Default value is 2. Set this parameter to a positive integer
value greater than one to specify a minimum number of flip-flops
required for synchronizing a signal by using the Conventional Multi-Flop
Synchronization Scheme.

 one_cross_per_dest: Default value is yes. Set this parameter to no to
report all unsynchronized clock crossings for a destination.

 strict_double_flop: Default value is no. Set this parameter to yes to mark
clock crossings as synchronized.

 strict_sync_check: Default value is no. Set this parameter to yes if scan
flip-flops are present.

 synchronize_cells: Default value is NULL. Specify a list of cells to this
parameter that are considered as valid synchronizers for scalar source
domain signals for the Synchronizing Cell Synchronization Scheme.

 synchronize_data_cells: Default value is NULL. Specify a list of cells to this
parameter that are considered as valid synchronizers for source domain
vector signals for the Synchronizing Cell Synchronization Scheme.

 sync_reset: Default value is no. Set this parameter to yes to allow at
most one gate of an AND/NAND/OR/NOR type to be the synchronous
reset for the flip-flop that follows.
1219
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
 use_inferred_resets: Default value is no. Set this parameter to yes to use
auto-generated reset information.

 compute_num_convergences: Default value is 1. The maximum possible
value for compute_num_convergences is 10. Set this parameter to any
integer to specify the number of convergences to be computed for the
same set of synchronizers.

 coherency_check_type: Default value is control. Set this parameter to
reset to check convergence issues on control crossings of reset paths
only.

 cdc_gen_unrelated_coherency: Default value is no. Set this parameter to
yes to generate the unrelated_coherent_signals.sgdc file.

 show_parent_module_in_spreadsheet: Adds the PARENT_MODULE column
in the rule-based spreadsheet of the supported rules.

 same_domain_at_gate: Default value is no. Set the value of the
parameter to an allowed value to optimize the inference of domains on
clock merging gates.

 conv_all_mux_data_pins: Default value is no. Set the value of the
parameter to yes to enable synchronizer propagation through all data
pins of muxes for convergence detection.

 fa_hybrid_report_hier: Default value is no. Set the value of the parameter
to yes to enable the supported rules to report the top-level hierarchical
names in the SVA Hybrid flow.

Constraint(s)

 cdc_filter_coherency (Optional): Use this constraint to specify points at or
beyond which no convergence of signals should be reported.

 no_convergence_check (Optional): Use this constraint to specify nets that
should not be checked for convergence.

NOTE: If you specify nets by using the no_convergence_check constraint as well as the
no_convergence_check parameter, SpyGlass considers the nets specified by both
the constraint and parameter.

 cdc_attribute (Optional): Use this constraint to specify mutually exclusive
and unrelated signals such that convergence-related violations are
suppressed for such signals.

NOTE: The cdc_attribute constraint is the preferred constraint over the
cdc_filter_coherency and the no_convergence_check constraints to specify
1220
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
unrelated signals.

 clock (Optional): Use this constraint to specify clock signals.

 cdc_false_path (Optional): Use this constraint to specify false paths so
that clock-domain crossings along these paths are ignored for rule
checking.

 monitor_time (Optional): Use to specify the design initialization time
frames during simulation. The rest of the simulation time is considered
as the design's functional time.

 meta_design_hier (Optional): Use to specify the test bench name and
design instance name in the SGDC file.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

 num_flops (Optional): Use this constraint to specify the minimum
number of flip-flops required in a synchronizer chain.

 output_not_used (Optional): Use this constraint to specify a primary
output port.

 reset (Optional): Use this constraint to specify reset signals in a design.

 signal_in_domain (Optional): Use this constraint to specify a domain for
output pins of black box instances.

 sync_cell (Optional): Use this constraint to specify synchronizer cells that
should be considered valid for crossings that contain specified
frequencies, source/destination clocks, or domains.

 allow_combo_logic (Optional): Use this constraint to allow combinational
logic between crossings only if the logic is within the modules specified
by using this constraint.

 breakpoint (Optional): Use this constraint to specify breakpoints in a
design.

 define_tag (Optional): Use this constraint to define a named condition for
application of certain stimulus at the top port or an internal node.

 ip_block (Optional): Use this constraint to specify IP blocks in a design.

 qualifier (Optional): Use this constraint to specify a qualifier for
synchronizing a clock domain crossing.

 quasi_static (Optional): Use this constraint to specify signals whose value
is predominantly static.
1221
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
 watchpoint (Optional): Use this constraint to specify watch points in a
design.

Messages and Suggested Fix

Message 1

The following message appears for the FAILED or Others
(Constraints-Conflict) status at the location where signals
converge:

[AcCv2_1] [ERROR] <num> synchronizers <sig-names> converge on
<gate-type> '<gate-name>'. Gray encoding check: '<FAILED |
Others (Constraints-Conflict)>'

The arguments of the above message are explained below:

TABLE 5 Argument details of the Ac_conv02 rule

Potential Issues
This violation appears when multiple same domain synchronized signals
converge.

Consequences of Not Fixing

Argument Description
<num> Number of synchronized signals
<sig-names> Comma separated list of synchronized destination output

net names.
When the design is a netlist design and the
report_inst_for_netlist parameter is set to yes, the rule
reports a comma-separated list of synchronized
destination output instance names.

<gate-type> Gate type, such as MUX, combinational gate, flop,
latch, sequential library-cell, or black-
box

<gate-name> Name of the gate output on which convergence occurs.
When the report_inst_for_netlist parameter is set to yes,
the instance pin is reported.
1222
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
If you do not gray encode converging signals, there may be data coherency
issues and may cause chip failure.

How to Debug and Fix
To debug and fix the violation, perform the following steps:
1. Open the rule-based spreadsheet.

For details on this spreadsheet, see Rule-based spreadsheet -
Ac_conv02.csv.

2. In the rule-based spreadsheet, click on the ID column of the violation to
be debugged. The message-based spreadsheet appears showing the
violation details.
For details on this spreadsheet, see Message-based spreadsheet -
ac_conv_<num>.csv.

3. View the schematic of the violation by clicking on the link in the
Schematic column of the message-based spreadsheet.
In the schematic, analyze the path of convergence of synchronizers.

4. Based on the information in the spreadsheet and the schematic, perform
appropriate actions, as described below:
 If convergence is reported for signals that are in an IP and you do not

want violations to be reported within the IP, specify that IP in the
ip_block constraint.

 If convergence is for static signals, use the cdc_false_path or
quasi_static constraints.

 If the path of synchronizers confirms that synchronizers cannot
functionally control the converging net at the same time, waive the
violation.

 If some of the intermediate nets in the path confirm exclusivity
between the synchronizers, specify such nets to the
no_convergence_check parameter.

 If convergence is happening at a mux, you may use the
convergence_stop_at_mux parameter to stop propagation of
convergences beyond the mux output.

 If you want to stop propagation of convergences beyond a particular
net, pin, or instance, specify such net, pin, or instance to the
-stop_points argument of the cdc_filter_coherency constraint.
1223
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
 If you do not want convergence to be reported at a particular net,
pin, or instance, specify such net, pin, or instance to the
-conv_gates argument of the cdc_filter_coherency constraint.

 If you do not want convergence to be reported for certain set of
signals, pins, or instances, which are either destination or sources,
specify such set of signals, pins, or instances to the -unrelated
argument of the cdc_filter_coherency constraint.

FAILED Status

Open the Waveform Viewer window corresponding to the message, and check
the marker that appears on the waveform. This marker is positioned at a
transition where at least two of the nets that drive the converging signals
are changing at the same time. Therefore, this specific transition is a
witness to the failure.

In such cases:
 Analyze the logic that drives the converging nets to check for the

presence of an explicit gray encoder or an FSM that guarantees that no
two converging nets change at the same time.

 Analyze the logic behind the convergence point. If this logic functionally
ensures that all the converging signals cannot control the convergence
point at the same time, the violation can be waved.

Following are some of the reasons that may cause false failures:
 Check for the potential reset/clear signal causing such violation. Provide

the reset/clear in the constraint file as a reset.
 Check if the setup (clock, reset, set_case_analysis, input constraints) is

correct and complete. Use the Formal Setup Rules to check for the
correctness of the setup.

 Check the initial state values in the Waveform Viewer window. If the
values are not correct, provide correct initial state in the constraints file
or provide a VCD file from which an initial state can be loaded.

 View the Waveform Viewer window. In this window, you will notice that at
least two nets that drive the converging double-flop synchronizers will
be changing at the same time during a clock cycle. Analyze the logic
behind the convergence point. If this logic functionally ensures that all
1224
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
the converging signals cannot control the convergence point at the same
time, the violation can be waved.

Convergence between separately synchronized signals can lead to data-
coherency issues. It is recommended to use a common synchronizer for all
signals that are converging or verify that two or more converging signals
do not control the net on which it is converging at the same time. If signals
pass the gray-encoding check, it means that the destination domain will
never operate on a value not produced in the source domain. This must be
the case for fifo pointers so that the fifo operates correctly.

For details, see Performing Functional Analysis in SpyGlass CDC.

Message 2

The following message appears for the FAILED or Others (Constraints-
Conflict) status at the location where signals diverge and then converge:

[AcCv2_1_coherency02] [ERROR] <num> synchronizers <sig-names>
converge on <gate-type> '<gate-name>' (same source divergence).
Gray encoding check: '<status>'

Potential Issues
This violation appears when a signal diverges, gets synchronized by the
same-domain synchronizers on the divergent paths, and then finally the
signal converge on a combinational element.

Consequences of Not Fixing
If you do not gray encode converging signals, there may be data coherency
issues that may cause chip failure.

How to Debug and Fix
See How to Debug and Fix.

Message 3

The following message appears for the Partially-Proved status at the
location where signals converge:
1225
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
[AcCv2_3] [WARNING] <num> synchronizers <sig-names> converge on
<gate-type> '<gate-name>'. Gray encoding check: 'Partially-
Proved'

For information on the arguments of the above message, see Table 5.

Potential Issues
This violation appears when multiple same domain synchronized signals
converge.

Consequences of Not Fixing
If you do not gray encode converging signals, there may be data coherency
issues and may cause chip failure.

How to Debug and Fix
See How to Debug and Fix.

In addition, for the Partially Proved status, perform the following actions:
 Increase assertion run-time by using fa_atime parameter.

 Use the incremental analysis approach by using the fa_propfile
parameter.

 Use the fa_abstract parameter to apply abstraction technique to reduce
complex verification problem into simpler and solvable problem.

Message 4

The following message appears for the Partially-Proved status at the
location where signals diverge and then converge:

[AcCv2_3_coherency02] [WARNING] <num> synchronizers <sig-names>
converge on <gate-type> '<gate-name>' (same source divergence).
Gray encoding check: 'Partially-Proved'

Potential Issues
This violation appears when a signal diverges, gets synchronized by the
same-domain synchronizers on the divergent paths, and then finally the
signal converge on a combinational element.
1226
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Consequences of Not Fixing
If you do not gray encode converging signals, there may be data coherency
issues and may cause chip failure.

How to Debug and Fix
See How to Debug and Fix.

In addition, for the Partially Proved status, perform the following actions:
 Increase assertion run-time by using fa_atime parameter.

 Use the incremental analysis approach by using the fa_propfile
parameter.

 Use the fa_abstract parameter to apply abstraction technique to reduce
complex verification problem into simpler and solvable problem.

Message 5

The following message appears for the Passed or DISABLED status at the
location where signals converge:

[AcCv2_4] [WARNING/INFO] <num> synchronizers <sig-names>
converge on <gate-type> '<gate-name>'. Gray encoding check:
'<Passed | DISABLED>'

For information on the arguments of the above message, see Table 5.

Potential Issues
Not applicable

Consequences of Not Fixing
Not applicable

How to Debug and Fix
See How to Debug and Fix.

If the status is DISABLED, check if any of the following situations is
resulting in blocking the rule to perform functional check:
1227
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
 In case of non-availability of advanced SpyGlass CDC solution license,
check the Ac_license01 rule violation, if any.

 In case of more than one top specified, check the Ac_multitop01 rule
violation, if any.

 In case of over-constraining, check the Ac_sanity04 rule violation, if
any.

 Check if the fa_msgmode parameter is set to none.

If the status is PASSED, no debugging is required.

Example Code and/or Schematic

Example 1

Consider the following schematic of a violation reported by the Ac_conv02
rule:

FIGURE 206. Schematic of the Ac_conv02 Rule Violation

In the above example, two same domain synchronizers, sync7 and sync8,
which are synchronized in the same domain by using Conventional Multi-Flop
1228
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Synchronization Scheme, are converging on the AND gate and are not gray-
encoded.

To fix this violation, check if this convergence is expected. If it is expected,
add a gray-encoder for the sources. However, if it is not expected, remove
the convergence.

Schematic Details

The Ac_conv02 rule highlights the paths from the converging signals to the
signal on which they converge. Different colors are used to highlight the
following:
 The net on which convergence is reported

 The paths from the output of synchronizers to the net on which
convergence is reported

 Synchronizers

 Crossing paths from sources to destination

 Sources of synchronizers.

 Same source reconvergence, that is the path from diverging net till
source of the synchronizer (optional)

Example 2 - Same Source Divergence

Consider the following rule-based spreadsheet of the Ac_conv02 rule:

FIGURE 207.

In the above spreadsheet, the second row shows details of the violation
related to same source divergence. Click the ID column of this row to open
the message-based spreadsheet of this violation. The following figure
shows the message-based spreadsheet:
1229
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
FIGURE 208.

The following figure shows the schematic of the violation shown in the
above spreadsheet:

FIGURE 209.

The above schematic shows the divergence and then convergence of the
src1 source that is synchronized in the same domain.

Example 3 - Common Net Driving Multiple Sources

In the spreadsheet shown in Figure 207, the first row shows the details of
the violation indicating a common net detected from a sequential fan-in
cone. This net drives multiple sources of converging synchronizers.

The following figure shows the message-based spreadsheet of this
violation:
1230
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
FIGURE 210.

The following figure shows the schematic of the above violation in which a
common net is driving multiple sources:

FIGURE 211.

Default Severity Label

The rule severity varies according to the assertion status as follows:
 FAILED: Error

 Partially-Proved/DISABLED: Warning

 PASSED: Info

 Others(Constraints-Conflict): Error

Rule Group

ADV_CLOCKS
1231
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Reports and Related Files

 Rule-based spreadsheet - Ac_conv02.csv
This spreadsheet shows all the Ac_conv02 rule violations in separate
rows. It is generated in the spyglass_reports/clock-reset/ directory.
To open this spreadsheet, right-click on the rule-name header in the
Results pane, and select the Spreadsheet Viewer option from the
shortcut menu.
Figure 207 shows an example of the rule-based spreadsheet of this rule.
The details of each column of this spreadsheet are described below:

NOTE: If you run the Ac_conv02 rule in the batch mode, the rule-based spreadsheet
contains an additional column, CSV File. This column shows the path of the

Column Description
ID Specifies a unique ID for a violation.
CONVERGING GATE Specifies the name of the converging gate.
GATE TYPE Specifies the type of converging gate.
NUMBER OF
SYNCHRONIZERS

Specifies the number of synchronizers present in the
path of the converging gate.

STATUS Specifies the gray-encoding status: FAILED, Partially-
Proved, PASSED/DISABLED, or Others(Constraints-
Conflict)

SOURCE
DIVERGENCE

Specifies if converging synchronizers are driven by a
common source net.
Possible values reported in this column are:
• Direct: At least one source of synchronized crossing

is driving multiple synchronizers.
• Combinational: At least one common net is

detected from combinational fan-in cone traversal,
which drives multiple sources of converging
synchronizers.

• Sequential: At least one common net is detected
from sequential fan-in cone traversal, which drives
multiple sources of converging synchronizers.

• No: No common net exists
SCALAR SOURCE Specifies Yes or No indicating if the source of all the

synchronized crossings is scalar or not.
WAIVED Specifies if the reported violation is waived.
1232
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
corresponding Message-based spreadsheet - ac_conv_<num>.csv. Refer to this
column to correlate the row of the rule-based spreadsheet with the corresponding
message-based spreadsheet.

NOTE:

 Message-based spreadsheet - ac_conv_<num>.csv
This spreadsheet shows details of the selected violation. It is generated
in the spyglass_reports/clock-reset/Ac_conv02/ directory.
To open this spreadsheet, click on the link in the ID column of the
rule-based spreadsheet. Alternatively, double-click on the violation of
this rule from GUI.
Figure 208 shows an example of the message-based spreadsheet of this
rule.
In this spreadsheet, there is a separate row for each converging
destination signal.
The details of each column are described below:

Column Description
Schematic Shows a link for schematic.
Type Specifies any of the following types:

• Converging Gate
• Destination flop
• Destination latch
• Destination library-cell
• Destination black-box
• Destination port

The first row is for a converging gate.
Signal Name Specifies the name of the signal.
Source(s) Specifies the source of the signal.
Diverging Net(s) (Optional) Specifies the name of the common net

that drives multiple sources. For details, see Example
3 - Common Net Driving Multiple Sources.
Note that this column appears only in case of a
common source driving multiple nets.

Destination Clock Specifies the destination clock of the signal.
1233
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
NOTE: In the message-based spreadsheet, some column values are not applicable for
the row of type "Converging Gate". The cells in such columns have the value "-".

 Ac_conv02.<ID>.OverConstrainInfo: This file contains details of conflicting
constraints. For details, see Overconstrain Info File.

 Ac_conv_detail.rpt: This report contains details of all the violations
detected by the Ac_conv01, Ac_conv02, and Ac_conv03 rules. For
details, see Ac_conv_detail.rpt.

Source Clock(s) Specifies the source clocks of the signal.
File:Line Specifies the design file name and line number where

the information pertaining to each row in this
spreadsheet is present.

Column Description
1234
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Ac_conv02Setup01
Setup rule for Ac_conv02

When to Use

This rule runs by default.

Description

This rule generates an info message about the
unrelated_coherent_signals.sgdc file generated for the violations of
the Ac_conv02 rule.

Parameter(s)

 cdc_gen_unrelated_coherency: Default value is no. Set this parameter to
yes to generate the unrelated_coherent_signals.sgdc file.

Constraint(s)

None

Messages and Suggested Fix

Message 1

The following message appears when a SGDC file is generated for any
converging signal:

SGDC file generated for design: '<design_name>' using candidate
combinational convergence"

Potential Issues
NA

Consequences of Not Fixing
NA

How to Debug and Fix
NA

Default Severity Label

Info
1235
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Reports and Related Files

The unrelated_coherent_signals.sgdc file is generated for the
Ac_conv02 rule violations.
1236
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Ac_conv03
Checks different domain signals synchronized in the same
destination domain and are converging

When to Use

Use this rule to check convergences of different domain signals that are
synchronized in the same domain.

Prerequisites

Specify clock signals in any of the following ways:
 By using the clock constraint

 By using the automatically generated clock signals after setting the
use_inferred_clocks parameter to yes

 By using a combination of both the above methods

Description

The details of the Ac_conv03 rule are covered under the following topics:
 Reasons for the Ac_conv03 Rule Violation

 Features of the Ac_conv03 Rule

 Handling MUXes by the Ac_conv03 Rule

Reasons for the Ac_conv03 Rule Violation

The Ac_conv03 rule reports different domain signals that converge after
satisfying the following conditions:
 Signals are synchronized by using any of the following schemes:

 Conventional Multi-Flop Synchronization Scheme

 Synchronizing Cell Synchronization Scheme

 Qualifier Synchronization Scheme

 Signals from different source domains are synchronized in the same
destination domain.

 Synchronized signals converge before a sequential element on some
net of the design.
Use the conv03_report_seq_conv parameter to enable reporting of
1237
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
convergences after sequential elements.
NOTE: If same convergence is seen on two nets, this rule reports convergence on the net

closest to the converging signal.

The following figure shows an example of convergence of signals coming
from different source clock domains.

FIGURE 212. Convergence of Signals from Different Source Domain Elements

NOTE: The Ac_conv03 rule reports sequential convergence (under the
conv03_report_seq_conv parameter setting) for bus-merged destination names.
But the schematic and depth is calculated for any one representative bit of this bus-
merged destination name. However, it may happen that the representative bit has
the depth 0 and a non-representative bit has a non-zero depth due to which it is
considered as sequential convergence. Therefore, it might seem as a combinational
convergence from depth/schematic, which is reported in sequential convergence.

Features of the Ac_conv03 Rule

Various features of the Ac_conv03 rule are as follows:
 It reports only one violation for different paths.

Outputs of synchronizers

clk2clk1

clk2clk3

Rule violating
signal
1238
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
 It performs convergence check for synchronizers that are in the same
destination domain but have sources from different domains.
However, this rule stops checking beyond the gate where a different
domain signal converges. The following figure illustrates this scenario:

FIGURE 213. No Rule-Checking Beyond the Gate Where a Different Domain Signal
Converges

 It ignores convergence of clock domain crossing signals specified by the
cdc_false_path constraint.

 It checks bus signals.

 It reports violations on the closest point as shown below:

clk1 clk2

clk3 clk2

clk1 clk3

clk3 clk2

Violation of
Ac_conv03 rule

No Violation of
Ac_conv03 rule
1239
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC

FIGURE 214. Ac_conv03 Rule Violation on the Closest Point

In the above figure, the Ac_conv03 rule reports a violation on G1, which
is closest to the converging signals.

 If two data crossings have a different control line, this rule reports
convergence for control signals if the conv03_report_seq_conv parameter
is set.
The following figure illustrates this scenario.

Outputs of synchronizers

clk2clk1

clk2clk3

Rule violating
signal

G1

G2
1240
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
FIGURE 215. Ac_conv03 Rule Violation on the Convergence of Control Signals

 It reports a violation on internal nets if the output cone of that net is
blocked due to set_case_analysis or design power/ground.

Handling MUXes by the Ac_conv03 Rule

On encountering a mux, this rule propagates convergences of all the data
input and control inputs. For example, in the following figure, the
convergence on the mux is propagated to the AND gate:

clk1

clk2

clk1

clk2

EN

S1

clk3

clk2

clk3

clk2

EN

S2

Violation for
convergence of
S1 and S2.
1241
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
FIGURE 216.

In the above scenario, the Ac_conv03 rule reports a violation at the AND
gate for the sync2, sync4, and sync6 synchronizers.

Parameter(s)

 conv03_report_seq_conv: Default value is no. Set this parameter to yes
to enable this rule to propagate synchronizers past sequential elements.

 conv_sync_as_src: Default value is no. Set this parameter to yes to
check convergence for synchronizers that are also used as a source in
other crossings.

 conv_clock_reset_path: Default value is no. Set this parameter to yes to
enable convergence detection of the synchronizer propagation through
the clock and reset pin.

 convergence_stop_at_mux: Default value is no. Set this parameter to yes
to stop propagation of relevant signals whenever an RTL MUX is
encountered.

 no_convergence_check: Default value is NULL. Specify net names that
should not be checked for convergence.

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.
1242
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
 enable_multiflop_sync: Default value is yes. Set this parameter to no to
disable the Conventional Multi-Flop Synchronization Scheme.

 cdc_reduce_pessimism: Default value is mbit_macro,
no_convergence_at_syncreset, no_convergence_at_enable.
Set this parameter to stop_conv_at_seq_lib to stop synchronizer
propagation across sequential library cell. For possible values, see
Allowed Values of the cdc_reduce_pessimism Parameter.

 cdc_compatible: Default value is no. Set this value to yes to make the
rules mentioned in the Used by section dependant on the Clock_sync*
rules data rather than The Ac_sync_group Rules data.

 clock_reduce_pessimism: Default value is latch_en, mux_sel_derived,
check_enable_for_glitch. Set the value of this parameter to
mux_sel to stop traversal of this rule when a clock signal reaches a
MUX. Other possible values are all, all_potential_clocks, and
ignore_same_domain.

 fa_num_cores: Default value is 0. Specify 2, 4, or 8 to specify the number
of cores to be used by a multi-core engine.

 show_source_in_spreadsheet: Default value is yes. Set this parameter to
no to generate a link from the spreadsheet of the Ac_conv01, Ac_conv02,
or Ac_conv03 rules to the message-based spreadsheet of The
Ac_sync_group Rules showing the source of synchronizers.

 reset_cross_seq: Default value is no. Set this parameter to yes to report
clock-domain crossings to the asynchronous reset pins of complex
library cells.

 fa_preprocess_engine: Default value is retime. Set this parameter to iso
to use the isomorphic reduction technique to optimize functional
verification. Other possible values are none and all.

 allow_combo_logic: Default value is no. Set this parameter to yes to
ignore combinational logic in the data transfer path between flip-flops at
clock domain crossing.

 allow_half_sync: Default value is yes. Set this parameter to no to not
treat half synchronizers as valid synchronizers.

 clock_gate_cell: Default value is NULL. Set the value of this parameter to
a comma or space-separated list of clock-gating cell names for the Clock-
Gating Cell Synchronization Scheme.
1243
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
 delayed_ptr_fifo: Default value is no. Set this parameter to yes when the
read/write pointers are delayed and the multiplexer inside the memory
is one-hot or implemented using gates.

 enable_and_sync: Default value is no. Set this parameter to yes to
enable the AND Gate Synchronization Scheme.

 enable_mux_dest_domain: Default value is none. Set this parameter to
none to turn off this parameter. Other possible values are mux, enable,
gp, cg, and, all, yes, and no.

 enable_mux_sync: Default value is recirculation. Set this parameter
to an appropriate value to enable a particular synchronization scheme.
Other possible values are none, mux_select, and all.

 enable_sync: Default value is yes. Set this parameter to no to disable
the Synchronized Enable Synchronization Scheme.

 enable_sync_cell: Default value is Default value is NULL. Set this
parameter to a list of synchronizer cells.

 filter_named_clocks: Default value is rst, reset, scan, set. Set this
parameter to a list of strings.

 glitch_protect_cell: Default value is NULL. Specify a comma or
space-separated list of glitch protection cell names for the Glitch
Protection Cell Synchronization Scheme.

 ignore_nets_clock_path_file_name: Default value is
ignore_nets_clock_path.txt. Specify a file containing hierarchical names of
nets (one name per line) so that SpyGlass halts clock propagation along
the path when any of these nets is encountered.

 ignore_num_rtl_buf_invs: Default value is many. Set this parameter to
one to allow one buffer and inverter. Other possible values are two and
none.

 num_flops: Default value is 2. Set this parameter to a positive integer
value greater than one to specify a minimum number of flip-flops
required for synchronizing a signal by using the Conventional Multi-Flop
Synchronization Scheme.

 one_cross_per_dest: Default value is yes. Set this parameter to no to
report all unsynchronized clock crossings for a destination.
1244
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
 report_inst_for_netlist: Default value is no. Set this parameter to yes to
report violating instance name in case of netlist designs and leaf-level
net name for RTL designs.

 strict_double_flop: Default value is no. Set this parameter to yes to mark
clock crossings as synchronized.

 strict_sync_check: Default value is no. Set this parameter to yes if scan
flip-flops are present.

 synchronize_cells: Default value is NULL. Specify a list of cells to this
parameter that are considered as valid synchronizers for scalar source
domain signals for the Synchronizing Cell Synchronization Scheme.

 synchronize_data_cells: Default value is NULL. Specify a list of cells to this
parameter that are considered as valid synchronizers for source domain
vector signals for the Synchronizing Cell Synchronization Scheme.

 sync_reset: Default value is no. Set this parameter to yes to allow at
most one gate of an AND/NAND/OR/NOR type to be the synchronous
reset for the flip-flop that follows.

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

 compute_num_convergences: Default value is 1. The maximum possible
value for compute_num_convergences is 10. Set this parameter to any
integer to specify the number of convergences to be computed for the
same set of synchronizers.

 coherency_check_type: Default value is control. Set this parameter to
reset to check convergence issues on control crossings of reset paths
only.

 show_parent_module_in_spreadsheet: Adds the PARENT_MODULE column
in the rule-based spreadsheet of the supported rules.

 same_domain_at_gate: Default value is no. Set the value of the
parameter to an allowed value to optimize the inference of domains on
clock merging gates.

Constraint(s)

 cdc_filter_coherency (Optional): Use this constraint to specify points at or
beyond which no convergence of signals should be reported.
1245
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
 no_convergence_check (Optional): Use this constraint to specify nets that
should not be checked for convergence.

NOTE: If you specify nets by using the no_convergence_check constraint as well as the
no_convergence_check parameter, SpyGlass considers the nets specified by both
the constraint and parameter.

 cdc_attribute (Optional): Use this constraint to specify mutually exclusive
and unrelated signals such that convergence-related violations are
suppressed for such signals.

NOTE: The cdc_attribute constraint is the preferred constraint over the
cdc_filter_coherency and the no_convergence_check constraints to specify
unrelated signals.

 cdc_false_path (Optional): Use this constraint to specify false paths so
that clock-domain crossings along these paths are ignored for rule
checking.

 clock (Optional): Use this constraint to specify clock signals in a design.

 ip_block (Optional): Use this constraint to specify IP blocks in your
design.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

 num_flops (Optional): Use this constraint to specify the minimum
number of flip-flops required in a synchronizer chain.

 output_not_used (Optional): Use this constraint to specify a primary
output port.

 reset (Optional): Use this constraint to specify reset signals in a design.

 signal_in_domain (Optional): Use this constraint to specify a domain for
output pins of black box instances.

 sync_cell (Optional): Use this constraint to specify synchronizer cells that
should be considered valid for crossings that contain specified
frequencies, source/destination clocks, or domains.

 allow_combo_logic (Optional): Use this constraint to allow combinational
logic between crossings only if the logic is within the modules specified
by using this constraint.

 quasi_static (Optional): Use this constraint to specify signals for which
the value is predominantly static.
1246
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Messages and Suggested Fix

The following message appears at the location where two or more signals
converge:

[AcCv3_1] [WARNING] <num> synchronizers <sig-names> converge on
<gate-type> '<gate-name>'. '

The arguments of the above message are explained below:

Potential Issues
This violation appears when signals from different clock domains are
synchronized in the same clock domain and they converge.

Consequences of Not Fixing
If you do not fix this violation, convergence of synchronizers from different
domains can cause data coherency. This may result in chip failure.

How to Debug and Fix
To debug and fix the violation, perform the following steps:
1. Open the rule-based spreadsheet.

For details on this spreadsheet, see Rule-based spreadsheet -

Argument Description
<num> Number of synchronized signals
<sig-names> Comma separated list of synchronized destination output

net names.
When the design is a netlist design and the
report_inst_for_netlist parameter is set to yes, the rule
reports a comma-separated list of synchronized
destination output instance names.

<gate-type> Gate type, such as MUX, combinational gate, flop,
latch, sequential library-cell, or black-
box

<gate-name> Name of the gate output on which convergence occurs.
When the report_inst_for_netlist parameter is set to yes,
the instance pin is reported.
1247
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Ac_conv03.csv.
2. In the rule-based spreadsheet, click on the ID column of the violation to

be debugged. The message-based spreadsheet appears showing the
violation details.
For details on this spreadsheet, see Message-based spreadsheet -
ac_conv_<num>.csv.

3. View the schematic of the violation by clicking on the link in the
Schematic column of the message-based spreadsheet.
In the schematic, analyze the path of convergence of synchronizers.

4. Based on the information in the spreadsheet and the schematic, perform
appropriate actions, as described below:
 If convergence is reported for signals that are in an IP and you do not

want violations to be reported within the IP, specify that IP in the
ip_block constraint.

 If convergence is for static signals, use the cdc_false_path or
quasi_static constraints.

 If the path of synchronizers confirms that synchronizers cannot
functionally control the converging net at the same time, waive the
violation.

 If some of the intermediate nets in the path confirm exclusivity
between the synchronizers, specify such nets to the
no_convergence_check parameter.

 If convergence is happening at a mux, you may use the
convergence_stop_at_mux parameter to stop propagation of
convergences beyond the mux output.

 If you want to stop propagation of convergences beyond a particular
net, pin, or instance, specify such net, pin, or instance to the
-stop_points argument of the cdc_filter_coherency constraint.

 If you do not want convergence to be reported at a particular net,
pin, or instance, specify such net, pin, or instance to the
-conv_gates argument of the cdc_filter_coherency constraint.

 If you do not want convergence to be reported for certain set of
signals, pins, or instances, which are either destination or sources,
specify such set of signals, pins, or instances to the -unrelated
argument of the cdc_filter_coherency constraint.
1248
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Example Code and/or Schematic

Consider the following schematic of a violation of this rule:

FIGURE 217. Schematic of the Ac_conv03 Rule Violation

In the above example, three different domain source signals, dff1.q_reg,
dff2.q_reg, and dff3.q_reg, which are synchronized in the same
domain by using Conventional Multi-Flop Synchronization Scheme are
converging on the AND gate. Different domain source are highlighted in
different colors.

Schematic Details

The schematic displays the paths from the converging signals to the signal
on which they converge.

Different colors are used to highlight the following information:
 Each signal converging from a particular domain

Signals from the same domain are shown in the same color. If signals
are converging from different domains, unique colors are used to
differentiate them.
Maximum 16 different colors are supported for this purpose. Beyond this
limit, signals from different domains are highlighted in a default color.
1249
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
This default color is also used if the domain of a signal cannot be
ascertained.

 Synchronizers

 Signals driving the synchronizers

 Paths from the output of synchronizers to the net on which convergence
is reported

 Net on which convergence is reported

Default Severity Label

Warning

Rule Group

ADV_CLOCKS

Reports and Related Files

 Rule-based spreadsheet - Ac_conv03.csv
This spreadsheet shows all the Ac_conv03 rule violations in separate
rows.
To open this spreadsheet, right-click on the rule-name header in the
Results pane, and select the Spreadsheet Viewer option from the
shortcut menu.

NOTE: This spreadsheet is generated in the spyglass_reports/clock-reset/ directory.
The following figure shows an example of the rule-based spreadsheet of
this rule:

FIGURE 218. Rule-based spreadsheet of the Ac_conv03 rule

The details of each column of the above spreadsheet are described
below:
1250
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
NOTE: If you run the Ac_conv03 rule in the batch mode, the rule-based spreadsheet
contains an additional column, CSV File. This column shows the path of the
corresponding Message-based spreadsheet - ac_conv_<num>.csv. Refer to this
column to correlate the row of the rule-based spreadsheet with the corresponding
message-based spreadsheet.

 Message-based spreadsheet - ac_conv_<num>.csv
This spreadsheet shows details of the selected violation.
To open this spreadsheet, click on the link in the ID column of the rule-
based spreadsheet. Alternatively, double-click on the violation of this
rule from GUI.

NOTE: This spreadsheet is generated in the spyglass_reports/clock-reset/Ac_conv03/
directory.
The following figure shows an example of the message-based
spreadsheet for this rule:

Column Description
ID Specifies a unique ID for a violation.
CONVERGING GATE Specifies the name of the converging gate.
GATE TYPE Specifies the type of converging gate.
NUMBER OF
SYNCHRONIZERS

Specifies the number of synchronizers present in the
path of the converging gate.

SCALAR SOURCE Specifies Yes or No indicating if the source of all the
synchronized crossings is scalar or not.

MAX. DEPTH Specifies the maximum synchronizer depth from any
synchronizer to a converging point. This is an integer
value.

MIN. DEPTH Specifies the minimum synchronizer depth from any
synchronizer to a converging point. This is an integer
value.

AVG DEPTH Specifies the average depth from a source to a
converging point. This is a float value.

SAME DEPTH
CONVERGENCE

Specifies yes when multiple synchronizers exist with
the same depth in convergence.
Else, the value No is reported.

WAIVED Specifies if the reported violation is waived.
1251
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
FIGURE 219. Message-based spreadsheet of the Ac_conv03 rule

In the above spreadsheet, there is a separate row for each converging
destination signal.
The details of each column are described below:

Column Description
Schematic Shows a link for schematic.
Type Specifies any of the following types:

• Converging Gate
• Destination flop
• Destination latch
• Destination library-cell
• Destination black-box
• Destination port

The first row is for a converging gate.
Signal Name Specifies the name of the signal.
Sequential Depth Specifies the depth from a synchronizer till the

converging gate.
Source(s) Specifies the source of the signal.
Destination Clock(s) Specifies the destination clock of the signal.
Source Clocks Specifies the name of source clocks for each signal.
File: Line Specifies the design file name and line number where

the information pertaining to each row in this
spreadsheet is present
1252
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
NOTE: In the message-based spreadsheet, some column values are not applicable for
the row of type "Converging Gate". The cells in such columns have the value "-".

 Ac_conv_detail.rpt: This report contains details of all the violations
detected by the Ac_conv01, Ac_conv02, and Ac_conv03 rules. For
details, see Ac_conv_detail.rpt.
1253
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Ac_conv04
Checks all the control-bus clock domain crossings that neither
converge nor follow gray encoding

When to Use

Use this rule to check for coherency issues in the synchronized clock
domain crossings to control bus signals.

Description

The Ac_conv04 rule reports a violation in the following cases:
 Synchronized control-bus clock domain crossings do not follow gray

encoding
Only those synchronized control-bus clock domain crossings are
checked by this rule that do not converge and therefore, are not
reported by Ac_conv01 and Ac_conv02 rules.
This rule checks only those multi bit control buses that are synchronized
by any of the following synchronization schemes:
 Conventional Multi-Flop Synchronization Scheme

 Synchronizing Cell Synchronization Scheme, provided you have specified
the synchronizer cells by using the synchronize_cells parameter (for
cells whose output pin is connected to a scalar net) or by using the
synchronize_data_cells parameter (for cells for which an output pin is
connected to a vector net).

 Qualifier Synchronization Scheme Using qualifier -crossing

For example, consider the scenario shown in the following figure:
1254
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
FIGURE 220. Scenario of Ac_conv04 Rule Violation

In the above scenario, the Ac_conv04 rule reports a violation if the input
of destination flip-flops is not gray encoded.

 If different synchronization schemes or different enable signals are used
for the source bus bits, as shown in the following figure:

clk2clk1

Domain BDomain A

Clock Domain Crossing Synchronizer

Violation

clk2

clk1 clk2 clk2Combinational
Logic

q[0]

q[1]

out[0]

out[1]

d[0]

d[1]
1255
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
FIGURE 221. Scenario of Ac_conv04 Rule Violation

 If the source bus bits do not have a common enable or select signals, as
shown in the following figure:

src_bus[0]

src_bus[1]

Synchronized by using
multi-flop synchronization
scheme

Synchronized by using
synchronized enable
synchronization scheme

C1 C2 C2

C1
C2 EN

C2C2C2
1256
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
FIGURE 222. Scenario of Ac_conv04 Rule Violation

The Ac_conv04 rule reports a violation in the above case only if such
case is not reported by the Ac_conv01, Ac_conv02, and Ac_conv03 rules.

Rule Exceptions

The Ac_conv04 rule does not check for the bus signals that get converged
and are reported by the Ac_conv01, Ac_conv02, and Ac_conv03 rules.

Parameter(s)

 allow_combo_logic: Default value is no. Set this parameter to yes to
ignore combinational logic in the data transfer path between flip-flops at
clock domain crossing.

 fa_grayhold: Default value is no. Set this parameter to yes to checks for
gray-encoding at the output of a destination instance with respect to a
destination clock.

src_bus[0]

sync_en1

src_bus[1]

sync_en2
1257
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
 fa_num_cores: Default value is 0. Specify 2, 4, or 8 to specify the number
of cores to be used by a multi-core engine.

 num_flops: Default value is 2. Set this parameter to a positive integer
value greater than one to specify a minimum number of flip-flops
required for synchronizing a signal by using the Conventional Multi-Flop
Synchronization Scheme.

 sync_reset: Default value is no. Set this parameter to yes to allow at
most one gate of an AND/NAND/OR/NOR type to be the synchronous
reset for the flip-flop that follows.

 synchronize_cells: Default value is NULL. Specify a list of cells to this
parameter that are considered as valid synchronizers for scalar source
domain signals for the Synchronizing Cell Synchronization Scheme.

 synchronize_data_cells: Default value is NULL. Specify a list of cells to this
parameter that are considered as valid synchronizers for source domain
vector signals for the Synchronizing Cell Synchronization Scheme.

 fa_multicore: Default value is no. Set this parameter to yes to invoke the
multi core engine of SpyGlass for solving complex assertions.

 fa_meta: Default value is no. Set this parameter to yes to enable formal
modeling of metastability.

 fa_msgmode: Default value is fail, pp, coverage. Set this parameter
to all to report all the types of assertions. Other possible values are
no_msg, audit, and none.

 reset_cross_seq: Default value is no. Set this parameter to yes to report
clock-domain crossings to the asynchronous reset pins of complex
library cells.

 fa_preprocess_engine: Default value is retime. Set this parameter to iso
to use the isomorphic reduction technique to optimize functional
verification. Other possible values are none and all.

 reset_reduce_pessimism: Default value is
filter_unused_synchronizer, same_data_reset_flop. Set the
value of this parameter to all_potential_resets to detect all the
potential resets in a design. For information on the other possible
values, see Possible Values to the reset_reduce_pessimism Parameter.

 show_parent_module_in_spreadsheet: Adds the PARENT_MODULE column
in the rule-based spreadsheet of the supported rules.
1258
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Constraint(s)

 cdc_filter_coherency (Optional): Use this constraint to specify points at or
beyond which no convergence of signals should be reported.

 clock (Optional): Use this constraint to specify clocks in a design.

 reset (Optional): Use this constraint to specify reset signals in a design.

 num_flops (Optional): Use this constraint to specify a minimum number
of flip-flops required in a synchronizer chain.

 sync_cell (Optional): Use this constraint to specify synchronizer cells that
should be considered valid for crossings that contain specified
frequencies, source/destination clocks, or domains.

 qualifier (Optional): Use this constraint to specify a qualifier for
synchronizing a clock domain crossing.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

 cdc_false_path (Optional): Use this constraint to suppress clock domain
crossing checks for false paths.

 cdc_attribute (Optional): Use this constraint to specify mutually exclusive
and unrelated signals such that convergence-related violations are
suppressed for such signals.

Messages and Suggested Fix

Message 1

The following message reports the FAILED or Others (Constraints-
Conflict) status for a control bus that crosses a synchronized clock-
domain crossing but does not follow gray encoding:

[AcCv4_1] [ERROR] Control destination bus <bus-name> has a
clock domain crossing. Gray encoding check : <FAILED | Others
(Constraints-Conflict)>

Potential Issues
This violation appears if a control bus that crosses a clock-domain crossing
is not gray encoded.
1259
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Consequences of Not Fixing
If you do not fix this violation, the data in the crossing may be lost.

How to Debug and Fix
See How to Debug and Fix of the Ac_cdc08 rule.

Message 2

The following message reports the Partially-Proved status for a
control bus that crosses a synchronized clock-domain crossing but does not
follow gray encoding:

[AcCv4_2] [WARNING] Control destination bus <bus-name> has a
clock domain crossing. Gray encoding check : Partially-Proved

Potential Issues
This violation appears if a control bus that crosses a clock-domain crossing
is not gray encoded.

Consequences of Not Fixing
If you do not fix this violation, the data in the crossing may be lost.

How to Debug and Fix
See How to Debug and Fix of the Ac_cdc08 rule.

Message 3

The following message reports the Passed status for a control bus that
crosses a synchronized clock-domain crossing but does not follow gray
encoding:

[AcCv4_4] [INFO] Control destination bus <bus-name> has a clock
domain crossing. Gray encoding check : Passed

Potential Issues
1260
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Not applicable

Consequences of Not Fixing
Not applicable

How to Debug and Fix
See How to Debug and Fix of the Ac_cdc08 rule.

Message 4

The following message appears if at least two bits of the source bus are not
uniformly synchronized to the destination bus:

[AcCv4_5] [WARNING] At least two bits (<bit-num1>, <bit-num2>)
of source bus "<source-bus>" are not uniformly synchronized to
destination bus "<destination-bus>". Reason: <reason>

The arguments of the above message are explained below:

Potential Issues
This violation appears when your design contains any of the following bus:
 A bus for which different bits are synchronized by different

synchronization schemes.
 A bus for which different bits use different enable or select signals.

Consequences of Not Fixing

Argument Description
<bit-num1> Name of one of the bit of the source bus
<bit-num2> Name of one of the bit of the source bus
<source-bus> Name of the source bus
<destination-bus> Name of the destination bus
<reason> Specifies any of the following reasons:

• Different synchronization schemes used
• Different enable signal used
1261
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
If you do not fix this violation, the bus bits may change at the same time.
This may result in data coherency problem that can cause chip failure.

How to Debug and Fix
Based on the reason reported in the violation message, perform
appropriate actions to debug the violation, as described below:
 If bus bits are synchronized by different synchronization schemes

Action: To debug such cases, view the Incremental Schematic of the
violation message.
The following figure displays a sample schematic of this message:

FIGURE 223. Bus Bits Synchronized by Different Synchronization Schemes

In the above schematic, notice that bits of the test.q bus are
synchronized by different synchronization schemes.
You can also view case analysis settings along with the violations of this
rule.
1262
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
 If the bus bits use different enable or select signals.

Action: To debug this message, view the Incremental Schematic of the
violation message.
The following figure displays a schematic for this violation:

FIGURE 224. Bus Bits Using Different Enable or Select Signals

In the above schematic, notice that different synchronized enable
signals are being used for different bus-bits.
You can also view case analysis settings along with the violations of this
rule.

Message 5

The following message appears for the Passed or DISABLED status at the
location where signals converge:
1263
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
[AcCv4_5] [WARNING/INFO] Control destination bus <bus-name> has
a clock domain crossing. Gray encoding check : '<Passed |
DISABLED>'

Potential Issues
Not applicable

Consequences of Not Fixing
Not applicable

How to Debug and Fix
See How to Debug and Fix.

If the status is DISABLED, check if any of the following situations is
resulting in blocking the rule to perform functional check:
 In case of non-availability of advanced SpyGlass CDC solution license,

check the Ac_license01 rule violation, if any.
 In case of more than one top specified, check the Ac_multitop01 rule

violation, if any.
 In case of over-constraining, check the Ac_sanity04 rule violation, if

any.
 Check if the fa_msgmode parameter is set to none.

If the status is PASSED, no debugging is required.

Example Code and/or Schematic

See How to Debug and Fix of this rule.

Rule Group

ADV_CLOCKS

Default Severity Label

The rule severity varies according to the assertion status as follows:
1264
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
 FAILED: Error

 Partially-Proved/DISABLED: Warning

 PASSED: Info

 Others(Constraints-Conflict): Error

Reports and Related Files

The Advanced CDC Report
1265
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Ac_conv05
Performs gray-encoding checks on signals

When to Use

Use this rule to perform gray-encoding checks on the signals specified by
the gray_signals constraint.

Prerequisites

Use the gray_signals constraint to specify the signals that should be checked
for gray encoding.

Description

The Ac_conv05 rule reports the status of gray encoding check performed
on the signals specified by the gray_signals constraint.

Parameter(s)

 fa_multicore: Default value is no. Set this parameter to yes to invoke the
multi core engine of SpyGlass for solving complex assertions.

 fa_meta: Default value is no. Set this parameter to yes to enable formal
modeling of metastability.

 fa_num_cores: Default value is 0. Specify 2, 4, or 8 to specify the number
of cores to be used by a multi-core engine.

 fa_msgmode: Default value is fail, pp, coverage. Set this parameter
to all to report all the types of assertions. Other possible values are
no_msg, audit, and none.

 reset_cross_seq: Default value is no. Set this parameter to yes to report
clock-domain crossings to the asynchronous reset pins of complex
library cells.

 fa_preprocess_engine: Default value is retime. Set this parameter to iso
to use the isomorphic reduction technique to optimize functional
verification. Other possible values are none and all.

 reset_reduce_pessimism: Default value is
filter_unused_synchronizer, same_data_reset_flop. Set the
value of this parameter to all_potential_resets to detect all the
potential resets in a design. For information on the other possible
values, see Possible Values to the reset_reduce_pessimism Parameter.
1266
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
 show_parent_module_in_spreadsheet: Adds the PARENT_MODULE column
in the rule-based spreadsheet of the supported rules.

Constraint(s)

 gray_signals (Mandatory): Use this constraint to specify signals for which
gray encoding checks should be performed.

 clock (Optional): Use this constraint to specify clocks in a design.

 reset (Optional): Use this constraint to specify reset signals in a design.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

 cdc_false_path (Optional): Use this constraint to suppress clock domain
crossing checks for false paths.

Messages and Suggested Fix

Message 1

The following message appears to shows the FAILED or OTHERS
(Constraint-Conflict) status of the gray encoding check:

[AcCv5_1] [ERROR] Signals '<signal-name>' checked for gray
coding. Status: <FAILED | OTHERS (Constraint-Conflict)>

Potential Issues
None

Consequences of Not Fixing
If you do not fix this violation, there may be data coherency issues and
may cause chip failure.

How to Debug and Fix
See How to Debug and Fix of the Ac_cdc08 rule.

Message 2

The following message appears to shows the Partially-Proved status
1267
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
of the gray encoding check:

[AcCv5_2] [WARNING] Signals '<signal-name>' checked for gray
coding. Status: Partially-Proved

Potential Issues
None

Consequences of Not Fixing
If you do not fix this violation, there may be data coherency issues and
may cause chip failure.

How to Debug and Fix
See How to Debug and Fix of the Ac_cdc08 rule.

Message 3

The following message appears to shows the Passed status of the gray
encoding check:

[AcCv5_3] [INFO] Signals '<signal-name>' checked for gray
coding. Status: Passed

Potential Issues
Not applicable

Consequences of Not Fixing
Not applicable

How to Debug and Fix
See How to Debug and Fix of the Ac_cdc08 rule.

Example Code and/or Schematic

See Example Code and/or Schematic.
1268
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Rule Group

ADV_CLOCKS

Default Severity Label

Error | Warning | Info
1269
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Ac_datahold01a
Checks the functional synchronization of synchronized data
crossings

When to Use

Use this rule to verify the correctness of synchronized data clock domain
crossings in a design.

Prerequisites

The Ac_datahold01a rule works only with the Advanced_CDC and
adv_checker license features.

Description

The Ac_datahold01a rule reports synchronized data clock domain crossings
where data can be unstable when the enable is active.

NOTE: This rule checks synchronized data crossings detected by the Ac_sync01 and
Ac_sync02 rules.

This rule checks data crossings synchronized by all synchronization
schemes except the Clock-Gating Cell Synchronization Scheme because
crossings synchronized by this scheme is checked by other SpyGlass CDC
rules.

NOTE: This rule is switched off by default.

For additional details, refer the Using the Hybrid CDC Flow section.

Rule Exceptions

It does not perform functional verification if the source of a crossing is a
library cell without functional view.

Parameter(s)

 cdc_qualifier_depth: Default value is -1. Specify a positive integer value
indicating the depth of sequential logic till which a qualifier should be
searched.

 cdc_qualifier_depth_start: Default value is num_flop. Set this parameter
to sync_chain so that the last flip-flop of the synchronization chain is
the starting point beyond which a qualifier should be searched. Other
possible value is dest.
1270
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
 cdc_effective_bus_verif: Default value is none. Set this parameter to
Ac_datahold01a to generate a single property for all the bits of
destination sources with the same destination enable expression.

 fa_abstract: Default value is Ac_handshake01, Ac_glitch03. Set the value
of this parameter to Ac_cdc08 to enable abstraction for this rule. Other
possible values are all, none or a list of any of rules:
Ac_handshake01, Ac_cdc08, Ac_conv02, Clock_sync03a, Ac_fifo01, and
Ac_glitch03.

 fa_audit: Default value is no. Set this parameter to yes to not perform
functional analysis.

 fa_dump_hybrid: Default value is partial. Set this parameter to all to
generate SVA for all the types of assertions (pass, fail, partially-proved).
The other possible values are pass, fail, +fail, and none.

 fa_hide_complex_expr: Default value is yes. Set this parameter to no to
generate the actual enable expression instead of the <complex enable
expression> string.

 fa_holdmargin_window: Default value is 0. Set this parameter to 1 to
control setup and hold margins of one clock edge with respect to each
data change.

 fa_msgmode: Default value is fail, pp, coverage. Set this parameter
to all to report all the types of assertions. Other possible values are
no_msg, audit, and none.

 fa_num_cores: Default value is 0. Specify 2, 4, or 8 to specify the number
of cores to be used by a multi-core engine.

 allow_combo_logic: Default value is no. Set this parameter to yes to
ignore combinational logic in the data transfer path between flip-flops at
clock domain crossing.

 sync_reset: Default value is no. Set this parameter to yes to allow at
most one gate of an AND/NAND/OR/NOR type to be the synchronous
reset for the flip-flop that follows.

 strict_sync_check: Default value is no. Set this parameter to yes if scan
flip-flops are present.

 cdc_dump_assertions: Default value is "". Set this parameter to sva to
generate SystemVerilog Assertions (SVA) corresponding to the rules and
the design assumptions specified in an SGDC file.
1271
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
 fa_multicore: Default value is no. Set this parameter to yes to invoke the
multi core engine of SpyGlass for solving complex assertions.

 fa_meta: Default value is no. Set this parameter to yes to enable formal
modeling of metastability.

 report_instance_pin: Default value is no. Set this parameter to yes to
report the name of instance pin of a netlist design. Other possible values
are flop, latch, bbox, seqCell, and all.

 reset_cross_seq: Default value is no. Set this parameter to yes to report
clock-domain crossings to the asynchronous reset pins of complex
library cells.

 fa_preprocess_engine: Default value is retime. Set this parameter to iso
to use the isomorphic reduction technique to optimize functional
verification. Other possible values are none and all.

 reset_reduce_pessimism: Default value is
filter_unused_synchronizer, same_data_reset_flop. Set the
value of this parameter to all_potential_resets to detect all the
potential resets in a design. For information on the other possible
values, see Possible Values to the reset_reduce_pessimism Parameter.

 auto_detect_datahold01_enable: Default value is yes. Set this parameter
to no to reuse the enable expressions from the Ac_sync rule.

 fa_hybrid_report_hier: Default value is no. Set the value of the parameter
to yes to enable the supported rules to report the top-level hierarchical
names in the SVA Hybrid flow.

Constraint(s)

 clock (Mandatory): Use this constraint to specify clock signals.

 reset (Optional): Use this constraint to specify reset signals in your
design.

 set_case_analysis (Optional): Use this constraint to specify case-analysis
signals.

 input (Optional): Use this constraint to specify clock domain at input
ports.

 monitor_time (Optional): Use to specify the design initialization time
frames during simulation. The rest of the simulation time is considered
as the design's functional time.
1272
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
 meta_design_hier (Optional): Use to specify the test bench name and
design instance name in the SGDC file.

 cdc_false_path (Optional): Use this constraint to specify false paths so
that clock-domain crossings along these paths are ignored for
rule-checking.

Messages and Suggested Fix

This rule reports the following message:

Synchronized crossing: destination <type1> '<name1>', clocked
by '<clock-name1>', source <type2> '<name2>', clocked by
'<clock-name2>'. Data-enable sequencing check: <status>

The arguments of the above message are explained below:

Argument Description
<type1> The values can be flop, latch, library-cell,

black box, or primary output
<name1> Destination net name for RTL designs.

Destination instance name for netlist designs, if the
report_inst_for_netlist parameter is set to yes. To report
the hierarchical pin name of the destination instance, set
the report_instance_pin parameter to yes.

<clock-name1> Destination clock name
<type2> The values can be flop, latch, library-cell,

black box, or primary output
<name2> Source net name in case of RTL designs.

Source instance name in case of netlist designs, if the
report_inst_for_netlist parameter is set to yes. Otherwise,
it is source net name.

<clock-name2> Source clock name
<status> Specifies the assertion status that can be any of the

following:
• PASSED
• FAILED
• Partially-Proved
• Other (Constraints-conflict)
• DISABLED
1273
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Potential Issues
This violation appears if your design contains a source that is not
synchronized correctly by a set of qualifiers and destination domain
flip-flops.

Consequences of Not Fixing
If you do not fix this violation, data change may not be captured properly.

How to Debug and Fix
To debug the violation of this rule, perform appropriate actions based on
the status of violation messages, as described below:
 If the status of data enable sequencing check is PASSED (Info)

This is an informational message and does not require debugging.
By default, SpyGlass does not show data enable sequencing checks that
passed the verification. To view them, set the fa_msgmode parameter to
all or pass.

 If the status is FAILED (Error)

Open the Waveform Viewer window corresponding to the message, and
check the marker that appears on the waveform. This marker is
positioned at a transition where enable is high at a point when data is
still unstable.
The fa_holdmargin_window parameter is used to enforce a margin
between data stabilization and enable activation. By default, its value is
zero, which implies that data can change at the same time as enable
activation. If you are sure that your data needs one clock cycle to
stabilize and then enable should be activated, change the value of the
fa_holdmargin_window parameter to 1.

For example, consider the following Waveform Viewer window:
1274
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
FIGURE 225. The Waveform Viewer Window

In the above waveform, the enable and data change at the same cycle
(when the value of fa_holdmargin_window is set to 1), and therefore
causing a fail to appear.
Some of the reasons that may cause false failures are as follows:
 Presence of potential reset/clear signal causing such violation.

In this case, provide the reset/clear in the constraint file as a reset.
 The setup (clock, reset, set_case_analysis, and input constraints) is not

correct and complete.
In this case, use Formal Setup Rules to check for the correctness of the
setup.

 The initial state values in the waveform viewer are not correct.
In this case, provide correct initial state in the constraints file or
provide a VCD file from which an initial state can be loaded.

 If the status is Partially-Proved - Partially Proved (Warning)
This happens when SpyGlass is not able to conclude (falsify or prove)
data enable sequencing check in the given amount of time. In this case,
you need to help the tool complete the analysis. You may try following
1275
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
options for better results:
 Increase assertion run-time by using the fa_atime parameter.

 Use incremental analysis approach by using the fa_propfile parameter.

 Use the fa_flopcount, fa_seqdepth, and fa_scope parameters to reduce
complex verification problem into simpler and solvable problem.

 If the status is DISABLED (Warning or Info)
SpyGlass reports the status as DISABLED under the Info or Warning
severity in the following cases:
 If a crossing checked by the Ac_sync01 or Ac_sync02 rule is reported to

be synchronized by the Clock-Gating Cell Synchronization Scheme:
 Such crossings are not considered for functional checking.

 Such crossings are reported as DISABLED under the Info severity
by the Ac_datahold01a rule.

 The reason for the DISABLED status is reported as the
synchronization method, as shown in the following example:

Synchronized crossing: destination <type1>
'<name1>', clocked by '<clock-name1>', source
<type2> '<name2>', clocked by '<clock-name2>'.
Data-enable sequencing check: DISABLED (<reason>)

Where, <reason> can be Clock Gate Synchronization
(auto-detected clock gating).

 If the Ac_datahold01a rule cannot check crossing reported by the
Ac_sync01 or Ac_sync02 rule functionally, the Ac_datahold01a rule
reports such crossings as DISABLED under the Warning severity.
A crossing cannot be checked functionally in this case because of the
following reasons:
 Source is an input port defined by the abstract_port constraint.

 Source is a black box terminal.

 Source clock is a virtual clock.

 Source is a library-cell without functional view
The reason for the DISABLED status in this case is reported in the
following way:

Synchronized crossing: destination <type1>
1276
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
'<name1>', clocked by '<clock-name1>', source
<type2> '<name2>', clocked by '<clock-name2>'.
Data-enable sequencing check: DISABLED (<reason>)

Where, <reason> can be Virtual clock defined on source
port, Source is black-box, abstract_port constraint on
source port, or source is a library-cell without
functional view.

Also see Performing Functional Analysis in SpyGlass CDC.

Example Code and/or Schematic

Consider the following spreadsheet of the Ac_datahold01a rule violation
that is reported when fa_holdmargin_window is set to 1:

FIGURE 226. The Spreadsheet Generated by the Ac_datahold01a Rule

The above spreadsheet shows two rows to display details of source and
destination in a crossing in which data is unstable.

To view the schematic of the above violation, click a cell in the Schematic
column and click the button in the spreadsheet tool bar.

The following figure shows the schematic of this violation:
1277
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
FIGURE 227. Schematic of the Ac_datahold01a Rule Violation

The above schematic shows the crossing at which data is unstable. To fix
this violation, ensure that there is sufficient margin between data change
and enable change.

Schematic Highlight

This rule highlights the following details in different colors in the schematic:
 Source clock and its instance.

 Destination clock and its instance.

 Clock domain crossing including any combinational logic.

 Synchronizer as identified by the Ac_sync01 and Ac_sync02 rules.

Default Severity Label

The rule severity varies according to the assertion status as follows:
 FAILED: Error

 Partially-Proved: Warning

 PASSED: Info

 Others(Constraints-Conflict): Error

Rule Group

ADV_CLOCKS
1278
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Reports and Related Files

 Ac_datahold01a.csv

 Overconstrain Info File
1279
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
Clock_sync03a
Reports signals converging from the same source domain and are
synchronized separately in the same destination domain

NOTE: The Clock_sync03a rule will be deprecated in a future release. The rule is not
included in CDC GuideWare goals now and do not perform checks until specifically
included in the user-defined goal options. In this case, the rule performs the checks
and SpyGlass includes a deprecation message in both the spyglass.out and
spyglass.log files.

When to Use

Use this rule to check convergence of synchronized signals of the same
domain.

NOTE: It is recommended to use the Ac_conv01 and Ac_conv02 rules instead of this rule.

Prerequisites

Specify clock signals in any of the following ways:
 By using the clock constraint

 By using the automatically-generated clock signals after setting the
use_inferred_clocks parameter to yes

 By using a combination of both the above methods

Description

The Clock_sync03a rule reports converging signals coming from the same
source domain and are synchronized in the same destination domain by
using any of the following synchronization schemes:
 Conventional Multi-Flop Synchronization Scheme

 Synchronizing Cell Synchronization Scheme

The following figure shows convergence of signals coming from the same
source clock domains.
1280
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
FIGURE 228. Convergence of Signals from Same Source Domain

In the above example, the Clock_sync03a rule reports convergence only if
a signal reaches on the MUX select pin along with the signals that are
reaching one or more MUX input pins.

Rule Exceptions

The Clock_sync03a rule has the following exceptions:
 It does not report a violation when synchronizers are a part of the same

FIFO memory.
 It does not report convergence of synchronized signals at sequential

cells.

Guidelines for Using Parameters for the Clock_sync03a Rule

The following guidelines can help in reducing run time:
 In case of multiple convergences on the same path, the Clock_sync03a

rule reports convergence on the last gate in the path, which covers all
the converging signals.

Clk1

Clk2

Clk2

Clk1

Rule-violating Signal

Combinational logic
1281
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
The following figure shows an example of convergence of multiple signals.

FIGURE 229. Multiple Convergences on Same Path

In the above example, the Clock_sync03a rule reports convergence only
on Gate2, which covers convergence of all signals: Signal1, Signal2,
and Signal3.

However, if you set the all_convergence_paths parameter to yes, this rule
reports both Gate1 and Gate2, where Signal1 and Signal2 are
reported at Gate1. These signals are also covered in convergence at
Gate2. Therefore, it is recommended not to use the
all_convergence_paths parameter as this parameter may lead to noise and
increase in run time and memory.

 High value for reconvergence_stages parameter may lead to increase in
run time. In that case, check that the value for this parameter is set
appropriately.

 You can avoid generation of schematic data for convergence paths to
reduce run time. To do so, set the show_reconv_paths parameter to no.

Clk1 Clk2

Clk1 Clk2

Clk1 Clk2

Gate1

Gate2

Signal1

Signal2

Signal3
1282
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
In this case, only converging signals and the gate where they are
converging is highlighted.

Parameter(s)

 check_bus_bit_convergence: Default value is no. Set this parameter to
yes to consider bus signals.

 reconvergence_stages: Default value is 0. Set this parameter to a positive
integer value to specify the maximum number of flip-flops allowed in the
fan-out path of a synchronizing signal.

 no_convergence_check: Default value is NULL. Specify net names that
should not be checked for convergence.

 cdc_reduce_pessimism: Default value is mbit_macro,
no_convergence_at_syncreset, no_convergence_at_enable.
Set this parameter to an appropriate value to ignore clock domain
crossings involving black box instances and clock domain crossings with
destinations having unused, hanging, or blocked outputs. For possible
values, see Allowed Values of the cdc_reduce_pessimism Parameter.

 clock_reduce_pessimism: Default value is latch_en, mux_sel_derived,
check_enable_for_glitch. Set the value of this parameter to
mux_sel to stop traversal of this rule when a clock signal reaches a
MUX. Other possible values are all, all_potential_clocks, and
ignore_same_domain.

 check_multiclock_bbox: Default value is no. Set this parameter to yes to
show violations for the crossings in which a destination black box
receives multiple clocks but no SGDC constraint is defined on any of the
black-box data pins receiving the clocks.

 sync_reset: Default value is no. Set this parameter to yes to allow at
most one gate of an AND/NAND/OR/NOR type to be the synchronous
reset for the flip-flop that follows.

 all_convergence_paths: Default value is no. Set this parameter to yes to
report all convergence paths.

 show_reconv_paths: Default value is yes. Set this parameter to no to
highlight only converging signals and the gate where the signals are
converging. This reduces runtime.

 allow_enabled_multiflop: Default value is no. Set this parameter to yes to
consider enabled flip-flops as destination or synchronizer flip-flops in
1283
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
conventional multi-flop synchronization scheme. Other possible value is
same_enable.

 enable_multiflop_sync: Default value is yes. Set this parameter to no to
disable the Conventional Multi-Flop Synchronization Scheme.

 fa_num_cores: Default value is 0. Specify 2, 4, or 8 to specify the number
of cores to be used by a multi-core engine.

 reset_cross_seq: Default value is no. Set this parameter to yes to report
clock-domain crossings to the asynchronous reset pins of complex
library cells.

 fa_preprocess_engine: Default value is retime. Set this parameter to iso
to use the isomorphic reduction technique to optimize functional
verification. Other possible values are none and all.

 same_domain_at_gate: Default value is no. Set the value of the
parameter to an allowed value to optimize the inference of domains on
clock merging gates.

Constraint(s)

 clock (Optional): Use this constraint to specify clock signals in a design.

 no_convergence_check (Optional): Use this constraint to specify nets that
should not be checked for convergence.

NOTE: If you specify nets by using the no_convergence_check constraint as well as the
no_convergence_check parameter, SpyGlass considers the nets specified by
both the constraint and parameter.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

 cdc_false_path (Optional): Use this constraint to suppress clock domain
crossing checks for false paths.

 quasi_static (Optional): Use this constraint to specify signals whose value
is predominantly static.

Messages and Suggested Fix

The following message appears at the location where multiple signals
converge on the instance <inst-name>:

[WARNING] <obj-type> '<sig-name>' converge on '<inst-name>':
DISABLED
1284
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
The arguments of the above message are explained below:

Example Code and/or Schematic

Consider the following schematic of a violation of this rule:

FIGURE 230. Schematic of the Clock_sync03a Rule Violation

In the above example, the src1 and src2 signals of the same source

Argument Description

<obj-type> Signals in case of RTL designs.
Instances in case of netlist designs, if the
report_inst_for_netlist parameter is set to yes.
Otherwise, it is Signals.

<sig-name> Comma-separated list of signal names in case of
RTL designs.
Comma-separated list of instances in case of
netlist designs, if the report_inst_for_netlist
parameter is set to yes. Otherwise, it is list of
signal names

<inst-name> <out-net-name> of converging instance in
case of RTL designs.
<inst-name> of converging instance in case
of netlist designs, if the report_inst_for_netlist
parameter is set to yes. Otherwise, it is <out-
net-name>
1285
Synopsys, Inc.

CDC Verification Rules

Rules in SpyGlass CDC
domain are synchronized in the same destination domain by using the
Conventional Multi-Flop Synchronization Scheme. These signals are converging
on the AND gate.

Schematic Details

Different colors highlight each of the following details:
 Path from each destination flip-flop to the converging gate

 Instance on which convergence is taking place

If the show_reconv_paths parameter is set to no, the rule highlights only
converging signals and the gate where they are converging. It does not
show the complete path.

Default Severity Label

Warning

Reports and Related Files

No report or related file
1286
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
Clock Glitch Checking Rules
Glitches on clock signals should be avoided. A glitch on a clock signal
essentially renders a chip (or a section of a chip) to asynchronous behavior.
A glitch-prone clock signal driving a flip-flop, memory or a latch may store
incorrect and unstable D (or data) input of flip-flop, memory or a latch. The
D (or Data) input cannot be guaranteed to be stable when the glitch on
clock signal appears. Therefore, incorrect data can be stored causing chip
functional failure.

Secondly, there is also a chance of violating set up and hold time of D (or
data) input of a storage element causing metastability events. These
events will cause intermittent chip functional failures (which in many cases
are worse to diagnose and correct)

Thirdly, the glitches usually would vary with place and route of the design.
Sometimes timing conditions and operating conditions (like process,
voltage, and temperature) can mask out glitches. However, these same
designs will not function correctly at different process, voltage, and
temperature conditions. In addition, another layout ECO can re-introduce
glitches on clocks. Therefore, it is best to detect and correct clock glitches
at early stage of the design.

The SpyGlass CDC solution has the following rules for checking clock glitch
conditions:

Rule Reports
Ac_glitch01 Detects unsynchronized clock domain crossings subject to

glitches due to glitch-prone MUX implementation
Ac_glitch02 Reports clock domain crossings subject to glitches due to re-

converging source
Ac_glitch03 Reports clock domain crossings subject to glitches
Clock_glitch01 Enable signals that are gating clocks but are not the output of

a flip-flop
Clock_glitch02 Clocks that are gated without latching their enable signal in the

inactive half of the clock cycle
Clock_glitch03 MUXes where a clock signal is re-converging
Clock_glitch04 Flip-flop outputs that are converging on a flip-flop clock pin

through combinational logic
1287
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
Ac_glitch01
Reports unsynchronized clock domain crossings subject to glitches
because of glitch-prone MUX implementations

When to Use

Use this rule to identify glitch-prone MUX implementations in clock domain
crossing paths.

Prerequisites

Specify the Advanced_CDC and adv_checker license features.

Description

The Ac_glitch01 rule reports unsynchronized clock domain crossings that
are subject to glitches because of glitch-prone MUX implementations.

The following figure illustrates a MUX implementation that can generate
glitches.

FIGURE 231. Example of glitch-prone MUX implementations

In the above figure, given the MUX inputs D0, Q and E, the Ac_glitch01 rule

Glitch-prone MUX
Implementation

C1

C2

Q

E

D0

Q

Q

D0

D0
1288
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
checks if there are structural paths from D0 to the output of the
implemented MUX (input of destination flip-flop) for both logic low and high
value of enable (MUX select) pin. If only one such structural path exists,
either for logic high or low value of the enable signal, the MUX is glitch-
free. Else, glitches can occur and such cases are reported by this rule.

Rule Exception

This rule does not report a violation for a destination flip-flop that has an
enable pin, unless it is tied to a constant value.

Parameter(s)

 mux_search_depth: Default value is 6. Specify a positive integer value
(greater than one) to specify a logic depth for implicit MUX detection.

 cdc_compatible: Default value is no. Set this value to yes to make the
rules mentioned in the Used by section dependant on the Clock_sync*
rules data rather than The Ac_sync_group Rules data.

 show_parent_module_in_spreadsheet: Adds the PARENT_MODULE column
in the rule-based spreadsheet of the supported rules.

Constraint(s)

 clock (Optional): Use this constraint to specify clock signals in a design.

 assume_path (Optional): Use this constraint to specify paths through
black box instances.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

 cdc_false_path (Optional): Use this constraint to specify false paths so
that clock-domain crossings along these paths are ignored for
rule-checking.

Messages and Suggested Fix

The following message appears if a glitch may occur because of an
unblocked race on a MUX logic:

[WARNING] Crossing from source '<source-name>' (clock '<clk1-
name>') to destination '<dest-name>' (clock '<clk2-name>') uses
glitch-prone MUX implementation with enable '<sig-name>'
1289
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
The arguments of the above message are explained below:

Potential Issues
This violation appears if your design contains MUX implementations in
which data is reconverging.

Consequences of Not Fixing
If you do not fix this violation, unwanted glitches may occur in your design
that can cause functional failure.

How to Debug and Fix
To debug this violation, perform the following steps:
1. Open the incremental schematic of the violation.
2. Check the path passing through a glitch-prone MUX logic in the

schematic.
3. Ensure that the set_case_analysis constraint is set properly.

In general, optimization or technology mapping is the cause of the creation
of a glitch-prone MUX during synthesis. In such situations, you can perform
any of the following actions:
 Mark the MUX so that synthesis preserves the implementation and does

not perform optimization on such MUXes.
 Use glitch-free MUX implementations to avoid glitches.

Argument Description
<source-name> Source object name
<dest-name> Destination object name
<clk1-name> Source clock name
<clk2-name> Destination clock name
<sig-name> Enable signal of glitch-prone MUX
1290
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
Example Code and/or Schematic

Consider the following files specified for SpyGlass analysis:

For the above example, the Ac_glitch01 rule reports a violation because a
glitch-prone MUX implementation with the top.en enable is used by the
crossing from the top.F1.q source to the top.F2.q destination.

The following figure shows the schematic of this violation:

module flop(d,clk,q);
 input d, clk;
 output q;
 reg q;
 always @(posedge clk)
 q <= d;
endmodule

module top(data, en, clk1, clk2, out);
 input data, en, clk1, clk2;
 output out;
 wire en, d, w1, w2, w3, q_out;
 flop F1(data, clk1, d);

 assign w1 = !en & q_out & d;
 assign w2 = !en & q_out & !d;
 assign w3 = d & en;
 assign w4 = w1 | w2 | w3;

 flop F2(w4, clk2, q_out);
 assign out = q_out;
endmodule

// test.v
current_design top
clock -name "top.clk1" -value rtz

clock -name "top.clk2" -value rtz

// constr.sgdc
1291
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
FIGURE 232. Schematic of the Ac_glitch01 Rule Violation

Schematic Details

The Ac_glitch01 rule highlights the following paths in the schematic:
 Path from the source to the destination

 Path from the clock source to the clock pin of the source flip-flop/black
box. The source flip-flop/black box will be highlighted in the same color
as the source clock.

 Path from its clock source to the clock pin of the destination object. The
destination will be highlighted in the same color as the destination clock.

 Enable path of the glitch-prone implemented MUX

Default Severity Label

Warning
1292
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
Rule Group

ADV_CLOCKS

Reports and Related Files

Ac_glitch01.csv
1293
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
Ac_glitch02
Reports clock domain crossings that are subject to glitches
because of a reconverging source

When to Use

Use this rule to identify glitch-related issues in clock domain crossing
paths.

Prerequisites

Specify the Advanced_CDC and adv_checker license features.

Description

The Ac_glitch02 rule reports clock domain crossings in which a source
reaches to the destination through multiple paths, as shown in the
following figure.

FIGURE 233. Ac_glitch02 Rule Violation

Crossings Checked by the Ac_glitch02 Rule

By default, the Ac_glitch02 rule checks the following crossings:
 Synchronized crossings from the Conventional Multi-Flop Synchronization

Scheme, Synchronizing Cell Synchronization Scheme, or Qualifier
Synchronization Scheme Using qualifier -crossing and the crossings have a
combinational logic between the crossing path (the allow_combo_logic
constraint is set)

 Unsynchronized crossings from Conventional Multi-Flop Synchronization
Scheme, Synchronizing Cell Synchronization Scheme, or Qualifier
Synchronization Scheme Using qualifier -crossing and these crossings are
unsynchronized because of a combinational logic between the crossing
path (allow_combo_logic constraint is not set)

NOTE: The Ac_glitch03 rule reports all the cases reported by the Ac_glitch02 rule.

Combo Logic
1294
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
Parameter(s)

 check_single_source: Default value is yes. Set this value to no to consider
all sources of a destination for rule-checking.

 glitch_check_type: Default value is sync_control. Set this parameter to
unsync to consider all unsynchronized crossings. Other possible value is
all.

 cdc_compatible: Default value is no. Set this value to yes to make the
rules mentioned in the Used by section dependant on the Clock_sync*
rules data rather than The Ac_sync_group Rules data.

 show_parent_module_in_spreadsheet: Adds the PARENT_MODULE column
in the rule-based spreadsheet of the supported rules.

Constraint(s)

 allow_combo_logic (Optional): Use this constraint to allow combinational
logic between crossings only if the logic is within the modules specified
by using this constraint.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

 cdc_false_path (Optional): Use this constraint to specify false paths so
that clock-domain crossings along these paths are ignored for
rule-checking.

Messages and Suggested Fix

The following message appears to indicate clock domain crossings that are
subject to glitches:

[WARNING] Crossing from source '<source-name>' (clock
'<clk1-name>') to destination '<dest-name>' (clock
'<clk2-name>') may be subject to glitches

The arguments of the above message are explained below:

Argument Description
<source-name> Source object name
<dest-name> Destination object name
1295
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
Potential Issues

This violation appears if the source of a clock domain crossing has multiple
paths to its destination, and these crossings are synchronized by any of the
following synchronization schemes:
 Conventional Multi-Flop Synchronization Scheme

 Synchronizing Cell Synchronization Scheme

 Qualifier Synchronization Scheme Using qualifier -crossing

Consequences of Not Fixing
If you do not fix this violation, glitch-related issues may appear in the
design.

How to Debug and Fix
To debug this violation, perform the following steps:
1. Open the incremental schematic of the violation.

In the schematic, you will see two paths from an asynchronous source
to the destination. This means that the delay in the first and the second
path may be different. This can cause glitches for the destination.

2. Ensure that the set_case_analysis constraints have been specified
properly to block one of the paths, if the paths are mutually exclusive.
Else, fix the RTL so that there are no multiple paths from the same
source to the destination to avoid glitches.

Example Code and/or Schematic

Consider the following schematic of a violation reported by this rule:

<clk1-name> Source clock name
<clk2-name> Destination clock name

Argument Description
1296
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
FIGURE 234. Schematic of the Ac_glitch02 Rule Violation

In the above example, the I1.q_reg source is reaching to the I2.q_reg
destination flip-flop through multiple paths (through the rtlc_I5 and
rtlc_I9 instances).

Therefore, the Ac_glitch02 rule reports a violation.

Schematic Details

The Ac_glitch02 rule highlights the following paths in the schematic:
 All reconverging paths from the source to the destination

 Path from the clock source to the clock pin of the source flip-flop/black
box. The source flip-flop/black box is highlighted in the same color as
the source clock.

 Path from its clock source to the clock pin of the destination object. The
destination is highlighted in the same color as the destination clock.

Default Severity Label

Warning

Rule Group

ADV_CLOCKS

Reports and Related Files

Ac_glitch02.csv
1297
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
Ac_glitch03
Reports clock domain crossings subject to glitches

When to Use

Use this rule to detect glitches at clock domain crossings.

Prerequisites

The Ac_glitch03 rule works only with the Advanced_CDC and adv_checker
license features.

Description

The details of the Ac_glitch03 rule are covered in the following topics:
 Reason for the Ac_glitch03 rule Violation

 Unsynchronized Crossing Reported by the Ac_glitch03 Rule

 Unate/Binate Analysis

 Checks Performed by the Ac_glitch03 Rule

 Status Reported by the Ac_glitch03 Rule Message

 Rule Exceptions

NOTE: The Ac_glitch03 rule reports all the cases reported by the Ac_glitch02 rule.

For additional details, refer the Using the Hybrid CDC Flow section.

Reason for the Ac_glitch03 rule Violation

The Ac_glitch03 rule checks glitch-prone combinational logic in the
crossings synchronized by one of the following synchronizing schemes:
 Conventional Multi-Flop Synchronization Scheme

 Synchronizing Cell Synchronization Scheme

 Qualifier Synchronization Scheme Using qualifier -crossing

Also see Unsynchronized Crossing Reported by the Ac_glitch03 Rule.

The following figure shows the glitch-prone combinational logic:
1298
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
FIGURE 235. Glitch-Prone Combinational Logic Causing Functional Failure

In the above example, the glitch captured on D1 propagates to D2 and then
to the downstream logic, potentially causing a functional failure.

NOTE: If a combinational logic is present in the crossing path and the allow_combo_logic
parameter is set to no, such crossings are reported as unsynchronized and no
glitch-related checks are performed in such cases. Set the allow_combo_logic
parameter to yes to perform glitch-related checks on such crossings.

Unsynchronized Crossing Reported by the Ac_glitch03 Rule

The Ac_glitch03 rule performs glitch checks on the unsynchronized
crossings having a virtual domain on the output port when both the
following conditions hold true:

I1
1299
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
 The output port is specified as -type control in the signal_type
constraint.

 The glitch_on_vck_port value is specified to the cdc_reduce_pessimism
parameter.

The following schematic shows the example of such crossing reported by
the Ac_glitch03 rule:

FIGURE 236.

For the other types of unsynchronized crossings, glitch checking is
performed when the glitch_check_type parameter is set to unsync or all.

Unate/Binate Analysis

You can configure the Ac_glitch03 rule to report violations related with

clock -tag vck1 -domain d1
output -name out4 -clock vck1
signal_type -name out4 -type control

// SGDC File

// Project File

set_parameter cdc_reduce_pessimism +glitch_on_vck_port
1300
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
same source reconvergence when the reconverging paths have different
polarities or at least one path has an unknown polarity.

For details, see no_unate_reconv.

Checks Performed by the Ac_glitch03 Rule

This rule detects the glitches that may occur due to the following reasons:
 When sources are in different domains

In such cases:
 No gray-encoding check is performed.

 The following reason is reported:

Sources from different domains in fanin

 When destination domain signals are in the fan-in of a synchronizer
In such cases, the destination signal of a crossing is driven by
synchronous signals in addition to the sources. As a result:
 No gray-encoding check is performed.

 The following reason is reported:

Signals from destination domain in fanin

NOTE: Ports without any constraints are considered in the destination domain.

 When a source reaches the destination through multiple paths
In such cases, a source diverges and converges back before reaching to
the destination. As a result:
 No gray-encoding check is performed.

 The following reason is reported:

Source reconverges

 If none of the above cases is true, glitches occur when multiple same
domain sources are toggling in a control crossing
In such cases, the gray-encoding check is performed to ensure that at
the most only one source is changing.

Status Reported by the Ac_glitch03 Rule Message

Based on the checks performed, this rule reports the following status in the
1301
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
violation message:

Rule Exceptions

 This rule does not consider crossings that are filtered by using the
cdc_false_path or ip_block constraint.

 This rule ignores the following signals in a crossing:

 Signals specified by using the quasi_static constraint

 Synchronous resets generated in the destination domain

 Source signals specified by the cdc_false_path constraint.

 This rule does not report violations for the same source reconvergence
on the input pin of a MUX. This is because, only one input pin is active at
a time. This scenario is shown in the following figure:

Status Description Violation
Severity

FAILED This status appears when multiple sources
toggle at the same time.

ERROR

Partially-Proved This status appears if gray-encoding check is
incomplete within the time specified by the
fa_atime parameter

WARNING

PASSED This status appears when at most one of the
sources toggle at a time

INFO

Others This status appears if gray-encoding check could
not be performed because of conflicting
constraints or some internal error

ERROR
1302
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
FIGURE 237. Example of the Ac_glitch03 Rule Exception

Parameter(s)

 cdc_bus_compress: Default value is Ac_glitch03. Set this parameter to
DeltaDelay02 to check all the bits of the source bus by the DeltaDelay02
rule. For information on the other possible values, see Possible values of the
cdc_bus_compress parameter.

 cdc_reduce_pessimism: Default value is mbit_macro,
no_convergence_at_syncreset, no_convergence_at_enable.
Set this parameter to an appropriate value to ignore clock domain
crossings involving black box instances and clock domain crossings with
destinations having unused, hanging, or blocked outputs. For possible
values, see Allowed Values of the cdc_reduce_pessimism Parameter.

 check_multiclock_bbox: Default value is no. Set this parameter to yes to
show violations for the crossings in which a destination black box
receives multiple clocks but no SGDC constraint is defined on any of the
black-box data pins receiving the clocks.

 fa_abstract: Default value is Ac_handshake01, Ac_glitch03. Set the value
of this parameter to Ac_cdc08 to enable abstraction for this rule. Other
possible values are all, none or a list of any of rules:
Ac_handshake01, Ac_cdc08, Ac_conv02, Clock_sync03a, Ac_fifo01, and

No violation reported for
the same source reconvergence
on the input pin of the MUX
1303
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
Ac_glitch03.
 fa_audit: Default value is no. Set this parameter to yes to not perform

functional analysis.
 fa_msgmode: Default value is fail, pp, coverage. Set this parameter

to all to report all the types of assertions. Other possible values are
no_msg, audit, and none.

 glitch_on_sync_src: Default value is no. Set this parameter to yes to
consider synchronous sources present in the input cone of a destination
signal for glitch checking.

 glitch_on_unconstrained_src: Default value is no. Set this parameter to
yes to consider the unconstrained ports present in the input cone of
destination signal for glitch checking.

 glitch_check_type: Default value is sync_control. Set this parameter to
unsync to consider all unsynchronized crossings. Other possible value is
all.

 strict_sync_check: Default value is no. Set this parameter to yes if scan
flip-flops are present.

 reset_reduce_pessimism: Default value is
filter_unused_synchronizer, same_data_reset_flop. Set the
value of this parameter to all_potential_resets to detect all the
potential resets in a design. For information on the other possible
values, see Possible Values to the reset_reduce_pessimism Parameter.

 sta_based_clock_relationship: Default value is no. Set this
parameter to yes to compute domains based on the specification of the
sg_clock_group constraint.

 show_parent_module_in_spreadsheet: Adds the PARENT_MODULE column
in the rule-based spreadsheet of the supported rules.

 fa_hybrid_report_hier: Default value is no. Set the value of the parameter
to yes to enable the supported rules to report the top-level hierarchical
names in the SVA Hybrid flow.

Constraint(s)

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.
1304
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
 abstract_port (Optional): Use this constraint to define abstracted
information for block ports.

NOTE: The Ac_glitch03 rule reports violations on blackbox input/output ports if the
abstract_port constraint is defined with the -end argument together with the -
sync_active or -sync_inactive arguments.

 cdc_attribute (Optional): Use this constraint to specify mutually exclusive
and unrelated signals such that convergence-related violations are
suppressed for such signals.

 cdc_false_path (Optional): Use this constraint to specify false paths so
that clock-domain crossings along these paths are ignored for
rule-checking.

 signal_type (Optional): Use this constraint to specify the signal type
(control or data).

 sg_clock_group (Optional): Use this constraint to define asynchronous
relationship between clocks.

Messages and Suggested Fix

Message 1

The following message appears when the gray-encoding check is
performed:

[AcG3_1] [ERROR] Glitch check performed on destination
<destination-type> '<pin/port-name>' clocked by '<clock-name>'
(<num-sources> source(s), <num-domains> domain(s)). Multi-
source toggling check :'<FAILED | Others (Constraints-Conflict)
| Others (Internal-Error)>'

The arguments of the above message are explained below:
1305
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
TABLE 6 Argument details of the Ac_glitch03 rule

Potential Issues
This violation appears if multiple same domain source signals in a crossing
toggle at the same time.

Consequences of Not Fixing
If you do not fix this violation, the design may contain glitches.

How to Debug and Fix
To debug the violation of this rule, perform the following steps:
1. Open the Rule-based spreadsheet.

This spreadsheet lists details of all violations of the Ac_glitch03 rule.
2. From the rule-based spreadsheet, open the spreadsheet of a particular

violation by clicking in the ID column.
This step displays the Message-based spreadsheet.

3. Click the button to open the Waveform Viewer window.

In the Waveform Viewer window, check the marker that appears on the
waveform. This marker is positioned at a point where more than one bits
are found changing in the same cycle. As a result, the gray-encoding check
is violated. Therefore, this specific transition is a "witness" to the failure.

For example, consider the following Waveform Viewer window:

Argument Description
<destination-type> Specifies the destination type as flop, latch, library-cell,

port, or black box
<pin/port-name> Specifies the hierarchical name of an instance pin or

instance output port
<clock-name> Specifies the name of the clock driving the destination.

In case of multiple clocks, all clock names are shown.
<num-sources> Specifies total number of asynchronous sources
<num-domains> Specifies total number of asynchronous domains
1306
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
FIGURE 238. The Waveform Viewer Window

In the above window, the marker appears at a point where both
asynchronous signals are moving from state 0 to state 1 simultaneously,
thereby violating gray-encoding check.

Reasons for Failure
Following are some reasons that may cause false failures:
 Presence of a potential reset/clear signal. In this case, provide the

reset/clear in the SGDC file.
 The setup (clocks, resets, set_case_analysis, and input constraints) is not

correct and complete. In this case, use Formal Setup Rules to check the
correctness of the setup.

 Initial state values shown in the Waveform Viewer window are not
correct. In this case, provide a correct initial state in the SGDC file.

Message 2

The following message appears when the gray-encoding check is
1307
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
performed:

[AcG3_2] [WARNING] Glitch check performed on destination
<destination-type> '<pin/port-name>' clocked by '<clock-name>'
(<num-sources> source(s), <num-domains> domain(s)). Multi-
source toggling check :'Partially-Proved'

For arguments details of the above message, see Table 6.

Potential Issues
This violation appears if multiple same domain source signals in a crossing
toggle at the same time.

Consequences of Not Fixing
If you do not fix this violation, the design may contain glitches.

How to Debug and Fix
The Ac_glitch03 rule reports the Partially-Proved status when SpyGlass is
not able to conclude (falsify or prove) gray-encoding check in the given
amount of time.

In such cases, perform the following actions to enable the tool to complete
the analysis:
 Increase the assertion run-time by using the fa_atime parameter.

 Use incremental analysis approach by using the fa_propfile parameter.

 Use the fa_abstract parameter that applies abstraction technique to
reduce complex verification problem into simpler and solvable problem.
For details, see Performing Functional Analysis in SpyGlass CDC.

Message 3

The following message appears when the gray-encoding check is
performed:

[AcG3_4] [INFO] Glitch check performed on destination
<destination-type> '<pin/port-name>' clocked by '<clock-name>'
(<num-sources> source(s), <num-domains> domain(s)). Multi-
source toggling check :'PASSED'
1308
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
For arguments details of the above message, see Table 6.

Potential Issues
Not applicable

Consequences of Not Fixing
Not applicable

How to Debug and Fix

Violation messages for which the status is reported as PASSED are
informational messages, and do not require debugging.

By default, the message tree of such violations does not show the control
crossing that passed the verification. To view such crossings, set the
fa_msgmode parameter to all or pass.

Message 4

The following message appears when the gray-encoding check could not be
performed:

[AcG3_3] [ERROR] Destination <destination-type> '<pin/port-
name>' clocked by '<clock-name>' can glitch (<num-sources>
source(s), <num-domains> domain(s)). Reason :'<reason(s)>'

The arguments of the above message are explained below:

Argument Description
<destination-type> Specifies the destination type as flop, latch, library-cell,

port, or black box
<pin/port-name> Specifies the hierarchical name of an instance pin or

instance output port
<clock-name> Specifies the name of the clock driving the destination.

In case of multiple clocks, all clock names are shown.
<num-sources> Specifies total number of asynchronous sources
1309
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
Potential Issues
This violation appears in the following cases:
 If source signals from different domains converge before reaching to the

destination signal
 If synchronous signals and source signals together drive the destination

signal
 If a source signal diverges and converges back before reaching to the

destination
 If the source is a port

 If the source is a black box terminal

 If license is not available

 If multiple top-level modules are specified

 If the fa_msgmode parameter is set to none

 If source converges with an unconstrained primary port

Consequences of Not Fixing
If you do not fix this violation, the design may contain glitches.

<num-domains> Specifies total number of asynchronous domains
<reason> Specifies one or a combination of the following reasons:

• Sources from different domains in fanin
• Source reconverges
• Signals from destination domain in fanin
• Source is port
• Source is black-box
• Sources from same domain in fanin
• Presence of combinational logic specified through

constraint
• Unconstrained signal converges with source

If the rule reports a combination of any of the above
reasons, they are shown as a comma-separated list.

Argument Description
1310
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
How to Debug and Fix
To debug the violation of this rule, perform the following steps:
1. Open the Rule-based spreadsheet.

This spreadsheet lists details of all violations of the Ac_glitch03 rule.
2. From the rule-based spreadsheet, open the spreadsheet of a particular

violation by clicking in the ID column.
This step displays the Message-based spreadsheet.

3. Based on the reason reported in the violation message, perform
appropriate actions, as described below.

Actions Performed based on the Reason Reported
The following points describe the reported reasons and the corresponding
actions to be performed:
 Sources from different domains in fanin

This reason is reported if asynchronous sources from different domains
are reaching to the destination.
The following figure shows the schematic of such violation:

FIGURE 239. Asynchronous Sources From Different Domains Reaching
Destination
1311
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
Action: To fix such violations:
 Ensure that the setup of clocks is correct.

 Check if a source in other domain is quasi-static.

 Signals from destination domain in fanin

This reason is reported if a synchronous source is present in the fan-in
of the destination signal.
The following figure shows the schematic of such violation:

FIGURE 240. Presence of Synchronous Source in the Fan-in of Destination

Action: To fix such violations:
 Ensure that the setup for clocks is correct and check if synchronous

source is quasi-static.
 Else, first synchronize the asynchronous source before it converges

with synchronous sources.
 Source reconverges

This reason is reported if an asynchronous source reaches its
destination through multiple paths.
To view the schematic of such a violation, click the
Reconverging_Sources_03.csv tab of the message-based spreadsheet
and click the button.

The following figure shows the schematic of such violation:
1312
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
FIGURE 241. Asynchronous Source Reaching Destination through Multiple Paths

Action: To fix such violations:
 Modify the design so that the reported source reaches its destination

through a single path.
 Ensure that timing delays of all paths from where source reaches the

destination are same.
 Source is port and Source is black box

This reason is reported if an asynchronous source is a port or a black
box terminal.
The following figure shows the schematic of a violation in which the
source is a black box terminal:

FIGURE 242. Asynchronous Source is a Black Box Terminal

In such cases, gray-encoding check cannot be performed as one of the
1313
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
asynchronous sources is a port or a black box terminal.
 Unconstrained signal converges with source

This reason is reported if an unconstrained port converge with a source
as shown in figure.

FIGURE 243. Unconstrained Signal Converges with Source

Action: To fix such violations, ensure that proper constraints, such as
quasi_static, input, abstract_port, set_case_analysis are applied on the
unconstrained signal.

Example code and/or Schematic

For example on Message 1, see How to Debug and Fix.

For example on Message 4, see How to Debug and Fix.

Schematic Details

The Ac_glitch03 rule highlights path from all sources (asynchronous and
synchronous) to destination.

Sources of the same domain appear in the same color.

Default Severity Label

Error | Warning | Info
1314
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
Rule Group

VERIFY

Reports and Related Files

 The Advanced CDC Report

 Overconstrain Info File

 The Glitch_detailed Report

 The following spreadsheets:

 Rule-based spreadsheet
This spreadsheet appears when you click on the header of a violation.
The following figure shows the rule-based spreadsheet:

FIGURE 244. Rule-Based Spreadsheet of the Ac_glitch03 Rule

NOTE: If you run the Ac_glicth03 rule in the batch mode, the rule-based spreadsheet
contains an additional column, CSV File. This column shows the path of the
corresponding Message-based spreadsheet. Refer to this column to correlate the
row of the rule-based spreadsheet with the corresponding message-based
spreadsheet.

 Message-based spreadsheet
This spreadsheet appears when you click on a specific violation
message of this rule. It contains three tabs, as shown in the following
1315
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
figure:

FIGURE 245. Message-Based Spreadsheet of the Ac_glitch03 Rule

The following table describes the information under each tab of this
spreadsheet:
1316
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
Tab Name Description
Asynchronous_Sources Shows information of asynchronous signals in

the fan-in of a destination
The following columns are present under this
tab:
• Type: Specifies the object type of an

asynchronous source signal, such as flip-
flop, latch, black box, or primary input.

• Source: Specifies the name of an
asynchronous source signal.

• Clock(s): Specifies the name of clocks
reaching the source signal.

• Internal Clock Domain Tag: Specifies a
unique tag number generated for a clock
net connected to a sequential element or a
black box. For details, see Using the Clock
Domain Tag.
1317
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
For all the above three tabs, the header section of the message-
based spreadsheet displays a destination name as a comment in the
following format:

#Destination <type>: <pin/port-name>

Synchronous_Sources Shows information about destination-domain
signals in the fan-in of a destination.
The following columns are present under this
tab:
• Type: Specifies the object type of a

synchronous source signal, such as flip-
flop, latch, black box, or primary input.

• Synchronous Signals: Specifies the name of
a destination-domain signal.

• Clock(s): Specifies the name of clocks
reaching the synchronous source signal.

• Internal Clock Domain Tag: Specifies a
unique tag number generated for a clock
net connected to a sequential element or a
black box. For details, see Using the Clock
Domain Tag.

Reconverging_Sources Shows information about asynchronous
sources that have multiple paths to a
destination.
From this tab, you can view the schematic that
displays a source reaching the destination
through multiple paths.
The following columns are present under this
tab:
• ID: Displays a link to the schematic of the

violation
• Type: Specifies the object type of

asynchronous source signal, such as flip-
flop, latch, black box, or primary input.

• Source: Specifies the name of
asynchronous source signal.

• Clock(s): Specifies the name of clocks
reaching the source signal.

• Internal Clock Domain Tag: Specifies a
unique tag number generated for a clock
net connected to a sequential element or a
black box. For details, see Using the Clock
Domain Tag.

Tab Name Description
1318
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
Where:

 <type> specifies the destination type as flop, latch,
library-cell, port, or black box.

 <pin/port-name> specifies the hierarchical name of an
instance pin or instance output port.
1319
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
Ac_glitch04
Reports glitches on synchronized data path crossings or
unsynchronized crossings

When to Use

Use this rule to detect glitches in data path of clock domain crossings.

Prerequisites

The Ac_glitch04 rule works only with the Advanced_CDC and adv_checker
license features.

Description

The Ac_glitch04 rule checks glitch-prone combinational logic on the
synchronized data crossings or Unsynchronized crossings. This rule detects
two types of glitches:

Glitch on Synchronized Data Path

Glitch on Unsynchronized Path

Glitch on Synchronized Data Path

A synchronized data path would always have a combo gate in its path
because there will be some qualifier merging with the source at some
point. User puts qualifier to control the meta-stability in the path. However,
it might happen that because of the combo gate, glitch is blocked or not
blocked by the qualifier. Consider the following example:

FIGURE 246.
1320
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
In the above example the crossing from S1 to D1 is synchronized using the
qualifier and hence there is no meta-stability issue in the path.

But the path from S1 to D1 has glitch issue. In the above example since S1
diverges and converges back at C0, glitch is produced at C0 because of
different delay in path D0 and I1. Now this glitch propagates downstream
which may cause functional failure. But the glitch can be blocked using the
same qualifier (CK2). Hence the output of C1 can be made stable using the
same qualifier and is a good value to pass to D1.

Glitch on Unsynchronized Path

In the above figure, when the blocking condition at C1 is not met due to
any reason like Qualifier Q1 being replaced with an invalid qualifier or C1
gate being replaced by an invalid gate, then the glitch produced at C0 can
reach the destination.

NOTE: Ac_glitch03 also performs glitch check on unsync crossing when glitch_check_type
parameter is set to unsync or all.

This rule also performs Unate/Binate Analysis. You can configure the
Ac_glitch04 rule to report violations related with same source
reconvergence when the reconverging paths have different polarities or at
least one path has an unknown polarity. For details, see no_unate_reconv.

Rule Exceptions

 This rule does not consider crossings that are filtered by using the
cdc_false_path or ip_block constraint.

 This rule does not report violations for the same source reconvergence
on the input pin of a MUX. This is because, only one input pin is active at
a time.

Parameter(s)

 cdc_reduce_pessimism: Default value is mbit_macro,
no_convergence_at_syncreset, no_convergence_at_enable.
Set this parameter to an appropriate value to ignore clock domain
crossings involving black box instances and clock domain crossings with
destinations having unused, hanging, or blocked outputs. For possible
values, see Allowed Values of the cdc_reduce_pessimism Parameter.

 check_multiclock_bbox: Default value is no. Set this parameter to yes to
show violations for the crossings in which a destination black box
1321
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
receives multiple clocks but no SGDC constraint is defined on any of the
black-box data pins receiving the clocks.

 allow_combo_logic: Default value is no. Set this parameter to yes to
ignore combinational logic in the data transfer path between flip-flops at
clock domain crossing.

 enable_and_sync: Default value is no. Set this parameter to yes to
enable the AND Gate Synchronization Scheme.

 enable_mux_sync: Default value is recirculation. Set this parameter
to an appropriate value to enable a particular synchronization scheme.
Other possible values are none, mux_select, and all.

 sync_reset: Default value is no. Set this parameter to yes to allow at
most one gate of an AND/NAND/OR/NOR type to be the synchronous
reset for the flip-flop that follows.

 glitch_protect_cell: Default value is NULL. Specify a comma or
space-separated list of glitch protection cell names for the Glitch
Protection Cell Synchronization Scheme.

 show_parent_module_in_spreadsheet: Adds the PARENT_MODULE column
in the rule-based spreadsheet of the supported rules.

Constraint(s)

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

 abstract_port (Optional): Use this constraint to define abstracted
information for block ports.

 cdc_attribute (Optional): Use this constraint to specify mutually exclusive
and unrelated signals such that convergence-related violations are
suppressed for such signals.

 cdc_false_path (Optional): Use this constraint to specify false paths so
that clock-domain crossings along these paths are ignored for
rule-checking.

 signal_type (Optional): Use this constraint to specify the signal type
(control or data).

 sg_clock_group (Optional): Use this constraint to define asynchronous
relationship between clocks.
1322
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
 quasi_static (Optional): Use this constraint to specify signals whose value
is predominantly static.

 qualifier (Optional): Use this constraint to specify a qualifier for
synchronizing a clock domain crossing.

Messages and Suggested Fix

Message 1

The rule reports the following message:

[WARNING | INFO] Destination <destination-type> '<pin/port-
name>' clocked by '<clock-name>' can glitch (<num-sources>
source(s), <num-domains> domain(s)). Reason :'<reason>'

The arguments of the above message are explained below:

TABLE 7 Argument details of the Ac_glitch04 rule

Potential Issues
This violation appears with the “Reconvergence without enable condition”
reason if an asynchronous source reaches its destination through multiple
paths.

The rule generates an Info message if the reason is “Reconvergence with
enable condition”.

Argument Description
<destination-type> Specifies the destination type as flop, latch, library-cell,

port, or black box
<pin/port-name> Specifies the hierarchical name of an instance pin or

instance output port
<clock-name> Specifies the name of the clock driving the destination.

In case of multiple clocks, all clock names are shown.
<num-sources> Specifies total number of asynchronous sources
<num-domains> Specifies total number of asynchronous domains
<reason> Specified the reason for the violation. Can be either of

Reconvergence with enable condition or Reconvergence
without enable condition.
1323
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
Consequences of Not Fixing
If you do not fix this violation, the design may contain glitches.

How to Debug and Fix
To debug the violation of this rule, open the message based spreadsheet
and view the schematic.

To fix such violations:
 Modify the design so that the reported source reaches its destination

through a single path.
 Ensure that valid qualifier blocks the source/glitch.

Example code and/or Schematic

For example on Message 1, see How to Debug and Fix.

Schematic Details

The Ac_glitch04 rule highlights the re-converging path from particular
source to a destination.

Default Severity Label

Warning | Info

Rule Group

VERIFY

Reports and Related Files

 Overconstrain Info File

 The following spreadsheets:

 Rule-based spreadsheet
This spreadsheet appears when you click on the header of a violation.
The following figure shows the rule-based spreadsheet:
1324
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
FIGURE 247. Rule-Based Spreadsheet of the Ac_glitch04 Rule

 Message-based spreadsheet
This spreadsheet appears when you click on a specific violation
message of this rule.

FIGURE 248. Message-Based Spreadsheet of the Ac_glitch04 Rule
1325
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
Clock_glitch01
Reports enable signals that are gating clocks but are not the output
of a flip-flop

When to Use

Use this rule to detect glitches caused by a gating clock with enable signals
that are not the output of a flip-flop.

Prerequisites

Specify clock signals in any of the following ways:
 By using the clock constraint

 By using the automatically-generated clock signals after setting the
use_inferred_clocks parameter to yes

 By using a combination of both the above methods

Description

The Clock_glitch01 rule reports enable signals that are gating clocks but
are not the output of a flip-flop.

This rule checks for clock-gating done by using gates, such as AND gate,
NAND gate, and NOR gate. It also checks enable signals in a latch-based
gating.

The following figure explains the purpose of this rule.
1326
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
FIGURE 249. Clock_glitch01 examples

This rule ignores enable signals that are directly connected to input ports
specified by the input constraint.

Parameter(s)

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
automatically generated clock information.

 report_all_clockgate_enables: Default value is no. Set this parameter to
yes to enable the Clock_glitch01 rule to report all the enable nets that
are directly merging with a clock signal.

 same_domain_at_gate: Default value is no. Set the value of the
parameter to an allowed value to optimize the inference of domains on
clock merging gates.

latch
en

Rule violation as the en enable
is driven by a combinational logic

Scenario 1

latch
en

Scenario 2

No rule violation as the en enable
is driven by a flip-flop
1327
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
Constraint(s)

 clock (Optional): Use this constraint to specify clock signals in a design.

 input (Optional): Use this constraint to specify clock domain at input
ports.

 quasi_static (Optional): Use this constraint to specify signals whose value
is predominantly static.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

Messages and Suggested Fix

The following message appears for the enable signal <en-name> that is
not registered:

[INFO] Enabled signal '<en-name>' should be a state signal

Potential Issues
This violation appears if an enable signal gating a clock is not the output of
a flip-flop.

Consequences of Not Fixing
If you do not fix this violation, glitches may occur in the design.

How to Debug and Fix
To debug and fix this violation, perform the following steps:
1. Open the incremental schematic of the violation of this rule.
2. Check the reported enable signal that is gating a clock but is not the

output of a flip-flop.
3. Correct the logic by making the enable signal as the output of the

flip-flop to ensure that no glitches occur on the gated clock signal.

Example Code and/or Schematic

Consider following schematic:
1328
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
FIGURE 250. Schematic of the Clock_glitch01 Rule

In the above example, the enable signal en is not driven by a flip-flop.
Therefore, the Clock_glitch01 rule reports a violation.

Schematic Details

The Clock_glitch01 rule highlights the clock-gating instance and the gated
clock in the schematic.

Default Severity Label

Info

Rule Group

VERIFY

Reports and Related Files

No report or related file
1329
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
Clock_glitch02
Reports clocks that are gated without latching their enable signal
properly

When to Use

Use this rule to find clocks that are exposed to glitches, as the enable
signal is not latched in the inactive half of clock cycle.

Description

The Clock_glitch02 rule reports a violation if a clock signal is gated by
using the normal AND/OR/NOR/NAND gate, and an enable signal is
provided directly without latching the enable signal.

The gating enable signal should be latched with an inverted clock going to
the enable pin of the latch. Latching the clock enable in the inactive half of
the clock cycle ensures that clock-gating setup requirement is always met.

Rule Exceptions

This rule does not check if the gating logic is fed to a positive or negative
edge triggered flip-flop. Such cases are caught by the Ac_xclock01 rule.

For example, this rule does not report a violation in the following case
because the gating logic is fed to a negative edge triggered flip-flop:

FIGURE 251. Clock_glitch02 Example

clk

EN

SE

E

Latch
Positive Flip-FlopPREICGN

(Negative edge triggered clock-gating cell)
1330
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
Design Impact

Functionality (bug escape), Portability, and re-use

Parameter(s)

 clock_reduce_pessimism: Default value is latch_en, mux_sel_derived,
check_enable_for_glitch. Set the value of this parameter to
mux_sel to stop traversal of this rule when a clock signal reaches a
MUX. Other possible values are all, all_potential_clocks, and
ignore_same_domain.

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
the auto-generated clock information.

 filter_named_clocks: Default value is rst, reset, scan, set. Set this
parameter to a list of strings.

 report_all_clockgate_enables: Default value is no. Set this parameter to
yes to enable the Clock_glitch02 rule to report all the enable nets that
are directly merging with a clock signal.

 same_domain_at_gate: Default value is no. Set the value of the
parameter to an allowed value to optimize the inference of domains on
clock merging gates.

Constraint(s)

 clock (Optional): Use this constraint to specify clock signals.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

 quasi_static (Optional): Use this constraint to specify signals whose value
is predominantly static.

Messages and Suggested Fix

Message 1

The following message appears for a clock signal <clk-name> whose
enable signal <en-name> is not latched in the inactive half of the clock
cycle:

[INFO] Gate the clock '<clk-name>' after latching the enable
'<en-name>' in the inactive half of the clock cycle
1331
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
Potential Issues
This violation is reported if your design contains combinational gates in a
clock path for which the other input is not latched.

Consequences of Not Fixing
Gated clocks may result in timing hazards, such as glitches that can lead to
duty cycle distortion.

It is best to change the gating signal for a clock when the clock is inactive.
If a gating signal is functionally changed while the clock is active, there is
always a possibility of a glitch.

How to Debug and Fix
For information on debugging, click How to Debug and Fix.

Message 2

The following message appears for a clock signal <clk-name> whose
enable signal <en-name> is latched in the inactive half of the clock cycle,
but the latch input is tied to a constant:

[INFO] Gate the clock '<clk-name>' after latching the enable
'<en-name>' in the inactive half of the clock cycle (latch data
is tied to constant)

NOTE: This violation is not reported if the clock_reduce_pessimism parameter is not set to
check_enable_for_glitch.

Potential Issues
This violation is reported if a latch input is tied to constant value.

Consequences of Not Fixing
Enable tied to constant is equivalent to not having an enable/gating logic.

How to Debug and Fix
For information on debugging, click How to Debug and Fix.

Message 3

The following message appears for a clock signal <clk-name> whose
enable signal <en-name> is latched in the inactive half of the clock cycle,
but the latch data is driven by hanging net:
1332
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
[INFO] Gate the clock '<clk-name>' after latching the enable
'<en-name>' in the inactive half of the clock cycle (latch data
is undriven)

NOTE: This violation is not reported if the clock_reduce_pessimism parameter is not set to
check_enable_for_glitch.

Potential Issues
This violation is reported if your design contains latch data that is undriven
or coming from a hanging net.

Consequences of Not Fixing
Hanging nets cannot be controlled by the user. Therefore, they cannot
behave as enable signals.

How to Debug and Fix
To debug the violation of this rule, perform the following steps:
1. View the Incremental Schematic of the violation message.
2. In the schematic, check the clock-gating logic present in the fan-out of

clock net.
3. You can also view case analysis settings along with the violation of this

rule.

Example Code and/or Schematic

Consider the following code snippet in which this rule reports a violation:

module test(q,d,clk,en,in1);
input en, clk,d,in1;
output reg q;
wire tclk, ten;
assign ten = en & in1;
assign tclk = (clk & ten);
always@(posedge tclk)
q <= d;

endmodule

The following figure shows the schematic for the above example:
1333
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
FIGURE 252. Schematic of the Clock_glitch02 Rule

To fix this violation, add the following clock-gating instance instead of
assign tclk = (clk & ten):

gating_cell CG1(.en(1'b0),.clk(clk1),.out(g_clk2));
module gating_cell(en,clk,out);
input en, clk;
output out;
reg t1;
always@(clk)
if(!clk)
t1 <= en;

assign out = t1 & clk;
endmodule

Schematic Details

The Clock_glitch02 rule highlights the following information in different
colors in the schematic:
 Source clock signal

 Clock-gating signal

 Gating instance

Default Severity Label

Info

Rule Group

VERIFY
1334
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
Reports and Related Files

Clock_glitch02.csv: This is the rule-based spreadsheet that contains details
of all violations of this rule. The spreadsheet includes details of the clock,
enable signal, and the latch input type.
1335
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
Clock_glitch03
Reports clock signals that pass through a MUX and reconverge back
on the same MUX

When to Use

Use this rule to detect cases in which a clock glitch can be created due to
clock signals that re-converge back on the same MUX.

Description

The Clock_glitch03 rule reports clock signals that reconverge back on the
same MUX.

In such cases, outputs of a MUX after passing through a clock-pin of flip-
flop/latches reconverge back on the same MUX. This results in creation of a
glitch.

For example, this rule reports a violation in the following scenario:

FIGURE 253. Clock_glitch03 Rule Violating Scenario

You should be cautious about clock path and MUX select transitions in such
cases. It is recommended to review this thoroughly and avoid the usage, if
possible.

Parameter(s)

 clock_reduce_pessimism: Default value is latch_en, mux_sel_derived,
check_enable_for_glitch. Set the value of this parameter to
mux_sel to stop traversal of this rule when a clock signal reaches a
MUX. Other possible values are all, all_potential_clocks, and
ignore_same_domain.

clk
1336
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
 use_inferred_clocks: Default value is no. Set this parameter to yes to use
the auto-generated clock information.

 filter_named_clocks: Default value is rst, reset, scan, set. Set this
parameter to a list of strings.

 handle_combo_arc: Default value is no. Set this parameter to yes so that
the clock/reset propagates from an input pin of a sequential library cell
if a combinational timing arc is specified from that pin to any output pin
of the cell.

 same_domain_at_gate: Default value is no. Set the value of the
parameter to an allowed value to optimize the inference of domains on
clock merging gates.

Constraint(s)

 clock (Optional): Use this constraint to specify clock signals.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

Messages and Suggested Fix

Message 1

The following message appears at the location where a MUX is being
inferred when a clock signal <sig-name> re-converges on the MUX:

[INFO] Clock signal <sig-name> re-converges on mux

Potential Issues
This violation is reported if your design contains unconstrained MUX select
signals in clock re-convergence paths.

Consequences of Not Fixing
If you do not fix this violation, glitches may get created in clock path.

How to Debug and Fix
For information on debugging, click How to Debug and Fix.

Message 2

In case more than one MUX is re-converging on the clock path, only one
message appears with the count of re-converging MUXes:

[INFO] Clock signal <sig-name> re-converges on mux (<num-muxes>
1337
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
muxes present in path)

where, <num-muxes> is the number of re-converging MUXes present in
the path.

Potential Issues
This violation is reported if your design contains more than one MUX in the
clock-path in which a clock signal re-converges after passing through flip-
flops/latches.

Consequences of Not Fixing
If you do not fix this violation, glitches may get created in clock path.

How to Debug and Fix

To debug the violation of this rule, view the Incremental Schematic of the
violation message to check the MUX where the clock signal re-converges.

To find the signals that need to be constrained, perform the following
steps:
1. Back-trace the MUX select-signal till it hits the input ports, black box

output, or flip-flops.
2. Apply the set_case_analysis constraint on appropriate signals in SGDC

file.

If signals or connected nets are already constrained, perform the following
steps:
1. Enable Show Case Analysis in the Incremental Schematic window to see

where constant propagation is blocked.
2. Apply correct constant value to the signals by using the set_case_analysis

constraint.

To fix the issue, use glitch free MUXes.

Example Code and/or Schematic

Consider the following schematic of a violation reported by this rule:
1338
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
FIGURE 254. Schematic of Clock_glitch03 Rule

To fix the violation in the above case, constraint the select signal of the
MUX to block the re-convergence path.

Schematic Details

The Clock_glitch03 rule highlights a clock signal and a re-convergence
feedback loop through a MUX in the schematic.

Default Severity Label

Info

Rule Group

VERIFY

Reports and Related Files

Clock_glitch03.csv: This is the rule-based spreadsheet that contains details
of all violations of this rule. The spreadsheet includes details of the clock
and the number of muxes.
1339
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
Clock_glitch04
Reports flip-flops that converge on a clock pin of a flip-flop through
a combinational logic

When to Use

Use this rule to detect the possibility of a glitch due to cases in which flip-
flop outputs converge on a clock pin of another flip-flop through a
combinational logic.

Description

The Clock_glitch04 rule reports flip-flops that converge on a flip-flop clock
pin through a combinational logic.

Such cases result in the creation of a clock glitch when a combinational
logic is used to generate clocks.

The combinational logic can be driven by flip-flops directly.

The Clock_glitch04 rule does not report a violation if the destination flop is
not receiving a clock or the clock is constant.

This rule reports only one message if the same pair of flip-flops is
converging at more than one clock pin.

Rule Exceptions

This rule ignores flip-flops converging through a MUX, as shown in the
following figure:
1340
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
FIGURE 255. Clock_glitch04 Rule Example

Parameter(s)

report_inst_for_netlist: Default value is no. Set this parameter to yes to
report violating instance name in case of netlist designs and leaf-level net
name for RTL designs.

Constraint(s)

set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

Messages and Suggested Fix

The following message appears when outputs of flip-flops <flop1-name>
and <flop2-name> are converging to the clock pin of the flip-flop
<flop3-name> through a combinational gate <gate-name>:

[INFO] Flop <flop1-name> and Flop <flop2-name> are converging
through combinational logic(<gate-name>) to clock of Flop
<flop3-name>

NOTE: For RTL designs, <flop1-name>, <flop2-name> and <flop3-name>
are names of the output nets of the corresponding flip-flops. For netlist designs, if
the report_inst_for_netlist parameter is set to yes, they are the names of the flip-
flop instances. Otherwise, the message details are same as for the RTL designs.

Potential Issues

clk1

clk2

sel

Flop1

Flop2

MUX Flop3 out

sel is not constrained

// test.sgdc

clock -name clk1 -domain d1

clock -name clk2 -domain d2
1341
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
This violation is reported if output of flip-flops is feeding to the
combinational logic, which in turn drives a generated clock.

Consequences of Not Fixing
If you do not fix this violation, glitches may occur on the generated clock
path.

How to Debug and Fix
To debug the violation of this rule, perform the following steps:
1. View the Incremental Schematic of the violation message.
2. In the schematic, review the logic displayed in the clock path.
3. Enable Show Case Analysis to check if the set_case_analysis constraints are

missing in the SGDC file that makes the logic in the clock path glitch
free.

