
SpyGlass® CDC
Submethodology (for GuideWare
2017.12)

Version N-2017.12-SP2, June 2018

Copyright Notice and Proprietary Information
©2018 Synopsys, Inc. All rights reserved. This Synopsys software and all associated
documentation are proprietary to Synopsys, Inc. and may only be used pursuant to the
terms and conditions of a written license agreement with Synopsys, Inc. All other use,
reproduction, modification, or distribution of the Synopsys software or the associated
documentation is strictly prohibited.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the
United States of America. Disclosure to nationals of other countries contrary to United
States law is prohibited. It is the reader's responsibility to determine the applicable
regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

Trademarks
Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth
at http://www.synopsys.com/company/legal/trademarks-brands.html.
All other product or company names may be trademarks of their respective owners.

Third-Party Links
Any links to third-party websites included in this document are for your convenience
only. Synopsys does not endorse and is not responsible for such websites and their
practices, including privacy practices, availability, and content.

Synopsys, Inc.
690 E. Middlefield Road
Mountain View, CA 94043
www.synopsys.com

Report an Error
The SpyGlass Technical Publications team welcomes your feedback and suggestions on
this publication. Please provide specific feedback and, if possible, attach a snapshot.
Send your feedback to spyglass_support@synopsys.com.

mailto:spyglass_support@synopsys.com

Contents

Introduction to SpyGlass CDC Methodology7
Goals of SpyGlass CDC Methodology ... 9

Tool and Methodology Version ...10
References .. 11
SpyGlass CDC Terminologies ... 12

The CDC Issues ...13
Metastability ... 14
Data Hold in Fast-to-Slow Crossings ... 21
Data Correlation and Race Conditions ... 22
Complex Synchronizers ... 24
Issues Related to Reset Synchronization .. 25

Using SpyGlass CDC Methodology to Solve CDC Problems27
SpyGlass CDC Methodology Flow... 28

Creating SpyGlass CDC Setup ...29
Writing Constraints ..30
Translating SDC Commands to SGDC Commands30
Predicting Constraints ..30
Running the cdc_setup Goal..30
Generating Block-Level Constraints from SoC Level31
Generating Clocks..31

Verifying SpyGlass CDC Setup ...32
Constraining Clock Trees...32
Fixing Setup-Related Sanity Checks ...33

Performing Clocks and Reset Integrity Checks ...34
Performing Block-Level CDC Verification..34

Focusing on Certain Violations on Priority Basis....................................34
Reducing Noise..41
Dealing with Functional Checks..43
Waiving Violations ...47

Performing SoC-Level CDC Verification ...47
Signing-Off SpyGlass CDC Verification ..47
v
Synopsys, Inc.

SpyGlass CDC Hierarchical Verification Flow ... 49
Identifying the Blocks to Abstract in SpyGlass CDC...................................52
Generating Abstract View in SpyGlass CDC..52

Quality of Abstract View..53
Performing Abstract View Validation in SpyGlass CDC53

Approach to Fix Violations During Abstract View Validation54
Examples of Fixing Violations During Abstract View Validation54

Points to be Considered in the Hierarchical CDC Flow55
Loss of Information While Generating the Abstract View55
Functional checks in an abstraction-based bottom-up methodology56

Design Styles and Management ...56
Limitations of the Hierarchical CDC Verification Flow58

Recommended Guidelines to Perform SpyGlass CDC Verification........... 60

Appendix...61
Rules of the cdc_setup Goal .. 62
Rules of the clock_reset_integrity Goal ... 63
Rules in the cdc_verify Goal .. 64
Rules in the cdc_abstract_validate Goal .. 66
The Setup Manager of SpyGlass CDC ... 69

Invoking the Setup Manager..71
Limitations of the Setup Manager...71
vi
Synopsys, Inc.

Introduction to SpyGlass
CDC Methodology
Clocks that are asynchronous with respect to each other may reach
different flip-flops at slightly different times in each cycle. This timing
uncertainty may cause setup and hold-time violations randomly in the
design resulting in functional failure in an SoC.

Such issues cannot be detected by using traditional verification methods,
such as simulation and static timing analysis. You can detect them by using
static clock-domain-crossing analysis and verification of SpyGlass CDC
solution.

SpyGlass CDC solution enables you to detect clock-domain crossings at the
RTL level and ensure that proper synchronization is added in the circuit.

This document introduces a methodology that you can use to verify
clock-domain crossing (CDC) issues in your design by using the SpyGlass®
tool suite. The document is useful for novice and advanced users of
SpyGlass. Advanced users can proceed directly to the relevant sections of
the document.
7
Synopsys, Inc.

Introduction to SpyGlass CDC Methodology
The following table describes the sections covered in this document:

Topic Information

The CDC Issues Describes basic CDC problems, such as metastability and
complex synchronizers.

Using SpyGlass
CDC Methodology
to Solve CDC
Problems

Describes a step-by-step solution towards a SpyGlass CDC-
clean design by using any of the following flows:
• SpyGlass CDC Methodology Flow
• SpyGlass CDC Hierarchical Verification Flow
8
Synopsys, Inc.

Goals of SpyGlass CDC Methodology

Introduction to SpyGlass CDC Methodology
Goals of SpyGlass CDC Methodology
SpyGlass CDC methodology is integrated within GuideWare for different
field of use. Below is a summary of goals (of SpyGlass CDC solution)
deployed in various field of use of GuideWare. The set of goals (of SpyGlass
CDC solution) used for each GuideWare stage is the same.

NOTE: M means mandatory and O means optional.

SpyGlass CDC solution: Block
Goals

GuideWare
Stage

cd
c_

setu
p

cd
c_

setu
p

_
ch

eck

clo
ck_

reset_
in

teg
r

ity

cd
c_

verify_
stru

ct

cd
c_

verify

cd
c_

ab
stract

initial_rtl O M M M - -
rtl_handoff O M M M M M
netlist_handoff O M M M M M

SpyGlass CDC solution: SoC

Goals
GuideWare
Stage

cd
c_

setu
p

cd
c_

to
p

_
d

o
w

n

cd
c_

setu
p

_
ch

eck

clo
ck_

reset_
in

te
g

rity

cd
c_

ab
stract_

val
id

ate

cd
c_

verify_
stru

c
t cd

c_
verify

cd
c_

ab
stract

initial_rtl O - M M O M - -
rtl_handoff O O M M O M - M
netlist_handoff O O M M O M - M
layout_handoff O O M M O M - -
9
Synopsys, Inc.

Goals of SpyGlass CDC Methodology

Introduction to SpyGlass CDC Methodology
In addition to the static SpyGlass CDC verification described here,
SpyGlass CDC solution can be used to perform dynamic SpyGlass CDC
verification. For dynamic SpyGlass CDC verification, SpyGlass CDC solution
can generate simulation directives using Ac_meta01 rule that will inject
metastability errors during simulation using your own testbench. These
directives may cause additional simulation mismatches due to the effect of
metastability.

Tool and Methodology Version

 SpyGlass Version: Version N-2017.12-SP2

 GuideWare Version: 2017.12
10
Synopsys, Inc.

References

Introduction to SpyGlass CDC Methodology
References
 SpyGlass CDC Rules Reference Guide

 SpyGlass Explorer User Guide
11
Synopsys, Inc.

SpyGlass CDC Terminologies

Introduction to SpyGlass CDC Methodology
SpyGlass CDC Terminologies
The terminologies used in SpyGlass CDC are defined in the following table:

Terminology Description
Clock domain Refers to the clocks that have a constant phase relationship

with each other.
Typically, a clock, its inverted form, and its divided form is
considered to be in the same domain. Divided forms have a
constant phase relationship until the division ratios have a
common factor.
Divide-by-2 and divide-by-4 have constant phasing but
divide-by-3 and divide-by-5 do not have constant phasing.

CDC
(Clock Domain
Crossing)

Refers to the path connecting a sequential element, flip-flop,
primary input, or black box controlled by one clock domain to
another sequential element, flip-flop, primary input, or black
box clocked by another clock domain.

Synchronizer Refers to the part of a design that transfers signal values
across clock domains

Quasi-static Refers to flip-flops that take constant values in a design.
They may change values during setup and initialization of the
design, or may change value when a block powers on or
power off.
Often, quasi-static flip-flops do not require synchronizers
even if they are involved in clock domain crossings.

LCM Refers to the least common multiple to identify a common
clock period for a design with multiple clocks of different
periods.

Correlated
Signals

These are the signals whose combined values are used
in the design. An example of such signals is state
vector signals.
12
Synopsys, Inc.

The CDC Issues
Clocks that are synchronous with respect to each other are known as same
domain clocks, and clocks that are asynchronous to each other are known
as different domain clocks.

Edges of clocks coming from the same clock domain are always aligned for
all registers in the design and for all time throughout design run. As a
result, if setup and hold time for a flip-flop input is considered, there is no
risk in capturing the data of the flip-flop throughout the design.

However, clocks from different domains may reach different flip-flops at
different times in each cycle during design run. This timing uncertainty
may cause random setup and hold-time violations. Such problems may
result in the following CDC issues:
 Metastability

 Data Hold in Fast-to-Slow Crossings

 Data Correlation and Race Conditions

 Complex Synchronizers

 Issues Related to Reset Synchronization
13
Synopsys, Inc.

Metastability

The CDC Issues
Metastability
Metastability is the design problem in which metastable values are created
and propagated due to setup and hold-time issues in an asynchronous
crossing.

The following figure shows an example of such an issue:

FIGURE 1. Metastability Issue

In the above figure, the metastable waveform generated at B is subject to
interpretation by each branch in the fan-out of B.

One gate in a fan-out can perceive the metastable wave as the logical
value 1 while another fan-out perceives the same net as 0. This free
interpretation causes functional failure in the design.

