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Introduction to SpyGlass 
CDC Methodology
Clocks that are asynchronous with respect to each other may reach 
different flip-flops at slightly different times in each cycle. This timing 
uncertainty may cause setup and hold-time violations randomly in the 
design resulting in functional failure in an SoC.

Such issues cannot be detected by using traditional verification methods, 
such as simulation and static timing analysis. You can detect them by using 
static clock-domain-crossing analysis and verification of SpyGlass CDC 
solution.

SpyGlass CDC solution enables you to detect clock-domain crossings at the 
RTL level and ensure that proper synchronization is added in the circuit.

This document introduces a methodology that you can use to verify 
clock-domain crossing (CDC) issues in your design by using the SpyGlass® 
tool suite. The document is useful for novice and advanced users of 
SpyGlass. Advanced users can proceed directly to the relevant sections of 
the document.
7
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Introduction to SpyGlass CDC Methodology
The following table describes the sections covered in this document:

Topic Information

The CDC Issues Describes basic CDC problems, such as metastability and 
complex synchronizers.

Using SpyGlass 
CDC Methodology 
to Solve CDC 
Problems

Describes a step-by-step solution towards a SpyGlass CDC-
clean design by using any of the following flows:
• SpyGlass CDC Methodology Flow
• SpyGlass CDC Hierarchical Verification Flow
8
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Goals of SpyGlass CDC Methodology

Introduction to SpyGlass CDC Methodology
Goals of SpyGlass CDC Methodology
SpyGlass CDC methodology is integrated within GuideWare for different 
field of use. Below is a summary of goals (of SpyGlass CDC solution) 
deployed in various field of use of GuideWare. The set of goals (of SpyGlass 
CDC solution) used for each GuideWare stage is the same.

NOTE: M means mandatory and O means optional.
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Goals of SpyGlass CDC Methodology

Introduction to SpyGlass CDC Methodology
In addition to the static SpyGlass CDC verification described here, 
SpyGlass CDC solution can be used to perform dynamic SpyGlass CDC 
verification. For dynamic SpyGlass CDC verification, SpyGlass CDC solution 
can generate simulation directives using Ac_meta01 rule that will inject 
metastability errors during simulation using your own testbench. These 
directives may cause additional simulation mismatches due to the effect of 
metastability. 

Tool and Methodology Version

 SpyGlass Version: Version N-2017.12-SP2

 GuideWare Version: 2017.12
10
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SpyGlass CDC Terminologies

Introduction to SpyGlass CDC Methodology
SpyGlass CDC Terminologies
The terminologies used in SpyGlass CDC are defined in the following table:

Terminology Description
Clock domain Refers to the clocks that have a constant phase relationship 

with each other.
Typically, a clock, its inverted form, and its divided form is 
considered to be in the same domain. Divided forms have a 
constant phase relationship until the division ratios have a 
common factor. 
Divide-by-2 and divide-by-4 have constant phasing but 
divide-by-3 and divide-by-5 do not have constant phasing.

CDC
(Clock Domain 
Crossing)

Refers to the path connecting a sequential element, flip-flop, 
primary input, or black box controlled by one clock domain to 
another sequential element, flip-flop, primary input, or black 
box clocked by another clock domain.

Synchronizer Refers to the part of a design that transfers signal values 
across clock domains

Quasi-static Refers to flip-flops that take constant values in a design.
They may change values during setup and initialization of the 
design, or may change value when a block powers on or 
power off.
Often, quasi-static flip-flops do not require synchronizers 
even if they are involved in clock domain crossings.

LCM Refers to the least common multiple to identify a common 
clock period for a design with multiple clocks of different 
periods.

Correlated 
Signals

These are the signals whose combined values are used 
in the design. An example of such signals is state 
vector signals.
12
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The CDC Issues
Clocks that are synchronous with respect to each other are known as same 
domain clocks, and clocks that are asynchronous to each other are known 
as different domain clocks.

Edges of clocks coming from the same clock domain are always aligned for 
all registers in the design and for all time throughout design run. As a 
result, if setup and hold time for a flip-flop input is considered, there is no 
risk in capturing the data of the flip-flop throughout the design.

However, clocks from different domains may reach different flip-flops at 
different times in each cycle during design run. This timing uncertainty 
may cause random setup and hold-time violations. Such problems may 
result in the following CDC issues:
 Metastability

 Data Hold in Fast-to-Slow Crossings

 Data Correlation and Race Conditions

 Complex Synchronizers 

 Issues Related to Reset Synchronization
13
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Metastability

The CDC Issues
Metastability
Metastability is the design problem in which metastable values are created 
and propagated due to setup and hold-time issues in an asynchronous 
crossing.

The following figure shows an example of such an issue:

FIGURE 1. Metastability Issue

In the above figure, the metastable waveform generated at B is subject to 
interpretation by each branch in the fan-out of B.

One gate in a fan-out can perceive the metastable wave as the logical 
value 1 while another fan-out perceives the same net as 0. This free 
interpretation causes functional failure in the design.

To remove metastability, use the following approaches:
 Control signal synchronization

Control signals crossing clock domains are typically synchronized by 
using multi-flop synchronizers. In such cases, multiple stages of 
flip-flops transform the metastable values to a cleaner 0 or 1 before it is 
passed to a downstream logic.

 Data signal synchronization
Data signals are synchronized by using enable techniques where the 
data is first stabilized on the crossing path and then the destination 
flip-flop is enabled to capture the stable data (so the setup and hold 
time is not violated).

Traditionally, a clock domain crossing is seen as a path from one memory 
element to another. However, designers typically design interfaces that 
14
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Metastability

The CDC Issues
involve data, address, and control lines implementing complex 
synchronization protocols. For example, Figure 2 illustrates a common FIFO 
where data is stored and read from a memory (data), pointers are 
designed to access the memory (address) for either read or write, and 
finally control logic that computes empty/full flags (control) is designed to 
ensure coherency and prevent metastability. 

FIGURE 2. FIFO synchronizer involving data, address, and control logic

The key concept in common data synchronization techniques is a link 
between the sender and receiver of the data which ensures that the data is 
not captured while it is changing as this will cause an asynchronous event 
to propagate which can cause metastability. Based on this observation, an 
asynchronous interface is composed of a set of source signals, a 
destination signal (can be a bus), and a set of control logic. At least part of 
the control logic is responsible for proper synchronization. Figure 3 
illustrates a generic data crossing and signals involved in the 
synchronization.
15
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Metastability

The CDC Issues
FIGURE 3. Generic Data Crossing

The following signals are typically involved in a crossing:
 Destination of the crossing: Single-bit or multi-bit signal receiving 

data from one or multiple domains
 Source of the crossing: Data, Address, Control signals crossing clock 

domain without being flip-flopped in the destination domain. There can 
be multiple sets of sources from different domain crossing to the 
destination

 Qualifier: A control signal, typically from the source domain 
synchronized in the destination domain (typically using multi-flop 
synchronization technique) responsible for ensuring that the source is 
stable when captured by the destination
16
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Metastability

The CDC Issues
 Signals from the destination domain: These signals are used as a 
control or for data computation/transformation purposes needed for the 
design.
Such signals are typically not important for synchronization verification, 
however, it is not a good idea to perform complex computation, or bring 
complex control logic on a crossing. Increased combinational logic on a 
crossing increases the risk of asynchronous glitch, especially after 
synthesis and optimization. We recommend performing data 
transformation/computation in the source domain or in the destination 
domain and keeping the asynchronous interface very simple

NOTE: Some custom interfaces such as source synchronous interfaces where the source is 
itself generated synchronously to the destination may not comply with the common 
synchronization techniques described here. Such structures are relatively rare and 
may require custom verification approaches. 

As is implied by such an interface, the synchronization protocol must 
ensure that the data is stable when the qualifier is asserted to trigger data 
capture. This is a functional requirement that cannot be validated by 
looking at a design structure alone.

Furthermore, the above functional requirement only ensures that the 
source will not violate timing that can cause metastability. If any 
combinational logic on the crossing glitches, it may cause either 
metastability or generation of an undesired pulse.

SpyGlass CDC Verification performs a fast structural analysis that identifies 
elements of synchronization that indicates user intent to synchronize the 
crossing in order to prevent metastability as well as glitch issues. 

SpyGlass CDC verification solution relies on the following concepts to 
declare a crossing as synchronized:
 Presence of qualifier signals: One or more signals coming from the 

source domain and synchronized to the destination using multi-flop 
synchronizer or a user-specified synchronizer cell. Qualifiers may be 
present beyond sequential logic such as a receiver state machine.