4. To remove this violation, you should correct the logic to avoid glitches
on clock signal.

Example Code and/or Schematic

Consider the following schematic of a violation of this rule:

FIGURE 256. Schematic of the Clock_glitch04 Rule

To fix the violation in the above case, you should review the logic driving
the tclk1 and tclk2 flip-flops so that no condition arises that results in
glitches due to the AND gate.

Schematic Details

The Clock_glitch04 rule highlights the following in different colors:
 Source flip-flops and the converging logic
1342
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
 Destination flip-flop whose clock pin is driven by the converging
instance output

Default Severity Label

Info

Rule Group

VERIFY

Report and Related File

Clock_glitch04.csv: This is the rule-based spreadsheet that contains details
of all violations of this rule. The spreadsheet includes details of the signals
and the converging flops.
1343
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
Clock_glitch05
Flags asynchronous sources that converge with different domain
clocks

When to Use

Use this rule to report asynchronous sources that converge with clocks of
different domains.

Description

The Clock_glitch05 rule reports asynchronous source signals, which gate
the clock, but are not in the same domain as the clock signal. One violation
per clock cone per asynchronous source is reported.

A clock cone is a net that directly drives either of the following:
 Clock pin of a sequential element

 Black box pin (without assume_path on that pin)

 Top-level port

 Hanging net

If a clock cone receives multiple asynchronous sources, the Clock_glitch05
rule reports multiple violations.

NOTE: The Clock_glitch05 rule does not report hanging nets if the
cdc_reduce_pessimism remove_redundant_logic parameter is
specified.

Prerequisites

Specify the following in the project file:

set_goal_option rules Clock_glitch05

Specify clock signals by:
 Using the clock or generated_clock constraint

 Setting the use_inferred_clocks parameter to yes to use
automatically generated clock signals

 Using a combination of both the above methods
1344
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
Parameter(s)

 disable_seq_clock_prop: Default value is no. Set this parameter to yes to
disable propagation of clocks beyond flip-flops.

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

 clock_reduce_pessimism: Default value is latch_en, mux_sel_derived,
check_enable_for_glitch. Set the value of this parameter to
mux_sel to stop traversal of this rule when a clock signal reaches a
MUX. Other possible values are all, all_potential_clocks, and
ignore_same_domain.

 filter_named_clocks: Default value is rst, reset, scan, set. Set this
parameter to a list of strings.

 cdc_reduce_pessimism: Default value is mbit_macro,
no_convergence_at_syncreset, no_convergence_at_enable.
Set this parameter to an appropriate value to ignore clock-domain
crossings involving black-box instances and clock-domain crossings with
destinations having unused, hanging, or blocked outputs. For possible
values, see the Allowed Values of the cdc_reduce_pessimism Parameter
section in the SpyGlass CDC Rules Reference guide.

 enable_generated_clocks: Default value is no. Set this parameter to yes
to enable SpyGlass to consider the generated_clock constraint.

 handle_combo_arc: Default value is no. Set this parameter to yes so that
the clock/reset propagates from an input pin of a sequential library cell
if a combinational timing arc is specified from that pin to any output pin
of the cell.

Constraint(s)

 clock (Optional): Use this constraint to specify clock signals in your
design.

 abstract_port (Optional and applicable for virtual clocks): Use this
constraint to define abstracted information for block ports.

 input (Optional and applicable for virtual clocks): Use this constraint to
specify clock domain at input ports.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.
1345
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
 generated_clock (Optional): Use this constraint to specify
generated/derived clocks.

 quasi_static: Use this constraint to specify signals that have a value
which is predominantly static.

Messages and Suggested Fix

The following message is reported:

[ERROR] Asynchronous source '<source-name>' converges with
different domain clock(s) at '<converging-net>'

Potential Issues

A clock signal is being gated by a source of domain different from the clock
signal.

Consequences of Not Fixing

Gated clocks may result in timing hazards, such as glitches that can lead to
duty cycle distortion.

How to Debug and Fix

Double-click the message to open the spreadsheet and/or view the
incremental schematic. The spreadsheet contains the asynchronous source
signal details and also all the clock signals that are reaching.

Review the logic to ensure that there are no glitches on the gated clock
signal.

Example Code and Schematic

This example illustrates when the Clock_glitch05 rule reports a violation
message.

In the following design, the asynchronous source en1 (domain: clk1) is
merging with clocks of different domain clk2 and clk3. Therefore, the
Clock_glitch05 rule reports a violation.

Similarly, the asynchronous source en2 (domain: clk2) is merging with
clock of different domain clk1. Therefore, the Clock_glitch05 rule reports
a violation.
1346
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
module test(in, clk1, clk2, clk3, out);

input in, clk1, clk2, clk3;

output out;

reg en1, en2, des1, des2;

always @(posedge clk1)

 en1 <= in;

always @(posedge clk2)

 en2 <= in;

assign clk_merge = clk2 && clk3;

assign en = en1 && en2;

assign clk = clk_merge && en;

always@(posedge clk)

begin

 des1 <= in;

 des2 <= des1;

end

assign out = des2;

endmodule
1347
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
After running the Clock_glitch05 rule, the following violation messages are
generated:

Open the Clock_glitch05 rule spreadsheet to view the source and
converging net names. Alternatively, open the incremental schematic and a
spreadsheet associated with each message.

For the first violation message, the following schematic and spreadsheet is
generated.
1348
Synopsys, Inc.

Clock Glitch Checking Rules

Rules in SpyGlass CDC
The spreadsheet is as follows:

Default Severity Label

Error

Rule Group

VERIFY

Reports and Related Files

No report or related file
1349
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
Clock Checking Rules
The SpyGlass CDC solution has the following rules for checking clock
conditions:

Rule Reports
Clock_check01 Latches, tristate gates, or XOR/XNOR gates found in a

clock tree
Clock_check02 High fan-out clock nets not driven by specified placeholder

cells
Clock_check03 Bus-bits used as clocks
Clock_check04 Mixed clock edges used in the design
Clock_check05 Deep ripple clock-dividers
Clock_check06a Unexpected cells found in a clock tree
Clock_check06b Cells that are instantiated in a clock tree and do not have

consistent threshold_voltage_group attribute
value set in the .lib files

Clock_converge01 Clocks whose multiple fan-outs converge
Clock_hier01 Reports clock-gating wrapper modules in clock-path
Clock_hier02 Reports combinational wrapper modules in clock-path
Clock_hier03 Reports combinational gates that do have valid wrapper

modules in the clock-path
Ac_xclock01 Cases in which X values can be present on a clock path

resulting in non-deterministic shifting during the scan
operation.
1350
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
Clock_check01
Reports unexpected cells, such as latches, tristate gates, or XOR/
XNOR gates found in a clock tree.

When to Use

Use this rule to detect unexpected cells, such as latch, tristate, or XOR/
XNOR gates in a clock tree.

Description

The Clock_check01 rule reports unexpected cells, such as latches, tristate
gates, or XOR/XNOR gates found in a clock tree.

This rule reports only first found instance of an unexpected cell even if that
cell is instantiated in more than one clock-tree.

This rule reports such cells under informational message in the following
cases:
 If an enable pin of a latch or a tristate gate is tied with a constant logic

value. In such cases, the latch/tristate is permanently enabled or
disabled.

 If one of the inputs of a XOR/XNOR gate is tied with a constant logic
value. In such cases, the XOR/XNOR gate effectively works as buffer or
inverter.

Rule Exceptions

This rule has the following exceptions:
 It does not report a violation for tristate gates in PAD cells.

 It ignores clocks defined by using the clock constraint. It automatically
infers clocks and reports unexpected gates in the path of such clocks.

Parameter(s)

 report_inst_for_netlist: Default value is no. Set this parameter to yes to
report violating instance name in case of netlist designs and leaf-level
net name for RTL designs.

 ignore_latches: Default value is yes. Set this parameter to no to consider
signals ending on the latch enable terminals.
1351
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
Constraint(s)

set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

Messages and Suggested Fix

Message 1

The following warning appears at the location where a clock signal of a flip-
flop/latch <inst-name> is first used if a latch/tristate/XOR/XNOR gate is
encountered in the tree of the clock signal:

[ClkC1_1] [WARNING] Unexpected <gate-type> gate (at <name>) in
clock tree of flop/latch (output <obj-type> <inst-name>)

The arguments of the above message are explained below:

Potential Issues
This violation appears if a clock tree in your design contains cells, such as
latches, tristates, or XOR/XNOR gates.

Consequences of Not Fixing
Such cells in a clock tree may block further propagation of clock or may

Argument Description
<gate-type> Can be latch, tristate, XOR, or XNOR.

<name> The name of the latch, tristate signal, or the output of XOR/
XNOR gate

<obj-type> net in case of RTL designs.
pin in case of netlist designs, if the report_inst_for_netlist
parameter is set to yes. Otherwise, it is net

<inst-name> <flop/latch-output-net-name> in case of RTL
designs.
<flop/latch-inst-name>.<pin-name> in case of
netlist designs, if the report_inst_for_netlist parameter is set to
yes. Otherwise, it is same as in case of RTL designs.
The following informational message appears at the location
where tristate/latch is permanently enabled/disabled or the
input of XOR/XNOR is tied to active high/low
1352
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
change the clock behavior.

As designs are very sensitive to clocks, the clock tree should contain only
permitted cells.

How to Debug and Fix
To debug the violation of this rule, perform the following steps:
1. View the Incremental Schematic of the violation message.
2. In the schematic, check the clock path containing unexpected gate.
3. Check if the violation message reports tristate/latch gate as

permanently enabled. This implies that the gate is always enabled and
acts like a buffer.

4. Check if the violation message reports XOR/XNOR gate as acting as
inverter or acting as buffer. This implies that the gate acts like a buffer
or an inverter.

5. Check if the violation message reports tristate/latch gate as
permanently disabled. This implies that the gate is always blocked.

6. You can also view case analysis settings along with the violation of this
rule.

Considering violations reported by this rule as a real error depends on your
design methodology. For example, if you are using low power design, you
will have latches in the clock tree. Disable the rule if it does not apply to
your methodology.

Message 2

The following informational message appears at the location where a
tristate/latch is permanently enabled/disabled or the input of XOR/XNOR is
tied to active high/low:

[ClkC1_2] [INFO] Unexpected <gate-type> (<state>) gate (at
<name>) in clock tree of flop/latch (output <obj-type> <inst-
name>)

Where, <state> can be acting as buffer/inverter in case of XOR/
XNOR gates or permanently enabled/disabled in case of tristate
gates or latches.

Potential Issues
None

Consequences of Not Fixing
1353
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
None

How to Debug and Fix
None

Example Code and/or Schematic

Consider the following example:

module test (clk1,clk2,in1,in2,out1,out);
input clk1,clk2,in1,in2;
output out,out1;
reg out,out1;
reg off1;
wire o_xor = clk1^ clk2;
wire o_xor2 = clk1^ o_xor;
always @ (posedge clk1)
begin
off1 <=in1;

end
always @ (posedge o_xor)
out <= off1;

always@(posedge o_xor2)
out1 <= in2;

endmodule

For the above example, the Clock_check01 rule reports a violation as an
unexpected XOR gate, o_xor, is found in the clock tree.

Following is the schematic of a violation of this rule:
1354
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
FIGURE 257. Schematic of the Clock_check01 Rule Violation

Schematic Details
The Clock_check01 rule highlights unexpected gate and path from this
unexpected gate to a clock pin of a flip-flop or a latch.

Default Severity Label

Warning

Rule Group

VERIFY

Reports and Related Files

No report and related file
1355
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
Clock_check02
Reports high fan-out clock nets that are not driven by any of the
specified placeholder cell

When to Use

Use this rule to analyze clock trees when certain fan-out nets have weak
drive strength because of a high fan-out and missing placeholder cells.

Prerequisites

Specify the following information before running this rule:
 Specify the name of placeholder cells by using the CTS_placeholder_cells

parameter.
 Specify clock signals in any of the following ways:

 By using the clock constraint

 By automatically inferring clocks by setting the use_inferred_clocks
parameter to yes

 By using a combination of both the above methods

Description

The Clock_check02 rule reports clock nets that have a fan-out greater than
the value specified by the clock_fanout_max rule parameter, and these clock
nets are not driven by the instances of cells specified by the
CTS_placeholder_cells parameter.

Parameter(s)

 CTS_placeholder_cells: Default value is NULL. Specify a comma or
space-separated list of placeholder cells.

 clock_fanout_max: Default value is 24. Specify a positive integer value to
specify a maximum fan-out limit for clocks.

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
automatically-generated clock information.

 handle_combo_arc: Default value is no. Set this parameter to yes so that
the clock/reset propagates from an input pin of a sequential library cell
if a combinational timing arc is specified from that pin to any output pin
of the cell.
1356
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
 same_domain_at_gate: Default value is no. Set the value of the
parameter to an allowed value to optimize the inference of domains on
clock merging gates.

Constraint(s)

 clock (Optional): Use this constraint to specify clock signals in a design.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

Messages and Suggested Fix

The following message appears for the clock signal <clk-name> of the
fan-out <num> that is more than the value specified by the
clock_fanout_max parameter, and this clock signal is not driven by instances
of any of the placeholder cells specified using the CTS_placeholder_cells
parameter:

[WARNING] Clock “<clk-name>” drives <num> flops that exceeds
maximum allowed limit '$clock_fanout_max' and is not driven by
any placeholder cells

Potential Issues
This violation appears if the total number of sequential elements driven by
a clock net exceeds the maximum limit specified by the clock_fanout_max
parameter, and such clocks nets are not driven by any of the specified
placeholder cells.

Consequences of Not Fixing
If you do not fix this violation, the high fan-out clock nets may have weak
drive strength if they are not driven by placeholder cells.

How to Debug and Fix
To debug and fix this violation, perform the following steps:
1. View the Incremental Schematic of the violation message.
2. In the schematic, check the cell present in the fan-out of the clock net.
1357
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
3. Check if you have specified the correct cell name in the
CTS_placeholder_cells parameter.

4. Insert a CTS placeholder cell for this clock net.

Example Code and/or Schematic

Consider the following files specified during SpyGlass analysis:

For the above example, the Clock_check02 rule reports a violation because
the top.abc.clk clock drives four flip-flops that exceeds the maximum
allowed limit of three, and this clock is not driven by the specified
placeholder cell.

The following figure shows the schematic of this violation:

module test (d,clk,q);
input [3:0]d;
input clk;
output [3:0]q;
reg [3:0]q;
BBOX b1 (.A(clk),.B(),.Q(clk1));
always @ (posedge clk1)
 q <= d;

endmodule

module top(d,clk,q);
input [3:0]d;
input clk;
output [3:0]q;
test abc(d,clk,q);

endmodule

// test.v

current_design top
clock -name top.abc.clk
assume_path -input A -output Q

// constr.sgdc

-name BBOX

set_parameter clock_fanout_max 3

set_parameter CTS_placeholder_cells top
1358
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
FIGURE 258. Schematic of the Clock_check02 Rule Violation

Schematic Details

The Clock_check02 rule highlights the clock net that is not driven by the
specified placeholder cell.

Default Severity Label

Warning

Rule Group

VERIFY

Reports and Related Files

No report or related file
1359
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
Clock_check03
Reports bus bits that are used as clocks

When to Use

Use this rule to identify bus-bits that are used as clocks.

Prerequisites

Specify clock signals in any of the following ways:
 By using the clock constraint

 By setting the use_inferred_clocks parameter to yes to auto-generate
clock signals

 By using a combination of both the above methods

Description

The Clock_check03 rule reports bits of bus signals that are used as clocks
or latch enables. It also reports bus signals present in the fan-in cone of
the pin of a flip-flop or enable pin of a latch enable.

This rule reports only one violation per path even if there are multiple bus
bits in the path.

Parameter(s)

 show_derived_busclocks: Default value is no. Set this parameter to yes to
report bus-bit signals that are in derived clock path, in addition to
bus-bit signals that are in the primary clock path.

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

 same_domain_at_gate: Default value is no. Set the value of the
parameter to an allowed value to optimize the inference of domains on
clock merging gates.

Constraint(s)

 clock (Optional): Use this constraint to specify clock signals in a design.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.
1360
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
Messages and Suggested Fix

The following message appears if the clock signal <clk-name> that is a
bus-bit or has a bus-bit <bit-name> in its hierarchy, is first set:

[WARNING] Clock '<clk-name>' is a bus-bit or is connected to a
bus-bit '<bit-name>'

Potential Issues
This violation appears if your design contains bus-bits that are used as
clocks.

Consequences of Not Fixing
Some methodologies do not support bus-bits being used as clocks because
that can break downstream tools.

How to Debug and Fix
Open the incremental schematic to view the violating clock signal.

If required, define clocks by using scalar signals with different naming
convention, such as CLK_0 and CLK_1.

Example Code and/or Schematic

Consider the following schematic of a violation of this rule:
1361
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
FIGURE 259. Schematic of the Clock_check03 Rule Violation

In the above example, the Clock_check03 rule reports a violation because
CLK2 is connected to the bus-bit cntrl[0] that is used as a clock.

Schematic Highlight

The Clock_check03 rule highlights the path from a bus-bit clock net to a
flip-flop clock pin or a latch enable pin.

Default Severity Label

Warning

Rule Group

VERIFY

Reports and Related Files

No report or related file
1362
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
Clock_check04
Reports the usage of both the edges (positive and negative) of a
clock

When to Use

Use this rule to detect clocks for which both the edges are used.

Description

The Clock_check04 rule reports the usage of both edges of a clock.

Note the following points:
 This rule reports one violation per clock signal.

 This rule also reports in case of half synchronizers. You can waive off
such messages, if required.

Parameter(s)

 clock_reduce_pessimism: Default value is latch_en, mux_sel_derived,
check_enable_for_glitch. Set the value of this parameter to
mux_sel to stop traversal of this rule when a clock signal reaches a
MUX. Other possible values are all, all_potential_clocks, and
ignore_same_domain.

 clock_edge: Default value is positive. Set this parameter to negative
to report clock descriptions for which a positive edge specified.

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

 filter_named_clocks: Default value is rst, reset, scan, set. Set this
parameter to a list of strings.

 handle_combo_arc: Default value is no. Set this parameter to yes so that
the clock/reset propagates from an input pin of a sequential library cell
if a combinational timing arc is specified from that pin to any output pin
of the cell.

 same_domain_at_gate: Default value is no. Set the value of the
parameter to an allowed value to optimize the inference of domains on
clock merging gates.
1363
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
Constraint(s)

 clock (Optional): Use this constraint to specify clock signals.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

Messages and Suggested Fix

The following message appears at the location where the specified clock
signal <clk-name> is used with an edge different from the recommended
edge ($clock_edge):

[WARNING] Recommended edge ($clock_edge) of clock '<clk-name>'
not used

Potential Issues

This violation appears if your design contains clocks that are used at both
positive and negative edges.

Consequences of Not Fixing

Designs using both clock edges are quite sensitive to clock
duty cycles. Therefore, designs containing clocks for which
both the edges are used are less portable.

How to Debug and Fix
This rule reports a violation when the recommend edge of a clock is not
used. You can view the Incremental Schematic of the violation message to
check the clock path.

You can also view case analysis settings along with the violation of this
rule.

Example Code and/or Schematic

Consider the following Verilog file:

// test.v
module test(input d, clk, output reg q);
always @(negedge clk)
q <= d;

endmodule
1364
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
For the above example, this rule reports a violation as a negative edge for
the clk clock is used when the recommended edge is positive

Following is the schematic of this violation:

FIGURE 260. Schematic of the Clock_check04 Rule Violation

To fix this violation, use a single edge for the clk clock.

Schematic Details
The Clock_check04 rule highlights the path from a clock net to the first flip-
flop encountered that is triggered by a different clock edge.

Default Severity Label

Warning

Rule Group

VERIFY

Reports and Related Files

No report related or file
1365
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
Clock_check05
Reports deep clock divider chains

When to Use

Use this rule during the RTL or pre-layout phase to detect deep clock
divider chains.

Prerequisites

Specify clock signals in any of the following ways:
 By using the clock constraint

 By automatically inferring clocks by setting the use_inferred_clocks
parameter to yes

 By using a combination of both the above methods

Description

The Clock_check05 rule reports ripple clock dividers that exceed the
specified depth.

Rule Functioning

This rule functions in the following manner:
 This rule starts traversal from a clock source (primary input or a black

box pin) and traverses the hierarchy to look for ripple clock dividers that
exceed the specified depth.

 By default, a clock does not propagate across a latch enable. As a result,
traversal stops when the clock signal reaches the latch enable and
traversal continues on other paths.
To let a clock divider chain to traverse through a latch enable, remove
the latch_en value from the clock_reduce_pessimism parameter.

Parameter(s)

 clock_reduce_pessimism: Default value is latch_en, mux_sel_derived,
check_enable_for_glitch. Set the value of this parameter to
mux_sel to stop traversal of this rule when a clock signal reaches a
1366
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
MUX. Other possible values are all, all_potential_clocks, and
ignore_same_domain.

 clock_ripple_depth: Default value is 2. Set the value of this parameter to
a positive integer value to specify the maximum allowed depth of ripple
clock divider.

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

 report_inst_for_netlist: Default value is no. Set this parameter to yes to
report violating instance name in case of netlist designs and leaf-level
net name for RTL designs.

 handle_combo_arc: Default value is no. Set this parameter to yes so that
the clock/reset propagates from an input pin of a sequential library cell
if a combinational timing arc is specified from that pin to any output pin
of the cell.

 same_domain_at_gate: Default value is no. Set the value of the
parameter to an allowed value to optimize the inference of domains on
clock merging gates.

Constraint(s)

 clock (Optional): Use this constraint to specify clock signals in a design.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

 quasi_static (Optional): Use this constraint to specify signals whose value
is predominantly static.

Messages and Suggested Fix

The following message appears at the location where the output of
<flop1-name> is first assigned when <flop1-name> is the first
flip-flop in a ripple clock divider chain that goes up to the flip-flop
<flop2-name> (and beyond) where the chain is
$clock_ripple_depth long:

[WARNING] Deep ripple clock divider (flop <flop1-name> to flop
<flop2-name> and beyond) of depth exceeding $clock_ripple_depth
found

NOTE: For RTL designs, <flop1-name> and <flop2-name> are names of the output nets of
1367
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
the corresponding flip-flops. For netlist designs, if the report_inst_for_netlist
parameter is set to yes, <flop1-name> and <flop2-name> are names of the flip-
flop instances. Otherwise, the message details are same as for the RTL designs.

Potential Issues
This violation appears if your design contains deep clock divider chains.

Consequences of Not Fixing
If you do not fix this violation, it may introduce significant clock skew in the
derived clocks with respect to the primary source clocks.

Clock skew in a design may cause timing issues in a design.

How to Debug and Fix
To debug and fix this violation, perform the following steps:
1. Double-click on the rule violation.
2. Open the incremental schematic.
3. If the ripple depth is acceptable for the given design, specify this depth

by using the clock_ripple_depth parameter.
4. Use a PLL, DLL, or some other clock generation structures in the design

with well-controlled skew.

Example Code and/or Schematic

Consider the following file specified during SpyGlass analysis:
1368
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
Here, the default depth of ripple clock divider is 2. However, the depth of
the clock divider chain is greater than two between the q1 and q2
flip-flops.

Therefore, the Clock_check05 rule reports the following violation:

Deep ripple clock divider (flop 'test.q1' to flop 'test.q2' and
beyond) of depth exceeding 2 found

The following figure shows the schematic of this violation:

FIGURE 261. Schematic of the Clock_check05 Rule Violation

Schematic Details

The Clock_check05 rule highlights the following information in different
colors in the schematic:

module test(input d1, d2, d3, clk, in, output q);
wire q1, q2, q3;
flop f1 (d1, clk, q1);
flop f2 (d2, q1, q2);
assign q3 = q2 & in;
flop f3 (d3, q3, q);
endmodule

module flop (input d, clk, output reg q);
always @(posedge clk)
 q <= d;
endmodule
1369
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
 The clock divider path from the starting flip-flop up to the flip-flop where
the depth exceeds the specified limit

 Output of the flip-flop exceeding the limit

Default Severity Label

Warning

Rule Group

VERIFY

Reports and Related Files

 The CDC Report

 Clock_check05.csv
1370
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
Clock_check06a
Reports unexpected cells found in a clock tree

When to Use

Use this rule during the RTL or pre-layout phase to detect unexpected cells
in a clock tree.

Prerequisites

Specify the following information before running this rule:
 Specify clock signals in any of the following ways:

 By using the clock constraint

 By automatically inferring clocks by setting the use_inferred_clocks
parameter to yes

 By using a combination of both the above methods

 Specify either of unexpected_ckcells_file and expected_ckcells_file
parameters.
If you do not specify any of these parameters, SpyGlass does not report
any cell as unexpected. However, if you specify both the parameters,
the unexpected_ckcells_file parameter is ignored.

Description

The Clock_check06a rule reports unexpected cells in a clock tree.

Rule Exceptions

This rule ignores all SpyGlass generated buffers with names as rtlc_* and
marks them as unexpected cells.

Parameter(s)

 cdc_express: Default values is no. Set this parameter to peakmem to
reduce peak memory. Other possible value is yes.

 unexpected_ckcells_file: Default value is NULL. Specify a comma or
space-separated list of files containing a list of cells that are not allowed
in clock trees.
1371
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
 expected_ckcells_file: Default value is NULL. Specify a comma or
space-separated list of files containing a list of cells that are allowed in
clock trees.

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

 same_domain_at_gate: Default value is no. Set the value of the
parameter to an allowed value to optimize the inference of domains on
clock merging gates.

Constraint(s)

 clock (Mandatory): Use this constraint to specify clock signals in a
design.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

Messages and Suggested Fix

The following message appears at the location where the instance
<inst-name> of the cell <cell-name> (specified using the
unexpected_ckcells_file parameter) is found in the clock tree of the clock
<clk-name>:

[WARNING] Unexpected cell '<cell-name>' (Instance '<inst-
name>') found in tree of clock '<clk-name>'

Potential Issues
This violation appears if the clock tree in your design contains any
unexpected user-instantiated or synthesized cells.

Consequences of Not Fixing
If you do not fix this violation, the unexpected cells in the clock tree may
cause timing issues or glitches.

How to Debug and Fix
To debug and fix this violation, perform the following steps:
1372
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
1. Open incremental schematic of the violation.
2. Check if you intent to retain the reported cell in the clock tree.
3. If you want to retain the reported cell in the clock tree, specify that cell

in the expected_ckcells_file parameter.

Example Code and/or Schematic

Consider the following schematic of a violation reported by this rule:

FIGURE 262. Schematic of the Clock_check06a Rule Violation

In the above example, the Clock_check06a rule reports the RTL_AND cell
as the unexpected cell because this cell is not specified by the
expected_ckcells_file parameter.

Schematic Details

The Clock_check06a rule highlights the path from the clock source to the
unexpected cell instance in the schematic.

Default Severity Label

Warning

expected_ckcells_file parameter set to file1.txt

file1.txt
B.11006MJ
1373
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
Rule Group

VERIFY

Reports and Related Files

No report or related file
1374
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
Clock_check06b
Reports the cells in a clock tree that do not have the same
threshold_voltage_group attribute value

When to Use

Use this rule during the RTL or pre-layout phase to check.

Prerequisites

Specify clock signals in any of the following ways:
 By using the clock constraint

 By automatically inferring clocks by setting the use_inferred_clocks
parameter to yes

 By using a combination of both the above methods

Description

The Clock_check06b rule reports cells that are instantiated in a clock tree
and do not have consistent threshold_voltage_group attribute value
set in the .lib files.

The Clock_check06b rule considers the first-found .lib cell instantiated in
the clock tree as the reference and reports another cell instantiated in the
clock tree if the threshold_voltage_group attribute value for the cell is
different.

Parameter(s)

 cdc_express: Default values is no. Set this parameter to peakmem to
reduce peak memory. Other possible value is yes.

 same_threshold_all_cktree: Default value is no. Set this parameter to yes
to check for all clock trees together.

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

 same_domain_at_gate: Default value is no. Set the value of the
parameter to an allowed value to optimize the inference of domains on
clock merging gates.
1375
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
Constraint(s)

 clock (Mandatory): Use this constraint to specify clock signals in a
design.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

Messages and Suggested Fix

The following message appears at the location of the instance
<inst2-name> of the .lib cell <cell2-name> found in the clock tree of
the clock <clk2-name>, and the .lib cell does not have the same
threshold_voltage_group attribute value as the first-found cell
<cell1-name> (instantiated as <inst1-name> in the clock tree of the
clock <clk1-name>:

[WARNING] Cell '<cell2-name>' (instance: '<inst2-name>',
threshold value: '<value2>', clock: '<clk2-name>') has
different threshold voltage value from the first cell '<cell1-
name>' (instance: '<inst1-name>', threshold value: '<value1>',
clock: '<clk1-name>')

Where clocks <clk1-name> and <clk2-name> are the same clocks if
the same_threshold_all_cktree parameter is not set and can be same or
different if the same_threshold_all_cktree parameter is set.

Potential Issues
This violation appears if library cells in a clock tree have different threshold
voltage group value.

Consequences of Not Fixing
If you do not fix this violation, library cells with a different threshold
voltage may trigger at different voltage levels and cause unexpected
timing issues or blocking of clock paths.

How to Debug and Fix
To debug and fix this violation, perform following steps:
1376
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
1. Double-click on the violation message, and check the cell highlighted in
the RTL.
The highlighted cell is the one that is used as the reference cell.

2. Check the other cells reported in the violation message.
Both these cells should have a different threshold voltage group defined
in the library file.

3. Correct the logic to ensure that all cells in a clock tree have the same
threshold_voltage_group attribute.

Example Code and/or Schematic

Consider the following schematic of a violation reported by this rule:

FIGURE 263. Schematic of the Clock_check06b Rule Violation

In the above example, the BU11006MJ cell has a different threshold
voltage value from the first cell BU11005.

Therefore, the Clock_check06b rule reports a violation.

Schematic Details

The Clock_check06b rule highlights the path from the clock source to the

set_parameter use_inferred_clocks yes

set_parameter same_threshold_all_cktree yes

read_file -type gateslib buffer_cells.lib
set_parameter run_cells_in_cktree_rules yes
1377
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
rule-violating cell instance in the schematic.

Default Severity Label

Warning

Rule Group

VERIFY

Reports and Related Files

No report or related file
1378
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
Clock_check10
Reports the clock signals that are used as non-clock signals

When to Use

Use this rule to identify the clock signals that are used as non-clock signals.

Prerequisites

Specify clock signals in any of the following ways:
 By using the clock constraint

 By automatically inferring clocks by setting the use_inferred_clocks
parameter to yes

 By using a combination of both the above methods

Description

The Clock_check10 rule reports a violation if a clock signal drives any of
the following objects:
 Data pin of a flip-flop, latch, or library cell

 Control pin of a flip-flop, tristate, or library cell

 Reset pin of a flip-flop, latch, or library cell

 Black box with the abstract_port and signal_in_domain constraint

 Library cell inputs for which type (as clock, control, or reset) could
not be inferred from the library. For example, the read address of a
memory cell

 Primary port

For example, this rule reports a violation in the following scenario:
1379
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
FIGURE 264. Clock_check10 Rule Violation

The Clock_check10 rule supports multi-line highlighting to show the lines
where it is used as a clock signal and as a non-clock signal.

Rule Exceptions

A flip-flop whose output is used as a clock signal is considered as a clock
generator. Since clock generators have a feedback loop, the Clock_check10
rule does not report violations for the data and control pins of such a
flip-flops.

The following figure shows such a scenario:

FIGURE 265. Clock_check10 Rule Exception

clk

clk1

p1

Clock signal driving the
reset pin of the F1 flip-flop

F1

F2

F1

F2

Clock signal for F2

Clock generator

The feedback loop of
the clock generator
1380
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
Parameter(s)

 clock_usage: Default value is data,control,reset,bbox,others.
Specify a comma-separated list of values to specify signal types to be
reported for non-clock usage. Possible types are data, control,
reset, port, bbox, others, derived, and all.

 report_detail: Default is all. The parameter supports the Clock_check10
and the Setup_library01 rules. Set this parameter to a supported rule to
report all the violations of the specified rule and a reduced set of
violations of the other supported rule. Other possible value is none.

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

 clock_reduce_pessimism: Default value is latch_en, mux_sel_derived,
check_enable_for_glitch. Set the value of this parameter to
mux_sel to stop traversal of this rule when a clock signal reaches a
MUX. Other possible values are all, all_potential_clocks, and
ignore_same_domain.

 enable_debug_data: Default value is no. Set this parameter to yes to
view debug information.

 report_inst_for_netlist: Default value is no. Set this parameter to yes to
report violating instance name in case of netlist designs and leaf-level
net name for RTL designs.

 handle_combo_arc: Default value is no. Set this parameter to yes so that
the clock/reset propagates from an input pin of a sequential library cell
if a combinational timing arc is specified from that pin to any output pin
of the cell.

Constraint(s)

 clock (Mandatory): Use this constraint to specify clock signals in a
design.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

Messages and Suggested Fix

Message 1

The following message appears when the <clk-name> clock signal
1381
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
reaches the data of a flip-flop, latch, or library cells:

[WARNING] Clock signal '<clk-name>' (at
<flop|latch|blackbox|library-cell> '<name1>') is reaching to
data of <flop|latch|tristatelibrary-cell> <name2>

The arguments of the above message are explained below:

Potential Issues
This violation appears if your design contains a clock signal that reaches
the data input of a flip-flop, latch, or library cell.

Consequences of Not Fixing
If you do not fix this violation, your design may contain functional issues.

Argument Description
<clk-name> Hierarchical name of the clock signal
<name1> For RTL designs, this argument is the output net name of the

instance where the clock signal is used as a clock.

For library cells which do not have functional attributes, such as
memory cells, this argument is the name of the input pin.

For netlist designs, if the report_inst_for_netlist parameter is set
to yes, this argument is the instance name otherwise it is the
same as in case of RTL designs.

<name2> For RTL designs, this argument is the output net name of the
instance where the clock signal is used as a data.

For library cells which do not have functional attributes, such as
memory cells, and the connected net is not an internally
generated net, the corresponding net name is reported. Else, the
cell pin name is reported.

For netlist designs, if the report_inst_for_netlist parameter is set
to yes, this argument is the instance name otherwise it is the
same as in case of RTL designs.
1382
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
How to Debug and Fix
To debug this violation, analyze the incremental schematic of the violation.

To fix this violation, avoid using clocks as non-clock signals.

Message 2

The following message appears when the <clk-name> clock signal
reaches the control of a flip-flop, tristate, or library cell:

[WARNING] Clock signal '<clk-name>' (at
<flop|latch|blackbox|library-cell> '<name1>') is reaching to
control of <flop|library-cell|tristate> <name2>

The arguments of the above message are explained below:

Potential Issues
This violation appears if your design contains a clock signal that reaches
the control input of a flip-flop, tristate, or library cell.

Consequences of Not Fixing

Argument Description
<clk-name> Hierarchical name of the clock signal
<name1> Refer to the <name1> description.

<name2> For RTL designs, this argument is the output net name of the
instance where the clock signal is used as a control.

For library cells which do not have functional attributes, such as
memory cells, and the connected net is not an internally
generated net, the corresponding net name is reported. Else, the
cell pin name is reported.

For netlist designs, if the report_inst_for_netlist parameter is set
to yes, this argument is the instance name otherwise it is the
same as in case of RTL designs.
1383
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
If you do not fix this violation, your design may contain functional issues.

How to Debug and Fix
To debug and fix this violation, analyze the incremental schematic of the
violation. Check if you can avoid using clocks as non-clock signals.

Message 3

The following message appears when the <clk-name> clock signal
reaches a primary port:

[WARNING] Clock signal '<clk-name>' (at
<flop|latch|blackbox|library-cell> '<name1>') is reaching to
port <port-name>

The arguments of the above message are explained below:

Potential Issues
This violation appears if your design contains a clock signal that reaches an
output port.

Consequences of Not Fixing
If you do not fix this violation, your design may contain functional issues.

How to Debug and Fix
To debug this violation, analyze the incremental schematic of the violation.

To fix this violation, avoid using clocks as non-clock signals.

Argument Description
<clk-name> Hierarchical name of the clock signal
<name1> Refer to the <name1> description.

<port-name> Refers to the port name where the clock signal is arriving.
1384
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
Message 4

The following message appears when the <clk-name> clock signal
reaches a black box instance at the <pin-name> pin:

[WARNING] Clock signal '<clk-name>' (at
<flop|latch|blackbox|library-cell> '<name1>') is reaching to
blackbox instance of <name2>

The arguments of the above message are explained below:

Potential Issues
This violation appears if your design contains a clock signal that reaches a
black box instance pin where the abstract_port and signal_in_domain
constraints are defined.

Consequences of Not Fixing
If you do not fix this violation, your design may contain functional issues.

How to Debug and Fix
To debug this violation, analyze the incremental schematic of the violation.

Argument Description
<clk-name> Hierarchical name of the clock signal
<name1> Refer to the <name1> description.
<name2> For RTL designs, this argument is the input net name of the black

box instance where the clock signal has reached.

If the connected net is an internally generated net, the
corresponding black box pin name is reported. If the input net is
not an internally generated net, the corresponding connected net
name is reported.

For netlist designs, if the report_inst_for_netlist parameter is set
to yes, this argument is the instance name otherwise it is the
same as in case of RTL designs.
1385
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
To fix this violation, avoid using clocks as non-clock signals.

Message 5

The following message appears when the <clk-name> clock signal
reaches the reset of a flip-flop, latch, or library cell:

[WARNING] Clock signal '<clk-name>' (at
<flop|latch|blackbox|library-cell> '<name1>') is reaching to
reset of <flop|library-cell|latch|tristate> <name2>

The arguments of the above message are explained below:

Potential Issues
This violation appears if your design contains a clock signal that reaches
the reset input of a flip-flop, latch, or library cell.

Consequences of Not Fixing
If you do not fix this violation, your design may contain functional issues.

How to Debug and Fix

Argument Description
<clk-name> Hierarchical name of the clock signal
<name1> Refer to the <name1> description.

<name2> For RTL designs, this argument is the output net name of the
instance where the clock signal is used as a reset.

For library cells which do not have functional attributes, such as
memory cells, and the connected net is not an internally
generated net, the corresponding net name is reported. Else, the
cell pin name is reported.

For netlist designs, if the report_inst_for_netlist parameter is set
to yes, this argument is the instance name otherwise it is the
same as in case of RTL designs.
1386
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
To debug this violation, analyze the incremental schematic of the violation.

To fix this violation, avoid using clocks as non-clock signals.

Message 6

The following message appears when the <clk-name> clock signal
reaches the input pin of a library cell of type excluding clock, control, and
reset:

[WARNING] Clock signal '<clk-name>' (at
<flop|latch|blackbox|library-cell> '<name1>') is reaching to
others of <library-cell> <name2>

The arguments of the above message are explained below:

Potential Issues
This violation appears if your design contains a clock signal that reaches
the library cell inputs for which type (as clock, control, or reset) could
not be inferred from the library. For example, the read address of a
memory cell.

Argument Description
<clk-name> Hierarchical name of the clock signal
<name1> Refer to the <name1> description.
<name2> For RTL designs, this argument is the output net name of the

instance where the clock signal is used as others, such as read
address of a memory cell.

For library cells which do not have functional attributes, such as
memory cells, and the connected net is not an internally
generated net, the corresponding net name is reported. Else, the
cell pin name is reported.

For netlist designs, if the report_inst_for_netlist parameter is set
to yes, this argument is the instance name otherwise it is the
same as in case of RTL designs.
1387
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
Consequences of Not Fixing
If you do not fix this violation, your design may contain functional issues.

How to Debug and Fix
To debug this violation, analyze the incremental schematic of the violation.

To fix this violation, avoid using clocks as non-clock signals.

Message 7

The following message appears when a clock signal <clk-name> has
been used as a data signal, but not been used as a clock signal:

[WARNING] Clock signal '<clk-name>' (not used as clock) is
reaching to <flop|latch|blackbox|library-cell> <name2>

The arguments of the above message are explained below:

Potential Issues
This violation appears if your design contains a clock signal that reaches
the data input of a flip-flop, latch, or library cell.

Consequences of Not Fixing
If you do not fix this violation, your design may contain functional issues.

Argument Description
<clk-name> Hierarchical name of the clock signal
<name2> For RTL designs, this argument is the output net name of the

instance where the clock signal is used as data.

For library cells which do not have functional attributes, such as
memory cells, and the connected net is not an internally
generated net, the corresponding net name is reported. Else,
the cell pin name is reported.

For netlist designs, if the report_inst_for_netlist parameter is set
to yes, this argument is the instance name otherwise it is the
same as in case of RTL designs.
1388
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
How to Debug and Fix
To debug this violation, analyze the incremental schematic of the violation.
To fix this violation, avoid using clocks as non-clock signals.

Example Code and/or Schematic

Consider the following schematic of the violation of the Clock_check10
rule:

FIGURE 266. Schematic of the Clock_check10 Rule Violation

In the schematic above, the clk clock signal is being used as clock at
q1_reg and data in the q2_reg flop. The rule highlights the clocks and the
non-clock instances in different colors.

Default Severity Label

Warning

Rule Group

VERIFY

Reports and Related Files

No report or related file
1389
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
Clock_converge01
Reports the clock signal for which multiple fan-outs converge

When to Use

Use this rule to detect clocks with multiple converging fan-outs.

Prerequisites

Specify clock signals in any of the following ways:
 By using the clock constraint

 By setting the use_inferred_clocks parameter to yes

 By using a combination of both the above methods

Description

The Clock_converge01 rule reports clocks for which multiple fan-outs
converge. See Figure 270.

It also reports a violation if convergence is at a mux select and its input.

Unate/Binate Analysis

You can configure the Clock_converge01 rule to report violations related
with same source reconvergence when the reconverging paths have
different polarities or at least one path has an unknown polarity.

For details, see no_unate_reconv.

Rule Exceptions

The Clock_converge01 rule has the following exceptions:
 This rule does not report a violation if the converged clock signal does

not propagate to the clock pin of any of the sequential element in the
design.
For example, in the following scenario, the converged clock signal does
not propagate to the f1 flip-flop because the case analysis value 0
blocks the converged clock to propagate:
1390
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
FIGURE 267. Clock_converge01 Rule Exception - 1

Similarly, in the following scenario also, the Clock_converge01 rule does
not report a violation because the converged clock signal is reaching an
output port and not any sequential element:

FIGURE 268. Clock_converge01 Rule Exception - 2

 The Clock_converge01 rule does not report violations for the same
source reconvergence on the input pin of a MUX. This is because, only

clk

in(0)

clock divergence clock convergence

set_case_analysis value
locks clock propagation

(0)

//SGDC File

set_case_analysis -name in -value 0
clock -name clk -domain d1

clk

clock divergence clock convergence

//SGDC File
clock -name clk -domain

out1
1391
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
one input pin is active at a time. This scenario is shown in the following
figure:

FIGURE 269. Example of the Clock_converge01 Rule Exception

Parameter(s)

 cdc_express: Default values is no. Set this parameter to peakmem to
reduce peak memory. Other possible value is yes.

 clock_reduce_pessimism: Default value is latch_en, mux_sel_derived,
check_enable_for_glitch. Set the value of this parameter to
mux_sel to stop traversal of this rule when a clock signal reaches a
MUX. Other possible values are all, all_potential_clocks, and
ignore_same_domain.

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

 report_inst_for_netlist: Default value is no. Set this parameter to yes to
report violating instance name in case of netlist designs and leaf-level
net name for RTL designs.

 same_domain_at_gate: Default value is no. Set the value of the
parameter to an allowed value to optimize the inference of domains on
clock merging gates.

No violation reported for
clk reconvergence
on the input pins of the MUX
1392
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
Constraint(s)

 clock (Optional): Use this constraint to specify clock signals in your
design.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

Messages and Suggested Fix

The following message appears when multiple fan-outs of the clock
<clk-name> converge at the net/instance <obj-name>:

[WARNING] Clock '<clk-name>' with multiple fanout converges on
'<obj-name>'

Where, <obj-name> refers to <inst-out-net-name> in case of RTL
designs, and <inst-name> in case of netlist designs, if the
report_inst_for_netlist parameter is set to yes. Otherwise, it is same as in
case of RTL designs.

Potential Issues
This violation appears if your design contains clocks with multiple fan-outs
converging deep in the design hierarchy.

Consequences of Not Fixing
If you do not fix this violation, the clock signal can have different delays
along different paths before it re-converges. This may result in glitches or
an incorrect clock waveform.

How to Debug and Fix
To fix this violation, avoid situations reported by this rule. Else, check the
timing properly along different paths to ensure a correct clock waveform.

Example Code and/or Schematic

Consider the following schematic of a violation of this rule:
1393
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
FIGURE 270. Clocks for which Multiple Fan-outs Converge

In the above schematic, the a clock with multiple fan-outs is converging on
the f net.

Therefore, the Clock_converge01 rule reports a violation.

Schematic Details

The Clock_converge01 rule highlights the following in a different color in
the schematic:
 Clock signal and its multiple fan-outs that are converging

 Converging instance

Default Severity Label

Warning

Rule Group

VERIFY

Reports and Related Files

No report and related file
1394
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
Clock_hier01
Reports clock-gating wrapper modules in clock-path

When to Use

Use this rule to check clock-gating wrapper modules in the clock-path
hierarchy.

Description

The Clock_hier01 rule reports all the modules that have a valid clock-gating
structure. Presence of additional logic in this module will make it an invalid
wrapper and get reported by the Clock_hier03 rule.

This rule reports violation only for the propagated clock-path. Only one
instantiation of each module is reported.

Clock Gating Structures Supported By the Clock_hier01 Rule

The following clock-gating structures are supported.
 CGLP structure (positive edge triggered clock-gating), as shown in the

following figure:

FIGURE 271. CGLP Structure

 CGLN structure (negative edge triggered clock-gating), as shown in
the following figure:
1395
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
FIGURE 272. CGLN Structure

Input/output of the latch with an optional OR gate for scan-enable is
supported. In addition to these auto-detected clock-gating structures,
modules specified using the clock_gate_cell parameter get reported by this
rule.

Rule Exceptions

This rule ignores instantiation of clock_gating structures from user-
specified libraries.

Parameter(s)

 enable_clock_gate_sync: Default value is yes. Set this parameter to no to
disable the Clock-Gating Cell Synchronization Scheme.

 clock_gate_cell: Default value is NULL. Set the value of this parameter to
a comma or space-separated list of clock-gating cell names for the Clock-
Gating Cell Synchronization Scheme.

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

 same_domain_at_gate: Default value is no. Set the value of the
parameter to an allowed value to optimize the inference of domains on
clock merging gates.

Constraint(s)

 clock (Optional): Use this constraint to specify clock signals in your
design.
1396
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
 clock_path_wrapper_modules (Optional): Use this constraint to exclude
modules from the checks performed by the Clock_hier01, Clock_hier02,
and Clock_hier03 rules.

Messages and Suggested Fix

The following message appears when the clock gating module
<mod-name> is detected at the net <net-name>:

[INFO] Clock gating module '<mod-name>'(instance:'<hierarchy>')
detected at net '<net-name>'

Potential Issues
This is an informational message. There are no potential issues.

Consequences of Not Fixing
None

How to Debug and Fix
View the Incremental Schematic of the violation message. The
schematic highlights the clock-path to the clock-gating instance.

You can replace the clock-gating structure identified in a different
hierarchical module by an appropriate library cell.

Example Code and/or Schematic

Consider the following example in which the clock-gating wrapper module
is instantiated in the clock-path of clk2:

module gating_cell(en,clk,out);
….
..
always@(clk)
 begin
 if(!clk)
 temp<= en;
 end
assign gated_clk = temp & clk;
endmodule

For the above example, the Clock_hier01 rule reports the following
1397
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
violation.

[INFO] Clock gating module 'gating_cell'(instance:'CG1')
detected at net 'test.t_clk2'

The following figure shows the schematic of this violation in which the
clock-path to the clock-gating instance is highlighted:

FIGURE 273. Schematic of the Clock_hier01 Rule Violation

Default Severity Label

Info

Rule Group

VERIFY

Reports and Related Files

No report and related file
1398
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
Clock_hier02
Reports combinational wrapper modules in clock-path

When to Use

Use this rule to check combinational wrapper modules in the clock-path
hierarchy.

Description

The Clock_hier02 rule reports all combinational gates, in the clock-path,
which are present inside a valid wrapper module. It reports only for the
propagated clock-path. One instance of each wrapper module is reported.

The Clock_hier02 rule does not consider an inverter with an output that is
an internally generated net and is directly driving a clock pin because this
inverter is created by SpyGlass during inversion of the negedge construct
present.

wire clk2 = !clk & en;

Though these are two combinational elements, inverter and gate, this rule
considers them together and, therefore, should be present inside one
module.

Rule Exceptions

This rule ignores the instantiation of combinational logic from user-
specified libraries.

Parameter(s)

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

 same_domain_at_gate: Default value is no. Set the value of the
parameter to an allowed value to optimize the inference of domains on
clock merging gates.

Constraint(s)

 clock (Optional): Use this constraint to specify clock signals.

 clock_path_wrapper_modules (Optional): Use this constraint to exclude
modules from the checks performed by the Clock_hier01, Clock_hier02,
and Clock_hier03 rules.
1399
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
Messages and Suggested Fix

The following message appears when the clock gating module <mod-
name> is detected at the net <net-name>:

[INFO] Clock gating module '<mod-name>'(instance:'<hierarchy>')
detected at net '<net-name>'

Potential Issues
This is an informational message. There are no potential issues.

Consequences of Not Fixing
Combinational logic is replaced by cells from libraries by synthesis tools.
Therefore, if each combinational gate is wrapped in a different module, it is
easier for synthesis tools to replace them with an equivalent library cell.

How to Debug and Fix
View the Incremental Schematic of the violation message. The
schematic highlights the clock-path to the wrapper instance.

You can replace the valid wrapper-module with an equivalent cell from the
library.

Example Code and/or Schematic

Example 1 - Understanding Wrapper Modules

A valid wrapper module is the parent module of the clock-path structure
when it contains one clock-path structure. In the following figure:
 Blk2 is not a valid wrapper module because it contains multiple

combinational blocks.
 Blk3 and Blk4 are not considered as wrapper modules because of the

multiple gates/blocks.
 Blk6 and Blk5 are considered as valid wrapper module and are

reported by Clock_hier02.
1400
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
FIGURE 274. Wrapper Modules

Example 2 -Wrapper Modules with Generated Net

In this example, the gated_cell module is defined as:

module gated_cell(en1,en2,clk,out);
.
.
assign out = clk & en1 & en2;
endmodule

This gated cell is considered as a valid wrapper module and the following
violation message is reported:

[INFO] Combinational logic wrapper module
'gated_cell'(instance:'CG3') detected at net 'test.g_clk2'

In addition, the following schematic is generated.
1401
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
FIGURE 275. Wrapper Modules with Generated Net

Default Severity Label

Info

Rule Group

VERIFY

Reports and Related Files

None
1402
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
Clock_hier03
Reports combinational gates that do have valid wrapper modules in
the clock-path

When to Use

Use this rule to check the clock-path hierarchy.

Description

The Clock_hier03 rule reports all combinational gates located in the clock-
path, which are not present inside a valid wrapper module. It reports only
for the propagated clock-path.

To understand wrapper modules, refer to Example 1 - Understanding Wrapper
Modules.

Rule Exceptions

This rule ignores instantiation of combinational logic from user-specified
libraries.

Parameter(s)

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

 same_domain_at_gate: Default value is no. Set the value of the
parameter to an allowed value to optimize the inference of domains on
clock merging gates.

Constraint(s)

 clock (Optional): Use this constraint to specify clock signals.

 clock_path_wrapper_modules (Optional): Use this constraint to exclude
modules from the checks performed by the Clock_hier01, Clock_hier02,
and Clock_hier03 rules.

Messages and Suggested Fix

The following message appears when a combinational gate, which is not
present inside a valid wrapper module, is located in the clock-path at net
<net-name>:
1403
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
[WARNING] Wrapper module not detected for clock path logic at
net '<net-name>'

Potential Issues
A combinational logic on the clock-path is not inside a valid wrapper
module.

Consequences of Not Fixing
Typically, combinational logic is replaced by cells from libraries by synthesis
tools. If the combinational logic is not wrapped inside a valid wrapper
module, it is difficult for synthesis tools to replace them with an equivalent
library cell.

How to Debug and Fix
View the Incremental Schematic of the violation message. The
schematic highlights the clock-path to the violating logic.

To resolve this violation, either the combinational logic should be an
instantiation of a library cell or an instantiation of a valid wrapper module.

Example Code and/or Schematic

In this example, the highlighted AND gate is not in a wrapper module. It is
directly instantiated in the top module.

FIGURE 276. Schematic of the Clock_hier03 Rule Violation

Therefore, the Clock_hier03 rule reports the following violation:
1404
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
[WARNING] Wrapper module not detected for clock path logic at
net 'test.gclk3'

To resolve this violation, either the AND gate should be an instantiation of a
library cell or an instantiation of a valid wrapper module.

Default Severity Label

Warning

Rule Group

VERIFY

Reports and Related Files

None
1405
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
Ac_xclock01
Reports non-deterministic clock-edges in the presence of clock-
gates

When To Use

Use this rule to detect non-deterministic clock-edges occurring in the
presence of clock-gates.

Prerequisites

 Use the Advanced_CDC and adv_checker license features.

 Specify ICG cells through .lib files.

Description

The Ac_xclock01 rule reports the cases in which X values can be present on
a clock path resulting in non-deterministic shifting during the scan
operation.

This rule detects the logic value on the clock pin of positive and negative
edge flip-flops when the clock driving the clock-gating cells is 0 and 1 and
determines whether a non-deterministic edge can occur.

For details, see Example 1, Example 2 and Example 3.

Assumptions About the Operation of the Circuit

The following is assumed about the operation of the circuit when this rule is
run:
 Scan enable of the clock-gating cells is active high.

 Initially, SE=1, CLK=0.

Parameter(s)

 show_all_xclock_flops: Default value is no. Set this parameter to yes to
generate a spreadsheet containing violation on a per net basis.

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.
1406
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
 report_inst_for_netlist: Default value is no. Set this parameter to yes to
report violating instance name in case of netlist designs and leaf-level
net name for RTL designs.

 filter_named_clocks: Default value is rst, reset, scan, set. Set this
parameter to a list of strings.

 fa_multicore: Default value is no. Set this parameter to yes to invoke the
multi core engine of SpyGlass for solving complex assertions.

 fa_meta: Default value is no. Set this parameter to yes to enable formal
modeling of metastability.

 same_domain_at_gate: Default value is no. Set the value of the
parameter to an allowed value to optimize the inference of domains on
clock merging gates.

Constraint(s)

 clock: (Optional): Use this constraint to specify clock signals in your
design.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

Messages and Suggested Fix

This rule reports the following violation message each for a positive edge
and negative edge:

[AcXC1_1] [WARNING] Net '<name>' (Source clock: <source-clock>)
incorrectly drives <positive | negative> edge of clock pin of
(<element-type>) '<instance-output-name>' (Total Count:
<count>)

The arguments of the above message are explained below:

Argument Description
<net-name> Hierarchical name of a net (in the clock path),

which cannot drive a particular sequential element
<source-clock> Name of the source clock driving the clock pin of a

flip-clop
<element-type> Can be flop, latch, or library cell
1407
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
Potential Issues
This violation may appear in the following cases:
 A negative ICG cell drives a positive edge flip-flop or a positive ICG cell

drives a negative edge flip-flop.
 An inverter is present before an ICG cell reversing the polarity of the

ICG cell.

Consequences of Not Fixing
If you do not fix this violation, the design circuit may produce incorrect
output.

How to Debug and Fix
To fix this violation, perform any of the following actions:
 Ensure that a negative edge ICG cell triggers a negative edge flip-flop

and a positive edge ICG cell triggers a positive edge flip-flop.
 Check the usage of an inverter before an ICG cell.

Remove the inverter before the ICG cell or insert it at an appropriate
location in the design.

Example Code and/or Schematic

Example 1

Consider the circuit shown in the following figure:

<instance-output-name> Name of the flip-flop
<count> Total number of rule-violating sequential elements

Argument Description
1408
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
FIGURE 277. Scenario for No Ac_xclock01 Rule Violation

The above circuit contains two PREICG cells (ICG1 and ICG2) in series. The
following table shows the simulation values when CLK =1 and CLK=0:

In this example, as the values of ICG1.ECK and ICG2.ECK are
deterministic, both can drive flip-flops triggered on either the positive or
the negative edge. Therefore, the Ac_xclock01 rule does not report any
violation in this case.

Example 2

Consider the circuit shown in the following figure:

SE CLK ICG1.ECK ICG2.ECK
1 0 0 0
1 1 1 1
1409
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
FIGURE 278. Scenario for Ac_xclock01 Rule Violation

In the above circuit, the PREICG cell drives the PREICGN cell.

This rule reports a violation in this case because of the following reasons:
 When CLK=0 and SE=1, ICG1.ECK=0, ICG1 latch is initialized to 1, and

ICG2.ECK=X as the initial state of ICG2 latch is X.
 When CLK=1 and SE=1, ICG1.ECK and ICG2.ECK is 1. Therefore,

ICG1.ECK can drive both positive and negative edge flip-flops. However,
ICG2.ECK can drive only negative edge flip-flops.

The following table shows the simulation values when CLK =1 and CLK=0:

Example 3

Consider the circuit shown in the following figure:

SE CLK ICG1.ECK ICG2.ECK
1 0 0 X
1 1 1 1
1410
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
FIGURE 279. Scenario for Ac_xclock01 Rule Violation

For the above example, this rule reports violation because ICG2.ECK
cannot drive any positive edge or negative edge flip-flop. The following
table shows the simulation values when CLK =1 and CLK=0:

Example 4

Consider the following spreadsheet, which is displayed when you click on a
violation of this rule:

FIGURE 280. Spreadsheet of the Ac_xclock01 Rule

The above spreadsheet lists sequential elements that are triggered

SE CLK ICG1.ECK ICG2.ECK
1 0 X X
1 1 1 X
1411
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
incorrectly. To view the schematic of the violation, click 1 in the ID column
and click .

The following figure shows the schematic for this case:

FIGURE 281. Schematic of the Ac_xclock01 Rule Violation

The above violation appears for the negative edge flip-flop, U1.f9.q, as
the clock pin of this flip-flop is incorrectly driven by the clk2 clock.

To fix this violation, you can perform any of the following actions:
 Check if the NOT gate before the ICG3 cell is required in the circuit. If

not, remove this NOT gate.
 Replace the ICG3 cell with a negative edge ICG cell.

Default Severity Label

Warning

Rule Group

ADV_CLOCKS

Reports and Related Files

This rule generates a spreadsheet that lists sequential elements that are
driven incorrectly. For details, see Example 4.
1412
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
Ac_converge01
Reports signals which are subjected to glitches in clock path

When to Use

Use this rule to catch glitches in a clock tree due to divergence and
convergence of enable signals.

Prerequisites

Following are the prerequisites for running this rule:
 Use the Advanced_CDC and adv_checker licenses for running this

rule.
 Specify clock signals in any of the following ways:

 By using the clock constraint

 By using automatically-inferred resets by setting the
use_inferred_clocks parameter to yes

 By using both the above methods

Description

The details of the Ac_converge01 rule reports enable signals that diverge
and then reconverge before being used as a clock in the clock path. For
example, this rule reports a violation for the 'd' signal in the following
scenario:

FIGURE 282. Clock Divergence and Reconvergence
1413
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
The Ac_converge01 rule only checks for combinational convergences and
does not report a violation if an enable signal converges after sequential
elements. For example, consider the following scenario:

FIGURE 283. Case of Valid Synchronization

In case of multiple paths, this rule reports convergence on all the points.

For example, consider the scenario shown in the following figure:

FIGURE 284. Presence of Multiple Paths

For the above scenario, the Ar_converge01 rule reports on both G2 and
G3.
The Ac_converge01 rule does not report violations for the same enable
reconvergence on the input pin of a MUX. This is because, only one
input pin is active at a time. For example, consider the following figure:

EN
1414
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
FIGURE 285. Example of the Ac_converge01 Rule Exception

Parameter(s)

use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

Constraint(s)

 abstract_port (Optional): Use this constraint to define abstracted
information for block ports.

 assume_path (Optional): Use this constraint to specify paths through
black box instances.

 input (Optional): Use this constraint to specify clock domain at input
ports.

 clock: (Optional): Use this constraint to specify clock signals in your
design.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

Messages and Suggested Fix

The following message appears for the enable signal that diverges and
then reconverges back before being used as a clock:

[WARNING] Enable Signal '<sig-name>' converges at <type>
<inst_name>

The arguments of the above message are explained below:

C1

S D1

EN
1415
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
Potential Issues
This violation appears if your design contains enable signals that are
diverging and then converging before being used in clock path.

Consequences of Not Fixing
If you do not fix this violation, glitches may get introduced in the design.

How to Debug and Fix
To debug and fix the violation of this rule, perform the following steps:
1. Check the violation of this rule from moresimple.rpt
2. Check for the corresponding violation schematic to view the divergence

and convergence of enable signals in clock path.
3. If the converging instance is a MUX, provide the set_case_analysis

constraint on the select pin of the MUX so that one of the input is
selected.

4. Else, fix the RTL so that there are no multiple paths from the same
enable to the destination to avoid glitches.

Example Code and/or Schematic

Consider the following design:

Argument Description
<sig-name> Name of the enable signal
<type> Can be combinational-gate or MUX

<inst-name> Name of the converging gate output net.
Note the following points:
• If the report_inst_for_netlist parameter is set to yes, this

argument takes the value of the instance pin.
• If the output net of the converging gate is an internal net, this

argument takes the value of the closest net.
1416
Synopsys, Inc.

Clock Checking Rules

Rules in SpyGlass CDC
FIGURE 286. Ar_converge01 Spreadsheet

For the above design, the Ac_converge01 rule reports the following
violation:

Enable Signal 'test.a' converges at MUX 'test.y_mux'

Schematic Details
The Ac_converge01 rule highlights the following details in the schematic:
 Two paths showing divergence and reconvergence of the reported

enable signal
 Path from the convergence point till the clock pin of a sequential

Default Severity Label

Warning

Rule Group

VERIFY
1417
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
Reset Checking Rules
The SpyGlass CDC solution has the following rules for checking the reset
conditions:

Rule Reports
Ar_converge01 Asynchronous reset signals having multiple converging fan-

outs
Ar_converge02 Reset signals that diverge into multiple paths and

reconverge on the data/enable and reset/set pin of the
same flip-flop

Reset_check01 (Verilog Only) Reset signals that are not being used in the
same mode as their respective pragma mode

Reset_check02 Latches, tristate signals, or XOR/XNOR gates found in a
reset tree

Reset_check03 Reset signals that are being used at both levels to set or
reset flip-flops synchronously

Reset_check04 Reset signals that are being used both as an asynchronous
reset and synchronous reset

Reset_check05 Synchronous resets
Reset_check06 High fan-out reset signals not driven by specified

placeholder cells
Reset_check07 Asynchronous set/reset pins that are driven by

combinational logic
Reset_check09 Reports XOR/XNOR/AND/NAND gates found in a reset tree
Reset_check10 Asynchronous resets used as non-reset signals
Reset_check11 Asynchronous resets used as both active-high and active-

low
Reset_check12 Flip-flops that do not get active reset during power on reset
Reset_overlap01 Resets that reach another reset domain.
1418
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
Ar_converge01
Reports asynchronous reset signals that have multiple converging
fan-outs

When to Use

Use this rule to catch glitches on an asynchronous reset tree due to
divergence and convergence of reset signals.

Prerequisites

Following are the prerequisites for running this rule:
 Use the Advanced_CDC and adv_checker licenses for running this

rule.
 Specify reset signals in any of the following ways:

 By using the reset constraint

 By using automatically-inferred resets by setting the
use_inferred_resets parameter to yes

 By using both the above methods

Description

The details of the Ar_converge01 rule is covered in the following topics:
 Reason for the Ar_converge01 Rule Violation

 Unate/Binate Analysis

 Features of the Ar_converge01 Rule

 Rule Exceptions

 Ar_converge01.csv

Reason for the Ar_converge01 Rule Violation

The Ar_converge01 rule reports asynchronous reset signals that diverge
and then reconverge before being used.

For example, this rule reports a violation for the rst reset in the following
scenario:
1419
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
FIGURE 287. Reset Divergence and Reconvergence

Unate/Binate Analysis

You can configure the Ar_converge01 rule to report violations related with
same source reconvergence when the reconverging paths have different
polarities or at least one path has an unknown polarity.

For details, see no_unate_reconv.

Features of the Ar_converge01 Rule

Following are features of this rule:
 It reports a violation for resets that traverse through multiple paths

before reaching functional flip-flops. This scenario is shown in the
following figure:
1420
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
FIGURE 288. Reset Traversing Multiple Paths

 This rules only checks for combinational convergences and does not
report a violation if a reset converges after sequential elements.
For example, consider the following scenario:

FIGURE 289. Case of Valid Synchronization

For the above scenario, the Ar_converge01 rule does not report a
violation as this is the case of valid synchronization.

 This rule reports a violation for derived resets that diverge and then
converge, as shown in the following figure:
1421
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
FIGURE 290. Divergence and Convergence of Derived Resets

 In case of multiple paths, this rule reports convergence on the last point
with two paths (reaching to the last gate).
For example, consider the scenario shown in the following figure:

FIGURE 291. Presence of Multiple Paths

For the above scenario, the Ar_converge01 rule reports convergence on
G3.

 If a converging gate output is an internal net, this rule reports the
closest RTL net.
1422
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
Rule Exceptions

The Ar_converge01 rule has the following exceptions:
 The Ar_converge01 rule does not report a violation if the path is

sanitized and is equivalent to a buffer or an inverter.
For example, consider the scenario shown in the following figure:

FIGURE 292. Path is Sanitized and is Equivalent to a Buffer/Inverter

In the above scenario, when the set_case_analysis constraint is set to 0,
the rst reset does not propagate to the in1 input pin of the OR gate.
This way, the OR gate acts as a buffer in this case. Therefore, the
Ar_converge01 rule does not report a violation.

 The Ar_converge01 rule does not report violations for the same source
reconvergence on the input pin of a MUX. This is because, only one
input pin is active at a time. This scenario is shown in the following
figure:
1423
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
FIGURE 293. Example of the Ar_converge01 Rule Exception

 The Ar_converge01 rule does not report convergence on black boxes.

Parameter(s)

use_inferred_resets: Default value is no. Set this parameter to yes to use
the auto-generated reset information.

Constraint(s)

 abstract_port (Optional): Use this constraint to define abstracted
information for block ports.

 assume_path (Optional): Use this constraint to specify paths through
black box instances.

 input (Optional): Use this constraint to specify clock domain at input
ports.

 reset (Optional): Use this constraint to specify reset signals.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

 quasi_static: Use this constraint to specify signals that have a value
which is predominantly static.

Messages and Suggested Fix

The following message appears for the asynchronous reset signal that
diverge and then reconverges back before being used:

[WARNING] Reset signal '<sig-name>' converges at <type>

No violation reported for
RST reconvergence
on the input pins of the MUX
1424
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
<inst-name>

The arguments of the above message are explained below:

Potential Issues
This violation appears if your design contains reset signals that are
diverging and then converging before being used.

Consequences of Not Fixing
If you do not fix this violation, glitches may get introduced in the design.

How to Debug and Fix
To debug and fix the violation of this rule, perform the following steps:
1. Open the spreadsheet of this rule.

To open the spreadsheet, right-click on the rule name in the Results
pane and select the Spreadsheet Viewer option from the shortcut menu.

2. Check the list of reset signals in the spreadsheet.
3. Click on the violation in the spreadsheet and open the schematic to view

the divergence and convergence of reset signals.
4. If the converging instance is a MUX, provide the set_case_analysis

constraint on the select pin of the MUX so that one of the input is
selected.
Else, fix the RTL so that there are no multiple paths from the same
source to the destination to avoid glitches.

Argument Description
<sig-name> Name of the reset source
<type> Can be combinational-gate or MUX

<inst-name> Name of the converging gate output net.
Note the following points:
• If the report_inst_for_netlist parameter is set to yes, this

argument takes the value of the instance pin.
• If the output net of the converging gate is an internal net, this

argument takes the value of the closest net.
1425
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
Example Code and/or Schematic

Consider the following Ar_converge01.csv spreadsheet showing the details of
a violation of this rule:

FIGURE 294. Ar_converge01 Spreadsheet

Information in the above spreadsheet indicates that the top.rst reset is
the rule-violating reset that converges on the top.tmp5 instance that is a
combinational gate.

The schematic of this violation is shown below:
1426
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
FIGURE 295. Schematic of the Ar_converge01 Rule Violation

The above schematic shows the rst reset is diverging and then converging
on the AND gate.

Schematic Details
This rule highlights the following details in the schematic:
 Two paths showing divergence and reconvergence of the reported reset

signal
 Path from the converging point till the reported RTL net

 Path from the convergence point till any one functional flip-flop

Default Severity Label

Warning

Rule Group

VERIFY

Reports and Related Files

Ar_converge01.csv

This spreadsheet shows the details of violations reported by the
Ar_convergence01 rule.

Following is the example of this spreadsheet:
1427
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
FIGURE 296. Ar_converge01 Spreadsheet

The details of columns in the above spreadsheet are described below:

Column Description
ID Specifies a unique ID for a violation.
RESET Specifies the name of the reset signal that is

causing the violation.
CONVERGING INSTANCE NAME Specifies the instance name on which the

reported reset signal converges.
CONVERGING INSTANCE TYPE Specifies the type of the instance on which the

reported reset converges.
WAIVED Specifies if the reported violation is waived.
1428
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
Ar_converge02
Reports a reset signal which converges on data and reset pin of
same flop

When To Use

Use this rule to catch convergence of reset signals on the data and reset
pin of a flip-flop.

Prerequisites

Use the Advanced_CDC license for running this rule.

Description

The Ar_converge02 rule reports a reset signal that diverges into multiple
paths and reconverges on the data/enable and reset/set pin of the same
flip-flop.

This rule automatically infers resets in a design. For example, consider the
following figure:
1429
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
FIGURE 297. The Ar_converge02 violation

In the above example, based on the delay values of the yellow and green
lines, a clock-cycle delay may occur on the R signal compared to the A
signal, leading to functionality issue at the O flip-flop.

The following figure shows the expected and incorrect results in the above
case:

conv_reset_seq_depth

Reset port
X

Y

1430
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
FIGURE 298.

Parameter(s)

 conv_reset_seq_depth: Default value is 2. Set this parameter to a positive
integer value to set the number of sequential elements beyond which a
reset can propagate across a data terminal.

 conv_reset_single_data_bit: Default value is no. Set this parameter to yes
to enable sequential traversal from only one bit of a data bus.

 report_all_flops: Default value is no. Set this parameter to yes to report
all flip-flops whose resets are generated in asynchronous domains.

 report_inst_for_netlist: Default value is no. Set this parameter to yes to
report violating instance name in case of netlist designs and leaf-level
net name for RTL designs.

 ignore_bus_resets: Default value is yes. Set this parameter to no to
generate reset vector nets, which are not struct nets, in the
autoresets.sgdc and the generated_resets.sgdc file.

Constraint(s)

 assume_path (Optional): Use this constraint to specify paths through
black box instances.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

Expected Result Incorrect Result
1431
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
Messages and Suggested Fix

The following message appears when a reset diverges into multiple paths
and reconverges on the set/reset and enable/data pin of the same flip-flop:

[WARNING] Reset signal '<sig-name>' converge on <set | reset>
and <enable | data> pins of flop <flip-flop-name>

Potential Issues
This violation appears if your design contains an asynchronous reset signal
that reaches to the data input and reset pin of the same flip-flop.

Consequences of Not Fixing
If you do not fix this violation, your design may contain functional issues.

For example, in Figure 297, based on the delay values of the yellow and
green lines, a clock cycle delay may occur on the R signal compared to the
A signal leading to functionality issue at the O flip-flop.

How to Debug and Fix
To fix this violation, avoid using asynchronous resets as non-reset signals.

Example Code and/or Schematic

Consider the following files specified for SpyGlass analysis:
1432
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
For the above example, the Ar_converge02 rule reports violations for the
rst, rst12, and t11 signals.

The following schematic shows the violation for the rst signal that
converge on the reset and data pins of the top.a_use0.q flip-flop:

current_design top
clock -name clk
clock -name in1
clock -name in2

//test.sgdc

module top(input d,in1,in2,in3,clk,rst,rst11,output q1,q2, q3);
wire en;
wire t;
FFR a_use0(rst, clk, rst, t);
FFR a_use1(t, clk, rst & en, t1);
FFR a_use2(d, clk ,rst, t2);
FFR a_use11(d, clk, rst1, t11);
FFR a_use12(t11, clk, t11, t12);
reg q2;
wire rst12;
wire set = rst12 & en;
wire en_rst12 = rst12 & en;
always@(posedge clk or posedge rst12 or posedge set)

if(rst12)
q2 <= 1'b0;

 else if(set)
q2 <= 1'b1;

 else if(en_rst12)
 q2 <= d;

endmodule

module FFR(input d, clk, rst, output reg q);
always@(posedge clk or posedge rst)

 if(rst)
 q<=1'b0;

 else
q<=d;

endmodule

//test.v
1433
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
FIGURE 299. Schematic of the violation of the Ar_converge02 rule

Schematic Highlight

The Ar_converge02 rule highlights the following in a different color:
 Reset path till the reset/set pin

 Reset path till the data/enable pin

Default Severity Label

Warning

Rule Group

VERIFY

Reports and Related Files

No report or related file
1434
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
Reset_check01
Reports reset signals that are used in a different mode from their
respective synthesis pragmas

When to Use

Use this rule to detect reset signals that are used in a different mode from
their respective synthesis pragmas.

Description

The Reset_check01 rule reports reset signals that are not used in the same
mode as their respective synthesis pragma modes.

For example, this rule reports the reset signal that is used in:
 An asynchronous manner when the corresponding synthesis pragma,

sync_set_reset, exists for that signal.
 A synchronous manner when the corresponding synthesis pragma,

async_set_reset, exists for that signal.

Processing of Synthesis Pragmas

This rule checks the signals that are specified by using the sync_set_reset
and async_set_reset pragma directives.

SpyGlass processes these synthesis pragmas based on the location where
the pragma is specified, as described below:
 If the pragma is specified inside a design unit description, the

scope of the pragma is from the point of specification up to the end of
the design unit description including descriptions of master design units
instantiation in the scope.

 If the pragma is specified outside any design unit description, the
scope of the pragma is from the point of specification up to the end of
the source file including design unit descriptions in the scope and
descriptions of master design units instantiation in these design units.

Constraint(s)

set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.
1435
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
Parameter(s)

None

Messages and Suggested Fix

The following message appears at the location where a rule-violating reset
signal <sig-name> is encountered:

[WARNING] Reset '<sig-name>' is not being used as specified
through pragma

Potential Issues
This violation appears if your design contains the following types of reset
signals:
 Synchronous reset signals that are used asynchronously

 Asynchronous reset signals are used synchronously

Consequences of Not Fixing
Using synchronous reset signals asynchronously and using asynchronous
reset signals synchronously may result in failure of design functionality.

How to Debug and Fix
To debug the violation of this rule, perform the following steps:
1. Click on the message in GUI.

This step cross-references to the relevant RTL code.
2. Review the specified synthesis pragma and reset usage in this part of

RTL.

Example Code and/or Schematic

This rule reports violations in the following example:

module test(data, clk, rst_sync, rst_async,
out1, out2);

input data, clk, rst_sync, rst_async;
output out1, out2;

reg out1, out2;

//synopsys sync_set_reset “rst_sync”
1436
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
always @(posedge clk or posedge rst_sync)
if(rst_sync) out1 <= 0;
else out1 <= data;

//synopsys async_set_reset “rst_async”
always @(posedge clk)
if(rst_async) out2 <= 0;
else out2 <= data;

endmodule

In the above example, this rule reports violation because:
 The rst_sync signal has been specified in a sync_set_reset pragma but

is being used in an asynchronous manner.
 The rst_async signal has been specified in an async_set_reset pragma

but is being used in a synchronous manner.

Default Severity Label

Warning

Rule Group

VERIFY

Reports and/or Related Files

No report and related file
1437
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
Reset_check02
Reports latches, tristate signals, or XOR/XNOR gates in a reset tree

When to Use

Use this rule to detect latches, tristate signals, or XOR/XNOR gates in a
reset tree.

Description

The Reset_check02 rule reports latches, tristate signals, or XOR/XNOR
gates in a reset tree.

This rule checks for such gates and reports them under informational
message if:
 An enable pin of a latch or a tristate gate is tied to a constant logic

value. In this case, the latch/tristate is permanently enabled or
disabled.

 One of the inputs of a XOR/XNOR gate is tied to a constant logic value.
In this case, the XOR/XNOR gate effectively works as buffer or inverter.

Constraint(s)

set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

Parameter(s)

report_inst_for_netlist: Default value is no. Set this parameter to yes to
report violating instance name in case of netlist designs and leaf-level net
name for RTL designs.

Messages and Suggested Fix

Message 1

The following warning message appears at the location where a preset/
clear signal of a flip-flop is being driven by latches, tristate signals, or XOR/
XNOR gate:

[RstC2_1] [WARNING] Unexpected <gate-type> gate (at <name>) in
<sig-type> tree of flop (output <obj-type> <inst-name>)
1438
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
Potential Issues
This violation appears if your design contains a reset tree that contains
latches, tristate signals, or XOR/XNOR gates.

Consequences of Not Fixing
Presence of latches, tristate signals, or XOR/XNOR gate in a reset tree may
block further propagation of a reset signal or may change the reset
behavior.

As designs are very sensitive to resets, a reset tree should contain only
permitted cells.

How to Debug and Fix
For information on debugging, click How to Debug and Fix.

Message 2

The following informational message appears at the location where a
tristate/latch is permanently enabled/disabled or an input of XOR/XNOR is
tied to active high/low:

[RstC2_2] [INFO] Unexpected <gate-type> (<state>) gate (at
<name>) in <sig-type> tree of flop (output <obj-type> <inst-
name>)

The arguments of the above message are explained below:

Argument Description
<gate-type> Can be latch, tristate, XOR, or XNOR

<name> The name of the latch, tristate signal or the output of XOR/
XNOR gate

<sig-type> Can be preset or clear

<obj-type> net in case of RTL designs.
pin in case of netlist designs, if the report_inst_for_netlist
parameter is set to yes. Otherwise, it is net
1439
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
Potential Issues
None

Consequences of Not Fixing
No fixing this violation may add to delays in a reset path.

How to Debug and Fix
To debug the violation of this rule, perform the following steps:
1. View the Incremental Schematic of the violation message.
2. Select an appropriate option from the Edit->Show Case Analysis menu

option in the Incremental Schematic window.
3. Analyze the logic present in the reset-tree and provide the

set_case_analysis constraint appropriately.

Example Code and/or Schematic

This section covers the following examples:
 Example of a Latch Output Used as Clear

 Example of Tristate Signal used as Clear

 Example of XOR Gate Output used as Clear

Example of a Latch Output Used as Clear

The Reset_check02 rule reports a violation for the following example in
which the en_1 latch is found in the tree of the clear signal, reset, of the
q flip-flop:

architecture logic of test is

<inst-name> <flop-output-net-name> in case of RTL designs.
<flop-inst-name>.<pin-name> in case of netlist
designs, if the report_inst_for_netlist parameter is set to yes.
Otherwise, it is same as in case of RTL designs.

<state> It can be acting as buffer/inverter in case of XOR/
XNOR gates or permanently enabled/disabled in case
of tristate gates or latches

Argument Description
1440
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
signal reset, en_1 : std_logic;
begin
process(clk, reset)
begin
if (reset = '1') then
q <= '0';

elseif (rising_edge(clk)) then
q <= d;

end if;
end process;

process(rst, en)
begin
if (rst = '0') then
en_l <= en;

end if;
end process;

reset <= en_l and rst;
end logic;

For this example, this rule reports the following violation message:

Unexpected latch gate (at test.en_l) in clear tree of flop
(output pin test.q).

Example of Tristate Signal used as Clear

The Reset_check02 rule reports a violation for the following example in
which the rst tristate signal is used as the clear signal of the q flip-flop:

architecture logic of test is
signal rst : std_logic;
begin
process(clk, rst)
begin
if (rst = '1') then
q <= '0';

elseif (rising_edge(clk)) then
q <= d;
1441
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
end if;
end process;

process(en, rst1)
begin
if (en = '1') then
rst <= rst1;

else
rst <= 'Z';

end if;
end process;

process(en, rst2)
begin
if (en = '0') then
rst <= rst2;

else
rst <= 'Z';

end if;
end process;

end logic;

For this example, this rule reports the following violation message:

Unexpected tristate gate (at test.rst) in clear tree of flop
(output pin test.q).

Example of XOR Gate Output used as Clear

The Reset_check02 rule reports a violation for the following example in
which the reset clear signal of the q flip-flop is the output of an XOR
signal:

architecture logic of test is
signal reset : std_logic;
begin
process(clk, reset)
begin
if (reset = '1') then
q <= '0';
1442
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
elseif (rising_edge(clk)) then
q <= d;

end if;
end process;

reset <= rst1 xor rst2;
end logic;

For this example, this rule reports the following violation message:

Unexpected XOR gate (at test.rst) in clear tree of flop (output pin test.q)

Schematic Details

The Reset_check02 rule highlights an unexpected gate and path from this
unexpected gate to a reset pin of a flip-flop.

Default Severity Label

Warning | Info

Rule Group

VERIFY

Reports and/or Related Files

No report or related file
1443
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
Reset_check03
Reports synchronous reset signals that are used as active high as
well as active low

When to Use

Use this rule to detect synchronous reset signals that are used as active
high as well as active low.

Prerequisites

Specify synchronous preset/clear reset signals by using the reset -sync
constraint.

Description

The Reset_check03 rule reports reset signals that are used on both levels,
that is, active high and active low, to set or reset flip-flops synchronously.

This rule reports any one active-high usage and one active-low usage for a
synchronous reset in a design. You can expand the schematic to look at
other occurrences of active-high or active-low usages.

Constraint(s)

 reset (Mandatory): Use this constraint to specify synchronous preset/
clear reset signals.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

Parameter(s)

 report_inst_for_netlist: Default value is no. Set this parameter to yes to
report violating instance name in case of netlist designs and leaf-level
net name for RTL designs.

 reset_reduce_pessimism: Default value is
filter_unused_synchronizer, same_data_reset_flop. Set the
value of this parameter to all_potential_resets to detect all the
potential resets in a design. For information on the other possible
values, see Possible Values to the reset_reduce_pessimism Parameter.
1444
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
Messages and Suggested Fix

The following message appears at a location where the output of the
flip-flop <flop1-name> that is being reset synchronously by using active
high of the signal <sig-name> specified by using the reset constraint,
and another flip-flop <flop2-name> that is being reset synchronously
using the active low of the same signal <sig-name>:

[WARNING] Synchronous reset signal <sig-name> used as active
high at <flop1-name> and as active low at <flop2-name>

NOTE: For RTL designs, <flop1-name> and <flop2-name> are names of the output
nets of the corresponding flip-flops. For netlist designs, if the
report_inst_for_netlist parameter is set to yes, <flop1-name> and <flop2-
name> are names of the flip-flop instances. Otherwise, the message details are
same as for the RTL designs.

Potential Issues
This violation appears if your design contains a synchronous reset that
resets a data path at both active levels, that is active high and active low.

Consequences of Not Fixing
Using synchronous resets as active high and active low simultaneously
always keeps some logic of a design in a reset mode and blocks data
propagation from that part.

How to Debug and Fix
To debug the violation of this rule, perform the following steps:
1. View the Incremental Schematic of the violation message.
2. Select appropriate option from the Edit-> Show Case Analysis menu option

in the Incremental Schematic window.
3. Check if you need to apply set_case_analysis constraints to enable one

polarity of the specified synchronous reset at a time.
1445
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
Example Code and/or Schematic

Consider the following files specified for SpyGlass analysis:

In the above example, the rst signal name is specified by using the reset
constraint and its -sync argument is also specified. Therefore, this rule
reports the following violation in this case:

Synchronous reset signal top.rst used as active high at
top.F1.q and as active low at top.F2.q

The following figure shows the schematic of this violation:

module flop(d,clk,q);
input d,clk;
output q;
reg q;
always @(posedge clk)
 q<=d;

 endmodule

module top(d1,d2,rst,clk1,clk2,q1,q2);
input d1,d2,rst,clk1,clk2;
output q1,q2;
wire t1,t2,t3;
not(t3,rst);
or(t1,d1,rst);
or(t2,t3,d2);
flop F1(t1,clk1,q1);
flop F2(t2,clk2,q2);

endmodule

//test.v

current_design top
clock -name clk1
clock -name clk2
reset -name rst -sync

// constr.sgdc
1446
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
FIGURE 300. Schematic of the Reset_check03 Rule Violation

Schematic Details

The Reset_check03 rule highlights the following path in different colors in
the schematic:
 Path from the specified reset net to an input pin of one flip-flop where

the reset net is being used as active high
 Path from the specified reset net to an input pin of another flip-flop

where the reset net is being used as active low.

Default Severity Label

Warning

Rule Group

VERIFY
1447
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
Reports and/or Related Files

No report and related file
1448
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
Reset_check04
Reports reset signals that are used asynchronously as well as
synchronously for different flip-flops

When to Use

Use this rule to detect reset signals that reset a design asynchronously as
well as synchronously.

Description

The Reset_check04 rule reports reset signals that are used as both
asynchronous and synchronous reset signals for different flip-flops.

This rule reports any one occurrence where an asynchronous reset is used
synchronously or vice-versa. You can expand the schematic to look at other
such occurrences.

Constraint(s)

 reset (Mandatory): Use this constraint to specify reset signals checked
by this rule.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

Parameter(s)

 use_inferred_resets: Default value is no. Set this parameter to yes to use
auto-generated reset information.

 report_derived_reset: Default value is none. Set this parameter to
Reset_check04,Reset_check10 to enable the Reset_check04 and
Reset_check10 rules to report asynchronous Derived Resets.
Other possible values are Reset_check04 and Reset_check10.

 report_inst_for_netlist: Default value is no. Set this parameter to yes to
report violating instance name in case of netlist designs and leaf-level
net name for RTL designs.

 filter_named_resets: Default value is clk, clock, scan. Specify a list of
strings to auto-infer asynchronous resets that do not match the
specified strings.
1449
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
 reset_reduce_pessimism: Default value is
filter_unused_synchronizer, same_data_reset_flop. Set the
value of this parameter to all_potential_resets to detect all the
potential resets in a design. For information on the other possible
values, see Possible Values to the reset_reduce_pessimism Parameter.

 handle_combo_arc: Default value is no. Set this parameter to yes so that
the clock/reset propagates from an input pin of a sequential library cell
if a combinational timing arc is specified from that pin to any output pin
of the cell.

Messages and Suggested Fix

The following message appears if the output of a flip-flop that is reset
synchronously or asynchronously by using the signal <sig-name> is first
set when there is another flip-flop that is reset asynchronously or
synchronously using the same signal:

[WARNING] <Asynchronous | Synchronous> reset "<sig-name>" (at
"<flop2-name>") is used <synchronously | asynchronously> (at
"<flop1-name>")

NOTE: For RTL designs, <flop1-name> and <flop2-name> are names of the output
nets of the corresponding flip-flops. For netlist designs, if the
report_inst_for_netlist parameter is set to yes, <flop1-name> and <flop2-
name> are names of the flip-flop instances. Otherwise, the message details are
same as for the RTL designs.

Potential Issues
This violation appears if your design contains reset signals that are used as
both asynchronous and synchronous reset signals for different flip-flops.

Consequences of Not Fixing
Using same reset signal asynchronously as well as synchronously may
violate some of the design requirements.

How to Debug and Fix
To debug the violation of this rule, perform the following steps:
1450
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
1. View the Incremental Schematic of the violation message.
2. Select an appropriate option from the Edit->Show Case Analysis menu

option in the Incremental Schematic window.
3. Check if you need to apply set_case_analysis constraints to enable one

type of reset at a time. Else, waive this violation.

Example Code and/or Schematic

Consider the following files specified for SpyGlass analysis:

In the above example, the srst signal is used asynchronously as well as
synchronously.

The following figure shows the schematic of this violation:

module test(clk,in1,in2,out,in3);

input clk;
input in1, in2,in3;
output out;

reg t1,t2,t3;
reg srst;

always@(posedge clk)
 srst <= in1;

 always@(posedge clk)
 if(!srst)
 t2 <= 1'b0;

 else
 t2 <= in2;

 always@(posedge clk or negedge srst)
 if(!srst)
 t3 <= 1'b0;

 else
 t3 <= in3;
 assign out = t3;

endmodule

// test.v

current_design test
clock -name clk

reset -name srst -sync

// constr.sgdc
1451
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
FIGURE 301. Schematic of the Reset_check04 Rule Violation

Schematic Details

The Reset_check04 rule highlights the asynchronous and synchronous
usages of a reset signal in different colors in the schematic.

Default Severity Label

Warning

Rule Group

VERIFY

Reports and Related Files

 The Clock-Reset-Summary Report

 The SynchInfo Report
1452
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
Reset_check05
Reports synchronous resets in a design

NOTE: The Reset_check05 rule will be deprecated in a future release. The rule is not
included in CDC GuideWare goals now and do not perform checks until specifically
included in the user-defined goal options. In this case, the rule performs the checks
and SpyGlass includes a deprecation message in both the spyglass.out and
spyglass.log files.

When to Use

Use this rule to find synchronous reset signals in a design.

Description

The Reset_check05 rule reports synchronous reset signals in a design.

If a signal is used as a reset signal at multiple places, this rule reports only
the first usage of that signal. However, if a signal is used at a flip-flop as
active high and the same signal is used at another flip-flop as active low,
such signal is reported separately. Similarly, if a signal at a flip-flop is used
as a set and at another flip-flop is used as a reset, it is reported separately.

Synthesis tools may optimize synchronous reset logic such that the
corresponding sequential element may have ambiguous initial states.

Please note the following points:
 This rule works with simple synchronous reset constructs only.

 If a design unit containing a synchronous reset description is a
parameterized design unit, this rule reports one message for each
elaborated personality of the design unit.

Constraint(s)

set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

Parameter(s)

None

Messages and Suggested Fix

The following message appears at the location where a synchronous set/
1453
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
reset description (using signal <rst-name>) is found in a design unit
<du-name>:

[INFO] Candidate <active-type> synchronous <rst-type> ‘<rst-
name>’ found (design unit ‘<du-name>’)

The arguments of the above message are explained below:

Potential Issues
This violation appears if a design contains synchronous resets.

Consequences of Not Fixing
None

How to Debug and Fix
To debug the violation of this rule, perform the following steps:
1. Click on the message in GUI.

This will cross-reference to the relevant RTL code.
2. Review the synchronous reset candidate reported by this rule message.
3. Either use all synchronous resets or all asynchronous resets.
4. If you prefer synchronous reset, disable or waive this rule.

Example Code and/or Schematic

Consider the following design file given as input for SpyGlass analysis:

module TOP(CLK, RST, SEL,
DIN, BIN, QOUT, ZOUT);
input CLK;
input RST;
input SEL;
input [3:0] DIN;
input [2:0] BIN;

Argument Description
<active-type> Can be active-high, active-low, or mixed-phase

<rst-type> Can be Set or Reset
1454
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
output [3:0] QOUT;
output [4:0] ZOUT;
reg [3:0] QOUT;
reg [4:0] ZOUT;
reg RST3; // FF Gate
wire RST1; // AND Gate
wire RST6; // MUX Gate
wire RST9; // XOR Gate
assign RST1 = RST & BIN[0];
always@(posedge CLK)
RST3 <= RST;

assign RST6 = (SEL)?RST:BIN[1];
assign RST9 = RST ^ BIN[2];
always @(posedge CLK) begin
if (!RST1) //Active low synchronous reset

QOUT[0] <= 1'b0;
else
QOUT[0] <= DIN[0];

end
always @(posedge CLK) begin
if (RST1) //Active high synchronous reset

ZOUT[0] <= 1'b0;
else
ZOUT[0] <= DIN[0];

end
always @(posedge CLK) begin
if (RST1) //Active high synchronous reset

QOUT[1] <= 1'b1;
else
QOUT[1] <= DIN[1];

end
always @(posedge CLK) begin
if (!RST1) //Active low synchronous reset

ZOUT[1] <= 1'b1;
else
ZOUT[1] <= DIN[1];

end
always @(posedge CLK) begin
1455
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
if (RST1)
QOUT[2] <= 1'b0;

else
QOUT[2] <= DIN[2];

end
endmodule

For the above example, this rule detects active high and active low
synchronous reset signals, RST1.

Default Severity Label

Info

Rule Group

VERIFY

Reports and/or Related Files

No report or related file
1456
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
Reset_check06
Reports high fan-out reset nets that are not driven by placeholder
cells

When to Use

Use this rule to find fan-out reset nets that are not driven by certain types
of instances, known as placeholder cells.

Prerequisites

Specify the following information before running this rule:
 Asynchronous reset signals by using the reset constraint or the

use_inferred_resets parameter.
 Placeholder cells by using the reset_placeholder_cells parameter.

Description

The Reset_check06 rule reports reset nets that have a high fan-out and are
not driven by instances of any of the specified placeholder cells.

NOTE: This rule is not run if you do not specify names of placeholder cells.

Parameter(s)

 reset_placeholder_cells: Default value is NULL. Specify a list of
placeholder cells that are intended to drive reset nets with a high
fan-out.

 use_inferred_resets: Default value is no. Set this parameter to yes to use
auto-generated reset information.

 reset_fanout_max: Default value is 24. Set this parameter to a positive
integer value to specify a maximum fan-out limit of resets.

 filter_named_resets: Default value is clk, clock, scan. Specify a list of
strings to auto-infer asynchronous resets that do not match the
specified strings.

 reset_reduce_pessimism: Default value is
filter_unused_synchronizer, same_data_reset_flop. Set the
value of this parameter to all_potential_resets to detect all the
potential resets in a design. For information on the other possible
values, see Possible Values to the reset_reduce_pessimism Parameter.
1457
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
Constraint(s)

 reset (Optional): Use this constraint to specify reset signals.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

Messages and Suggested Fix

The following message appears for a reset signal <rst-name> with a
fan-out <num> that is more than the value specified by the
reset_fanout_max parameter and is not driven by instances of any of the
placeholder cells specified using the reset_placeholder_cells parameter:

[WARNING] Reset “<rst-name>” drives <num> flops that exceeds
maximum allowed limit '$reset_fanout_max' and is not driven by
any placeholder cells

Potential Issues
This violation is reported if your design contains reset nets of a high
fan-out (specified by parameter reset_fanout_max) and the reset nets are
not driven by any of the specified placeholder cells.

Consequences of Not Fixing
If a reset fan-out count exceeds the maximum permissible limit without
using appropriate placeholder cells, the reset signal may not have sufficient
strength to reset sequential elements.

How to Debug and Fix
To debug the violation of this rule, perform the following steps:
1. Review the reset tree specific to the reset net reported by this rule

message.
2. Check if you need to add the reset placeholder cells in the design for the

reported reset.
You may have missed to specify some of the reset placeholder cells in
the reset_placeholder_cells parameter, which are already present in the
fan-out of the reported reset net.

3. Check the value of the reset_fanout_max parameter, and if it is not set
correctly, correct it.

4. You must ensure that violating cells that are intended are included in the
reset_placeholder_cells parameter list. If the cells are not intended,
1458
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
make proper changes in the design to reduce the fan-out of the cell
below the value specified by the reset_fanout_max parameter.

Schematic Details
The Reset_check06 rule highlights a reset net that is not driven by any of
the specified placeholder cells, and exceeds the limit set by the
reset_fanout_max parameter.

Example Code and/or Schematic

Consider the following example for which you have set the value of the
reset_placeholder_cells parameter to buffer and the reset_fanout_max
parameter to 2:

module buffer (in,out);
input in;
output out;
assign out = in;

endmodule

module not_buf(in,out);
input in;
output out;
assign out = !in;

endmodule

module test(in, outa, outb, outc, outd, oute, outf,
rsta, rstc, clk, en);
input in, en, rsta, rstc, clk;
output reg outa, outb, outc, outd, oute, outf;
buffer B(rsta, rstb);
not_buf C(rstc, rstd); //cell does not belong to

// reset_placeholder_cells
//list

//Reset by rstb
always @ (posedge clk or posedge rstb)
if(rstb) outa <= 0;
else outa <= in;
1459
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
always @ (posedge clk or posedge rstb)
if(rstb) outb <= 0;
else outb <= in;

always @ (rstb or en)
if(rstb) outc <= 0;
else if(en) outc <= in;

//Reset by rstd
always @ (rstd or en)
if(rstd) outd <= 0;
else if(en) outd <= in;

always @ (rstd or en)
if(rstd) oute <= 0;
else if(en) oute <= in;

always @ (posedge clk or posedge rstd)
if(rstd) outf <= 0;
else outf <= in;

endmodule

For the above example, the Reset_check06 rule reports a violation for the
rstc reset because:

 The rstc reset drives three flip-flops, rstd, when the maximum
allowed limit set by the reset_fanout_max parameter is two.

 rstc is not driven by any placeholder cell.

Default Severity Label

Warning

Rule Group

VERIFY

Reports and Related Files

No report or related file
1460
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
Reset_check07
Reports asynchronous reset pins driven by a combinational logic or
a mux

When to Use

Use this rule to detect flip-flops or latches for which clear/preset pins are
driven by a combinational logic or a mux.

Description

The details of this rule are covered under the following topics:
 Reason for the Reset_check07 Rule Violation

 One Violation Per Reset Cone

 Specifying Reset Signals

Reason for the Reset_check07 Rule Violation

The Reset_check07 rule reports asynchronous clear/preset pins driven by a
combinational logic or a mux (set report_reset_path_mux to yes).

For example, consider the following figure:
1461
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
FIGURE 302. Example of the Reset_check07 Rule Violation

For the above example, this rule reports a violation as the clear/preset pins
of the f1 and f2 flip-flops are driven by a combinational logic.

NOTE: The Reset_check07 rule does not report violations when inputs/output of a
combinational block in the reset path is quasi_static.

One Violation Per Reset Cone

The Reset_check07 rule reports one violation for each Reset Cone.

For example, in Figure 302, this rule reports violation for the f1 flip-flop.

However, if the signal has multiple drivers, this rule reports a violation for
each driver if all of them lie in different Reset Cone. For example, consider
the following figure in which the input pins of the combinational logic are
resets in a design:

rst

module Enable signal
passed from
another module

f1

f2

Clear/preset pin

Clear/preset pin

Combinational logic
1462
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
FIGURE 303. Example of the Reset_check07 Rule Violation

In the above scenario, the Reset_check07 rule reports only one violation for
flip-flops, as they lie in the same Reset Cone.

This rule reports a violation for one flip-flop per Reset Cone. The violations
reported are not dependent on the number of clear/preset pins or the
number of drivers. You can expand the Reset Cone in the schematic to view
the other flip-flops.

Specifying Reset Signals

Combinational logic that is a part of reset synchronizers (for example,
combinational logic present inside reset synchronize cells), is ignored only
when you specify reset signals in any of the following ways to identify valid
reset synchronization structures in a design:
 By using the reset constraint

 By setting the use_inferred_resets parameter to yes

 By a combination of the above methods

However, you do not need to specify reset signals for detection of
combinational logic in a reset path.

rst1

f1

f2

Clear/preset pin

Clear/preset pin

Combinational logic

rst2
1463
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
Constraint(s)

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

 num_flops with the -reset argument (Optional): Use this constraint to
specify a minimum number of flip-flops required in a synchronizer chain.

 reset_synchronizer (Optional): Use this constraint to specify a reset
synchronizer signal along with its asserted reset value.

 reset (Optional): Use this constraint to specify reset signals in a design.

 clock (Optional): Use this constraint to specify clock signals in a design.

 quasi_static (Optional): Use this constraint to specify signals whose value
is predominantly static.

NOTE: The Reset_check07 rule does not report violations when inputs/output of a com-
binational block in the reset path is quasi_static.

Parameter(s)

 report_inst_for_netlist: Default value is no. Set this parameter to yes to
report violating instance name in case of netlist designs and leaf-level
net name for RTL designs.

 report_reset_path_mux: Default value is no. Set this parameter to yes to
report a violation when the asynchronous set/reset pins of a sequential
element are driven by mux.

 reset_synchronize_cells: Default value is NULL. Specify a
comma-separated list of synchronizer cell names that are considered as
valid synchronizers for asynchronous reset signals.

 reset_num_flops: Default value is 2. Specify a positive integer value,
greater than one, to specify different number of flip-flops.

 use_inferred_resets: Default value is no. Set this parameter to yes to use
auto-generated reset information.

 use_inferred_clocks: Default value is no. Set this parameter to yes to
auto-detect clock signals.

 handle_combo_arc: Default value is no. Set this parameter to yes so that
the clock/reset propagates from an input pin of a sequential library cell
if a combinational timing arc is specified from that pin to any output pin
of the cell.
1464
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
 thru_reset_synchronizer: Default value is yes. Set this parameter to no so
that the Reset_check07 rule does not report violations for any reset
synchronizers that are driven by a combinational logic or mux.

 same_domain_at_gate: Default value is no. Set the value of the
parameter to an allowed value to optimize the inference of domains on
clock merging gates.

Messages and Suggested Fix

The following message appears for a flip-flop or latch <flop-name> for
which a <pin-type> pin is driven by a combinational logic or a mux:

[WARNING] <pin-type> pin of sequential element '<flop-name>' is
driven by <combinational logic | mux>

Where, <pin-type> can be Set or Clear.

NOTE: For RTL designs, <flop-name> is the name of the output net of the flip-flop. For
netlist designs, if the report_inst_for_netlist parameter is set to yes, <flop-name>
is the name of the flip-flop instance. Otherwise, the message details are same as
for the RTL designs.

Potential Issues
This violation is reported if your design contains flip-flops/latches for which
set/reset pins are driven by a combinational logic or a mux.

Consequences of Not Fixing
If you do not fix this violation, there is a possibility of glitches on the set/
reset signal.

How to Debug and Fix
To debug the violation of this rule, perform the following steps:
1. View the Incremental Schematic of the violation message.
2. In the schematic, review the logic shown in the reset path.
3. Enable Show Case Analysis to check if the set_case_analysis constraints are

missing in the SGDC file that makes the logic in the reset path glitch
free.
1465
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
4. If a combinational logic or a mux is expected to be the part of a reset
synchronizer, run and analyze the Ar_sync01 and Ar_unsync01 rules to
verify whether it is detected as a reset synchronizer.

To fix this issue, eliminate the combinational logic or mux found in the
reset path. However, if your design style permits the logic and you wish to
allow it in your design, disable this rule.

Example Code and/or Schematic

Consider the following example:

module core_top (rsta, in, out, en);
input rsta;
input in;
input en;
output reg out;
wire rstb;
wire comb;
assign rstb = rsta & comb;
always @ (en or rstb)

if(rstb) out = 0;
else if (en) out = in;

endmodule

For the above example, the Reset_check07 rule reports a violation because
the clear pin of the latch is driven by an AND gate for which one of the
input is a top-level reset.

The schematic of this violation is shown in the following figure:
1466
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
FIGURE 304. Schematic of the Reset_check07 Rule Violation

To fix this issue, remove the combinational logic present in the path of the
reset.

However, if your design style permits the combinational logic and you wish
to allow the logic in your design, disable this rule.

Schematic Details

The Reset_check07 rule highlights the path from a combinational gate to
the set/reset pin of a flip-flop/latch.

Default Severity Label

Warning

Rule Group

VERIFY

Reports and Related Files

The SynchInfo Report
1467
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
Reset_check09
Reports XOR, XNOR, AND, or NAND gates found in a reset tree

When to Use

Use this rule during the RTL or pre-layout phase to detect any glitch
generating logic in a design.

Description

The Reset_check09 rule reports glitch generating logic, such as XOR,
XNOR, AND, and NAND gate in the fan-in cone of preset or clear terminals
of all flip-flops with asynchronous resets.

This rule traverses on paths until a primary port, sequential element, or
black box is found. It reports a violation if any of the disallowed gates is
detected and then it further continues traversal.

This rule reports a gate only once even if it appears in fan-in cone of
multiple flip-flops.

Rule Exceptions

The Reset_check09 rule does not report a violation if a logic is equivalent
to a buffer after applying the set_case_analysis constraint.

Constraint(s)

set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

Parameter(s)

 unex_reset_gate_list: Default value is NULL. Specify a comma or
space-separated list of disallowed cell names.

 report_inst_for_netlist: Default value is no. Set this parameter to yes to
report a violating instance name in case of netlist designs and a
leaf-level net name for RTL designs.

 handle_combo_arc: Default value is no. Set this parameter to yes so that
the clock/reset propagates from an input pin of a sequential library cell
if a combinational timing arc is specified from that pin to any output pin
of the cell.
1468
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
Messages and Suggested Fix

The following message appears when the XOR, XNOR, AND, or NAND gate
instance <hier-inst-name> is found in the fan-in cone of a reset pin of
the flip-flop <flop-name> in the cell <module-name>:

[WARNING] Instance <hier-inst-name> (cell name <module-
name>) found in the fanin cone of <reset-type> pin of
sequential element <flop-name>

where, <reset_type> can be preset or clear

NOTE: For RTL designs, <flop-name> is the name of the output net of the flip-flop. For
netlist designs, if the report_inst_for_netlist parameter is set to yes,
<flop-name> is the name of the flip-flop instance. Otherwise, the message
details are same as for the RTL designs.

Potential Issues
This violation appears if your design contains any glitch-prone
combinational cell in the Reset Cone of a sequential cell.

Consequences of Not Fixing
If you do not fix this violation, your design may contain glitches in the reset
path.

How to Debug and Fix
To fix this violation, avoid using the XOR, XNOR, AND, or NAND gate
instance in the fan-in cone of the preset or clear terminals of flip-flops with
asynchronous resets.

Example Code and/or Schematic

Consider the following design file specified for SpyGlass analysis:
1469
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
FIGURE 305.

For the above example, the Reset_check09 rule reports a violation for the
gate instances rtlc_N2 and rst.

The following figure shows the schematic highlighting the path containing
the rtlc_N2 instance:

FIGURE 306. Schematic of the Reset_check09 Rule Violation

module top(input d,clk, output reg q);
wire w3,w4,rst;
flop F1 (.d(d), .clk(clk), .rst(~(~w3&~w4)), .q(q));
assign rst = w3^w4;
always@(posedge clk or posedge rst)
 if(rst) q <= 1'b0;
 else q <=d;
endmodule
module flop(input d, clk, rst, output reg q);
 always@(posedge clk or posedge rst)
 if (rst) q <= 1'b0;
 else q <= d;
endmodule

// test.v
1470
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
Schematic Details

The Reset_check09 rule highlights the path from the reset terminal of
flip-flop till the violating gate in its fan-in cone.

Default Severity Label

Warning

Rule Group

VERIFY

Reports and Related files

No report or related file
1471
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
Reset_check10
Reports asynchronous resets used as non-reset signals

When to Use

Use this rule to detect incorrect usage of asynchronous reset signals.

Prerequisites

Specify reset signals in any of the following ways:
 By using the reset constraint

 By using the automatically generated resets after setting the
use_inferred_resets parameter to yes

 By using a combination of both the above methods

Description

The details of the Reset_check10 rule are covered under the following
topics:
 Reason for the Reset_check10 Violation

 Cases of Reporting Asynchronous Derived Resets by the Reset_Check10 Rule

 Rule Exceptions

Reason for the Reset_check10 Violation

The Reset_check10 rule reports asynchronous resets that drive any of the
following objects:
 Data terminal of sequential elements

 Control terminal of sequential elements

 Primary ports

 Black boxes

 Library cells

For example, this rule reports a violation in the following scenario in which
the asynchronous reset rst is driving the data terminal q2 of the q2_reg
flip-flop:
1472
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
FIGURE 307. Schematic of the Reset_check10 Rule Violation

Cases of Reporting Asynchronous Derived Resets by the
Reset_Check10 Rule

When the report_derived_reset parameter is set to Reset_check10, the
following type of scenario is reported by the Reset_check10 rule:

FIGURE 308.

In the above scenario, the Reset_check10 violation appears as the output
of r1_reg acts as the derived reset of rst_n and is used as a reset at
1473
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
q4_reg and data at q3_reg.

However the following cases are not reported by the Reset_check10 rule:
 When the same derived reset is used as a data and as a reset in the

same flip-flop. This scenario is shown in the following figure:

FIGURE 309.

In the above scenario, the Reset_check10 rule does not report violation
for the output of r1_reg that is used as a data signal at q1_reg. This is
because q1_reg is using the same reset signal as data.

 If a reset passes through the enable of an isolation cell and the output of
that cell is used as a data signal.

Rule Exceptions

This rule ignores data usage of an asynchronous reset if the D-flop is a part
of a reset synchronizer structure reported by the Ar_sync01 rule.

For example, this rule does not report a violation in the following scenario:
1474
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
\

FIGURE 310. Reset_check10 Rule Exception

Constraint(s)

 reset (Optional): Use this constraint to specify reset signals in a design.

 reset_synchronizer (Optional): Use this constraint to specify a reset
synchronizer signal along with its asserted reset value.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

Parameter(s)

 async_reset_usage: Default value is data. Specify a comma-separated
list of values to specify asynchronous reset types to be reported for
non-reset usage. Possible types are data, control, ports, bbox,
libcell and all.

 use_inferred_resets: Default value is no. Set this parameter to yes to use
auto-generated reset information.

 report_inst_for_netlist: Default value is no. Set this parameter to yes to
report violating instance name in case of netlist designs and leaf-level
net name for RTL designs.

rst
clr

clr

Flop1

Flop2

Flop3

Reset synchronizer structure
reported by the Ar_sync01 rule
1475
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
 reset_synchronize_cells: Default value is NULL. Specifies a
comma-separated list of synchronizer cell names that are considered as
valid synchronizers for asynchronous reset signals.

 filter_named_resets: Default value is clk, clock, scan. Specify a list of
strings to automatically infer asynchronous resets that do not match the
specified strings.

 report_derived_reset: Default value is none. Set this parameter to
Reset_check04,Reset_check10 to enable the Reset_check04 and
Reset_check10 rules to report asynchronous Derived Resets.
Other possible values are Reset_check04 and Reset_check10.

 reset_reduce_pessimism: Default value is
filter_unused_synchronizer, same_data_reset_flop. Set the
value of this parameter to all_potential_resets to detect all the
potential resets in a design. For information on the other possible
values, see Possible Values to the reset_reduce_pessimism Parameter.

 cdc_reduce_pessimism: Default value is mbit_macro,
no_convergence_at_syncreset, no_convergence_at_enable.
Set this parameter to an appropriate value to ignore clock domain
crossings involving black box instances and clock domain crossings with
destinations having unused, hanging, or blocked outputs. For possible
values, see Allowed Values of the cdc_reduce_pessimism Parameter.

 handle_combo_arc: Default value is no. Set this parameter to yes so that
the clock/reset propagates from an input pin of a sequential library cell
if a combinational timing arc is specified from that pin to any output pin
of the cell.

Messages and Suggested Fix

Message 1

The following message appears when the asynchronous signal
<reset-name> reaches the data of a sequential element:

[WARNING] Asynchronous reset signal '<reset-name>' (at
<inst1-type> '<inst1-name>') is reaching to data of
<inst2-name>

The arguments of the above message are explained below:
1476
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
Potential Issues
This violation appears if your design contains an asynchronous reset signal
that reaches to the data input of a sequential element.

Consequences of Not Fixing
If you do not fix this violation, your design may contain functional issues.

How to Debug and Fix
To fix this violation, avoid using asynchronous resets as non-reset signals.
In addition, check if the reset signal is a synchronous reset signal.

Message 2

The following message appears when the asynchronous signal
<reset-name> reaches to the control of a sequential element:

[WARNING] Asynchronous reset signal '<reset-name>' (at
<inst1-type> '<inst1-name>') is reaching to control of
<inst2-name>

The arguments of the above message are explained below:

Argument Description
<reset-name> Hierarchical name of the asynchronous reset signal
<inst1-type> flop in case of flip-flops. library-cell in case of library

cells
<inst1-name> In case of netlist designs, if the report_inst_for_netlist

parameter is set to yes, <inst1-name> is the name of
the instance where the reset signal is used asynchronously.
Otherwise, it is the name of the output net of the instance
where the reset signal is used asynchronously.

<inst2-name> In case of netlist designs, if the report_inst_for_netlist
parameter is set to yes, <inst2-name> is the name of
the instance whose data/control pin is driven by the reset
signal. Otherwise, it is the name of the output net of the
instance whose data/control pin is driven by the reset signal.
1477
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
Potential Issues
This violation appears if your design contains an asynchronous reset signal
that reaches to the control input of a sequential element.

Consequences of Not Fixing
If you do not fix this violation, your design may contain functional issues.

How to Debug and Fix
To debug and fix this violation, analyze the incremental schematic of the
violation. Check if you can avoid using asynchronous resets as non-reset
signals.

Message 3

The following message appears when the asynchronous signal
<reset-name> reaches a primary port:

[WARNING] Asynchronous reset signal '<reset-name>' (at
<inst1-type> '<inst1-name>') is reaching to port

Argument Description
<reset-name> Hierarchical name of the asynchronous reset signal
<inst1-type> flop in case of flip-flops. library-cell in case of library

cells
<inst1-name> In case of netlist designs, if the report_inst_for_netlist

parameter is set to yes, <inst1-name> is the name of
the instance where the reset signal is used asynchronously.
Otherwise, it is the name of the output net of the instance
where the reset signal is used asynchronously.

<inst2-name> In case of netlist designs, if the report_inst_for_netlist
parameter is set to yes, <inst2-name> is the name of
the instance whose data/control pin is driven by the reset
signal. Otherwise, it is the name of the output net of the
instance whose data/control pin is driven by the reset signal.
1478
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
<port-name>

The arguments of the above message are explained below:

Potential Issues
This violation appears if your design contains an asynchronous reset signal
that reaches to an output port.

Consequences of Not Fixing
If you do not fix this violation, your design may contain functional issues.

How to Debug and Fix
To fix this violation, avoid using asynchronous resets as non-reset signals.

Message 4

The following message appears when the asynchronous signal
<reset-name> reaches a black box instance at the pin <pin-name>:

[WARNING] Asynchronous reset signal '<reset-name>' (at
<inst1-type> '<inst1-name>') is reaching to blackbox
instance <inst3-name> (blackbox/<pin-name>)

Argument Description
<reset-name> Hierarchical name of the asynchronous reset signal
<inst1-type> flop in case of flip-flops. library-cell in case of library

cells
<inst1-name> In case of netlist designs, if the report_inst_for_netlist

parameter is set to yes, <inst1-name> is the name of
the instance where the reset signal is used asynchronously.
Otherwise, it is the name of the output net of the instance
where the reset signal is used asynchronously.

<port-name> Refers to the port name where the reset signal is arriving.
1479
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
The arguments of the above message are explained below:

Example Code and/or Schematic

Consider the following files specified during SpyGlass analysis:

In the above example, the asynchronous reset rst hits the data input of
the q2 flip-flop. Therefore, the Reset_check10 rule reports a violation.

Argument Description
<reset-name> Hierarchical name of the asynchronous reset signal
<inst1-type> flop in case of flip-flops. library-cell in case of library

cells
<inst1-name> In case of netlist designs, if the report_inst_for_netlist

parameter is set to yes, <inst1-name> is the name of
the instance where the reset signal is used asynchronously.
Otherwise, it is the name of the output net of the instance
where the reset signal is used asynchronously.

<inst3-name> Refers to the name of the black box instance that is driven by
the reset signal

<pin-name> Refers to the pin name of the black box, where the reset
signal is arriving.

module top(q,rst,clk,d,q2);
input clk,rst,d;
output reg q, q2;
wire t;
always@(posedge clk or posedge rst) begin
 if(rst)
 q<=1'b0;

 else
 q<=d;

 end
assign t = rst;
always@(posedge clk)

 q2<=t;

endmodule

// test.v

current_design top
reset -name rst

// constr.sgdc
1480
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
The following figure shows the schematic of this violation:

FIGURE 311. Schematic of the Reset_check10 Rule Violation

Schematic Details

The Reset_check10 rule highlights the following information in the
schematic:
 The path from an asynchronous reset source to one of the flip-flops/

sequential cell where it is used as an asynchronous reset.
 Path from an asynchronous reset source to the primary port or black

box or the instance where the reset is used as data or control.

Default Severity Label

Warning

Rule Group

VERIFY
1481
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
Reports and Related Files

The SynchInfo Report
1482
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
Reset_check11
Reports asynchronous resets that are used as both active-high and
active-low

When to Use

Use this rule to detect incorrect usage of asynchronous reset signals.

Prerequisites

Specify the following information before running this rule:
 Specify reset signals in any of the following ways:

 By using the reset constraint

 By using the automatically generated resets after setting the
use_inferred_resets parameter to yes

 By using a combination of both the above methods

 Enable this rule by specifying the set_goal_option addrules
{Reset_check11} command in the project file.

Description

The details of the rule are covered under the following topics:
 Reason for the Reset_check11 Rule Violation

 Functioning of the Reset_check11 Rule

 Rule Exceptions

Reason for the Reset_check11 Rule Violation

The Reset_check11 rule reports asynchronous reset signals that are used
at both levels, that is active high and active low, to set or reset flip-flops/
sequential-elements.

For example, in the following figure, the rst reset is used as active high at
q1 and active low at q3:
1483
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
FIGURE 312. Schematic of the Reset_check11 Rule Violation

This rule reports any one active-high usage and one active-low usage for
an asynchronous reset in a design. You can expand the schematic to view
other occurrences of such active-high or active-low usages.