To remove metastability, use the following approaches:
 Control signal synchronization

Control signals crossing clock domains are typically synchronized by
using multi-flop synchronizers. In such cases, multiple stages of
flip-flops transform the metastable values to a cleaner 0 or 1 before it is
passed to a downstream logic.

 Data signal synchronization
Data signals are synchronized by using enable techniques where the
data is first stabilized on the crossing path and then the destination
flip-flop is enabled to capture the stable data (so the setup and hold
time is not violated).

Traditionally, a clock domain crossing is seen as a path from one memory
element to another. However, designers typically design interfaces that
14
Synopsys, Inc.

Metastability

The CDC Issues
involve data, address, and control lines implementing complex
synchronization protocols. For example, Figure 2 illustrates a common FIFO
where data is stored and read from a memory (data), pointers are
designed to access the memory (address) for either read or write, and
finally control logic that computes empty/full flags (control) is designed to
ensure coherency and prevent metastability.

FIGURE 2. FIFO synchronizer involving data, address, and control logic

The key concept in common data synchronization techniques is a link
between the sender and receiver of the data which ensures that the data is
not captured while it is changing as this will cause an asynchronous event
to propagate which can cause metastability. Based on this observation, an
asynchronous interface is composed of a set of source signals, a
destination signal (can be a bus), and a set of control logic. At least part of
the control logic is responsible for proper synchronization. Figure 3
illustrates a generic data crossing and signals involved in the
synchronization.
15
Synopsys, Inc.

Metastability

The CDC Issues
FIGURE 3. Generic Data Crossing

The following signals are typically involved in a crossing:
 Destination of the crossing: Single-bit or multi-bit signal receiving

data from one or multiple domains
 Source of the crossing: Data, Address, Control signals crossing clock

domain without being flip-flopped in the destination domain. There can
be multiple sets of sources from different domain crossing to the
destination

 Qualifier: A control signal, typically from the source domain
synchronized in the destination domain (typically using multi-flop
synchronization technique) responsible for ensuring that the source is
stable when captured by the destination
16
Synopsys, Inc.

Metastability

The CDC Issues
 Signals from the destination domain: These signals are used as a
control or for data computation/transformation purposes needed for the
design.
Such signals are typically not important for synchronization verification,
however, it is not a good idea to perform complex computation, or bring
complex control logic on a crossing. Increased combinational logic on a
crossing increases the risk of asynchronous glitch, especially after
synthesis and optimization. We recommend performing data
transformation/computation in the source domain or in the destination
domain and keeping the asynchronous interface very simple

NOTE: Some custom interfaces such as source synchronous interfaces where the source is
itself generated synchronously to the destination may not comply with the common
synchronization techniques described here. Such structures are relatively rare and
may require custom verification approaches.

As is implied by such an interface, the synchronization protocol must
ensure that the data is stable when the qualifier is asserted to trigger data
capture. This is a functional requirement that cannot be validated by
looking at a design structure alone.

Furthermore, the above functional requirement only ensures that the
source will not violate timing that can cause metastability. If any
combinational logic on the crossing glitches, it may cause either
metastability or generation of an undesired pulse.

SpyGlass CDC Verification performs a fast structural analysis that identifies
elements of synchronization that indicates user intent to synchronize the
crossing in order to prevent metastability as well as glitch issues.

SpyGlass CDC verification solution relies on the following concepts to
declare a crossing as synchronized:
 Presence of qualifier signals: One or more signals coming from the

source domain and synchronized to the destination using multi-flop
synchronizer or a user-specified synchronizer cell. Qualifiers may be
present beyond sequential logic such as a receiver state machine.

NOTE: Synchronous resets may have all characteristics of a qualifier. They can be sig-
nals generated in a source domain, synchronized in a destination domain, and
even gating the data capture into the destination. It is very important to define
synchronous resets for SpyGlass CDC solution to avoid false positives. As stated
above, functional verification must complement the structural verification to
guarantee synchronization correctness. Indeed, although synchronous resets
have full appearance of a qualifier they will fail functional data/enable or data-
hold checks.
17
Synopsys, Inc.

Metastability

The CDC Issues
 Gating mechanism: The qualifier must converge with the source in
order to block the transfer when the source is being set up. SpyGlass
CDC solution accepts common gating mechanisms such as AND and
MUX synchronizers. An XOR gate is not considered as an acceptable
gating mechanism as it allows asynchronous transfer regardless of the
value of a qualifier feeding the gate.
Furthermore, to avoid glitches, re-convergences are allowed only before
the crossing is gated. Any re-convergence of the same asynchronous
source after it is gated is prone to glitch and is not accepted. This
includes cases where each branch of the re-convergence is
synchronized. Figure 4 illustrates a re-convergence of the source,
although each path is gated by a qualifier, the crossing is not considered
as synchronized based on a pessimistic assumption that the re-
convergence can produce a glitch. Indeed, the logic in this figure
represents a XOR and this crossing must not be considered as a
synchronized crossing.

FIGURE 4. Synchronization not accepted

If source re-convergences are synchronized after they converge, then
there is no glitch risk and the crossing is considered as synchronized. Such
structures are considered as properly synchronized.

Note that there might be properly synchronized crossings where re-
convergences exist on each branch of the crossing. However, such complex
logic on a crossing is a risky design style that can cause glitches, especially
after optimization and synthesis transformations. Due to the pessimistic
nature of the analysis, such synchronized crossings are not considered as
18
Synopsys, Inc.

Metastability

The CDC Issues
synchronized.

In case a data is found to be unsynchronized, it is important to understand
the nature of the failure and the way to fix it. Following are possible
reasons for synchronization failure:
 Lack of a qualifier: No qualifier converges with the crossing. This may be

due to the presence of an unsynchronized control signal that is intended
to qualify a crossing.

 Invalid gating of the crossing with a valid qualifier: This happens for
example when the crossing and a qualifier converges on a XOR gate.

 A source diverges to multiple paths that are synchronized separately
(refer to Figure 3)

 A source converges with the qualifier before the qualifier feeds the
synchronizing gate

 Two sources from different domains converge before they are
synchronized

Some simple examples of control and data synchronizers are shown in
Figure 5:
19
Synopsys, Inc.

Metastability

The CDC Issues
FIGURE 5. Common synchronization schemes
20
Synopsys, Inc.

Data Hold in Fast-to-Slow Crossings

The CDC Issues
Data Hold in Fast-to-Slow Crossings
This issue appears when a short pulse generated in a fast clock domain is
fed in a slow clock domain. In such cases, short signals may miss the
active edge of the slow clock domain and they are not captured in the
destination.

The following figure shows the data hold problem in fast-to-slow crossings:

FIGURE 6. Example of Data Hold in Fast-to-Slow Crossings

To fix such issues, use the following approaches:
 Use a custom circuit to extend the pulse for at least one complete cycle

of the slow destination clock.
You must verify all the fast-to-slow crossings and ensure that such
extenders exist and no short pulse is generated in the destination.

 In case of enabled flip-flops involved in a crossing, ensure that the data
is stable before the enable is asserted and the data does not change
when the enable is on.
21
Synopsys, Inc.

Data Correlation and Race Conditions

The CDC Issues
Data Correlation and Race Conditions
If a source remains stable for long, its value is transferred to the
destination. However, if the design has metastability issues, this transfer
may not happen immediately. This can cause problems for Correlated Signals
such that one or more signals are deferred relative to others.

This results in loss of correlation, which results in an unknown state at
destination, thereby causing functional failure.

The following figure shows the example of such problem:

FIGURE 7. The re-convergence problem and a typical solution using gray
coding

To fix this problem, introduce a gray encoder, which ensures that only a
single bit is changed at a time.

You must ensure that Correlated Signals are gray encoded before they cross
22
Synopsys, Inc.

Data Correlation and Race Conditions

The CDC Issues
clock domains. You can identify such signals where independent signals are
converging and are used in the same combinational logic, or when a bus is
used as a state vector or a memory pointer.
23
Synopsys, Inc.

Complex Synchronizers

The CDC Issues
Complex Synchronizers
FIFO mechanisms are often used to transfer data from one domain to
another.

The following figure shows a FIFO synchronizer architecture:

FIGURE 8. FIFO synchronization scheme

For proper data transfer, it is important that the full and empty flags are
generated on time and are not delayed or corrupted due to the pointers
crossing clock domains. It is also important that the read and write FSMs
make use of the full and empty flags to prevent writing into a full FIFO or
reading from an empty FIFO.
24
Synopsys, Inc.

Issues Related to Reset Synchronization

The CDC Issues
Issues Related to Reset Synchronization
Reset synchronizers are especially built to avoid metastability while de-
asserting a reset signal. Such synchronizers must be verified for both
metastability and functionality to avoid reset failures.

The following figure shows the example of reset synchronization:

FIGURE 9. Reset Synchronization
25
Synopsys, Inc.

Issues Related to Reset Synchronization

The CDC Issues
26
Synopsys, Inc.

Using SpyGlass CDC
Methodology to Solve
CDC Problems
This section provides a step-by-step solution to make an SoC free from
CDC issues by using any of the following flows:
 SpyGlass CDC Methodology Flow

 SpyGlass CDC Hierarchical Verification Flow
27
Synopsys, Inc.

