
SpyGlass® Base
Submethodology (for GuideWare
2017.12)

Version N-2017.12-SP2, June 2018

Copyright Notice and Proprietary Information
©2018 Synopsys, Inc. All rights reserved. This Synopsys software and all associated
documentation are proprietary to Synopsys, Inc. and may only be used pursuant to the
terms and conditions of a written license agreement with Synopsys, Inc. All other use,
reproduction, modification, or distribution of the Synopsys software or the associated
documentation is strictly prohibited.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the
United States of America. Disclosure to nationals of other countries contrary to United
States law is prohibited. It is the reader's responsibility to determine the applicable
regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

Trademarks
Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth
at http://www.synopsys.com/company/legal/trademarks-brands.html.
All other product or company names may be trademarks of their respective owners.

Third-Party Links
Any links to third-party websites included in this document are for your convenience
only. Synopsys does not endorse and is not responsible for such websites and their
practices, including privacy practices, availability, and content.

Synopsys, Inc.
690 E. Middlefield Road
Mountain View, CA 94043
www.synopsys.com

Report an Error
The SpyGlass Technical Publications team welcomes your feedback and suggestions on
this publication. Please provide specific feedback and, if possible, attach a snapshot.
Send your feedback to spyglass_support@synopsys.com.

mailto:spyglass_support@synopsys.com

Contents

Preface..7
About This Book .. 7
Contents of This Book ... 8
Typographical Conventions ... 9

Sub-methodology for Lint Clean Design11
Early Design Closure - The Need ... 11
Introduction.. 12

Tool and Methodology Versions ..12
Terminology..12

Concept - Challenges in Development of an SoC Design 15
Challenges Involved During New RTL Block/Sub-system Development16
Challenges Involved in the Selection of Third Party or Internal Legacy IP.....20
Challenges Involved During SoC Integration..21

Approach - How to Make Your Design Ready... 25
During RTL Development ..25
During SoC Integration and Implementation..33

Conclusion .. 44
v
Synopsys, Inc.

vi
Synopsys, Inc.

Preface
About This Book
The SpyGlass Base Sub-methodology Guide describes a methodology for
simulation, synthesis, connectivity, and basic structural readiness.
7
Synopsys, Inc.

Contents of This Book

Preface
Contents of This Book
The SpyGlass Base Sub-Methodology Guide consists of the following
chapter:

Chapter Describes...
Sub-methodology for Lint Clean
Design

Methodology for simulation,
synthesis, connectivity, and
basic structural readiness
8
Synopsys, Inc.

Typographical Conventions

Preface
Typographical Conventions
This document uses the following typographical conventions:

The following table describes the syntax used in this document:

To indicate Convention Used
Program code OUT <= IN;

Object names OUT

Variables representing
objects names

<sig-name>

Message Active low signal name '<sig-name>' must end
with _X.

Message location OUT <= IN;

Reworked example
with message removed

OUT_X <= IN;

Important Information NOTE: This rule...

Syntax Description
[] (Square brackets) An optional entry
{ } (Curly braces) An entry that can be specified once or multiple

times
| (Vertical bar) A list of choices out of which you can choose

one

... (Horizontal
ellipsis)

Other options that you can specify
9
Synopsys, Inc.

Typographical Conventions

Preface
10
Synopsys, Inc.

Sub-methodology for
Lint Clean Design
Early Design Closure - The Need
IC designs go through several transformations in a typical RTL-to-layout
flow, and as they do, a number of verification steps (simulation, synthesis,
equivalence checking, etc.) are performed to ensure that the design intent
is preserved. Such early design analysis ensures the design can be verified
and implemented right from the start, preventing any time consuming
iterations.
11
Synopsys, Inc.

Introduction

Sub-methodology for Lint Clean Design
Introduction
Early analysis of a design for simulation, synthesis, connectivity, and
structural readiness requires a methodology that will guide designers
through each step in the design flow. This will not only improve the QoR
and facilitate handoff, but will also reduce expensive re-spins and
iterations. This document introduces a methodology to make your design
ready for RTL handoff, netlist handoff, or SoC integration. The SpyGlass®
tool suite is an industry standard for early design closure in IC design
flows. SpyGlass analyzes design intent (RTL, netlist & constraints) as soon
as it is captured and enables programmed handoff of design assumptions.

This submethodology relates to “simulation, synthesis, connectivity and
structural readiness (aka lint)”. The GuideWare Reference Methodology
provides a jump-start for design groups with SpyGlass goals readily usable
out-of-the-box at various phases of IC design flow (RTL, Netlist, and Chip
Integration design phases). The GuideWare Reference Methodology can be
configured to map to customer specific design style and handoff
requirements. For more details of GuideWare Reference Methodology,
please refer to the documentation as part of this installation.

Tool and Methodology Versions

SpyGlass: Version N-2017.12-SP2

GuideWare: 2017.12

Terminology

This section defines some commonly used terms that have a specific
meaning in the SpyGlass environment.
 Rule: In SpyGlass environment, a ‘Rule’ represents the atomic unit of

RTL analysis and checking performed by the SpyGlass software.
Although a ‘Rule’ can be configured, it cannot be further sub-divided to
select what analysis is performed.

 Parameter: In SpyGlass environment, a ‘Parameter’ is like an option to
a rule that dictates the rule behavior. Parameters are typically used to
make the rule do specific or detailed analysis of the RTL.
12
Synopsys, Inc.