Functioning of the Reset_check11 Rule

The Reset_check11 rule functions in the following manner:
1. It applies both active and inactive value on every reset signal and

performs simulation every time for each reset twice, that is, one with
the active value and another with the inactive value.
1484
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
2. It then checks for the existence of two flip-flops such that one flip-flop
can be asserted with the active value and the other flip-flop can be
asserted with the inactive value.
If such flip-flops exist, the Reset_check11 rule reports a violation.

Rule Exceptions

The Reset_check11 rule does not report a violation if a reset signal reaches
a sequential element with an undetermined phase.

For example, this rule does not report a violation in the following scenario:

FIGURE 313. Reset_check11 Rule Exception

Constraint(s)

 reset (Optional): Use this constraint to specify reset signals in a design.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

rst

x

clr

clr

Flop1

Flop2

Where x can be:
- A black box
- A library cell, equivalent to XOR, XNOR, etc.

0

1

Undetermined
phase
1485
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
Parameter(s)

 use_inferred_resets: Default value is no. Set this parameter to yes to use
auto-generated reset information.

 report_inst_for_netlist: Default value is no. Set this parameter to yes to
report violating instance name in case of netlist designs and leaf-level
net name for RTL designs.

 filter_named_resets: Default value is clk, clock, scan. Specify a list of
strings to automatically infer asynchronous resets that do not match the
specified strings.

 reset_reduce_pessimism: Default value is
filter_unused_synchronizer, same_data_reset_flop. Set the
value of this parameter to all_potential_resets to detect all the
potential resets in a design. For information on the other possible
values, see Possible Values to the reset_reduce_pessimism Parameter.

Messages and Suggested Fix

The following message appears when the asynchronous signal
<reset-name> is used at both active high and active low levels:

[WARNING] Asynchronous reset signal '<reset-name>' is used
as active-high at '<inst1-name>' and active-low at '<inst2-
name>'

The arguments of the above message are explained below:

Argument Description
<reset-name> Hierarchical name of the asynchronous reset signal
<inst1-name> In case of netlist designs, if the report_inst_for_netlist

parameter is set to yes, <inst1-name> is the name of
the instance where the reset signal is used as active-high.
Otherwise, it is the name of the output net of the instance
where the reset signal is used as active-high.

<inst2-name> In case of netlist designs, if the report_inst_for_netlist
parameter is set to yes, <inst2-name> is the name of
the instance where the reset signal is used as active-low.
Otherwise, it is the name of the output net of the instance
where the reset signal is used is used as active-low.
1486
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
Potential Issues
This violation appears if your design contains an asynchronous reset that is
used at both active-high and active-low levels.

Consequences of Not Fixing
If you do not fix this violation, the design does not initialize properly. As a
result, functional analysis may not work properly in this case.

How to Debug and Fix
To fix this violation, use only one active level for a particular asynchronous
reset in a design.

Example Code and/or Schematic

Consider the following file specified during SpyGlass analysis:

module test(rst,q1,q2,d1,d2,clk);
input rst,d1,d2,clk;
output q1,q2;
reg q1,q2;
always@(posedge clk or negedge rst) //active low clear
if(!rst)
q1 <= 0;

else
q1 <= d1;

always@(posedge clk or posedge rst)
// active high clear
if(rst)
q2 <= 0;

else
q2 <= d2;

endmodule

In the above example, the asynchronous reset signal rst is used as active-
high at q2 and as active-low at q1. Therefore, the Reset_check11 rule
reports a violation.

The following figure shows the schematic of this violation:
1487
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
FIGURE 314. Schematic of the Reset_check11 Rule Violation

Schematic Details

The Reset_check11 rule highlights the following information in the
schematic:
 The path from an asynchronous reset net to the set/reset pin of one

flip-flop/sequential-element where the reset is used as active-high.
 The path from the asynchronous reset net to the set/reset pin of

another flip-flop/sequential-element where the reset is used as active
low.

Default Severity Label

Warning

Rule Group

VERIFY
1488
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
Reports and Related Files

No report or related file
1489
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
Reset_check12
Reports flip-flops, latches, and sequential elements that do not get
an active reset during power on a reset

When to Use

Use this rule to detect sequential elements that are not asserted on the
active value of asynchronous resets/sets.

Prerequisites

Specify the following information before running this rule:
 Specify resets by using the reset constraint.

 Enable this rule by specifying the set_goal_option addrules
{Reset_check12} command in the project file.

Description

The details of the Reset_check12 rule are covered under the following
topics:
 Reason for the Reset_check12 Rule Violation

 Features of the Reset_check12 Rule

 Rule Exceptions

Reason for the Reset_check12 Rule Violation

The Reset_check12 rule reports sequential elements that are not asserted
on the active value of asynchronous resets/sets.

For example, this rule reports a violation in the following scenario as the
RST reset is not asserted with the active value 0:
1490
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
FIGURE 315. Reset_check12 Rule Violation

However, this rule does not report a violation in the following scenario
because the RST reset is getting asserted as per the active value 0
specified in the SGDC file:

FIGURE 316. No Reset_check12 Rule Violation

Features of the Reset_check12 Rule

Following are the features of the Reset_check12 rule:
 This rule applies active values on all resets and x on other nets in a

design. It then reports sequential elements that are not receiving active
the value on their asynchronous reset/set pins.

//constr.sgdc

current_design top
reset -name RST -value 0
1491
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
 If a sequential instance has both reset and set pins, then by default, this
rule does not report a violation if the instance gets asserted from any of
the reset or set pins.
Set the allow_any_async_pin parameter to no to check for both the pins.

 If multiple resets/sets reach to a flip-flop, this rule checks if the reset/
set pin is active after applying active values on all the resets/sets.
For example, consider the following figure:

FIGURE 317. Reset_check12 Example

In the above figure, the combination of reset values reaching Flop1
ensures that it is asserted. However, Flop2 is not asserted.

Rule Exceptions

This rule has the following exceptions:
 It does not report a violation for automatically-inferred resets when the

use_inferred_resets parameter is set to yes.

 It does not traverse over black boxes on which the assume_path is
applied, because it is based on simulation.

 It does not report cases in which a reset is not specified for a sequential
element. Such cases are reported by the Reset_info09a rule.

 It does not check resets for which an active value is not specified by the
reset constraint.

rst1(0)

rst2(1)

clk

Flop1

Flop2

//test.sgdc

reset -name rst1 -value 0
reset -name rst2 -value 1
clock -name clk -domain d1
1492
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
 It does not report a violation for the blocked path present in the fan-in
of the reset of a sequential element.

Constraint(s)

 reset (Mandatory): Use this constraint to specify reset signals in a
design.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

 quasi_static (Optional): Use this constraint to specify signals whose value
is predominantly static.

Parameter(s)

 report_inst_for_netlist: Default value is no. Set this parameter to yes to
report the violating instance name in case of netlist designs and the
leaf-level net name for RTL designs.

 allow_any_async_pin: Default value is yes. Set this parameter to no to
consider a flip-flop to be asserted if both set and reset pins assert that
flip-flop.

Messages and Suggested Fix

Message 1

The following message appears if the sequential element <name> is not
asserted on the active value of asynchronous sets/resets:

[RstC12_1] [WARNING] <cell-type> <name> is not asynchronously
asserted

For instance pin, Message 2 is reported.

Details of the arguments of the above message are described in the
following table:
1493
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
Potential Issues
This violation appears if the design contains a sequential element that is
not asserted on the active value of asynchronous resets/sets.

Consequences of Not Fixing
If you do not fix this violation, basic functionality of an asynchronous reset/
set is not served. In this case, the reported cell is not initialized and
therefore, the chip does not have the expected functionality.

How to Debug and Fix
To debug this violation, perform the following steps:
1. View the incremental schematic of the violation message.
2. Review the logic shown in the reset/set path in the schematic.
3. Enable Show Case Analysis in the incremental schematic to check if the

set_case_analysis constraints in the SGDC file or the logic in RTL design
blocks the propagation of the value (-value) from the reset/set source
to sequential elements.
If required, check if the value reaching to the sequential element is the
assertion value of the sequential element.

To fix this issue, eliminate the blocking logic of the reset value or correct
the -value specification for reset in the SGDC file.

Argument Description
<cell-type> It can be flop, latch, or sequential cell.

<name> In case of netlist designs, if the
report_inst_for_netlist parameter is set to
yes, <name> refers to the name of the output pin of
the sequential instance that is not asserted
asynchronously. Otherwise, <name> refers to the name
of the output net of the sequential element that is not
asserted asynchronously on active value of resets.
1494
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
Message 2

The following message appears when the report_inst_for_netlist parameter is
set to yes, and the sequential element of an instance pin is not asserted on
the active value of asynchronous resets/sets:

[RstC12_1] [WARNING] <cell-type> instance pin <name> is not
asynchronously asserted

Potential Issues
See Potential Issues.

Consequences of Not Fixing
See Consequences of Not Fixing.

How to Debug and Fix
See How to Debug and Fix.

Message 3

The following message appears if no reset constraint with an active value is
defined for an asynchronous reset/set:

[RstC12_2] [WARNING] For design unit '<du-name>', no SGDC
command found for Asynchronous Reset with active value

Potential Issues
This violation appears if design contains an asynchronous reset/set but no
reset constraint with an active value is defined for such reset/set.

Consequences of Not Fixing
If you do not fix this violation, such asynchronous resets/sets are not
considered for rule checking.

How to Debug and Fix
1495
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
To fix this violation, specify a reset constraint for the asynchronous reset/
set with an active value.

Example Code and/or Schematic

Consider the following files specified during SpyGlass analysis:

In the above example, test.out is neither asynchronously asserted by
the reset nor by the preset. Therefore, the Reset_check12 rule reports a
violation.

The following figure shows the schematic of this violation:

FIGURE 318. Schematic for the Reset_check12 Rule Violation

module test(clk,rst,pre,din,out);
input clk,rst,pre,din;
output out;
reg out;

always@(posedge clk or negedge rst or posedge pre)
if(!rst)
 out <= 1'b0;
 else
 if(pre)
 out <=1'b1;
else
 out <= din;
endmodule

// test.v // test.sgdc

current_design test

clock -name clk

reset -name rst -value 1

reset -name pre -value 0
1496
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
Default Severity Label

Warning

Rule Group

VERIFY

Reports and Related Files

No report or related file
1497
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
Reset_overlap01
Reset reaches another reset

When to Use

Use this rule to detect the reset reaching another reset.

Prerequisites

The prerequisites are as follows:
 Set the stop_at_reset parameter to yes to run this rule.

 Specify resets by using the reset constraint.

Description

The Reset_overlap01 rule reports the cases when one reset reaches
another reset.

Parameter(s)

 stop_at_reset: Default value is yes. Set this parameter to no to continue
propagation of the reset reaching another reset in its path.

 use_inferred_resets: Default value is no. Set this parameter to yes to use
auto-generated reset information.

Constraint(s)

 reset (Mandatory): Use this constraint to specify reset signals in a
design.

 set_case_analysis (Optional): Use this constraint to specify case-analysis
signals.

Messages and Suggested Fix

The following message appears when reset propagation of the reset <rst1-
name> reaches the reset net <rst2-name>:

[WARNING] Reset propagation for reset '<rst1-name>' has reached
reset <rst2-name>'. Halting further propagation of reset
'<rst1-name>' on this path
1498
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
Potential Issues
This violation appears when a design contains a reset that reaches to
another reset from a different domain in the path.

Consequences of Not Fixing
If you do not fix this violation, reset propagation stops along the path
where a reset reaches another clock of a different domain. This may result
in an improper reset domain crossing analysis.

How to Debug and Fix
To debug this violation, perform the following steps:
 Check if the resets reported by the message are specified correctly in

the SGDC file.
 Open the schematic of the violation and check if reset propagation

occurs correctly.
 Make necessary changes to eliminate the conflict.

Example Code and/or Schematic

Consider the following figure:

FIGURE 319.

current_design top
reset -name rst1
reset -name rst2
reset -name temp.

SGDC File

set_parameter stop_at_reset no
Project File
1499
Synopsys, Inc.

Reset Checking Rules

Rules in SpyGlass CDC
In the above example, both the rst1 and rst2 resets reach the different
reset domain temp. Therefore, the following Reset_overlap01 rule
violations appear:
 Reset propagation for reset 'top.rst1' has reached reset

'top.temp'.Halting further propagation of reset 'test.rst1'
on this path.

 Reset propagation for reset 'top.rst2' has reached reset
'top.temp'.Halting further propagation of reset 'test.rst2'
on this path.

Schematic Details

The schematic highlights the path from one reset to the point where
another reset is reached.

Default Severity Label

Warning

Rule Group

Reports and Related Files

 The Clock-Reset-Summary Report

 autoresets.sgdc: This file contains all the primary resets and black box
presets/clears specified in the SGDC format.
1500
Synopsys, Inc.

Clock and Reset Checking Rules

Rules in SpyGlass CDC
Clock and Reset Checking Rules
The SpyGlass CDC solution has the following rules for checking clock and
reset conditions:

Rule Reports
Clock_Reset_check01 Instances of specified cells found in a clock tree, reset

tree, or fan-out of a net
Clock_Reset_check02 Potential race conditions between output of a flip-flop

and its clock/preset/clear signal
Clock_Reset_check03 Potential race conditions between clock signal and

reset/set signal of a flip-flop
1501
Synopsys, Inc.

Clock and Reset Checking Rules

Rules in SpyGlass CDC
Clock_Reset_check01
Reports unwanted cells found in clock or reset networks

When to Use

Use this rule to detect unwanted instances of cells appearing either in clock
or reset networks or in the entire design.

Prerequisites

Specify names of allowed or disallowed cells by using the
network_allowed_cells constraint.

Description

The Clock_Reset_check01 rule reports a violation if instances of specified
cells are found in clock, reset, or other networks.

This rule reports RTL inferred logic also if SpyGlass synthesis-generated
primitive names (RTL_* or M_RTL_*) are given in disallowed list or not
given in allowed list.

Parameter(s

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

 use_inferred_resets: Default value is no. Set this parameter to yes to use
auto-generated reset information.

 filter_named_clocks: Default value is rst, reset, scan, set. Set this
parameter to a list of strings.

 same_domain_at_gate: Default value is no. Set the value of the
parameter to an allowed value to optimize the inference of domains on
clock merging gates.

 same_domain_at_gate: Default value is no. Set the value of the
parameter to an allowed value to optimize the inference of domains on
clock merging gates.

Constraint(s)

 network_allowed_cells (Mandatory): Use this constraint to specify names
of allowed and disallowed cells in clock trees.
1502
Synopsys, Inc.

Clock and Reset Checking Rules

Rules in SpyGlass CDC
If you specify clock or reset in the -type argument of this constraint, it is
mandatory to specify the clock or reset constraint, respectively.

 clock: Use this constraint to specify clock signals.

 reset: Use this constraint to specify reset signals.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

Messages and Suggested Fix

Message 1

The following message appears for an instance <inst-name> of a cell
<cell-name> that should not be present in a clock or reset tree based on
the specified constraints:

[ClkRstC1_1] [WARNING] Instance '<inst-name>'(cell name '<cell-
name>') should not be present

Potential Issues
This violation appears if your design contains instances of disallowed cells
specified by using the network_allowed_cells constraint.

Consequences of Not Fixing
Instances of disallowed cells may add to delays on propagated networks
thereby altering the expected output values.

How to Debug and Fix
For information on debugging, click How to Debug and Fix.

Message 2

The following message appears for an instance <inst-name> of a cell
<cell-name> that should not be present in the fan-out of net
<net-name> based on the specified constraints:

[ClkRstC1_2] [WARNING] Instance '<inst-name>'(cell name '<cell-
name>') should not be present in the fanout of net '<net-name>'

NOTE: In case of RTL inferred logic, the cell name '<cell-name>' will be SpyGlass
Synthesis generated name (RTL_* or M_RTL_*).

Potential Issues
1503
Synopsys, Inc.

Clock and Reset Checking Rules

Rules in SpyGlass CDC
This violation appears if your design contains instances of disallowed cells
in clock/reset networks.

Consequences of Not Fixing
Disallowed cells may result in timing issues on clock paths. It may also
change polarity or add to delays.

How to Debug and Fix
To debug the violation of this rule, perform the following steps:
1. View the Incremental Schematic of the violation message.
2. In the schematic, check how the invalid cell is connected in the specified

network.
3. Open The CKSGDCInfo Report to see the list of inferred cells, when

wildcard is specified.
4. You can also view case analysis settings along with the violation of this

rule.

Example Code and/or Schematic

Consider the following example:

module test(clk1,clk2,q,d);
input clk1;
input clk2;
input [1:0] d;
output reg [1:0] q;
reg clock;
wire clockby2;
wire t1;
B1I B1(.A(clk1),.Z(tclk));
assign tclock = clock ^ clk1;
assign clockby2 = clock;
always@(posedge clk1)
clock <= !clockby2;

always@(posedge tclk)
q[0] <= d[0];

always@(negedge tclock)
q[1] <= d[1];

endmodule
1504
Synopsys, Inc.

Clock and Reset Checking Rules

Rules in SpyGlass CDC
The Clock_Reset_check01 rule reports a violation for the above example as
an invalid cell B1I is present in the clock path, as shown in the following
schematic:

FIGURE 320. Schematic for the Clock_Reset_check01 Rule Violation

To fix the above violation, remove the B1I cell from the clock path.

Schematic Details

The Clock_Reset_check01 rule highlights the cell that should not appear in
the clock or reset network.

Default Severity Label

Warning

Rule Group

VERIFY

Reports and Related Files

The CKSGDCInfo Report
1505
Synopsys, Inc.

Clock and Reset Checking Rules

Rules in SpyGlass CDC
Clock_Reset_check02
Reports potential race conditions between flip-flop output and its
clock/reset pin

When to Use

Use this rule to detect race-condition between output of a flip-flop and
clock/reset pins.

Description

The Clock_Reset_check02 rule reports a violation if a feedback path exists
between the output of a flip-flop to its clock/reset pins.

Parameter(s)

 ignore_race_thru_latch: Default value is no. Set this parameter to yes to
ignore cases in which a latch exists in a feedback path between the
output of a flip-flop pin and its clock pin.

 report_user_defined_clock: Default value is no. Set this parameter to yes
to enable the enable the Clock_Reset_check02 rule to report the clock
that is highlighted in the RTL viewer and schematic.

Constraint(s)

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

Messages and Suggested Fix

Message 1

The following message appears at the first line of a design unit where a
potential race condition is detected between the output of a flip-flop and its
clock/preset/clear signal <name>:

[WARNING] Potential race between flop (output <obj-type>
<inst-name>) and its <sig-type> (<name>) detected

NOTE: If there is a latch in the feedback path, this rule reports Message 2.

The arguments of the above message are explained below:
1506
Synopsys, Inc.

Clock and Reset Checking Rules

Rules in SpyGlass CDC
Potential Issues
This violation appears if a feedback loop exists in your design possibly
through a combinational logic from the output pin of a flip-flop to its clock
pin or asynchronous set/reset pin.

Consequences of Not Fixing
If you do not fix this violation, timing and behavior in such cases can be
difficult to predict.

How to Debug and Fix
For information on debugging, click How to Debug and Fix.

Message 2

The following message appears at the first line of a design unit where a
potential race condition is detected between the output of a flip-flop
<flop-name> and its clock/preset/clear signal <name> and a latch is
detected in the feedback path:

[WARNING] Potential race between flop (output <obj-type>
<inst-name>) and its <sig-type> (<name>) detected through a
latch

The arguments of the above message are explained below:

Argument Description
<sig-type> Can be clock, preset or clear.

<obj-type> net in case of RTL designs.
pin in case of netlist designs, if the report_inst_for_netlist
parameter is set to yes. Otherwise, it is net.

<inst-name> <flop-output-net-name> in case of RTL designs.
<flop-inst-name>.<out-pin-name> in case of
netlist designs, if the report_inst_for_netlist parameter is set to
yes. Otherwise, it is same as in case of RTL designs.
1507
Synopsys, Inc.

Clock and Reset Checking Rules

Rules in SpyGlass CDC
Potential Issues
This violation appears if your design contains one or more latches in a
feedback path.

Consequences of Not Fixing
If you do not fix this violation, timing and behavior in such cases can be
difficult to predict.

How to Debug and Fix
To debug the violation of this rule, perform the following steps:
1. View the Incremental Schematic of the violation message.
2. In the schematic, check the race in clock/preset/clear path.
3. Run the Info_Case_Analysis rule to check if mux-select/enable/control

signals have been applied properly in the race path. Else, constraint
them properly.

Example Code and/or Schematic

Example 1

Consider the following files specified for SpyGlass analysis:

Argument Description
<sig-type> Can be clock, preset or clear

<obj-type> net in case of RTL designs.
pin in case of netlist designs, if the report_inst_for_netlist
parameter is set to yes. Otherwise, it is net.

<inst-name> <flop-output-net-name> in case of RTL designs.
<flop-inst-name>.<out-pin-name> in case of
netlist designs, if the report_inst_for_netlist parameter is set to
yes. Otherwise, it is same as in case of RTL designs.
1508
Synopsys, Inc.

Clock and Reset Checking Rules

Rules in SpyGlass CDC
The Clock_Reset_check02 rule reports a violation for the above example as
a race condition exists between the output pin Q of a flip-flop and the clear
pin CLR. This is shown in the following schematic:

module test(q,d,clk,rst,sel,en);
input d;
input clk;
input rst;
input en;
input sel;
output q;
reg q,q1;
wire clear;
assign clear = (sel)?q1 :rst;
always@(en)
 if(en)
 q1 <= q;
always@(posedge clk or negedge clear)
begin
 if(!clear)
 q <= 0;
 else
 q <= d;
end
endmodule

// test.v

current_design test
clock -name clk -domain d1
reset -name rst -value 0
set_case_analysis -name en -value 1

// constraints.sgdc
1509
Synopsys, Inc.

Clock and Reset Checking Rules

Rules in SpyGlass CDC
FIGURE 321. Schematic for the Clock_Reset_check02 Rule Violation

To resolve the race condition in the above example:
 Constraint the mux-select pin so that the output of the flip-flop is not

feeding the clear path.
 If the latch present in the feedback path can resolve the race condition,

set the ignore_race_thru_latch parameter.

Example 2

Consider the following example where a potential race condition exists
between the output of flip-flop q_temp and its clock clk_temp:

architecture logic of test is
signal q_temp : std_logic;
signal clk_temp : std_logic;
begin
process(clk_temp)
begin
if (clk_temp'event and clk_temp='1') then
q_temp <= d;

end if;
end process;
1510
Synopsys, Inc.

Clock and Reset Checking Rules

Rules in SpyGlass CDC
q <= q_temp;
clk_temp <= q_temp and clk;

end logic;

For this example, SpyGlass generates the following message:

Potential race between flop (output pin q_temp) and its clock
(clk_temp) detected

Example 3

Consider the following example where a potential race condition exists
between the output of flip-flop q_temp and its preset rst_temp:

architecture logic of test is
signal rst_temp, q_temp, tmp : std_logic;
begin
process(clk, rst_temp)
begin
if (rst_temp='1') then
q_temp <= '1';

elseif (clk'event and clk='1') then
q_temp <= d;

end if;
end process;

tmp <= rst_temp and rst;
rst_temp <= tmp and q_temp;
q <= q_temp;

end logic;

For this example, SpyGlass generates the following message:

Potential race between flop (output pin q_temp) and its preset
(rst_temp) detected

Example 4

Consider the following example where a potential race condition exists
between the output of flip-flop q_temp and its clear rst_temp:

architecture logic of test is
signal rst_temp, q_temp, tmp : std_logic;
begin
process(clk, rst_temp)
1511
Synopsys, Inc.

Clock and Reset Checking Rules

Rules in SpyGlass CDC
begin
if (rst_temp='1') then
q_temp <= '0';

elseif (clk'event and clk='1') then
q_temp <= d;

end if;
end process;

tmp <= rst_temp and rst;
rst_temp <= tmp and q_temp;
q <= q_temp;

end logic;

For this example, SpyGlass generates the following message:

Potential race between flop (output pin q_temp) and its clear
(rst_temp) detected

Example 5

Consider the following example where a potential race condition exists
between the output of flip-flop q_temp and its clock clk_temp and the
feedback path contains a latch:

architecture logic of test is
signal tmp, clk_temp, q_temp : std_logic;
begin
process(clk_temp)
begin
if (clk_temp'event and clk_temp='1') then
q_temp <= d;

end if;
end process;
process(en, q_temp)
begin
if (en='1') then
tmp <= q_temp;

end if;
end process;

clk_temp <= tmp and clk;
1512
Synopsys, Inc.

Clock and Reset Checking Rules

Rules in SpyGlass CDC
q <= q_temp;
end logic;

For this example, SpyGlass generates the following message:

Potential race between flop (output pin q_temp) and its clock
(clk_temp) detected through a latch

Schematic Details

The Clock_Reset_check02 rule highlights the feedback loop from flip-flop
output to its clock/preset/clear pin.

Default Severity Label

Warning

Rule Group

VERIFY

Reports and/or Related Files

No report or related file
1513
Synopsys, Inc.

Clock and Reset Checking Rules

Rules in SpyGlass CDC
Clock_Reset_check03
Reports potential race condition between flip-flop clock and reset
pins

When to Use

Use this rule to detect race-conditions between clock and reset pins of a
flip-flop.

Description

The Clock_Reset_check03 rule reports potential race conditions between
clock signals and reset/set signals of a flip-flop.

Race conditions occasionally occur when clock and reset signals of a flip-
flop come into conflict. In such cases, gate output takes a finite, non-zero
amount of time to react to any change in inputs. As a result, simultaneous
propagation of clock and reset signals produce undesired outputs.

Parameter(s)

None

Constraint(s)

set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

Messages and Suggested Fix

The following message appears at the location where flip-flop
<flop-name> is first set when there is a potential race condition between
its clock signal and reset/preset signal:

[WARNING] Potential race between clock and reset pins of flop
<flop-name>

NOTE: For RTL designs, <flop-name> is the name of the output net of the flip-flop. For
netlist designs, if the report_inst_for_netlist parameter is set to yes, <flop-name>
is the name of the flip-flop instance. Otherwise, the message details are same as
for the RTL designs.

Potential Issues
1514
Synopsys, Inc.

Clock and Reset Checking Rules

Rules in SpyGlass CDC
This violation appears if your design contains a net that drives a clock pin
as well as a reset/set pin of a flip-flop, possibly through some
combinational logic.

Consequences of Not Fixing
If you do not fix this violation, timing and therefore behavior may be
difficult to predict.

How to Debug and Fix
To debug the violation of this rule, perform the following steps:
1. View the Incremental Schematic of the violation message.
2. In the schematic, check the race between clock and reset/preset pins.
3. Run the Info_Case_Analysis rule to check if control signals have been

applied properly in the race path. Else, constraint them properly.

Example Code and/or Schematic

Consider the following example:

module test(q,d,clk,in1,pre,enable,sel);
input d;
input clk;
input in1;
input enable,sel,pre;
output q;
reg q;
wire reset;
wire temp;
wire tclk;
assign temp = in1 & (!sel);
assign tclk = clk & enable;
assign reset = (sel)?temp : pre & enable;
always@(posedge tclk or posedge reset)
begin
if(reset)
q <= 1'b1;

else
q <= d;

end
1515
Synopsys, Inc.

Clock and Reset Checking Rules

Rules in SpyGlass CDC
endmodule

For the above example, the Clock_Reset_check03 rule reports a violation
as race condition exists between clock and reset pins of the q flip-flop.

The schematic of this violation is shown below:

FIGURE 322. Schematic for the Clock_Reset_check03 Rule Violation

In the above schematic, the same enable net is reaching to the clock as
well as the preset path.

To fix this violation, constraint the MUX select signal to activate proper
paths by using the set_case_analysis constraint, as shown below:

set_case_analysis -name sel -value 1

Schematic Details

The Clock_Reset_check03 rule highlights the following details in a
schematic:
 Net driving a clock pin as well as a reset/set pin of a flip-flop.

 Path from a net to a clock pin.

 Path from a net to a reset/set pin.

Default Severity Label

Warning
1516
Synopsys, Inc.

Clock and Reset Checking Rules

Rules in SpyGlass CDC
Rule Group

VERIFY

Report and Related File

No related reports or files
1517
Synopsys, Inc.

Delta Delay Rules

Rules in SpyGlass CDC
Delta Delay Rules
The SpyGlass Delta Delay rules are as follows:

In addition, a number of Must Rules are automatically run to check the
validity of user-specified SpyGlass Design Constraints.

Rule Reports
Clock_delay01 Flip-flop pairs triggered by the same clock where the number

of cells in the data path to the destination flip-flop is more
than the net difference in number of cells in the clock paths of
the two flip-flops

Clock_delay02 Clocks where the delay (number of cells) is not same for all
paths from clock source to each flip-flop triggered by the clock

DeltaDelay01 Flip-flops/latches that have a different delta clock delay value
DeltaDelay02 Flip-flops that can cause simulation problems due to delta

delay issues
NoClockCell Logic found in clock trees
PortTimeDelay Ports with missing or unexpected time delay settings in

assignments
1518
Synopsys, Inc.

Delta Delay Rules

Rules in SpyGlass CDC
Clock_delay01
Reports flip-flop pairs whose data path delta delay is less than the
difference in their clock path delta delays

When to Use

Use this rule to detect a simulation mismatch in clock and data paths for
the given flip-flop pair.

Prerequisites

Specify clock names to be checked by using the delay_check_clk_list
parameter.

Description

The Clock_delay01 rule reports flip-flop pairs triggered by the same clock
based on the following equation:

Where:
 Nddp is the number of cell instances in the data path from the source

flip-flop to the destination flip-flop.
 Ndcp is the number of cell instances in the path from the clock source to

the destination flip-flop’s clock pin.
 Nscp is the number of cell instances in the path from the clock source to

the source flip-flop’s clock pin.
NOTE: The Clock_delay01 rule is switched off by default.

Parameter(s)

 delay_check_clk_list: Default value is all. Set this parameter to a comma
or space-separated list of clock source names.

 report_inst_for_netlist: Default value is no. Set this parameter to yes to
report violating instance name in case of netlist designs and leaf-level
net name for RTL designs.

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

Nddp Ndcp Nscp–
1519
Synopsys, Inc.

Delta Delay Rules

Rules in SpyGlass CDC
Constraint(s)

 clock (Optional): Use this constraint to specify clock signals in a design.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

Messages and Suggested Fix

Message 1

The following message appears at the location where the output of the
destination flip-flop (triggered by clock <clk-name>) is first assigned:

[ClkD1_1] [WARNING] Simulation mismatch for destination
register '<flop2-name>' and source register '<flop1-name>',
clocked by '<clk-name>'

NOTE: For RTL designs, <flop1-name> and <flop2-name> are names of the output nets of
the source and destination flip-flops. For netlist designs, if the
report_inst_for_netlist parameter is set to yes, <flop1-name> and <flop2-name>
are names of the source and destination flip-flop instances. Otherwise, the
message details are same as for the RTL designs.

Potential Issues
This violation appears if delay in a data path is less than the effective delay
in the clock path.

Consequences of Not Fixing
If you do not fix this violation, it may result in a possible hold violation in
the design.

How to Debug and Fix
To fix this violation, perform the following actions:
1. View the incremental schematic of the violation to analyze the flip-flop

pair delay in the clock and data path.
2. Based on your analysis, perform any of the following actions:
 Reduce the clock skew.

 Add some delay in the data path.
1520
Synopsys, Inc.

Delta Delay Rules

Rules in SpyGlass CDC
Message 2

The following message appears when an invalid (non existent or non clock)
object <name> is specified with the delay_check_clk_list parameter:

[ClkD1_2] [WARNING] Invalid clock '<name>' specified in
parameter 'delay_check_clk_list'

Potential Issues
This violation appears if an invalid object is specified with the
delay_check_clk_list parameter.

An object is considered as invalid in any of the following cases:
 If the object does not exist in the current design

 If the object is not inferred as a clock

Consequences of Not Fixing
If you do not fix this violation, the delay_check_clk_list parameter is not
considered during SpyGlass analysis, which may not be as per your
expectation.

How to Debug and Fix
To fix this violation, specify a valid clock name with the delay_check_clk_list
parameter.

Example Code and/or Schematic

Consider the following schematic of a violation reported by this rule:
1521
Synopsys, Inc.

Delta Delay Rules

Rules in SpyGlass CDC
FIGURE 323. Schematic of the Clock_delay01 Rule Violation

In the above example, the delay between the data path of the F1 and F2
flip-flops is lesser than the clock path delay.

Therefore, the Clock_delay01 rule reports a violation.

Schematic Highlight

The Clock_delay01 rule highlights the following information in the
schematic:
 The path from the source flip-flop to the destination flip-flop

 The path from the clock source to the clock pin of each flip-flop

Default Severity Label

Warning

Rule Group

DELTADELAY

set_parameter report_inst_for_netlist set yes
set_parameter delay_check_clk_list clk
1522
Synopsys, Inc.

Delta Delay Rules

Rules in SpyGlass CDC
Reports and Related Files

No report or related file
1523
Synopsys, Inc.

Delta Delay Rules

Rules in SpyGlass CDC
Clock_delay02
Reports unbalanced clock trees

When to Use

Use this rule to check for unbalanced clock trees.

Prerequisites

Specify clock signals in any of the following ways:
 By using the clock constraint

 By setting the use_inferred_clocks parameter to yes to generate clock
signals automatically

 Combination of both the above methods

Description

The Clock_delay02 rule checks clocks propagating with a different number
of cell instances. That is, it checks for delays in different flip-flop paths
from the same clock source.

This rule reports the flip-flop with a maximum delay.

Parameter(s)

 cdc_express: Default values is no. Set this parameter to peakmem to
reduce peak memory. Other possible value is yes.

 report_inst_for_netlist: Default value is no. Set this parameter to yes to
report violating instance name in case of netlist designs and leaf-level
net name for RTL designs.

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

Constraint(s)

 clock (Optional): Use this constraint to specify clock signals in your
design.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.
1524
Synopsys, Inc.

Delta Delay Rules

Rules in SpyGlass CDC
Messages and Suggested Fix

The following message appears for the clock <clk-name> that has an
imbalanced clock tree:

[WARNING] Clock Tree '<clk-name>' is unbalanced - Maximum
delta-delay imbalance is '<num>' at '<flop-name>'

NOTE: For RTL designs, <flop-name> is the name of the output net of the flip-flop with
maximum delay <num>. For netlist designs, if the report_inst_for_netlist
parameter is set to yes, <flop-name> is the name of the flip-flop instance with
maximum delay <num>. Otherwise, the message details are same as for the RTL
designs.

Potential Issues
This violation appears when a clock signal propagates through different
number of instances in the clock path of different flip-flops.

Consequences of Not Fixing
If you do not fix this violation, the design may contain unbalanced clock
trees. This may generate incorrect simulation results.

How to Debug and Fix
To debug and fix this violation, perform the following actions:
 Check the maximum clock delay path in the incremental schematic.

 Ensure that the propagation delay on the clock path of each flip-flop is
within the acceptable minimum and maximum delay range.

Example code and/or Schematic

Consider the following schematic of a violation of this rule:
1525
Synopsys, Inc.

Delta Delay Rules

Rules in SpyGlass CDC
FIGURE 324. Schematic of the Clock_delay02 Rule Violation

In the above schematic, the clock signal clk propagates through different
number of buffers in the clock path of the F1 and F2 flip-flops.

Therefore, the Clock_delay02 rule reports a violation for the F2.q flip-flop.

Schematic Details

This rule highlights the path from the clock source to the flip-flop with
maximum delay.

Default Severity Label

Warning

Rule Group

DELTADELAY

Reports and Related Files

No report or related file
1526
Synopsys, Inc.

Delta Delay Rules

Rules in SpyGlass CDC
DeltaDelay01
Flags flip-flops/latches, which may have different delta clock delay
values

When to Use

Use this rule to check clock skew issues in a clock network.

Prerequisites

Specify the following details before running this rule:
 A Simulator File containing simulator-specific delta delay information for

RTL constructs by using the simulator_file_name parameter.
You can use the Sample Simulator File present in the installation directory.

 Clock signals in any of the following ways:

 By using the clock constraint

 By setting the use_inferred_clocks parameter to yes to generate clock
signals automatically

 Combination of both the above methods

 The Advanced_CDC and adv_checker licenses.

Description

The DeltaDelay01 rule reports flip-flops/latches that have different delta
clock-delay values.

You can specify a Simulator File containing delta delay information.
NOTE: The DeltaDelay01 rule is switched off by default.

NOTE: Clock traversal automatically stops at black box instances.

Handling Constructs Other Than Those Specified in a Simulator File

For the constructs other than those specified in the Simulator File, the delta
delay value is assumed zero. In this case, the DeltaDelay01 rule reports all
the flip-flops/latches in the clock tree if one or more flip-flops/latches have
a different delta clock delay value.

NOTE: When the design save/restore feature is enabled, the DeltaDelay01 rule does not
consider changes in the simulator file. If delay values are changed, the values
should be saved first and then restored
1527
Synopsys, Inc.

Delta Delay Rules

Rules in SpyGlass CDC
Rule Exceptions

The DeltaDelay01 rule does not report a violation if the delta clock delay
value is zero for a flip-flop/latch and the expected value is not specified for
the deltacheck_start constraint.

Parameter(s)

 simulator_file_name: Default value is NULL. Specify a Simulator File that
contains simulator-specific delta delay information for RTL constructs.

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

 report_inst_for_netlist: Default value is no. Set this parameter to yes to
report the violating instance name in case of netlist designs and a
leaf-level net name for RTL designs.

 same_domain_at_gate: Default value is no. Set the value of the
parameter to an allowed value to optimize the inference of domains on
clock merging gates.

Constraint(s)

 deltacheck_start (Optional): Use this constraint to specify start points,
such as clock ports, clock pins, or clock nets for DeltaDelay01 rule
checking.

 deltacheck_stop_signal (Optional): Use this constraint to specify design
points, such as ports, pins, or nets where the DeltaDelay01 rule should
stop further traversal.

 deltacheck_stop_module (Optional): Use this constraint to specify design
units where the DeltaDelay01 rule should stop further traversal along
the clock tree.

 deltacheck_stop_instance (Optional): Use this constraint to specify
instances where the DeltaDelay01 rule should stop further traversal
along the clock tree.

 deltacheck_ignore_module (Optional): Use this constraint to specify design
units to be ignored for delta delay value checking.

 deltacheck_ignore_instance (Optional): Use this constraint to specify
instances to be ignored for delta delay value checking.
1528
Synopsys, Inc.

Delta Delay Rules

Rules in SpyGlass CDC
 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

Messages and Suggested Fix

Message 1

The following message appears when a cone of the clock <clk-name>
triggers <num> flip-flops/latches that have a different delta clock delay
value <value>:

[DD1_1] [WARNING] For clock '<clk-name>', <num> flops/latches
have a delay value <value>

Potential Issues
This violation appears if your design contains a clock that has different
delay values in different paths.

Consequences of Not Fixing
If you do not fix this violation, data is passed from a shorter delay path to
a larger delayed path. This happens when a clock has different delay values
in different paths.

This generates simulation errors, both at the top-level and module-level,
and it is difficult to identify the cause of such problems in simulation.

How to Debug and Fix
To debug and fix this violation, perform the following steps:
 View the incremental schematic of the violation message and review the

delta delay information displayed.
Ensure that propagation delay along each clock path meets the
minimum and maximum delay requirements as per the specifications.

 If the delay is not specified correctly for an RTL construct, make the
required modifications in the simulator file specified by the
simulator_file_name parameter.

 Check if the expected delay value for a clock specified in the
deltacheck_start constraint is correct.
1529
Synopsys, Inc.

Delta Delay Rules

Rules in SpyGlass CDC
 View The DeltaDelay-Summary Report, The DeltaDelay-Concise Report, and
The DeltaDelay-Detailed Report for details.

Message 2

The following message appears when a cone of the clock <clk-name>
triggers one flip-flop/latch that has a different delta clock delay value
<value>:

[DD1_2] [WARNING] For clock '<clk-name>', 1 flop/latch has a
delay value <value>

Potential Issues
See Potential Issues.

Consequences of Not Fixing
See Consequences of Not Fixing.

How to Debug and Fix
See How to Debug and Fix.

Example Code and/or Schematic

Consider a design for which the following deltacheck_start constraint is set:

deltacheck_start -name top.clk1 -value +3

In addition, consider that the file specified by the simulator_file_name
parameter contains the following data:

VHDL:signal_assignment_01:1
VHDL:signal_assignment_02:2
Verilog:port_connection_04:3

In this case, the DeltaDelay01 rule reports flip-flops in the design, as
shown in the following figure:
1530
Synopsys, Inc.

Delta Delay Rules

Rules in SpyGlass CDC
FIGURE 325. DeltaDelay01 Rule Violation

Schematic Highlight

The DeltaDelay01 rule highlights a single flip-flop/latch at each clock cone
in the path of the clock in the schematic.

The schematic uses the following naming conventions:

clk1

+3

VHDL

Verilog

+2

+2

+0

VHDLtop

m1

Q2

Q5

Q8D8

One violation for
these flip-flop

D3

+1 +2

D7

D5

D1

D4

One violation for
these flip-flops

One violation for
these flip-flops

Q1

D2

Q4

Q3

Q6

Q7

No violation for
these flip-flops

D6
1531
Synopsys, Inc.

Delta Delay Rules

Rules in SpyGlass CDC
NOTE: Only a single flip-flop/latch is highlighted at each clock cone of the clock in the
schematic. In addition, the schematic displays the total number of flip-flops/latches
violating at the same clock cone with the same delta clock delay value.

Default Severity Label

Warning

Rule Group

DELTADELAY

Reports and/or Related Files

 The DeltaDelay-Summary Report

 The DeltaDelay-Concise Report

 The DeltaDelay-Detailed Report

Notation Symbol Represents
F Flop
L Latch
1532
Synopsys, Inc.

Delta Delay Rules

Rules in SpyGlass CDC
DeltaDelay02
Reports flip-flops that can cause simulation problems due to delta
delay issues

When to Use

Use this rule to check flip-flops that can cause simulation problems due to
delta delay issues.

Prerequisites

Specify the following details before running this rule:
 A simulator mode file containing simulator-specific delta delay

information for RTL constructs by using the simulator_file_name
parameter.

NOTE: A sample simulator file, simulator_file.txt, is present in the SPYGLASS_HOME/
policies/clock directory. You can directly pass this file to the simulator_-
file_name parameter or modify it to specify delay values for different simula-
tors.

NOTE: When the design save/restore feature is enabled, the DeltaDelay02 rule does not
consider changes in the simulator mode file. If delay values are changed, the
values should be saved first and then restored.

 Clock signals in any of the following ways:

 By using the clock constraint

 By setting the use_inferred_clocks parameter to yes to generate clock
signals automatically

 Combination of both the above methods

 The Advanced_CDC and adv_checker licenses

Description

The DeltaDelay02 rule reports the following:
 A synchronous data path when both the following conditions are true:

 If the delay in clock path of source flip-flop is less than the delay in
destination clock path

 If an explicit physical delay statement (after clause in VHDL or # in
Verilog) is not present in source flip-flop assignment
1533
Synopsys, Inc.

Delta Delay Rules

Rules in SpyGlass CDC
The following figure shows the scenario in which this rule reports a
violation:

FIGURE 326. DeltaDelay02 Violation - Synchronous Data Path

In the above scenario, delay in the clock path of the source flip-flop is
less than the delay in the clock path of the destination flip-flop. In
addition, an explicit delay statement is not provided at the destination
flip-flop. Therefore, this rule reports Message 1 in this case.

 A derived clock if a flip-flop used in the derived clock has an explicit
delay assignment.
The following figure shows the scenario in which this rule reports a
violation:

always @(posedge clk)
 clk_int <= ~clk;

always @(posegde clk)
 din_int <= din;

always @(posedge clk_int)
 dout <= din_int;
1534
Synopsys, Inc.

Delta Delay Rules

Rules in SpyGlass CDC
FIGURE 327. DeltaDelay02 Violation - Explicit Delay Assignment for Derived Clock

In the above scenario, an explicit physical delay assignment is provided
in the derived clock clk_int. Therefore, this rule reports Message 2 in
this case.

This rule stops clock traversal at a black box.
NOTE: The DeltaDelay02 rule is switched off by default.

Messages in Schematic

After computing delay, this rule shows any of the following messages in the
schematic:
 Higher Delay

When the delay at destination is greater than the delay at source.
 Different Cells

When different library cells appear in the paths towards source and
destination, as shown in the following figure:

always @(posedge clk)
 clk_int <= #1 ~clk;

always @(posedge clk_int)
 dout <= din;
1535
Synopsys, Inc.

Delta Delay Rules

Rules in SpyGlass CDC
FIGURE 328. Different library cells in the paths of source and destination

 Higher Cell Count
When the same library cells appear in the paths towards source and
destination, but the number of cells is greater on the destination path,
as shown in the following figure:

FIGURE 329. Different number of same library cells in the paths of source and
destination

Parameter(s)

 cdc_bus_compress: Default value is Ac_glitch03. Set this parameter to
DeltaDelay02 to check all the bits of the source bus by the DeltaDelay02
rule. For information on the other possible values, see Possible values of the
cdc_bus_compress parameter.

rtlc_1

rtlc_1

rtlc_2

src
des

clk

rtlc_1

rtlc_1

rtlc_1

src
des

clk
1536
Synopsys, Inc.

Delta Delay Rules

Rules in SpyGlass CDC
 simulator_file_name: Default value is NULL. Specify a simulator mode file
that contains simulator-specific delta delay information for RTL
constructs.

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

 report_inst_for_netlist: Default value is no. Set this parameter to yes to
report the violating instance name in case of netlist designs and a
leaf-level net name for RTL designs.

 same_domain_at_gate: Default value is no. Set the value of the
parameter to an allowed value to optimize the inference of domains on
clock merging gates.

Constraint(s)

 deltacheck_start (Optional): Use this constraint to specify start points,
such as clock ports, clock pins, or clock nets for DeltaDelay02 rule
checking.

 deltacheck_stop_signal (Optional): Use this constraint to specify design
points, such as ports, pins, or nets where the DeltaDelay02 rule should
stop further traversal.

 deltacheck_stop_module (Optional): Use this constraint to specify design
units where the DeltaDelay02 rule should stop further traversal along
the clock tree.

 deltacheck_stop_instance (Optional): Use this constraint to specify
instances where the DeltaDelay02 rule should stop further traversal
along the clock tree.

 deltacheck_ignore_module (Optional): Use this constraint to specify design
units to be ignored for delta delay value checking.

 deltacheck_ignore_instance (Optional): Use this constraint to specify
instances to be ignored for delta delay value checking.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

Messages and Suggested Fix

Message 1

The following message appears if the <num-flops> source flip-flops do
1537
Synopsys, Inc.

Delta Delay Rules

Rules in SpyGlass CDC
not have explicit delay to avoid simulation problems:

[DD2_1] [ERROR] <num-flops> flop(s) do not have explicit delay
to avoid simulation problem (delta delay issue relative to
clock '<clk-name>')

Where:

 <Num-flops> is the count of the source flip-flops that do not
have explicit physical delay to avoid simulation problem.

 <clk-name> is the clock that is causing the delta delay issue.

Potential Issues
This violation appears if your design contains flip-flops that do not have
explicit delay to avoid simulation problems.

Consequences of Not Fixing
If you do not fix this violation, the specified flip-flops can cause simulation
problems due to delta delay issues.

How to Debug and Fix
The rule reports one violation per source clock and a spreadsheet is
associated with each message. The spreadsheet contains all the source
flip-flops that satisfy the conditions mentioned above. Each row in
spreadsheet highlights data path and source and destination clock paths
with delay values annotated. See DeltaDelay02 Spreadsheet - Synchronous
Data Path.

To fix this violation, ensure that the source flip-flop in the data path has
explicit physical delay to avoid simulation problems.

Message 2

The following message appears if the <der-clk-name> derived clock
has explicit delay:

[DD2_3] [ERROR] Explicit delay on derived clock '<der-clk-
name>' must be removed to avoid simulation problems (delta-
delay relative to clock '<clk-name>'
1538
Synopsys, Inc.

Delta Delay Rules

Rules in SpyGlass CDC
Where <clk-name> is the clock that is causing the delta delay issue.

Potential Issues
This violation appears if there is an explicit delay on the specified derived
clock.

Consequences of Not Fixing
If you do not fix this violation, the specified flip-flops can cause simulation
problems due to delta delay issues.

How to Debug and Fix
To debug this violation, open the incremental schematic. It highlights the
path from derived clock to the clock pin of a flip-flop.

To fix this violation, ensure that the flip-flops used in the derived clocks do
not have explicit physical delay.

Example Code and/or Schematic

Consider the following files (in addition to a simulation file) specified for
1539
Synopsys, Inc.

Delta Delay Rules

Rules in SpyGlass CDC
SpyGlass analysis:

For the above example, the DeltaDelay02 rule reports the following two
violations:
 Explicit delay on derived clock 'test.der_clk_2' must be removed to

avoid simulation problems (delta-delay relative to clock 'test.clk')
The highlighted portion in the following schematic shows this violation:

module test (in, clk, out);
input in, clk;
output out;

reg der_clk_1;
always @(posedge clk)
 der_clk_1 <= ~der_clk_1;

reg der_clk_2;
always @(posedge clk)
 der_clk_2 <= #1 ~der_clk_2;

reg src1;
always @(posedge clk)
 src1 <= in;

reg src2;
always @(posedge der_clk_1)
 src2 <= in;

reg des1;
always @(posedge der_clk_1)
 des1 <= src1;

reg des2;
always @(posedge der_clk_2)
 des2 <= src2;

endmodule

// test.v

current_design test
clock -name clk

// test.sgdc
1540
Synopsys, Inc.

Delta Delay Rules

Rules in SpyGlass CDC
FIGURE 330. DeltaDelay02 Example - Explicit Delay Assignment for Derived Clock

 1 flop(s) do not have explicit delay to avoid simulation problem (delta
delay issue relative to clock 'test.clk')
When you double-click on this violation, the following spreadsheet
appears:

FIGURE 331. DeltaDelay02 Spreadsheet - Synchronous Data Path

The following figure shows the schematic of this violation:
1541
Synopsys, Inc.

Delta Delay Rules

Rules in SpyGlass CDC
FIGURE 332. DeltaDelay02 Example - Synchronous Data Path

Default Severity Label

Error

Rule Group

DELTADELAY

Reports and/or Related Files

The DeltaDelay02-Detailed Report
1542
Synopsys, Inc.

Delta Delay Rules

Rules in SpyGlass CDC
NoClockCell
Reports any logic found in clock trees

When to Use

Use this rule to detect any logic present in clock trees.

Prerequisites

Specify the following information before running this rule:
 Use the Advanced_CDC and adv_checker license features.

 Specify the noclockcell_start constraint.

Description

The NoClockCell rule reports a violation if any logic is present in the path of
clock ports, nets, or pins specified by using the noclockcell_start constraint.

This rule stops clock traversal automatically at black box instances except
for instances of single input and single output black box design units.

NOTE: The NoClockCell rule is switched off by default.

Rule Exceptions

If the names specified by the noclockcell_start constraint are not valid clock
signals, this rule does not check for such signals.

Parameter(s)

 allow_vhdl_on_clock_path: Default value is no. Set this parameter to yes
to report the use of Verilog constructs in clock trees.

 report_inst_for_netlist: Default value is no. Set this parameter to yes to
report violating instance name in case of netlist designs and leaf-level
net name for RTL designs.

Constraint(s)

 noclockcell_start (Mandatory): Use this constraint to specify start points,
such as ports or nets for rule-checking.
1543
Synopsys, Inc.

Delta Delay Rules

Rules in SpyGlass CDC
 noclockcell_stop_signal (Optional): Use this constraint to specify design
points, such as ports, pins, or nets where the NoClockCell rule should
stop further traversal along the clock tree.

 noclockcell_stop_module (Optional): Use this constraint to specify a design
unit where the NoClockCell rule should stop further traversal along the
clock tree when the clock pin of an instance of the specified design unit
is hit.

 noclockcell_stop_instance (Optional): Use this constraint to specify an
instance where the NoClockCell rule should stop further traversal along
the clock tree when the clock pin of the specified instance is hit.

Messages and Suggested Fix

Message 1

The following message appears when the cell instance <inst-name> of
the type <gate-type> is found in the path of the clock signal
<clk-name>:

[WARNING] Gate '<inst-name> (gate-type)' found in path of clock
'<clk-name>'

NOTE: If an instance is internally generated, Message 2 is reported.

Potential Issues
This violation appears if a cell is present in the path of a clock.

Consequences of Not Fixing
It is design methodology choice. If you do not want to check for such
cases, disable or waive this rule.

How to Debug and Fix
To fix this violation, check the clock path from the schematic of the
violation message, and remove the cells present in the clock path.

Message 2

The following message appears when an instance is internally generated
1544
Synopsys, Inc.

Delta Delay Rules

Rules in SpyGlass CDC
(RTL designs). This message is reported on the output net of the connected
instance <net-name>:

[WARNING] Gate output'<net-name>' found in path of clock '<clk-
name>'

Potential Issues
This violation appears if some logic is present in the path of a clock.

Consequences of Not Fixing
It is design methodology choice. If you do not want to check for such
cases, disable or waive this rule.

How to Debug and Fix
Check the clock path from the schematic of the violation message, and
remove the logic present in the clock path.

Example Code and/or Schematic

Consider the following schematic:
1545
Synopsys, Inc.

Delta Delay Rules

Rules in SpyGlass CDC
FIGURE 333. Schematic of the NoClockCell Rule Violation

For the above example, the NoClockCell rule reports a violation for the clk
clock because a buffer exists between this clock and flip-flops.

Schematic Highlight

The NoClockCell rule highlights the path from the clock source to the
instance found in its path.

Default Severity Label

Warning

Rule Group

DELTADELAY

Reports and Related Files

The NoClockCell-Summary Report

current_design top
clock -name clk -domain d1
noclockcell_start -name clk

//top.sgdc
1546
Synopsys, Inc.

Delta Delay Rules

Rules in SpyGlass CDC
PortTimeDelay
Reports ports with missing or unexpected time delay settings

When to Use

Use this rule to check unexpected time delays for entity ports.

Prerequisites

Specify the following details before running this rule:
 Specify the design units to be checked by using the port_time_delay

constraint.
 Specify the Advanced_CDC and adv_checker license.

Description

The PortTimeDelay rule reports ports that have missing or unexpected time
delay settings in assignments.

NOTE: Please note the following points about the PortTimeDelay rule:

 This rule is switched off by default.
 This rule is applicable for only VHDL and mixed mode. It is not applicable to

Verilog modules.

Understanding Internal and External Mode Delay Assignments

The following points describe the internal and external mode delay
assignments:
 In an internal mode delay assignment, a port of a design unit is

assigned a time delay value within that design unit.
 In an external mode delay assignment, the signal connected to the port

of a design unit is assigned a time delay value.

Considering Cases in which the PortTimeDelay Rule Reports a Violation

The PortTimeDelay rule reports a violation for the following types of ports:
 Ports that are specified by the -notimedelay_ports argument, and

such ports are assigned a delay value in the internal and/or external
mode.
1547
Synopsys, Inc.

Delta Delay Rules

Rules in SpyGlass CDC
 Ports that are not specified by the -notimedelay_ports argument of
the port_time_delay constraint, and any of the following conditions hold
true:
 Ports are assigned a delay value in both internal and external modes

 Ports are neither assigned a delay value in the internal mode nor in
the external mode

To make an IP/module insensitive to the variation of delta-time on a clock
path, a time delay should be added on all IO pads to the IP/modules with
respect to the clock.

Messages and Suggested Fix

Message 1

The following message appears when the port <port-name> of the
instance <inst-name> is not specified by the -notimedelay_ports
argument of the port_time_delay constraint, but the port is assigned a delay
value in both internal and external mode:

[WARNING] <Input | Output> port '<port-name>' of instance
<inst-name> has both internal and external mode delay
assignments

Potential Issues
This violation appears when a design instance contains a port that is
assigned a delay value in both internal and external mode.

Consequences of Not Fixing
If you do not fix this violation, the design module becomes sensitive to
variation of delay values on a clock path.

As a result, during simulation, value assignment to the port may happen in
a different simulation time as compared to the change in the clock.

How to Debug and Fix
To fix this issue, assign a time delay value to the reported port either in an
internal mode or an external mode.
1548
Synopsys, Inc.

Delta Delay Rules

Rules in SpyGlass CDC
Message 2

The following message appears when the port <port-name> is not
specified by the -notimedelay_ports argument of the port_time_delay
constraint, and the port is not assigned a delay value in an internal mode
or an external mode with respect to any instance of the master design
unit:

[WARNING] <Input | Output> port '<port-name>' of instance
<inst-name> has no delay assignment

Potential Issues
This violation appears when a design instance contains a port that is not
assigned a delay value in either an internal or an external mode.

Consequences of Not Fixing
If you do not fix this violation, the design module becomes sensitive to
variation of delay values on a clock path.

As a result, during simulation, value assignment to the port may happen in
a different simulation time as compared to the change in the clock.

How to Debug and Fix
To fix this issue, specify appropriate time delay settings for the reported
port. That is, assign a time delay value to the reported port either in an
internal mode or an external mode.

Message 3

The following message appears when the port <port-name> is not
specified by the -notimedelay_ports argument of the port_time_delay
constraint, and the port is not assigned in an internal mode inside the
master design unit <du-name> and it is also not assigned in an external
mode with respect to all instances of the master design unit:

[WARNING] <Input | Output> port '<port-name>' of module
'<du-name>' has no delay assignment
1549
Synopsys, Inc.

Delta Delay Rules

Rules in SpyGlass CDC
Potential Issues
This violation appears if a design module contains a port for which no delay
value is assigned in internal or external mode.

Consequences of Not Fixing
If you do not fix this violation, the design module becomes sensitive to
variation of delay values on a clock path.

As a result, during simulation, value assignment to the port may happen in
a different simulation time as compared to the change in the clock.

How to Debug and Fix
To fix this issue, specify appropriate time delay settings for the reported
port. That is, assign a time delay value to the reported port either in an
internal mode or an external mode.

Message 4

The following message appears when the port <port-name> specified by
the -notimedelay_ports argument of the port_time_delay constraint is
assigned a delay value in an external mode with respect to the instance
<inst-name>:

[WARNING] <Input | Output> port '<port-name>' of instance
<inst-name> has a delay assignment

Potential Issues
This violation appears when a design instance contains a port that is
assigned a delay value in an external mode.

Consequences of Not Fixing
If you do not fix this violation, the design module becomes sensitive to
variation of delay values on a clock path.

As a result, during simulation, value assignment to the port may happen in
1550
Synopsys, Inc.

Delta Delay Rules

Rules in SpyGlass CDC
a different simulation time as compared to the change in the clock.

How to Debug and Fix
To fix this issue, remove the delay value assigned in an external mode from
the reported port.

Message 5

The following message appears when the port <port-name> specified by
the -notimedelay_ports argument of the port_time_delay constraint is
assigned a delay value in an internal mode with respect to all instances of
the master design unit <du-name>:

[WARNING] <Input | Output> port '<port-name>' of module
'<du-name>' has a delay assignment

Potential Issues
This violation appears if a design module contains a port that is assigned a
delay value in an internal mode.

Consequences of Not Fixing
If you do not fix this violation, the design module becomes sensitive to
variation of delay values on a clock path.

As a result, during simulation, value assignment to the port may happen in
a different simulation time as compared to the change in the clock.

How to Debug and Fix
To fix this issue, remove the delay value assigned in an internal mode from
the reported port.

Example Code and/or Schematic

Consider the following example:

ENTITY top IS
PORT(in_NOdelay, in2, clk1, clk2 : IN bit;
1551
Synopsys, Inc.

Delta Delay Rules

Rules in SpyGlass CDC
 out_delay, out_NOdelay: OUT bit);
END top;

ARCHITECTURE rtl OF top IS
COMPONENT ent IS
 PORT(in_NOdelay, in_delay, clk1, clk2 : IN bit;
 out_delay, out_NOdelay : OUT bit);
END COMPONENT;

SIGNAL w_delay: BIT;
BEGIN
w_delay <= in2 AFTER 1 ns; -- External mode
U1 : ent PORT MAP(in_NOdelay => in_NOdelay,

 in_delay => w_delay,
 clk1 => clk1,
 clk2 => clk2,

 out_NOdelay => out_NOdelay,
 out_delay => out_delay);

END rtl;
ENTITY ent IS
 PORT(in_NOdelay, -- Violation

 in_delay, -- delay specified in assignment to
 -- connected net, w_delay

clk1, -- Ignored in port_time_delay constraint
clk2 : IN BIT; -- Ignored in port_time_delay

-- constraint
out_delay, -- Violation
out_NOdelay: OUT BIT -- No violation, delay

 -- specified in entity definition
);
END ent;

ARCHITECTURE arc OF ent IS
SIGNAL d_w : BIT;
BEGIN
 out_delay <= d_w AFTER 1 ns; -- Internal mode
 PROCESS(clk1)
1552
Synopsys, Inc.

Delta Delay Rules

Rules in SpyGlass CDC
 BEGIN
 IF (clk1'event and clk1='1') THEN
 out_NOdelay <= in_delay;
 END IF;
 END PROCESS;
END arc;

In the above example, the in_NOdelay and out_NOdelay ports are
reported because no time delay is specified for these ports and they are
not specified with the -notimedelay_ports argument.

However, the clk1 and clk2 ports are not reported because they are
specified by the -notimedelay_ports argument and are not assigned
with a time delay value. The port in_delay is not reported as delay for
this port is specified in assignment to connected net w_delay (external
mode). Similarly, for port out_delay, the time delay value is specified
within entity definition (internal mode). Therefore, no violation is reported
for it.

Default Severity Label

Warning

Rule Group

DELTADELAY

Reports and Related Files

No report or related file
1553
Synopsys, Inc.

Block Constraint Generation Rules

Rules in SpyGlass CDC
Block Constraint Generation Rules
Rules under this category are used during constraint generation.

Following are the rules under this category:

NOTE: For details on abstraction-based bottom up SpyGlass CDC solution verification flow,
refer to the SpyGlass CDC solution Hierarchical Methodology Guide.

Rule Description
Ac_blksgdc01 Generates relevant SpyGlass CDC solution constraints at

block boundary
Clock_info15 Generates the PortClockMatrix report and abstracted model

for input ports
 Setup_port01 Generates abstract_port constraints on the input ports of a

block
1554
Synopsys, Inc.

Block Constraint Generation Rules

Rules in SpyGlass CDC
Ac_blksgdc01
Migrates top-level constraints of SpyGlass CDC solution to
block-level boundaries

When to Use

Use this rule to generate block-level constraints from top-level design for
use in block-level CDC verification.

Prerequisites

Specify the name of a block module by using the sgdc -export
<block-name> command in the top-level SGDC file. Do not specify a
block instance in this command.

Description

The Ac_blksgdc01 rule generates block-level constraints in the following
SGDC file by migrating top-level constraints to the block-level boundary:

spyglass_reports/clock-reset/<block-name>_<inst-name>_genblock.sgdc

The above file contains SGDC constraints for block-input ports. Review this
file and use it for block-level verification.

This file contains specification of the following constraints generated for a
block:

Constraints Generation for Parameterized Modules

For a parameterized module, the -param <parameter-value> option is
generated with the current_design command. If a default parameter
value is associated with the module, the -def_param option is generated
with the current_design command. See Example 2 - Constraints generation
for parameterized modules.

clock define_reset_order set_case_analysis abstract_port
assume_path quasi_static signal_in_domain num_flops
reset sg_clock_group
1555
Synopsys, Inc.

Block Constraint Generation Rules

Rules in SpyGlass CDC
Parameter(s)

The following are the common parameters used by the Ac_blksgdc01 rule:
 sta_based_clock_relationship: Default value is no. Set this

parameter to yes to compute domains based on the specification of the
sg_clock_group constraint.

Constraint(s)

 abstract_port (Optional): Use this constraint to define abstracted
information for block ports.

 assume_path (Optional): Use this constraint to specify paths through
black box instances.

 cdc_false_path (Optional): Use this constraint to specify false paths so
that clock-domain crossings along these paths are ignored for rule
checking.

 clock (Optional): Use this constraint to specify clock signals in your
design.

 define_reset_order (Optional): Use this constraint to specify a reset order,
which determines the flow of data from one reset to another reset.

 input (Optional): Use this constraint to specify clock domain at input
ports.

 num_flops (Optional): Use this constraint to specify a minimum number
of flip-flops required in a synchronizer chain.

 reset (Optional): Use this constraint to specify reset signals in your
design.

 qualifier (Optional): Use this constraint to specify a qualifier for
synchronizing a clock domain crossing.

 quasi_static (Optional): Use this constraint to specify signals whose value
is predominantly static.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

 signal_in_domain (Optional): Use this constraint to specify a domain for
output pins of black box instances.

 sg_clock_group (Mandatory): Use this constraint to define asynchronous
relationship between clocks.
1556
Synopsys, Inc.

Block Constraint Generation Rules

Rules in SpyGlass CDC
 reset_filter_path (Optional): Use this constraint to specify reset paths so
that the reset crossings on these paths are ignored from SpyGlass
analysis.

Messages and Suggested Fix

Message 1

This rule reports the following message to indicate that an SGDC file is
generated for the instance <inst-name>:

[AcBS1_1] [INFO] SGDC file generated for instance '<inst-name>'
(block: '<block-name>') using top level constraints migration

Potential Issues
Not applicable

Consequences of Not Fixing
Not applicable

How to Debug and Fix
Not applicable

Message 2

This rule reports the following message to indicate that no SGDC file is
generated for the instance <inst-name>:

[AcBS1_2] [INFO] No SGDC file generated for instance '<inst-
name>' (block: '<block-name>') using top level constraints
migration

Potential Issues
Not applicable

Consequences of Not Fixing
1557
Synopsys, Inc.

Block Constraint Generation Rules

Rules in SpyGlass CDC
Not applicable

How to Debug and Fix
Not applicable

Example Code and/or Schematic

This section covers the following examples:
 Example 1 - Top-level clock reaching block-level port

 Example 2 - Constraints generation for parameterized modules

 Example 3 - Generated sg_clock_group constraint

 Example 4 - Migration of reset_filter_path constraint

Example 1 - Top-level clock reaching block-level port

Consider the following figure:

FIGURE 334. Design for which Ac_blksgdc01 Rule Generates Constraints

In the above figure, the top-level clock CK1 is going into the block-level
port c1, and the flip-flop F1 clocked by CK1 is going to the block-level port
d1.

In this case, the Ac_blksgdc01 rule generates the following SGDC
constraints for the blk block:

current_design blk -def_param

CK1

F1

top
blk

c1

d1

// Top-level SGDC file

current_design top
clock -name top.CK1 -domain d1
sgdc -export blk
1558
Synopsys, Inc.

Block Constraint Generation Rules

Rules in SpyGlass CDC
clock -name c1 -domain domain1
abstract_port -scope cdc -module blk -ports d1 -clock c1

In the above figure, if CK1 does not reach any block-level port, the
Ac_blksgdc01 rule generates the following SGDC constraints for the blk
block:

current_design blk -def_param
abstract_port -scope cdc -module blk -ports d1 -clock VCLK0
clock -tag VCLK0 -domain d1

Where, VCLK0 is a SpyGlass-generated virtual clock.
1559
Synopsys, Inc.

Block Constraint Generation Rules

Rules in SpyGlass CDC
Example 2 - Constraints generation for parameterized modules

Consider the following files specified for SpyGlass analysis:

In the above example:
 The parameter value 4 is specified for the b1 block. Therefore, the

-param 4 option is generated with the current_design command in
the block_b1_genblock.sgdc file, as shown below:

current_design "block" -param { N=4 }
clock -name clk1 -domain c1
clock -name clk2 -domain c2
clock -name clk3 -domain c3
abstract_port -ports s[0:3] -scope cdc -clock clk1 -combo

module block1(a, b, c, c1, c2, c3, out);
 input [4:0] a, b, c;
 input c1, c2, c3;
 output [4:0] out;
 reg [4:0] temp1,temp2, temp3;
 always @(posedge c1)
 begin
 temp1 <= a;
 end

 always @(posedge c1)
 begin
 temp2 <= b;
 end
 always @(posedge c1)
 begin
 temp3 <= c;
 end
 wire [4:0] s;
 assign s = !temp3 ? temp1 : temp2;
 block #4 b1(.s(s), .clk1(c1), .clk2(c2), .clk3(c3), .out(out));
 block b2(.s(s), .clk1(c1), .clk2(c2), .clk3(c3), .out(out));
endmodule
module block(s,clk1,clk2,clk3,out);
parameter N = 2;
input clk1, clk2, clk3;
input [N-1:0] s;
output [N-1:0] out;
reg [N-1:0] src, des;
always @(posedge clk1)
 src <= s;
always @(posedge clk2)
 des <= src;
assign out = des;
endmodule

// test.v

current_design block1
clock -name c1
clock -name c2
clock -name c3
sgdc -export block

// clock.sgdc
1560
Synopsys, Inc.

Block Constraint Generation Rules

Rules in SpyGlass CDC
yes

 A default parameter is associated with the b2 block. Therefore, the
-def_param option is generated with the current_design command
in the block_b2_genblock.sgdc file, as shown below:

current_design "block" -def_param
clock -name clk1 -domain c1
clock -name clk2 -domain c2
clock -name clk3 -domain c3
abstract_port -ports s[0:1] -scope cdc -clock clk1
-combo yes
1561
Synopsys, Inc.

Block Constraint Generation Rules

Rules in SpyGlass CDC
Example 3 - Generated sg_clock_group constraint

Consider the following files specified for SpyGlass analysis:

In the above example, the sg_clock_group constraint is generated as
shown above.

Example 4 - Migration of reset_filter_path constraint

Consider the following figure.
1562
Synopsys, Inc.

Block Constraint Generation Rules

Rules in SpyGlass CDC
FIGURE 335.

In the design shown in Figure 335, the Ac_blksgdc01 rule generates the
following SGDC constraints for the BLOCK block:

reset_filter_path -from_rst blk_rst1 -to_rst blk_rst2 -
from_clock blk_clk1 -to_clock blk_clk2 -type rdc

In addition, if the RST1 reset is driving one more block pin blk_rst3 as
shown below, the above constraint in the top-level sgdc would be migrated
to block as multiple constraints:

reset_filter_path -from_rst blk_rst1 -to_rst blk_rst2 -
from_clock blk_clk1 -to_clock blk_clk2 -type rdc

reset_filter_path -from_rst blk_rst3 -to_rst blk_rst2 -
from_clock blk_clk1 -to_clock blk_clk2 -type rdc

Similar would be the behavior for other fields of the constraint.

Consider the design shown in Figure 336.
1563
Synopsys, Inc.

Block Constraint Generation Rules

Rules in SpyGlass CDC
FIGURE 336.

In addition, consider that the following constraint is specified in the top-
level SGDC file:

reset_filter_path -from_rst RST1 RST2 -to_rst RST3 -from_clk
CLK1 -to_clk CLK2 -type rdc

Note that there are two objects specified in the -from_rst argument.

The above constraint is equivalent to:

reset_filter_path -from_rst RST1 -to_rst RST3 -from_clk CLK1
-to_clk CLK2 -type rdc

reset_filter_path -from_rst RST2 -to_rst RST3 -from_clk CLK1
-to_clk CLK2 -type rdc

Therefore, these constraints are migrated as:

reset_filter_path -from_rst blk_rst1 -to_rst blk_rst3 -
from_clock blk_clk1 -to_clock blk_clk2 -type rdc

reset_filter_path -from_rst blk_rst2 -to_rst blk_rst3 -
from_clock blk_clk1 -to_clock blk_clk2 -type rdc

Similar would be the behavior for other arguments of the constraint.
NOTE: If the -from_obj or -to_obj arguments are provided in the constraint, such

constraints are not migrated to the block level.
1564
Synopsys, Inc.

Block Constraint Generation Rules

Rules in SpyGlass CDC
Default Severity Label

Info

Rule Group

BLOCK_CONSTR_GENERATION

Reports and Related Files

The Ac_blksgdc01 rule generates the file
<block-name>_<inst-name>_genblock.sgdc that is located in the
spyglass_reports/clock-reset/ directory.

This file contains SGDC constraints for block input ports. See Example 1 -
Top-level clock reaching block-level port and Example 2 - Constraints generation
for parameterized modules.
1565
Synopsys, Inc.

Block Abstraction Rules

Rules in SpyGlass CDC
Block Abstraction Rules
Rules under this category are used during block abstraction.

Following are the rules under this category:

NOTE: For details on abstraction-based bottom up SpyGlass CDC solution verification flow,
refer to the SpyGlass CDC Solution Hierarchical Methodology Guide.

Rule Description
Ac_abstract01 Generates relevant SpyGlass CDC solution constraint for

block abstraction
1566
Synopsys, Inc.

Block Abstraction Rules

Rules in SpyGlass CDC
Ac_abstract01
Generates SpyGlass CDC constraints for block abstraction

When to Use

Use this rule to generate an abstract view for a block so that this abstract
view is used during SpyGlass CDC verification for an SoC.

Prerequisites

Specify an SGDC file containing block constraints on input ports. See
Example 2 - Specifying parameters through set_option param {<param>}.

Description

The Ac_abstract01 rule generates The <block-name>_cdc_abstract.sgdc File
that represents the abstract view for a block.

This file is saved in the $projectdir/<block-name>/cdc_abstract/
cdc_abstract/spyglass_reports/abstract_view/cdc/ directory.

This abstract view:
 Is a set of SpyGlass design constraints describing the behavior of block

ports. See Example 1.
NOTE: The abstract_port constraint is generated with respect to the generated clock

instead of the master clock when the generated clock reach the output port of
the block.

 Is used during SoC-level validation and verification.

The Ac_abstract01 rule generates the following abstract_port constraint if
a qualified signal (source merges with a valid qualifier at a valid gate)
reaches the output port.

abstract_port -ports out -sync inactive -clock clk2 -from
clk1 -to clk2

Note that in the above constraint, clk2 is the destination domain of the
qualifier.

For example, consider the schematic shown in Figure 337.
1567
Synopsys, Inc.

Block Abstraction Rules

Rules in SpyGlass CDC
FIGURE 337.

In the above design, if the check_qualified_signal_at_soc parameter is set to
yes, the Ac_abstract01 rule generates the following abstract_port
constraint because a qualified signal reaches the output port:

abstract_port -ports out -clock "clk2" -from "clk1" -to
"clk2" -sync inactive -sync_names "top.syn2"

However, if a non-qualified signal (sources merged with invalid gate, such
as XOR) reaches the output port, the Ac_abstract01 rule generates the
following abstract_port constraints if the check_qualified_signal_at_soc
parameter is set to yes:

abstract_port -port out -sync inactive -clock clk2 -from clk1
-to clk2 (clk2 is the domain of qualifier)

abstract_port -clock clk1 (clk1 is the domain of source)

Rule Exceptions

In the abstract view, the abstract_port constraint is not generated on the
output of quasi-static flip-flops.

Parameter(s)

 check_qualified_signal_at_soc: Default value is no. Set this parameter to
yes to not report data-mismatch violations if a qualified signal reaches
to abstract block input having same domain as the destination domain.
1568
Synopsys, Inc.

Block Abstraction Rules

Rules in SpyGlass CDC
Constraint(s)

 abstract_port (Optional): Use this constraint to define abstracted
information for block ports.

 assume_path (Optional): Use this constraint to specify paths through
black box instances.

 cdc_false_path (Optional): Use this constraint to specify false paths so
that clock-domain crossings along these paths are ignored for rule
checking.

 clock (Optional): Use this constraint to specify clock signals in your
design.

 define_reset_order (Optional): Use this constraint to specify a reset order,
which determines the flow of data from one reset to another reset.

 input (Optional): Use this constraint to specify clock domain at input
ports.

 num_flops (Optional): Use this constraint to specify a minimum number
of flip-flops required in a synchronizer chain.

 reset (Optional): Use this constraint to specify reset signals in your
design.

 qualifier (Optional): Use this constraint to specify a qualifier for
synchronizing a clock domain crossing.

 quasi_static (Optional): Use this constraint to specify signals whose value
is predominantly static.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

 signal_in_domain (Optional): Use this constraint to specify a domain for
output pins of black box instances.

Messages and Suggested Fix

Message 1

The following message appears to indicate that an abstracted SGDC file is
generated for the module <module-name>:

[AcAbs1] [INFO] Abstracted sgdc file for module '<module-name>'
is generated
1569
Synopsys, Inc.

Block Abstraction Rules

Rules in SpyGlass CDC
Potential Issues
Not applicable

Consequences of Not Fixing
Not applicable

How to Debug and Fix
Not applicable

Message 2

The following message appears to indicate that an abstracted SGDC file is
generated for the module <module-name>:

[AcAbs2] [INFO] Abstracted sgdc file for module '<module-name>'
is not generated

Potential Issues
Not applicable

Consequences of Not Fixing
Not applicable

How to Debug and Fix
Not applicable

Example Code and/or Schematic

This section covers the following examples:
 Example 1

 Example 2 - Specifying parameters through set_option param {<param>}

 Example 3 - Generation of abstract_port with -combo no
1570
Synopsys, Inc.

Block Abstraction Rules

Rules in SpyGlass CDC
 Example 4 - Generation of abstract_port with --combo_ifn

Example 1

Consider the following figure of a design:

FIGURE 338. Design on which the Ac_abstract01 Rule is Run

When your run the Ac_abstract01 rule on the above design, various
constraints are generated at the output ports of the above design during
abstraction.

The following points describe the generated constraints for these output
1571
Synopsys, Inc.

Block Abstraction Rules

Rules in SpyGlass CDC
ports:
 The O1 port is driven by a flip-flop in the C2 domain, which in turn is

coming from the IN1 input. In this case, the following constraint is
generated:

abstract_port -scope cdc -module BLOCK -ports O1 -clock C2
-related_ports IN1

 The O2 port is the output of a synchronized data crossing in the C2
domain with the C1 source. In this case, the following constraint is
generated:

abstract_port -scope cdc -module BLOCK -ports O2 -clock C2
-sync inactive -from C1 -to C2 -sync_names "BLOCK.sync1"

 The O3 port is the output of a conventional multi-flop synchronizer from
the C1 to C2 domain. It also has a flip-flop after the synchronizer. In this
case, the following constraint is generated:

abstract_port -scope cdc -module BLOCK -ports O3 -clock C2
-sync active -from C1 -to C2 -seq yes -sync_names
"BLOCK.sync2"

 The O4 port is driven by a flip-flop in the C2 domain through a
combinational logic that is connected to the IN2 input. In this case, the
following constraint is generated:

abstract_port -scope cdc -module BLOCK -ports O4 -clock C1
-related_ports IN2 -combo yes

 The O5 port is connected to the IN5 port through a combinational logic.
In this case, the following constraint is generated:

assume_path -name BLOCK -input IN5 -output O5

In addition, the abstract_file constraint is appended to the above constraints
to refer to the input side constraints that were passed in the abstraction
run.
1572
Synopsys, Inc.

Block Abstraction Rules

Rules in SpyGlass CDC
Example 2 - Specifying parameters through set_option param {<param>}

Consider the following files specified for SpyGlass analysis:

For the above example, there can be the following cases:
 Case 1

If you pass a parameter value for the top module by using the
set_option param {top.W=2} project file command, the following
constraints are generated in the top_cdc_abstract.sgdc file:

current_design "top" -param { W=2 }
assume_path -name top -input in1[0] -output out2[0]
assume_path -name top -input in1[1] -output out2[1]

abstract_port -ports out1[0] -scope cdc -clock clk2
-combo yes -related_ports in1[0]
abstract_port -ports out1[1] -scope cdc -clock clk2
-combo yes -related_ports in1[1]
abstract_port -ports out1[0:1] -scope cdc -clock clk2
-combo yes -from clk1 -to clk2 -sync inactive
-sync_names "top.temp4[0:1]"

module top(in1, in2, clk1, clk2, out1, out2);
parameter W = 4;
 input [W-1 : 0] in1, in2;
 input clk2, clk1;
 output [W-1 : 0] out1, out2;
 assign out2 = in1;
 reg [W-1 : 0] temp1, temp2, temp3,temp4, temp5;
 wire [W-1 : 0] w;
 always @(posedge clk1)
 temp1 <= in2;
 always @(posedge clk2)
 temp2 <= in1;
 always @(posedge clk2)
 temp3 <= temp1;
 always @(posedge clk2)
 temp4 <= temp3;
 assign w = temp4 & in2;
 always @(posedge clk2)
 temp5 <= w;
 assign out1 = temp2 & temp5;
endmodule

// test.v

current_design top
abstract_port -ports in1

abstract_port -ports in2

clock -name clk1
clock -name clk2

// clocks.sgdc

 -clock clk2

 -clock clk1
1573
Synopsys, Inc.

Block Abstraction Rules

Rules in SpyGlass CDC
 Case 2

If you do not pass any parameter value to the top module, the following
constraints are generated in the top_cdc_abstract.sgdc file:

current_design "top" -def_param
assume_path -name top -input in1[0] -output out2[0]
assume_path -name top -input in1[1] -output out2[1]
assume_path -name top -input in1[2] -output out2[2]
assume_path -name top -input in1[3] -output out2[3]

abstract_port -ports out1[0] -scope cdc -clock clk2 -combo
yes -related_ports in1[0]
abstract_port -ports out1[1] -scope cdc -clock clk2
-combo yes -related_ports in1[1]
abstract_port -ports out1[2] -scope cdc -clock clk2
-combo yes -related_ports in1[2]
abstract_port -ports out1[3] -scope cdc -clock clk2
-combo yes -related_ports in1[3]
abstract_port -ports out1[0:3] -scope cdc -clock clk2
-combo yes -from clk1 -to clk2 -sync inactive
-sync_names "top.temp4[0:3]"
1574
Synopsys, Inc.

Block Abstraction Rules

Rules in SpyGlass CDC
Example 3 - Generation of abstract_port with -combo no

Consider the following files specified for SpyGlass analysis:

The following figure shows the schematic of the above example:

FIGURE 339. Example in which -combo no is generated

module top(in1, clk1, clk2, clk3, out1,out2);
input clk1, clk2,clk3,in1;
output reg out1,out2;
reg src, dest,dest1;
always @(posedge clk2)
 begin
 dest<=in1;
 out1<=dest;
 end
always @(posedge clk3)
 begin
 dest1<=in1;
 out2<=dest1;
 end
endmodule

// test.v

current_design top
clock -name clk1
clock -name clk2
clock -name clk3
input -name in1 -clock vck

// constr.sgdc

virtual clock
1575
Synopsys, Inc.

Block Abstraction Rules

Rules in SpyGlass CDC
In the above example, the in1 input port is involved in a crossing
synchronized by Conventional Multi-Flop Synchronization Scheme and this port
is clocked by a virtual clock.

Therefore, the Ac_abstract01 rule generates -combo no with the
abstract_port constraint generated for in1 in the top_cdc_abstract.sgdc file:

abstract_port -ports in1 -scope cdc -clock vck -combo no

Example 4 - Generation of abstract_port with --combo_ifn

Consider the following files specified for SpyGlass analysis:

The following figure shows the schematic of the above example:

module top(in1, clk1, clk2, out);
input clk1, clk2, in1;
output reg out;
reg src, dest;
always @(posedge clk1)
 src<=in1;
always @(posedge clk2)
 begin
 dest<=in1;
 out<=dest;
 end
endmodule

// test.v

current_design top
clock -name clk1
clock -name clk2
input -name in1 -clock vck

// constr.sgdc

virtual clock
1576
Synopsys, Inc.

Block Abstraction Rules

Rules in SpyGlass CDC
FIGURE 340. Example in which -combo_ifn is generated

In the above example, the in1 input port clocked by the vck virtual clock
is synchronized in the same clock domain (clk2) as that of the
synchronizer.

Therefore, the Ac_abstract01 rule generates -combo_ifn with the
abstract_port constraint generated for in1 in the top_cdc_abstract.sgdc file:

abstract_port -ports in1 -scope cdc -clock vck -combo no
-combo_ifn clk2

In addition, the rule generates -combo_ifn with the abstract_port
constraint for real clocks as well. In the above example, if the in1 input
port clocked by the clk1 clock is synchronized in the same clock domain
(clk2) as that of the synchronizer, the Ac_abstract01 rule generates
-combo_ifn with the abstract_port constraint generated for in1 in the
top_cdc_abstract.sgdc file:

abstract_port -ports in1 -scope cdc -clock clk1 -combo no
-combo_ifn clk2

However, the above constraint is not generated if in1 is synchronized in
different clock domains of different synchronizers. This scenario is shown in
1577
Synopsys, Inc.

Block Abstraction Rules

Rules in SpyGlass CDC
the following figure where in1 is synchronized in the clk2 and clk3
domains of the S1 and S2 synchronizers, respectively:

FIGURE 341. Example in which -combo_ifn is not generated

Default Severity Label

Info

Rule Group

ADV_CLOCKS

Reports and/or Related Files

The Ac_abstract01 rule generates The <block-name>_cdc_abstract.sgdc File.
1578
Synopsys, Inc.

Block Abstraction Rules

Rules in SpyGlass CDC
The <block-name>_cdc_abstract.sgdc File

This file represents the abstract view of a block. It contains block
information in the form of constraints, such as abstract_port, assume_path,
clock, reset, and set_case_analysis.

This file is saved in the spyglass_reports/abstract_view/ directory. To
change the directory, use the following project-file command:

set_option block_abstract_directory <directory>

Options Generated in the <block-name>_cdc_abstract.sgdc File

The following options appear in this file based on the specified conditions:

Option Condition
-param <parameter-value>
option with the current_design
command

This option appears for parameterized
modules.
See Case 1 of Example 2 - Specifying
parameters through set_option param
{<param>}.

-def_param option with the
current_design command

This option appears if a default parameter
value is associated with a module.
See Case 2 of Example 2 - Specifying
parameters through set_option param
{<param>}.

-combo no option with the
abstract_port constraint

This option appears if all the following
conditions hold true for an input port:
• The port is specified by the input or

abstract_port constraint.
• The port is involved in the crossings

synchronized by Synchronizing Cell
Synchronization Scheme or Conventional
Multi-Flop Synchronization Scheme.

• The port is clocked by a virtual clock.

See Example 3 - Generation of abstract_port
with -combo no.
1579
Synopsys, Inc.

Block Abstraction Rules

Rules in SpyGlass CDC
Note that if a synchronous reset propagates through a synchronized
crossing and that synchronized signal drives an output port, abstract_port is
generated without -sync active for that output.

Crossings Involving Output Ports
If a crossing involving an output port is synchronized, the following
abstract_port constraint is generated for that synchronized crossing:

abstract_port -ports <output-port> -clock <output-clock-
name> -sync inactive -from <src-clock-name> -to <dest-clock-

-combo_ifn option with the
abstract_port constraint

This option appears when all the following
conditions hold true for an input port:
• The port is specified by the input or

abstract_port constraint.
• The port is involved in the crossings

synchronized by Synchronizing Cell
Synchronization Scheme or Conventional
Multi-Flop Synchronization Scheme.

• The port is synchronized in the same clock
domain as that of the synchronizer.

• The port is clocked by a virtual clock.

See Example 4 - Generation of abstract_port
with --combo_ifn.

-sync inactive -seq no with the
abstract_port constraint

This option appears (instead of the -sync active
option) for a control crossings if qualifier
-ignore is specified for that crossing.

-tag option with the clock
constraint

This option appears for virtual clocks that are
specified to the input/abstract_port
constraints.
Note that:
• The sg_virtual string is appended to

the domain name of the virtual clock if the
domain of this clock is not mapped to any
user-specified domain.

• The sg_merged string is appended to the
domain name of the virtual clock if this
domain is mapped to multiple user-specified
domains.

-ignore option with the
abstract_port constraint

This option appears if all the fan-in of an
output port are hanging or blocking.

Option Condition
1580
Synopsys, Inc.

Block Abstraction Rules

Rules in SpyGlass CDC
name>

However, if that crossing is not synchronized, the abstract_port constraint is
generated for the corresponding output constraint.
1581
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
Block Constraint Validation Rules
Rules under this category validate consistency of an abstract model in
context of a higher-level block.

Please note the following points for the rules of this category:
 To enable these rules, specify the set_option sgdc_validate yes

command in the project file.
Specifying this command enables validation of block-level constraints in
context of a top-level domain.

 Before running rules of this category, use the following command in the
migration file to specify a block and its SGDC file:

sgdc -import <block-name> <block-abstracted-sgdc>.sgdc

NOTE: For details on abstraction-based bottom up SpyGlass CDC solution verification flow,
refer to the SpyGlass CDC Solution Hierarchical Methodology Guide.

Following are the rules under this category:

Rule Description
Ac_abstract_validation01 Reports block abstraction mismatch

with top level design
SGDC_abstract_mapping01 Reports clock mapping of an

abstracted instance
SGDC_clock_validation01 Checks whether block level clock is

missing
SGDC_clock_validation02 Checks whether top-level clock

reaches block port
SGDC_clock_domain_validation01 Checks whether top-level clocks of

different domains are connected to
same domain block port

SGDC_clock_domain_validation02 Checks whether top-level clocks of
same domain are connected to
different domain block ports

SGDC_set_case_analysis_validation01 Reports a violation if values between
block level and top-level
set_case_analysis are conflicting
1582
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
SGDC_set_case_analysis_validation02 Checks whether set_case_analysis is
missing

SGDC_reset_validation01 Checks missing reset constraint at
block level

SGDC_reset_validation02 Checks missing reset constraint at
top-level

SGDC_reset_validation03 Reports conflicting top and block level
asynchronous and synchronous reset
types

SGDC_reset_validation04 Checks conflict between top and block
level reset value

SGDC_virtualclock_validation01 Reports a virtual clock specified in
combination with other real or virtual
clock in the abstract_port constraint

SGDC_virtualclock_validation01 Checks validity of virtual clock
SGDC_input_validation01 Checks for incorrect input constraint
SGDC_input_validation02 Checks for missing input constraint
SGDC_num_flops_validation01 Reports a violation if a clock domain

of clocks specified in the -from_clk
and -to_clk argument of the
num_flops constraints are same.

SGDC_num_flops_validation02 Checks the conflict between the
number of flip-flops specified in
num_flops constraint

SGDC_output_validation01 Checks for incorrect output constraint
SGDC_output_validation02 Checks for missing output constraint
SGDC_abstract_port_validation01 Checks whether abstract_port is

constrained with proper clocks
SGDC_abstract_port_validation02 Checks whether -sync is correctly

specified
SGDC_abstract_port_validation03 Checks the validity of clocks specified

in -from/-to field
SGDC_abstract_port_validation04 Checks for combinational logic
SGDC_qualifier_validation01 Clocks specified in -from_clk and -

to_clk field of qualifier constraint have
same domain

Rule Description
1583
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
SGDC_qualifier_validation02 Checks for missing qualifier constraint
SGDC_cdc_false_path_validation01 Clocks specified in -from and -to field

of cdc_false_path constraint have
same domain.

SGDC_define_reset_order_validation01 Checks whether top-level reset
reaches the reset pin specified in
define_reset_order constraint

SGDC_define_reset_order_validation02 Resets specified in -from and -to field
of define_reset_order constraint are
same

SGDC_quasi_static_validation01 Reports unconstrained quasi_static
ports of an abstract view

SGDC_quasi_static_validation02 Reports quasi-static ports, which are
not driven from top-level quasi-static
signals, of an abstract view

Rule Description
1584
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
Ac_abstract_validation01
Reports block abstraction mismatch with top level design

When to Use

Use this rule during the hierarchical CDC verification flow to validate
user-specified constraints for an abstract view in the context of a
higher-level hierarchy.

Prerequisites

Specify the following details before running this rule:
 The sgdc -import constraint.

 The clock constraint to check for Clocks Mismatch, Data Path Domain
Mismatch, and Virtual Clocks Mismatch.

 The set_case_analysis constraint to check for Case Analysis Mismatch.

 The quasi_static constraint to check for Quasi Static Mismatch.

 The reset constraint to check for Reset Mismatch.

 The qualifier constraint to check for Qualifier Mismatch.

 The num_flops constraint to check for num_flops Mismatch.

 The abstract_port constraint to check for Combo Check Mismatch.

NOTE: For information on parameters and constraints used by this rule, see Parameter(s)
and Constraint(s).

Description

The Ac_abstract_validation01 rule reports a violation for the following
types of mismatches:

Clocks Mismatch Clock Domain Mismatch Virtual Clocks Mismatch
Case Analysis Mismatch Quasi Static Mismatch Data Path Domain

Mismatch
Reset Mismatch Qualifier Mismatch Combo Check Mismatch
num_flops Mismatch
1585
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
Reporting violations for all the above mismatches may result in noise and
multiple iterations to fix them. To avoid this, you can restrict this rule to
validate only block-level assumptions with respect to the top level by
setting abstract_validate_express to yes.

Clocks Mismatch

This mismatch occurs in the following cases:
 If a top-level clock reaches to a clock port of a block, but that clock port

is not constrained by the clock constraint.
 If a block-level clock port is not driven from a top-level clock port.

This can occur when the clock constraint is defined on a block port, but a
top-level clock does not reach that block port.

NOTE: For clocks mismatch, the Ac_abstract_validation01 rule:

 Reports Message 1. Also see Example - Clock Mismatch.
 Generates Clock Mismatch Spreadsheet.

The rule also generates the derived_reset_info.csv file. The file
includes information on the derived reset flops and the end flop where the
derived reset flop is used as a reset.

The file is generated in the spyglass_reports/clock-reset/ directory.

Clock Domain Mismatch

This mismatch occurs in the following cases:
 If multiple clock ports in the same domain of an abstract view are

triggered from top-level clocks of different domains.
See Example 1 - Clock Domain Mismatch.

 If virtual clock specified at a block port and the clock port are in the
same domain of an abstract view and they are triggered from top-level
clocks of different domains
See Example 2 - Clock Domain Mismatch.

 If virtual clocks <virtual-clock1> and <virtual-clock2>
specified at the ports <block-port1> and <block-port2>,
respectively, are in the same domain of an abstract view and are
triggered from top-level clocks of different domains
1586
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
See Example 3 - Clock Domain Mismatch.
 If multiple clock ports in different domains of an abstract view are

triggered from the top-level clocks of the same domain.
See Example 4 - Clock Domain Mismatch.

NOTE: For clock domain mismatch, the Ac_abstract_validation01 rule:

 Reports Message 2 and Message 3.
 Generates Clock Domain Mismatch Spreadsheet.

If the sta_based_clock_relationship parameter is set to true,
SpyGlass CDC reports clock domain mismatch violations based on the
sg_clock_group constraint specified on the block and the top level rather
than the domain specified for the clock. See Example 5 - Clock Domain
Mismatch.

Virtual Clocks Mismatch

This mismatch occurs in the following cases:
 If multiple ports of the same block specified with the same virtual clock

are driven by different domains from top level
 If no top-level clock is reaching the block port specified with a virtual

clock
NOTE: For virtual clocks mismatch, the Ac_abstract_validation01 rule:

 Reports Message 4 and Message 5. See Example 1 - Virtual Clocks Mismatch and
Example 2 - Virtual Clocks Mismatch.

 Generates Virtual Clocks Mismatch Spreadsheet.

Case Analysis Mismatch

This mismatch occurs in the following cases:
 If there is a mismatch between the following values:

 Constant value specified by the set_case_analysis constraint for a
block-level port

 Constant value propagated from the top-level

 If a simulated value reaches a top-level net connected to a block-level
port, but no set_case_analysis constraint is specified on the block-level
port
1587
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
 If a simulated value does not reach to a top-level net connected to a
block-level port, but the set_case_analysis constraint is specified on the
block-level port

NOTE: For case analysis mismatch, the Ac_abstract_validation01 rule:

 Reports Message 6. Also see Example - Case Analysis Mismatch.
 Generates Case Analysis Mismatch Spreadsheet.

Quasi Static Mismatch

This mismatch occurs in the following cases:
 If a top-level quasi-static signal reaches a block port on which a

quasi_static constraint has not been specified.
 If a quasi_static constraint has been specified at a block-level port,

however no top-level quasi-static signal is driving the block port.
NOTE: For quasi static mismatch, the Ac_abstract_validation01 rule:

 Reports Message 7. Also see Example - Quasi Static Mismatch.
 Generates Quasi static Mismatch Spreadsheet.

Data Path Domain Mismatch

This mismatch occurs if an abstract-block port is driven from a sequential
instance, and there is a mismatch between the clock pin driving this
sequential instance and the clock specified in the -clock argument of the
abstract_port or the input constraint.

NOTE: The Ac_abstract_validation01 rule does not report data path domain mismatch
violations if a qualified signal reaches to abstract block input having same domain
as the destination domain. Set the check_qualified_signal_at_soc parameter to
yes to not report such data-mismatch violations.

NOTE: For data path domain mismatch, the Ac_abstract_validation01 rule:

 Reports Message 8. Also see Example - Data Path Domain Mismatch.
 Generates Data Path Domain Mismatch Spreadsheet.

Reset Mismatch

This mismatch occurs in the following cases:
1588
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
 If a top-level reset reaches a block port for which no reset constraint is
specified.

 If the reset constraint is specified for a block-level port, but no top-level
reset drives that block-level port.

 If an asynchronous reset specified at a top-level reaches to a
synchronous reset port of an abstract view or vice-versa.

 If the active value of the top-level reset is different from the active value
of the block-level reset port driven by that top-level reset.

NOTE: For reset mismatch, the Ac_abstract_validation01 rule:

 Reports Message 9. Also see Example - Reset Mismatch.
 Generates Reset Mismatch Spreadsheet.

The rule also generates the derived_reset_info.csv file. The file
includes information on the derived reset flops and the end flop where the
derived reset flop is used as a reset.

The file is generated in the spyglass_reports/clock-reset/ directory.

Qualifier Mismatch

This mismatch occurs in the following cases:
 If a synchronized signal reaches to an input port of a block for which:

 The qualifier or abstract_port constraint is not defined with the -sync
argument, or

 The abstract_port constraint is defined with the -sync argument, but
clocks specified by the -from or -to argument of that abstract_port
constraint do not match with the source or destination clocks of the
synchronizer reaching to that input port.

 If a synchronizer does not reach to an input port of a block for which the
-sync argument of the abstract_port constraint is specified

Automatically Fixing the abstract_port Constraint of the Reported
Port
The CDC SoC abstract auto update flow works if a synchronized signal
reaches to a block port and any of the following cases is true:
1589
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
 abstract_port is defined at the block port without -sync and the domain
of the synchronized signal matches with the clock specified in
abstract_port

 assume_path is defined at the block port

Set the autofix_abstract_port parameter to yes to modify the abstract_port
constraint in the context of SoC for the reported port, and save the
modified constraints in the
<module_name>_<instance_name>_cdc_soc_abstract_autoupdate.sgdc
file.

By default, in addition to the modified constraints, this file also contains a
copy of all the unmodified input side abstract_port constraints present in
block-level SGDC file (abstract block). Set the autofix_dump_allinputs to no
to generate only the modified constraints.

The following figure shows the example of using the autofix_abstract_port
parameter:
1590
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
FIGURE 342. Using the autofix_abstract_port Parameter

NOTE: For qualifier mismatch, the Ac_abstract_validation01 rule:

 Reports Message 10. Also see Example - Qualifier Mismatch.
 Generates Qualifier Mismatch Spreadsheet.

//top.sgdc
current_design top
...
sgdc -import blk blk.sgdc

abstract_port -module blk
-scope cdc -port in1 -clock clk

//blk.sgdc

Reason for violation:

The in1 pin defined in the blk.sgdc file

same destination domain as that of the
clk clock

is driven by a control synchronizer of the

and
Set the autofix_abstract_port parameter
to yes.

Modified abstract_port constraint:
abstract_port -module blk

-from clk2 -to clk1 -sync active
-scope cdc -port in1 -clock clk

Specify top.sgdc to SpyGlass

The Ac_abstract_validation01
rule reports a violation if

The Ac_abstract_validation01 rule
modifies the abstract_port constraint
for the reported in1 port

The Ac_abstract_validation01 rule
saves the modified constraint in the
<module_name>_<instance_name>_cdc_soc_abstract_autoupdate.sgdc file

SpyGlass cannot autofix it. Else,
no violation is reported
1591
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
Combo Check Mismatch

This mismatch occurs if a combinational logic exists between a block-level
input port and the output of a sequential element at the top-level when the
-combo no argument of the abstract_port constraint is specified for that
block in the following cases:
 If at the block level, the abstract_port constraint is defined along with the

-combo_ifn argument as shown below:

abstract_port -ports a -clock VCK1 -combo_ifn ck2 -combo
no

In this case, this rule reports a violation if a sequential element reaches
the block port after a combinational logic and if the sequential cell has a
clock domain that is different from the clock domain of the clock
specified in the -combo_ifn argument.
Note that the rule reports a violation if a real clock is used in place of a
virtual clock.

 If at the block level, the abstract_port constraint is defined with real
clocks as shown below:

abstract_port -ports a -clock clk1 -combo no

In this case, the Ac_abstract_validation01 rule will report a violation if a
sequential element reaches the block port after combinational logic.

 If at the block level, the abstract_port constraint is defined with only
virtual clock as shown below:

abstract_port -ports a -clock VCK1 -combo no

In this case, this rule reports a violation if the sequential element
reaches the block port after combinational logic.

Automatically Fixing the abstract_port Constraint of the Reported
Port

Set the autofix_abstract_port parameter to yes to modify the abstract_port
constraint in the context of SoC for the reported port, and save the
modified constraints in the
<module_name>_<instance_name>_cdc_soc_abstract_autoupdate.sgdc
file.

By default, in addition to the modified constraints, this file also contains a
1592
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
copy of all the unmodified input side abstract_port constraints present in
block-level SGDC file (abstract block). Set the autofix_dump_allinputs to no
to generate only the modified constraints.

The following figure shows the example of using the autofix_abstract_port
parameter:

FIGURE 343. Using the autofix_abstract_port Parameter

NOTE: For combo check mismatch, the Ac_abstract_validation01 rule:

 Reports Message 11. Also see Example - Combo Check Mismatch.

//top.sgdc
current_design top
...
sgdc -import blk blk.sgdc

abstract_port -module blk
-scope cdc -port in1 -clock clk

//blk.sgdc

Reason for violation:

The in1 pin is driven by a
combinational logic

and
Set the autofix_abstract_port parameter
to yes.

Modified abstract_port constraint:

Specify top.sgdc to SpyGlass

The Ac_abstract_validation01
rule reports a violation if SpyGlass

The Ac_abstract_validation01
rule modifies the abstract_port constraint
for the reported in1 port

The Ac_abstract_validation01 rule
saves the modified constraint in the
<module_name>_<instance_name>_cdc_soc_abstract_autoupdate.sgdc file

abstract_port -module blk
-scope cdc -port in1
-clock clk -combo yes

cannot autofix it. Else, no violation
is reported
1593
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
 Generates Combo Check Mismatch Spreadsheet.

num_flops Mismatch

This mismatch occurs if the value of the num_flops constraint defined in the
top-level SGDC file for a clock-pair is different from the value of the
num_flops constraint defined in the block-level SGDC file for the same clock
pair.

NOTE: For the num_flops mismatch, the Ac_abstract_validation01 rule:

 Reports Message 12. Also see Example - num_flops Mismatch.
 Generates num_flops Mismatch Spreadsheet.

The Ac_abstract_validation01 rule does not report data mismatch
violations if a qualified signal reaches to abstract block input that has the
same domain as the destination domain. Set the
check_qualified_signal_at_soc parameter to yes to not report such data-
mismatch violations.

For example, consider the schematic shown in Figure 344.

FIGURE 344.

In addition, consider that the following abstract_port constraint is specified
on the in3 port at the block level:

abstract_port -module BB -ports in3 -clock clk2

In this case, if the check_qualified_signal_at_soc parameter is set to yes, the
Ac_abstract_validation01 rule does not report a violation because a
1594
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
qualified signal (highlighted in red in Figure 344) reaches to the in3 pin of
the abstracted module (BB).

The check_qualified_signal_at_soc parameter does not work as described
above in the following scenarios:
 If the destination block input has multiple abstract_port constraints

specified in different clock domains
 If the destination block has abstract_port constraint specified with

multiple clocks
 If the source block has multiple abstract_port constraints with

-sync active specified in different source domains

 If the source blocks, which have multiple abstract_port constraints
specified, belong to domains that are different from the destination
domain

 If the source block has the abstract_port and qualifier constraint specified
on the same pin

In addition, if a qualified signal reaches to the abstract_port constraint
specified with a virtual clock, the Ac_abstract_validation01 rule
reports violations for the virtual clock mismatch even if the
check_qualified_signal_at_soc parameter is specified.

Parameter(s)

 autofix_abstract_port: Default value is yes. Set this parameter to no to
disable this rule from modifying the reported abstract_port constraints in
the context of SoC.

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

 abstract_validate_express: Default value is no. Set this parameter to yes
to enable validation of only user-specified block assumptions with
respect to the top-level block. Missing block assumptions are not
checked in this case.

 validate_reduce_pessimism: Default value is none. Set this parameter to
hanging_nets to ignore reporting on the hanging block ports. Other
possible values are constant, quasi_static,
ignore_domain_overconstraint, and all.
1595
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
 sta_based_clock_relationship: Default value is no. Set this
parameter to yes to compute domains based on the specification of the
sg_clock_group constraint.

 check_qualified_signal_at_soc: Default value is no. Set this parameter to
yes to not report data-mismatch violations if a qualified signal reaches
to abstract block input having same domain as the destination domain.

Constraint(s)

 clock (Optional): Use this constraint to specify clock signals in your
design.

 input (Optional): Use this constraint to specify a clock domain at input
ports.

 abstract_port (Optional): Use this constraint to define abstracted
information for block ports.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

 quasi_static (Optional): Use this constraint to specify signals whose value
is predominantly static.

 reset (Optional): Use this constraint to specify reset signals in your
design.

 qualifier (Optional): Use this constraint to specify a qualifier for
synchronizing a clock domain crossing.

 num_flops (Optional): Use this constraint to specify a minimum number
of flip-flops required in a synchronizer chain.

 sgdc -import (Mandatory): Use this constraint to specify a block-level
SGDC file to be imported.

 validation_filter_path (Optional): Use this constraint to filter data domain
violations reported during block validation.

 sg_clock_group (Optional): Use this constraint to define asynchronous
relationship between clocks.

Messages and Suggested Fix

Message 1

The following message appears for the <inst-name> instance that has
1596
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
Clocks Mismatch:

[AcAbsV1_1] [WARNING] Instance '<inst-name>' of block '<module-
name>' has <num> clock mismatches

NOTE: For this message, see:

 Clock Mismatch Spreadsheet
 Example - Clock Mismatch

Potential Issues
See Clocks Mismatch.

Consequences of Not Fixing
The consequences vary based on the following situations:
 If a top-level clock reaches to an unconstrained clock port of a block

Consequences: Some valid clock ports may get missed in the SGDC
file of an abstract view. As a result, SpyGlass may not perform
synchronization checks for such potential clock signals.

 If a block-level clock port is not driven from a top-level clock port.
Consequences:
 If the path of top-level clock is blocked before reaching to a clock port

of a block, it may result in incorrect violations at the top-level.
 If the block port is not a clock but it is defined as a clock in the

block-level SGDC file by mistake, the block-level CDC verification
may be inaccurate.

How to Debug and Fix
Double-click on the violation to open the message-based spreadsheet. For
details on this spreadsheet, see Clock Mismatch Spreadsheet.

To fix this violation, perform appropriate actions based on the following
cases:
 If a top-level clock reaches to an unconstrained clock port of a block

Action: Specify the clock constraint on the clock port of the reported
block instance and analyze the specification or propagation of the top-
1597
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
level clock.
 If a block-level clock port is not driven from a top-level clock port.

Action: Open the schematic and perform the following actions:
 Analyze the top-level design for propagation of a clock to the block

port.
Check if the path of the top-level clock is blocked before reaching to
the clock port of the block. In this case, fix the logic accordingly.

 Check if the top-level net driving the clock port of a block is a clock,
but it is not defined in top-level SGDC file. In this case, define the
clock in the SGDC file.

 If the block port is not a clock but it is defined as a clock in
block-level SGDC file by mistake, perform the following actions:
 Remove the clock specification from block-level SGDC file.

 Re verify the block-level CDC verification.

Message 2

The following message appears for the <inst-name> instance that has
Clock Domain Mismatch Spreadsheet:

[AcAbsV1_3] [WARNING] Instance '<inst-name>' of block
'<module-name>' has <num> clock domain mismatches. Reason: Same
domain block clocks connected to different domain top level
clocks

Potential Issues
This violation appears due to Clock Domain Mismatch when any of the
following cases hold true:
 If multiple clock ports in the same domain of an abstract view are

triggered from top-level clocks of different domains
See Example 1 - Clock Domain Mismatch.

 If virtual clock specified at a block port and the clock port are in the
same domain of an abstract view and they are triggered from top-level
clocks of different domains
See Example 2 - Clock Domain Mismatch.
1598
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
 If virtual clocks <virtual-clock1> and <virtual-clock2>
specified at the ports <block-port1> and <block-port2>,
respectively, are in the same domain of an abstract view and are
triggered from top-level clocks of different domains
See Example 3 - Clock Domain Mismatch.

Consequences of Not Fixing
The consequences vary based on the following situations:
 If multiple clock ports in the same domain of an abstract view are

triggered from the top-level clocks of different domains.
Consequence: SpyGlass may map the reported virtual clock to an
incorrect top-level domain. This may result in spurious synchronization
violations during the block verification stage.

 If top-level clocks of the same domain trigger block ports of a different
domain.
Consequence: It may result in spurious synchronization results during
verification phase of higher-level blocks.

How to Debug and Fix
Double-click on the violation to open the message-based spreadsheet. For
details on this spreadsheet, see Clock Domain Mismatch Spreadsheet.

To fix this violation, perform appropriate actions based on the following
cases:
 If multiple clock ports in the same domain of an abstract view are

triggered from the top-level clocks of different domains.
Action:
a. Analyze the specification or propagation of top-level clocks.
b. Ensure that the specification of the same domain virtual clocks is

consistent with the specification of top-level clocks identified in the
first step.

 If top-level clocks of the same domain trigger block ports of a different
domain.
Action:
1599
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
a. Verify the specification of different domains on multiple clock ports.
b. Analyze the specification or propagation of the top-level clock.

Message 3

The following message appears for the <inst-name> instance that has
Clock Domain Mismatch:

[AcAbsV1_2] [WARNING] Instance '<inst-name>' of block '<module-
name>' has <num> clock domain mismatches. Reason: Different
domain block clocks connected to same domain top level clocks

Potential Issues
This violation appears due to Clock Domain Mismatch when multiple clock
ports in different domains of an abstract view are triggered from the top-
level clocks of same domain. See Example 4 - Clock Domain Mismatch.

Consequences of Not Fixing
See Consequences of Not Fixing.

How to Debug and Fix
See How to Debug and Fix.

Message 4

The following message appears for the <inst-name> instance that has
Virtual Clocks Mismatch:

[AcAbsV1_9] [WARNING] Instance '<inst-name>' of block '<module-
name>' has <num> virtual clock mismatches. Reason: No top-level
domain reaches to block ports

Potential Issues
This violation appears in case of Virtual Clocks Mismatch when no top-level
domain reaches to block ports.
1600
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
See Example 1 - Virtual Clocks Mismatch.

Consequences of Not Fixing
If you do not fix these violations, SpyGlass analysis may produce
inaccurate synchronization results during block verification, thereby
generating incorrect abstract view model.

This may further generate incorrect synchronization violations in the SoC
verification stage.

How to Debug and Fix
Double-click on the violation to open the message-based spreadsheet. For
details on this spreadsheet, see Virtual Clocks Mismatch Spreadsheet.

To fix this violation, perform the following actions:
 Analyze design connectivity between the top-level sequential element

and a block input port.
 Verify the virtual clock specified by the abstract_port or input constraint.

Message 5

The following message appears for the <inst-name> instance that has
Virtual Clocks Mismatch:

[AcAbsV1_8] [WARNING] Instance '<inst-name>' of block '<module-
name>' has <num> virtual clock mismatches. Reason: Conflicting
domains reach to block ports

Potential Issues
This violation appears in case of Virtual Clocks Mismatch when conflicting
domains reach block ports.

See Example 2 - Virtual Clocks Mismatch.

Consequences of Not Fixing
See Consequences of Not Fixing.
1601
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
How to Debug and Fix
See How to Debug and Fix.

Message 6

The following message appears for the <inst-name> instance that has
Case Analysis Mismatch:

[AcAbsV1_4] [WARNING] Instance '<inst-name>' of block '<module-
name>' has <num> case analysis mismatches

NOTE: For this message, see:

 Case Analysis Mismatch Spreadsheet
 Example - Case Analysis Mismatch

Potential Issues
See Case Analysis Mismatch.

Consequences of Not Fixing
If you do not fix this violation, the following issues may arise depending
upon different situations:
 If the specified value at the block-level port is incorrect, block-level CDC

verification is inaccurate.
 If the specified value at the block-level port is correct but constant

propagation at the top-level is incorrect, it indicates a logical issue at
the top-level because of which incorrect value is propagated at the
block-level.

How to Debug and Fix
Double-click on the violation to open the message-based spreadsheet. For
details on this spreadsheet, see Case Analysis Mismatch Spreadsheet.

To fix this violation, perform appropriate actions based on the following
cases:
 If block-level ports are constrained to values that do not match with

constant values propagated from the top-level
1602
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
Action:
a. Check the value specification of the set_case_analysis constraint on a

block port.
b. Analyze the top-level design for propagation of a constant value to

the block port.
 If a constant value propagates from the top-level, but the port of the

abstract view is not constrained with the set_case_analysis constraint.
Action:
a. Analyze the top-level design for propagation of a constant value to

the block port.
b. Specify the set_case_analysis constraint on the block port.

 If a block port is constrained with the set_case_analysis constraint, but no
constant value propagates from the top-level
Action:
a. Analyze the top-level design for propagation of a constant value to

the block port.
b. Remove the set_case_analysis constraint if a valid constant value does

not reach the block port.

Message 7

The following message appears for the <inst-name> instance that has
Quasi Static Mismatch:

[AcAbsV1_11] [WARNING] Instance '<inst-name>' of block
'<module-name>' has <num> quasi-static mismatches

NOTE: For this message, see:

 Quasi static Mismatch Spreadsheet
 Example - Quasi Static Mismatch

Potential Issues
See Quasi Static Mismatch.

Consequences of Not Fixing
1603
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
If you do not fix this violation, the following issues may arise depending
upon different situations:
 If a top-level quasi-static signal reaches a block port on which a

quasi_static constraint has not been specified.
Consequence: The design may not operate in the desired mode. In
addition, the quasi_static constraints would not be propagated to block
outputs.

 If a quasi_static constraint has been specified at a block-level port,
however no top-level quasi-static signal is driving the block port.
Consequence: Some crossings in the design may not be detected.

How to Debug and Fix
Double-click on the violation to open the message-based spreadsheet. For
details on this spreadsheet, see Quasi static Mismatch Spreadsheet.

To fix this violation, perform appropriate actions based on the following
cases:
 If a top-level quasi-static signal reaches a block port on which a

quasi_static constraint has not been specified.
Action:
a. Specify quasi_static constraint on a block port, or
b. Analyze the specification or propagation of the top-level quasi-static

signal to the block port.
 If a quasi_static constraint has been specified at a block-level port,

however no top-level quasi-static signal is driving the block port.
Action:
a. If the block quasi-static specification is correct, add the missing

quasi_static at the top-level, else
b. Remove the quasi_static constraint from the block port.

Message 8

The following message appears for the <inst-name> instance that has
Data Path Domain Mismatch:

[AcAbsV1_6] [WARNING] Instance '<inst-name>' of block
1604
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
'<module-name>' has <num> data path domain mismatches

NOTE: For this message, see:

 Data Path Domain Mismatch Spreadsheet
 Example - Data Path Domain Mismatch

Potential Issues
See Data Path Domain Mismatch.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass may report incorrect
synchronization violations during verification phase of the hierarchical
verification flow.

How to Debug and Fix
Double-click on the violation to open the message-based spreadsheet. For
details on this spreadsheet, see Data Path Domain Mismatch Spreadsheet.

To fix this violation, perform the following steps:
1. Analyze the design connectivity between the top-level sequential

element and the block input port.
2. Check if the clock domain specified by the abstract_port or the input

constraint is consistent with the clock domains driving sequential
elements identified in the first step.

3. Check SGDC (abstract_port) back-annotation for block abstract_port for
which the violation was reported and back-annotation of top level
sequential element to indicate the differing clock.

Message 9

The following message appears for the <inst-name> instance that has
Reset Mismatch:

[AcAbsV1_5] [WARNING] Instance '<inst-name>' of block '<module-
name>' has <num> reset mismatches

NOTE: For this message, see:
1605
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
 Reset Mismatch Spreadsheet
 Example - Reset Mismatch

Potential Issues
See Reset Mismatch.

Consequences of Not Fixing
If you do not fix this violation, the following issues may arise depending
upon different situations:
 If a top-level reset reaches a block port for which no reset constraint is

specified.
Consequence: Some potential resets may not propagate during the
verification of the abstract view. This may result in the following:
 The block may not achieve its initial state.

 In the absence of synchronous resets, SpyGlass may report violations
related with unsynchronized clock domains.

 If the reset constraint is specified for a block-level port, but no top-level
reset drives that block-level port.
Consequence: The reported port of an abstract view may not be
considered as a valid reset signal. This may alter the initial state of the
block during verification.