SpyGlass CDC Methodology Flow

Using SpyGlass CDC Methodology to Solve CDC Problems
SpyGlass CDC Methodology Flow
The following figure illustrates this flow to achieve a SpyGlass CDC clean
SoC:

FIGURE 1. The SpyGlass CDC Methodology Flow

The following table shows the stages and their corresponding goals to
achieve a SpyGlass CDC-clean design while using this flow:

Setup
complete

Save project, parameters,
and SGDC files

Solve issues
no

yes

Performing Clocks and Reset Integrity Checks

Violations Solve issues
yes

Performing Block-Level CDC Verifi-

Violations Solve issues
yes

no

no

no
Performing SoC-Level CDC Verifi-

Violations Solve issues
yes

no

no
Signing-Off SpyGlass CDC Verification

Block SGDC

Block Project

SoC

Parameters
Constraints

cdc_setup

cdc_setup_check

clock_reset_integrity

cdc_verify

cdc_verify_struct

Verifying SpyGlass CDC Setup

Creating SpyGlass CDC Setup
28
Synopsys, Inc.

SpyGlass CDC Methodology Flow

Using SpyGlass CDC Methodology to Solve CDC Problems
Creating SpyGlass CDC Setup

In this stage, you specify constraints, parameters, and other design
components required for accurate and complete SpyGlass CDC verification.

Create a setup in the following ways:
 Writing Constraints

Stage Summary Goals

Creating SpyGlass CDC Setup Specify constraints, parameters, and
other design components required for
accurate and complete SpyGlass CDC
verification.

cdc_setup

Verifying SpyGlass CDC Setup Check for the correctness and
completeness of the setup.

cdc_setup_check

Performing Clocks and Reset
Integrity Checks

Fix clock and reset integrity problems clock_reset_integrity

Performing Block-Level CDC
Verification

Fix block-level violations to make the
block SpyGlass CDC clean. This stage
involves the following tasks:
• Fixing Ac_sync_group Rule

Violations
• Fixing Violations Related to

Convergence
• Fixing Violations Related to Glitches
• Fixing Violations for Data Hold

Checks
• Fixing Data Hold Issues in

Synchronized Data Crossings
• Fixing Violations Related to Data

Correlation and Race Conditions
• Fixing Violations Related to Reset

Synchronization and Deassertion
• Fixing Violations Related to FIFO

Recognition and Verification

cdc_verify

Performing SoC-Level CDC
Verification

Verify the SoC using the verified blocks cdc_verify_struct

Signing-Off SpyGlass CDC
Verification

View reports and sign-off SpyGlass
CDC Verification on the SoC

-

29
Synopsys, Inc.

SpyGlass CDC Methodology Flow

Using SpyGlass CDC Methodology to Solve CDC Problems
 Translating SDC Commands to SGDC Commands

 Predicting Constraints

 Running the cdc_setup Goal

 Generating Block-Level Constraints from SoC Level

 Generating Clocks

NOTE: You can also perform a setup by using The Setup Manager of SpyGlass CDC.

Writing Constraints

Define constraints in an SGDC file if you have knowledge of block
constraints.

Translating SDC Commands to SGDC Commands

Use the sdc2sgdc project file command to translate block-level SDC
commands to their corresponding SGDC constraints.

Predicting Constraints

Run the cdc_setup_check goal to generate constraints. The Clock_info15
rule of this goal generates constraints.

You must review these constraints before using them during SpyGlass CDC
verification.

Running the cdc_setup Goal

Run the cdc_setup goal to generate clocks (clock constraint) and resets
(reset constraint) in a design.

After running this goal:
 Understand the design-clocks architecture by checking the reported

clocks and resets.
 Resolve the clocks of black boxes by specifying a path through the black

boxes by using the assume_path constraint.
30
Synopsys, Inc.

SpyGlass CDC Methodology Flow

Using SpyGlass CDC Methodology to Solve CDC Problems
 Copy the autoclocks.sgdc and autoresets.sgdc in a new constraint file
and edit the clocks and resets to provide valid clock/reset sources.
Remove all the non clocks and non resets from the file.

 Provide the set_case_analysis constraint to add the known case-analysis
values under which you want to perform SpyGlass CDC analysis.

Generating Block-Level Constraints from SoC Level

You generate block-level constraints from the SoC-level constraints in the
SpyGlass CDC Hierarchical Verification Flow.

Run the cdc_top_down goal to generate block-level constraints.

Note that using the generated block-level constraints for Generating Abstract
View in SpyGlass CDC without Performing Block-Level CDC Verification may mask
design bugs. For example, if a top module propagates to the P pin (of the A
domain) of a block, you must verify that the P pin is feeding flip-flops in
the A domain within the block or it is synchronized to another domain in
which the pin is used.

SpyGlass CDC solution can also generate a block's peripheral domain
information from within a block relying on the flip-flops interacting with
these pins. For details, refer to the documentation of the rule Clock_info15
in SpyGlass CDC Rules Reference Guide.

Generating Clocks

You can specify derived clocks or generated clock by using the
generated_clock constraint. These are the clocks that traverse from
the output (hierarchical pin or net) of sequential elements.

To enable SpyGlass consider this constraint, set the
enable_generated_clocks parameter to yes. When you set this
parameter to yes, the following occurs:

 The specified generated_clock constraints are considered during
SpyGlass analysis.

 The derived clock information is generated in the form of
generated_clock constraints in the generated_clocks.sgdc and
cdc_setup_generated_clocks.sgdc files.
31
Synopsys, Inc.

SpyGlass CDC Methodology Flow

Using SpyGlass CDC Methodology to Solve CDC Problems
This happens when the use_inferred_clocks parameter is set to
yes.

Verifying SpyGlass CDC Setup

After Creating SpyGlass CDC Setup, run the cdc_setup_check goal to
correctness and completeness of the setup.

Fix all violations reported in this stage to avoid false violations in later
stages. For example, you must ensure the following:
 All flip-flops are receiving a clock.

 set_case_analysis is properly defined so that multiple clocks do not
control the same flip-flop. See Specifying set_case_analysis.

 Multiple clocks are not defined on the same clock path.

 Periods, edges, and domains are defined properly for clocks.

Constraining Clock Trees

Constraint clock tree by:
 Constraining Clock Nets

 Specifying set_case_analysis

Constraining Clock Nets

Check the Clock_info03a violations to locate the clock-tree parts to which
top-level clocks do not reach. This occurs because of:
 Missing clock constraints in an SGDC file.

 Presence of black boxes through which a clock cannot propagate.
Black boxes appear because their structural information is missing or
they have incorrect case analysis settings.

Specifying set_case_analysis

MUXes in clock trees use different clocks for different operating modes of
the design. Configure MUXes by setting an operating mode by applying the
set_case_analysis constraint on the MUX select pin.
32
Synopsys, Inc.

SpyGlass CDC Methodology Flow

Using SpyGlass CDC Methodology to Solve CDC Problems
Consequences of Not Configuring MUXes

Consider the scenario in the following figure:

FIGURE 2. Configuring the MUX

In the above scenario, if you do not configure the MUX by applying
set_case_analysis on its select pin, multiple clocks may drive the same
flip-flop. As a result, SpyGlass may infer the path between these flip-flops
as asynchronous crossings even if these paths are synchronous. This
results in false unsynchronized violations, which results in noise and more
time for CDC verification closure.

Fixing Violations for Non Configured MUXes

Check for the Clock_info05 violations that report cases where you should
define set_case_analysis on the MUX select pin.

Refer to the Clock Setup window that shows MUXes involved in clock paths
from where you can interactively define a value for MUX selects.

Fixing Setup-Related Sanity Checks

The setup verification performs basic sanity checks on the constraints
specified in an SGDC file. These checks are always run to check for design-
object existence and constraints correctness.
33
Synopsys, Inc.

SpyGlass CDC Methodology Flow

Using SpyGlass CDC Methodology to Solve CDC Problems
You can identify the violations of these checks with the SGDC_ prefix in
their names.

For information on these checks, refer to SpyGlass CDC Rules Reference
Guide.

Performing Clocks and Reset Integrity Checks

Run the clock_reset_integrity goal to fix clock and reset integrity problems.

This step ensures that clocks and resets are properly defined, and they are
free of glitches, race conditions, and other hazards.

If you do not have the information about clocks and resets, you must run
the setup. For details, see Creating SpyGlass CDC Setup.

Performing Block-Level CDC Verification

Run the cdc_verify goal to perform SpyGlass CDC verification at the block
level.

This step uses all the information gathered while Creating SpyGlass CDC
Setup and Performing Clocks and Reset Integrity Checks to perform SpyGlass
CDC verification at block level.

This section covers the following topics:
 Focusing on Certain Violations on Priority Basis

 Reducing Noise

 Dealing with Functional Checks

 Waiving Violations

Focusing on Certain Violations on Priority Basis

You may initially see a large number of reported CDC issues. It is important
to approach them in a systematic way. This enables you to quickly reach to
a handful of issues that you may need to consider.

The issues listed in the following sections cover the majority of important
violations you should fix on priority:
34
Synopsys, Inc.

SpyGlass CDC Methodology Flow

Using SpyGlass CDC Methodology to Solve CDC Problems
 Fixing Ac_sync_group Rule Violations

 Fixing Violations Related to Convergence

 Fixing Violations Related to Glitches

 Fixing Violations for Data Hold Checks

 Fixing Data Hold Issues in Synchronized Data Crossings

 Fixing Violations Related to Data Correlation and Race Conditions

 Fixing Violations Related to Reset Synchronization and Deassertion

 Fixing Violations Related to FIFO Recognition and Verification

Fixing Ac_sync_group Rule Violations

This group of rules performs an architectural design analysis and presents
an architectural view of design crossings.

You must fix the following violations of this group first before fixing the
other violations:
 Ac_unsync01 rule violations: These violations report scalar

unsynchronized crossings. Such crossings act as control signals that
synchronize complex data crossings.

 Ac_unsync02 rule violations: These violations report data crossings
where no valid synchronization is found.

Run SpyGlass again with newly added constraints and verify that all
Ac_unsync01 and Ac_unsync02 violations are fixed.