NOTE: Synchronous resets may have all characteristics of a qualifier. They can be sig-
nals generated in a source domain, synchronized in a destination domain, and 
even gating the data capture into the destination. It is very important to define 
synchronous resets for SpyGlass CDC solution to avoid false positives. As stated 
above, functional verification must complement the structural verification to 
guarantee synchronization correctness. Indeed, although synchronous resets 
have full appearance of a qualifier they will fail functional data/enable or data-
hold checks.
17
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Metastability

The CDC Issues
 Gating mechanism: The qualifier must converge with the source in 
order to block the transfer when the source is being set up. SpyGlass 
CDC solution accepts common gating mechanisms such as AND and 
MUX synchronizers. An XOR gate is not considered as an acceptable 
gating mechanism as it allows asynchronous transfer regardless of the 
value of a qualifier feeding the gate. 
Furthermore, to avoid glitches, re-convergences are allowed only before 
the crossing is gated. Any re-convergence of the same asynchronous 
source after it is gated is prone to glitch and is not accepted. This 
includes cases where each branch of the re-convergence is 
synchronized. Figure 4 illustrates a re-convergence of the source, 
although each path is gated by a qualifier, the crossing is not considered 
as synchronized based on a pessimistic assumption that the re-
convergence can produce a glitch. Indeed, the logic in this figure 
represents a XOR and this crossing must not be considered as a 
synchronized crossing. 

FIGURE 4. Synchronization not accepted

If source re-convergences are synchronized after they converge, then 
there is no glitch risk and the crossing is considered as synchronized. Such 
structures are considered as properly synchronized.

Note that there might be properly synchronized crossings where re-
convergences exist on each branch of the crossing. However, such complex 
logic on a crossing is a risky design style that can cause glitches, especially 
after optimization and synthesis transformations. Due to the pessimistic 
nature of the analysis, such synchronized crossings are not considered as 
18
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Metastability

The CDC Issues
synchronized.

In case a data is found to be unsynchronized, it is important to understand 
the nature of the failure and the way to fix it. Following are possible 
reasons for synchronization failure:
 Lack of a qualifier: No qualifier converges with the crossing. This may be 

due to the presence of an unsynchronized control signal that is intended 
to qualify a crossing.

 Invalid gating of the crossing with a valid qualifier: This happens for 
example when the crossing and a qualifier converges on a XOR gate.

 A source diverges to multiple paths that are synchronized separately 
(refer to Figure 3)

 A source converges with the qualifier before the qualifier feeds the 
synchronizing gate

 Two sources from different domains converge before they are 
synchronized

Some simple examples of control and data synchronizers are shown in 
Figure 5: 
19
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Metastability

The CDC Issues
FIGURE 5. Common synchronization schemes
20
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Data Hold in Fast-to-Slow Crossings

The CDC Issues
Data Hold in Fast-to-Slow Crossings
This issue appears when a short pulse generated in a fast clock domain is 
fed in a slow clock domain. In such cases, short signals may miss the 
active edge of the slow clock domain and they are not captured in the 
destination.

The following figure shows the data hold problem in fast-to-slow crossings:

FIGURE 6. Example of Data Hold in Fast-to-Slow Crossings

To fix such issues, use the following approaches:
 Use a custom circuit to extend the pulse for at least one complete cycle 

of the slow destination clock.
You must verify all the fast-to-slow crossings and ensure that such 
extenders exist and no short pulse is generated in the destination.

 In case of enabled flip-flops involved in a crossing, ensure that the data 
is stable before the enable is asserted and the data does not change 
when the enable is on.
21
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Data Correlation and Race Conditions

The CDC Issues
Data Correlation and Race Conditions
If a source remains stable for long, its value is transferred to the 
destination. However, if the design has metastability issues, this transfer 
may not happen immediately. This can cause problems for Correlated Signals 
such that one or more signals are deferred relative to others.

This results in loss of correlation, which results in an unknown state at 
destination, thereby causing functional failure.

The following figure shows the example of such problem:

FIGURE 7. The re-convergence problem and a typical solution using gray 
coding

To fix this problem, introduce a gray encoder, which ensures that only a 
single bit is changed at a time.

You must ensure that Correlated Signals are gray encoded before they cross 
22
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Data Correlation and Race Conditions

The CDC Issues
clock domains. You can identify such signals where independent signals are 
converging and are used in the same combinational logic, or when a bus is 
used as a state vector or a memory pointer.
23
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Complex Synchronizers

The CDC Issues
Complex Synchronizers
FIFO mechanisms are often used to transfer data from one domain to 
another.

The following figure shows a FIFO synchronizer architecture:

FIGURE 8. FIFO synchronization scheme

For proper data transfer, it is important that the full and empty flags are 
generated on time and are not delayed or corrupted due to the pointers 
crossing clock domains. It is also important that the read and write FSMs 
make use of the full and empty flags to prevent writing into a full FIFO or 
reading from an empty FIFO.
24
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Issues Related to Reset Synchronization

The CDC Issues
Issues Related to Reset Synchronization
Reset synchronizers are especially built to avoid metastability while de-
asserting a reset signal. Such synchronizers must be verified for both 
metastability and functionality to avoid reset failures.

The following figure shows the example of reset synchronization:

FIGURE 9. Reset Synchronization
25
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Issues Related to Reset Synchronization

The CDC Issues
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Using SpyGlass CDC 
Methodology to Solve 
CDC Problems
This section provides a step-by-step solution to make an SoC free from 
CDC issues by using any of the following flows:
 SpyGlass CDC Methodology Flow

 SpyGlass CDC Hierarchical Verification Flow
27
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SpyGlass CDC Methodology Flow

Using SpyGlass CDC Methodology to Solve CDC Problems
SpyGlass CDC Methodology Flow
The following figure illustrates this flow to achieve a SpyGlass CDC clean 
SoC:

FIGURE 1. The SpyGlass CDC Methodology Flow

The following table shows the stages and their corresponding goals to 
achieve a SpyGlass CDC-clean design while using this flow:

Setup
complete

Save project, parameters,
and SGDC files

Solve issues
no

yes

Performing Clocks and Reset Integrity Checks

Violations Solve issues
yes

Performing Block-Level CDC Verifi-

Violations Solve issues
yes

no

no

no
Performing SoC-Level CDC Verifi-

Violations Solve issues
yes

no

no
Signing-Off SpyGlass CDC Verification

Block SGDC

Block Project

SoC

Parameters
Constraints

cdc_setup

cdc_setup_check

clock_reset_integrity

cdc_verify

cdc_verify_struct

Verifying SpyGlass CDC Setup

Creating SpyGlass CDC Setup
28
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SpyGlass CDC Methodology Flow

Using SpyGlass CDC Methodology to Solve CDC Problems
Creating SpyGlass CDC Setup

In this stage, you specify constraints, parameters, and other design 
components required for accurate and complete SpyGlass CDC verification.

Create a setup in the following ways:
 Writing Constraints

Stage Summary Goals

Creating SpyGlass CDC Setup Specify constraints, parameters, and 
other design components required for 
accurate and complete SpyGlass CDC 
verification.

cdc_setup

Verifying SpyGlass CDC Setup Check for the correctness and 
completeness of the setup.

cdc_setup_check

Performing Clocks and Reset 
Integrity Checks

Fix clock and reset integrity problems clock_reset_integrity

Performing Block-Level CDC 
Verification

Fix block-level violations to make the 
block SpyGlass CDC clean. This stage 
involves the following tasks:
• Fixing Ac_sync_group Rule 

Violations
• Fixing Violations Related to 

Convergence
• Fixing Violations Related to Glitches
• Fixing Violations for Data Hold 

Checks
• Fixing Data Hold Issues in 

Synchronized Data Crossings
• Fixing Violations Related to Data 

Correlation and Race Conditions
• Fixing Violations Related to Reset 

Synchronization and Deassertion
• Fixing Violations Related to FIFO 

Recognition and Verification

cdc_verify

Performing SoC-Level CDC 
Verification

Verify the SoC using the verified blocks cdc_verify_struct

Signing-Off SpyGlass CDC 
Verification

View reports and sign-off SpyGlass 
CDC Verification on the SoC

-

29
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SpyGlass CDC Methodology Flow

Using SpyGlass CDC Methodology to Solve CDC Problems
 Translating SDC Commands to SGDC Commands

 Predicting Constraints

 Running the cdc_setup Goal

 Generating Block-Level Constraints from SoC Level

 Generating Clocks

NOTE: You can also perform a setup by using The Setup Manager of SpyGlass CDC.