 If an asynchronous reset specified at a top-level reaches to a
synchronous reset port of an abstract view or vice-versa.
Consequence:
 Incorrect reset analysis may happen at the block-level. That is, the

initial state of the block may get altered during its verification.
 SpyGlass may generate incorrect clock domain violations during

block verification if synchronous resets are not properly specified.
 If the active value of the top-level reset is different from the active value

of the block-level reset port driven by that top-level reset.
Consequence:
 It may result in an incorrect initial state of an abstract view during

verification.
1606
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
 It may generate spurious reset simulation results for the abstract
view.

How to Debug and Fix
Double-click on the violation to open the message-based spreadsheet. For
details on this spreadsheet, see Reset Mismatch Spreadsheet.

To fix this violation, perform appropriate actions based on the following
cases:
 If a top-level reset reaches a block port for which no reset constraint is

specified.
Action: Perform the following steps:
a. Specify the reset constraint on the reported block port.
b. Analyze the specification or propagation of the top-level reset to the

block.
 If the reset constraint is specified for a block-level port, but no top-level

reset drives that block-level port.
Action: Perform the following actions:
a. Remove the reset constraint from the reported block port.
b. Analyze the specification or propagation of a top-level reset to the

block port.
 If an asynchronous reset specified at a top-level reaches to a

synchronous reset port of an abstract view or vice-versa.
Action:
a. Specify an appropriate reset constraint on the block-level port.
b. Analyze the specification or propagation of the top-level reset to a

block.
 If the active value of the top-level reset is different from the active value

of the block-level reset port driven by that top-level reset.
Action:
a. Check the value specified by the reset constraint on the block port.
b. Assign a proper value in the reset constraint.
c. Verify that the top-level reset of the block port has the same active

value identified in step 2.
1607
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
Message 10

The following message appears for the <inst-name> instance that has
Qualifier Mismatch:

[AcAbsV1_7] [WARNING] Instance '<inst-name>' of block '<module-
name>' has <num> qualifier mismatches

NOTE: For this message, see:

 Qualifier Mismatch Spreadsheet
 Example - Qualifier Mismatch

Potential Issues
See Qualifier Mismatch.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass may report incorrect
synchronization violations during the block verification stage.

How to Debug and Fix
Double-click on the violation to open the message-based spreadsheet. For
details on this spreadsheet, see Qualifier Mismatch Spreadsheet.

To fix this violation, perform appropriate actions based on the following
cases:
 If clocks specified by the -from_clk and -to_clk arguments of the

qualifier constraint for an abstract view exist in the same top-level
domain.
Action: Perform the following actions:
 Analyze the clocks specified in the -from_clk and -to_clk

arguments of the qualifier constraint.
 Analyze specification or propagation of top-level clocks.

 If a synchronizer does not reach to an input port of a block for which the
-sync argument of the abstract_port constraint is specified.
Action: Perform the following actions:
1608
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
 Analyze the fan-in cone of an input port for the presence of a
synchronizer.

 Remove the -sync argument from the abstract_port constraint.

Message 11

The following message appears for the <inst-name> instance that has
Combo Check Mismatch:

[AcAbsV1_10] [WARNING] Instance '<inst-name>' of block
'<module-name>' has <num> combo check mismatches

NOTE: For this message, see:

 Combo Check Mismatch Spreadsheet
 Example - Combo Check Mismatch

Potential Issues
See Combo Check Mismatch.

Consequences of Not Fixing
If you do not fix this violation, it results in an incorrect setup at the block
level.

How to Debug and Fix
Double-click on the violation to open the message-based spreadsheet. For
details on this spreadsheet, see Combo Check Mismatch Spreadsheet.

To fix this violation, perform the following actions:
 Remove the -combo no argument from the abstract_port constraint.

 Analyze the combinational logic between the sequential element and
block-level input port.

Message 12

The following message appears for the <inst-name> instance that has
num_flops Mismatch:
1609
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
[AcAbsV1_12] [WARNING] Instance '<inst-name>' of block
'<module-name>' has <num> combo num_flops mismatches

NOTE: For this message, see:

 num_flops Mismatch Spreadsheet
 Example - num_flops Mismatch

Potential Issues
See num_flops Mismatch.

Consequences of Not Fixing
If you do not fix this violation, the following may occur depending upon
different situations:
 If the num_flops constraint is incorrectly specified in the block-level

SGDC file, it may result in inaccurate block-level CDC verification.
 If domains of top-level clocks are not specified correctly, it may result in

inaccurate top-level CDC verification.

How to Debug and Fix
Double-click on the violation to open the message-based spreadsheet. For
details on this spreadsheet, see num_flops Mismatch Spreadsheet.

To fix this violation, perform the following actions:
 Analyze the clock specification in the -from_clk and -to_clk

arguments of the num_flops constraint.
 Analyze the specification or propagation of top-level clocks.

Example Code and/or Schematic

This section covers the following examples:
 Example - Clock Mismatch

 Example 1 - Clock Domain Mismatch

 Example 2 - Clock Domain Mismatch
1610
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
 Example 3 - Clock Domain Mismatch

 Example 4 - Clock Domain Mismatch

 Example 5 - Clock Domain Mismatch

 Example 1 - Virtual Clocks Mismatch

 Example 2 - Virtual Clocks Mismatch

 Example - Case Analysis Mismatch

 Example - Quasi Static Mismatch

 Example - Data Path Domain Mismatch

 Example - Combo Check Mismatch

 Example - Qualifier Mismatch

 Example - Reset Mismatch

 Example - num_flops Mismatch
1611
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
Example - Clock Mismatch

Consider the following files specified for SpyGlass analysis:

For the above example, the Ac_abstract_validation01 rule reports two
Clocks Mismatch violations for the b1 and b2 instances.

module top(in1,clk1,clk2,clk3,

input in1,in2,clk2,clk1,clk4,

output out;
wire clk_2, seq_out;
reg clk_div2, clk_latch;
reg temp, syn1, syn2;
PLL p1(.clk2(clk2), .clk3(clk3),

SYNCP2QV15 seg_cell (.D(in2),

wire bb_out;
always @(posedge clk1)
 clk_div2= in3;
 always @(sel)
 if(sel)
 clk_latch = clk5;
 always @(posedge clk_2)
 begin
 syn1 <=temp;
 syn2<=syn1;
 end
assign sync2_tmp = syn2 && in2;
assign clk_absport = clk_2 && seq_out

BB b1(.clk1(clk1),.clk2(clk_absport),

BB b2(.clk1(clk1),.clk2(clk_absport),

endmodule
module BB(clk1,clk2,clk3,in1,out,out1, in3, in2);
input clk1,clk2,in1,clk3;
input in3, in2;
output out;
output out1;
assign out1 = clk1;
endmodule
module PLL(clk1, clk2, clk3 , clk_out);
input clk1, clk2 , clk3;
output clk_out;
endmodule

// test.v

 clk4,clk5,in2,in3,out,sel);

 clk5,sel,in3,clk3;

 .clk_out(clk_2));

 .CK(clk4), .Q(seq_out));

 && clk_div2 && clk_latch && in1;

.clk3(clk3),.in3(sync2_tmp),.out(out),

.out1(out));

.clk3(clk3),.in3(sync2_tmp),.out(out),

.out1(out));

current_design top
clock -name clk1
clock -name clk2
clock -name clk3
clock -name clk4
clock -name clk5
set_case_analysis -name sel -value 1
assume_path -name PLL -input clk2

sgdc -import BB block.sgdc

// test.sgdc

 -output clk_out

current_design BB
clock -name clk1

// block.sgdc
1612
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
The following figure shows the Clock Mismatch Spreadsheet for this violation
for the b2 instance:

FIGURE 345. The Clock Mismatch Spreadsheet

The information in the above spreadsheet indicates that top-level clocks
reach to the clock ports clk2 and clk3 of the abstract block, but no clock
constraint is defined on these clock ports.

Click on the link 12 in the above spreadsheet and open the schematic, as
shown below:

FIGURE 346. Schematic Showing Clock Mismatch
1613
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
Example 1 - Clock Domain Mismatch

Consider the following files specified for SpyGlass analysis:

For the above example, the Ac_abstract_validation01 rule reports multiple
violations for Clock Domain Mismatch. The following Clock Domain Mismatch
Spreadsheet shows one of the violation:

FIGURE 347. The Clock Domain Mismatch Spreadsheet

The information in the above spreadsheet indicates that multiple clocks,
clk2 and clk3, of the same domain, domain2, of the abstract view are

module top(in1,clk1, clk2, clk3,

input in1,in2,clk1,clk2,sel,in3,

output out;
assign clk1_2_3 = clk3 & clk1 && clk2;
assign clk2_3_4 = clk2 && clk4 && clk3;
BB b1(.clk1(clk1_2_3),.clk2(clk1_2_3),

BB b2(.clk1(clk2_3_4),.clk2(clk2_3_4),

endmodule

module BB(clk1,clk2,clk3,in1,

input clk1,clk2,in1,clk3;
input in3, in2;
output out;
output out1;
assign out1 = clk1;
endmodule

// test.v

 clk4, clk5, in2,in3, out,sel);

 clk3,clk4, clk5;

 .clk3(clk2_3_4),.in3(sync2_tmp),
 .out(out), .out1(out));

 .clk3(clk1_2_3),.in3(sync2_tmp),
 .out(out), .out1(out));

 out,out1,in3,in2);

current_design top
clock -name clk1 -domain domain1
clock -name clk2 -domain domain2
clock -name clk3 -domain domain3
clock -name clk4 -domain domain4
sgdc -import BB block.sgdc

// test.sgdc

current_design BB
clock -name clk1 -domain domain1
clock -name clk2 -domain domain2
clock -name clk3 -domain domain2

// block.sgdc
1614
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
triggered from the top-level clocks, clk1 and clk4, of different domains.

Click on the link 4 in the above spreadsheet and open the schematic, as
shown below:

FIGURE 348. Schematic Showing Clock Domain Mismatch

Example 2 - Clock Domain Mismatch

Consider the following files specified for SpyGlass analysis:

module test(clk1,clk2,clk3,

input clk1,clk2,clk3,in3,in1,in2;
output out1;
reg r1,r2,r3;
bbox B1 (.i1(r1),.i2(r2 & r3),

always@(posedge clk2)
 r1 <= in1;
always@(posedge clk3)
 r3 <= in3;
 always@(posedge clk1)
 r2 <= in2;
endmodule

module bbox(input i1,i2,ck1,

endmodule

// test.v

 in3,in1,in2,out1);

 .ck1(clk1),.ck2(clk2),
 .ck3(clk3),.o1(out1),
 .o2(wr1));

 ck2,ck3, output o1,o2);

// constr.sgdc

current_design test
clock -name clk1 -domain d1
clock -name clk2
clock -name clk3 -domain d1

sgdc -import bbox block.sgdc

current_design bbox
clock -name ck1 -domain d1
clock -name ck2 -domain d2
clock -name ck3 -domain d1
clock -tag vck1 -domain d1

abstract_port -module bbox

// block.sgdc

 -ports i1 -clock vck1
1615
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
For the above example, the Ac_abstract_validation01 rule reports two Clock
Domain Mismatch.

The following figure shows the Clock Domain Mismatch Spreadsheet for this
violation:

FIGURE 349. The Clock Domain Mismatch Spreadsheet

The information in the above spreadsheet indicates that the vck1 virtual
clock in the d1 domain of the abstract block is triggered by top-level clocks
of different domains.

Click on link 7 in the above spreadsheet and open the schematic, as shown
below:

FIGURE 350. Schematic Showing Clock Domain Mismatch
1616
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
Example 3 - Clock Domain Mismatch

Consider the following files specified for SpyGlass analysis:

For the above example, the Ac_abstract_validation01 rule reports one Clock
Domain Mismatch, as shown in the following Clock Domain Mismatch
Spreadsheet:

FIGURE 351. The Clock Domain Mismatch Spreadsheet

The information in the above spreadsheet shows that the vclk1 virtual
clock of the in2 port and vclk2 virtual clock of the in3 port are in the
same domain d1, and these virtual clocks are triggered by different
top-level clocks top.clk1 and top.clk2.

Click on the link 7 and open the schematic:

module top(input in1,in2,in3,

wire vclk1,vclk2;
reg temp;
assign gclk = vclk1 & vclk2;
always@(posedge gclk)
 temp <= in1;
block inst(temp,in2,in3,

endmodule
module block(input in1,in2,

endmodule

// test.v

 clk1,clk2,output out);

 clk1,clk2,out);

 in3,clk1,clk2,output out);

current_design top
clock -name clk1
clock -name clk2
abstract_port -module top -ports in2

abstract_port -module top -ports in3

sgdc -import block block.sgdc

// test.sgdc

 -clock clk1

 -clock clk2

current_design block
clock -name clk1
clock -name clk2
clock -tag vclk1 -domain d1
clock -tag vclk2 -domain d1
abstract_port -module block

input -name in3 -clock vclk2

// block.sgdc

 -ports in2 -clock vclk1
1617
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
FIGURE 352. Schematic Showing Clock Domain Mismatch
1618
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
Example 4 - Clock Domain Mismatch

Consider the following files specified for SpyGlass analysis:

module block(clk1,clk2,d1,en,q1);
input clk1,clk2;
input [0:3] d1;
input en;
output [0:3] q1;
reg [0:3] src,dest;
reg enable,sync1,sync2;
always@(posedge clk1)
 begin
 src <= d1;
 enable<= en;
 end
always@(posedge clk2)
 begin
 sync1 <= enable;
 sync2 <= sync1;
 end
always@(posedge clk2)
 if(sync2)
 dest <= src;
assign q1 = dest;
endmodule
module top(clk1,clk2,clk3,testclk,testen,in1,in2,sel1,sel2,out1,out2);
input clk1,clk2,clk3;
input [0:3] in1,in2;
output [0:3] out1,out2;
input sel1,sel2;
input testclk;
input testen;
reg [0:3] t1;
wire [0:3] wr1,wr2;
assign mclk1 = (testen)? clk2 : testclk;
assign mclk2 = (testen)? clk3 : testclk;
block B1(.clk1(clk1),.clk2(clk1),.d1(in1),.en(sel1),.q1(wr1));
block B2(.clk1(clk2),.clk2(clk2),.d1(in2),.en(sel2),.q1(wr2));
always@(posedge clk2)
 t1 <= wr1;
assign out1 = t1;
assign out2 = wr2;
endmodule

// test.v // test.sgdc

current_design top
clock -name clk1 -domain d1
clock -name clk2 -domain d2
clock -name clk3 -domain d3
clock -name testclk -domain d4
set_case_analysis -name testen

sgdc -import block block.sgdc
 -value 0

// block.sgdc

current_design block

clock -name clk1 -domain d1

clock -name clk2
output -name q1 -clock clk2
1619
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
For the above example, the Ac_abstract_validation01 rule reports one Clock
Domain Mismatch. The details are shown in the following Clock Domain
Mismatch Spreadsheet:

FIGURE 353. The Clock Domain Mismatch Spreadsheet

The information in the above spreadsheet indicates that the clk1 and
clk2 clocks of the abstract view are of different domains, and they are
triggered by the top-level clocks of the same domain.

In the above spreadsheet, click on link 3 and open the schematic. The
following figure shows the schematic:

FIGURE 354. Schematic Showing Clock Domain Mismatch
1620
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
Example 5 - Clock Domain Mismatch

Consider the following files specified for SpyGlass analysis:

For the above example, the Ac_abstract_validation01 rule reports clock
domain mismatch as shown in the graphic below:

FIGURE 355. The Clock Domain Mismatch Spreadsheet
1621
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
Example 1 - Virtual Clocks Mismatch

Consider the following files specified for SpyGlass analysis:

For the above example, the Ac_abstract_validation01 rule reports two
Virtual Clocks Mismatch violations for the test.B1 instance of the block
block because no top-level domain reaches to the block ports.

The following figure shows the Virtual Clocks Mismatch Spreadsheet for this
violation:

module test(clk1,clk2,in1,in2, out1,out2);
input clk1,clk2;
input in1,in2;
output out1,out2;
reg r1,r2;
wire wr1,wr2;
BBOX B2 (.d1(in1), .clk1(in1), .clk2(in1),

block B1(.d1(w1 && w3),.d2(w2),.ck1(clk1),

assign out1 = wr1;
assign out2 = wr2;
endmodule
module BBOX (d1, clk1, clk2, out1, out2,

input d1, clk1, clk2;
output out1, out2, out_clk;
endmodule
module block(d1,d2,ck1,ck2,out1,out2);
input d1,d2;
input ck1,ck2;
output out1,out2;
reg out1,out2;

always@(posedge ck1)
 out1 <= d1;
 always@(posedge ck1)
 out2 <= d2;
endmodule

// test.v

 .out1(w1), .out2(w2), .out_clk(w3));

 .ck2(clk2),.out1(wr1),.out2(wr2));

current_design test
clock -name clk1
clock -name clk2
sgdc -import block block.sgdc
sgdc -import BBOX bbox.sgdc

// top.sgdc

current_design block
clock -name ck1
clock -name ck2

abstract_port -module block

abstract_port -module block

// block.sgdc

 out_clk);
 -ports d1 -clock V1

 -ports d2 -clock V2

current_design BBOX
abstract_port -module BBOX

abstract_port -module BBOX

clock -name out_clk

// bbox.sgdc

 -ports out1 -clock clk1

 -ports out2 -clock clk2
1622
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
FIGURE 356. The Virtual Clocks Mismatch Spreadsheet

The information in the above spreadsheet indicates that no top-level clock
reaches to the V1 and V2 virtual clocks of the abstract block B1. The
following schematic shows this scenario:

FIGURE 357. Schematic Showing Virtual Clocks Mismatch
1623
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
Example 2 - Virtual Clocks Mismatch

Consider the following files specified for SpyGlass analysis:

For the above example, the Ac_abstract_validation01 rule reports two
virtual clocks mismatches for the test.B1 instance of the block block
because conflicting domains reach to the block ports.

The following figure shows the Virtual Clocks Mismatch Spreadsheet for this
violation:

module test(clk1,clk2,in1,in2, out1,out2);
input clk1,clk2;
input in1,in2;
output out1,out2;
reg r1,r2;
wire wr1,wr2;
BBOX B2 (.d1(in1), .clk1(clk1),

always @(posedge clk1)
 r1 <= in1;
block B1(.d1(w1),.d2(r1),.ck1(clk1),

assign out1 = wr1;
assign out2 = wr2;

endmodule

module block(d1,d2,ck1,ck2,out1,out2);
input d1,d2;
input ck1,ck2;
output out1,out2;
reg out1,out2;
always@(posedge ck1)
 out1 <= d1;
 always@(posedge ck1)
 out2 <= d2;

endmodule

// test.v

 .clk2(clk2), .out1(w1), .out2(w2));

 .ck2(clk2),.out1(wr1),.out2(wr2));

current_design test
clock -name clk1
clock -name clk2
sgdc -import block block.sgdc
abstract_port -module BBOX

abstract_port -module BBOX

// top.sgdc

 -ports out1 -clock clk1 clk2

 -ports out2 -clock clk2

current_design block
clock -name ck1
clock -name ck2

abstract_port -module block

abstract_port -module block

// block.sgdc

 -ports d1 -clock V1

 -ports d2 -clock V1
1624
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
FIGURE 358. The Virtual Clocks Mismatch Spreadsheet

The information in the above spreadsheet indicates that the d1 and d2
ports of the abstract block B1 are specified with the same virtual clock V1,
but both these ports are driven with different top-level clocks.

The following schematic shows this scenario:

FIGURE 359. Schematic Showing Virtual Clocks Mismatch
1625
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
Example - Case Analysis Mismatch

Consider the following files specified for SpyGlass analysis:

For the above example, the Ac_abstract_validation01 rule reports two Case
Analysis Mismatch violations for the b1 and b2 blocks. The details for the b1
block are shown in the following Case Analysis Mismatch Spreadsheet:

module top(in1,clk1, clk2, clk3, in2,

input in1,in2,clk1,clk2,sel,in3,clk3;
output out;
reg temp,syn1,syn2, temp1;
assign clk_1 = clk1 & clk2;
wire bb_out;
always @(posedge clk_1)
 temp = in3;
 always @(posedge clk1)
 temp1 = in2;
 always @(posedge clk2)
 begin
 syn1 <=temp;
 syn2<=syn1;
 end
 assign sync2_tmp = syn2 && temp1;

BB b1(.clk1(clk1),.clk2(clk2),

BB b2(.clk1(clk1),.clk2(clk2),

endmodule

module BB(clk1,clk2,clk3,in1,out,out1, in3, in2);
input clk1,clk2,in1,clk3;
input in3, in2;
output out;
output out1;
assign out1 = clk1;
endmodule

// test.v

current_design top
clock -name clk1 -domain domain1
clock -name clk2 -domain domain2
sgdc -import BB block.sgdc

 in3, out,sel);

// test.sgdc

current_design BB
clock -name clk1 -domain domain1
clock -name clk2 -domain domain2
set_case_analysis -name in3 -value 0
set_case_analysis -name in2 -value 0

abstract_port -module BB -ports in3

abstract_port -module BB -ports in3

// block.sgdc

-clock clk2 -from in3 -to in1

 -clock clk1

 .clk3(clk3),.in3(sync2_tmp),
 .out(out), .out1(out));

 .clk3(clk3),.in3(sync2_tmp),
 .out(out), .out1(out));

-sync active
1626
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
FIGURE 360. The Case Analysis Mismatch Spreadsheet

The above spreadsheet shows that the value of the set_case_analysis
constraint is set to 0 on the in3 and in2 ports of the b1 block, but no
simulated value reaches to the top-level net that is connected to these
ports. Therefore, this rule reports a violation.

In the above spreadsheet, click on link 1 and open the schematic. The
following figure shows the schematic:

FIGURE 361. Schematic Showing Case Analysis Mismatch
1627
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
Example - Quasi Static Mismatch

Consider the following files specified for SpyGlass analysis:

For the above example, the Ac_abstract_validation01 rule reports a
violation for Quasi Static Mismatch. The violation details are shown in the
following Quasi static Mismatch Spreadsheet:

FIGURE 362. The Quasi Static Mismatch Spreadsheet

The information in the above spreadsheet indicates that a top-level quasi
static signal reaches the a[1:0] port of the abstract block, but no
quasi_static constraint is defined on this port.

module test(in1,in2,in3,clk1,clk2,out1,out2);
input [0:1] in1,in3;
input in2;
input clk1,clk2;
output out1,out2;
reg out1;
wire wr2;
BBOX bb1(.a(in2),.b(in1[0]),.clk(clk2),.out(wr2));

block b1(in1,in2,clk1,w1);
block b2(in3,wr2,clk1,w2);
always@(clk2)
 out1 <= w1 & w2;
endmodule
module BBOX(input a,b,clk,output out);
endmodule
module block(a,b,clk,out);
input [0:1] a;
input b,clk;
output out;
endmodule

// test.v

current_design test
clock -name clk1
clock -name clk2
quasi_static -name in1
quasi_static -name wr2

sgdc -import block block.sgdc

// test.sgdc

// block.sgdc

current_design block
clock -name clk
1628
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
Click on link 1 in the above spreadsheet and open the schematic, as shown
below:

FIGURE 363. Schematic Showing Quasi Static Mismatch
1629
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
Example - Data Path Domain Mismatch

Consider the following files specified for SpyGlass analysis:

For the above example, the Ac_abstract_validation01 rule reports three
Data Path Domain Mismatch violations each for the b1 and b2 instances.

The following figure shows the Data Path Domain Mismatch Spreadsheet for
the b1 instance:

module top(in1,clk1, clk2, clk3,

input in1,in2,clk1,clk2,sel,in3,clk3;
output out;
reg temp,syn1,syn2, temp1;
assign clk_1 = clk1 & clk2;
wire bb_out;
always @(posedge clk_1)
 temp = in3;
 always @(posedge clk1)
 temp1 = in2;
 always @(posedge clk2)
 begin
 syn2<=temp;
 end
 assign sync2_tmp = syn2 && temp1;

BB b1(.clk1(clk_1),.clk2(clk2),

BB b2(.clk1(clk_1),.clk2(clk2),

endmodule

// test.v

 .clk3(clk3),.in3(sync2_tmp),
 .out(out), .out1(out));

 .clk3(clk3),.in3(sync2_tmp),
 .out(out), .out1(out));

module BB(clk1,clk2,clk3,in1,out,out1, in3, in2);
input clk1,clk2,in1,clk3;
input in3, in2;
output out;
output out1;
assign out1 = clk1;
endmodule

 in2,in3, out,sel);
current_design top
clock -name clk1 -domain domain1
clock -name clk2 -domain domain2
sgdc -import BB block.sgdc

// test.sgdc

current_design BB
clock -name clk1 -domain domain1
clock -name clk2 -domain domain2
set_case_analysis -name in3 -value 0
set_case_analysis -name in2 -value 0
abstract_port -module BB -ports in3

// block.sgdc

 -clock clk1
1630
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
FIGURE 364. The Data Path Domain Mismatch Spreadsheet

In the above spreadsheet:
 The first row indicates that the in3 pin of the abstract block is driven

from a sequential instance driven by the top.clk1 clock, but no
abstract_port constraint is defined for that pin.

 The second row indicates that the in3 pin of the abstract block is driven
from a sequential instance driven by top.clk2 clock, but no
abstract_port constraint is defined for that pin.

 The third row indicates that the in3 pin of the abstract block is
constrained with the top.clk1 and top.clk2 clocks (abstract_port
-module BB -ports in3 -clock clk1), but no sequential cell
drives this pin.

In the above spreadsheet, click on link 6 to open the schematic. The
following figure shows the schematic:

FIGURE 365. Schematic Showing Data Path Domain Mismatch
1631
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
Example - Combo Check Mismatch

Consider the following files specified for SpyGlass analysis:

For the above example, the Ac_abstract_validation01 rule reports one
Combo Check Mismatch violation each for the b1 and b2 instance. The
violation details for the b1 instance are shown in the following Combo Check
Mismatch Spreadsheet:

FIGURE 366. The Combo Check Mismatch Spreadsheet

module top(in1,clk1, clk2, clk3,

input in1,in2,clk1,clk2,sel,in3,clk3;
output out;
reg temp,syn1,syn2;
always @(posedge clk1)
 syn1 <= in1;
always @(posedge clk2)
 syn2 <= in2;

 assign sync2_tmp = syn1 && syn2;
BB b1(.clk1(clk1),.clk2(clk2),

BB b2(.clk1(clk1),.clk2(clk2),

endmodule
module BB(clk1,clk2,in1,out,out1,

input clk1,clk2,in1;
input in3, in2;
output out;
output out1;
assign out1 = clk1;

endmodule

// test.v

 .in3(sync2_tmp),.out(out),
 .out1(out));

 .in3(sync2_tmp),.out(out),
 .out1(out));

 in2,in3, out,sel); current_design top
clock -name clk1 -domain domain1
clock -name clk2 -domain domain2
sgdc -import BB block.sgdc

// test.sgdc

current_design BB
clock -name clk1 -domain domain1
clock -name clk2 -domain domain2
set_case_analysis -name in2 -value 0
set_case_analysis -name in3 -value 0
abstract_port -module BB -ports in3

// block.sgdc

 in3, in2);

 -clock clk2 -combo no
1632
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
The information in the above spreadsheet indicates that for the in3 port,
the abstract_port constraint has -combo no defined. However, the
top-level data reaching to this port through a combinational logic.

In the above spreadsheet, click on link 7 and open the schematic. The
following figure shows the schematic:

FIGURE 367. Schematic Showing Combo Check Mismatch

Example - Qualifier Mismatch

The following figure shows the Qualifier Mismatch Spreadsheet showing
information related to Qualifier Mismatch:

FIGURE 368. The Qualifier Mismatch Spreadsheet

Information in the above spreadsheet indicates the following:
 (For row ID 14): The top-level qualifier having the source domain as

test.clk1 and the destination domain as test.clk4 reaches the pin
of the abstract view, but no matching qualifier is specified at this pin.
1633
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
 (For row ID 15): The top-level qualifier having the source domain as
test.clk4 and the destination domain as test.clk3 reaches the pin
of the abstract view, but no matching qualifier is specified at this pin.

 (For row ID 16): No top-level qualifier reaches the abstract block’s port
for which the abstract_port constraint is defined with the -sync
argument, the source clock as test.B1_V and the destination clock as
test.clk2.

 (For row ID 17): No top-level qualifier reaches the abstract block’s port
for which the abstract_port constraint is defined with the -sync
argument, the source clock as test.clk1 and the destination clock as
test.clk3.

Click on the link 14 in the above spreadsheet and open the schematic, as
shown in the following figure:

FIGURE 369. Schematic Showing Qualifier Mismatch
1634
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
Example - Reset Mismatch

Consider the following files specified for SpyGlass analysis:

For the above example, the Ac_abstract_validation01 rule reports eight
Reset Mismatch violations. The violation details are shown in the following
Reset Mismatch Spreadsheet:

module top(input clk1,clk2,rst1,

block bbox(.clk1(clk1),.clk2(clk2),

endmodule
module block (input clk1,clk2,rst1,

endmodule

// test.v

 rst2,rst3,rst4,rst5,rst6,
 rst7,rst8,in1,in2,output out);

 .rst1(rst1),.rst2(rst2),
 .rst3(rst3),.rst4(rst4),
 .rst5(rst5),.rst6(rst6),.rst7(rst7),
 .rst8(rst8),.in1(in1),.in2(in2),
 .out(out));

 rst2,rst3,rst4,rst5,rst6,rst7,
 rst8,in1,in2,output out) ;

current_design top
clock -name clk1
clock -name clk2
reset -name rst1 -value Z -sync
reset -name rst2 -value z -sync
reset -name rst3 -value X -sync
reset -name rst4 -value x -sync
reset -name rst5 -value 1 -sync
reset -name rst6 -value 1 -sync
reset -name rst7 -value 0 -sync
reset -name rst8 -value 0 -sync
sgdc -import block block.sgdc

// top.sgdc

current_design block
clock -name clk1
clock -name clk2

reset -name rst1 -value 1 -sync
reset -name rst2 -value 0 -sync
reset -name rst3 -value 0 -sync
reset -name rst4 -value 1 -sync
reset -name rst5 -value x -sync
reset -name rst6 -value X -sync
reset -name rst7 -value z -sync
reset -name rst8 -value Z -sync

// block.sgdc
1635
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
FIGURE 370. The Reset Mismatch Spreadsheet

The information in the above spreadsheet indicates that the active value of
the top-level resets is different from the active value of the block-level
reset ports driven by the top-level resets.

Click on link 1 and open the schematic:

FIGURE 371. Schematic Showing Reset Mismatch
1636
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
Example - num_flops Mismatch

Consider the following files specified for SpyGlass analysis:

For the above example, the Ac_abstract_validation01 rule reports one
num_flops Mismatch violation each for the b1 and b2 instance.

The following figure shows the num_flops Mismatch Spreadsheet for the
num_flops mismatch for the b1 instance:

FIGURE 372. The num_flops Mismatch Spreadsheet

module top(in1,clk1, clk2, clk3,

input in1,in2,clk1,clk2,sel,in3,clk3;
output out;
reg temp,syn1,syn2, temp1;
assign clk_1 = clk1 & clk2;
wire bb_out;
always @(posedge clk_1)
 temp = in3;
 always @(posedge clk1)
 temp1 = in2;
 always @(posedge clk2)
 begin
 syn2<=temp;
 end
 assign sync2_tmp = syn2 && temp1;
BB b1(.clk1(clk1),.clk2(clk2),

BB b2(.clk1(clk1),.clk2(clk2),

endmodule

module BB(clk1,clk2,in1,out, in3, in2);
input clk1,clk2,in1;
input in3, in2;
output out;
assign out = in1;
endmodule

// test.v

 .in1(temp1),.in3(sync2_tmp),
 .out(out));

 .in3(sync2_tmp),.out(out));

 in2,in3, out,sel);
current_design top
clock -name clk1 -domain domain1
clock -name clk2 -domain domain2
num_flops -from_clk clk1

sgdc -import BB block.sgdc

// test.sgdc

 -to_clk clk2 -value 4

current_design BB
input -name in1 -clock clk1
num_flops -from_clk clk1

// block.sgdc

 -to_clk clk2 -value 2
1637
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
The information in the above spreadsheet indicates that the value (4) of
the num_flops constraint defined in the top-level SGDC file for a clock-pair is
different from the value (2) of the num_flops constraint defined in the block-
level SGDC file for the same clock pair.

Therefore, this rule reports a violation due to this mismatch.

Default Severity Label

Warning

Rule Group

SOC_SGDCVALIDATION

Reports and Related Files

 Rule-based spreadsheet - Ac_abstract_validation01.csv
This spreadsheet shows information on all the Ac_abstract_validation01
rule violations (one violation per row).
The following figure shows the rule-based spreadsheet of this rule:

FIGURE 373. Rule-Based Spreadsheet of the Ac_abstract_validation01 Rule
1638
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
In the above spreadsheet, double-click on a violation to open the
message-based spreadsheet.

NOTE: If you run the Ac_abstract_validation01 rule in the batch mode, the rule-based
spreadsheet contains an additional column, CSV File. This column shows the
path of the corresponding message-based spreadsheet. Refer to this column to
correlate the row of the rule-based spreadsheet with the corresponding mes-
sage-based spreadsheet.

 Message-based spreadsheet
This spreadsheet shows the details of the selected violation. For
information on different message-based spreadsheets generated by this
rule, see The Spreadsheets of the Ac_abstract_validation01 Rule.
1639
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
Ac_abstract_validation02
Mismatch between the abstract block and top-level design

When to Use

Use this rule during the hierarchical CDC verification flow to validate
user-specified constraints for an abstract view in the context of a
higher-level hierarchy.

Prerequisites

Use the Advanced_CDC license.

In addition, specify the following details before running this rule:
 The sgdc -import constraint.

 The clock constraint to check for Clocks Mismatch, Data Path Domain
Mismatch, and Virtual Clocks Mismatch.

 The set_case_analysis constraint to check for Case Analysis Mismatch.

 The quasi_static constraint to check for Quasi Static Mismatch.

 The reset constraint to check for Reset Mismatch.

 The qualifier constraint to check for Qualifier Mismatch.

 The num_flops constraint to check for num_flops Mismatch.

 The abstract_port constraint to check for Combo Check Mismatch.

Description

The Ac_abstract_validation02 rule reports a violation for the following
types of mismatches between the abstract block and the top-level design:

The Ac_abstract_validation02 rule reports all the above mismatches under
one spreadsheet, The Ac_abstract_validation02 Spreadsheet.

Reporting violations for all the above mismatches may lead to noise and

Clocks Mismatch Clock Domain Mismatch Virtual Clocks Mismatch
Case Analysis Mismatch Quasi Static Mismatch Data Path Domain

Mismatch
Reset Mismatch Qualifier Mismatch Combo Check Mismatch
num_flops Mismatch
1640
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
multiple iterations to fix them. To avoid this, you can restrict this rule to
validate only block-level assumptions with respect to the top level by
setting abstract_validate_express to yes.

Clocks Mismatch

This mismatch occurs in the following cases:
 If a top-level clock reaches to a clock port of a block, but that clock port

is not constrained by the clock constraint.

 If a block-level clock port is not driven from a top-level clock port.

This can occur when the clock constraint is defined on a block port, but
a top-level clock does not reach that block port.

Clock Domain Mismatch

This mismatch occurs in the following cases:
 If multiple clock ports in the same domain of an abstract view are

triggered from top-level clocks of different domains.
 If virtual clock specified at a block port and the clock port are in the

same domain of an abstract view and they are triggered from top-level
clocks of different domains

 If virtual clocks <virtual-clock1> and <virtual-clock2>
specified at the ports <block-port1> and <block-port2>,
respectively, are in the same domain of an abstract view and are
triggered from top-level clocks of different domains

 If multiple clock ports in different domains of an abstract view are
triggered from the top-level clocks of the same domain.

If the sta_based_clock_relationship parameter is set to true,
SpyGlass CDC reports clock domain mismatch violations based on the
sg_clock_group constraint specified on the block and the top level rather
than the domain specified for the clock.

Virtual Clocks Mismatch

This mismatch occurs in the following cases:
 If multiple ports of the same block specified with the same virtual clock

are driven by different domains from top level
 If no top-level clock is reaching the block port specified with a virtual

clock
1641
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
Case Analysis Mismatch

This mismatch occurs in the following cases:
 If there is a mismatch between the following values:

 Constant value specified by the set_case_analysis constraint for
a block-level port

 Constant value propagated from the top-level

 If a simulated value reaches a top-level net connected to a block-level
port, but no set_case_analysis constraint is specified on the block-
level port

 If a simulated value does not reach to a top-level net connected to a
block-level port, but the set_case_analysis constraint is specified on
the block-level port

Quasi Static Mismatch

This mismatch occurs in the following cases:
 If a top-level quasi-static signal reaches a block port on which a

quasi_static constraint has not been specified.

 If a quasi_static constraint has been specified at a block-level port,
however no top-level quasi-static signal is driving the block port.

Data Path Domain Mismatch

This mismatch occurs if an abstract-block port is driven from a sequential
instance, and there is a mismatch between the clock pin driving this
sequential instance and the clock specified in the -clock argument of the
abstract_port or the input constraint.

Reset Mismatch

This mismatch occurs in the following cases:
 If a top-level reset reaches a block port for which no reset constraint is

specified.
1642
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
 If the reset constraint is specified for a block-level port, but no top-
level reset drives that block-level port.

 If an asynchronous reset specified at a top-level reaches to a
synchronous reset port of an abstract view or vice-versa.

 If the active value of the top-level reset is different from the active value
of the block-level reset port driven by that top-level reset.

Qualifier Mismatch

This mismatch occurs in the following cases:
 If a synchronized signal reaches to an input port of a block for which:

 The qualifier or the abstract_port constraint is not defined with
the -sync argument, or

 The abstract_port constraint is defined with the -sync argument
but clocks specified by the -from or -to argument of that
abstract_port constraint do not match with the source or
destination clocks of the synchronizer reaching to that input port.

 If a synchronizer does not reach to an input port of a block for which the
-sync argument of the abstract_port constraint is specified

Automatically Fixing the abstract_port Constraint of the Reported
Port
The CDC SoC abstract auto update flow works if a synchronized signal
reaches to a block port and any of the following cases is true:
 abstract_port is defined at the block port without -sync and the

domain of the synchronized signal matches with the clock specified in
abstract_port

 assume_path is defined at the block port

Set the autofix_abstract_port parameter to yes to modify the
abstract_port constraint in the context of SoC for the reported port,
and save the modified constraints in the
<module_name>_<instance_name>_cdc_soc_abstract_autoupdate.sgdc
file.

By default, in addition to the modified constraints, this file also contains a
copy of all the unmodified input side abstract_port constraints present
in block-level SGDC file (abstract block). Set autofix_dump_allinputs
1643
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
to no to generate only the modified constraints.

Figure 374 shows the example of using the autofix_abstract_port
parameter:

FIGURE 374. Using the autofix_abstract_port Parameter

//top.sgdc
current_design top
...
sgdc -import blk blk.sgdc

abstract_port -module blk
-scope cdc -port in1 -clock clk

//blk.sgdc

Reason for violation:

The in1 pin defined in the blk.sgdc file

same destination domain as that of the
clk clock

is driven by a control synchronizer of the

and
Set the autofix_abstract_port parameter
to yes.

Modified abstract_port constraint:
abstract_port -module blk

-from clk2 -to clk1 -sync active
-scope cdc -port in1 -clock clk

Specify top.sgdc to SpyGlass

The Ac_abstract_validation02
rule reports a violation if

The Ac_abstract_validation02 rule
modifies the abstract_port constraint
for the reported in1 port

The Ac_abstract_validation02 rule
saves the modified constraint in the
<module_name>_<instance_name>_cdc_soc_abstract_autoupdate.sgdc file

SpyGlass cannot autofix it. Else,
no violation is reported.
1644
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
Combo Check Mismatch

This mismatch occurs if a combinational logic exists between a block-level
input port and the output of a sequential element at the top-level when the
-combo no argument of the abstract_port constraint is specified for
that block in the following cases:
 If at the block level, the abstract_port constraint is defined along

with the -combo_ifn argument as shown below:

abstract_port -ports a -clock VCK1 -combo_ifn ck2 -combo
no

In this case, this rule reports a violation if a sequential element reaches
the block port after a combinational logic and if the sequential cell has a
clock domain that is different from the clock domain of the clock
specified in the -combo_ifn argument.

 If at the block level, the abstract_port constraint is defined with real
clocks as shown below:

abstract_port -ports a -clock clk1 -combo no

In this case, the Ac_abstract_validation01 rule will report a violation if a
sequential element reaches the block port after combinational logic and
if the sequential cell has a clock domain that is different from the clock
domain of the clock specified in the -clock argument.

 If at the block level, the abstract_port constraint is defined with only
virtual clock as shown below:

abstract_port -ports a -clock VCK1 -combo no

In this case, this rule reports a violation if the sequential element
reaches the block port after combinational logic.

Automatically Fixing the abstract_port Constraint of the Reported
Port

Set the autofix_abstract_port parameter to yes to modify the
abstract_port constraint in the context of SoC for the reported port,
and save the modified constraints in the
<module_name>_<instance_name>_cdc_soc_abstract_autoupdate.sgdc
file.

By default, in addition to the modified constraints, this file also contains a
1645
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
copy of all the unmodified input side abstract_port constraints present
in block-level SGDC file (abstract block). Set autofix_dump_allinputs
to no to generate only the modified constraints.

Figure 375 shows the example of using the autofix_abstract_port
parameter:

FIGURE 375. Using the autofix_abstract_port Parameter

//top.sgdc
current_design top
...
sgdc -import blk blk.sgdc

abstract_port -module blk
-scope cdc -port in1 -clock clk

//blk.sgdc

Reason for violation:

The in1 pin is driven by a
combinational logic

and
Set the autofix_abstract_port parameter
to yes.

Modified abstract_port constraint:

Specify top.sgdc to SpyGlass

The Ac_abstract_validation02
rule reports a violation if SpyGlass

The Ac_abstract_validation02
rule modifies the abstract_port constraint
for the reported in1 port

The Ac_abstract_validation02 rule
saves the modified constraint in the
<module_name>_<instance_name>_cdc_soc_abstract_autoupdate.sgdc file

abstract_port -module blk
-scope cdc -port in1
-clock clk -combo yes

cannot autofix it. Else, no violation
is reported
1646
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
num_flops Mismatch

This mismatch occurs if the value of the num_flops constraint defined in
the top-level SGDC file for a clock-pair is different from the value of the
num_flops constraint defined in the block-level SGDC file for the same
clock pair.

Parameter(s)

 validate_group_type: Default value is default. Set this parameter
to port to group the rows of The Ac_abstract_validation02 Spreadsheet
based on the ports of an abstracted block.

 autofix_abstract_port: Default value is yes. Set this parameter to no to
disable this rule from modifying the reported abstract_port
constraints in the context of SoC.

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

 abstract_validate_express: Default value is no. Set this parameter to yes
to enable validation of only user-specified block assumptions with
respect to the top-level block. Missing block assumptions are not
checked in this case.

 validate_reduce_pessimism: Default value is none. Set this parameter to
hanging_nets to ignore reporting on the hanging block ports. Other
possible values are constant, quasi_static,
ignore_domain_overconstraint, and all.

 sta_based_clock_relationship: Default value is no. Set this
parameter to yes to compute domains based on the specification of the
sg_clock_group constraint.

 dump_detailed_info: Default value is none. Set this parameter to a
supported value to enable the rule to include detailed information in the
generated rule/message-based spreadsheet.

Constraint(s)

 clock (Optional): Use this constraint to specify clock signals in your
design.
1647
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
 input (Optional): Use this constraint to specify a clock domain at input
ports.

 abstract_port (Optional): Use this constraint to define abstracted
information for block ports.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

 quasi_static (Optional): Use this constraint to specify signals whose value
is predominantly static.

 reset (Optional): Use this constraint to specify reset signals in your
design.

 qualifier (Optional): Use this constraint to specify a qualifier for
synchronizing a clock domain crossing.

 num_flops (Optional): Use this constraint to specify a minimum number
of flip-flops required in a synchronizer chain.

 sgdc -import (Mandatory): Use this constraint to specify a block-level
SGDC file to be imported.

 validation_filter_path (Optional): Use this constraint to filter data domain
violations reported during block validation.

 sg_clock_group (Optional): Use this constraint to define asynchronous
relationship between clocks.

Messages and Suggested Fix

Message 1

The following message appears for Clocks Mismatch:

Clock Mismatch: Top-level clocks <clock-name>, block-level
clock <block-level-clock-name>, block instance <inst-
name> (block: <block-name>)

Potential Issues
See Clocks Mismatch.

Consequences of Not Fixing
The consequences vary based on the following situations:
 If a top-level clock reaches to an unconstrained clock port of a block

Consequences: Some valid clock ports may get missed in the SGDC
1648
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
file of an abstract view. As a result, SpyGlass may not perform
synchronization checks for such potential clock signals.

 If a block-level clock port is not driven from a top-level clock port.
Consequences:
 If the path of top-level clock is blocked before reaching to a clock port

of a block, it may result in incorrect violations at the top-level.
 If the block port is not a clock but it is defined as a clock in the

block-level SGDC file by mistake, the block-level CDC verification
may be inaccurate.

How to Debug and Fix
To fix this violation, perform appropriate actions based on the following
cases:
 If a top-level clock reaches to an unconstrained clock port of a block

Action: Specify the clock constraint on the clock port of the reported
block instance and analyze the specification or propagation of the top-
level clock.

 If a block-level clock port is not driven from a top-level clock port.
Action: Open the schematic and perform the following actions:
 Analyze the top-level design for propagation of a clock to the block

port.
Check if the path of the top-level clock is blocked before reaching to
the clock port of the block. In this case, fix the logic accordingly.

 Check if the top-level net driving the clock port of a block is a clock,
but it is not defined in top-level SGDC file. In this case, define the
clock in the SGDC file.

 If the block port is not a clock but it is defined as a clock in
block-level SGDC file by mistake, perform the following actions:
 Remove the clock specification from block-level SGDC file.

 Re verify the block-level CDC verification.

Message 2

The following message appears for Clock Domain Mismatch:

Clock Domain Mismatch (Same block clock domain connected to

different top clock domains): Top-level clocks <top-level-
1649
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
clock-name>, block-level clocks <block-level-clock-
name>, block instance <block-instance> (block: <block-
name>)

Potential Issues
This violation appears due to Clock Domain Mismatch when any of the
following cases hold true:
 If multiple clock ports in the same domain of an abstract view are

triggered from top-level clocks of different domains
 If virtual clock specified at a block port and the clock port are in the

same domain of an abstract view and they are triggered from top-level
clocks of different domains

 If virtual clocks <virtual-clock1> and <virtual-clock2>
specified at the ports <block-port1> and <block-port2>,
respectively, are in the same domain of an abstract view and are
triggered from top-level clocks of different domains

Consequences of Not Fixing
The consequences vary based on the following situations:
 If multiple clock ports in the same domain of an abstract view are

triggered from the top-level clocks of different domains.
Consequence: SpyGlass may map the reported virtual clock to an
incorrect top-level domain. This may result in spurious synchronization
violations during the block verification stage.

 If top-level clocks of the same domain trigger block ports of a different
domain.
Consequence: It may result in spurious synchronization results during
verification phase of higher-level blocks.

How to Debug and Fix
To fix this violation, perform appropriate actions based on the following
cases:
 If multiple clock ports in the same domain of an abstract view are

triggered from the top-level clocks of different domains.
Action:
a. Analyze the specification or propagation of top-level clocks.
1650
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
b. Ensure that the specification of the same domain virtual clocks is
consistent with the specification of top-level clocks identified in the
first step.

 If top-level clocks of the same domain trigger block ports of a different
domain.
Action:
a. Verify the specification of different domains on multiple clock ports.
b. Analyze the specification or propagation of the top-level clock.

Message 3

The following message appears for Clock Domain Mismatch:

Clock Domain Mismatch (Different domain block clocks connected

to same domain top level clocks): Top-level clocks <top-
level-clock-name>, block-level clocks <block-level-
clock-name>, block instance <block-instance> (block:
<block-name>)

Potential Issues
This violation appears due to Clock Domain Mismatch when multiple clock
ports in different domains of an abstract view are triggered from the top-
level clocks of same domain.

Consequences of Not Fixing
See Consequences of Not Fixing.

How to Debug and Fix
See How to Debug and Fix.

Message 4

The following message appears for Virtual Clocks Mismatch:

Virtual Clock Mismatch: Top-level attributes (Clock: '<top-
level-clock-name>'), block-level attributes (Clock:
<virtual-clock-name>), block ports <block-port-name>,
block instance <inst-name> (block: <block-name>)

Potential Issues
1651
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
This violation appears in case of Virtual Clocks Mismatch when no top-level
domain reaches to block ports.

Consequences of Not Fixing
If you do not fix these violations, SpyGlass analysis may produce
inaccurate synchronization results during block verification, thereby
generating incorrect abstract view model.

This may further generate incorrect synchronization violations in the SoC
verification stage.

How to Debug and Fix
To fix this violation, perform the following actions:
 Analyze design connectivity between the top-level sequential element

and a block input port.
 Verify the virtual clock specified by the abstract_port or input

constraint.

Message 5

The following message appears for Case Analysis Mismatch:

Case Analysis Mismatch: Top-level value <value>, block-level
value <value>, block port <block-port-name>, block
instance <instance-name> (block: <block-name>)

Potential Issues
See Case Analysis Mismatch.

Consequences of Not Fixing
If you do not fix this violation, the following issues may arise depending
upon different situations:
 If the specified value at the block-level port is incorrect, block-level CDC

verification is inaccurate.
 If the specified value at the block-level port is correct but constant

propagation at the top-level is incorrect, it indicates a logical issue at
the top-level because of which incorrect value is propagated at the
block-level.
1652
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
How to Debug and Fix
To fix this violation, perform appropriate actions based on the following
cases:
 If block-level ports are constrained to values that do not match with

constant values propagated from the top-level
Action:
a. Check the value specification of the set_case_analysis constraint

on a block port.
b. Analyze the top-level design for propagation of a constant value to

the block port.
 If a constant value propagates from the top-level, but the port of the

abstract view is not constrained with the set_case_analysis
constraint.
Action:
a. Analyze the top-level design for propagation of a constant value to

the block port.
b. Specify the set_case_analysis constraint on the block port.

 If a block port is constrained with the set_case_analysis constraint,
but no constant value propagates from the top-level
Action:
a. Analyze the top-level design for propagation of a constant value to

the block port.
b. Remove the set_case_analysis constraint if a valid constant value

does not reach the block port.

Message 6

The following message appears for Quasi Static Mismatch:

Quasi-static Mismatch: Top-level quasi-static <value>, block-
level quasi-static <value>, block port <block-port-name>,
block instance <instance-name> (block: <block-name>)

Potential Issues
See Quasi Static Mismatch.
1653
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
Consequences of Not Fixing
If you do not fix this violation, the following issues may arise depending
upon different situations:
 If a top-level quasi-static signal reaches a block port on which a

quasi_static constraint has not been specified.
Consequence: The design may not operate in the desired mode. In
addition, the quasi_static constraints would not be propagated to
block outputs.

 If a quasi_static constraint has been specified at a block-level port,
however no top-level quasi-static signal is driving the block port.
Consequence: Some crossings in the design may not be detected.

How to Debug and Fix
To fix this violation, perform appropriate actions based on the following
cases:
 If a top-level quasi-static signal reaches a block port on which a

quasi_static constraint has not been specified.
Action:
a. Specify quasi_static constraint on a block port, or
b. Analyze the specification or propagation of the top-level quasi-static

signal to the block port.
 If a quasi_static constraint has been specified at a block-level port,

however no top-level quasi-static signal is driving the block port.
Action:
a. If the block quasi-static specification is correct, add the missing

quasi_static at the top-level, else
b. Remove the quasi_static constraint from the block port.

Message 7

The following message appears for Data Path Domain Mismatch:

Data Path Domain Mismatch: Top-level clocks <clock-name>,
1654
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
block-level clocks <clock-name>, block port <block-port-
name>, block instance <instance-name> (block: <block-
name>)

Potential Issues
See Data Path Domain Mismatch.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass may report incorrect
synchronization violations during verification phase of the hierarchical
verification flow.

How to Debug and Fix
To fix this violation, perform the following steps:
1. Analyze the design connectivity between the top-level sequential

element and the block input port.
2. Check if the clock domain specified by the abstract_port or the input

constraint is consistent with the clock domains driving sequential
elements identified in the first step.

3. Check SGDC (abstract_port) back-annotation for block
abstract_port for which the violation was reported and back-
annotation of top level sequential element to indicate the differing clock.

Message 8

The following message appears for Reset Mismatch:

Reset Mismatch: Top-level resets <reset-name> (Active low
asynchronous reset), block-level reset <block-reset-name>
(Active low synchronous reset), block instance <instance-
name> (block: <block-name>)

Potential Issues
See Reset Mismatch.
1655
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
Consequences of Not Fixing
If you do not fix this violation, the following issues may arise depending
upon different situations:
 If a top-level reset reaches a block port for which no reset constraint is

specified.
Consequence: Some potential resets may not propagate during the
verification of the abstract view. This may result in the following:
 The block may not achieve its initial state.

 In the absence of synchronous resets, SpyGlass may report violations
related with unsynchronized clock domains.

 If the reset constraint is specified for a block-level port, but no top-level
reset drives that block-level port.
Consequence: The reported port of an abstract view may not be
considered as a valid reset signal. This may alter the initial state of the
block during verification.

 If an asynchronous reset specified at a top-level reaches to a
synchronous reset port of an abstract view or vice-versa.
Consequence:
 Incorrect reset analysis may happen at the block-level. That is, the

initial state of the block may get altered during its verification.
 SpyGlass may generate incorrect clock domain violations during

block verification if synchronous resets are not properly specified.
 If the active value of the top-level reset is different from the active value

of the block-level reset port driven by that top-level reset.
Consequence:
 It may result in an incorrect initial state of an abstract view during

verification.
 It may generate spurious reset simulation results for the abstract

view.

How to Debug and Fix
To fix this violation, perform appropriate actions based on the following
1656
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
cases:
 If a top-level reset reaches a block port for which no reset constraint is

specified.
Action: Perform the following steps:
a. Specify the reset constraint on the reported block port.
b. Analyze the specification or propagation of the top-level reset to the

block.
 If the reset constraint is specified for a block-level port, but no top-

level reset drives that block-level port.
Action: Perform the following actions:
a. Remove the reset constraint from the reported block port.
b. Analyze the specification or propagation of a top-level reset to the

block port.
 If an asynchronous reset specified at a top-level reaches to a

synchronous reset port of an abstract view or vice-versa.
Action:
a. Specify an appropriate reset constraint on the block-level port.
b. Analyze the specification or propagation of the top-level reset to a

block.
 If the active value of the top-level reset is different from the active value

of the block-level reset port driven by that top-level reset.
Action:
a. Check the value specified by the reset constraint on the block port.
b. Assign a proper value in the reset constraint.
c. Verify that the top-level reset of the block port has the same active

value identified in step 2.

Message 9

The following message appears for Qualifier Mismatch:

Qualifier Mismatch: Top-level qualifier (sync type: <sync-
type> from: <clock-name> to: <clock-name>), block-level
qualifier (sync type: <sync-type> from: <clock-name> to:
<clock-name>), block port <block-port-name>, block
1657
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
instance <instance-name> (block: <block-name>)

Potential Issues
See Qualifier Mismatch.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass may report incorrect
synchronization violations during the block verification stage.

How to Debug and Fix
To fix this violation, perform appropriate actions based on the following
cases:
 If clocks specified by the -from_clk and -to_clk arguments of the

qualifier constraint for an abstract view exist in the same top-level
domain.
Action: Perform the following actions:
 Analyze the clocks specified in the -from_clk and -to_clk

arguments of the qualifier constraint.

 Analyze specification or propagation of top-level clocks.

 If a synchronizer does not reach to an input port of a block for which the
-sync argument of the abstract_port constraint is specified.
Action: Perform the following actions:
 Analyze the fan-in cone of an input port for the presence of a

synchronizer.
 Remove the -sync argument from the abstract_port constraint.

Message 10

The following message appears for num_flops Mismatch:

Num-flops Mismatch: Top-level num_flop (value: <value>,
from_clk: <clock-name>, to_clk: <clock-name>), block-level
num_flops (value: <value>, from_clk: <clock-name>, to_clk:
1658
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
<clock-name>), block instance <value>, from_clk: <clock-
name>, to_clk: <instance-name> (block: <value>, from_clk:
<clock-name>, to_clk: <block-name>)

Potential Issues
See num_flops Mismatch.

Consequences of Not Fixing
If you do not fix this violation, the following may occur depending upon
different situations:
 If the num_flops constraint is incorrectly specified in the block-level

SGDC file, it may result in inaccurate block-level CDC verification.
 If domains of top-level clocks are not specified correctly, it may result in

inaccurate top-level CDC verification.

How to Debug and Fix
To fix this violation, perform the following actions:
 Analyze the clock specification in the -from_clk and -to_clk

arguments of the num_flops constraint.

 Analyze the specification or propagation of top-level clocks.

Example Code and/or Schematic

Consider the following files specified for SpyGlass analysis:
1659
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
For the above example, the Ac_abstract_validation02 rule reports various
types of mismatches between the abstract block and the top-level design.

module test(in1,clk1, clk2, clk3, in2,in3, out,sel);
input clk1,clk2,sel,clk3;
input [3:0] in1,in2,in3;
output [3:0] out;
reg [3:0] temp,syn1,syn2, temp1;
wire [3:0] sync2_tmp;
assign clk_1 = clk1 & clk2;
wire bb_out;
always @(posedge clk_1)
 temp = in3;
 always @(posedge clk1)
 temp1 = in2;
 always @(posedge clk2)
 begin
 syn2<=temp;
 end
 assign sync2_tmp = syn2 & temp1 & temp;
BB b1(.clk1(clk1),.clk2(clk2),.clk3(clk_1),.in3(sync2_tmp),.in2(sync2_tmp),

.out(out), .out1(out));
BB b2(.clk1(clk1),.clk2(clk2),.clk3(clk_1),.in3(sync2_tmp),.out(out),
.out1(out));
endmodule
module BB(clk1,clk2,clk3,in1,out,out1, in3, in2);
input clk1,clk2,in1,clk3;
input [3:0] in3, in2;
output [3:0] out;
output out1;
assign out1 = in3;

endmodule

// test.v

current_design test
clock -name clk1 -domain domain1
clock -name clk2 -domain domain2
sgdc -import BB block.sgdc

// test.sgdc

current_design BB
clock -name clk1 -domain domain1
clock -name clk2 -domain domain2
set_case_analysis -name in3 -value 0
set_case_analysis -name in2 -value 0
abstract_port -module BB -ports in3 -clock clk1
abstract_port -module BB -ports in3 -clock clk2
abstract_port -module BB -ports in3 -clock clk3
abstract_port -module BB -ports in2 -clock clk1
abstract_port -module BB -ports in2 -clock clk3
abstract_port -module BB -ports in2 -clock clk2

// block.sgdc
1660
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
To view the details of all the mismatches, double-click on the violation of
this rule to open The Ac_abstract_validation02 Spreadsheet.

Reports and Related Files

The Ac_abstract_validation02 Spreadsheet
1661
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
SGDC_abstract_mapping01
Reports clock mapping of an abstract view

When to Use

Use this rule during the hierarchical CDC verification flow.

Description

The SGDC_abstract_mapping01 rule reports the mapping between
block-level and top-level clocks.

The clocks can be real or virtual clocks.

Parameter(s)

report_top_block_info: Default value is yes. Set this parameter to no to stop
reporting of information about the clock domains and tags in the clock
mapping spreadsheet.

Constraint(s)

None

Messages and Suggested Fix

The following message appears:

[INFO] Clock mapping of instance '<inst-name>' of block
'<block-name>'

Potential Issues
Not applicable

Consequences of Not Fixing
Not applicable

How to Debug and Fix
Check the <block-name>_<instance-name>_ClockMapping.csv file to see the
1662
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
mapping between the block-level and top-level clocks.

Example Code and/or Schematic

Consider the following files specified for SpyGlass analysis:

For the above example, the following spreadsheet is generated showing
mapping between the clocks of the B1 instance with the top-level clocks:

// test.v
1663
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
FIGURE 376. Spreadsheet Generated by the SGDC_abstract_mapping01 Rule

Default Severity Label

Info

Rule Group

SOC_SGDCVALIDATION

Reports and Related Files

 <block-name>_<instance-name>_ClockMapping.csv
This spreadsheet shows the mapping between the block-level and top-
level clocks. Figure 376 shows this spreadsheet.
The following table describes the columns of this spreadsheet:

Column Name Description
Block Clock Specifies the name of the clock on the block
Block Clock Domain Specifies the clock domain name on the block
Block Clock Tag Specifies the clock tag name on the block
Top Clock(s) Specifies the top-level clocks mapped to the block-level

clock
Top Clock Domain(s) Specifies the top-level clock domain name(s)
Top Clock Tag(s) Specifies the top-level clock tag name(s)
Top-level internal
domain tag

Specifies a unique tag number generated for the
top-level clock.
For details, see Using the Clock Domain Tag.
1664
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
1665
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
SGDC_clock_validation01
Reports unconstrained clock ports of an abstract view

When to Use

Use this rule during the hierarchical CDC verification flow to validate
user-specified constraints for an abstract block in the context of a
higher-level hierarchy.

Prerequisites

To run this rule, specify the set_option sgdc_validate yes command
in the project file.

Description

The SGDC_clock_validation01 rule reports a violation if a top-level clock
reaches to a clock port of a block, but that clock port is not constrained by
the clock constraint.

Parameter(s)

None

Constraint(s)

None

Messages and Suggested Fix

The following message appears when the top-level clock
<top-level-clock> reaches to the unconstrained clock port
<clock-port> of the block instance <inst-name>:

[ERROR] Top-level clock '<top-level-clock>' reaches to
unconstrained port '<clock-port>' of block instance
'<inst-name>' (block: '<abstract-view-name>')

Potential Issues
This violation appears if the design contains an unconstrained clock port
present on a block instance, and a top-level clock reaches to that
unconstrained clock port.
1666
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
Consequences of Not Fixing
If you do not fix this violation, some valid clock ports may get missed in the
SGDC file of an abstract view. As a result, SpyGlass may not perform
synchronization checks for such potential clock signals.

How to Debug and Fix
To fix this violation, specify the clock constraint on the clock port of the
reported block instance and analyze the specification or propagation of the
top-level clock.

Example Code and/or Schematic

Consider the following schematic of a design:

FIGURE 377. Schematic of the SGDC_clock_validation01 Rule Violation

In the above example, the SUB block is the abstract view that has the clock
port clk. However, this clock port is not constrained by the clock
constraint.

In this case, the SGDC_clock_validation01 rule reports a violation because
the top-level clock clk1 reaches the clock port clk, which is
unconstrained.

To fix this violation, specify the clock constraint for the clk clock port.
1667
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
Default Severity Label

Error

Rule Group

SOC_SGDCVALIDATION

Reports and Related Files

No related files and reports
1668
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
SGDC_clock_domain_tag
Reports clock constraints whose -tag and -domain fields have the
same name

When to Use

Use this rule to validate that the same name is not used for the -tag and -
domain fields of the clock constraint.

Description

The SGDC_clock_domain_tag rule reports a violation if the same name is
used for the -tag and -domain fields of the clock constraint.

Parameter(s)

None

Constraint(s)

clock (Optional): Use this constraint to specify clock signals in your design.

Messages and Suggested Fix

The following message appears when the clock constraint has the same
name in the -tag and -domain fields:

[WARNING] Constraint 'clock': Same name '<string>' used in '-
tag' and '-domain' fields

Potential Issues

This violation appears if the clock constraint has the same name for the -
tag and -domain fields of the constraint.

Consequences of Not Fixing
If you do not fix this violation, CDC analysis might be inaccurate.

How to Debug and Fix

To fix this violation, ensure that the -tag and the -domain fields of the
clock constraint have different names.
1669
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
Example Code and/or Schematic

Consider the following code:

current_design duname

clock -name top.clk1
-tag CK1
-domain CK1

In the above scenario, the SGDC_clock_domain_tag rule reports a
violation.

Default Severity Label

WARNING

Rule Group

SETUP

Reports and Related Files

No related file
1670
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
SGDC_clock_validation02
Reports clock ports of an abstract view, which are not driven from
top-level clocks

When to Use

Use this rule during the hierarchical CDC verification flow to validate
user-specified constraints for an abstract block in the context of a
higher-level hierarchy.

Prerequisites

To run this rule, specify the set_option sgdc_validate yes command
in the project file.

Description

The SGDC_clock_validation02 rule reports a violation when a block-level
clock port is not driven from a top-level clock port.

This can occur when the clock constraint is defined on a block port, but a
top-level clock does not reach that block port.

Parameter(s)

None

Constraint(s)

clock (Optional): Use this constraint to specify clock signals in your design.

Messages and Suggested Fix

The following message appears when a clock specified for a block instance
is not propagated from the top-level clock:

[ERROR] Clock '<clock-name>' specified for block instance
'<inst-name>' (block: '<block-name>') is not propagated from
top-level clock

Details of the arguments of the above violation message are described in
the following table:
1671
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
Potential Issues
This violation appears if your design contains a block-level clock port on
which the clock constraint is applied, but the top-level clock does not reach
that block port.

Consequences of Not Fixing
If you do not fix this violation, the following may occur depending upon
different cases:
 If the path of top-level clock is blocked before reaching to a clock port of

a block, it may result in incorrect violations at the top-level.
 If the block port is not a clock but it is defined as a clock in the

block-level SGDC file by mistake, the block-level CDC verification may
be inaccurate.

How to Debug and Fix
To fix this violation, open the schematic of the violation of the
SGDC_clock_validation02 rule, and perform the following actions:
 Analyze the top-level design for propagation of a clock to the block port.

Check if the path of the top-level clock is blocked before reaching to the
clock port of the block. In this case, fix the logic accordingly.

 Check if the top-level net driving the clock port of a block is a clock, but
it is not defined in top-level SGDC file. In this case, define the clock in
the SGDC file.

 If the block port is not a clock but it is defined as a clock in block-level
SGDC file by mistake, perform the following actions:
 Remove the clock specification from block-level SGDC file.

 Re-verify the block-level CDC verification.

Argument Description
<clock-name> Specifies the abstract-view port that is constrained as a

clock
<inst-name> Specifies the instance name of an abstract view
<block-name> Specifies the abstract-view name
1672
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
Example Code and/or Schematic

Consider the following schematic of a design:

FIGURE 378. Schematic of the SGDC_clock_validation02 Rule Violation

In the above example, the clock port clk of the block is driven by the
top-level port d1, which is not defined as a clock in the top-level SGDC file.

As a result, the SGDC_clock_validation02 rule reports a violation.

Default Severity Label

Error

Rule Group

SOC_SGDCVALIDATION

Reports and Related Files

No report or related file

// SGDC file for the block module,submod

current_design submod
clock -name clk -domain d1

// Top-level SGDC file defining the top-level

current_design top
clock -name clk1 -domain d1
clock -name clk2 -domain d2

// clocks clk1 and clk2
1673
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
SGDC_clock_domain_validation01
Reports same domain clock ports of an abstract view driven from
different top-level clock domains

When to Use

Use this rule during the hierarchical CDC verification flow to validate
user-specified constraints for an abstract block in the context of a
higher-level hierarchy.

Prerequisites

To run this rule, specify the set_option sgdc_validate yes command
in the project file.

Description

The SGDC_clock_domain_validation01 rule reports a violation if multiple
clock ports in the same domain of an abstract view are triggered from the
top-level clocks of different domains.

Message Details

Message 1

The following message appears if multiple clock ports in the same domain
of an abstract view are triggered from top-level clocks of different
domains:

[SClkDV1_1] [ERROR] Top-level clocks '<top-clock1>' and '<top-
clock2>' of different domains are connected to same domain
clock ports '<clock-port1>' and '<clock-port2>'(block level
domain: '<domain-name>') of block instance '<inst-name>'
(block: '<block-name>')

Potential Issues
This violation appears if the top-level clocks from different domains are
connected with the same domain clock ports of an abstract view.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass may report spurious
1674
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
synchronization violations during the block verification stage.

How to Debug and Fix
To fix this violation, perform following steps:
1. Analyze the specification or propagation of top-level clocks.
2. Ensure that the specification of the same domain on multiple clock ports

is consistent with the specification of top-level clocks identified in the
first step.

Message 2

The following message appears if the virtual clock <virtual-clock>
specified at the port <block-port> and the clock port that are in the
same domain of an abstract view are triggered from top-level clocks of
different domains:

[SClkDV1_2] [ERROR] Top level clocks '<top-clock1>' and '<top-
clock2>' of different domains are connected to same domain
clocks '<virtual-clock>'(at '<block-port>') and '<clock-
port>'(block level domain: '<domain-name>') of block instance
'<inst-name>' (block: '<block-name>')

Potential Issues
This violation appears if the top-level clocks from different domains are
connected with the same domain clock ports of an abstract view.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass may map the reported virtual clock
to an incorrect top-level domain. This may result in spurious
synchronization violations during the block verification stage.

How to Debug and Fix
To fix this violation, perform following steps:
1. Analyze the specification or propagation of top-level clocks.
1675
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
2. Ensure that the specification of the same domain virtual clocks is
consistent with the specification of top-level clocks identified in the first
step.

Message 3

The following message appears if the virtual clocks <virtual-clock1>
and <virtual-clock2> specified at the ports <block-port1> and
<block-port2> that are in the same domain of an abstract view are
triggered from top-level clocks of different domains:

[SClkDV1_3] [ERROR] Top level clocks '<top-clock1>' and '<top-
clock2>' of different domains are connected to same domain
clocks '<virtual-clock1>'(at '<block-port1>') and '<virtual-
clock2>'(at '<block-port2>') (block level domain: '<domain-
name>') of block instance <inst-name>' (block: '<block-name>')

Potential Issues
This violation appears if the top-level clocks from different domains are
connected with the same domain virtual clocks of an abstract view.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass may map the reported virtual
clocks to incorrect top-level domains. This may result in spurious
synchronization violations during the block verification stage.

How to Debug and Fix
To fix this violation, perform following steps:
1. Analyze the specification or propagation of top-level clocks.
2. Ensure that the specification of the same domain on multiple virtual

clocks is consistent with the specification of top-level clocks identified in
the first step.

Example Code and/or Schematic

Consider the following schematic of a violation reported by this rule:
1676
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
FIGURE 379. Schematic of the SGDC_clock_domain_validation01 Rule Violation

In the above schematic, the clk1 and clk2 clocks from different domains
are connected with the same domain clock ports of the abstract view B1.

As a result, the SGDC_clock_domain_validation01 rule reports a violation.

Default Severity Label

Error

Rule Group

SOC_SGDCVALIDATION

Reports and Related Files

No report or related file

// block.sgdc
clock -name clk1 -domain d1
clock -name clk2 -domain d1

// top.sgdc
clock -name clk1 -domain d1
clock -name clk2 -domain d2
1677
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
SGDC_clock_domain_validation02
Reports different domain clock ports of an abstract view being
driven from the same top-level clock domain

When to Use

Use this rule during the hierarchical CDC verification flow to validate
user-specified constraints for an abstract block in the context of a
higher-level hierarchy.

Prerequisites

Specify the following information before running this rule:
 Specify the set_option sgdc_validate yes command in the

project file.
 Specify the clock constraint.

Description

The SGDC_clock_domain_validation02 rule reports a violation if top-level
clocks of the same domain trigger block ports of a different domain.

Rule Exception

The SGDC_clock_domain_validation02 rule does not report a violation for
virtual clocks.

Parameter(s)

None

Constraint(s)

clock (Mandatory): Use this constraint to specify clock signals in a design.

Messages and Suggested Fix

The following message appears if top-level clocks of the same domain
trigger different domain block ports:

[SClkDV2_1] [WARNING] Top-level clock '<clock-name>' of same
domain is connected to different domain clock ports '<clock-
port1>' and '<clock-port2>' (block level domain: '<domain1>'
1678
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
'<domain2>') of block instance '<inst-name>' (block: '<block-
name>')

Potential Issues
This violation appears if your design contains top-level clocks of the same
domain, and these clocks are connected to different domain clock ports.

Consequences of Not Fixing
If you do not fix this violation, it may result in spurious synchronization
results during verification phase of higher-level blocks.

How to Debug and Fix
To debug this violation, perform the following steps:
 Verify the specification of different domains on multiple clock ports.

 Analyze the specification or propagation of the top-level clock.

Example Code and/or Schematic

Consider the following figure:

FIGURE 380. Schematic of the SGDC_clock_domain_validation02 Rule Violation

In the above example, the top-level clocks of the same domain trigger
different domain block ports.

//block.sgdc

clock -name clk1 -domain d1
clock -name clk2 -domain d2

//top.sgdc
clock -name clk1 -domain d1
clock -name clk2 -domain d1
1679
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
Therefore, the SGDC_clock_domain_validation02 rule reports a violation.

Default Severity Label

Warning

Rule Group

SOC_SGDCVALIDATION

Reports and Related Files

No report or related file
1680
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
SGDC_set_case_analysis_validation01
Reports a violation if the constant value simulated from the
top-level does not match with the constant value specified in a
block-level constraint file

When to Use

Use this rule during the hierarchical CDC verification flow to validate
user-specified constraints for an abstract block in the context of a
higher-level hierarchy.

Prerequisites

Specify the following details before running this rule:
 Specify the set_option sgdc_validate yes command in the

project file.
 Specify the set_case_analysis constraint.

Description

The SGDC_set_case_analysis_validation01 rule reports a violation if there
is a mismatch between the following values:
 Constant value specified by the set_case_analysis constraint for a

block-level port
 Constant value propagated from the top-level

The constant is propagated across flip-flops or other sequential cells only if
you specify the set_option enable_const_prop_thru_seq yes
command in the project file.

Parameter(s)

None

Constraint(s)

set_case_analysis (Mandatory): Use this constraint to specify case analysis
conditions.

Messages and Suggested Fix

The following message appears when a constant value simulated from the
1681
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
top-level does not match with the constant value specified in a block-level
constraint file:

[ERROR] Simulated value at port '<port-name>' of instance
'<inst-name>' (block: '<block-name>') is '<value1>' but
specified value in block level constraint file is '<value2>'

Potential Issues
This violation appears if block-level ports are constrained to values that do
not match with constant values propagated from the top-level.

Consequences of Not Fixing
If you do not fix this violation, the following issues may arise depending
upon different situations:
 If the specified value at the block-level port is incorrect, block-level CDC

verification is inaccurate.
 If the specified value at the block-level port is correct but constant

propagation at the top-level is incorrect, it indicates a logical issue at
the top-level because of which incorrect value is propagated at the
block-level.

How to Debug and Fix
To fix this violation, perform the following steps:
1. Check the value specification of the set_case_analysis constraint on a

block port.
2. Analyze the top-level design for propagation of a constant value to the

block port.

Example Code and/or Schematic

Consider the following schematic of a violation reported by this rule:
1682
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
FIGURE 381. Schematic of the SGDC_set_case_analysis_validation01 Rule
Violation

In the above example, the SGDC_set_case_analysis_validation01 rule
reports a violation because at the top-level, the constant value 1 is
propagated at the net connected to the blk_test_en block pin, whereas
in the block-level SGDC file, the value specified is 0.

To fix this violation, modify the set_case_analysis constraint specification of
the block-level SGDC file to the following:

set_case_analysis -name block.blk_test_en -value 1

Default Severity Label

Error

Rule Group

SOC_SGDCVALIDATION

current_design top
set_case_analysis -name top.test_en -value 0

// Block-level SGDC file

current_design block
set_case_analysis -name block.blk_test_en -value 0

// Top-level SGDC file
1683
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
Reports and Related Files

No report or related file
1684
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
SGDC_set_case_analysis_validation02
Reports missing constants between top and block

When to Use

Use this rule during the hierarchical CDC verification flow to validate
user-specified constraints for an abstract block in the context of a
higher-level hierarchy.

Prerequisites

Specify the following details before running this rule:
 Specify the set_option sgdc_validate yes command in the

project file.
 Specify the set_case_analysis constraint.

Description

The SGDC_set_case_analysis_validation02 rule reports a violation in the
following cases:
 If a simulated value reaches a top-level net connected to a block-level

port, but no set_case_analysis constraint is specified on the block-level
port

 If a simulated value does not reach to a top-level net connected to a
block-level port, but the set_case_analysis constraint is specified on the
block-level port

Parameter(s)

None

Constraint(s)

set_case_analysis (Mandatory): Use this constraint to specify case analysis
conditions.

Messages and Suggested Fix

Message 1

The following message appears if a simulated value reaches a top-level net
connected to a block-level port, but no set_case_analysis constraint is
1685
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
specified on the block-level port:

[SScaV2_1] [ERROR] Simulated value '<value>' reaches to port
'<port-name>' of block instance '<inst-name>' (block: '<block-
name>') however no set_case_analysis is specified in block
level constraint file

Potential Issues
This violation appears if a constant value propagates from the top-level,
but the abstract view port is not constrained with the set_case_analysis
constraint.

Consequences of Not Fixing
If you do not fix this violation, the design may not operate in the desired
mode.

How to Debug and Fix
To fix this violation, perform the following steps:
 Analyze the top-level design for propagation of a constant value to the

block port.
 Specify the set_case_analysis constraint on the block port.

Message 2

The following message appears if a simulated value does not reach a
top-level net connected to a block-level port, but the set_case_analysis
constraint is specified on the block-level port:

[SScaV2_2] [ERROR] Simulated value does not reach to port
'<port-name>' of block instance '<inst-name>' (block: '<block-
name>') where as set_case_analysis defined in block-level
constraint file

Potential Issues
This violation appears if a block port is constrained with the
set_case_analysis constraint, but no constant value propagates from the
1686
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
top-level.

Consequences of Not Fixing
If you do not fix this violation, the reported ports can block or enable
propagation of unexpected signals across the abstract view.

How to Debug and Fix
To fix this violation, perform the following steps:
 Analyze the top-level design for propagation of a constant value to the

block port.
 Remove the set_case_analysis constraint if a valid constant value does

not reach the block port.

Example Code and/or Schematic

Consider the following schematic of a violation reported by this rule:

FIGURE 382. Schematic of the SGDC_set_case_analysis_validation02 Rule
Violation

In the top-level SGDC file, the set_case_analysis constraint is not defined for
the test_en signal.

In this case, the SGDC_set_case_analysis_validation02 rule reports a
violation because at the top-level, no constant value propagates at the net
connected to the blk_test_en block pin, whereas the constant value is
specified in the block-level SGDC file.

current_design block
set_case_analysis -name block.blk_test_en -value 0

// SGDC file for the block module
1687
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
Default Severity Label

Error

Rule Group

SOC_SGDCVALIDATION

Reports and Related Files

No report or related file
1688
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
SGDC_set_case_analysis_validation03
Reports top module output ports on which user defined
set_case_analysis value differs from value obtain from propagation

When to Use

If you have specified the set_case_analysis constraint on some output ports
of the top design/module, use this rule to check if any or different
constant/set_case_analysis value is propagated to those output ports.

Prerequisites

Specify the set_case_analysis constraint on any output port.

Description

The SGDC_set_case_analysis_validation03 rule reports a violation if:
 The constant value that is propagated (through simulation) to any

output port of the top module differs from the value which is defined on
that output port.

 Any constant value is not propagated to the output port but the
set_case_analysis constraint is defined on that port.

Parameter(s)

None

Constraint(s)

set_case_analysis (Mandatory): Use this constraint to specify case analysis
conditions.

Messages and Suggested Fix

The following message appears if the constant value propagated to any
output port of the top module <module_name> differs from the value
defined on that output port:

[Warning] Simulated value at output ports of top module
<module-name> differs with specified values in constraint file.

Potential Issues
1689
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
This violation appears if the output port is constrained with the
set_case_analysis constraint but the constant signal received from the fanin
cone is different or no constant value is received on that port.

Consequences of Not Fixing
If you do not fix this violation, the constrained port will pass incorrect
information to other interacting modules when these modules are used in
the SoC level.

How to Debug and Fix
To debug and fix this violation, perform the following steps:
 Identify the problematic output ports by referring the rule based

spreadsheet for the top module.
 If any set_case_analysis value is not propagated to an output port on

which set_case_analysis constraint is defined, remove the
set_case_analysis constraint from that port. Or, set the value of the
specified set_case_analysis constraint so that it equals to the simulated
value.

 If the specified constraint is correct, verify the fanin cone for incorrect
propagation of the constraint.

Example Code and/or Schematic

Consider the following schematic:
1690
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
FIGURE 383. Schematic of the SGDC_set_case_analysis_validation03 Rule
Violation

In the above example, the defined value of the Out1 output port is 1.
However, the simulated/propagated value is zero. Therefore for this top
module, the SGDC_set_case_analysis_validation03 rule reports a violation.

Default Severity Label

Warning

Rule Group

None

Reports and Related Files

SGDC_set_case_analysis_validation03.csv
1691
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
SGDC_reset_filter_path_validation01
Reports block-level reset_filter_path constraints which do not have
a matching top-level reset_filter_path constraint

When to Use

Use this rule during the hierarchical CDC verification flow to validate
user-specified constraints for an abstract block in the context of a higher-
level hierarchy.

Prerequisites

Specify the following information before running this rule:
 Specify the reset_filter_path constraint

 Specify the clock constraint for objects given in -from_clock/-
to_clock/-clock arguments of the reset_filter_path constraint

 Specify the reset constraint for objects given in -from_rst/-to_rst
arguments of the reset_filter_path constraint

Description

The SGDC_cdc_false_path_validation01 rule reports a violation if the
reset_filter_path constraint specified on an abstracted block does not have
an equivalent reset_filter_path constraint at the top level. the rule matches
the -from_rst, -to_rst, -from_clock,
-to_clock/-clock, and -type arguments.

Parameter(s)

None

Constraint(s)

 reset_filter_path (Mandatory): Use this constraint to specify reset paths
so that the reset domain crossings across these paths are ignored from
SpyGlass analysis.

 clock (Optional): Use this constraint to specify clock signals in a design.

 reset (Optional): Use this constraint to specify reset signals in a design.
1692
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
Messages and Suggested Fix

The rule reports the following message when the reset_filter_path
constraint given in an SGDC file of an abstract view does not have an
equivalent reset_filter_path constraint at the top level.

[ERROR] For block instance '<block-inst>' (block: <block
name>), Constraint reset_filter_path specified at the block
level with fields -from_rst '<from-reset>', -to_rst '<to-
reset>', -from_clock '<from-clock>', -to_clock/-clock '<to-
clock/clock>' and -type '<type>' has no equivalent constraint
at the top level

Potential Issues
This violation appears if the reset_filter_path constraint specified in an SGDC
file of an abstract view does not have an equivalent reset_filter_path
constraint at the top level.

Consequences of Not Fixing
If you do not fix this violation, ignored paths by reset_filter_path are
inconsistent between top and abstracted block. This may result in an
inconsistency in the violations reported for the top and the abstracted block
by the Ar_resetcross01 and Ar_sync_group rules.

How to Debug and Fix
To fix this violation, first analyze the following:
 The specification of reset_filter_path constraint in block level as well as

top level.
 The specification or propagation of top-level clocks.

 The specification or propagation of top-level resets.

Next, if the block-level constraints are incorrect, specify the correct block-
level constraints and run block-level verification again. If the top-level
constraints are incorrect with respect to the block, specify the correct top-
level constraints and run top-level verification again.
1693
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
Example Code and/or Schematic

Consider the following schematic:

FIGURE 384.

In addition, consider the following SGDC files:

//Block-level SGDC file

current_design "RFP"
clock -name blk_clk1 -domain clk1
clock -name blk_clk2 -domain clk2
reset -name blk_rst1 -value 0
reset -name blk_rst2 -value 0
reset_filter_path -from_rst blk_rst1 -to_rst blk_rst2 -
from_clock blk_clk1 -to_clock blk_clk2 -type rdc

//Top-level SGDC file

current_design top
clock -name clk1
clock -name clk2
reset -name rst1 -value 0
reset -name rst2 -value 0
sgdc -import RFP RFP.sgdc
1694
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
In the above example, only one reset_filter_path constraint is specified in
the block-level SGDC file. However, no matching reset_filter_path constraint
is specified in the top-level SGDC file.

Therefore, the SGDC_reset_filter_path_validation01 rule reports a
violation in this case.

Default Severity Label

Error

Rule Group

None

Reports and Related Files

No report or related file
1695
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
SGDC_reset_validation01
Reports unconstrained reset ports of an abstract view

When to Use

Use this rule during the hierarchical CDC verification flow to validate
user-specified constraints for an abstract block in the context of a
higher-level hierarchy.

Prerequisites

Specify the set_option sgdc_validate yes command in the project
file.

Description

The SGDC_reset_validation01 rule reports a violation if a top-level reset
reaches a block port for which no reset constraint is specified.

Parameter(s)

None

Constraint(s)

None

Messages and Suggested Fix

The following message appears if the top-level reset <reset-name>
propagates to the block reset port <port-name> that is not constrained
by the reset constraint:

[ERROR] Top-level reset '<reset-name>' reaches to unconstrained
port '<port-name>' of block instance '<inst-name>' (block:
'<block-name>')

Potential Issues
This violation appears if a top-level reset net is connected to an
abstract-view port on which no reset constraint is specified.
1696
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
Consequences of Not Fixing
If you do not fix this violation, some potential resets may not propagate
during abstract-view verification.

This may result in the following:
 The block may not achieve its initial state.

 In the absence of synchronous resets, SpyGlass may report violations
related with unsynchronized clock domains.

How to Debug and Fix
To debug and fix this violation, perform the following steps:
 Specify the reset constraint on the reported block port.

 Analyze the specification or propagation of the top-level reset to the
block.

Example Code and/or Schematic

Consider the abstract view B1 shown in the following schematic:
1697
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
FIGURE 385. Schematic of the SGDC_reset_validation01 Rule Violation

In the above example, the top-level reset rst reaches the srst block port
on which no reset constraint is defined.

As a result, the SGDC_reset_validation01 rule reports a violation.

Default Severity Label

Error

Rule Group

SOC_SGDCVALIDATION

//top.sgdc
Reset -name rst -async
1698
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
Reports and Related Files

No report or related file
1699
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
SGDC_reset_validation02
Reports abstract-view reset ports that are not driven by top-level
resets

When to Use

Use this rule during the hierarchical CDC verification flow to validate
user-specified constraints for an abstract block in the context of a
higher-level hierarchy.

Prerequisites

Specify the following information before running this rule:
 Specify the set_option sgdc_validate yes command in the

project file.
 Specify the reset constraint.

Description

The SGDC_reset_validation02 rule reports a violation if the reset constraint
is specified for a block-level port, but no top-level reset drives that
block-level port.

Parameter(s)

None

Constraint(s)

reset (Mandatory): Use this constraint to specify reset signals in your
design.

Messages and Suggested Fix

The following message appears if the block-level port on which the reset
constraint is specified is not driven by a top-level reset port:

[ERROR] Reset '<reset-name>' specified for block instance
'<block-instance name> (block: <block-name>) is not propagated
from top-level reset

Potential Issues
1700
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
This violation appears if the port of an abstract view is constrained by the
reset constraint, but no top-level reset drives that port.

Consequences of Not Fixing
If you do not fix this violation, the reported port of an abstract view may
not be considered as a valid reset signal. This may alter the initial state of
the block during verification.

How to Debug and Fix
To debug and fix this violation, perform the following actions:
 Remove the reset constraint from the reported block port.

 Analyze the specification or propagation of a top-level reset to the block
port.

Example Code and/or Schematic

Consider the following schematic of a violation reported by this rule:
1701
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
FIGURE 386. Schematic of the SGDC_reset_validation02 Rule Violation

In the above example, the reset clear of the MOD1 block is not driven by
any top-level reset.

Therefore, the SGDC_reset_validation02 rule reports a violation.

Default Severity Label

Error

Rule Group

SOC_SGDCVALIDATION

Reports and Related Files

No report or related file

current_design submod
clock -name clk1
clock -name clk2
reset -name clear

// submod.sgdc
1702
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
SGDC_reset_validation03
Reports conflicting top and block level asynchronous and
synchronous reset types

When to Use

Use this rule during the hierarchical CDC verification flow to validate
user-specified constraints for an abstract block in the context of a
higher-level hierarchy.

Prerequisites

To run this rule, specify the set_option sgdc_validate yes command
in the project file.

Description

The SGDC_reset_validation03 rule reports a violation if an asynchronous
reset specified at a top-level reaches to a synchronous reset port of an
abstract view or vice-versa.

Messages and Suggested Fix

Message 1

The following message appears if the top-level asynchronous reset
<reset-name> propagates to a synchronous block-level port:

[SRstV3_1] [ERROR] Top-level asynchronous reset '<reset-name>'
reaches to the net '<net-name>' connected to synchronous reset
pin '<port-name>' of block instance '<block-instance name>
(block: <block-name>)'

Potential Issues
This violation appears if your design contains a top-level asynchronous
reset that reaches to a synchronous reset port of an abstract view, or vice-
versa.

Consequences of Not Fixing
If you do not fix this violation, the following may happen:
1703
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
 Incorrect reset analysis may happen at the block-level. That is, the
initial state of the block may get altered during its verification.

 SpyGlass may generate incorrect clock domain violations during block
verification if synchronous resets are not properly specified.

How to Debug and Fix
Perform the following actions to fix this violation:
 Specify an appropriate reset constraint on the block-level port.

 Analyze the specification or propagation of the top-level reset to a block.

Message 2

The following message appears if the top-level synchronous reset
<reset-name> propagates to an asynchronous block-level port:

[SRstV3_2] [ERROR] Top-level synchronous reset '<reset-name>'
reaches to the net '<net-name>' connected to asynchronous reset
pin '<port-name>' of block instance '<block-instance name>
(block: <block-name>)'

Potential Issues
This violation appears if your design contains a top-level synchronous reset
that reaches to an asynchronous reset port of an abstract view, or
vice-versa.

Consequences of Not Fixing
If you do not fix this violation, the following may happen:
 Incorrect reset analysis may happen at the block-level. That is, the

initial state of the block may get altered during its verification.
 SpyGlass may generate incorrect clock domain violations during block

verification if synchronous resets are not properly specified.

How to Debug and Fix
Perform the following actions to fix this violation:
1704
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
 Specify an appropriate reset constraint on the block-level port.

 Analyze the specification or propagation of the top-level reset to a block.

Example Code and/or Schematic

Consider the following schematic of a violation reported by this rule:

FIGURE 387. Schematic of the SGDC_reset_validation03 Rule Violation

In the above example, the top-level asynchronous reset rst reaches the
synchronous reset port brst of the abstract view BB.

Therefore, the SGDC_reset_validation03 rule reports a violation.

Default Severity Label

Error

Rule Group

SOC_SGDCVALIDATION

// top.sgdc

current_design top
clock -name clk1 -domain domain1
reset -name rst
assume_path -name BBOX -input in -output out
sgdc -import BB block.sgdc

current_design BB
reset -name brst -sync

// block.sgdc
1705
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
Reports and Related Files

No report or related file
1706
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
SGDC_reset_validation04
Reports the conflicting active value specified on a reset port of an
abstract view

When to Use

Use this rule during the hierarchical CDC verification flow to validate
user-specified constraints for an abstract block in the context of a
higher-level hierarchy.

Prerequisites

Specify the following information before running this rule:
 Specify the set_option sgdc_validate yes command in the

project file.
 Specify the reset constraint for the top-level design and the port of an

abstract view.

Description

The SGDC_reset_validation04 rule reports a violation if the active value of
the top-level reset is different from the active value of the block-level reset
port driven by that top-level reset.

Parameter(s)

None

Constraint(s)

reset (Mandatory): Use this constraint to specify reset signals in your
design.

Messages and Suggested Fix

The following message appears if the active value of the top-level reset
does not match with the active value of the block-level reset port:

[ERROR] Reset '<reset-name>' specified for instance
'<inst-name>' (block: '<block-name>') has different
active-value compared to top level reset '<top-level-reset>'
1707
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
Potential Issues
This violation appears when the reset value propagated from the top-level
reset does not match with the reset value of the block-level reset port
driven by that top-level reset.

Consequences of Not Fixing
If you do not fix this violation, the following may occur:
 It may result in an incorrect initial state of an abstract view during

verification.
 It may generate spurious reset simulation results for the abstract view.

How to Debug and Fix
To debug and fix this violation, perform the following steps:
1. Check the value specified by the reset constraint on the block port.
2. Assign a proper value in the reset constraint.
3. Verify that the top-level reset of the block port has the same active

value identified in step 2.

Example Code and/or Schematic

Consider the following schematic of a violation reported by this rule:
1708
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
FIGURE 388. Schematic of the SGDC_reset_validation04 Rule Violation

In the above example, the active value of the top-level reset top_rst
reaching the reset port rst does not match with the reset value of rst.

Therefore, the SGDC_reset_validation04 rule reports a violation.

Default Severity Label

Error

Rule Group

SOC_SGDCVALIDATION

Reports and Related Files

No report or related file

// top.sgdc
current_design top
clock -name clk1 -domain domain1
reset -name top_rst -value 0
sgdc -import BB block.sgdc

current_design BB
reset -name rst -value 0
abstract_port -module BB -ports in1

// block.sgdc

-clock clk1
1709
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
SGDC_virtualclock_validation01
Reports mapping of block level virtual clocks with top-level clocks

When to Use

Use this rule during the hierarchical CDC verification flow to validate
user-specified constraints for an abstract block in the context of a
higher-level hierarchy.

Prerequisites

To run this rule, specify the set_option sgdc_validate yes command
in the project file.

Description

The SGDC_virtualclock_validation01 rule reports a message if the block-
level virtual clocks map to the top-level clocks.

The rule reports a message in the following cases:
 Multiple ports of the same block specified with the same virtual clock are

driven by different domains from top-level
 If no top-level clock is reaching the block port specified with virtual clock

Parameter(s)

validate_reduce_pessimism: Default value is none. Set this parameter to
hanging_nets to ignore reporting on the hanging block ports. Other
possible values are constant, quasi_static,
ignore_domain_overconstraint, and all.

Constraint(s)

 input (Optional): Use this constraint to specify a clock domain at input
ports.

 abstract_port (Optional): Use this constraint to define abstracted
information for block ports.

Message Details

Message 1

The following message appears if a virtual clock is mapped with a top-level
1710
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
clock:

[SCLKV01] [INFO] Virtual clock '<clock-name>' of instance
'<inst-name>' (block: '<block-name>') mapped with top-level
clock '<top level-clock>'

Potential Issues
Not applicable

Consequences of Not Fixing
Not applicable

How to Debug and Fix
Not applicable

Message 2

The following message appears if a virtual clock is not mapped.

[SCLKV4] [ERROR] Virtual clock '<clock-name>' of instance
'<inst-name>' (block: '<block-name>') is unmapped. Reason:
Conflicting domains reach to block ports

Potential Issues
This violation appears if the design contains multiple ports of the same
block specified with the same virtual clock and these ports are driven by
different domains from top-level.

Consequences of Not Fixing
See Consequences of Not Fixing.

How to Debug and Fix
See How to Debug and Fix.
1711
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
Message 3

The following message appears if a virtual clock is not mapped.

[SCLKV3] [WARNING] Virtual clock '<clock-name>' of instance
'<inst-name>' (block: '<block-name>') is unmapped. Reason: No
top-level domain reaches to block port(s)

Potential Issues
This violation appears if the design does not contain any top-level clock
reaching to the block port specified with virtual clock

Consequences of Not Fixing
If you do not fix these violations, SpyGlass analysis may produce
inaccurate synchronization results during block verification, thereby
generating incorrect abstract view.

This may further generate incorrect synchronization violations in the SoC
verification stage.

How to Debug and Fix
To fix these violations, perform the following actions:
 Analyze design connectivity between the top-level sequential element

and a block input port.
 Verify the virtual clock specified by the abstract_port or input constraint.

 Use the validate_reduce_pessimism parameter to ignore reporting on block
ports that are hanging or have a constant value reaching them.

A spreadsheet is generated for each violation reported for unmapped
virtual clock. It contains all the unmapped top-level sequential logic
reaching the port specified with the reported virtual clock. The sample
spreadsheet is shown below:
1712
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
FIGURE 389. Spreadsheet Generated by the SGDC_virtualclock_validation01 Rule

Example Code and/or Schematic

Example 1 - Illustrates When Message 2 is Reported

Consider the following scenario:
1713
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
FIGURE 390. Schematic of the SGDC_virtualclock_validation01 Rule Violation

In the above scenario, B1 is the abstract view in the top module, test.

The b1 and b2 block ports are constrained to be in the same virtual
domain, but are driven by different domain clocks, ck1 and ck2,
respectively.

As a result, the SGDC_virtualclock_validation01 rule reports the Message 2
violation.

Example 2 - Illustrates When Message 3 is Reported

Consider the following schematic:

// block.sgdc

abstract_port -module block -ports b1 -clock vck
abstract_port -module block -ports b2 -clock vck
1714
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
FIGURE 391. Schematic of the SGDC_virtualclock_validation01 Rule Violation

In the above scenario, B1 is the abstract view in the top module, test. The
block port b1 is constrained with two abstract_port constraints, one in real
clock ck1 and other in virtual clock V1.

However this port is driven by a sequential element in domain clk1 which
matches to the abstract_port constraint specified with real clock. As a result
no unmapped top-level sequential logic is reaching the b1 port for mapping
with the V1 virtual clock.

As a result, the SGDC_virtualclock_validation01 rule reports the Message 3
violation.

Default and Severity Label

ERROR | WARNING | INFO

Rule Group

SOC_SGDCVALIDATION

Reports and Related files

The CKSGDCInfo Report

abstract_port -module block -ports b1 -
clock V1
1715
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
SGDC_input_validation01
Reports incorrect clock domain specified on block ports by using
the input constraint

When to Use

Use this rule during the hierarchical CDC verification flow to validate
user-specified constraints for an abstract block in the context of a
higher-level hierarchy.

Prerequisites

Specify the following information before running this rule:
 Specify the set_option sgdc_validate yes command in the

project file.
 Specify the input constraint.

Description

The SGDC_input_validation01 rule reports a violation if a sequential
element reaching to an input port of a block is from a different domain than
that of the clock specified on a port by using the input constraint.

NOTE: The SGDC_input_validation01 rule will be deprecated in a future release. The
functionality of the SGDC_input_validation01 rule is covered by the
SGDC_abstract_port_validation01 rule. Currently, the SGDC_input_validation01
rule does not report any violation.

Parameter(s)

None

Constraint(s)

input (Mandatory): Use this constraint to specify clock domain at input
ports.

Messages and Suggested Fix

The following message appears if the instance output <inst-output>
reaches to the input pin <pin-name> of the instance <inst-name>
clocked by <clock2>:

[ERROR] Instance output '<inst-output>' clocked by '<clock1>'
1716
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
reaches input pin '<pin-name>' of instance '<inst-name>'
(block: '<block-name>') clocked by '<clock2>'

Potential Issues
This violation appears if a sequential element reaching to an input port of a
block is from a different domain than that of the clock specified on the port
by using input constraint.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass may report incorrect
synchronization violations during the verification phase of the hierarchical
verification flow.

How to Debug and Fix
To debug this violation, perform the following steps:
 Verify the clock domain specified in by the input constraint.

 Analyze design connectivity between the top-level sequential element
and block input port.

Example Code and/or Schematic

Consider the following figure:

FIGURE 392. Schematic of the SGDC_input_validation01 Rule Violation

// Block-level SGDC file

current_design BB
input -name in3 -clock clk2
1717
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
In the above figure, the output of the sequential cell driven by the clk1
clock reaches the in3 port of the BB block.

Therefore, the SGDC_input_validation01 rule reports a violation in this
case.

Default Severity Label

Error

Rule Group

SOC_SGDCVALIDATION

Reports and Related Files

No report or related file
1718
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
SGDC_input_validation02
Reports unconstrained abstract-view input ports driven by
sequential outputs

When to Use

Use this rule during the hierarchical CDC verification flow to validate
user-specified constraints for an abstract block in the context of a
higher-level hierarchy.

Prerequisites

To run this rule, specify the set_option sgdc_validate yes command
in the project file.

Description

The SGDC_input_validation02 rule reports a violation if a sequential
element from top-level is reaching to a block-level port on which the input
or abstract_port constraint is not defined.

Rule Exceptions

The SGDC_input_validation02 rule does not report a violation under the
following conditions:
 If the input of a block is constrained by using the quasi_static or

assume_path constraint.
 When the clock net driving the clock port specified in the -clock field of

the abstract_port constraint is hanging. However, the violation by the
SGDC_clock_validation02 rule is reported for hanging top-level clock net.

Parameter(s)

None

Constraint(s)

None

Messages and Suggested Fix

The following message appears if the input or abstract_port constraint is not
1719
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
specified for the port <port-name> of the instance <inst-name>:

[ERROR] Input/abstract_port constraint is not specified for
port '<port-name>' of instance '<inst-name>' (block:
'<block-name>')

Potential Issues
This violation appears if a sequential element from the top-level reaches to
a block-level port on which the input or abstract_port constraint is not
defined.

Consequences of Not Fixing
If you do not fix this violation, the following may occur:
 SpyGlass may report incorrect synchronization violations during the

verification phase of the hierarchical verification flow.
 Abstract view generation may be incorrect.

How to Debug and Fix
To fix this violation, perform the following steps:
 Specify the input or abstract_port constraint on the reported block input

port.
 Analyze design connectivity between the top-level sequential element

and block input port.

Example Code and/or Schematic

Consider the following figure:

FIGURE 393. Schematic of the SGDC_input_validation02 Rule Violation
1720
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
In the above figure, the output of the sequential cell hits the in1 port of
the BB block. In this case, no input or abstract_port constraint is defined for
that port.

Therefore, the SGDC_input_validation02 rule reports a violation in this
case.

Default Severity Label

Error

Rule Group

SOC_SGDCVALIDATION

Reports and Related Files

No report or related file
1721
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
SGDC_num_flops_validation01
Reports the same top-level domain reaching to clocks specified in
the -from_clk and -to_clk arguments of the num_flops constraint
for an abstract view

When to Use

Use this rule during the hierarchical CDC verification flow to validate
user-specified constraints for an abstract block in the context of a
higher-level hierarchy.

Prerequisites

Specify the following details before running this rule:
 Specify the set_option sgdc_validate yes command in the

project file.
 Specify the num_flops constraint.

Description

The SGDC_num_flops_validation01 rule reports a violation if clocks
specified by the -from_clk and -to_clk arguments of the num_flops
constraint in an SGDC file of an abstract view exist in the same top-level
domain.

Parameter(s)

None

Constraint(s)

num_flops (Mandatory): Use this constraint to specify a minimum number
of flip-flops required in a synchronizer chain.

Messages and Suggested Fix

The following message appears if you specify the same clock name in the
-from_clock and the -to_clock argument of the num_flops constraint:

[WARNING] For block instance '<block-inst>' (block:
'<block-name>'), clock domain of clock '<clock-name1>' in -
from_clk and clock '<clock-name2>' in -to_clk is same in
num_flops constraint.
1722
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
Potential Issues

This violation appears if clocks specified by the -from_clk and -to_clk
arguments of the num_flops constraint exist in the same domain.

Consequences of Not Fixing
If you do not fix this violation, the following may occur depending upon
different situations:
 If the num_flops constraint is incorrectly specified in the block-level

SGDC file, it may result in inaccurate block-level CDC verification.
 If domains of top-level clocks are not specified correctly, it may result in

inaccurate top-level CDC verification.

How to Debug and Fix
To fix this violation, perform the following actions:
 Analyze the clock specification in the -from_clk and -to_clk

arguments of the num_flops constraint.
 Analyze the specification or propagation of top-level clocks.

Example Code and/or Schematic

Consider the following schematic of a violation reported by this rule:
1723
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
FIGURE 394. Schematic of the SGDC_num_flops_validation01 Rule Violation

In the above example, the top-level clocks clk1 and clk2 are in the same
domain. However, they are driving different domain block-level clocks clk3
and clk4.

Therefore, this rule reports a violation because the num_flops constraint is
specified for the same clock domain signals.

Default Severity Label

Warning

// Top-level SGDC file

current_design top
clock -name clk1 -domain domain1
clock -name clk2 -domain domain1

// Block-level SGDC file

current_design BB
clock -name clk3 -domain domain1
clock -name clk4 -domain domain2
num_flops -from_clk clk3 -to_clk clk4
1724
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
Rule Group

SOC_SGDCVALIDATION

Reports and Related Files

No report or related file
1725
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
SGDC_num_flops_validation02
Reports conflicting values specified in the num_flops constraint of
an abstract view and the top-level for the same clock pair

When to Use

Use this rule during the hierarchical CDC verification flow to validate
user-specified constraints for an abstract block in the context of a
higher-level hierarchy.

Prerequisites

Specify the following details before running this rule:
 Specify the set_option sgdc_validate yes command in the

project file.
 Specify the num_flops constraint.

Description

The SGDC_num_flops_validation02 rule reports a violation if the value of
the num_flops constraint defined in the top-level SGDC file for a clock-pair is
different from the value of the num_flops constraint defined in the
block-level SGDC file for the same clock pair.

Parameter(s)

None

Constraint(s)

num_flops (Mandatory): Use this constraint to specify a minimum number
of flip-flops required in a synchronizer chain.

Messages and Suggested Fix

The following message appears if conflicting values are specified in the
num_flops constraint for the abstract-view SGDC file and the top-level
SGDC file for the same clock pair:

[WARNING] Value '<value1>' defined for top-level num_flops
constraint (-from_clk '<from-clk>' and -to_clk '<to-clk>') does
not match with value '<value2>' for corresponding constraint
defined for block instance '<inst-name>' (block:
1726
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
'<block-name>')

Potential Issues
This violation appears when the value specified by the num_flops constraint
for a block-level and a top-level SGDC file is different for the same clock
pair.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass may produce inaccurate CDC
verification results.

How to Debug and Fix
To fix this violation, perform the following steps:
1. Analyze the values of the -from_clk and -to_clk arguments of the

num_flops constraint defined for an abstract view.
2. Analyze the values of the -from_clk and -to_clk arguments of

num_flops constraint defined for the top-level.
3. Analyze the specification or propagation of top-level clocks.

Example Code and/or Schematic

Consider the following SGDC files specified for an abstract view and for the
top-level:

// Top-level SGDC file

current_design top
clock -name clk1 -domain d1
clock -name clk2 -domain d2
num_flops -from_clk clk1 -to_clk clk2 -value 4

// Block-level SGDC file

current_design BB
clock -name clk3 -domain d1
clock -name clk4 -domain d2
num_flops -from_clk clk3 -to_clk clk4 -value 2
1727
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
In this example, the top-level clocks clk1 and clk2 drive the block-level
clocks clk3 and clk4, respectively.

In this case, SGDC_num_flops_validation02 rule reports a violation
because the value specified in the num_flops constraint at block-level is 2,
whereas the value is 4 at the top-level for the same set of clocks.

Default Severity Label

Warning

Rule Group

SOC_SGDCVALIDATION

Reports and Related Files

No report or related files
1728
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
SGDC_output_validation01
Reports incorrect clock domains specified on block ports by using
the output constraint

When to Use

Use this rule during the hierarchical CDC verification flow to validate
user-specified constraints for an abstract block in the context of a
higher-level hierarchy.

Prerequisites

Specify the following information before running this rule:
 Specify the set_option sgdc_validate yes command in the

project file.
 Specify the output constraint.

Description

The SGDC_output_validation01 rule reports a violation if the output port of
a block at the top-level drives a sequential element from a domain different
from the domain of the clock specified on that port by using the output
constraint.

Parameter(s)

None

Constraint(s)

output (Mandatory): Use this constraint to specify clock domain at output
ports.

Messages and Suggested Fix

The following message appears if an incorrect clock domain is specified on
a block port by using the output constraint:

[WARNING] Instance '<inst-name>' (domain: '<domain1>') is
driven by output pin '<pin-name>' of block instance
'<block-inst-name>' (block: '<block-name>') constrained with
clock '<clock-name>' (domain: '<domain2>')
1729
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
Potential Issues
This violation appears if your design contains a sequential instance driven
by an output pin, which is constrained with a different clock.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass may report spurious violations
related with clock domain crossing during abstract-view verification.

How to Debug and Fix
To fix this violation, perform the following steps:
1. Verify the clock domain specified by the output constraint.
2. Analyze design connectivity between the block output port and the

top-level sequential element.

Example Code and/or Schematic

Consider the following schematic of a violation reported by this rule:

FIGURE 395. Schematic of the SGDC_output_validation01 Rule Violation

In the above schematic, the out port of the BB abstract view drives the
temp_reg sequential cell, which is in the clk2 domain (CP is connected to
clk2).

In this case, the SGDC_output_validation01 rule reports a violation
because the out port is constrained with a different clock domain.

output -name out -clock clk1
1730
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
Default Severity Label

Warning

Rule Group

SOC_SGDCVALIDATION

Reports and Related Files

No report or related file
1731
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
SGDC_output_validation02
Reports unconstrained abstract-view output ports driving
sequential inputs

When to Use

Use this rule during the hierarchical CDC verification flow to validate
user-specified constraints for an abstract block in the context of a
higher-level hierarchy.

Prerequisites

Specify the following information before running this rule:
 Specify the set_option sgdc_validate yes command in the

project file.
 Specify the output constraint.

Description

The SGDC_output_validation02 rule reports a violation if a block-level
output port drives a sequential element at the top-level and the output
constraint is not defined on the block port.

Parameter(s)

None

Constraint(s)

output (Mandatory): Use this constraint to specify clock domain at output
ports.

Messages and Suggested Fix

The following message appears if you do not define the output constraint
for the block port <port-name>:

[WARNING] Output constraint is not defined for port '<port-
name>' of block instance '<inst-name>' (block: '<block-name>')

Potential Issues
This violation appears if domain information at the output port of an
1732
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
abstract view is not present.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass may report spurious violations
related with clock domain crossing during abstract-view verification.

How to Debug and Fix
To fix this violation, perform the following steps:
 Specify the output constraint on the reported block output port.

 Analyze design connectivity between the block output port and top-level
sequential element.

Example Code and/or Schematic

Consider the following figure:

FIGURE 396. Schematic of the SGDC_output_validation02 Rule Violation

In the above example, the out port of the abstract view BB drives the
sequential cell temp_reg. However, no output constraint is applied on the
out port.

Therefore, the SGDC_output_validation02 rule reports a violation.

Default Severity Label

Warning
1733
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
Rule Group

SOC_SGDCVALIDATION

Reports and Related Files

No report or related file
1734
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
SGDC_abstract_port_validation01
Reports the incorrect clock domain specified on block ports by
using the abstract_port constraint

When to Use

Use this rule during the hierarchical CDC verification flow to validate
user-specified constraints for an abstract block in the context of a
higher-level hierarchy.

Prerequisites

Specify the following information before running this rule:
 Specify the set_option sgdc_validate yes command in the

project file.
 Specify the abstract_port constraint.

Description

The SGDC_abstract_port_validation01 rule reports a violation if the port of
an abstract block is driven from a sequential instance, and there is a
mismatch between the clock pin driving this sequential instance and the
clock specified in the -clock argument of the abstract_port or the input
constraint.

Rule Exceptions

The SGDC_abstract_port_validation01 rule does not report a violation if an
input port specified by the abstract_port or the input constraint is driven by a
quasi-static signal.

Parameter(s)

None

Constraint(s)

 abstract_port (Mandatory): Use this constraint to define abstracted
information for block ports.

 input (Optional): Use this constraint to define the clock information of
the block port.
1735
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
Messages and Suggested Fix

The following message appears if an incorrect clock domain is specified on
a block port by using the abstract_port or the input constraint:

[ERROR] Instance output '<inst-output>' clocked by
'<clock-name1>' reaches port '<port-name>' of block instance
'<block-inst>' (block: '<block-name>') clocked by
'<clock-name2>'

Potential Issues
This violation appears if the port of an abstract block is driven from a
sequential instance, and there is a mismatch between the clock pin driving
this sequential instance and the clock specified in the -clock argument of
the abstract_port or the input constraint.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass may report incorrect
synchronization violations during verification phase of the hierarchical
verification flow.

How to Debug and Fix
To fix this violation, perform the following steps:
1. Analyze the design connectivity between the top-level sequential

element and the block input port.
2. Check if the clock domain specified by the abstract_port or the input

constraint is consistent with the clock domains driving sequential
elements identified in the first step.

3. Check sgdc (abstract_port) back-annotation for block abstract_port for
which the violation was reported and back-annotation of top level
sequential element to indicate the differing clock.

Example code and/or Schematic

Consider a case in which an output of a sequential flip-flop is connected to
an input port of an abstract view defined by using the abstract_port or the
input constraint. In this case, the SGDC_abstract_port_validation01 rule
1736
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
reports a violation if the clock driving the sequential flip-flop does not
match the clock specified by the clock argument of the abstract_port or the
input constraint.

For example, consider the following schematic of a violation reported by
this rule:

FIGURE 397. Schematic of the SGDC_abstract_port_validation01 Rule Violation

For the above example, the SGDC_abstract_port_validation01 rule reports
the following violation because of the mismatch in the clock domains:

Instance output 'test.temp' clocked by 'test.ck2' reaches port
'b1' of block instance 'test.B1' (block: 'block') clocked by
'test.ck1'

Default Severity Label

Error

Rule Group

SOC_SGDCVALIDATION

Reports and related files

No report or related file

//block.sgdc
abstract_port -module block -ports b1 -clock clk
1737
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
SGDC_abstract_port_validation02
Reports incorrect usage of the -sync argument of the abstract_port
constraint

When to Use

Use this rule during the hierarchical CDC verification flow to validate
user-specified constraints for an abstract block in the context of a
higher-level hierarchy.

Prerequisites

Specify the following information before running this rule:
 Specify the set_option sgdc_validate yes command in the

project file.
 Specify the abstract_port constraint.

Description

The SGDC_abstract_port_validation02 rule reports a violation if a
synchronizer does not reach to an input port of a block for which the -sync
argument of the abstract_port constraint is specified.

Parameter(s)

None

Constraint(s)

 abstract_port (Mandatory): Use this constraint to define abstracted
information for block ports.

Messages and Suggested Fix

The following message appears if a synchronizer is not reaching to the
input pin <pin-name> of the block <block-name> for which the -sync
argument of the abstract_port constraint is specified:

[ERROR] No synchronized signal reaches to input pin '<pin-
name>' of block instance '<block-inst>'(block: '<block-name>')
however -sync option has been provided

Potential Issues
1738
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
This violation appears if your design contains an abstract block port that is
not driven by a valid multi-flop or user-specified synchronizing cell when
the -sync argument of the abstract_port constraint is specified for that
abstract block.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass may report incorrect
synchronization violations during the block verification stage.

How to Debug and Fix
To fix this violation, perform any of the following actions:
 Analyze the fan-in cone of an input port for the presence of a

synchronizer.
 Remove the -sync argument from the abstract_port constraint.

Example Code and/or Schematic

Consider the following schematic of a violation reported by this rule:

FIGURE 398. Schematic of the SGDC_abstract_port_validation02 Rule Violation

In the above example, the temp2_reg synchronizer is not reaching to the
input pin of the abstract block port b1.

//block.sgdc
abstract_port -module block -ports b1 -clock clk2

-from clk1 -to clk2 -sync active
1739
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
As a result, the SGDC_abstract_port_validation02 rule reports a violation.

Default Severity Label

Error

Rule Group

SOC_SGDCVALIDATION

Reports and/or Related Files

No report or related file
1740
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
SGDC_abstract_port_validation03
Reports invalid clocks specified in the -from or -to arguments of
the abstract_port constraint

When to Use

Use this rule during the hierarchical CDC verification flow to validate
user-specified constraints for an abstract block in the context of a
higher-level hierarchy.

Prerequisites

Specify the following information before running this rule:
 Specify the set_option sgdc_validate yes command in the

project file.
 Specify the abstract_port constraint.

Description

The SGDC_abstract_port_validation03 rule reports a violation if clocks
specified by the -from or -to argument of the abstract_port constraint
does not match with the source or destination clocks of a synchronizer
reaching to an input port.

NOTE: The SGDC_abstract_port_validation03 rule will be deprecated in a future release.
The functionality of the SGDC_abstract_port_validation03 rule is covered by the
SGDC_qualifier_validation02 rule. Currently, the SGDC_abstract_port_validation03
rule does not report any violation.

Rule Exceptions

The SGDC_abstract_port_validation03 rule does not report a violation if
you specify a virtual clock in the -from argument of the abstract_port
constraint, as shown in the following example:

abstract_port -ports in1 -clocks clk1 -from VCLK -to clk1
-sync active

Parameter(s)

None
1741
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
Constraint(s)

 abstract_port (Mandatory): Use this constraint to define abstracted
information for block ports.

Messages and Suggested Fix

Message 1

The following message appears if a clock specified in the -from argument
of the abstract_port constraint does not match with the clock of a
synchronizer reaching to an input port:

[SApV3_1] [WARNING] Clock domain of source instance '<source-
inst>' clocked by '<clock-name>' does not match with block
clock port(s) '<block-clock-port-name>' specified in -from
field for input port '<input-port>' of block instance
'<block-inst>' (block: '<block-name>')

Potential issues
This violation appears if there is a mismatch between the clock specified in
the -from argument of the abstract_port constraint and the clock of the
synchronizer reaching to an input port.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass may report spurious
synchronization violations during verification phase.

How to Debug and Fix

To fix this violation, ensure that the clock specified in the -from argument
of the abstract_port constraint and the clock of the synchronizer reaching to
an input port is same.