Debugging Ac_unsync Violations

Use the following pointers to debug and fix such violations:
 Open the spreadsheet to view all the violations of a rule. Look for

common reasons or common sources in the spreadsheet.
Use filtering and sorting in the spreadsheet view to isolate common
factors between violations. If you are using a naming methodology for
static signals, filter by source name in the spreadsheet.

 Open the Incremental Schematic to view the cause for unsynchronized
crossings. Check for the reason for such crossings in the violation
message or spreadsheet.

 Check for the presence of qualifiers or potential qualifiers for a crossing.
35
Synopsys, Inc.

SpyGlass CDC Methodology Flow

Using SpyGlass CDC Methodology to Solve CDC Problems
 Filter violations by using the cdc_false_path constraint.

 Specify output net names for source and destination flip-flops.

 Check for mode or control-status registers that are static or quasi-static.

 Do not waive such violations. Use the cdc_false_path constraint instead
to filter certain unsynchronized crossings in a design.
Note that the violations of the other rules that honor this constraint may
get filtered due to this constraint specification.

False Ac_unsync Violations

If the clock and set_case_analysis constraints are not properly defined
during setup, you may see false Ac_unsync01 and Ac_unsync02 violations.
For information on specifying these constraints during setup, see
Constraining Clock Trees.

Such violations also appear due to configuration registers and other quasi-
static signals need not to be synchronized. Section Noise Reduction
describes various tools SpyGlass provides to reduce false violations and
find real synchronization bugs faster.

Conditions for an Unsynchronized Crossing

Consider the following figure:

FIGURE 3. Requirements for a synchronized crossing
36
Synopsys, Inc.

SpyGlass CDC Methodology Flow

Using SpyGlass CDC Methodology to Solve CDC Problems
In the above figure, a crossing is considered as unsynchronized if one of
the following conditions is false for the source S:

 The Q qualifier whose source domain is the same as that of S exists and
converges with S on the G gate.

 The type of the G gate is consistent with the type specified by the
enable_and_sync, enable_mux_sync, and
enable_clock_gate_sync parameters.

 If S fans out to multiple gates, all the fan-out points must converge
before G. In Figure 3, the two divergent paths from S converge before G,
so this condition is met.

 The input of the synchronizing gate G that is driven by Q is not driven by
another source of the crossing. In Figure 3, A should not be the source
for the crossing. Flip-flops in the domain of the destination are allowed.

 If another source S2 converges with S before G, S2 must be in the
same domain as that of S.

 The path from Q to G is considered based on the value of the
enable_delayed_qualifier parameter.

Declaring Synchronous Resets

Consider the following figure:
37
Synopsys, Inc.

SpyGlass CDC Methodology Flow

Using SpyGlass CDC Methodology to Solve CDC Problems
FIGURE 4. Example of a crossing with a reset synchronizer

In the above figure, the source s is reported as synchronized with the
qualifier rs.

By looking at the Verilog description, it is clear that rs is the output of a
reset synchronizer. Since the user missed to declare the input r as a reset,
rs is considered as a qualifier.

To avoid such issues, declare all synchronous resets in the SGDC file to
avoid considering their reset synchronizers as qualifier. Therefore, specify
the following constraint to fix the issue in the above example:

reset -name r -sync

Fixing Violations Related to Convergence

Check for the Ac_conv01, Ac_conv02, Ac_conv03, Ac_conv04, and
38
Synopsys, Inc.

SpyGlass CDC Methodology Flow

Using SpyGlass CDC Methodology to Solve CDC Problems
Ac_conv05 violations.

Convergence issues can occur when multiple signals cross from one
domain to another but they are separately synchronized.

Fixing Violations Related to Glitches

Check for the Ac_glitch* or Clock_glitch* violations.

These rules report glitch-prone logic that can lead to problems similar to
synchronization issues.

Fixing Violations for Data Hold Checks

Check for the Ac_cdc01 violations.

Such violations indicate potential problems in signals or data crossing
typically from a fast clock domain to a slower clock domain where data sent
may have already changed by the time the capturing clock arrives.

The Dealing with Functional Checks section provides further detail on how to
debug such functional checks.

Fixing Data Hold Issues in Synchronized Data Crossings

Check for the Ac_datahold01a violations.

Such violations report clock domain crossings where data can be unstable
while the enable is active. For every data change, the enable should be
activated to capture the new data and should be deactivated before the
next data is loaded.

The Dealing with Functional Checks section provides further detail on how to
debug such functional checks.

Fixing Violations Related to Data Correlation and Race Conditions

Check for gray-code violations, such as Ac_cdc08, Ac_conv01, and
Ac_conv02.

Convergence of signals, such as control buses can cause major problems if
they are not implemented using approved methods.

Typically, with control buses crossing clock domains, designers implement
gray code schemes to handle such issues. Using a gray-encoded
implementation for control bus signals ensures that only one bit of the
control signal changes during any one clock cycle.
39
Synopsys, Inc.

SpyGlass CDC Methodology Flow

Using SpyGlass CDC Methodology to Solve CDC Problems
For debug and analysis of the gray encoding check and other functional
checks, see Dealing with Functional Checks.

Fixing Violations Related to Reset Synchronization and Deassertion

Check for the following rule violations:

Fixing Violations Related to FIFO Recognition and Verification

Check for the Ac_fifo01 and Ac_sync_group rule violations.

SpyGlass can automatically identify FIFOs. FIFO recognition may produce
following results:
 Fully recognized FIFOs: This is the case if memory and pointers of a

FIFO are identified
 Partially recognized FIFOs/Memory: A 2-dimensional memory or a lib/

sglib memory identified by SpyGlass for which read/write pointers were
not identified.

 Disabled: When fa_msgmode is set to none.

FIFO recognition will help SpyGlass CDC verification as follows:
 Metastability violations reduction (Ac_unsync02 violations reduction):

Typically, a FIFO memory is clocked by write clock and the data is read
out of memory in a read domain. This situation creates a clock domain
crossing from write domain to the read domain that will potentially be
reported as unsynchronized (Ac_unsync02 violation). FIFO recognition
will help in reducing such metastability violations (the crossing will be
reported as properly synchronized by Ac_sync02 rule). You can control
FIFO based Ac_unsync02 filtering with enable_fifo option. If the option

Rule Violation Reported
Ar_unsync01 Reports unsynchronized reset signals in the design
Ar_sync01 Reports synchronized reset signals in the design
Ar_asyncdeassert01 Reports if reset signal is asynchronously de-asserted
Ar_syncdeassert01 Reports if reset signal is synchronously de-asserted or

not de-asserted at all
Reset_sync02 Reports asynchronous reset signals that are generated

in asynchronous clock domain
40
Synopsys, Inc.

SpyGlass CDC Methodology Flow

Using SpyGlass CDC Methodology to Solve CDC Problems
is set to “strict”, only fully recognized FIFOs will contribute to
Ac_unsync02 violations reduction. If enable_fifo is set to “soft”, partially
recognized FIFOs/Memory will also lead to Ac_unsync02 violations
reduction. Reading data out of a memory is not necessarily safe and
may be subject to metastability; so usage of enable_fifo set to soft is
not advised unless you are sure that the control logic around the
memories provide sufficient margin between the data being written into
the memory and the read request out of the memory. List of FIFOs
recognized in a design is given by Rule Ac_fifo01.

 Functional verification of FIFOs: For all fully recognized FIFOs, SpyGlass
performs functional check to make sure the FIFO will not overflow or
underflow. FIFO overflow/underflow violations are reported in Ac_fifo01
rule.

SpyGlass recognizes commonly used FIFO architectures where memory
and pointer counters can be identified. FIFOs cannot be extracted from a
netlist design as the counters are mapped into gate level netlist. SpyGlass
provides “fifo” constraint that can be used to provide FIFO attributes that
would help FIFO recognition and verification. The fifo constraint can be
used to provide FIFO attributes, such as memory and/or pointers in a
constraint file (SGDC). Here is an example of “fifo” constraint:

fifo -memory "uart_top.u13.u4"

For debug and closure of FIFO and other functional checks, see Dealing with
Functional Checks.

Reducing Noise

You can reduce noise by:
 Setting Parameters

 Setting Constraints

 Filtering Violations in a Spreadsheet

Setting Parameters

For a particular design or project, set the following parameters to reduce
the number of violations:

 allow_combo_logic

Use this parameter to allow combinational logic between synchronizers.
41
Synopsys, Inc.

SpyGlass CDC Methodology Flow

Using SpyGlass CDC Methodology to Solve CDC Problems
Combinational logic on a crossing can create a glitch. It is harmless in a
synchronous circuit. However, its presence in an asynchronous crossing
may cause unwanted pulses causing functional failures.

 cdc_reduce_pessimism

Use this parameter to filter out violations by setting this parameter to
appropriate values.

 clock_reduce_pessimism

Use this parameter to control clock-domain propagation and
consequently control SpyGlass CDC solution violations.

Setting Constraints

Specify the following constraints to reduce noise:

 cdc_false_path

Specify this constraint to filter certain unsynchronized crossings in a
design. An example of such crossings is configuration and other quasi-
static registers that do not need synchronizers.
Using this constraint, you can specify the paths that the
Ac_sync_group rules should not check for clock crossings. This
reduces the number of violations reported on that path. The following is
an example of cdc_false_path:

cdc_false_path –from block1.flop1 –to block2.flop2
cdc_false_path –from block1.clk1
cdc_false_path –from config_module::fifo_config_reg[1]

The first line filters out the flop1-to-flop2 crossing from
Ac_sync_group violations. The second constraint eliminates all the
crossings from flip-flops controlled by clk1 regardless of their
destination flip-flops.

 reset -sync

If you are using a synchronous reset at the crossing or synchronizer flip-
flops, you can specify these resets using the reset constraint with sync
argument (reset –sync). This allows combinational gates generated due to
synchronous reset logic in the crossing or synchronizer path.
By default, synchronous reset gate will be considered as combinational
42
Synopsys, Inc.