Writing Constraints

Define constraints in an SGDC file if you have knowledge of block 
constraints.

Translating SDC Commands to SGDC Commands

Use the sdc2sgdc project file command to translate block-level SDC 
commands to their corresponding SGDC constraints.

Predicting Constraints

Run the cdc_setup_check goal to generate constraints. The Clock_info15 
rule of this goal generates constraints.

You must review these constraints before using them during SpyGlass CDC 
verification.

Running the cdc_setup Goal

Run the cdc_setup goal to generate clocks (clock constraint) and resets 
(reset constraint) in a design.

After running this goal:
 Understand the design-clocks architecture by checking the reported 

clocks and resets.
 Resolve the clocks of black boxes by specifying a path through the black 

boxes by using the assume_path constraint.
30
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SpyGlass CDC Methodology Flow

Using SpyGlass CDC Methodology to Solve CDC Problems
 Copy the autoclocks.sgdc and autoresets.sgdc in a new constraint file 
and edit the clocks and resets to provide valid clock/reset sources. 
Remove all the non clocks and non resets from the file.

 Provide the set_case_analysis constraint to add the known case-analysis 
values under which you want to perform SpyGlass CDC analysis.

Generating Block-Level Constraints from SoC Level

You generate block-level constraints from the SoC-level constraints in the 
SpyGlass CDC Hierarchical Verification Flow.

Run the cdc_top_down goal to generate block-level constraints.

Note that using the generated block-level constraints for Generating Abstract 
View in SpyGlass CDC without Performing Block-Level CDC Verification may mask 
design bugs. For example, if a top module propagates to the P pin (of the A 
domain) of a block, you must verify that the P pin is feeding flip-flops in 
the A domain within the block or it is synchronized to another domain in 
which the pin is used.

SpyGlass CDC solution can also generate a block's peripheral domain 
information from within a block relying on the flip-flops interacting with 
these pins. For details, refer to the documentation of the rule Clock_info15 
in SpyGlass CDC Rules Reference Guide.

Generating Clocks

You can specify derived clocks or generated clock by using the 
generated_clock constraint. These are the clocks that traverse from 
the output (hierarchical pin or net) of sequential elements.

To enable SpyGlass consider this constraint, set the 
enable_generated_clocks parameter to yes. When you set this 
parameter to yes, the following occurs:

 The specified generated_clock constraints are considered during 
SpyGlass analysis.

 The derived clock information is generated in the form of 
generated_clock constraints in the generated_clocks.sgdc and 
cdc_setup_generated_clocks.sgdc files.
31
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SpyGlass CDC Methodology Flow

Using SpyGlass CDC Methodology to Solve CDC Problems
This happens when the use_inferred_clocks parameter is set to 
yes.

Verifying SpyGlass CDC Setup

After Creating SpyGlass CDC Setup, run the cdc_setup_check goal to 
correctness and completeness of the setup.

Fix all violations reported in this stage to avoid false violations in later 
stages. For example, you must ensure the following:
 All flip-flops are receiving a clock.

 set_case_analysis is properly defined so that multiple clocks do not 
control the same flip-flop. See Specifying set_case_analysis.

 Multiple clocks are not defined on the same clock path.

 Periods, edges, and domains are defined properly for clocks.

Constraining Clock Trees

Constraint clock tree by:
 Constraining Clock Nets

 Specifying set_case_analysis

Constraining Clock Nets

Check the Clock_info03a violations to locate the clock-tree parts to which 
top-level clocks do not reach. This occurs because of:
 Missing clock constraints in an SGDC file.

 Presence of black boxes through which a clock cannot propagate.
Black boxes appear because their structural information is missing or 
they have incorrect case analysis settings.

Specifying set_case_analysis

MUXes in clock trees use different clocks for different operating modes of 
the design. Configure MUXes by setting an operating mode by applying the 
set_case_analysis constraint on the MUX select pin.
32
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SpyGlass CDC Methodology Flow

Using SpyGlass CDC Methodology to Solve CDC Problems
Consequences of Not Configuring MUXes

Consider the scenario in the following figure:

FIGURE 2. Configuring the MUX

In the above scenario, if you do not configure the MUX by applying 
set_case_analysis on its select pin, multiple clocks may drive the same 
flip-flop. As a result, SpyGlass may infer the path between these flip-flops 
as asynchronous crossings even if these paths are synchronous. This 
results in false unsynchronized violations, which results in noise and more 
time for CDC verification closure.

Fixing Violations for Non Configured MUXes

Check for the Clock_info05 violations that report cases where you should 
define set_case_analysis on the MUX select pin.

Refer to the Clock Setup window that shows MUXes involved in clock paths 
from where you can interactively define a value for MUX selects.

Fixing Setup-Related Sanity Checks

The setup verification performs basic sanity checks on the constraints 
specified in an SGDC file. These checks are always run to check for design-
object existence and constraints correctness.
33
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SpyGlass CDC Methodology Flow

Using SpyGlass CDC Methodology to Solve CDC Problems
You can identify the violations of these checks with the SGDC_ prefix in 
their names.

For information on these checks, refer to SpyGlass CDC Rules Reference 
Guide.

Performing Clocks and Reset Integrity Checks

Run the clock_reset_integrity goal to fix clock and reset integrity problems.

This step ensures that clocks and resets are properly defined, and they are 
free of glitches, race conditions, and other hazards.

If you do not have the information about clocks and resets, you must run 
the setup. For details, see Creating SpyGlass CDC Setup.

Performing Block-Level CDC Verification

Run the cdc_verify goal to perform SpyGlass CDC verification at the block 
level.

This step uses all the information gathered while Creating SpyGlass CDC 
Setup and Performing Clocks and Reset Integrity Checks to perform SpyGlass 
CDC verification at block level.

This section covers the following topics:
 Focusing on Certain Violations on Priority Basis

 Reducing Noise

 Dealing with Functional Checks

 Waiving Violations

Focusing on Certain Violations on Priority Basis

You may initially see a large number of reported CDC issues. It is important 
to approach them in a systematic way. This enables you to quickly reach to 
a handful of issues that you may need to consider. 

The issues listed in the following sections cover the majority of important 
violations you should fix on priority:
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 Fixing Ac_sync_group Rule Violations

 Fixing Violations Related to Convergence

 Fixing Violations Related to Glitches

 Fixing Violations for Data Hold Checks

 Fixing Data Hold Issues in Synchronized Data Crossings

 Fixing Violations Related to Data Correlation and Race Conditions

 Fixing Violations Related to Reset Synchronization and Deassertion

 Fixing Violations Related to FIFO Recognition and Verification

Fixing Ac_sync_group Rule Violations

This group of rules performs an architectural design analysis and presents 
an architectural view of design crossings.

You must fix the following violations of this group first before fixing the 
other violations:
 Ac_unsync01 rule violations: These violations report scalar 

unsynchronized crossings. Such crossings act as control signals that 
synchronize complex data crossings.

 Ac_unsync02 rule violations: These violations report data crossings 
where no valid synchronization is found.

Run SpyGlass again with newly added constraints and verify that all 
Ac_unsync01 and Ac_unsync02 violations are fixed.

Debugging Ac_unsync Violations

Use the following pointers to debug and fix such violations:
 Open the spreadsheet to view all the violations of a rule. Look for 

common reasons or common sources in the spreadsheet.
Use filtering and sorting in the spreadsheet view to isolate common 
factors between violations. If you are using a naming methodology for 
static signals, filter by source name in the spreadsheet.

 Open the Incremental Schematic to view the cause for unsynchronized 
crossings. Check for the reason for such crossings in the violation 
message or spreadsheet.

 Check for the presence of qualifiers or potential qualifiers for a crossing. 
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 Filter violations by using the cdc_false_path constraint.

 Specify output net names for source and destination flip-flops.

 Check for mode or control-status registers that are static or quasi-static.

 Do not waive such violations. Use the cdc_false_path constraint instead 
to filter certain unsynchronized crossings in a design.
Note that the violations of the other rules that honor this constraint may 
get filtered due to this constraint specification.

False Ac_unsync Violations

If the clock and set_case_analysis constraints are not properly defined 
during setup, you may see false Ac_unsync01 and Ac_unsync02 violations. 
For information on specifying these constraints during setup, see 
Constraining Clock Trees.