Message 2

The following message appears if a clock specified in the -to argument of
the abstract_port constraint does not match with the clock of a synchronizer
reaching to an input port:
1742
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
[SApV3_2] [WARNING] Clock domain of destination instance
'<dest-inst>' clocked by '<clock-name>' does not match with
block clock port(s) '<block-clock-port-name>' specified in -to
field for input port '<input-port>' of block instance
'<block-inst>'(block: '<block-name>')

Potential issues
This violation appears if there is a mismatch between the clocks specified
in the -to argument of the abstract_port constraint and the clock of the
synchronizer reaching to an input port:

Consequences of Not Fixing
If you do not fix this violation, SpyGlass may report spurious
synchronization violations during verification phase.

How to Debug and Fix

To fix this violation, ensure that the clocks specified in the -to argument of
the abstract_port constraint and the clock of the synchronizer reaching to an
input port is same.

Example Code and/or Schematic

Consider the following schematic of a violation reported by this rule in
which the B1 block is abstracted in the design unit test:
1743
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
FIGURE 399. Schematic of the SGDC_abstract_port_validation03 Rule Violation

In the above example, the SGDC_abstract_port_validation03 rule reports a
violation because the clk3 clock specified by the -to argument of the
abstract_port constraint does not match with the clk1 clock.

Default Severity label

Warning

Rule Group

SOC_SGDCVALIDATION

Reports and Related Files

No report or related file

//block.sgdc
abstract_port -module block -ports b1 -clock clk3

-from clk2 -to clk3 -sync active
1744
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
SGDC_abstract_port_validation04
Reports if abstract-view ports specified by the -combo no
argument of the abstract_port constraint are driven by
combinational logic

When to Use

Use this rule during the hierarchical CDC verification flow to validate
user-specified constraints for an abstract block in the context of a
higher-level hierarchy.

Prerequisites

Specify the following information before running this rule:
 Specify the set_option sgdc_validate yes command in the

project file.
 Specify the abstract_port constraint.

 Specify the sgdc -import constraint.

Description

The SGDC_abstract_port_validation04 rule reports a violation if a
combinational logic exists between a block-level input port and the output
of a sequential element at the top-level when the -combo no argument of
the abstract_port constraint is specified for that block in the following cases:
 If at the block level, the abstract_port constraint is defined along with

the -combo_ifn argument as shown below:

abstract_port -ports a -clock VCK1 -combo_ifn ck2 -combo
no

In this case, the SGDC_abstract_port_validation04 rule will report a
violation if a sequential element reaches the block port after
combinational logic and if the sequential cell has a clock domain that is
different from the clock domain of the clock specified in the -
combo_ifn argument.

 If at the block level, the abstract_port constraint is defined with real
clocks as shown below:

abstract_port -ports a -clock clk1 -combo no

In this case, the SGDC_abstract_port_validation04 rule will report a
1745
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
violation if a sequential element reaches the block port after
combinational logic and if the sequential cell has a clock domain that is
different from the clock domain of the clock specified in the -clock
argument.

 If at the block level, the abstract_port constraint is defined with only
virtual clock as shown below:

abstract_port -ports a -clock VCK1 -combo no

In this case, the SGDC_abstract_port_validation04 rule will report a
violation if the sequential element reaches the block port after
combinational logic.

Automatically Fixing the abstract_port Constraint of the Reported Port

Set the autofix_abstract_port parameter to yes to modify the abstract_port
constraint in the context of SoC for the reported port, and save the
modified constraints in the
<module_name>_<instance_name>_cdc_soc_abstract_autoupdate.sgdc
file.

By default, in addition to the modified constraints, this file also contains a
copy of all the unmodified input side abstract_port constraints present in
block-level SGDC file (abstract block). Set the autofix_dump_allinputs to no
to generate only the modified constraints.

The following figure shows the example of using the autofix_abstract_port
parameter:
1746
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
FIGURE 400. Using the autofix_abstract_port parameter

Parameter(s)

 autofix_abstract_port: Default value is yes. Set this parameter to no to
disable this rule from modifying the reported abstract_port constraints in
the context of SoC.

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

//top.sgdc
current_design top
...
sgdc -import blk blk.sgdc

abstract_port -module blk
-scope cdc -port in1 -clock clk

//blk.sgdc

Reason for violation:

The in1 pin is driven by a
combinational logic

and
Set the autofix_abstract_port parameter
to yes.

Modified abstract_port constraint:

Specify top.sgdc to SpyGlass

The SGDC_abstract_port_validation04
rule reports a violation

The SGDC_abstract_port_validation04
rule modifies the abstract_port constraint
for the reported in1 port

The SGDC_abstract_port_validation04 rule
saves the modified constraint in the
<module_name>_<instance_name>_cdc_soc_abstract_autoupdate.sgdc file

abstract_port -module blk
-scope cdc -port in1
-clock clk -combo yes
1747
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
Constraint(s)

 abstract_port (Mandatory): Use this constraint to define abstracted
information for block ports.

 clock (Optional): Use this constraint to specify clock signals in a design.

 sgdc -import (Mandatory): Use this constraint to specify a block-level
SGDC file to be imported.

Messages and Suggested Fix

The following message appears if a combinational logic exists between a
block-level input port and the output of a sequential element when the
-combo no argument of the abstract_port constraint is specified for that
block and any of the cases described in the Description section above is
true:

[WARNING] Combinational logic exists between instance '<inst-
name>' and input port '<port-name>' of block instance
'<block-inst>' (block: '<block-name>')

Potential Issues
This violation appears if a combinational logic exists between a block-level
input port and the output of sequential element at the top-level when the
-combo no argument of the abstract_port constraint is specified for that
block and any of the cases described in the Description section above is
true.

Consequences of Not Fixing
If you do not fix this violation, it results in an incorrect setup at the block
level.

How to Debug and Fix
To fix this violation, perform the following actions:
 Remove the -combo no argument from the abstract_port constraint.

 Analyze the combinational logic between the sequential element and
block-level input port.
1748
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
Example Code and/or Schematic

Example 1

Consider the following schematic of a violation of this rule:

FIGURE 401. Schematic of the SGDC_abstract_port_validation04 Rule Violation

In the above example, a combinational logic exists between the output of
the w1_reg flip-flop and the in1 input pin of the t1 block for which the
-combo no argument of the abstract_port constraint is specified. The
w1_reg flip-flop is driven by clk1 clock and the in1 input pin of t1 block
is driven by a combination of clk and in2 clocks. Since the domain of
these two clocks are different, the SGDC_abstract_port_validation04 rule
reports a violation.

//test.sgdc

current_design test
clock -name clk1

clock -name clk2
sgdc -import top top.sgdc

//top.sgdc

current_design top
clock -name clk
clock -name in2
1749
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
Example 2

Consider the following schematic of a violation of this rule:

FIGURE 402. Schematic of the SGDC_abstract_port_validation04 Rule Violation

In the above example, a combinational logic exists between the output of
the w1_reg flip-flop and the in1 input pin of the t1 block for which the
abstract_port constraint has the -combo no argument and the
-clock argument has a virtual clock. The w1_reg flip-flop is driven by the

//test.sgdc

current_design test
clock -name clk1
clock -name clk2
sgdc -import top top.sgdc

//top.sgdc

current_design top
clock -name clk
clock -name clk2
abstract_port -module top -ports in1 -scope cdc -clock
1750
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
clk1 clock and the in1 input pin of t1 block is driven by the clk2 clock as
specified in the -combo_ifn argument.

Since the domain of these two clocks are different and a combinational
logic exists between the two, the SGDC_abstract_port_validation04 rule
reports a violation.

Default and Severity label

Warning

Rule Group

SOC_SGDCVALIDATION

Reports and Related Files

No report or related file
1751
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
SGDC_qualifier_validation01
Reports same top-level domain reaching to clocks specified in the
-from_clk and -to_clk arguments of the qualifier constraint for an
abstract view

When to Use

Use this rule during the hierarchical CDC verification flow to validate
user-specified constraints for an abstract block in the context of a
higher-level hierarchy.

Prerequisites

Specify the following information before running this rule:
 Specify the set_option sgdc_validate yes command in the

project file.
 Specify the qualifier constraint.

Description

The SGDC_qualifier_validation01 rule reports a violation if clocks specified
by the -from_clk and -to_clk arguments of the qualifier constraint for
an abstract view exist in the same top-level domain.

Parameter(s)

None

Constraint(s)

qualifier (Mandatory): Use this constraint to specify a qualifier for
synchronizing a clock domain crossing.

Messages and Suggested Fix

The following message appears when the clocks <clock-name1> and
<clock-name2> specified in the -from_clk and -to_clk arguments,
respectively, of the qualifier constraint are from the same domain:

[ERROR] For block instance '<block-inst>' (block:
<block-name>), clock domain of clock '<clock-name1>' in
-from_clk and clock '<clock-name2>' in -to_clk is same (domain:
'<domain-name>') in qualifier constraint
1752
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
Potential Issues
This violation appears when the same top-level clock domain propagates to
the clocks specified by the -from_clk and -to_clk arguments of the
qualifier constraint specified for an abstract view.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass may report spurious violations for
clock domain crossing during abstract-view verification.

How to Debug and Fix
To debug this violation, perform the following actions:
 Analyze the clocks specified in the -from_clk and -to_clk arguments

of the qualifier constraint.
 Analyze specification or propagation of top-level clocks.

Example Code and/or Schematic

Consider the abstract view B1 in the following schematic:
1753
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
FIGURE 403. Schematic of the SGDC_qualifier_validation01 Rule Violation

In the above example, domain of the top-level clock clk1 propagates to
both the clocks ck1 and tclk specified by the -from_clk and -to_clk
arguments, respectively, of the qualifier constraint.

Therefore, the SGDC_qualifier_validation01 rule reports a violation in this
case.

Default Severity Label

Error

Rule Group

SOC_SGDCVALIDATION

Reports and Related Files

No reports or related files

//block.sgdc
qualifier -name en -from_clk ck1 -to_clk tclk
1754
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
SGDC_qualifier_validation02
Reports unconstrained abstract-view ports driven from a valid
qualifier

When to Use

Use this rule during the hierarchical CDC verification flow to validate
user-specified constraints for an abstract block in the context of a
higher-level hierarchy.

Prerequisites

Specify the set_option sgdc_validate yes command in the project
file.

Description

The SGDC_qualifier_validation02 rule reports a violation if a synchronized
signal reaches to an input port of a block for which:
 The qualifier or abstract_port constraint is not defined with the -sync

argument, or
 The abstract_port constraint is defined with the -sync argument, but

clocks specified by the -from or -to argument of that abstract_port
constraint do not match with the source or destination clocks of the
synchronizer reaching to that input port.

Rule Exceptions

The SGDC_qualifier_validation02 rule does not report a violation in the
following cases:
 If you specify the abstract_port constraint with the -ignore argument.

 If you specify the assume_path constraint only.

Automatically Fixing the abstract_port Constraint of the Reported Port

The CDC SoC abstract auto update flow works if a synchronized signal
reaches to a block port and any of the following cases is true:
 abstract_port is defined at the block port without -sync and the domain of

the synchronized signal matches with the clock specified in
abstract_port
1755
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
 assume_path is defined at the block port

Set the autofix_abstract_port parameter to yes to modify the abstract_port
constraint in the context of SoC for the reported port, and save the
modified constraints in the
<module_name>_<instance_name>_cdc_soc_abstract_autoupdate.sgdc
file.

By default, in addition to the modified constraints, this file also contains a
copy of all the unmodified input side abstract_port constraints present in
block-level SGDC file (abstract block). Set the autofix_dump_allinputs to no
to generate only the modified constraints.

The following figure shows the example of using the autofix_abstract_port
parameter:
1756
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
FIGURE 404. Using the autofix_abstract_port parameter

Parameter(s)

autofix_abstract_port: Default value is yes. Set this parameter to no to
disable this rule from modifying the reported abstract_port constraints in the
context of SoC.

//top.sgdc
current_design top
...
sgdc -import blk blk.sgdc

abstract_port -module blk
-scope cdc -port in1 -clock clk

//blk.sgdc

Reason for violation:

The in1 pin defined in the blk.sgdc file

same destination domain as that of the
clk clock

is driven by a control synchronizer of the

and
Set the autofix_abstract_port parameter
to yes.

Modified abstract_port constraint:
abstract_port -module blk

-from clk2 -to clk1 -sync active
-scope cdc -port in1 -clock clk

Specify top.sgdc to SpyGlass

The SGDC_qualifier_validation02
rule reports a violation

The SGDC_qualifier_validation02 rule
modifies the abstract_port constraint
for the reported in1 port

The SGDC_qualifier_validation02 rule
saves the modified constraint in the
<module_name>_<instance_name>_cdc_soc_abstract_autoupdate.sgdc file
1757
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
Constraint(s)

 qualifier (Mandatory): Use this constraint to specify a qualifier for
synchronizing a clock domain crossing.

 abstract_port (Mandatory): Use this constraint to define abstracted
information for block ports.

Messages and Suggested Fix

The following message appears when the qualifier or abstract_port constraint
is not defined with the -sync argument for the port <port-name> of the
block instance <block-inst> on which the synchronizer
<synchronizer> is connected:

[WARNING] Qualifier/abstract_port not defined for port
'<port-name>' of block instance '<block-inst>' (block: <block-
name>) on which a synchronizer '<synchronizer>' is reaching

Potential Issues
This violation appears if a valid synchronizer reaches a port of the abstract
view for which the qualifier or abstract_port constraint is not defined with the
-sync argument.

Consequences of Not Fixing
If you do not fix this violation, many synchronized clock domain crossings
within the abstract view may be reported as unsynchronized during
verification.

How to Debug and Fix
To debug and fix this violation, perform the following actions:
 Specify the qualifier or abstract_port constraint with the -sync argument

on the reported block port.
 Analyze design connectivity between the synchronized signal and the

block input port.
1758
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
Example Code and/or Schematic

Consider the abstract view B1 in the following schematic:

FIGURE 405. Schematic of the SGDC_qualifier_validation02 Rule Violation

In the above example, the en port of the abstract block B1 is not
constrained by the qualifier or abstract_port constraint.

Therefore, the SGDC_qualifier_validation02 rule reports a violation in this
case.

Default Severity Label

Warning

Rule Group

SOC_SGDCVALIDATION

Reports and Related Files

No report or related file
1759
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
SGDC_cdc_false_path_validation01
Reports same top-level domain reaching to clocks specified in the
-from and -to arguments of the cdc_false_path constraint for an
abstract view

When to Use

Use this rule during the hierarchical CDC verification flow to validate
user-specified constraints for an abstract block in the context of a
higher-level hierarchy.

Prerequisites

Specify the following information before running this rule:
 Specify the set_option sgdc_validate yes command in the

project file.
 Specify the cdc_false_path constraint.

 Specify the clock constraint.

Description

The SGDC_cdc_false_path_validation01 rule reports a violation if the clock
domain of clocks specified by the -from and -to arguments of the
cdc_false_path constraints in an SGDC file of an abstract view exists in the
same top-level domain.

Parameter(s)

None

Constraint(s)

 cdc_false_path (Mandatory): Use this constraint to specify false paths so
that clock-domain crossings along these paths are ignored for rule
checking

 clock (Mandatory): Use this constraint to specify clock signals in a
design.

Messages and Suggested Fix

The following message appears when the clock domain of clocks specified
by the -from and -to arguments of the cdc_false_path constraints in an
1760
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
SGDC file of an abstract view exists in the same top-level domain:

[WARNING] For block instance '<block-inst>' (block: <block-
name>), clock domain of clock '<clock-name1>' in -from and
clock '<clock-name2>' in -to is same (domain: '<domain-name>')
in cdc_false_path constraint

Potential Issues

This violation appears if the clock domain of clocks specified by the -from
and -to arguments of the cdc_false_path constraints in an SGDC file of an
abstract view exists in the same top-level domain.

Consequences of Not Fixing
If you do not fix this violation, false paths for clock domain crossings are
not set up as per your expectations. This may also result in increased clock
synchronization violations.

How to Debug and Fix
To fix this violation, perform the following actions:
 Analyze specification of clocks in the -from and -to arguments of the

cdc_false_path constraint.
 Analyze the specification or propagation of top-level clocks.

Violations of the SGDC_clock_domain_validation02 rule appear for the
violating clock signals.

Example Code and/or Schematic

Consider the following figure:
1761
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
FIGURE 406. Schematic of the SGDC_cdc_false_path_validation01 Rule Violation

In the above example, clock domain of the ck1 and tck1 clocks is same.
Therefore, the SGDC_cdc_false_path_validation01 rule reports a violation.

Default Severity Label

Warning

Rule Group

SOC_SGDCVALIDATION

Reports and Related Files

No report or related file

// Block-level SGDC file
clock -name ck1
clock -name tclk
cdc_false_path -from ck1 -to tclk
1762
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
SGDC_define_reset_order_validation01
Reports block ports with define_reset_order constraint which are
not driven by top-level reset net

When to Use

Use this rule during the hierarchical CDC verification flow to validate
user-specified constraints for an abstract block in the context of a
higher-level hierarchy.

Prerequisites

To run this rule, specify the set_option sgdc_validate yes command
in the project file.

Description

The SGDC_define_reset_order_validation01 rule reports a violation if the
reset specified by the -from or -to argument of the define_reset_order
constraint defined for block-level is not driven from a top-level reset net.

Parameter(s)

None

Constraint(s)

 define_reset_order (Mandatory): Use this constraint to specify a reset
order, which determines the flow of data from one reset to another
reset.

 reset (Optional): Use this constraint to specify reset signals in a design.

Messages and Suggested Fix

This rule reports the following message:

[ERROR] Reset '<reset-name>' specified in -from/-to for block
instance '<block-inst>' (block: <block-name>) is not coming
from top-level reset

Potential Issues

This violation appears if the reset specified by the -from or -to argument
1763
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
of the define_reset_order constraint defined for a block is not driven from a
top-level reset net.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass may report incorrect
Ar_resetcross01 violations during block verification. This may generate
an incorrect abstract-view SGDC file.

How to Debug and Fix
To debug this violation, perform the following steps:
1. Examine the specification of the define_reset_order constraint on block

ports.
2. Examine the specification or propagation of top-level resets.

Example Code and/or Schematic

Consider the following constraint specified in a block-level SGDC file:

define_reset_order -from scan_rst -to rst

In the above case, the SGDC_define_reset_order_validation01 rule reports
a violation if scan_rst is not connected to any top-level reset in the SoC
design.

Default Severity Label

Error

Rule Group

SOC_SGDCVALIDATION

Reports and Related Files

No report or related file
1764
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
SGDC_define_reset_order_validation02
Reports the same top-level reset reaching to the resets specified by
the -from and -to arguments of the define_reset_order constraint
for an abstract view

When to Use

Use this rule during the hierarchical CDC verification flow to validate
user-specified constraints for an abstract block in the context of a
higher-level hierarchy.

Prerequisites

Specify the following information before running this rule:
 Specify the set_option sgdc_validate yes command in the

project file.
 Specify the define_reset_order constraint.

Description

The SGDC_define_reset_order_validation02 rule reports a violation if
asynchronous resets specified by the -from and -to arguments of the
define_reset_order constraint for an abstract view are same in the context of
the top-level reset.

Parameter(s)

None

Constraint(s)

 define_reset_order (Mandatory): Use this constraint to specify a reset
order, which determines the flow of data from one reset to another
reset.

 reset (Mandatory): Use this constraint to specify reset signals in a
design.

Messages and Suggested Fix

The following message appears for the abstract view <block-name>,
when the reset specified by the -from and -to arguments of the
define_reset_order constraint come from the same top-level reset
1765
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
<top-level-reset>:

[ERROR] For block instance '<block-inst>' (block: <block-
name>), reset '<reset1>' in -from and reset '<reset2>' in -to
are coming from the same top-level reset '<top-level-reset>' in
define_reset_order constraint

Potential Issues

This violation appears if the same top-level reset is specified in the -from
and -to arguments of the define_reset_order constraint for an abstract
view.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass may report false
Ar_resetcross01 violations during the block verification stage.

How to Debug and Fix
To fix this violation, perform following steps:
1. Check the reset specification in the -from and -to arguments of the

define_reset_order constraint for an abstract port.
2. Ensure that the top-level reset is not same as the resets detected in the

first step.

Example Code and/or Schematic

Consider the following figure:
1766
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
FIGURE 407. Schematic of the SGDC_define_reset_order_validation02 Rule
Violation

In the above figure, the rst1 and rst2 asynchronous resets specified in
the -from and -to arguments of the define_reset_order constraint are same
in the context of the top-level reset.

Therefore, the SGDC_define_reset_order_validation02 rule reports a
violation.

Default Severity Label

Error

Rule Group

SOC_SGDCVALIDATION

Reports and Related Files

No report or related file

// block.sgdc
reset -name rst1
reset -name rst2
define_reset_order -from rst1 -to rst2
1767
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
SGDC_quasi_static_validation01
Reports unconstrained quasi_static ports of an abstract view

When to Use

Use this rule during the hierarchical CDC verification flow to validate user-
specified constraints for an abstract block in the context of a higher-level
hierarchy.

Prerequisites

Specify the set_option sgdc_validate yes command in the project
file.

Description

The SGDC_quasi_static_validation01 rule reports a violation if a top-level
quasi-static signal reaches a block port on which a quasi_static constraint
has not been specified.

Rule Exceptions

The SGDC_quasi_static_validation01 rule does not report a violation if you
specify the abstract_port constraint with the -ignore argument on the
block port.

Parameter(s)

None

Constraint(s)

None

Messages and Suggested Fix

The following message appears if you do not specify the quasi_static
constraint on the block port:

[ERROR] Top level quasi-static signal <net-name> reaches to
unconstrained port <port-name> of block instance <instance-
name> (block: <block-name>)
1768
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
Potential Issues
This violation appears if a top-level quasi-static signal reaches a block port
on which no quasi_static constraint has been specified.

Consequences of Not Fixing
If you do not fix this violation, the design may not operate in the desired
mode. In addition, the quasi_static constraints would not be propagated to
block outputs.

How to Debug and Fix
To resolve this violation,
 Specify quasi_static constraint on a block port, or

 Analyze the specification or propagation of the top-level quasi-static
signal to the block port.

Example Code and/or Schematic

In this example, the SGDC_quasi_static_validation01 rule reports a
violation because the top-level quasi-static signal top.in2 reaches to the
unconstrained port in of block instance top.b1. Review the following
Verilog and SGDC code.
1769
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
The following schematic is generated.

FIGURE 408. Schematic of the SGDC_quasi_static_validation01 Rule Violation

To resolve the violation, apply the quasi_static constraint to the
unconstrained port in of block instance top.b1.

Verilog File SGDC Files
module top(input
in1,in2,clk1,clk2,output reg
out);
reg w1;
always@(posedge clk1)
 w1<=in1;

assign w2 = w1 & in2;

block b1(w2,clk1,out);

endmodule

module block(input in,clk,output
out);
endmodule

//SGDC file for top
current_design top
clock -name clk1
clock -name clk2
quasi_static -name top.w1
quasi_static -name in2
sgdc -import block block.sgdc

//SGDC for block
current_design block
clock -name clk
1770
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
Default Severity Label

Error

Rule Group

SOC_SGDCVALIDATION

Reports and Related Files

No report or related file
1771
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
SGDC_quasi_static_validation02
Reports quasi-static ports, which are not driven from top-level
quasi-static signals, of an abstract view

When to Use

Use this rule during the hierarchical CDC verification flow to validate
user-specified constraints for an abstract block in the context of a
higher-level hierarchy.

Prerequisites

Specify the set_option sgdc_validate yes command in the project
file.

Description

The SGDC_quasi_static_validation02 rule reports a violation if a quasi_static
constraint has been specified at a block-level port, however no top-level
quasi-static signal is driving the block port.

Rule Exceptions

The SGDC_quasi_static_validation02 rule does not report a violation if the
block port on which the quasi_static constraint is defined is being driven by
an abstract-view port having the abstract_port constraint with the -ignore
argument.

Parameter(s)

None

Constraint(s)

 quasi_static (Mandatory): Use this constraint to specify signals whose
value is predominantly static.

Messages and Suggested Fix

The following message appears if a quasi_static constraint has been
specified at a block-level port, however no top-level quasi-static signal is
driving the block port:
1772
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
[ERROR] Quasi-static port <port-name> specified for block
instance <instance-name> (block: <block-name>) is not driven
from top level quasi-static signals

Potential Issues
The violation message explicitly states the potential issue.

Consequences of Not Fixing
If you do not fix this violation, some crossings in the design may not be
detected.

How to Debug and Fix
To resolve this violation, perform the following:
 If the block quasi-static specification is correct, add the missing

quasi_static at the top-level, else
 Remove the quasi_static constraint from the block port.

Example Code and/or Schematic

In this example, the SGDC_quasi_static_validation02 rule reports a
violation because quasi-static port in specified for block instance top.b1
is not driven from top-level quasi-static signals. Review the following
Verilog and SGDC code.
1773
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
Default Severity Label

Error

Rule Group

SOC_SGDCVALIDATION

Reports and Related Files

No report or related file

Verilog File SGDC Files
module top(input
in1,in2,clk1,clk2,output reg
out);
reg w1;
always@(posedge clk1)
 w1<=in1;

assign w2 = w1 & in2;

block b1(w2,clk1,out);

endmodule

module block(input in,clk,output
out);
endmodule

//SGDC file for top
current_design top
clock -name clk1
clock -name clk2
quasi_static -name w1
sgdc -import block block.sgdc

//SGDC for block
current_design block
clock -name clk
quasi_static -name in
1774
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
SGDC_quasi_static_validation03
Reports top module output ports on which user has defined
quasi_static value but none of the quasi_static constraint is
propagated to

When to Use

If you have specified the quasi_static constraint on some output ports of the
top design/module, use this rule to check if any quasi_static value is
propagated to those output ports.

Prerequisites

Specify the quasi_static constraint on any output port.

Description

The SGDC_quasi_static_validation03 rule reports a violation when the
quasi_static constraint is specified on an output port of top module and no
quasi_static value is propagated to that port.

Parameter(s)

num_quasi_seq_elem: Default value is 0. Set this parameter to a positive
integer greater than or equal to zero to specify the depth that should be
considered when traversing the fanout traversal for the quasi_static
constraint.

Constraint(s)

 quasi_static (Mandatory): Use this constraint to specify signals whose value
is predominantly static.

Messages and Suggested Fix

The following message appears if the output port of the top module
<module_name> has the quasi_static constraint specified on an output
port and no or incorrect quasi_static value is propagated to that port:

[Warning] Output port of top module <module-name> has
quasi_static mismatches

Potential Issues
1775
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
This violation appears if the output port is constrained with the quasi_static
constraint but quasi_static signal is not received from the fanin cone of that
port.

Consequences of Not Fixing
If you do not fix this violation, the constrained port will pass incorrect
information to other interacting modules when these modules are used in
the SoC level.

How to Debug and Fix
To debug and fix this violation, perform the following steps:
 Identify the problematic output ports by referring the rule based

spreadsheet for the top module.
 If any quasi_static value is not propagated to an output port on which

the quasi_static constraint is defined, remove the quasi_static constraint
from that port.

Example Code and/or Schematic

Consider the following schematic:

FIGURE 409. Schematic of the SGDC_quasi_static_validation03 Rule Violation

In the above example, though the quasi_static constraint is defined on
1776
Synopsys, Inc.

Block Constraint Validation Rules

Rules in SpyGlass CDC
out1 output port, it doesn't propagate quasi_static value to that port
because there is no quasi_static defined on in1. Therefore, the
SGDC_quasi_static_validation03 rule reports a violation.

Default Severity Label

Warning

Rule Group

None

Reports and Related Files

SGDC_quasi_static_validation03.csv
1777
Synopsys, Inc.

Synchronous Reset Verification Rules

Rules in SpyGlass CDC
Synchronous Reset Verification Rules
Rules under this category verify user-defined synchronous resets.

These rules work only with the Advanced_CDC and adv_checker license
features.

Following are the rules under this category:

Rule Description
Ar_syncrstactive01 Reports a mismatch in the polarity on a

synchronous reset usage
Ar_syncrstcombo01 Reports a mismatch in the combinational logic in a

synchronous reset path
Ar_syncrstload01 Reports if load on a synchronous reset exceeds the

specified maximum load
Ar_syncrstload02 Reports if load on a synchronous reset is less than

the specified minimum load
Ar_syncrstpragma01 Reports a mismatch in the pragma specification on

a synchronous reset usage
Ar_syncrstrtl01 Reports if the usage of a synchronous reset is not

detected in a condition of the first if statement
1778
Synopsys, Inc.

Synchronous Reset Verification Rules

Rules in SpyGlass CDC
Ar_syncrstactive01
Polarity on synchronous reset usage mismatches with -active field
in sync_reset_style constraint

When to Use

Use this rule to verify polarity of user-defined synchronous resets.

Description

The Ar_syncrstactive01 rule reports a violation in the following cases:
 If the -active argument of the sync_reset_style constraint is set to low,

and SpyGlass detects at least one synchronous reset usage that is not
active low.

 If the -active argument of the sync_reset_style constraint is set to
high, and SpyGlass detects at least one synchronous reset usage that
is not active high.

Considering Synchronous Reset Usage as Active Low

SpyGlass considers synchronous reset usage as active low when SpyGlass-
generated path for the synchronous reset logic contains:
 Only one AND gate.

 Only one inverter followed by one OR gate.

Considering Synchronous Reset Usage as Active High

SpyGlass considers synchronous reset as active high when
SpyGlass-generated path for a synchronous reset logic contains:
 Only one OR gate.

 Only one inverter followed by one AND gate

Parameter(s)

None
1779
Synopsys, Inc.

Synchronous Reset Verification Rules

Rules in SpyGlass CDC
Constraint(s)

 sync_reset_style: (Mandatory) Use this constraint to specify synchronous
reset information.

 reset (Mandatory): Use this constraint with the -sync argument to
specify synchronous reset signals in your design.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

Messages and Suggested Fix

This rule reports the following message:

[WARNING] <Un-deterministic | Unexpected> polarity detected in
reset tree of synchronous reset '<reset-source>' (Output:
'<output-name>')

SpyGlass reports the polarity as un-deterministic when the
Ar_syncrstactive01 rule could not detect/determine the polarity. For
example, such cases occur when the data pin of flip-flop is driven by a NOR
gate.

SpyGlass reports a polarity as unexpected when the detected polarity
mismatches with user-specified polarity. For example, such cases occur
when SpyGlass-detected polarity is high and user-specified polarity is low.

Potential Issues
This violation appears if the polarity on the path of synchronous reset
signal does not match with the information specified in the -active
argument of the sync_reset_style constraint.

Consequences of Not Fixing
If you do not fix this violation, synchronous reset may not get asserted at
the user-specified value. This may result in many uninitialized flip-flops in
the design.

How to Debug and Fix
1780
Synopsys, Inc.

Synchronous Reset Verification Rules

Rules in SpyGlass CDC
To debug the violation of this rule, view the Incremental Schematic of the
violation message, and check the gates connected to the data pin of a
flip-flop.

Example Code and/or Schematic

Consider the following files specified during SpyGlass analysis:

For the above example, this rule reports a violation because of unexpected
polarity detected in the reset tree of the synchronous reset srst.

The following figure shows the schematic of the violation reported in this
case:

FIGURE 410. Schematic of the Ar_syncrstactive01 Rule Violation

The above schematic highlights the reset path to the flip-flop containing
the unexpected polarity.

module test(input in, clk1, srst, output reg outa);
 always @ (posedge clk1)
 if (srst) outa = 1'b0;
 else outa = in;

endmodule

//test.v

constr.sgdc

current_design test
sync_reset_style -active low
clock -name clk1
reset -name srst -sync
1781
Synopsys, Inc.

Synchronous Reset Verification Rules

Rules in SpyGlass CDC
To fix this violation, modify the if (srst) outa = 1'b0; line in the RTL
to if (!srst) outa = 1'b0;.

Default Severity Label

Warning

Rule Group

Ar_syncrst_validation

Reports and Related Files

A spreadsheet file containing all violations of this rule.
1782
Synopsys, Inc.

Synchronous Reset Verification Rules

Rules in SpyGlass CDC
Ar_syncrstcombo01
Combinational logic in synchronous reset path mismatches with
-combo field in sync_reset_style constraint

When to Use

Use this rule to verify user-defined synchronous resets.

Description

The Ar_syncrstcombo01 rule reports a violation when the combinational
logic in a synchronous reset path does not match with the combinational
logic specified in the -combo argument of the sync_reset_style
constraint.

Parameter(s)

None

Constraint(s)

 sync_reset_style: (Mandatory) Use this constraint to specify synchronous
reset information.

 reset (Mandatory): Use this constraint with the -sync argument to
specify synchronous reset signals in your design.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

Messages and Suggested Fix

This rule reports the following message:

[WARNING] Combinational logic detected in reset tree of
synchronous reset <reset-source> (Output: <output-name>)

Potential Issues
This violation appears if a combinational logic present in the design does
not match with the user-specified combination logic in a path.

Consequences of Not Fixing
1783
Synopsys, Inc.

Synchronous Reset Verification Rules

Rules in SpyGlass CDC
Presence of combinational elements can introduce glitches and result in
delay in a synchronous reset path.

How to Debug and Fix
To debug the violation of this rule, view the Incremental Schematic of the
violation message and check the logic present in the path with the logic
specified in the SGDC file.

Example Code and/or Schematic

Consider the following files specified during SpyGlass analysis:

For the above example, this rule reports a violation because the design
contains a combinational logic that is not specified in the SGDC file.

To fix this violation, remove the following combinational logic generation
code from the RTL:

wire srst2 = srst & en;

Default Severity Label

Warning

module test(input in, clk1, en, srst, output reg outa);

 wire srst2 = srst & en;

 always @ (posedge clk1)

 if (!srst2) outa = 1'b0;
 else outa = in;
endmodule

//test.v

current_design test
sync_reset_style -combo no
clock -name clk1
reset -name srst -sync

//constr.sgdc
1784
Synopsys, Inc.

Synchronous Reset Verification Rules

Rules in SpyGlass CDC
Rule Group

Ar_syncrst_validation

Reports and Related Files

A spreadsheet file containing all violations of this rule.
1785
Synopsys, Inc.

Synchronous Reset Verification Rules

Rules in SpyGlass CDC
Ar_syncrstload01
Load on synchronous reset exceeds the specified max load

When to Use

Use this rule to verify user-defined synchronous resets.

Description

The Ar_syncrstload01 rule reports a violation when the load on a
synchronous reset exceeds the load specified in the -max_load argument
of the sync_reset_style constraint.

This load is specified in terms of the total number of the following type of
terminals driven by a synchronous reset:

Parameter(s)

None

Constraint(s)

 sync_reset_style: (Mandatory) Use this constraint to specify synchronous
reset information.

 reset (Mandatory): Use this constraint with the -sync argument to
specify synchronous reset signals in your design.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

Messages and Suggested Fix

This rule reports the following message:

[WARNING] Load <current-load> on Synchronous reset '<reset-
name>' exceeds the specified maximum load <maximum-allowed-
load>

sequential element terminals tristate terminals
mux instance control terminals black box terminals
1786
Synopsys, Inc.

Synchronous Reset Verification Rules

Rules in SpyGlass CDC
Potential Issues
This violation appears if you design contains synchronous reset on which
the load is greater than the maximum allowed load.

Consequences of Not Fixing
If you do not fix this violation, synchronous resets will have a very high
load compared to the maximum specified load. This will result in a high
transition time of a net and possible skew in the design.

In such case, you may need to re-analyze the reset tree to introduce a
buffer for balancing the load.

How to Debug and Fix
To debug the violation of this rule, perform any of the following actions
depending upon your requirement:
 Analyze and remove the unexpected usage of synchronous reset in a

design.
 Increase the value of the -max_load argument of the sync_reset_style

constraint.

Example Code and/or Schematic

Consider the following files specified during SpyGlass analysis:
1787
Synopsys, Inc.

Synchronous Reset Verification Rules

Rules in SpyGlass CDC
For the above example, the Ar_syncrstload01 rule reports a violation
because the load on the srst synchronous reset exceeds the maximum
allowed load limit 3 (-max_load 3).

The following figure shows the schematic of this violation:

module test(input [4:0] in, input quasinet, clk1, clk2, srst, srst2,

 always @ (posedge clk1)
 if (!srst) outa = 5 'b00000;
 else outa = in;

 wire l_srst2 = !srst2;
 always@(posedge clk1)
 outc[0] = l_srst2?1 'b0:in[0];

endmodule

output reg [4:0] outa, outc);

// test.v

// constr.sgdc

current_design test
sync_reset_style -max_load 3 -min_load 2 -first_if yes

clock -name clk1
reset -name srst -sync
reset -name srst2 -sync

-pragma yes -active low -combo no
1788
Synopsys, Inc.

Synchronous Reset Verification Rules

Rules in SpyGlass CDC
FIGURE 411. Schematic of the Ar_syncrstload01 Rule Violation

To fix this violation, perform any of the following actions depending upon
your requirement:
 Remove the reported reset if it is not required in the design.

 Increase the value of the maximum allowed load on resets. That is,
specify a value greater than 3 in the -max_load argument of the
sync_reset_style constraint.

Default Severity Label

Warning
1789
Synopsys, Inc.

Synchronous Reset Verification Rules

Rules in SpyGlass CDC
Rule Group

Ar_syncrst_validation

Reports and Related Files

A spreadsheet file containing all violations of this rule.
1790
Synopsys, Inc.

Synchronous Reset Verification Rules

Rules in SpyGlass CDC
Ar_syncrstload02
Load on synchronous reset less than the specified minimum load

When to Use

Use this rule to verify user-defined synchronous resets.

Description

The Ar_syncrstload02 rule reports a violation when the load on a
synchronous reset is less than the load specified in the -min_load
argument of sync_reset_style constraint.

This load is specified in terms of the total number of the following type of
terminals driven by a synchronous reset:

Parameter(s)

None

Constraint(s)

 sync_reset_style: (Mandatory) Use this constraint to specify synchronous
reset information.

 reset (Mandatory): Use this constraint with the -sync argument to
specify synchronous reset signals in your design.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

Messages and Suggested Fix

This rule reports the following message:

[WARNING] Load <current-load> on Synchronous reset '<reset-
name>' is less than the specified minimum load <minimum-
allowed-load>

sequential element terminals tristate terminals
mux instance control terminals black box terminals
1791
Synopsys, Inc.

Synchronous Reset Verification Rules

Rules in SpyGlass CDC
Potential Issues
This violation appears if you design contains synchronous resets on which
the load is less than the minimum allowed load.

Consequences of Not Fixing
Synchronous resets are generally high load nets and you may have
introduced additional logic to cater to the high load, which is unnecessary.

How to Debug and Fix
To debug the violation of this rule, analyze the usage of synchronous reset
in your design. It might happen that your synchronous reset is getting
blocked in the design and may not allow synchronous reset to initialize
your design.

Decreasing the value of the -min_load argument of the sync_reset_style
constraint will remove this violation.

Example Code and/or Schematic

Consider the following files specified during SpyGlass analysis:
1792
Synopsys, Inc.

Synchronous Reset Verification Rules

Rules in SpyGlass CDC
FIGURE 412.

For the above example, the Ar_syncrstload02 rule reports a violation
because the load on the srst synchronous reset is less than the minimum
load limit 3 (-min_load 3).

The following figure shows the schematic of this violation:

module test(input d1, d2, srst, clk, output reg q1, q2);

always @(posedge clk)
 if (srst) begin
 q1 <= 1'b0;
 q2 <= 1'b0;

 end
 else begin
 q1 <= d1;
 q2 <= d2;

 end
endmodule

// test.v

current_design test
clock -name clk
reset -sync -name srst
sync_reset_style -min_load 3

// constr.sgdc
1793
Synopsys, Inc.

Synchronous Reset Verification Rules

Rules in SpyGlass CDC
FIGURE 413. Schematic of the Ar_syncrstload02 Rule Violation

To fix this violation, decrease the value of the -min_load argument of the
sync_reset_style constraint.

Default Severity Label

Warning

Rule Group

Ar_syncrst_validation

Reports and Related Files

A spreadsheet file containing all violations of this rule.
1794
Synopsys, Inc.

Synchronous Reset Verification Rules

Rules in SpyGlass CDC
Ar_syncrstpragma01
Pragma specification on synchronous reset usage mismatches with
-pragma field in sync_reset_style constraint

When to Use

Use this rule to verify user-defined synchronous resets.

Description

The Ar_syncrstpragma01 rule reports a violation in the following cases:
 If the -pragma argument of the sync_reset_style constraint is set to yes

and all the RTL usage of a synchronous reset does not specify the
sync_set_reset pragma.

 If the -pragma argument of the sync_reset_style constraint is set to
mixed and none of the RTL usage of the synchronous reset specifies the
sync_set_reset pragma.

This rule detects pragma specification on a net (<net-name>) when the
// synopsys sync_set_reset <net-name> is detected in the RTL
design. See Example 1 - mixed and yes Speciations of -pragma.

Parameter(s)

None

Constraint(s)

 sync_reset_style: (Mandatory) Use this constraint to specify synchronous
reset information.

 reset (Mandatory): Use this constraint with the -sync argument to
specify synchronous reset signals in your design.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

Messages and Suggested Fix

This rule reports the following message:

[WARNING] Reset pragma not detected in <tree-type> reset tree
of synchronous reset '<reset-source>' (Output: '<output-name>')
1795
Synopsys, Inc.

Synchronous Reset Verification Rules

Rules in SpyGlass CDC
Where, <tree-type> is complete if the value of the -pragma argument
of the sync_reset_style constraint is mixed. Else, this argument is blank.

Potential Issues
This violation appears if your design does not contain expected usage of
the sync_set_reset pragma on a synchronous reset usage.

Consequences of Not Fixing
If you do not fix this violation, tools using pragma-related information for
further optimization will not be able to optimize/use this information.

How to Debug and Fix
To debug the violation of this rule, perform the following steps:
1. Open the Incremental Schematic of the violation of this rule.
2. Analyze the usage of synchronous reset in the schematic where pragma

is not detected by the tool.

Example Code and/or Schematic

Example 1 - mixed and yes Speciations of -pragma

Consider the following files specified for SpyGlass analysis:
1796
Synopsys, Inc.

Synchronous Reset Verification Rules

Rules in SpyGlass CDC
For the above example, the Ar_syncrstpragma01 rule reports the following
violation at the line in red:

Reset pragma not detected in reset tree of synchronous reset
'test.rst1' (Output: 'test.a_m2.outa')

To fix this violation, specify the following pragma before the line in red in
the above example:

// synopsys sync_set_reset rst1

However, if you modify the constraint in blue of the above example to the
following, the Ar_syncrstpragma01 rule does not report any violation:

sync_reset_style -first_if yes -pragma mixed -active low

module M1(input ina,

 input clk1, clk2, clk3, clk4,
 input rst, rst1, rst2, rst3, rst4, rst5, rst6, rst7, rst8, rst9, rst10,
 output reg outa, outb, outc, outd);

 // synopsys sync_set_reset rst1
 always@(posedge clk1) if(!rst1) outa <= 1'b0; else outa <= ina;
endmodule

module M2(input ina,
 input clk1, clk2, clk3, clk4,
 input rst, rst1, rst2, rst3, rst4, rst5, rst6, rst7, rst8, rst9, rst10,
 output reg outa, outb, outc, outd);

 always@(posedge clk1) if(!rst2) outa <= 1'b0; else outa <= ina;
endmodule

module test(input ina,
 input clk1, clk2, clk3, clk4,
 input rst, rst1, rst2, rst3, rst4, rst5, rst6, rst7, rst8, rst9, rst10,
 output reg outa, outb, outc, outd);

wire l_rst1 = rst1;
M1 a_m1(ina, clk1, clk2, clk3, clk4,

 rst, l_rst1, !rst2, rst3, rst4, rst5, rst6, rst7, rst8, rst9, rst10,
 outa, outb, outc, outd);

M2 a_m2(ina, clk1, clk2, clk3, clk4,
 rst, rst2, rst1, rst3, rst4, rst5, rst6, rst7, rst8, rst9, rst10,
 outa, outb, outc, outd);

endmodule

test.v

SGDC

sync_reset_style -first_if yes -pragma yes -active low -combo no
current_design test
clock -name clk1
1797
Synopsys, Inc.

Synchronous Reset Verification Rules

Rules in SpyGlass CDC
-combo no

Example 2 - sync_reset_style -pragma set to yes

Consider the following files specified during SpyGlass analysis:

For the above example, the Ar_syncrstpragma01 rule reports a violation
because pragma is not specified on the srst reset. To fix this violation,
add the following line in the RTL:

// synopsys sync_set_reset srst

Default Severity Label

Warning

Rule Group

Ar_syncrst_validation

Reports and Related Files

A spreadsheet file containing all violations of this rule.

module test(input in, clk1, en, srst, output reg outa);
 wire srst2 = srst & en;
 always @ (posedge clk1)
 if (!srst2) outa = 1'b0;
 else outa = in;
endmodule

//test.v

current_design test

clock -name clk1
reset -name srst -sync

//constr.sgdc

sync_reset_style -pragma yes
1798
Synopsys, Inc.

Synchronous Reset Verification Rules

Rules in SpyGlass CDC
Ar_syncrstrtl01
Usage of synchronous reset is not detected in condition of first if
statement

When to Use

Use this rule to verify user-defined synchronous resets.

Description

The Ar_syncrstrtl01 rule reports a violation when the -first_if
argument of the sync_reset_style constraint is set to yes and the
synchronous reset is not always used in a condition of the first if
statement.

Parameter(s)

None

Constraint(s)

 sync_reset_style: (Mandatory) Use this constraint to specify synchronous
reset information.

 reset (Mandatory): Use this constraint with the -sync argument to
specify synchronous reset signals in your design.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

Messages and Suggested Fix

This rule reports the following message:

[WARNING] Synchronous reset '<reset-source>' at (Output:
'<output-name>') not used in condition of first if statement of
'<always | process>' block

Potential Issues
This violation appears if the usage of a synchronous reset is not detected in
condition of the first if statement.
1799
Synopsys, Inc.

Synchronous Reset Verification Rules

Rules in SpyGlass CDC
Consequences of Not Fixing
If you do not fix this violation, it will lead to more logic in the synchronous
reset path, which will have delay/timing impact.

How to Debug and Fix
To debug the violation of this rule, analyze the usage of synchronous reset
in the always block that is used for the generation of a flip-flop.

Example Code and/or Schematic

Consider the following files specified in SpyGlass analysis:

For the above example, the Ar_syncrstrtl01 rule reports a violation because
the srst reset is not used in first if condition of the second always block.

To fix this violation, use the srst reset in first if condition clause.

module test(input in, input clk1,srst,srst1,
 output reg outa, outb);
 always @ (posedge clk1)
 if (srst) outa <= 0;
 else outa <= in;

 always @ (posedge clk1) begin
 if (srst1) outb <= 1
 else if (srst) outb <= 1

 else outb <= in;
 end
endmodule

//test.v

current_design test
sync_reset_style -first_if yes
reset -name srst -sync
reset -name srst1 -sync

//constr.sgdc
1800
Synopsys, Inc.

Synchronous Reset Verification Rules

Rules in SpyGlass CDC
Default Severity Label

Warning

Rule Group

Ar_syncrst_validation

Reports and Related Files

A spreadsheet file containing all violations of this rule.
1801
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Must Rules
The following non-fatal rules are always run whenever the SpyGlass CDC
solution is run:
TABLE 8 Non-fatal Must Rules

Rule Purpose

Ac_abs01 Reports when some functional rules are
running and either of the fa_flopcount or
fa_seqdepth parameters are specified

Ac_license01 Checks whether the Advanced_CDC license
feature is available when the dependent rules
are selected to run

Clock_check07 Reports cases when one clock domain reaches
another domain while propagating

Propagate_Clocks Generates highlight information for clock trees

Propagate_Resets Generates highlight information for reset trees

SGDC_clockreset02 Sanity checks on the output constraint

SGDC_gray_signals01 Reports a violation if you specify on one scalar
signal to the gray_signals constraint.

SGDC_gray_signals02 Reports a violation if any signal specified by
the gray_signals constraint is not driven by a
clock.

SGDC_gray_signals03 Reports a violation if the signals specified by
the gray_signals constraint are in multiple
clock domains.

SGDC_input02 Reports non-existent ports/nets (non-
hierarchical names) specified with the
-clock argument of the input constraint
Here, the clock controlling the input port is
assumed a virtual clock.
1802
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_numflops03a Reports a violation if a non-hierarchical net
name or a port name specified in the
-from_clk argument of the num_flops
constraint is not found in the top-level module.
Here, the clock controlling the input port is
assumed a virtual clock.

SGDC_numflops03c Reports a violation if an invalid clock is
specified in the -from_clk argument of the
num_flops constraint

SGDC_numflops04 Reports a violation if an invalid clock is
specified in the -to_clk argument of the
num_flops constraint

SGDC_numflops05 Reports a violation if the domain name
specified with the -from_domain field of
the num_flops constraint does not exist as
a domain specified to a clock in the SGDC file
or as a domain attached to an automatically-
inferred clock by SpyGlass.
The specific constraint will be ignored in such
cases.

SGDC_numflops06 Reports a violation if the domain name
specified with the -to_domain field of the
num_flops constraint does not exist as a
domain specified to a clock in the SGDC file or
as a domain attached to an automatically-
inferred clock by SpyGlass.
The specific constraint will be ignored in such
cases.

TABLE 8 Non-fatal Must Rules

Rule Purpose
1803
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_numflops11 Reports a violation if the fields specified with
the num_flops constraint are logically
overlapping. The latest found specification will
be used in such cases.
Following is an example of such overlapping
constraints, where clk1 and clk2 are clocks in
domains d1 and d2, respectively.
num_flops -from_clk clk1 -to_clk clk2 -value 3
num_flops -from_domain d1 -to_domain d2 -
value 4
In this case, the number of flip-flops required
for multi-flops synchronization for a crossing
between clk1 and clk2 will be taken as 4 (from
last found specification).

SGDC_numflops13 Checks the -lib argument of the num_flops
constraint

SGDC_numflops14 Checks the -cell argument of the num_flops
constraint

SGDC_qualifier02a Reports a violation if any of the clock names
specified with the -from_clk field of
qualifier constraint is not one of the specified
clocks or automatically-inferred clock.

SGDC_qualifier02c Reports a violation if any of the clock names
specified with the -from_clk field of
qualifier constraint is a non-hierarchical name
that does not exist as a port or net in the
current design. This clock is assumed a virtual
clock.
Here, the clock controlling the input port is
assumed a virtual clock.

SGDC_qualifier03a Reports a violation if any of the clock names
specified with the -to_clk field of qualifier
constraint is not one of the specified clocks or
automatically-inferred clock.

TABLE 8 Non-fatal Must Rules

Rule Purpose
1804
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_qualifier03c Reports a violation if any clock specified to the
-to_clk argument of qualifier constraint is a
non-hierarchical name that does not exist as a
port or net in the current design.

SGDC_qualifier04 Reports a violation if any of the domain names
specified with the -from_domain field of
qualifier constraint is not one of the domain
specified with the clock constraint or a
domain attached to an automatically-inferred
clock.

SGDC_qualifier05 Reports a violation if any of the domain names
specified with the -to_domain field of
qualifier constraint is not one of the
domain specified with the clock constraint or
a domain attached to an automatically-
inferred clock.

SGDC_qualifier08 Reports a violation if valid net, hierarchical
terminal, port, or sub module port for the
wildcard name mentioned with the -net field of
the qualifier constraint do not exist.

SGDC_qualifier18 Reports a violation if the qualifier -ignore
constraint is specified on a net that is the part
of a loop.

Param_clockreset02 Reports illegal values specified with the
num_flops parameter

Param_clockreset04 Reports incorrectly specified
cdc_reduce_pessimism,
clock_reduce_pessimism, and
reset_reduce_pessimism parameters

Param_clockreset05 Reports a missing or incorrectly specified
simulator_file_name parameter

TABLE 8 Non-fatal Must Rules

Rule Purpose
1805
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Param_clockreset06 Reports that the parameters,
expected_ckcells_file and
unexpected_ckcells_file, are specified
together. In this case, the
unexpected_ckcells_file parameter is ignored.

Param_clockreset07 Reports if the following combination of options
are specified with ac_sync_mode parameter:
• strict_gate and soft_gate
• strict_qual_logic and

soft_qual_logic
If any of the above-specified combination is
used, default values are used for the
ac_sync_mode parameter.

Clock_check07 Reports cases when one clock domain reaches
another domain while propagating

Reset_check08 Reports reset signals specified as a
set_case_analysis signal
(The Reset_check03 and Reset_check04 rules
will not be run on that reset signal)

FalsePathSetup Reports a violation when the cdc_false_path
constraint does not waive any clock domain
crossing in the design

QualifierSetup Reports a violation when the qualifier
constraint does not synchronize any clock
domain crossing in the design

SignalTypeSetup Checks for the signal specified by the -name
argument of the signal_type constraint

Ac_initseq01 Reports a violation when all define_tag
constraints with the -tag initSeq
argument specified do not have the same
length sequence specified with the -value
argument

Ac_sanity01 Reports issues with the user-specified
property files

TABLE 8 Non-fatal Must Rules

Rule Purpose
1806
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Ac_sanity02 Reports non-tristate nets that have multiple
drivers

Ac_sanity06 Reports over-constraining

Ac_init01 Reports a violation when none of the clocks in
the design are specified using the clock
constraint and the use_inferred_clocks option
is also not set.

Ac_multitop01 Reports designs having multiple top-level
design units

Ac_initstate01 Reports a valid state of the design from which
the formal analysis would actually start

Ac_report01 Reports total number of properties analyzed
and number of functional constraints set on a
design

SGDC_fifo11 Checks existence of wildcard names in fields of
fifo constraint.

SGDC_fifo12 Checks existence of memory corresponding to
fields of fifo constraint.

SGDC_fifo13 Reports if a read pointer width is not equal to
the write pointer width for user defined FIFOs.

SGDC_fifo14 Reports if no FIFO could be inferred from the
user specified fifo definition.

SGDC_define_reset_order03 Reports when any of the reset names specified
in the -from field of the define_reset_order
constraint is not one of the user-defined reset
or automatically-inferred reset.

SGDC_define_reset_order04 Reports when any of the reset names specified
in the -to field of the define_reset_order
constraint is not one of the user-defined reset
or automatically-inferred reset.

SGDC_define_reset_order05 Reports when the resets specified in the
define_reset_order constraint are conflicting.

TABLE 8 Non-fatal Must Rules

Rule Purpose
1807
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_allow_combo_logic02 Reports if a combination of all, none, or
name is used in the different specification of
the allow_combo_logic constraint.

AllowComboLogicSetup Reports if the modules specified by using the
allow_combo_logic constraint are not used by
any crossing

SGDC_output03 Reports if both input and output constraints
are specified for an inout port.
In such cases, the output constraint
specification is ignored and only the input
constraint specification is considered.

SGDC_signal_in_domain04 Reports a violation if the object specified to
the -name argument of the signal_in_domain
constraint is not a black box.

SGDC_sgclkgroup01 Reports a violation if an invalid tag name is
specified to the -group1 argument of the
sg_clock_group constraint.

SGDC_sgclkgroup02 Reports a violation if an invalid tag name is
specified to the -group2 argument of the
sg_clock_group constraint.

SGDC_sgclkgroup03 Reports a violation if the same tag name is
specified to the -group1 and -group2
arguments of the sg_clock_group constraint.

SGDC_sync_cell02a Reports if an incorrect non-hierarchical clock
name is specified in the -from_clk
argument of the sync_cell constraint.
Here, the clock controlling the input port is
assumed a virtual clock.

SGDC_sync_cell02c Reports a violation if the clock name specified
by the -from_clk argument of the sync_cell
constraint is not one of the specified clocks or
an automatically-inferred clock.

TABLE 8 Non-fatal Must Rules

Rule Purpose
1808
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_sync_cell03b Reports a violation if the clock name specified
by the -to_clk argument of the sync_cell
constraint is not one of the specified clocks or
an automatically-inferred clock.

SGDC_sync_cell04 Reports a violation if the domain of clock name
specified with the -to_clk argument of the
sync_cell constraint matches with domain of
clock name specified by the -from_clk
argument of this constraint.

SGDC_sync_cell05 Reports a violation if the domain name
specified by the -from_domain argument of
the sync_cell constraint does not exist as a
domain specified to a clock in an SGDC file or
as a domain attached to an automatically-
inferred clock by SpyGlass.
The specific constraint is ignored in such
cases.

SGDC_sync_cell06 Reports a violation if the domain specified by
the -to_domain argument of the sync_cell
constraint does not exist as a domain specified
to a clock in an SGDC file or as a domain
attached to an automatically-inferred clock by
SpyGlass.
The specific constraint is ignored in such
cases.

SGDC_sync_cell07 Reports a violation if the same domain name is
specified by the -from_domain and
-to_domain arguments of the sync_cell
constraint.

SGDC_sync_cell08b Reports a violation if the value specified by the
-from_period argument of the sync_cell
constraint does not match the value specified
by the -period argument of any clock
constraint.

TABLE 8 Non-fatal Must Rules

Rule Purpose
1809
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_sync_cell09b Reports a violation if the value specified by the
-to_period argument of the sync_cell
constraint does not match the value specified
by the -period argument of any clock
constraint.

SGDC_sync_cell10 Reports a violation if multiple sync_cell
constraints cover the same crossing.
In such cases, all cells specified in these
constraints are considered as valid for that
crossing.

SyncCellSetup Reports a violation if the specified sync_cell
constraint is not used to synchronize any
crossing in design.

SGDC_qualifier11 Reports if the -crossing argument is
specified with the qualifier constraint and the
specified qualifier is not defined at the
destination output of a clock domain crossing.

SGDC_qualifier12 Reports if the -crossing argument is
specified with the qualifier constraint and the
-to_clk/-to_domain argument does not
match with the clock/domain of the
destination instance, respectively, of the
specified qualifier.

SGDC_qualifier13 Reports if the -crossing argument is
specified with the qualifier constraint and the
-from_clk/-from_domain argument does not
match the clock/domain of source instance,
respectively, of the qualifier.

SGDC_quasi_static01 Reports if the object specified in the -name
argument of the quasi_static constraint does
not exist as a net in the current design.

SGDC_quasi_static_style01 Reports if the SGDC file contains multiple
specifications of the quasi_static_style
constraint.

TABLE 8 Non-fatal Must Rules

Rule Purpose
1810
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_quasi_static_style02 Reports if you do not specify any argument
with the quasi_static_style constraint.

SGDC_cdc_false_path04 Reports non-existent objects specified (using
wildcards) with the -from/-to/-through
arguments of the cdc_false_path constraint

SGDC_cdc_false_path05 Reports if no argument is specified with the
cdc_false_path constraint

SGDC_cdc_false_path06 Reports type mismatch in the arguments of
the cdc_false_path constraint

SGDC_reset_synchronizer02 Reports a violation if the synchronizer output
specified by the -name argument of the
reset_synchronizer constraint is not present in
the fan-out of the reset specified by the -reset
argument of this constraint.

SGDC_reset_synchronizer09 Reports if you have specified the same
reset_synchronizer constraint multiple times.

SGDC_reset_synchronizer10 Reports if you have specified conflicting
arguments in multiple reset_synchronizer
constraints, that is, different arguments in the
-value argument but same arguments in all
other arguments.

SGDC_clock_path_wrapper_m
odule01

Reports user-defined wrapper modules in the
clock-path

SGDC_clocksense02 Reports for the -tag argument of the
clock_sense constraint if the tag is not
associated with a real clock

SGDC_clocksense03 Reports if a virtual clock is specified in the -tag
argument of the clock_sense constraint

TABLE 8 Non-fatal Must Rules

Rule Purpose
1811
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
TABLE 9 FATAL Must Rules

Rule Purpose

SGDC_abstract_port01 Reports violation if the module specified by
the -module argument of the
abstract_port constraint does not exist in
the current design.

SGDC_abstract_port02 Reports violation if the port name specified
in the -ports argument of the
abstract_port constraint does not match
with any of the ports of the module specified
by the -module argument of this
constraint.

SGDC_abstract_port03 Reports violation if the clock name specified
in -clock argument of the abstract_port
constraint is not a port or a net in the
current design.

SGDC_abstract_port04 Reports violation if a clock specified in the -
clock argument of the abstract_port
constraint is a part-select or full vector of a
block port.

SGDC_abstract_port05 Reports violation if the wildcard name
specified in the -clock argument of the
abstract_port constraint matches with
multiple block ports.

SGDC_abstract_port06 Reports violation if the value specified by the
-combo argument of the abstract_port
constraint is other than yes, no, or
unknown.

SGDC_abstract_port07 Reports violation if clock names specified in
the -from argument of the abstract_port
constraint does not exist as a port or a net in
the current design.
1812
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_abstract_port08 Reports violation if the port specified in
the -from argument of the abstract_port
constraint is a part-select or full vector
of a block port

SGDC_abstract_port10 Reports violation if the wildcard name
specified in the -from argument of the
abstract_port constraint matches with
multiple block ports.

SGDC_abstract_port11 Reports violation if the clock specified in
the -to argument of the abstract_port
constraint does not exist as a port or
net in the current design

SGDC_abstract_port12 Reports violation if the port specified in
the -to argument of abstract_port
constraint is a part-select or full vector of a
block port

SGDC_abstract_port13 Reports violation if the wildcard name
specified in the -to argument of the
abstract_port constraint matches with
multiple block ports

SGDC_abstract_port14 Reports violation if the value specified in
the -delay argument of the
abstract_port constraint is not an integer
or an integer less than two

SGDC_abstract_port15 Reports violation if the value specified in
the -seq argument of the abstract_port
constraint is other than yes or no

SGDC_abstract_port16 Reports violation if the input port
specified by the -related_ports
argument of the abstract_port constraint
does not exist in module specified by
the -module argument of this
constraint

TABLE 9 FATAL Must Rules

Rule Purpose
1813
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_abstract_port18 Reports violation if the value specified in
the -sync argument of the abstract_port
constraint is other than active or
inactive

SGDC_abstract_port21 Reports violation if the port specified in
abstract_port constraint does not exist in
the design.

SGDC_abstract_port22 Reports violation if the port specified in the
-combo_ifn argument of the
abstract_port constraint does not exist as a
port of the module specified
in the -module argument

SGDC_input01 Reports non-existent objects (port or net)
specified with the -name argument of the
input constraint

SGDC_input03 Reports non-existent ports/nets
(hierarchical names) specified with the
-clock argument of the input constraint

SGDC_fifo01 Reports a violation if you do not specify any
argument with the fifo constraint

SGDC_fifo02 Reports a violation if the object specified by
the -rd_data argument of the fifo
constraint does not exist as a net or a
hierarchical terminal in the current design

SGDC_fifo03 Reports a violation if the object specified by
the -wr_data argument of the fifo
constraint does not exist as a net or a
hierarchical terminal in the current design

SGDC_fifo04 Reports a violation if the object specified by
the -rd_ptr argument of the fifo
constraint does not exist as a net or a
hierarchical terminal in the current design

TABLE 9 FATAL Must Rules

Rule Purpose
1814
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_fifo05 Reports a violation if the object specified by
the -wr_ptr argument of the fifo
constraint does not exist as a net or a
hierarchical terminal in the current design

SGDC_fifo06 Reports a violation if the value specified by
the -memory argument of the fifo
constraint does not match with the name of
an existing net, hierarchical terminal, or
module in the current design.

SGDC_fifo07 Reports a violation if the -rd_data
argument of the fifo constraint is specified
without its corresponding -wr_data
argument

SGDC_fifo08 Reports a violation if the -wr_data argument
of the fifo constraint is specified without its
corresponding -rd_data argument.

SGDC_fifo09 Reports a violation if the -wr_ptr argument
of the fifo constraint is specified without its
corresponding -rd_ptr argument.

SGDC_fifo10 Reports a violation if the -rd_ptr argument
of the fifo constraint is specified without its
corresponding -wr_ptr argument

SGDC_numflops01 Reports a violation if no field is specified
with the num_flops constraint. At least
one of the fields: -from_clk, -to_clk,
-to_clock, -from_domain, -
to_domain, -to_period, and -
default should be specified with this
constraint.

SGDC_numflops03b Reports a violation if an invalid hierarchical
net or pin name is specified in the
-from_clk argument of the num_flops
constraint

TABLE 9 FATAL Must Rules

Rule Purpose
1815
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_numflops07 Reports a violation if the value specified with
the -to_period field of the num_flops
constraint is not a float value or a negative
float value.

SGDC_numflops08 Reports a violation if the value specified with
the -value field of the num_flops
constraint is not an integer or an integer less
than 1.

SGDC_numflops09 Reports a violation if the value specified with
the -default field of the num_flops
constraint is not an integer or an integer
with value less than 2.

SGDC_numflops10 Reports a violation if the value specified with
the -value field is specified with the
-default field of the num_flops
constraint. The -value field is ignored in
such cases.

SGDC_sync_cell02b Reports a violation if an incorrect
hierarchical clock name is specified in the
-from_clk argument of the sync_cell
constraint

SGDC_sync_cell03a Reports a violation if the clock specified by
the -to_clk argument of the sync_cell
constraint is not found within the module.

SGDC_sync_cell08a Reports a violation if the value specified by
the -from_period argument of the
sync_cell constraint is not a float value or a
negative float value.

SGDC_sync_cell09a Reports a violation if the value specified by
the -to_period argument field of the
sync_cell constraint is not a float value or a
negative float value.

SGDC_qualifier01 Reports a violation if the -name field of the
qualifier constraint is not specified.

TABLE 9 FATAL Must Rules

Rule Purpose
1816
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_qualifier02b Reports a violation if any of the clock names
specified with the -from_clk field of
qualifier constraint is a hierarchical
name that does not exist as a port,
hierarchical terminal or net in the current
design.

SGDC_qualifier03b Reports a violation if any of the clock names
specified with the -to_clk field of
qualifier constraint does not exists as a
port, hierarchical terminal, or net in the
current design.

SGDC_qualifier06 Reports a violation if the -type field of the
qualifier constraint is specified a value
other than src, des, or both.

SGDC_qualifier09 Reports a violation if neither -from_clk/-
to_clk nor -from_domain/-to_domain fields
are specified with the qualifier
constraint.

SGDC_qualifier10 Reports a violation if the clocks specified in
each of the fields -from_clk and -to_clk of
qualifier constraint have same domain.

SGDC_qualifier15 Reports a violation if none of the -name or
-enable arguments are specified to the
qualifier constraint.

SGDC_qualifier16 Reports a violation if any signal name
specified to the -enable argument of the
qualifier constraint is a hierarchical name
that does not exist as a port, a hierarchical
terminal, or a net in the current design.

SGDC_output01 Reports non-existent objects (port) specified
with the -name argument of the output
constraint

TABLE 9 FATAL Must Rules

Rule Purpose
1817
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_output02 Reports non-existent objects (port or net)
specified with the -clock argument of the
output constraint

SGDC_IP_block01 Reports non-existent objects (module)
specified with the -name argument of the
ip_block constraint

SGDC_signal_in_domain01 Reports non-existent objects (module)
specified with the -name argument of the
signal_in_domain constraint

SGDC_signal_in_domain02 Reports non-existent objects (pin of module
specified with the -name argument)
specified with the -domain argument of
the signal_in_domain constraint

SGDC_signal_in_domain03 Reports non-existent objects (pin of module
specified with the -name argument)
specified with the -signal argument of
the signal_in_domain constraint

SGDC_cdc_false_path01 Reports non-existent objects (top-level port,
net, terminal, module) specified with the
-from argument of the cdc_false_path
constraint

SGDC_cdc_false_path02 Reports non-existent objects (top-level port,
net, terminal, module) specified with the
-to argument of the cdc_false_path
constraint

SGDC_cdc_false_path03 Reports non-existent objects (top-level port,
net, terminal, module) specified with the
-through argument of the cdc_false_path
constraint

TABLE 9 FATAL Must Rules

Rule Purpose
1818
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_network_allowed_cells01 Reports incorrect value of the -type
argument of the network_allowed_cells
constraint.
Valid values are clock, reset, and
clock reset.

SGDC_network_allowed_cells02 Reports non-existent objects (net) specified
with the -from argument of the
network_allowed_cells constraint

SGDC_output_not_used01 Reports non-existent objects (port) specified
with the -name argument of the
output_not_used constraint

SGDC_define_reset_order01 Reports when any of the arguments
specified in the -from field of the
define_reset_order constraint does not exist
as a port, hierarchical terminal, or net in the
current design.

SGDC_define_reset_order02 Reports when any of the arguments
specified in the -to field of the
define_reset_order constraint does not exist
as a port, hierarchical terminal, or net in the
current design.

SGDC_allow_combo_logic01 Reports if none of the fields are specified in
the allow_combo_logic constraint.

SGDC_noclockcell01 Existence check for objects (ports/nets)
specified with the -name argument of the
noclockcell_start constraint

SGDC_noclockcell02 Existence check for objects (ports/pins/nets)
specified with the -name argument of the
noclockcell_stop_signal constraint

SGDC_noclockcell03 Existence check for objects (modules)
specified with the -name argument of the
noclockcell_stop_module constraint

TABLE 9 FATAL Must Rules

Rule Purpose
1819
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_noclockcell04 Existence check for objects (instances)
specified with the -name argument of the
noclockcell_stop_instance constraint

SGDC_deltacheck_start01 Existence check for objects (ports/pins/nets)
specified with the -name argument of the
deltacheck_start constraint

SGDC_deltacheck_start02 Non-integer value specified with the -
value argument of the deltacheck_start
constraint

SGDC_deltacheck_stop_signal0
1

Existence check for objects (ports/pins/nets)
specified with the -name argument of the
deltacheck_stop_signal constraint

SGDC_deltacheck_stop_module
01

Existence check for objects (modules)
specified with the -name argument of the
deltacheck_stop_module constraint

SGDC_deltacheck_stop_instanc
e01

Existence check for objects (instances)
specified with the -name argument of the
deltacheck_stop_instance constraint

SGDC_deltacheck_ignore_modul
e01

Existence check for objects (modules)
specified with the -name argument of the
deltacheck_ignore_module constraint

SGDC_deltacheck_ignore_instan
ce01

Existence check for objects (instances)
specified with the -name argument of the
deltacheck_ignore_instance constraint

SGDC_porttimedelay01 Existence check for objects (modules)
specified with the -name argument of the
port_time_delay constraint

SGDC_reset_synchronizer01 Reports a violation if the synchronizer
output specified in the -name argument of
the reset_synchronizer constraint
does not exist as a port, hierarchical
terminal, or a net in the current
design.

TABLE 9 FATAL Must Rules

Rule Purpose
1820
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_reset_synchronizer03 Reports if reset name specified by the -reset
argument of the reset_synchronizer
constraint is a hierarchical name that does
not exist as port, hierarchical terminal, or
net in the current design.

SGDC_reset_synchronizer04 Reports if reset name specified by the -reset
argument of the reset_synchronizer
constraint is neither the specified reset nor
an automatically-inferred reset.

SGDC_reset_synchronizer05 Reports if the synchronizer clock specified by
the -clock argument of the
reset_synchronizer constraint is neither a
clock-tag nor a hierarchical name that exists
as a port, hierarchical terminal, or a net in
the current design.

SGDC_reset_synchronizer06 Reports if the synchronizer clock specified by
the -clock argument of the
reset_synchronizer constraint is not one of
the clock tags, user-specified clocks, or
automatically-inferred clock.

SGDC_reset_synchronizer07 Reports if the value specified by the -value
argument of the reset_synchronizer
constraint is other than 0 or 1.

SGDC_clocksense01 Reports for an incorrect value in the -pins
argument of the clock_sense constraint.

TABLE 9 FATAL Must Rules

Rule Purpose
1821
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Ac_abs01
Reports the result of abstraction applied on functional checks

When to Use

Use this rule to check the result of abstraction applied on functional checks.

Description

The Ac_abs01 rule reports the number of flip-flops considered or the
sequential depth used when abstraction is applied on advanced CDC rules
based on the value specified in the fa_flopcount or fa_seqdepth parameter.

It may happen that the number of flip-flops reported by this rule is more
than the number specified by the fa_flopcount parameter. This is because all
flip-flops are considered from clock to reset paths.

Parameter(s)

 fa_flopcount: Default value is -1. Set this parameter to a positive integer
value to specify a maximum number of flip-flops.

 fa_seqdepth: Default value is -1. Set this parameter to a positive integer
value to specify a maximum sequential depth.

Constraint(s)

None

Messages and Suggested Fix

Message 1

The following message appears when abstraction is applied to the
advanced CDC rules by limiting the cone size to the <flip-flops-num>
number of flip-flops:

[AcAbs1_1] [INFO] Abstraction applied during functional
analysis by limiting cone size to '<flip-flops-num>' flops.

Potential Issues
Not applicable
1822
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Consequences of Not Fixing
Not applicable

How to Debug and Fix
Not applicable

Message 2

The following message appears when abstraction is applied on the
advanced CDC rules by limiting the cone size to the <seq-depth>
sequential depth:

[AcAbs1_2] [INFO] Abstraction applied during functional
analysis by limiting cone size to '<seq-depth>' sequential
depth.

Potential Issues
Not applicable

Consequences of Not Fixing
Not applicable

How to Debug and Fix
Not applicable

Message 3

The following message appears when abstraction is applied on the
advanced CDC rules by limiting the cone size to <flip-flops-num>
flops and the <seq-depth> sequential depth:

[AcAbs1_3] [INFO] Abstraction applied during functional
analysis by limiting cone size to '<flip-flops-num>' flops and
'<seq-depth>' sequential depth.
1823
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Potential Issues
Not applicable

Consequences of Not Fixing
Not applicable

How to Debug and Fix
Not applicable

Example Code and/or Schematic

Not applicable

Default Severity Label

Info

Rule Group

ADV_CLOCKS

Reports and Related Files

No report or related file
1824
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Ac_init01
Does initial setup for Advanced SpyGlass CDC Solution rules

When to Use

Use this rule to create initial setup for running advanced CDC rules.

Prerequisites

Use the Advanced_CDC and adv_checker licenses for running this rule.

Description

The Ac_init01 rule does the following:
 Generates information, such as constraints, initial-state setup, and

configuration setup that is required by advanced rules of SpyGlass CDC
solution

 Reports constraints specified in a property file, but not found in the
design.

NOTE: This rule is a prerequisite for advanced CDC solution rules that perform functional
analysis.

Parameter(s)

fa_propfile: Default value is NULL. Set this parameter to the name of a
property file containing properties to be checked.

Constraint(s)

None

Messages and Suggested Fix

Message 1

The following message appears when the user-specified property file
<file-name> cannot open:

[ERROR] Could not open property file '<file-name>'

Potential Issues
1825
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
This violation appears if the property file does not open.

Consequences of Not Fixing
If you do not fix this violation, Advanced CDC solution rules may not work
properly.

How to Debug and Fix
Check if the property file is available or has required permissions.

Message 2

The following message appears if a syntax error is found in the property
file <file-name> because of an unrecognized string
<offending-string> is present at the line number <line-num>:

[ERROR] Syntax error in property file '<file-name>' at line
number '<line-num>'. Unrecognized string '<offending string>'

Potential Issues
This violation appears if the property file has a syntax error, such as an
unrecognized string.

Consequences of Not Fixing
If you do not fix this violation, advanced CDC solution rules might not work
properly.

How to Debug and Fix
Check the specified line number in the property file, and fix the issue by
rectifying the unrecognized string.

Message 3

The following message appears when the user-specified property file
<file-name> is corrupted:
1826
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
[ERROR] Property file '<file-name>' seems to be corrupted

Potential Issues
This violation appears if the specified property file is corrupted.

Consequences of Not Fixing
If you do not fix this violation, the advanced CDC solution rules might not
work properly.

How to Debug and Fix
Specify a proper property file.

Message 4

The following message appears when the instance specified by the
simulation_data constraint does not exist in the VCD file:

[ERROR] Instance '<inst-name>' specified by fa_vcdscopename
does not exist in VCD file '<VCD-file>'

Potential Issues
This violation appears if the instance specified by the fa_vcdscopename
parameter does not exist in the VCD file.

Consequences of Not Fixing
If you do not fix this violation, the advanced CDC solution rules might not
work properly.

How to Debug and Fix
Specify the correct instance name to the fa_vcdscopename parameter or
specify a correct VCD file containing that instance.
1827
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Example Code and/or Schematic

Not applicable

Default Severity Label

Error

Rule Group

ADV_CLOCKS

Reports and Related Files

No report or related file
1828
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Ac_initseq01
Initialization sequences of multiple signals should be of the same
length

When to Use

Use this rule to check for any mismatch in the length of initialization
sequences for different signals.

Description

The Ac_initseq01 rule reports a violation if initialization sequences specified
by the define_tag -tag initSeq constraints are not of the same length.

When you specify the define_tag constraint with the -tag initSeq
argument, the -value argument provides initialization sequences for a
signal. If two such constraints specify different lengths of initialization
sequences, the Ac_initseq01 rule reports a violation.

Prerequisite(s)

Specify the define_tag constraint with the -tag initSeq argument.

Parameter(s)

None

Constraint(s)

define_tag (Mandatory): Use this constraint to define initialization
sequences for different signals.

Messages and Suggested Fix

The following message appears if the length of initialization sequences for
different signals is different:

[WARNING] Initialization sequences provided by the 'define_tag
-tag initSeq' constraint are all not of the same length

Potential Issues
This violation appears if the design has initialization sequences of different
1829
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
lengths.

Consequences of Not Fixing
A design is simulated by using the specified initialization sequence to find a
valid initial state.

If you specify a different length for initialization sequences on signals, the
signals with smaller length of initialization sequences are simulated by
using an undefined value for the remaining cycles.

How to Debug and Fix
Check all the specified define_tag constraint specifications, and find the
signals that have different lengths of initialization sequence.

Fix the issue by making the initialization sequences of the same length.

Example Code and/or Schematic

The following example shows two define_tag constraint specifications where
the length of the initialization sequence is different:

define_tag -tag initSeq -name top.reset1 -value 1 1 1 x x x
define_tag -tag initSeq -name top.reset2 -value x x 1 1

For the first define_tag constraint specification, the length of sequence is
six, and for the second specification, it is four.

In this case, the Ac_initseq01 rule reports a violation.

Default Severity Label

Warning

Rule Group

ADV_CLOCKS

Reports and/or Related Files

No reports or related files
1830
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Ac_initstate01
Reports initial state of the design

When to Use

Use this rule to know the initial state of a design.

Prerequisites

 Run any of the CDC Verification Rules or set the formal_setup_rules_check
parameter to yes.

 Use the Advanced_CDC and adv_checker licenses for running this
rule.

Description

The Ac_initstate01 rule reports a valid state of a design from which formal
analysis would actually start. This may not be the reset state of the design.

Identifying a Valid State

A valid state can be identified in the following different ways:
 User-defined initial state where the register value assignment is

provided using the define_tag constraint.
 State value generated by external simulation engine as a VCD/TCl/FSDB

file (use the simulation_data constraint to provide the file name)
 Initial state detected by applying a user-defined simulation vector using

the define_tag constraint in a SpyGlass Design Constraints file.
 Initial state determined by SpyGlass CDC solution.

This search uses the user-specified reset ports (using the reset
constraint) or auto-detected reset ports and/or may apply proprietary
techniques to identify a reachable state of a design.

Parameter(s)

 None

Constraint(s)

 define_tag (Optional): Use this constraint to define a named condition for
application of certain stimulus at a top port or an internal node.
1831
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
 reset (Optional): Use this constraint to specify reset signals.

 simulation_data (Optional): Use this constraint to specify the initial state
sequence for a design.

 set_case_analysis (Optional): Use this constraint to specify case-analysis
signals.

Messages and Suggested Fix

The following message appears to indicate the initial state of the design:

[INFO] <num1> percent of sequential outputs are initialized
with sets/resets and <num2> percent sequential outputs are
initialized by data path. Refer file: '<file name>' for
details"

The arguments of the above message are explained below:

Potential Issues
None

Consequences of Not Running
It is important to initialize your design correctly. Else, it may result in
incorrect functional results.

How to Debug and Fix
This rule enables you to analyze the initialization percentage of your
design.

Following are some of the points to be taken care of:
 If your design is not 100% initialized, see either the AC_Initstate01

spreadsheets by clicking the violation message or see the adv_cdc.reg
file by selecting the Report ->clock-reset->adv_reg menu option.
Consider the following design:

Argument Description
<num1> Percentage of sequential outputs initialized with set/reset
<num2> Percentage of sequential outputs initialized with data path
<file-name> Name of the report file
1832
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
FIGURE 414. Design on Which Ac_initstate01 Rule is Run

The above design has three flip-flops: flip-flop q1 (that can be reset by
an asynchronous reset), flip-flop q2 (that can be reset by a synchronous
reset), and flip-flop q3 (with no reset).
If clocks and resets are properly defined in an SGDC file, the following
adv_cdc.reg file is generated:
1833
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
FIGURE 415. The adv_cdc.reg File

 Cross-check the clocks and resets specified in Section-A and Section-B of
the adv_cdc.reg report. This information should match with what you
provided in your setup.
Try to provide clocks with periods so that the overall design cycle
becomes low. This can be done by specifying clock periods as multiples
of each other. This would help you achieve a better initialization
percentage.
For resets, provide active value. Applying active values resets the flip-
flop.
1834
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
 If Section-A and Section-B contains the expected data, check Section-D.
This section lists registers that remained uninitialized after set/reset
propagation.

 In Section-D, if a particular register that you think should have been
initialized after applying set/reset propagation still appears as
uninitialized, check if resetting that register is possible at all by reset or
not.
 If the register was designed to be reset by an asynchronous reset,

check its preset/clear pins to see if active value of its asynchronous
reset source is reaching it or not. You can do this with the help of
schematic from Propagate_Resets rule. If you see the reset source
signal as already specified in the SGDC file with the correct active
value, this may indicate that this value is getting blocked somewhere
down the logic due to some unconstrained signals in the path. Look
out for such unconstrained muxes/sequential logic in the path and
constraint them properly.
Consider the following design:

FIGURE 416. Design on Which Ac_initstate01 Rule is Run

In the above design, if INP is tied to 1, then the asynchronous reset
path would get blocked and the flip-flop would be reported as
uninitialized (also denoted by an X appearing at its output terminal).
In addition, you should also check if the reset pin is not tied to
inactive value in the design or through set_case_analysis constraints.
1835
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
 If the register was designed to be reset by a synchronous reset,
then:
 Check register data path to see if the synchronous reset reaches it

or not. Once you find this signal, specify it through reset -sync
constraint in the SGDC file, if it is not specified.

 Check if other signals in the reset path are constrained so that
active value of the reset can reach to the register for initialization.

 Check that the register is getting a proper clock as clock is
essential for synchronous resets. In addition, check if the clock is
not propagating to the register due to unconstrained or blocked
clock enables in the path.

When an event is applied on a clock source, it should reach to the
register through simulation so that synchronous reset can be applied
on the register.
Consider the following design:

FIGURE 417. Design on Which Ac_initstate01 Rule is Run

In the above design, if INP is tied to 1, the clock path would get
blocked. This in turn would block the synchronous reset and
therefore, the flip-flop would be reported as uninitialized (denoted by
an X appearing at its output terminal).

 Check if the enable of the register is not tied to an inactive value.

 Check if the clock pin is tied to a constant value in the design or
through set_case_analysis constraints.
1836
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
 To summarize the above two points, for flip-flops getting reported as
uninitialized in Section-C, you need to ensure that the reset signal for
these flip-flops is specified in the SGDC file with its correct active
value.

 Memory elements, such as RAM/FIFO are sometimes not required to be
initialized. In case they do not have any valid reset (async/sync), they
can be left out. However, control signals should ideally be initialized.

 For detailed information on various ways to do initial state setup, see
the description of the Ac_initstate01 rule.

Example Code and/or Schematic

See How to Debug and Fix.

Back-annotations

 HDL: Shows the top-level module

 Schematic: Highlights registers that are initialized with value x.

Default Severity Label

Info

Rule Group

ADV_CLOCKS

Report and Related File

 adv_cdc.reg: This file lists registers that could not be initialized.

 adv_cdc_init_seq.vcd: This is an initial state VCD file, which has
simulation vectors applied on primary inputs during the initial state
search.

 The Ac_initstate01 spreadsheet
The Ac_initstate01 Spreadsheet Report shows information about
uninitialized and initialized sequential elements in a design. This
information appears under two separate tabs. By default, the tab
showing uninitialized elements is selected.
To open this spreadsheet, double-click on the violation of the
Ac_initstate01 rule. You can click on a sequential element name in the
1837
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
spreadsheet to back-reference to the RTL code of that element.
The following figure shows the uninitialized sequential elements:

FIGURE 418. Default tab showing uninitialized sequential elements

To view the initialized sequential elements, select the second tab. The
following spreadsheet shows the initialized sequential elements in a
design:

FIGURE 419. Second tab showing the initialized sequential elements
1838
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Ac_license01
Reports rules that did not run due to unavailability of the
Advanced_CDC or the cdc_dynamic_jitter_analysis license

When to Use

Use this rule to check the availability of the Advanced_CDC or the
cdc_dynamic_jitter_analysis license.

Description

The Ac_license01 rule reports the unavailability of the Advanced_CDC,
cdc_power, and the cdc_dynamic_jitter_analysis license when the
rules dependent on this license are run.

Rules that Require the Advanced CDC License

Apart from the Spreadsheet Viewer, the Advanced_CDC license is required
by the following rules:

Rule Category Rules

Must Rules Ac_init01 Ac_initstate01 Ac_multitop01

Ac_sanity01 Ac_sanity02 Ac_report01

Setup Rules Setup_quasi_static01

CDC Verification
Rules

Ac_cdc01a Ac_cdc01b Ac_cdc01c

Ac_cdc08 Ac_crossing01 Ac_sync01

Ac_conv02
(Only functional part)

Ac_datahold01a Ac_sync02

Ac_unsync01 Ac_unsync02 Ac_xclock01

Ac_psync01 Ac_punsync0
1

Clock Glitch
Checking Rules

Ac_glitch01 Ac_glitch02 Ac_glitch03

Formal Setup
Rules

Ac_sanity03 Ac_sanity04
1839
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
NOTE: If the Advanced_CDC license is unavailable during the save run, the above rules will
not run in the restore mode.

Parameter(s)

None

Constraint(s)

None

Messages and Suggested Fix

The following message appears because of the unavailability of the
Advanced_CDC license:

[ERROR] <List-of-rules> not run due to unavailability of
Advanced CDC license/cdc_dynamic_jitter_analysis feature

Potential Issues

This message appears if you do not specify the Advanced_CDC or the
cdc_dynamic_jitter_analysis license.

Consequences of Not Fixing
If you do not fix this violation, rules dependent on the license mentioned in

Clock Checking
Rules

Ar_asyncdeassert01 Ar_syncdeassert
01

Ar_sync01

Ar_unsync01

Reset Checking
Rules

Ar_converge01 Ar_converge02

Delta Delay
Rules

DeltaDelay01 DeltaDelay02 NoClockCell

PortTimeDelay

Reset
Information
Rules

Ar_syncrst_setupcheck01

Rule Category Rules
1840
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
the message are not run. Refer to the Rules that Require the Advanced CDC
License for the complete list of rules that need the Advanced_CDC license
to run.

How to Debug and Fix

To fix this violation, specify the Advanced_CDC license correctly.

Example Code and/or Schematic

Not applicable

Default Severity Label

Error

Rule Group

ADV_CLOCKS

Reports and Related Files

No report or related file
1841
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Ac_multitop01
Reports a violation in case of multiple top-level design units

When to Use

Use this rule to detect multiple top-level design units.

Prerequisites

 Run any of the CDC Verification Rules or the Ac_crossing01 rule.

 Use the Advanced_CDC and adv_checker licenses for running this
rule.

Description

The Ac_multitop01 rule reports a violation in case of multiple top-level
design units.

Parameter(s)

None

Constraint(s)

None

Messages and Suggested Fix

The following message appears in case of multiple top-level design units:

[ERROR] Detected '<number-of-top-level-DU>' top level design
units. Please specify a single top level design unit

Potential Issues
This violation appears if your design contains multiple top-level design
units.

Consequences of Not Fixing
If you do not fix this violation, CDC Verification Rules and the Ac_crossing01
rule does not perform functional checks. These rules work only when a
single top-level design unit is present.
1842
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
How to Debug and Fix
To debug this violation, check the name of multiple top-level design units
by referring to the violation of the DetectTopDesignUnits rule.

To fix this violation, specify a single top-level design unit by specifying the
following command in a project file:

set_option top <top-du-name>

Example Code and/or Schematic

Consider the following file specified during SpyGlass analysis:

module test1 (input d, clk, output reg q);
always @(posedge clk)
 q <= d;
endmodule

module test2 (input d, clk, output reg q);
always @(posedge clk)
 q <= d;
endmodule

For the above example, the Ac_multitop01 rule reports a violation because
of the presence of two top-level design units test1 and test2.

Default Severity Label

Error

Rule Group

ADV_CLOCKS

Reports and Related Files

No report or related file
1843
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Ac_upfsetup02
Reports when appropriate isolation/level shifter strategy on
domain element is not specified

When to Use

This is a set-up rule and always runs by default.

Description

The Ac_upfsetup02 rule reports a violation when proper isolation/level
shifter strategy is not defined for all the domain elements using
set_isolation/set_level_shifter commands, respectively.

This rule reports following scenarios:
 Element specified in the set_isolation/set_level_shifter

command is not on any domain boundary or is on an incorrect domain
boundary.

 Element specified in the set_isolation/set_level_shifter
command is an INOUT port/pin.

 Multiple isolation/level shifter strategies are specified for the same
element or all inputs or all outputs of a domain.

 Element specified in the set_isolation/set_level_shifter
command contains an incorrect power domain.

 Element specified in the set_isolation command has multiple source
or sink domains.

 Multiple isolation strategies, which have the same precedence, are
applicable for the element specified in the set_isolation command.

 Incorrect source or sink is specified for the element specified in the
set_isolation command.

Language

Verilog, VHDL

Parameter(s)

None
1844
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Constraint(s)

UPF

 set_isolation (Mandatory)

 set_level_shifter (Mandatory)

Messages and Suggested Fix

Message 1

The following message appears when the element <pin-name> specified
in <cmd-name> (set_isolation/set_level_shifter) command is
not on any domain boundary:

[AcUS2_1] [ERROR] Element '<pin-name>' specified in <cmd-name>
command [<file-name>:<line-no>] is not on domain boundary. No
<chk-type> checks performed on this element

where, <chk-type> can be isolation or level shifter.

For debugging information, click How to Debug and Fix.

Message 2

The following message appears when an isolation/level shifter strategy is
specified on an inout port <port-name> using <cmd-name>
(set_isolation/set_level_shifter) command:

[AcUS2_2] [WARNING] Inout port '<port-name>' specified in <cmd-
name> command [<file-name>:<line-no>]. No <chktype> checks
performed on this element

where, <chk-type> can be isolation or level shifter.

For debugging information, click How to Debug and Fix.

Message 3

The following message appears when multiple <chk-type>
(isolation/levelshifter) strategies are specified for
<reported-element(s)> of the <dom-name> domain:

[AcUS2_4] [ERROR] Multiple <chk-type> strategies '<rulename1>'
[<file-name1>:<line-num1>], '<rule-name2>' [<file-
name2>:<line-num2>] specified for '<reported-element(s)>' of
domain '<dom-name>'. No <chk-type> checks performed on
1845
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
<reported-element>

where, <reported-element(s)> is the hierarchical name of a domain
element or all inputs or all outputs when multiple isolation/level
shifter specifications are given for an element or all inputs or all outputs of
the domain, respectively.

For debugging information, click How to Debug and Fix.

Message 4

The following message appears for the specified <strategy-name>
strategy when the <element-hier-name> element specified in the
set_isolation/set_level_shifter command contains an incorrect
<domain-name> power domain:

[AcUS2_5] [ERROR] Strategy (set_isolation | set_level_shifter)
<strategy-name> [<upf-file-name>:<upf-line-number>] is ignored
on element <element-hier-name> as element does not belong to
specified domain '<domain-name>'

For debugging information, click How to Debug and Fix.

Message 5

The following message appears when the <element-hier-name>
element specified in the set_isolation command has multiple source or
sink domains <domain-name-list>:

[AcUS2_7] [ERROR] Element '<element-hier-name>' has multiple
<source | sink> domains (<domain-name-list>). No isolation
strategy is applied on this element

For debugging information, click How to Debug and Fix.

Message 6

The following message appears when multiple isolation strategies
<isolation-strategy-list> that have the same precedence are
applicable for the <element-hier-name> element specified in the
set_isolation command:

[AcUS2_8] [ERROR] Multiple isolation strategies (<isolation-
strategy-list>' having same precedence are applicable for
element '<element-hier-name>'. No isolation strategy is applied
on this element
1846
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
For debugging information, click How to Debug and Fix.

Message 7

The following message appears when an incorrect source or sink is
specified for the <element-hier-name> element specified in the
set_isolation command:

[AcUS2_6] [ERROR] Incorrect <source | sink> '<supply-set-name>'
specified for element '<element-hier-name>' in set_isolation
command '<upf-isolation-command-name>'. No isolation strategy
is applied on this element

Potential Issues
This violation message explicitly specify the potential issues.

Consequences of Not Fixing
SpyGlass CDC solution does not apply an isolation/level shifter strategy to
an element for which this rule is reporting a violation. Since no isolation/
level shifter strategy is being applied on an element, subsequent rules
(which run after this rule) perform rule checking based assuming there is
no isolation/level shifter strategy on that element.

For example, if an isolation cell is inserted for an element on which you
have written an isolation strategy and that strategy is reported by this rule.
The strategy is not applied to that element. This causes an isolation cell to
be redundant and different checks, such as checking its location, its
functionality, steady state value on its output etc. are not performed by the
rules of SpyGlass CDC solution.

How to Debug and Fix
Ensure that design has properly specified isolation/level shifter strategy.

Example Code and/or Schematic

Example 1

For the following snippet, the Ac_upfsetup02 rule reports a violation
because u1 is the domain boundary and not u1/u2, hence element u1/
u2/out1 is not on domain boundary.

create_power_domain PD1 –elements {u1}

set_isolation ISO1 –domain PD1 –elements {u1/u2/out1}…..

Therefore, Message 1 is reported.
1847
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Example 2

For the following snippet, the Ac_upfsetup02 rule reports a violation
because inout1 is an inout port of domain PD1.

set_isolation ISO1 –domain PD1 –elements {u1/inout1}…..

Therefore, Message 2 is reported.

Example 3

For the following snippet, the Ac_upfsetup02 rule reports a violation
because multiple isolation strategies (ISO1 and ISO2) have been specified
for same element {u1/out1}.

set_isolation ISO1 –domain PD1 –elements {u1/out1} –
no_isolation

set_isolation ISO2 –domain PD1 –elements {u1/out1} –
clamp_value 0

Therefore, Message 3 is reported.

Example 4

For the following snippet, the Ac_upfsetup02 rule reports a violation
because the isolation strategy ISO1 is specified for domain PD1. However,
element {u2/out1} specified in the strategy belongs of domain PD2
(u2).

create_power_domain PD1 –elements {u1}

create_power_domain PD2 –elements {u2}

set_isolation ISO1 –domain PD1 –elements {u2/out1} –
clamp_value 0

Therefore, Message 4 is reported.

Example 5

Suppose an output port Y of domain PD1_domain has multiple fan-outs or
sink domains: PD2_domain and VD_domain.

UPF

associate_supply_set PD1_domain_set -handle
PD1_domain.primary

associate_supply_set PD2_domain_set -handle
1848
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
PD2_domain.primary

set_isolation ISO2 -domain PD1_domain -isolation_power_net
PD1_domain_supply -source PD1_domain_set -sink
PD2_domain_set

In this case, the rule considers Y as a non-uniform net. Therefore, no
strategy is applied on it and Message 5 is reported.

Example 6

Suppose an output port Y of domain PD1_domain has PD1_domain as
source domain and PD2_domain as destination domain.

UPF

associate_supply_set PD1_domain_set -handle
PD1_domain.primary

set_isolation ISO1 -domain PD1_domain -isolation_power_net
PD1_domain_supply -source PD1_domain_set -clamp_value 0

associate_supply_set PD2_domain_set -handle
PD2_domain.primary

set_isolation ISO2 -domain PD1_domain -isolation_power_net
PD1_domain_supply -sink PD2_domain_set -clamp_value 0

In this case, since both strategies, ISO1 and ISO2, are applicable on
output Y and they have the same precedence, Message 6 is reported.

Example 7

Suppose the following isolation strategy is written on the output element A
of domain VC. The Ac_upfsetup02 rule reports a violation if the sink of
element A is different from VDDB.

set_isolation S1 -domain VC -elements A -sink VDDB

This strategy will not be applied to element A and Message 7 is reported.

Default Severity Label

Error
1849
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Rule Group

ADV_CLOCKS

Reports and Related Files

No reports and/or related files
1850
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Ac_report01
Reports statistics of properties and functional constraints

When to Use

Use this rule to perform functional analysis and check the number of
properties analyzed, failed, passed, and partially proved.

Prerequisites

Use the Advanced_CDC and adv_checker licenses for running this rule.

Description

The Ac_report01 performs functional analysis and reports the number of
properties analyzed, failed, passed, and partially proved when the fa_audit
parameter is not specified.

NOTE: The Ac_report01 rule is automatically run when you run any of the CDC Verification
Rules.

Parameter(s)

 fa_audit: Default value is no. Set this parameter to yes to not perform
functional analysis.

 fa_propfile: Default value is NULL. Set this parameter to the name of a
property file containing properties to be checked.

Constraint(s)

None

Messages and Suggested Fix

Message 1

The following message appears if the fa_audit parameter is set to yes:

[AcRpt1_1] [INFO] Functional analysis not done in audit mode.
Design has '<num>' properties, '<imp-num>' implicit properties,
'<ovl-num>' OVL properties, and '<constr-num>' functional
constraints for top design unit '<du-name>'. Refer file:
'<file-name>' for details

The arguments of the above message are explained below:
1851
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Potential Issues

This message appears when you set the fa_audit parameter to yes.

Consequences of Not Fixing
Not applicable

How to Debug and Fix
Not applicable

Message 2

The following message appears if the fa_audit parameter is set to no:

[AcRpt1_2] [INFO] Implicit: ‘<imp-analyzed-num>’ implicit
properties analyzed, '<imp-failed-num>' failed, '<imp-passed-
num>' passed, '<imp-partial-num>' partially proved, '<imp-not-
analyzed-num>' not analyzed, '<imp-others-num>' others for top
design unit '<du-name>'. Refer file: '<file-name>' for details

The arguments of the above message are explained below:

Argument Description
<num> Total number of properties in the design
<imp-num> Total number of implicit properties
<ovl-num> Total number of OVL properties
<constr-num> Total number of functional constraints
<du-name> Top-level design name
<file-name> Generated Property file name

Argument Description
<imp-analyzed-num> Number of implicit properties analyzed
<imp-failed-num> Number of implicit properties failed
<imp-passed-num> Number of implicit properties passed
<imp-partial-num> Number of implicit properties partially proved
1852
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Potential Issues

This message appears when you set the fa_audit parameter to no.

Consequences of Not Fixing
Not applicable

How to Debug and Fix
Not applicable

Example Code and/or Schematic

Not applicable

Default Severity Label

Info

Rule Group

ADV_CLOCKS

Reports and Related Files

 adv_cdc.prp: This file contains the list of CDC Verification Rules that have
run. For details, see The Functional Validation Methodology.

 The Advanced CDC Report

 The adv_cdc Spreadsheet

<imp-not-analyzed-num> Number of implicit properties not analyzed
<imp-others-num> Total number of constraint conflicts
<du-name> Top-level design name
<file-name> Generated Property file name

Argument Description
1853
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Ac_sanity01
Reports an error if there is any issue in the property file.

When to Use

Use this rule to identify missing assertions in a design.

Prerequisites

Specify the following details before running this rule:
 Specify a property file by using the fa_propfile parameter.

 Run any of the CDC Verification Rules or set the formal_setup_rules_check
parameter to yes.

 Use the Advanced_CDC and adv_checker licenses for running this
rule.

Description

The Ac_sanity01 rule reports issues found in the user-specified property
files.

Parameter(s)

fa_propfile: Default value is NULL. Set this parameter to the name of a
property file containing properties to be checked.

Constraint(s)

None

Messages and Suggested Fix

The following message appears when some assertions specified in a
property file are not found in the design:

[ERROR] Some Assertions specified in property file
(<prop-file-name>) not found in design. Refer '<file-name>' for
more details

The arguments of the above message are explained below:
1854
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Potential Issues
This violation appears because of an outdated property file.

A property may get outdated because there may be assertions in the
property file that do not exist in the design due to the following reasons:
 The design has been modified.

 The design view has been modified due to different set of SpyGlass CDC
commands specified by the user.

Consequences of Not Fixing
If you do not fix this violation, some Formal Setup Rules may not run.

How to Debug and Fix
To fix this violation, re-run SpyGlass analysis on the design with the
fa_audit parameter set, and generate a new property file.

Example Code and/or Schematic

Not applicable

Default Severity Label

Error

Rule Group

ADV_CLOCKS

Reports and Related Files

This rule generates the propfile_Assertion_<rule-name>.errorlog file. This file
contains missing assertions. Here <rule-name> refers to the rule that is
not run due to invalid assertions.

Argument Description
<prop-file-name> Name of the property file
<file-name> Name of the error log file
1855
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Ac_sanity02
Reports nets that have multiple drivers

When to Use

Use this rule during functional analysis to detect nets with multiple drivers.

Prerequisites

Following are the prerequisites of running this rule:
 Run any of the CDC Verification Rules or set the formal_setup_rules_check

parameter to yes.

 Use the Advanced_CDC and adv_checker licenses for running this
rule.

Description

The Ac_sanity02 rule reports non-tristate nets that have multiple drivers.

Such nets are considered as primary inputs for functional analysis.

Rule Exception

The Ac_sanity02 rule does not handle inout ports driven by black boxes
correctly and may report incorrect messages in such cases.

Parameter(s)

None

Constraint(s)

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

 clock (Optional): Use this constraint to specify clock signals in a design.

 reset (Optional): Use this constraint to specify reset signals in a design.

Messages and Suggested Fix

The following message appears when a non-tristate net <net-name> is
present in a design with multiple drivers:
1856
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
[WARNING] Net '<net-name>' is not tristate and has multiple
simultaneous drivers

Potential Issues
This violation appears if your design contains a non-tristate net with
multiple drivers.

Consequences of Not Fixing
Not applicable

How to Debug and Fix
To fix this violation, provide tristate nets in the design.

Example Code and/or Schematic

Consider the following figure:

FIGURE 420. Schematic of the Ac_sanity02 Rule Violation

For the above example, the Ac_sanity02 rule reports a violation because of
the presence of a non-tristate net with multiple drivers D1 and D2.

Schematic Details

The Ac_sanity02 rule highlights the non-tristate net that has multiple
1857
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
drivers.

Default Severity Label

Warning

Rule Group

ADV_CLOCKS

Reports and Related Files

No related files and reports
1858
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Ac_sanity06
Reports any issue found in distributed computing flow

When to Use

Use this rule to detect issues related with distributed runs of the advanced
SpyGlass CDC rules.

Prerequisites

Run any of the CDC Verification Rules or set the formal_setup_rules_check
parameter to yes.

Description

The Ac_sanity06 rule reports a violation in the following cases:
 If parse errors are found in the parallel file specified by the fa_parallelfile

parameter.
 If an error occurs while accessing any of the machines specified in the

parallel file.
 If there are insufficient number of advanced SpyGlass CDC solution

licenses

Parameter(s)

fa_parallelfile: By default, this parameter is not set to any value. Specify a
configuration file to this parameter. This file is used for distributed runs of
advanced SpyGlass CDC rules over several machines.

Constraint(s)

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

 clock (Optional): Use this constraint to specify clock signals in a design.

 reset (Optional): Use this constraint to specify reset signals in a design.

Message Details

Message 1

The following message appears if parse errors are found in the parallel file:
1859
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
[AcS6_1] [FATAL] Could not open parallel run file '<file-name>'

Potential Issues
This violation appears if there is any error in the parallel run file.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix
To fix this violation, specify a correct parallel run file.

Message 2

The following message appears for an invalid login type:

[AcS6_2] [FATAL] <type> is not a supported login type

Potential Issues
This violation appears if you specify an invalid login type in the parallel file.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix
To fix this violation, specify a correct login type.

Message 3

The following message appears if the value of the MAX_PROCESSES
keyword is equal to or less than 1 or if it is equal to or greater than 500:

[AcS6_3] [FATAL] Value of MAX_PROCESSES should be between 1 and
500

Potential Issues
This violation appears if you specify an incorrect value for the
MAX_PROCESSES keyword in the parallel file.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix
To fix this violation, specify a value between 1 and 500 for the
1860
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
MAX_PROCESSES keyword.

Message 4

The following message appears for the unsuccessful LSF run because of
invalid options in the LSF command:

[AcS6_4] [FATAL] Lsf run with specified command is not
successful

Potential Issues
This violation appears if you specify invalid options with the LSF command
in the parallel file.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix
To fix this violation, specify correct options for the LSF command.

Message 5

The following message appears if process count is not a positive integer
value in the parallel file:

[AcS6_5] [FATAL] Process count in parallel file must be a
positive integer

Potential Issues
This violation appears if you specify an invalid integer value to the process
count in the parallel file. The process count accepts only a positive integer
value.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix
To fix this violation, specify a positive integer value for the process count in
the parallel file.
1861
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Message 6

The following message appears if none of the specified machines in the
parallel file is accessible:

[AcS6_6] [FATAL] None of the machines specified in parallel
file is accessible

Potential Issues
This violation appears if none of the machines specified in a parallel file is
accessible.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix
To fix this violation, specify the names of accessible machines in the
parallel file.

Message 7

The following message appears to report the machines that are not
accessible:

[AcS6_7] [FATAL] Machines '<machines>' are not accessible

Potential Issues
This violation appears if none of the machines specified in a parallel file is
accessible.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix
To fix this violation, specify the names of accessible machines in the
parallel file.

Message 8

The following message appears if the LOGIN_TYPE keyword is not specified
in the parallel file:

[AcS6_8] [FATAL] 'LOGIN_TYPE' is not specified in parallel file
1862
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Potential Issues

This violation appears if you do not specify the LOGIN_TYPE keyword in
the parallel file.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix

To fix this violation, specify the LOGIN_TYPE keyword in the parallel file.

Message 9

The following message appears if the MAX_PROCESSES keyword is not
specified in the parallel file:

[AcS6_9] [FATAL] 'MAX_PROCESSES' is not specified in parallel
file

Potential Issues

This violation appears if you do not specify the MAX_PROCESSES keyword
in the parallel file.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix

To fix this violation, specify the MAX_PROCESSES keyword in the parallel
file.

Message 10

The following message appears if the MACHINES keyword is not specified
for the rsh/ssh login type in the parallel file:

[AcS6_10] [FATAL] 'MACHINES' not specified for login type rsh/
ssh in parallel file

Potential Issues

This violation appears if you do not specify the MACHINES keyword for the
rsh/ssh login type in the parallel file.

Consequences of Not Fixing
1863
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix

To fix this violation, specify the MACHINES keyword for the rsh/SSE login
type in the parallel file.

Message 11

The following message appears if an error occurs while running the lsf
bsub command:

[AcS6_11] [FATAL] Error executing lsf bsub command

Potential Issues

This violation appears if you specify invalid options, such as -I, -Ip, and -
Is with the bsub command. These options are not allowed with the
LSF_CMD keyword in the parallel file.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix

To fix this violation, specify valid the options with the bsub command.

Message 12

The following message appears to indicate a missing solver executable:

[AcS6_12] [FATAL] Solver executable '<executable>' not found

Potential Issues
This violation appears if the solver executable file is not found in the
SPYGLASS_HOME/lib/ path of SpyGlass release area. The name of this file is
of the format solver.<platform>. For example, solver.SunOS5.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix
To fix this violation, add the missing solver executable file in the
SPYGLASS_HOME/lib/ path of SpyGlass release area.
1864
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Message 13

The following message appears to indicate missing advanced SpyGlass
CDC solution licenses for distributed computing flow:

[AcS6_13] [FATAL] No Advanced CDC licenses available for
Distributed Computing Flow

Potential Issues
This violation appears if you do not specify advanced SpyGlass CDC
licenses.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix
To fix this violation, provide the advanced SpyGlass CDC licenses for
distributed computing flow.

Message 14

The following message appears to indicate inadequate advanced SpyGlass
CDC solution licenses available for distributed computing flow:

[AcS6_14] [WARNING] Only '<num>' Advanced CDC licenses
available for Distributed Computing

Potential Issues
This violation appears if you specify insufficient number of advanced
SpyGlass CDC licenses.

Consequences of Not Fixing

If n advanced CDC licenses are available, only n-1 licenses are used for
distributed computing as one of the licenses is used by the main process.

How to Debug and Fix
To fix this violation, specify adequate number of advanced SpyGlass CDC
licenses for distributed computing flow.
1865
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Message 15

The following message appears if you specify an invalid option
<option-name> in the LSF_CMD keyword in a parallel file:

[AcS6_15] [WARNING] Unsupported option '<option-name>'
specified in LSF_CMD field is ignored for Distributed Computing
Flow

Potential Issues

This violation appears if you specify an invalid option <option-name> in
the LSF_CMD keyword in a parallel file.

Consequences of Not Fixing
If you do not fix this violation, distributed computing does not run.

How to Debug and Fix

To fix this violation, specify supported options with the LSF_CMD keyword
in a parallel file.

Example Code and/or Schematic

Not applicable

Default Severity Label

Fatal | Warning

Rule Group

ADV_CLOCKS

Reports and Related Files

No report or related file
1866
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
AllowComboLogicSetup
Reports if the modules specified by the allow_combo_logic
constraint are not used by any crossing

When to Use

Use this rule to check if the allow_combo_logic constraint is considered
during SpyGlass analysis.

Prerequisites

Specify the allow_combo_logic constraint.

Description

The AllowComboLogicSetup rule reports a violation if the modules specified
by the allow_combo_logic constraint are not used by any crossing.

Parameter(s)

None

Constraint(s)

allow_combo_logic (Mandatory): Use this constraint to allow combinational
logic between crossings only if the logic is within the modules specified by
using this constraint.

Messages and Suggested Fix

The following message appears when modules specified by the
allow_combo_logic constraint are not used in any crossing:

[WARNING] 'allow_combo_logic' constraint is not used in the
design

Potential Issues
This violation appears if the modules specified by the allow_combo_logic
constraint are not used by any crossing.

Consequences of Not Fixing
1867
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
If you do not fix this violation, the reported modules are not considered in
any crossings. This may produce results that might not be as per your
expectations.

How to Debug and Fix
To fix this violation, specify correct modules in the allow_combo_logic
constraint.

Example Code and/or Schematic

Not applicable

Default Severity Label

Warning

Rule Group

Non-fatal must rule

Reports and Related Files

No report or related file
1868
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Clock_check07
Reports clock domains that reach another clock domain

When to Use

Use this rule to check setup for clocks in a design.

Prerequisites

Specify clock signals in any of the following ways:
 By using the clock constraint

 By setting the use_inferred_clocks parameter to yes to use automatically
generated clock signals

 By using a combination of both the above methods

Description

The Clock_check07 rule reports clock domains that reach another clock
domain.

Parameter(s)

 cdc_express: Default values is no. Set this parameter to peakmem to
reduce peak memory. Other possible value is yes.

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

 handle_combo_arc: Default value is no. Set this parameter to yes so that
the clock/reset propagates from an input pin of a sequential library cell
if a combinational timing arc is specified from that pin to any output pin
of the cell.

 same_domain_at_gate: Default value is no. Set the value of the
parameter to an allowed value to optimize the inference of domains on
clock merging gates.

Constraint(s)

 clock (Optional): Use this constraint to specify clock signals in a design.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.
1869
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Messages and Suggested Fix

The following message appears when clock propagation of the clock
<clk1-name> reaches the clock net <clk2-name>:

[WARNING] Clock domain propagation for clock '<clk1-name>' has
reached clock '<clk2-name>' of another domain. Halting further
propagation of clock '<clk1-name>' on this path

Potential Issues
This violation appears when a design contains a clock that reaches to
another clock from a different domain in the path.

 Consequences of Not Fixing
If you do not fix this violation, clock propagation stops along the path
where a clock reaches another clock of a different domain. This may result
in an improper clock domain crossing analysis.

How to Debug and Fix
To debug this violation, perform the following steps:
 Check if clock names reported by the message are real clocks.

 Check if the domains of the clocks reported by the message are
specified correctly in the SGDC file.

 Open the schematic of the violation and check if clock propagation
occurs correctly.

 Make necessary changes to eliminate the conflict.

Example Code and/or Schematic

Consider the following figure:
1870
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
FIGURE 421. Scenario for the Clock_check07 Rule Violation

Also consider the following SGDC file:

current_design top
clock -name C1 -domain d1
clock -name top.U1.P2 -domain d2
assume_path -name bbox -input P_C1 -output P2

In this case, the top-level clock C1 from the d1 domain reaches to P_C1
and propagates to P2 because of the assume_path constraint. However, the
clock constraint is also defined on P2 that has different the domain d2.

Therefore, the Clock_check07 rule reports a violation because of a conflict
of domains.

To fix this violation, perform the following actions:
 Do not define the clock constraint on top.U1.P2 as the top-level clock

C1 propagates to P2 due to the assume_path constraint.

 If you want to explicitly specify a clock on the black box output, ensure
that the domain defined on P2 is same as the source clock.

Schematic Details

The Clock_check07 rule highlights the path from one clock domain to the

C1
PC_1

P2

U1

bbox
1871
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
point where another clock domain is reached.

Default Severity Label

Warning

Rule Group

VERIFY

Reports and Related Files

The CKSGDCInfo Report

Section A of this report displays clocks with their domain information,
which can be used to check if the domains are specified correctly.
1872
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Param_clockreset02
Reports if an incorrect value is specified to the num_flops
parameter

When to Use

Use this rule to perform sanity checks on the num_flops parameter.

Prerequisites

Specify the num_flops parameter.

Description

The Param_clockreset02 rule reports incorrect value specified to the
num_flops parameter.

Parameter(s)

num_flops: Default value is 2. Set this parameter to a positive integer value
greater than one to specify a minimum number of flip-flops required for
synchronizing a signal by using the Conventional Multi-Flop Synchronization
Scheme.

Constraint(s)

None

Messages and Suggested Fix

The following message appears if an incorrect value <value> is specified
to the num_flops parameter:

[WARNING] Illegal value '<value>' specified with 'num_flops'
parameter

Potential Issues
This violation appears if you specify an incorrect value to the num_flops
parameter.

Consequences of Not Fixing
1873
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
If you do not fix this violation, the reported num_flops parameter is not
considered during SpyGlass analysis. In addition, synchronization CDC
rules may report false violations.

How to Debug and Fix
To fix this violation, specify a positive integer value greater than 1 to the
num_flops parameter.

Example Code and/or Schematic

Not applicable

Default Severity Label

Warning

Rule Group

Non-fatal must rule

Reports and Related Files

No report or related file
1874
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
FalsePathSetup
Reports cases in which the cdc_false_path constraint is not used
by any crossing in the design

When to Use

Use this rule to check if the cdc_false_path constraint is considered during
SpyGlass analysis.

Prerequisites

Specify the cdc_false_path constraint.

Description

The FalsePathSetup rule reports a violation if the cdc_false_path constraint
does not filter any clock domain crossing in a design.

Parameter(s)

None

Constraint(s)

 cdc_false_path (Mandatory): Use this constraint to specify false paths so
that clock-domain crossings along these paths are ignored for rule
checking.

 clock (Mandatory): Use this constraint to specify clock signals in your
design.

Messages and Suggested Fix

The following message appears if the cdc_false_path constraint does not
filter any clock domain crossing in a design:

[WARNING] cdc_false_path constraint is not used to waive any
crossing in the design

Potential Issues
This violation appears if you do not define the cdc_false_path constraint
properly.
1875
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Consequences of Not Fixing
If you do not fix this violation, you may see certain clock domain crossings
that you expected to be filtered by the specified cdc_false_path constraint.

How to Debug and Fix
To debug and fix this violation, perform the following actions:
 Review the reported constraints.

 Remove the reported constraint if it is redundant.
For example, if the same crossings are matched by some other
constraint, you can remove the reported constraint.

Example Code and/or Schematic

Consider the following constraints specified in an SGDC file:

clock -name clk1 -tag CK1
clock -name clk2 -domain d2

cdc_false_path -from CK1
cdc_false_path -from clk1 -to clk2

In the above example, the last cdc_false_path is redundant. Therefore, the
FalsePathSetup rule reports a violation for this constraint.

Default Severity Label

Warning

Rule Group

Non-Fatal Must Rule

Reports and Related Files

No report or related file
1876
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Param_clockreset04
Reports if an incorrect value is specified for the
cdc_reduce_pessimism, clock_reduce_pessimism, or
reset_reduce_pessimism parameter

When to Use

Use this rule to check if the cdc_reduce_pessimism, clock_reduce_pessimism,
and reset_reduce_pessimism parameters are specified correctly.

Prerequisites

Specify the cdc_reduce_pessimism, clock_reduce_pessimism, or
reset_reduce_pessimism parameter.

Description

The Param_clockreset04 rule reports a violation if incorrect values are
specified to the cdc_reduce_pessimism, clock_reduce_pessimism, or
reset_reduce_pessimism parameter.

