
SpyGlass® Auto Verify
Rules Reference Guide

Version N-2017.12-SP2, June 2018

Copyright Notice and Proprietary Information
©2018 Synopsys, Inc. All rights reserved. This Synopsys software and all associated
documentation are proprietary to Synopsys, Inc. and may only be used pursuant to the
terms and conditions of a written license agreement with Synopsys, Inc. All other use,
reproduction, modification, or distribution of the Synopsys software or the associated
documentation is strictly prohibited.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the
United States of America. Disclosure to nationals of other countries contrary to United
States law is prohibited. It is the reader's responsibility to determine the applicable
regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

Trademarks
Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth
at https://www.synopsys.com/company/legal/trademarks-brands.html.
All other product or company names may be trademarks of their respective owners.

Third-Party Links
Any links to third-party websites included in this document are for your convenience
only. Synopsys does not endorse and is not responsible for such websites and their
practices, including privacy practices, availability, and content.

Synopsys, Inc.
690 E. Middlefield Road
Mountain View, CA 94043
www.synopsys.com

Report an Error
The SpyGlass Technical Publications team welcomes your feedback and suggestions on
this publication. Please provide specific feedback and, if possible, attach a snapshot.
Send your feedback to spyglass_support@synopsys.com.

mailto:spyglass_support@synopsys.com

Contents

Preface..7
About This Book .. 7
Contents of This Book ... 8
Typographical Conventions ... 9

Using the Rules in the SpyGlass Auto Verify Solution11
License Used by SpyGlass Auto Verify ... 12
Definitions and Concepts in SpyGlass Auto Verify 13

Functional Analysis ..13
Property and Property Analysis ..13
Implicit Properties ...13
Standard OVL Properties...14
Clock Cycle Count and Sequential Depth ...14
Design Virtual Cycle ...15
Initial State ..16
Stuck-Net ...17

Overview of SpyGlass Auto Verify ... 18
Source RTL Design .. 20

Library Cells..20
Black Boxes ..20
Memory Blocks..21
Bidirectional Ports..21
Asynchronous Resets ...21
Latches ..21
Tristate Buses ...21
Gated Clocks...22
Finite-State Machines (FSMs) ..22

Parameters of SpyGlass Auto Verify .. 24
atime...24
av_dcode_analysis...25
av_dcode_report ...25
av_dump_assertions ..26
av_dump_instance_complexity..27
av_dump_liveness ...27
v
Synopsys, Inc.

av_enable_crpt ...28
av_flopcount ...28
av_force_soft_reset ...29
av_ignore_preformal_run_time..30
av_msgmode ..30
av_run_time ...31
av_seqdepth ...32
av_violation_count...32
buscompress...33
ieffort...33
audit ..35
passfail ..35
dead_code_scope ..36
detect_assign_fsm...37
detect_ifelse_fsm ..38
detect_nested_fsm ..38
fv_dcode_all_inst...39
fv_parallelfile ..40
fv_debug_sim_cycles ...42
include_construct ..43
reset_convention ...43
resetoff ..44
show_static_latches ...44
solvemethod ...45
staticnet_scope ...45
propfile ..46
modulelist...46
scope ...47
vcdtime..48
vcdfile ..48
vcdfulltrace ...48
verbose ..49
xassign_casedefault ...49

Functional Constraints... 51
Impact of Constraints on Functional Analysis ...51
Specifying Functional Constraints ...52
Over Constraint ...52

Properties Specification using OVL.. 53
OVL Assertions Format ...53
Constant Value Control Signals in OVL Assertions/Assumptions57
OVL Assertions in Combinational Circuits...58
vi
Synopsys, Inc.

Separate File OVL Support ..59
Restrictions in Using OVL ..60
Impact of Property and Constraint Modules ...60
Processing Property and Constraint Modules..61

Property and Constraint Management ... 63
Property File Format ..63
Property File Example ..65
Property File Processing..65
Enabling and Disabling Assertions ..65

Schematic Highlight and Cross Probing... 67
Waveform Display and Cross Probing.. 68
The Complexity Browser ... 69

Configuring the Complexity Percentage...69
Reports and Diagnosis Files in SpyGlass Auto Verify 72

Auto Verify Central Report ..76
Auto Verify-FSM Report ..80
Uninitialized_Sequential_Elements Spreadsheet Report.............................81
Av_staticreg02 Spreadsheet Report..85
The Av_complexity01 Spreadsheet Report...88
Functional Analysis Report ..93
Overconstrain Info File ...98
Property Status Reported during Functional Analysis99
Register Info Report... 101

Rules in SpyGlass Auto Verify ...105
Info Rules ..106

Av_clkinf01 : Reports all the clocks in the design. 107
Av_complexity01 : Reports design characteristics and complexity for all

the RTL modules and FSMs in the design........................... 111
Av_fsminf01 : Reports all the FSMs in a design................................ 113
Av_fsminf02 : Reports all the interacting FSMs in a design. 119
Av_Info_Case_Analysis : Highlights case-analysis settings 124
Av_initstate01 : Reports the initial state of a design 128
Av_report01 : Reports statistics of properties and functional constraints set

on a design... 131
Av_rstinf01 : Reports all the resets in a design. 135

Formal Setup Rules ..142
Av_sanity03 : Reports loops in a design.. 143
vii
Synopsys, Inc.

Av_sanity04 : Reports over-constraining in a design.........................146
Av_svasetup01 : Setup issues in SVA constraints.............................149

Implicit Properties Rules... 151
Av_bitstuck01 : This rule is deprecated ..152
Av_staticnet01 : Reports globally stuck-at-0 or stuck-at-1 nets in a design.

153
Av_bus01 : Reports all the bus contentions in a design......................159
Av_bus02 : Reports all the floating buses in the design.164
Av_case01 : Reports reachable case items that are not specified.169
Av_case02 : Reports overlapping case items of the case statement that

have the parallel_case pragma or the unique modifier attached.
173

Av_case03 : Reports overlapping case items of the case statement without
the parallel_case pragma attached.177

Av_deadcode01 : Reports redundant logic in the design.180
Av_dontcare01 : Reports sensitizable X-assignments in the design.....190
Av_fsm_analysis : Reports FSM related issues in the design..............193
Av_divide_by_zero : Reports divide/modulo by zero violation204
Av_negative_shift : Reports arithmetic shift by negative value violations.

208
Av_fsm01 : Reports unreachable or deadlocked states of an FSM........212
Av_fsm02 : Reports the dead transition of an FSM.221
Av_range01 : Reports array bound violation.227
Av_setreset01 : Reports flip-flop with simultaneous active asynchronous

set and asynchronous reset...231
Av_staticreg01 : This rule is deprecated. ..236
Av_staticreg02 : Reports static sequential elements in a design.........237
Av_syncfifo01 : Checks overflow and underflow of synchronous FIFOs in a

design ..246
Standard Properties Rules... 253

Av_ovl01 : Reports OVL checks in a design.255
Must Rules... 257

Av_license01 : Reports license failure...258
Av_init01 : Reports initial setup issues of a design............................261
Av_initseq01 : Initialization sequences of multiple signals should be of the

same length. ...265
Av_multitop01 : Reports a violation in case of multiple top-level design

units ..267
viii
Synopsys, Inc.

Av_sanity01 : Reports an error if there is any issue in the property file. ...
269

Av_sanity02 : Reports nets that have multiple drivers 272
Av_sanity06 : Reports issues found in the distributed computing flow . 274
SGDC_av_meta_design_hier01 : Checks the presence of constraint

meta_design_hier .. 282
SGDC_fsm_setup01..284

The OVL Support ...305
Common Assertion Arguments ...306
OVL Assertions...307

Appendix:
SGDC Constraints ..339

SpyGlass Design Constraints ..340
ix
Synopsys, Inc.

x
Synopsys, Inc.

Preface
About This Book
The SpyGlass® Auto Verify Rules Reference Guide describes concepts and
rules of SpyGlass Auto Verify solution.
7
Synopsys, Inc.

Contents of This Book

Preface
Contents of This Book
The SpyGlass Auto Verify Rules Reference Guide consists of the following sections:

Section Description
Using the Rules in the SpyGlass Auto
Verify Solution

Usage concepts and use model features, such as
parameters

Rules in SpyGlass Auto Verify Various rules of SpyGlass Auto Verify solution
The OVL Support About OVL support
Appendix: SGDC Constraints SGDC constraints used by SpyGlass Auto Verify
8
Synopsys, Inc.

Typographical Conventions

Preface
Typographical Conventions
This document uses the following typographical conventions:

The following table describes the syntax used in this document:

To indicate Convention Used
Program code OUT <= IN;

Object names OUT

Variables representing
objects names

<sig-name>

Message Active low signal name '<sig-name>' must end
with _X.

Message location OUT <= IN;

Reworked example
with message removed

OUT_X <= IN;

Important Information NOTE: This rule...

Syntax Description
[] (Square brackets) An optional entry
{ } (Curly braces) An entry that can be specified once or multiple

times
| (Vertical bar) A list of choices out of which you can choose

one

... (Horizontal
ellipsis)

Other options that you can specify
9
Synopsys, Inc.

Typographical Conventions

Preface
10
Synopsys, Inc.

Using the Rules in the
SpyGlass Auto Verify
Solution
SpyGlass® Auto Verify is a Functional Analysis solution built on the SpyGlass
platform and requires a separate license.

SpyGlass Auto Verify solution has the following features:
 It provides a wide range of rules to validate the functionality of a design.

For example, it provides rules for FSM detection, variable range
validation, and tristate bus proper functionality validation.

 It performs analysis across hierarchies and sequential elements in a
design, and provides parameters to control the scope of analysis to a
specific area of a design or for a specific type of analysis.

 It provides multiple engines that are combined to provide fast analysis
time and deal with large multi million gate designs.
You can control both run time and memory utilization through various
parameters.
11
Synopsys, Inc.

License Used by SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
License Used by SpyGlass Auto Verify
All the rules of SpyGlass Auto Verify and their prerequisite and dependent
rules use the Auto_Verify license.
12
Synopsys, Inc.

Definitions and Concepts in SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
Definitions and Concepts in SpyGlass Auto
Verify

This section describes the following topics:
 Functional Analysis

 Property and Property Analysis

 Implicit Properties

 Standard OVL Properties

 Clock Cycle Count and Sequential Depth

 Design Virtual Cycle

 Initial State

 Stuck-Net

Functional Analysis

Functional analysis refers to analyzing the functionality of a design as
opposed to analyzing the structure of a design or analyzing with regard to
a specific domain, such as power-related or SpyGlass DFT solution.

Examples of functional analysis are:
 Search for bus contention

 Checking exclusivity of two signals

 Checking for gray encoding of a vector

 Checking for leachability of states and transition from states for an FSM.

Property and Property Analysis

A property is a functional characteristic of a design. For example, one hot
encoding of an FSM.

Property analysis refers to functional validation of a property in a design.

Implicit Properties
13
Synopsys, Inc.

Definitions and Concepts in SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
Implicit properties are the properties that can be automatically extracted
from a design without the help from users.

The example of such property is one hot encoding of bus enables. This
property is implicit because there is a common predefined rule that two
drivers should not drive a bus line simultaneously, and therefore the
enables must be one hot encoded. An automatic process can be
implemented that searches for such implicit properties.

Standard OVL Properties

Refer to Accellera Standard Open Verification Library (Version Oct 2002) of
properties that can be instantiated in a design as an assertion or a
functional constraint.

SpyGlass Auto Verify solution supports OVL for property specification. Any
OVL assertion inserted in the RTL code by the user is considered as a user-
provided property. Example: assert_range().

Clock Cycle Count and Sequential Depth

Sequential depth refers to the number of clock cycles a rule takes to start
from an initial state and reach the location of rule violation.

In case of a single clock that is active only at posedge or only at negedge,
this number is pretty straightforward. However, in a multi-clock
environment with the clocks active at posedge, negedge, or both, the cycle
count can be interpreted differently.

In order to provide an accurate idea of number of cycles, SpyGlass Auto
Verify solution reports two numbers for the sequential depth. These two
numbers are the same for a design with a single clock active at a single
edge. For all other cases, these two numbers are defined as follows:
1. Number of cycles of fastest clock in the cone of influence of the property

being checked
If a property is applied to a set of nets of a design, then the fastest clock
of the relevant nets is extracted and if a message is occurring, then the
number of cycles of the fastest clock at the time of rule-violation is
reported. In the simple case of a single clock system, this number will
be the number of clock cycles of the given clock. In this scheme, a clock
14
Synopsys, Inc.

Definitions and Concepts in SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
cycle is accounted for as soon as one of the edges has occurred; as a
consequence, a half cycle is considered as a full cycle.

2. Number of non-overlapping edges
This number represents both the positive edge count and the negative
edge count from the initial state to the rule-violation; where if two
edges of two clocks occurred at the exact same time, the counter is
incremented only by one. SpyGlass generates a vector signal named
verification_cycle to represent the counter value. This value is
displayed in the Waveform Viewer when an assertion failure occurs.
Note that both edges are counted regardless if registers are triggered at
posedge, negedge, or both. In particular, in a single clock system, this
number will be equal to twice the number of clock cycles (~+1 due to
the fact that a half cycle is accounted as a full cycle).
For example, Figure 1 shows three clocks waveforms. For the given
window of time, there are 8 clock cycles (number of cycles of the fastest
clock) and there are 17 edges (15 edges for the top waveform, 0 for the
middle since all the edges are covered by the top waveform, and 2
edges for the last clock since it is not overlapping with any edges of the
previous clocks). Note that although not all edges are active, the
counting includes all edges — active or inactive.

FIGURE 1. Clock cycle count and sequential depth

Design Virtual Cycle

Functional analysis complexity increases with the number of asynchronous
15
Synopsys, Inc.

Definitions and Concepts in SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
clocks in a design. To understand how clock frequencies affect the
functional analysis process, consider two clocks running with 17 ns period
and 13 ns period respectively. If the rising edges of the two clocks are
aligned at time 0 ns, then the next time the rising edges will again be
aligned corresponds to 221 ns (LCM of two clock periods). This means that
the design behaves asynchronously for 221 ns. Any functional analysis
process that would exploit repetition (for proving a property, for example)
would have to analyze the design at least for this period of time, which
may correspond to many evaluations of logic in the design. We refer to this
period as the Design Virtual Cycle. SpyGlass Auto Verify solution reports
the virtual design cycle in terms of number of fastest-clock cycles covered
by the Design Virtual Cycle as well as the number of non-overlapping
edges of all clocks covered by the Design Virtual Cycle.

Initial State

The initial state is a register-value assignment from which Functional
Analysis begins.

For example, given a 4-bit counter and a property asserting that the
counter will eventually reach 15, this assertion passes in 5 cycles if the
counter is initialized with 10, whereas it will pass in 15 cycles if the counter
is initialized to 0.

An initial state may or may not be a reset state of a design. A reset state of
a design is a register-value assignment obtained by resetting a design
using a reset signal (may be user-specified). SpyGlass Auto Verify solution
can obtain an initial state in four different ways:
1. Direct register-value assignment using the reset constraint
2. State value generated by an external simulation engine as a VCD file

and read in to SpyGlass Auto Verify solution using the vcdfile parameter
3. Initialization vector that can reset registers using define_tag constraint
4. Find an initial state automatically. If you do not provide an initial state

and/or do not provide an initialization vector, then SpyGlass Auto Verify
solution determines an initial state using the following approach:
 Use reset port to reset registers

 Random analysis by applying stimulus to the inputs and simulating to
find valid register value assignment. Although not a reset state, the
16
Synopsys, Inc.

Definitions and Concepts in SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
assignment is guaranteed to be reached by stimulating the inputs of
a design.

 Functional analysis for a valid register-value assignment

Automatic initial state search (case 4) cannot be combined with other
cases. Therefore, any register not initialized by the user-specified vector or
the initial state remains at “x” which can impact the outcome of functional
analysis.

You must validate the initial state of a design before running any functional
analysis. SpyGlass Auto Verify solution provides various reports as well as
RTL back-annotation and schematic highlight for the initial state
exploration. See Reports and Diagnosis Files in SpyGlass Auto Verify for more
details.

Stuck-Net

Stuck-at nets (constant nets) in the design can be of three types, as
described in the following table:

NOTE: A signal that cannot be initialized to an initial state is, by definition, not stuck-at.

Stuck-at net Description
Globally-stuck-at A net is globally stuck-at if the net cannot change value,

once it is initialized to some initial value.
Partially-stuck-at A net is partially stuck at if the net, once initialized, can

change value only one time. For example, a flip-flop can
be initialized to 0 and then can change value to 1. In this
case, the flip-flop will get stuck at 1.

Eventually-stuck-at A net is eventually stuck-at if the net, once initialized,
can change value multiple times, before getting stuck-at
a value.
17
Synopsys, Inc.

Overview of SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
Overview of SpyGlass Auto Verify
SpyGlass Auto Verify solution searches for functional problems/bugs in a
design through the following ways:
 Automatic checks where SpyGlass Auto Verify solution extracts Implicit

Properties of a design and checks for their correctness in the context of a
specific design.
Examples of such checks are Bus Contention, Array Bound Violation etc.

 User-specified checks where you provide explicit properties to be
validated.
Examples of such explicit properties are Hand Shaking, Gray Coding of
specified signals etc.

Figure 2 shows the inputs and outputs to SpyGlass Auto Verify solution:

FIGURE 2. Functional Mode in SpyGlass Auto Verify Solution

To perform in-depth functional analysis, SpyGlass Auto Verify solution uses
multiple advanced engines. Unlike simulation, SpyGlass Auto Verify
solution performs vector-less static analysis. Most of the analysis within

Source RTL Design
+ Assertions
+ Functional Constraints

Parameters of SpyGlass Auto Verify

SpyGlass Auto
Verify solution

SpyGlass Design Constraints

Schematic Highlight and Cross Probing

Waveform Display and Cross Probing

Reports and Diagnosis Files in SpyGlass
Auto Verify

VCD Files

Property Files

(Atrenta Platform)
18
Synopsys, Inc.

Overview of SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
SpyGlass Auto Verify solution combines the design with the property and
explores the combined space in search for a bug. Exploration of this space
is conducted across register boundaries for a full sequential analysis. This
search can reach depth of hundreds or even thousands of clock cycles.
Parameters are provided to control both run-time and sequential depth of
analysis.

NOTE: To run SpyGlass Auto Verify solution by selecting the required goal containing rules
of SpyGlass Auto Verify solution.
19
Synopsys, Inc.

Source RTL Design

Using the Rules in the SpyGlass Auto Verify Solution
Source RTL Design
Since SpyGlass Auto Verify solution analyzes the functionality of a design,
it is absolutely necessary to provide the functionality of all blocks for which
the analysis is requested. The following items require particular user
attention:
 Library Cells

 Black Boxes

 Memory Blocks

 Bidirectional Ports

 Asynchronous Resets

 Latches

 Tristate Buses

 Gated Clocks

 Finite-State Machines (FSMs)

Library Cells

You can specify library files by using the read_file -type gateslib
<library-file> command in the project file.

Black Boxes

A design unit without functionality is considered as a black box during
Functional Analysis. Examples of such modules are memory blocks not
transformed to a register bank and library cells that are not expanded. The
inputs of these design units are considered as outputs of the design, the
outputs of these modules are considered as inputs of the design. In
particular, if a clock port of a register is driven from a black box output, this
output is considered as a primary clock and needs to be user-defined, or
the default clock will be attributed to it. Outputs of a black box may be
constrained using the functional constraints definition.
20
Synopsys, Inc.

Source RTL Design

Using the Rules in the SpyGlass Auto Verify Solution
Memory Blocks

For simplicity, the memory blocks should be black boxes. As mentioned in
Black Boxes, the outputs of such blocks are supposed to generate any
combination of data, which is a reasonable assumption for a memory
block. The data and address buses and decoders are not part of the
memory core; therefore, they participate in the functional analysis.

Bidirectional Ports

For functional analysis, the bidirectional ports are considered as inputs
and/or outputs. This fact is transparent to the user.

Asynchronous Resets

SpyGlass Auto Verify solution can automatically analyze designs with
asynchronous resets. While it is recommended, it is not necessary for you
to provide asynchronous reset information through the reset constraint. By
default, the asynchronous resets are used only for an initial state search
and they are disabled during functional analysis. To allow the asynchronous
reset usage during functional analysis, use the reset constraints to set
the reset signal as soft reset. The auto-detection of asynchronous resets
can be turned off using the use_inferred_resets parameter of
SpyGlass CDC solution. Synchronous resets in all cases must be provided
through the reset constraint in a SpyGlass Design Constraint file.

Latches

SpyGlass Auto Verify solution can analyze designs with level-sensitive
latches. However, for functional analysis purposes, a transparent latch is
modeled so that its output is evaluated at each active edge of any clock
controlling the data or the enable of the latch. This modeling conforms to a
simulation model for a level sensitive latch.

Tristate Buses
21
Synopsys, Inc.

Source RTL Design

Using the Rules in the SpyGlass Auto Verify Solution
SpyGlass Auto Verify solution can analyze designs with tristate buses.
However, the assumption is made that the tristate bus is never floating nor
is there contention (this check is performed by SpyGlass Auto Verify
solution separately on each tristated bus). In fact, a tristate bus is
transformed into an equivalent MUX structure before the functional
analysis.

Gated Clocks

SpyGlass Auto Verify solution supports multiple asynchronous clocks and
gated clocks in a design as long as the source clocks are provided which
control the register clock pins through functionally analyzable components.
You can provide the source clocks using the clock constraint.

Finite-State Machines (FSMs)

SpyGlass Auto Verify solution checks for correctness of FSMs in a design.
FSMs are first extracted from a design at the RTL level, then various
functional analyses are performed to detect deadlock states, unreachable
states etc. However, there are many ways of describing an FSM in a design
and therefore an FSM may not be detected by SpyGlass Auto Verify
solution even if the FSM is present in the RTL code. The following styles are
currently considered:
1. Both single-process FSMs and 2-concurrent processes (for current state

and next state assignment) FSMs
2. The core of the FSM computing the next state functions and output

functions must use a case statement.
3. if-else-if type of FSMs
4. assign type FSMs
5. Nested FSMs (one FSM nested inside another FSM)
6. The case statement describing the FSM may have multiple if/else

branches embedded in it; some branches may be used to describe the
initial state while other branches are used to describe the FSM transition
functions.

7. Case select of a case statement describing an FSM can be one of the
following only:
22
Synopsys, Inc.

Source RTL Design

Using the Rules in the SpyGlass Auto Verify Solution
 State variable
NOTE: SpyGlass Auto Verify solution requires you to specify only the simple name

(that is, without bit-width specification) for a state variable for the FSM to be
inferred.

 Bit-select 1'b1 or 1'b0: This is used to describe a one-hot or a one-
cold encoding FSM only.

NOTE: Currently, this feature is supported for Verilog designs only.

8. Next state assignment: RHS must be a constant value. Ideally, it should
be one of the case labels.
 Tasks/Functions calculating a next state are not supported

 Logical/arithmetic operations calculating next state value are not
supported

 State labels can be of type enum, but the enum literals must be of
type charlit.
23
Synopsys, Inc.

Parameters of SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
Parameters of SpyGlass Auto Verify
SpyGlass Auto Verify solution supports the following parameters:

In addition to the above parameters, SpyGlass Auto Verify solution
supports the following parameters of SpyGlass CDC solution:

For details on the above parameters, refer to SpyGlass CDC Rules
Reference Guide.

NOTE: Unless specified otherwise, all parameters in SpyGlass Auto Verify solution are
optional.

atime

With atime parameter, you can set the runtime limit for the analysis of a
single property.

The default value of atime depends on the property count. If the property
count is high, SpyGlass internally computes and uses a lower runtime limit.
Similarly, if the property count is low, SpyGlass internally computes and
uses a higher runtime limit in the SpyGlass run.

atime av_dump_assertions buscompress
ieffort audit passfail
dead_code_scope detect_assign_fsm detect_ifelse_fsm
detect_nested_fsm reset_convention resetoff
show_static_latches solvemethod propfile
modulelist scope vcdtime
vcdfile vcdfulltrace verbose
xassign_casedefault

filter_named_resets use_inferred_clocks use_inferred_resets

Used by All functional rules
Options Positive integer value
24
Synopsys, Inc.

Parameters of SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
av_dcode_analysis

Specifies the approach (strict or soft) towards verification of assertions.

By default, the Av_deadcode01 rule uses the soft approach for verification of
assertions. This approach is quick, but it may impact the quality of
verification results.

Set this parameter to strict to improve the quality of verification
results. However, using the strict approach can increase the rule run time.

av_dcode_report

Configures the Av_deadcode01 rule to report violations for the assertions
present in all the nested if-else blocks. In this case, this rule groups all
the violations of the same if block, else-if block, or else block of a
nested if block (or dependency tree). Within each group, violations are
sorted based on the assertions depth within the if, else-if, or else
block.

Default value Varies depending on the number of properties being
checked.

Example
Console/Tcl-based usage set_parameter atime 40

Usage in goal/source
files

-atime=40

Used by Av_deadcode01
Options soft, strict
Default value soft
Example
Console/Tcl-based usage set_parameter av_dcode_analysis strict

Usage in goal/source
files

-av_dcode_analysis=strict
25
Synopsys, Inc.

Parameters of SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
By default, the Av_deadcode01 rule reports violations for the assertions
present only in the top-level if block of a nested if block (or dependency
tree) to reduce violation noise.

For details, see Message Grouping in the Av_deadcode01 Rule.

av_dump_assertions

Generates SystemVerilog Assertions (SVA) for partially-proved assertions
of the rules specified in the Used by section.

When you set this parameter to sva, SpyGlass generates the bind file
sva_rules_prop_<top-module-name>_bind.sv along with
simulator-specific (vcs, ncsim, modelsim) assertion files
sva_rules_prop_<top-module-name>_<simulatorName>.sv
in the wdir/spyglass_reports/auto-verify/assertions
directory.

On passing av_dump_assertions with audit, the design is run in
audit mode, and SVA for all the assertions are generated.

Used by Av_deadcode01
Options minimal, all
Default value minimal
Example
Console/Tcl-based usage set_parameter av_dcode_report all

Usage in goal/source
files

-av_dcode_report=all

Used by Av_deadcode01, Av_staticnet01, Av_fsm01,
Av_fsm02, Av_case01, Av_case02, Av_bus01,
Av_bus02, Av_dontcare01, Av_range01,
Av_fsm_analysis, Av_divide_by_zero

Options sva
Default value “”
Example
26
Synopsys, Inc.

Parameters of SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
av_dump_instance_complexity

Generates instance-based spreadsheet (Av_complexity01_InstanceBased.csv
Tab) showing cyclomatic complexity of module instances.

This information is similar to the information displayed in the
module-based spreadsheet (Av_complexity01_module.csv Tab).

The difference between the two spreadsheets is that the instance-based
spreadsheet shows information for each instance instead of each module
and it additionally displays cumulative complexity of each instance and its
level with respect to the top module.

av_dump_liveness

Generates the SystemVerilog Assertions (SVA) in terms of assert or cover
for assertions of the Av_fsm02 and Av_fsm02 rules.

By default, SVA assert statements are generated.
NOTE: This parameter is applicable only when the av_dump_assertions parameter is set to

sva.

Console/Tcl-based usage set_parameter av_dump_assertions “sva”

Usage in goal/source
files

-av_dump_assertions=“sva”

Used by Av_complexity01
Options yes, no
Default value no
Example
Console/Tcl-based
usage

set_parameter av_dump_instance_complexity yes

Usage in goal/source
files

-av_dump_instance_complexity = yes
27
Synopsys, Inc.

Parameters of SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
av_enable_crpt

Configures SpyGlass Auto Verify rules to generate a spreadsheet showing
details of SVA constraints affecting each rule violation.

For information on this spreadsheet, refer to the Using SystemVerilog
Assertions application note.

av_flopcount

Specifies a maximum number of flip-flops so that an input cone of
SpyGlass Auto Verify properties can be abstracted by cutting the logic
behind the specified number of flip-flops in that cone.

While running SpyGlass Auto Verify analysis on full chips, the cone of
SpyGlass Auto Verify properties can be very complex in terms of number of
flip-flops. This results in significant time spent on verification.

Used by Av_fsm01, Av_fsm02, Av_fsm_analysis
Options assert, cover
Default value assert
Example
Console/Tcl-based
usage

set_parameter av_dump_liveness cover

Usage in goal/source
files

-av_dump_liveness = cover

Used by Refer to the Using SystemVerilog Assertions application
note

Options yes, no
Default value no
Example
Console/Tcl-based
usage

set_parameter av_enable_crpt yes

Usage in goal/source
files

-av_enable_crpt = yes
28
Synopsys, Inc.

Parameters of SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
To circumvent this problem, use this parameter to limit the number of
flip-flops to abstract input cones. Using this parameter also increases the
chances of getting properties concluded.

It is recommended that you use this parameter only for partially-proved
properties because usage of this parameter may help in concluding such
properties.

NOTE: If you use this parameter for properties that are failing, such properties may be
reported as partially proved. Therefore, it is recommended that you use this
parameter only on partially proved properties by using the propfile parameter.

By default, this parameter is set to -1, which indicates that an input cone
will not be abstracted by cutting the logic behind a specific number of flip-
flops in the cone of SpyGlass Auto Verify properties.

av_force_soft_reset

Specifies if a reset or set in the design should be forced as a soft reset
during Functional Analysis while running the Av_setreset01 and Av_deadcode01
rules.

By default, the Av_setreset01 rule considers all resets as soft even when
that reset is specified as a hard reset in the SGDC file. Set this parameter
to no so that this rule considers the resets as hard or soft based on the
specifications in the SGDC file.

By default, the Av_deadcode01 rule uses the specifications in the SGDC file
to consider a reset as hard or soft. To force this rule to consider all the
resets as soft resets:
 Specify Av_deadcode01 to the existing parameter specification, or

Used by All SpyGlass Auto Verify rules
Options -1, 0, or a positive integer value greater than 0
Default value -1
Example
Console/Tcl-based
usage

set_parameter av_flopcount 2

Usage in goal/source
files

-av_flopcount = 2
29
Synopsys, Inc.

Parameters of SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
 Set the value of this parameter to yes.

NOTE: By default, all the SpyGlass Auto Verify rules, except the Av_setreset01 rule, uses
the hard or soft specification of resets as specified in the SGDC file.

av_ignore_preformal_run_time

Specifies if preformal runtime, such as time for synthesis should be
considered while calculating the total runtime for the current run of a
SpyGlass Auto Verify goal.

This parameter is used with the av_run_time parameter.

av_msgmode

Specifies the type of assertions (failed, partially proved, and passed) to be

Used by Av_deadcode01, Av_setreset01
Options Comma-separated list of the Av_deadcode01 and

Av_setreset01 rules, yes, no
Default value Av_setreset01
Example
Console/Tcl-based
usage

set_parameter av_force_soft_reset no

Usage in goal/source
files

-av_force_soft_reset=Av_setreset01,Av_deadcode01

Used by All formal rules of SpyGlass Auto Verify
Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter av_ignore_preformal_run_time

yes

Usage in goal/source
files

-av_ignore_preformal_run_time = yes
30
Synopsys, Inc.

Parameters of SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
reported by the Av_syncfifo01 rule.

By default, this rule reports failed assertions.

av_run_time

Specifies the total runtime (wall clock time) for current run of a SpyGlass
Auto Verify goal.

The current runtime includes preformal runtime, such as time for
synthesis. (Use Parameter av_ignore_preformal_run_time to ignore preformal
time)

By default, total runtime depends on multiple factors, such as the value of
the atime parameter and number of properties.