Introduction

Sub-methodology for Lint Clean Design
 Goal: A SpyGlass goal is a collection of relevant rules that are grouped
together to perform a specific task. In addition to the rule list, a goal
may further configure the rule parameters and redefine severity labels
assigned to these rules. SpyGlass software release contains a useful set
of many widely applicable goals. However, a user may fine-tune existing
goals or create new goals to meet their specific design and workflow
needs.

 Sub-methodology: A SpyGlass sub-methodology is a set of relevant
goals that are grouped together to achieve a particular design goal. In
addition to software, these sub-methodologies contain detailed
documentation to assist customer in understanding specific usage and
debug nuances. This documentation is released as part of ‘SpyGlass
Methodology Series’, and consist of following documents additionally:
 SpyGlass CDC Methodology

 SpyGlass Constraints Methodology

 SpyGlass DFT Methodology

 SpyGlass Power Methodology

 SpyGlass TXV Methodology
The ‘SpyGlass Methodology series’ contain a rich and proven set of
industry experience in design analysis, and most of SpyGlass sub-
methodologies have been in production use for many years, by a wide-
spectrum of customers and design teams.

 Violation Message: A violation message (or simply a message) is unit
of SpyGlass reporting. When a SpyGlass ‘rule’ detects a design condition
not consistent with the rule requirement, it reports each such
occurrence as a (violation) message. In addition to text message, such
report usually contains other supporting data, such as back-reference in
RTL source code where such problem originates, schematic highlight of
the problem, detailed tables and graphs (as in power activity over time),
waveform for a formal ‘witness’ (such as a false path proven to be not a
false path), and so on.

 Severity: A SpyGlass violation message is tagged with an attribute,
called severity, which helps to identify the criticality of reported
message, within the context of a goal and sub-methodology being run.
SpyGlass supports four main severity classes: FATAL, ERROR,
WARNING, and INFO. A SpyGlass rule or goal can define a (severity)
text label belonging to one of the above classes, and attach it to a rule.
13
Synopsys, Inc.

Introduction

Sub-methodology for Lint Clean Design
 Waivers: A SpyGlass ‘waiver’ is a method for user to review a rule
(violation) message and flag a specific occurrence (or set of
occurrences) as acceptable in context of their design and workflow. This
is a very important mechanism to flag an apparently non-compliant
design scenario as intended and verified by actual design or verification
engineer. In the SoC design workflow, the SpyGlass waivers play a very
significant role both in Block regressions and in Block handoff to SoC
integration and implementation teams.

 SGDC: SGDC is an abbreviation for ‘SpyGlass Design Constraints’, and
is used to capture additional designer intent of the block/SoC
functionality which are not obvious at RTL/netlist. SGDC is used for
capturing a wide variety of design intent, related with clock domain
crossing, power, testability, etc.

 BaseSpyGlass: ‘BaseSpyGlass’ is a sub-methodology for basic design
checks related to RTL design connectivity, simulation/ synthesis
readiness, design structural issues, design profiling, and basic clock/
reset integrity checks. Within SpyGlass software release, these goals
can be found within ‘SPYGLASS_HOME/Methodology/BaseSpyGlass’
directory.

 Console: Console is the enhanced user interface available in SpyGlass
for configuring, selecting, and running the GuideWare methodology (as
well as any other custom or standard methodology).
14
Synopsys, Inc.

Concept - Challenges in Development of an SoC Design

Sub-methodology for Lint Clean Design
Concept - Challenges in Development of an
SoC Design

The development of large SoC designs typically involves integration of
various disparate sub-systems or blocks. Most of these blocks are sourced
from legacy designs or third party IP providers. A few blocks may involve
significant changes before they are used in the final SoC. In some cases, a
new block is developed from scratch. All these blocks are finally stitched
together to develop large SoC design(s).

The development process of large designs is divided into various stages, as
shown in the following figure:

FIGURE 1. Design Development Flow
15
Synopsys, Inc.

Concept - Challenges in Development of an SoC Design

Sub-methodology for Lint Clean Design
Challenges Involved During New RTL Block/Sub-system
Development

In the development flow process, you can use the GuideWare Reference
Methodology to achieve your design goals for the following:
 Block/IP

 SoC RTL

 SoC Netlist

The above fields of use are highlighted in the following figure:

Each design goal is directly addressed by pre-packaged SpyGlass goals.
These goals have been tested and fine-tuned for high impact results and
minimal noise.
16
Synopsys, Inc.

Concept - Challenges in Development of an SoC Design

Sub-methodology for Lint Clean Design
The development process of large designs is divided into various stages, as
shown in the following figure:

Block/IP

This stage involves the development of a new RTL. The process of the
development of a new RTL goes through progressive RTL refinement
starting with simpler goals that meet the functional requirements, such as
functional correctness and simulation and synthesis readiness of the code.
As the RTL code and design constraints mature, the design goals evolve to
performance, testability, and meeting handoff requirements.
17
Synopsys, Inc.

Concept - Challenges in Development of an SoC Design

Sub-methodology for Lint Clean Design
In this stage, the GuideWare methodology recommends the following flow:
18
Synopsys, Inc.

Concept - Challenges in Development of an SoC Design

Sub-methodology for Lint Clean Design
The above flow represents an ecosystem of goals. You can customize this
flow based on your specific requirements and workflow of your design
project.

The following sections describe the details of each stage.
 Initial RTL Development

 RTL Handoff

 Netlist Handoff

Initial RTL Development

The initial RTL design goal set contains a set of checks for the stage of the
project when the RTL is still in coding development and may not be
functionally complete. The idea is not necessarily to be clean all at once,
but provide a starting point for getting to the clean RTL.