Parameter(s)

 cdc_reduce_pessimism: Default value is mbit_macro,
no_convergence_at_syncreset, no_convergence_at_enable.
Set this parameter to an appropriate value to ignore clock domain
crossings involving black box instances and clock domain crossings with
destinations having unused, hanging, or blocked outputs. For possible
values, see Allowed Values of the cdc_reduce_pessimism Parameter.

 clock_reduce_pessimism: Default value is latch_en, mux_sel_derived,
check_enable_for_glitch. Set the value of this parameter to
mux_sel to stop traversal of this rule when a clock signal reaches a
MUX. Other possible values are all, all_potential_clocks, and
ignore_same_domain.

 reset_reduce_pessimism: Default value is
filter_unused_synchronizer, same_data_reset_flop. Set the
value of this parameter to all_potential_resets to detect all the
potential resets in a design. For information on the other possible
values, see Possible Values to the reset_reduce_pessimism Parameter.
1877
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Constraint(s)

None

Messages and Suggested Fix

The following message appears if incorrect values are specified to the
cdc_reduce_pessimism, clock_reduce_pessimism, or reset_reduce_pessimism
parameter:

[WARNING] Illegal value specified with '<parameter-name>'
parameter. Allowed values are '<valid-values>' only

Potential Issues
This violation appears if you specify incorrect values to the
cdc_reduce_pessimism, clock_reduce_pessimism, or reset_reduce_pessimism
parameter.

Consequences of Not Fixing
If you do not fix this violation, the reported parameter is ignored.

How to Debug and Fix
Specify valid values to the reported parameters, as described in the
following table:

Example Code and/or Schematic

Consider that you specify the following parameter in a project file:

Parameter Valid Values

cdc_reduce_pessimism bbox, output_not_used, hanging_net, mbit_macro,
no_convergence_at_enable,
no_convergence_at_syncreset, and all

clock_reduce_pessimism mux_sel, latch_en, all, all_potential_clocks, and
ignore_same_domain

reset_reduce_pessimism none, all_potential_resets
1878
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
set_parameter abc

In this case, the Param_clockreset04 rule reports a violation because the
value abc is not a valid value for this parameter.

Default Severity Label

Warning

Rule Group

Non-Fatal Must Rule

Reports and Related Files

No report or related file
1879
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Param_clockreset05
Reports if the simulator_file_name parameter is not specified or an
invalid value is specified to this parameter

When to Use

Use this rule to perform sanity checks on the simulator_file_name parameter.

Description

The Param_clockreset05 rule reports a violation in any of the following
cases:
 If the simulator mode file specified by the simulator_file_name parameter

does not exist
 If the simulator_file_name parameter is not specified

Parameter(s)

simulator_file_name: Default value is NULL. Specify a simulator mode file
that contains simulator-specific delta delay information for RTL constructs.

Constraint(s)

None

Messages and Suggested Fix

Message 1

The following message appears if the an incorrect simulator mode file is
specified to the simulator_file_name parameter:

[PClkRst5_2] [FATAL] File '<file-name>' specified through
parameter 'simulator_file_name' does not exist

Potential Issues
This violation appears if the simulator mode file specified by the
simulator_file_name parameter does not exist.

Consequences of Not Fixing
1880
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
If you do not fix this violation, the specified simulator mode file is not
considered during SpyGlass analysis and the DeltaDelay01 and DeltaDelay02
violations are not reported.

How to Debug and Fix
To fix this violation, specify an existing simulator mode file to the
simulator_file_name parameter.

The sample simulator mode file, simulator_file.txt, is present at the following
path:

SPYGLASS_HOME/policies/clock/

You can directly pass this sample file to the simulator_file_name parameter
or modify it to specify delay values for different simulators before passing it
to this parameter.

Message 2

The following message appears if the simulator_file_name parameter is not
specified:

[PClkRst5_1] [WARNING] Parameter '-simulator_file_name' is not
specified

Potential Issues
This violation appears the simulator_file_name parameter is not specified.

Consequences of Not Fixing
If you do not fix this violation, the DeltaDelay01 and DeltaDelay02 violations
are not reported.

How to Debug and Fix
To fix this violation, specify a simulator mode file using the
simulator_file_name parameter.
1881
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Example Code and/or Schematic

Not applicable

Default Severity Label

Fatal / Warning

Rule Group

Non-fatal must rule

Reports and Related Files

No report or related file
1882
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Param_clockreset06
Reports if the unexpected_ckcells_file and expected_ckcells_file
parameters are specified together

When to Use

Use this rule to check if the unexpected_ckcells_file and expected_ckcells_file
parameters are specified together.

Description

The Param_clockreset06 rule reports a violation if you specify the
unexpected_ckcells_file and expected_ckcells_file parameters together.

Parameter(s)

 unexpected_ckcells_file: Default value is NULL. Specify a comma or
space-separated list of files containing a list of cells that are not allowed
in clock trees.

 expected_ckcells_file: Default value is NULL. Specify a comma or
space-separated list of files containing a list of cells that are allowed in
clock trees.

Constraint(s)

None

Messages and Suggested Fix

The following message appears if you specify the unexpected_ckcells_file and
expected_ckcells_file parameters together:

[WARNING] Parameters 'expected_ckcells_file' and
'unexpected_ckcells_file' are specified together. Parameter
'unexpected_ckcells_file' will be ignored

Potential Issues
This violation appears if you specify the unexpected_ckcells_file and
expected_ckcells_file parameters together.
1883
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Consequences of Not Fixing
If you do not fix this violation, the unexpected_ckcells_file parameter is
ignored.

How to Debug and Fix
To fix this violation, specify either unexpected_ckcells_file or
expected_ckcells_file parameter.

Example Code and/or Schematic

Not applicable

Default Severity Label

Warning

Rule Group

Non Fatal Must rule

Reports and Related Files

No report or related file
1884
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Param_clockreset07
Reports conflicting values specified with the ac_sync_mode
parameter

When to Use

Use this rule to perform sanity checks on the ac_sync_mode parameter.

Prerequisites

Specify the ac_sync_mode parameter.

Description

The Param_clockreset07 rule reports a violation if the following
combination of values is specified with the ac_sync_mode parameter:
 strict_gate and soft_gate

 strict_qual_logic and soft_qual_logic

Parameter(s)

ac_sync_mode: Default value is strict_gate,strict_qual_logic.
Other possible values are soft_gate and soft_qual_logic.

Constraint(s)

None

Messages and Suggested Fix

The following message appears if you specify conflicting values with the
ac_sync_mode parameter:

[ERROR] Parameter 'ac_sync_mode': Conflicting values '<value1>'
and '<value2>' are specified together

Potential Issues
This violation message appears if you specify conflicting values with the
ac_sync_mode parameter.

Consequences of Not Fixing
1885
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
If you do not fix this violation, default value of this parameter is
considered, which may not be as per your expectation.

How to Debug and Fix
Specify any value other than the following combinations:
 strict_gate and soft_gate

 strict_qual_logic and soft_qual_logic

Example Code and/or Schematic

Consider the following command specified in a project file:

set_parameter ac_sync_mode "soft_gate,strict_gate"

For the above example, the Param_clockreset07 rule reports a violation
because the combination of values specified with this parameter is not
allowed.

Default Severity Label

Error

Rule Group

None

Reports and Related Files

No report or related file
1886
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Propagate_Clocks
Propagates clocks and displays a portion of the clock tree

When to Use

Use this rule to generate high-level information for clock trees.

Prerequisites

Specify clock signals in any of the following ways:
 By using the clock or generated_clock constraint

 By setting the use_inferred_clocks parameter to yes to use automatically
generated clock signals

 By using a combination of both the above methods

Description

The Propagate_Clocks rule reports the following:
 Propagation of synchronous and asynchronous clocks in a design

View the schematic of the rule to see clocks propagation.
This information is useful to analyze clock domain crossings,
synchronization schemes, and other related checks.

NOTE: Gated and derived clocks are automatically detected and propagated. However,
if the enable_generated_clocks parameter is specified, clocks are not propa-
gated beyond sequential elements.

 Clocks that are not propagated in the design
NOTE: Propagation of a clock is blocked if a quasi-static signal is encountered in the path of

the clock.

NOTE: A black box with single input and output pins is considered as a buffer in clock
propagation. Therefore, a clock is propagated from its input pin without requiring
any constraint from the user.

Parameter(s)

 disable_seq_clock_prop: Default value is no. Set this parameter to yes to
disable propagation of clocks beyond flip-flops.

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.
1887
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
 clock_reduce_pessimism: Default value is latch_en, mux_sel_derived,
check_enable_for_glitch. Set the value of this parameter to
mux_sel to stop traversal of this rule when a clock signal reaches a
MUX. Other possible values are all, all_potential_clocks, and
ignore_same_domain.

 cdc_express: Default values is no. Set this parameter to peakmem to
reduce peak memory. Other possible value is yes.

 filter_named_clocks: Default value is rst, reset, scan, set. Set this
parameter to a list of strings.

 cdc_reduce_pessimism: Default value is mbit_macro,
no_convergence_at_syncreset, no_convergence_at_enable.
Set this parameter to an appropriate value to ignore clock domain
crossings involving black box instances and clock domain crossings with
destinations having unused, hanging, or blocked outputs. For possible
values, see Allowed Values of the cdc_reduce_pessimism Parameter.

 enable_generated_clocks: Default value is no. Set this parameter to yes
to enable spyglass consider the generated_clock constraint.

 handle_combo_arc: Default value is no. Set this parameter to yes so that
the clock/reset propagates from an input pin of a sequential library cell
if a combinational timing arc is specified from that pin to any output pin
of the cell.

 same_domain_at_gate: Default value is no. Set the value of the
parameter to an allowed value to optimize the inference of domains on
clock merging gates.

 fa_hybrid_report_hier: Default value is no. Set the value of the parameter
to yes to enable the supported rules to report the top-level hierarchical
names in the SVA Hybrid flow.

Constraint(s)

 clock (Optional): Use this constraint to specify clock signals in your
design.

 abstract_port (Optional and applicable for virtual clocks): Use this
constraint to define abstracted information for block ports.

 input (Optional and applicable for virtual clocks): Use this constraint to
specify clock domain at input ports.
1888
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

 generated_clock (Optional): Use this constraint to specify generated/
derived clocks.

 quasi_static: Use this constraint to specify signals whose value is
predominantly static.

Messages and Suggested Fix

Message 1

The following message appears to indicate about the propagation of clocks:

[PCLK01] [INFO] For <du-name>, clock(s) '<clock-name>' of
domain '<domain-name>' propagated

The arguments of the above message are explained below:

Potential Issues
Not applicable

Consequences of Not Fixing
Not applicable

How to Debug and Fix
This is an informational rule. It gives an idea about clock propagation in a
design.

Viewing this information may uncover some bugs in clock specifications or

Argument Description
<du-name> Module name (for Verilog designs) or the design unit name in

<entity-name>.<arch-name> format (for VHDL
designs)

<clock-name> Name of propagated clock. If multiple clocks are defined in
single domain, comma separated list of clock names are
displayed.

<domain-name> Name of clock domain
1889
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
gating and derived clock logic.

Analyze this data before doing any further analysis.

Message 2

The following message appears to indicate about the propagation of clocks:

[PCLK02] [INFO] For <du-name>, virtual clock(s) '<clock-
name>' of domain '<domain-name>' propagated

The arguments of the above message are explained below:

Potential Issues
Not applicable

Consequences of Not Fixing
Not applicable

How to Debug and Fix
This is an informational rule. It gives an idea about clock propagation in a
design.

Viewing this information may uncover some bugs in clock specifications or
gating and derived clock logic.

Analyze this data before doing any further analysis.

Argument Description
<du-name> Module name (for Verilog designs) or the design unit name in

<entity-name>.<arch-name> format (for VHDL
designs)

<clock-name> Name of propagated virtual clock. If multiple virtual clocks
are defined in single domain, comma separated list of virtual
clock names are displayed.

<domain-name> Name of clock domain
1890
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Message 3

The following message appears to indicate about the propagation of clocks:

[PCLK04] [WARNING] For <du-name>, clock(s) '<clock-name>'
of domain '<domain-name>' not propagated

The arguments of the above message are explained below:

Potential Issues
This violation appears if clocks get blocked because of constant nets in the
path before driving the clock pin of a flip-flop. In addition, the violation is
reported if a quasi-static signal is detected and therefore the propagation
of the clock is stopped.

Consequences of Not Fixing
If you do not fix this violation, the following can be the consequences:
 Clock domains are not assigned properly to the design resulting in

missed SpyGlass CDC violations.
 It may produce a static logic in the design resulting in incorrect

simulation results.
 It may affect analysis of lower-level blocks in the SoC flow.

How to Debug and Fix
To fix this violation, analyze and remove the blocked nets in the clock path
to ensure correct propagation of clock signals.

No schematic is generated for this violation. When you double-click on the

Argument Description
<du-name> Module name (for Verilog designs) or the design unit name

in <entity-name>.<arch-name> format (for VHDL
designs)

<clock-name> Name of the clock that did not propagate. If multiple clocks
are defined in a single domain, a comma-separated list of
clock names is shown.

<domain-name> Name of clock domain
1891
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
violation, the line in the SGDC file is highlighted where this clock is defined.

Message 4

The following message appears to indicate about the propagation of clocks:

[PCLK03] [WARNING] For <du-name>, virtual clock(s) '<clock-
name>' of domain '<domain-name>' not propagated

The arguments of the above message are explained below:

Potential Issues
This violation appears if you missed to assign a clock domain to input ports
specified in an SGDC file.

Consequences of Not Fixing
If you do not fix this violation, the following can be the consequences:
 Clock domains are not assigned properly to the design resulting in

missed SpyGlass CDC violations.
 It may produce a static logic in the design resulting in incorrect

simulation results.
 It may affect analysis of lower-level blocks in the SoC flow.

How to Debug and Fix
To fix this violation, assign abstract_port or input constraint to the input
ports to ensure propagation of virtual clocks in a design.

Argument Description
<du-name> Module name (for Verilog designs) or the design unit name in

<entity-name>.<arch-name> format (for VHDL
designs)

<clock-name> Name of the virtual clock that did not propagate. If multiple
virtual clocks are defined in a single domain, a comma-
separated list of clock names is shown.

<domain-name> Name of clock domain
1892
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Example Code and/or Schematic

Example 1

Consider the following schematic of a message of this rule:

For the above example, when you run the Propagate_Clocks rule, the
clocks are propagated in the design. In addition, the schematic shows the
clock propagation.

The following figure shows the schematic in this case:

FIGURE 422. Schematic of the Propagate_Clocks Rule Violation

Schematic Highlight

This rule highlights a single sequential element at each logic level in the
path of each primary, black box, and derived clock.

current_design top
clock -name "top.clk" -value rtz

// constr.sgdc
module top(d1, d2, clk, out);
 input d1, clk, d2;
 output out;
 reg der_clk;
 reg out;
 always@(posedge clk)
 der_clk <= d1;
 always@(posedge der_clk)
 out <= d2;
endmodule

// test.v
1893
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
NOTE: In case of undriven source clock, complete source net is highlighted.

The schematic uses the following naming conventions:

NOTE: Only a single sequential element is highlighted at each logic level in the path of each
primary, black box, and derived clock in the schem1atic. This avoids schematic
clutter and is sufficient to show that each clock signal is actually being used as a
clock in the design.

For virtual clocks, the schematic highlights input ports or terminals for
which the abstract_port and input constraints are defined.

Example 2

Consider the following design:

FIGURE 423. Example of the Propagate_Clocks rule

For the above design, the Propagate_Clocks rule reports a warning if
async gets tied to ground in the upper block or you do not assign a proper

Notation Symbol Represents
F Flip-flop
B Black box
P Port
L Latch
C Library cell
1894
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
set_case_analysis value while changing the mode.

clk3 will not propagate in such scenarios and the out3 flip-flop is ignored
from SpyGlass CDC checks.

Default Severity Label

Info

Rule Group

PREREQ

Reports and Related Files

No report or related file
1895
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Propagate_Resets
Propagates resets and displays a portion of the reset tree

When to Use

Use this rule to check reset propagation in a design.

Prerequisites

Specify reset signals in any of the following ways:
 By using the reset constraint

 By using the automatically generated resets after setting the
use_inferred_resets parameter to yes

 By using a combination of both the above methods

Description

The Propagate_Resets rule reports propagation of asynchronous reset
signals in a design.

This information is useful in reset synchronization and deassertion related
checks.

NOTE: Propagation of a reset stops if another reset comes in its path at that point.

Rule Exceptions

This rule does not report synchronous resets.

Parameter(s)

 use_inferred_resets: Default value is no. Set this parameter to yes to use
auto-generated reset information.

 filter_named_resets: Default value is clk, clock, scan. Specify a list of
strings to automatically infer asynchronous resets that do not match the
specified strings.

 reset_reduce_pessimism: Default value is
filter_unused_synchronizer, same_data_reset_flop. Set the
value of this parameter to all_potential_resets to detect all the
potential resets in a design. For information on the other possible
values, see Possible Values to the reset_reduce_pessimism Parameter.
1896
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
 handle_combo_arc: Default value is no. Set this parameter to yes so that
the clock/reset propagates from an input pin of a sequential library cell
if a combinational timing arc is specified from that pin to any output pin
of the cell.

 ignore_bus_resets: Default value is yes. Set this parameter to no to
generate reset vector nets, which are not struct nets, in the
autoresets.sgdc and the generated_resets.sgdc file.

 enable_derived_reset: Specifies if resets are propagated through derived
resets.

 fa_hybrid_report_hier: Default value is no. Set the value of the parameter
to yes to enable the supported rules to report the top-level hierarchical
names in the SVA Hybrid flow.

Constraint(s)

 reset (Optional): Use this constraint to specify reset signals in a design.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

Messages and Suggested Fix

Message 1

The following message appears for the propagated reset:

[INFO] For <du-name>, reset '<reset-name>' propagated

NOTE: If a reset is not propagated, Message 2 is reported.

The arguments of the above message are explained below:

Potential Issues
Not applicable

Argument Description
<du-name> Module name (for Verilog designs) or the design unit name in

<entity-name>.<arch-name> format (for VHDL
designs)

<reset-name> Name of the reset
1897
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Consequences of Not Fixing
Not applicable

How to Debug and Fix
This is an informational rule and gives an idea about the propagation of
resets.

Viewing reset propagation might uncover some bugs in the reset
specifications or their usage.

Analyze this data before performing any further analysis.

Message 2

The following message appears for the reset that is not propagated:

[WARNING] For <du-name>, reset '<reset-name>' not propagated

Potential Issues
Not applicable

Consequences of Not Fixing
Not applicable

How to Debug and Fix
The rule generates a Warning message for the resets that are not
propagated.

Viewing reset propagation might uncover some bugs in the reset
specifications or their usage.

Analyze this data before performing any further analysis.

Example Code and/or Schematic

Consider the following design file specified for SpyGlass analysis:
1898
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
In the above example, the rst1 reset is propagated. However, the rst2
reset is not propagated because it is blocked at the AND gate.

The following schematic shows the propagation of the rst1 reset:

FIGURE 424. Schematic of the Propagate_Resets Rule Violation

Schematic Highlight

This rule highlights a single sequential element at each logic level in the
path of each primary and a black box reset, which is propagated.

No schematic information provided for the resets that are not propagated.

module test(input clk, rst1, rst2, d1, d2, output reg q1, q2);
wire rst, a;

always @(posedge clk or negedge rst1)
 if (!rst1) q1 <= 1'b0;
 else q1 <= d1;

AN2 u1 (rst2, 1'b0, rst);

always @(posedge clk or posedge rst)
 if (rst) q2 <= 1'b0;
 else q2 <= d2;
1899
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
The schematic uses the following naming conventions:

NOTE: Only a single sequential element is highlighted at each logic level in the path of each
primary and black box clock in the schematic. This avoids schematic clutter and is
sufficient to show that each reset signal is actually being used as a reset in the
design.

Default Severity Label

Warning

Rule Group

PREREQ

Reports and Related Files

The Clock-Reset-Summary Report

Notation Symbol Represents
F Flop
B Black box
P Port
L Latch
1900
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
QualifierSetup
Reports if the qualifier constraint does not synchronize any clock
domain crossing in a design

When to Use

Use this rule for qualifier setup check.

Prerequisites

Specify the qualifier constraint.

Description

The QualifierSetup rule reports a violation if the qualifier constraint does not
synchronize any crossing in a design.

Parameter(s)

None

Constraint(s)

qualifier (Mandatory): Use this constraint to specify a qualifier for
synchronizing a clock domain crossing.

Messages and Suggested Fix

Message 1

The following message appears when the qualifier constraint does not
synchronize any crossing in the current design <current-design>:

[QS_1] [WARNING] 'qualifier' constraint '<qualifier-name>' is
not used to synchronize any crossing in the current design
'<current-design>'

Potential Issues
This violation appears if your design contains a qualifier signal, specified by
the qualifier constraint, which does not synchronize any crossing in the
design.
1901
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Consequences of Not Fixing
If you do not fix this violation, the specified qualifier is ignored.

How to Debug and Fix
Specify a correct qualifier signal in the qualifier constraint.

Message 2

The following message appears when the qualifier constraint does not
ignore any inferred qualifier in the current design <current-design>:

[QS_2] [WARNING] 'qualifier' constraint '<qualifier-name>' is
not used to ignore any inferred synchronizer in the current
design '<current-design>'

Potential Issues
This violation appears if your design contains a qualifier signal, specified by
the qualifier constraint, which does not ignore any inferred qualifier in the
design.

Consequences of Not Fixing
If you do not fix this violation, the specified qualifier is ignored.

How to Debug and Fix
Specify a correct qualifier signal in the qualifier constraint.

Example Code and/or Schematic

Consider the following schematic of a design:
1902
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
FIGURE 425. Schematic of the QualifierSetup Rule Violation

In the above design, the qual qualifier is used for the clock domain
crossing from c1 to c2. However, qual is defined in the qualifier constraint
from c2 to c1.

Therefore, the QualifierSetup rule reports a violation in this case. As a
result, the qual qualifier is not considered by SpyGlass analysis and
therefore, it does not synchronize any crossing in the design.

Default Severity Label

Warning

current_design top
clock -name c1 -domain d1
clock -name c2 -domain d2
qualifier -name qual -from_clk c2 -to_clk c1

// constr.sgdc
1903
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Rule Group

Non fatal must rule

Reports and Related Files

No related files or reports
1904
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
ResetSynchronizerSetup
Reset_synchronizer mentioned as -ignore is not used to ignore
inferred synchronization

When to Use

Use this rule for reset synchronizer setup check.

Prerequisites

Specify the reset_synchronizer constraint.

Description

The ResetSynchronizerSetup rule reports a violation if the
reset_synchronizer constraint with -ignore argument is not used to ignore
any inferred or user-defined synchronizer.

Parameter(s)

None

Constraint(s)

reset_synchronizer (Mandatory): Use this constraint to specify a reset
synchronizer for synchronizing a reset domain crossing.

Messages and Suggested Fix

The following message appears when the reset_synchronizer constraint does
not ignore any inferred or user-defined reset synchronizer in the current
design <current-design>:

[RS_2] [WARNING] 'Reset_synchronizer' constraint '<object-
name>' is not used to ignore any inferred synchronizer in the
current design '<current-design>'

Potential Issues

This violation appears if your design contains a reset synchronizer,
specified by the reset_synchronizer constraint, which does not ignore any
inferred or user-defined reset synchronizer in the design.
1905
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Consequences of Not Fixing

If you do not fix this violation, the specified reset synchronizer is ignored.

How to Debug and Fix

Specify a correct reset synchronizer in the reset_synchronizer constraint.

Example Code and/or Schematic

Consider the following schematic of a design:

FIGURE 426. Schematic for the ResetSynchronizerSetup Rule Violation

In the above design, the reset_synchronizer - ignore constraint is defined
at sync1.w1. The ResetSynchronizerSetup rule reports a warning message
in this case because there is no valid synchronizer before the sync1.w1 net.

Default Severity Label

Warning
1906
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Rule Group

Non fatal must rule

Reports and Related Files

No related files or reports
1907
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Reset_check08
Reports reset signals that are constrained by using the
set_case_analysis constraint

When to Use

Use this rule during the RTL or pre-layout phase to detect reset signals that
are constrained by using the set_case_analysis constraint.

Prerequisites

Perform the following actions before running this rule:
 Specify reset signals by using the set_case_analysis constraint

 Run the Reset_check03 or Reset_check04 rule.

Description

The Reset_check08 rule reports reset signals that are specified by the
-name argument of the set_case_analysis constraint.

NOTE: This rule is run automatically when the Reset_check03 or Reset_check04 rules are
run, and reset signals are constrained by using the set_case_analysis constraint.

Parameter(s)

None

Constraint(s)

 set_case_analysis (Mandatory): Use this constraint to specify case
analysis conditions.

 clock (Mandatory): Use this constraint to specify clock signals in a
design.

Messages and Suggested Fix

The following message appears if the reset signal <signal-name> is
specified by the set_case_analysis constraint:

[WARNING] Reset signal '<signal-name>' also specified as
'set_case_analysis', hence not checked by rule <rule-name>
1908
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Potential Issues
This violation appears if your design contains reset signals that are
specified by the set_case_analysis constraint.

Consequences of Not Fixing
If you do not fix this violation, reset signals get constrained as static nets,
which may impact design functionality.

How to Debug and Fix
To fix this violation, review the set_case_analysis constraint applied on the
reset signal and remove this constraint or the reset definition.

If the set_case_analysis constraint is intentional (for example, to configure
the design in a particular mode), disable or waive this rule.

Example Code and/or Schematic

Consider the following files specified during SpyGlass analysis:

module test(input clk, rst1, srst, d1, d2, d3, output reg q1, q2, q3);
always @(posedge clk or negedge rst1)
 if (!rst1) q1 <= 1'b0;
 else q1 <= d1;
always @(posedge clk)
 if (rst1) q2 <= 1'b0;
 else q2 <= d2;
always @(posedge clk)
 if (srst) q3 <= 1'b0;
 else q3 <= d3;
endmodule

// test.v

current_design test
reset -name rst1
reset -name srst -sync
set_case_analysis -name srst -value 1

// constr.sgdc
1909
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
For the above example, the Reset_check08 rule reports a violation because
the srst reset signal is specified by the set_case_analysis constraint.

Default Severity Label

Warning

Rule Group

VERIFY

Reports and Related Files

No reports or related file
1910
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_allow_combo_logic01
Reports if no argument is specified in the allow_combo_logic
constraint

When to Use

Use this rule to perform sanity checks on the allow_combo_logic constraint
specification.

Prerequisites

Use the allow_combo_logic constraint.

Description

The SGDC_allow_combo_logic01 rule reports a violation if you do not
specify any argument with the allow_combo_logic constraint.

Parameter(s)

None

Constraint(s)

 allow_combo_logic (Mandatory): Use this constraint to allow combinational
logic between crossings only if the logic is within the modules specified by
using this constraint.

Messages and Suggested Fix

The following message appears when no argument is specified in the
allow_combo_logic constraint:

[FATAL] 'allow_combo_logic': No field specified in the
constraint

Potential Issues
This violation appears if no argument is specified with the allow_combo_logic
constraint.

Consequences of Not Fixing
1911
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix
To fix this violation, specify the correct syntax for the allow_combo_logic
constraint.

Example Code and/or Schematic

Not applicable

Default Severity Label

Fatal

Rule Group

Fatal Must Rules

Reports and Related Files

No reports or related files
1912
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_allow_combo_logic02
Reports if different arguments are used in different specifications
of the allow_combo_logic constraint

When to Use

Use this rule to perform sanity checks on the allow_combo_logic constraint
specification.

Prerequisites

Use the allow_combo_logic constraint.

Description

The SGDC_allow_combo_logic02 rule reports a violation if different
arguments, such as -all, -none, and/or -name are specified in different
specifications of the allow_combo_logic constraint.

Parameter(s)

None

Constraint(s)

 allow_combo_logic (Mandatory): Use this constraint to allow combinational
logic between crossings only if the logic is within the modules specified by
using this constraint.

Messages and Suggested Fix

The following message appears if different arguments, such as -all,
-none, and/or -name are specified in different specifications of the
allow_combo_logic constraint

[WARNING] Combination of all, none or specific names has been
used in allow_combo_logic constraint

Potential Issues
This violation appears when you specify multiple specifications of the
allow_combo_logic constraint with different arguments.
1913
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Consequences of Not Fixing
If the allow_combo_logic constraint is specified multiple times, the following
order of preference, starting from the highest priority, is applied which may
differ from your requirement:
1. allow_combo_logic -all

2. allow_combo_logic -none

3. allow_combo_logic -name <list>

How to Debug and Fix
To fix the violation, remove multiple allow_combo_logic constraint
specifications containing conflicting arguments.

Example Code and/or Schematic

Consider the following allow_combo_logic constraint specifications in an
SGDC file:

allow_combo_logic -all
allow_combo_logic -none

In this case, the SGDC_allow_combo_logic02 rule reports a violation and
only the following specification is considered:

allow_combo_logic -all

Default Severity Label

Warning

Rule Group

Non-Fatal Must Rules

Reports and Related Files

No reports or related files
1914
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_cdc_false_path01
Reports a violation if non-existent objects are specified in the
-from argument of the cdc_false_path constraint

When to Use

Use this rule to perform sanity checks on the cdc_false_path constraint.

Prerequisites

Specify the cdc_false_path constraint.

Description

The SGDC_cdc_false_path01 rule reports a violation if the object specified
in the -from argument of the cdc_false_path constraint does not exist as
any of following object in the design:

Parameter(s)

None

Constraint(s)

 cdc_false_path (Mandatory): Use this constraint to specify false paths so
that clock-domain crossings along these paths are ignored for rule
checking.

 clock -tag (Optional): Use this constraint to specify a logical clock
name.

Messages and Suggested Fix

The following message appears if you specify non-existent objects in the
-from argument of the cdc_false_path constraint:

[FATAL] '<name>'[TopPort + SubModulePort + Net + HierTerminal +
SubModule] not found on/within module '<module-name>'

Top level port Net Hierarchical Terminal
Module Module port Clock tag
1915
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Potential Issues

This violation appears if the object specified in the -from argument of
cdc_false_path constraint does not exist as any of following object in the
design:

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix
To fix this violation, specify an existing object, such as a top-level port, net,
terminal, or module in the -from argument of the cdc_false_path
constraint.

Example Code and/or Schematic

Consider an example in which the design top does not contain any object
by the name ck1.

In this case, the SGDC_cdc_false_path01 rule reports a violation if you
specify the following cdc_false_path constraint in the SGDC file:

current_design top
clock -name ck2 -domain d2
cdc_false_path -from ck1 -to ck2

Default Severity Label

Fatal

Rule Group

Fatal must rule

Top level port Net Hierarchical Terminal
Module Module port Clock tag
1916
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Reports and Related Files

No report or related file
1917
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_cdc_false_path02
Reports a violation if non-existent objects are specified in the -to
argument of the cdc_false_path constraint

When to Use

Use this rule to perform sanity checks on the cdc_false_path constraint.

Prerequisites

Specify the cdc_false_path constraint.

Description

The SGDC_cdc_false_path02 rule reports a violation if the object specified
in the -to argument of the cdc_false_path constraint does not exist as any
of following object in the design:

Parameter(s)

None

Constraint(s)

 cdc_false_path (Mandatory): Use this constraint to specify false paths so
that clock-domain crossings along these paths are ignored for rule
checking.

 clock -tag (Optional): Use this constraint to specify a logical clock
name.

Messages and Suggested Fix

The following message appears if you specify non-existent objects in the
-to argument of the cdc_false_path constraint:

[FATAL] '<name>'[TopPort + SubModulePort + Net + HierTerminal +
SubModule] not found on/within module '<module-name>'

Top level port Net Hierarchical Terminal
Module Module port Clock tag
1918
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Potential Issues

This violation appears if the object specified in the -to argument of
cdc_false_path constraint does not exist as any of following object in the
design:

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix
To fix this violation, specify an existing object, such as a top-level port, net,
terminal, or module in the -to argument of the cdc_false_path constraint.

Example Code and/or Schematic

Consider an example in which the design top does not contain any object
by the name ck2.

In this case, the SGDC_cdc_false_path02 rule reports a violation if you
specify the following cdc_false_path constraint in the SGDC file:

current_design top
clock -name ck1 -domain d2
cdc_false_path -from ck1 -to ck2

Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file

Top level port Net Hierarchical Terminal
Module Module port Clock tag
1919
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_cdc_false_path03
Reports a violation if non-existent objects are specified in the
-through argument of the cdc_false_path constraint

When to Use

Use this rule to perform sanity checks on the cdc_false_path constraint.

Prerequisites

Specify the cdc_false_path constraint.

Description

The SGDC_cdc_false_path03 rule reports a violation if the object specified
in the -through argument of the cdc_false_path constraint does not exist
as any of following object in the design:

Parameter(s)

None

Constraint(s)

cdc_false_path (Mandatory): Use this constraint to specify false paths so
that clock-domain crossings along these paths are ignored for rule
checking.

Messages and Suggested Fix

The following message appears if you specify non-existent objects in the
-through argument of the cdc_false_path constraint:

[FATAL] '<name>'[TopPort + SubModulePort + Net + HierTerminal +
SubModule] not found on/within module '<module-name>'

Potential Issues

This violation appears if the object specified in the -through argument of

Top level port Net Hierarchical Terminal
Module Module port
1920
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
cdc_false_path constraint does not exist as any of following object in the
design:

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix
To fix this violation, specify an existing object, such as a top-level port, net,
terminal, or module in the -through argument of the cdc_false_path
constraint.

Example Code and/or Schematic

Consider an example in which the design top does not contain any object
by the name n1.

In this case, the SGDC_cdc_false_path03 rule reports a violation if you
specify the following cdc_false_path constraint in the SGDC file:

current_design top
cdc_false_path -through top.n1

Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file

Top level port Net Hierarchical Terminal
Module Module port
1921
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_cdc_false_path04
Reports a violation if wildcard names specified in the -from, -to, or
-through argument of the cdc_false_path constraint does not
match with the name of any object in a design

When to Use

Use this rule to perform sanity checks on the cdc_false_path constraint.

Prerequisites

Specify the cdc_false_path constraint.

Description

The SGDC_cdc_false_path04 rule reports a violation if wildcard names
specified in the -from, -to, or -through argument of the cdc_false_path
constraint does not match with the names of any of following objects in the
design:

NOTE: Non-wildcard names are checked by the SGDC_cdc_false_path01,
SGDC_cdc_false_path02, and SGDC_cdc_false_path03 rules.

Rule Exceptions

This rule does not consider wildcard names for hierarchical pins and
intermediate nets. Therefore, it reports false violations if you specify
wildcard names for such pins or nets.

Parameter(s)

None

Constraint(s)

cdc_false_path (Mandatory): Use this constraint to specify false paths so
that clock-domain crossings along these paths are ignored for rule
checking.

Top level port Net Hierarchical Terminal
Module Module port
1922
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Messages and Suggested Fix

The following message appears if wildcard names specified in the -from, -
to, or -through argument of the cdc_false_path constraint does not match
with the name of any object in the design:

[ERROR] "<object-name>" specified in the "<argument-name>"
field of cdc_false_path constraint could not be found in the
design

Potential Issues

This violation appears if wildcard names specified in the -from, -to, or
-through argument of the cdc_false_path constraint does not match with
the name of any of the following types of objects in the design:

Consequences of Not Fixing
If you do not fix this violation, the reported cdc_false_path constraint
specification is ignored and no crossing is filtered from this constraint.

How to Debug and Fix

To fix this violation, specify correct wildcard names in the -from, -to, or
-through argument of the cdc_false_path constraint so that they match
with the names of existing objects in the design.

Example Code and/or Schematic

Consider the design top in which the name of none of the object starts
with the string ck.

In this case, the SGDC_cdc_false_path04 rule reports a violation if you
specify the following cdc_false_path constraint in the SGDC file:

current_design top
cdc_false_path -from "ck*"

Top level port Net Hierarchical Terminal
Module Module port
1923
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Default Severity Label

Error

Rule Group

Non-fatal must rule

Reports and Related Files

No report or related file
1924
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_cdc_false_path05
Reports a violation if no argument is specified with the
cdc_false_path constraint

When to Use

Use this rule to perform sanity checks on the cdc_false_path constraint.

Prerequisites

Specify the cdc_false_path constraint.

Description

The SGDC_cdc_false_path05 rule reports a violation if no argument is
specified with the cdc_false_path constraint.

Parameter(s)

None

Constraint(s)

cdc_false_path (Mandatory): Use this constraint to specify false paths so
that clock-domain crossings along these paths are ignored for rule
checking.

Messages and Suggested Fix

The following message appears if no argument is specified with the
cdc_false_path constraint:

[WARNING] 'cdc_false_path': No field specified in the
constraint

Potential Issues
This violation appears if no argument is specified with the cdc_false_path
constraint.

Consequences of Not Fixing
If you do not fix this violation, the reported constraint is ignored during
1925
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SpyGlass analysis.

How to Debug and Fix
To fix this violation, perform any of the following actions:
 Remove the reported constraint.

 Specify at least one argument with this constraint.

Example Code and/or Schematic

Not applicable

Default Severity Label

Warning

Rule Group

Non-fatal must rule

Reports and Related Files

No report or related file
1926
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_cdc_false_path06
Checks type mismatch in the arguments of the cdc_false_path
constraint

When to Use

Use this rule to perform sanity checks on the cdc_false_path constraint.

Prerequisites

Specify the cdc_false_path constraint.

Description

The SGDC_cdc_false_path06 rule reports a violation if the signal type
specified in the -from_type or -to_type arguments of the cdc_false_path
constraint does not match with the signal specified in the -from or -to
arguments, respectively, of this constraint.

The rule also reports a violation if the virtual clocks are not specified
properly in the -from and -to arguments of the cdc_false_path constraint.

Parameter(s)

None

Constraint(s)

cdc_false_path (Mandatory): Use this constraint to specify false paths so
that clock-domain crossings along these paths are ignored for rule
checking.

Messages and Suggested Fix

Message 1

The following message appears if there is a type mismatch in the
arguments of the cdc_false_path constraint:

[ERROR] Type specified in the "<-from_type | -to_type>" field
does not match with the signal "<signal-name>" specified in the
"<-from | -to>" field of cdc_false_path constraint

Potential Issues
1927
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
This violation appears if the signal type specified in the -from_type or
-to_type arguments of the cdc_false_path constraint does not match with
the type of the signal specified in the -from or -to arguments,
respectively.

Consequences of Not Fixing
If you do not fix this violation, the reported cdc_false_path constraint
specification is ignored and no crossing is filtered from this constraint.

How to Debug and Fix

To fix this violation, specify the correct type in the -from_type or
-to_type arguments of the cdc_false_path constraint.

Message 2

The following message appears if a virtual clock is specified in either of the
-from or -to arguments of the cdc_false_path constraint and a non-clock
object is specified in the other argument:

[ERROR] Virtual clock specified in <field_name> field and non-
clock specified in <field_name> field. Ignoring the constraint

Potential Issues
This violation appears if a virtual clock is specified in either of the
-from or -to arguments of the cdc_false_path constraint and a non-clock
object is specified in the other argument.

Consequences of Not Fixing
If you do not fix this violation, the reported cdc_false_path constraint
specification is ignored and no crossing is filtered from this constraint.

How to Debug and Fix

To fix this violation, ensure that if a virtual clock is specified in the -from
or the -to arguments of the cdc_false_path constraint, a clock is specified
for the other argument as well.
1928
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Example Code and/or Schematic

Consider the following files specified for SpyGlass analysis:

For the above example, the SGDC_cdc_false_path06 rule reports violations
for the -from_type and -to_type arguments of the cdc_false_path
constraint because the types specified in these arguments do not match
with the type of signals specified in the -from and -to arguments,
respectively.

Default Severity Label

Error

Rule Group

Non-fatal must rule

Reports and Related Files

No report or related file

module top(input d,clk1,clk2,clk3,output q1,q2);
reg q1,q2;
wire w1,tmp1,tmp2;
assign merg_clk = clk1 & clk2;

block1 bb1 (d,clk1,tmp1);
block2 bb2 (tmp1,clk2, tmp2);

endmodule

module block1(input in,clk1,output reg out);
always@(posedge clk1)
 out<=in;

endmodule

module block2(input in,clk,output reg out);
always@(posedge clk)
 out<=in;

endmodule

// test.v

current_design top
clock -name clk1
clock -name clk2
clock -name clk3

cdc_false_path -from clk1 clk2

// test.sgdc

 -to clk2 -from_type data
 -to_type data
1929
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_cdc_false_path07
Checks for existence of the -from_type and -to_type arguments of
the cdc_false_path constraint

When to Use

Use this rule to check for the existence of the from_type and to_type
arguments of the cdc_false_path constraint.

Prerequisites

Specify the cdc_false_path constraint.

Description

The SGDC_cdc_false_path07 rule reports a violation if the -to or the
-from arguments of the cdc_false_path constraint is specified without
specifying the corresponding -from_type or the -to_type arguments
constraint.

For example, if the -to type argument of the constraint is specified without
the -to_type argument, the rule reports a violation.

Parameter(s)

None

Constraint(s)

cdc_false_path (Mandatory): Use this constraint to specify false paths so
that clock-domain crossings along these paths are ignored for rule
checking.

Messages and Suggested Fix

The following message appears if the -from_type or the -to_type
arguments are missing for a cdc_false_path constraint:

[ERROR] From_type or to_type are missing for at least one
cdc_false_path constraint

Potential Issues

This violation appears if the -from or the -to arguments of the
1930
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
cdc_false_path constraint are specified without the corresponding
-from_type or -to_type arguments.

Consequences of Not Fixing

If you do not fix this violation, the -from_type or -to_type arguments of
the cdc_false_path constraint uses the default value 'all', which increases
the analysis effort and run time.

How to Debug and Fix

To fix this violation, specify the -from_type and the -to_type arguments
corresponding to the -from and -to arguments of the cdc_false_path
constraint.

Example Code and/or Schematic

Not applicable

Default Severity Label

Error

Rule Group

Fatal must rule

Reports and Related Files

No report or related file
1931
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_cdc_false_path08
Reports if a terminal is specified with -from or -to field and
connected net of that terminal connects to multiple possible
sources or destinations

When to Use

Use this rule to check whether unexpected crossings have been ignored
due to cdc_false_path constraint.

Prerequisites

Specify the cdc_false_path constraint.

Description

SpyGlass CDC uses connected nets of terminals for internal processing. If
these nets connect to multiple destinations/sources, additional crossings
may be ignored. The SGDC_cdc_false_path08 rule reports violations if
more than one possible source or destination is connected to these nets.

Parameter(s)

None

Constraint(s)

cdc_false_path (Mandatory): Use this constraint to specify false paths so
that clock-domain crossings along these paths are ignored for rule
checking.

Messages and Suggested Fix

The following message appears if the connected net of a terminal connects
to more than one possible sources or destinations:

[Warning] Connected net <net-name> of terminal <terminal-name>
specified with <field-name> field may connect to multiple
<sources/destinations>

Potential Issues
This violation appears if multiple possible crossings are ignored by the
cdc_false_path constraint.
1932
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Consequences of Not Fixing
If you do not fix this violation, many important violations might not be
reported because the cdc_false_path constraint impacts many rules.

How to Debug and Fix
To fix this violation, check if additional crossings are ignored by the
cdc_false_path constraint.

Example Code and/or Schematic

Not applicable

Default Severity Label

Warning

Rule Group

Non-fatal must rule

Reports and Related Files

No report or related file
1933
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_cdc_false_path09
Reports if objects specified with fields -from_obj/to_obj are not
driven by clocks specified with -from_clk/-to_clk fields

When to Use

Use this rule to check if objects specified with arguments -from_obj/
-to_obj are not driven by clocks specified with -from_clk/-to_clk
arguments.

Prerequisites

Specify the cdc_false_path constraint.

Description

The SGDC_cdc_false_path09 rule reports violations if objects specified with
the -from_obj/-to_obj arguments of the cdc_false_path constraint are
not driven by clocks specified in the -from_clk/-to_clk arguments.

Parameter(s)

None

Constraint(s)

cdc_false_path (Mandatory): Use this constraint to specify false paths so
that clock-domain crossings along these paths are ignored for rule
checking.

Messages and Suggested Fix

The following message appears if the objects specified with the
-from_obj/to_obj fields are not driven by clocks specified with the
-from_clk/-to_clk fields:

[Warning] Objects <object name> specified with <from_obj |-
to_obj> field are not driven by clocks <clock name> specified
with <-from_clk | -to_obj> field

Potential Issues

This violation appears if objects specified with fields -from_obj/-to_obj
1934
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
are not driven by clocks specified with -from_clk/-to_clk arguments of
the cdc_false_path constraint.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass ignores the cdc_false_path
constraint.

How to Debug and Fix

To fix this violation, check the -from_obj/-to_obj and the
-from_clk/-to_clk arguments of the cdc_false_path constraint.

Example Code and/or Schematic

Not applicable

Default Severity Label

Error

Rule Group

Non-fatal must rule

Reports and Related Files

No report or related file
1935
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_clockreset02
Reports a violation if an invalid clock is specified in the -clock
argument of the input or output constraint

When to Use

Use this rule to perform sanity checks on the input or output constraint.

Prerequisites

Specify the input or output constraint.

Description

The SGDC_clockreset02 rule reports a violation if the clock specified by the
-clock argument of the input or output constraint for ports is not specified
by any clock constraint.

Parameter(s)

None

Constraint(s)

 input (Mandatory): Use this constraint to specify clock domain at input
ports.

 output (Mandatory): Use this constraint to specify a clock domain at
output ports.

Messages and Suggested Fix

Message 1

The following message appears if the signal <signal-name> specified by
the -clock argument of the input constraint for ports <port-names> is
not specified by the clock constraint:

[SClkRst2_3] [WARNING] Signal <signal-name> in -clock field in
'input' constraint for port(s) <port-names> has not been
specified as a clock via 'clock' constraint

Potential Issues
1936
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
This violation appears if the clock specified by the -clock argument of the
input constraint is not a valid clock.

Consequences of Not Fixing
If you do not fix this violation, clock-domain crossing analysis does not
happen for the reported ports.

How to Debug and Fix

To fix this violation, update the -clock argument of the reported input
constraint to specify a clock specified by the clock constraint.

Message 2

The following message appears if the signal <signal-name> specified by
the -clock argument of the output constraint for ports <port-names> is
not specified by the clock constraint:

[SClkRst2_1] [WARNING] Signal <signal-name> in -clock field in
'output' constraint for port(s) <port-names> has not been
specified as a clock via 'clock' constraint

Potential Issues

This violation appears if the clock specified by the -clock argument of the
output constraint is not a valid clock.

Consequences of Not Fixing
If you do not fix this violation, clock-domain crossing analysis does not
happen for the reported ports.

How to Debug and Fix

To fix this violation, update the -clock argument of the reported output
constraint to specify a clock specified by the clock constraint.
1937
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Message 3

The following message appears if the -clock argument of the output
constraint is not specified for the ports <port-names>:

[SClkRst2_2] [WARNING] '-clock' field is not specified in
'output' constraint for port(s) <port-names>

Potential Issues

This violation appears if no -clock argument of the output constraint is
specified for some ports.

Consequences of Not Fixing
If you do not fix this violation, clock-domain crossing analysis does not
happen for the reported ports.

How to Debug and Fix

To fix this violation, specify the -clock argument of the reported ports of
the output constraint.

Example Code and/or Schematic

Consider following constraints specified in an SGDC file:

current_design top

clock -name CK1 -domain d1
clock -name CK2 -domain d2
output -name P1 -clock CC

In the above example, the CC clock specified by the -clock argument of
the output constraint is not specified by any clock constraint.

Therefore, the SGDC_clockreset02 rule reports a violation.

Default Severity Label

Warning
1938
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Rule Group

Non-fatal must rule

Reports and Related Files

No report or related file
1939
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_clocksense01
Reports for an incorrect value in the -pins argument of the
clock_sense constraint

When to Use

Use this rule to perform sanity checks on the clock_sense constraint.

Prerequisites

Specify the clock_sense constraint.

Description

The SGDC_clocksense01 rule reports a violation if a non existing terminal
is specified in the -pins argument of the clock_sense constraint.

Parameter(s)

None

Constraint(s)

 clock_sense (Mandatory): Use this constraint to stop propagation of
clocks from the specified pins.

Messages and Suggested Fix

The following message appears if a non existing terminal is specified in the
-pins argument of the clock_sense constraint:

[FATAL] Constraint 'clock_sense':
'<terminal-name>'[HierTerminal] not found on/within module
'<module-name>'

Potential Issues

This violation appears if a non existing terminal is specified in the -pins
argument of the clock_sense constraint.

Consequences of Not Fixing
1940
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix

To fix this violation, specify a valid terminal name in the -pins argument
of the clock_sense constraint.

Example Code and/or Schematic

Consider the following files specified in SpyGlass analysis:

For the above example, the SGDC_clocksense01 rule reports a violation
because the b2.in terminal is not present in the top module.

Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file

module top(in, clk, out);

input in, clk;

output out;

reg out;

BBOX b1(clk, clk_out);

always@(posedge clk_out)

 out <= in;

endmodule

module BBOX(input in, output out);

endmodule

// top.v

current_design top
clock -name clk -domain d1
clock_sense -pins b2.in

// constr.sgdc
1941
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_clocksense02
Reports for the -tag argument of the clock_sense constraint if the
tag is not associated with a real clock

When to Use

Use this rule to perform sanity checks on the clock_sense constraint.

Prerequisites

Specify the clock_sense constraint.

Description

The SGDC_clocksense02 rule reports a violation if the clock tag specified in
the -tag argument of the clock_sense constraint is not associated with any
real clock in the design.

Parameter(s)

None

Constraint(s)

 clock_sense (Mandatory): Use this constraint to stop propagation of
clocks from the specified pins.

Messages and Suggested Fix

The following message appears for an invalid tag specified in the -tag
argument of the clock_sense constraint:

[WARNING] Constraint 'clock_sense': Clock name '<tag-name>'
specified in field '-tag' is not a valid clock tag

Potential Issues

This violation appears if the clock tag specified in the -tag argument of the
clock_sense constraint is not associated with any real clock in the design.

Consequences of Not Fixing
1942
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
If you do not fix this violation, SpyGlass ignores the reported constraint
specification.

How to Debug and Fix

To fix this violation, update the -tag argument to specify valid tags that
are associated with real clocks in the design.

Example Code and/or Schematic

Consider the following constraints specification:

current_design top
clock -name clk -domain d1
clock_sense -pins b1.in -tag C1

For the above example, the SGDC_clocksense02 rule reports a violation
because the C1 tag is not associated with any clock in the design.

Default Severity Label

Warning

Rule Group

Non fatal must rule

Reports and Related Files

No report or related file
1943
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_clocksense03
Reports if a virtual clock is specified in the -tag argument of the
clock_sense constraint

When to Use

Use this rule to perform sanity checks on the clock_sense constraint.

Prerequisites

Specify the clock_sense constraint.

Description

The SGDC_clocksense03 rule reports a violation if a virtual clock is
specified in the -tag argument of the clock_sense constraint.

Parameter(s)

None

Constraint(s)

 clock_sense (Mandatory): Use this constraint to stop propagation of
clocks from the specified pins.

Messages and Suggested Fix

The following message appears if a virtual clock is specified in the -tag
argument of the clock_sense constraint:

[WARNING] Constraint 'clock_sense': Clock Name '<clk-name>'
specified in field '-tag' is virtual clock'

Potential Issues

This violation appears if a virtual clock is specified in the -tag argument of
the clock_sense constraint.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass ignores the reported constraint
1944
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
specification.

How to Debug and Fix

To fix this violation, update the -tag argument to specify a tag that is
associated with a real clock in the design.

Example Code and/or Schematic

Consider the following constraints specification:

current_design top
clock -name clk -domain d1
clock -tag C2
clock_sense -pins b1.in -tag C2

For the above example, the SGDC_clocksense03 rule reports a violation for
the C2 tag because C2 is a virtual clock.

Default Severity Label

Warning

Rule Group

Non fatal must rule

Reports and Related Files

No report or related file
1945
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_define_reset_order01
Reports a violation if an invalid object is specified in the -from
argument of the define_reset_order constraint

When to Use

Use this rule to perform sanity checks on the define_reset_order constraint.

Prerequisites

Specify the define_reset_order and reset constraints.

Description

The SGDC_define_reset_order01 rule reports a violation if the object
specified in the -from argument of the define_reset_order constraint does
not exist as port, hierarchical terminal, or net in the current design.

Parameter(s)

None

Constraint(s)

 define_reset_order (Mandatory): Use this constraint to specify a reset
order, which determines the flow of data from one reset to another
reset.

 reset (Mandatory): Use this constraint to specify reset signals in a
design.

Messages and Suggested Fix

The following message appears if an invalid object is specified in the -from
argument of the define_reset_order constraint:

[FATAL] Constraint 'define_reset_order': '<signal-name>'
[TopPort + Net + HierTerminal] not found on/within module
'<top-design>'

Potential Issues
This violation appears if your design does not contain the port, hierarchical
terminal, or net specified by the -from argument of the define_reset_order
1946
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
constraint.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix
To fix this violation, specify an existing port, hierarchical terminal, or net in
the -from argument of the define_reset_order constraint.

Example Code and/or Schematic

Consider that the design top does not contain the rst1 port or net. Now
consider that you specify the following constraint:

define_reset_order -from rst1 -to rst2

In the above case, SGDC_define_reset_order01 rule reports a violation.

Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file
1947
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_define_reset_order02
Reports a violation if an invalid object is specified in the -to
argument of the define_reset_order constraint

When to Use

Use this rule to perform sanity checks on the define_reset_order constraint.

Prerequisites

Specify the define_reset_order and reset constraints.

Description

The SGDC_define_reset_order02 rule reports a violation if the object
specified in the -to argument of the define_reset_order constraint does not
exist as port, hierarchical terminal, or net in the current design.

Parameter(s)

None

Constraint(s)

 define_reset_order (Mandatory): Use this constraint to specify a reset
order, which determines the flow of data from one reset to another
reset.

 reset (Mandatory): Use this constraint to specify reset signals in a
design.

Messages and Suggested Fix

The following message appears if an invalid object is specified in the -to
argument of the define_reset_order constraint:

[FATAL] 'define_reset_order': '<signal-name>'[TopPort + Net +
HierTerminal] not found on/within module '<top-design>'

Potential Issues
This violation appears if your design does not contain the port, hierarchical
terminal, or net specified by the -to argument of the define_reset_order
constraint.
1948
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix
To fix this violation, specify an existing port, hierarchical terminal, or net in
the -to argument of the define_reset_order constraint.

Example Code and/or Schematic

Consider that the design top does not contain the rst2 port or net. Now
consider that you specify the following constraint:

define_reset_order -from rst1 -to rst2

In the above case, SGDC_define_reset_order02 rule reports a violation.

Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file
1949
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_define_reset_order03
Reports a violation if an invalid reset is specified in the -from
argument of the define_reset_order constraint

When to Use

Use this rule to perform sanity checks on the define_reset_order constraint.

Prerequisites

Specify the following information before running this rule:
 Specify the define_reset_order constraint.

 Run the Ar_resetcross01 rule to enable the
SGDC_define_reset_order03 rule because the define_reset_order
constraint is used by the Ar_resetcross01 rule.

Description

The SGDC_define_reset_order03 rule reports a violation if the reset
specified by the -from argument of the define_reset_order constraint is not
any of the following reset:
 A reset specified by the reset constraint

 An automatically inferred reset when the use_inferred_resets parameter is
set to yes.

Parameter(s)

 use_inferred_resets: Default value is no. Set this parameter to yes to use
auto-generated reset information.

Constraint(s)

 define_reset_order (Mandatory): Use this constraint to specify a reset
order, which determines the flow of data from one reset to another
reset.

 reset (Mandatory): Use this constraint to specify reset signals in a
design.

Messages and Suggested Fix

The following message appears if the reset specified by the -from
1950
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
argument of the define_reset_order constraint is not a user-specified reset or
it is not an automatically inferred reset:

[WARNING] Constraint 'define_reset_order': Reset name '<reset-
name>' specified in '-from' field is not a valid reset

Potential Issues
This violation appears if your design does not contain the reset specified by
the -from argument of the define_reset_order constraint.

Consequences of Not Fixing
If you do not fix this violation, the reported constraint is not considered
during SpyGlass analysis.

How to Debug and Fix

To fix this violation, specify any of the following reset in the -from
argument of the define_reset_order constraint:
 A reset specified by the reset constraint

 An automatically inferred reset when the use_inferred_resets parameter is
set to yes.

Example Code and/or Schematic

Consider that the rst reset is neither specified by the reset constraint nor it
is an automatically inferred reset.

Now consider that you specify the following constraint:

define_reset_order -from rst -to rst1

In the above case, the SGDC_define_reset_order03 rule reports a
violation.

Default Severity Label

Warning
1951
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Rule Group

Non-fatal must rule

Reports and Related Files

No report or related file
1952
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_define_reset_order04
Reports a violation if an invalid reset is specified in the -to
argument of the define_reset_order constraint

When to Use

Use this rule to perform sanity checks on the define_reset_order constraint.

Prerequisites

Specify the following information before running this rule:
 Specify the define_reset_order constraint.

 Run the Ar_resetcross01 rulesto enable the
SGDC_define_reset_order04 rule because the define_reset_order
constraint is used by the Ar_resetcross01 rule.

Description

The SGDC_define_reset_order04 rule reports a violation if the reset
specified by the -to argument of the define_reset_order constraint is not
any of the following reset:
 A reset specified by the reset constraint

 An automatically inferred reset when the use_inferred_resets parameter is
set to yes.

Parameter(s)

 use_inferred_resets: Default value is no. Set this parameter to yes to use
auto-generated reset information.

Constraint(s)

 define_reset_order (Mandatory): Use this constraint to specify a reset
order, which determines the flow of data from one reset to another
reset.

 reset (Mandatory): Use this constraint to specify reset signals in a
design.

Messages and Suggested Fix

The following message appears if the reset specified by the -to argument
1953
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
of the define_reset_order constraint is not a user-specified reset or it is not
an automatically inferred reset:

[WARNING] Constraint 'define_reset_order': Reset name
'<reset-name>' specified in '-to' field is not a valid reset

Potential Issues
This violation appears if your design does not contain the reset specified by
the -to argument of the define_reset_order constraint.

Consequences of Not Fixing
If you do not fix this violation, the reported constraint is not considered
during SpyGlass analysis.

How to Debug and Fix

To fix this violation, specify any of the following reset in the -to argument
of the define_reset_order constraint:
 A reset specified by the reset constraint

 An automatically inferred reset when the use_inferred_resets parameter is
set to yes.

Example Code and/or Schematic

Consider that the rst1 reset is neither specified by the reset constraint nor
it is an automatically inferred reset.

Now consider that you specify the following constraint:

define_reset_order -from rst -to rst1

In the above case, the SGDC_define_reset_order04 rule reports a
violation.

Default Severity Label

Warning
1954
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Rule Group

Non-fatal must rule

Reports and Related Files

No report or related file
1955
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_define_reset_order05
Checks for bidirectional reset ordering specified by the
define_reset_order constraint

When to Use

Use this rule to perform sanity checks on the define_reset_order constraint.

Prerequisites

Specify the following information before running this rule:
 Specify the define_reset_order constraint.

 Run the Ar_resetcross01 rule to enable the
SGDC_define_reset_order05 rule because the define_reset_order
constraint is used by the Ar_resetcross01 rule.

Description

The SGDC_define_reset_order05 rule reports a violation if the reset
specified by the -to or -from argument of the define_reset_order constraint
matches with the reset specified by the -from or -to argument,
respectively, of another define_reset_order constraint.

Parameter(s)

 use_inferred_resets: Default value is no. Set this parameter to yes to use
auto-generated reset information.

Constraint(s)

 define_reset_order (Mandatory): Use this constraint to specify a reset
order, which determines the flow of data from one reset to another
reset.

 reset (Optional): Use this constraint to specify reset signals in a design.

Messages and Suggested Fix

The following message appears if bidirectional reset ordering is specified by
the define_reset_order constraint:

[INFO] Constraint 'define_reset_order': Bi-directional reset
ordering specified between '<reset-specification1>' to
1956
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
'<reset-specification2>'. Ignoring reset-crossings between them

Potential Issues

This violation appears if the reset specified in the -to or -from argument
of the define_reset_order constraint matches with the reset specified in the
-from or -to argument, respectively, of another define_reset_order
constraint.

Consequences of Not Fixing
If you do not fix this violation, the reported bidirectional reset ordering is
considered valid. As a result, reset crossings between such resets are
ignored from SpyGlass analysis.

How to Debug and Fix
To fix this violation, analyze the reported reset ordering.

If the ordering is intentional, ignore this violation. Else, specify a correct
set of resets in the -from and -to arguments of the define_reset_order
constraint specifications to allow the flow of data from one reset to another.

Example Code and/or Schematic

In this example, the SGDC_define_reset_order05 rule reports a violation
because the rst* expression specified by the -from argument of the first
specification matches with the rst1 value specified by the -to argument
of the second specification.

define_reset_order -from "rst*" -to reset
define_reset_order -from reset -to rst1

Default Severity Label

Info

Rule Group

Non-fatal must rule
1957
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Reports and Related Files

No report or related file
1958
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_deltacheck_ignore_instance01
Reports a violation if an invalid instance is specified in the -name
argument of the deltacheck_ignore_instance constraint

When to Use

Use this rule to perform sanity checks on the deltacheck_ignore_instance
constraint.

Prerequisites

Specify the deltacheck_ignore_instance constraint.

Description

The SGDC_deltacheck_ignore_instance01 rule reports a violation if the
instance specified by the -name argument of the deltacheck_ignore_instance
constraint does not exist in the current design.

Parameter(s)

None

Constraint(s)

deltacheck_ignore_instance (Mandatory): Use this constraint to specify
instances to be ignored for delta delay value checking.

Messages and Suggested Fix

The following message appears if the instance <instance> specified by
the -name argument of the deltacheck_ignore_instance constraint does not
exist in the design <top-module>:

[FATAL] '<instance-name>' [Instance] not found on/within module
'<top-module>'

Potential Issues
This violation appears if the current design does not contain the instance
specified by the -name argument of the deltacheck_ignore_instance
constraint.
1959
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix

To fix this violation, specify the name of an existing instance in the -name
argument of the deltacheck_ignore_instance constraint.

Example Code and/or Schematic

Consider the design top that does not contain the U_DF1 instance. Now
consider the following constraints specified in an SGDC file:

current_design top
deltacheck_ignore_instance -name U_DF1

In the above case, the SGDC_deltacheck_ignore_instance01 rule reports a
violation.

Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file
1960
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_deltacheck_ignore_module01
Reports a violation if an invalid module is specified in the -name
argument of the deltacheck_ignore_module constraint

When to Use

Use this rule to perform sanity checks on the deltacheck_ignore_module
constraint.

Prerequisites

Specify the deltacheck_ignore_module constraint.

Description

The SGDC_deltacheck_ignore_module01 rule reports a violation if the
module specified by the -name argument of the deltacheck_ignore_module
constraint does not exist in the current design.

Parameter(s)

None

Constraint(s)

deltacheck_ignore_module (Mandatory):

Messages and Suggested Fix

The following message appears if the module <module> specified by the -
name argument of the deltacheck_ignore_module constraint does not exist in
the design <top-module>:

[FATAL] '<module>' [SubModule] is never instantiated within
environment '<top-module>'

Potential Issues
This violation appears if the current design does not contain the module
specified by the -name argument of the deltacheck_ignore_module
constraint.
1961
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix

To fix this violation, specify the name of an existing module in the -name
argument of the deltacheck_ignore_module constraint.

Example Code and/or Schematic

Consider the design top that does not contain the mod1 module. Now
consider the following constraints specified in an SGDC file:

current_design top
deltacheck_ignore_module -name mod1

In the above case, the SGDC_deltacheck_ignore_module01 rule reports a
violation.

Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file
1962
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_deltacheck_start01
Reports a violation if an invalid object is specified in the -name
argument of the deltacheck_start constraint

When to Use

Use this rule to perform sanity checks on the deltacheck_start constraint.

Prerequisites

Specify the deltacheck_start constraint.

Description

The SGDC_deltacheck_start01 rule reports a violation if the object
specified by the -name argument of the deltacheck_start constraint does not
exist in the current design.

Parameter(s)

None

Constraint(s)

deltacheck_start (Mandatory): Use this constraint to specify start points,
such as clock ports, clock pins, or clock nets for DeltaDelay01 rule-checking.

Messages and Suggested Fix

The following message appears if an invalid object <object-name> is
specified in the -name argument of the deltacheck_start constraint:

[FATAL] <object-name> [TopPort + Net + HierTerminal] not found
on/within module 'TOP'

Potential Issues
This violation appears if the design does not contain the object specified by
the -name argument of the deltacheck_start constraint.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.
1963
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
How to Debug and Fix

To fix this violation, specify the name of an existing object in the -name
argument of the deltacheck_start constraint.

Example Code and/or Schematic

Consider that the design top does not contain the clock net top.clk1.
Now consider that you specify the following constraints in an SGDC file:

current_design top
deltacheck_start -name top.clk1

For the above example, the SGDC_deltacheck_start01 rule reports a
violation.

Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file
1964
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_deltacheck_start02
Reports a violation if a non-integer value is specified in the -value
argument of the deltacheck_start constraint

When to Use

Use this rule to perform sanity checks on the deltacheck_start constraint.

Prerequisites

Specify the deltacheck_start constraint.

Description

The SGDC_deltacheck_start02 rule reports a violation if a non-integer
value is specified in the -value argument of the deltacheck_start constraint.

The -value argument is an optional argument used for clock-pin
balancing.

Parameter(s)

None

Constraint(s)

deltacheck_start (Mandatory): Use this constraint to specify start points,
such as clock ports, clock pins, or clock nets for DeltaDelay01 rule-checking.

Messages and Suggested Fix

The following message appears if a non-integer value <value> is
specified in the -value argument of the deltacheck_start constraint:

[FATAL] Invalid [Pre-defined-range] specification '<value>' for
'-value' field of constraint 'deltacheck_start'

Potential Issues

This violation appears if a non-integer value is specified in the -value
argument of the deltacheck_start constraint.

Consequences of Not Fixing
1965
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix

To fix this violation, specify an integer value in the -value argument of the
deltacheck_start constraint.

Example Code and/or Schematic

Consider the following constraints:

current_design top
deltacheck_start -name top.clk1 -value "-4"

For the above example, the SGDC_deltacheck_start02 rule reports a
violation because the non-integer value "-4" is specified in the -value
argument of the deltacheck_start constraint.

Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file
1966
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_deltacheck_stop_instance01
Reports a violation if an invalid instance is specified in the -name
argument of the deltacheck_stop_instance constraint

When to Use

Use this rule to perform sanity checks on the deltacheck_stop_instance
constraint.

Prerequisites

Specify the deltacheck_stop_instance constraint.

Description

The SGDC_deltacheck_stop_instance01 rule reports a violation if the
instance specified by the -name argument of the deltacheck_stop_instance
constraint does not exist in the current design.

Parameter(s)

None

Constraint(s)

deltacheck_stop_instance (Mandatory): Use this constraint to specify
instances where the DeltaDelay01 rule should stop further traversal along
the clock tree.

Messages and Suggested Fix

The following message appears if an invalid instance is specified in the
-name argument of the deltacheck_stop_instance constraint:

[FATAL] '<inst-name>' [Instance] not found on/within module
'<top_module_name>'

Potential Issues
This violation appears if the design does not contain the instance specified
by the -name argument of the deltacheck_stop_instance constraint.

Consequences of Not Fixing
1967
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix

To fix this violation, specify the name of an existing instance in the -name
argument of the deltacheck_stop_instance constraint.

Example Code and/or Schematic

Consider that the design top does not contain any instance of the name
I21. Now consider that you specify the following constraints in an SGDC
file:

current_design top
deltacheck_stop_instance -name top.I21

For the above example, the SGDC_deltacheck_stop_instance01 rule
reports a violation.

Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file
1968
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_deltacheck_stop_module01
Reports a violation if an invalid module is specified in the -name
argument of the deltacheck_stop_module constraint

When to Use

Use this rule to perform sanity checks on the deltacheck_stop_module
constraint.

Prerequisites

Specify the deltacheck_stop_module constraint.

Description

The SGDC_deltacheck_stop_module01 rule reports a violation if the
module specified by the -name argument of the deltacheck_stop_module
constraint does not exist in the current design.

Parameter(s)

None

Constraint(s)

deltacheck_stop_module (Mandatory): Use this constraint to specify design
units where the DeltaDelay01 rule should stop further traversal along the
clock tree.

Messages and Suggested Fix

The following message appears if an invalid module is specified in the
-name argument of the deltacheck_stop_module constraint:

[FATAL] '<submod-name>' [SubModule] is never instantiated
within environment '<top-mod-name>'

Potential Issues
This violation appears if the design does not contain the module specified
by the -name argument of the deltacheck_stop_module constraint.

Consequences of Not Fixing
1969
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix

To fix this violation, specify the name of an existing module in the -name
argument of the deltacheck_stop_module constraint.

Example Code and/or Schematic

Consider that the design top does not contain any module of the name m1.
Now consider that you specify the following constraints in an SGDC file:

current_design top
deltacheck_stop_module -name m1

For the above example, the SGDC_deltacheck_stop_module01 rule reports
a violation.

Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file
1970
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_deltacheck_stop_signal01
Reports a violation if an invalid object is specified in the -name
argument of the deltacheck_stop_signal constraint

When to Use

Use this rule to perform sanity checks on the deltacheck_stop_signal
constraint.

Prerequisites

Specify the deltacheck_stop_signal constraint.

Description

The SGDC_deltacheck_stop_signal01 rule reports a violation if the object
specified by the -name argument of the deltacheck_stop_signal constraint
does not exist in the current design.

Parameter(s)

None

Constraint(s)

deltacheck_stop_signal (Mandatory): Use this constraint to specify design
points, such as ports, pins, or nets where the DeltaDelay01 rule should stop
further traversal.

Messages and Suggested Fix

The following message appears if an invalid object is specified in the -name
argument of the deltacheck_stop_signal constraint:

[FATAL] '<submod-name>' [SubModule] is never instantiated
within environment '<top-mod-name>'

Potential Issues
This violation appears if the design does not contain the object specified by
the -name argument of the deltacheck_stop_signal constraint.

Consequences of Not Fixing
1971
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix

To fix this violation, specify the name of an existing object in the -name
argument of the deltacheck_stop_signal constraint.

Example Code and/or Schematic

Consider that the design top does not contain the pin top.I31.d1. Now
consider that you specify the following constraints in an SGDC file:

current_design top
deltacheck_stop_signal -name top.I31.d1

For the above example, the SGDC_deltacheck_stop_signal01 rule reports a
violation.

Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file
1972
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_fifo01
Reports a violation if no argument is specified with the fifo
constraint

When to Use

Use this rule to perform sanity checks on the fifo constraint.

Prerequisites

Specify the fifo constraint.

Description

The SGDC_fifo01 rule reports a violation if you do not specify any
argument with the fifo constraint.

Parameter(s)

None

Constraint(s)

fifo (Mandatory): Use this constraint to specify FIFO information.

Messages and Suggested Fix

The following message appears if you do not specify any argument with the
fifo constraint:

[FATAL] It is Mandatory to Specify At Least One Value for
combination of fields '-rd_data -wr_data -rd_ptr -wr_ptr
-memory ' of constraint 'fifo'

Potential Issues
This violation appears if you do not specify any argument with the fifo
constraint.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.
1973
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
How to Debug and Fix
To fix this violation, specify at least one argument with the fifo constraint.

Example Code and/or Schematic

Not applicable

Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file
1974
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_fifo02
Reports if an incorrect object is specified in the -rd_data argument
of the fifo constraint

When to Use

Use this rule to perform sanity checks on the fifo constraint.

Prerequisites

Specify the fifo constraint.

Description

The SGDC_fifo02 rule reports a violation if the object specified by the
-rd_data argument of the fifo constraint does not exist as a net or a
hierarchical terminal in the current design.

Parameter(s)

None

Constraint(s)

fifo (Mandatory): Use this constraint to specify FIFO information.

Messages and Suggested Fix

The following message appears if an incorrect object <object-name> is
specified in the -rd_data argument of the fifo constraint:

[FATAL] '<object-name>' [Net + HierTerminal] not found on/
within module '<top-module>'

Potential Issues
This violation appears if the current design does not contain a net or a
hierarchical terminal specified by the -rd_data argument of the fifo
constraint.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.
1975
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
How to Debug and Fix
To fix this violation, specify the name of an existing net or a hierarchical
terminal in the -rd_data argument of the fifo constraint.

Example Code and/or Schematic

Consider that the current design top does not contain a net or a
hierarchical terminal of the name ram_req. In this case, the SGDC_fifo02
rule reports a violation if you specify the following constraints:

current_design top
-rd_data "ram_req" -wr_data "i_req"

Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file
1976
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_fifo03
Reports if an incorrect object is specified in the -wr_data argument
of the fifo constraint

When to Use

Use this rule to perform sanity checks on the fifo constraint.

Prerequisites

Specify the fifo constraint.

Description

The SGDC_fifo03 rule reports a violation if the object specified by the
-wr_data argument of the fifo constraint does not exist as a net or a
hierarchical terminal in the current design.

Parameter(s)

None

Constraint(s)

fifo (Mandatory): Use this constraint to specify FIFO information.

Messages and Suggested Fix

The following message appears if an incorrect object <object-name> is
specified in the -wr_data argument of the fifo constraint:

[FATAL] '<object-name>' [Net + HierTerminal] not found on/
within module '<top-module>'

Potential Issues
This violation appears if the current design does not contain a net or a
hierarchical terminal specified by the -wr_data argument of the fifo
constraint.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.
1977
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
How to Debug and Fix
To fix this violation, specify the name of an existing net or a hierarchical
terminal in the -wr_data argument of the fifo constraint.

Example Code and/or Schematic

Consider that the current design top does not contain a net or a
hierarchical terminal of the name i_req. In this case, the SGDC_fifo03
rule reports a violation if you specify the following constraints:

current_design top
-rd_data "ram_req" -wr_data "i_req"

Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file
1978
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_fifo04
Reports if an incorrect object is specified in the -rd_ptr argument
of the fifo constraint

When to Use

Use this rule to perform sanity checks on the fifo constraint.

Prerequisites

Specify the fifo constraint.

Description

The SGDC_fifo04 rule reports a violation if the object specified by the
-rd_ptr argument of the fifo constraint does not exist as a net or a
hierarchical terminal in the current design.

Parameter(s)

None

Constraint(s)

fifo (Mandatory): Use this constraint to specify FIFO information.

Messages and Suggested Fix

The following message appears if an incorrect object <object-name> is
specified in the -rd_ptr argument of the fifo constraint:

[FATAL] '<object-name>' [Net + HierTerminal] not found on/
within module '<top-module>'

Potential Issues
This violation appears if the current design does not contain a net or a
hierarchical terminal specified by the -rd_ptr argument of the fifo
constraint.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.
1979
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
How to Debug and Fix
To fix this violation, specify the name of an existing net or a hierarchical
terminal in the -rd_ptr argument of the fifo constraint.

Example Code and/or Schematic

Consider that the current design top does not contain a net or a
hierarchical terminal of the name adr. In this case, the SGDC_fifo04 rule
reports a violation if you specify the following constraints:

current_design top
fifo -rd_ptr "adr" -wr_ptr "q_wt_adr"

Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file
1980
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_fifo05
Reports if an incorrect object is specified in the -wr_ptr argument
of the fifo constraint

When to Use

Use this rule to perform sanity checks on the fifo constraint.

Prerequisites

Specify the fifo constraint.

Description

The SGDC_fifo05 rule reports a violation if the object specified by the
-wr_ptr argument of the fifo constraint does not exist as a net or a
hierarchical terminal in the current design.

Parameter(s)

None

Constraint(s)

fifo (Mandatory): Use this constraint to specify FIFO information.

Messages and Suggested Fix

The following message appears if an incorrect object <object-name> is
specified in the -wr_ptr argument of the fifo constraint:

[FATAL] '<object-name>' [Net + HierTerminal] not found on/
within module '<top-module>'

Potential Issues
This violation appears if the current design does not contain a net or a
hierarchical terminal specified by the -wr_ptr argument of the fifo
constraint.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.
1981
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
How to Debug and Fix
To fix this violation, specify the name of an existing net or a hierarchical
terminal in the -wr_ptr argument of the fifo constraint.

Example Code and/or Schematic

Consider that the current design top does not contain a net or a
hierarchical terminal of the name adr. In this case, the SGDC_fifo05 rule
reports a violation if you specify the following constraints:

current_design top
fifo -rd_ptr "q_rd_adr" -wr_ptr "adr"

Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file
1982
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_fifo06
Reports if an incorrect value is specified in the -memory argument
of the fifo constraint

When to Use

Use this rule to perform sanity checks on the fifo constraint.

Prerequisites

Specify the fifo constraint.

Description

The SGDC_fifo06 rule reports a violation if the value specified by the
-memory argument of the fifo constraint does not match with the name of
an existing net, hierarchical terminal, or module in the current design.

Parameter(s)

None

Constraint(s)

fifo (Mandatory): Use this constraint to specify FIFO information.

Messages and Suggested Fix

The following message appears if an incorrect value <value> is specified
in the -memory argument of the fifo constraint:

[FATAL] '<value>' [Net + Instance + HierTerminal + SubModule]
not found on/within module '<top-module>'

Potential Issues
This violation appears if the current design does not contain a net,
hierarchical terminal, or module specified by the -memory argument of the
fifo constraint.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.
1983
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
How to Debug and Fix
To fix this violation, specify the name of an existing net, hierarchical
terminal, or module in the -memory argument of the fifo constraint.

Example Code and/or Schematic

Consider that the current design top does not contain a net, hierarchical
terminal, or module of the name ram_r. In this case, the SGDC_fifo06 rule
reports a violation if you specify the following constraints:

current_design top
fifo -memory ram_r

Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file
1984
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_fifo07
Reports if the -wr_data argument is not specified with the -rd_data
argument of the fifo constraint

When to Use

Use this rule to perform sanity checks on the fifo constraint.

Prerequisites

Specify the fifo constraint.

Description

The SGDC_fifo07 rule reports a violation if the -rd_data argument of the
fifo constraint is specified without its corresponding -wr_data argument.

Parameter(s)

None

Constraint(s)

fifo (Mandatory): Use this constraint to specify FIFO information.

Messages and Suggested Fix

The following message appears if the -rd_data argument of the fifo
constraint is specified without its corresponding -wr_data argument:

[FATAL] Constraint 'fifo': Field '-rd_data' can/should be
specified with field(s) '-wr_data' only

Potential Issues

This violation appears if the -rd_data argument of the fifo constraint is
specified without its corresponding -wr_data argument.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.
1985
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
How to Debug and Fix

To fix this violation, specify the -wr_data argument along with the
-rd_data argument of the fifo constraint.

Example Code and/or Schematic

Consider the following constraint:

fifo -rd_data "ram_req"

For the above constraint, the SGDC_fifo07 rule reports a violation because
the -wr_data argument is not specified with the -rd_data argument.

Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file
1986
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_fifo08
Reports if the -rd_data argument is not specified with the -wr_data
argument of the fifo constraint

When to Use

Use this rule to perform sanity checks on the fifo constraint.

Prerequisites

Specify the fifo constraint.

Description

The SGDC_fifo08 rule reports a violation if the -wr_data argument of the
fifo constraint is specified without its corresponding -rd_data argument.

Parameter(s)

None

Constraint(s)

fifo (Mandatory): Use this constraint to specify FIFO information.

Messages and Suggested Fix

The following message appears if the -wr_data argument of the fifo
constraint is specified without its corresponding -rd_data argument:

[FATAL] Constraint 'fifo': Field '-wr_data' can/should be
specified with field(s) '-rd_data' only

Potential Issues

This violation appears if the -wr_data argument of the fifo constraint is
specified without its corresponding -rd_data argument.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.
1987
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
How to Debug and Fix

To fix this violation, specify the -rd_data argument along with the
-wr_data argument of the fifo constraint.

Example Code and/or Schematic

Consider the following constraint:

fifo -wr_data "ram_req"

For the above constraint, the SGDC_fifo08 rule reports a violation because
the -rd_data argument is not specified with the -wr_data argument.

Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file
1988
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_fifo09
Reports if the -rd_ptr argument is not specified with the -wr_ptr
argument of the fifo constraint

When to Use

Use this rule to perform sanity checks on the fifo constraint.

Prerequisites

Specify the fifo constraint.

Description

The SGDC_fifo09 rule reports a violation if the -wr_ptr argument of the
fifo constraint is specified without its corresponding -rd_ptr argument.

Parameter(s)

None

Constraint(s)

fifo (Mandatory): Use this constraint to specify FIFO information.

Messages and Suggested Fix

The following message appears if the -wr_ptr argument of the fifo
constraint is specified without its corresponding -rd_ptr argument:

[FATAL] Constraint 'fifo': Field '-rd_ptr' can/should be
specified with field(s) '-wr_ptr' only

Potential Issues

This violation appears if the -wr_ptr argument of the fifo constraint is
specified without its corresponding -rd_ptr argument.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.
1989
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
How to Debug and Fix

To fix this violation, specify the -rd_ptr argument along with the
-wr_ptr argument of the fifo constraint.

Example Code and/or Schematic

Consider the following constraint:

fifo -wr_ptr "wr_adr"

For the above constraint, the SGDC_fifo09 rule reports a violation because
the -rd_ptr argument is not specified with the -wr_ptr argument.

Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file
1990
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_fifo10
Reports if the -wr_ptr argument is not specified with the -rd_ptr
argument of the fifo constraint

When to Use

Use this rule to perform sanity checks on the fifo constraint.

Prerequisites

Specify the fifo constraint.

Description

The SGDC_fifo10 rule reports a violation if the -rd_ptr argument of the
fifo constraint is specified without its corresponding -wr_ptr argument.

Parameter(s)

None

Constraint(s)

fifo (Mandatory): Use this constraint to specify FIFO information.

Messages and Suggested Fix

The following message appears if the -rd_ptr argument of the fifo
constraint is specified without its corresponding -wr_ptr argument:

[FATAL] Constraint 'fifo': Field '-wr_ptr' can/should be
specified with field(s) '-rd_ptr' only

Potential Issues

This violation appears if the -rd_ptr argument of the fifo constraint is
specified without its corresponding -wr_ptr argument.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.
1991
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
How to Debug and Fix

To fix this violation, specify the -wr_ptr argument along with the
-rd_ptr argument of the fifo constraint.

Example Code and/or Schematic

Consider the following constraint:

fifo -rd_ptr "rd_adr"

For the above constraint, the SGDC_fifo10 rule reports a violation because
the -wr_ptr argument is not specified with the -rd_ptr argument.

Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file
1992
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_fifo11
Reports a violation if the wildcard name specified by an argument
of the fifo constraint does not match with any object in the design

When to Use

Use this rule to perform sanity checks on the fifo constraint.

Prerequisites

Specify the fifo constraint.

Description

The SGDC_fifo11 rule reports a violation if the wildcard expression
specified by any of the following arguments of the fifo constraint does not
match with the name of any object in the design:

Parameter(s)

None

Constraint(s)

fifo (Mandatory): Use this constraint to specify FIFO information.

Messages and Suggested Fix

The following message appears if the object <object-name> specified
by the argument <argument-name> of the fifo constraint does not exist
in the design:

[ERROR] "<object-name>" specified in the "<argument-name>"
field of fifo constraint could not be found in the design

Potential Issues
This violation appears if the design does not contain the object specified by
the wildcard expressions of any of the following arguments of the fifo
constraint:

-rd_data -wr_data -rd_ptr -wr_ptr -memory
1993
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Consequences of Not Fixing
If you do not fix this violation, FIFO specified by the reported fifo constraint
will remain undetected. As a result, such FIFOs will not be analyzed.

How to Debug and Fix
To fix this violation, specify the name of existing objects in the arguments
of the fifo constraint.

Example Code and/or Schematic

Consider that a design does not contain the net whose name is prefixed
with raddr1. Now consider that you specify the following constraint in an
SGDC file:

fifo -rd_ptr "raddr1*" -wr_ptr wptr1

For the above example, the SGDC_fifo11 rule reports a violation.

Default Severity Label

Error

Rule Group

Non-fatal must rule

Reports and Related Files

No report or related file

-rd_data -wr_data -rd_ptr -wr_ptr -memory
1994
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_fifo12
Reports a violation if no FIFO memory could be inferred from the
object specified by an argument of the fifo constraint

When to Use

Use this rule to perform sanity checks on the fifo constraint.

Prerequisites

Specify the fifo constraint.

Description

The SGDC_fifo12 rule reports a violation if no memory instance could be
inferred from the object specified by any of the following arguments of the
fifo constraint:

Parameter(s)

None

Constraint(s)

fifo (Mandatory): Use this constraint to specify FIFO information.

Messages and Suggested Fix

The following message appears if no memory instance could be inferred
from the object <object-name> specified by the argument
<argument-name> of the fifo constraint:

[ERROR] No memory could be inferred from "<object-name>"
specified in the "<argument-name>" field of fifo constraint

Potential Issues
This violation appears if the design does not contain the FIFO memory
corresponding to the fifo constraint.

-rd_data -wr_data -rd_ptr -wr_ptr
1995
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Consequences of Not Fixing
If you do not fix this violation, FIFO specified by the reported fifo constraint
will remain undetected. As a result, such FIFOs will not be analyzed.

How to Debug and Fix
To fix this violation, perform the following actions:
 Check the arguments of the fifo constraint.

If any of the -rd_data, -wr_data, -rd_ptr, and -wr_ptr arguments
is assigned an incorrect value for RTL nets, specify a correct value.

 If all the bits of read/write pointers are not used in fifo, specify a correct
index.

Example Code and/or Schematic

Consider a scenario in which a design contains a FIFO with the rptr and
wptr pointers. However, the user specifies the following constraint in an
SGDC file:

fifo -rd_ptr raddr -wr_ptr wptr

In this case, the SGDC_fifo12 rule reports a violation for the incorrect read
pointer specified by the -rd_ptr argument of the above fifo constraint.

Default Severity Label

Error

Rule Group

Non-fatal must rule

Reports and Related Files

No report or related file
1996
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_fifo13
Reports a violation in case of a width mismatch of read and write
pointers of a user-defined FIFO

When to Use

Use this rule to perform sanity checks on the fifo constraint.

Prerequisites

Specify the fifo constraint.

Description

The SGDC_fifo13 rule reports a violation if the width of read and write
pointers present in a design does not match, and these pointers are
specified by the fifo constraint.

Parameter(s)

None

Constraint(s)

fifo (Mandatory): Use this constraint to specify FIFO information.

Messages and Suggested Fix

The following message appears if there is a width mismatch of read and
write pointers of a user-defined FIFO:

[ERROR] Read pointer '<read-ptr>' width (<read-ptr-width>) does
not match write pointer '<write-ptr>' width (<write-ptr-width>)

Potential Issues
This violation appears if your design contains read and write pointers of
different widths, and such pointers are specified by the fifo constraint.

Consequences of Not Fixing
If you do not fix this violation, the reported fifo constraint is ignored during
SpyGlass analysis. As a result, such FIFOs remain undetected, and
1997
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
therefore, are not analyzed.

How to Debug and Fix
To debug and fix this violation, perform the following actions:
 Check the arguments specified by the fifo constraint.

 Ensure that both the read and write pointers of this constraint follow the
same coding format, such as one-hot coding or gray-coding as that of
the corresponding pointers in the design.

Example Code and/or Schematic

Consider a scenario in which the design contains a FIFO with the following
pointers:
 The rptr[0:3] read pointer that is used in the decoded format

 The wptr[0:15] write pointer that is used in the one-hot format

Now consider that you specify the following fifo constraint:

fifo -rd_ptr rptr -wr_ptr wptr

In this case, the SGDC_fifo13 rule reports a violation because the width of
the read and write pointers specified by the fifo constraint does not match.

Default Severity Label

Error

Rule Group

Non-fatal must rule

Reports and Related Files

No report or related file
1998
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_fifo14
Reports invalid user-defined FIFOs

When to Use

Use this rule to perform sanity checks on the fifo constraint.

Prerequisites

Specify the fifo constraint.

Description

The SGDC_fifo14 rule reports a violation if no FIFO could be inferred from
the fifo constraint.

Parameter(s)

None

Constraint(s)

fifo (Mandatory): Use this constraint to specify FIFO information.

Messages and Suggested Fix

The following message appears if no FIFO could be inferred from the fifo
constraint:

[ERROR] Invalid user defined FIFO

Potential Issues
This violation appears if SpyGlass cannot not infer any FIFO from the fifo
constraint.

This occurs when data, pointers, and memory specified by the fifo
constraint does not belong to the same FIFO.

Consequences of Not Fixing
If you do not fix this violation, the reported fifo constraint is ignored during
SpyGlass analysis.
1999
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
How to Debug and Fix
To debug and fix this violation, perform the following actions:
 Check the arguments specified by the fifo constraint.

 If any of the -rd_ptr/-wr_ptr or -rd_data/-wr_data arguments is
assigned an incorrect value for RTL nets, specify a correct value.

Example Code and/or Schematic

Consider a scenario in which raddr/waddr and rptr/wptr are pointers
for two different FIFOs in a design. However, the user has specified the
following constraint in an SGDC file:

fifo -rd_ptr raddr -wr_ptr wptr

In this case, the SGDC_fifo14 rule reports a violation because raddr and
wptr are not the read/write pointers of the same fifo memory.

Default Severity Label

Error

Rule Group

Non-fatal must rule

Reports and Related Files

No report or related file
2000
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_generated_clock03
Either of the -divide_by or -multiply_by argument of
generated_clock should be specified

When to Use

Use this rule to ensure that either of the -divide_by or -multiply_by
argument is specified for the generated_clock constraint.

Prerequisites

Use the generated_clock constraint to specify generated clocks.

Description

The SGDC_generated_clock03 rule reports a violation if none of the
-divide_by or -multiply_by argument is specified to the
generated_clock constraint.

Parameter(s)

None

Constraint(s)

generated_clock (Mandatory): Use this constraint to specify derived clocks.

Messages and Suggested Fix

The following message appears if none of the -divide_by or
-multiply_by argument is specified to the generated_clock constraint:

[FATAL] It is Mandatory to Specify At Least One Value for
combination of fields '-multiply_by -divide_by ' of constraint
'generated_clock'

Potential Issues

This violation appears if you do not specify one of the -divide_by or
-multiply_by argument of the generated_clock constraint.
2001
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix

To fix this violation, specify either of the -divide_by or -multiply_by
argument of the generated_clock constraint.

Example Code and/or Schematic

The SGDC_generated_clock03 rule reports a violation in the following case
because none of the -divide_by or -multiply_by argument is specified
for the generated_clock constraint:

current_design test
clock -name clk1 -domain d1 -tag t1 -add

generated_clock -name gen_clk -source test.gen_clk_reg.CP
-master_clock t1 -tag g1

Rule Group

Fatal must rule

Default Severity Label

Fatal

Reports and Related Files

No report or related file
2002
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_generated_clock04
Incorrect value for the -multiply_by argument of the
generated_clock constraint

When to Use

Use this rule to check for the correctness of the value specified to the
-multiply_by argument of the generated_clock constraint.

Prerequisites

Use the generated_clock constraint to specify generated clocks.

Description

The SGDC_generated_clock04 rule reports a violation if the value specified
to the -multiply_by argument of the generated_clock constraint is not a
float value or a negative float value.

Parameter(s)

None

Constraint(s)

generated_clock (Mandatory): Use this constraint to specify derived clocks.

Messages and Suggested Fix

The following message appears if the value <value> specified to the
-multiply_by argument of the generated_clock constraint is not a float
value or a negative float value:

[FATAL] Invalid [Pre-defined-range] specification '<value>' for
'-multiply_by' field of constraint 'generated_clock'

Potential Issues

This violation appears if the value specified to the -multiply_by
argument of the generated_clock constraint is not a float value or a negative
float value.
2003
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix

To fix this violation, specify a float value to the -multiply_by argument
of the generated_clock constraint.

Example Code and/or Schematic

The SGDC_generated_clock04 rule reports a violation in the following case
because a non float value is specified to the -multiply_by argument of
the generated_clock constraint:

generated_clock -name gen_clk -source test.gen_clk_reg.CP
-multiply_by "-1" -master_clock t1 -add -tag g1

Rule Group

Fatal must rule

Default Severity Label

Fatal

Reports and Related Files

No report or related file
2004
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_generated_clock05
Incorrect value for the -divide_by argument of the
generated_clock constraint

When to Use

Use this rule to check for the correctness of the value specified to the
-divide_by argument of the generated_clock constraint.

Prerequisites

Use the generated_clock constraint to specify generated clocks.

Description

The SGDC_generated_clock05 rule reports a violation if the value specified
to the -divide_by argument of the generated_clock constraint is not a float
value or a negative float value.

Parameter(s)

None

Constraint(s)

generated_clock (Mandatory): Use this constraint to specify derived clocks.

Messages and Suggested Fix

The following message appears if the value <value> specified to the
-divide_by argument of the generated_clock constraint is not a float value
or a negative float value:

[FATAL] Invalid [Pre-defined-range] specification '<value>' for
'-divide_by' field of constraint 'generated_clock'

Potential Issues

This violation appears if the value specified to the -divide_by argument
of the generated_clock constraint is not a float value or a negative float
value.
2005
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix

To fix this violation, specify a float value to the -divide_by argument of
the generated_clock constraint.

Example Code and/or Schematic

The SGDC_generated_clock05 rule reports a violation in the following case
because a non float value is specified to the -divide_by argument of the
generated_clock constraint:

generated_clock -name gen_clk -source test.gen_clk_reg.CP
-divide_by "-1" -master_clock t1 -add -tag g1

Rule Group

Fatal must rule

Default Severity Label

Fatal

Reports and Related Files

No report or related file
2006
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_generated_clock06
Sanity checks for the generated_clock constraint

When to Use

Use this rule to perform sanity checks on the generated_clock constraint.

Prerequisites

Use the generated_clock constraint to specify derived clocks.

Description

The SGDC_generated_clock06 rule reports a violation in any of the
following cases:
 The clock constraint is specified on a generated clock specified by the

generated_clock constraint. See Message 1.
 Same tag names are assigned to different generated clocks specified by

the generated_clock constraints. See Message 2.
 The source object specified in the generated_clock constraint is not in the

fan-in of the generated clock. See Message 3.
 No clock is reaching to the source of the generated clock specified by

the generated_clock constraint. See Message 4.
 The master clock specified by the generated_clock constraint is not

reaching the source of the generated clock. See Message 5.
 The enable_generated_clocks parameter is not set to yes when the

generated_clock constraint is specified. See Message 6.

Parameter(s)

None

Constraint(s)

generated_clock (Mandatory): Use this constraint to specify derived clocks.
2007
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Messages and Suggested Fix

Message 1

The following message appears if you specify the clock constraint on a
generated clock:

[ERROR] 'clock' constraint specified on '<generated-clock>'.
Ignoring the constraint

Potential Issues
This violation appears if you specify the clock constraint on a generated
clock specified by the generated_clock constraint.

Consequences of Not Fixing
If you do not fix this violation, the specified generated_clock constraint is
ignored from SpyGlass analysis.

How to Debug and Fix
To fix this violation, remove the clock constraint for the reported generated
clock.

Message 2

The following message appears if you specify the same tag for multiple
generated clocks:

[ERROR] Tag '<tag-name>' specified already on clock
'<generated-clock>'. Ignoring the constraint

Potential Issues
This violation appears if you specify a duplicate tag on the same generated
clock specified by the generated_clock constraints.

Consequences of Not Fixing
If you do not fix this violation, the generated_clock constraint having the
2008
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
same tag as the previous generated_clock constraint is ignored from
SpyGlass analysis.

How to Debug and Fix
To fix this violation, specify unique tag names to the generated clocks
specified by the generated_clock constraints.

Message 3

The following message appears if the source clock specified for a generated
clock in the generated_clock constraint is not in the fan-in of the generated
clock:

[ERROR] Source object '<source-object>' specified is not in
fanin of generated clock '<generated-clock>'. Ignoring the
constraint

Potential Issues
This violation appears if the source clock specified for the generated clock
in the generated_clock constraint is not in the fan-in of the generated clock.

Consequences of Not Fixing
If you do not fix this violation, the generated_clock constraint containing the
reported clock is ignored from SpyGlass analysis.

How to Debug and Fix
To fix this violation, modify the generated_clock constraint to specify a
source clock that exists in the fan-in of the generated clock.

Message 4

The following message appears if there is no master clock for the source
clock specified in the generated_clock constraint:

[ERROR] No clock is reaching on the source '<source-clock>' of
generated clock. Ignoring the constraint
2009
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Potential Issues
This violation appears if the source clock specified in the generated_clock
constraint does not have a master clock.

Consequences of Not Fixing
If you do not fix this violation, the generated_clock constraint containing the
reported source clock is ignored from SpyGlass analysis.

How to Debug and Fix
To fix this violation, modify the design by connecting a master clock to the
source clock specified in the generated_clock constraint.

Message 5

The following message appears if there is the master clock specified in the
generated_clock constraint does not reach the source clock specified in this
constraint:

[ERROR] Master clock '<master-clock>' is not reaching on the
source '<source-clock>' of generated clock. Ignoring the
constraint

Potential Issues
This violation appears if the master clock specified in the generated_clock
constraint does not reach the source clock specified in this constraint.

Consequences of Not Fixing
If you do not fix this violation, the generated_clock constraint containing the
reported master clock is ignored from SpyGlass analysis.

How to Debug and Fix
To fix this violation, modify the generated_clock constraint to specify a
master clock that reaches the specified source clock.
2010
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Message 6

The following message appears if the generated_clock constraint is specified
but the enable_generated_clocks parameter is not set to yes:

[ERROR] Parameter 'enable_generated_clocks' not set to yes.
Ignoring 'generated_clock' constraints

Potential Issues
This violation appears if the generated_clock constraint is specified but the
enable_generated_clocks parameter is not set to yes.

Consequences of Not Fixing
If you do not fix this violation, the generated_clock constraints are ignored
from SpyGlass analysis.

How to Debug and Fix
To fix this violation, set the enable_generated_clocks parameter to yes while
specifying the generated_clock constraint.

Example Code and/or Schematic

Consider the following constraints:

clock -name gen_clk -domain d3

generated_clock -name gen_clk -source test.gen_clk_reg.CP
-divide_by 2 -master_clock t1 -add -tag g1

generated_clock -name gen_clk -source
test.gen_clk_new_reg.CP -divide_by 2 -master_clock t2 -add
-tag g2

For the above example, the SGDC_generated_clock06 rule reports a
violation (Message 1) because the clock constraint is specified for the
generated clock gen_clk.
2011
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Rule Group

Non Fatal must rule

Default Severity Label

Error

Reports and Related Files

No report or related file
2012
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_gray_signals01
Checks presence of multiple scalar signals in gray_signals
constraint

When to Use

Use this rule to check the signals specified to the gray_signals constraint.

Prerequisites

Use the gray_signals constraint to specify the signals that should be gray
encoded.

Description

The SGDC_gray_signals01 rule reports a violation if you specify only one
scalar signal to the gray_signals constraint.

Parameter(s)

None

Constraint(s)

gray_signals (Mandatory): Use this constraint to specify signals that should
be gray encoded.

Messages and Suggested Fix

The following message appears if you specify only one scalar signal to the
gray_signals constraint:

[ERROR] Constraint 'gray_signals': Only one scalar signal
'<signal-name>' specified. Multiple scalar signals or a bus
should be specified

Potential Issues
This violation appears if you specify only one scalar signal to the
gray_signals constraint.

Consequences of Not Fixing
2013
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
If you do not fix this violation, no gray encoding is performed on the
reported signal.

How to Debug and Fix
To fix this violation, modify the gray_signals constraint to specify any of the
following:
 More than one scalar signal

 A bus

Example Code and/or Schematic

Consider the following constraint:

gray_signals -name src2

In the above case, the SGDC_gray_signals01 rule reports a violation
because only one scalar signal src2 is specified in this constraint.

Rule Group

Non fatal must rule

Default Severity Label

Error

Reports and Related Files

No report or related file
2014
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_gray_signals02
Checks whether the signals specified by the gray_signals
constraint are driven by a clock

When to Use

Use this rule to check the signals specified to the gray_signals constraint.

Prerequisites

Use the gray_signals constraint to specify the signals that should be gray
encoded.

Description

The SGDC_gray_signals02 rule reports a violation if any signal specified by
the gray_signals constraint is not driven by a clock.

Parameter(s)

None

Constraint(s)

gray_signals (Mandatory): Use this constraint to specify signals that should
be gray encoded.

Messages and Suggested Fix

The following message appears if the signals <signal-names> specified by
the gray_signals constraint are not driven by a clock:

[ERROR] Constraint 'gray_signals': No clock domain detected for
signals '<signal-names>'

Potential Issues

This violation appears if the signals specified by the gray_signals
constraint are not driven by a clock.

Consequences of Not Fixing
If you do not fix this violation, no gray encoding check is performed on the
2015
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
reported signals.

How to Debug and Fix
To fix this violation, correct the clock definition in the design so that the
reported signals receive a clock.

Example Code and/or Schematic

Consider the following schematic of a design and the SGDC file specified for
that design:

FIGURE 427. Schematic of the SGDC_gray_signals02 Rule Violation

In the above example, the in1 and in2 signals are not driven by any
clock. Therefore, the SGDC_gray_signals02 rule reports a violation for
these signals.

NOTE: The SGDC_gray_signals02 rule checks the fan-in cone of each signal. If any

current_design top
clock -name clk1
clock -name clk2
clock -name clk3
gray_signals -name in1 in2

// constr.sgdc
2016
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
sequential cell is found in the fan-in cone, this rule checks if any clock signal drives
that sequential cell. If no such sequential is found, this rule reports a violation.

Rule Group

Non fatal must rule

Default Severity Label

Error

Reports and Related Files

No report or related file
2017
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_gray_signals03
Checks if the signals specified by the gray_signals constraint are in
the same clock domain

When to Use

Use this rule to check the signals specified to the gray_signals constraint.

Prerequisites

Use the gray_signals constraint to specify the signals that should be
gray encoded.

Description

The SGDC_gray_signals03 rule reports a violation in the following cases:
 If the signals specified by the gray_signals constraint are not in the same

clock domain.
 If a signal specified by the gray_signals constraint is a part of multiple

clock domains.

Parameter(s)

None

Constraint(s)

gray_signals (Mandatory): Use this constraint to specify signals that should
be gray encoded.

Messages and Suggested Fix

Message 1

The following message appears if the signal <signal-name> is a part of
multiple clock domains:

[SGs1_1] [ERROR] Constraint 'gray_signals': signal '<signal-
name>' is sampled by multiple clocks '<clock1>' and '<clock2>'

Potential Issues
This violation appears if the signal specified by the gray_signals constraint is
2018
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
a part of multiple clock domains.

Consequences of Not Fixing
If you do not fix this violation, the reported signal is not checked for gray
encoding.

How to Debug and Fix
To fix this violation, modify the design so that the reported signal is a part
of a single clock domain.

Message 2

The following message appears if the signals specified by the gray_signals
constraint are not in the same clock domain:

[SGs1_2] [ERROR] Constraint 'gray_signals': Multiple clock
domains found: signal '<signal-name1>' clocked by '<clock1>'
and signal '<signal-name2>' clocked by '<clock2>'

Potential Issues
This violation appears if the signals specified by the gray_signals constraint
are not in the same clock domain

Consequences of Not Fixing
If you do not fix this violation, the reported signals are not checked for
gray encoding.

How to Debug and Fix
To fix this violation, modify the design so that the reported signals are in
the same clock domain.

Example Code and/or Schematic

Consider the following schematic of a design and the SGDC file specified for
that design:
2019
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
FIGURE 428. Schematic of the SGDC_gray_signals03 Rule Violation

In the above example, the src3 signal is driven by the clk1 clock and the
sync2 signal is driven by the clk2 clock. Therefore, the
SGDC_gray_signals03 rule reports a violation for these signals.

Rule Group

Non fatal must rule

Default Severity Label

Error

Reports and Related Files

No report or related file

// constr.sgdc

current_design top
clock -name clk1
clock -name clk2
clock -name clk3
gray_signals -name src2 sync2 src3
2020
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_input01
Reports a violation if a non-existing object is specified in the -name
argument of the input constraint

When to Use

Use this rule to perform sanity checks on the input constraint.

Prerequisites

Specify the input constraint.

Description

The SGDC_input01 rule reports a violation if the object specified in the
-name argument of the input constraint does not exist as a port, net, or
hierarchical pin in the current design.

Parameter(s)

None

Constraint(s)

input (Mandatory): Use this constraint to specify clock domain at input
ports.

Messages and Suggested Fix

The following message appears if the object <signal-name> specified in
the -name argument of the input constraint does not exist as a port, net, or
hierarchical pin in the current design <design-name>:

[FATAL] '<signal-name>'[TopPort + Net + HierTerminal] not found
on/within module '<design-name>'

Potential Issues
This violation appears if the current design does not contain the object
specified by the -name argument of the input constraint.

Consequences of Not Fixing
2021
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix

To fix this violation, update the value of the -name argument of the input
constraint to specify a name that exists as a port, net, or hierarchical pin in
the design.

Example Code and/or Schematic

Consider an example in which the design top does not contain any port,
net, or hierarchical pin by the name in3.

Now consider that you specify the following constraints in an SGDC file:

current_design top

clock -name clk1
input -name in3 -clock clk1

In this case, the SGDC_input01 rule reports a violation because the
nonexistent object in3 is specified in the -name argument of the input
constraint.

Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file
2022
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_input02
Reports a violation if a non-existent port or net is specified in the
-clock argument of the input constraint

When to Use

Use this rule to perform sanity checks on the input constraint.

Prerequisites

Specify the input constraint.

Description

The SGDC_input02 rule reports a violation if the clock name specified in
the -clock argument of the input constraint is a non-hierarchical name,
and it does not exist as a port or a net in the current design.

Parameter(s)

None

Constraint(s)

input (Mandatory): Use this constraint to specify a clock domain at input
ports.

Messages and Suggested Fix

The following message appears if the object <clock-name> specified by
the -clock argument of the input constraint does not exist in the design
<design-name>:

[INFO] '<clock-name>' not found on/within module
'<design-name>'. Considering it as virtual clock

Potential Issues
This violation appears if the design does not contain a port or net specified
by the -clock argument of the input constraint.

Consequences of Not Fixing
2023
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
If you do not fix this violation, the reported clock is considered as a virtual
clock, and cross-domain crossing checks are done with the same
assumption. This may not be as per your expectations.

How to Debug and Fix
To debug and fix this violation, analyze the input constraint specification for
ports driven from virtual clocks. If required, update the -clock argument
of the input constraint to specify an existing clock.

Example Code and/or Schematic

Consider the following constraints specified in an SGDC file:

clock -tag clk3
input -name in1 -clock clk3

In the above example, clk3 is a virtual clock. In this case, synchronization
checks are performed for the in1 port with respect to clk3 domain.

Default Severity Label

Info

Rule Group

Non-fatal must rule

Reports and Related Files

No report or related file
2024
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_input03
Reports if an invalid port or net is specified in the -clock argument
of the input constraint

When to Use

Use this rule to perform sanity checks on the input constraint.

Prerequisites

Specify the input constraint.

Description

The SGDC_input03 rule reports a violation if the clock name specified by
the -clock argument of the input constraint is a hierarchical name that
does not exist as a port or a net in the current design.

Parameter(s)

None

Constraint(s)

input (Mandatory): Use this constraint to specify a clock domain at input
ports.

Messages and Suggested Fix

The following message appears if the signal <signal-name> specified by
the -clock argument of the input constraint is a hierarchical name that
does not exist in the module <module-name>:

[FATAL] '<signal-name>' not found on/within module
'<module-name>'

Potential Issues
This violation appears if your design does not contain a port or net
specified by the -clock argument of the input constraint.

Consequences of Not Fixing
2025
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix

To fix this violation, specify an existing port or net in the -clock argument
of the input constraint.

Example Code and/or Schematic

Consider the design top that does not contain the top1.clk2 port/net.
Now consider that you specify the following constraints in an SGDC file:

current_design top
input -name "in[1]" -clock "top1.clk2"

In the above case, the SGDC_input03 rule reports a violation.

Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file
2026
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_input05
Conflicting input constraints specified for a path

When to Use

Use this rule to detect cases in which an input constraint overrides the
domain of a net.

Prerequisites

Specify the input constraint.

Description

The SGDC_input05 rule reports a violation if multiple input constraints of
different clock domains are specified on internal nets present on the same
path.

Parameter(s)

None

Constraint(s)

input (Mandatory): Use this constraint to specify a clock domain at input
ports.

Messages and Suggested Fix

The following message appears if

[WARNING] Constraint 'input': Conflicting specifications
between '<net1>' (Clock: '<clock1>') and '<net2>' ('<clock2>')
present in the same path

The arguments of the above message are explained below:

Argument Description
<net1> Refers to the name of the intermediate net for which the input

constraints are applied.
<clock1> Refers to the name of the clock with which <net1> is constrained.
2027
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Potential Issues
This violation appears if your design contains nets (on the same path) for
which input constraints of different clock domains are specified.

Consequences of Not Fixing
If you do not fix this violation, the clock domain crossings reported by The
Ac_sync_group Rules contains incorrect clock names.

How to Debug and Fix
To fix this violation, remove the conflicting constraint specifications from
the SGDC file.

Example Code and/or Schematic

Consider the following constraints specified in an SGDC file:

current_design "test"
clock -name clk1 -tag C1 -domain d1
clock -name clk2 -tag C2 -domain d2
input -name "test.q2_tmp" -clock "clk2"
input -name "test.q3_tmp" -clock "clk1"

For the above example, the SGDC_input05 rule reports a violation when
test.q2_tmp is in the fan-out cone of test.q3_tmp (or vice-versa), as
shown in the following schematic:

<net2> Refers to the name of the stop point for which all the following
conditions are true:
• It is a terminal of a sequential element, black box, library cell,

port, abstract port, or any other net where a different clock
domain is found.

• It is present in the fan-in of <net1>.
<clock2> Refers to the name of the clock reaching <net2> when the domain

of this clock is different from that of <clock1>

Argument Description
2028
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
FIGURE 429. SGDC_input05 - Example

Default Severity Label

Warning

Rule Group

Non fatal must rule

Reports and Related Files

No report or related file
2029
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_inputoutput01
The input / output constraint is defined on internal nets

When to Use

Use this rule to check invalid specification of input or output constraint.

Description

The SGDC_inputoutput01 rule reports a violation if:
 The input constraint is defined on an internal net or an output port.

 The output constraint is defined on an internal net or an input port.

Parameter(s)

None

Constraint(s)

 input (Optional): Use this constraint to specify clock domain at input
ports.

 output (Optional): Use this constraint to specify a clock domain at output
ports.

Messages and Suggested Fix

This rule reports the following message:

[WARNING] '<input | output>' constraint not specified on <input
| output> or inout ports. Ignoring the constraint

Potential Issues
This violation appears if:
 The input constraint is defined on an internal net or an output port.

 The output constraint is defined on an internal net or an input port.

Consequences of Not Fixing
If you do not fix this violation, the reported constraint is ignored from
2030
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SpyGlass analysis.

How to Debug and Fix
To fix this violation:
 Specify the input constraint on an input or inout port.

 Specify the output constraint on an output or inout port.

Example Code and/or Schematic

Consider the following files specified for SpyGlass analysis:

In the above example, none of the input constraints is specified on an input
or inout port. Therefore, the SGDC_inputoutput01 rule reports a violation
for each input constraint.

module test (d,d1,d2,clk1,clk2,clk3,

input d,d1,d2,clk1,clk2,clk3,clk4;
output q;
wire d,clk1,clk2,q_tmp,q1_tmp,

reg q1,q2,q3,q;
assign q_tmp=clk1;
always@(posedge q_tmp)
begin
q1 <= d;
end
always@(negedge clk2)
begin
q2 <=d1;

end
always@(negedge clk4)
begin
q3 <= d2;

end
assign q3_tmp = q3;
assign q1_tmp = q2 & q1;
assign q2_tmp = q1_tmp & q3_tmp;
always@(posedge clk3)
begin
q <= q2_tmp;

end
endmodule

// test.v // constr.sgdc

current_design test

clock -name clk1 -tag C1 -domain d1
clock -name clk2 -tag C2 -domain d2
clock -name clk3 -tag C3 -domain d3
clock -name clk4 -tag C4 -domain d4

 current_design "test"
input -name "test.q2_tmp" -clock "clk2"
input -name "test.q3_tmp" -clock "clk1"
input -name "test.q_tmp" -clock "clk4"

current_design "test"
abstract_port -module test -ports clk1

current_design "test"
input -name "test.q2" -clock "clk4"

clk4,q);

q2_tmp,q3_tmp;

 -clock "clk3"
2031
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Default Severity Label

Warning

Rule Group

Non-fatal must rule

Reports and Related Files

No report or related file
2032
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_network_allowed_cells01
Reports a violation if an invalid value is specified in the -type
argument of the network_allowed_cells constraint

When to Use

Use this rule to perform sanity checks on the network_allowed_cells
constraint.

Prerequisites

Specify the network_allowed_cells constraint.

Description

The SGDC_network_allowed_cells01 rule reports a violation if the value
specified in the -type argument of the network_allowed_cells constraint is
other than clock, reset, or clock reset.

Parameter(s)

None

Constraint(s)

network_allowed_cells (Mandatory): Use this constraint to specify cells that
should be allowed or disallowed in clock trees.

Messages and Suggested Fix

The following message appears if an invalid value is specified in the -type
argument of the network_allowed_cells constraint:

[FATAL] Invalid [Pre-defined] specification '<name>' for '-
type' field of constraint 'network_allowed_cells'

Potential Issues

This violation appears if the value specified in the -type argument of the
network_allowed_cells constraint is other than clock, reset, or clock
reset.
2033
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix

To fix this violation, specify clock, reset, or clock reset in the -type
argument of the network_allowed_cells constraint.

Example Code and/or Schematic

Consider the following constraint:

network_allowed_cells -name NR2 -type dummy

For the above constraint, the SGDC_network_allowed_cells01 rule reports
a violation.

Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file
2034
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_network_allowed_cells02
Reports a violation if a non-existing net is specified in the -from
argument of the network_allowed_cells constraint

When to Use

Use this rule to perform sanity checks on the network_allowed_cells
constraint.

Prerequisites

Specify the network_allowed_cells constraint.

Description

The SGDC_network_allowed_cells02 rule reports a violation if a
non-existing net is specified in the -from argument of the
network_allowed_cells constraint.

Parameter(s)

None

Constraint(s)

network_allowed_cells (Mandatory): Use this constraint to specify cells that
should be allowed or disallowed in clock trees.

Messages and Suggested Fix

The following message appears if the net <net-name> specified in the
-from argument of the network_allowed_cells constraint does not exist in
the design <design-name>:

[FATAL] '<net-name>'[TopPort + Net] not found on/within module
'<design-name>'

Potential Issues
This violation appears if the design does not contain the net specified by
the -from argument of the network_allowed_cells constraint.
2035
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix

To fix this violation, specify an existing port or net in the -from argument
of the network_allowed_cells constraint.

Example Code and/or Schematic

Consider that the design top does not contain the w1 net.

Now consider that you specify the following constraint:

current_design top
network_allowed_cells -name A1234 -from w1 -allow

In this case, the SGDC_network_allowed_cells02 rule reports a violation
because the non-existing net w1 is specified in the -from argument of the
network_allowed_cells constraint.

Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file
2036
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_noclockcell01
Reports a violation if an invalid object is specified in the -name
argument of the noclockcell_start constraint

When to Use

Use this rule to perform sanity checks on the noclockcell_start constraint.

Prerequisites

Specify the noclockcell_start constraint.

Description

The SGDC_noclockcell01 rule reports a violation if the object specified in
the -name argument of the noclockcell_start constraint does not exist as
port or a hierarchical net in the current design.

Parameter(s)

None

Constraint(s)

noclockcell_start (Optional): Use this constraint to specify start points, such
as ports or nets for rule-checking.

Messages and Suggested Fix

The following message appears of the port or net <object-name>
specified by the -name argument of the noclockcell_start constraint does not
exist in the current design <current-design>:

[FATAL] '<object-name> '[TopPort + Net] not found on/within
module '<current-design>'

Potential Issues
This violation appears if the current design does not contain the port or net
specified by the -name argument of the noclockcell_start constraint.

Consequences of Not Fixing
2037
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix
To fix this violation, specify the name of an existing port or net in the
-name argument of the noclockcell_start constraint.

Example Code and/or Schematic

Consider that the design top does not contain the port/net clk1. Now
consider that you specify the following constraints in an SGDC file:

current_design top
noclockcell_start -name top.clk1

For the above example, the SGDC_noclockcell01 rule reports a violation.

Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file
2038
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_noclockcell03
Reports a violation if a non-existing module is specified in the
-name argument of the noclockcell_stop_module constraint

When to Use

Use this rule to perform sanity checks on the noclockcell_stop_module
constraint.

Prerequisites

Specify the noclockcell_stop_module constraint.

Description

The SGDC_noclockcell03 rule reports a violation if the module specified by
the -name argument of the noclockcell_stop_module constraint does not
exist in the current design.

Parameter(s)

None

Constraint(s)

noclockcell_stop_module (Optional): Use this constraint to specify a design
unit where the NoClockCell rule should stop further traversal along the clock
tree when the clock pin of an instance of the specified design unit is hit.

Messages and Suggested Fix

The following message appears if the module <module-name> specified
by the -name argument of the noclockcell_stop_module constraint does not
exist in the current design <current-design>:

[FATAL] '<module-name>' [SubModule] is never instantiated
within environment '<current-design>

Potential Issues
This violation appears if your design does not contain the module specified
by the -name argument of the noclockcell_stop_module constraint.
2039
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix

To fix this violation, specify the name of an existing module in the -name
argument of the noclockcell_stop_module constraint.