SpyGlass CDC Methodology Flow

Using SpyGlass CDC Methodology to Solve CDC Problems
logic and a crossing will be considered unsynchronized.

Filtering Violations in a Spreadsheet

From Ac_unsync01 and Ac_unsync02 violations header you can
access a spreadsheet view of all violations. In this spreadsheet, you can
sort or filter violations based on several criteria (e.g. source or destination
clocks, reason of failures, etc.). Explore the violations in the spreadsheet to
determine false violations due to configuration registers, unconstrained
paths, etc. You can select all such violations and request
cdc_false_path constraint generation from the spreadsheet window;
cdc_false_path constraints will prevent these violations from being
reported in subsequent runs.

Dealing with Functional Checks

Functional verification of clock-domain crossings is an important aspect of
SpyGlass CDC verification. Many critical bugs causing SoC spins are
because of gray-encoding failure, FIFO failure, and other types of
functional problems in clock-domain crossings.

Functional checks are more CPU-intensive than structural checks.

Focusing on Failed or Partially-Proved Checks

 A functional check reports any of the following status:

Status Description
FAILED Refers to functional checks that failed.

For such cases, SpyGlass provides a simulation trace that
you can view in the waveform viewer. To open the
waveform viewer, double-click the violation and click the
waveform viewer icon.
43
Synopsys, Inc.

SpyGlass CDC Methodology Flow

Using SpyGlass CDC Methodology to Solve CDC Problems
Focus on failed and partially-proved checks as they may represent real
design bugs.

Dealing with Partially-Proved Checks

Set the fa_atime parameter to increase the amount of time that
SpyGlass spends on validating a single property.

Dealing with Long Run Times

Formal verification is exhaustive and involves complex functional analysis
of a design. The complexity of functional analysis increase with the number
of asynchronous clocks in a design.

It is recommended to perform functional verification only where it is
required. Avoiding unnecessary functional verification requires Creating
SpyGlass CDC Setup properly and Reducing Noise.

You can deal with long run times in the following ways:
 Constraining Resets

 Dealing With Clock Frequencies

Constraining Resets

Consider a synchronous reset always converges with a data/control signal
through a simple gate, such as an AND gate. This type of convergence,

PASSED Refers to checks that passed.
SpyGlass reports a message for such checks only if
fa_msgmode is set to pass or all. These checks are
reported with the INFO severity.
This status indicates a proper functionality proof of
SpyGlass CDC solution.

PP (Partially Proved) Refers to checks that could not be concluded.
SpyGlass provides the number of cycles that have been
explored during which no violation has been found.
Similar to passed checks, these checks are reported only
if fa_msgmode contains “pp” or “all”; by default both
failed and partially proved results are reported.
These checks are reported with the WARNING severity.
See Dealing with Partially-Proved Checks.
44
Synopsys, Inc.

SpyGlass CDC Methodology Flow

Using SpyGlass CDC Methodology to Solve CDC Problems
although reported by Ac_conv01 and Ac_conv02, can be considered as safe
as long as the reset is static.

In this case, you should constraint the synchronous reset by using the
reset –sync constraint. By doing so, you can reduce the number of
Ac_conv01 and Ac_conv02 violations reported because of synchronous
reset convergence. This consequently reduces the run time by preventing
formal verification of such convergences.

Dealing With Clock Frequencies

Clock frequencies may greatly affect the complexity of functional analysis.

To understand how clock frequencies affect the functional analysis process,
consider two clocks running with the 17 ns period and 13 ns period,
respectively.

If the rising edges of the two clocks are aligned at the time 0 ns, the next
time the rising edges will again be aligned corresponds to 221 ns (the LCM
of two clock periods). This means that the design behaves asynchronously
for 221 ns.

Any functional analysis that repeats itself many times (for proving a
property, for example) analyzes the design for at least this period of time.
This means it performs many evaluations of logic in the design. This time
period is called the Design Virtual Cycle. A high design virtual cycle makes
it hard to verify design functionality.

In some cases, if functional analysis enter into long design runs, modify
clock periods to reduce the LCM. Consider the following example.

The device A has two asynchronous clocks: clk_33 (clock period - 33 ns)
and clk_100 (clock period - 100 ns). If you specify these clock periods in an
SGDC file, the LCM of the two clock periods is 3300 ns (33x100), which is
quite large.

If you specify the 100 ns clock in the SGDC as the 99 ns clock, the design
virtual cycle reduces to 99 ns. Note that changing the clock frequency by
this amount affects the behavior of the design, and therefore the change
should not be considered unless necessary.

SpyGlass reports the design virtual cycle in terms of the number of fastest
clock cycles and the number of non-overlapping edges of all clocks covered
by the design virtual cycle.

Note that the gray-encoding check is a relatively local check as the logic for
45
Synopsys, Inc.

SpyGlass CDC Methodology Flow

Using SpyGlass CDC Methodology to Solve CDC Problems
gray encoding is purely combinatorial and should not depend on the
frequency. In this case, frequency numbers are not important. If
frequency/period information is not provided, then SpyGlass assumes all
clocks (clocks for which a period is not defined) as having a 10 ns period.

Debugging Functional Checks

A failed functional check generates a waveform indicating the
circumstances of the failure.

To view the waveform viewer, double-click on the violation and click the
waveform viewer icon.

Initially, a small set of signals are loaded in the waveform viewer. These
signals are a good starting point for debugging. To check the signals in the
vicinity of a signal, right-click on that signal and select the fan-in option
from the shortcut menu. Select all or part of these signals and click OK to
load their waveform in the viewer.

Note that you can cross-probe between the waveform viewer and the RTL-
viewer.

Removing False Violations of Functional Checks

False violations appear if the design is not constrained properly or SpyGlass
considers an inappropriate initial state of the design.

Constraining the Design Properly

Reset signals are used to initialize the design and they are usually disabled
during functional checks. For example, a gray-encoding check may fail due
to a reset signal being asserted in the middle of a binary count.

To prevent functional checks failure due to reset toggling, define the reset
signal by using the reset constraint in an SGDC file.

If you want the reset to be considered as any other input during function
check, declare the reset as soft by specifying the –soft argument with
the reset constraint.

Specifying the Correct Initial State of the Design

Validate the Ac_initstate01 rule message to know the initial state used
46
Synopsys, Inc.

SpyGlass CDC Methodology Flow

Using SpyGlass CDC Methodology to Solve CDC Problems
during functional verification.

Functional checks may fail or pass depending on the initial states
considered by SpyGlass.

Waiving Violations

It is recommended to use the cdc_false_path constraint to reduce the
number of false violations.

However, if you want to remove a specific violation that does not have any
global impact of discarding a path, waive that violation. For example, you
may waive a Clock_info03a violation.

You can waive violations before or after SpyGlass analysis, as described
below:

 Before analysis, specify the waive constraint to waive violations on a
block that you do not want to analyze.

 After analysis, waive a violation that are safe to be ignored.
NOTE: Apply waivers to only those rules that do not directly involve a synchronizer.

Performing SoC-Level CDC Verification

Run the cdc_verify_struct goal to perform SpyGlass CDC verification on the
SoC.

If you are using the SpyGlass CDC Hierarchical Verification Flow, specify the
SGDC files representing the abstract views of blocks with the SoC-level
files while performing SoC-level verification.

This step verifies all structural issues in SpyGlass CDC solution on the SoC.

All violations, including those from the rules Ac_unsync01, Ac_unsync02,
Ac_conv01, Ac_conv02, and Ac_conv03 should be analyzed and resolved.

Signing-Off SpyGlass CDC Verification

 Open SpyGlass CDC report from the GUI pull-down menu,
Report->clock-reset->CDC-report, and review the content as follow
47
Synopsys, Inc.

SpyGlass CDC Methodology Flow

Using SpyGlass CDC Methodology to Solve CDC Problems
 Examine the assumptions; the SpyGlass CDC report header contains all
parameters that make the verification optimistic (e.g. use of
allow_combo_logic). All optimistic assumptions need to be justified
and documented.

 Check if all verification goals have been run and if there are any
violations left unsolved. All such violations need to be justified and
documented.
48
Synopsys, Inc.

SpyGlass CDC Hierarchical Verification Flow

Using SpyGlass CDC Methodology to Solve CDC Problems
SpyGlass CDC Hierarchical Verification Flow
Unlike the SpyGlass CDC Methodology Flow, in this flow you use abstract
views of blocks while Performing SoC-Level CDC Verification. Using abstract
views reduce SpyGlass CDC verification run time by focusing on SpyGlass
CDC solution issues on block boundaries only.

Use this flow in the following cases:
 Large SoCs

Performing SpyGlass CDC verification on large SoCs having 100M+
gates and many clocks can be time consuming. For such designs, use
the SpyGlass CDC hierarchical verification flow for faster SpyGlass CDC
verification sign-off.

 Distributed Environment for SoC Development
In such environment, IPs are developed or acquired from different
design teams and SoC integration happens in a different location. In
such cases:
 Block owners verify blocks and handoff the abstract views of these

blocks (along with the blocks) to the SoC integration team.
 SoC integration team uses abstract views without worrying about the

block content.
If the abstract view of some blocks is not available, the SoC team
does the following:
 Generate the abstract views for such blocks.

 Migrate constraints from top level to block level. For details, see
Generating Block-Level Constraints from SoC Level.

 Consider such blocks as glue logic by specifying them with the
ip_block constraint.

The following figure illustrates this flow:
49
Synopsys, Inc.