The design team faces the following lint related challenges during this
stage:
 Issues related with correct code capture

 Issues related with simulation and synthesis

 Issues with basic connectivity

 Issues related with basic structure like combinational loops and multiple
drivers

GuideWare recommends the designer focus first on getting to lint_rtl clean,
and then work on the clock/reset correctness, basic DFT coding
correctness, and check SDC constraints. By the time the design reaches a
"feature complete" milestone, ideally the initial_rtl goals have been run
and are clean. At this point, the design would progress to the rtl_handoff
stage where additional requirements are added to the existing set of
checks.

RTL Handoff

The rtl_handoff goals are a super-set of the initial_rtl goals. This stage
contains the complete set of recommended RTL Handoff checks.

The design team faces the following lint related challenges during this
stage:
 Issues related with verification regressions and associated bug fixes
19
Synopsys, Inc.

Concept - Challenges in Development of an SoC Design

Sub-methodology for Lint Clean Design
 Issues related with incomplete handoff

 Providing closure on various implementation issues, such as
synthesizability, timing, constraints, clock domain crossings, testability,
congestion/routing, and power management

An incomplete handoff results in expensive and unpredictable error-prone
iterations during the SoC integration phase. Handoff is assumed to be the
hand-off from the RTL design team to the post-synthesis implementation
team or hand-off to System Integration (sub-system or SoC) integration.
Since the hand-off process is typically iterative, it is not necessarily
expected that all goals will be clean at the first hand-off, but at least the
issues will be known and can be communicated to the consumers
downstream.

Netlist Handoff

The netlist_handoff goals are designed to check post-synthesis netlist prior
to layout. These checks are ideal for hand-off to the backend physical
implementation team or ASIC handoff.

SoC or Sub-system Integration

During Soc or sub-system integration the design architect needs to stitch
the block IPs. These block IPs may have been developed internally or
selected from a third party vendor. Depending on the extent of reuse of
these IPs, some of them may not have gone through the process of lint
cleaning. This is typically seen in legacy IPs which have existed in the prior
incarnations of the design. This creates new challenges during the
integration phase.

Challenges Involved in the Selection of Third Party or
Internal Legacy IP

While selecting an IP, either internal or external, the design teams are
usually concerned about the following challenges:
 Understanding the profile of an IP

The information about IP profile is critical for effective integration of an
IP into the target SoC. This information includes the usual IP statistics
20
Synopsys, Inc.

Concept - Challenges in Development of an SoC Design

Sub-methodology for Lint Clean Design
about approximate block size, number of flip-flops and latches, ROM/
memory and other large structures used in the IP block, overall clock
and reset architecture, voltage/ power domain, and so on.

 Identifying specific risks associated with an IP
Some of the challenges that must be considered are unsynchronized
clock-domain crossing, inaccurate or incomplete timing exception
specification, inconsistency within SDC or across SDC and RTL
description, and errors in clock gating/ isolation-logic or level-shifting
logic, if applicable.

 Estimating the adaptability of an IP
The challenge involved in estimating the extent to which an IP is
adaptable for a given target application might relate to testability, power
domain, and voltage domain adaptation, and other fine-tuning to meet
SoC performance targets (if applicable).

Challenges Involved During SoC Integration

During SoC integration, the integration team faces the following
challenges:
 Issues related with functional verification and implementation

 Issues related with interconnection of blocks

 Issues related with clock and reset planning, I/Os, floor planning,
testability, JTAG, scan chains, and power management

Issues in the early stages of design development usually surface as critical
bugs in the late stages of design implementation. Such issues, if not
resolved in the early stages, result in iterations that are costly and time-
consuming.

For example, at a particular stage of design development, you might get
feedback about synthesizability, testability, or power from implementation
or integration team. This may require you to go back to a previous stage,
and resolve those issues. Once those issues are resolved, there might be
another issue in some RTL block, which might cause another global
iteration through the process.

Essentially, resolving an issue late in the design cycle might require
multiple iterations. In addition, resolving an issue might lead to introducing
another issue in the block/subchip. Figure 2 shows that fixing issues that
21
Synopsys, Inc.

Concept - Challenges in Development of an SoC Design

Sub-methodology for Lint Clean Design
RTL designers encounter at different stages of development is an iterative
process. It also shows that identifying an issue late in the development
stage negatively impacts the project cost, schedule, and performance.

SoC RTL

This stage involves the verification of an SoC design or a subset of design
(subsystem) that has been integrated by using various blocks. This field of
use involves checks related to inter-block/inter-IP issues and consistency
across blocks. In addition, it ensures that block constraints are consistent
with SoC constraints.
22
Synopsys, Inc.

Concept - Challenges in Development of an SoC Design

Sub-methodology for Lint Clean Design
The following image illustrates the key checks performed for each design
stage:
23
Synopsys, Inc.

Concept - Challenges in Development of an SoC Design

Sub-methodology for Lint Clean Design
SoC Netlist

The following image illustrates the key checks performed for for each
design stage:

Netlist Handoff

The netlist handoff goals are intended to check a design which is ready for
floor-planning, layout, and backend implementation.

Layout Handoff

The layout handoff goals are intended to check a design which has gone
through floor-planning, layout, and so on, in preparation for tape-out.
24
Synopsys, Inc.

Approach - How to Make Your Design Ready

Sub-methodology for Lint Clean Design
Approach - How to Make Your Design Ready

During RTL Development

The process of the development of a new RTL goes through progressive
RTL refinement starting with simpler goals that meet the functional
requirements, such as functional correctness and simulation and synthesis
readiness of the code. As the RTL code and design constraints mature, the
design goals evolve to performance, testability, and meeting handoff
requirements. In this field of use, the methodology recommends a four-
stage flow.