Used by Av_syncfifo01

Options fail, pp, pass, all
Default value fail
Example
Console/Tcl-based usage set_parameter av_msgmode all

Usage in goal/source
files

-av_msgmode = all

Used by All formal rules of SpyGlass Auto Verify
Options <positive-integer>h, <positive-integer>m, or

<positive-integer>s
Where h, m, and s represent hours, minutes, and
seconds, respectively.

Default value No default value
Example
Console/Tcl-based usage set_parameter av_run_time 10h

Usage in goal/source
files

-av_run_time = 10h
31
Synopsys, Inc.

Parameters of SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
av_seqdepth

Specifies a maximum sequential depth so that an input cone of SpyGlass
Auto Verify properties can be abstracted by cutting the logic behind the
specified depth in that cone.

While performing SpyGlass Auto Verify analysis on full chips, the cone of
SpyGlass Auto Verify properties can be very complex in terms of a
sequential depth. This results in significant time spent for verification.

To circumvent this problem, use this parameter to limit the sequential
depth to abstract input cones. Limiting the sequential depth also increases
the chances of getting properties concluded.

It is recommended that you use this parameter only for partially-proved
properties because usage of this parameter may help in concluding such
properties.

NOTE: If you use this parameter for properties that are failing, such properties may be
reported as partially proved. Therefore, it is recommended that you use this
parameter only on partially proved properties by using the propfile parameter.

Setting this parameter to -1 indicates that an input cone will not be
abstracted by cutting the logic behind a specific depth in the cone of
SpyGlass Auto Verify properties.

av_violation_count

Limits the violation count for the rules of SpyGlass Auto Verify.

When the number of violations specified by this parameter are reported,
the remaining properties are not verified formally.

Used by All the SpyGlass Auto Verify rules
Options 0, -1, or positive integer value greater than 0
Default value -1
Example
Console/Tcl-based usage set_parameter av_seqdepth 2

Usage in goal/source
files

-av_seqdepth = 2
32
Synopsys, Inc.

Parameters of SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
buscompress

Specifies whether the Av_staticnet01 rule should check single bit or all the
bits of a bus signal.

By default, the value of this parameter is set to yes, and the
Av_staticnet01 rule checks single bit of a bus signal.

Set the value of this parameter to no to check all the bits of a bus signal.

ieffort

This parameter is used to change the effort of the tool put in initial state
search during design simulation.

By default, during initial state search, the tool first applies asynchronous
set/resets on a design and then performs clocked simulation.

Used by All formal rules of SpyGlass Auto Verify
Options Positive integer value
Default value No default value
Example
Console/Tcl-based usage set_parameter av_violation_count 10

Usage in goal/source
files

-av_violation_count = 10

Used by Av_staticnet01
Options yes, no
Default value yes
Example
Console/Tcl-based usage set_parameter buscompress no

Usage in goal/source
files

-buscompress=no
33
Synopsys, Inc.

Parameters of SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
Clock Simulation

Clocked simulation is performed for a fixed number of cycles (that is 200
cycles) until any of the following occurs:
 A non-X value reaches on all flip-flops.

 No improvement is observed for a fixed number of consecutive cycles
(also referred to as waste cycles).

This waste cycle number is 10 for the reset simulation stage, and it is 20
for the data simulation stage.

If you set the value of the ieffort parameter to a positive integer value
(say N), the tool performs the following steps:
1. It multiplies the simulation cycle count and waste cycle count with N

(which in effect multiplies the time spent in initial state search by N).
2. It deactivates sets/resets and performs clocked simulation for the total

number of cycles calculated in the above step.

The tool performs the above steps over and above the default behavior of
applying asynchronous set/resets on a design and then performing clocked
simulation.

Setting the ieffort parameter to a negative value (-1 to -3) produces
different results, as explained in the following table:

Value Result
-1 Complete initial state search is skipped all together
-2 Initial state of all flip-flops to forced to 0
-3 Initial state of all flip-flops is forced to 1

Used by All functional rules
Options -3 to any positive integer value
Default value 0
Example
Console/Tcl-based usage set_parameter ieffort 2

Usage in goal/source
files

-ieffort=2
34
Synopsys, Inc.

Parameters of SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
audit

Use the audit parameter to quickly explore the assertion checking
opportunities in a design without performing the actual formal analysis.

When the audit parameter is set, SpyGlass Auto Verify solution does not
perform functional analysis. However, the violation report is still generated.
The Info Rules are also run unless you explicitly disable them.

When the audit parameter is not set (default), SpyGlass Auto Verify
solution performs functional analysis.

On passing av_dump_assertions with audit, the design is run in the audit
mode and SVA for all assertions is generated for the rules specified in the
Used by section.

passfail

Specifies whether SpyGlass Auto Verify solution checks the properties for
proof only, for failure only, or for both.

The allowed values of the passfail parameter are as follows:

Used by All functional rules
Options yes, no
Default value no
Default Value in
GuideWare2.0

yes

Example
Console/Tcl-based usage set_parameter audit yes

Usage in goal/source
files

-audit=yes

Value Behavior
pass Enables pass-centric checking (Select if you expect more

properties to pass in your design).
35
Synopsys, Inc.

Parameters of SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
Use the passfail parameter as per your design characteristics. Setting it
to pass or fail may result in improved runtime performance. In all
cases, both "Proved" and "Failed" cases are reported.

dead_code_scope

The dead_code_scope parameter specifies the type of constructs to be
checked by the Av_deadcode01 rule.

Possible Values of the dead_code_scope Parameter

The dead_code_scope parameter accepts the following values:

fail Enables fail-centric checking (Select if you expect more properties
to fail in your design)

both (Default) Enables both pass-centric and fail-centric checking

Used by All functional rules
Options pass, fail, both
Default value both
Example
Console/Tcl-based usage set_parameter passfail pass

Usage in goal/source
files

-passfail=pass

Used by Av_deadcode01
Options Comma-separated list of Possible Values of the

dead_code_scope Parameter.
Default value if, case_without_default, generate, always
Example
Console/Tcl-based usage set_parameter dead_code_scope 'if,case'

Usage in goal/source
files

-dead_code_scope='if,case'

Value Behavior
36
Synopsys, Inc.

Parameters of SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
 if

The Av_deadcode01 rule checks for the if-else constructs only.

 case

The Av_deadcode01 rule checks for the case constructs and case
default blocks only.

 case_without_default

The Av_deadcode01 rule checks for the case constructs only without
checking the default label.

 condasgn

The Av_deadcode01 rule checks for conditional assignments only for
Verilog and CONDSIGASGN/SELSIGASGN statements for VHDL.

 if_case

The Av_deadcode01 rule checks for if and case blocks.

 if_case_condasgn

The Av_deadcode01 rule checks for if and case blocks.
For Verilog, this rule also checks for conditional assignments, as shown
in the following example:

a = b ? c : d

For VHDL, this rule checks for CONDSIGASGN/SELSIGASGN
statements.

 generate

The Av_deadcode01 rule checks for the dead-if and
case_without_default blocks specified inside generate blocks.

 always

The Av_deadcode01 rule processes the always blocks containing the if
and case_without_default blocks.

detect_assign_fsm

Setting the detect_assign_fsm parameter causes the Av_fsm01,
37
Synopsys, Inc.

Parameters of SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
Av_fsm02, Av_fsminf01, and Av_fsminf02 rules to detect assign-style FSMs in
addition to detecting case style FSMs (default).

NOTE: The detect_assign_fsm parameter is available for Verilog designs only.

detect_ifelse_fsm

Enables the Av_fsm01, Av_fsm02, Av_fsminf01, and Av_fsminf02 rules to detect
if-else style FSMs in addition to detecting case style FSMs (default).

detect_nested_fsm

Setting the detect_nested_fsm parameter causes the Av_fsm01,
Av_fsm02, Av_fsminf01, and Av_fsminf02 rules to detect nested if-else style
FSMs, nested case style FSMs, and assign style FSMs in addition to
detecting case style FSMs (default).
1. For assign style FSMs, state-labels are back-referenced to the line where

it has been compared with the current state vector. Hence, in the
following example, any rule-violation for the FSM1_ST3 state is
indicated on third line of the assign statement as highlighted and not on

Used by Av_fsm01, Av_fsm02, Av_fsminf01, and Av_fsminf02
Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter detect_assign_fsm yes

Usage in goal/source
files

-detect_assign_fsm=yes

Used by Av_fsm01, Av_fsm02, Av_fsminf01, and Av_fsminf02

Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter detect_ifelse_fsm yes

Usage in goal/source
files

-detect_ifelse_fsm=yes
38
Synopsys, Inc.

Parameters of SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
the second line where a transition to FSM1_ST3 state has been
specified:

assign ns =
(cs == FSM1_IDLE)
? (ctl? FSM1_ST2 : FSM1_IDLE) : (cs == FSM1_ST2)
? (!ctl? FSM1_ST3 : FSM1_IDLE) : (cs == FSM1_ST3)
? FSM1_ST3 : FSM1_IDLE ;

NOTE: In case of nested FSMs specified using separate sequential and combinational
blocks, if the next state vector is not given a default value, it might lead to
ambiguous results as the state vector can then take any value till the FSM actually
gets invoked leading to false or missing rule-violations.

fv_dcode_all_inst

By default, the Av_deadcode01 rule highlights any one instance of a
deadcode module. Set this parameter to "yes" to view the schematic and
waveform for all the instances of the deadcode module.

Used by Av_fsm01, Av_fsm02, Av_fsminf01, and Av_fsminf02

Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter detect_nested_fsm yes

Usage in goal/source
files

-detect_nested_fsm=yes

Used by Av_deadcode01

Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter fv_dcode_all_inst yes

Usage in goal/source
files

-fv_dcode_all_inst=yes
39
Synopsys, Inc.

Parameters of SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
fv_parallelfile

Specifies a configuration file for distributed runs of the Av_sanity06 rule
over several machines.

The configuration file is an ASCII text file that contains specific lines for
different methods, as discussed below:

 The lsf method contains the following lines:

LOGIN_TYPE: lsf
MAX_PROCESSES: <num>
LSF_CMD: <bsub-command>

Details of various arguments and keywords are discussed below:

 Specify the value of the LOGIN_TYPE keyword as lsf.

 The <num> argument of the MAX_PROCESSES keyword specifies
the maximum number of processes to be spawned.

 The <bsub-command> argument of the LSF_CMD keyword
specifies the LSF invocation command. (default is bsub).

The following table describes the arguments and keywords of the above
method:

NOTE: To know the runtime details of SpyGlass Auto Verify rules that are run on same
or different machines, refer to distributed_time report.

NOTE: In a parallel file specified by the fv_parallelfile parameter, the -I, -
Ip, and -Is options of the bsub command are not allowed in the LSF_CMD

Argument/Keyword Description
<num> Specifies the maximum number of processes to be

spawned.
<bsub-command> Specifies the LSF invocation command. (default is

bsub).
SpyGlass generates details of the bsub command,
which is used in parallel LSF runs, in a log file. This
information is useful while debugging.
To generate complete information of the bsub
command, set the verbose parameter to 2.
40
Synopsys, Inc.

Parameters of SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
keyword. This is because while running the bsub command, SpyGlass
internally passes the -K option, which is mandatory for running parallel
assertion runs. However, the bsub command does not allow the -K option
along with the -I, -Ip, and -Is options. Therefore, if you specify these
options, parallel assertions are not run and the assertion status may remain
partially-proved.

Following is the example of the lsf method:
LOGIN_TYPE: lsf
MAX_PROCESSES: 3
LSF_CMD: bsub -q “normal | priority”

In the above example, the -q option is used to specify the queue as
normal or priority.

The LSF_CMD command should contain necessary options required to
run the bsub command in a particular environment. In most cases, the
bsub options that are required to launch the main SpyGlass run should
be passed through LSF_CMD so that child processes launched on bsub
are run using the same bsub options.

 The rsh and ssh methods contain the following lines:

LOGIN_TYPE: rsh | ssh
MAX_PROCESSES: <num>

MACHINES:

<machine1-name>[:<num-processes>]
<machine2-name>[:<num-processes>]
...

Details of various arguments and keywords are discussed below:

 Specify the value of the LOGIN_TYPE keyword as rsh or ssh as
per your requirement.

 The <num> argument for the MAX_PROCESSES keyword specifies
the maximum number of processes to be spawned.

 The <machine1-name>, <machine2-name>,... arguments refer
to the machine names.
41
Synopsys, Inc.

Parameters of SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
 The <num-process> argument refers to the number of processes
to be spawned on the specified machine. By default, the value of this
argument is 1.

NOTE: Each spawned process uses one Auto_Verify license.

NOTE: If any issues are found in the parallel file, the Av_sanity06 reports a violation.

By default, this parameter is not set to any value, and therefore,
distributed runs are not enabled.

fv_debug_sim_cycles

Specifies the number of cycles of the slowest clock in property pack for
which waveform should be displayed from initial state for failed properties
of the Av_deadcode01 and Av_staticnet01 rules.

NOTE: High value of fv_debug_sim_cycles will lead to high runtime for waveform
generation.

Used by Av_sanity06

Options File name
Default value ""
Example
Console/Tcl-based usage set_parameter fv_parallelfile

'machinelist.txt'

Usage in goal/source
files

-fv_parallelfile='machinelist.txt'

Used by Av_deadcode01, Av_staticnet01
Options Any positive integer
Default value 0
Example
Console/Tcl-based usage set_parameter fv_debug_sim_cycles 1

Usage in goal/source
files

-fv_debug_sim_cycles 1
42
Synopsys, Inc.

Parameters of SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
include_construct

Specifies if the generate_block and always_comb constructs should
be checked by the Av_deadcode01, Av_dontcare01, and Av_range01 rules, and
if dead code should be checked in the include files by the Av_deadcode01
rule.

You can set this parameter to the following values:

 generate

Enables the Av_deadcode01, Av_dontcare01, and Av_range01 rules to
consider the generate_blocks constructs for rule-checking.

 always_comb

Enables the Av_deadcode01, Av_dontcare01, and Av_range01 rules to
consider the always_comb constructs for rule-checking.

 included_file

Enables the Av_deadcode01 rule to check for dead code in the functions
in the include files specified by the 'include directive.
By default, only the functions in the included file are not checked for
dead code

reset_convention

Specifies the resets to be reported by the Av_rstinf01 rule.

Used by Av_deadcode01, Av_dontcare01, Av_range01,
Av_divide_by_zero

Options none, generate, always_comb, included_file
Default value generate,always_comb,included_file
Example
Console/Tcl-based usage set_parameter include_construct generate

Usage in goal/source
files

-include_construct generate
43
Synopsys, Inc.

Parameters of SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
resetoff

The resetoff parameter disables all user-supplied reset constraints.

NOTE: By default, all user-supplied reset constraints are applied.

show_static_latches

The show_static_latches parameter specifies whether the
Av_staticreg02 rule should report static latches in a design.

By default, the static latches are reported in the Av_staticreg02 rule
spreadsheet.

Set this parameter to no to stop reporting static latches in the
spreadsheet.

Used by Av_rstinf01
Options Comma or space-separated list of reset names (or

Perl regular expressions)
Default value " "
Example
Console/Tcl-based usage set_parameter reset_convention "*rst*,*set*"

Usage in goal/source
files

-reset_convention="*rst*,*set*"

Used by All functional rules
Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter resetoff yes

Usage in goal/source
files

-resetoff=yes

Used by Av_staticreg02
Options yes, no
44
Synopsys, Inc.

Parameters of SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
solvemethod

Specifies the effort level for property checking.

You can set the solvemethod parameter to the following values:

staticnet_scope

Default value yes
Example
Console/Tcl-based usage set_parameter show_static_latches no

Usage in goal/source
files

-show_static_latches=no

Value Description

1 (default) • Property verification as per the passfail parameter
• Cut-based verification is off unless overridden by atime

parameter

2 • Property verification as per the passfail parameter
• Automatic cut-based verification
• Different internal engine invocation sequence (from the other

two solvemethod settings) to improve coverage based on the
property type (proof-dominant or witness-dominant)

3 • Property verification as per the passfail parameter
• Automatic cut-based verification
• Different internal engine invocation sequence (from the other

two solvemethod settings) to improve coverage based on the
property type (proof-dominant or witness-dominant)

Used by All functional rules
Options 1, 2, and 3
Default value 1
Example
Console/Tcl-based usage set_parameter solvemethod 2

Usage in goal/source
files

-solvemethod=2
45
Synopsys, Inc.

Parameters of SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
The staticnet_scope parameter specifies the type of nets to be
checked by the Av_staticnet01 rule.

propfile

The propfile parameter specifies the property file containing properties
to be checked.

NOTE: By default, all properties in the design are checked.

modulelist

Used by Av_staticnet01
Options Comma-separated list of any of the following values:

• flop: Specifies that rule-checking is done on flip-
flops only.

• lhs: Specifies that rule-checking is done on LHS
assignment nets only.

• rhs: Specifies that rule-checking is done on RHS
assignment nets only.

• all: Specifies that rule-checking is done on flip-
flops, latches, and nets

Default value flop
Example
Console/Tcl-based usage set_parameter staticnet_scope lhs,rhs

Usage in goal/source
files

-staticnet_scope=lhs,rhs

Used by All functional rules
Options property file name
Default value ""
Example
Console/Tcl-based usage set_parameter propfile abc.txt

Usage in goal/source
files

-propfile=abc.txt
46
Synopsys, Inc.

Parameters of SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
The modulelist parameter specifies the design units for which the
functional analysis is to be performed.

By default, SpyGlass Auto Verify solution analyzes the user-defined
properties and implicit properties for all design units in the user design. If
you specify some particular design units with the modulelist parameter,
SpyGlass Auto Verify solution analyzes only the specified design units at
the highest level. Properties at lower levels of the specified design units or
in the remaining design units of the user design are not analyzed. However,
the complete design is considered while determining the fan-in/fan-out of
signals being checked.

scope

The scope parameter defines the scope of functional analysis.

By default, the scope parameter is set to chip and the complete fan-in
cone of the assertion is taken into account.

Set the scope parameter to block to have SpyGlass Auto Verify solution
cuts all signals in the fan-in cone (except clocks and resets) at the sub-
module boundary in which the assertion is formed. All those signals at the
boundary of the sub-module are then treated as primary inputs for
functional analysis.

Used by All functional rules
Options Comma- or space-separated list of module names

enclosed in double quotes
Default value ""
Example
Console/Tcl-based usage set_parameter modulelist "Fsm Fsm_always"

set_parameter modulelist "Fsm,Fsm_always"

Usage in goal/source
files

-modulelist="Fsm Fsm_always"
-modulelist="Fsm,Fsm_always"

Used by All functional rules
Options chip, block
Default value chip
47
Synopsys, Inc.

Parameters of SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
vcdtime

This parameter is deprecated. Use the simulation_data constraint instead of
this parameter.

vcdfile

This parameter is deprecated. Use the simulation_data constraint instead of
this parameter.

vcdfulltrace

The vcdfulltrace parameter specifies whether all signals or only user
signals in the fan-in cone of an assertion are dumped in the VCD file. The
default value of the vcdfulltrace parameter is usernets.

You can set the vcdfulltrace rule parameter to the following values:

Example
Console/Tcl-based usage set_parameter scope block

Usage in goal/source
files

-scope=block

Value Description
no Only the flip-flop output signals and primary inputs in the fan-in

cone of an assertion are written to the VCD file
usernets All the user nets in the fan-in cone of an assertion are written to

the VCD file
allnets All internally generated nets along with the user-defined signals in

the fan-in cone of an assertion are written to the VCD file

Used by All functional rules
Options no, usernets, allnets
Default value usernets
48
Synopsys, Inc.

Parameters of SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
verbose

The verbose parameter specifies the verbosity level of the messages
printed at the standard output.

You can set the verbose parameter to values 0 (default), 1, 2, and 3.
Higher the value, more messages are printed.

xassign_casedefault

The xassign_casedefault parameter specifies whether the
Av_dontcare01 rule should check the X-assignment inside the default
clause of a case statement.

By default, this parameter is set to no, and the Av_dontcare01 rule does
not check the X-assignment inside the default clause of a case
statement. Set this parameter to yes to check all the clauses of case
statement.

Example
Console/Tcl-based usage set_parameter vcdfulltrace allnets

Usage in goal/source
files

-vcdfulltrace=allnets

Used by All functional rules
Options 0, 1, 2, 3, 4
Default value 0
Example
Console/Tcl-based usage set_parameter verbose 2

Usage in goal/source
files

-verbose=2

Used by Av_dontcare01
Options yes, no
Default value no
49
Synopsys, Inc.

Parameters of SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
Example
Console/Tcl-based usage set_parameter xassign_casedefault yes

Usage in goal/source
files

-xassign_casedefault=yes
50
Synopsys, Inc.

Functional Constraints

Using the Rules in the SpyGlass Auto Verify Solution
Functional Constraints
The functional constraints are complex constraints restricting the search
space for functional analysis and are defined using assertions. For instance,
if you know that an input vector of a sub-block of a design is one hot
encoded, you can provide this information as a functional constraint to
SpyGlass Auto Verify solution.

Impact of Constraints on Functional Analysis

Functional constraints are important in two different ways:
 Boundary assumptions

If SpyGlass Auto Verify solution does not know about the boundary
assumptions, it may generate a counter example to show that a
property is not holding. However, the counter example may be violating
the boundary assumptions.
For example, as shown in Figure , bus contention is reported unless (a +
!b) is specified as a functional constraint, the condition a=0, and b=1
may cause contention on the bus. However, if the condition (a || !b) is
provided as a functional constraint, then no message is reported. (a ||
!b) is equivalent to “’a’ should be ‘high’ or else ‘b’ must be low”.

FIGURE 3. Bus Contention reported unless (a || !b) is specified as constraint

 By defining constraints, the search space, which is explored to prove or
fail a property, is reduced and consequently the run time may be
lowered.

a

b

51
Synopsys, Inc.

Functional Constraints

Using the Rules in the SpyGlass Auto Verify Solution
Specifying Functional Constraints

Functional constraints are specified the same way as OVL assertions. An
OVL assertion has an option that tells SpyGlass Auto Verify solution
whether the assertion is instantiated as a constraint or as an assertion to
be validated.

For example, the following Verilog description represents the design in
Figure with a constraint preventing Bus Contention.

module BusConstraint(in1,in2,a,b,out);
input in1,in2,a,b;
output out;
wire en1, en2;
assign en1 = a | b;
assign en2 = !a;
assign out= en1 ? in1 : 1'bz;
assign out = en2 ? in2: 1'bz;
assert_proposition #(0,1) constraint1(1'b1,(a || !b));

endmodule

The expression (a||!b) will prevent bus contention.

For detailed use of OVL assertions, see Properties Specification using OVL.

Over Constraint

Functional constraints are used to model the environment or help SpyGlass
Auto Verify solution in concluding the analysis; in doing so you may
introduce constraints that are conflicting between them or with the design
itself. This conflict is happening because the design is over-constrained.
SpyGlass Auto Verify solution reports such scenarios in the Av_sanity04
rule. Using this rule, you would be able to identify conflicting constraints.
52
Synopsys, Inc.

Properties Specification using OVL

Using the Rules in the SpyGlass Auto Verify Solution
Properties Specification using OVL
SpyGlass Auto Verify solution supports Open Verification Library (OVL) for
user-specified properties. OVL is a predefined set of Verilog and/or VHDL
design units that can be instantiated in a design just like a regular design
unit. SpyGlass Auto Verify solution uses these instantiations to validate the
corresponding functionality. The OVL checks as well as other implicit
properties supported by SpyGlass Auto Verify solution are described in
Rules in SpyGlass Auto Verify.

OVL Assertions Format

In Verilog, an OVL module can be instantiated using the following format:

Assertion_identifier [parameter_value_assignment]
module_instance;

Where:

 Assertion_identifier is the OVL assertion module name. For
example, assert_always, assert_next, etc.

 Parameters are:

 Severity_level: Ignored by SpyGlass Auto Verify solution

 Assertion-specific parameters: this is a list of parameters (zero or
many) used by the specific assertion only.

 Options: Is a 32-bit integer optional argument. If ‘0’ the instance
must be treated as a property to be validated. If ‘1’ the instance is
treated as functional constraint.

 Msg: A message string ignored by SpyGlass Auto Verify solution and
replaced by regular rule’s message.

 Module_instance is an instantiation of the OVL module. This is done
the same way as a regular module instantiation in Verilog/VHDL. The
interface of these modules depends on the specific assertion, however,
the first two ports of all assertions are the same: “clock”, and “reset”.

Verilog Example

The following Verilog example represents an FSM:

// One hot FSM encoding
53
Synopsys, Inc.

Properties Specification using OVL

Using the Rules in the SpyGlass Auto Verify Solution
`define STATE1 4'b1000
`define STATE2 4'b0100
`define STATE3 4'b0010
`define STATE4 4'b0001

module Fsm(reset, clk, ctl, out);
 input reset, clk, ctl;
 output out;
 reg [0:3] state;

 always @(posedge clk) begin
 if(!reset) state <= `STATE1;
 else begin
 case (state)
 `STATE1 : if(ctl) state <= `STATE2;
 `STATE2 : state <= `STATE3;
 `STATE3 : state <= `STATE4;
 `STATE4 : state <= `STATE1;
 default : ;
 endcase
 end
 end
 assign out = state[0];
 assert_one_hot #(0,4)oh_check(clk, reset, state);
 assert_next #(0, 2, 0) stateTransitionCheck(clk,

reset, state[1], state[0]);
endmodule

Refer the first assertion instantiated at the end of the example:

assert_one_hot #(0, 4) oh_check(clk, reset, state);

This statement asserts that state is a one hot encoded vector. The first
parameter, ignored by SpyGlass Auto Verify solution, is the severity_level
set to 0. The second parameter (4) is the width of the state vector. The
instance name is oh_check. This assertion module has three inputs
namely clock, reset, and the test vector supposed to be one hot encoded
(corresponding to instance ports clk, reset, and state respectively).

Now, refer the second assertion instantiated at the end of the example:
54
Synopsys, Inc.

Properties Specification using OVL

Using the Rules in the SpyGlass Auto Verify Solution
assert_next #(0, 2, 0) stateTransitionCheck(clk, reset, state[1],
state[0]);

This statement asserts that state[0] always comes two cycles after
state[1]. The second parameter is the number of cycles (2), counting
from the state[1] activation, after which state[0] is supposed to
happen. The last parameter set to 0 prevents the check for overlapping
events on the state[1] signal (once an event is detected on the
state[1] signal, we start the check and a second event would not start a
new check till the first check is over).

VHDL Example

The following VHDL example represents an FSM:

library accellera;
 USE accellera.ovl_assert.ALL;
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.Numeric_Std.ALL;

entity top is
 port(clk : in bit;
 rst : in bit;
 rdReq : in bit;
 wrReq : in bit;
 status1 : out unsigned(2 downto 0));
end top;

architecture str of top is
 signal ptr : unsigned(3 downto 0);
 signal status : unsigned(2 downto 0);
 constant NOP : unsigned(2 downto 0) := "000";
 constant READ_REFUSED : unsigned(2 downto 0) := "001";
 constant READ_ACCEPTED : unsigned(2 downto 0) := "010";
 constant WRITE_REFUSED : unsigned(2 downto 0) := "011";
 constant WRITE_ACCEPTED : unsigned(2 downto 0) := "100";
 constant RDWR_NOT_ALLOWED : unsigned(2 downto 0) := "111";
55
Synopsys, Inc.

Properties Specification using OVL

Using the Rules in the SpyGlass Auto Verify Solution
 constant SIZE : unsigned(3 downto 0) := "1111";
 -- ovl module
-- COMPONENT assert_never IS
-- GENERIC (severity_level: INTEGER := 0;
-- options: INTEGER := 0;
-- msg: STRING := "ASSERT NEVER VIOLATION");
-- PORT (clk, reset_n, test_expr: IN std_ulogic);
-- END COMPONENT;
 signal te : boolean;
begin
 process(clk, rst)
 begin
 if(clk'event and clk='1') then
 if(rst='0') then
 status <= NOP;
ptr <= "0000";
 else
 if(rdReq='1' and wrReq='0') then
 if(ptr = 0) then
 status <= READ_REFUSED;
 else
 status <= READ_ACCEPTED;
 ptr <= ptr - 1;
 end if;
elsif(rdReq='0' and wrReq='1') then
 if(ptr = SIZE) then
 status <= WRITE_REFUSED;
 else
 status <= WRITE_ACCEPTED;
 ptr <= ptr + 1;
 end if;
elsif(rdReq='1' and wrReq='1') then
 status <= RDWR_NOT_ALLOWED;
else
 status <= NOP;
end if;
56
Synopsys, Inc.

Properties Specification using OVL

Using the Rules in the SpyGlass Auto Verify Solution
 end if;
 end if;
 end process;

 te <= true when wrReq='1' and ptr < SIZE and status =
WRITE_REFUSED else false;
 Inst : assert_never generic map(failure,0) port map (clk =>
To_StdULogic(clk),
 reset_n => To_StdULogic(rst),
 test_expr => te);
end str;

In the above example, refer to the assertion instantiated at the end of the
example, that is:

te <= true when wrReq='1' and ptr < SIZE and status
=WRITE_REFUSED else false;

Inst : assert_never generic map(failure,0) port map (clk
=>To_StdULogic(clk),reset_n => To_StdULogic(rst),test_expr
=> te);

This statement asserts that:

 The te expression never occurs.

 The first parameter, which is ignored by SpyGlass Auto Verify solution, is
the severity_level.

 The second parameter (0) specifies this OVL is being used as an
assertion.

 The instance name is Inst.

 This assertion module has three inputs: clock, reset, and the test
expression corresponding to the instance ports clk, rst, and te,
respectively.

Constant Value Control Signals in OVL Assertions/
Assumptions
57
Synopsys, Inc.

Properties Specification using OVL

Using the Rules in the SpyGlass Auto Verify Solution
Normally, you are expected to specify an actual clock signal as the first port
of the assertion/assumption (except the assert_proposition
assertion which is a purely combinational check). In case, the specified
clock signal is forced to a constant value in the design or you specify a
constant value (0 or 1) instead of a clock signal in the assertion, the
corresponding assertion will never reach an error condition and will always
be proved.

By definition, all resets in the OVL modules are active low. Therefore,
constraints resets all OVL instances to high value (that is, deactivate the
reset) for proper functioning of OVL instances. In case, the specified reset
signal is forced to a constant low value in the design or you specify a
constant value 0 instead of a reset signal in the assertion, SpyGlass Auto
Verify solution reports the constraint to be unsatisfied as the reset is being
constrained in two different values. Thus, the corresponding assertion will
not be checked for pass or fail. In case, the specified reset signal is forced
to a constant high value in the design or you specify a constant value 1
instead of a reset signal in the assertion, SpyGlass Auto Verify solution
checks the assertion in the normal way.

In case of the assumptions, a constant value clock signal or constant 0
reset will result in the corresponding constraint being ignored/not applied.

OVL Assertions in Combinational Circuits

All OVL assertions except the assert_proposition are intended for
sequential circuits and require you to specify a clock signal.

You can still use some of the OVL assertions with combinational circuits by
creating a virtual clock and specifying it in an OVL assertion.

Consider the following example:

module test(d1, d2, e1, e2, e3, e4, e5, e6, out1);
input d1, d2, e1, e2, e3, e4, e5, e6;
output out1;

reg ena1, ena2;

always @(e1 or e2 or e3 or e4 or e5 or e6) begin
ena1 = (e1 & e2 & !e3) | (e2 & e3 & !e4) |

(e3 & e4 & !e5) | (e4 & e5 & !e6);
58
Synopsys, Inc.