SpyGlass CDC Hierarchical Verification Flow

Using SpyGlass CDC Methodology to Solve CDC Problems
FIGURE 5. Abstract Bottom Up SoC level CDC verification flow

The following table shows the steps and their corresponding goals used in
this flow:
50
Synopsys, Inc.

SpyGlass CDC Hierarchical Verification Flow

Using SpyGlass CDC Methodology to Solve CDC Problems
TABLE 1 Steps in SpyGlass CDC Hierarchical Verification Flow

Steps Summary Goals

Identifying the Blocks to Abstract
in SpyGlass CDC

Identify the blocks whose abstract
view should be created.
This abstract view is used while
Performing SoC-Level CDC
Verification.

-

Creating SpyGlass CDC Setup Capture block constraints, such as
clocks, input domains, resets, and
other assumptions on the inputs

cdc_setup_check

Verifying SpyGlass CDC Setup Check for the correctness and
completeness of the setup.

cdc_setup_check

Performing Clocks and Reset
Integrity Checks

Fix clock and reset integrity
problems

clock_reset_integrity

Performing Block-Level CDC
Verification

Verify all the sub blocks.
The input constraints captured
while Creating SpyGlass CDC
Setup dictate the quality of the
block verification. If an input is in
a given domain then it should feed
the flip-flops in the same domain
or be synchronized before being
used in a different domain.
However, on the output side,
constraints, such as domains may
be neglected, as those will be
identified during verification and
generation of abstract model.

cdc_verif

Generating Abstract View in
SpyGlass CDC

Create an abstract view for a
block

cdc_abstract

Performing Abstract View
Validation in SpyGlass CDC

Validate block assumptions
against the higher-level
hierarchy constraints

cdc_abstract_validate
51
Synopsys, Inc.

SpyGlass CDC Hierarchical Verification Flow

Using SpyGlass CDC Methodology to Solve CDC Problems
Identifying the Blocks to Abstract in SpyGlass CDC

Decide the blocks to verify before moving to the verification of a higher-
level hierarchy.

Typically, for a full SoC, verifying the first level instances (often referred to
as a clusters, or sub-modules) before moving to the SoC verification is
good enough. However, if the size and complexity of a sub-module is so
that the verification may take long time, 5M+ gates with dozens of
asynchronous clocks, then it is a good idea to further partition the sub-
module for verification before verifying the SoC.

Note that it is important to consider single clock blocks while verifying
SpyGlass CDC solution of a design instantiating the block. For example, if
an input of a single clock block is coming from another clock domain, then
the block must synchronize the input before using it. Furthermore, if a
multi-flop synchronizer feeds into a single clock module, it may converge
with other multi-flop synchronizers within the module or further down after
exiting the block.

Generating Abstract View in SpyGlass CDC

Run the cdc_abstract goal to generate the abstract view of a block. This
goal runs the Ac_abstract01 rule that generates the abstract view of a
block.

The abstract view is an SGDC file that is used by the SoC owner while
Performing SoC-Level CDC Verification. The abstract view captures all the

Performing SoC-Level CDC
Verification

Verify the SoC using the abstract
view of blocks

cdc_verif_struct

Signing-Off SpyGlass CDC
Verification

View reports and sign-off
SpyGlass CDC Verification on the
SoC

-

TABLE 1 Steps in SpyGlass CDC Hierarchical Verification Flow

Steps Summary Goals
52
Synopsys, Inc.

SpyGlass CDC Hierarchical Verification Flow

Using SpyGlass CDC Methodology to Solve CDC Problems
block-level constraints. It also propagates synchronizer information
(crossing information) to IOs by capturing this information in
abstract_port constraints.

NOTE: Abstraction is performed on a top-level module, hence set_option top <block-
name> must be specified during block level verification run.

Quality of Abstract View

The quality of an abstract view depends on the quality of Performing Block-
Level CDC Verification.

If a block is not properly verified or the block constraints are incorrect or
incomplete, clocks, domains, and other information assumed at block
boundaries may be incorrect. This may result in false violations and mask
real design issues.

Although SpyGlass CDC solution provides utilities to generate block
assumptions (clocks, domains, etc.) automatically, this is not
recommended for SpyGlass CDC verification sign-off. The user can review
the abstract model, and adjust the blocks assumptions if needed

Performing Abstract View Validation in SpyGlass CDC

Run the cdc_abstract_validate goal after providing the block and its
abstract view by using the following command:

sgdc -import <block-name> <block-abstract-view-SGDC-file>

During abstract view validation, the abstract view of a block is validated in
context of an SoC. Provide the abstract view of a block by specifying the
following command in the SoC-level SGDC file:

The abstract view contains block-level assumptions, such as clocks, resets,
and domains on block inputs. These assumptions are validated with the
constraints of the higher-level hierarchy.

The following points describe some examples of inconsistencies reported
during abstract view validation:
 A block constraint associates two inputs to the same domain. However,

these domains are controlled by different clocks in the higher-level
hierarchy. Such issues are captured and fixed during validation.
53
Synopsys, Inc.

SpyGlass CDC Hierarchical Verification Flow

Using SpyGlass CDC Methodology to Solve CDC Problems
 An abstract view defines a port to be equal to 1, while the higher-level
block constraints causes the port to be equal to 0.

Approach to Fix Violations During Abstract View Validation

For a correct verification of an SoC, all violations reported during abstract
block validation should be analyzed and fixed.

There are the following ways to fix these violations:
 If the SoC-level constraints are incorrect that caused the violations

In this case, modify these constraints and rerun the cdc_validation goal.
 Block-level constraints are incorrect

In this case, modify the incorrect constraints and repeat the following
steps:
 Performing Block-Level CDC Verification

 Generating Abstract View in SpyGlass CDC

 Performing Abstract View Validation in SpyGlass CDC

Examples of Fixing Violations During Abstract View Validation

Example 1

Consider the following schematic of a design:

FIGURE 6. Example of Abstract View Validation
54
Synopsys, Inc.

SpyGlass CDC Hierarchical Verification Flow

Using SpyGlass CDC Methodology to Solve CDC Problems
In the above schematic, block is correctly synchronizing an asynchronous
signal using multi-flop synchronizer. However, the transmitter at the top-
level is driving a combinational logic that is failing the block assumption
that an asynchronous source signal should not be having combinational
logic (it should be glitch free).

To fix such violation, latch the source signal in a flip-flop (on source
domain) before it is sent to receiver block.

Example 2

The following example shows the violation that should be fixed in setup:

SGDC_set_case_analysis_validation02 Warning test.v
2720 2 Simulated value '0' reaches to port
'txhcfc_en[3:0]' of block instance 'test.block_inst (block:
'block') however no set_case_analysis is specified in block
level constraint file

The above violation is suggesting that top-level constant is reaching the
block port and in block constraints, set_case_analysis is not defined on the
port. This will result in inaccurate SpyGlass CDC solution analysis of the
block, because in absence of correct constants, either it may ne noisier or
may miss certain violations.

NOTE: Perform setup and setup-check at SoC level, prior to block validation step.

Points to be Considered in the Hierarchical CDC Flow

Consider the following points:
 Loss of Information While Generating the Abstract View

 Functional checks in an abstraction-based bottom-up methodology

Loss of Information While Generating the Abstract View

Generating Abstract View in SpyGlass CDC results in loss of information.

During abstraction, the functionality information of the block is removed
and the crossing information is preserved. Therefore, you cannot use
abstract views to verify design functionality. However, you can verify
metastability, convergence, block-to-block or block-to-top connectivity, and
55
Synopsys, Inc.

SpyGlass CDC Hierarchical Verification Flow

Using SpyGlass CDC Methodology to Solve CDC Problems
other structural issues.

Abstract views generated by SpyGlass CDC contain information using
which you can perform:
 All structural synchronization checks

 Limited checks for multi-sampled signals (reported by Clock_sync05)
and multi-synchronized crossings (reported by Clock_sync09).

Functional checks in an abstraction-based bottom-up methodology

Typically, synchronization circuitry is implemented in, sub-modules as
opposed to a top-level SoC design. Therefore, verifying the functionality of
sub-modules may be sufficient to cover critical functional issues such as
gray encoding, FIFO correctness, etc.

In case functional verification is needed across module boundaries, capture
module assumptions within each module. If a signal crossing module
boundary is generating a multi-cycle pulse, the sender should verify that
the pulse generated must be of a certain width and the receiver can
assume that the pulse has the given width. SpyGlass CDC solution does not
verify the sender assertion for the signal width. However, SpyGlass CDC
solution can understand the signal width as an assumption for the receiver
block while doing SpyGlass CDC verification of the block. The user can
provide an OVL (Open Verification Library) assumption for the receiver side
and verify the width of the pulse from the sender using an assertion based
verification tool. For more details on OVL, refer to the Accelera Open
Verification Library site at http://verificationlib.org.

Design Styles and Management

This section describes the following:
 Handling Clock and Reset Nets Propagating Through Black Boxes

 Handling Clock Tree IPs

Handling Clock and Reset Nets Propagating Through Black Boxes

One way to extend the clock domain propagation through a black box
instance is to specify which output pins belong to the same clock domain as
56
Synopsys, Inc.

SpyGlass CDC Hierarchical Verification Flow

Using SpyGlass CDC Methodology to Solve CDC Problems
a particular input pin. This can be done by using the assume_path constraint.

Consider the following example:

assume_path -name BBOX -input d -output q qbar

The above specification indicates that the paths exist between input pin d
and output pins q and qbar of the black box design unit BBOX.

Handling Clock Tree IPs

Typically, blocks, such as blocking blocks, PLLs, DLLs, and oscillators are
analog, or at least have a non-synthesizable model. Section Creating
SpyGlass CDC Setup describes a way to identify any such black boxes and
solve them.