Example Code and/or Schematic

Consider the design top that does not contain the module DF1. Now
consider that you specify the following constraints in an SGDC file:

current_design top
noclockcell_stop_module -name DF1

In the above case, the SGDC_noclockcell03 rule reports a violation.

Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file
2040
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_noclockcell04
Reports a violation if a non-existing instance is specified in the
-name argument of the noclockcell_stop_instance constraint

When to Use

Use this rule to perform sanity checks on the noclockcell_stop_instance
constraint.

Prerequisites

Specify the noclockcell_stop_instance constraint.

Description

The SGDC_noclockcell04 rule reports a violation if the instance specified by
the -name argument of the noclockcell_stop_instance constraint does not
exist in the current design.

Parameter(s)

None

Constraint(s)

noclockcell_stop_instance (Optional): Use this constraint to specify an
instance where the NoClockCell rule should stop further traversal along the
clock tree when the clock pin of the specified instance is hit.

Messages and Suggested Fix

The following message appears if the instance <inst-name> specified by
the -name argument of the noclockcell_stop_instance constraint does not
exist in the current design <current-design>:

[FATAL] '<inst-name>' [Instance] not found on/within module
'<current-design>

Potential Issues
This violation appears if your design does not contain the instance specified
by the -name argument of the noclockcell_stop_instance constraint.
2041
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix

To fix this violation, specify the name of an existing instance in the -name
argument of the noclockcell_stop_instance constraint.

Example Code and/or Schematic

Consider the design top that does not contain the instance U_DF1. Now
consider that you specify the following constraints in an SGDC file:

current_design top
noclockcell_stop_instance -name U_DF1

In the above case, the SGDC_noclockcell04 rule reports a violation.

Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file
2042
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_numflops01
Reports a violation if no argument is specified in the num_flops
constraint

When to Use

Use this rule to perform sanity checks on the num_flops constraint.

Prerequisites

Specify the num_flops constraint.

Description

The SGDC_numflops01 rule reports a violation if you do not specify any
argument to the num_flops constraint.

Parameter(s)

None

Constraint(s)

num_flops (Mandatory): Use this constraint to specify a minimum number
of flip-flops required in a synchronizer chain.

Messages and Suggested Fix

The following message appears if you do not specify any argument to the
num_flops constraint:

[FATAL] It is Mandatory to Specify At Least One Value for
combination of fields '-from_clk -to_clk -from_domain -
to_domain -to_period -default ' of constraint 'num_flops'

Potential Issues
This violation appears if you do not specify any argument to the num_flops
constraint.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.
2043
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
How to Debug and Fix
To fix this violation, specify at least one of the following arguments for the
num_flops constraint:
 -from_clk and -to_clk

 -to_clock

 -from_domain and -to_domain

 -to_period

 -default

Example Code and/or Schematic

Not applicable

Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file
2044
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_numflops03a
Existence check for non-hierarchical name with '-from_clk' field of
constraint 'num_flops'

When to Use

Use this rule to perform sanity checks on the num_flops constraint.

Prerequisites

Specify the num_flops constraint.

Description

The SGDC_numflops03a rule reports a violation if a non-hierarchical net
name or a port name specified in the -from_clk argument of the
num_flops constraint is not found in the top-level module.

Parameter(s)

None

Constraint(s)

num_flops (Mandatory): Use this constraint to specify a minimum number
of flip-flops required in a synchronizer chain.

Messages and Suggested Fix

This rule reports the following message:

[INFO] Constraint 'num_flops':clock '<net-name>' specified with
'-from_clk' not found on/within module '<module-name>'.
Considering it as a virtual clock

Potential Issues
This violation appears if a non-hierarchical net name or a port name
specified in the -from_clk argument of the num_flops constraint is not
found in the top-level module.

Consequences of Not Fixing
2045
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
If you do not fix this violation, the specified net name or port name is
considered as a virtual clock. As a result, SpyGlass may report spurious
synchronization violations.

How to Debug and Fix
To fix this violation, perform the following actions:
 Analyze the num_flops constraint specification.

 Specify virtual clock names only when input signals are triggered from a
virtual clock domain outside the design scope.

Example Code and/or Schematic

Consider the following constraints specifications:

input -name in1 -clock vclk1
num_flops -from_clk vclk1 -to_clk clk2 -value 3

In this example, all clock-domain crossings from the in1 port to the clk2
clock require at least three flip-flops for synchronization results.

In this case, the SGDC_numflops03a rule reports a violation for num_flops
constraint.

Default Severity Label

Info

Rule Group

SOC_SGDCVALIDATION

Reports and Related Files

The CKSGDCInfo Report
2046
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_numflops03b
Reports a violation if an invalid hierarchical net or pin name is
specified in the -from_clk argument of the num_flops constraint

When to Use

Use this rule to perform sanity checks on the num_flops constraint.

Prerequisites

Specify the num_flops constraint.

Description

The SGDC_numflops03b rule reports a violation if the hierarchical net or
pin name specified by the -from_clk argument of the num_flops constraint
does not exist in the design.

Parameter(s)

None

Constraint(s)

num_flops (Mandatory): Use this constraint to specify a minimum number
of flip-flops required in a synchronizer chain.

Messages and Suggested Fix

The following message appears if the hierarchical net name specified by
the -from_clk argument of the num_flops constraint is missing in the
module <module-name>:

[FATAL] Constraint 'num_flops':clock 'hierarchical net name'
specified with '-from_clk' not found on/within module
'<module-name>'

Potential Issues
This violation appears if the hierarchical net or pin name specified by the
-from_clk argument of the num_flops constraint does not exist in the
design.
2047
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix
To fix this violation, specify the name of an existing net or a pin in the
-from_clk argument of the num_flops constraint.

Example Code and/or Schematic

Consider that your design does not contain any clock by the name ck3.

In this case, the SGDC_numflops03b rule reports a violation if you specify
the following num_flops constraint specification in the SGDC file:

num_flops -from_clk top.ck3 -to_clk ck1 -value 3

Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file
2048
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_numflops03c
Reports a violation if an invalid clock is specified in the -from_clk
argument of the num_flops constraint

When to Use

Use this rule to perform sanity checks on the num_flops constraint.

Prerequisites

Specify the num_flops constraint.

Description

The SGDC_numflops03c rule reports a violation if the clock specified in the
-from_clk argument of the num_flops constraint is not one of the specified
clock nor it is an automatically-inferred clock.

Parameter(s)

None

Constraint(s)

num_flops (Mandatory): Use this constraint to specify a minimum number
of flip-flops required in a synchronizer chain.

Messages and Suggested Fix

The following message appears if you specify an invalid clock in the
-from_clk argument of the num_flops constraint:

[WARNING] Constraint 'num_flops': Clock name '<clock-name>'
specified in field '-from_clk' is not a valid clock

Potential Issues

This violation appears if the clock specified in the -from_clk argument of
the num_flops constraint is not one of the specified clock nor it is an
automatically-inferred clock.

Consequences of Not Fixing
2049
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
If you do not fix this violation, the reported num_flops constraint
specification is ignored.

How to Debug and Fix

To fix this violation, specify any of the following clocks in the -from_clk
argument of the num_flops constraint:
 Clocks specified by the clock constraint

 Automatically-inferred clocks when the use_inferred_clocks parameter is
set to yes

Example Code and/or Schematic

Consider that the ck1 clock is not specified by the clock constraint nor it is
an automatically-inferred clock.

In this case, the SGDC_numflops03c rule reports a violation if you specify
the following num_flops constraint specification in the SGDC file:

current_design top
clock -name ck2 -domain d2
num_flops -from_clk ck1 -to_clk ck2 -value 3

Default Severity Label

Warning

Rule Group

SOC_SGDCVALIDATION

Reports and Related Files

No report or related file
2050
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_numflops04
Reports a violation if an invalid clock is specified in the -to_clk
argument of the num_flops constraint

When to Use

Use this rule to perform sanity checks on the num_flops constraint.

Prerequisites

Specify the num_flops constraint.

Description

The SGDC_numflops03c rule reports a violation if the clock specified in the
-to_clk argument of the num_flops constraint is not one of the specified
clock nor it is an automatically-inferred clock.

Parameter(s)

None

Constraint(s)

num_flops (Mandatory): Use this constraint to specify a minimum number
of flip-flops required in a synchronizer chain.

Messages and Suggested Fix

The following message appears if you specify an invalid clock in the
-to_clk argument of the num_flops constraint:

[WARNING] Constraint 'num_flops': Clock name '<clock-name>'
specified in field '-to_clk' is not a valid clock

Potential Issues

This violation appears if the clock specified in the -to_clk argument of
the num_flops constraint is not one of the specified clock nor it is an
automatically-inferred clock.

Consequences of Not Fixing
2051
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
If you do not fix this violation, the reported num_flops constraint
specification is ignored.

How to Debug and Fix

To fix this violation, specify any of the following clocks in the -to_clk
argument of the num_flops constraint:
 Clocks specified by the clock constraint

 Automatically-inferred clocks when the use_inferred_clocks parameter is
set to yes

Example Code and/or Schematic

Consider that the ck2 clock is not specified by the clock constraint nor it is
an automatically-inferred clock.

In this case, the SGDC_numflops04 rule reports a violation if you specify
the following num_flops constraint specification in the SGDC file:

current_design top
clock -name ck1 -domain d1
num_flops -from_clk ck1 -to_clk ck2 -value 3

Default Severity Label

Warning

Rule Group

SOC_SGDCVALIDATION

Reports and Related Files

No report or related file
2052
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_numflops05
Reports if the domain specified by the -from_domain argument of
the num_flops constraint does not exist

When to Use

Use this rule to perform sanity checks on the num_flops constraint.

Prerequisites

Specify the following information before running this rule:
 Specify the num_flops constraint.

 Specify clock signals in any of the following ways:

 By using the clock constraint

 By setting the use_inferred_clocks parameter to yes to use
automatically generated clock signals

 By using a combination of both the above methods

Description

The SGDC_numflops05 rule reports a violation if the domain specified by
the -from_domain argument of the num_flops constraint does not exist as
a domain of a clock specified by the clock constraint or an
automatically-inferred clock.

Parameter(s)

use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

Constraint(s)

 num_flops (Mandatory): Use this constraint to specify a minimum
number of flip-flops required in a synchronizer chain.

 clock (Optional): Use this constraint to specify clock signals in a design.

Messages and Suggested Fix

The following message appears if you specify an incorrect domain in the
-from_domain argument of the num_flops constraint:
2053
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
[WARNING] Constraint 'num_flops': Incorrect domain
'<domain-name>' specified in field '-from_domain'

Potential Issues

This violation appears if the domain specified by the -from_domain
argument of the num_flops constraint does not exist as a domain of any
clock in a design.

Consequences of Not Fixing
If you do not fix this violation, the reported num_flops constraint is ignored
during SpyGlass analysis.

How to Debug and Fix

To fix this violation, specify a correct domain in the -from_domain
argument of the num_flops constraint so that the specified domain matches
with the domain of a clock in the design.

Example Code and/or Schematic

Consider the following constraints specified in an SGDC file:

current_design top
clock -name clk1 -domain D1 -period 15
clock -name clk2 -domain D2 -period 20
num_flops -from_domain D! -to_domain D2 -value 10

In the above example, the D! domain specified in the -from_domain
argument of the num_flops constraint does not exist as a domain of any
clock in the design. Therefore, the SGDC_numflops05 rule reports a
violation.

Default Severity Label

Warning

Rule Group

Non-fatal must rule
2054
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Reports and Related Files

No report or related file
2055
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_numflops06
Reports if the domain specified by the -to_domain argument of the
num_flops constraint does not exist

When to Use

Use this rule to perform sanity checks on the num_flops constraint.

Prerequisites

Specify the following information before running this rule:
 Specify the num_flops constraint.

 Specify clock signals in any of the following ways:

 By using the clock constraint

 By setting the use_inferred_clocks parameter to yes to use
automatically generated clock signals

 By using a combination of both the above methods

Description

The SGDC_numflops06 rule reports a violation if the domain specified by
the -to_domain argument of the num_flops constraint does not exist as a
domain of a clock specified by the clock constraint or an
automatically-inferred clock.

Parameter(s)

use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

Constraint(s)

 num_flops (Mandatory): Use this constraint to specify a minimum
number of flip-flops required in a synchronizer chain.

 clock (Optional): Use this constraint to specify clock signals in a design.

Messages and Suggested Fix

The following message appears if you specify an incorrect domain in the
-to_domain argument of the num_flops constraint:
2056
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
[WARNING] Constraint 'num_flops': Incorrect domain
'<domain-name>' specified in field '-to_domain'

Potential Issues

This violation appears if the domain specified by the -to_domain
argument of the num_flops constraint does not exist as a domain of any
clock in a design.

Consequences of Not Fixing
If you do not fix this violation, the reported num_flops constraint is ignored
during SpyGlass analysis.

How to Debug and Fix

To fix this violation, specify a correct domain in the -to_domain argument
of the num_flops constraint so that the specified domain matches with the
domain of a clock in the design.

Example Code and/or Schematic

Consider the following constraints specified in an SGDC file:

current_design top
clock -name clk1 -domain D1 -period 15
clock -name clk2 -domain D2 -period 20
num_flops -from_domain D1 -to_domain D -value 10

In the above example, the D domain specified in the -to_domain
argument of the num_flops constraint does not exist as a domain of any
clock in the design. Therefore, the SGDC_numflops05 rule reports a
violation.

Default Severity Label

Warning

Rule Group

Non-fatal must rule
2057
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Reports and Related Files

No report or related file
2058
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_numflops07
Reports if an incorrect value is specified in the -to_period
argument of the num_flops constraint

When to Use

Use this rule to perform sanity checks on the num_flops constraint.

Prerequisites

Specify the num_flops constraint.

Description

The SGDC_numflops07 rule reports a violation if the value specified in the
-to_period argument of the num_flops constraint is not a float value or it
is a negative float value.

Parameter(s)

None

Constraint(s)

num_flops (Mandatory): Use this constraint to specify a minimum number
of flip-flops required in a synchronizer chain.

Messages and Suggested Fix

The following message appears if an incorrect value <value> is specified
in the -to_period argument of the num_flops constraint:

[FATAL] Invalid [Pre-defined-range] specification '<value>' for
'-to_period' field of constraint 'num_flops'

Potential Issues

This violation appears if the value specified in the -to_period argument
of the num_flops constraint is not a float value or it is a negative float value.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.
2059
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
How to Debug and Fix

To fix this violation, specify a float value in the -to_period argument of
the num_flops constraint.

Example Code and/or Schematic

Consider the following num_flops constraint specification:

num_flops -to_period TEN -value 10

For the above constraint, the SGDC_numflops07 rule reports a violation
because the value TEN specified in the -to_period argument is not a float
value.

Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file
2060
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_numflops08
Reports if an incorrect value is specified in the -value argument of
the num_flops constraint

When to Use

Use this rule to perform sanity checks on the num_flops constraint.

Prerequisites

Specify the num_flops constraint.

Description

The SGDC_numflops08 rule reports a violation if the value specified by the
-value argument of the num_flops constraint is not an integer value or it is
an integer value less than 1.

Parameter(s)

None

Constraint(s)

num_flops (Mandatory): Use this constraint to specify a minimum number
of flip-flops required in a synchronizer chain.

Messages and Suggested Fix

The following message appears if the value specified by the -value
argument of the num_flops constraint is not an integer value or it is an
integer value less than 1:

[FATAL] Constraint 'num_flops': Number of required flip-flops
specified with '-value' can only be greater than 0

Potential Issues

This violation appears if the value specified by the -value argument of the
num_flops constraint is not an integer value or it is an integer value less
than 1.

Consequences of Not Fixing
2061
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix
To fix this violation, specify an integer value greater or equal to 1 in the
-value argument of the num_flops constraint.

Example Code and/or Schematic

Consider the following num_flops constraint specification:

num_flops -from_clk clk1 -to_clk clk2 -value 0

For the above constraint, the SGDC_numflops08 rule reports a violation
because the value specified in the -value argument is less than 1.

Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file
2062
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_numflops09
Reports if an incorrect value is specified in the -default argument
of the num_flops constraint

When to Use

Use this rule to perform sanity checks on the num_flops constraint.

Prerequisites

Specify the num_flops constraint.

Description

The SGDC_numflops09 rule reports a violation if the value specified by the
-default argument of the num_flops constraint is not an integer value or
it is an integer value less than 2.

Parameter(s)

None

Constraint(s)

num_flops (Mandatory): Use this constraint to specify a minimum number
of flip-flops required in a synchronizer chain.

Messages and Suggested Fix

The following message appears if the value <value> specified by the
-default argument of the num_flops constraint is not an integer value or
it is an integer value less than 2:

[FATAL] Invalid [Pre-defined-range] specification '<value>' for
'-default' field of constraint 'num_flops'

Potential Issues

This violation appears if the value specified by the -default argument of
the num_flops constraint is not an integer value or it is an integer value less
than 2.
2063
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix
To fix this violation, specify an integer value greater or equal to 2 in the
-default argument of the num_flops constraint.

Example Code and/or Schematic

Consider the following num_flops constraint specification:

num_flops -default 1

For the above constraint, the SGDC_numflops09 rule reports a violation
because the value specified in the -default argument is less than 2.

Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file
2064
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_numflops10
Reports a violation if the -value and -default arguments of the
num_flops constraint are specified together

When to Use

Use this rule to perform sanity checks on the num_flops constraint.

Prerequisites

Specify the num_flops constraint.

Description

The SGDC_numflops10 reports a violation if the -value and -default
arguments of the num_flops constraint are specified together.

Parameter(s)

None

Constraint(s)

num_flops (Mandatory): Use this constraint to specify a minimum number
of flip-flops required in a synchronizer chain.

Messages and Suggested Fix

The following message appears if the -value and -default arguments of
the num_flops constraint are specified together.

[WARNING] Constraint 'num_flops': -value field will be ignored
due to -default specification

Potential Issues

This violation appears if the -value and -default arguments of the
num_flops constraint are specified together.

Consequences of Not Fixing

If you do not fix this violation, the -value argument is ignored. This may
not be as per your expectation.
2065
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
How to Debug and Fix

To fix this violation, specify either -value or -default argument with the
num_flops constraint.

Example Code and/or Schematic

Consider the following constraint:

num_flops -default 2 -value 4

For the above constraint, the SGDC_numflops10 reports a violation
because both the -value and -default arguments are specified with this
constraint.

Default Severity Label

Warning

Rule Group

Non-fatal must rule

Reports and Related Files

No report or related file
2066
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_numflops11
Reports a violation for overlapping specifications of the num_flops
constraint

When to Use

Use this rule to perform sanity checks on the num_flops constraint.

Prerequisites

Specify the num_flops constraint.

Description

The SGDC_numflops11 reports a violation if num_flops constraint
specifications are logically overlapping.

Parameter(s)

None

Constraint(s)

num_flops (Mandatory): Use this constraint to specify a minimum number
of flip-flops required in a synchronizer chain.

Messages and Suggested Fix

The following message appears to indicate overlapping specifications of the
num_flops constraint:

[WARNING] Constraint 'num_flops': Overlapping Constraint
specifications found. Latest specification will be used for
rule-checking

Potential Issues
This violation appears if you specify overlapping specifications of the
num_flops constraint.

Consequences of Not Fixing
If you do not fix this violation, the last num_flops constraint specification
2067
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
overrides the previous specification. This may not be as per your
expectations.

How to Debug and Fix
To fix this violation, ensure to specify only one value for a given clock pair
and remove all the other overlapping specifications.

Example Code and/or Schematic

Consider the following constraints specified in an SGDC file:

clock -name clk1 -domain d1
clock -name clk2 -domain d2
num_flops -from_clk clk1 -to_clk clk2 -value 3
num_flops -from_domain d1 -to_domain d2 -value 4

In the above example, the clk1 and clk2 clocks belong to the d1 and d2
domain, respectively.

Therefore, the num_flops constraint specifications are logically overlapping
in this case.

As a result, SpyGlass considers the last num_flops constraint specification.
Therefore, the number of flip-flops required for multi-flops synchronization
for a crossing between clk1 and clk2 is considered as 4.

Default Severity Label

Warning

Rule Group

Non-fatal must rule

Reports and Related Files

No report or related file
2068
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_numflops13
Checks the -lib argument of the num_flops constraint

When to Use

Use this rule to perform sanity checks on the num_flops constraint.

Prerequisites

Specify the num_flops constraint.

Description

The SGDC_numflops13 rule reports a violation message when the library
name specified with the -lib argument of the num_flops constraint is not
available in the current design run.

Parameter(s)

None

Constraint(s)

num_flops (Mandatory): Use this constraint to specify a minimum number
of flip-flops required in a synchronizer chain.

Messages and Suggested Fix

The following message appears when you specify a library name <lib-
name> that is not available in the current SpyGlass run:

[WARNING] Constraint 'num_flops': library '<lib-name>' not
passed in current run

Potential Issues
This violation appears if you specify library names that are not available in
the current SpyGlass run.

Consequences of Not Fixing
If you do not fix this violation, the constraint is ignored. This may not be as
per your expectation.

How to Debug and Fix

To fix this violation, specify a valid library name in the -lib argument of
2069
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
the num_flops constraint.

Example Code and/or Schematic

For the following num_flops constraint specification, the SGDC_numflops13
rule reports a violation if the LIB1 library specified in the -lib argument is
not available in the current SpyGlass run.

num_flops -to_period 50 -value 3 -lib LIB1

Default Severity Label

Warning

Rule Group

Non-fatal must rule

Reports and Related Files

The CKSGDCInfo Report
2070
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_numflops14
Checks the -cell argument of the num_flops constraint

When to Use

Use this rule to perform sanity checks on the num_flops constraint.

Prerequisites

Specify the num_flops constraint.

Description

The SGDC_numflops14 rule reports a violation message when the library
cell specified in the -cell argument of the num_flops constraint is not
located in the libraries list specified in the -lib argument.

Parameter(s)

None

Constraint(s)

num_flops (Mandatory): Use this constraint to specify a minimum number
of flip-flops required in a synchronizer chain.

Messages and Suggested Fix

The following message appears when you specify a cell name <cell-
name> that is not present in the specified library:

[WARNING] Constraint 'num_flops': Cell '<cell-name>' not found
in the specified library

Potential Issues
This violation appears if you specify cell names that are not present in the
specified library.

Consequences of Not Fixing
If you do not fix this violation, the constraint is ignored. This may not be as
per your expectation.

How to Debug and Fix

To fix this violation, check the values specified in the -cells and -lib
2071
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
arguments of the num_flops constraint. The cells must exist in the specified
library list.

Example Code and/or Schematic

For the following num_flops constraint specification, the SGDC_numflops14
rule reports a violation if the FD1 cell is not present in the LIB1 library.

num_flops -to_period 50 -value 3 -lib LIB1 -cells FD1

Default Severity Label

Warning

Rule Group

Non-fatal must rule

Reports and Related Files

The CKSGDCInfo Report
2072
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_noclockcell02
Reports a violation if invalid objects are specified by the -name
argument of the noclockcell_stop_signal constraint

When to Use

Use this rule to perform sanity checks on the noclockcell_stop_signal
constraint.

Prerequisites

Specify the noclockcell_stop_signal constraint.

Description

The SGDC_noclockcell02 rule reports a violation if the object specified by
the -name argument of the noclockcell_stop_signal constraint does not exist
as a port or a net in the current design.

Parameter(s)

None

Constraint(s)

noclockcell_stop_signal (Mandatory): Specifies design points, such as ports,
pins, or nets at which the NoClockCell rule-traversal should stop along a
clock tree.

Messages and Suggested Fix

The following message appears if the object specified by the -name
argument of the noclockcell_stop_signal constraint does not exist as a port or
a net in the current design:

[FATAL] '<object-name>' [top port + net + hier terminal] not
found on/within module '<current-design>'

Potential Issues
This violation appears if the current design does not contain any object
specified by the -name argument of the noclockcell_stop_signal constraint.
2073
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix

To fix this violation, update the value of the -name argument of the
noclockcell_stop_signal constraint to specify objects that exist as a port or a
net.

Example Code and/or Schematic

Consider the following files specified during SpyGlass analysis:

For the above example, the SGDC_noclockcell02 rule reports a violation
because the w[2] object specified by the noclockcell_stop_signal constraint
does not exist in the top module.

Default Severity Label

Fatal

module flop(d,clk,q);
input d,clk;
output q;
reg q;
wire d;
always @(posedge clk)

 q<=d;
endmodule

module top(d,clk,q);
input d,clk;
output [0:1]q;
wire clk1;
wire [0:1]w;
assign clk1 = clk;
flop F1(d,clk,w[0]);
flop F2(w[0],clk1,q[0]);
flop F3(d,clk,w[1]);
flop F4(w[1],clk1,q[1]);

endmodule

// test.v

current_design top
noclockcell_stop_signal -name w[2]

// constr.sgdc
2074
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Rule Group

Fatal must rule

Reports and Related Files

No report or related file
2075
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_output01
Reports a violation if a non-existent object is specified in the -name
argument of the output constraint

When to Use

Use this rule to perform sanity checks on the output constraint.

Prerequisites

Specify the output constraint.

Description

The SGDC_output01 rule reports a violation if the object specified in the
-name argument of the output constraint does not exist as a port or net in
the current design.

Parameter(s)

None

Constraint(s)

output (Mandatory): Use this constraint to specify clock domains at output
ports.

Messages and Suggested Fix

The following message appears if the object <object-name> specified
by the -name argument of the output constraint does not exist in the design
<design-name>:

[FATAL] '<object-name>'[TopPort + Net] not found on/within
module '<design-name>'

Potential Issues
This violation appears if your design does not contain a port or net
specified by the -name argument of the output constraint.

Consequences of Not Fixing
2076
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix

To fix this violation, specify an existing port or net in the -name argument
of the output constraint.

Example Code and/or Schematic

Consider the design top that does not contain any port or net by the name
out1. Now consider that you specify the following constraints:

current_design top
output –name out1 –clock clk2

For the above example, the SGDC_output01 rule reports a violation
because the non-existing object out1 is specified in the -name argument
of the output constraint.

Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file
2077
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_output02
Reports invalid non-hierarchical names specified to the -clock
argument of the output constraint

When to Use

Use this rule to perform sanity checks on the output constraint.

Prerequisites

Specify the output constraint.

Description

The SGDC_output02 rule reports a violation if the object specified to the
-clock argument of the output constraint is a non hierarchical name and
that object does not exist as a port or net in the current design.

Parameter(s)

None

Constraint(s)

output (Mandatory): Use this constraint to specify clock domains at output
ports.

Messages and Suggested Fix

The following message appears if an invalid non-hierarchical name (port
name or net name) is specified to the -clock argument of the output
constraint:

[INFO] '<object-name>' not found on/within module '<module-
name>'.Considering it as virtual clock"

Potential Issues
This violation appears if the design does not contain a port or net specified
by the -clock argument of the output constraint.
2078
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Consequences of Not Fixing
If you do not fix this violation, the reported clock is considered as a virtual
clock, and cross-domain crossing checks are done with the same
assumption. This may not be as per your expectations.

How to Debug and Fix
To debug and fix this violation, analyze the output constraint specification
for ports driven from virtual clocks. If required, update the -clock
argument of the output constraint to specify an existing clock.

Example Code and/or Schematic

Consider the design top in which the ck1 clock does not exist. In this case,
the SGDC_output02 rule reports a violation if you specify the following
output constraint specification in the SGDC file:

current_design top
clock -tag ck1
output -name OUT1 -clock ck1

Default Severity Label

Info

Rule Group

Non-fatal must rule

Reports and Related Files

No report or related file
2079
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_output03
Reports inout ports for which both input and output constraints are
specified

When to Use

Use this rule to check for any incorrect usage of the input and output
constraints.

Prerequisites

Specify the input and output constraints.

Description

The SGDC_output03 rule reports a violation if both the input and output
constraints are specified for an inout port.

Parameter(s)

None

Constraint(s)

 output (Mandatory): Use this constraint to specify clock domains at
output ports.

 input (Mandatory): Use this constraint to specify clock domain at input
ports.

Messages and Suggested Fix

The following message appears if both the input and output constraints are
specified for an inout port:

[WARNING] Both input and output constraints specified for inout
port '<inout-port>'. Ignoring output constraint

Potential Issues
This violation appears if your design contains an inout port that is specified
by both the input and output constraints.

Consequences of Not Fixing
2080
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
If you do not fix this violation, SpyGlass ignores the output constraint
during CDC verification.

How to Debug and Fix
To fix this violation, review the input and output constraints specified for the
same inout port. Retain only one constraint that you want to use for CDC
verification.

Example Code and/or Schematic

Consider the following constraints in an SGDC file:

current_design top
input -name P1 -clock ck1
output -name P1 -clock ck2

For the above example, the SGDC_output03 rule reports a violation
because both the input and output constraints specified for the same inout
port P1.

Default Severity Label

Warning

Rule Group

Non-fatal must rule

Reports and Related Files

No report or related file
2081
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_output04
Reports invalid hierarchical names specified to the -clock argument
of the output constraint

When to Use

Use this rule to perform sanity checks on the output constraint.

Prerequisites

Specify the output constraint.

Description

The SGDC_output04 rule reports a violation if the object specified to the
-clock argument of the output constraint is a hierarchical name and that
object does not exist as a port or net in the current design.

Parameter(s)

None

Constraint(s)

output (Mandatory): Use this constraint to specify clock domains at output
ports.

Messages and Suggested Fix

The following message appears if an invalid hierarchical name (port name
or net name) is specified to the -clock argument of the output constraint:

[FATAL] '<object-name>' not found on/within module
'<module-name>'

Potential Issues
This violation appears if a hierarchical object name (port name or net
name) is specified to the -clock argument of the output constraint, and
that object does not exist in the design.
2082
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix

To fix this violation, specify an existing object (port or net) in the -clock
argument of the output constraint.

Example Code and/or Schematic

Consider the design top in which the ck1 clock does not exist. In this case,
the SGDC_output02 rule reports a violation if you specify the following
output constraint specification in the SGDC file:

current_design top
output -name OUT1 -clock top.ck1

Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file
2083
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_output_not_used01
Existence check for '-name' field of constraint 'output_not_used'

When to Use

Use this rule to perform sanity checks on the output_not_used constraint
specification.

Prerequisites

Specify the output_not_used constraint.

Description

The SGDC_output_not_used01 rule reports a violation if a port specified by
the -name argument of the output_not_used constraint do not exist in the
design.

Parameter(s)

None

Constraint(s)

output_not_used (Mandatory): Use this constraint to specify a primary
output port.

Messages and Suggested Fix

The following message appears at the top-level design module when you
specify non-existent ports with the output_not_used constraint:

[FATAL] 'port-name' [<top-port>] not found on/within module
'<top-design-unit>'

Potential Issues

This violation appears if the port specified by the -name argument of the
output_not_used constraint does not exist in the design.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.
2084
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
How to Debug and Fix
To fix this violation, analyze the current design and specify an existing
output port in the -name argument of the output_not_used constraint.

Example Code and/or Schematic

Consider that a design does not contain any port by the name q2.

In this case, the SGDC_output_not_used01 rule reports a violation if you
specify the following constraint:

output_not_used -name q2

Default Severity Label

Fatal

Rule Group

FATAL must rule

Reports and Related Files

No report or related file
2085
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_porttimedelay01
Reports if an invalid design unit is specified in the -name argument
of the port_time_delay constraint

When to Use

Use this rule to perform sanity checks on the port_time_delay constraint
specifications.

Prerequisites

Specify the port_time_delay constraint.

Description

The SGDC_porttimedelay01 rule reports a violation if the design unit
specified by the -name argument of the port_time_delay constraint does not
exist in the current design.

Parameter(s)

None

Constraint(s)

port_time_delay (Mandatory): Use this constraint to specify design units to
be checked by the PortTimeDelay rule.

Messages and Suggested Fix

The following message appears if the module <module-name> specified
by the -name argument of the port_time_delay constraint does not exist in
the current design:

[FATAL] '<module-name>' [SubModule] is never instantiated in
the design

Potential Issues
This violation appears if your design does not contain the design unit
specified by the -name argument of the port_time_delay constraint.
2086
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix
To fix this violation, specify the name of an existing design unit in the
-name argument of the port_time_delay constraint

Example Code and/or Schematic

Consider that the current design top does not contain the design unit ent.
In this case, the SGDC_porttimedelay01 rule reports a violation in the
following case:

current_design top
porttimedelay -name ent -ignore_ports "d*" "q*"

Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file
2087
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_qualifier01
Reports a violation if a non-existent object is specified in the -name
argument of the qualifier constraint

When to Use

Use this rule to perform sanity checks on the qualifier constraint
specifications.

Prerequisites

Specify the qualifier constraint.

Description

The SGDC_qualifier01 rule reports a violation if the qualifier specified in the
-name argument of the qualifier constraint does not exists as a net, port, or
hierarchical terminal in a design.

Parameter(s)

None

Constraint(s)

qualifier (Mandatory): Use this constraint to specify a qualifier for
synchronizing a clock domain crossing.

Messages and Suggested Fix

The following message appears if an invalid object is specified in the -name
argument of the qualifier constraint:

[FATAL] Constraint 'qualifier': '<signal-name>'[TopPort +
SubModulePort + Net + HierTerminal] not found on/within module
'<top-design>'

Potential Issues
This violation appears if your design does not contain the net, port, or
hierarchical terminal specified by the -name argument of the qualifier
constraint.
2088
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix
To fix this violation, specify the name of an existing net, port, or
hierarchical terminal in the -name argument of the qualifier constraint.

Example Code and/or Schematic

Consider that the current design does not contain the qual1 qualifier. Now
consider that you specify the following constraint:

qualifier -name qual1 -from_clk c1 -to_clk

In the above case, the SGDC_qualifier01 rule reports a violation.

Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file
2089
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_qualifier02a
Reports a violation if an invalid clock is specified in the -from_clk
argument of the qualifier constraint

When to Use

Use this rule to perform sanity checks on the qualifier constraint
specifications.

Prerequisites

Specify the qualifier constraint.

Description

The SGDC_qualifier02a rule reports a violation if the clock specified in the
-from_clk argument of the qualifier constraint is not one of the specified
clocks or an automatically-inferred clock.

Parameter(s)

use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

Constraint(s)

 qualifier (Mandatory): Use this constraint to specify a qualifier for
synchronizing a clock domain crossing.

 clock (Optional): Use this constraint to specify clock signals in your
design.

Messages and Suggested Fix

The following message appears when you specify an invalid clock in the
-from_clk argument of the qualifier constraint:

[WARNING] Constraint 'qualifier': Clock name '<clock-name>'
specified in field '-from_clk' is not a valid clock

Potential Issues

This violation appears if the clock specified in the -from_clk argument of
the qualifier constraint is not one of the specified clock or an automatically-
2090
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
inferred clock.

Consequences of Not Fixing
If you do not fix this violation, the qualifier constraint is not considered
during SpyGlass analysis.

How to Debug and Fix
To fix this violation, perform the following actions:
 Check if the reported clock is considered as a virtual clock by SpyGlass.

If yes, ignore this violation.
 Else, specify any of the following clocks in the -from_clk argument of

the qualifier constraint:
 Clocks specified by the clock constraint.

 Clocks inferred in a design when the use_inferred_clocks parameter is
set.

Example Code and/or Schematic

Consider the port scanen that is not specified by the clock constraint, nor it
is inferred as a valid clock when the use_inferred_clocks parameter is set.

Now consider that you specify the following constraint specification:

qualifier -name qual1 -from_clk scanen -to_clk clk2

In this case, the SGDC_qualifier02a rule reports scanen as an invalid
clock.

Default Severity Label

Warning

Rule Group

Non-Fatal must rule

Reports and Related Files

No report or related file
2091
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_qualifier02b
Reports a violation if a non-existent hierarchical object is specified
in the -from_clk argument of the qualifier constraint

When to Use

Use this rule to perform sanity checks on the qualifier constraint
specifications.

Prerequisites

Specify the qualifier constraint.

Description

The SGDC_qualifier02b rule reports a violation if the clock name specified
in the -from_clk argument of the qualifier constraint is a hierarchical
name that does not exist as a port, hierarchical terminal, or net in the
current design.

Parameter(s)

use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

Constraint(s)

 qualifier (Mandatory): Use this constraint to specify a qualifier for
synchronizing a clock domain crossing.

 clock (Optional): Use this constraint to specify clock signals in your
design.

Messages and Suggested Fix

The following message if the hierarchical clock name
<hierarchical-name> specified by the -from_clk argument of the
qualifier constraint is not found in the current design <module-name>:

[FATAL] Constraint 'qualifier': Hierarchical name
'<hierarchical-name>' not found within module '<module-name>'

Potential Issues
2092
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
This violation appears if the hierarchical clock name specified in the
-from_clk argument of the qualifier constraint is a hierarchical name that
does not exist as a port, hierarchical terminal, or net in the current design.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass analysis does not proceed further.

How to Debug and Fix

To fix this violation, specify existing hierarchical signals in the -from_clk
argument of the qualifier constraint.

Example Code and/or Schematic

Consider the module bbox that does not have any port by the name ck1.

In this case, the SGDC_qualifier02b rule reports a violation if you specify
the following constraint:

qualifier -name qual1 -from_clk test.bbox.ck1 -to_clk clk2

Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file
2093
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_qualifier02c
Reports a violation if a non-existent object is specified in the
-from_clk argument of the qualifier constraint

When to Use

Use this rule to perform sanity checks on the qualifier constraint.

Prerequisites

Specify the qualifier constraint.

Description

The SGDC_qualifier02c rule reports a violation if the clock name specified
in the -from_clk argument of the qualifier constraint is a non-hierarchical
name that does not exist as a port or a net in the current design.

Parameter(s)

None

Constraint(s)

qualifier (Mandatory): Use this constraint to specify a qualifier for
synchronizing a clock domain crossing.

Messages and Suggested Fix

The following message appears if the clock name specified in the
-from_clk argument of the qualifier constraint is a non-hierarchical name
that does not exist as a port or a net in the current design:

[INFO] Constraint 'qualifier': Non-hierarchical name '<name>'
not found within module '<module-name>'. Considering it as a
virtual clock

Potential Issues

This violation appears if the clock name specified in the -from_clk
argument of the qualifier constraint is a non-hierarchical name that does
not exist as a port or a net in the current design.
2094
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Consequences of Not Fixing

If you do not fix this violation, the port or net specified in the -from_clk
argument of the qualifier constraint is considered as a virtual clock.

How to Debug and Fix

To fix this violation, specify an existing port or net name in the -from_clk
argument of the qualifier constraint.

Example Code and/or Schematic

Consider the case in which the current design does not contain the clock
ck1. In this case, the SGDC_qualifier02c rule reports a violation if you
specify the following constraint:

qualifier -name qual1 -from_clk ck1 -to_clk ck2

Default Severity Label

Info

Rule Group

Non fatal must rule

Reports and Related Files

No report or related file
2095
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_qualifier03a
Reports a violation if invalid clock names are specified in the
-to_clk argument of the qualifier constraint

When to Use

Use this rule to perform sanity checks on the qualifier constraint.

Prerequisites

Specify the qualifier constraint.

Description

The SGDC_qualifier03a rule reports a violation if any of the clock names
specified by the -to_clk argument of the qualifier constraint is not one of
the clocks specified by the clock constraint or it is not one of the
automatically inferred clock.

Parameter(s)

use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

Constraint(s)

 qualifier (Mandatory): Use this constraint to specify a qualifier for
synchronizing a clock domain crossing.

 clock (Optional): Use this constraint to specify clock signals in your
design.

Messages and Suggested Fix

The following message appears if the clock specified by the -to_clk
argument of the qualifier constraint is not one of the specified clocks:

[WARNING] Constraint 'qualifier': Clock name '<clock-name>'
specified in field '-to_clk' is not a valid clock

Potential Issues

This violation appears if you specify an invalid clock in the -to_clk
argument of the qualifier constraint.
2096
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Consequences of Not Fixing
If you do not fix this violation, the reported qualifier constraint is not
considered during SpyGlass analysis.

How to Debug and Fix

To fix this violation, specify any of the following clocks in the -to_clk
argument of the qualifier constraint:
 Clock specified by the clock constraint

 Automatically inferred clock when the use_inferred_clocks parameter is
set to yes

Example Code and/or Schematic

Not applicable

Default Severity Label

Warning

Rule Group

Non-fatal must rule

Reports and Related Files

No report or related file
2097
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_qualifier03b
Reports a violation if a non-existent hierarchical object is specified
in the -to_clk argument of the qualifier constraint

When to Use

Use this rule to perform sanity checks on the qualifier constraint
specifications.

Prerequisites

Specify the qualifier constraint.

Description

The SGDC_qualifier03b rule reports a violation if the clock name specified
in the -from_clk argument of the qualifier constraint is a hierarchical
name that does not exist as a port, hierarchical terminal, or net in the
current design.

Parameter(s)

None

Constraint(s)

qualifier (Mandatory): Use this constraint to specify a qualifier for
synchronizing a clock domain crossing.

Messages and Suggested Fix

The following message if the hierarchical clock name
<hierarchical-name> specified by the -to_clk argument of the
qualifier constraint is not found in the current design <module-name>:

[FATAL] Constraint 'qualifier': Hierarchical name
'<hierarchical-name>' not found within module '<module-name>'

Potential Issues
This violation appears if the hierarchical clock name specified in the
-to_clk argument of the qualifier constraint is a hierarchical name that
does not exist as a port, hierarchical terminal, or net in the current design.
2098
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Consequences of Not Fixing
If you do not fix this violation, SpyGlass analysis does not proceed further.

How to Debug and Fix

To fix this violation, specify existing hierarchical signals in the -to_clk
argument of the qualifier constraint.

Example Code and/or Schematic

Consider the module bbox that does not contain any port by the name
clk2.

In this case, the SGDC_qualifier03b rule reports a violation if you specify
the following constraint:

qualifier -name qual1 -from_clk ck1 -to_clk test.bbox.clk2

Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file
2099
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_qualifier03c
Reports a violation if a non-existent object is specified in the
-to_clk argument of the qualifier constraint

When to Use

Use this rule to perform sanity checks on the qualifier constraint.

Prerequisites

Specify the qualifier constraint.

Description

The SGDC_qualifier03c rule reports a violation if the clock name specified
in the -to_clk argument of the qualifier constraint is a non-hierarchical
name that does not exist as a port or a net in the current design.

Parameter(s)

None

Constraint(s)

qualifier (Mandatory): Use this constraint to specify a qualifier for
synchronizing a clock domain crossing.

Messages and Suggested Fix

The following message appears if the clock name specified in the -to_clk
argument of the qualifier constraint is a non-hierarchical name that does
not exist as a port or a net in the current design:

[INFO] Constraint 'qualifier': Non-hierarchical name '<name>'
not found within module '<module-name>'. Considering it as a
virtual clock

Potential Issues

This violation appears if the clock name specified in the -to_clk argument
of the qualifier constraint is a non-hierarchical name that does not exist as a
port or a net in the current design.
2100
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Consequences of Not Fixing

If you do not fix this violation, the port or net specified in the -to_clk
argument of the qualifier constraint is considered as a virtual clock.

How to Debug and Fix

To fix this violation, specify an existing port or net name in the -to_clk
argument of the qualifier constraint.

Example Code and/or Schematic

Consider the case in which the current design does not contain the clock
ck2. In this case, the SGDC_qualifier03c rule reports a violation if you
specify the following constraint:

qualifier -name qual1 -from_clk ck1 -to_clk ck2

Default Severity Label

Info

Rule Group

Non fatal must rule

Reports and Related Files

No report or related file
2101
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_qualifier04
Reports a violation if an invalid domain is specified in the
-from_domain argument of the qualifier constraint

When to Use

Use this rule to perform sanity checks on the qualifier constraint.

Prerequisites

Specify the qualifier constraint.

Description

The SGDC_qualifier04 rule reports a violation if a domain specified by the
-from_domain argument of the qualifier constraint is not one of the
domains specified by the clock constraint or a domain attached to an
automatically inferred clock.

Parameter(s)

use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

Constraint(s)

 qualifier (Mandatory): Use this constraint to specify a qualifier for
synchronizing a clock domain crossing.

 clock (Optional): Use this constraint to specify clock signals in your
design.

Messages and Suggested Fix

The following message appears if an invalid domain is specified in the
-from_domain argument of the qualifier constraint:

[WARNING] Constraint 'qualifier': Domain name '<domain-name>'
specified in field '-from_domain' is not a valid domain

Potential Issues
This violation appears if you specify an invalid domain in the
-from_domain argument of the qualifier constraint.
2102
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Consequences of Not Fixing
If you do not fix this violation, the reported qualifier constraint is not
considered during SpyGlass analysis.

How to Debug and Fix
To fix this violation, specify any of the following domains in the
-from_domain argument of the qualifier constraint:

 Domain specified by the clock constraint

 Domain of an automatically inferred clock when the use_inferred_clocks
parameter is set to yes

Example Code and/or Schematic

Not applicable

Default Severity Label

Warning

Rule Group

Non-fatal must rule

Reports and Related Files

No report or related file
2103
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_qualifier05
Reports a violation if an invalid domain is specified in the
-to_domain argument of the qualifier constraint

When to Use

Use this rule to perform sanity checks on the qualifier constraint.

Prerequisites

Specify the qualifier constraint.

Description

The SGDC_qualifier05 rule reports a violation if a domain specified by the
-to_domain argument of the qualifier constraint is not one of the domains
specified by the clock constraint or a domain attached to an automatically
inferred clock.

Parameter(s)

use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

Constraint(s)

 qualifier (Mandatory): Use this constraint to specify a qualifier for
synchronizing a clock domain crossing.

 clock (Optional): Use this constraint to specify clock signals in your
design.

Messages and Suggested Fix

The following message appears if an invalid domain is specified in the
-from_domain argument of the qualifier constraint:

[WARNING] Constraint 'qualifier': Domain name '<domain-name>'
specified in field '-to_domain' is not a valid domain

Potential Issues

This violation appears if you specify an invalid domain in the -to_domain
argument of the qualifier constraint.
2104
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Consequences of Not Fixing
If you do not fix this violation, the reported qualifier constraint is not
considered during SpyGlass analysis.

How to Debug and Fix
To fix this violation, specify any of the following domains in the
-to_domain argument of the qualifier constraint:

 Domain specified by the clock constraint

 Domain of an automatically inferred clock when the use_inferred_clocks
parameter is set to yes

Example Code and/or Schematic

Not applicable

Default Severity Label

Warning

Rule Group

Non-fatal must rule

Reports and Related Files

No report or related file
2105
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_qualifier06
Reports a violation if an incorrect value is specified in the -type
argument of the qualifier constraint

When to Use

Use this rule to perform sanity checks on the qualifier constraint.

Prerequisites

Specify the following information before running this rule:
 Specify the qualifier constraint.

 Specify clock signals in any of the following ways:

 By using the clock constraint

 By using the automatically-generated clocks after setting the
use_inferred_clocks parameter to yes

Description

The SGDC_qualifier06 rule reports a violation if the value specified in the
-type argument of the qualifier constraint is other than src or des.

Parameter(s)

use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

Constraint(s)

 qualifier (Mandatory): Use this constraint to specify a qualifier for
synchronizing a clock domain crossing.

 clock (Optional): Use this constraint to specify clock signals in a design.

Messages and Suggested Fix

The following message appears if the value <value> specified in the
-type argument of the qualifier constraint is other than src or des:

[FATAL] Constraint 'qualifier': Invalid [Pre-defined]
specification '<value>' for '-type' field of constraint
'qualifier'
2106
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Potential Issues

This violation appears if the value specified in the -type argument of the
qualifier constraint is other than src or des.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix

To fix this violation, specify src or des in the -type argument of the
qualifier constraint.

Example Code and/or Schematic

Consider the following constraint:

qualifier -from_domain d1 d2 d3 -to_domain d4 d5 d6
-name qual -type srcdes

For the above constraint, the SGDC_qualifier06 rule reports a violation
because the value specified in the -type argument is neither src nor des.

Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file
2107
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_qualifier08
Reports a violation if the wildcard name specified by the -name
argument of the qualifier constraint does not match with any
object in the design

When to Use

Use this rule to perform sanity checks on the qualifier constraint.

Prerequisites

Specify the following information before running this rule:
 Specify the qualifier constraint.

 Specify clock signals in any of the following ways:

 By using the clock constraint

 By using the automatically-generated clocks after setting the
use_inferred_clocks parameter to yes

Description

The SGDC_qualifier08 rule reports a violation if the wildcard expression
specified by the -name argument of the qualifier constraint does not match
with the name of any net, hierarchical terminal, port, or sub module port in
the design.

Parameter(s)

use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

Constraint(s)

 qualifier (Mandatory): Use this constraint to specify a qualifier for
synchronizing a clock domain crossing.

 clock (Optional): Use this constraint to specify clock signals in a design.

Messages and Suggested Fix

The following message appears if an invalid net, hierarchical terminal, port,
or sub module port is specified in the -name argument of the qualifier
constraint:
2108
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
[WARNING] Constraint 'qualifier': '<object-name>'[TopPort + Net
+ HierTerminal + SubmodulePort] does not exist in the current
design '<current-design'

Potential Issues

This violation appears if the wildcard name specified by the -name
argument of the qualifier constraint does not match with any net,
hierarchical terminal, port, or sub module port in the design.

Consequences of Not Fixing
If you do not fix this violation, the reported qualifier constraint is not
considered during SpyGlass analysis.

How to Debug and Fix

To fix this violation, specify a correct wildcard expression in the -name
argument of the qualifier constraint so that the expression matches with an
existing net, hierarchical terminal, port, or sub module port of the design.

Example Code and/or Schematic

Consider that your design does not contain any object starting with the
string ql. In this case, the SGDC_qualifier08 rule reports a violation if you
specify the following constraint:

qualifier -from_clk c1 -to_clk c2 -name "ql*" -type src

Default Severity Label

Warning

Rule Group

Non-fatal must rule

Reports and Related Files

No report or related file
2109
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_qualifier09
Reports a violation if none of the -from_clk, -from_domain, -
from_obj, or -ignore arguments of the qualifier constraint are
specified

When to Use

Use this rule to perform sanity checks on the qualifier constraint.

Prerequisites

Specify the following information before running this rule:
 Specify the qualifier constraint.

 Specify clock signals in any of the following ways:

 By using the clock constraint

 By using the automatically-generated clocks after setting the
use_inferred_clocks parameter to yes

Description

The SGDC_qualifier09 rule reports a violation if none of the following
arguments of the qualifier constraint are specified:
 -from_clk

 -from_domain

 -from_obj

 -ignore

Parameter(s)

use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

Constraint(s)

 qualifier (Mandatory): Use this constraint to specify a qualifier for
synchronizing a clock domain crossing.

 clock (Optional): Use this constraint to specify clock signals in a design.
2110
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Messages and Suggested Fix

The following message appears if neither -from_clk/-to_clk nor
-from_domain/-to_domain arguments of the qualifier constraint are
specified:

[FATAL] Constraint 'qualifier': fields -from_clk or -
from_domain or -ignore or -from_obj not specified

Potential Issues
This violation appears if none of the following arguments of the qualifier
constraint are specified:
 -from_clk

 -from_domain

 -from_obj

 -ignore

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix
To fix this violation, specify at least one of the following arguments to the
qualifier constraint:
 -from_clk

 -from_domain

 -from_obj

 -ignore

Example Code and/or Schematic

Consider the following constraint:

qualifier -name qual -type src

For the above constraint, the SGDC_qualifier09 rule reports a violation
because none of the -from_clk, -from_domain, -from_obj, -ignore
2111
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
arguments are specified.

Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file
2112
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_qualifier10
Reports a violation if the domain specified by the -from_clk/
from_domain and -to_clk/to_domain arguments of the qualifier
constraint are same

When to Use

Use this rule to perform sanity checks on the qualifier constraint.

Prerequisites

Specify the following information before running this rule:
 Specify the qualifier constraint.

 Specify clock signals in any of the following ways:

 By using the clock constraint

 By using the automatically-generated clocks after setting the
use_inferred_clocks parameter to yes

Description

The SGDC_qualifier10 rule reports a violation in any of the following cases:
 If clocks specified by the -from_clk and -to_clk arguments of the

qualifier constraint are from the same domain
 If same domain is specified in the -from_domain and -to_domain

arguments of the qualifier constraint

Parameter(s)

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

 report_clock_names_sgdc_qualifier10: Default value is yes. Set this
parameter to no to enable the SGDC_qualifier10 rule not include the
clock/domain names in the violation message.

Constraint(s)

 qualifier (Mandatory): Use this constraint to specify a qualifier for
synchronizing a clock domain crossing.

 clock (Optional): Use this constraint to specify clock signals in a design.
2113
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Messages and Suggested Fix

The following message appears if clocks specified by the -from_clk and -
to_clk arguments of the qualifier constraint are from the same domain, or
same domain is specified in the -from_domain and -to_domain
arguments of this constraint:

[ERROR] Constraint 'qualifier': Domain specified in '-from_clk/
-from_domain' '<name>' and '-to_clk/-to_domain' '<name>'
matches

Potential Issues
This violation appears in any of the following cases:
 If clocks specified by the -from_clk and -to_clk arguments of the

qualifier constraint are of the same domain
 If same domain is specified in the -from_domain and -to_domain

arguments of the qualifier constraint

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix
To fix this violation, check the clock specifications in the SGDC file and
ensure the following:
 Clocks specified by the -from_clk and -to_clk arguments of the

qualifier constraint should be from different domains.
 Different domains should be specified in the -from_domain and

-to_domain arguments of the qualifier constraint.

Example Code and/or Schematic

Example 1

Consider the following constraints specified in an SGDC file:

current_design top

clock -name c1 -domain D1
2114
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
clock -name c2 -domain D1
qualifier -from_clk c1 -to_clk c2 -name qual -type src

For the above example, the SGDC_qualifier10 rule reports a violation
because the c1 and c2 clocks specified by the -from_clk and -to_clk
arguments, respectively, of the qualifier constraint are from the same
domain D1.

Example 2

Consider the following constraint:

qualifier -from_domain D1 -to_domain D1 -name qual -type src

For the above constraint, the SGDC_qualifier10 rule reports a violation
because the same domain D1 is specified in the -from_domain and
-to_domain arguments of the qualifier constraint.

Default Severity Label

Error

Rule Group

Non-fatal must rule

Reports and Related Files

No report or related file
2115
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_qualifier11
Reports a violation if a qualifier is not defined at the destination
output of a clock domain crossing

When to Use

Use this rule to perform sanity checks on the qualifier constraint.

Prerequisites

Specify the following information before running this rule:
 Specify the qualifier constraint.

 Specify clock signals in any of the following ways:

 By using the clock constraint

 By using the automatically-generated clocks after setting the
use_inferred_clocks parameter to yes

Description

The SGDC_qualifier11 rule reports a violation if the qualifier constraint is
specified with the -crossing argument, but the qualifier is not defined at
the destination output of a clock domain crossing.

Parameter(s)

use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

Constraint(s)

 qualifier (Mandatory): Use this constraint to specify a qualifier for
synchronizing a clock domain crossing.

 clock (Optional): Use this constraint to specify clock signals in a design.

Messages and Suggested Fix

The following message appears if the qualifier net <net-name> is not the
output of a clock-domain crossing:

[ERROR] Constraint 'qualifier': '<net-name>' is not an output
of a clock domain crossing
2116
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Potential Issues
This violation appears if your design contains a qualifier for which the
-crossing argument is specified in the qualifier constraint, but this
qualifier is not present in the destination output of a clock domain crossing.

Consequences of Not Fixing
If you do not fix this violation, the reported qualifier does not synchronize
clock domain crossings.

How to Debug and Fix
To fix this violation, analyze the reported qualifier signal, and specify the
-crossing argument only if that qualifier defines a crossing output that
contains a single destination flip-flop.

Example Code and/or Schematic

Consider the following schematic of a violation of this rule:

FIGURE 430. Schematic of the SGDC_qualifier11 Rule Violation

In the above case, SGDC_qualifier11 rule reports a violation because the

// Constr.sgdc
qualifier -name test.MD1.qual -from_clk test.clk1 -to_clk clk2 -crossing
2117
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
qualifier net is driven from the output net of a standalone flip-flop.

Default Severity Label

Error

Rule Group

Non-fatal must rule

Reports and Related Files

No report or related file
2118
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_qualifier12
Reports a violation if the clock/domain specified by the -to_clk or
-to_domain argument of the qualifier constraint does not match
with the clock/domain of the destination instance of the qualifier

When to Use

Use this rule to perform sanity checks on the qualifier constraint.

Prerequisites

Specify the following information before running this rule:
 Specify the qualifier constraint.

 Specify clock signals in any of the following ways:

 By using the clock constraint

 By using the automatically-generated clocks after setting the
use_inferred_clocks parameter to yes

Description

The SGDC_qualifier12 rule reports a violation if the qualifier constraint is
defined with the -crossing argument, but the -to_clk or -to_domain
argument does not match with the clock or domain, respectively, of the
destination instance of the qualifier.

Parameter(s)

use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

Constraint(s)

 qualifier (Mandatory): Use this constraint to specify a qualifier for
synchronizing a clock domain crossing.

 clock (Optional): Use this constraint to specify clock signals in a design.

Messages and Suggested Fix

Message 1

The following message appears if the clock specified by the -to_clk
argument does not match with clock of the destination instance of the
2119
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
qualifier:

[SQual12_1] [ERROR] Constraint 'qualifier': Clock specified in
-to_clk field does not match with clock of destination instance
of the qualifier

Potential Issues
This violation appears if your design contains a qualifier specified by the
qualifier constraint with the -crossing argument, and the clock specified
by the -to_clk argument of this constraint does not match with the clock
of the destination instance of the qualifier.

Consequences of Not Fixing
If you do not fix this violation, the reported qualifier does not synchronize
the clock domain crossings.

How to Debug and Fix

To fix this violation, ensure that the clock specified by the -to_clk
argument of the qualifier constraint matches with the clock of the
destination instance of the qualifier.

Message 2

The following message appears if the domain specified by the -to_domain
argument does not match with the domain of the destination instance of
the qualifier:

[SQual12_2] [ERROR] Constraint 'qualifier': Domain specified in
-to_domain field does not match with domain of destination
instance of the qualifier

Potential Issues
This violation appears if your design contains a qualifier specified by the
qualifier constraint with the -crossing argument, and the domain
specified by the -to_domain argument of this constraint does not match
with the clock domain of the destination instance of the qualifier.
2120
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Consequences of Not Fixing
If you do not fix this violation, the reported qualifier does not synchronize
the clock domain crossings.

How to Debug and Fix

To fix this violation, ensure that the domain specified by the -to_domain
argument of the qualifier constraint matches with the domain of the
destination instance of the qualifier.

Example Code and/or Schematic

Consider the following schematic of a violation of this rule:

FIGURE 431. Schematic of the SGDC_qualifier12 Rule Violation

In the above example, the destination instance of the qual_reg qualifier
is driven by the clk1 clock. This clock does not match with the destination
clock clk3 specified in the SGDC file. Therefore, the SGDC_qualifier12 rule
reports a violation.

clock -name clk1 -domain d1
clock -name clk2 -domain d2
clock -name clk3 -domain d3
qualifier -name test.MD1.qual -from_clk test.clk1 -to_clk clk2 -crossing

// constr.sgdc
2121
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Default Severity Label

Error

Rule Group

Non-fatal must rule

Reports and Related Files

No report or related file
2122
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_qualifier13
Reports if an incorrect clock or domain is specified in the -from_clk
or -from_domain argument of the qualifier constraint

When to Use

Use this rule to perform sanity checks on the qualifier constraint.

Prerequisites

Specify the following information before running this rule:
 Specify the qualifier constraint.

 Specify clock signals in any of the following ways:

 By using the clock constraint

 By using the automatically-generated clocks after setting the
use_inferred_clocks parameter to yes

Description

The SGDC_qualifier13 rule reports a violation if the qualifier constraint is
specified with the -crossing argument, but the clock or domain specified
by the -from_clk or -from_domain argument of this constraint does not
match with the clock or domain of the source instance of the qualifier.

Parameter(s)

use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

Constraint(s)

 qualifier (Mandatory): Use this constraint to specify a qualifier for
synchronizing a clock domain crossing.

 clock (Optional): Use this constraint to specify clock signals in a design.

Messages and Suggested Fix

Message 1

The following message appears if the clock specified by the -from_clk
argument of the qualifier constraint does not match with the clock of the
2123
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
source instance of the qualifier:

[SQual13_1] [ERROR] Constraint 'qualifier': Clock specified in
-from_clk field does not match with clock of source instance of
the <qualifier>

Potential Issues
This violation appears if the qualifier constraint is specified with the
-crossing argument and the clock specified by the -from_clk argument
does not match the clock of the source instance of the qualifier.

Consequences of Not Fixing
If you do not fix this violation, your design does not synchronize the
clock-domain crossing as intended.

How to Debug and Fix

To fix this violation, ensure that the clocks specified by the -from_clk
argument of the qualifier constraint matches with the clock of the source
instance of the qualifier.

Message 2

The following message appears if the domain specified by the
-from_domain argument of the qualifier constraint does not match with
the domain of the source instance of the qualifier:

[SQual13_2] [ERROR] Constraint 'qualifier': Domain specified in
-from_domain field does not match with domain of source
instance of the <qualifier>

Potential Issues
This violation appears if the qualifier constraint is specified with the
-crossing argument and the domain specified by the -from_domain
argument does not match the domain of the source instance of the
qualifier.
2124
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Consequences of Not Fixing
If you do not fix this violation, your design does not synchronize the
clock-domain crossing as intended.

How to Debug and Fix
To fix this violation, ensure that the domains specified by the
-from_domain argument of the qualifier constraint matches with the
domain of the source instance of the qualifier.

Example Code and/or Schematic

Consider the following schematic of a violation reported by this rule:

FIGURE 432. Schematic of the SGDC_qualifier13 Rule Violation

In the above example, the source of the qualifier signal MD1.qual is
triggered from the clk3 clock and not the clk1 clock, as mentioned in the
constraint file. Therefore, the SGDC_qualifier13 rule reports a violation.

// constr.sgdc

clock -name clk1 -domain d1

clock -name clk2 -domain d2
clock -name clk3 -domain d3
qualifier -name test.MD1.qual -from_clk test.clk1 -to_clk clk2 -crossing
2125
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Default Severity Label

Error

Rule Group

Non-fatal must rule

Reports and Related Files

No report or related file
2126
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_qualifier15
Existence check for the -name or -enable arguments of the qualifier
constraint

When to Use

Use this rule to perform sanity checks on the qualifier constraint.

Prerequisites

Specify the qualifier constraint.

Description

The SGDC_qualifier15 rule reports a violation if none of the -name or
-enable arguments are specified to the qualifier constraint.

Parameter(s)

None

Constraint(s)

qualifier (Mandatory): Use this constraint to specify a qualifier for
synchronizing a clock domain crossing.

Messages and Suggested Fix

The following message appears if none of the -name or -enable
arguments are specified to the qualifier constraint:

[FATAL] It is Mandatory to Specify At Least One Value for
combination of fields '-name -enable ' of constraint
'qualifier'

Potential Issues

This violation appears if none of the -name or -enable arguments are
specified to the qualifier constraint.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.
2127
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
How to Debug and Fix

To fix this violation, specify at least one of the -name or -enable
arguments to the qualifier constraint.

Example Code and/or Schematic

The SGDC_qualifier15 rule reports a violation in the following case as none
of the -name or -enable arguments are specified to the qualifier
constraint:

qualifier -from_obj top.src.q -to_obj top.des.q

Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file
2128
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_qualifier16
Existence check for valid signal names specified to the -enable
argument of the qualifier constraint

When to Use

Use this rule to perform sanity checks on the qualifier constraint.

Prerequisites

Specify the qualifier constraint.

Description

The SGDC_qualifier16 rule reports a violation if any signal name specified
to the -enable argument of the qualifier constraint is a hierarchical name
that does not exist as a port, a hierarchical terminal, or a net in the current
design.

Parameter(s)

None

Constraint(s)

qualifier (Mandatory): Use this constraint to specify a qualifier for
synchronizing a clock domain crossing.

Messages and Suggested Fix

The following message appears if an invalid signal name is specified to the
-enable argument of the qualifier constraint:

[FATAL] Constraint 'qualifier': '<enable> '[TopPort + Net +
HierTerminal] does not exist in the current design '<current-
design>'

Where, <enable> refers to the signal name specified to the -enable
argument of the qualifier constraint.

Potential Issues

This violation appears if any signal name specified to the -enable
argument of the qualifier constraint is a hierarchical name that does not
2129
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
exist as a port, a hierarchical terminal, or a net in the current design.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix

To fix this violation, specify a valid signal name to the -enable argument
of the qualifier constraint such that the name is a hierarchical name that
exists as a port, a hierarchical terminal, or a net in the current design.

Example Code and/or Schematic

The SGDC_qualifier16 rule reports a violation in the following case if there
is no object by the name en in the current design:

qualifier -enable "top.en" -from_obj top.src.q -to_obj
top.des.q

Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file
2130
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_qualifier18
qualifier -ignore specified on a net that is the part of a loop

When to Use

Use this rule to perform sanity checks related to the qualifier constraint.

Prerequisites

Specify the qualifier constraint.

Description

The SGDC_qualifier18 rule reports a violation if you specify the qualifier
-ignore constraint on a net that is the part of a loop.

Parameter(s)

None

Constraint(s)

qualifier (Mandatory): Use this constraint to specify a qualifier for
synchronizing a clock domain crossing.

Messages and Suggested Fix

This rule reports the following message:

[ERROR] Constraint qualifier -ignore prevents propagation of
all qualifiers reaching to the loop

Potential Issues
This violation appears if you specify the qualifier -ignore constraint on a net
that is the part of a loop.

Consequences of Not Fixing
If you do not fix this violation, the qualifier -ignore constraint gets applied
to all the nets present in the loop. This may not be the intended behavior.
2131
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
How to Debug and Fix
To fix this violation, apply the qualifier -ignore constraint outside the loop
and in the fan-in cone of the loop.

Example Code and/or Schematic

Consider the example shown in the following figure:

FIGURE 433.

In the above example, the qualifier -ignore constraint is specified on the
q_i3 net. Since this net is the part of a loop, the qualifier -ignore constraint
gets applied on all the nets (q_i4 in this case) of that loop. As a result,
propagation of the qual2 qualifier stops beyond the rtlc_I26 AND gate.

SGDC File:
qualifier -name q_i3 -ignore

qual2 qualifier

q_i3 netq_i4 net
2132
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Default Severity Label

Error

Rule Group

Non-fatal must rule

Reports and Related Files

No report or related file
2133
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_quasi_static01
Reports a violation if an invalid net is specified in the -name
argument of the quasi_static constraint

When to Use

Use this rule to perform sanity checks on the quasi_static constraint.

Prerequisites

Specify the quasi_static constraint.

Description

The SGDC_quasi_static01 rule reports a violation if the object specified in
the -name argument of the quasi_static constraint does not exist as a net in
the current design.

Parameter(s)

None

Constraint(s)

quasi_static (Mandatory): Use this constraint to specify signals whose value
is predominantly static.

Messages and Suggested Fix

The following message appears if the net <net-name> specified by the
-name argument of the quasi_static constraint does not exist in the current
design <current-design>:

[FATAL] '<net-name>' [Net] not found on/within module
'<current-design>'

Potential Issues
This violation appears the current design does not contain the net specified
by the -name argument of the quasi_static constraint.

Consequences of Not Fixing
2134
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix

To fix this violation, specify the name of an existing net in the -name
argument of the quasi_static constraint.

Example Code and/or Schematic

Consider that the design top does not contain the in1 net. Now consider
the following constraints specified in an SGDC file:

current_design top
quasi_static -name "in1"

For the above example, the SGDC_quasi_static01 rule reports a violation.

Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file
2135
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_quasi_static_style01
Reports multiple specifications of the quasi_static_style constraint.

When to Use

Use this rule to perform sanity checks on the quasi_static_style constraint.

Prerequisites

Specify the quasi_static_style constraint.

Description

The SGDC_quasi_static_style01 rule reports a violation if the SGDC file
contains multiple specifications of the quasi_static_style constraint.

Parameter(s)

None

Constraint(s)

quasi_static_style (Mandatory): Use this constraint to specify a criterion
based on which SpyGlass infers quasi-static signals in a design.

Messages and Suggested Fix

The following message appears if multiple specifications of the
quasi_static_style constraint exist in the SGDC file:

[WARNING] Multiple specification of quasi_static_style
constraint detected in constraint file. Latest specification
will be used

Potential Issues
This violation appears if the SGDC file contains multiple specifications of
the quasi_static_style constraint.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass considers the last specification of
the quasi_static_style constraint and ignores the rest.
2136
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
How to Debug and Fix
To fix this violation, specify only one specification of the quasi_static_style
constraint that matches your requirement.

Example Code and/or Schematic

Consider the constraints specified in the following SGDC file:

current_design test

clock -name clk1
input -name in_cfg -clock clk1
reset -sync -name cfg1 -value 1

quasi_static_style -min_domain_fanouts 2 -min_seq_fanouts 5
-names
"*cfg*"
quasi_static_style -min_domain_fanouts 2 -min_seq_fanouts 5

In the above example, two specifications of the quasi_static_style constraint
are present. In this case, SpyGlass only considers the last specification.

Default Severity Label

Warning

Rule Group

Non-fatal must rule

Reports and Related Files

No report or related file
2137
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_quasi_static_style02
Reports if no argument is specified in the quasi_static_style
constraint.

When to Use

Use this rule to perform sanity checks on the quasi_static_style constraint.

Prerequisites

Specify the quasi_static_style constraint.

Description

The SGDC_quasi_static_style02 rule reports a violation if you do not
specify any argument with the quasi_static_style constraint.

Parameter(s)

None

Constraint(s)

quasi_static_style (Mandatory): Use this constraint to specify a criterion
based on which SpyGlass infers quasi-static signals in a design.

Messages and Suggested Fix

The following message appears if you do not specify any argument with the
quasi_static_style constraint:

[WARNING] quasi_static_style': No field specified in the
constraint

Potential Issues
This violation appears if you do not specify any argument with the
quasi_static_style constraint.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass considers the default argument
values of the quasi_static_style constraint while inferring quasi-static signals
2138
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
in a design.

How to Debug and Fix
To fix this violation, specify at least one argument with the quasi_static_style
constraint.

Example Code and/or Schematic

Consider the constraints specified in the following SGDC file:

current_design test
clock -name clk1

quasi_static_style

For the above example, the SGDC_quasi_static_style02 rule reports a
violation because no argument is specified with the quasi_static_style
constraint.

Default Severity Label

Warning

Rule Group

Non-fatal must rule

Reports and Related Files

No report or related file
2139
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_reset_filter_path01
Reports if no argument is specified to the reset_filter_path
constraint

When To Use

Use this rule to perform sanity checks on the reset_filter_path constraint.

Prerequisites

Specify the reset_filter_path constraint.

Description

The SGDC_reset_filter_path01 rule reports a violation if no argument is
specified to the reset_filter_path constraint.

Parameter(s)

None

Constraint(s)

reset_filter_path (Mandatory): Use this constraint to specify false paths so
that reset crossings along these paths are ignored from rule checking.

Messages and Suggested Fix

This rule reports the following violation:

[FATAL] Constraint 'reset_filter_path': fields -from_rst or
-to_rst or -from_obj or -to_obj or -clock not specified

Potential Issues
This violation appears if no argument is specified to the reset_filter_path
constraint.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix
2140
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
To fix this violation, specify at least one of the following arguments to the
reset_filter_path constraint:

Example Code and/or Schematic

Not applicable

Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file

-from_rst <source-rst-list> -to_rst <dest-rst-list> -clock <clk-name>
-from_obj <src-list> -to_obj <des-list>
2141
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_reset_filter_path02a
Reports if a non-existent object is specified to the -clock argument
of the reset_filter_path constraint

When To Use

Use this rule to perform sanity checks on the reset_filter_path constraint.

Prerequisites

Specify the reset_filter_path constraint.

Description

The SGDC_reset_filter_path02a rule reports a violation if the object
specified to the -clock argument of the reset_filter_path constraint does
not exist as a port, hierarchical terminal, net, or virtual clock in the current
design.

Parameter(s)

None

Constraint(s)

reset_filter_path (Mandatory): Use this constraint to specify false paths so
that reset crossings along these paths are ignored from rule checking.

Messages and Suggested Fix

This rule reports the following violation:

[WARNING] Constraint 'reset_filter_path': clock name '<clock-
name>' specified in field '-clock' does not exist either as a
net, port, hierarchical terminal or as a virtual clock

Potential Issues

This violation appears if you the object specified to the -clock argument
of the reset_filter_path constraint is none of the port, hierarchical terminal,
net, or virtual clock in the current design.

Consequences of Not Fixing
2142
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
If you do not fix this violation, the reported constraint is ignored from
SpyGlass analysis.

How to Debug and Fix
To fix this violation, specify an existing port, hierarchical terminal, net, or a
virtual clock to the -clock argument of the reset_filter_path constraint.

Example Code and/or Schematic

Not applicable

Default Severity Label

Warning

Rule Group

Non fatal must rule

Reports and Related Files

No report or related file
2143
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_reset_filter_path02b
Reports a violation if an invalid clock is specified to the -clock
argument of the reset_filter_path constraint

When To Use

Use this rule to perform sanity checks on the reset_filter_path constraint.

Prerequisites

Specify the reset_filter_path constraint.

Description

The SGDC_reset_filter_path02b rule reports a violation if the clock
specified to the -clock argument of the reset_filter_path constraint is not
one of the following clock in the current design:
 Clock specified by the clock constraint

 Clock inferred after setting the use_inferred_clocks parameter to yes

 Virtual clock

Parameter(s)

None

Constraint(s)

reset_filter_path (Mandatory): Use this constraint to specify false paths so
that reset crossings along these paths are ignored from rule checking.

Messages and Suggested Fix

This rule reports the following violation:

[WARNING] Constraint 'reset_filter_path': clock name '<clock-
name>' specified in field '-clock' is found but it is not a
valid clock

Potential Issues

This violation appears if the clock specified to the -clock argument of the
reset_filter_path constraint is not one of the following clock in the current
2144
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
design:
 Clock specified by the clock constraint

 Clock inferred after setting the use_inferred_clocks parameter to yes

 Virtual clock

Consequences of Not Fixing
If you do not fix this violation, the reported constraint is ignored from
SpyGlass analysis.

How to Debug and Fix

To fix this violation, specify any of the following clock to the -clock
argument of the reset_filter_path constraint:
 Clock specified by the clock constraint

 Clock inferred after setting the use_inferred_clocks parameter to yes

 Virtual clock

Example Code and/or Schematic

Not applicable

Default Severity Label

Warning

Rule Group

Non fatal must rule

Reports and Related Files

No report or related file
2145
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_reset_filter_path02c
Reports if a virtual clock is specified to the -clock argument of the
reset_filter_path constraint

When To Use

Use this rule to perform sanity checks on the reset_filter_path constraint.

Prerequisites

Specify the reset_filter_path constraint.

Description

The SGDC_reset_filter_path02c rule reports a violation if a virtual clock is
specified to the -clock argument of the reset_filter_path constraint.

Parameter(s)

None

Constraint(s)

reset_filter_path (Mandatory): Use this constraint to specify false paths so
that reset crossings along these paths are ignored from rule checking.

Messages and Suggested Fix

This rule reports the following violation:

[WARNING] Constraint 'reset_filter_path': clock '<clock-name>'
specified with '-clock' within module '<module-name>' is a
virtual clock

Potential Issues

This violation appears if a virtual clock is specified to the -clock argument
of the reset_filter_path constraint.

Consequences of Not Fixing
If you do not fix this violation, the reported constraint is ignored from
SpyGlass analysis.
2146
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
How to Debug and Fix
To fix this violation, specify a clock other than the virtual clock to the
-clock argument of the reset_filter_path constraint.

Example Code and/or Schematic

Not applicable

Default Severity Label

Warning

Rule Group

Non fatal must rule

Reports and Related Files

No report or related file
2147
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_reset_filter_path03a
Reports if a non-existent object is specified to the -from_rst
argument of the reset_filter_path constraint

When To Use

Use this rule to perform sanity checks on the reset_filter_path constraint.

Prerequisites

Specify the reset_filter_path constraint.

Description

The SGDC_reset_filter_path03a rule reports a violation if the object
specified to the -from_rst argument of the reset_filter_path constraint
does not exist as a net, port, hierarchical terminal, or virtual reset in the
current design.

Parameter(s)

None

Constraint(s)

reset_filter_path (Mandatory): Use this constraint to specify false paths so
that reset crossings along these paths are ignored from rule checking.

Messages and Suggested Fix

This rule reports the following violation:

[WARNING] Constraint 'reset_filter_path': reset name
'<reset-name>' specified in field '-from_rst' does not exist
either as a net, port, hierarchical terminal or as a virtual
reset

Potential Issues

This violation appears if the object specified to the -from_rst argument
of the reset_filter_path constraint does not exist as a net, port, hierarchical
terminal, or virtual reset in the current design.
2148
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Consequences of Not Fixing
If you do not fix this violation, the reported constraint is ignored from
SpyGlass analysis.

How to Debug and Fix
To fix this violation, specify an existing net, port, hierarchical terminal, or
virtual reset to the -from_rst argument of the reset_filter_path constraint.

Example Code and/or Schematic

Not applicable

Default Severity Label

Warning

Rule Group

Non fatal must rule

Reports and Related Files

No report or related file
2149
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_reset_filter_path03b
Reports if an invalid reset is specified to the -from_rst argument of
the reset_filter_path constraint

When To Use

Use this rule to perform sanity checks on the reset_filter_path constraint.

Prerequisites

Following are the prerequisites for running this rule:
 Specify the reset_filter_path constraint.

 Run the Ar_resetcross01 rule.

Description

The SGDC_reset_filter_path03b rule reports a violation if the reset
specified to the -from_rst argument of the reset_filter_path constraint is
not one of the following reset in the current design:
 Reset specified by the reset constraint

 Reset inferred after setting the use_inferred_resets parameter to yes

 Virtual reset

Parameter(s)

None

Constraint(s)

reset_filter_path (Mandatory): Use this constraint to specify false paths so
that reset crossings along these paths are ignored from rule checking.

Messages and Suggested Fix

This rule reports the following violation:

[WARNING] Constraint 'reset_filter_path': reset name '<reset-
name>' specified in '-from_rst' field is found but it is not a
valid reset

Potential Issues
2150
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
This violation appears if the reset specified to the -from_rst argument of
the reset_filter_path constraint is not one of the following reset in the
current design:
 Reset specified by the reset constraint

 Reset inferred after setting the use_inferred_resets parameter to yes

 Virtual reset

Consequences of Not Fixing
If you do not fix this violation, the reported constraint is ignored from
SpyGlass analysis.

How to Debug and Fix

To fix this violation, specify any of the following reset to the -from_rst
argument of the reset_filter_path constraint:
 Reset specified by the reset constraint

 Reset inferred after setting the use_inferred_resets parameter to yes

 Virtual reset

Example Code and/or Schematic

Not applicable

Default Severity Label

Warning

Rule Group

Non fatal must rule

Reports and Related Files

No report or related file
2151
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_reset_filter_path03c
Reports if a virtual reset is specified to the -from_rst argument of
the reset_filter_path constraint

When To Use

Use this rule to perform sanity checks on the reset_filter_path constraint.

Prerequisites

Specify the reset_filter_path constraint.

Description

The SGDC_reset_filter_path03c rule reports a violation if a virtual reset is
specified to the -from_rst argument of the reset_filter_path constraint.

Parameter(s)

None

Constraint(s)

reset_filter_path (Mandatory): Use this constraint to specify false paths so
that reset crossings along these paths are ignored from rule checking.

Messages and Suggested Fix

This rule reports the following violation:

[WARNING] Constraint 'reset_filter_path': reset '<reset-name>'
specified with '-from_rdc' within module '<module-name>' is a
virtual reset

Potential Issues

This violation appears if a virtual reset is specified to the -from_rst
argument of the reset_filter_path constraint.

Consequences of Not Fixing
If you do not fix this violation, the reported constraint is ignored from
SpyGlass analysis.
2152
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
How to Debug and Fix
To fix this violation, specify a reset other than the virtual reset to the
-from_rst argument of the reset_filter_path constraint.

Example Code and/or Schematic

Not applicable

Default Severity Label

Warning

Rule Group

Non fatal must rule

Reports and Related Files

No report or related file
2153
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_reset_filter_path04a
Reports if a non-existent object is specified to the -to_rst argument
of the reset_filter_path constraint

When To Use

Use this rule to perform sanity checks on the reset_filter_path constraint.

Prerequisites

Specify the reset_filter_path constraint.

Description

The SGDC_reset_filter_path03a rule reports a violation if the object
specified to the -to_rst argument of the reset_filter_path constraint does
not exist as a port, net, or hierarchical terminal in the current design.

Parameter(s)

None

Constraint(s)

reset_filter_path (Mandatory): Use this constraint to specify false paths so
that reset crossings along these paths are ignored from rule checking.

Messages and Suggested Fix

This rule reports the following violation:

[FATAL] Constraint 'reset_filter_path': reset name
'<reset-name>' specified in field '-to_rst' does not exist
either as a port, hierarchical terminal, or net

Potential Issues

This violation appears if the object specified to the -to_rst argument of
the reset_filter_path constraint does not exist as a port, net, or hierarchical
terminal in the current design.

Consequences of Not Fixing
2154
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
If you do not fix this violation, SpyGlass analysis does not proceed further.

How to Debug and Fix
To fix this violation, specify an existing port, net, or hierarchical terminal to
the -to_rst argument of the reset_filter_path constraint.

Example Code and/or Schematic

Not applicable

Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file
2155
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_reset_filter_path04b
Reports if an invalid reset is specified to the -to_rst argument of
the reset_filter_path constraint

When To Use

Use this rule to perform sanity checks on the reset_filter_path constraint.

Prerequisites

Following are the prerequisites for running this rule:
 Specify the reset_filter_path constraint.

 Run the Ar_resetcross01 rule.

Description

The SGDC_reset_filter_path04b rule reports a violation if the reset
specified to the -to_rst argument of the reset_filter_path constraint is not
one of the following reset in the current design:
 Reset specified by the reset constraint

 Reset inferred after setting the use_inferred_resets parameter to yes

Parameter(s)

None

Constraint(s)

reset_filter_path (Mandatory): Use this constraint to specify false paths so
that reset crossings along these paths are ignored from rule checking.

Messages and Suggested Fix

This rule reports the following violation:

[WARNING] Constraint 'reset_filter_path': reset name '<reset-
name>' specified in '-to_rst' field is found but it is not a
valid reset

Potential Issues

This violation appears if the reset specified to the -to_rst argument of
2156
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
the reset_filter_path constraint is not one of the following reset in the
current design:
 Reset specified by the reset constraint

 Reset inferred after setting the use_inferred_resets parameter to yes

Consequences of Not Fixing
If you do not fix this violation, the reported constraint is ignored from
SpyGlass analysis.

How to Debug and Fix

To fix this violation, specify any of the following reset to the -to_rst
argument of the reset_filter_path constraint:
 Reset specified by the reset constraint

 Reset inferred after setting the use_inferred_resets parameter to yes

Example Code and/or Schematic

Not applicable

Default Severity Label

Warning

Rule Group

Non fatal must rule

Reports and Related Files

No report or related file
2157
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_reset_filter_path05a
Reports if a non-existent object is specified to the -from_obj
argument of the reset_filter_path constraint

When To Use

Use this rule to perform sanity checks on the reset_filter_path constraint.

Prerequisites

Specify the reset_filter_path constraint.

Description

The SGDC_reset_filter_path05a rule reports a violation if the object
specified to the -from_obj argument of the reset_filter_path constraint
does not exist as a port, net, or hierarchical terminal in the current design.

Parameter(s)

None

Constraint(s)

reset_filter_path (Mandatory): Use this constraint to specify false paths so
that reset crossings along these paths are ignored from rule checking.

Messages and Suggested Fix

This rule reports the following violation:

[FATAL] Constraint 'reset_filter_path': reset name
'<reset-name>' specified in field '-from_obj' does not exist
either as a port, hierarchical terminal, or net

Potential Issues

This violation appears if the object specified to the -from_obj argument
of the reset_filter_path constraint does not exist as a port, net, or
hierarchical terminal in the current design.

Consequences of Not Fixing
2158
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
If you do not fix this violation, SpyGlass analysis does not proceed further.

How to Debug and Fix
To fix this violation, specify an existing port, net, or hierarchical terminal to
the -from_obj argument of the reset_filter_path constraint.

Example Code and/or Schematic

Not applicable

Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file
2159
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_reset_filter_path06a
Reports if a non-existent object is specified to the -to_obj
argument of the reset_filter_path constraint

When To Use

Use this rule to perform sanity checks on the reset_filter_path constraint.

Prerequisites

Specify the reset_filter_path constraint.

Description

The SGDC_reset_filter_path06a rule reports a violation if the object
specified to the -to_obj argument of the reset_filter_path constraint does
not exist as a port, net, or hierarchical terminal in the current design.

Parameter(s)

None

Constraint(s)

reset_filter_path (Mandatory): Use this constraint to specify false paths so
that reset crossings along these paths are ignored from rule checking.

Messages and Suggested Fix

This rule reports the following violation:

[FATAL] Constraint 'reset_filter_path': reset name
'<reset-name>' specified in field '-to_obj' does not exist
either as a port, hierarchical terminal, or net

Potential Issues

This violation appears if the object specified to the -to_obj argument of
the reset_filter_path constraint does not exist as a port, net, or hierarchical
terminal in the current design.

Consequences of Not Fixing
2160
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
If you do not fix this violation, SpyGlass analysis does not proceed further.

How to Debug and Fix
To fix this violation, specify an existing port, net, or hierarchical terminal to
the -to_obj argument of the reset_filter_path constraint.

Example Code and/or Schematic

Not applicable

Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file
2161
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_reset_filter_path_validation01
Reports block-level reset_filter_path constraints which do not have
a matching top-level reset_filter_path constraint

When to Use

Use this rule during the hierarchical CDC verification flow to validate
user-specified constraints for an abstract block in the context of a higher-
level hierarchy.

Prerequisites

Specify the following information before running this rule:
 Specify the reset_filter_path constraint

 Specify the clock constraint for objects given in -from_clock/-
to_clock/-clock arguments of the reset_filter_path constraint

 Specify the reset constraint for objects given in -from_rst/-to_rst
arguments of the reset_filter_path constraint

Description

The SGDC_cdc_false_path_validation01 rule reports a violation if the
reset_filter_path constraint specified on an abstracted block does not have
an equivalent reset_filter_path constraint at the top level. the rule matches
the -from_rst, -to_rst, -from_clock,
-to_clock/-clock, and -type arguments.

Parameter(s)

None

Constraint(s)

 reset_filter_path (Mandatory): Use this constraint to specify reset paths
so that the reset domain crossings across these paths are ignored from
SpyGlass analysis.

 clock (Optional): Use this constraint to specify clock signals in a design.

 reset (Optional): Use this constraint to specify reset signals in a design.
2162
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Messages and Suggested Fix

The rule reports the following message when the reset_filter_path
constraint given in an SGDC file of an abstract view does not have an
equivalent reset_filter_path constraint at the top level.

[ERROR] For block instance '<block-inst>' (block: <block
name>), Constraint reset_filter_path specified at the block
level with fields -from_rst '<from-reset>', -to_rst '<to-
reset>', -from_clock '<from-clock>', -to_clock/-clock '<to-
clock/clock>' and -type '<type>' has no equivalent constraint
at the top level

Potential Issues
This violation appears if the reset_filter_path constraint specified in an SGDC
file of an abstract view does not have an equivalent reset_filter_path
constraint at the top level.

Consequences of Not Fixing
If you do not fix this violation, ignored paths by reset_filter_path are
inconsistent between top and abstracted block. This may result in an
inconsistency in the violations reported for the top and the abstracted block
by the Ar_resetcross01 and Ar_sync_group rules.

How to Debug and Fix
To fix this violation, first analyze the following:
 The specification of reset_filter_path constraint in block level as well as

top level.
 The specification or propagation of top-level clocks.

 The specification or propagation of top-level resets.

Next, if the block-level constraints are incorrect, specify the correct block-
level constraints and run block-level verification again. If the top-level
constraints are incorrect with respect to the block, specify the correct top-
level constraints and run top-level verification again.
2163
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Example Code and/or Schematic

Consider the following schematic:

FIGURE 434.

In addition, consider the following SGDC files:

//Block-level SGDC file

current_design "RFP"
clock -name blk_clk1 -domain clk1
clock -name blk_clk2 -domain clk2
reset -name blk_rst1 -value 0
reset -name blk_rst2 -value 0
reset_filter_path -from_rst blk_rst1 -to_rst blk_rst2 -
from_clock blk_clk1 -to_clock blk_clk2 -type rdc

//Top-level SGDC file

current_design top
clock -name clk1
clock -name clk2
reset -name rst1 -value 0
reset -name rst2 -value 0
sgdc -import RFP RFP.sgdc
2164
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
In the above example, only one reset_filter_path constraint is specified in
the block-level SGDC file. However, no matching reset_filter_path constraint
is specified in the top-level SGDC file.

Therefore, the SGDC_reset_filter_path_validation01 rule reports a
violation in this case.

Default Severity Label

Error

Rule Group

None

Reports and Related Files

No report or related file
2165
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_reset_synchronizer01
Reports a violation if the net/port/hierarchical terminal specified
by the -name argument of the reset_synchronizer constraint is not
found

When to Use

Use this rule to perform sanity checks on the reset_synchronizer constraint.

Prerequisites

Specify the following information before running this rule:
 Specify the reset_synchronizer constraint.

 Specify reset signals in any of the following ways:

 By using the reset constraint

 By using the automatically-generated resets after setting the
use_inferred_resets parameter to yes

 Specify clock signals in any of the following ways:

 By using the clock constraint

 By using the automatically-generated clocks after setting the
use_inferred_clocks parameter to yes

Description

The SGDC_reset_synchronizer01 rule reports a violation if the synchronizer
output specified by the -name argument of the reset_synchronizer constraint
does not exist as a port, hierarchical terminal, or a net in the current
design.

Parameter(s)

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

 use_inferred_resets: Default value is no. Set this parameter to yes to use
auto-generated reset information.
2166
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Constraint(s)

 reset_synchronizer (Mandatory): Use this constraint to specify a reset
synchronizer signal along with its asserted reset value.

 reset (Optional): Use this constraint to specify reset signals in a design.

 clock (Optional): Use this constraint to specify clock signals in a design.

Messages and Suggested Fix

The following message appears if the signal <sig-name> specified by the
-name argument of the reset_synchronizer constraint does not exist in the
module <module-name>:

[FATAL] Constraint 'reset_synchronizer': '<sig-name>' [TopPort
+ Net + HierTerminal] not found on/within module
'<module-name>'

Potential Issues
This violation appears if the current design does not contain the port,
hierarchical terminal, or net specified by the -name argument of the
reset_synchronizer constraint.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run cannot proceed further.

How to Debug and Fix
To fix this violation, specify the name of an existing port, hierarchical
terminal, or net in the -name argument of the reset_synchronizer constraint.

Example Code and/or Schematic

Consider the following example if out1 is not the pin of the reset
synchronizer instance S1:

reset_synchronizer -name top.S1.out1 -reset rst -clock clk1
-value 0
2167
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
In this case, the SGDC_reset_synchronizer01 rule reports a violation.

Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file
2168
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_reset_synchronizer02
Reports if the synchronized output specified by the -name
argument of the reset_synchronizer constraint is not present in the
path of reset specified the -reset argument

When to Use

Use this rule to perform sanity checks on the reset_synchronizer constraint.

Prerequisites

Specify the following information before running this rule:
 Specify the reset_synchronizer constraint.

 Specify reset signals in any of the following ways:

 By using the reset constraint

 By using the automatically-generated resets after setting the
use_inferred_resets parameter to yes

 Specify clock signals in any of the following ways:

 By using the clock constraint

 By using the automatically-generated clocks after setting the
use_inferred_clocks parameter to yes

Description

The SGDC_reset_synchronizer02 rule reports a violation if the synchronizer
output specified by the -name argument of the reset_synchronizer constraint
is not present in the fan-out of the reset specified by the -reset argument
of this constraint.

Parameter(s)

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

 use_inferred_resets: Default value is no. Set this parameter to yes to use
auto-generated reset information.
2169
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Constraint(s)

 reset_synchronizer (Mandatory): Use this constraint to specify a reset
synchronizer signal along with its asserted reset value.

 reset (Optional): Use this constraint to specify reset signals in a design.

 clock (Optional): Use this constraint to specify clock signals in a design.

Messages and Suggested Fix

The following message appears if the synchronizer output
<output-name> specified by the -name argument of the
reset_synchronizer constraint is not present in the fan-out of the reset
<reset-name> specified by the -reset argument of this constraint:

[WARNING] Constraint 'reset_synchronizer': Sync output
'<output-name>' (specified with '-name' field) is not present
in the fanout of reset '<reset-name>' (specified with '-reset'
field)

Potential Issues

This violation appears if the synchronizer output specified by the -name
argument of the reset_synchronizer constraint is not present in the fan-out
of the reset specified by the -reset argument of this constraint.

Consequences of Not Fixing

If you do not fix this violation, signal or pin name specified by the -name
argument of the reset_synchronizer constraint is not considered as a valid
synchronizer in such reset paths.

How to Debug and Fix

To fix this violation, update the value of the -name argument of the
reset_synchronizer constraint to specify a synchronizer output that is present
in the fan-out of the reset specified by the -reset argument of this
constraint.

Example Code and/or Schematic

Consider the following example in which the -name argument is specified
2170
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
through local scoping in the reset_synchronizer constraint:

reset_synchronizer -name reset_sync::sync_rst -reset rst
-clock clk1 -value 0

In this case, this rule reports a violation if all instantiation of the
reset_sync module is not present in the propagated path of the rst
reset.

The following figure shows the propagated paths of the rst reset in this
case:

FIGURE 435. Scenario of the SGDC_reset_synchronizer02 Rule Violation

In the above case, the SGDC_reset_synchronizer02 rule reports the
following violation:

Constraint 'reset_synchronizer': Sync output
'top.inst_2.sync_rst' (specified with '-name' field) is not
present in the fanout of reset 'rst' (specified with '-reset'
field)

reset_sync

inst_1

clk1

rst

reset_sync

inst_2

clk1

rst1

flop1

clr

flop2

clr
2171
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Default Severity Label

Warning

Rule Group

Non-fatal must rule

Reports and Related Files

No report or related file
2172
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_reset_synchronizer03
Reports a violation if the net/port/hierarchical terminal specified
by the -reset argument of the reset_synchronizer constraint does
not exist

When to Use

Use this rule to perform sanity checks on the reset_synchronizer constraint.

Prerequisites

Specify the following information before running this rule:
 Specify the reset_synchronizer constraint.

 Specify reset signals in any of the following ways:

 By using the reset constraint

 By using the automatically-generated resets after setting the
use_inferred_resets parameter to yes

 Specify clock signals in any of the following ways:

 By using the clock constraint

 By using the automatically-generated clocks after setting the
use_inferred_clocks parameter to yes

Description

The SGDC_reset_synchronizer03 rule reports a violation if the reset name
specified by the -reset argument of the reset_synchronizer constraint is a
hierarchical name that does not exist as a port, hierarchical terminal, or
net in the current design.

Parameter(s)

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

 use_inferred_resets: Default value is no. Set this parameter to yes to use
auto-generated reset information.
2173
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Constraint(s)

 reset_synchronizer (Mandatory): Use this constraint to specify a reset
synchronizer signal along with its asserted reset value.

 reset (Optional): Use this constraint to specify reset signals in a design.

 clock (Optional): Use this constraint to specify clock signals in a design.

Messages and Suggested Fix

The following message appears if the signal name <sig-name> specified
by the -reset argument of the reset_synchronizer constraint does not exist
in the module <module-name>:

[FATAL] Constraint 'reset_synchronizer': '<sig-name>' [TopPort
+ Net + HierTerminal] not found on/within module
'<module-name>'

Potential Issues
This violation appears if the current design does not contain the signal
specified by the -reset argument of the reset_synchronizer constraint.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run cannot proceed further.

How to Debug and Fix

To fix this violation, specify the name of an existing signal in the -reset
argument of the reset_synchronizer constraint.

Example Code and/or Schematic

For the following example, this rule reports a violation if rst is not the pin
of the black box instance B1:

reset_synchronizer -name test.S1.out -reset test.B1.rst
-clock clk1 -value 0
2174
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file
2175
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_reset_synchronizer04
Reports if an invalid reset is specified by the -reset argument of the
reset_synchronizer constraint

When to Use

Use this rule to perform sanity checks on the reset_synchronizer constraint.

Prerequisites

Specify the following information before running this rule:
 Specify the reset_synchronizer constraint.

 Specify reset signals in any of the following ways:

 By using the reset constraint

 By using the automatically-generated resets after setting the
use_inferred_resets parameter to yes

 Specify clock signals in any of the following ways:

 By using the clock constraint

 By using the automatically-generated clocks after setting the
use_inferred_clocks parameter to yes

Description

The SGDC_reset_synchronizer04 rule reports a violation if the reset
specified by the -reset argument of the reset_synchronizer constraint is
none of the following resets:
 Reset specified by the reset constraint

 Automatically-inferred reset when the use_inferred_resets parameter is
set to yes

Parameter(s)

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

 use_inferred_resets: Default value is no. Set this parameter to yes to use
auto-generated reset information.
2176
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Constraint(s)

 reset_synchronizer (Mandatory): Use this constraint to specify a reset
synchronizer signal along with its asserted reset value.

 reset (Optional): Use this constraint to specify reset signals in a design.

 clock (Optional): Use this constraint to specify clock signals in a design.

Messages and Suggested Fix

The following message appears if the reset specified by the -reset
argument of the reset_synchronizer constraint is neither specified by the
reset constraint nor it is an automatically-inferred reset:

[FATAL] Constraint 'reset_synchronizer': Reset name
'<reset-name>' specified in field '-reset' is not a valid reset

Potential Issues

This violation appears if the reset specified by the -reset argument of the
reset_synchronizer constraint is none of the following resets:
 Reset specified by the reset constraint

 Automatically-inferred reset when the use_inferred_resets parameter is
set to yes

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run cannot proceed further.

How to Debug and Fix
To fix this violation, perform the following actions:
 Specify relevant reset constraints

 Set the use_inferred_resets parameter to yes to detect reset signals
automatically.

Example Code and/or Schematic

For the following example, this rule reports a violation if rst is not a
user-specified or automatically-inferred reset:
2177
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
reset_synchronizer -name test.S1.srst -reset rst -clock clk1
-value 0

Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file
2178
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_reset_synchronizer05
Reports if the net/port/hierarchical terminal specified by the
-clock argument of the reset_synchronizer constraint does not
exist in the design

When to Use

Use this rule to perform sanity checks on the reset_synchronizer constraint.

Prerequisites

Specify the following information before running this rule:
 Specify the reset_synchronizer constraint.

 Specify reset signals in any of the following ways:

 By using the reset constraint

 By using the automatically-generated resets after setting the
use_inferred_resets parameter to yes

 Specify clock signals in any of the following ways:

 By using the clock constraint

 By using the automatically-generated clocks after setting the
use_inferred_clocks parameter to yes

Description

The SGDC_reset_synchronizer05 rule reports a violation if the synchronizer
clock specified by the -clock argument of the reset_synchronizer constraint
is neither a clock-tag nor a hierarchical name that exists as a port,
hierarchical terminal, or a net in the current design.

Parameter(s)

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

 use_inferred_resets: Default value is no. Set this parameter to yes to use
auto-generated reset information.
2179
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Constraint(s)

 reset_synchronizer (Mandatory): Use this constraint to specify a reset
synchronizer signal along with its asserted reset value.

 reset (Optional): Use this constraint to specify reset signals in a design.

 clock (Optional): Use this constraint to specify clock signals in a design.

Messages and Suggested Fix

The following message appears if the signal <sig-name> specified by the
-clock argument of the reset_synchronizer constraint does not exist in the
module <module-name>:

[FATAL] Constraint 'reset_synchronizer': '<sig-name>'[TopPort +
Net + HierTerminal] not found on/within module '<module-name>'

Potential Issues
This violation appears if the current design does not contain the port,
hierarchical terminal, or a net specified by the -clock argument of the
reset_synchronizer constraint.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run cannot proceed further.

How to Debug and Fix
To fix this violation, specify the name of an existing port, hierarchical
terminal, or a net specified in the -clock argument of the
reset_synchronizer constraint.

Example Code and/or Schematic

For the following example, this rule reports a violation if ck is not a pin of
the B1 black box:

reset_synchronizer -name test.S1.out -reset rst -clock
test.B1.ck -value 0
2180
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file
2181
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_reset_synchronizer06
Reports if an invalid clock is specified by the -clock argument of the
reset_synchronizer constraint

When to Use

Use this rule to perform sanity checks on the reset_synchronizer constraint.

Prerequisites

Specify the following information before running this rule:
 Specify the reset_synchronizer constraint.

 Specify reset signals in any of the following ways:

 By using the reset constraint

 By using the automatically-generated resets after setting the
use_inferred_resets parameter to yes

 Specify clock signals in any of the following ways:

 By using the clock constraint

 By using the automatically-generated clocks after setting the
use_inferred_clocks parameter to yes

Description

The SGDC_reset_synchronizer06 rule reports a violation if the synchronizer
clock specified by the -clock argument of the reset_synchronizer constraint
is none of the following:
 One of the clock tags

 One of the clock specified by the clock constraint

 One of the automatically-inferred clock when the use_inferred_clocks
parameter is set to yes

Parameter(s)

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

 use_inferred_resets: Default value is no. Set this parameter to yes to use
auto-generated reset information.
2182
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Constraint(s)

 reset_synchronizer (Mandatory): Use this constraint to specify a reset
synchronizer signal along with its asserted reset value.

 reset (Optional): Use this constraint to specify reset signals in a design.

 clock (Optional): Use this constraint to specify clock signals in a design.

Messages and Suggested Fix

The following message appears if the clock <synchronizer-clock>
specified by the -clock argument of the reset_synchronizer constraint is not
one of the clock tags, user-specified clocks, or an automatically-inferred
clock:

[FATAL] Constraint 'reset_synchronizer': Clock name
'<synchronizer-clock>' specified in field '-clock' is not a
valid clock

Potential Issues

This violation appears if the clock specified by the -clock argument of the
reset_synchronizer constraint is none of the following:
 One of the clock tags

 One of the clock specified by the clock constraint

 One of the automatically-inferred clock when the use_inferred_clocks
parameter is set to yes

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run cannot proceed further.

How to Debug and Fix
To fix this violation, perform the following actions:
 Specify relevant clock constraints for your design.

 Set the use_inferred_clocks parameter to yes automatically detect clock
signals.
2183
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Example Code and/or Schematic

For the following example, this rule reports a violation if clk1 is not a
user-specified clock/tag or automatically-inferred clock:

reset_synchronizer -name test.S1.srst -reset rst -clock clk1
-value 0

Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file
2184
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_reset_synchronizer07
Reports if an invalid value is specified in the -value argument of the
reset_synchronizer constraint

When to Use

Use this rule to perform sanity checks on the reset_synchronizer constraint.

Prerequisites

Specify the following information before running this rule:
 Specify the reset_synchronizer constraint.

 Specify reset signals in any of the following ways:

 By using the reset constraint

 By using the automatically-generated resets after setting the
use_inferred_resets parameter to yes

 Specify clock signals in any of the following ways:

 By using the clock constraint

 By using the automatically-generated clocks after setting the
use_inferred_clocks parameter to yes

Description

The SGDC_reset_synchronizer06 rule reports a violation if the value
specified by the -value argument of the reset_synchronizer constraint is
other than 0 or 1.

Parameter(s)

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

 use_inferred_resets: Default value is no. Set this parameter to yes to use
auto-generated reset information.

Constraint(s)

 reset_synchronizer (Mandatory): Use this constraint to specify a reset
synchronizer signal along with its asserted reset value.

 reset (Optional): Use this constraint to specify reset signals in a design.
2185
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
 clock (Optional): Use this constraint to specify clock signals in a design.

Messages and Suggested Fix

The following message appears if the value <value> specified by the
-value argument of the reset_synchronizer constraint is other than 0 or 1:

[FATAL] Invalid [Pre-defined-range] specification '<value>' for
'-value' field of constraint 'reset_synchronizer'

Potential Issues
This violation appears if you specify a value other than 0 or 1 in the
-value argument of the reset_synchronizer constraint.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run cannot proceed further.

How to Debug and Fix

To fix this violation, specify 0 or 1 in the -value argument of the
reset_synchronizer constraint.

Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file
2186
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_reset_synchronizer08
Checks if the synchronized output specified by the -name argument
of reset_synchronizer constraint is unused.

When to Use

Use this rule to perform sanity checks on the reset_synchronizer constraint.

Prerequisites

Specify the following information before running this rule:
 Specify the reset_synchronizer constraint.

 Specify reset signals in any of the following ways:

 By using the reset constraint

 By using the automatically-generated resets after setting the
use_inferred_resets parameter to yes

Description

The SGDC_reset_synchronizer08 rule reports a violation if a net, pin, or
port specified by the -name argument of the reset_synchronizer constraint is
not used to synchronize any reset in the current design.

Parameter(s)

use_inferred_resets: Default value is no. Set this parameter to yes to use
auto-generated reset information.

Constraint(s)

 reset_synchronizer (Mandatory): Use this constraint to specify a reset
synchronizer signal along with its asserted reset value.

 reset (Optional): Use this constraint to specify reset signals in a design.

Messages and Suggested Fix

The following message appears if the net <net-name> specified by the
-name argument of the reset_synchronizer constraint is not used to
synchronize any reset in the current design:

[WARNING] Constraint 'reset_synchronizer': Sync output
2187
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
'<net-name>' (specified with '-name' field) is not used in the
design

Potential Issues
This violation appears in any of the following cases:
 If the reset_synchronizer constraint was specified for a different clock

domain
 The net specified by the -name argument of the reset_synchronizer

constraint did not reach the reset/set terminal of any flip-flop. As a
result, this constraint was left unused.

Consequences of Not Fixing
If you do not fix this violation, the specified reset_synchronizer constraint is
not considered for SpyGlass analysis. In addition, SpyGlass may report
extra Ar_unsync01 and/or Ar_asyncdeassert01 violations.

How to Debug and Fix
To debug and fix this violation, check the arguments of the
reset_synchronizer constraint to ensure the following:
 These arguments refer to a correct reset-clock combination

 The net, pin, and port specified by the -name argument is reaching to
the reset/set terminal of a flip-flop of the corresponding clock domain.

However, if you do not want the reset_synchronizer constraint to synchronize
any reset in the current design, ignore this violation.

Example Code and/or Schematic

Consider the following files specified during SpyGlass analysis:
2188
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
In the above example, the SGDC_reset_synchronizer08 rule reports a
violation because of the reset_synchronizer constraint specification.

To resolve this violation, modify the reset_synchronizer constraint
specification to any of the following:

reset_synchronizer -name w2 -reset rst -clock clk1 -value 1

OR

reset_synchronizer -name w1 -reset rst -clock clk1 -value 1

entity flop is
 port(d, clk, rst : in bit;
 q : out bit);
end flop;
architecture flop_arch of flop is
begin
 process(clk, rst)
 begin
 if(rst = '0 ') then
 q <= '0';

 elsif(clk'event and clk = '1') then
 q <= d;
 end if;
 end process;
end flop_arch;

entity top is
 port(in0, in1, clk1, clk2, rst : in bit;
 out0, out1 : out bit);
end top;

architecture top_arch of top is
 component flop is
 port(d, clk, rst : in bit;
 q : out bit);
 end component;
 signal w1, w2, w3, w4 : bit;
begin
 w1 <= rst;
 w2 <= w1;
 w3 <= w1;
 w4 <= w2;

 f1 : flop port map(d => in0, clk => clk1, rst => w4, q => out0);
 f2 : flop port map(d => in1, clk => clk2, rst => w3, q => out1);
end top_arch;

// test.vhd
current_design top
clock -name clk1
clock -name clk2
reset -name rst -value 1
reset_synchronizer -name w2
 -reset rst -clock clk2 -value 1

// constr.sgdc
2189
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
reset_synchronizer -name w1 -reset rst -clock clk2 -value 1

Default Severity Label

Warning

Rule Group

Non-fatal must rule

Reports and Related Files

No report or related file
2190
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_reset_synchronizer09
Reports duplicate reset_synchronizer constraint specifications

When to Use

Use this rule to perform sanity checks on the reset_synchronizer constraint.

Prerequisites

Specify the following information before running this rule:
 Specify the reset_synchronizer constraint.

 Specify reset signals in any of the following ways:

 By using the reset constraint

 By using the automatically-generated resets after setting the
use_inferred_resets parameter to yes

 Specify clock signals in any of the following ways:

 By using the clock constraint

 By using the automatically-generated clocks after setting the
use_inferred_clocks parameter to yes

Description

The SGDC_reset_synchronizer09 rule reports a violation if you specify
duplicate reset_synchronizer constraint specifications.

Parameter(s)

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

 use_inferred_resets: Default value is no. Set this parameter to yes to use
auto-generated reset information.

Constraint(s)

 reset_synchronizer (Mandatory): Use this constraint to specify a reset
synchronizer signal along with its asserted reset value.

 reset (Optional): Use this constraint to specify reset signals in a design.

 clock (Optional): Use this constraint to specify clock signals in a design.
2191
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Messages and Suggested Fix

The following message appears if you specify duplicate reset_synchronizer
constraint specifications:

[WARNING] Ignoring duplicate 'reset_synchronizer' constraint
for '<sig-name>'

Where, <sig-name> refers to the signal name specified by the -name
argument.

Potential Issues
This violation appears if you specify duplicate reset_synchronizer constraint
specifications.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass ignores the duplicate
reset_synchronizer constraint specification.

How to Debug and Fix
To debug this violation, check the previous reset_synchronizer constraint
specification for the reported signal.

Example Code and/or Schematic

Consider the following example:

reset_synchronizer -name rst_synch::rst -reset rst -clock
clk1 -value 0

reset_synchronizer -name test.S1.sync_reset -reset rst
-clock clk1_tag -value 0

In the above example, this rule reports a violation if sync_reset is
connected to the output pin rst of the rst_synch module.

Default Severity Label

Warning
2192
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Rule Group

Fatal must rule

Reports and Related Files

The CKSGDCInfo Report
2193
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_reset_synchronizer10
Reports conflicting reset_synchronizer constraint specifications

When to Use

Use this rule to perform sanity checks on the reset_synchronizer constraint.

Prerequisites

Specify the following information before running this rule:
 Specify the reset_synchronizer constraint.

 Specify reset signals in any of the following ways:

 By using the reset constraint

 By using the automatically-generated resets after setting the
use_inferred_resets parameter to yes

 Specify clock signals in any of the following ways:

 By using the clock constraint

 By using the automatically-generated clocks after setting the
use_inferred_clocks parameter to yes

Description

The SGDC_reset_synchronizer10 rule reports a violation if you have
specified conflicting arguments in multiple reset_synchronizer constraints,
that is, different arguments in the -value argument but same arguments
in all other arguments.

Parameter(s)

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
auto-generated clock information.

 use_inferred_resets: Default value is no. Set this parameter to yes to use
auto-generated reset information.

Constraint(s)

 reset_synchronizer (Mandatory): Use this constraint to specify a reset
synchronizer signal along with its asserted reset value.

 reset (Optional): Use this constraint to specify reset signals in a design.
2194
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
 clock (Optional): Use this constraint to specify clock signals in a design.

Messages and Suggested Fix

This rule reports the following message:

[WARNING] Ignoring 'reset_synchronizer' constraint for
'<sig-name>', that conflicts with previous specification

Where, <sig-name> refers to the signal name specified by the -name
argument.

Potential Issues
This violation appears if you specify conflicting arguments in different
reset_synchronizer constraint specifications.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass ignores the conflicting
reset_synchronizer constraint specification.

How to Debug and Fix
To fix this violation, check previous reset_synchronizer constraint
specification for the reported signal.

Example Code and/or Schematic

Consider the following example:

reset_synchronizer -name top_en.w2 -reset top_en.rstb
-clock top_en.clk2 -value 0

reset_synchronizer -name top_en.w2 -reset top_en.rstb
-clock top_en.clk2 -value 1

For the above example, this rule reports a violation because the values of
all the arguments except the -value argument are same in both the
reset_synchronizer constraint specifications.
2195
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Default Severity Label

Warning

Rule Group

Fatal must rule

Reports and Related Files

The CKSGDCInfo Report
2196
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_signal_in_domain01
Reports a violation if a non-existent module is specified in the
-name argument of the signal_in_domain constraint

When to Use

Use this rule to perform sanity checks on the signal_in_domain constraint.

Prerequisites

Specify the signal_in_domain constraint.

Description

The SGDC_signal_in_domain01 rule reports a violation if the module
specified by the -name argument of the signal_in_domain constraint is not
instantiated in the current design.

Parameter(s)

None

Constraint(s)

signal_in_domain (Mandatory): Use this constraint to specify a domain for
output pins of black box instances.

Messages and Suggested Fix

The following message appears if the module <module-name> specified
by the -name argument of the signal_in_domain constraint does not exist in
the current design:

[FATAL] '<module name>' [SubModule] is never instantiated in
the design

Potential Issues
This violation appears if the current design does not contain the module
specified by the -name argument of the signal_in_domain constraint.

Consequences of Not Fixing
2197
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix

To fix this violation, specify the name of an existing module in the -name
argument of the signal_in_domain constraint.

Example Code and/or Schematic

Consider that the design top does not contain the module mod1. Now
consider the following constraints specified in an SGDC file:

current_design top
signal_in_domain -name mod1 -domain rd_clk -signal out1

For the above example, the SGDC_signal_in_domain01 rule reports a
violation.

Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file
2198
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_signal_in_domain02
Reports a violation if a non-existent pin is specified in the -domain
argument of the signal_in_domain constraint

When to Use

Use this rule to perform sanity checks on the signal_in_domain constraint.

Prerequisites

Specify the signal_in_domain constraint.

Description

The SGDC_signal_in_domain02 rule reports a violation if the pin specified
by the -domain argument of the signal_in_domain constraint does not exist
on the module specified by the -name argument of this constraint.

Parameter(s)

None

Constraint(s)

signal_in_domain (Mandatory): Use this constraint to specify a domain for
output pins of black box instances.

Messages and Suggested Fix

The following message appears if the pin <pin-name> specified by the
-domain argument of the signal_in_domain constraint does not exist in the
module <module-name>:

[FATAL] '<pin-name>'[TopPort] not found on/within module
'<module-name>'

Potential Issues

This violation message if the design module specified by the -name
argument of the signal_in_domain constraint does not contain the pin
specified by the -domain argument of this constraint.
2199
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix

To fix this violation, specify the name of an existing pin in the -domain
argument of the signal_in_domain constraint.

Example Code and/or Schematic

Consider the design module mod1 that does not contain the p1 pin. Now
consider that you specify the following constraint:

signal_in_domain -name mod1 -signal ouddt1 in -domain p1

For the above constraint, the SGDC_signal_in_domain02 rule reports a
violation because the p1 pin does not exist in the mod1 module.

Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file
2200
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_signal_in_domain03
Reports a violation if a non-existent pin is specified in the -signal
argument of the signal_in_domain constraint

When to Use

Use this rule to perform sanity checks on the signal_in_domain constraint.

Prerequisites

Specify the signal_in_domain constraint.

Description

The SGDC_signal_in_domain03 rule reports a violation if the pin specified
by the -signal argument of the signal_in_domain constraint does not exist
on the module specified by the -name argument of this constraint.

Parameter(s)

None

Constraint(s)

signal_in_domain (Mandatory): Use this constraint to specify a domain for
output pins of black box instances.

Messages and Suggested Fix

The following message appears if the pin <pin-name> specified by the
-signal argument of the signal_in_domain constraint does not exist in the
module <module-name>:

[FATAL] '<pin-name>'[TopPort] not found on/within module
'<module-name>'

Potential Issues

This violation appears if the design module specified by the -name
argument of the signal_in_domain constraint does not contain the pin
specified by the -signal argument of this constraint.
2201
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix

To fix this violation, specify the name of an existing pin in the -signal
argument of the signal_in_domain constraint.

Example Code and/or Schematic

Consider the design module mod1 that does not contain the p2 pin. Now
consider that you specify the following constraint:

signal_in_domain -name mod1 -signal p2 in -domain p1

For the above constraint, the SGDC_signal_in_domain03 rule reports a
violation because the p2 pin does not exist in the mod1 module.

Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file
2202
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_signal_in_domain04
The object specified in the -name argument of the
signal_in_domain constraint is not a black box.

When to Use

Use this rule to perform sanity checks on the signal_in_domain constraint.

Prerequisites

Specify the signal_in_domain constraint.

Description

The SGDC_signal_in_domain04 rule reports a violation if the object
specified in the -name argument of the signal_in_domain constraint is not a
black box.

Parameter(s)

None

Constraint(s)

signal_in_domain (Mandatory): Use this constraint to specify a domain for
output pins of black box instances.

Messages and Suggested Fix

The following message appears if the object specified in the -name
argument of the signal_in_domain constraint is not a black box:

[WARNING] Constraint 'signal_in_domain':Name '<object-name>'
specified in field '-name' is not a blackbox. Ignoring the
constraint

Potential Issues

This violation appears if the object specified in the -name argument of the
signal_in_domain constraint is not a black box.

Consequences of Not Fixing
2203
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
If you do not fix this violation, the reported constraint is not considered for
SpyGlass analysis.

How to Debug and Fix

To fix this violation, specify the name of a black box to the -name
argument of the signal_in_domain constraint.