Properties Specification using OVL

Using the Rules in the SpyGlass Auto Verify Solution
ena2 = (!e1 | !e2 | e3) & (!e2 | !e3 | e4)
& (!e3 | !e4 | e5) & (!e4 | !e5 | e6);

 end
endmodule

You can now create a virtual clock (say clk) and use them in the OVL
assertions as shown below:

module test_assertion(d1,d2,e1,e2,e3,e4, e5, e6, out1);
input d1, d2, e1, e2, e3, e4, e5, e6;
output out1;

wire clk;
reg ena1, ena2;

always @(e1 or e2 or e3 or e4 or e5 or e6) begin
ena1 = (e1 & e2 & !e3) | (e2 & e3 & !e4)

| (e3 & e4 & !e5) | (e4 & e5 & !e6);
ena2 = (!e1 | !e2 | e3) & (!e2 | !e3 | e4) &

(!e3 | !e4 | e5) & (!e4 | !e5 | e6);
end

assert_one_hot #(0, 2) check_one_hot_pass
(clk, 1'b1, {ena1, ena2});

assert_one_hot #(0, 2) check_one_hot_fail
(clk, 1'b1, {!ena1, ena2});

endmodule

Now, you can analyze the design for assert_one_hot assertions. The
first assertion will pass and the second assertion will fail as designed.

Separate File OVL Support

SpyGlass Auto Verify solution allows OVL insertion inside an HDL module or
in a separate file. An OVL assertions file has the following format:

attach_properties <module-name>
begin_ovl
// Comments
59
Synopsys, Inc.

Properties Specification using OVL

Using the Rules in the SpyGlass Auto Verify Solution
<ovl_assertions_instance>;
<ovl_assertions_instance>;
end_ovl

Where <module-name> is the module into which the OVL assertions are
instantiated/bound.

Signal names specified in the assertions instantiations should be
hierarchical names with respect to the binding module <module-name>
as in the following example:

attach_properties test
begin_ovl
assert_always assrtn4 (clk, 1'b1, (mid1.w2 == 1'b0));
end_ovl

Here, w2 is a signal in the instance mid1 under the binding module test.

Mixed-language is supported which means that OVL file may use Verilog
format while the design is a VHDL design and vice-versa.

To read an OVL Verilog file in Atrenta Console, specify the following
command in a project file:

set_option ovl_verilog { OVL-file> }

Similarly, to read an OVL VHDL file, specify the following command in a
project file:

set_option ovl_vhdl { OVL-file> }

Restrictions in Using OVL

Following restrictions are important in using OVL to specify properties for
SpyGlass Auto Verify solution:
 The severity_level argument is ignored by SpyGlass Auto Verify

solution.
 Assertion message is ignored by SpyGlass Auto Verify solution. It is

replaced by corresponding rule’s message in SpyGlass Auto Verify
solution.

Impact of Property and Constraint Modules
60
Synopsys, Inc.

Properties Specification using OVL

Using the Rules in the SpyGlass Auto Verify Solution
The presence of an OVL assertion instance in a design may have impact on
any tool loading and working on the corresponding HDL code. The
specificity of OVL assertion modules is that they do not feed any other
instance or ports of the design. Because of this feature, the OVL assertion
instances can be seen as hanging instances in a design. Synthesis tools can
literally remove them because they are not observable at the outputs.
SpyGlass Auto Verify solution processes OVL assertions as follows:
 Property and Constraint modules are made invisible to all products

except SpyGlass Auto Verify solution. These instances are seen by other
products as black boxes with the following differences:
 Assertion modules are analyzed and any syntax or semantic problem

in those modules are reported
 Regular products do not perform further checks on them, and

therefore, no rule-violations are reported involving these modules.
 Property and Constraint modules will be visible through schematic; you

can explore the content of these modules from the Schematic Window.

Processing Property and Constraint Modules

OVL assertions as defined by Accellera are not synthesizable. To validate
the functionality, SpyGlass Auto Verify solution extracts the functionality of
the modules. To do so, the following transformations are internally
performed:
1. Error report

In Verilog, OVL assertion failure causes a task call which reports a
failure, and increments the fail count. SpyGlass Auto Verify solution
ignores the task and processes the failure using its rule-violation report
mechanism.

2. Clock and Reset inputs
All OVL assertions have clock and reset input ports. In case the property
is a pure combinational check, SpyGlass Auto Verify solution accepts
clock/reset ports that are driven by constant 0/1. In this case these
ports are ignored during functional analysis.

3. OVL Verilog Macro Global Variables

OVL Verilog provides a set of macros (ASSERT_GLOBAL_RESET,
ASSERT_MAX_REPORT_ERROR, etc.). OVL Verilog Macro Global
61
Synopsys, Inc.

Properties Specification using OVL

Using the Rules in the SpyGlass Auto Verify Solution
Variables are ignored by SpyGlass Auto Verify solution.
62
Synopsys, Inc.

Property and Constraint Management

Using the Rules in the SpyGlass Auto Verify Solution
Property and Constraint Management
Properties and constraints can be edited through Atrenta Console GUI.
Individual checks can be enabled, disabled, or set an explicit property as a
constraint. The updated property status can be dumped in the auto_verify.prp
file in the current working directory. This file can be read in subsequent
runs of SpyGlass Auto Verify solution. This file is referred to as the property
file and can be also directly edited and changed.

When a property file is provided using the propfile parameter, SpyGlass
Auto Verify solution checks only the assertions from that file.

SpyGlass Auto Verify solution provides properties and constraints
exploration capabilities. This feature can be used as follows:
1. You can run a goal of SpyGlass Auto Verify solution (with audit

parameter) to generate a list of all properties and constraints.
2. The list of properties can be visualized in Atrenta Console.
3. The attributes of properties can be modified. You can un-select some

rules or mark them as constraints or some of the constraints can be
reset as assertions to be checked.

4. The output of this property exploration and editing session can be
dumped into a file.

5. A property file can be manually edited and modified.

In particular, the Property file feature can be used for incremental
validation purposes. SpyGlass Auto Verify solution can be run with default
effort level. The property/constraint file can be simplified so it contains only
properties that are partially analyzed. Then, an incremental run can be
launched using the modified property file so the previously validated
assertions are not re-analyzed.

Property File Format

The Property file has the rule-wise assertion/constraint information in the
following format:

RuleName: <rule-name>
<selection> <type> <status> <file-name> <line-num> <hier>

[<info>]
...
63
Synopsys, Inc.

Property and Constraint Management

Using the Rules in the SpyGlass Auto Verify Solution
RuleName: <rule-name>
...

Where:

 <rule-name> is the name of the rule of SpyGlass Auto Verify solution.

 <selection> is on when the assertion/constraint is enabled or is off
when the assertion/constraint is disabled.

 <type> is the property type — Assertion or Constraint.

 <status> indicates the assertion status:

NOTE: The status for constraints is indicated as NA.

NOTE: The properties with status Partially-Analyzed are reported with selection on and
the properties with all other status are reported with selection off. You can
modify the selection as required for the next run.

 <file-name> and <line-num> is the location of the assertion/
constraint.

 <hier> is the design hierarchy where the assertion/constraint was
checked.

 <info> is printed for selected rules only. The details are described
under the respective rules.

<status> Value Indicates that the assertion ...
PROVED Proved in the current run
FAILED Failed in the current run
Partially-Analyzed Partially-analyzed in the current run
Constraint-Unsatisfied Constraint-Unsatisfied in the current run
Not-Analyzed Not analyzed in the current run or a previous run
[PROVED] Proved in a previous run
[FAILED] Failed in a previous run
[Partially-Analyzed] Partially-analyzed in a previous run.
[Constraint-Unsatisfied] Constraint-Unsatisfied in a previous run
64
Synopsys, Inc.

Property and Constraint Management

Using the Rules in the SpyGlass Auto Verify Solution
Property File Example

The contents of a typical property file are as in the following example:

RuleName: Av_deadcode01
off Assertion PROVED ../src/test.v 203 uart_top.u11
on Assertion Partially-Analyzed ../src/test.v 211
uart_top.u11
...

Property File Processing

The following actions are taken with regard to the assertions and
constraints in a property file:
1. SpyGlass Auto Verify solution exits with a FATAL error if a constraint in

the property file is not found in the design.
2. SpyGlass Auto Verify solution skips checking for a rule when a related

assertion is not found in the design. A Av_sanity01 rule message is
reported for the rule. No information is printed in the new property file
for such rules. The remaining rules are still processed as applicable.

3. The attributes of assertions in the property file override the attributes of
assertions in the HDL instances. For instance, if a design assertion
(functional constraint) is specified as a functional constraint (assertion)
in the property file, SpyGlass Auto Verify solution processed it as a
functional constraint (assertion).

4. Any assertion/constraint instantiated in a design that is not present in
the property file or is explicitly disabled in the property file is ignored for
functional analysis.

5. If SpyGlass Auto Verify solution is run with a property file provided, the
new property file generated is based on the existing property file
incorporating the results of the current run. Thus, design properties that
are not in the original property file do not appear in the new property
file.

Enabling and Disabling Assertions

While debugging SpyGlass Auto Verify issues, you may want to focus on
65
Synopsys, Inc.

Property and Constraint Management

Using the Rules in the SpyGlass Auto Verify Solution
the violations of specific assertions, such as passed, failed, or partially
proved.

In such cases, use The Property Manager dialog to select and/or deselect
assertions so that these changes are saved in the property file. In the next
SpyGlass run, pass that property file to run the selected assertions.

For details on this dialog, refer to the SpyGlass CDC Rules Reference
Guide.
66
Synopsys, Inc.

Schematic Highlight and Cross Probing

Using the Rules in the SpyGlass Auto Verify Solution
Schematic Highlight and Cross Probing
The schematic highlight for a given violation is handled the same way as
with other products in SpyGlass. A small gate icon indicates the presence
of a schematic link for a given violation. For the detail of schematic
highlight for a specific rule, see the rule description.
67
Synopsys, Inc.

Waveform Display and Cross Probing

Using the Rules in the SpyGlass Auto Verify Solution
Waveform Display and Cross Probing
The Waveform Viewer is another analysis tool provided with SpyGlass Auto
Verify solution for root cause analysis of a functional bug in a design. In
fact, when a property fails, often, SpyGlass Auto Verify solution generates
a witness for the failure. This witness is a sequence of events from an
initial state of a design/sub-design to the time when the bug appears. This
witness can be generated as a set of simulation vectors in VCD format.
Each event or time frame in VCD corresponds to an edge of a clock
relevant to the violation. By left-clicking on a violation, besides RTL back
annotation and schematic highlight, a waveform viewer is launched
displaying the VCD content. The presence of a waveform display is
indicated by a small waveform icon in front of a violation. For detail
waveform information for a specific rule, refer to the rule description.

All the VCD files are dumped in the VCD directory.
68
Synopsys, Inc.

The Complexity Browser

Using the Rules in the SpyGlass Auto Verify Solution
The Complexity Browser
The complexity browser shows a hierarchical structure of module instances
and their details, such as cyclomatic complexity, cumulative complexity,
and instance depth with respect to the top module.

To view this browser, double-click on the violation of the Av_complexity01
rule. The following figure shows the complexity browser:

FIGURE 4. SpyGlass Complexity Browser

In the above browser, the legend shows the range of complexity
percentage of each instance. The complexity percentage is the ratio of
cyclomatic complexity of an instance to the cyclomatic complexity of the
top module.

Configuring the Complexity Percentage

You can configure the complexity percentage by:
 Changing the Percentage Range

 Changing the Percentage-Range Color
69
Synopsys, Inc.

The Complexity Browser

Using the Rules in the SpyGlass Auto Verify Solution
Changing the Percentage Range

To change the percentage range, perform the following steps:
1. Click the Configure button in the SpyGlass Complexity Browser.

The Configure Highlighting Ranges dialog appears.
2. Move the mouse pointer between two ranges till a double-sided arrow

appears.
3. Click the left mouse button and drag the mouse pointer till you get the

desired range.
The following figure shows the example of changing ranges:

FIGURE 5. Example of changing the complexity-percentage ranges

4. Release the left mouse button.
5. Click the OK button to save the ranges.

Changing the Percentage-Range Color

To change the color assigned to a complexity-percentage range, perform
the following steps:

To change the percentage range, perform the following steps:
70
Synopsys, Inc.

The Complexity Browser

Using the Rules in the SpyGlass Auto Verify Solution
1. Click the Configure button in the SpyGlass Complexity Browser.
The Configure Highlighting Ranges dialog appears.

2. Double-click on a range.
The Choose Color for a Range dialog appears.

3. Set the required color in this dialog.
71
Synopsys, Inc.

Reports and Diagnosis Files in SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
Reports and Diagnosis Files in SpyGlass Auto
Verify

SpyGlass Auto Verify solution generates report files in the current working
directory. Some files are created by default while others are created on
user request.

SpyGlass Auto Verify solution generates the following reports and diagnosis
files:

Report Name Description
auto_verify.rpt Describes the functional analysis statistics of a

design
ADV-LINT Shows a concise summary of the design, design setup,

and verification results of SpyGlass Auto Verify solution.
Fsm.info Shows information on the FSMs detected in a design by

the Av_fsminf01 rule.
Av_initistate01.csv Shows information about the cause of un initialization

for sequential elements and a non-default value for
each pin.

Av_staticreg02.csv Shows information about input pins of static sequential
elements after applying case-analysis and VDD/VSS
propagation in a design.

Av_complexity01.csv Shows information related to modules and FSMs in a
design.

auto_verify Shows information that enables you to analyze the
cause of a bug or to gather functional analysis statistics.

OverConstrainInfo Shows information about conflicting constraints.
auto_verify.reg Shows information on registers that are relevant for

functional analysis.
distributed_time Shows run time details of SpyGlass Auto Verify rules

that are run in parallel on same or different machines.
This report is similar to the distributed_time report
generated by SpyGlass CDC. Refer to the SpyGlass CDC
documentation for details on this report.
72
Synopsys, Inc.

Reports and Diagnosis Files in SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
Auto Verify Report
The Auto Verify report, auto_verify.rpt, contains the functional analysis
statistics of a design.

The following is a sample Auto Verify report:

##
#
Purpose:
This report contains the functional analysis statistics
of a design.
#
Format:
It contains the following sections:
Section A: Run Parameters
Lists the parameters specified in the current run
Section B: Clock Information
Lists the clock information of the design
Section C: Reset Information
Lists the reset information of the design
Section D: Set-Case Analysis Settings
Lists the set case analysis settings used in the design
Section E: Initial State of the Design
Lists the initial-state statistics of the design along
with the reset percentage. The initial state of each
register can be seen in auto_verify.reg file.
Section F: Results Summary (Current)
Lists the statistics of the assertions formed for each
rule.
Section G: Results Summary (Cumulative)
Lists the summary of cumulative set of assertions
formed in the current run and the information of
earlier runs in the property file. This section is
printed when you specify a property file using the
-propfile command-line option.
Section H: Assertion Details
Lists the assertion details.
##
73
Synopsys, Inc.

Reports and Diagnosis Files in SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
##

Section A: Run Parameters

ignore_latches : yes
use_inferred_resets : yes
verbose : 4

##

Section B: Clock Information

(clock): (period); (Clock Source); (rising/falling);
(edgeList); (no. of flops on posedge); (no. of flops on
negedge)
--

top.clk: 10.000000; SGDC; Rising; (5.0, 10.0); 8; 0

Design Cycle: 2(1)

##

Section E: Initial State of the Design

Total no of sequential elements: 8
No of '1's: 0
No of '0's: 0
No of 'x's: 8
RESET PERCENTAGE for root 'top'(8 sequential elements) is
'0.00%'
74
Synopsys, Inc.

Reports and Diagnosis Files in SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
##

Section F: Results Summary (Current)

RuleName Passed Failed Partially Proved Not Analyzed Others Total
 (Average Depth)

--
Av_ 1 1 0 0 0 2
negative
_shift
--

Total 1 1 0
0 0 2

--

##

Section G: Results Summary (Cumulative)

 NOT APPLICABLE (AS NO PROPERTY FILE PASSED)

##

Section H: Assertion Detail

RuleName: Av_negative_shift

1. (Hier:top) (b >>> (~d)), test.v, 9,
(Av_negative_shift.1.1.vcd) : FAILED through depth 1(1)
2. (Hier:top) (b <<< (^ d)), test.v, 9, : PROVED
75
Synopsys, Inc.

Reports and Diagnosis Files in SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
###

Auto Verify Central Report

The Auto Verify central report (ADV-LINT.rpt) provides a concise summary of
the design, design setup, and verification results of SpyGlass Auto Verify
solution.

This information is arranged under the following sections in the report:
 Setup and Design Audit

 Analysis and Verification

Setup and Design Audit

This section provides the following information:
 Parameters used in the current run that impact run time and quality of

results
 SpyGlass run information

This information includes total run time, total memory consumed, and
total peak memory.

 Design statistics
This information includes the total number of flat instances, flip-flops,
latches, sequential library cells, and modules. In addition, it includes the
maximum and average cyclomatic complexity if the Av_complexity01 rule
is run.

 Design setup
This information includes the following:
 Information on clocks, such as number of user-defined and black box

clocks.
 Information on resets, such as number of user-defined synchronous

and asynchronous resets, and black box resets.
 Information on incomplete clocks definition, which may lead to false

positive or negative assertions.
76
Synopsys, Inc.

Reports and Diagnosis Files in SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
 Information on incomplete resets definition, which may lead to wrong
initial state identification and false functional violations.

 Information on constraints making assumptions on design execution.

 Information on improper initial state definition, which may result in
missed design bugs or false violations. For details, refer to
auto_verify.reg report (Register Info Report).

 Information on FSMs, such as number of FSMs and interacting FSMs
detected. For details, refer to Fsm.info file (Auto Verify-FSM Report).

Analyze information under this section to ensure that all the setup and
design information is as expected.

To see an example of this section, click here.

Analysis and Verification

This section reports current as well as cumulative (only in propfile mode)
violation counts.
 Current violation count implies the number of failed assertions during

formal analysis of the design in the current run.
 Cumulative violation count implies the number of failed violations during

formal analysis of the design in the current or previous runs. This
column is displayed in the report only when the design is run in propfile
mode.

Analyze this information to ensure design correction.

To see an example of this section, click here.

Sample Auto Verify Central Report

Following is the sample Auto Verify Central Report:

==
A. Setup and Design audit: To be reviewed for correctness and signoff.
==
Parameters used in this run that impact run time and quality of results:
--
 atime : 1
77
Synopsys, Inc.

Reports and Diagnosis Files in SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
 ieffort : 0
 propfile : av.prp
 use_inferred_resets : yes
 use_inferred_clocks : yes
 dead_code_scope : generate
 staticnet_scope : flop

Run Information:
--
 Total Time (in sec) : 9
 Total Memory (in KB) : 45847
 Peak Memory (in KB) : 205440

Design Statistics:
--
 Total Flat Instances : 4399
 Total Flop : 807
 Total Latches : 15
 Total Sequential Library Cell : 0
 Number of Modules : 22
 Maximum Cyclomatic complexity : 376
 Average Cyclomatic complexity : 47

Design Setup:
--
 Clocks:

 Number of user-defined clocks : 1
 Number of Black-box clocks : 0

 Incomplete/Modified Clock Constraints:

 Clocks with undefined periods (period of 10ns assumed) : 0
 Clocks with undefined edges (50% duty cycle assumed) : 1
 Clocks with rounded period for functional verification : 0

 Resets:

78
Synopsys, Inc.

Reports and Diagnosis Files in SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
 Number of user-defined asynchronous resets : 1
 Number of user-defined synchronous resets : 0
 Number of black box resets : 0

 Incomplete Reset Constraints:

 Asynchronous resets with undefined active
 value (active value 1 assumed) : 0

 Synchronous resets with undefined active
 value (active value 1 assumed) : 0

 Constraints making assumptions on design execution that should be
 reviewed
 --
 Number of set_case_analysis constraints : 0
 Number of assume_path constraints : 0

 Initialization

 Number and percentage of flops uninitialized : 807(100.00 %)
 Number and percentage of latches uninitialized : 15(100.00 %)

 FSMs
 --
 Number of FSMs detected : 6
 Number of interacting FSMs detected : 2

===
B. Analysis and Verification: To be reviewed for verification signoff.
==
Analysis and Verification : Current Cumulative
--
Multiple Overlapping Parallel Case Items (Av_case02) : 1 1
Bus Contention violation (Av_bus01) : 2 2
Floating Bus (Av_bus02) : 2 3
79
Synopsys, Inc.

Reports and Diagnosis Files in SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
Dead FSM Transitions (Av_fsm02) : 3 66
Unreachable/Deadlocked FSMs States (Av_fsm01) : 1 34
Sensitizable X assignments (Av_dontcare01) : 1 1
Unspecified Full Case Items (Av_case01) : 0 1
Dead Code Blocks (Av_deadcode01) : 6 91
Array Bound violations (Av_range01) : 2 2

Auto Verify-FSM Report

The Av_fsminf01 generates the Auto Verify-FSM report (Fsm.info).

This report provides information on the FSMs detected in a design by the
Av_fsminf01 rule.

The following example shows the sample report:

Number of FSMs detected: 1
FileName: test.v, Line num: 23
FSM: test.state
Number of states: 4
Number of transitions: 5
Number of outputs from fsm: 0
Number of inputs to fsm: 2
Fsm encoding style: MINIMUMENCODED
Fsm style: UNKNOWN
Next State logic figures: Simple Assignments
Depth of FSM: 3 (S0 to S3)
Initial State of FSM: S0
Cyclomatic Complexity of FSM: 2

Custom-Style Encoding

If the Fsm encoding style field in the Auto Verify-FSM Report is CUSTOM, the
following three types values appear adjacent to the text CUSTOM in this
report:
 Number of states in FSM

 Number of bits representing state values
80
Synopsys, Inc.

Reports and Diagnosis Files in SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
 Number of unused bits

The following figure shows the example of custom encoding style:

FIGURE 6. Example of custom encoding style

Uninitialized_Sequential_Elements Spreadsheet Report

The Av_initstate01 rule generates the Uninitialized_Sequential_Elements.csv file
that contains details about the initialized and uninitialized sequential
elements. This file also displays a non-default value for each pin.

This spreadsheet contains two tabs to show details of initialized and
uninitialized sequential elements. By default, the tab for uninitialized
sequential elements is selected.
81
Synopsys, Inc.

Reports and Diagnosis Files in SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
To open these spreadsheets, double-click on the violation message of the
Av_initstate01 rule.

The following figure shows the Uninitialized_Sequential_Elements.csv for
initialized sequential elements:

FIGURE 7. Initialized_Sequential_Elements Spreadsheet Report

The following figure shows the Uninitialized_Sequential_Elements.csv for
uninitialized sequential elements:

FIGURE 8. Uninitialized_Sequential_Elements Spreadsheet Report

If the reset or set value of a pin is 0 or 1, the corresponding schematic
shows the path of that value. For example, if the reset and set value is 0,
the schematic will display the path.

To open the schematic, click 1 in the ID column in the spreadsheet and

then click the button. The following figure displays the schematic
highlighting the path:
82
Synopsys, Inc.

Reports and Diagnosis Files in SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
FIGURE 9. Av_initstate01 Example

Details of the Uninitialized_Sequential_Elements Spreadsheet
Report

Details of various columns of the Uninitialized_Sequential_Elements
Spreadsheet Report are described in the following table:

Column Name Description
NAME Specifies a sequential element name.

If a sequential cell is a flip-flop, latch, or clock-gating cell,
this column displays bus-merged output net name. Else,
library instance pins are displayed.
This column supports cross-probing to incremental
schematic, which highlights a sequential instance along with
terminals/pins that have a non-default value in the
remaining columns.

MODULE Specifies the name of a leaf-level parent module of a
sequential element.
83
Synopsys, Inc.

Reports and Diagnosis Files in SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
ASYNC RESET Specifies an asynchronous reset value.
This value can be any of the following:
• 1: This value is displayed when the last value on a reset

pin of a sequential instance with active low reset is 1
during initial state detection.

• 0: This value is displayed when the last value on a reset
pin of a sequential instance with an active high reset is 0
during initial state detection.

• X: This value is displayed when the last value on a reset
pin of a sequential instance is X during initial state
detection.

• -: This is a default value, and it is displayed when a
reset pin does not exist or does not have an unexpected
value during initial state detection.

ASYNC SET This is similar to the ASYNC RESET column with the
difference that in this case, the Av_initstate01 rule checks
asynchronous set pin instead of asynchronous reset pin.

CLOCK This column displays any of the following values based on
different conditions:
• -: This value is displayed if there has been toggling from

0 to 1 or from 1 to 0 during initial state detection.
• 1: This value is displayed when a clock pin is stuck at 1.
• 0: This value is displayed when a clock pin is stuck at 0.
• X: This value is displayed when a clock pin is stuck at X.
• Comma separated list of

<clkPinName>:<clkTermValue> is displayed when a
sequential element contains multiple clock pins.

ENABLE This column displays any of the following values based on
different conditions:
• 1: This value is displayed when the last value on an

enable pin of a sequential instance with active low enable
is 1 during initial state detection.

• 0: This value is displayed when the last value on an
enable pin of a sequential instance with active high
enable is 0 during initial state detection.

• X: This value is displayed when the last value on an
enable pin of a sequential instance is X during initial
state detection.

• -: (Default value): This value is displayed whenever an
enable pin does not exist or does not have an
unexpected value during initial state detection.

The Av_initstate01 rule checks for enable pins of a flip-flop
and scan enable pins of sequential library cells.

Column Name Description
84
Synopsys, Inc.

Reports and Diagnosis Files in SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
NOTE: The value U instead of X is used for hanging pins in the spreadsheet. The X value is
a default value for simulation through a design is initialized for simulation in the
Av_initstate01 rule.

Av_staticreg02 Spreadsheet Report

The Av_staticreg02 rule generates the Av_staticreg02.csv file that contains
details about input pins of static sequential elements after applying case-
analysis and VDD/VSS propagation in a design.

The following figure displays a sample Av_staticreg02.csv file:

DATA This column displays any of the following values based on
different conditions:
• X: This value is displayed when the last value on a data

pin of a sequential instance is X during initial state
detection.

• -: (Default value) This value is displayed whenever a
data pin does not have an unexpected value during initial
state detection.

The Av_initstate01 rule checks for data and scan data pins.
OTHERS This column displays any of the following values based on

different conditions:
• YES: This value is displayed when a sequential cell is

uninitialized and the Av_initstate01 rule could not find a
possible reason in an asynchronous reset, set, clock, load
or data field.

• NO: This value is displayed when any one of the field is a
non-default.

CLOCK NAME Name of the clock that is driving the clock pin of the
corresponding sequential element

RESET NAME Name of the reset that is driving the clock pin of the
corresponding sequential element

Column Name Description
85
Synopsys, Inc.

Reports and Diagnosis Files in SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
FIGURE 10. Av_staticreg02 Spreadsheet

Details of various columns in the above spreadsheet are as given in the
following table:

Column Name Description
NAME Specifies a sequential element name.

If a sequential cell is a flip-flop, latch, or clock-gating cell,
this column displays bus-merged output net name. Else,
library instance name is displayed.
This column supports cross-probing to incremental
schematic, which:
• Highlights a sequential instance along with values (0 or
1) on terminal/pin in the schematic for user debug
ability.

• Displays sequential elements along with the path from a
sequential pin (displayed in spreadsheet) to a fan-in
source of constant value in a design.

MODULE Specifies the name of a leaf-level parent module of a
sequential element.
86
Synopsys, Inc.

Reports and Diagnosis Files in SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
ASYNC RESET Specifies an asynchronous reset value.
This value can be any of the following:
• 1: This value is displayed when a sequential instance

with an active high reset receives an active high value,
1.

• 0: This value is displayed when a sequential instance
with an active low reset receives an active low value, 0.

• -: This is a default value, and it is displayed whenever a
reset is a non-constant, unconnected, unconstrained,
etc.

ASYNC SET This is similar to the ASYNC RESET column with the
difference that in this case, the Av_staticreg02 rule checks
asynchronous set pin instead of asynchronous reset pin.

CLOCK This column displays any of the following values based on
different conditions:
• 1: This value is displayed when a clock pin receives 1

during analysis on a sequential element containing a
single clock pin.

• 0: This value is displayed when a clock pin receives 0
during analysis on a sequential element containing a
single clock pin.

• Comma separated list of
<clkPinName>:<clkTermValue> is displayed when a
sequential element contains multiple clock pins.

• -: This value is displayed for all the other cases.
LOAD This column displays any of the following values based on

different conditions:
• 1: This value is displayed when a sequential instance

with an active low load receives value, 1.
• 0: This value is displayed when a sequential instance

with an active high load receives value, 0.
• -: (Default value): This value is displayed whenever a

load is unconnected, unconstrained, etc.
The Av_staticreg02 rule checks for enable pins of a flip-flop,
scan enable pins of sequential library cells.

DATA This column displays any of the following values based on
different conditions:
• 0: This value is displayed when a data pin receives 0

during analysis of a design.
• 1: This value is displayed when a data pin receives 1

during analysis of a design.
• -: This value is displayed for the remaining cases.
The Av_staticreg02 rule checks for data and scan data pins.

Column Name Description
87
Synopsys, Inc.

Reports and Diagnosis Files in SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
The Av_complexity01 Spreadsheet Report

The Av_complexity01 rule generates a spreadsheet to report information
related to:
 Modules (Av_complexity01_module.csv Tab).

 Module instances (Av_complexity01_InstanceBased.csv Tab).

 FSMs (Av_complexity01_fsm.csv Tab).

Av_complexity01_module.csv Tab

Under this tab, information of all modules is displayed. The following figure
shows the sample data under this tab:

FIGURE 11. Information under the Av_complexity01_module.csv tab

To cross-probe to the first line in the RTL defining a particular module, click
the corresponding cell in the ID column of the above spreadsheet.

The following table describes each column of the above spreadsheet:
88
Synopsys, Inc.

Reports and Diagnosis Files in SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
Column Description
ID Specifies a unique tag number for a module. Click this

cell to cross-probe to the first line of module definition
in the RTL.

Module name Specifies RTL design unit name:
• For Verilog: module name
• For VHDL: Entity. Architecture name

Elaborated name Specifies an elaborated module name.
It is relevant for parameterized module.

#Instances of the
module

Specifies the number of times a given module is
instantiated anywhere in a design.

File Specifies the name of a file in which a module is
defined.

Line Specifies the starting line number of a module.
#Inputs Specifies the number of input ports of a module.
#Outputs Specifies the number of output ports of a module.
#Inouts Specifies the number of inout ports of a module.
#Param Specifies the number of parameters in a parameterized

module.
#Lines of code Specifies the number of code lines inside a module.
#Lines of comments Specifies the number of comment lines inside a

module.
User defined instances
inside the module

Specifies the number of other user-defined modules
that are instantiated/present inside a module.

#BB Instances Specifies the number of pure black box instances
present in a module.

#FSMs Specifies the number of FSMs detected in a module.
#Condition var Specifies the number of variables involved in

conditional statements.
#User nets Specifies the number of signals (excluding ports)

defined by a user.
#Always/Process Specifies the number of always and process blocks in a

module.
89
Synopsys, Inc.

Reports and Diagnosis Files in SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
Av_complexity01_InstanceBased.csv Tab

Under this tab, details of module instances are displayed. The following
figure shows the sample data under this tab:

FIGURE 12. Information under the Av_complexity01_InstanceBased.csv tab

The following table describes each column of the above spreadsheet:

Cyclomatic complexity Specifies the number of decision points inside a
module plus one.

Max of if-else/case
depth

Specifies the maximum depth of nested if-else and
case conditions.

Column Description
90
Synopsys, Inc.

Reports and Diagnosis Files in SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
Column Description
ID Specifies a unique tag number for a module. Click this

cell to cross-probe to the first line of module definition
in the RTL.