With regards to PLLs, they are generally black boxed; put the clock
constraints at the appropriate output pins, with the domain set equal to the
domain of the clock driving the input pin. An alternate (and possibly better)
approach is to use the assume_path constraint as discussed earlier.

I/O cells are generally easy to identify because they either appear at the
top level of the design, or inside a special block dedicated to I/O cells.
Generally, each I/O cell has a modest number of I/O pins, one of which is
typically called a PAD. I/O cells do have .lib models, but typically the model
does not contain a function description because I/O cells are not optimized
during synthesis.

The simplest way to deal with I/O cells is to black box them if possible. Do
all your analysis from the inbound side of the I/O cells. It is possible to set
the clock and other constraints on internal nets, so this should work fine.
Even if the user wants to analyze through I/O cells, start with this
approach and get the analysis as fine-tuned as you can before
incorporating the I/O cell structure. You will find that this approach delivers
useful results faster and with minimal manual intervention.

With regard to memories, it is important to understand that the only
memories, which are natively recognized by SpyGlass, are inferred
memories, that is, 2-dimensional arrays that appear on the left-hand side
of an assignment, inside a sequential block. Instantiated memories are
simply black boxes. All other memories will be reported as either black
boxes (if no description is supplied) or un-synthesizable modules (if the
memory size exceeds mthresh). For all the un-synthesizable modules for
which memory size exceeds mthresh, SYNTH_5273 warning is generated.
57
Synopsys, Inc.

SpyGlass CDC Hierarchical Verification Flow

Using SpyGlass CDC Methodology to Solve CDC Problems
In such cases, you should resolve those warnings by increasing the
mthresh value.

It is quite common in a simulation to infer large memories (for example,
64k) with an intention of later replacing them with an instantiated memory.
This can cause a big problem in synthesis, which blows inferred memories
into one flip-flop per bit, causing memory explosion, and performance
issues. SpyGlass provides the set_option mthresh <value> project file
command (works only for Verilog) to handle this problem. With this
command, SpyGlass will add up all the bits in a module and will black box
(not synthesize) the module if it contains more than the specified number
of bits (defaults to 4096 bits).

Limitations of the Hierarchical CDC Verification Flow

Following are the limitations of the hierarchical verification flow:
 Reset synchronizers propagated to block output ports are not

abstracted.
 If a top-level port goes to different domain flip-flops inside an

abstracted block, it is not reported by the Clock_sync05 rule. Similarly,
if a source flip-flop is synchronized multiple times inside such block, it is
not reported by the Clock_sync09 rule.

 The Reset_sync01, Reset_sync03, Reset_sync04, and Clock_glitch01
rules do not support the abstract_port constraint. These rules support
the input constraint.
In such cases, use the Ar_sync_group rules instead of the
Reset_sync01, and Reset_sync03 rules.

 If the abstract_port -sync constraint qualifies a crossing inside a block,
SpyGlass does not generate the abstract_port -sync inactive constraint
at the output port of the block during abstraction of the block.

 If an input port is driving a multi-flop synchronizer inside a block, the
Clock_info15 rule generates the abstract_port constraint with a virtual
clock and the -combo no argument.
During constraints validation, if such port is driven by a clock that is
same as the destination clock, the SGDC_abstract_validation04 rule
reports a false violation.
58
Synopsys, Inc.

SpyGlass CDC Hierarchical Verification Flow

Using SpyGlass CDC Methodology to Solve CDC Problems
 Considerations for multi-mode analysis with respect to the hierarchical
SoC flow.
A block may operate in multiple modes. In the current abstraction flow,
a block needs to be abstracted in each mode and used at the higher
level of hierarchy separately.
However, if a block has many modes or it can be parameterized, and is
instantiated in a higher level of hierarchy multiple times with different
parameters, the model can be dropped from abstraction.
In such cases, constraint the module by using the ip_block constraint.
59
Synopsys, Inc.

Recommended Guidelines to Perform SpyGlass CDC Veri-
fication

Using SpyGlass CDC Methodology to Solve CDC Problems
Recommended Guidelines to Perform
SpyGlass CDC Verification

Using a systematic and step-by-step approach, it is possible to sign off
SpyGlass CDC verification using SpyGlass. It is important to solve the last
violation reported by SpyGlass to make sure no bug of SpyGlass CDC
solution is left.

Following are some guidelines to follow:
 It is recommended to run all the SpyGlass CDC checks first at the RTL.

Complex synchronization schemes, such as FIFO and handshake should
be verified at RTL only.
FIFOs may not be detected on post-synthesis and post-layout netlist
designs.

 For large designs, it is recommended to use the divide and conquer
technique where you first perform SpyGlass CDC checks on design
blocks and then use the hierarchical CDC verification flow run on the
complete SoC.
60
Synopsys, Inc.

Appendix
This appendix covers the following topics:
 Rules of the cdc_setup Goal

 Rules of the clock_reset_integrity Goal

 Rules in the cdc_verify Goal

 Rules in the cdc_abstract_validate Goal

 The Setup Manager of SpyGlass CDC
61
Synopsys, Inc.

Rules of the cdc_setup Goal

Appendix
Rules of the cdc_setup Goal
The cdc_setup goals runs the following rules:

Rule Description
Clock_info03a Reports unconstrained clock nets
Clock_info03b Reports flip-flops, latches, or clock gating cells whose data

pins are tied to a constant value
Clock_info03c Reports flip-flops or latches where the clock/enable pin is

set to a constant
Clock_info05 Reports MUX descriptions where two or more clock signals

converge
Clock_info05b Reports clock signals converging at a combinational gate

other than a MUX
Clock_info15 Reports port domain information
Reset_info09a Reports unconstrained asynchronous reset nets
Info_Case_Analysis Provides schematic highlight of propagated values.
Clock_check07 Reports clock domains that reach another clock domain
Clock_converge01 Reports a clock signal whose multiple fan-outs converge
Reset_check03 Reports synchronous reset signals that are being used as

active high as well as active low
Reset_check10 Reports asynchronous resets used as non-reset signals
Reset_check11 Reports asynchronous resets used as both active-high and

active-low
Reset_check12 Reports flops/latches/sequential element that do not get

active reset during power on reset
Clock_info18 Reports unconstrained ports summary
Ac_resetvalue01 Reports missing '-value' field in 'reset' constraint
62
Synopsys, Inc.

Rules of the clock_reset_integrity Goal

Appendix
Rules of the clock_reset_integrity Goal
The clock_reset_integrity goal runs the following rules:

Rule Description
Clock_info05b Potential glitch in clock tree due to clocks converging on

combination gate (other than a MUX)
Clock_check01 Potential glitch in clock tree due to unexpected gates in

clock tree (e.g. XOR gate in clock tree)
Clock_check04 Both positive and negative edges of clocks used in a

same design
Reset_check01 Reset usage check against sync/async_set_reset

pragma
Reset_check02 Glitches in reset paths due to unexpected gates (e.g.

XOR gate in reset tree)
Reset_check03 Both positive and negative edges of synchronous reset

used in a same design
Reset_check04 Both positive and negative edges of asynchronous reset

used in a same design
Reset_check06 High fan-out reset nets not driven by placeholder cell
Reset_check07 Glitches on reset paths due to combinational logic on

reset tree
Clock_Reset_check01 Glitches due to unwanted gates on clock or reset trees
Clock_Reset_check02 Race between flip-flop output and its clock/reset
Clock_Reset_check03 Race between flip-flop clock and reset
Info_Case_Analysis Information on case-analysis to help debug violations
ClockEnableRace Race between clock and enable of a same flip-flop
Clock_Reset_info01 Clock and reset usage matrix for information
Clock_glitch02 Gated clocks with improper enable logic
Clock_glitch03 Clock re-convergence at MUX
Clock_glitch04 Glitches due to combination logic driving flip-flops clock

pin
Clock_converge01 Reports a clock signal whose multiple fan-outs converge
63
Synopsys, Inc.

Rules in the cdc_verify Goal

Appendix
Rules in the cdc_verify Goal
The goal cdc_verify runs the following rules in addition to the
Ac_sync_group rules:

Rule Description
Clock_sync05 Reports primary inputs that are multi-sampled
Clock_sync06 Reports primary outputs driven by multiple clock domain

flip-flops or latches
Clock_sync09 Reports signals that are synchronized more than once in

the same destination domain
Ar_unsync01* Reports unsynchronized reset signals in the design
Ar_sync01* Reports synchronized reset signals in the design
Ar_asyncdeassert01
*

Reports if reset signal is asynchronously de-asserted

Ar_syncdeassert01* Reports if reset signal is synchronously de-asserted or
not de-asserted at all

Reset_sync02 Asynchronous reset should not be generated in
asynchronous clock domain

Reset_sync04 Asynchronous resets synchronized more than once in the
same clock domain

Ac_cdc01a* Data hold in multi-flop synchronized fast-to-slow
crossing

Ac_datahold01a* Reports synchronized data clock domain crossings where
data can be unstable

Ac_conv01* Check for sequential convergence of properly
synchronized control crossings

Ac_conv02* Check for combinational convergence of properly
synchronized control crossings

Ac_conv03* Convergence of synchronized signals from different
source domains

Ac_cdc08* Gray encoding of control bus crossing clock domains
Ac_fifo01* FIFO overflow and underflow checks
Info_Case_Analysis Provides schematic highlight of propagated values
Ac_clockperiod01* Reports missing '-period' or '-edge' fields in 'clock'

constraint
64
Synopsys, Inc.

Rules in the cdc_verify Goal

Appendix
NOTE: * means the rules and parameters that require Advanced CDC License.

The cdc_verify goal also includes all the rules of cdc_setup_check goal.
These are added to verify any new constraints, which may be added during
verification.