Initial RTL Development

During this stage, an initial version of the RTL is completed, and an initial
set of SGDC constraints are available. This stage involves basic structural
and sanity checks of the design (and constraints, wherever appropriate). In
addition, issues related to connectivity, synthesizability, preliminary clocks,
and reset integrity issues, such as glitches and clock-MUXing are also
checked during this stage.

For this stage, methodology recommends a set of goals that can be used
by individual RTL designers to correct the issues within their own desktop
environment before simulation and synthesis tasks can begin. These goals
are recommended to be used quite frequently. In some cases, designers
use these goals before checking-in their RTL code. Waivers, if any, should
be captured on an ongoing basis.

This stage may involve some micro-architectural changes related with bus
widths, RAM/ROM usage, and clock phase/frequency refinements. It is
important to ensure that the proposed micro-architectural changes are
reflected in the RTL without any adverse impact on the implementation
issues.

RTL Handoff

This is the final completion and handoff stage for the RTL. By this stage, it
is assumed that the RTL has already been refined as per the methodology.
Most checks are applicable at this point before backend implementation
25
Synopsys, Inc.

Approach - How to Make Your Design Ready

Sub-methodology for Lint Clean Design
begins. During this stage, the micro-architecture and majority of the logic
is stable. SpyGlass goals are used to perform handoff checks with
appropriate waiver definitions.

At this milestone, the block is expected to be clean and all the necessary
inputs are expected to be in place before you perform the final SpyGlass
run. It is also expected that the user is able to share the setup, constraints,
waivers, reports, and so on, with the customer.

Netlist Handoff

This stage when the handoff RTL is synthesized and netlist is handed off for
backend implementation. All structural checks at RTL handloff are
applicable here. In addition certain ERC checks are appropriate at this
stage. This netlist is used by many groups as a starting point for their tasks
(such as floorplanning, test insertion, power estimation, and reduction
analysis). SpyGlass goals are used to perform handoff checks with
appropriate waiver definitions.

The following table describes recommended Base SpyGlass goals for each
of the three stages of the new Block/IP development.
26
Synopsys, Inc.

Approach - How to Make Your Design Ready

Sub-methodology for Lint Clean Design
Goal Name Initial_ RTL RTL_
Handoff

Netlist
Handoff

Description

1 lint_rtl N/A This goal checks:
Basic connectivity issue in the
design, such as floating input,
width mismatch, etc.
simulation issues in the design,
such as incomplete sensitivity list,
incorrect use of block/ non-
blocking assignments, potential
functional errors and possible
simulation hang & simulation race
cases.
unsynthesizable constructs in the
design and code that can cause
RTL vs. gate simulation mismatch.
structural issues in design that
affect the post-implementation
functionality or performance of
the design. Examples include
multiple drivers, high fan-in MUX,
and synchronous/asynchronous
use of resets.
These checks should be run after
every change in RTL code prior to
code-check-in.

2 lint_netlist N/A N/A This is similar to lint_rtl but
applicable only for netlist_handoff
27
Synopsys, Inc.

Approach - How to Make Your Design Ready

Sub-methodology for Lint Clean Design
3 design_audit Optional Optional Optional The aim of this goal is to gather
statistics of the design.
This information may not be
needed when RTL is still being
actively coded. However, when
RTL is somewhat complete, this
information is useful to get an
overall profile of the design.
The audit report has the following
information:
• Basic Design Data Section
• Top-Level Design Units Section
• Black Boxes Section
• Gray Boxes Section
• Unsynthesizable Design Units

Section
• Parameters/Generics Section
• Macros Section (For Verilog

only)
• Library Section (For VHDL

only)
• Line-size Section
• Design Hierarchy Section
• Design Size Statistics Section
• Control Signals Section
Design Elements Statistics Section

4 Clock_reset_
integrity

The aim of this goal is to check
the integrity of clock and reset
logic in a design. This includes
fixing basic clock issues, race and
glitch issues and reset logic
issues.

Goal Name Initial_ RTL RTL_
Handoff

Netlist
Handoff

Description
28
Synopsys, Inc.

Approach - How to Make Your Design Ready

Sub-methodology for Lint Clean Design
Waiving Messages

During design analysis, you may want to suppress the display of certain
violation messages that may not represent a serious problem or messages
that you may want to ignore at that point of time. You can suppress the
display of such messages by using waivers. Waivers need to be applied
cautiously. Waivers are written in a separate file and can be used with the
modified source files as long as the modifications do not invalidate the
design constraints.

Use the waive command to waive a message by various categories, such as
by source files, by design units, by rules, etc. The waive command
specifications are supplied in a waiver file.

5 lint_rtl_fast Optional N/A N/A This goal is a subset of lint_rtl
that checks for design readiness
for simulation and potential
simulation-synthesis mismatches.
The will limit checks to pure RTL
and elaboration and runs faster
since it will not synthesize the
design.

6 lint_abstract N/A This goal is used to create an
abstract view of the RTL or netlist
of the block when it is ready for
handoff. This implies the block has
been cleaned using the prior
goals. The abstract view provides
interface level information of the
block, so that during the SoC level
lint check the block RTL/netlist
don't have to be read. Instead
the abstract provides all relevant
block information for faster SoC
analysis. The block abstract view
along with all constraints and
waiver files is handed off by the
block owner to the SoC integrator.

Goal Name Initial_ RTL RTL_
Handoff

Netlist
Handoff

Description
29
Synopsys, Inc.