Instance name Specifies the instance name
Module Name Specifies the module of the instance
Elaborated name Specifies an elaborated module name.

It is relevant for parameterized module.
#Instances of the
module

Specifies the number of times a given module is
instantiated anywhere in a design.

File Specifies the name of a file in which a module is
defined.

Line Specifies the starting line number of a module.
#Inputs Specifies the number of input ports of a module.
#Outputs Specifies the number of output ports of a module.
#Inouts Specifies the number of inout ports of a module.
#Param Specifies the number of parameters in a parameterized

module.
#Lines of code Specifies the number of code lines inside a module.
#Lines of comments Specifies the number of comment lines inside a

module.
User defined instances
inside the module

Specifies the number of other user-defined modules
that are instantiated/present inside a module.

#BB Instances Specifies the number of pure black box instances
present in a module.

#FSMs Specifies the number of FSMs detected in a module.
#Condition var Specifies the number of variables involved in

conditional statements.
#User nets Specifies the number of signals (excluding ports)

defined by a user.
#Always/Process Specifies the number of always and process blocks in a

module.
Cyclomatic complexity Specifies the number of decision points inside a

module plus one.
Max of if-else/case
depth

Specifies the maximum depth of nested if-else and
case conditions.
91
Synopsys, Inc.

Reports and Diagnosis Files in SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
Av_complexity01_fsm.csv Tab

Under this tab, details of FSMs in a design are displayed. The following
figure shows the sample data under this tab:

FIGURE 13. Information under the Av_complexity01_fsm.csv tab

To view the FSM details in the FSM Viewer window, click a cell in the ID

column of the above spreadsheet and then click the FSM button () in the
main Atrenta Console window.

The following table describes each column of the above spreadsheet:

Cumulative Complexity Specifies the cumulative complexity of the instance
Instance Level Specifies the hierarchical level of the instance

Column Description
92
Synopsys, Inc.

Reports and Diagnosis Files in SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
Functional Analysis Report

This file contains various sections, which can help to analyze the cause of a
bug or to gather functional analysis statistics.

This report is saved in the auto_verify.rpt file in the
<curr_working_directory>/spyglass_reports/ directory.

The sections in this report are as follows:

Column Description
FSM ID Specifies a unique tag number for FSM. When you click

this cell and then click the FSM button, the FSM Viewer
window appears.

FSM Specifies the de-compiled current state node.
File Specifies the name of the file containing FSM.
Line Specifies the line number of an if/case block containing

the current state expression.
#States Specifies the number of states for the FSM.
#Transitions Specifies the number of transitions in the FSM.
#Input Specifies the number of inputs to the FSM.
#Output Specifies the number of outputs from the FSM.
Encoding Specifies the encoding style, such as:

• One-Cold
• One-Hot
• Grey
• Minimum
• Custom (See Custom-Style Encoding)

Style Specifies the type of machine (mealy, moore, or
unknown).

Next state Specifies the type of next state assignment (Simple or
Non-static.

Initial state Specifies initial state of FSM.
Depth Specifies FSM depth (longest state path in the FSM)
Cyclomatic complexity Specifies the number of decision points in FSM plus

one.
93
Synopsys, Inc.

Reports and Diagnosis Files in SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
Report Header

The report header provides a brief overview of the report and a brief
summary of all sections in this report.

Following is the content of the header section of this report:

##
Purpose:
This report contains the functional analysis statistics
of a design.

#
Format:
It contains the following sections:
Section A: Run Parameters
Lists the parameters specified in the current run
Section B: Clock Information
Lists the clock information of the design
Section C: Reset Information
Lists the reset information of the design
Section D: Set-Case Analysis Settings
Lists the set case analysis settings used in the design
Section E: Initial State of the Design
Lists the initial-state statistics of the design along
with the reset percentage. The initial state of each
register can be seen in auto_verify.reg file.
Section F: Results Summary (Current)
Lists the statistics of the assertions formed for each
rule
Section G: Results Summary (Cumulative)
Lists the summary of cumulative set of assertions formed
in the current run and the information of earlier runs in
the property file. This section is printed when you
specify a property file using the propfile parameter.
Section H: Assertion Details
Lists the assertion details.

###
94
Synopsys, Inc.

Reports and Diagnosis Files in SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
Section A: Run Parameters

This section lists parameters specified in the current run.

Section B: Clock Information

This section reports a summary of clock definitions as reported in the
Av_clkinf01 rule. The design virtual cycle is also reported in this section.

Each clock is reported in the following format:

<clk-name>: <clk-period>; <clk-source>; <clk-edge>; <edge-
list>; <num-flops-posedge>; <num-flops-negedge>;

Where <clk-name> is the clock name, <clk-period> is the clock
period (specified using the -period argument of the clock constraint),
<clk-source> is SGDC for clocks specified using the clock constraint in
a SpyGlass Constraints file or Auto-Inferred for automatically-inferred
clocks, <clk-edge> is the starting clock edge (Rising or Falling),
<edge-list> is the clock edge list (specified using the -edge argument
of the clock constraint), <num-flops-posedge> is the number of flip-
flops triggered by the clock on the positive edge, and
<num-flops-negedge> is the number of flip-flops triggered by the
clock on the negative edge.

User-specified clocks and auto-inferred clocks are reported under separate
headings.

A separate file, named auto_verify.reg, reports controlling clocks for
individual registers. See Register Info Report for details of the auto_verify.reg
file.

This section also contains the Design Virtual Cycle in term of number of
fastest clock cycle and in term of non-overlapping edges.

Section C: Reset Information

This section reports the resets that were used in initial state detection and
for functional analysis. User specified resets and auto-inferred resets are
reported under separate headings.
95
Synopsys, Inc.

Reports and Diagnosis Files in SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
Each reset is reported in the following format:

<reset-name> ; Active High | Active Low : [soft reset]

All the resets are assumed to be hard resets unless marked as soft resets.
All hard resets are deactivated during functional analysis. The soft resets
are used only in initial state search and are not deactivated during
functional analysis.

A separate file, named auto_verify.reg, reports controlling resets for
individual registers. See Register Info Report for details of the auto_verify.reg
file.

Section D: Set-Case Analysis Settings

This section reports a summary of set_case_analysis constraints that have
been applied on the net through the SpyGlass Constraints file.

Each set_case_analysis constraint is reported in the following
format:

<net-name> ; <net-value>

Where <net-name> is the net’s hierarchical name and <net-value> is
the specified value for the net.

Section E: Initial State of the Design

This section reports a summary of initial state as reported in the
Av_initstate01 rule.

A separate file, named auto_verify.reg, reports initial state assignments for
individual registers. See Register Info Report for details of the auto_verify.reg
file.

Section F: Results Summary (Current)

This section lists the statistics of assertions formed for each rule.

The current result summary of each rule is reported in the following
format:
96
Synopsys, Inc.

Reports and Diagnosis Files in SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
<Rule-name> ; <Passed> ; <Failed> ; <Partially
-Analyzed> ; <Not-Analyzed> ; <Total>

The Not Analyzed column has the number of properties that were not run
based on user inputs.

Section G: Results Summary (Cumulative)

This section lists the summary of cumulative set of assertions formed in
the current run and the information of earlier runs in the property file. This
section is printed when you specify a property file by using the propfile
parameter.

The cumulative result summary for each rule is reported in the following
format:

<Rule-name> ; <Passed> ; <Failed> ; <Partially
-Analyzed> ; <Not-Analyzed> ; <Total>

The Not Analyzed column has the number of properties that were not run
based on user inputs.

Section H: Assertion Details

This section lists the assertion details such as summary of failed checks,
partially analyzed checks, and proved checks. This section is further
divided into the following sub-sections:
 Report Summary of Failed checks

Under this section, a detailed report is generated for each rule in the
following format:

RuleName: <number-of-failed-checks> Failed
<module-name>, <file-name>, <line-number> (<VCD
-file-name>): FAILED through depth <d1>(<d2>)

 Report Summary of Partially Analyzed checks
Under this section, a detailed report is generated for each rule in the
following format:

RuleName: <number-of-partially-analyzed-checks>
Partially Analyzed <module-name>, <file-name>,
97
Synopsys, Inc.

Reports and Diagnosis Files in SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
<line-number> : Partially-Analyzed through depth
<d1>(<d2>)

 Report Summary of Proved checks
Under this section, a detailed report is generated for each rule in the
following format:

RuleName: <number-of-proved-checks> Proved <module
-name>, <file-name>, <line-number> : PROVED

Module and instance names are truncated to the shortest recognizable
module/instance name prefixed by For example, ...foo instead of
top.lower1.lower2.foo.

Depth represents the analysis depth. The first number corresponds to the
number of cycles of fastest clock and the second represents the number of
edges. This is given only for FAILED or Partially-analyzed properties.

NOTE: The depth reported for a Partially-analyzed property indicates that the property was
still being analyzed at the reported depth when the analysis of the property was
stopped. Hence, it is possible that a property is reported as Partially-analyzed at a
certain depth in a SpyGlass Auto Verify solution run and is reported as FAILED at
the same depth in another run with a different set of options in SpyGlass Auto
Verify solution.

Overconstrain Info File

The SpyGlass Auto Verify solution consolidates all user-specified and
generated constraints and applies them together.

However, if any conflicting constraints are found during SpyGlass Auto
Verify solution rule-checking, an overconstrain info file is generated that
contains the details of conflicting constraints.

In addition, the following message string is appended to the violation
messages reported by the rules if a set of conflicting constraints are
specified for the design:

Status : Other(Constraints-Conflict)

The Av_ovl01 rule and all the Implicit Properties Rules except for the
Av_staticreg02 rule report the above message.

If you do not fix this violation, the rule does not perform any formal checks
and may stop further processing. To fix this violation, identify and resolve
98
Synopsys, Inc.

Reports and Diagnosis Files in SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
the conflicting constraints in the Overconstrain Information File. The file is
generated with the <rule-name>.<ID>.OverConstrainInfo name. A sample
content of a Overconstrain Information File is shown below.

Following constraints can not be satisfied simultaneously at
depth 1(1):

 Reset constraint on net 'top.var1[1]'

Messages Reported in the Overconstrain Info File

This file contains the following messages:
 Comb-loop involving net '<net-name>' is unstable

 Reset constraint on net '<net-name>'
The reset can be an asynchronous reset or a synchronous reset.

 set_case_analysis constraint on net '<net-name>'

 OVL constraint '<name>' FILE: <file-name>, Line: <line-num>

 Some constraints cannot be satisfied simultaneously at depth
<cycledepth> (<depth>)
This message appears if the time taken during message generation for
the Overconstrain Info file exceeds the time-out limit.

Property Status Reported during Functional Analysis

During functional analysis, the functional analysis rules may report the
status of Properties as any of the following based on whether a property
file could be generated for those properties:
 Passed

 Failed

 Partially Proved

 Others (Internal-Error)

 Others (Constraints-Conflict)

 Not-Analyzed
99
Synopsys, Inc.

Reports and Diagnosis Files in SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
Passed

A property is considered as passed when SpyGlass is able to generate a
property file for that property.

For example, for a property to pass, at least one design state should be
reachable in which the property is valid. In all such cases, a sequence of
input vectors can be generated (known as witness), which will lead to that
particular design state. If it is possible to generate a witness for a property,
the property or assertion holds true (or in other words it passes).

Failed

A property is considered as failed when the property file for that property
cannot be generated under any circumstances.

Witness

A witness is the input sequence that eventually makes Assertions true
while satisfying the given constraints throughout the path.

For example, for a property to pass, at least one design state should be
reachable in which the property is valid. In all such cases, a sequence of
input vectors can be generated, which will lead to that particular design
state. This sequence is known as “Witness”. Therefore, if it is possible to
generate a witness for a property, the property or assertion holds true, that
it is passed.

However, if it is not possible to generate a single witness under the given
constraints, the property or the assertion fails.

Partially Proved

A property is considered as partially-proved when SpyGlass cannot find the
property file for that property and also cannot guarantee that generating a
property file is not possible.

Others (Internal-Error)

A property is considered as Others (Internal-Error) when the value of the
design cycle for the clocks in that property cone exceeds the threshold
value of 65535.
100
Synopsys, Inc.

Reports and Diagnosis Files in SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
Others (Constraints-Conflict)

A property is reported as Others (Constraints-Conflict) when constraints in
the property cone are not satisfiable.

Not-Analyzed

A property is reported as Not-Analyzed when it is switched off in the
property file and not analyzed during functional verification.

Register Info Report

Besides the general report described earlier, SpyGlass Auto Verify solution
provides a complementary file containing information on registers in a
design that are relevant for functional analysis. The register info report is
dumped in the auto_verify.reg file. This file contains the following sections:

Section A: Clocks in the design

Lists all clocks in the design.

An integer ID number is assigned to each clock signal. Section D reports
these Clock ID numbers instead of actual clock names.

Section B: Resets in the design

Lists all synchronous and asynchronous resets in the design.

An integer ID number is assigned to each reset signal. Section D reports
these Reset ID numbers instead of actual reset names.

Section C: Initial State (after primary sets/resets/clock based simulation
are applied)

Lists initial state of sequential elements after propagation of design
constants, set-case-analysis, reset/set, and clock based simulation in a
design.

Section D: Uninitialized Sequential Elements

Lists uninitialized sequential elements in a design.

This section is equivalent to the Uninitialized_Sequential_Elements Spreadsheet
Report.
101
Synopsys, Inc.

Reports and Diagnosis Files in SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
Sample Register Info Report

Consider the following Verilog file:
102
Synopsys, Inc.

Reports and Diagnosis Files in SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
Now, consider the following SGDC file:

The following schematic is generated for the above example:

FIGURE 14. Design for which the register info report is generated

In addition, the following Register Info report is generated for this
example:
103
Synopsys, Inc.

Reports and Diagnosis Files in SpyGlass Auto Verify

Using the Rules in the SpyGlass Auto Verify Solution
104
Synopsys, Inc.

Rules in SpyGlass Auto
Verify
This chapter describes the functional analysis rules in the SpyGlass Auto
Verify solution.

The rules of the SpyGlass Auto Verify solution belong to any one of the
following categories:

Info Rules Formal Setup Rules Implicit Properties Rules

Standard Properties Rules Must Rules
105
Synopsys, Inc.

Info Rules

Rules in SpyGlass Auto Verify
Info Rules
The Info rules report information about the design and its attributes.

While these rules do not report any design problem, they report
assumptions under which SpyGlass validates the other rules.

For example, the clock network information provides all clocks in a design
along with their frequencies and edges. If the clock definition is incorrect,
the other rules may report false violations or some rules may not report
certain design problems.

The following table describes the rules under this category:

Rule Reports
Av_clkinf01 Information about clocks in the design
Av_complexity01 Complexity of a design in terms of characteristics

and complexity of RTL modules and FSMs in the
design

Av_fsminf01 FSM statistics for the design
Av_fsminf02 Interacting FSMs in the design
Av_Info_Case_Analysis Case analysis settings
Av_initstate01 A valid state of the design from which the formal

analysis would actually start
Av_report01 Total number of properties analyzed and number of

functional constraints set on the design
Av_rstinf01 Information about resets in the design
106
Synopsys, Inc.

Info Rules

Rules in SpyGlass Auto Verify
Av_clkinf01
Reports all the clocks in the design.

When to Use

Use this rule to check if the clock definitions are as per the design intent.

Description

The Av_clkinf01 rule reports the following details of clocks in a design:
 Clock name

 Clock frequency

 Rising and falling edges

 Number of flip-flops working on each edge of the clock.

Clocks Checked by the Av_clkinf01 Rule

The Av_clkinf01 rule checks any of the following clocks:
 Clocks defined by using the clock constraint.

 Automatically-inferred clocks when the use_inferred_clocks
parameter of the SpyGlass CDC solution is set to yes.
For such clocks, SpyGlass considers the default time period of 10 ns and
50% duty cycle.

Parameter(s)

use_inferred_clocks: The default value is no. Set this parameter to
yes to use the automatically-generated clock information.

NOTE: This is the parameter of SpyGlass CDC solution.

Constraint(s)

clock (Optional): Use this constraint to specify clocks signals in a design.

Messages and Suggested Fix

The following message appears to specify the details of clocks in a design:

[INFO] ‘<clk-type>’ Clock ‘<clk-name>’: Period ‘<period>’,
107
Synopsys, Inc.

Info Rules

Rules in SpyGlass Auto Verify
‘<num1>’ flops on posedge at ‘<rise-time>’, ‘<num2>’ flops on
negedge at ‘<fall-time>’

The details of the arguments of the above violation message are described
in the following table:

Potential Issues
This violation appears if your design contains any of the following types of
clocks:
 The clocks defined by using the clock constraint.

 The clocks inferred after you set the use_inferred_clocks
parameter to yes.

Consequences of Not Fixing
The functionality, and therefore the functional analysis of a design is
sensitive to the frequencies and latencies of the clocks in a design.

Therefore, if you do not review these clocks, the functional analysis of the
design may get impacted.

How to Debug and Fix

Argument Description
<clk-type> Specifies the clock type as any of the following:

• User defined if the clock is specified by using the clock
constraint.

• Default if the clock is inferred by SpyGlass after you have
set the use_inferred_clocks parameter to yes.

<clk-name> Specifies the clock name.
<period> Specifies the clock period in nano seconds (rounded to nearest

0.5)
<num1> Specifies the number of flip-flops triggered at the posedge of the

clock.
<num2> Specifies the number of flip-flops triggered at the posedge of the

clock.
<rise-time> Specifies the rise time of the clock.
<fall-time> Specifies the fall time of the clock.
108
Synopsys, Inc.

Info Rules

Rules in SpyGlass Auto Verify
Verify the correctness of the reported clock definitions before investigating
the cause of failures of some rules.

Ensure that the clock information is as per the design intent.

Example Code and/or Schematic

Consider the following files specified for SpyGlass analysis:

In the above example, clk1 is defined by using the clock constraint and
clk2 is automatically detected by SpyGlass.

Now when you run the Av_clkinf01 rule, the following messages appear
showing the details of the clk1 and clk2 clocks:

'Default' Clock 'top.clk2': Period '10.000', '1' flop(s) on
posedge at '5.000', '0' flop(s) on negedge at '10.000'

'User defined' Clock 'top.clk1': Period '15.000', '1' flop(s)
on posedge at '0.000', '0' flop(s) on negedge at '9.000'

The following figure shows the schematic of the violation for the clk2
clock:

// Design File

module top (d, q, clk1, clk2);
input [1:0]d;
input clk1, clk2;
output [1:0]q;
reg [1:0]q;
always @(posedge clk1)
q[0] = d[0];
always @(posedge clk2)
q[1] = d[1];

endmodule

// SGDC File

current_design top
clock -name top.clk1 -period 15
-edge {0 9}

// Project file command
set_parameter use_inferred_clocks ye
109
Synopsys, Inc.

Info Rules

Rules in SpyGlass Auto Verify
FIGURE 1. Schematic of the Av_clkinf01 rule violation

Default Severity Label

Info

Reports and Related Files

Auto Verify Central Report
110
Synopsys, Inc.

Info Rules

Rules in SpyGlass Auto Verify
Av_complexity01
Reports design characteristics and complexity for all the RTL
modules and FSMs in the design

When to Use

Use this rule to understand the complexity of a design for:
 Modularizing or partitioning an RTL.

 Estimating effort needed for block verification and selecting IPs.

Description

The Av_complexity01 rule reports the complexity of a design in terms of
characteristics and complexity of RTL modules and FSMs in a design.

This rule shows the complexity information in The Av_complexity01
Spreadsheet Report and The Complexity Browser.

Understanding the complexity of a design is important for the following
reasons:
 For modularizing/partitioning RTL

 For estimating effort required for block verification and IP selection.

Parameter(s)

av_dump_instance_complexity: Default value is no. Set this parameter to
yes to generate instance-based spreadsheet
(Av_complexity01_InstanceBased.csv Tab).

Constraint(s)

None

Messages and Suggested fix

The following message appears to indicate the design complexity:

[CMPINFO] [INFO] Design <design-name> has <num-of modules>
modules, <num-of-FSM> FSMs, with <avg-num> average cyclomatic
complexity, and <max-complexity> max cyclomatic complexity for
module <module-name>
111
Synopsys, Inc.

Info Rules

Rules in SpyGlass Auto Verify
Potential Issues
Not applicable

Consequences of Not Fixing
Not applicable

How to Debug and Fix
Not applicable

Example Code and/or Schematic

See The Av_complexity01 Spreadsheet Report and The Complexity Browser.

Default Severity Label

Info

Reports and Related Files

 The Av_complexity01 Spreadsheet Report: This is a message-based
spreadsheet that shows the complexity of a design.
A message-based spreadsheet is a spreadsheet that appears when you
double-click on a violation message.

NOTE: Certain spreadsheet information, such as lines of codes/comments is calculated
at a lexical layer. While running this rule with HDL library files, use the
set_option hdllibdu yes command in the project file.

 Auto Verify Central Report
112
Synopsys, Inc.

Info Rules

Rules in SpyGlass Auto Verify
Av_fsminf01
Reports all the FSMs in a design.

When to Use

Use this rule to view the FSM statistics of a design.

Prerequisites

Use the clock constraint to specify clock signals in a design.

Description

The Av_fsminf01 rule reports the following information for each FSM in a
design:
 Number of states

 Number of transitions

 Number of inputs and outputs to the FSM

 The encoding style, such as One-Cold, One-Hot, Gray, Minimum, or
Custom (See Custom-Style Encoding)

NOTE: Two-state FSMs with state labels 01 and 10 are reported as one-hot encoded
FSMs.

 The encoding bit information, such as the number of states, number of
bits used, and number of extra bits

 The type of machine, such as mealy, moore, or unknown
When the SpyGlass Auto Verify solution is unable to detect the FSM
output, the machine type is reported as unknown.

 The type of next state assignment. For example, simple or non static,
such as function calls and arithmetic operations.

NOTE: In case of non-static next state assignments, the number of states and number
of transitions reported may not be the same as those in the actual FSM.

 FSM depth. For details, see FSM Depth.

 FSM initial states

 Cyclomatic complexity of FSM
113
Synopsys, Inc.

Info Rules

Rules in SpyGlass Auto Verify
FSM Depth

The minimum length of a path through which a state can be reached from
the initial state of an FSM is known as the state depth from that initial
state.

FSM depth refers to the maximum of all the state depths from all initial
states.

Consider the FSM shown in the following figure:

FIGURE 2. Example for FSM depth

In the above FSM, S1 is the initial state. Different state depths in this case
are as follows:

 State Depth (S2) = 1

 State Depth (S3) = 1

 State Depth (S4) = 1

 State Depth (S5) = 2

In this case, FSM depth is the maximum of all state depths, that is 2.

Parameter(s)

 detect_ifelse_fsm: The default value is no. Set this parameter to yes to
detect the if-else style FSMs in addition to the case style FSMs.

 detect_nested_fsm: The default value is no. Set this parameter to yes to
detect the nested if-else style FSMs, the nested case style FSMs,
and the assign style FSMs in addition to detecting the case style
FSMs.
114
Synopsys, Inc.

Info Rules

Rules in SpyGlass Auto Verify
 detect_assign_fsm: The default value is no. Set this parameter to yes to
detect the assign style FSMs in addition to detecting the case style
FSMs.

Constraint(s)

 clock (Mandatory): Use this constraint to specify clock signals in a
design.

 fsm (Optional): Use this constraint to specify FSM details in a design.

Messages and Suggested Fix

The following message appears to show the details of an FSM in a design:

[INFO] FSM '<fsm-name>' has '<num-fsm-states>' states and
'<num-fsm-transitions>' transitions. Encoding used is
'<encoding-type>'. Refer file: '<file-name>' for details

The details of the arguments of the above violation message are described
in the following table:

Potential Issues
Not applicable

Consequences of Not Fixing
Not applicable

How to Debug and Fix

Argument Description
<fsm-name> Specifies the FSM name
<num-fsm-states> Specifies the number of FSM states
<num-fsm-transitions> Specifies the number of FSM transitions
<file-name> Specifies the location of the Auto Verify FSM

report
<encoding-type> Specifies the FSM encoding style, such as s ONE-

HOT, ONE-COLD, GRAY, MINIMUM, or CUSTOM (See
Custom-Style Encoding)
115
Synopsys, Inc.

Info Rules

Rules in SpyGlass Auto Verify
Not applicable

Example Code and/or Schematic

Consider the following SGDC file and design file specified for SpyGlass
analysis:

// Design File

`define S0 2'b00
`define S1 2'b01
`define S2 2'b10
`define S3 2'b11

module Fsm(clk,ctl, rst, outp);
 input clk, ctl, rst;
 output outp;
 reg outp;
 reg [1:0] state;
 always@(posedge clk or negedge rst)
 begin
 if(!rst)
 state <= `S0;
 else
 case(state) // synopsys full_case parallel_case
 `S0 : state <= `S1;
 `S1 : begin
 state <= `S2;
 outp <= 1'b1;
 end
 `S2 : if (ctl)
 state <= `S3;
 `S3 : if (ctl & !ctl)
 state <= `S1;
 else
 state <= `S3;
 endcase
 end
endmodule
116
Synopsys, Inc.

Info Rules

Rules in SpyGlass Auto Verify
// SGDC File

current_design Fsm
clock -name Fsm.clk
reset -name Fsm.rst -value 0

For the above example, the Av_fsminf01 rule reports the following
violation:

FSM 'Fsm.state' has '4' states and '5' transitions. Encoding
used is 'MINIMUMENCODED'.Refer file: 'res_av/spyglass_reports/
auto-verify/Fsm.Info' for details

The following figure shows the FSM Viewer generated in this case:
117
Synopsys, Inc.

Info Rules

Rules in SpyGlass Auto Verify
FIGURE 3. FSM Viewer

See also Viewing Conditional Expression of a Transition in the FSM Viewer.

Default Severity Label

Info

Reports and Related Files

 Auto Verify-FSM Report

 Auto Verify Central Report

Initial state appears in
a double circle
118
Synopsys, Inc.

Info Rules

Rules in SpyGlass Auto Verify
Av_fsminf02
Reports all the interacting FSMs in a design.

When to Use

Use this rule view the dependency between FSMs in a design.

Prerequisites

Specify clocks in a design by using the clock constraint.

Description

The Av_fsminf02 rule reports the interacting FSMs in the design.

Parameter(s)

 detect_ifelse_fsm: The default value is no. Set this parameter to yes to
detect the if-else style FSMs in addition to the case style FSMs.

 detect_nested_fsm: The default value is no. Set this parameter to yes to
detect the nested if-else style FSMs, the nested case style FSMs,
and the assign style FSMs in addition to detecting the case style
FSMs.

 detect_assign_fsm: The default value is no. Set this parameter to yes to
detect the assign style FSMs in addition to detecting the case style
FSMs.

Constraint(s)

 clock (Mandatory): Use this constraint to specify clock signals in a
design.

 fsm (Optional): Use this constraint to specify FSM details in a design.

Messages and Suggested Fix

The following message appears to report interacting FSMs in a design:

[INFO] FSM '<fsm1-name>' output '<out-net-name>' interacts with
FSM '<fsm2-name>' through input '<in-net-name>'

The details of the arguments of the above message are described in the
following table:
119
Synopsys, Inc.

Info Rules

Rules in SpyGlass Auto Verify
Potential Issues
This violation appears if your design contains interacting FSMs.

Consequences of Not Fixing
Not applicable

How to Debug and Fix
Not applicable

Example Code and/or Schematic

Consider the following file specified for SpyGlass analysis:

`define S1_0 2'b00
`define S1_1 2'b01
`define S1_2 2'b10
`define S1_3 2'b11
`define S2_0 2'b11
`define S2_1 2'b10
`define S2_2 2'b01

module Fsm(clk,ctl, rst, outp, outp2);
 input clk, ctl, rst;
 output outp, outp2;
 reg outp, outp2;
 reg [1:0] state;
 reg [1:0] state2;
 always@(posedge clk or negedge rst)

Argument Description

<fsm1-name> Preceding FSM state variable name
<out-net-name> Name of the output net of the preceding FSM
<fsm2-name> Succeeding FSM state variable name
<in-net-name> Name of the input net of the succeeding FSM
120
Synopsys, Inc.

Info Rules

Rules in SpyGlass Auto Verify
 begin
 if(!rst)
 state <= `S1_0;
 else
 case(state) // synopsys full_case parallel_case
 `S1_0 : state <= `S1_1;
 `S1_1 : begin
 state <= `S1_2;
 outp <= 1'b1;
 end
 `S1_2 : if (ctl)
 state <= `S1_3;
 `S1_3 : if (ctl & !ctl)
 state <= `S1_1;
 else
 state <= `S1_3;
 endcase
 end
 always@(posedge clk or negedge rst)
 begin
 if(!rst)
 state2 <= `S2_0;
 else
 case(state2)
 `S2_0 : state2 <= `S2_2;
 `S2_1 : state2 <= `S2_0;
 `S2_2 : if (outp)
 begin
 state2 <= `S2_1;
 outp2 <= 1'b1;
 end
 endcase
 end
endmodule

In the above example contains two FSMs, state and outp, which are
interacting with each other such that the output of one FSM is used as an
121
Synopsys, Inc.

Info Rules

Rules in SpyGlass Auto Verify
input by the other FSM. The following figure shows the FSM viewer that
displays the interacting FSMs:

FIGURE 4. FSM Viewer showing interacting FSM

For the above example, Av_fsminf02 rule reports the following violation:

FSM 'Fsm.state' output 'Fsm.outp' interacts with FSM
'Fsm.state2' through input 'Fsm.outp'

Initial states appear in
a double circle
122
Synopsys, Inc.

Info Rules

Rules in SpyGlass Auto Verify
Viewing Conditional Expression of a Transition in the FSM Viewer

To view the conditional expression of a transition shown in the FSM Viewer
window, right-click on that transition and select the label on option from
the shortcut menu. On performing this action:
 The conditional expression appears adjacent to the selected transition.

 The conditional expression and the selected transition appears in bold
with a different color.
The last 14 selected transitions appear in different colors. Only the
currently selected transition appears in bold. This is shown in Figure 4.

 All the dead transitions reported by the Av_fsm02 rule appear in the red
color.
When you select the label of such transition by using the label on
shortcut menu, this transition appears in bold but the color remains red.

Default Severity Label

Info

Report and Related Files

Auto Verify Central Report
123
Synopsys, Inc.

Info Rules

Rules in SpyGlass Auto Verify
Av_Info_Case_Analysis
Highlights case-analysis settings

When to Use

Use this rule to view constant values, such as values set by using the
set_case_analysis SGDC constraint on a terminal/net, supply values, or
ground values propagating through a design.

Prerequisites

Specify case analysis signals by using the set_case_analysis constraint.
Based on this information, SpyGlass simulates a design and annotates the
simulation value (0 or 1) for each accessible net.

Description

The Av_Info_Case_Analysis rule generates information to highlight case
analysis values and power/ground information in a schematic. This power/
ground information is inferred from the design.

Information generated by this rule is useful for observing value
propagation in a design.

It is recommended to run this rule with other rules as this rule provides
valuable debug aid to see how case values are propagating through the
design.

Performing Value Propagation

If you specify the set_option enable_const_prop_thru_seq
yes command in the project file, the set_case_analysis values propagate
beyond sequential elements. Constant propagation from flip-flop-D
happens only if one of the following conditions is true:
 Flip-flop does not have preset/clear pin.

 Data is tied to 0, and flip-flop has only clear pin.

 Data is tied to 1, and flip-flop has only preset pin.

While performing value-propagation, SpyGlass generates the following
message for each top-level design unit (<top-du-name>) where case
analysis information has been processed:
124
Synopsys, Inc.