Ac_clockperiod02* Reports clocks whose periods are rounded off by
SpyGlass for lower design cycle

Ac_clockperiod03* Reports correlated clocks whose design cycle is greater
than the threshold value.

Ac_initstate01* Reports a valid state of the design from which the formal
analysis would actually start.

Ar_syncrst_validatio
n*

Verifies user-defined synchronous resets

Ac_crossing01* Generate spreadsheet for Crossing Matrix view
Ac_glitch03 Reports clock domain crossings subject to glitches
65
Synopsys, Inc.

Rules in the cdc_abstract_validate Goal

Appendix
Rules in the cdc_abstract_validate Goal
The cdc_abstract_validate goal runs the following rules:

Rule Description
SGDC_abstract_port_validatio
n01

Checks that the domain defined for a port is
consistent with the domain that drives it from
the higher-level block

SGDC_abstract_port_validatio
n02

Verifies that a port with -sync specified is driven
by a synchronizer from the higher-level block

SGDC_abstract_port_validatio
n03

Verifies that the clocks of the synchronizer
(source and destination) defined in
abstract_port match those in the higher-level
block

SGDC_abstract_port_validatio
n04

Verifies that the combo parameter specified in
abstract_port constraint matches what drives
the port from the top-level block

SGDC_cdc_false_path_validat
ion01

Verifies that the -from and -to clocks of a the
cdc_false_path constraint are different in the
top-level block

SGDC_clock_validation01 Verifies that no clock propagates to a port of the
block if no clock constraint is defined in the
abstract model

SGDC_clock_validation02 Verifies that a clock propagates to a port of the
block if a clock constraint is defined in the
abstract model

SGDC_clock_domain_validati
on01

Verifies that two or more ports that have the
same domain in the abstract model receive the
same clock from the top-level block

SGDC_clock_domain_validati
on02

Verifies that two or more ports that have
different clocks domain in the abstract model
receive different clocks from the top-level block

SGDC_define_reset_order_val
idation01

Verifies that the resets defined in from and to
fields of the define_reset_order constraint are
driven by resets in the higher-level block

SGDC_define_reset_order_val
idation02

Verifies that the resets defined in from and to
fields of the define_reset_order constraint are
driven by different resets in the higher-level
block
66
Synopsys, Inc.

Rules in the cdc_abstract_validate Goal

Appendix
SGDC_input_validation01 Verifies that the domain of the clock defined in
input/abstract_port constraint matches the
domain of the clock that drives the port in the
higher-level block

SGDC_input_validation02 Verifies that if no input/abstract_port constraint
is defined, then the port is not driven by a flip-
flop in the higher-level block

SGDC_num_flops_validation0
1

Verifies that the clocks specified in from_clk and
to_clk of num_flops constraints are not the
same in the higher-level block

SGDC_num_flops_validation0
2

Verifies that the number of flip-flops in the
num_flop constraints for a clock pair in the
abstract model matches the number of flip-flops
for the corresponding pair in the higher-level
block

SGDC_reset_validation01 Verifies that a port with no reset constraint in
the abstract model is not driven by a reset in
the higher-level block

SGDC_reset_validation02 Verifies that a port with a rest constraint in the
abstract model is driven by a reset in the
higher-level block

SGDC_reset_validation03 Verifies that top and block level asynchronous
and synchronous reset types are not conflicting

SGDC_reset_validation04 Verifies that the active value of a reset for a port
defined in the abstract model matches the value
of the reset that drives the port in the higher-
level block

SGDC_qualifier_validation01 Verifies that the clocks specified in from_clk and
to_clk of a qualifier constraint are not the same
in the higher-level block

SGDC_qualifier_validation02 Verifies that if a port does not have a qualifier
constraint in the abstract model, then no
qualifier drives the port in the higher-level block

SGDC_set_case_analysis_vali
dation01

Verifies that the value of a set_case_analysis
constraint on a port in the abstract model
matches the value propagated to the port in the
higher-level block

Rule Description
67
Synopsys, Inc.

Rules in the cdc_abstract_validate Goal

Appendix
SGDC_set_case_analysis_vali
dation02

Verifies that if a port does not have a
set_case_analysis constraint in the abstract
model, then no constant value is propagate to
that port in the higher-level block

SGDC_virtualclock_validation
01

Verifies the validity of block-level virtual clock
with higher-level clocks

Rule Description
68
Synopsys, Inc.

The Setup Manager of SpyGlass CDC

Appendix
The Setup Manager of SpyGlass CDC
The setup manager guides designers with little tool and design knowledge
to achieve a design setup as complete as possible. It enables you to:
 Extract and complete clocks and reset definitions in a design.

 Configure black boxes.

 Set boundary assumptions (IO assumptions).

 Define appropriate synchronization practices for the given design.

The quality of a setup dictates the quality of SpyGlass CDC analysis.
Incorrect or incomplete setup cause many false violations or mask design
bugs.

The following figure shows the setup manager:
69
Synopsys, Inc.

The Setup Manager of SpyGlass CDC

Appendix
FIGURE 1. Setup Manager of SpyGlass CDC

In the above wizard, if a step is not relevant for the current design or
project, it appears disabled or hidden.

Before proceeding to setup verification, ensure that all domains and
frequency information for each clock is properly defined during clock setup.

NOTE: The default mode in the setup manager of SpyGlass CDC solution allows only some
of the features namely, “Clocks”, “Black Box”, “Resets”, “IO Setup”, and “Setup
Closure”. To use all the features of the setup manager of SpyGlass CDC solution,
you can select the “Advanced mode” option from the “Before You Start” step.

NOTE: Frequency information is needed for functional checks only. If a design can operate
with a range of frequencies, identify the worst and best frequencies that cover all

Setup manager steps
Click to see constraints and parameters
created so far

Help for each step
70
Synopsys, Inc.

The Setup Manager of SpyGlass CDC

Appendix
corner cases and run CDC verification with each frequency setting.

Invoking the Setup Manager

To invoke the setup manager, perform the following steps:
1. Select a SpyGlass CDC goal under the Select Goal tab.
2. Click the Setup Goal tab.
3. Click the Run Setup Wizard button.

After performing the above steps, the first screen of the setup-manager
wizard appears.

Limitations of the Setup Manager

Following are the known limitations of the Setup Manager of SpyGlass
CDC:
 If clocks and other constraints are specified in an SGDC file and clocks

are also created by the Clock Setup step in the SGDC file in the Setup
Manager, the Setup Manager only considers the generated SGDC file.
It is recommended that you consolidate both the SGDC files. You can
take clocks from the generated SGDC file and other constraints from the
SGDC file specified by you.

 The Reset Setup step does not have the interactive setup similar to the
Clock Setup step. It creates the autoresets.sgdc file.
It is recommended that you review the autoresets.sgdc file and add/
delete/modify the reset constraints from this file.

 In the VHDL and mixed flow, if the SGDC file (which has the sdc_data
constraint) has <entity.architecture> in current_design,
and you perform the following steps, clocks will not be used by setup
step of the SpyGlass CDC goals:
a. Select the cdc_verif_base goal in the Console GUI.
b. Click on the Setup tab.
c. Choose to import constraints from an SDC file.

To solve this problem, use <entity> in current_design instead of
71
Synopsys, Inc.

The Setup Manager of SpyGlass CDC

Appendix
<entity.architecture>.

 Auto-save is not supported in the IO Setup step of the Setup Manager.
If you complete a step and perform the next steps, and then go to the
previous step that is completed and choose to skip that completed step,
the Setup Manager highlights that step in red color.
72
Synopsys, Inc.

	SpyGlass® CDC Submethodology (for GuideWare 2017.12)
	Introduction to SpyGlass CDC Methodology
	Goals of SpyGlass CDC Methodology
	Tool and Methodology Version

	References
	SpyGlass CDC Terminologies

	The CDC Issues
	Metastability
	Data Hold in Fast-to-Slow Crossings
	Data Correlation and Race Conditions
	Complex Synchronizers
	Issues Related to Reset Synchronization

	Using SpyGlass CDC Methodology to Solve CDC Problems
	SpyGlass CDC Methodology Flow
	Creating SpyGlass CDC Setup
	Writing Constraints
	Translating SDC Commands to SGDC Commands
	Predicting Constraints
	Running the cdc_setup Goal
	Generating Block-Level Constraints from SoC Level
	Generating Clocks

	Verifying SpyGlass CDC Setup
	Constraining Clock Trees
	Fixing Setup-Related Sanity Checks

	Performing Clocks and Reset Integrity Checks
	Performing Block-Level CDC Verification
	Focusing on Certain Violations on Priority Basis
	Reducing Noise
	Dealing with Functional Checks
	Waiving Violations

	Performing SoC-Level CDC Verification
	Signing-Off SpyGlass CDC Verification

	SpyGlass CDC Hierarchical Verification Flow
	Identifying the Blocks to Abstract in SpyGlass CDC
	Generating Abstract View in SpyGlass CDC
	Quality of Abstract View

	Performing Abstract View Validation in SpyGlass CDC
	Approach to Fix Violations During Abstract View Validation
	Examples of Fixing Violations During Abstract View Validation

	Points to be Considered in the Hierarchical CDC Flow
	Loss of Information While Generating the Abstract View
	Functional checks in an abstraction-based bottom-up methodology

	Design Styles and Management
	Limitations of the Hierarchical CDC Verification Flow

	Recommended Guidelines to Perform SpyGlass CDC Verification

	Appendix
	Rules of the cdc_setup Goal
	Rules of the clock_reset_integrity Goal
	Rules in the cdc_verify Goal
	Rules in the cdc_abstract_validate Goal
	The Setup Manager of SpyGlass CDC
	Invoking the Setup Manager
	Limitations of the Setup Manager