Such violations also appear due to configuration registers and other quasi-
static signals need not to be synchronized. Section Noise Reduction 
describes various tools SpyGlass provides to reduce false violations and 
find real synchronization bugs faster.

Conditions for an Unsynchronized Crossing

Consider the following figure:

FIGURE 3. Requirements for a synchronized crossing
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In the above figure, a crossing is considered as unsynchronized if one of 
the following conditions is false for the source S:

 The Q qualifier whose source domain is the same as that of S exists and 
converges with S on the G gate.

 The type of the G gate is consistent with the type specified by the 
enable_and_sync, enable_mux_sync, and 
enable_clock_gate_sync parameters.

 If S fans out to multiple gates, all the fan-out points must converge 
before G. In Figure 3, the two divergent paths from S converge before G, 
so this condition is met.

 The input of the synchronizing gate G that is driven by Q is not driven by 
another source of the crossing. In Figure 3, A should not be the source 
for the crossing. Flip-flops in the domain of the destination are allowed.

 If another source S2 converges with S before G, S2 must be in the 
same domain as that of S.

 The path from Q to G is considered based on the value of the 
enable_delayed_qualifier parameter.

Declaring Synchronous Resets

Consider the following figure:
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FIGURE 4. Example of a crossing with a reset synchronizer

In the above figure, the source s is reported as synchronized with the 
qualifier rs.

By looking at the Verilog description, it is clear that rs is the output of a 
reset synchronizer. Since the user missed to declare the input r as a reset, 
rs is considered as a qualifier.

To avoid such issues, declare all synchronous resets in the SGDC file to 
avoid considering their reset synchronizers as qualifier. Therefore, specify 
the following constraint to fix the issue in the above example:

reset -name r -sync

Fixing Violations Related to Convergence

Check for the Ac_conv01, Ac_conv02, Ac_conv03, Ac_conv04, and 
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Ac_conv05 violations.

Convergence issues can occur when multiple signals cross from one 
domain to another but they are separately synchronized.

Fixing Violations Related to Glitches

Check for the Ac_glitch* or Clock_glitch* violations.

These rules report glitch-prone logic that can lead to problems similar to 
synchronization issues.

Fixing Violations for Data Hold Checks

Check for the Ac_cdc01 violations.

Such violations indicate potential problems in signals or data crossing 
typically from a fast clock domain to a slower clock domain where data sent 
may have already changed by the time the capturing clock arrives.

The Dealing with Functional Checks section provides further detail on how to 
debug such functional checks.

Fixing Data Hold Issues in Synchronized Data Crossings

Check for the Ac_datahold01a violations.

Such violations report clock domain crossings where data can be unstable 
while the enable is active. For every data change, the enable should be 
activated to capture the new data and should be deactivated before the 
next data is loaded.

The Dealing with Functional Checks section provides further detail on how to 
debug such functional checks.

Fixing Violations Related to Data Correlation and Race Conditions

Check for gray-code violations, such as Ac_cdc08, Ac_conv01, and 
Ac_conv02.

Convergence of signals, such as control buses can cause major problems if 
they are not implemented using approved methods.

Typically, with control buses crossing clock domains, designers implement 
gray code schemes to handle such issues. Using a gray-encoded 
implementation for control bus signals ensures that only one bit of the 
control signal changes during any one clock cycle.
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For debug and analysis of the gray encoding check and other functional 
checks, see Dealing with Functional Checks.

Fixing Violations Related to Reset Synchronization and Deassertion

Check for the following rule violations:

Fixing Violations Related to FIFO Recognition and Verification

Check for the Ac_fifo01 and Ac_sync_group rule violations.

SpyGlass can automatically identify FIFOs. FIFO recognition may produce 
following results:
 Fully recognized FIFOs: This is the case if memory and pointers of a 

FIFO are identified
 Partially recognized FIFOs/Memory: A 2-dimensional memory or a lib/

sglib memory identified by SpyGlass for which read/write pointers were 
not identified.

 Disabled: When fa_msgmode is set to none.

FIFO recognition will help SpyGlass CDC verification as follows:
 Metastability violations reduction (Ac_unsync02 violations reduction): 

Typically, a FIFO memory is clocked by write clock and the data is read 
out of memory in a read domain. This situation creates a clock domain 
crossing from write domain to the read domain that will potentially be 
reported as unsynchronized (Ac_unsync02 violation). FIFO recognition 
will help in reducing such metastability violations (the crossing will be 
reported as properly synchronized by Ac_sync02 rule). You can control 
FIFO based Ac_unsync02 filtering with enable_fifo option. If the option 

Rule Violation Reported
Ar_unsync01 Reports unsynchronized reset signals in the design
Ar_sync01 Reports synchronized reset signals in the design
Ar_asyncdeassert01 Reports if reset signal is asynchronously de-asserted
Ar_syncdeassert01 Reports if reset signal is synchronously de-asserted or 

not de-asserted at all
Reset_sync02 Reports asynchronous reset signals that are generated 

in asynchronous clock domain
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is set to “strict”, only fully recognized FIFOs will contribute to 
Ac_unsync02 violations reduction. If enable_fifo is set to “soft”, partially 
recognized FIFOs/Memory will also lead to Ac_unsync02 violations 
reduction. Reading data out of a memory is not necessarily safe and 
may be subject to metastability; so usage of enable_fifo set to soft is 
not advised unless you are sure that the control logic around the 
memories provide sufficient margin between the data being written into 
the memory and the read request out of the memory. List of FIFOs 
recognized in a design is given by Rule Ac_fifo01.

 Functional verification of FIFOs: For all fully recognized FIFOs, SpyGlass 
performs functional check to make sure the FIFO will not overflow or 
underflow. FIFO overflow/underflow violations are reported in Ac_fifo01 
rule.

SpyGlass recognizes commonly used FIFO architectures where memory 
and pointer counters can be identified. FIFOs cannot be extracted from a 
netlist design as the counters are mapped into gate level netlist. SpyGlass 
provides “fifo” constraint that can be used to provide FIFO attributes that 
would help FIFO recognition and verification. The fifo constraint can be 
used to provide FIFO attributes, such as memory and/or pointers in a 
constraint file (SGDC). Here is an example of “fifo” constraint:

fifo -memory "uart_top.u13.u4"

For debug and closure of FIFO and other functional checks, see Dealing with 
Functional Checks.

Reducing Noise

You can reduce noise by:
 Setting Parameters

 Setting Constraints

 Filtering Violations in a Spreadsheet

Setting Parameters

For a particular design or project, set the following parameters to reduce 
the number of violations:

 allow_combo_logic

Use this parameter to allow combinational logic between synchronizers.
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Combinational logic on a crossing can create a glitch. It is harmless in a 
synchronous circuit. However, its presence in an asynchronous crossing 
may cause unwanted pulses causing functional failures.

 cdc_reduce_pessimism

Use this parameter to filter out violations by setting this parameter to 
appropriate values.

 clock_reduce_pessimism

Use this parameter to control clock-domain propagation and 
consequently control SpyGlass CDC solution violations.

Setting Constraints

Specify the following constraints to reduce noise:

 cdc_false_path

Specify this constraint to filter certain unsynchronized crossings in a 
design. An example of such crossings is configuration and other quasi-
static registers that do not need synchronizers.
Using this constraint, you can specify the paths that the 
Ac_sync_group rules should not check for clock crossings. This 
reduces the number of violations reported on that path. The following is 
an example of cdc_false_path:

cdc_false_path –from block1.flop1 –to block2.flop2
cdc_false_path –from block1.clk1
cdc_false_path –from config_module::fifo_config_reg[1]

The first line filters out the flop1-to-flop2 crossing from 
Ac_sync_group violations. The second constraint eliminates all the 
crossings from flip-flops controlled by clk1 regardless of their 
destination flip-flops.

 reset -sync

If you are using a synchronous reset at the crossing or synchronizer flip-
flops, you can specify these resets using the reset constraint with sync 
argument (reset –sync). This allows combinational gates generated due to 
synchronous reset logic in the crossing or synchronizer path. 
By default, synchronous reset gate will be considered as combinational 
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logic and a crossing will be considered unsynchronized.