Info Rules

Rules in SpyGlass Auto Verify
Information for set_case_analysis value propagation for "<top-
du-name>" is displayed

Viewing Case Analysis Settings Along With Rule Violations

While debugging a violation of a rule in the Incremental Schematic window,
you can view case analysis settings along with the violation of other rules.

To view case analysis settings, perform any of the following actions:
 Select the rule violation.

 Double-click on the rule violation message of the
Av_Info_Case_Analysis rule while pressing the <Ctrl> key.

 Select the rule violation and open the Incremental Schematic window.

 Click the Edit -> Show Case Analysis menu option in the Incremental
Schematic window
For more details, refer to Atrenta Console User Guide.

Parameter(s)

None

Constraint(s)

None

Messages and Suggested Fix

This rule reports the following message:

[INFO] Information for set_case_analysis value propagation for
design <top-Name> is displayed

Potential Issues
None

Consequences of Not Fixing
None

How to Debug and Fix
This rule provides debugging aid to analyze case analysis settings in a
design.
125
Synopsys, Inc.

Info Rules

Rules in SpyGlass Auto Verify
View the Incremental Schematic of the violation message to see constant
value propagation through the design.

Example Code and/or Schematic

Consider the following schematic of a violation of the Av_staticnet01 rule:

FIGURE 5. Schematic of the Av_staticnet01 rule

Now, select the Edit > Show Info Case Analysis Data menu option in the
schematic window.

The schematic now changes to the following:

FIGURE 6. Constant values in schematic - the Av_Info_Case_Analysis rule

In the above figure, constant values appear in the schematic. This enables
you to check the path of constant value propagation.
126
Synopsys, Inc.

Info Rules

Rules in SpyGlass Auto Verify
Schematic Details
The Av_Info_Case_Analysis rule highlights power ground simulation values
and set_case_analysis constraints propagated through combinational logic.

Default Severity Label

Info

Rule Group

INFORMATION

Reports and Related Files

Auto Verify Central Report
127
Synopsys, Inc.

Info Rules

Rules in SpyGlass Auto Verify
Av_initstate01
Reports the initial state of a design

When to Use

Use this rule to check the initial state of a design from which formal
analysis starts.

NOTE: The initial state may not be the reset state of the design.

Prerequisites

Specify clock signals in a design by using the clock constraint.

Description

The Av_initstate01 rule reports the initial state of a design from which
formal analysis should start.

Identifying an Initial State of a Design

The Av_initstate01 rule identifies the initial state of a design in the
following ways (in the given order of priority):
 User-defined initial state where the register value assignment is

provided using the define_tag constraint.
 State value generated by external simulation engine as a VCD/TCl/FSDB

file (use the simulation_data constraint to provide the file name)
 Initial state detected by applying a user-defined simulation vector using

the define_tag constraint in a SpyGlass Design Constraints file.
 Initial state determined by SpyGlass Advanced-Lint solution.

This search uses the user-specified reset ports (using the reset
constraint) or auto-detected reset ports and/or may apply proprietary
techniques to identify a reachable state of a design.

NOTE: If no reset is present in a design, this rule reports a clock as X for uninitialized
sequential elements.

Parameter(s)

ieffort: The default value is yes. Set this parameter to no to check all the
bits of a bus signal.
128
Synopsys, Inc.

Info Rules

Rules in SpyGlass Auto Verify
Constraint(s)

 clock (Mandatory): Use this constraints to specify clocks in a design.

 define_tag (Mandatory): Use this constraint to define a named condition
for the application of certain stimulus at the top port or an internal
node.

 reset (Optional): Use this constraint to specify resets in a design.

 simulation_data (Optional): Use this constraint to specify the initial state
sequence for a design.

Messages and Suggested Fix

The following information message appears when the Av_initstate01 rule is
run:

[ISINFO] [INFO] <num1> percent of sequential outputs are
initialized with sets/resets and <num2> percent sequential
outputs are initialized by data path. Refer file: '<file-name>'
for details

The details of the arguments of the above violation message are described
in the following table:

Potential Issues
Not applicable.

Consequences of Not Fixing
If the violation message reports zero percentage of initialized sequential
elements, the formal analysis can use any random value for analysis. This
can result in wrong analysis.

Argument Description
<num1> Specifies the percentage of sequential outputs initialized

with set/reset
<num2> Specifies the percentage of sequential outputs initialized with

data path
<file-name> Specifies the path of the auto_verify.reg file.
129
Synopsys, Inc.

Info Rules

Rules in SpyGlass Auto Verify
How to Debug and Fix
When the design contains less than 100% of initialized sequential
elements, either specify a VCD file containing initialization data by using
the simulation_data constraint or specify the following information:
 Specify resets by using the reset constraint.

 Use the ieffort parameter to specify a higher number of simulation
cycles.

 Use the define_tag constraint to explicitly specify the initialization value
of sequential elements.

Example Code and/or Schematic

See Sample Register Info Report.

Default Severity Label

Info

Rule Group

Info

Reports and Related Files

This rule generates the following files:
 An initial state VCD file that has the simulation vectors applied on

primary inputs during initial state search.

 The Advanced Lint-reg report lists registers that could not be initialized.
For details on this report, see Register Info Report.

 Uninitialized_Sequential_Elements Spreadsheet Report

 Auto Verify Central Report
130
Synopsys, Inc.

Info Rules

Rules in SpyGlass Auto Verify
Av_report01
Reports statistics of properties and functional constraints set on a
design.

When to Use

Use this rule to view details of analyzed properties and functional
constraints set on a design. It provides summarized views of number and
status of properties in the design.

Prerequisites

Specify clock signals in a design by using the clock constraint.

Description

The Av_report01 rule reports total number of properties analyzed and the
number of functional constraints set on a design.

NOTE: The Av_report01 rule is automatically run when you run any rule of SpyGlass Auto
Verify solution.

Dependency on the audit Parameter

Parameter(s)

 audit: The default value is no. Set this parameter to yes to not perform
functional analysis.

 propfile: The default value is NULL. Set this parameter to the name of
the property file containing the properties to be checked.

audit parameter set to yes The rule reports the number of different
types of properties in a design.
The property file specified by the propfile
parameter is ignored in this case.

audit parameter set to no The rule performs functional analysis and
reports the number of properties analyzed,
failed, passed, and partially analyzed.
The property file specified by the propfile
parameter is considered in this case.
131
Synopsys, Inc.

Info Rules

Rules in SpyGlass Auto Verify
Constraints

clock (Mandatory): Use this constraint to specify clock signals in a design.

Messages and Suggested Fix

Message 1

The following message appears to report the number of properties
analyzed and number of functional constraints set on a design when the
audit parameter is specified:

[INFO] Functional analysis not done in audit mode. Design has
'<num>' properties, '<imp-num>' implicit properties, '<ovl-
num>' OVL properties, and '<constr-num>' functional constraints
for top design unit '<du-name>'. Refer file: '<file-name>' for
details

The details of the arguments of the above message are described in the
following table:

Potential Issues
Not applicable.

Consequences of Not Fixing
Not applicable.

How to Debug and Fix
Not applicable.

Argument Description
<num> Specifies the total number of properties in the design
<imp-num> Specifies the total number of implicit properties
<ovl-num> Specifies the total number of OVL properties
<constr-num> Specifies the total number of functional constraints
<du-name> Specifies the top-level design name
<file-name> Specifies the name of the generated property file
132
Synopsys, Inc.

Info Rules

Rules in SpyGlass Auto Verify
Message 2

The following message appears to report the number of properties
analyzed and number of functional constraints set on a design when the
audit parameter is not specified:

[INFO] Implicit: ‘<imp-analyzed-num>’ implicit properties
analyzed, ‘<imp-failed-num>’ failed, ‘<imp-passed-num>’ passed,
‘<imp-partial-num>’ partially analyzed, <imp-not-analyzed-num>
not analyzed for top design unit ‘<du-name>’. Refer file:
'<file-name>' for details

Constraints: ‘<constr-num>’ Functional Constraints for top
design unit ‘<du-name>’. Refer file: '<file-name>' for details

Potential Issues
Not applicable

Consequences of Not Fixing
Not applicable

Argument Description

<imp-analyzed-num> Specifies the number of implicit properties
analyzed

<imp-failed-num> Specifies the number of implicit properties
failed

<imp-passed-num> Specifies the number of implicit properties
passed

<imp-partial-num> Specifies the number of implicit properties
partially analyzed

<imp-not-analyzed-num> Specifies the number of implicit properties
not analyzed

<constr-num> Specifies the total number of functional
constraints

<du-name> Specifies the top-level design name
<file-name> Specifies the generated property file name
133
Synopsys, Inc.

Info Rules

Rules in SpyGlass Auto Verify
How to Debug and Fix
Not applicable

Example Code and/or Schematic

Not applicable

Default Severity Label

Info

Rule Group

Info

Report and Related Files

 auto_verify.prp file
This file contains a list of implicit rules that have been checked. This file
is saved in the current working directory.
For details, see Property File Format and Property File Example.

 Register Info Report

 Auto Verify Central Report
134
Synopsys, Inc.

Info Rules

Rules in SpyGlass Auto Verify
Av_rstinf01
Reports all the resets in a design.

When to Use

Run this rule to find resets in a design.

Description

The Av_rstinf01 rule reports synchronous and asynchronous resets in a
design.

This rule tries to trace the connected nets to find reset information and
accordingly categorize the detected resets, as shown in the following table:

The rules of SpyGlass Auto Verify solution do not directly use the reset
information generated by the Av_rstinf01 rule. The recommended
methodology is to use the Av_rstinf01 rule to generate autoresets.sgdc and
the generated file should then be reviewed and edited by the user for
future runs of SpyGlass Auto Verify solution.

Resets Ignored by the Av_rstinf01 Rule

The Av_rstinf01 rule ignores the asynchronous resets that match the
following criteria:
 If the name of an asynchronous reset contains the string specified by

the filter_named_resets parameter of SpyGlass CDC solution and
the name of the asynchronous reset does not contain the keyword, rst,
set, res, or reset as a part of its name

Traced to Reset Type
Primary inputs Primary Presets/Clears
Black box instances and instances of
ASIC cells whose functional description
is not available

Black box Presets/Clears

Outputs of flip-flops Derived Presets/Clears
Hanging nets Undriven Presets/Clears
Outputs of latches or tristate gates Gated Preset/Clear
135
Synopsys, Inc.

Info Rules

Rules in SpyGlass Auto Verify
 If the name of the reset does not match with the pattern specified by
the reset_convention parameter, where the reset pin is driven by multiple
sources
If a reset pin is driven by a single source, the naming convention check
is not done and the net is considered as a valid reset.

Rule Exceptions

The Av_rstinf01 rule has the following exceptions:
 It does not report presets/clears tied to supply/ground or a constant

value due to the set_case_analysis constraint.
 It uses a heuristic-based approach based on the RTL structure to

determine the synchronous resets. The synchronous resets become a
part of the data-line path after synthesis. Therefore, they cannot be
detected post-synthesis.
As a result, this rule might not detect synchronous resets in complex
RTL structures, as shown in the following example:

always@(posedge clk2)
 if(rst1 & enable) // Expressions are not detected
 //as synchronous resets
 q <= 1'b0;
 else
 q <= d;

Parameter(s)

 use_inferred_resets: The default value is no. Set this parameter
to yes to use automatically-generated reset information.

NOTE: This is the parameter of SpyGlass CDC solution.

 reset_convention: The default value is " ". Set this parameter to a comma
or space-separated list of reset names. You may also specify Perl regular
expressions.

Constraint(s)

 clock (Mandatory): Use this constraint to specify clocks in a design.

 reset (Optional): Use this constraint to specify resets in a design.
136
Synopsys, Inc.

Info Rules

Rules in SpyGlass Auto Verify
Messages and Suggested Fix

Message 1

The following message appears to specify the synchronous reset detected
in a design:

[RSTSYNC] [INFO] Synchronous <Set | Clear> candidate: <rst-
name> of type <rst-type>

The details of the arguments of the above message are as follows:

 <rst-name> specifies the reset name.

 <rst-type> specifies the reset type, which can be any of the
following:

Potential Issues
Not applicable

Consequences of Not Fixing
Not applicable

How to Debug and Fix
Not applicable

Message 2

The following message appears to specify the asynchronous reset detected
in a design:

[RSTASYNC] [INFO] Asynchronous <Set | Clear> candidate: <rst-
name> of type <rst-type>

The details of the arguments of the above message are as follows:

For Set Primary Set Black box Set
Derived Set Undriven Set

For Clear Primary Clear Generated Clear
Derived Clear Undriven Clear
137
Synopsys, Inc.

Info Rules

Rules in SpyGlass Auto Verify
 <rst-name> specifies the reset name.

 <rst-type> specifies the reset type, which can be any of the
following:

Potential Issues
Not applicable

Consequences of Not Fixing
Not applicable

How to Debug and Fix
Not applicable

Example Code and/or Schematic

Example 1

Consider the following example:

assign rst = !rst1;
always@(posedge clk2 or posedge rst)
if(rst)
q <= 1'b0;

else
q <= d;

The following figure represents the above example:

For Set Primary Set Black box Set
Derived Set Undriven Set

For Clear Primary Clear Generated Clear
Derived Clear Undriven Clear
138
Synopsys, Inc.

Info Rules

Rules in SpyGlass Auto Verify
FIGURE 7. Reset as a asynchronous clear candidate

For the above example, the Av_rstinf01 rule detects the rst1 reset of the
type primary clear. The following message appears in this case:

Asynchronous clear candidate: top.rst1 of type Primary clear

In addition, this rule generates the autoresets.sgdc file containing the
following constraint:

reset -name "top.rst1" -value 0

Example 2

Consider the following example when the reset_convention parameter is set
to rst*:

assign syncRst = rst1 & enable;
always@(posedge clk2)
if(syncRst)
q <= 1'b0;

else
q <= d;

The following figure represents the above example:
139
Synopsys, Inc.

Info Rules

Rules in SpyGlass Auto Verify
FIGURE 8. Reset as a synchronous clear candidate

For the above example, the Av_rstinf01 rule detects the rst1 reset of the
type primary clear. The following message appears in this case:

Synchronous clear candidate: top.rst1 of type Primary clear

In addition, this rule generates the autoresets.sgdc file containing the
following constraint:

reset -name "top.rst1" -value 1 -sync

Default Severity Label

Info

Rule Group

Info

Report and Related Files

The Av_rstinf01 rule generates the following files:
 autoresets.sgdc

This file reports all primary resets and black box presets/clears specified
in the SGDC format.
This file, however, does not report undriven presets/clears.

 generated_resets.sgdc
This file contains all derived presets/clears.
Currently, definite and probable asynchronous resets are not
categorized in this file.
140
Synopsys, Inc.

Info Rules

Rules in SpyGlass Auto Verify
 Auto Verify Central Report
141
Synopsys, Inc.

Formal Setup Rules

Rules in SpyGlass Auto Verify
Formal Setup Rules
The following table lists the formal setup rules:

Rule Reports
Av_sanity03 Loops in the design
Av_sanity04 Over-constraining in a design
Av_svasetup01 Issues in SVA constraints
142
Synopsys, Inc.

Formal Setup Rules

Rules in SpyGlass Auto Verify
Av_sanity03
Reports loops in a design

When to Use

Use this rule during functional analysis to detect loops in a design.

Description

The Av_sanity03 rule reports the following loops in a design:
 All combinational loops

 Loops involving clock to Q, preset to Q, or clear to Q paths of a flip-flop

If you want to check over constraining due to unstable combinational
loops, run the Av_sanity04 rule.

NOTE: By default, this rule is not run.

Parameter(s)

None

Constraint(s)

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

 clock (Optional): Use this constraint to specify clock signals in a design.

 reset (Optional): Use this constraint to specify reset signals in a design.

Messages and Suggested Fix

The following message appears if a loop involving the net <net-name> is
present in a design:

[WARNING] Loops involving net '<net-name>' detected

In the above message, name of the first-found user net, <net-name>, in
an unstable loop is reported. In case of internally generated nets,
<synth_gen_net> is displayed.

Potential Issues
143
Synopsys, Inc.

Formal Setup Rules

Rules in SpyGlass Auto Verify
This violation appears if your design contains loops.

Consequences of Not Fixing
Functional analysis cannot be performed in the presence of unstable
combinational loops.

How to Debug and Fix
Not applicable

Example Code and/or Schematic

Consider the following design containing a combinational loop:

FIGURE 9. Ac_sanity03 rule violation

The Av_sanity03 rule reports a violation in the above case.

Default Severity Label

Warning

Rule Group

Sanity
144
Synopsys, Inc.

Formal Setup Rules

Rules in SpyGlass Auto Verify
Reports and Related Files

Auto Verify Central Report
145
Synopsys, Inc.

Formal Setup Rules

Rules in SpyGlass Auto Verify
Av_sanity04
Reports over-constraining in a design

When to Use

Use this rule in the pre-layout phase of a design to detect over-constraining
in the design.

Description

The Av_sanity04 rule reports over-constraining in a design.

SpyGlass Auto Verify consolidates all the user-specified and generated
constraints and applies them together. The Av_sanity04 rule reports
conflicting constraints in the Overconstrain Info File in the current working
directory.

NOTE: By default, this rule is not run.

Messages and Suggested Fix

The following message appears to indicate conflicting constraints that are
consolidated in a file:

[FATAL] There are un satisfiable constraints. Refer
file:'<file-name>' for details

Potential Issues
Not applicable

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix
Open the file (Overconstrain Info File) pointed by the message of this rule
and check for the conflicting constraints.
146
Synopsys, Inc.

Formal Setup Rules

Rules in SpyGlass Auto Verify
Example Code and/or Schematic

Example 1

Consider the following constraints specified for a design:

clock -name clk1 -period 5
reset -name clk1 -value 0

For the above example, the Av_sanity04 rule reports a violation because of
the conflicting reset and clock constraints on the same net.

Example 2

Consider the following figure:

FIGURE 10. Av_sanity04 rule violation

For the above example, the Av_sanity04 rule reports a violation because of
the presence of an unstable combinational loop.

Example 3

Consider the following files specified during SpyGlass analysis:

clkfast clkslow

unstable combinational loop
147
Synopsys, Inc.

Formal Setup Rules

Rules in SpyGlass Auto Verify
For the above example, the Av_sanity04 rule reports a violation because of
conflicting OVL constraints.

Default Severity Label

Fatal

Rule Group

Sanity

Reports and Related Files

The Av_sanity04 rule generates the following file(s):
 Overconstrain Info File

This file contains details of conflicting constraints.
 Auto Verify Central Report

module top(input D,clk1,clk2,rst,output reg q);
reg w;
always @(posedge clk1 or negedge rst)
 if(!rst)
 w<=1'b0;
 else w<=D;
always @(posedge clk2 or negedge rst)
 if(!rst)
 w<=1 'b0;
 else q<=w;
assert_proposition #(0,1) constraint (1'b1,!rst); //Ties rst to 0
endmodule

//Verilog File

current_design top

clock -name clk1 -period 5
clock -name clk2 -period 10
reset -name rst -value 0

//SGDC file
148
Synopsys, Inc.

Formal Setup Rules

Rules in SpyGlass Auto Verify
Av_svasetup01
Setup issues in SVA constraints

When to Use

Use this rule to parse SVA constraints and report issues related with these
constraints.

Prerequisites

Specify the following project-file command:

set_option enableSVA yes

Description

The Av_svasetup01 rule parses SVA constraints and reports issues related
with these constraints.

For details, refer to the Using SystemVerilog Assertions application note.

Parameter(s)

None

Constraint(s)

None

Messages and Suggested Fix

This rule reports different messages based on the issues in SVA
constraints. All these messages are described in the Using SystemVerilog
Assertions application note.

Potential Issues

Refer to the Using SystemVerilog Assertions application note.

Consequences of Not Fixing
Refer to the Using SystemVerilog Assertions application note.

How to Debug and Fix
Refer to the Using SystemVerilog Assertions application note.
149
Synopsys, Inc.

Formal Setup Rules

Rules in SpyGlass Auto Verify
Example Code and/or Schematic

Refer to the Using SystemVerilog Assertions application note.

Default Severity Label

Warning

Rule Group

SETUP

Reports and Related Files

No report or related file
150
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
Implicit Properties Rules
Implicit properties are the automatically extracted properties of a design.

Examples of such properties are:
 Avoidance of bus contention and floating bus.

 Avoidance of proper fast to slow clock crossings.

The following table describes the rules under this category:

Rule Reports...
Av_bitstuck01 Nets that are stuck at a constant value after functional

analysis
Av_staticnet01 Globally stuck-at-0 or stuck-at-1 nets in a design
Av_bus01 Cases where multiple drivers (more than one) are writing

into a bus line simultaneously
Av_bus02 Un-driven bus lines
Av_case01 case constructs with a fullcase pragma attribute

attached and the case items are not complete (not all items
are present)

Av_case02 Overlapping items of a case construct when the case
construct is associated with a parallel case pragma

Av_deadcode01 Dead code caused by a condition never triggered
Av_dontcare01 X assignments that are found to be reachable
Av_fsm01 Unreachable or deadlocked FSM States
Av_fsm02 Edges between two states of an FSM that cannot be

sensitized
Av_range01 (Verilog) Arrays that can potentially be accessed with an

index outside the range of the array
Av_setreset01 Flop with simultaneous active asynchronous set and

asynchronous reset
Av_staticreg01 All the static registers in the design which do not change its

value after attaining it once.
Av_staticreg02 Static sequential elements in the design
Av_syncfifo01 Overflow or underflow for synchronous FIFOs in a design
151
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
Av_bitstuck01
This rule is deprecated

The functionality of this rule is covered by the Av_staticnet01 rule.
152
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
Av_staticnet01
Reports globally stuck-at-0 or stuck-at-1 nets in a design.

When to Use

Use this rule to detect nets that are stuck to a constant value.

Prerequisites

Specify clocks in a design by using the clock constraint.

Description

The Av_staticnet01 rule reports globally stuck-at-0 nets (s-a-0) or
stuck-at-1 nets (s-a-1) for the following statements:

 LHS of variable assign statement
In this case, this rule checks if the register (flip-flop or latch) that is
generated by the LHS of a variable assignment is s-a-0 or s-a-1.

 LHS of explicit assign statement
In this case, this rule checks if the assigned net in the LHS of an explicit
assignment is s-a-0 or s-a-1.

 RHS of explicit assign statement
In this case, this rule checks if the read net in the RHS of an explicit
assignment is s-a-0 or s-a-1.

Rule Exceptions

The Av_staticnet01 rule has the following exceptions:
 It does not check for the variable assignment in the combinational

always block.
 It does not report a violation for the signals that cannot be initialized to

an initial state.
For example, consider the following figure:
153
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
FIGURE 11. Non violating case of the Av_staticnet01 rule

In the above figure, when muxSelect is tied to an active-high value (as
Flop1 does not have a reset), it leads to an uninitialized flip-flop.
Therefore, the Av_staticnet01 rule does not report a violation in this case.

Parameter(s)

 staticnet_scope: The default value is flop. Set this parameter to lhs to
perform rule-checking only on the LHS assignment nets. The other possible
values are rhs and all.

 buscompress: The default value is yes. Set this parameter to no to check
all the bits of a bus signal.

 use_inferred_clocks: The default value is no. Set this parameter
to yes to use automatically-generated clock information.

NOTE: This is the parameter of SpyGlass CDC solution.

 use_inferred_resets: The default value is no. Set this parameter
to yes to use automatically-generated reset information.

NOTE: This is the parameter of SpyGlass CDC solution.

 fv_debug_sim_cycles: The default value is 0. Set this parameter to any
positive integer to display waveform from the initial state for the failed
properties of the Av_staticnet01 rule.
154
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
 av_dump_assertions: The default value is “”. Set this parameter to sva to
generate SystemVerilog Assertions (SVA).

Constraint(s)

 clock (Mandatory): Use this constraint to specify clock signals in a
design.

 formal_analysis_filter (Optional): Use this constraint to specify the
modules or hierarchies on which formal analysis should be ignored or
performed.

 reset (Optional): Use this constraint to specify reset signals in a design.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

 breakpoint (Optional): Use this constraint to specify breakpoints in a
design where functional analysis should stop.

 watchpoint (Optional): Use this constraint to generate a waveform for an
internal signal.

 ip_block (Optional): Use this constraint to specify IP blocks in your
design.

 meta_design_hier (Optional): Use this constraint to specify the top-level
design name and the hierarchical name of the design with respect to the
simulation test bench to be used during SVA dumping of Partially Proved
Properties.

Messages and Suggested fix

The following message appears to specify a net that is globally stuck-at-0
or 1:

[ERROR] <expr-type> <net-name> is globally stuck-at-<0|1>
<reason>

The details of the arguments of the above violation message are described
in the following table:
155
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
In addition, if a set of conflicting constraints are specified for the design,
additional message is appended to the above message string. For details
on the message and how to debug and fix this conflict, see the
Overconstrain Info File section.

Potential Issues
This violation appears if your design contains nets that are stuck to a
constant value.

Consequences of Not Fixing
If you do not fix this violation, the functionality of the design is not as
expected.

How to Debug and Fix
For cases in which constant value propagation trivially resulted in a stuck
net, this rule generates a schematic.

Use the Av_Info_Case_Analysis rule to view the constant values in the path in
the schematic. For details, see Example Code and/or Schematic.

If the nets stuck to a constant value are in an IP and you do not want to
report within the IP, specify the ip_block constraint for the IP.

Argument Description
<expr-type> Specifies the expression type, such as RHS net, LHS net, or

LHS reg variable.
<net-name> Specifies the net name.
<reason> Specifies the following text:

reason: static nets in fanin cone)

The above text appears if the constant value propagation has
trivially resulted in a stuck net.

Note: Violations containing this reason appear first followed by
the other Av_staticnet01 violations.
156
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
Example Code and/or Schematic

Example 1

Consider the following example:

module testve_staticNet01 (input in1, clk, rst,output w4);
 wire w1, w2;
 wire [1:0] w3;
 reg rseq1;
 assign w4 = w1;
 assign w1 = (in1| w2 | w3[0] | rseq1);
 // RHS may contain any valid operators
 always@(posedge clk or posedge rst)
 if(rst)
 rseq1 <= 1'b0;
 else
 rseq1 <= w4;
endmodule

For the above example, the Av_staticnet01 rule checks for the following
nets:

 rseq1 in the LHS of variable assign statement

 w1 and w4 in the LHS of explicit assign statement. This is checked when
staticnet_scope parameter is set to lhs.

 in1, w2, and w3[0] in the RHS of the explicit assign statement. This
is checked when staticnet_scope parameter is set to rhs.

Now consider that w2 is stuck-at-1 in the above example. This case results
in a chain of stuck-at-1,that is, w2=>w1=>w4, and the Av_staticnet01
rule reports all the nets in the chain.

Example 2

Consider the example shown in the following figure:
157
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
FIGURE 12. Example of the Av_staticnet01 rule violation

For the above example, the Av_staticnet01 rule reports the and_out
signal that is stuck-at-0.

Default Severity Label

Error

Rule Group

Implicit-Properties

Report and Related Files

 Register Info Report

 Av_staticnet01.<ID>.OverConstrainInfo: This file contains details of
conflicting constraints. For details, see Overconstrain Info File.

 Auto Verify Central Report

Flop1Rst
158
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
Av_bus01
Reports all the bus contentions in a design.

When to Use

Use this rule to detect cases resulting in bus contention.

Prerequisites

Specify clocks in the design by using the clock constraint.

Description

The Av_bus01 rule reports a violation when multiple drivers write to a
bus-line simultaneously.

Parameter(s)

av_dump_assertions: The default value is “”. Set this parameter to sva to
generate SystemVerilog Assertions (SVA).

Constraint(s)

 clock (Mandatory): Use this constraint to specify clock signals in a
design.

 formal_analysis_filter (Optional): Use this constraint to specify the
modules or hierarchies on which formal analysis should be ignored or
performed.

 reset (Optional): Use this constraint to specify reset signals in a design.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

 breakpoint (Optional): Use this constraint to specify breakpoints in a
design where functional analysis should stop.

 watchpoint (Optional): Use this constraint to generate a waveform for an
internal signal.

 ip_block (Optional): Use this constraint to specify IP blocks in your
design.
159
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
Messages and Suggested Fix

The following message appears when multiple drivers write into a bus-line
simultaneously:

[WARNING] There is contention writing into Bus line ‘<bus-
line-name>’

In addition, if a set of conflicting constraints are specified for the design,
additional message is appended to the above message string. For details
on the message and how to debug and fix this conflict, see the
Overconstrain Info File section.

Potential Issues
This violation appears if your design contains drivers that write to a
bus-line simultaneously.

Consequences of Not Fixing
If you do not fix this violation, conflicting data on the bus can result in
contention.

How to Debug and Fix
To debug this violation, double-click on the violation and check the
following to determine the cause of the violation:
 The rule-violating line highlighted in the HDL Viewer pane.

 The schematic.

 The waveform viewer to check the witness signals.

To fix this violation, modify the RTL so that multiple drivers are not active
simultaneously. Else, use the set_case_analysis constraint to apply case
analysis on the enables that may not be active as per the design.

If the multiple drivers that are active simultaneously are in an IP and you
do not want to report within the IP, specify the ip_block constraint for the IP.

Example Code and/or Schematic

Consider the following example:
160
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
//test.v

`define STATE1 4'b1000
`define STATE2 4'b0100
`define STATE3 4'b0010
`define STATE4 4'b0011

module Fsm(reset, clk, ctl, in1, in2, out);
 input reset, clk, ctl, in1, in2;
 output out;
 reg [0:3] state;
 always @(posedge clk) begin
 if(reset) begin
 state <= `STATE1;
 end
 else begin
 case (state)
 `STATE1 : if(ctl) state <= `STATE2;
 `STATE2 : state <= `STATE3;
 `STATE3 : state <= `STATE4;
 `STATE4 : state <= `STATE1;
 default : ;
 endcase
 end
 end
//Busline with tristates enabled by one-hot encoded FSM
 assign out = state[0] ? in1 & in2 : 1'bz;
 assign out = state[1] ? in1 | in2 : 1'bz;
 assign out = state[2] ? in1 ^ in2 : 1'bz;
 assign out = state[3] ? !in1 | in2 : 1'bz;
endmodule

Project File:

set_parameter use_inferred_clocks yes

In the above example, STATE4 will enable state[2] and state[3]
161
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
simultaneously, which results in contention on the out signal.

In this case, SpyGlass generates the schematic displaying contentious bus
with multiple enables of the tristate buffers being active simultaneously.
See the following figure:

FIGURE 13. Schematic of the Av_bus01 rule violation

In addition, the waveform viewer of the above violation displays the
enables that are active at the same time, resulting in contention on the
output.

The following figure shows the waveform generated in this case:
162
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
FIGURE 14. Waveform of the Av_bus01 rule violation

The above waveform shows the enables that are active at the same time,
resulting in the contention on output.

To fix this violation, ensure that tri-state drivers are not active in the
design simultaneously.

Default Severity Label

Warning

Rule Group

Implicit-Properties

Report and Related Files

 Register Info Report

 Av_bus01.<ID>.OverConstrainInfo: This file contains details of conflicting
constraints. For details, see Overconstrain Info File.

 Auto Verify Central Report
163
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
Av_bus02
Reports all the floating buses in the design.

When to Use

Use this rule to ensure that all the enables driving a bus are not inactive
simultaneously.

Prerequisites

Specify clocks in a design by using the clock constraint.

Description

The Av_bus02 rule reports undriven bus lines.

Parameter(s)

av_dump_assertions: The default value is “”. Set this parameter to sva to
generate SystemVerilog Assertions (SVA).