Example Code and/or Schematic

Not applicable

Default Severity Label

Warning

Rule Group

Non-fatal must rule

Reports and Related Files

No report or related file
2204
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_sgclkgroup01
Invalid tag specified to the -group1 argument of the
sg_clock_group constraint

When to Use

Use this rule to perform sanity checks on the sg_clock_group constraint.

Prerequisites

Specify the sg_clock_group constraint.

Description

The SGDC_sgclkgroup01 rule reports a violation if an invalid tag name is
specified to the -group1 argument of the sg_clock_group constraint.

Parameter(s)

None

Constraint(s)

sg_clock_group (Mandatory): Use this constraint to define asynchronous
relationship between clocks.

Messages and Suggested Fix

This rule reports the following violation:

[WARNING] Constraint 'sg_clock_group': Clock name
'<clock-name>' specified in field '-group1' is not a valid
clock tag

Potential Issues

This violation appears if an invalid tag name is specified to the -group1
argument of the sg_clock_group constraint.

Consequences of Not Fixing
If you do not fix this violation, the reported constraint is ignored from
domain computation.
2205
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
How to Debug and Fix

To fix this violation, specify the correct tag name to the -group1 argument
of the sg_clock_group constraint.

Example Code and/or Schematic

Consider the following SGDC file:

current_design top
clock -name clk1 -domain d1 -tag T1
clock -name clk2 -domain d2 -tag T2
sg_clock_group -asynchronous -group1 {T3 T4} -group2 T1

For the above sg_clock_group constraint specification, the
SGDC_sgclkgroup01 rule reports a violation because of the invalid tag
names T3 and T4 specified in the -group1 argument.

Default Severity Label

Error

Rule Group

Non-fatal must rule

Reports and Related Files

None
2206
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_sgclkgroup02
Invalid tag specified to the -group2 argument of the
sg_clock_group constraint

When to Use

Use this rule to perform sanity checks on the sg_clock_group constraint.

Prerequisites

Specify the sg_clock_group constraint.

Description

The SGDC_sgclkgroup02 rule reports a violation if an invalid tag name is
specified to the -group2 argument of the sg_clock_group constraint.

Parameter(s)

None

Constraint(s)

sg_clock_group (Mandatory): Use this constraint to define asynchronous
relationship between clocks.

Messages and Suggested Fix

This rule reports the following violation:

[WARNING] Constraint 'sg_clock_group': Clock name
'<clock-name>' specified in field '-group2' is not a valid
clock tag

Potential Issues

This violation appears if an invalid tag name is specified to the -group2
argument of the sg_clock_group constraint.

Consequences of Not Fixing
If you do not fix this violation, the reported constraint is ignored from
domain computation.
2207
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
How to Debug and Fix

To fix this violation, specify the correct tag name to the -group2 argument
of the sg_clock_group constraint.

Example Code and/or Schematic

Consider the following SGDC file:

current_design top
clock -name clk1 -domain d1 -tag T1
clock -name clk2 -domain d2 -tag T2
sg_clock_group -asynchronous -group1 {T1 T2} -group2 T3

For the above sg_clock_group constraint specification, the
SGDC_sgclkgroup02 rule reports a violation because of the invalid tag
name T3 specified in the -group2 argument.

Default Severity Label

Error

Rule Group

Non-fatal must rule

Reports and Related Files

None
2208
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_sgclkgroup03
Same tag specified to the -group1 and -group2 arguments of the
sg_clock_group constraint

When to Use

Use this rule to perform sanity checks on the sg_clock_group constraint.

Prerequisites

Specify the sg_clock_group constraint.

Description

The SGDC_sgclkgroup03 rule reports a violation if the same tag name is
specified to the -group1 and -group2 arguments of the sg_clock_group
constraint.

Parameter(s)

None

Constraint(s)

sg_clock_group (Mandatory): Use this constraint to define asynchronous
relationship between clocks.

Messages and Suggested Fix

This rule reports the following violation:

[WARNING] Constraint 'sg_clock_group': Same clock tags have
been specified in group1 and group2 fields

Potential Issues

This violation appears if the same tag name is specified to the -group1
and -group2 arguments of the sg_clock_group constraint.

Consequences of Not Fixing
If you do not fix this violation, the reported constraint is ignored from
domain computation.
2209
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
How to Debug and Fix

To fix this violation, specify the correct unique tag names to the -group1
and -group2 arguments of the sg_clock_group constraint.

Example Code and/or Schematic

Consider the following SGDC file:

current_design top
clock -name clk1 -domain d1 -tag T1
clock -name clk2 -domain d2 -tag T2
sg_clock_group -asynchronous -group1 T1 -group2 T1

For the above sg_clock_group constraint specification, the
SGDC_sgclkgroup03 rule reports a violation because the same tag T1 is
specified to the -group1 and -group2 arguments.

Default Severity Label

Error

Rule Group

Non-fatal must rule

Reports and Related Files

None
2210
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_sync_cell02a
Reports if an incorrect non-hierarchical clock name is specified in
the -from_clk argument of the sync_cell constraint

When to Use

Use this rule to perform sanity checks on the sync_cell constraint.

Prerequisites

Specify the sync_cell constraint.

Description

The SGDC_sync_cell02a rule reports a violation if the clock name specified
in the -from_clk argument of the sync_cell constraint is a non-hierarchical
name, and that clock does not exist in the specified module.

Parameter(s)

None

Constraint(s)

sync_cell (Mandatory): Use this constraint to specify synchronizer cells that
should be considered valid for crossings that contain specified frequencies,
source/destination clocks, or domains.

Messages and Suggested Fix

The following message appears if the clock <clk-name> does not exist in
the module <module-name>:

[INFO] Constraint 'sync_cell':clock '<clk-name>' specified with
'-from_clk' not found on/within module '<module-name>'.
Considering it as a virtual clock

Potential Issues
This violation appears if a design module does not contain the clock
specified by the -from_clk argument of the sync_cell constraint.
2211
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Consequences of Not Fixing
If you do not fix this violation, the reported clock is considered as a virtual
clock.

How to Debug and Fix

To fix this violation, specify the name of existing clock in the -from_clk
argument of the sync_cell constraint.

Example Code and/or Schematic

Consider that the module top does not contain the clk3 clock. Now
consider that you specify the following constraints in an SGDC file:

current_design top
sync_cell -name FD1P -from_clk clk3 -to_clk clk1

For the above example, the SGDC_sync_cell02a rule reports a violation.

Default Severity Label

Info

Rule Group

Non-fatal must rule

Reports and Related Files

No report or related file
2212
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_sync_cell02b
Reports if an incorrect hierarchical clock name is specified in the
-from_clk argument of the sync_cell constraint

When to Use

Use this rule to perform sanity checks on the sync_cell constraint.

Prerequisites

Specify the sync_cell constraint.

Description

The SGDC_sync_cell02b rule reports a violation if the clock name specified
in the -from_clk argument of the sync_cell constraint is a hierarchical
name, and that clock does not exist in the specified module.

Parameter(s)

use_inferred_clocks: Default value is no. Set this parameter to yes to use
automatically generated clock information.

Constraint(s)

 sync_cell (Mandatory): Use this constraint to specify synchronizer cells
that should be considered valid for crossings that contain specified
frequencies, source/destination clocks, or domains.

 clock (Optional): Use this constraint to specify clock signals in a design.

Messages and Suggested Fix

The following message appears if the clock <clk-name> does not exist in
the module <module-name>:

[FATAL] Constraint 'sync_cell':clock '<clk-name>' specified
with '-from_clk' not found on/within module '<module-name>'

Potential Issues
This violation appears if a design module does not contain the clock
specified by the -from_clk argument of the sync_cell constraint.
2213
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix
To fix this violation, specify the name of an existing clock in the
-from_clk argument of the sync_cell constraint.

Example Code and/or Schematic

Consider that the module instance mod1 does not contain the clk clock.
Now consider that you specify the following constraints in an SGDC file:

current_design top

sync_cell -name FD1 -from_clk top.mod1.clk -to_clk
top.clk2

For the above example, the SGDC_sync_cell02b rule reports a violation.

Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file
2214
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_sync_cell02c
Reports invalid clocks specified by the -from_clk argument of the
sync_cell constraint

When to Use

Use this rule to perform sanity checks on the sync_cell constraint.

Prerequisites

Specify the sync_cell constraint.

Description

The SGDC_sync_cell02C rule reports a violation if the clock specified by the
-from_clk argument of the sync_cell constraint is none of the following
clocks:
 A clock specified by the clock constraint

 An automatically-inferred clock when the use_inferred_clocks parameter
is set to yes.

Parameter(s)

use_inferred_clocks: Default value is no. Set this parameter to yes to use
automatically generated clock information.

Constraint(s)

sync_cell (Mandatory): Use this constraint to specify synchronizer cells that
should be considered valid for crossings that contain specified frequencies,
source/destination clocks, or domains.

Messages and Suggested Fix

The following message appears if the clock <clk-name> specified by the
-from_clk argument of the sync_cell constraint is not a user-specified
clock or an automatically-inferred clock:

[WARNING] Constraint 'sync_cell': Clock name '<clk-name>'
specified in field '-from_clk' is not a valid clock

Potential Issues
2215
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
This violation appears if the clock specified by the -from_clk argument of
the sync_cell constraint is none of the following clocks:
 A clock specified by the clock constraint

 An automatically-inferred clock when the use_inferred_clocks parameter
is set to yes.

Consequences of Not Fixing
If you do not fix this violation, the sync_cell constraint is not considered
during SpyGlass analysis.

How to Debug and Fix

To fix this violation, specify any of the following clocks in the from_clk
argument of the sync_cell constraint:
 A clock specified by the clock constraint

 An automatically-inferred clock when the use_inferred_clocks parameter
is set to yes.

Example Code and/or Schematic

Consider that the scanin clock is neither an automatically-inferred clock
nor it is specified by the clock constraint.

In this case, the SGDC_sync_cell02C rule reports a violation if you specify
the following constraint:

sync_cell -name FD1 -from_clk scanin -to_clk top.clk2

Default Severity Label

Warning

Rule Group

Non-fatal must rule

Reports and Related Files

No report or related file
2216
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_sync_cell03a
Reports if an incorrect clock name is specified in the -to_clk
argument of the sync_cell constraint

When to Use

Use this rule to perform sanity checks on the sync_cell constraint.

Prerequisites

Specify the sync_cell constraint.

Description

The SGDC_sync_cell03a rule reports a violation if the clock specified by the
-to_clk argument of the sync_cell constraint does not exist in the
specified module.

Parameter(s)

None

Constraint(s)

sync_cell (Mandatory): Use this constraint to specify synchronizer cells that
should be considered valid for crossings that contain specified frequencies,
source/destination clocks, or domains.

Messages and Suggested Fix

The following message appears if the clock <clk-name> does not exist in
the module <module-name>:

Potential Issues
This violation appears if a design module does not contain the clock
specified by the -to_clk argument of the sync_cell constraint.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.
2217
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
How to Debug and Fix

To fix this violation, specify the name of an existing clock in the -to_clk
argument of the sync_cell constraint.

Example Code and/or Schematic

Consider that the module top does not contain the clk clock. Now
consider that you specify the following constraints in an SGDC file:

current_design top

sync_cell -name FD1 -from_clk top.clk2 -to_clk top.clk

For the above example, the SGDC_sync_cell03a rule reports a violation.

Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file
2218
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_sync_cell03b
Reports invalid clocks specified by the -to_clk argument of the
sync_cell constraint

When to Use

Use this rule to perform sanity checks on the sync_cell constraint.

Prerequisites

Specify the sync_cell constraint.

Description

The SGDC_sync_cell03b rule reports a violation if the clock specified by the
-to_clk argument of the sync_cell constraint is none of the following
clocks:
 A clock specified by the clock constraint

 An automatically-inferred clock when the use_inferred_clocks parameter
is set to yes.

Parameter(s)

use_inferred_clocks: Default value is no. Set this parameter to yes to use
automatically generated clock information.

Constraint(s)

 sync_cell (Mandatory): Use this constraint to specify synchronizer cells
that should be considered valid for crossings that contain specified
frequencies, source/destination clocks, or domains.

 clock (Optional): Use this constraint to specify clock signals in a design.

Messages and Suggested Fix

The following message appears if the clock <clk-name> specified by the
-to_clk argument of the sync_cell constraint is not a user-specified clock
or an automatically-inferred clock:

[WARNING] Constraint 'sync_cell': Clock name '<clk-name>'
specified in field '-to_clk' is not a valid clock
2219
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Potential Issues

This violation appears if the clock specified by the -to_clk argument of
the sync_cell constraint is none of the following clocks:
 A clock specified by the clock constraint

 An automatically-inferred clock when the use_inferred_clocks parameter
is set to yes.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass ignores the reported constraint.

How to Debug and Fix

To fix this violation, specify any of the following clocks in the -to_clk
argument of the sync_cell constraint:
 A clock specified by the clock constraint

 An automatically-inferred clock when the use_inferred_clocks parameter
is set to yes.

Example Code and/or Schematic

Consider that the scanin clock is neither an automatically-inferred clock
nor it is specified by the clock constraint.

In this case, the SGDC_sync_cell03b rule reports a violation if you specify
the following constraint:

sync_cell -name FD1 -from_clk clk1 -to_clk top.scanin

Default Severity Label

Warning

Rule Group

Non-fatal must rule

Reports and Related Files

No report or related file
2220
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_sync_cell04
Reports if same domain clocks are specified in the -from_clk and
-to_clk arguments of the sync_cell constraint

When to Use

Use this rule to perform sanity checks on the sync_cell constraint.

Prerequisites

Specify the following information before running this rule:
 Specify the sync_cell constraint.

 Specify clock signals in any of the following ways:

 By using the clock constraint.

 By using the automatically-generated clocks after setting the
use_inferred_clocks parameter to yes.

Description

The SGDC_sync_cell04 rule reports a violation if the clocks specified by the
-to_clk and -from_clk arguments of the sync_cell constraint are from
the same domain.

Parameter(s)

use_inferred_clocks: Default value is no. Set this parameter to yes to use
automatically generated clock information.

Constraint(s)

 sync_cell (Mandatory): Use this constraint to specify synchronizer cells
that should be considered valid for crossings that contain specified
frequencies, source/destination clocks, or domains.

 clock (Optional): Use this constraint to specify clock signals in a design.

Messages and Suggested Fix

The following message appears if the clocks specified by the -to_clk and
-from_clk arguments of the sync_cell constraint are from the same
domain:
2221
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
[WARNING] Constraint 'sync_cell': Domain of clock
'<from-clock>' specified in field '-from_clk' matches with
domain of clock '<to-clock>' specified in field '-to_clk'

Potential Issues

This violation appears if the clocks specified by the -to_clk and
-from_clk arguments of the sync_cell constraint are from the same
domain.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass ignores the reported constraint.

How to Debug and Fix

To fix this violation, ensure that the clocks specified by the -to_clk and
-from_clk arguments of the sync_cell constraint are from different
domains.

Example Code and/or Schematic

Consider the following constraints specified in an SGDC file:

current_design top

clock -name top.clk1 -domain d1 -period 10
clock -name top.clk2 -domain d1 -period 20
clock -name top.clk3 -domain d3 -period 30

sync_cell -name SYNC1 -from_clk clk1 -to_clk clk2

For the above example, the SGDC_sync_cell04 rule reports a violation
because the clk1 and clk2 clocks specified by the -from_clk and
-to_clk arguments, respectively, of the sync_cell constraint are from the
same domain d1.

Default Severity Label

Warning
2222
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Rule Group

Non-fatal must rule

Reports and Related Files

No report or related file
2223
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_sync_cell05
Reports a violation if an invalid domain is specified in the
-from_domain argument of the sync_cell constraint

When to Use

Use this rule to perform sanity checks on the sync_cell constraint.

Prerequisites

Specify the sync_cell constraint.

Description

The SGDC_sync_cell05 rule reports a violation if the domain specified by
the -from_domain argument of the sync_cell constraint does not match
with any of the following domains:
 The domain of a clock specified by the clock constraint

 The domain of an automatically-inferred clock when the
use_inferred_clocks parameter is set to yes

Parameter(s)

use_inferred_clocks: Default value is no. Set this parameter to yes to use
automatically generated clock information.

Constraint(s)

 sync_cell (Mandatory): Use this constraint to specify synchronizer cells
that should be considered valid for crossings that contain specified
frequencies, source/destination clocks, or domains.

 clock (Optional): Use this constraint to specify clock signals in a design.

Messages and Suggested Fix

The following message appears if an invalid domain <domain-name> is
specified in the -from_domain argument of the sync_cell constraint:

[WARNING] Constraint 'sync_cell': Incorrect domain
'<domain-name>' specified in field '-from_domain'
2224
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Potential Issues

This violation appears if the domain specified by the -from_domain
argument of the sync_cell constraint does not match with any of the
following domains:
 The domain of a clock specified by the clock constraint

 The domain of an automatically-inferred clock when the
use_inferred_clocks parameter is set to yes

Consequences of Not Fixing
If you do not fix this violation, SpyGlass ignores the reported constraint.

How to Debug and Fix
To fix this violation, specify any of the following domains in the
-from_domain argument of the sync_cell constraint:

 The domain of a clock specified by the clock constraint

 The domain of an automatically-inferred clock when the
use_inferred_clocks parameter is set to yes

Example Code and/or Schematic

Consider the following constraints specified in an SGDC file:

current_design top

clock -name top.clk1 -domain d1 -period 10
clock -name top.clk2 -domain d2 -period 20

sync_cell -name FD2 -from_domain d -to_domain d2

In this example, the design top does not contain any clock (user-specified
or automatically-inferred) that belongs to the domain d.

Therefore, the SGDC_sync_cell05 rule reports a violation in this case
because the d domain is specified in the -from_domain argument of the
sync_cell constraint.
2225
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Default Severity Label

Warning

Rule Group

Non-fatal must rule

Reports and Related Files

No report or related file
2226
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_sync_cell06
Reports a violation if an invalid domain is specified in the
-to_domain argument of the sync_cell constraint

When to Use

Use this rule to perform sanity checks on the sync_cell constraint.

Prerequisites

Specify the sync_cell constraint.

Description

The SGDC_sync_cell06 rule reports a violation if the domain specified by
the -to_domain argument of the sync_cell constraint does not match with
any of the following domains:
 The domain of a clock specified by the clock constraint

 The domain of an automatically-inferred clock when the
use_inferred_clocks parameter is set to yes

Parameter(s)

use_inferred_clocks: Default value is no. Set this parameter to yes to use
automatically generated clock information.

Constraint(s)

 sync_cell (Mandatory): Use this constraint to specify synchronizer cells
that should be considered valid for crossings that contain specified
frequencies, source/destination clocks, or domains.

 clock (Optional): Use this constraint to specify clock signals in a design.

Messages and Suggested Fix

The following message appears if an invalid domain <domain-name> is
specified in the -to_domain argument of the sync_cell constraint:

[WARNING] Constraint 'sync_cell': Incorrect domain
'<domain-name>' specified in field '-to_domain'
2227
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Potential Issues

This violation appears if the domain specified by the -to_domain
argument of the sync_cell constraint does not match with any of the
following domains:
 The domain of a clock specified by the clock constraint

 The domain of an automatically-inferred clock when the
use_inferred_clocks parameter is set to yes

Consequences of Not Fixing
If you do not fix this violation, SpyGlass ignores the reported constraint.

How to Debug and Fix
To fix this violation, specify any of the following domains in the
-to_domain argument of the sync_cell constraint:

 The domain of a clock specified by the clock constraint

 The domain of an automatically-inferred clock when the
use_inferred_clocks parameter is set to yes

Example Code and/or Schematic

Consider the following constraints specified in an SGDC file:

current_design top

clock -name top.clk1 -domain d1 -period 10
clock -name top.clk2 -domain d2 -period 20

sync_cell -name FD2 -from_domain d1 -to_domain d

In this example, the design top does not contain any clock (user-specified
or automatically-inferred) that belongs to the domain d.

Therefore, the SGDC_sync_cell06 rule reports a violation in this case
because the d domain is specified in the -to_domain argument of the
sync_cell constraint.
2228
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Default Severity Label

Warning

Rule Group

Non-fatal must rule

Reports and Related Files

No report or related file
2229
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_sync_cell07
Reports if the same domain is specified in the -to_domain and
-from_domain arguments of the sync_cell constraint

When to Use

Use this rule to perform sanity checks on the sync_cell constraint.

Prerequisites

Specify the following information before running this rule:
 Specify the sync_cell constraint.

 Specify clock signals in any of the following ways:

 By using the clock constraint

 By using the automatically-generated clocks after setting the
use_inferred_clocks parameter to yes

Description

The SGDC_sync_cell07 rule reports a violation if the same domain is
specified in the -to_domain and -from_domain arguments of the
sync_cell constraint.

Parameter(s)

use_inferred_clocks: Default value is no. Set this parameter to yes to use
automatically generated clock information.

Constraint(s)

 sync_cell (Mandatory): Use this constraint to specify synchronizer cells
that should be considered valid for crossings that contain specified
frequencies, source/destination clocks, or domains.

 clock (Optional): Use this constraint to specify clock signals in a design.

Messages and Suggested Fix

The following message appears if the same domain <domain-name> is
specified in the -from_domain and -to_domain arguments of the
sync_cell constraint:
2230
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
[WARNING] Constraint 'sync_cell': Domain '<domain-name>'
specified in field '-from_domain' is same as the domain
specified in field '-to_domain'

Potential Issues
This violation appears if the same domain is specified by the
-from_domain and -to_domain arguments of the sync_cell constraint.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass ignores the reported constraint.

How to Debug and Fix

To fix this violation, specify different domains in the -from_domain and
-to_domain arguments of the sync_cell constraint.

Example Code and/or Schematic

Consider the following constraint:

sync_cell -name SYNC2 -from_domain d1 -to_domain d1

For the above example, the SGDC_sync_cell07 rule reports a violation
because the same domain d1 is specified in the -from_domain and
-to_domain arguments of the sync_cell constraint.

Default Severity Label

Warning

Rule Group

Non-fatal must rule

Reports and Related Files

No report or related file
2231
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_sync_cell08a
Reports if an incorrect value is specified in the -from_period
argument of the sync_cell constraint

When to Use

Use this rule to perform sanity checks on the sync_cell constraint.

Prerequisites

Specify the following information before running this rule:
 Specify the sync_cell constraint.

 Specify clock signals in any of the following ways:

 By using the clock constraint

 By using the automatically-generated clocks after setting the
use_inferred_clocks parameter to yes

Description

The SGDC_sync_cell08a rule reports a violation if the value specified by
the -from_period argument of the sync_cell constraint is not a float value
or it is a negative float value.

Parameter(s)

use_inferred_clocks: Default value is no. Set this parameter to yes to use
automatically generated clock information.

Constraint(s)

 sync_cell (Mandatory): Use this constraint to specify synchronizer cells
that should be considered valid for crossings that contain specified
frequencies, source/destination clocks, or domains.

 clock (Optional): Use this constraint to specify clock signals in a design.

Messages and Suggested Fix

The following message appears if an invalid value <value> is specified in
the -from_period argument of the sync_cell constraint:

[FATAL] Invalid [Pre-defined-range] specification '<value>' for
2232
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
'-from_period' field of constraint 'sync_cell'

Potential Issues

This violation appears if the value specified by the -from_period
argument of the sync_cell constraint is not a float value or it is a negative
float value.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix
To fix this violation, specify a non-negative float value in the
-from_period argument of the sync_cell constraint.

Example Code and/or Schematic

Consider the following constraint:

sync_cell -name FD1P -from_period "-10" -to_period 10

For the above example, the SGDC_sync_cell08a rule reports a violation
because the -from_period argument of the above constraint is assigned
a negative float value.

Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file
2233
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_sync_cell08b
Reports a violation if an invalid period value is specified in the
-from_period argument of the sync_cell constraint

When to Use

Use this rule to perform sanity checks on the sync_cell constraint.

Prerequisites

Specify the following information before running this rule:
 Specify the sync_cell constraint.

 Specify clock signals in any of the following ways:

 By using the clock constraint

 By using the automatically-generated clocks after setting the
use_inferred_clocks parameter to yes

Description

The SGDC_sync_cell08b rule reports a violation if the period specified by
the -from_period argument of the sync_cell constraint does not match
with the period of any clock specified by the clock constraint.

Parameter(s)

use_inferred_clocks: Default value is no. Set this parameter to yes to use
automatically generated clock information.

Constraint(s)

 sync_cell (Mandatory): Use this constraint to specify synchronizer cells
that should be considered valid for crossings that contain specified
frequencies, source/destination clocks, or domains.

 clock (Optional): Use this constraint to specify clock signals in a design.

Messages and Suggested Fix

The following message appears if an invalid period is specified in the
-from_period argument of the sync_cell constraint:

[WARNING] Constraint 'sync_cell': Incorrect period specified in
2234
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
field '-from_period'

Potential Issues

This violation appears if the period specified by the -from_period
argument of the sync_cell constraint does not match with the period of any
clock specified by the clock constraint.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass ignores the reported constraint.

How to Debug and Fix

To fix this violation, ensure that the period specified by the -from_period
argument of the sync_cell constraint matches with the period of a clock
specified by the clock constraint.

Example Code and/or Schematic

Consider the following constraint:

current_design top

clock -name top.clk1 -domain d1 -period 10
clock -name top.clk2 -domain d2 -period 30

sync_cell -name FD2 -from_period 20 -to_period 30

For the above example, the SGDC_sync_cell08b rule reports a violation
because the period 20 specified by the -from_period argument of the
sync_cell constraint does not match with the period of any clock specified by
the clock constraint.

Default Severity Label

Warning

Rule Group

Non-fatal must rule
2235
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Reports and Related Files

No report or related file
2236
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_sync_cell09a
Reports if an incorrect value is specified in the -to_period
argument of the sync_cell constraint

When to Use

Use this rule to perform sanity checks on the sync_cell constraint.

Prerequisites

Specify the following information before running this rule:
 Specify the sync_cell constraint.

 Specify clock signals in any of the following ways:

 By using the clock constraint

 By using the automatically-generated clocks after setting the
use_inferred_clocks parameter to yes

Description

The SGDC_sync_cell09a rule reports a violation if the value specified by
the -to_period argument of the sync_cell constraint is not a float value or
it is a negative float value.

Parameter(s)

use_inferred_clocks: Default value is no. Set this parameter to yes to use
automatically generated clock information.

Constraint(s)

 sync_cell (Mandatory): Use this constraint to specify synchronizer cells
that should be considered valid for crossings that contain specified
frequencies, source/destination clocks, or domains.

 clock (Optional): Use this constraint to specify clock signals in a design.

Messages and Suggested Fix

The following message appears if an invalid value <value> is specified in
the -to_period argument of the sync_cell constraint:

[FATAL] Invalid [Pre-defined-range] specification '<value>' for
2237
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
'-to_period' field of constraint 'sync_cell'

Potential Issues

This violation appears if the value specified by the -to_period argument
of the sync_cell constraint is not a float value or it is a negative float value.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix

To fix this violation, specify a non-negative float value in the -to_period
argument of the sync_cell constraint.

Example Code and/or Schematic

Consider the following constraint:

sync_cell -name FD1 -to_period xyz

For the above example, the SGDC_sync_cell09a rule reports a violation
because the -to_period argument of the above constraint is not assigned
a float value.

Default Severity Label

Fatal

Rule Group

Fatal must rule

Reports and Related Files

No report or related file
2238
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_sync_cell09b
Reports a violation if an invalid period value is specified in the
-to_period argument of the sync_cell constraint

When to Use

Use this rule to perform sanity checks on the sync_cell constraint.

Prerequisites

Specify the following information before running this rule:
 Specify the sync_cell constraint.

 Specify clock signals in any of the following ways:

 By using the clock constraint

 By using the automatically-generated clocks after setting the
use_inferred_clocks parameter to yes

Description

The SGDC_sync_cell09b rule reports a violation if the period specified by
the -to_period argument of the sync_cell constraint does not match with
the period of any clock specified by the clock constraint.

Parameter(s)

use_inferred_clocks: Default value is no. Set this parameter to yes to use
automatically generated clock information.

Constraint(s)

 sync_cell (Mandatory): Use this constraint to specify synchronizer cells
that should be considered valid for crossings that contain specified
frequencies, source/destination clocks, or domains.

 clock (Optional): Use this constraint to specify clock signals in a design.

Messages and Suggested Fix

The following message appears if an invalid period is specified in the
-to_period argument of the sync_cell constraint:

[WARNING] Constraint 'sync_cell': Incorrect period specified in
2239
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
field '-from_period'

Potential Issues

This violation appears if the period specified by the -to_period argument
of the sync_cell constraint does not match with the period of any clock
specified by the clock constraint.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass ignores the reported constraint.

How to Debug and Fix

To fix this violation, ensure that the period specified by the -to_period
argument of the sync_cell constraint matches with the period of a clock
specified by the clock constraint.

Example Code and/or Schematic

Consider the following constraint:

current_design top

clock -name top.clk1 -domain d1 -period 10
clock -name top.clk2 -domain d2 -period 30

sync_cell -name FD2 -from_period 10 -to_period 20

For the above example, the SGDC_sync_cell09b rule reports a violation
because the period 20 specified by the -to_period argument of the
sync_cell constraint does not match with the period of any clock specified by
the clock constraint.

Default Severity Label

Warning

Rule Group

Non-fatal must rule
2240
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Reports and Related Files

No report or related file
2241
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_sync_cell10
Reports sync_cell constraint specifications that cover the same
clock-domain crossing

When to Use

Use this rule to perform sanity checks on the sync_cell constraint.

Prerequisites

Specify the following information before running this rule:
 Specify the sync_cell constraint.

 Specify clock signals in any of the following ways:

 By using the clock constraint

 By using the automatically-generated clocks after setting the
use_inferred_clocks parameter to yes

Description

The SGDC_sync_cell10 rule reports a violation if multiple sync_cell
constraint specifications cover the same clock-domain crossing.

Parameter(s)

use_inferred_clocks: Default value is no. Set this parameter to yes to use
automatically generated clock information.

Constraint(s)

 sync_cell (Mandatory): Use this constraint to specify synchronizer cells
that should be considered valid for crossings that contain specified
frequencies, source/destination clocks, or domains.

 clock (Optional): Use this constraint to specify clock signals in a design.

Messages and Suggested Fix

The following message appears if

[INFO] Constraint 'sync_cell': Overlapping constraint
specification found. All the specifications will be used for
rule-checking
2242
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Potential Issues
This violation appears if the same clock-domain crossing is covered by
multiple sync_cell constraint specifications.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass considers all the synchronizer cells
of the reported sync_cell constraints as valid for clock-domain crossings.

How to Debug and Fix
To debug this violation, analyze the sync_cell constraint specifications that
cover the same crossing.

If these overlapping specifications are intentional, ignore this violation.
However, if they are not intentional, modify these specifications so that
they do not cover the same crossing.

Example Code and/or Schematic

Consider the following constraints specified in an SGDC file:

current_design top

clock -name top.clk1 -domain d1 -period 10
clock -name top.clk2 -domain d2 -period 20

sync_cell -name SYNC1 -from_clk clk1 -to_clk clk2
sync_cell -name SYNC2 -from_domain d1 -to_domain d2

In the above example, the sync_cell constraint specifications are
overlapping as they cover the common clock domain crossing from the
clk1 clock to the clk2 clock.

Default Severity Label

Info
2243
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Rule Group

Non-fatal must rule

Reports and Related Files

No report or related file
2244
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_virtualclock01
Reports a virtual clock specified in combination with other real or
virtual clock in abstract_port constraint

When to Use

Use this rule to perform sanity checks on the abstract_port constraint
specifications.

Prerequisites

Specify the abstract_port constraint before running this rule.

Description

A violation is reported if any of the following combination is specified in the
-clock, -from, or -to arguments of the abstract_port constraint:

 A virtual clock with a real clock

 A virtual clock with another virtual clock

Parameter(s)

None

Constraint(s)

 abstract_port (Optional): Use this constraint to define abstracted
information for block ports.

Messages and Suggested Fix

The following message appears if a virtual clock is specified in combination
with other real or virtual clocks in the abstract_port constraint.

[WARNING] Virtual clock in combination with other real or
virtual clock specified in '<field-name>' field of
abstract_port constraint. Ignoring the constraint

Potential Issues
This violation appears if any of the following combination is specified in the
-clock, -from, or -to arguments of the abstract_port constraint.
2245
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
 A virtual clock with a real clock

 A virtual clock with another virtual clock

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run will ignore the abstract_port
constraint.

How to Debug and Fix
To debug and fix this violation, specify a signal virtual clock with unique
domain.

Example Code and/or Schematic

Consider the following code snippets:

Example 1

abstract_port -module MOD -ports P1 -clock VCLK1 VCLK2

In the above code, two virtual clocks are specified in the abstract_port
constraint, so SpyGlass will report the SGDC_virtualclock01 violation and
will ignore this constraint.

Example 2

abstract_port -module MOD -ports P2 -clock VCLK1 CLK1

In the above code, a real clock is specified along with virtual clock in the
abstract_port constraint, so SpyGlass will report the SGDC_virtualclock01
violation and will ignore this constraint.
2246
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_virtualclock02
Reports same virtual clock in abstract_port constraint specified on
both input & output port of a module

When to Use

Use this rule to check if both the input and output port/pin of a module are
associated with same virtual clock by using the abstract_port constraint.

Prerequisites

Specify the abstract_port constraint before running this rule.

Description

A violation is reported if both the input and output port of a module are
associated with the same virtual clock by using the abstract_port constraint.

Parameter(s)

None

Constraint(s)

 abstract_port (Optional): Use this constraint to define abstracted
information for block ports.

Messages and Suggested Fix

The following message appears if both the input and output port or pin of a
module are associated with the same virtual clock using abstract_port.

[WARNING] Same Virtual clock <virt-clk-name> is used for both
input <input-port-name> and output <output-port-name> ports of
the module <module-name>

Potential Issues
This violation appears if both the input and output port or pin of a module
are associated with the same virtual clock by using the abstract_port
constraint.

Consequences of Not Fixing
2247
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
If you do not fix this violation, SpyGlass considers the domains of both the
input and output ports as the same domain. In addition, the virtual clock
mapping is not performed for validation.

How to Debug and Fix
To debug and fix this violation, specify a single virtual clock association.

Example Code and/or Schematic

Consider the following abstract_port constraints:

Example 1

top.sgdc
current_design top

clock -name clk1
clock -name clk2
sgdc -import block block.sgdc
block.sgdc

current_design block
abstract_port -ports IN1 -clock VCLK1
abstract_port -ports OUT1 -clock VCLK1

In the above example, the IN1 and the OUT1 input and output ports of the
abstracted block are associated with the same virtual clock and therefore
the SGDC_virtualclock02 rule reports a violation.

Note that if you specify a verification virtual clock for both input and output
ports, the SGDC_virtualclock02 rule does not report a violation. For
example, consider the following scenario where the verification clock is
specified for both input and output ports:

current_design block
abstract_port -ports IN1 -clock VCLK1 -start
abstract_port -ports OUT1 -clock VCLK1

In the above scenario, the SGDC_virtualclock02 rule does not report a
violation.
2248
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_virtualclock03
Reports virtual clocks that have the same name as the domain
name specified in the -domain argument of the clock constraint

When to Use

Use this rule to report virtual clocks that have the same name as the
domain name specified in the -domain argument of the clock constraint for
a design object.

Description

The SGDC_virtualclock03 rule reports violation if a virtual clock has the
same name as domain name specified in the -domain field of the clock
constraint specified on a real design object.

Parameter(s)

None

Constraint(s)

 clock (Optional): Use this constraint to specify clock signals in a design.

Messages and Suggested Fix

The following message appears if a virtual clock has the same name as
domain name specified in the -domain field of the clock constraint.

[WARNING] Virtual clock name <virtual-clock-name> is specified
in the -domain field of clock constraint

Potential Issues
This violation appears if a virtual clock has the same name as domain
name specified in the -domain field of the clock constraint.

Consequences of Not Fixing
If you do not fix this violation, the design intent might be lost.
2249
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
How to Debug and Fix
To debug and fix this violation, specify a unique name for virtual clock.

Example Code and/or Schematic

Consider the following SGDC file:

clock -name clk1 -domain d1

clock -tag d1

abstract_port -ports p1 -clock d1

In the above scenario, the domain name and the virtual clock names are
the same and therefore the rule reports a violation.
2250
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SignalTypeSetup
Checks the signal specified by the -name argument of the
signal_type constraint

When to Use

Use this rule to perform existence checks for signals specified by the
signal_type constraint.

Description

The SignalTypeSetup rule reports a violation if the signal specified by the
-name argument of the signal_type constraint is not any of the following:

 Output of a clock-domain crossing

 Source of a clock-domain crossing

 Input port acting as the source of a clock-domain crossing

Parameter(s)

None

Constraint(s)

 signal_type (Mandatory): Use this constraint to specify the signal type
(control or data).

Messages and Suggested Fix

The following message appears when the signal specified by the -name
argument of the signal_type constraint does not exist in any clock-domain
crossing:

[WARNING] 'signal_type' constraint <signal-name> of type
<control | data> is not applied in the current design
<current_design>

Potential Issues

This violation appears if the signal specified by the -name argument of the
signal_type constraint is not any of the following:
 Output of a clock-domain crossing
2251
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
 Source of a clock-domain crossing

 Input port acting as the source of a clock-domain crossing

Consequences of Not Fixing
If you do not fix this violation, SpyGlass ignores the signal_type constraint
specified for the reported signal. As a result, the signal is checked for data
as well as control synchronization schemes by Ac_sync_group rules.

For details on these rules, see Working With the Ac_sync_group Rules.

How to Debug and Fix

To fix this violation, update the -name argument of the signal_type
constraint to specify a signal that is one of the following:
 Output of a clock-domain crossing

 Source of a clock-domain crossing

 Input port acting as the source of a clock-domain crossing

Example Code and/or Schematic

Consider that the top.des signal is not the part of any clock-domain
crossing in a design.

In this case, if you specify the following constraint, the SignalTypeSetup
rule reports a violation:

signal_type -name top.des -type data

Default Severity Label

Warning

Rule Group

Non-fatal must rule

Reports and Related Files

No report or related file
2252
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SyncCellSetup
Reports a violation if the sync_cell constraint does not synchronize
any crossing in the current design

When to Use

Use this rule to check cases in which the sync_cell constraint does not
synchronize any crossing in a design.

Prerequisites

Specify the following information before running this rule:
 Specify the sync_cell constraint.

 Specify clock signals in any of the following ways:

 By using the clock constraint

 By using the automatically-generated clocks after setting the
use_inferred_clocks parameter to yes

Description

The SyncCellSetup rule reports a violation if the sync_cell constraint does
not synchronize any crossing in the current design.

Parameter(s)

use_inferred_clocks: Default value is no. Set this parameter to yes to use
automatically generated clock information.

Constraint(s)

 sync_cell (Mandatory): Use this constraint to specify synchronizer cells
that should be considered valid for crossings that contain specified
frequencies, source/destination clocks, or domains.

 clock (Optional): Use this constraint to specify clock signals in a design.

Messages and Suggested Fix

The following message appears if the sync_cell constraint does not
synchronize any crossing in the design <current-design>:

[WARNING] 'sync_cell' constraint is not used to synchronize any
2253
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
crossing in the current design '<current-design>'

Potential Issues
This violation appears the sync_cell constraint does not synchronize any
crossing in the current design.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass ignores the reported constraint.

How to Debug and Fix
To debug this violation, perform the following actions:
 Analyze the clocks specified by the -from_clk/-from_domain and -

to_clk/-to_domain arguments of the sync_cell constraint.
 Check the specification of the module specified by the -name argument

of the sync_cell constraint and ensure that it is instantiated as a
destination module.

 If a combinational logic exists in a crossing, specify an appropriate value
for the allow_combo_logic.

 Remove the reported constraint if it is redundant.
For example, if the same crossings are matched by some other
constraint, you can remove the reported constraint.

Example Code and/or Schematic

Not applicable

Default Severity Label

Warning

Rule Group

Non-fatal must rule

Reports and Related Files

No report or related file
2254
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
SGDC_clock_path_wrapper_module01
Reports user-defined wrapper modules in the clock-path

When to Use

Use this rule to check the clock path hierarchy.

Prerequisites

Specify the wrapper modules by using the clock_path_wrapper_modules
constraint.

Description

The SGDC_clock_path_wrapper_module01 rule reports all user-defined
wrapper modules present in the propagated clock path

Parameter(s)

 use_inferred_clocks: Default value is no. Set this parameter to yes to use
automatically generated clock information.

 same_domain_at_gate: Default value is no. Set the value of the
parameter to an allowed value to optimize the inference of domains on
clock merging gates.

Constraint(s)

 clock_path_wrapper_modules (Mandatory): Use this constraint to exclude
modules from the checks performed by the Clock_hier01, Clock_hier02,
and Clock_hier03 rules.

 clock (Optional): Use this constraint to specify clock signals in a design.

Messages and Suggested Fix

The following message appears when a user-specified wrapper module is
detected:

[INFO] User-specified wrapper module '<mod-
name>'(instance:'<hierarchy>') detected at net '<net-name>'

Potential Issues
Not applicable

Consequences of Not Fixing
2255
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Not applicable

How to Debug and Fix
View the Incremental Schematic of the violation message. The
schematic highlights the clock-path to the wrapper module.

Example Code and/or Schematic

In this example, the wrapper module is defined as:

clock_path_wrapper_module -names cgc_lib

The SGDC_clock_path_wrapper_module01 rule reports a message for this
wrapper, as follows:

[INFO] User-specified wrapper module 'cgc_lib'(instance:'CG4')
detected at net 'test.gclk'

The following schematic illustrates the instantiation of this wrapper
module.

FIGURE 436. Schematic for the SGDC_clock_path_wrapper_module01 Rule

Default Severity Label

Info

Rule Group

Non-fatal must rule
2256
Synopsys, Inc.

Must Rules

Rules in SpyGlass CDC
Reports and Related Files

The CKSGDCInfo Report
2257
Synopsys, Inc.

Rule Grouping in SpyGlass CDC

Rules in SpyGlass CDC
Rule Grouping in SpyGlass CDC
The rules in SpyGlass CDC are divided into the following rule groups:

Rule Group Rules
SETUP Setup_Clock01, Setup_port01
FIND Clock_info01, Clock_info02, Reset_info01, Reset_info02
INFORMATION Clock_info03a, Clock_info03b, Clock_info03c,

Clock_info05, Clock_info05b, Clock_info06,
Clock_info07, Clock_info14, Clock_info16, Clock_info17,
Clock_Reset_info01, Propagate_Clocks,
Propagate_Resets, Reset_info09, Setup_clockreset01

VERIFY Clock_check01, Clock_check02, Clock_check03,
Clock_check04, Clock_check05, Clock_check06a,
Clock_check06b, Clock_check07, Reset_check01,
Reset_check02, Reset_check03, Reset_check04,
Reset_check05, Reset_check06, Reset_check07,
Reset_check09, Reset_check10, Clock_Reset_check01,
Clock_Reset_check02, Clock_Reset_check03,
Clock_glitch01, Clock_glitch02, Clock_glitch03,
Clock_glitch04, Clock_converge01

SYNCHRONIZATION Clock_sync03a, Clock_sync03b, Clock_sync05,
Clock_sync06, Clock_sync08a, Clock_sync09,
Reset_sync01, Reset_sync02, Reset_sync03,
Reset_sync04

DELTADELAY Clock_delay01, Clock_delay02, DeltaDelay01,
DeltaDelay02, NoClockCell, PortTimeDelay

ADV_CLOCKS Ac_cdc01a, Ac_cdc01b, Ac_cdc01c, Ac_cdc08,
Ac_crossing01, Ac_fifo01, Ac_glitch01, Ac_glitch02,
Ac_handshake01, Ac_handshake02, Ac_init01,
Ac_initstate01, Ac_license01, Ac_multitop01,
Ac_sanity01, Ac_sanity02, Ac_sanity03, Ac_sanity04,
Ac_report01, Clock_sync03a
2258
Synopsys, Inc.

Terminologies in
SpyGlass CDC
The following terminologies are used in SpyGlass CDC:

Properties Assertions Clock Cycle Count and
Sequential Depth

Design Period Initial State Functional Flip-Flop
Reset Flip-Flop Reset Cone Synchronous Clocks
Repeaters Derived Resets Control Signals
Design Assumptions
2259
Synopsys, Inc.

Properties

Terminologies in SpyGlass CDC
Properties
A property means the expected design behavior to be tested.

Following are some examples of properties in the context of ASIC designs:
 There can be only one active driver on a tristate bus.

 There should be no floating busses.

 There should be no data loss while moving from fast to slow clock
domain.

 A request should be acknowledged within five clock cycles.
2260
Synopsys, Inc.

Assertions

Terminologies in SpyGlass CDC
Assertions
Assertions are directives to the formal verification tool to verify the given
Properties.

In other words, when it is asserted that a property holds true, the Properties
becomes an assertion. Therefore, in the formal verification flow, these two
terms are used interchangeably.
2261
Synopsys, Inc.

Clock Cycle Count and Sequential Depth

Terminologies in SpyGlass CDC
Clock Cycle Count and Sequential Depth
Whenever a rule-violation message is reported by SpyGlass, a sequential
depth is reported that indicates the number of clock cycles it takes to start
from an initial state and reach the location of rule-violation.

In case of a single clock that is active only at posedge or only at negedge,
this number is straightforward. However, in a multi-clock environment with
the clocks active at posedge, negedge, or both, the cycle count can be
interpreted differently.

In order to provide an accurate idea of the number of cycles, SpyGlass
reports two numbers for the sequential depth. These two numbers are the
same for a design with a single clock active at a single edge. For all other
cases, these two numbers are defined as follows:
1. Number of cycles of fastest clock in the cone of influence of the property

being checked
If a property is applied to a set of nets of a design, then the fastest clock
of the relevant nets is extracted and if a message is occurring, then the
number of cycles of the fastest clock at the time of rule-violation is
reported. In the simple case of a single clock system, this number will
be the number of clock cycles of the given clock. In this scheme, a clock
cycle is accounted for as soon as one of the edges has occurred. As a
result, a half cycle is considered as a full cycle.

2. Number of non-overlapping edges
This number represents both the positive edge count and the negative
edge count from the initial state to the rule-violation where if two edges
of two clocks occurred at the exact same time, the counter is
incremented only by one. SpyGlass generates a vector signal named
verification_cycle to represent the counter value. This value is
displayed in the Waveform Viewer when an assertion failure occurs.
Note that both edges are counted regardless if registers are triggered at
posedge, negedge, or both. In particular, in a single clock system, this
number will be equal to twice the number of clock cycles (~+1 due to
the fact that a half cycle is accounted as a full cycle).
For example, the following figure shows three clocks waveforms:
2262
Synopsys, Inc.

Clock Cycle Count and Sequential Depth

Terminologies in SpyGlass CDC
FIGURE 1. Clock cycle count and sequential depth

In the above figure, for a given window of time, there are:
 8 clock cycles (number of cycles of the fastest clock)

 17 edges (15 edges for the top waveform, 0 for the middle since all the
edges are covered by the top waveform, and 2 edges for the last clock
since it is not overlapping with any edges of the previous clocks)

NOTE: Although not all edges are active, the counting includes all edges - active or
inactive.
2263
Synopsys, Inc.

Design Period

Terminologies in SpyGlass CDC
Design Period
Functional analysis complexity increases with the number of asynchronous
clocks in a design. To understand how clock frequencies affect the
functional analysis process, consider two clocks running with 17 ns period
and 13 ns period respectively. If the rising edges of the two clocks are
aligned at time 0 ns, the next time the rising edges will again be aligned
corresponds to 221 ns (LCM of two clock periods). This means that the
design behaves asynchronously for 221 ns.

Any functional analysis process that would exploit repetition (for proving a
property, for example) would have to analyze the design at least for this
period of time, which may correspond to many evaluations of logic in the
design. SpyGlass CDC refers to this period as the Design Period.

The number of non-overlapping edges of all clocks covered by the Design
Period is known as the Design Cycle. A smaller Design Cycle will lead to
better formal QOR. For more details, refer the High Design Cycle section.

Design Cycle Exceeding the Threshold Value

For cases in which design cycle exceeds the threshold value of 65535,
SpyGlass does not report the actual value of the design cycle. Instead, it
reports the following message:

Design Cycle: <Exceeds threshold value of 65535>
2264
Synopsys, Inc.

Initial State

Terminologies in SpyGlass CDC
Initial State
The initial state is a register-value assignment from which functional
analysis will start its analysis. Example: Given a 4-bit counter and a
property asserting that the counter will eventually reach 15, this assertion
passes in 5 cycles if the counter is initialized with 10, whereas it will pass in
15 cycles if the counter is initialized to 0.

An initial state may or may not be a reset state of a design. A reset state of
a design is a register-value assignment obtained by resetting a design
using a reset signal (may be user-specified). SpyGlass can obtain an initial
state in four different ways:
1. Direct register-value assignment using the reset constraint.
2. State value generated by an external simulation engine as a VCD file

and read in to SpyGlass using the simulation_data constraint.
3. Initialization vector that can reset registers using the define_tag

constraint.
4. Find an initial state automatically. If you do not provide an initial state

and/or do not provide an initialization vector, then SpyGlass determines
an initial state using the following approach:
 Use reset port to reset registers.

 Random analysis by applying stimulus to the inputs and simulating to
find valid register value assignment. Although not a reset state, the
assignment is guaranteed to be reached by stimulating the inputs of
a design.
Use the fa_ieffort parameter to specify the effort that SpyGlass puts in
while searching the initial state of a design during simulation.

 Functional analysis for a valid register-value assignment.

Automatic initial state search (case 4) cannot be combined with other
cases. Therefore, any register not initialized by the user-specified vector or
the initial state remains at “x”, which can impact the outcome of functional
analysis.

You must validate the initial state of a design before running any functional
analysis. SpyGlass provides various reports as well as RTL back-annotation
and schematic highlight for the initial state exploration.
2265
Synopsys, Inc.

Functional Flip-Flop

Terminologies in SpyGlass CDC
Functional Flip-Flop
Refers to any flip-flop that is not feeding a reset of any other flip-flop, even
after layers of sequential logic.

The following figure shows a functional flip-flop:

FIGURE 2. Functional Flip-Flop
2266
Synopsys, Inc.

Reset Flip-Flop

Terminologies in SpyGlass CDC
Reset Flip-Flop
Refers to any flip-flop receiving a user-defined asynchronous reset as a
control to its asynchronous reset pin.

The following figure shows the example of a functional flip-flop and a reset
flip-flop:

FIGURE 3. Reset Flip-Flops
2267
Synopsys, Inc.

Reset Cone

Terminologies in SpyGlass CDC
Reset Cone
Consider the following figure:

FIGURE 4. Reset Cones

In the above figure, the area covered after the output of the gate gate1 is
one reset cone. Similarly, the area covered after the output of the gate
gate2 is another reset cone.

Within each reset cone, a violation is reported for only one flip-flop. For
example, for the reset cone Reset Cone 1, either of the f1, f2, or f3
flip-flop is reported.

gate1

gate2

Reset Cone 1

Reset Cone 2

f1 f2

f3

f4
2268
Synopsys, Inc.

Synchronous Clocks

Terminologies in SpyGlass CDC
Synchronous Clocks
Refers to the clocks that have the same domain.

The following figure shows the example of synchronous clocks clk1 and
clk2 that belong to the d1 domain:

FIGURE 5. Synchronous clocks

current_design top
clock -name clk1 -domain d1
clock -name clk2 -domain d1

// constr.sgdc
2269
Synopsys, Inc.

Repeaters

Terminologies in SpyGlass CDC
Repeaters
Repeaters are sequential elements that are inserted in a path to meet
certain timing requirements. These are usually inserted manually by
designers at the RTL stage to add additional cycles of delay based on clock
frequencies of source and destination clocks.
2270
Synopsys, Inc.

Derived Resets

Terminologies in SpyGlass CDC
Derived Resets
These are the resets that come from the output of a flip-flop that is
receiving a primary reset or another derived reset.

In the following figure, temp3_reg.Q is the derived reset:

FIGURE 6. Example of a derived reset

Derived reset
2271
Synopsys, Inc.

Control Signals

Terminologies in SpyGlass CDC
Control Signals
A source signal is called as a control signal if it is:

 A scalar source signal, such as in2 in Figure 6.

 A source specified through the signal_type -type control constraint.
For example, consider the scenario shown in the following figure:

FIGURE 7. Qualifier Merging with a Source

In the above scenario, specify the following constraint to consider w1 as a
control signal:

signal_type -name w1 -type control

in1

clk1

in2[0]

clk1

in3

clk1

src1

src2

clk2

clk2

qualifier

qualifier merging with
the src1 source

output of convergence

out1

w1
2272
Synopsys, Inc.

Design Assumptions

Terminologies in SpyGlass CDC
Design Assumptions
Design assumptions are the constraints that you specify in an SGDC file to
capture the design intent.

For example, you can specify the assumption that a design signal is static
by applying the quasi_static constraint on that signal.
2273
Synopsys, Inc.

Design Assumptions

Terminologies in SpyGlass CDC
2274
Synopsys, Inc.

Appendix:
SGDC Constraints
SpyGlass Design Constraints (SGDC) provides additional design
information that is not apparent in an RTL.

In addition, you can restrict SpyGlass analysis to certain objects in a design
by specifying these objects by using SGDC commands.
2275
Synopsys, Inc.

SpyGlass Design Constraints Used by SpyGlass CDC

Appendix: SGDC Constraints
SpyGlass Design Constraints Used by
SpyGlass CDC

The following table lists the SGDC commands used by SpyGlass CDC
solution:

SpyGlass CDC Solution
abstract_file abstract_port allow_combo_logic
assume_path breakpoint cdc_attribute
cdc_false_path cdc_filter_path cdc_filter_coherency
cdc_matrix_attributes clock clock_sense
define_reset_order define_tag deltacheck_ignore_ins

tance
deltacheck_ignore_module deltacheck_start deltacheck_stop_insta

nce
deltacheck_stop_module deltacheck_stop_signal fifo
generated_clock gray_signals input
ip_block meta_design_hier meta_inst
meta_module meta_monitor_options monitor_time
network_allowed_cells num_flops noclockcell_start
noclockcell_stop_instance noclockcell_stop_module noclockcell_stop_signa

l
no_convergence_check output output_not_used
port_time_delay quasi_static quasi_static_style
qualifier repeater reset
reset_filter_path reset_synchronizer sdc_data
set_case_analysis sg_clock_group sgdc
simulation_data signal_in_domain signal_type
sync_cell watchpoint validation_filter_path
2276
Synopsys, Inc.

List of Topics

 stop_conv_at_seq_lib .. 139
About This Book ... 43
abstract_port Constraints for Multiple Ports Reaching Same Sequential Element.. 655
abstract_port Constraints for Ports Connected to Data Pin of a Multi-Flop Structure 656
abstract_port Constraints for Ports Connected with Multiple Sequential Elements 654
abstract_port Constraints for Ports Connected with Sequential Elements 654
abstract_validate_express ... 82
Ac_initstate01 Spreadsheet Report ... 576
ac_sync_mode ... 85
Adding Clocks in the Clock Setup Window .. 448
adv_cdc_summary_cumulative... 660
adv_cdc_summary_current.. 660
adv_cdc_summary_detail .. 661
all .. 139
all .. 194
all .. 346
all .. 401
all_convergence_paths.. 96
all_converging_clocks ... 97
allow_any_async_pin .. 91
allow_assume_path_thru_bbox .. 192
allow_clock_on_hier_term ... 92
allow_combo_logic ... 93
allow_combo_logic_repeater .. 95
allow_divergence_convergence .. 188
Allowed Values of the cdc_reduce_pessimism Parameter.................................. 126
allow_enabled_multiflop .. 98
allow_half_sync.. 100
allow_merged_qualifier ... 101
allow_preset_domain .. 190
allow_quasi_static .. 138
allow_unconstrained_reset_in_rfp... 103
allow_vhdl_on_clock_path ... 104
all_potential_qual ... 90
all_potential_resets .. 344
AND Gate Synchronization Scheme... 434
2277
Synopsys, Inc.

Assertions ... 2261
async_reset_usage ... 105
auto_detect_datahold01_enable ... 106
autofix_abstract_port.. 107
autofix_dump_allinputs ... 108
bbox ... 126
Black Box .. 582
Block Abstraction Rules ... 1566
Block Constraint Generation Rules .. 1554
Block Constraint Validation Rules .. 1582
Case Analysis Mismatch Spreadsheet .. 671
CDC Analysis based on sg_clock_group ... 56
CDC Verification Rules... 1042
cdc_bus_compress ... 109
cdc_compatible .. 111
cdc_dump_assertions.. 112
cdc_effective_bus_verif ... 114
cdc_express... 115
cdc_gen_unrelated_coherency.. 116
cdc_ignore_multi_domain .. 117
cdc_qualifier_depth... 118
cdc_qualifier_depth_start .. 121
cdc_reduce_pessimism.. 125
Check for Common Reasons or Sources ... 69
check_bus_bit_convergence... 141
check_edge ... 142
check_input_coverage... 143
check_multiclock_bbox.. 144
check_port_setup ... 147
check_qualified_signal_at_soc.. 149
check_reset_for_constclock ... 148
check_single_source ... 146
Clearing the Filter ... 78
Clock and Reset Checking Rules.. 1501
Clock and Reset Information Rules.. 913
Clock Checking Rules .. 1350
Clock Cones Section of the Clock Setup Window.. 446
Clock Cycle Count and Sequential Depth .. 2262
Clock Domain Mismatch Spreadsheet .. 670
Clock Gate Synchronization Method... 493
Clock Glitch Checking Rules ... 1287
2278
Synopsys, Inc.

Clock Information Rules .. 784
Clock Mismatch Spreadsheet.. 669
Clock Sources Section of the Clock Setup Window... 445
clock_crossing ... 130
clock_edge .. 150
clock_fanout_max .. 151
clock_gate_cell .. 152
Clock-Gating Cell Synchronization Scheme... 438
clock_on_ports... 139
clock_reduce_pessimism ... 154
clock_ripple_depth ... 165
clocks_pair .. 168
clock_usage... 166
coherency_check_type .. 169
Column Details of the Ac_abstract_validation02 Spreadsheet 680
Combo Check Mismatch Spreadsheet .. 674
Complex Assertions .. 543
compute_num_convergences ... 187
Constant Source Flop Synchronization Scheme... 496
Constant Source Method ... 496
Constraints Generated on the Library Pins Defined With generated_clock 562
Constraints of the Ac_sync_group Rules .. 530
const_source ... 131
Contents of This Book ... 44
Control Signals... 2272
Controlling the Number of Flip-Flops in a Synchronizer Chain............................ 422
conv03_report_seq_conv... 172
conv_all_mux_data_pins ... 173
conv_clock_reset_path.. 174
Conventional multi-flop Method .. 490
Conventional Multi-Flop Synchronization Scheme.. 419
Convergence Issues.. 61
convergence_stop_at_mux .. 170
conv_reset_seq_depth .. 175
conv_reset_single_data_bit ... 176
conv_src_seq_depth ... 177
conv_sync_as_src .. 185
conv_sync_seq_depth... 182
conv_sync_seq_depth_opt... 184
Creating SpyGlass CDC Setup .. 51
Crossings Originating From or Ending on a Black Box .. 79
2279
Synopsys, Inc.

Crossings with Qualifier Specified for Strict Checking 441
Cross-Probing a Net in Waveform through Schematic 558
CSV Files Generated On Running SpyGlass CDC Goals 690
CTS_placeholder_cells... 186
Data Hold Issues in Synchronized Data Crossings.. 66
Data Path Domain Mismatch Spreadsheet .. 673
deassert_mode .. 188
Debugging CDC Issues .. 68
Delay Signals Synchronization Scheme .. 433
delay_check_clk_list ... 195
delayed_ptr_fifo ... 196
Delta Delay Rules ... 1518
Depth requirement ... 480
Derived Resets ... 2271
derived_flop... 193
Design Areas where a Qualifier is Not Propagated ... 441
Design Assumptions.. 2273
Design Period... 2264
Destination .. 459
Detailed Difference Report ... 697
Details of the Ac_initstate01 Spreadsheet .. 578
Details of the Ar_cross_analysis01 Spreadsheet.. 667
Difference Between Advanced CDC and SpyGlass TXV Initialization Report 633
disable_inst_grouping ... 198
disable_seq_clock_prop... 199
Domain requirement ... 479
dump_detailed_info .. 200
dump_inst_type ... 203
dump_sync_info ... 202
Enable Based Method .. 492
Enable selection ... 480
enable_ac_sync_qualdepth .. 204
enable_and_sync.. 206
enable_block_cfp.. 205
enable_clock_gate_sync .. 208
enable_clock_path_crossings ... 209
enable_condition_based_sync .. 210
enable_debug_data .. 211
enable_delayed_qualifier ... 212
enable_derived_reset.. 214
enable_diff_clkdom_rdc... 227
2280
Synopsys, Inc.

enable_generated_clocks .. 215
enable_glitchfreecell_detection... 216
enable_multiflop_sync .. 217
enable_multiflop_sync .. 236
enable_mux_dest_domain ... 218
enable_mux_sync... 220
enable_or_sync.. 207
enable_reset_cone_spreadsheet... 223
enable_selection .. 224
enable_sim_check_rdc .. 225
enable_sync .. 237
enable_sync_cell .. 239
enable_sync_check_rdc... 226
Enabling and Disabling Assertions... 545
Examining RTL and Corresponding Schematic Diagram.................................... 542
Examining Waveform Showing a Concise Trace of the Violation......................... 542
Example Code and Schematic .. 1346
Example of Generated SVA for Enable Expressions.. 480
Examples of Using OVL Constraints... 554
expected_ckcells_file .. 238
fa_abstract .. 240
fa_atime ... 242
fa_atsrc .. 243
fa_audit .. 244
fa_c2c_max_cycles... 245
fa_dump_hybrid... 247
fa_enable_crpt... 246
fa_flopcount .. 248
fa_grayhold ... 250
fa_hide_complex_enables.. 251
fa_hide_complex_expr .. 253
fa_holdmargin ... 255
fa_holdmargin_window ... 257
fa_hybrid_report_hier ... 249
fa_ieffort... 259
false_path_enable_hier_view ... 288
fa_meta .. 261
fa_minimize_witness... 262
fa_modulelist ... 265
fa_msgmode.. 266
fa_multicore .. 268
2281
Synopsys, Inc.

fa_num_cores .. 269
fa_opt_clock_fsm ... 270
fa_parallelfile ... 272
fa_passfail ... 275
fa_preprocess_engine ... 276
fa_propfile ... 277
fa_resetoff... 278
fa_scope ... 279
fa_seqdepth... 280
fa_vcdfile .. 282
fa_vcdfulltrace ... 283
fa_vcdscopename... 287
fa_vcdtime .. 281
fa_verbose .. 284
fa_verif_cycles ... 285
fa_verify_slow_to_fast .. 286
Files Generated with the CDC Report... 612
Filter and Sort Data .. 69
Filter Signals by Source ... 70
filter_clock_converge_on_cdc... 292
Filtering Information in the Clock Setup Window ... 451
Filtering Violations Based On Instances.. 75
filter_named_clocks .. 289
filter_named_resets .. 291
filter_reset_resync.. 346
filter_unused_synchronizer (default value)... 344
Finding the Source when prefer_abstract_port=no (Default mode) 326
Finding the Source when prefer_abstract_port=yes... 324
Finding Valid Enable Condition Method... 498
first .. 395
Fixing Clock and Reset Integrity Problems.. 59
Formal Setup Rules... 763
formal_setup_rules_check ... 293
format_report .. 294
Functional Flip-Flop... 2266
generate_rfp_suppressed_violations.. 296
Generating Clocks and Resets for a Design... 52
Generating SGDC Files From the Clock Setup Window...................................... 449
Generating SVA for Enable Expressions ... 480
gen_sync_reset_style_info... 295
Glitch Issues .. 64
2282
Synopsys, Inc.

Glitch Protection Cell Synchronization Scheme.. 436
glitch_check_type... 297
glitch_on_sync_src ... 299
glitch_on_unconstrained_src.. 300
glitch_on_vck_port ... 131
glitch_protect_cell .. 301
gp_sync .. 398
Grouping Messages of the Ac_sync_group Rules ... 483
handle_combo_arc ... 303
Handling of Hanging Nets From Combinational Logic by the Ac_sync_group Rules 488
hanging_net .. 127
ignore_bus_clocks .. 304
ignore_bus_resets .. 305
ignore_latches ... 307
ignore_multi_domain .. 128
ignore_nets_clock_path_file_name ... 308
ignore_num_rtl_buf_invs... 309
ignore_qualifier_mismatch_rdc... 228
ignore_race_thru_latch ... 310
ignore_set_case ... 306
Important Information Regarding the Ac_sync_group Rules 532
Incorrect Case Analysis Settings... 80
infer_constraint_from_abstract_blocks .. 311
Inferring Path Polarities After Same Source Reconvergence.............................. 139
Initial State ... 2265
Input Port Constraints File ... 653
Instance-Based Grouping .. 483
Keywords Used in a Simulator File in SpyGlass CDC .. 682
Large and Complex Design .. 543
last .. 396
Latch Inferred from RTL .. 582
Limitations of the Ac_Sync_Group Rules .. 533
Limitations of Using OVL Constraints ... 555
lockup_latch .. 134
master_clock_limit ... 312
mbit_macro (default) .. 127
Merging with a Valid Inferred Qualifier Method ... 495
Message-Based Spreadsheet for the Enable Condition Based Flow..................... 473
Message-Based Spreadsheet.. 468
Messages Reported in the Overconstrain Info File ... 648
Modifying Clock Domains in the Generated SGDC Files 55
2283
Synopsys, Inc.

msg_inst_mod_report ... 314
Multiple Clocks Reach the Source of Generated Clock....................................... 561
Must Rules... 1802
mux_search_depth ... 317
MUX-Select Sync (Without Recirculation) Synchronization Scheme 431
Mux-Select Sync Method ... 493
Netlist Bus Merging... 486
netlist_name_convention... 318
No Synchronization (long-delay/quasi-static) Method....................................... 495
no_convergence_at_enable (default)... 127
no_convergence_at_syncreset (default)... 127
no_convergence_check ... 319
Nodes in the Reset Tree .. 583
Noise .. 80
none... 194
none... 346
none... 397
no_unate_reconv.. 135
num_flops Mismatch Spreadsheet ... 678
num_flops ... 321
num_quasi_seq_elem ... 322
Objects in the Crossings Reported by Ac_sync_group Rules 459
One Clock Reaches the Source of Generated Clock .. 560
one_cross_per_dest.. 323
Open the Spreadsheet Viewer .. 69
Opening the Message-Based Spreadsheet .. 469
Opening the Rule-Based Spreadsheet .. 466
output_not_used .. 126
Overconstrain Info File .. 648
Parameters of the Ac_sync_group Rules .. 525
Performing CDC Verification ... 60
Points at Which Rule Traversal Stops... 180
Possible Values of the deassert_mode Parameter .. 188
Possible Values of the sync_point_selection Parameter 395
Possible Values to the reset_reduce_pessimism Parameter............................... 343
Potential Qualifier ... 461
prefer_abstract_port ... 324
Prerequisites for Performing SpyGlass CDC Analysis .. 50
Prerequisites for Using OVL Constraints ... 552
prop_clock_thru_quasi_static ... 328
Properties.. 2260
2284
Synopsys, Inc.

Property File Example ... 551
Property File Format ... 549
Property File Processing .. 551
Property Status Reported during Functional Analysis 547
Qualifier Defined on Destination Method .. 492
Qualifier Mismatch Spreadsheet.. 674
Qualifier Name and Qualifier Depth in a Message-Based Spreadsheet 472
Qualifier Synchronization Scheme Using qualifier -crossing............................... 442
Qualifier Synchronization Scheme... 440
Qualifier .. 459
Quasi static Mismatch Spreadsheet ... 672
rdc_allow_sync_reset.. 232
rdc_reduce_pessimism.. 230
rdc_report_all_resets .. 329
Reading the Violation Message ... 542
Reason - [User-defined qualifier/ Qualifier] merges with another source before gating logic
510
Reason - [User-defined qualifier/ Qualifier] merges with another source with non-deter-
ministic enable condition before gating logic... 512
Reason - [User-defined qualifier/Qualifier] merges with the same source before gating log-
ic ... 513
Reason - Clock domains of destination instance and synchronizer flop do not match 503
Reason - Clock phase difference between destination instance and synchronizer flop 502
Reason - Combinational logic used between crossing....................................... 506
Reason - Combinational loops on crossing.. 518
Reason - Conventional multi-flop synchronizer disallowed 502
Reason - Destination instance is driving multiple paths 505
Reason - Domain Criteria not satisfied: No domain.. 522
Reason - Domain Criteria not satisfied: Source domain.................................... 523
Reason - Enable Criteria not satisfied: gating-type not accepted 520
Reason - Enable Criteria not satisfied: No destination domain........................... 519
Reason - Enable Criteria not satisfied: No Qualifier found................................. 519
Reason - Enable Criteria not satisfied: Source reach mux select........................ 521
Reason - Gating logic not accepted ... 514
Reason - Invalid RTL flop/cell used in synchronizer chain 507
Reason - Invalid synchronizer module/cell <name> .. 508
Reason - No Enable Condition Selected.. 518
Reason - Number of inverters/buffers between sync flops exceeds limit 504
Reason - Qualifier not accepted: crossing source is the same as source of qualifier 517
Reason - Qualifier not found .. 501
Reason - Sources from different domains converge before being synchronized.... 500
2285
Synopsys, Inc.

Reason - Specify 'synchronize_cells', not 'synchronize_data_cells' for single bit signals
507
Reason - Specify 'synchronize_data_cells', not 'synchronize_cells' for bus signals 507
Reason - Sync reset used in multi-flop synchronizer .. 505
Reason - Synchronizer flop is the destination flop for another crossing............... 503
Reason - Unsynchronized synchronous reset .. 509
Reasons for Synchronized Crossings Reported by Ac_sync_group Rules 489
Reasons for Unsynchronized Crossings Reported by Ac_sync_group Rules 499
Recirculation Flop Method .. 493
Recirculation MUX Synchronization Scheme.. 428
reconvergence_stages... 330
Register Inferred from RTL... 582
remove_overlap ... 345
remove_redundant_logic ... 132
Repeaters.. 2270
report_abstract_module_coverage .. 348
report_all_clockgate_enables ... 332
report_all_flops .. 333
report_all_sync .. 334
report_clock_names_sgdc_qualifier10 ... 347
report_clock_tag_names ... 359
report_common_clock ... 357
report_common_reset ... 335
report_common_reset ... 358
report_conv_type ... 336
report_derived_reset .. 337
report_detail .. 338
report_indirect_port_clock ... 349
report_instance_pin .. 352
report_inst_for_netlist... 350
report_matched_attributes .. 360
report_quasi_static_on_clock ... 361
report_reset_path_mux... 362
report_sync_clk_for_hier ... 363
report_sync_rdc ... 233
report_top_block_info ... 364
report_uniform_name ... 367
report_user_defined_clock ... 339
Reset Checking Rules .. 1418
Reset Cone .. 2268
Reset Flip-Flop ... 2267
2286
Synopsys, Inc.

Reset Information Rules .. 874
Reset Mismatch Spreadsheet ... 677
Reset Synchronization Issues ... 63
Reset Synchronization Rules .. 918
reset_cross_seq ... 340
reset_fanout_max .. 342
Reset_info09a_filter_on_constant_clock .. 356
reset_num_flops .. 353
reset_placeholder_cells ... 354
reset_reduce_pessimism ... 343
reset_sync_check... 355
reset_sync_depth... 384
reset_synchronize_cells... 365
RTL Results Difference Utility ... 693
Rule Grouping in SpyGlass CDC.. 2258
Rule-Based Spreadsheet.. 466
Run Information... 694
run_cells_in_cktree_rules .. 369
same_data_reset_flop (default value) ... 344
same_domain_at_gate.. 370
same_sync_reset ... 372
same_threshold_all_cktree .. 373
Sample Message-Based Spreadsheet... 469
Sample Overconstrain Info File... 648
Sample PortClockMatrix Report .. 587
Sample Report ... 640
Sample RSTree Report .. 583
Sample Rule-Based Spreadsheet .. 466
Saving Changes in the Clock Setup Window ... 455
Saving Messages.. 79
Section 1: Synchronized Crossings by 'Conventional Multi-Flop' synchronization.. 589
Section 1: Synchronized Crossings.. 597
Section 2: Synchronized Crossings by Synchronizing Cell Techniques 591
Section 2: Unsynchronized Crossings due to Destination Instance Driving Multiple Paths
598
Section 3: Synchronized Resets by Multi-Flop Synchronization.......................... 591
Section 3: Unsynchronized Crossings due to Mismatch of Destination and Synchronizer In-
stance Clock Domains ... 598
Section 4: Synchronized Resets by Reset Synchronizing Cell Technique 592
Section 4: Unsynchronized Crossings due to Other Reasons 598
Section 5: Clock domain crossings for quasi-static signals 592
2287
Synopsys, Inc.

Section 6: Synchronized Reset Domain Crossings by Conventional Multi-Flop technique
593
Section 7: Synchronized Reset Domain Crossings by Synchronize cell technique . 594
Section 8: Synchronized Crossings on Reset Path by 'Conventional Multi-Flop' synchroni-
zation technique... 595
Section 9: Synchronized Crossings on Reset Path by 'synchronize cell' technique. 596
Section A... 610
Section A... 614
Section A... 620
Section A... 640
Section A... 650
Section A: Case Analysis Settings Section .. 568
Section A: Clock Crossings Section.. 572
Section A: Clock Information.. 627
Section A: Clocks in the design... 635
Section A: Names of Clocks Specified By the clock Constraint 601
Section AA: Signals Specified by the cdc_filter_coherency Constraint................. 607
Section B... 610
Section B... 614
Section B... 621
Section B... 640
Section B... 650
Section B: Flops with Data pin set to constant value Section............................. 572
Section B: Names of Resets Specified By the reset Constraint........................... 601
Section B: Propagated Control Signals Section.. 568
Section B: Reset Information ... 628
Section B: Resets in the design .. 635
Section BB: Signals Specified by the generated_clock Constraint....................... 607
Section C... 610
Section C... 615
Section C... 621
Section C... 651
Section C: Filtered/False Clock Crossings Section .. 573
Section C: Port Names on which set_case_analysis Constraint is Set 601
Section C: Set Case Analysis Settings.. 629
Section C: Top 5 Domain Crossing Sources Section ... 569
Section C: Uninitialized Registers (after primary sets/resets are applied)............ 635
Section CC: Modules Specified using meta_module Constraint 607
Section D .. 611
Section D .. 616
Section D .. 621
2288
Synopsys, Inc.

Section D: Cases not checked for clock domain crossings Section...................... 570
Section D: Initial State of the Design .. 629
Section D: Register Information ... 635
Section D: Summary of Synchronization Techniques Section 573
Section D: Valid Reset Ordering Specified by the define_reset_order Constraint .. 601
Section DD: Hierarchical Instances Specified by the meta_inst Constraint 607
Section E... 611
Section E... 616
Section E... 622
Section E: Inferred Control Signals Section .. 570
Section E: Modules Specified by the allow_combo_logic Constraint.................... 602
Section E: Results Summary (Current) .. 629
Section EE: Crossings Specified by the reset_filter_path Constraint 607
Section F... 611
Section F... 617
Section F... 623
Section F: Clock-Reset Matrix Section ... 571
Section F: Results Summary (Cumulative) ... 631
Section F: Signals Specified by the quasi_static Constraint............................... 602
Section FF: Signals Specified by the cdc_attribute Constraint 608
Section G .. 611
Section G .. 618
Section G .. 624
Section G: Assertion Details... 631
Section G: Black Boxes in Clock Path Section ... 571
Section G: Output Ports Specified by the output_not_used Constraint................ 602
Section H .. 612
Section H .. 618
Section H .. 625
Section H: Conventional Multi-Flop Synchronizer Data by the num_flops Constraint 602
Section HH: Values of the quasi_static_style Constraint 608
Section I ... 612
Section I ... 619
Section I: Cells Specified by the network_allowed_cells Constraint 603
Section J ... 625
Section J: Signals Specified by the qualifier Constraint 603
Section K .. 626
Section K: Modules Specified by the ip_block Constraint 603
Section L: FIFO Specified by the fifo Constraint .. 604
Section M: False Path Specified by the cdc_false_path Constraint...................... 604
Section N: Top-Level Ports Specified by the abstract_port Constraint................. 604
2289
Synopsys, Inc.

Section O: Top-Level Input Ports Specified by the input Constraint 604
Section P: Top-Level Output Ports Specified by the output Constraint 605
Section Q: Top-Level Ports Not Specified by Any Constraint.............................. 605
Section R: Black Box Data Ports Specified by the abstract_port Constraint 605
Section S: Black Box Ports Specified by the assume_path Constraint 605
Section T: Black Box Ports Specified by the signal_in_domain Constraint............ 605
Section U: Black Box Data Ports Not Specified by Any Constraint 605
Section V: Synchronizer Module/Cell Data Specified by the sync_cell Constraint .. 606
Section W: Reset Synchronizers Specified by the reset_synchronizer Constraint .. 606
Section X: Isolation Enables Specified by the power_data Constraint 606
Section Y: Valid Signals Specified by the gray_signals Constraint 606
Section Z: Valid Stop Point for Clocks by the clock_sense Constraint 606
sel_case_analysis_mode.. 374
Sequential Leaf Cell .. 583
Setting a Positive Integer Value.. 179
Setting the Value -1 (default)... 177
Setting Value 0 .. 178
Setup Rules ... 706
show_all_xclock_flops ... 376
show_derived_busclocks.. 377
show_module_in_spreadsheet.. 378
show_parent_module_in_spreadsheet ... 379
show_reconv_paths .. 380
show_source_in_spreadsheet ... 381
show_unsync_qualifier_rdc .. 235
Signal Width Errors in Synchronized Control Crossings....................................... 65
Simulator File in SpyGlass CDC... 682
simulator_file_name ... 385
skip_samedom_syncpath... 386
skip_unused_paths ... 128
soft_gate... 87
soft_qual_logic... 89
Solving CDC Issues Common to Multiple Violations.. 79
Source Flip-Flops Generating Static Signals .. 80
Source .. 459
Special Cases of Crossings Containing Qualifiers ... 463
Specifying Clock Generation Blocks as Black Boxes.. 51
Specifying Clocks and Resets for a Design.. 52
Specifying OVL Constraints .. 552
Specifying Properties in a Property File .. 549
Specifying the Report to be Generated through a Project File............................ 567
2290
Synopsys, Inc.

Spreadsheet Generated for Enable Expression-Based Synchronization Analysis ... 482
Spreadsheet Showing Enable Expressions .. 475
Spreadsheet Support in Ac_sync_group Rules .. 466
SpyGlass Design Constraints Used by SpyGlass CDC 2276
Stage 1: Running SpyGlass in the Audit Mode .. 538
Stage 2: Analyzing Design Setup.. 539
Stage 3: Running SpyGlass in the Default Mode.. 540
Stage 4: Diagnosing and Fixing Design Bugs .. 541
Stage 5: Running SpyGlass with a Higher CPU Time.. 542
Stage 6: Concluding Partially-Proved Assertions ... 543
stop_at_reset .. 387
strict_double_flop... 388
strict_gate... 86
strict_qual_logic... 88
strict_sync_check... 389
Summary Table for Differences in each CDC-detailed-report sections................. 695
sync_check_type.. 391
Synchronization at AND Gate Method .. 494
Synchronization at Glitch Protection Cell Method... 494
Synchronization Requirements to Compute Enable Expressions......................... 478
synchronize_cells ... 392
Synchronized Abstract Port Method... 491
Synchronized Enable Synchronization Scheme.. 425
synchronize_data_cells ... 393
Synchronizer/qualifier requirement ... 479
Synchronizing Cell Method... 491
Synchronizing Cell Synchronization Scheme ... 423
Synchronous Clocks.. 2269
Synchronous Reset Verification Rules .. 1778
sync_point_report_limit... 394
sync_point_selection... 395
sync_reset .. 402
syncrst_gate_const_check ... 346
The Ac_abstract_validation02 Spreadsheet .. 680
The Ac_sync_group Rules .. 458
The Ac_sync_group_detail Report ... 643
The Ac_sync_qualifier Report ... 644
The Advanced CDC Report ... 627
The adv_cdc Spreadsheet.. 660
The Ar_cross_analysis01 Spreadsheet ... 667
The assert_gray Constraint .. 553
2291
Synopsys, Inc.

The CDC Matrix Report .. 650
The CDC Report ... 610
The CDC-Detailed-Report... 620
The CDC-Summary-Report... 614
The CKCondensedTree Report .. 581
The CKPathInfo Report .. 599
The CKSGDCInfo Report .. 600
The CKTree Report ... 574
The Clock-Reset-Detail Report .. 572
The Clock-Reset-Summary Report .. 568
The CrossingInfo Report .. 597
The CrossingMatrix Spreadsheet ... 663
The DeltaDelay02-Detailed Report .. 640
The DeltaDelay-Concise Report... 638
The DeltaDelay-Detailed Report.. 639
The DeltaDelay-Summary Report.. 642
The Distributed Time Report... 652
The Enable Expression-Based Synchronization Analysis.................................... 476
The Functional Validation Methodology .. 536
The Glitch_detailed Report ... 646
The Module Topology Report .. 647
The NoClockCell-Summary Report... 637
The PortClockMatrix Report .. 585
The Propagated Clock Signals Section.. 568
The Propagated Reset Signals Section ... 569
The Register Info Report.. 635
The RSTree Report ... 582
The Spreadsheets of the Ac_abstract_validation01 Rule 669
The SynchInfo Report ... 589
The SyncRstTree Report .. 584
thru_reset_synchronizer .. 403
Tips to Use the Incremental Schematic .. 72
Top-level Overview of the Result Differences .. 694
Types of Leaves in the Reset Tree... 582
Types of Qualifiers .. 460
Typographical Conventions .. 45
Understanding the Generated SGDC Files... 53
unexpected_ckcells_file ... 404
unex_reset_gate_list... 405
unmodeled_bbox.. 133
Unsynchronized Crossings Issues.. 60
2292
Synopsys, Inc.

use_inferred_clocks .. 407
use_inferred_resets .. 409
use_multi_arc.. 129
User-Defined Enable Expression Method .. 497
user_group_str .. 406
User-Specified String-Based Grouping ... 484
Using Incremental Schematic ... 70
Using Spreadsheets .. 68
Using the Clock Domain Tag .. 472
Using the Reset Domain Crossing (RDC) Flow... 919
Using the Setup Manager .. 56
Using Waveform during Functional Analysis.. 557
Valid Combination of Values Specified to the ac_sync_mode Parameter 85
validate_reduce_pessimism ... 410
valid_enable_type .. 414
Values used by the ac_sync_mode Parameter .. 86
Viewing Clock Details in HDL Window and Schematic....................................... 452
Viewing Debug Data in Schematic... 72
Viewing Grouped Messages in a Spreadsheet ... 485
Viewing Reports in GUI ... 566
Viewing Schematic for Multiple Clocks ... 454
Viewing Schematic Through the Spreadsheet ... 473
Viewing the Clock Setup Information... 445
Viewing VCD Files... 557
Virtual Clocks Mismatch Spreadsheet .. 675
Why Use OVL Constraints?... 553
2293
Synopsys, Inc.

2294
Synopsys, Inc.

	SpyGlass® CDC Rules Reference Guide
	Preface
	About This Book
	Contents of This Book
	Typographical Conventions

	Introduction to SpyGlass CDC
	Performing SpyGlass CDC Analysis
	Prerequisites for Performing SpyGlass CDC Analysis
	Creating SpyGlass CDC Setup
	Specifying Clock Generation Blocks as Black Boxes
	Specifying Clocks and Resets for a Design
	Generating Clocks and Resets for a Design
	Understanding the Generated SGDC Files
	Modifying Clock Domains in the Generated SGDC Files

	Using the Setup Manager
	CDC Analysis based on sg_clock_group

	Fixing Clock and Reset Integrity Problems
	Performing CDC Verification
	Unsynchronized Crossings Issues
	Convergence Issues
	Reset Synchronization Issues
	Glitch Issues
	Signal Width Errors in Synchronized Control Crossings
	Data Hold Issues in Synchronized Data Crossings

	Debugging CDC Issues
	Using Spreadsheets
	Open the Spreadsheet Viewer
	Filter and Sort Data
	Check for Common Reasons or Sources
	Filter Signals by Source

	Using Incremental Schematic
	Tips to Use the Incremental Schematic

	Viewing Debug Data in Schematic
	Filtering Violations Based On Instances
	Clearing the Filter
	Saving Messages

	Solving CDC Issues Common to Multiple Violations
	Crossings Originating From or Ending on a Black Box
	Incorrect Case Analysis Settings
	Source Flip-Flops Generating Static Signals
	Noise

	Parameters in SpyGlass CDC
	abstract_validate_express
	ac_sync_mode
	Valid Combination of Values Specified to the ac_sync_mode Parameter
	Values used by the ac_sync_mode Parameter
	strict_gate
	soft_gate
	strict_qual_logic
	soft_qual_logic

	all_potential_qual
	allow_any_async_pin
	allow_clock_on_hier_term
	allow_combo_logic
	allow_combo_logic_repeater
	all_convergence_paths
	all_converging_clocks
	allow_enabled_multiflop
	allow_half_sync
	allow_merged_qualifier
	allow_unconstrained_reset_in_rfp
	allow_vhdl_on_clock_path
	async_reset_usage
	auto_detect_datahold01_enable
	autofix_abstract_port
	autofix_dump_allinputs
	cdc_bus_compress
	cdc_compatible
	cdc_dump_assertions
	cdc_effective_bus_verif
	cdc_express
	cdc_gen_unrelated_coherency
	cdc_ignore_multi_domain
	cdc_qualifier_depth
	cdc_qualifier_depth_start
	cdc_reduce_pessimism
	Allowed Values of the cdc_reduce_pessimism Parameter
	bbox
	output_not_used
	hanging_net
	mbit_macro (default)
	no_convergence_at_syncreset (default)
	no_convergence_at_enable (default)
	skip_unused_paths
	ignore_multi_domain
	use_multi_arc
	clock_crossing
	const_source
	glitch_on_vck_port
	remove_redundant_logic
	unmodeled_bbox
	lockup_latch
	no_unate_reconv
	allow_quasi_static
	clock_on_ports
	stop_conv_at_seq_lib
	all

	Inferring Path Polarities After Same Source Reconvergence

	check_bus_bit_convergence
	check_edge
	check_input_coverage
	check_multiclock_bbox
	check_single_source
	check_port_setup
	check_reset_for_constclock
	check_qualified_signal_at_soc
	clock_edge
	clock_fanout_max
	clock_gate_cell
	clock_reduce_pessimism
	clock_ripple_depth
	clock_usage
	clocks_pair
	coherency_check_type
	convergence_stop_at_mux
	conv03_report_seq_conv
	conv_all_mux_data_pins
	conv_clock_reset_path
	conv_reset_seq_depth
	conv_reset_single_data_bit
	conv_src_seq_depth
	Setting the Value -1 (default)
	Setting Value 0
	Setting a Positive Integer Value
	Points at Which Rule Traversal Stops

	conv_sync_seq_depth
	conv_sync_seq_depth_opt
	conv_sync_as_src
	CTS_placeholder_cells
	compute_num_convergences
	deassert_mode
	Possible Values of the deassert_mode Parameter
	allow_divergence_convergence
	allow_preset_domain
	allow_assume_path_thru_bbox
	derived_flop
	none
	all

	delay_check_clk_list
	delayed_ptr_fifo
	disable_inst_grouping
	disable_seq_clock_prop
	dump_detailed_info
	dump_sync_info
	dump_inst_type
	enable_ac_sync_qualdepth
	enable_block_cfp
	enable_and_sync
	enable_or_sync
	enable_clock_gate_sync
	enable_clock_path_crossings
	enable_condition_based_sync
	enable_debug_data
	enable_delayed_qualifier
	enable_derived_reset
	enable_generated_clocks
	enable_glitchfreecell_detection
	enable_multiflop_sync
	enable_mux_dest_domain
	enable_mux_sync
	enable_reset_cone_spreadsheet
	enable_selection
	enable_sim_check_rdc
	enable_sync_check_rdc
	enable_diff_clkdom_rdc
	ignore_qualifier_mismatch_rdc
	rdc_reduce_pessimism
	rdc_allow_sync_reset
	report_sync_rdc
	show_unsync_qualifier_rdc
	enable_multiflop_sync
	enable_sync
	expected_ckcells_file
	enable_sync_cell
	fa_abstract
	fa_atime
	fa_atsrc
	fa_audit
	fa_c2c_max_cycles
	fa_enable_crpt
	fa_dump_hybrid
	fa_flopcount
	fa_hybrid_report_hier
	fa_grayhold
	fa_hide_complex_enables
	fa_hide_complex_expr
	fa_holdmargin
	fa_holdmargin_window
	fa_ieffort
	fa_meta
	fa_minimize_witness
	fa_modulelist
	fa_msgmode
	fa_multicore
	fa_num_cores
	fa_opt_clock_fsm
	fa_parallelfile
	fa_passfail
	fa_preprocess_engine
	fa_propfile
	fa_resetoff
	fa_scope
	fa_seqdepth
	fa_vcdtime
	fa_vcdfile
	fa_vcdfulltrace
	fa_verbose
	fa_verif_cycles
	fa_verify_slow_to_fast
	fa_vcdscopename
	false_path_enable_hier_view
	filter_named_clocks
	filter_named_resets
	filter_clock_converge_on_cdc
	formal_setup_rules_check
	format_report
	gen_sync_reset_style_info
	generate_rfp_suppressed_violations
	glitch_check_type
	glitch_on_sync_src
	glitch_on_unconstrained_src
	glitch_protect_cell
	handle_combo_arc
	ignore_bus_clocks
	ignore_bus_resets
	ignore_set_case
	ignore_latches
	ignore_nets_clock_path_file_name
	ignore_num_rtl_buf_invs
	ignore_race_thru_latch
	infer_constraint_from_abstract_blocks
	master_clock_limit
	msg_inst_mod_report
	mux_search_depth
	netlist_name_convention
	no_convergence_check
	num_flops
	num_quasi_seq_elem
	one_cross_per_dest
	prefer_abstract_port
	Finding the Source when prefer_abstract_port=yes
	Finding the Source when prefer_abstract_port=no (Default mode)

	prop_clock_thru_quasi_static
	rdc_report_all_resets
	reconvergence_stages
	report_all_clockgate_enables
	report_all_flops
	report_all_sync
	report_common_reset
	report_conv_type
	report_derived_reset
	report_detail
	report_user_defined_clock
	reset_cross_seq
	reset_fanout_max
	reset_reduce_pessimism
	Possible Values to the reset_reduce_pessimism Parameter
	filter_unused_synchronizer (default value)
	same_data_reset_flop (default value)
	all_potential_resets
	remove_overlap
	filter_reset_resync
	syncrst_gate_const_check
	all
	none

	report_clock_names_sgdc_qualifier10
	report_abstract_module_coverage
	report_indirect_port_clock
	report_inst_for_netlist
	report_instance_pin
	reset_num_flops
	reset_placeholder_cells
	reset_sync_check
	Reset_info09a_filter_on_constant_clock
	report_common_clock
	report_common_reset
	report_clock_tag_names
	report_matched_attributes
	report_quasi_static_on_clock
	report_reset_path_mux
	report_sync_clk_for_hier
	report_top_block_info
	reset_synchronize_cells
	report_uniform_name
	run_cells_in_cktree_rules
	same_domain_at_gate
	same_sync_reset
	same_threshold_all_cktree
	sel_case_analysis_mode
	show_all_xclock_flops
	show_derived_busclocks
	show_module_in_spreadsheet
	show_parent_module_in_spreadsheet
	show_reconv_paths
	show_source_in_spreadsheet
	reset_sync_depth
	simulator_file_name
	skip_samedom_syncpath
	stop_at_reset
	strict_double_flop
	strict_sync_check
	sync_check_type
	synchronize_cells
	synchronize_data_cells
	sync_point_report_limit
	sync_point_selection
	Possible Values of the sync_point_selection Parameter
	first
	last
	none
	gp_sync
	all

	sync_reset
	thru_reset_synchronizer
	unexpected_ckcells_file
	unex_reset_gate_list
	user_group_str
	use_inferred_clocks
	use_inferred_resets
	validate_reduce_pessimism
	valid_enable_type

	Tcl Commands in SpyGlass CDC
	Clock Domain Crossing Synchronization Schemes
	Conventional Multi-Flop Synchronization Scheme
	Controlling the Number of Flip-Flops in a Synchronizer Chain
	Synchronizing Cell Synchronization Scheme
	Synchronized Enable Synchronization Scheme
	Recirculation MUX Synchronization Scheme
	MUX-Select Sync (Without Recirculation) Synchronization Scheme
	Delay Signals Synchronization Scheme
	AND Gate Synchronization Scheme
	Glitch Protection Cell Synchronization Scheme
	Clock-Gating Cell Synchronization Scheme
	Qualifier Synchronization Scheme
	Design Areas where a Qualifier is Not Propagated
	Crossings with Qualifier Specified for Strict Checking

	Qualifier Synchronization Scheme Using qualifier -crossing

	Using the Clock Setup Window
	Viewing the Clock Setup Information
	Clock Sources Section of the Clock Setup Window
	Clock Cones Section of the Clock Setup Window

	Adding Clocks in the Clock Setup Window
	Generating SGDC Files From the Clock Setup Window
	Filtering Information in the Clock Setup Window
	Viewing Clock Details in HDL Window and Schematic
	Viewing Schematic for Multiple Clocks
	Saving Changes in the Clock Setup Window

	Working With the Ac_sync_group Rules
	The Ac_sync_group Rules
	Objects in the Crossings Reported by Ac_sync_group Rules
	Source
	Destination
	Qualifier
	Types of Qualifiers

	Potential Qualifier
	Special Cases of Crossings Containing Qualifiers

	Spreadsheet Support in Ac_sync_group Rules
	Rule-Based Spreadsheet
	Opening the Rule-Based Spreadsheet
	Sample Rule-Based Spreadsheet

	Message-Based Spreadsheet
	Opening the Message-Based Spreadsheet
	Sample Message-Based Spreadsheet
	Qualifier Name and Qualifier Depth in a Message-Based Spreadsheet
	Using the Clock Domain Tag
	Viewing Schematic Through the Spreadsheet

	Message-Based Spreadsheet for the Enable Condition Based Flow
	Spreadsheet Showing Enable Expressions

	The Enable Expression-Based Synchronization Analysis
	Synchronization Requirements to Compute Enable Expressions
	Domain requirement
	Synchronizer/qualifier requirement
	Depth requirement
	Enable selection

	Generating SVA for Enable Expressions
	Example of Generated SVA for Enable Expressions

	Spreadsheet Generated for Enable Expression-Based Synchronization Analysis

	Grouping Messages of the Ac_sync_group Rules
	Instance-Based Grouping
	User-Specified String-Based Grouping
	Viewing Grouped Messages in a Spreadsheet
	Netlist Bus Merging

	Handling of Hanging Nets From Combinational Logic by the Ac_sync_group Rules
	Reasons for Synchronized Crossings Reported by Ac_sync_group Rules
	Conventional multi-flop Method
	Synchronizing Cell Method
	Synchronized Abstract Port Method
	Qualifier Defined on Destination Method
	Enable Based Method
	Clock Gate Synchronization Method
	Recirculation Flop Method
	Mux-Select Sync Method
	Synchronization at AND Gate Method
	Synchronization at Glitch Protection Cell Method
	Merging with a Valid Inferred Qualifier Method
	No Synchronization (long-delay/quasi-static) Method
	Constant Source Method
	Constant Source Flop Synchronization Scheme

	User-Defined Enable Expression Method
	Finding Valid Enable Condition Method

	Reasons for Unsynchronized Crossings Reported by Ac_sync_group Rules
	Reason - Sources from different domains converge before being synchronized
	Reason - Qualifier not found
	Reason - Conventional multi-flop synchronizer disallowed
	Reason - Clock phase difference between destination instance and synchronizer flop
	Reason - Clock domains of destination instance and synchronizer flop do not match
	Reason - Synchronizer flop is the destination flop for another crossing
	Reason - Number of inverters/buffers between sync flops exceeds limit
	Reason - Sync reset used in multi-flop synchronizer
	Reason - Destination instance is driving multiple paths
	Reason - Combinational logic used between crossing
	Reason - Specify 'synchronize_data_cells', not 'synchronize_cells' for bus signals
	Reason - Specify 'synchronize_cells', not 'synchronize_data_cells' for single bit signals
	Reason - Invalid RTL flop/cell used in synchronizer chain
	Reason - Invalid synchronizer module/cell <name>
	Reason - Unsynchronized synchronous reset
	Reason - [User-defined qualifier/ Qualifier] merges with another source before gating logic
	Reason - [User-defined qualifier/ Qualifier] merges with another source with non-deterministic enable condition before gating logic
	Reason - [User-defined qualifier/Qualifier] merges with the same source before gating logic
	Reason - Gating logic not accepted
	Reason - Qualifier not accepted: crossing source is the same as source of qualifier
	Reason - Combinational loops on crossing
	Reason - No Enable Condition Selected
	Reason - Enable Criteria not satisfied: No destination domain
	Reason - Enable Criteria not satisfied: No Qualifier found
	Reason - Enable Criteria not satisfied: gating-type not accepted
	Reason - Enable Criteria not satisfied: Source reach mux select
	Reason - Domain Criteria not satisfied: No domain
	Reason - Domain Criteria not satisfied: Source domain

	Parameters of the Ac_sync_group Rules
	Constraints of the Ac_sync_group Rules
	Important Information Regarding the Ac_sync_group Rules
	Limitations of the Ac_Sync_Group Rules

	Performing Functional Analysis in SpyGlass CDC
	The Functional Validation Methodology
	Stage 1: Running SpyGlass in the Audit Mode
	Stage 2: Analyzing Design Setup
	Stage 3: Running SpyGlass in the Default Mode
	Stage 4: Diagnosing and Fixing Design Bugs
	Reading the Violation Message
	Examining RTL and Corresponding Schematic Diagram
	Examining Waveform Showing a Concise Trace of the Violation

	Stage 5: Running SpyGlass with a Higher CPU Time
	Stage 6: Concluding Partially-Proved Assertions
	Complex Assertions
	Large and Complex Design

	Enabling and Disabling Assertions
	Property Status Reported during Functional Analysis
	Specifying Properties in a Property File
	Property File Format
	Property File Example
	Property File Processing

	Specifying OVL Constraints
	Prerequisites for Using OVL Constraints
	Why Use OVL Constraints?
	The assert_gray Constraint

	Examples of Using OVL Constraints
	Limitations of Using OVL Constraints

	Using Waveform during Functional Analysis
	Viewing VCD Files
	Cross-Probing a Net in Waveform through Schematic

	Handling generated_clock Constructs on Library Pins
	One Clock Reaches the Source of Generated Clock
	Multiple Clocks Reach the Source of Generated Clock
	Constraints Generated on the Library Pins Defined With generated_clock

	Reports and Other Files in SpyGlass CDC
	Viewing Reports in GUI
	Specifying the Report to be Generated through a Project File
	The Clock-Reset-Summary Report
	Section A: Case Analysis Settings Section
	Section B: Propagated Control Signals Section
	The Propagated Clock Signals Section
	The Propagated Reset Signals Section

	Section C: Top 5 Domain Crossing Sources Section
	Section D: Cases not checked for clock domain crossings Section
	Section E: Inferred Control Signals Section
	Section F: Clock-Reset Matrix Section
	Section G: Black Boxes in Clock Path Section

	The Clock-Reset-Detail Report
	Section A: Clock Crossings Section
	Section B: Flops with Data pin set to constant value Section
	Section C: Filtered/False Clock Crossings Section
	Section D: Summary of Synchronization Techniques Section

	The CKTree Report
	Ac_initstate01 Spreadsheet Report
	Details of the Ac_initstate01 Spreadsheet

	The CKCondensedTree Report
	The RSTree Report
	Types of Leaves in the Reset Tree
	Register Inferred from RTL
	Black Box
	Latch Inferred from RTL
	Sequential Leaf Cell

	Nodes in the Reset Tree
	Sample RSTree Report

	The SyncRstTree Report
	The PortClockMatrix Report
	Sample PortClockMatrix Report

	The SynchInfo Report
	Section 1: Synchronized Crossings by 'Conventional Multi- Flop' synchronization
	Section 2: Synchronized Crossings by Synchronizing Cell Techniques
	Section 3: Synchronized Resets by Multi-Flop Synchronization
	Section 4: Synchronized Resets by Reset Synchronizing Cell Technique
	Section 5: Clock domain crossings for quasi-static signals
	Section 6: Synchronized Reset Domain Crossings by Conventional Multi-Flop technique
	Section 7: Synchronized Reset Domain Crossings by Synchronize cell technique
	Section 8: Synchronized Crossings on Reset Path by 'Conventional Multi-Flop' synchronization technique
	Section 9: Synchronized Crossings on Reset Path by 'synchronize cell' technique

	The CrossingInfo Report
	Section 1: Synchronized Crossings
	Section 2: Unsynchronized Crossings due to Destination Instance Driving Multiple Paths
	Section 3: Unsynchronized Crossings due to Mismatch of Destination and Synchronizer Instance Clock Domains
	Section 4: Unsynchronized Crossings due to Other Reasons

	The CKPathInfo Report
	The CKSGDCInfo Report
	Section A: Names of Clocks Specified By the clock Constraint
	Section B: Names of Resets Specified By the reset Constraint
	Section C: Port Names on which set_case_analysis Constraint is Set
	Section D: Valid Reset Ordering Specified by the define_reset_order Constraint
	Section E: Modules Specified by the allow_combo_logic Constraint
	Section F: Signals Specified by the quasi_static Constraint
	Section G: Output Ports Specified by the output_not_used Constraint
	Section H: Conventional Multi-Flop Synchronizer Data by the num_flops Constraint
	Section I: Cells Specified by the network_allowed_cells Constraint
	Section J: Signals Specified by the qualifier Constraint
	Section K: Modules Specified by the ip_block Constraint
	Section L: FIFO Specified by the fifo Constraint
	Section M: False Path Specified by the cdc_false_path Constraint
	Section N: Top-Level Ports Specified by the abstract_port Constraint
	Section O: Top-Level Input Ports Specified by the input Constraint
	Section P: Top-Level Output Ports Specified by the output Constraint
	Section Q: Top-Level Ports Not Specified by Any Constraint
	Section R: Black Box Data Ports Specified by the abstract_port Constraint
	Section S: Black Box Ports Specified by the assume_path Constraint
	Section T: Black Box Ports Specified by the signal_in_domain Constraint
	Section U: Black Box Data Ports Not Specified by Any Constraint
	Section V: Synchronizer Module/Cell Data Specified by the sync_cell Constraint
	Section W: Reset Synchronizers Specified by the reset_synchronizer Constraint
	Section X: Isolation Enables Specified by the power_data Constraint
	Section Y: Valid Signals Specified by the gray_signals Constraint
	Section Z: Valid Stop Point for Clocks by the clock_sense Constraint
	Section AA: Signals Specified by the cdc_filter_coherency Constraint
	Section BB: Signals Specified by the generated_clock Constraint
	Section CC: Modules Specified using meta_module Constraint
	Section DD: Hierarchical Instances Specified by the meta_inst Constraint
	Section EE: Crossings Specified by the reset_filter_path Constraint
	Section FF: Signals Specified by the cdc_attribute Constraint
	Section HH: Values of the quasi_static_style Constraint

	The CDC Report
	Section A
	Section B
	Section C
	Section D
	Section E
	Section F
	Section G
	Section H
	Section I
	Files Generated with the CDC Report

	The CDC-Summary-Report
	Section A
	Section B
	Section C
	Section D
	Section E
	Section F
	Section G
	Section H
	Section I

	The CDC-Detailed-Report
	Section A
	Section B
	Section C
	Section D
	Section E
	Section F
	Section G
	Section H
	Section J
	Section K

	The Advanced CDC Report
	Section A: Clock Information
	Section B: Reset Information
	Section C: Set Case Analysis Settings
	Section D: Initial State of the Design
	Section E: Results Summary (Current)
	Section F: Results Summary (Cumulative)
	Section G: Assertion Details
	Difference Between Advanced CDC and SpyGlass TXV Initialization Report

	The Register Info Report
	Section A: Clocks in the design
	Section B: Resets in the design
	Section C: Uninitialized Registers (after primary sets/resets are applied)
	Section D: Register Information

	The NoClockCell-Summary Report
	The DeltaDelay-Concise Report
	The DeltaDelay-Detailed Report
	The DeltaDelay02-Detailed Report
	Section A
	Section B
	Sample Report

	The DeltaDelay-Summary Report
	The Ac_sync_group_detail Report
	The Ac_sync_qualifier Report
	The Glitch_detailed Report
	The Module Topology Report
	Overconstrain Info File
	Messages Reported in the Overconstrain Info File
	Sample Overconstrain Info File

	The CDC Matrix Report
	Section A
	Section B
	Section C

	The Distributed Time Report
	Input Port Constraints File
	abstract_port Constraints for Ports Connected with Multiple Sequential Elements
	abstract_port Constraints for Ports Connected with Sequential Elements
	abstract_port Constraints for Multiple Ports Reaching Same Sequential Element
	abstract_port Constraints for Ports Connected to Data Pin of a Multi-Flop Structure

	The adv_cdc Spreadsheet
	adv_cdc_summary_current
	adv_cdc_summary_cumulative
	adv_cdc_summary_detail

	The CrossingMatrix Spreadsheet
	The Ar_cross_analysis01 Spreadsheet
	Details of the Ar_cross_analysis01 Spreadsheet

	The Spreadsheets of the Ac_abstract_validation01 Rule
	Clock Mismatch Spreadsheet
	Clock Domain Mismatch Spreadsheet
	Case Analysis Mismatch Spreadsheet
	Quasi static Mismatch Spreadsheet
	Data Path Domain Mismatch Spreadsheet
	Combo Check Mismatch Spreadsheet
	Qualifier Mismatch Spreadsheet
	Virtual Clocks Mismatch Spreadsheet
	Reset Mismatch Spreadsheet
	num_flops Mismatch Spreadsheet

	The Ac_abstract_validation02 Spreadsheet
	Column Details of the Ac_abstract_validation02 Spreadsheet

	Simulator File in SpyGlass CDC
	Keywords Used in a Simulator File in SpyGlass CDC

	CSV Files Generated On Running SpyGlass CDC Goals
	RTL Results Difference Utility
	Run Information
	Top-level Overview of the Result Differences
	Summary Table for Differences in each CDC-detailed-report sections
	Detailed Difference Report

	Internal Rules in SpyGlass CDC
	Rules in SpyGlass CDC
	Setup Rules
	Setup_clock01
	Setup_clockreset01
	Setup_library01
	Setup_CGC
	Setup_quasi_static01
	Setup_port01
	Setup_blackbox01
	Setup_check01
	Setup_check02
	Setup_req01
	Ac_topology01
	Ac_svasetup01

	Formal Setup Rules
	Ac_clockperiod01
	Ac_clockperiod02
	Ac_resetvalue01
	Ac_sanity03
	Ac_sanity04
	Ac_sanity07

	Clock Information Rules
	Clock_info01
	Clock_info02
	Clock_info03
	Clock_info03a
	Clock_info03b
	Clock_info03c
	Clock_info05
	Clock_info05a
	Clock_info05b
	Clock_info05c
	Clock_info06
	Clock_info07
	Clock_info14
	Clock_info15
	Clock_info16
	Clock_info17
	Clock_info18
	Clockmatrix01

	Reset Information Rules
	Ar_syncrst_setupcheck01
	Ar_syncrstTree
	Ar_glitch01
	Reset_info01
	Reset_info02
	Reset_info09
	Reset_info09a
	Reset_info09b

	Clock and Reset Information Rules
	Clock_Reset_info01

	Reset Synchronization Rules
	Using the Reset Domain Crossing (RDC) Flow
	Ac_resetcross01
	Ar_resetcross01
	Ar_resetcross_matrix01
	Setup_rdc01
	RFPSetup
	SGDC_qualifier23
	SGDC_cdc_define_transition01
	Ar_cross_analysis01
	Ar_asyncdeassert01
	Ar_syncdeassert01
	Ar_sync01
	Ar_unsync01
	Reset_sync01
	Reset_sync02
	Reset_sync03
	Reset_sync04

	CDC Verification Rules
	Ac_unsync01
	Ac_unsync02
	Ac_sync01
	Ac_sync02
	Ac_coherency06
	Ac_repeater01
	Clock_sync05
	Ac_crossing01
	Clock_sync03
	Clock_sync03b
	Clock_sync06
	Clock_sync08a
	Clock_sync09
	Ac_cdc01
	Ac_cdc01a
	Ac_cdc01b
	Ac_cdc01c
	Ac_cdc08
	Ac_clockperiod03
	Ac_conv01
	Ac_conv02
	Ac_conv02Setup01
	Ac_conv03
	Ac_conv04
	Ac_conv05
	Ac_datahold01a
	Clock_sync03a

	Clock Glitch Checking Rules
	Ac_glitch01
	Ac_glitch02
	Ac_glitch03
	Ac_glitch04
	Clock_glitch01
	Clock_glitch02
	Clock_glitch03
	Clock_glitch04
	Clock_glitch05
	Example Code and Schematic

	Clock Checking Rules
	Clock_check01
	Clock_check02
	Clock_check03
	Clock_check04
	Clock_check05
	Clock_check06a
	Clock_check06b
	Clock_check10
	Clock_converge01
	Clock_hier01
	Clock_hier02
	Clock_hier03
	Ac_xclock01
	Ac_converge01

	Reset Checking Rules
	Ar_converge01
	Ar_converge02
	Reset_check01
	Reset_check02
	Reset_check03
	Reset_check04
	Reset_check05
	Reset_check06
	Reset_check07
	Reset_check09
	Reset_check10
	Reset_check11
	Reset_check12
	Reset_overlap01

	Clock and Reset Checking Rules
	Clock_Reset_check01
	Clock_Reset_check02
	Clock_Reset_check03

	Delta Delay Rules
	Clock_delay01
	Clock_delay02
	DeltaDelay01
	DeltaDelay02
	NoClockCell
	PortTimeDelay

	Block Constraint Generation Rules
	Ac_blksgdc01

	Block Abstraction Rules
	Ac_abstract01

	Block Constraint Validation Rules
	Ac_abstract_validation01
	Ac_abstract_validation02
	SGDC_abstract_mapping01
	SGDC_clock_validation01
	SGDC_clock_domain_tag
	SGDC_clock_validation02
	SGDC_clock_domain_validation01
	SGDC_clock_domain_validation02
	SGDC_set_case_analysis_validation01
	SGDC_set_case_analysis_validation02
	SGDC_set_case_analysis_validation03
	SGDC_reset_filter_path_validation01
	SGDC_reset_validation01
	SGDC_reset_validation02
	SGDC_reset_validation03
	SGDC_reset_validation04
	SGDC_virtualclock_validation01
	SGDC_input_validation01
	SGDC_input_validation02
	SGDC_num_flops_validation01
	SGDC_num_flops_validation02
	SGDC_output_validation01
	SGDC_output_validation02
	SGDC_abstract_port_validation01
	SGDC_abstract_port_validation02
	SGDC_abstract_port_validation03
	SGDC_abstract_port_validation04
	SGDC_qualifier_validation01
	SGDC_qualifier_validation02
	SGDC_cdc_false_path_validation01
	SGDC_define_reset_order_validation01
	SGDC_define_reset_order_validation02
	SGDC_quasi_static_validation01
	SGDC_quasi_static_validation02
	SGDC_quasi_static_validation03

	Synchronous Reset Verification Rules
	Ar_syncrstactive01
	Ar_syncrstcombo01
	Ar_syncrstload01
	Ar_syncrstload02
	Ar_syncrstpragma01
	Ar_syncrstrtl01

	Must Rules
	Ac_abs01
	Ac_init01
	Ac_initseq01
	Ac_initstate01
	Ac_license01
	Ac_multitop01
	Ac_upfsetup02
	Ac_report01
	Ac_sanity01
	Ac_sanity02
	Ac_sanity06
	AllowComboLogicSetup
	Clock_check07
	Param_clockreset02
	FalsePathSetup
	Param_clockreset04
	Param_clockreset05
	Param_clockreset06
	Param_clockreset07
	Propagate_Clocks
	Propagate_Resets
	QualifierSetup
	ResetSynchronizerSetup
	Reset_check08
	SGDC_allow_combo_logic01
	SGDC_allow_combo_logic02
	SGDC_cdc_false_path01
	SGDC_cdc_false_path02
	SGDC_cdc_false_path03
	SGDC_cdc_false_path04
	SGDC_cdc_false_path05
	SGDC_cdc_false_path06
	SGDC_cdc_false_path07
	SGDC_cdc_false_path08
	SGDC_cdc_false_path09
	SGDC_clockreset02
	SGDC_clocksense01
	SGDC_clocksense02
	SGDC_clocksense03
	SGDC_define_reset_order01
	SGDC_define_reset_order02
	SGDC_define_reset_order03
	SGDC_define_reset_order04
	SGDC_define_reset_order05
	SGDC_deltacheck_ignore_instance01
	SGDC_deltacheck_ignore_module01
	SGDC_deltacheck_start01
	SGDC_deltacheck_start02
	SGDC_deltacheck_stop_instance01
	SGDC_deltacheck_stop_module01
	SGDC_deltacheck_stop_signal01
	SGDC_fifo01
	SGDC_fifo02
	SGDC_fifo03
	SGDC_fifo04
	SGDC_fifo05
	SGDC_fifo06
	SGDC_fifo07
	SGDC_fifo08
	SGDC_fifo09
	SGDC_fifo10
	SGDC_fifo11
	SGDC_fifo12
	SGDC_fifo13
	SGDC_fifo14
	SGDC_generated_clock03
	SGDC_generated_clock04
	SGDC_generated_clock05
	SGDC_generated_clock06
	SGDC_gray_signals01
	SGDC_gray_signals02
	SGDC_gray_signals03
	SGDC_input01
	SGDC_input02
	SGDC_input03
	SGDC_input05
	SGDC_inputoutput01
	SGDC_network_allowed_cells01
	SGDC_network_allowed_cells02
	SGDC_noclockcell01
	SGDC_noclockcell03
	SGDC_noclockcell04
	SGDC_numflops01
	SGDC_numflops03a
	SGDC_numflops03b
	SGDC_numflops03c
	SGDC_numflops04
	SGDC_numflops05
	SGDC_numflops06
	SGDC_numflops07
	SGDC_numflops08
	SGDC_numflops09
	SGDC_numflops10
	SGDC_numflops11
	SGDC_numflops13
	SGDC_numflops14
	SGDC_noclockcell02
	SGDC_output01
	SGDC_output02
	SGDC_output03
	SGDC_output04
	SGDC_output_not_used01
	SGDC_porttimedelay01
	SGDC_qualifier01
	SGDC_qualifier02a
	SGDC_qualifier02b
	SGDC_qualifier02c
	SGDC_qualifier03a
	SGDC_qualifier03b
	SGDC_qualifier03c
	SGDC_qualifier04
	SGDC_qualifier05
	SGDC_qualifier06
	SGDC_qualifier08
	SGDC_qualifier09
	SGDC_qualifier10
	SGDC_qualifier11
	SGDC_qualifier12
	SGDC_qualifier13
	SGDC_qualifier15
	SGDC_qualifier16
	SGDC_qualifier18
	SGDC_quasi_static01
	SGDC_quasi_static_style01
	SGDC_quasi_static_style02
	SGDC_reset_filter_path01
	SGDC_reset_filter_path02a
	SGDC_reset_filter_path02b
	SGDC_reset_filter_path02c
	SGDC_reset_filter_path03a
	SGDC_reset_filter_path03b
	SGDC_reset_filter_path03c
	SGDC_reset_filter_path04a
	SGDC_reset_filter_path04b
	SGDC_reset_filter_path05a
	SGDC_reset_filter_path06a
	SGDC_reset_filter_path_validation01
	SGDC_reset_synchronizer01
	SGDC_reset_synchronizer02
	SGDC_reset_synchronizer03
	SGDC_reset_synchronizer04
	SGDC_reset_synchronizer05
	SGDC_reset_synchronizer06
	SGDC_reset_synchronizer07
	SGDC_reset_synchronizer08
	SGDC_reset_synchronizer09
	SGDC_reset_synchronizer10
	SGDC_signal_in_domain01
	SGDC_signal_in_domain02
	SGDC_signal_in_domain03
	SGDC_signal_in_domain04
	SGDC_sgclkgroup01
	SGDC_sgclkgroup02
	SGDC_sgclkgroup03
	SGDC_sync_cell02a
	SGDC_sync_cell02b
	SGDC_sync_cell02c
	SGDC_sync_cell03a
	SGDC_sync_cell03b
	SGDC_sync_cell04
	SGDC_sync_cell05
	SGDC_sync_cell06
	SGDC_sync_cell07
	SGDC_sync_cell08a
	SGDC_sync_cell08b
	SGDC_sync_cell09a
	SGDC_sync_cell09b
	SGDC_sync_cell10
	SGDC_virtualclock01
	SGDC_virtualclock02
	SGDC_virtualclock03
	SignalTypeSetup
	SyncCellSetup
	SGDC_clock_path_wrapper_module01

	Rule Grouping in SpyGlass CDC

	Terminologies in SpyGlass CDC
	Properties
	Assertions
	Clock Cycle Count and Sequential Depth
	Design Period
	Initial State
	Functional Flip-Flop
	Reset Flip-Flop
	Reset Cone
	Synchronous Clocks
	Repeaters
	Derived Resets
	Control Signals
	Design Assumptions

	Appendix: SGDC Constraints
	SpyGlass Design Constraints Used by SpyGlass CDC