Filtering Violations in a Spreadsheet

From Ac_unsync01 and Ac_unsync02 violations header you can 
access a spreadsheet view of all violations. In this spreadsheet, you can 
sort or filter violations based on several criteria (e.g. source or destination 
clocks, reason of failures, etc.). Explore the violations in the spreadsheet to 
determine false violations due to configuration registers, unconstrained 
paths, etc. You can select all such violations and request 
cdc_false_path constraint generation from the spreadsheet window; 
cdc_false_path constraints will prevent these violations from being 
reported in subsequent runs.

Dealing with Functional Checks

Functional verification of clock-domain crossings is an important aspect of 
SpyGlass CDC verification. Many critical bugs causing SoC spins are 
because of gray-encoding failure, FIFO failure, and other types of 
functional problems in clock-domain crossings.

Functional checks are more CPU-intensive than structural checks.

Focusing on Failed or Partially-Proved Checks

 A functional check reports any of the following status:

Status Description
FAILED Refers to functional checks that failed.

For such cases, SpyGlass provides a simulation trace that 
you can view in the waveform viewer. To open the 
waveform viewer, double-click the violation and click the 
waveform viewer icon.
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Focus on failed and partially-proved checks as they may represent real 
design bugs.

Dealing with Partially-Proved Checks

Set the fa_atime parameter to increase the amount of time that 
SpyGlass spends on validating a single property.

Dealing with Long Run Times

Formal verification is exhaustive and involves complex functional analysis 
of a design. The complexity of functional analysis increase with the number 
of asynchronous clocks in a design.

It is recommended to perform functional verification only where it is 
required. Avoiding unnecessary functional verification requires Creating 
SpyGlass CDC Setup properly and Reducing Noise.

You can deal with long run times in the following ways:
 Constraining Resets

 Dealing With Clock Frequencies

Constraining Resets

Consider a synchronous reset always converges with a data/control signal 
through a simple gate, such as an AND gate. This type of convergence, 

PASSED Refers to checks that passed.
SpyGlass reports a message for such checks only if 
fa_msgmode is set to pass or all. These checks are 
reported with the INFO severity.
This status indicates a proper functionality proof of 
SpyGlass CDC solution.

PP (Partially Proved) Refers to checks that could not be concluded.
SpyGlass provides the number of cycles that have been 
explored during which no violation has been found.
Similar to passed checks, these checks are reported only 
if fa_msgmode contains “pp” or “all”; by default both 
failed and partially proved results are reported.
These checks are reported with the WARNING severity.
See Dealing with Partially-Proved Checks.
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although reported by Ac_conv01 and Ac_conv02, can be considered as safe 
as long as the reset is static.

In this case, you should constraint the synchronous reset by using the 
reset –sync constraint. By doing so, you can reduce the number of 
Ac_conv01 and Ac_conv02 violations reported because of synchronous 
reset convergence. This consequently reduces the run time by preventing 
formal verification of such convergences.

Dealing With Clock Frequencies

Clock frequencies may greatly affect the complexity of functional analysis.

To understand how clock frequencies affect the functional analysis process, 
consider two clocks running with the 17 ns period and 13 ns period, 
respectively.

If the rising edges of the two clocks are aligned at the time 0 ns, the next 
time the rising edges will again be aligned corresponds to 221 ns (the LCM 
of two clock periods). This means that the design behaves asynchronously 
for 221 ns.

Any functional analysis that repeats itself many times (for proving a 
property, for example) analyzes the design for at least this period of time. 
This means it performs many evaluations of logic in the design. This time 
period is called the Design Virtual Cycle. A high design virtual cycle makes 
it hard to verify design functionality.

In some cases, if functional analysis enter into long design runs, modify 
clock periods to reduce the LCM. Consider the following example. 

The device A has two asynchronous clocks: clk_33 (clock period - 33 ns) 
and clk_100 (clock period - 100 ns). If you specify these clock periods in an 
SGDC file, the LCM of the two clock periods is 3300 ns (33x100), which is 
quite large.

If you specify the 100 ns clock in the SGDC as the 99 ns clock, the design 
virtual cycle reduces to 99 ns. Note that changing the clock frequency by 
this amount affects the behavior of the design, and therefore the change 
should not be considered unless necessary.

SpyGlass reports the design virtual cycle in terms of the number of fastest 
clock cycles and the number of non-overlapping edges of all clocks covered 
by the design virtual cycle.

Note that the gray-encoding check is a relatively local check as the logic for 
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gray encoding is purely combinatorial and should not depend on the 
frequency. In this case, frequency numbers are not important. If 
frequency/period information is not provided, then SpyGlass assumes all 
clocks (clocks for which a period is not defined) as having a 10 ns period.

Debugging Functional Checks

A failed functional check generates a waveform indicating the 
circumstances of the failure.

To view the waveform viewer, double-click on the violation and click the 
waveform viewer icon.

Initially, a small set of signals are loaded in the waveform viewer. These 
signals are a good starting point for debugging. To check the signals in the 
vicinity of a signal, right-click on that signal and select the fan-in option 
from the shortcut menu. Select all or part of these signals and click OK to 
load their waveform in the viewer.

Note that you can cross-probe between the waveform viewer and the RTL-
viewer.

Removing False Violations of Functional Checks

False violations appear if the design is not constrained properly or SpyGlass 
considers an inappropriate initial state of the design.

Constraining the Design Properly

Reset signals are used to initialize the design and they are usually disabled 
during functional checks. For example, a gray-encoding check may fail due 
to a reset signal being asserted in the middle of a binary count.

To prevent functional checks failure due to reset toggling, define the reset 
signal by using the reset constraint in an SGDC file.

If you want the reset to be considered as any other input during function 
check, declare the reset as soft by specifying the –soft argument with 
the reset constraint.

Specifying the Correct Initial State of the Design

Validate the Ac_initstate01 rule message to know the initial state used 
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during functional verification.

Functional checks may fail or pass depending on the initial states 
considered by SpyGlass.

Waiving Violations

It is recommended to use the cdc_false_path constraint to reduce the 
number of false violations.

However, if you want to remove a specific violation that does not have any 
global impact of discarding a path, waive that violation. For example, you 
may waive a Clock_info03a violation.

You can waive violations before or after SpyGlass analysis, as described 
below:

 Before analysis, specify the waive constraint to waive violations on a 
block that you do not want to analyze.

 After analysis, waive a violation that are safe to be ignored.
NOTE: Apply waivers to only those rules that do not directly involve a synchronizer.

Performing SoC-Level CDC Verification

Run the cdc_verify_struct goal to perform SpyGlass CDC verification on the 
SoC.

If you are using the SpyGlass CDC Hierarchical Verification Flow, specify the 
SGDC files representing the abstract views of blocks with the SoC-level 
files while performing SoC-level verification.

This step verifies all structural issues in SpyGlass CDC solution on the SoC.

All violations, including those from the rules Ac_unsync01, Ac_unsync02, 
Ac_conv01, Ac_conv02, and Ac_conv03 should be analyzed and resolved.

Signing-Off SpyGlass CDC Verification

 Open SpyGlass CDC report from the GUI pull-down menu, 
Report->clock-reset->CDC-report, and review the content as follow
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 Examine the assumptions; the SpyGlass CDC report header contains all 
parameters that make the verification optimistic (e.g. use of 
allow_combo_logic). All optimistic assumptions need to be justified 
and documented.

 Check if all verification goals have been run and if there are any 
violations left unsolved. All such violations need to be justified and 
documented.
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SpyGlass CDC Hierarchical Verification Flow
Unlike the SpyGlass CDC Methodology Flow, in this flow you use abstract 
views of blocks while Performing SoC-Level CDC Verification. Using abstract 
views reduce SpyGlass CDC verification run time by focusing on SpyGlass 
CDC solution issues on block boundaries only.

Use this flow in the following cases:
 Large SoCs

Performing SpyGlass CDC verification on large SoCs having 100M+ 
gates and many clocks can be time consuming. For such designs, use 
the SpyGlass CDC hierarchical verification flow for faster SpyGlass CDC 
verification sign-off.

 Distributed Environment for SoC Development
In such environment, IPs are developed or acquired from different 
design teams and SoC integration happens in a different location. In 
such cases:
 Block owners verify blocks and handoff the abstract views of these 

blocks (along with the blocks) to the SoC integration team.
 SoC integration team uses abstract views without worrying about the 

block content.
If the abstract view of some blocks is not available, the SoC team 
does the following:
 Generate the abstract views for such blocks.

 Migrate constraints from top level to block level. For details, see 
Generating Block-Level Constraints from SoC Level.