Constraint(s)

 clock (Mandatory): Use this constraint to specify clock signals in a
design.

 formal_analysis_filter (Optional): Use this constraint to specify the
modules or hierarchies on which formal analysis should be ignored or
performed.

 reset (Optional): Use this constraint to specify reset signals in a design.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

 breakpoint (Optional): Use this constraint to specify breakpoints in a
design where functional analysis should stop.

 watchpoint (Optional): Use this constraint to generate a waveform for an
internal signal.

 ip_block (Optional): Use this constraint to specify IP blocks in your
design.
164
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
Messages and Suggested Fix

The following message appears to report undriven bus lines in a design:

[WARNING] Bus line ’<bus-line-name>’ may be floating

In addition, if a set of conflicting constraints are specified for the design,
additional message is appended to the above message string. For details
on the message and how to debug and fix this conflict, see the
Overconstrain Info File section.

Potential Issues
This violation appears if your design contains undriven bus lines.

A bus line is undriven when all the enables driving the bus line are inactive
simultaneously.

Consequences of Not Fixing
If you do not fix this violation, the design nets are floating. This impacts
the design functionality.

How to Debug and Fix
To debug this violation, trace the waveform viewer to check if all the
enables driving the reported bus are inactive simultaneously.

If all the enables are inactive simultaneously, adjust the enables in the
design such that reported nets are appropriately driven.

If the undriven bus lines are in an IP and you do not want to report within
the IP, specify the ip_block constraint for the IP.

Example Code and/or Schematic

Consider the following example in which:
 A bus line driven by four tristates.

 The enables of the tristates are controlled from an FSM, which is
one-hot encoded.

 One state of the register is encoded with all registers at '0' causing a
violation of this rule.
165
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
// test.v

`define STATE1 4'b1000
`define STATE2 4'b0100
`define STATE3 4'b0010
`define STATE4 4'b0000

module Fsm(reset, clk, ctl, in1, in2, out);
 input reset, clk, ctl, in1, in2;
 output out;
 reg [0:3] state;
 always @(posedge clk) begin
 if(reset) begin
 state <= `STATE1;
 end
 else begin
 case (state)
 `STATE1 : begin
 if(ctl) state <= `STATE2;
 end
 `STATE2 : begin
 state <= `STATE3;
 end
 `STATE3 : begin
 state <= `STATE4;
 end
 `STATE4 : begin
 state <= `STATE1;
 end
 default : ;
 endcase
 end
 end
// Busline with tristates enabled by
//one-hot encoded FSM
 assign out = state[0] ? in1 & in2 : 1'bz;
 assign out = state[1] ? in1 | in2 : 1'bz;
 assign out = state[2] ? in1 ^ in2 : 1'bz;
166
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
 assign out = state[3] ? !in1 | in2 : 1'bz;
endmodule

Project File:

set_parameter use_inferred_clocks yes

In the above example, none of the enables are active in STATE4. As a
result, the out signal is floating in the design. Therefore, the Av_bus02
rule reports a violation in this case.

To debug this violation, double-click the violation and open the Incremental
Schematic window. The following figure shows the Incremental Schematic
window in this case:

FIGURE 15. Schematic of the Av_bus02 rule violation
167
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
In the above schematic, notice that the out net is floating.

To view the condition resulting in this floating net, view the waveform of
the violation. Such condition occurs when all the enables of the tristate
drivers are inactive.

The following figure shows the waveform showing this condition:

FIGURE 16. Waveform of the Av_bus02 rule violation

To fix this violation, ensure that at least one driver is always active for the
reported bus.

NOTE: This rule does not require user specified properties.

Default Severity Label

Warning

Rule Group

Implicit-Properties

Report and Related Files

 Av_bus02.<ID>.OverConstrainInfo: This file contains details of conflicting
constraints. For details, see Overconstrain Info File.

 Auto Verify Central Report
168
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
Av_case01
Reports reachable case items that are not specified.

When to Use

Use this rule to check for coding issues related to case statements.

Prerequisites

Specify clock signals in the design by using the clock constraint.

Description

The Av_case01 rule reports reachable case items that are missing in the
case statement on which the full_case pragma or the priority
modifier is attached.

Points to be Noted

Please note the following points:
 Note that when a function containing a case statement is called multiple

times, this rule reports a violation at the line containing the case
expression for each violating function call. Such violations may appear
duplicate.
In such cases, use the schematic of a violation to analyze the
corresponding function call.

 In case of the unique case without a default label, both the
Av_case01 and Av_case02 rules are checked.

Rule Exceptions

The Av_case01 rule has the following exceptions:

 It does not report violation for the case statements that have a default
branch.

 It does not report a violation if the missing (uncovered) case item can
never be executed. Such items are known as unreachable case items.
169
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
 It does not check functions that are without a begin-end block and
contain a case statement in which the expression is a case-select
expression, containing an operator, over the inputs of the function.

Parameter(s)

av_dump_assertions: The default value is “”. Set this parameter to sva to
generate SystemVerilog Assertions (SVA).

Constraint(s)

 clock (Mandatory): Use this constraint to specify clock signals in a
design.

 formal_analysis_filter (Optional): Use this constraint to specify the
modules or hierarchies on which formal analysis should be ignored or
performed.

 reset (Optional): Use this constraint to specify reset signals in a design.

 set_case_analysis (Optional): Use this constraint to specify case-analysis
conditions.

 breakpoint (Optional): Use this constraint to specify breakpoints in a
design where functional analysis should stop.

 watchpoint (Optional): Use this constraint to generate a waveform for an
internal signal.

 ip_block (Optional): Use this constraint to specify IP blocks in your
design.

Messages and Suggested Fix

This rule reports the following message:

[WARNING] Case statement over ’<sig-name-list>’ is not a full-
case (Uncovered Item: ‘<case-item-name>’)

The details of the arguments of the above violation message are described
in the following table:

Argument Description
<sig-name-list> Specifies the case statement sensitivity signals
<case-item-name> Specifies the case item that is not covered
170
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
In addition, if a set of conflicting constraints are specified for the design,
additional message is appended to the above message string. For details
on the message and how to debug and fix this conflict, see the
Overconstrain Info File section.

Potential Issues

This violation appears if your design file contains a case statement with
the full_case pragma or a priority modifier, and one of the case
items to be executed is missing.

Consequences of Not Fixing
If you do not fix this violation, the output from the case statement cannot
be determined.

How To Debug and Fix
To fix this violation, perform the following steps:
1. Double-click on the violation message.

SpyGlass highlights the rule-violating line in the HDL Viewer pane.
2. Review the case statement and check if the missing case item is

required in the case statement.
If it not required, ignore the violation.

However, if it is required, add the missing case item to avoid any
unexpected results.

If the case statement is present in an IP and you do not want to report
within the IP, specify the ip_block constraint for the IP.

Example Code and/or Schematic

Consider the following example:

module FullCase(clk, in1, in2, out);
 input clk, in1, in2;
output reg out;
 wire [0:1] bs;
 assign bs = {in1,in2};
171
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
 always @(posedge clk) begin
 case (bs) // synopsys full_case
 2'b00: out <= 0;
 2'b01: out <= 0;
 2'b10: out <= 1;
 endcase
 end
endmodule

In the above example, the full_case pragma is attached to the case
statement.

Now consider that during the execution of the above code, bs attains the
value 2'b11. However, this value is not covered by any of the case
items. Therefore, the Av_case01 rule reports a violation.

Default Severity Label

Warning

Rule Group

Implicit Properties

Report and Related Files

 Av_case01.<ID>.OverConstrainInfo: This file contains details of conflicting
constraints. For details, see Overconstrain Info File.

 Auto Verify Central Report
172
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
Av_case02
Reports overlapping case items of the case statement that have the
parallel_case pragma or the unique modifier attached.

When to Use

Use this rule to check for coding issues related to case statements.

Prerequisites

Specify clock signals in the design by using the clock constraint.

Description

The Av_case02 rule reports Overlapping Case Items of the case statement
that have the parallel_case pragma or the unique modifier
attached.

Note that when a function containing a case statement is called multiple
times, this rule reports a violation at the line containing the case
expression for each violating function call. Such violations may appear
duplicate. In such cases, use the schematic of a violation to analyze the
corresponding function call.

Overlapping Case Items

Overlapping case items occur in any of the following situations:

 When the same case items are repeated twice in a case statement, as
shown in the following example:

casex (bs)
 2'b11: out <= 0;
 2'b11: out <= 1; //Case item 2'b11 repeated twice
endcase

 When a case item covers another case item, as shown in the following
example:

 casex (bs)
 2'bx1: out <= 0;
 2'b11: out <= 1; // Overlaps with x1
173
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
 endcase

Rule Exception

The Av_case02 rule does not check functions that are without a
begin-end block and contain a case statement in which the expression
is a case-select expression, containing an operator, over the inputs of
the function.

Parameter(s)

av_dump_assertions: The default value is “”. Set this parameter to sva to
generate SystemVerilog Assertions (SVA).

Constraint(s)

 clock (Mandatory): Use this constraint to specify clock signals in a
design.

 formal_analysis_filter (Optional): Use this constraint to specify the
modules or hierarchies on which formal analysis should be ignored or
performed.

 reset (Optional): Use this constraint to specify reset signals in a design.

 set_case_analysis (Optional): Use this constraint to specify case-analysis
conditions.

 breakpoint (Optional): Use this constraint to specify breakpoints in a
design where functional analysis should stop.

 watchpoint (Optional): Use this constraint to generate a waveform for an
internal signal.

 ip_block (Optional): Use this constraint to specify IP blocks in your
design.

Messages and Suggested Fix

The following message appears if a case statement has Overlapping Case
Items:

[WARNING] Case statement has overlapping items ‘<case-item-
list>’ (Expanded Label: ‘<label>’)

The details of the arguments of the above violation message are described
in the following table:
174
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
In addition, if a set of conflicting constraints are specified for the design,
additional message is appended to the above message string. For details
on the message and how to debug and fix this conflict, see the
Overconstrain Info File section.

Potential Issues
This violation appears if the design file contains Overlapping Case Items in
the case statement on which the parallel_case pragma or the
unique modifier is attached.

Consequences of Not Fixing

If you do not fix this violation, the output of the reported case statement
cannot be determined.

How to Debug and Fix
To fix this violation, perform the following steps:
1. Double-click on the violation message.

SpyGlass highlights the rule-violating line in the HDL Viewer pane.
2. Modify the Overlapping Case Items such that they are mutually exclusive.

If the case statement is present in an IP and you do not want to report
within the IP, specify the ip_block constraint for the IP.

Example Code and/or Schematic

Consider the following example:

// Parallel case pragma validation
module PrllCase(clk, in1, in2, out);
 input in1, in2, clk;

Argument Description
<case-item-list> Specifies the overlapping items for each overlapping

pair
<label> Specifies the expanded label.
175
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
 output reg out;
 wire [0:1] bs;
 assign bs = {in1, in2};
// Case statement using bs assignments as case items
 always @(posedge clk) begin
 casex (bs) // synopsys parallel_case
 2'b00: out <= 0;
 2'bx1: out <= 0;
 2'b11: out <= 1; // Overlaps with x1
 endcase
 end
endmodule

In the above example, 2'bx1 and 2'b11 are overlapping case items.
Therefore, the Av_case02 rule reports the following violation:

Case statement has overlapping items x1, 11 (Expanded Label:
'11')

Default Severity Label

Warning

Rule Group

Implicit Properties

Report and Related Files

 Av_case02.<ID>.OverConstrainInfo: This file contains details of conflicting
constraints. For details, see Overconstrain Info File.

 Auto Verify Central Report
176
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
Av_case03
Reports overlapping case items of the case statement without the
parallel_case pragma attached.

When to Use

Use this rule to check for coding issues related to case statements.

Prerequisites

Specify clock signals in the design by using the clock constraint.

Description

The Av_case03 rule reports a violation when the case statement does not
have the parallel_case pragma attached, and there are Overlapping
Case Items in the case statement.

Parameter(s)

None

Constraint(s)

 clock (Mandatory): Use this constraint to specify clock signals in a
design.

 reset (Optional): Use this constraint to specify reset signals in a design.

 set_case_analysis (Optional): Use this constraint to specify case-analysis
conditions.

 breakpoint (Optional): Use this constraint to specify breakpoints in a
design where functional analysis should stop.

 watchpoint (Optional): Use this constraint to generate a waveform for an
internal signal.

 formal_analysis_filter (Optional): Use this constraint to specify the
modules or hierarchies on which formal analysis should be ignored or
performed.

Messages and Suggested Fix

The following message appears for the case statement that does not have
177
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
the parallel_case pragma attached, and there are Overlapping Case
Items.

[WARNING] Case statement has overlapping items <case-item-list>
(Expanded Label: '<label>')

The details of the arguments of the above violation message are described
in the following table:

In addition, if a set of conflicting constraints are specified for the design,
additional message is appended to the above message string. For details
on the message and how to debug and fix this conflict, see the
Overconstrain Info File section.

Potential Issues
This violation appears if your design file contains Overlapping Case Items in
the case statement on which no parallel_case pragma is attached.

Consequences of Not Fixing
If you not fix this violation, a wrong value can propagate in the design.

How to Debug and Fix
To fix this violation, perform the following steps:
1. Double-click on the violation message.

SpyGlass highlights the rule-violating line in the HDL Viewer pane.
2. Modify the Overlapping Case Items such that they are mutually exclusive.

Example Code and/or Schematic

Consider the following example:

Argument Description
<case-item-list> Specifies the overlapping items for each overlapping

pair
<label> Specifies the expanded label resulting from the overlap

between the case labels
178
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
always @(posedge clk2) begin
 casex (bs)
 2'b00: out <= 0;
 2'bx0: out <= 0;
 2'b10: out <= 1; //Overlaps with above label 2'bx0
 endcase
end

In the above example, x0 and 10 are overlapping case items. In both the
states, the value of out at one place is 0 and it is 1 at the other place.

Default Severity Label

Warning

Rule Group

Implicit Properties

Report and Related Files

Auto Verify Central Report
179
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
Av_deadcode01
Reports redundant logic in the design.

When to Use

Use this rule to detect redundant logic in a design due to the presence of
dead code.

Prerequisites

Specify clock signals by using the clock constraint.

Description

The Av_deadcode01 rule reports dead codes caused by a condition that is
never triggered.

This rule does not report redundancies due to re-convergent paths. It only
detects the RTL code that can never be exercised due to a branching that is
stuck at a false value.

Message Grouping in the Av_deadcode01 Rule

By default, the Av_deadcode01 rule reports violations for only the top-level
if statement of a nested if-else block (or dependency tree).

For example, consider the following code snippet showing the nested if
block:

always @(in1 or in2)
begin
if (rst)
w2 = s1;

else if (in1 && in2) begin
w2 = !s1;
if (in1 | in2) begin
w2 = w3;
if (!in1 && in2) begin
w2 = w3;
if (in1 || in2) begin
w2 = w3;
if (in2) begin
180
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
w2 = w4;
end

end
end

end
end
else
w2 = 1'b0;

end

always @(posedge clk or posedge rst)
if (rst)
out = 1'b0;

else
out = w2;

For the above example, the Av_deadcode01 rule reports violation for the
assertions in the top-level if block. The following figure shows the
violation in this case:

FIGURE 17.

To configure the Av_deadcode01 rule to report violations for the assertions
present in all the nested if-else blocks, set the av_dcode_report
parameter to all. In this case, the Av_deadcode01 rule groups all the
violations of the same if block, else-if block, or else block of a
nested if block (or dependency tree). Within each group, violations are
181
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
sorted based on the assertions depth within the if, else-if, or else
block.

The following figure shows the grouped violations of the Av_deadcode01
rule:

FIGURE 18. Grouping of the Av_deadcode01 violations

Parameter(s)

 av_dcode_analysis: The default value is soft. Set this parameter to
strict to use the strict approach for verification of assertions.

 av_dcode_report: The default value is minimal. Set this parameter to
all to group violations of the same if block, else-if block, or else
block of a nested if block.

 av_force_soft_reset: The default value is Av_setreset01. Set this
parameter to no to consider a reset as a hard reset.

 dead_code_scope: The default values are if,
case_without_default, generate, and always. Set the value
of this parameter to specify the constructs to be checked. Other possible
values are case, if_case, condasgn, and if_case_condasgn.
182
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
 fv_debug_sim_cycles: The default value is 0. Set this parameter to any
positive integer to display waveform from the initial state for the failed
properties of the Av_deadcode01 rule.

 fv_dcode_all_inst: The default value is no. Set this parameter to "yes" to
view the schematic and waveform for all the instances of the dead code
module.

 include_construct: The default value is none. Set this parameter to
generate to check the generate_block constructs. Other possible
values are always_comb, included_file, and none.

 av_dump_assertions: The default value is “”. Set this parameter to sva to
generate SystemVerilog Assertions (SVA).

Constraint(s)

 clock (Mandatory): Use this constraint to specify clock signals in a
design.

 formal_analysis_filter (Optional): Use this constraint to specify the
modules or hierarchies on which formal analysis should be ignored or
performed.

 reset (Optional): Use this constraint to specify reset signals in a design.

 set_case_analysis (Optional): Use this constraint to specify case-analysis
conditions.

 breakpoint (Optional): Use this constraint to specify breakpoints in a
design where functional analysis should stop.

 watchpoint (Optional): Use this constraint to generate a waveform for an
internal signal.

 ip_block (Optional): Use this constraint to specify IP blocks in your
design.

 meta_design_hier (Optional): Use this constraint to specify the top-level
design name and the hierarchical name of the design with respect to the
simulation test bench to be used during SVA dumping of Partially Proved
Properties (under the av_dump_assertions parameter).
183
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
Messages and Suggested Fix

Message 1

The following message appears if the design contains dead code:

[DEADCODE] [WARNING] Dead code exists as condition is always
false [Hier:<hier-name>]

Where, <hier-name> is the name of the module in which the dead code
is detected. This information is not available when the dead code is found
to be statically unreachable within the module scope.

In addition, if a set of conflicting constraints are specified for the design,
additional message is appended to the above message string. For details
on the message and how to debug and fix this conflict, see the
Overconstrain Info File section.

Potential Issues
This violation appears if your design file contains dead code.

Consequences of Not Fixing
If you do not fix this violation, the dead code may result in the generation
of extra silicon area.

How to Debug and Fix
To fix this violation, remove the logic or condition that is resulting in the
dead code.

If the dead code is present in an IP and you do not want to report within
the IP, specify the ip_block constraint for the IP.

Message 2

The following message appears if constant value propagation has trivially
resulted in the dead code:

[DEADCODE] [WARNING] Dead code exists as condition is always
false (reason: static nets in fanin cone) [Hier:<hier-name>]

In addition, if a set of conflicting constraints are specified for the design,
184
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
additional message is appended to the above message string. For details
on the message and how to debug and fix this conflict, see the
Overconstrain Info File section.

Potential Issues
This violation appears if your design file contains dead code.

Consequences of Not Fixing
If you do not fix this violation, the dead code may result in the generation
of extra silicon area.

How to Debug and Fix
To debug this violation, view the schematic after running the
Av_Info_Case_Analysis rule to view the constant values in the path.

To fix this violation, remove the logic or condition that is resulting in the
dead code.

If the dead code is present in an IP and you do not want to report within
the IP, specify the ip_block constraint for the IP.

Message 3

The following message appears if optimization due to synthesis results in
the dead code:

[DEADCODE] [WARNING] Dead code exists as condition is always
false (reason: synthesis optimized logic) [Hier:<hier-name>]

Potential Issues
This violation appears if your design file contains dead code due to
optimization done by synthesis.

Consequences of Not Fixing
If you do not fix this violation, the design functionality is not as expected.
185
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
How to Debug and Fix
Revisit the RTL.

Message 4

The following message appears if a function is declared but not instantiated
in any module:

[DEADFUNC] [WARNING] Function <function-name> declared but not
used in module <module-name>

Potential Issues
Not applicable.

Consequences of Not Fixing
Such functions are not checked for any dead code violations.

How to Debug and Fix
To fix this violation, either instantiate the reported function in a module or
remove the function declaration.

Example Code and/or Schematic

Example 1

Consider the following example:

assign sel = 2'b00;
always @(in1 or in2 or sel)
begin
 case(sel)
 2'b00: out = in1[0];
 2'b01: out = in1[1]; //dead code reported
 2'b10: out = in2[0]; //dead code reported
 default: out = in2[1]; //dead code reported
 endcase
end
186
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
In the above example, sel is assigned the value 2'b00 before the case
construct is executed.

Now, during the execution of the case construct, the conditions in which
the value of sel is 2'b01 and 2'b10 are never reached as sel is
already assigned the value 2'b00.

As a result, the lines highlighted in red in the above code are never
executed. These lines are therefore considered as dead code and such
situation is reported by the Av_deadcode01 rule.

NOTE: For a particular select pin, this rule reports only one message.

Consider another example. If the dead code is due to non-static nets,
schematic from enabling condition of the dead code block until the first RTL
net in the fan-in cone is displayed as shown below:

FIGURE 19. Schematic of the Av_deadcode01 rule violation

The waveform, as shown below, is displayed if the fv_debug_sim_cycles
parameter is specified:
187
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
FIGURE 20. Waveform of the Av_deadcode01 rule violation

Example 2

Consider the following example:

module top(in1, in2, cond, q);
input in1, in2, cond;
output reg q;
always
if(cond == cond) // Always true
q = in1;

else
q = in2 ; // dead code

endmodule

In the above example, the expression of the if condition (cond ==
cond) is always true. Therefore, the else block will never get executed.
This is reported as dead code.
188
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
Example 3

Consider the following example:

always@(posedge clk or posedge rst or posedge set)
 if(rst)
 out <= 1'b0;
 else if(set)
 out <= 1'b1;
 else
 out <= in;

In the above example, the highlighted portion is reported as dead code. To
remove this violation, set the av_force_soft_reset parameter to
Av_setreset01,Av_deadcode01.

Default Severity Label

Warning

Rule Group

Implicit Properties

Report and Related Files

 OverConstrainInfo: This file contains details of conflicting constraints. For
details, see Overconstrain Info File.

 Auto Verify Central Report
189
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
Av_dontcare01
Reports sensitizable X-assignments in the design.

When to Use

Use this rule to understand the conditions under which X-assignments are
reachable.

Prerequisites

Specify clock signals by using the clock constraint.

Description

The Av_dontcare01 rule reports X assignments that are reachable.

Parameter(s)

 xassign_casedefault: The default value is no. Set this parameter to yes to
check for X-assignments inside the default clause of the case
statement.

 include_construct: The default value is none. Set this parameter to
generate to check the generate_block constructs. Other possible
values are always_comb and none.

 av_dump_assertions: The default value is “”. Set this parameter to sva to
generate SystemVerilog Assertions (SVA).

Constraint(s)

 clock (Mandatory): Use this constraint to specify clock signals in a
design.

 formal_analysis_filter (Optional): Use this constraint to specify the
modules or hierarchies on which formal analysis should be ignored or
performed.

 reset (Optional): Use this constraint to specify reset signals in a design.

 set_case_analysis (Optional): Use this constraint to specify case-analysis
conditions.

 breakpoint (Optional): Use this constraint to specify breakpoints in a
design where functional analysis should stop.
190
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
 watchpoint (Optional): Use this constraint to generate a waveform for an
internal signal.

 ip_block (Optional): Use this constraint to specify IP blocks in your
design.

Messages and Suggested Fix

The following message appears if your design contains X-assignments that
are reachable:

[WARNING] X assignment may be executed

In addition, if a set of conflicting constraints are specified for the design,
additional message is appended to the above message string. For details
on the message and how to debug and fix this conflict, see the
Overconstrain Info File section.

Potential Issues
This violation appears when the RHS of an assignment that has a static
value containing X gets executed.

Consequences of Not Fixing
If you do not fix this violation, the simulation results over pre synthesis and
post synthesis netlist may mismatch because simulators treat X as literal X
whereas synthesis engines optimize it to logical 0 or 1.

If the reported X assignment is present in an IP and you do not want to
report within the IP, specify the ip_block constraint for the IP.

Example Code and/or Schematic

Consider the following example:

always@(sel1) begin
 if(sel1 == 2'b10 || sel1 == 2'b01)
 out1 <= in1 ;
 else
 out1 <= 1'bx ;
end
191
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
In the above example, the user may assume that the X assignment in the
above code is not reachable. As a result, the user may consider that the
sel1 signal can attain the values 1 and 2 only.

However, since the X assignment is reachable in this case, sel1 can also
toggle to the values 0, 1, 2, and 3. Therefore, this rule reports a violation
at the X assignment.

Default Severity Label

Warning

Rule Group

Implicit-Properties

Report and Related Files

 Av_dontcare01.<ID>.OverConstrainInfo: This file contains details of
conflicting constraints. For details, see Overconstrain Info File.

 Auto Verify Central Report
192
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
Av_fsm_analysis
Reports FSM related issues in the design

When to Use

Use this rule to detect FSM issues in a design.

Description

The Av_fsm_analysis rule reports the following FSM issues in a design:
 Unreachable State of an FSM

 Deadlocked State of an FSM

 Dead Transition of an FSM

 Live Locks in an FSM

Unreachable State of an FSM

An unreachable state of an FSM can be one of the following states in the
RTL code:
 There are no transitions to reach to that FSM state.

 There are transitions that cannot be exercised by the logic controlling
that FSM state.

In Figure 21, the nodes in red form unreachable states.

Deadlocked State of an FSM

A deadlocked state of an FSM can be any of the following reachable states:
 There are no out going transitions.

 The out going transitions cannot be exercised due to a control logic.

When a state machine reaches the deadlocked state, it cannot transition to
a different state.

In Figure 21, the node in grey form a deadlocked state.

Dead Transition of an FSM

It refers to a state machine transition that is present in the RTL code but
193
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
cannot be exercised.

Dead transitions may result in Unreachable State of an FSM or Deadlocked
State of an FSM.

Live Locks in an FSM

A group of reachable FSM states creates a live-lock scenario when these
states create a loop for which the both the following conditions hold true:
 The loop size is smaller than the size of total reachable states in an FSM.

A loop size is the number of states involved in a live lock. For example,
in Figure 21, the loop size is 4.

 All the outgoing edges of the loop are dead.

In Figure 21, the nodes in blue form a live lock state.

Parameter(s)

av_dump_liveness: The default value is assert. Set this parameter to
cover to generate the SystemVerilog Assertions (SVA) in terms of cover.

Constraint(s)

 clock (Mandatory): Use this constraint to specify clock signals in a
design.

 formal_analysis_filter (Optional): Use this constraint to specify the
modules or hierarchies on which formal analysis should be ignored or
performed.

 fsm (Optional): Use this constraint to specify FSM details in a design.

 reset (Optional): Use this constraint to specify reset signals in a design.

 set_case_analysis (Optional): Use this constraint to specify case-analysis
conditions.

 breakpoint (Optional): Use this constraint to specify breakpoints in a
design where functional analysis should stop.

 watchpoint (Optional): Use this constraint to generate a waveform for an
internal signal.

 ip_block (Optional): Use this constraint to specify IP blocks in your
design.
194
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
Messages and Suggested Fix

Message 1

This rule reports the following message:

[WARNING] FSM '<FSM-name>' has <num-livelocks> Livelocks,
<num-unreachable-states> Unreachable States,
<num-deadlock-states> Deadlock States and <dead-transitions>
Dead Transitions

Potential Issues
This violation appears if the design contains the following issues:
 Unreachable State of an FSM

 Deadlocked State of an FSM

 Dead Transition of an FSM

 Live Locks in an FSM

Consequences of Not Fixing
If you do not fix this violation, the design may have redundant or incorrect
functionality.

How to Debug and Fix
To debug and fix this violation:
 Analyze the FSM in FSM Viewer.

 Analyze the expression containing fan-in cone nets, which would have
triggered the transition.

 Perform appropriate actions based on the following conditions:

 Condition: No transition occurs to an unreachable state or no
transition occurs from a deadlocked state of the FSM.
Action: Modify the design to introduce a transition to an unreachable
state or from a deadlocked state.

 Condition: Transition occurs.
Action: Analyze the RTL to determine the cause of the dead
195
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
transition.

If the FSM that is unreachable or deadlocked is present in an IP and you do
not want to report within the IP, specify the ip_block constraint for the IP.

Message 2

This rule reports the following message:

[WARNING] FSM '<FSM-name>' not analyzed (Reason:
Constraint-Conflict).

Potential Issues
Not applicable

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix
Open the file (Overconstrain Info File) pointed by the message of this rule
and check for the conflicting constraints.

Example Code and/or Schematic

Consider the following files (test.v and constr.sgdc) specified for SpyGlass
analysis:

test.v

`define S0 5'b00000
`define S1 5'b00001
`define S2 5'b00010
`define S3 5'b00011
`define S4 5'b00100
`define S5 5'b00101
`define S6 5'b00110
`define S7 5'b00111
`define S8 5'b01000
196
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
`define S9 5'b01001
module Fsm(input rst, clk, in, en1, en2, en3, en4, output reg
out);
reg [15:0] counter ;
reg [4:0] state;
always @(posedge clk or posedge rst) begin
 if(rst) begin
 counter <= 0;
 out <= 1'b0;
 end
 else begin
 counter <= counter + 1;
 out<= state[3] & in;
 end
end
always @(posedge clk or posedge rst) begin
 if(rst) begin
 state <= `S0 ;
 end
 else begin
 case(state)
 `S0:
 if(en1) begin
 state <= `S1;
 end
 else if(en2) begin
 state <= `S2;
 end
 else begin
 state <= `S3;
 end
 `S1:
 if(counter >=16'b0011111111111111) begin
 state <= `S4;
 end
 `S2:
 state<=`S5;
 `S3:
197
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
 if(en3) begin
 state<=`S5;
 end
 `S5:
 if(en3 == 0) begin
 state<=`S6;
 end
 else if(en3 == 1) begin
 state <= `S9;
 end
 else begin
 state<=`S0;
 end
 `S6:
 state<=`S7;
 `S7:
 state<=`S8;
 `S8:
 if(en3) begin
 state<=`S6;
 end
 `S9:
 if(en1 || en2) begin
 state <=`S4;
 end
 endcase
 end
end
//assume property(@(posedge clk) (state == `S5 |-> (en3 |->
en4)));
endmodule

constr.sgdc

current_design Fsm
clock -name Fsm.clk -period 10
reset -name Fsm.rst -value 1
set_case_analysis -name Fsm.en1 -value 0
198
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
set_case_analysis -name Fsm.en2 -value 0

After running SpyGlass with the test.v and constr.sgdc files, the following
FSM Viewer is generated by the Av_fsm_analysis rule:

FIGURE 21. FSM generated by the Av_fsm_analysis rule

Based on the above FSM, the Av_fsm_analysis rule generates the
spreadsheet described in the Reports and Related Files section.
199
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
Default Severity Label

Warning

Rule Group

Implicit-Properties

Reports and Related Files

The Av_fsm_analysis generates a consolidated spreadsheet showing
details of different types of FSM issues under the following tabs:
 The Unreachable_States Tab

 Deadlock_States Tab

 The Livelock_States Tab

 The Dead_Transitions Tab

The Unreachable_States Tab

Each row under this tab shows the name of one unreachable state.

For example, based on the FSM Viewer shown in Figure 21, the following
figure shows the contents under this tab:

FIGURE 22. The Unreachable_States Tab

In the above spreadsheet, the state with the minimal depth from the initial
state is displayed first. The states with the same depth can appear in any
200
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
order.

For example, based on the FSM Viewer in Figure 21, S1 and S2 can appear
in any order as they are at the same depth. However, S1 or S2 should
come before S4.

On clicking an unreachable state in the above spreadsheet:
 The corresponding state is highlighted in the FSM Viewer.