Approach - How to Make Your Design Ready

Sub-methodology for Lint Clean Design
A sample file containing waive command specifications is shown below:

################# Sample SpyGlass Waiver Commands
##############

Single Option (File/DU/Rule) Waivers

Waive all violations for a design file or set of design
files

waive -file "/apps/rtl/imp_controller.v"

Waive all violations for a design module or group of
design

modules

waive -du "ahb_transmit"

Waive all violations of a rule or group of rules

waive -rule "W164a"

################### Double Option Waivers
#########################

Waive all violations of a particular rule for a design
module/

file

waive -file "/apps/rtl/imp_controller.v" -rule "W164a"

waive -du "ahb_transmit" -rule "W164a"

################### Multi Options Waivers
#########################

Waive all violation of warning severity related to a
particular

net/design object for a design unit.
30
Synopsys, Inc.

Approach - How to Make Your Design Ready

Sub-methodology for Lint Clean Design
waive -regexp -du "ahb_tran" -severity="warning" -msg
".*test.*"

Waive all clock rule violations arising due to black boxes
for a

group of design units

waive -regexp -du "ahb_.*" -rule "Clk_Gen01a" -msg ".*black-
box.*" –comment “This is a comment for review purposes”

While creating waiver, it is recommended to adhere to the following
guidelines.
 Avoid using waivers with line numbers. When a design changes, the line

numbers can move causing the waivers to be invalidated and possibly
applied at the wrong place. Consider using pragma rather than a waive
command in such cases. e.g. wire w1, w2; //spyglass
disable W120, W121

 Always include –rule with –msg option. This will facilitate migration in
case the message changes. The migration script will be able to map the
old message to the new format.

 Do not use just –rule (i.e. “waive –rule W123”). This will increase
runtime, since waive is a post processing step. If you do not want the
rule to be run, use set_goal_option ignorerules <rule-
name> option instead.

 Apply regular expressions carefully. Regular expression give the user
the flexibility, but can result in longer run time
 Limit regular expression to the design object. Do not apply regular

expression on the static part of a message. E.g. if the message is
“Signal ‘a.b.n’ has multiple simultaneous drivers”, the static part of
the message (underlined) is “Signal <signal_name> has multiple
simultaneous drivers”. Apply regular expression only to
<signal_name>, which is the variable part of the message.

waive –du BLOCKA –rule W415 –regexp –msg “Signal*” – Not
recommended

waive –du BLOCKA –rule W415 –regexp –msg “Signal ‘.*n’
31
Synopsys, Inc.

Approach - How to Make Your Design Ready

Sub-methodology for Lint Clean Design
has multiple simultaneous driver” – Recommended

 Limit using the –regexp option, if other fields can also result in
multiple matches. To limit regular expression to a single field, include
them in m%<string>% quotes. Consider the waiver command

waive –du BLOCKA –rule W415 –regexp –msg “Signal ‘.*n’
has multiple simultaneous driver”

If the design contains other blocks like BLOCKAA, or BLOCKA1, the
waiver example shown above will get applied to all the blocks where
the signal names match, which may not be intended. This should be
replaced by

waive –du BLOCKA –rule W415 –msg m%Signal ‘.*n’ has
multiple simultaneous driver%

 When message contains special characters like “*” or “?”, which have
a special meaning in regular expressions (‘*’ match any string, ‘?’
match single character), enclose the message in q%% quotes to
prevent any incorrect interpretation of these special characters in the
message.

 Use “^” and “$” to anchor the match to beginning or end of line, if
required

 Escape using backslash (\) existing meta characters ([] * . - + |
? ^ $ \) before starting. Always use the –comment field to comment
your waivers

 Review your waivers using waiver report. Utilize the message counts in
the user interface to make sure waiver is not over applied

These guidelines will facilitate maintenance, migration of waiver across
release and reuses of waivers, when a block is being integrated. For details
on using the waive command, refer to the SpyGlass Explorer User Guide.
32
Synopsys, Inc.

Approach - How to Make Your Design Ready

Sub-methodology for Lint Clean Design
During SoC Integration and Implementation
During SoC design or a subset of design (sub-system) that has been
integrated by using various blocks, consistency across blocks is required.
This field of use involves checks related to inter-block/inter-IP issues. In
addition, it ensures that block constraints are consistent with SoC
constraints. In this field of use, the methodology recommends a four-stage
flow:

SoC / Sub-system Integration (of RTL Blocks)

During this stage, the SoC/sub-system integration team assembles the RTL
blocks and IPs to form a SoC/sub-system. These RTL blocks are usually
designed by different teams. The design teams may also use third party or
legacy IPs.

The goals used during this stage target the following objectives:
 Check the complete design intent captured in individual blocks and their

assembly
 Correct various inter-block issues, such as combinational loops and

unconnected ports

During this stage, the intent is to clean the RTL before production level
synthesis begins. The following table shows goals for SoC RTL stage:
33
Synopsys, Inc.

Approach - How to Make Your Design Ready

Sub-methodology for Lint Clean Design
Goal Nam Intial RTL RTL Handoff Description
1 lint_rtl This goal checks

• Basic connectivity issue in the design,
such as floating input, width mismatch,
etc.

• simulation issues in the design, such as
incomplete sensitivity list, incorrect use of
block/ non-blocking assignments,
potential functional errors and possible
simulation hang & simulation race cases.

• unsynthesizable constructs in the design
and code that can cause RTL vs. gate
simulation mismatch.

• structural issues in design that affect the
post-implementation functionality or
performance of the design. Examples
include multiple drivers, high fan-in MUX,
and synchronous/asynchronous use of
resets.