 Consider such blocks as glue logic by specifying them with the 
ip_block constraint.

The following figure illustrates this flow:
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FIGURE 5. Abstract Bottom Up SoC level CDC verification flow

The following table shows the steps and their corresponding goals used in 
this flow:
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TABLE 1  Steps in SpyGlass CDC Hierarchical Verification Flow

Steps Summary Goals

Identifying the Blocks to Abstract 
in SpyGlass CDC

Identify the blocks whose abstract 
view should be created.
This abstract view is used while 
Performing SoC-Level CDC 
Verification.

-

Creating SpyGlass CDC Setup Capture block constraints, such as 
clocks, input domains, resets, and 
other assumptions on the inputs

cdc_setup_check

Verifying SpyGlass CDC Setup Check for the correctness and 
completeness of the setup.

cdc_setup_check

Performing Clocks and Reset 
Integrity Checks

Fix clock and reset integrity 
problems

clock_reset_integrity

Performing Block-Level CDC 
Verification

Verify all the sub blocks.
The input constraints captured 
while Creating SpyGlass CDC 
Setup dictate the quality of the 
block verification. If an input is in 
a given domain then it should feed 
the flip-flops in the same domain 
or be synchronized before being 
used in a different domain. 
However, on the output side, 
constraints, such as domains may 
be neglected, as those will be 
identified during verification and 
generation of abstract model.

cdc_verif

Generating Abstract View in 
SpyGlass CDC

Create an abstract view for a 
block

cdc_abstract

Performing Abstract View 
Validation in SpyGlass CDC

Validate block assumptions 
against the higher-level 
hierarchy constraints

cdc_abstract_validate
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Identifying the Blocks to Abstract in SpyGlass CDC

Decide the blocks to verify before moving to the verification of a higher-
level hierarchy.

Typically, for a full SoC, verifying the first level instances (often referred to 
as a clusters, or sub-modules) before moving to the SoC verification is 
good enough. However, if the size and complexity of a sub-module is so 
that the verification may take long time, 5M+ gates with dozens of 
asynchronous clocks, then it is a good idea to further partition the sub-
module for verification before verifying the SoC.

Note that it is important to consider single clock blocks while verifying 
SpyGlass CDC solution of a design instantiating the block. For example, if 
an input of a single clock block is coming from another clock domain, then 
the block must synchronize the input before using it. Furthermore, if a 
multi-flop synchronizer feeds into a single clock module, it may converge 
with other multi-flop synchronizers within the module or further down after 
exiting the block.

Generating Abstract View in SpyGlass CDC

Run the cdc_abstract goal to generate the abstract view of a block. This 
goal runs the Ac_abstract01 rule that generates the abstract view of a 
block.

The abstract view is an SGDC file that is used by the SoC owner while 
Performing SoC-Level CDC Verification. The abstract view captures all the 

Performing SoC-Level CDC 
Verification

Verify the SoC using the abstract 
view of blocks

cdc_verif_struct

Signing-Off SpyGlass CDC 
Verification

View reports and sign-off 
SpyGlass CDC Verification on the 
SoC

-

TABLE 1  Steps in SpyGlass CDC Hierarchical Verification Flow

Steps Summary Goals
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block-level constraints. It also propagates synchronizer information 
(crossing information) to IOs by capturing this information in 
abstract_port constraints.

NOTE: Abstraction is performed on a top-level module, hence set_option top <block-
name> must be specified during block level verification run.

Quality of Abstract View

The quality of an abstract view depends on the quality of Performing Block-
Level CDC Verification.

If a block is not properly verified or the block constraints are incorrect or 
incomplete, clocks, domains, and other information assumed at block 
boundaries may be incorrect. This may result in false violations and mask 
real design issues.

Although SpyGlass CDC solution provides utilities to generate block 
assumptions (clocks, domains, etc.) automatically, this is not 
recommended for SpyGlass CDC verification sign-off. The user can review 
the abstract model, and adjust the blocks assumptions if needed

Performing Abstract View Validation in SpyGlass CDC

Run the cdc_abstract_validate goal after providing the block and its 
abstract view by using the following command:

sgdc -import <block-name> <block-abstract-view-SGDC-file>

During abstract view validation, the abstract view of a block is validated in 
context of an SoC. Provide the abstract view of a block by specifying the 
following command in the SoC-level SGDC file:

The abstract view contains block-level assumptions, such as clocks, resets, 
and domains on block inputs. These assumptions are validated with the 
constraints of the higher-level hierarchy.

The following points describe some examples of inconsistencies reported 
during abstract view validation:
 A block constraint associates two inputs to the same domain. However, 

these domains are controlled by different clocks in the higher-level 
hierarchy. Such issues are captured and fixed during validation.
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 An abstract view defines a port to be equal to 1, while the higher-level 
block constraints causes the port to be equal to 0.

Approach to Fix Violations During Abstract View Validation

For a correct verification of an SoC, all violations reported during abstract 
block validation should be analyzed and fixed.

There are the following ways to fix these violations:
 If the SoC-level constraints are incorrect that caused the violations

In this case, modify these constraints and rerun the cdc_validation goal.
 Block-level constraints are incorrect

In this case, modify the incorrect constraints and repeat the following 
steps:
 Performing Block-Level CDC Verification

 Generating Abstract View in SpyGlass CDC

 Performing Abstract View Validation in SpyGlass CDC

Examples of Fixing Violations During Abstract View Validation

Example 1

Consider the following schematic of a design:

FIGURE 6. Example of Abstract View Validation
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In the above schematic, block is correctly synchronizing an asynchronous 
signal using multi-flop synchronizer. However, the transmitter at the top-
level is driving a combinational logic that is failing the block assumption 
that an asynchronous source signal should not be having combinational 
logic (it should be glitch free).

To fix such violation, latch the source signal in a flip-flop (on source 
domain) before it is sent to receiver block.

Example 2

The following example shows the violation that should be fixed in setup:

SGDC_set_case_analysis_validation02     Warning     test.v    
2720    2     Simulated value '0' reaches to port 
'txhcfc_en[3:0]' of block instance 'test.block_inst (block: 
'block') however no set_case_analysis is specified in block 
level constraint file

The above violation is suggesting that top-level constant is reaching the 
block port and in block constraints, set_case_analysis is not defined on the 
port. This will result in inaccurate SpyGlass CDC solution analysis of the 
block, because in absence of correct constants, either it may ne noisier or 
may miss certain violations.

NOTE: Perform setup and setup-check at SoC level, prior to block validation step.

Points to be Considered in the Hierarchical CDC Flow

Consider the following points:
 Loss of Information While Generating the Abstract View

 Functional checks in an abstraction-based bottom-up methodology

Loss of Information While Generating the Abstract View

Generating Abstract View in SpyGlass CDC results in loss of information.

During abstraction, the functionality information of the block is removed 
and the crossing information is preserved. Therefore, you cannot use 
abstract views to verify design functionality. However, you can verify 
metastability, convergence, block-to-block or block-to-top connectivity, and 
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other structural issues.

Abstract views generated by SpyGlass CDC contain information using 
which you can perform:
 All structural synchronization checks

 Limited checks for multi-sampled signals (reported by Clock_sync05) 
and multi-synchronized crossings (reported by Clock_sync09).

Functional checks in an abstraction-based bottom-up methodology

Typically, synchronization circuitry is implemented in, sub-modules as 
opposed to a top-level SoC design. Therefore, verifying the functionality of 
sub-modules may be sufficient to cover critical functional issues such as 
gray encoding, FIFO correctness, etc. 

In case functional verification is needed across module boundaries, capture 
module assumptions within each module. If a signal crossing module 
boundary is generating a multi-cycle pulse, the sender should verify that 
the pulse generated must be of a certain width and the receiver can 
assume that the pulse has the given width. SpyGlass CDC solution does not 
verify the sender assertion for the signal width. However, SpyGlass CDC 
solution can understand the signal width as an assumption for the receiver 
block while doing SpyGlass CDC verification of the block. The user can 
provide an OVL (Open Verification Library) assumption for the receiver side 
and verify the width of the pulse from the sender using an assertion based 
verification tool. For more details on OVL, refer to the Accelera Open 
Verification Library site at http://verificationlib.org.

Design Styles and Management

This section describes the following:
 Handling Clock and Reset Nets Propagating Through Black Boxes

 Handling Clock Tree IPs

Handling Clock and Reset Nets Propagating Through Black Boxes

One way to extend the clock domain propagation through a black box 
instance is to specify which output pins belong to the same clock domain as 
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a particular input pin. This can be done by using the assume_path constraint.