 The corresponding FSM state net is highlighted in the schematic.
NOTE: A state that is reported as unreachable is not reported as a deadLock state.

Deadlock_States Tab

Each row under this tab shows the name of one dead state.

For example, based on the FSM Viewer shown in Figure 21, the following
figure shows the contents under this tab:

FIGURE 23. The Dead_States Tab

On clicking a deadlock state in the above spreadsheet:
 The corresponding state is highlighted in the FSM Viewer.

 The corresponding FSM state net is highlighted in the schematic.

The Livelock_States Tab

Each row under this tab shows one loop in a livelock state.

For example, based on the FSM Viewer shown in Figure 21 (the green node
in this figure are in a livelock state), the following figure shows the
201
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
contents under this tab:

FIGURE 24.

On clicking any state in a row in the above spreadsheet:
 The corresponding loop is highlighted in the FSM Viewer.

 The corresponding FSM state net is highlighted in the schematic.

The Dead_Transitions Tab

The spreadsheet under this tab shows all the dead transitions of an FSM.

For example, based on the FSM Viewer shown in Figure 21, the following
figure shows the contents under this tab:
202
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
FIGURE 25. The All_Dead_Transitions tab

In the above spreadsheet, the transitions marked as Analyzed in the
Conclusion Type column are the dead transitions. However, a Derived
transition is the transition for which all the incoming transitions to the state
in the From State column are dead.

On clicking a dead transition in the above spreadsheet:
 The corresponding transition is highlighted in the FSM Viewer.

 The corresponding FSM state net is highlighted in the schematic.
203
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
Av_divide_by_zero
Reports divide/modulo by zero violation

When to Use

Use this rule to detect cases where a non-constant signal is used as a
divisor.

Description

The Av_divide_by_zero rule reports the division operator (/) or modulo
operator (%) used in an expression in which a divisor can become zero.

NOTE: This rule is applicable for Verilog designs only.

Language

Verilog

Parameter(s)

 include_construct: The default value is none. Set this parameter to
generate to check the generate_block constructs. Other possible
values are always_comb and none.

 av_dump_assertions: The default value is “”. Set this parameter to sva to
generate SystemVerilog Assertions (SVA).

Constraints

 clock (Mandatory): Use this constraint to specify clock signals in a
design.

 formal_analysis_filter (Optional): Use this constraint to specify the
modules or hierarchies on which formal analysis should be ignored or
performed.

 reset (Optional): Use this constraint to specify reset signals in a design.

 set_case_analysis (Optional): Use this constraint to specify case-analysis
conditions.

 breakpoint (Optional): Use this constraint to specify breakpoints in a
design where functional analysis should stop.
204
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
 watchpoint (Optional): Use this constraint to generate a waveform for an
internal signal.

 ip_block (Optional): Use this constraint to specify IP blocks in your
design.

Messages and Suggested Fix

This rule reports the following message:

[WARNING] <Division | Modulus> by zero in <expression> [Hier:
<hierarchy-name>]

Potential Issues
A non-constant signal is used as a divisor.

Consequences of Not Fixing
If you do not fix this violation, division or modulo by zero can cause chip
failure.

How to Debug and Fix
To debug this violation, double-click on the violation and check the
following to determine the cause of the violation:
 The rule-violating line highlighted in the HDL Viewer pane.

 The schematic.

 The waveform viewer to check the witness signals.

To fix this violation, modify the RTL so that divisor cannot be zero. If
multiple drivers that are active simultaneously are in an IP and you do not
want to report within the IP, specify the ip_block constraint for the IP.

Example Code and/or Schematic

Consider the following files specified for SpyGlass analysis:
205
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
For the above example, the Av_divide_by_zero reports the following
violations:

Division by zero in (1 / b)[Hier:top]

Division by zero in (1 / b)[Hier:top]

When you select the first violation and open the Incremental Schematic,
the violating net along with its fan-in cone till the first level RTL net
appears in the schematic. The following figure shows the schematic:

FIGURE 26.

To debug the violation, open the waveform. The following figure shows the
waveform generated for the first violation:

module top(clk, a, b, c, d, e);
input clk, a, b, c, d;
output reg e;
always @ (posedge clk) begin
 e <= c + 1/b;
end
always @ (posedge clk) begin
 e = c + 1/b;
end

endmodule

// test.v

current_design top
clock -name clk -period 10

constr.sgdc
206
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
FIGURE 27.

The waveform shows the direct fan-in of the violating net and the fan-in
RTL net. It will have pop-up help and consistency of colors with schematic.

Default Severity Label

Warning

Rule Group

Implicit Property

Reports and Related Files

 Av_divide_by_zero.<ID>.OverConstrainInfo: This file contains details of
conflicting constraints. For details, see Overconstrain Info File.

 Auto Verify Central Report
207
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
Av_negative_shift
Reports arithmetic shift by negative value violations

When to Use

Use this rule check for the presence of a negative value in the RHS of all
the arithmetic shift operators.

Description

The Av_negative_shift rule checks for a negative RHS value in the right-
hand side of all the arithmetic shift operators. If a negative value is found,
the Av_negative_shift rule reports a violation message for the shift
operator.

NOTE: This rule is applicable for Verilog designs only.

Language

Verilog

Parameter(s)

 include_construct: The default value is none. Set this parameter to
generate to check the generate_block constructs. Other possible
values are always_comb and none.

 av_dump_assertions: The default value is “”. Set this parameter to sva to
generate SystemVerilog Assertions (SVA).

Constraints

 clock (Mandatory): Use this constraint to specify clock signals in a
design.

 formal_analysis_filter (Optional): Use this constraint to specify the
modules or hierarchies on which formal analysis should be ignored or
performed.

 reset (Optional): Use this constraint to specify reset signals in a design.

 set_case_analysis (Optional): Use this constraint to specify case-analysis
conditions.
208
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
 breakpoint (Optional): Use this constraint to specify breakpoints in a
design where functional analysis should stop.

 watchpoint (Optional): Use this constraint to generate a waveform for an
internal signal.

 ip_block (Optional): Use this constraint to specify IP blocks in your
design.

Messages and Suggested Fix

This rule reports the following message:

[WARNING] <operator_position> arithmetic shift by negative
value for <value> in <expression>

Arguments
 Left or Right, to denote the right arithmetic shift or left arithmetic shift,

<operator_position>
 Value of the net at the failing point or failing sequence, <value>

 expression, <expression>

Potential Issues
A negative value exists in the RHS of the arithmetic shift operator

Consequences of Not Fixing
If you do not fix this violation, negative shift value can cause chip failure.

How to Debug and Fix
To debug this violation, double-click on the violation and check the
following to determine the cause of the violation:
 The rule-violating line highlighted in the HDL Viewer pane.

 The schematic.

 The waveform viewer to check the witness signals.

To fix this violation, modify the RTL so that the RHS of the arithmetic shift
209
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
operator does not have a negative value. If multiple drivers that are active
simultaneously are in an IP and you do not want to report within the IP,
specify the ip_block constraint for the IP.

Example Code and/or Schematic

Consider the following files specified for SpyGlass analysis:

For the above example, the Av_divide_by_zero reports the following
violations:

(Hier:top) (b >>> (~d)), test.v, 9, (Av_negative_shift.1.1.vcd)
FAILED through depth 1(1)

Hier:top) (b <<< (^ d)), test.v, 9, : PROVED

Av_negative_shift@@@@Warning@@test.v@@9@@1@@10@@Right
Arithmetic shift by negative value for 'd = 0' in '(b >>>
(~d))'@@0

To debug the violation, open the Auto Verify Report. This report displays the
functional analysis statistics of a design.

Default Severity Label

Warning

Rule Group

Implicit Property

test.v

module top(clk, a, b, c, d, e);

input clk;
input [7:0] a, b;
output reg signed [7:0] c, d;
output reg [7:0] e;

always @ (posedge clk)
 e <= a || (b >>> ~d) ? c : b <<< ^d;

endmodule
210
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
Reports and Related Files

Auto Verify Report
211
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
Av_fsm01
Reports unreachable or deadlocked states of an FSM.

When to Use

Use this rule to verify the functionality of an FSM in a design.

Prerequisites

Specify clock signals by using the clock constraint.

Description

NOTE: This rule will be deprecated in a future SpyGlass release. Use the Av_fsm_analysis
rule instead of this rule.

The Av_fsm01 rule reports a violation in the following cases:
 Unreachable State of an FSM

 Deadlocked State of an FSM

The Av_fsm01 rule works only on the Finite-State Machines (FSMs) that
identified by SpyGlass Auto Verify solution.

Unreachable State of an FSM

An unreachable state of an FSM can be one of the following states in the
RTL code:
 You have not created any transitions to reach that FSM state.

 You have created transitions that cannot be exercised by the logic
controlling that FSM state.

Deadlocked State of an FSM

A deadlocked state of an FSM can be any of the following states:
 The state from which no out-going transitions exist.

 The state in which the out-going transitions cannot be exercised due to
a control logic.

When a state machine reaches the deadlocked state, it cannot transition to
a different state.
212
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
Parameter(s)

 av_dump_assertions: The default value is “”. Set this parameter to sva to
generate SystemVerilog Assertions (SVA).

 av_dump_liveness: The default value is assert. Set this parameter to
cover to generate the SystemVerilog Assertions (SVA) in terms of
cover.

Constraint(s)

 clock (Mandatory): Use this constraint to specify clock signals in a
design.

 formal_analysis_filter (Optional): Use this constraint to specify the
modules or hierarchies on which formal analysis should be ignored or
performed.

 reset (Optional): Use this constraint to specify reset signals in a design.

 set_case_analysis (Optional): Use this constraint to specify case-analysis
conditions.

 breakpoint (Optional): Use this constraint to specify breakpoints in a
design where functional analysis should stop.

 watchpoint (Optional): Use this constraint to generate a waveform for an
internal signal.

 ip_block (Optional): Use this constraint to specify IP blocks in your
design.

Messages and Suggested Fix

The following message appears to indicate the FSM that is in the
unreachable or the deadlocked state:

[WARNING] The state <state-name> is '<Unreachable |
DeadLocked>' for FSM '<fsm-name>'

In addition, if a set of conflicting constraints are specified for the design,
additional message is appended to the above message string. For details
on the message and how to debug and fix this conflict, see the
Overconstrain Info File section.

Potential Issues
213
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
This violation appears if your design contains an FSM that is unreachable or
deadlocked.

For information on these states, see Unreachable State of an FSM and
Deadlocked State of an FSM.

Consequences of Not Fixing
If you do not fix this violation, the design may have redundant or incorrect
functionality.

How to Debug and Fix
To debug and fix this violation, analyze the FSM in FSM Viewer window.

Perform appropriate actions based on the following conditions:
 No transition occurs to an unreachable state or no transition occurs from

a deadlocked state of the FSM
Action: Modify the design to introduce a transition to an unreachable
state or from a deadlocked state.

 Transition occurs
Action: Analyze the RTL to determine the cause of the dead transition.

If the FSM that is unreachable or deadlocked is present in an IP and you do
not want to report within the IP, specify the ip_block constraint for the IP.

Example Code and/or Schematic

Example 1 - Unreachable State of an FSM

Consider the following example:

// Unreachable FSM states
// FSM1 and FSM2 are interacting FSMs
// FSM2 is launched when FSM1 reaches a specific state.
// But FSM2 has an unreachable state due to
// non-sensitizable transition

`define FSM1S1 4'b1000
`define FSM1S2 4'b0100
`define FSM1S3 4'b0010
214
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
`define FSM1S4 4'b0001

`define FSM2S1 4'b1000
`define FSM2S2 4'b0100
`define FSM2S3 4'b0010
`define FSM2S4 4'b0001

module unreachable(reset, clk1, clk2, ctl, out);
 input reset, clk1, clk2, ctl;
 output out;
 reg [0:3] fsm1s, fsm2s;

 // FSM1
 always @(posedge clk1) begin
 if(reset)
 fsm1s <= `FSM1S1;
 else
 case(fsm1s) // synopsys full_case
 // synthesis parallel_case
 `FSM1S1: fsm1s <= `FSM1S2;
 `FSM1S2: fsm1s <= `FSM1S3;
 `FSM1S3: fsm1s <= `FSM1S4;
 `FSM1S4:
 if(ctl) fsm1s <= `FSM1S1;
 endcase
 end

 // FSM2

 always @(posedge clk2) begin
 if(fsm1s == `FSM1S4) // FSM1 initializes FSM2
 fsm2s <= `FSM2S1;
 else
 case(fsm2s) // synopsys full_case
 // synthesis parallel_case
 `FSM2S1:
 if(fsm1s == 4'b1100)
215
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
 fsm2s <= `FSM2S2; // Condition always false
 else
 fsm2s <= `FSM2S3;
 `FSM2S2: fsm2s <= `FSM1S3;
 `FSM2S3: fsm2s <= `FSM1S4;
 `FSM2S4:
 if(ctl) fsm2s <= `FSM1S1;
 endcase
 end
 assign out = fsm2s[2];
endmodule

In the above example, the state 4'b0010 is unreachable or the FSM
fsm2s. Therefore, the Av_fsm01 rule reports a violation in this case.

The following figure shows the FSM viewer generated in this case:
216
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
FIGURE 28. Unreachable State of an FSM

To fix this violation, modify the RTL to introduce a transition to the reported
unreachable state.

See also Viewing Conditional Expression of a Transition in the FSM Viewer.

Example 2 - Deadlocked State of an FSM

Consider the following example:

`define S0 2'b00
`define S1 2'b01

Initial state appears in
a double circle
217
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
`define S2 2'b10
`define S3 2'b11

module Fsm(clk, ctl, rst);
 input clk, ctl, rst;
 reg [1:0] state;
 always@(posedge clk or negedge rst)
 begin
 if(!rst)
 state <= `S0;
 else
 case(state) // synopsys full_case parallel_case
 `S0 : state <= `S1;
 `S1 : state <= `S2;
 `S2 : if (ctl) state <= `S3;
 `S3 : if (ctl & !ctl) state <= `S1;
 else state <= `S3;
 endcase
 end
endmodule

In the above example, the state machine reaches STATE3 and is
deadlocked. Therefore, the Av_fsm01 rule reports a violation in this case.

The following figure shows the FSM viewer generated in this case:
218
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
FIGURE 29. Deadlocked State of an FSM

In the above example, analyze the RTL to determine the cause of the
deadlocked state and modify the RTL accordingly.

See also Viewing Conditional Expression of a Transition in the FSM Viewer.

Default Severity Label

Warning

Rule Group

Implicit-Properties

Initial state appears in
a double circle
219
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
Report and Related Files

 Av_fsm01.<ID>.OverConstrainInfo: This file contains details of conflicting
constraints. For details, see Overconstrain Info File.

 Auto Verify Central Report
220
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
Av_fsm02
Reports the dead transition of an FSM.

When to Use

Use this rule to verify the functionality of FSM in the design.

Prerequisites

Specify clock signals by using the clock constraint.

Description

NOTE: This rule will be deprecated in a future SpyGlass release. Use the Av_fsm_analysis
rule instead of this rule.

The Av_fsm02 rule reports the Dead Transition of an FSM.

Dead Transition of an FSM

It refers to a state machine transition that is present in the RTL code but
cannot be exercised.

Dead transitions may result in Unreachable State of an FSM or Deadlocked
State of an FSM.

Each transition of an FSM in the design is separately checked using formal
verification techniques to determine whether the transition is dead.

Unreachable State of an FSM

An unreachable state of an FSM can be one of the following states in the
RTL code:
 You have not created any transitions to reach that FSM state.

 You have created transitions that cannot be exercised by the logic
controlling that FSM state.

Deadlocked State of an FSM

A deadlocked state of an FSM can be any of the following states:
 The state from which no out-going transitions exist.
221
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
 The state in which the out-going transitions cannot be exercised due to
a control logic.

When a state machine reaches the deadlocked state, it cannot transition to
a different state.

Rule Exceptions

In case of multiple transitions, SpyGlass first merges the transitions before
running this rule. Consequently, this rule does not report an inactive
transition from state A to state B if there are other active transitions from
the same state A into state B.

Parameter(s)

 av_dump_assertions: The default value is “”. Set this parameter to sva to
generate SystemVerilog Assertions (SVA).

 av_dump_liveness: The default value is assert. Set this parameter to
cover to generate the SystemVerilog Assertions (SVA) in terms of
cover.

Constraints

 clock (Mandatory): Use this constraint to specify clock signals in a
design.

 formal_analysis_filter (Optional): Use this constraint to specify the
modules or hierarchies on which formal analysis should be ignored or
performed.

 reset (Optional): Use this constraint to specify reset signals in a design.

 set_case_analysis (Optional): Use this constraint to specify case-analysis
conditions.

 breakpoint (Optional): Use this constraint to specify breakpoints in a
design where functional analysis should stop.

 watchpoint (Optional): Use this constraint to generate a waveform for an
internal signal.

 ip_block (Optional): Use this constraint to specify IP blocks in your
design.
222
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
Messages and Suggested Fix

The following message appears to report a dead transitions from the state
<state1-name> to the state <state2-name> of the FSM
<fsm-name>:

[WARNING] FSM ‘<fsm-name>’ has a dead transition ‘<state1-name>
=> <state2-name>’

In addition, if a set of conflicting constraints are specified for the design,
additional message is appended to the above message string. For details
on the message and how to debug and fix this conflict, see the
Overconstrain Info File section.

Potential Issues
This violation appears if your design contains an FSM that is in a dead
transition state. For details, see Dead Transition of an FSM.

Consequences of Not Fixing
If you do not fix this violation, the following issues may appear in the
design:
 Unreachable State of an FSM

 Deadlocked State of an FSM

This may result in redundant or incorrect functionality of the design.

How to Debug and Fix
To debug and fix this violation:
 Analyze the FSM in FSM Viewer.

 Analyze the expression containing fan-in cone nets, which would have
triggered this transition.

If the FSM that is in a dead transition state is present in an IP and you do
not want to report within the IP, specify the ip_block constraint for the IP.

Example Code and/or Schematic

Consider the following example:
223
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
`define S0 2'b00
`define S1 2'b01
`define S2 2'b10
`define S3 2'b11

module test(clk, rst, state);
 input clk, rst;
 output [1:0] state;
 reg [1:0] state;
 reg a, b ;
 wire int_clk;

 assign int_clk = !clk;
 always@(posedge int_clk)
 b <= 0;
 always@(posedge clk)
 a <= 1;
 always@(posedge clk)
 if(rst) state <= `S0;
 else begin
 case(state)
 `S0 : state <= `S1;
 `S1 : if (a) state <= `S2;
 `S2 : if (!b) state <= `S3;
 `S3 : begin
 if (a & b) state <= `S1;
 if (a & !b) state <= `S0;
 end
 default : ;
 endcase
 end
endmodule

In the above example, the transition from STATE3 to STATE1 is a dead
transition.

The signal a is always tied high whereas the signal b is always tied low.
224
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
Therefore, the conditional expression is (a && !b) on which the
transition from S3 to S1 can occur. But as the condition is always false,
this rule reports the transition from S3 to S1 as the dead transition.

The following figure shows the FSM viewer in this case:

FIGURE 30. Dead transition of an FSM

To fix the above violation, correct the fan-in cone nets in the condition
expression or the expression itself to fix the dead state transition.

See also Viewing Conditional Expression of a Transition in the FSM Viewer.

Initial state appears in
a double circle
225
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
Default Severity Label

Warning

Rule Group

Implicit-Properties

Report and Related Files

 Av_fsm02.<ID>.OverConstrainInfo: This file contains details of conflicting
constraints. For details, see Overconstrain Info File.

 Auto Verify Central Report
226
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
Av_range01
Reports array bound violation.

When to Use

Use this rule to detect the arrays in the RTL that are accessed out of the
range assigned to them.

Prerequisites

Specify clock signals in a design by using the clock constraint.

Description

The Av_range01 rule reports arrays that can be accessed with an index
that is outside the range of the array.

NOTE: The Av_range01 rule is applicable for Verilog designs only.

Parameter(s)

 include_construct: The default value is none. Set this parameter to
generate to check the generate_block constructs. Other possible
values are always_comb and none.

 av_dump_assertions: The default value is “”. Set this parameter to sva to
generate SystemVerilog Assertions (SVA).

Constraints

 clock (Mandatory): Use this constraint to specify clock signals in a
design.

 formal_analysis_filter (Optional): Use this constraint to specify the
modules or hierarchies on which formal analysis should be ignored or
performed.

 reset (Optional): Use this constraint to specify reset signals in a design.

 set_case_analysis (Optional): Use this constraint to specify case-analysis
conditions.

 breakpoint (Optional): Use this constraint to specify breakpoints in a
design where functional analysis should stop.
227
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
 watchpoint (Optional): Use this constraint to generate a waveform for an
internal signal.

Messages and Suggested Fix

This rule reports the following message:

[WARNING] Array bound violation observed for <sig-name>=<value>
for dimension <dimension> of variable <var-name> where allowed
range is <allowed-range> (Hier: <hier>)

The details of the arguments of the above violation message are described
in the following table:

In addition, if a set of conflicting constraints are specified for the design,
additional message is appended to the above message string. For details
on the message and how to debug and fix this conflict, see the
Overconstrain Info File section.

Potential Issues
This violation appears if your design file contains an array that is accessed
with an index outside the range of the array.

Consequences of Not Fixing
If you do not fix this violation, improperly designed index logic can go out
of bound causing chip failure.

Argument Description

<sig-name> Specifies the name of the signal

<value> Specifies the value of the signal <sig-name> for which the array
bound violation occurs

<dimension> Specifies the dimension of the variable
<var-name> Specifies the variable name
<allowed-
range>

Specified the allowed range of the variable

<hier> Specifies the hierarchical name of the module in which the
violation occurred.
228
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
How to Debug and Fix
If the reported array is present in an IP and you do not want to report
within the IP, specify the ip_block constraint for the IP.

Example Code and/or Schematic

Consider the following example:

module test (out1, out2, in1, in2, clk, reset);
output out1;
output [2:0] out2;
input clk, reset;
input [2:0] in1, in2;

reg [2:0] out2;
reg [1:0] count;

assign out1=in1[count+1]; // Message: 2+1 > [2:0]

always @(posedge clk)
begin
if(reset == 0) count= 0;
else if(count == 2'b10) count = 0;
else count=count+1;

end

 always @(posedge clk)
out2[count+1]=in2[count]; //Message: 2+1 > [2:0]

endmodule

In the above example, count can toggle in the values 0, 1, or 2.

Now when the value 2 is reached, count +1 results in an array access of
index=3 in the in1 and out2 arrays.

In this case, you need to allow count to toggle values between 0 and 1.
229
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
Default Severity Label

Warning

Rule Group

Implicit-Properties

Report and Related Files

 Av_range01.<ID>.OverConstrainInfo: This file contains details of conflicting
constraints. For details, see Overconstrain Info File.

 Auto Verify Central Report
230
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
Av_setreset01
Reports flip-flop with simultaneous active asynchronous set and
asynchronous reset

When to Use

Use this rule to check if your design contains flip-flops with both reset and
set.

Prerequisites

Specify clock signals in the design by using the clock constraint.

Description

The Av_setreset01 rule reports a violation when flip-flops with both
asynchronous set and asynchronous reset are asserted at the same time.

For example, consider the following figure:

FIGURE 31. Example of the Av_setreset01 violation

During optimization, some tools assume that reset takes priority over set in
the above flip-flop resulting in possible active reset and set simultaneously.
This may result in the following situations in the design:
 When the reset is asserted on a positive edge, the reset or preset may

reach first. If the preset reaches first, a glitch may be generated at the
output of the above flip-flop.

 When reset is de-asserted followed by set de-asserted, the reset or set
may reach first. In this case, the flip-flop will come out of the reset in
state "1" (instead of "0") since preset is deasserted last.

The following figure shows the waveform pertaining to the above cases:

rst

set
231
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
FIGURE 32. Waveform of the Av_setreset01 violation

Parameter(s)

av_force_soft_reset: The default value is Av_setreset01. Set this
parameter to no to consider a reset as a hard reset.

Constraint(s)

 clock (Mandatory): Use this constraint to specify clock signals in a
design.

 formal_analysis_filter (Optional): Use this constraint to specify the
modules or hierarchies on which formal analysis should be ignored or
performed.

 reset (Optional): Use this constraint to specify reset signals in a design.

 set_case_analysis (Optional): Use this constraint to specify case-analysis
conditions.

 breakpoint (Optional): Use this constraint to specify breakpoints in a
design where functional analysis should stop.

 watchpoint (Optional): Use this constraint to generate a waveform for an
internal signal.

 ip_block (Optional): Use this constraint to specify IP blocks in your
design.

Messages and Suggested Fix

The following message appears to report flip-flops that are asserted with
both asynchronous set and asynchronous reset at the same time

[WARNING] Flop <flop-name> detected with simultaneously active

rst

set

out
232
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
set and reset

In addition, if a set of conflicting constraints are specified for the design,
additional message is appended to the above message string. For details
on the message and how to debug and fix this conflict, see the
Overconstrain Info File section.

Potential Issues
This violation appears if your design contains flip-flops that are asserted
with a set and reset simultaneously.

Consequences of Not Fixing
If you do not fix this violation, there may be glitches in the design during
set or reset activation.

How to Debug and Fix
To fix this violation, perform the following steps:
1. Double-click on the violation and open the schematic.

The schematic shows the set and reset which are active at the same
time and trigger the reported flip-flop.

2. Open the Waveform Viewer window to view the condition when set and
reset are active simultaneously.

If the reported flip-flops are in an IP and you do not want to report within
the IP, specify the ip_block constraint for the IP.

Example Code and/or Schematic

Consider the following example:

//test.v
module test(input D, rst, prst, clk, output reg out);
always @(posedge clk or negedge prst or posedge rst)
 begin
 if (rst)
 out <= 1'b0;
 else if (!prst)
 out <= 1'b1;
233
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
 else
 out <= D;
 end
endmodule

Project File:

set_parameter user_inferred_clocks yes

In the above example, if rst and prst become active at the same time
and prst appears first then the out flip-flop will be high first and then it
will be driven low as soon as rst goes high. This will create a glitch at the
output of the flop.

The following figure shows the schematic of the out flip-flop in this case:

FIGURE 33. Schematic of the Av_setreset01 violation

The waveform of the above violation displays the condition when set and
reset of the out flip-flop are active simultaneously. See the following
figure:
234
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
FIGURE 34. Waveform of the Av_setreset01 violation

Default Severity Label

Warning

Rule Group

Implicit-Properties

Report and Related Files

 Av_setreset01.<ID>.OverConstrainInfo: This file contains details of conflicting
constraints. For details, see Overconstrain Info File.

 Auto Verify Central Report
235
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
Av_staticreg01
This rule is deprecated.

This rule is not being used by SpyGlass Auto Verify.
236
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
Av_staticreg02
Reports static sequential elements in a design.

When to Use

Use this rule to check if sequential elements have any input tied to a
constant value.

Prerequisites

Specify clock signals by using the clock constraint.

Description

The Av_staticreg02 rule reports a summary of Static Sequential Elements in a
design.

This rule identifies sequential elements as static when any of the following
conditions hold true after applying case-analysis (by using the
set_case_analysis constraint) and VDD/VSS (power/ground) propagation in
a design:
 Always active reset/clear

 Constant clock

 Inactive load

 Constant data

For library cells, this rule reports an instance as static if any of the data
input is static. For multiple clocks, this rule reports an instance as static if
any of the clocks is static.

NOTE: This rule does not initialize flip-flops by using resets.

Static Sequential Elements

These are the sequential elements that have at least one of the input tied
to a constant value.

Parameter(s)

show_static_latches: The default value is yes. Set this parameter to no to
stop reporting static latches in the spreadsheet.
237
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
Constraint(s)

 clock (Mandatory): Use this constraint to specify clock signals in a
design.

 formal_analysis_filter (Optional): Use this constraint to specify the
modules or hierarchies on which formal analysis should be ignored or
performed.

 reset (Optional): Use this constraint to specify reset signals in a design.

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

 breakpoint (Optional): Use this constraint to specify breakpoints in a
design where functional analysis should stop.

 watchpoint (Optional): Use this constraint to generate a waveform for an
internal signal.

Messages and Suggested Fix

Message 1

The following message appears if no sequential elements have any input
tied to a constant:

[SR2INF] [INFO] Top design unit <top-du-name> : No sequential
elements have any input tied to constant

Potential Issues
This violation appears if your design does not contain any static sequential
element.

Consequences of Not Fixing
Not applicable.

How to Debug and Fix
Not applicable.
238
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
Message 2

The following warning message appears to report the percentage of
sequential elements that have at least one of the inputs tied to a constant:

[SR2WRN] [WARNING] Top design unit <top-du-name> :
<seq-elements-percentage> percent of sequential elements have
at least one of the inputs tied to constant

Potential Issues
This violation appears if your design contains sequential elements that
have at least one of the inputs tied to a constant value.

Consequences of Not Fixing
If you do not fix this violation, you may see some unexpected results. For
example, if a reset is always on, the data may never be transferred.

How to Debug and Fix
To fix this violation, remove the condition due to which the sequential
elements are becoming static.
239
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
Example Code and/or Schematic

Example 1

Consider the following Verilog and SGDC files:

For the above example, the Av_staticreg02 rule generates the following
schematic:

FIGURE 35. Example of the Av_staticreg02 violation

//test.v

module D_ff(q,d,clk,reset,preset);
output q;
input d,clk,reset,preset;
reg q;
wire w1, w2;
assign w1 = 1 'b1;

assign w2 = d & w1;

always@(posedge clk or posedge reset or posedge preset)
if(reset)
 q <= 1 'b0;

else if(preset)
 q <= 1 'b1;

else
 q <= w2;
endmodule

current_design D_ff
clock -name D_ff.clk -period 10
reset -name D_ff.preset -value 1

//constraints.sgdc
240
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
In the above example, no pin of the q_reg instance is static. Therefore,
this rule reports an informational message indicating that there are no
static sequential elements in the design.

Example 2

Consider the following Verilog and SGDC files:

In the above example, the pins of the sequential element q are static.
Therefore, the Av_staticreg02 rule reports a violation.

When you double-click on the violation of this rule, the following
spreadsheet appears:

// test.v

module D_ff(q,d,clk,reset,preset);
output q;
input d,clk,reset,preset;
reg q;
wire w1, w2;
assign w1 = 1
'b0;
assign w2 = d & w1;
always@(posedge clk or posedge reset or posedge preset)
if(reset)
 q <= 1'b0;
else if(preset)
 q <= 1'b1;
else
 q <= w2;
endmodule

current_design D_ff
clock -name D_ff.clk -period 10

set_case_analysis -name D_ff.preset

// Constraints.sgdc

-value 1
241
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
FIGURE 36. Spreadsheet generated by the Av_staticreg02 rule

In the above spreadsheet, click 1 in the ID column, and open the Modular
Schematic window. The following schematic appears:

FIGURE 37. Schematic the Av_staticreg02 rule violation
242
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
In the above schematic, the portion highlighted in red is the rule-violating
portion.

To fix this violation, perform the following actions:

 Change the value of w1 to 1'b1.

 Remove the set_case_analysis constraint from preset.

Example 3

Consider the following Verilog and SGDC files:

In the above example, the Av_staticreg02 rule reports a violation for the
lssd1 instance as multiple clocks (CK, SCK1, SCK2, CK, and SCK1) of
this instance are tied to a constant value.