These checks should be run after every
change in RTL code prior to code-check-in.

2 design_audit Optional Optional The aim of this goal is to gather statistics of
the design.
This information may not be needed when
RTL is still being actively coded. However,
when RTL is somewhat complete, this
information is useful to get an overall profile
of the design.
The audit report has the following
information:
• Basic Design Data Section
• Top-Level Design Units Section
• Black Boxes Section
• Gray Boxes Section
• Unsynthesizable Design Units Section
• Parameters/Generics Section
• Macros Section (For Verilog only)
• Library Section (For VHDL only)
• Line-size Section
• Design Hierarchy Section
• Design Size Statistics Section
• Control Signals Section
• Design Elements Statistics Section
34
Synopsys, Inc.

Approach - How to Make Your Design Ready

Sub-methodology for Lint Clean Design
SoC / Sub-system Integration (of Netlist Blocks)

Netlist Handoff

This netlist is used by many groups as a starting point for their tasks (such
as floorplanning, test insertion, power estimation, and reduction analysis).
During this stage, third party tools modify the preliminary netlist for scan
and BIST insertion and power-related gating. This version of netlist is

3 clock_reset_i
ntegrity

The aim of this goal is to check the integrity
of clock and reset logic in a design. This
includes fixing basic clock issues, race and
glitch issues and reset logic issues

4 lint_rtl_fast Optional N/A This goal is a subset of lint_rtl that checks for
design readiness for simulation and potential
simulation-synthesis mismatches. The will
limit checks to pure RTL and elaboration and
runs faster since it will not synthesize the
design.

5 lint_abstract N/A This goal is used to create an abstract view of
the RTL of the subs-system when it is ready
for handoff. This implies the sub-system has
been cleaned using the prior goals. The
abstract view provides interface level
information of the sub-system, so that during
the SoC level lint check the sub-system RTL
doesn't have to be read. Instead the abstract
provides all relevant information for faster
SoC analysis. The sub-system abstract view
along with all constraints and waiver files is
handed off by the block owner to the SoC
integrator.

6 lint_abstract
_validate

N/A During the integration stage the SoC
integrator may be using the abstract view of
the block or the sub-system instead of the
RTL/netlist of the block. This goal ensures
that all assumptions made during the block
level analysis to generate the abstract view
matches the SoC level constraints (case
analysis).

Goal Nam Intial RTL RTL Handoff Description
35
Synopsys, Inc.

Approach - How to Make Your Design Ready

Sub-methodology for Lint Clean Design
known as pre-layout netlist by most of the design teams. The goals used
during this stage ensure that the original design intent is not adversely
impacted during these modifications.

The goals and sub-methodologies recommended for this stage ensure the
integrity of the complete SoC-level netlist from ERC perspective.

Layout Handoff

During this phase, the SoC post layout netlist is closest to silicon. It is
important to ensure final integrity of this post-layout netlist before tape-
out. Recommended goals allow the designer to ensure integrity of post-
layout netlist during the ECOs and before the final handoff for tape-out.

The following table describes recommended Base SpyGlass goals for SoC
Netlist:

Goal Name Netlist_
Handoff

Layout_
Handoff

Description

1 lint_netlist This goal checks
• Basic connectivity issue in the design, such

as floating input, width mismatch, and so
on.

• simulation issues in the design, such as
incomplete sensitivity list, incorrect use of
block/ non-blocking assignments, potential
functional errors and possible simulation
hang & simulation race cases.

• unsynthesizable constructs in the design
and code that can cause RTL vs. gate
simulation mismatch.

• structural issues in design that affect the
post-implementation functionality or
performance of the design. Examples
include multiple drivers, high fan-in MUX,
and synchronous/asynchronous use of
resets.

These checks should be run after every
change in RTL code prior to code-check-in.
36
Synopsys, Inc.

Approach - How to Make Your Design Ready

Sub-methodology for Lint Clean Design
2 design_audit Optional Optional The aim of this goal is to gather statistics of
the design.
The audit report has the following
information:
• Basic Design Data Section
• Top-Level Design Units Section
• Black Boxes Section
• Gray Boxes Section
• Unsynthesizable Design Units Section
• Parameters/Generics Section
• Macros Section (For Verilog only)
• Library Section (For VHDL only)
• Line-size Section
• Design Hierarchy Section
• Design Size Statistics Section
• Control Signals Section
• Design Elements Statistics Section

3 clock_reset_inte
grity

The aim of this goal is to check the integrity
of clock and reset logic in a design. This
includes fixing basic clock issues, race, and
glitch issues and reset logic issues

4 lint_abstract This goal is used to create an abstract view of
the netlist of the sub-system when it is ready
for handoff. This implies the sub-system has
been cleaned using the prior goals. The
abstract view provides interface level
information of the sub-system, so that during
the SoC level lint check the sub-system
netlist doesn't have to be read. Instead the
abstract provides all relevant information for
faster SoC analysis. The sub-system abstract
view along with all constraints and waiver
files is handed off by the block owner to the
SoC integrator.

5 lint_abstract_vali
date

During the integration stage the SoC
integrator may be using the abstract view of
the block or the sub-system instead of the
netlist of the block. This goal ensures that all
assumptions made during the block level
analysis to generate the abstract view
matches the SoC level constraints (case
analysis).
37
Synopsys, Inc.

Approach - How to Make Your Design Ready

Sub-methodology for Lint Clean Design
Managing Design Hierarchy

During SoC or sub-system, SpyGlass enables you to specify the portions of
your design that you want to consider and/or exclude from the scope of
SpyGlass analysis. You can specify this information by making some design
units as the top-level design units and by stopping some design units.
Consider the example below.