Consider the following example:

assume_path -name BBOX -input d -output q qbar

The above specification indicates that the paths exist between input pin d 
and output pins q and qbar of the black box design unit BBOX.

Handling Clock Tree IPs

Typically, blocks, such as blocking blocks, PLLs, DLLs, and oscillators are 
analog, or at least have a non-synthesizable model. Section Creating 
SpyGlass CDC Setup describes a way to identify any such black boxes and 
solve them.

With regards to PLLs, they are generally black boxed; put the clock 
constraints at the appropriate output pins, with the domain set equal to the 
domain of the clock driving the input pin. An alternate (and possibly better) 
approach is to use the assume_path constraint as discussed earlier.

I/O cells are generally easy to identify because they either appear at the 
top level of the design, or inside a special block dedicated to I/O cells. 
Generally, each I/O cell has a modest number of I/O pins, one of which is 
typically called a PAD. I/O cells do have .lib models, but typically the model 
does not contain a function description because I/O cells are not optimized 
during synthesis.

The simplest way to deal with I/O cells is to black box them if possible. Do 
all your analysis from the inbound side of the I/O cells. It is possible to set 
the clock and other constraints on internal nets, so this should work fine. 
Even if the user wants to analyze through I/O cells, start with this 
approach and get the analysis as fine-tuned as you can before 
incorporating the I/O cell structure. You will find that this approach delivers 
useful results faster and with minimal manual intervention.

With regard to memories, it is important to understand that the only 
memories, which are natively recognized by SpyGlass, are inferred 
memories, that is, 2-dimensional arrays that appear on the left-hand side 
of an assignment, inside a sequential block. Instantiated memories are 
simply black boxes. All other memories will be reported as either black 
boxes (if no description is supplied) or un-synthesizable modules (if the 
memory size exceeds mthresh). For all the un-synthesizable modules for 
which memory size exceeds mthresh, SYNTH_5273 warning is generated. 
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In such cases, you should resolve those warnings by increasing the 
mthresh value.

It is quite common in a simulation to infer large memories (for example, 
64k) with an intention of later replacing them with an instantiated memory. 
This can cause a big problem in synthesis, which blows inferred memories 
into one flip-flop per bit, causing memory explosion, and performance 
issues. SpyGlass provides the set_option mthresh <value> project file 
command (works only for Verilog) to handle this problem. With this 
command, SpyGlass will add up all the bits in a module and will black box 
(not synthesize) the module if it contains more than the specified number 
of bits (defaults to 4096 bits).

Limitations of the Hierarchical CDC Verification Flow

Following are the limitations of the hierarchical verification flow:
 Reset synchronizers propagated to block output ports are not 

abstracted.
 If a top-level port goes to different domain flip-flops inside an 

abstracted block, it is not reported by the Clock_sync05 rule. Similarly, 
if a source flip-flop is synchronized multiple times inside such block, it is 
not reported by the Clock_sync09 rule.

 The Reset_sync01, Reset_sync03, Reset_sync04, and Clock_glitch01 
rules do not support the abstract_port constraint. These rules support 
the input constraint.
In such cases, use the Ar_sync_group rules instead of the 
Reset_sync01, and Reset_sync03 rules.

 If the abstract_port -sync constraint qualifies a crossing inside a block, 
SpyGlass does not generate the abstract_port -sync inactive constraint 
at the output port of the block during abstraction of the block.

 If an input port is driving a multi-flop synchronizer inside a block, the 
Clock_info15 rule generates the abstract_port constraint with a virtual 
clock and the -combo no argument.
During constraints validation, if such port is driven by a clock that is 
same as the destination clock, the SGDC_abstract_validation04 rule 
reports a false violation.
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 Considerations for multi-mode analysis with respect to the hierarchical 
SoC flow.
A block may operate in multiple modes. In the current abstraction flow, 
a block needs to be abstracted in each mode and used at the higher 
level of hierarchy separately.
However, if a block has many modes or it can be parameterized, and is 
instantiated in a higher level of hierarchy multiple times with different 
parameters, the model can be dropped from abstraction.
In such cases, constraint the module by using the ip_block constraint.
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Recommended Guidelines to Perform 
SpyGlass CDC Verification

Using a systematic and step-by-step approach, it is possible to sign off 
SpyGlass CDC verification using SpyGlass. It is important to solve the last 
violation reported by SpyGlass to make sure no bug of SpyGlass CDC 
solution is left.

Following are some guidelines to follow:
 It is recommended to run all the SpyGlass CDC checks first at the RTL. 

Complex synchronization schemes, such as FIFO and handshake should 
be verified at RTL only. 
FIFOs may not be detected on post-synthesis and post-layout netlist 
designs.

 For large designs, it is recommended to use the divide and conquer 
technique where you first perform SpyGlass CDC checks on design 
blocks and then use the hierarchical CDC verification flow run on the 
complete SoC.
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This appendix covers the following topics:
 Rules of the cdc_setup Goal

 Rules of the clock_reset_integrity Goal

 Rules in the cdc_verify Goal

 Rules in the cdc_abstract_validate Goal

 The Setup Manager of SpyGlass CDC
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Rules of the cdc_setup Goal
The cdc_setup goals runs the following rules:

Rule Description
Clock_info03a Reports unconstrained clock nets
Clock_info03b Reports flip-flops, latches, or clock gating cells whose data 

pins are tied to a constant value
Clock_info03c Reports flip-flops or latches where the clock/enable pin is 

set to a constant
Clock_info05 Reports MUX descriptions where two or more clock signals 

converge
Clock_info05b Reports clock signals converging at a combinational gate 

other than a MUX
Clock_info15 Reports port domain information
Reset_info09a Reports unconstrained asynchronous reset nets
Info_Case_Analysis Provides schematic highlight of propagated values.
Clock_check07 Reports clock domains that reach another clock domain
Clock_converge01 Reports a clock signal whose multiple fan-outs converge
Reset_check03 Reports synchronous reset signals that are being used as 

active high as well as active low
Reset_check10 Reports asynchronous resets used as non-reset signals
Reset_check11 Reports asynchronous resets used as both active-high and 

active-low
Reset_check12 Reports flops/latches/sequential element that do not get 

active reset during power on reset
Clock_info18 Reports unconstrained ports summary
Ac_resetvalue01 Reports missing '-value' field in 'reset' constraint
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Rules of the clock_reset_integrity Goal
The clock_reset_integrity goal runs the following rules:

Rule Description
Clock_info05b Potential glitch in clock tree due to clocks converging on 

combination gate (other than a MUX)
Clock_check01 Potential glitch in clock tree due to unexpected gates in 

clock tree (e.g. XOR gate in clock tree)
Clock_check04 Both positive and negative edges of clocks used in a 

same design
Reset_check01 Reset usage check against sync/async_set_reset 

pragma
Reset_check02 Glitches in reset paths due to unexpected gates (e.g. 

XOR gate in reset tree)
Reset_check03 Both positive and negative edges of synchronous reset 

used in a same design
Reset_check04 Both positive and negative edges of asynchronous reset 

used in a same design
Reset_check06 High fan-out reset nets not driven by placeholder cell
Reset_check07 Glitches on reset paths due to combinational logic on 

reset tree
Clock_Reset_check01 Glitches due to unwanted gates on clock or reset trees
Clock_Reset_check02 Race between flip-flop output and its clock/reset
Clock_Reset_check03 Race between flip-flop clock and reset
Info_Case_Analysis Information on case-analysis to help debug violations
ClockEnableRace Race between clock and enable of a same flip-flop
Clock_Reset_info01 Clock and reset usage matrix for information
Clock_glitch02 Gated clocks with improper enable logic
Clock_glitch03 Clock re-convergence at MUX
Clock_glitch04 Glitches due to combination logic driving flip-flops clock 

pin
Clock_converge01 Reports a clock signal whose multiple fan-outs converge
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Rules in the cdc_verify Goal
The goal cdc_verify runs the following rules in addition to the 
Ac_sync_group rules:

Rule Description
Clock_sync05 Reports primary inputs that are multi-sampled
Clock_sync06 Reports primary outputs driven by multiple clock domain 

flip-flops or latches
Clock_sync09 Reports signals that are synchronized more than once in 

the same destination domain
Ar_unsync01* Reports unsynchronized reset signals in the design
Ar_sync01* Reports synchronized reset signals in the design
Ar_asyncdeassert01
*

Reports if reset signal is asynchronously de-asserted

Ar_syncdeassert01* Reports if reset signal is synchronously de-asserted or 
not de-asserted at all

Reset_sync02 Asynchronous reset should not be generated in 
asynchronous clock domain

Reset_sync04 Asynchronous resets synchronized more than once in the 
same clock domain

Ac_cdc01a* Data hold in multi-flop synchronized fast-to-slow 
crossing

Ac_datahold01a* Reports synchronized data clock domain crossings where 
data can be unstable

Ac_conv01* Check for sequential convergence of properly 
synchronized control crossings

Ac_conv02* Check for combinational convergence of properly 
synchronized control crossings

Ac_conv03* Convergence of synchronized signals from different 
source domains

Ac_cdc08* Gray encoding of control bus crossing clock domains
Ac_fifo01* FIFO overflow and underflow checks
Info_Case_Analysis Provides schematic highlight of propagated values
Ac_clockperiod01* Reports missing '-period' or '-edge' fields in 'clock' 

constraint
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NOTE: * means the rules and parameters that require Advanced CDC License.