FIGURE 2.

By default, all the design units (MEM_BLOCK, DSP_block,
TEST_CONTROLLER, and POWER_CONTROLLER) as well as the design
units instantiated directly/indirectly within these design units are
considered for SpyGlass analysis. Now, among these units, you can specify
38
Synopsys, Inc.

Approach - How to Make Your Design Ready

Sub-methodology for Lint Clean Design
the top-level design units that should be considered for SpyGlass analysis
by using the following command in the Console project file:

set_option top <du-name>

To exclude some design units from the scope of SpyGlass analysis, specify
the following command in the Console project file:

set_option stop <du-name>

Example 1:

set_option top DSP_block
set_option stop DSP_A

Only the design unit, DSP_B, is considered for SpyGlass analysis

Example 2:

set_option top POWER_CONTROLLER
set_option stop Block1

The design units, POWER_inst, P_inst_A, and Block2 are considered
for SpyGlass analysis.

Example 3:

set_option stop P_inst_A

Only P_inst_A is excluded from the scope of SpyGlass analysis. All the
other design units including the design units instantiated directly/indirectly
within P_inst_A are considered for SpyGlass analysis, since you have not
specified the top-level DU name.

If the user does not wish to stop, he can provide an abstracted ILM
(interface level model) model for the block.

On the other hand, if SoC integrator is running the tool with a top-down
approach (or even with bottom up approach), they can use following
options such that they have the control to run the tool on specific IP or
design units (DU) even though some other lower level or parallel level DU/
IPs are not complete.
39
Synopsys, Inc.

Approach - How to Make Your Design Ready

Sub-methodology for Lint Clean Design
set_option checkip <du-name>

This option specifies the design units (the specified unit and all its sub-
hierarchy) on which the rule-checking should be done. When you specify
this option in console project file, SpyGlass not only considers the design
unit specified by this option for rule-checking, but also considers all those
design units starting from the top in the hierarchy till the design unit
specified by this option.

Consider an example, as shown in the above hierarchical block view:

Now, if you specify set_option checkip Mem_block, SpyGlass
would analyze the modules, TOP, Mem_block, Mem_A and Mem_B, and
will consider only these modules for rule-checking.

Additionally, there is another option named checkdu, which allows
analysis of only that specific design unit and not on any design unit which
is below its hierarchy. All the design units instantiated under the design
unit specified by this option are treated as gray boxes.

For the rest of the design units, rule-checking will be bypassed.

When you specify this option in project file, SpyGlass not only considers
the design unit specified by this option for rule-checking, but also considers
all those design units starting from the top in the hierarchy till the design
unit specified by this option.

For example, based on above figure, if you want to analyze only the logic
present at top level and not anything inside the sub-blocks, you can either
do it using ‘set_option stop’ but there you need to specify individual
sub-block names. Instead of that, you can specify:

set_option checkdu top

That will make the tool analyze only the top-level logic and will make all
the sub-blocks treated as gray boxes. Similarly, if you apply ‘set_option
checkdu DSP_block’, that means only glue logic at top and
DSP_block will be analyzed for rule checking.

You can also use combination of checkdu and checkip but please note
that checkdu is given preference over checkip if these options are specified
for same design unit.
40
Synopsys, Inc.

Approach - How to Make Your Design Ready

Sub-methodology for Lint Clean Design
Aligning Block Level Waivers

During SoC or sub-system development process, waivers generated either
for RTL development or IP block qualification can be used.

Hierarchical Waivers

During SoC integration, if the block has already been verified using
SpyGlass, then chip-level designers can use all the waivers of a block
specified by the block-level designer. This can be implemented by using the
-import option of the waive constraint, as shown below:

waive –import <block-name> <block-waive-file>

The above command imports the waiver file, <block-waiver-file>,
of the block, <block-name>.

You can specify waivers for individual blocks separately in the top-level
chip by specifying multiple waive -import constraint specifications. You
can also specify multiple waiver files for a given block in multiple waive -
import constraint specifications.

Consider the following example in which B1 and B2 are the two blocks
inside the top-level chip, and B1.swl and B2.swl are the waiver files
applied to these blocks, respectively:

waive –import B1 B1.swl
waive –import B2 B2.swl

Waiving an IP

During SoC integration, if an IP block has no SpyGlass waivers, then the
user can waive all the violations on the IP (including all modules
underneath it) and only focus on issues at the integration level. This can be
achieved using the waive –ip command as shown below.

waive –ip <ip_name|<ip_list>|<logical_library_name> [-rule|-
rules <rule_list>] [-msg <message>] [-severity <label>] [-
except <rule_list>]

Consider the following example in which B1 and B2 are the two blocks
inside the top-level chip. To waive all message in the hierarchy below B1
and B2, use:
41
Synopsys, Inc.

Approach - How to Make Your Design Ready

Sub-methodology for Lint Clean Design
waive –ip B1, B2

To waive message from a particular rule, use

waive –ip B1, B2 –rule CombLoop

Aligning Block Level Constraints

During SoC or sub-system development process, SGDC (SpyGlass Design
Constraints) constraints created during RTL development or IP block
qualification can be used.