The cdc_verify goal also includes all the rules of cdc_setup_check goal. 
These are added to verify any new constraints, which may be added during 
verification.

Ac_clockperiod02* Reports clocks whose periods are rounded off by 
SpyGlass for lower design cycle

Ac_clockperiod03* Reports correlated clocks whose design cycle is greater 
than the threshold value.

Ac_initstate01* Reports a valid state of the design from which the formal 
analysis would actually start.

Ar_syncrst_validatio
n*

Verifies user-defined synchronous resets

Ac_crossing01* Generate spreadsheet for Crossing Matrix view
Ac_glitch03 Reports clock domain crossings subject to glitches
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Rules in the cdc_abstract_validate Goal
The cdc_abstract_validate goal runs the following rules:

Rule Description
SGDC_abstract_port_validatio
n01

Checks that the domain defined for a port is 
consistent with the domain that drives it from 
the higher-level block

SGDC_abstract_port_validatio
n02

Verifies that a port with -sync specified is driven 
by a synchronizer from the higher-level block

SGDC_abstract_port_validatio
n03

Verifies that the clocks of the synchronizer 
(source and destination) defined in 
abstract_port match those in the higher-level 
block

SGDC_abstract_port_validatio
n04

Verifies that the combo parameter specified in 
abstract_port constraint matches what drives 
the port from the top-level block

SGDC_cdc_false_path_validat
ion01

Verifies that the -from and -to clocks of a the 
cdc_false_path constraint are different in the 
top-level block

SGDC_clock_validation01 Verifies that no clock propagates to a port of the 
block if no clock constraint is defined in the 
abstract model

SGDC_clock_validation02 Verifies that a clock propagates to a port of the 
block if a clock constraint is defined in the 
abstract model

SGDC_clock_domain_validati
on01

Verifies that two or more ports that have the 
same domain in the abstract model receive the 
same clock from the top-level block

SGDC_clock_domain_validati
on02

Verifies that two or more ports that have 
different clocks domain in the abstract model 
receive different clocks from the top-level block

SGDC_define_reset_order_val
idation01

Verifies that the resets defined in from and to 
fields of the define_reset_order constraint are 
driven by resets in the higher-level block

SGDC_define_reset_order_val
idation02

Verifies that the resets defined in from and to 
fields of the define_reset_order constraint are 
driven by different resets in the higher-level 
block
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SGDC_input_validation01 Verifies that the domain of the clock defined in 
input/abstract_port constraint matches the 
domain of the clock that drives the port in the 
higher-level block

SGDC_input_validation02 Verifies that if no input/abstract_port constraint 
is defined, then the port is not driven by a flip-
flop in the higher-level block

SGDC_num_flops_validation0
1

Verifies that the clocks specified in from_clk and 
to_clk of num_flops constraints are not the 
same in the higher-level block

SGDC_num_flops_validation0
2

Verifies that the number of flip-flops in the 
num_flop constraints for a clock pair in the 
abstract model matches the number of flip-flops 
for the corresponding pair in the higher-level 
block

SGDC_reset_validation01 Verifies that a port with no reset constraint in 
the abstract model is not driven by a reset in 
the higher-level block

SGDC_reset_validation02 Verifies that a port with a rest constraint in the 
abstract model is driven by a reset in the 
higher-level block

SGDC_reset_validation03 Verifies that top and block level asynchronous 
and synchronous reset types are not conflicting

SGDC_reset_validation04 Verifies that the active value of a reset for a port 
defined in the abstract model matches the value 
of the reset that drives the port in the higher-
level block

SGDC_qualifier_validation01 Verifies that the clocks specified in from_clk and 
to_clk of a qualifier constraint are not the same 
in the higher-level block

SGDC_qualifier_validation02 Verifies that if a port does not have a qualifier 
constraint in the abstract model, then no 
qualifier drives the port in the higher-level block

SGDC_set_case_analysis_vali
dation01

Verifies that the value of a set_case_analysis 
constraint on a port in the abstract model 
matches the value propagated to the port in the 
higher-level block

Rule Description
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SGDC_set_case_analysis_vali
dation02

Verifies that if a port does not have a 
set_case_analysis constraint in the abstract 
model, then no constant value is propagate to 
that port in the higher-level block

SGDC_virtualclock_validation
01

Verifies the validity of block-level virtual clock 
with higher-level clocks

Rule Description
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The Setup Manager of SpyGlass CDC
The setup manager guides designers with little tool and design knowledge 
to achieve a design setup as complete as possible. It enables you to:
 Extract and complete clocks and reset definitions in a design.

 Configure black boxes.

 Set boundary assumptions (IO assumptions).

 Define appropriate synchronization practices for the given design.

The quality of a setup dictates the quality of SpyGlass CDC analysis. 
Incorrect or incomplete setup cause many false violations or mask design 
bugs.

The following figure shows the setup manager:
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FIGURE 1. Setup Manager of SpyGlass CDC

In the above wizard, if a step is not relevant for the current design or 
project, it appears disabled or hidden.

Before proceeding to setup verification, ensure that all domains and 
frequency information for each clock is properly defined during clock setup.

NOTE: The default mode in the setup manager of SpyGlass CDC solution allows only some 
of the features namely, “Clocks”, “Black Box”, “Resets”, “IO Setup”, and “Setup 
Closure”. To use all the features of the setup manager of SpyGlass CDC solution, 
you can select the “Advanced mode” option from the “Before You Start” step.

NOTE: Frequency information is needed for functional checks only. If a design can operate 
with a range of frequencies, identify the worst and best frequencies that cover all 

Setup manager steps
Click to see constraints and parameters
created so far

Help for each step
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corner cases and run CDC verification with each frequency setting.

Invoking the Setup Manager

To invoke the setup manager, perform the following steps:
1. Select a SpyGlass CDC goal under the Select Goal tab.
2. Click the Setup Goal tab.
3. Click the Run Setup Wizard button.

After performing the above steps, the first screen of the setup-manager 
wizard appears.

Limitations of the Setup Manager

Following are the known limitations of the Setup Manager of SpyGlass 
CDC:
 If clocks and other constraints are specified in an SGDC file and clocks 

are also created by the Clock Setup step in the SGDC file in the Setup 
Manager, the Setup Manager only considers the generated SGDC file.
It is recommended that you consolidate both the SGDC files. You can 
take clocks from the generated SGDC file and other constraints from the 
SGDC file specified by you.

 The Reset Setup step does not have the interactive setup similar to the 
Clock Setup step. It creates the autoresets.sgdc file.
It is recommended that you review the autoresets.sgdc file and add/
delete/modify the reset constraints from this file.

 In the VHDL and mixed flow, if the SGDC file (which has the sdc_data 
constraint) has <entity.architecture> in current_design, 
and you perform the following steps, clocks will not be used by setup 
step of the SpyGlass CDC goals: 
a. Select the cdc_verif_base goal in the Console GUI.
b. Click on the Setup tab.
c. Choose to import constraints from an SDC file.

To solve this problem, use <entity> in current_design instead of 
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<entity.architecture>.

 Auto-save is not supported in the IO Setup step of the Setup Manager.
If you complete a step and perform the next steps, and then go to the 
previous step that is completed and choose to skip that completed step, 
the Setup Manager highlights that step in red color.
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