Hierarchical Constraints

This chip-level or sub-system level SGDC file should contain the sgdc -
import command(s) for block-level SGDC file(s) that need to be imported.
For example, a chip-level SGDC file may contain the following specification:

current_design <du-name>
sgdc -import <block-name> <block-level-SGDC-file>

The <block-name> can be specified in any of the following formats:
 module

 entity

 entity.architecture

To create the migrated SGDC run, SpyGlass with the option

set_option gen_hiersgdc yes

This will generate a file <module-name>.sgdc in the gen_hiersgdc/
spyglass_reports/imported_sgdc directory. The above specification can be
given multiple times for different blocks in the same chip-level SGDC file.
The top-level SGDC file that is generated includes all the migrated block
level SGDC files. This file also contains those migrated SGDC commands
that are common in two or more block-level SGDC output files. In
subsequent chip-level analysis, you should specify the generated top-level
SGDC file instead of migrated block level SGDC files.

Understanding Constraints in Block Level Scope

SpyGlass allows scoping mechanism in SGDC commands. The scoping
mechanism is implemented by using the :: operator. Consider the
42
Synopsys, Inc.

Approach - How to Make Your Design Ready

Sub-methodology for Lint Clean Design
following example:

current_design sub-system
set_case_analysis -name M::i1.i2.net -value 0

In the above example, M:: specifies the scoping mechanism, which means
to find all instances of module M in:
 All instances of design unit, sub-system if that design unit is not a top-

level design unit
 Design unit, sub-system, if it is a top-level design unit

Then, the value 0 is applied on net i1.i2.net in all these instances.

If a value generated due to scoping conflicts with an explicit value specified
by the user, the value generated by scoping is deleted. This provides you
the flexibility to override one or more specifications generated through
scoping.

Scoping can also be done via the current_design command. Consider
the following example:

current_design top
…
current_design reset_sync_block
reset -name srst_pin -value 1 -sync

This will put a reset constraint on the pin srst or each instance of
reset_sync_block.

Using Block Level Abstract

An abstract view is a representative model of a block that contains relevant
block information required during SoC-level verification.
For example, it contains block information, such as combinational path
details, boundary registers and related clock/reset information, domain
information, and boundary constraints used to analyze the block.
An abstract view contains such information in the form of SGDC
constraints. SpyGlass provides a way to generate and consumes these
abstract view. For more details, please refer to the SpyGlass SoC
Methodology Guide.
43
Synopsys, Inc.

Conclusion

Sub-methodology for Lint Clean Design
Conclusion
As the chip complexity rises, various design issues cause silicon re-spin risk
and poorer chip quality in terms of area, power, and timing. SpyGlass® is a
powerful and extendible tool for analyzing Hardware Description Language
(HDL) designs.

SpyGlass recognizes the issues related with synthesis, simulation, test,
power, clocks, and constraints at an early stage (RTL or netlist). In
addition, it guides you to fix and optimize your design and constraints that
results in:
 Fewer synthesis iterations

 Higher test coverage

 Lower power consumption

 Properly implemented clock gating and voltage island strategies

 Faster timing closure with correct SDC, false paths, and multi-cycle
paths

 No silicon re-spin due to clock domain crossing issues

SpyGlass can analyze designs written in languages, Verilog (including SV)
and VHDL. In addition, SpyGlass supports mixed-language and DEF
designs. SpyGlass supports both RTL and netlist abstraction for analysis.
You can use SpyGlass to perform any of the several industry standard HDL
analysis and assessment programs, including OpenMORE™ and STARC™.
You can also use SpyGlass to analyze HDL source code early in the design
stage for syntax, semantic, and structural content, and perform complex
checks later in the development process. For example, you might initially
use SpyGlass to check Register Transfer Level (RTL) HDL descriptions.
Later, you might use it to analyze gate-level designs or designs that include
both RTL and structural descriptions.

SpyGlass provides the following features:
 Support for Verilog (including SV) and VHDL

 Support for rich suite of built-in rules including the following checks:

 File checks, such as file names, design units per file, and headers

 Naming checks on signals, ports, parameters, constants, clocks and
other constructs

 Style and related checks
44
Synopsys, Inc.

Conclusion

Sub-methodology for Lint Clean Design
 Coding for synthesis and related checks

 Design practice and related checks

 Area, timing and synchronization checks

 Clock and reset checks

 SpyGlass DFT, SpyGlass Power Verify, SpyGlass Constraints related
checks

 Support for a variety of report format options

Where as having a product is first step, without a proper methodology that
suits the customer design flow, it is not effective. Users do not know which
rules to apply at what stage. Too many rules applied to a stage leads to too
many violations, only few of which are really critical. This creates a barrier
in adoption.

In this document, we have laid out a recommended step-by-step
methodology that applies to generic design flow.
45
Synopsys, Inc.

Conclusion

Sub-methodology for Lint Clean Design
46
Synopsys, Inc.

	SpyGlass® Base Submethodology (for GuideWare 2017.12)
	Preface
	About This Book
	Contents of This Book
	Typographical Conventions

	Sub-methodology for Lint Clean Design
	Early Design Closure - The Need
	Introduction
	Tool and Methodology Versions
	Terminology

	Concept - Challenges in Development of an SoC Design
	Challenges Involved During New RTL Block/Sub-system Development
	Block/IP
	SoC or Sub-system Integration

	Challenges Involved in the Selection of Third Party or Internal Legacy IP
	Challenges Involved During SoC Integration
	SoC RTL
	SoC Netlist

	Approach - How to Make Your Design Ready
	During RTL Development
	Initial RTL Development
	RTL Handoff
	Netlist Handoff
	Waiving Messages

	During SoC Integration and Implementation
	SoC / Sub-system Integration (of RTL Blocks)
	SoC / Sub-system Integration (of Netlist Blocks)
	Managing Design Hierarchy
	Aligning Block Level Waivers
	Aligning Block Level Constraints
	Using Block Level Abstract

	Conclusion