When you double-click on the violation of this rule, the following
spreadsheet appears:

module lssd_multi_clk(clk, master_clk, slave_clk, d1, scan_d1, out, scan_out);

 input clk, master_clk, slave_clk, d1, scan_d1;

 output out, scan_out;

 FC3S2AQHV33

endmodule

// test.v

lssd1(.D(d1),.CK(clk),.SDI(scan_d1),.SCK1(master_clk),.SCK2(slave_clk),
.Q(out),.SDON(scan_out));

// Constraints.sgdc

current_design lssd_multi_clk
clock -name lssd_multi_clk.slave_clk -period 10
set_case_analysis -name lssd_multi_clk.master_clk -value 0
set_case_analysis -name lssd_multi_clk.clk -value 0
243
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
FIGURE 38. Spreadsheet generated by the Av_staticreg02 rule

In the above spreadsheet, click 1 in the ID column and open the Modular
Schematic window.

The following figure shows the schematic of this example:

Multiple clocks
244
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
FIGURE 39. Schematic the Av_staticreg02 rule violation

To fix the above violation, remove the set_case_analysis constraint from the
SGDC file.

Default Severity Label

Info | Warning

Rule Group

Implicit-Properties

Reports and Related Files

 Av_staticreg02 Spreadsheet Report

 Auto Verify Central Report
245
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
Av_syncfifo01
Checks overflow and underflow of synchronous FIFOs in a design

When to Use

Use this rule to check overflow and underflow of synchronous FIFOs in a
design.

Description

The Av_syncfifo01 rule performs overflow and underflow checks for
synchronous FIFOs. These checks are performed by using read/write
pointers of FIFO.

Note that if a FIFO is implemented with a library memory cell, overflow and
underflow checks are not performed and such checks are reported as
DISABLED.

Restrictions Applied on FIFO Extraction

The following restrictions apply to FIFO extraction:
 The Av_syncfifo01 rule detects only synthesized FIFOs, that is, FIFOs for

which memory is instantiated and synthesized.
By default, only memories up to 4096 bits are synthesized. To specify a
higher threshold, specify the following project file command:

set_option mthresh <threshold-value>

For details, refer to the FIFO Synchronization Scheme topic of SpyGlass
CDC Rules Reference Guide.

 The Av_syncfifo01 rule detects FIFOs for which read-pointer and write
pointer increment (by 1) upon the read and write operations,
respectively.

Assumptions Applied on FIFO Verification

The following assumptions apply to FIFO verification:
 Initially, a FIFO is assumed empty and read/write pointers are set to

zero.
 The FIFO is not cleared or flushed after reset.
246
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
If this assumption is violated, that is, the FIFO can be cleared after
reset, a false violation about overflow and underflow may get reported.
You can avoid this issue by specifying a FIFO reset signal in an SGDC
file, as shown in the following example:

reset -name fifo_flush -value 1

In the above example, the FIFO reset signal fifo_flush is specified
to be active high. Therefore, SpyGlass -Auto Verify solution controls the
FIFO flush function accordingly.

Parameter(s)

 audit: Default value is no. Set this parameter to yes to not perform
functional analysis.

 av_msgmode: Default value is fail. Set this parameter to all to report
all types of assertions (pass, fail, partially proved). Other possible
values are pass and pp.

 distributed_fifo: Default value is no. Set this parameter to yes
to detect FIFOs with distributed memories.

NOTE: This is a SpyGlass CDC parameter.

 delayed_ptr_fifo: Default value is no. Set this parameter to yes
when the read/write pointers are delayed and the multiplexer inside the
memory is one-hot or implemented using gates.

NOTE: This is a SpyGlass CDC parameter.

 filter_named_resets: Default value is clk, clock, scan.
Specify a list of strings to auto-infer asynchronous resets that do not
match the specified strings.

NOTE: This is a SpyGlass CDC parameter.

Constraint(s)

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

 formal_analysis_filter (Optional): Use this constraint to specify the
modules or hierarchies on which formal analysis should be ignored or
performed.

 clock (Optional): Use this constraint to specify clocks signals in a design.
247
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
 reset (Optional): Use this constraint to specify reset signals in a design.

Messages and Suggested Fix

Message 1

The following message appears when FIFOs are identified:

[FIFOERR] [ERROR] FIFO with memory '<memory-name>', read
pointer '<read-pointer-name>' and write pointer '<write-
pointer-name>' detected. '<type>' check: <FAILED | Others
(Constraints-Conflict)>

The arguments of the above message are explained below:

Potential Issues
This violation appears if your design contains completely recognized FIFOs.

Consequences of Not Fixing
In case overflow and underflow, if the status is reported as FAILED, it may
result in functional issues in the design if the failure is not due to incorrect
setup.

How to Debug and Fix

If the status is FAILED or Others (Constraints-Conflict), open
the Waveform Viewer window corresponding to the message, and check
the marker that appears on the waveform.

This marker is positioned at a transition where overflow or underflow
problem occurs. Therefore, this specific transition is a witness to the
failure.

Some of the reasons that may cause false failures are as follows:

Argument Description
<memory-name> FIFO memory name
<read-pointer-name> FIFO read pointer name
<write-pointer-name> FIFO write pointer name
<type> The problem type as overflows or underflows
248
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
 Presence of potential reset/clear signal causing such violation.
In this case, provide the reset/clear in the constraint file as a reset.

 The setup (clocks, resets, set_case_analysis, and input constraints) is not
correct and complete.

 The initial state values in the Waveform Viewer window are incorrect.
In this case, provide correct initial state in the constraints file or provide
a VCD file from which an initial state can be loaded.

Message 2

The following message appears when FIFOs are identified:

[FIFOWRN] [WARNING] FIFO with memory '<memory-name>', read
pointer '<read-pointer-name>' and write pointer '<write-
pointer-name>' detected. '<type>' check: Partially-Proved

The arguments of the above message are explained below:

Potential Issues
This violation appears if your design contains completely recognized FIFOs.

Consequences of Not Fixing
If you do not fix this violation, your design may contain functional issues.

How to Debug and Fix

The Partially-Proved status appears when SpyGlass is not able to
either fail or pass FIFO verification in the given time. In this case, you need
to help the tool to complete the analysis. You may try the following options
for better results:
 Increase assertion run-time by using the atime parameter.

Argument Description
<memory-name> FIFO memory name
<read-pointer-name> FIFO read pointer name
<write-pointer-name> FIFO write pointer name
<type> The problem type as overflows or underflows
249
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
 Use incremental analysis approach by using the propfile parameter.

Message 3

The following message appears when FIFOs are identified:

[FIFOINF] [INFO] FIFO with memory '<memory-name>', read pointer
'<read-pointer-name>' and write pointer '<write-pointer-name>'
detected. '<type>' check: PASSED

The arguments of the above message are explained below:

Potential Issues
Not applicable

Consequences of Not Fixing
Not applicable

How to Debug and Fix
Not applicable

Message 4

The following message is reported when FIFOs with library memory cells
are identified:

[FIFOLIBMEM] [INFO] FIFO with library memory '<memory-name>',
read pointer '<read-pointer-name>' and write pointer '<write-
pointer-name>' detected. '<type>' check:<status>

The arguments of the above message are explained below:

Argument Description
<memory-name> FIFO memory name
<read-pointer-name> FIFO read pointer name
<write-pointer-name> FIFO write pointer name
<type> The problem type as overflows or underflows
250
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
Potential Issues
This violation appears if your design contains library memory cell based
FIFOs.

Consequences of Not Fixing
None

How to Debug and Fix
If FIFO memory is a library cell, no functional check is performed. It is an
informational message.

Example Code and/or Schematic

Consider the following schematic of a violation of this rule:

FIGURE 40. Schematic the Av_syncfifo01 rule violation

In the above scenario, the Av_syncfifo01 rule reports a violation as the

Argument Description
<memory-name> FIFO memory name
<read-pointer-name> FIFO read pointer name
<write-pointer-name> FIFO write pointer name
<type> The problem type as overflows or underflows
<status> Assertion status - DISABLED
251
Synopsys, Inc.

Implicit Properties Rules

Rules in SpyGlass Auto Verify
MEM memory is a part of the synchronous FIFO where the raddr read
pointer and the waddr write pointer are from the same clock domain.

Schematic Highlight

The Av_syncfifo01 rule highlights the following information in a schematic:
 Read pointers

 Write pointers

 Memory

For the FIFOs implemented with library memories, only memory is
highlighted.

Default Severity Label

The rule severity varies according to the assertion status as follows:
 FAILED: Error

 Partially-Proved: Warning

 PASSED/DISABLED: Info

 Others (Constraints-Conflict): Error

Rule Group

Implicit-Properties

Reports and Related Files

Av_syncfifo01.<ID>.OverConstrainInfo: This file contains details of
conflicting constraints. For details, see Overconstrain Info File.
252
Synopsys, Inc.

Standard Properties Rules

Rules in SpyGlass Auto Verify
Standard Properties Rules
The Standard Properties rules check for the standard OVL v. 02.10.16
assertions.

A violation of a standard OVL property corresponds to the violation of the
OVL assertion specified in code. As a general rule to investigate the cause
of a standard OVL assertion failure, you should verify the correctness of the
OVL assertion specification, especially those assertions that have complex
parameters that impact the validation of the rule.

Inputs to the assertion modules are generic Verilog/VHDL expressions. You
must consider the following points while writing and analyzing OVL
assertions:
 You can provide synthesizable logic for property check without having to

use them within the design. For example, in a FSM, you may have an
output that is activated when you are in three different states of the
design. You can provide a OR of the three states to a property and
request a check to assure that the output becomes true whenever we
reach these states. The OR of the three states won’t be part of the
design but will be relevant for the property validation.

 These expressions, if directly provided to the assertion module
instantiation, won’t have a user name associated with them. An internal
name will be assigned to them. If this is a problem for proper debugging
an internal wire can be created that will generate the expression and the
wire can be provided as input to the OVL instance. SpyGlass Auto Verify
solution will preserve all user defined wires and naming.

OVL properties can be seen as HDL modules that are monitoring design’s
activities. In general these modules monitor its inputs at each positive
edge of the clock provided as input to the OVL module. There are
exceptions to this rule, for instance assert_proposition() monitors the test
expression at all time (not only at the edge of the clock, in fact this
property does not take clock as input). Rule descriptions of SpyGlass Auto
Verify solution do not explicitly mention the clock edge presence for a
check; unless otherwise indicated the test expressions are monitored at
each positive edge of the clock. Some of the OVL assertions are also
waiting for some events to start monitoring a test expression; in this case
the event comes on conjunction with the clock, both event and clocks need
to be activated in order to start monitoring.

For any violation of the Av_ovl01 rule, the waveform viewer shows all
253
Synopsys, Inc.

Standard Properties Rules

Rules in SpyGlass Auto Verify
signals at the boundary of the OVL module (for example, test expressions).
Other signals in the fan-in cone can be loaded gradually through the
Waveform Viewer user interface.

The following table describes the rules under this category:

Rule Reports
Av_ovl01 OVL checks in the design.
254
Synopsys, Inc.

Standard Properties Rules

Rules in SpyGlass Auto Verify
Av_ovl01
Reports OVL checks in a design.

When to Use

Use this rule to validate design functionality that is specified by using OVL
assertions.

Prerequisites

Specify clock signals in a design by using the clock constraint.

Description

The Av_ovl01 rule validates OVL assertions and assumptions in a design.

OVL assertion represents the expected functionality of the design.

For the list of OVL assertions checked by this rule, see The OVL Support.

To understand how OVL assertions are asserted in a design, see Properties
Specification using OVL.

Parameter(s)

None

Constraint(s)

 breakpoint (Optional): Use this constraint to specify breakpoints in a
design where functional analysis should stop.

 watchpoint (Optional): Use this constraint to generate a waveform for an
internal signal.

 special_module (Optional): Use this constraint to define property and
constraint modules.

 clock (Mandatory): Use this constraint to specify clocks in a design.

 reset (Optional): Use this constraint to specify resets in a design.

 set_case_analysis (Optional): Use this constraint to specify case-analysis
conditions in a design.

Messages and Suggested Fix

The following message appears if the OVL property <OVL-property>
255
Synopsys, Inc.

Standard Properties Rules

Rules in SpyGlass Auto Verify
fails:

[WARNING] OVL check failed for '<OVL-property'

In addition, if a set of conflicting constraints are specified for the design,
additional message is appended to the above message string. For details
on the message and how to debug and fix this conflict, see the
Overconstrain Info File section.

Potential Issues
This violation appears if an OVL property defined for your design fails.

Consequences of Not Fixing
If you do not fix this violation, the design behavior becomes inconsistent
with the expected functionality as captured by OVL assertions.

Default Severity Label

Warning

Rule Group

Standard-Properties

Report and Related Files

 Av_ovl01.<ID>.OverConstrainInfo: This file contains details of conflicting
constraints. For details, see Overconstrain Info File.

 Auto Verify Central Report
256
Synopsys, Inc.

Must Rules

Rules in SpyGlass Auto Verify
Must Rules
These rules are always run.

The following table describes the rules under this category:

Rule Flags
Av_license01 For license failure
Av_init01 When all clocks in the design are not specified using the

clock constraint and the use_inferred_clocks
parameter is also not set.

Av_initseq01 When all define_tag constraints with the
-tag initSeq argument specified do not have the
same length sequence specified with the -value
argument

Av_multitop01 When the design has multiple top-level design units
Av_sanity01 Issues with the user-specified property files
Av_sanity02 Non-tristated nets that have multiple drivers
257
Synopsys, Inc.

Must Rules

Rules in SpyGlass Auto Verify
Av_license01
Reports license failure

When to Use

This rule is run automatically.

Description

The Av_license01 rule reports a violation in the following cases:

 If the Auto_Verify license key is unavailable when the Auto Verify
rules are run.
Message 1 is reported in this case.

 If the SVA_GEN license key is unavailable when the av_dump_assertions
parameter is used.
Message 2 is reported in this case.

 If the sva license key is unavailable when the set_option enableSVA yes
project file command is specified.
Message 3 is reported in this case.

Parameter(s)

None

Constraint(s)

None

Messages and Suggested Fix

The following message appears if

Message 1

The following message appears when the Auto_Verify license is
unavailable:

[FATAL] Advanced Lint Policy not run due to unavailability of
Auto_Verify license feature
258
Synopsys, Inc.

Must Rules

Rules in SpyGlass Auto Verify
Potential Issues
Not applicable

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix

Specify the Auto_Verify license.

Message 2

The following message appears when the Auto_Verify license is
unavailable:

[ERROR] SVA generation feature not run due to unavailability of
SVA_GEN license feature

Potential Issues
Not applicable

Consequences of Not Fixing
If you do not fix this violation, the feature on generating SVA is disabled.

How to Debug and Fix

Specify the SVA_GEN license.

Message 3

The following message appears when the sva license is unavailable:

[ERROR] SVA constraints not read due to unavailability of sva
license feature

Potential Issues
Not applicable

Consequences of Not Fixing
If you do not fix this violation, the SVA assume properties are not honored
for functional verification.
259
Synopsys, Inc.

Must Rules

Rules in SpyGlass Auto Verify
How to Debug and Fix

Specify the sva license.

Example Code and/or Schematic

Not applicable

Default Severity Label

Fatal | Error

Reports and/or Related Files

None
260
Synopsys, Inc.

Must Rules

Rules in SpyGlass Auto Verify
Av_init01
Reports initial setup issues of a design.

When to Use

Use this rule to detect incorrect initial inputs to a design.

Description

The Av_init01 rule reports a violation in the following cases:
 If no clock is specified for the design

For details on fixing this violation, see How to Debug and Fix.
 If the OVL constraint specified in a property is invalid

 If SpyGlass is unable to locate or open the VCD file specified by the
vcdfile parameter.
This VCD file contains the details of the initial state of a design for
functional analysis.

Parameter(s)

 use_inferred_clocks of SpyGlass CDC solution: The default value
is no. Set this parameter to yes to use the automatically-generated
clock information.

NOTE: This is the parameter of SpyGlass CDC solution.

 vcdfile: The default value is NULL. Specify a VCD file name that
SpyGlass can use to extract an initial state for functional analysis.

Constraint(s)

clock (Optional): Use this constraint to specify clock signals in a design.

Messages and Suggested Fix

Message 1

The following message appears if clocks for all the flip-flops in the design
are not specified:

[FATAL] Could not find clocks for all the flops. Please add
clocks to design
261
Synopsys, Inc.

Must Rules

Rules in SpyGlass Auto Verify
Potential Issues
This violation appears if no clocks are detected in the design.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix
To fix this violation, specify clocks for the design in any of the following
ways:
 By using the clock constraint

 By setting the use_inferred_clocks parameter of SpyGlass CDC
solution to yes.

For better results, run the Clock_info03 rule of the SpyGlass CDC solution
that reports unconstrained flip-flops. Based on the violation reported by
this rule, specify clocks for the reported flip-flops by using the clock
constraints.

Message 2

The following message appears if the constraints defined in the property
file are missing in the design:

[FATAL] Some constraints specified in property file not found
in design. Refer '<file-name>' for more details

Potential Issues
This violation appears if your design is not constrained by the constraints
specified in the property file.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.
262
Synopsys, Inc.

Must Rules

Rules in SpyGlass Auto Verify
How to Debug and Fix
To fix this violation, review the constraints specified in the property file and
update them as per the design requirement.

Message 3

The following message appears if SpyGlass is not able to open the VCD file
specified by the vcdfile parameter:

[FATAL] Unable to open vcd file for initial state

Potential Issues
This violation will appear when VCD file specified by the vcdfile parameter is
not present in the specified location.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix
To fix this violation, specify a correct VCD file.

Message 4

The following message appears if you use the av_run_time parameter when
the audit parameter is set to yes:

[WARNING] Parameter "av_run_time" ignored in "audit" mode

Potential Issues
This violation appears if you use the av_run_time parameter when the audit
parameter is set to yes.

Consequences of Not Fixing
If you do not fix this violation, upper bound on runtime is ignored and
263
Synopsys, Inc.

Must Rules

Rules in SpyGlass Auto Verify
SpyGlass runs normally.

How to Debug and Fix
Do not use these parameters together.

Example Code and/or Schematic

Consider that you do not:
 Specify a clock by using the clock constraint or

 Set the use_inferred_clocks parameter to yes,

Now consider the following file:

// test.v
module test (input in, clk, output reg q);
always @(posedge clk)
q <= d;

endmodule

When you specify the above file to SpyGlass and run any rule of the
SpyGlass Auto Verify solution, the Av_init01 rule reports Message 1.

Default Severity Label

Fatal

Rule Group

Setup

Report and Related Files

Auto Verify Central Report
264
Synopsys, Inc.

Must Rules

Rules in SpyGlass Auto Verify
Av_initseq01
Initialization sequences of multiple signals should be of the same
length.

When to Use

Use this rule to detect setup issues due to different initialization sequences
specified by the define_tag constraint.

Prerequisites

Specify signals by using the define_tag constraint.

Description

The Av_initseq01 rule reports a violation if the initialization sequences
specified by the -value argument of the define_tag constraints (specified
with the -tag initSeq argument) are not of the same length.

Parameter(s)

None

Constraint(s)

define_tag (Mandatory): Use this constraint to define a named condition for
the application of certain stimulus at the top port or an internal node.

Messages and Suggested Fix

The following message appears if the initialization sequence of signals is
not of the same length:

[WARNING] Initialization sequences provided by the 'define_tag
-tag initSeq' constraint are all not of the same length

Potential Issues
This violation appears if your design contains signals that have initialization
sequence of different lengths.

Consequences of Not Fixing
265
Synopsys, Inc.

Must Rules

Rules in SpyGlass Auto Verify
If you do not fix this violation, the design may be simulated by an
undefined value.

When you specify simulation vectors on signals by using the define_tag
constraint, the design is simulated by using these vectors to find a valid
initial state. However, if the sequences applied on the signals are of
different lengths (specified by the -value argument of the define_tag
constraint), the design is simulated by an undefined value for the
remaining cycles of smaller sequences. This may not be desirable.

How to Debug and Fix
To fix this violation, specify the same length of sequence for the signals
specified by the define_tag constraint with the -tag initSeq argument.

Example Code and/or Schematic

Consider the following define_tag constraints:

define_tag -tag initSeq -name top.reset1 -value 1 1 1 x x x
define_tag -tag initSeq -name top.reset2 -value x x 1 1

For the first define_tag constraint specification, the length of sequence is six
and it is four for the second specification. Therefore, the Av_initseq01 rule
reports a violation.

To fix this violation, modify the second specification as below:

define_tag -tag initSeq -name top.reset2 -value x x 1 1 1 1

Default Severity Label

Warning

Rule Group

Must rule

Report and Related Files

Auto Verify Central Report
266
Synopsys, Inc.

Must Rules

Rules in SpyGlass Auto Verify
Av_multitop01
Reports a violation in case of multiple top-level design units

When to Use

Use this rule to check if your design contains multiple top-level design
units.

Description

The Av_multitop01 rule reports a violation if your design contains multiple
top-level design units.

For details on these design units, refer to the violation of the
DetectTopDesignUnits Built-In rule.

Parameter(s)

None

Constraint(s)

None

Messages and Suggested Fix

The following message appears if multiple top-level design units are
present in a design:

[FATAL] Detected '<num>' top level design units. Please specify
a single top level design unit

Where <num> is the total number of top-level design units.

Potential Issues
This violation appears if your design contains multiple top-level design
units.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix
267
Synopsys, Inc.

Must Rules

Rules in SpyGlass Auto Verify
To fix this violation, specify a single top-level design unit by using the
following command in the project file:

set_option top <du-name>

Example Code and/or Schematic

Consider the following example:

module seq_block (input d1, d2, clk, rst, output reg q1, q2);
always @(posedge clk or posedge rst)
 if (rst)
 q1 <= 1'b0;
 else
 q1 <= d1;
always @(posedge clk)
 q2 <= d2;
endmodule

module flop (input d, clk, output reg q);
always @(posedge clk)
 q<= d;
endmodule

In the above example, both the modules seq_block and flop are
considered as the top-level design units.

Specify one of these modules as a top-level design unit by using the
set_option top <du-name> project file command.

Default Severity Label

Fatal

Rule Group

Sanity

Report and Related Files

Auto Verify Central Report
268
Synopsys, Inc.

Must Rules

Rules in SpyGlass Auto Verify
Av_sanity01
Reports an error if there is any issue in the property file.

When to Use

Use this rule to detect setup issues due to incorrect property file.

Prerequisites

Specify a property file by using the propfile parameter.

Description

The Av_sanity01 rule reports issues in the property files specified using the
propfile parameter.

Parameter(s)

propfile: Specify the name of the property file containing properties to be
checked.

Constraint(s)

clock (Optional): Use this constraint to specify clock signals in a design.

Messages and Suggested Fix

The following message appears if the specified property file contains
issues:

[ERROR] Some Assertions specified in property file (<prop-file-
name>) not found in design. Refer '<error-log>' for more
details

Potential Issues
This violation appears if your design does not contain assertions that are
mentioned in the property file specified by the propfile parameter.

This may happen if the design or the design view has changed due to
changes in the commands of SpyGlass Auto Verify solution. As a result, the
assertions specified in the property file become invalid in the context of the
changed design.
269
Synopsys, Inc.

Must Rules

Rules in SpyGlass Auto Verify
Consequences of Not Fixing
If you do not fix this violation, SpyGlass ignores the invalid assertions
specified in the property file.

How to Debug and Fix
To fix this violation, review the assertions reported in the
propfile_Assertion_<rule-name>.errorlog file and update them as per the
design.

Example Code and/or Schematic

Consider the following files specified for SpyGlass analysis:

// test.v

`define STATE1 2'b01
`define STATE2 2'b11
module fsm (input clk, rst, d1, d2,
sel, output out);
reg [1:0] state;
always @ (posedge clk or posedge rst)
if (rst)
state <= 2'b00;

else if (sel)
state <= `STATE1;

else
state <= `STATE2;

assign out = state[0] ? d1 : 1'bz;
assign out = state[1] ? d2 : 1'bz;

endmodule

Property file:

RuleName: Av_bus01
off Assertion FAILED test.v 16 "fsm" [out]
off Assertion FAILED test.v 16 "fsm" [out1]

RuleName: Av_bus02
270
Synopsys, Inc.

Must Rules

Rules in SpyGlass Auto Verify
off Assertion FAILED test.v 16 "fsm" [out]
off Assertion FAILED test.v 16 "fsm" [out2]

In the above example, assertions are specified in the property file for the
out1 and out2 nets for the Av_bus01 and Av_bus02 rules, respectively.

However out1 and out2 do not exist in the design. Therefore, the
Av_sanity01 rule reports a violation corresponding to each rule.

To fix this violation, review the propfile_Assertion_<rule-name>.errorlog file
corresponding to each rule and update the assertions to avoid any
mismatch with the design.

Default Severity Label

Error

Rule Group

Sanity

Report and Related Files

 propfile_Assertion_<rule-name>.errorlog
This file contains the details of incorrect assertions. Here, <rule-name>
refers to the rule that is not run due to invalid assertions.

 Auto Verify Central Report
271
Synopsys, Inc.

Must Rules

Rules in SpyGlass Auto Verify
Av_sanity02
Reports nets that have multiple drivers

When to Use

Use this rule during functional analysis to detect nets with multiple drivers.

Description

The Av_sanity02 rule reports non-tristate nets that have multiple drivers.

Such nets are considered as primary inputs for functional analysis.

Parameter(s)

None

Constraint(s)

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

 clock (Optional): Use this constraint to specify clock signals in a design.

 reset (Optional): Use this constraint to specify reset signals in a design.

Messages and Suggested Fix

The following message appears when a non-tristate net <net-name> is
present in a design with multiple drivers:

[WARNING] Net '<net-name>' is not tristate and has multiple
simultaneous drivers

Potential Issues
This violation appears if your design contains a non-tristate net with
multiple drivers.

Consequences of Not Fixing
Not applicable
272
Synopsys, Inc.

Must Rules

Rules in SpyGlass Auto Verify
How to Debug and Fix
To fix this violation, provide tristate nets in the design.

Example Code and/or Schematic

Consider the following figure:

FIGURE 41. Example of the Av_sanity02 rule violation

For the above example, the Av_sanity02 rule reports a violation because of
the presence of a non-tristate net with multiple drivers D1 and D2.

Schematic Details

The Av_sanity02 rule highlights the non-tristate net that has multiple
drivers.

Default Severity Label

Warning

Rule Group

Sanity

Reports and Related Files

Auto Verify Central Report
273
Synopsys, Inc.

Must Rules

Rules in SpyGlass Auto Verify
Av_sanity06
Reports issues found in the distributed computing flow

When to Use

Use this rule to detect issues in the distributed computing flow.

Description

The Av_sanity06 rule reports a violation in the following cases:
 If parse errors are found in the parallel file specified by the fv_parallelfile

parameter.
 If an error occurs while accessing any of the machines specified in the

parallel file.
 If there are insufficient number of licenses for the SpyGlass Auto Verify

solution.

Parameter(s)

fv_parallelfile: By default, this parameter is not set to any value. Specify a
configuration file to this parameter. This file is used for distributed runs
over several machines.

Constraint(s)

 set_case_analysis (Optional): Use this constraint to specify case analysis
conditions.

 clock (Optional): Use this constraint to specify clock signals in a design.

 reset (Optional): Use this constraint to specify reset signals in a design.

Message Details

Message 1

The following message appears if parse errors are found in the parallel file:

[SW01] [FATAL] Could not open parallel run file '<file-name>'

Potential Issues
This violation appears if there is any error in the parallel run file.

Consequences of Not Fixing
274
Synopsys, Inc.

Must Rules

Rules in SpyGlass Auto Verify
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix
To fix this violation, specify a correct parallel run file.

Message 2

The following message appears for an invalid login type:

[SW02] [FATAL] <type> is not a supported login type

Potential Issues
This violation appears if you specify an invalid login type in the parallel file.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix
To fix this violation, specify a correct login type.

Message 3

The following message appears if the value of the MAX_PROCESSES
keyword is equal to or less than 1 or if it is equal to or greater than 500:

[SW03] [FATAL] Value of MAX_PROCESSES should be between 1 and
500

Potential Issues
This violation appears if you specify an incorrect value for the
MAX_PROCESSES keyword in the parallel file.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix
To fix this violation, specify a value between 1 and 500 for the
MAX_PROCESSES keyword.

Message 4

The following message appears for the unsuccessful LSF run because of
275
Synopsys, Inc.

Must Rules

Rules in SpyGlass Auto Verify
invalid options in the LSF command:

[SW04] [FATAL] Lsf run with specified command is not successful

Potential Issues
This violation appears if you specify invalid options with the LSF command
in the parallel file.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix
To fix this violation, specify correct options for the LSF command.

Message 5

The following message appears if process count is not a positive integer
value in the parallel file:

[SW05] [FATAL] Process count in parallel file must be a
positive integer

Potential Issues
This violation appears if you specify an invalid integer value to the process
count in the parallel file. The process count accepts only a positive integer
value.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix
To fix this violation, specify a positive integer value for the process count in
the parallel file.

Message 6

The following message appears if none of the specified machines in the
parallel file is accessible:

[SW06] [FATAL] None of the machines specified in parallel file
is accessible

Potential Issues
276
Synopsys, Inc.

Must Rules

Rules in SpyGlass Auto Verify
This violation appears if none of the machines specified in a parallel file is
accessible.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix
To fix this violation, specify the names of accessible machines in the
parallel file.

Message 7

The following message appears to report the machines that are not
accessible:

[SW07] [FATAL] Machines '<machines>' are not accessible

Potential Issues
This violation appears if none of the machines specified in a parallel file is
accessible.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix
To fix this violation, specify the names of accessible machines in the
parallel file.

Message 8

The following message appears if the LOGIN_TYPE keyword is not
specified in the parallel file:

[SW08] [FATAL] 'LOGIN_TYPE' is not specified in parallel file

Potential Issues

This violation appears if you do not specify the LOGIN_TYPE keyword in
the parallel file.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix
277
Synopsys, Inc.

Must Rules

Rules in SpyGlass Auto Verify
To fix this violation, specify the LOGIN_TYPE keyword in the parallel file.

Message 9

The following message appears if the MAX_PROCESSES keyword is not
specified in the parallel file:

[SW09] [FATAL] 'MAX_PROCESSES' is not specified in parallel
file

Potential Issues

This violation appears if you do not specify the MAX_PROCESSES keyword
in the parallel file.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix

To fix this violation, specify the MAX_PROCESSES keyword in the parallel
file.

Message 10

The following message appears if the MACHINES keyword is not specified
for the rsh/ssh login type in the parallel file:

[SW10] [FATAL] 'MACHINES' not specified for login type rsh/ssh
in parallel file

Potential Issues

This violation appears if you do not specify the MACHINES keyword for the
rsh/ssh login type in the parallel file.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix

To fix this violation, specify the MACHINES keyword for the rsh/ssh login
type in the parallel file.
278
Synopsys, Inc.

Must Rules

Rules in SpyGlass Auto Verify
Message 11

The following message appears if an error occurs while running the lsf
bsub command:

[SW11] [FATAL] Error executing lsf bsub command

Potential Issues

This violation appears if you specify invalid options, such as -I, -Ip, and
-Is with the bsub command. These options are not allowed with the
LSF_CMD keyword in the parallel file.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix

To fix this violation, specify valid the options with the bsub command.

Message 12

The following message appears to indicate a missing solver executable:

[SW12] [FATAL] Solver executable '<executable>' not found

Potential Issues
This violation appears if the solver executable file is not found in the
SPYGLASS_HOME/lib/ path of SpyGlass release area. The name of this file is
of the format solver.<platform>. For example, solver.SunOS5.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix
To fix this violation, add the missing solver executable file in the
SPYGLASS_HOME/lib/ path of SpyGlass release area.

Message 13

The following message appears to indicate missing licenses of SpyGlass
Auto Verify solution for distributed computing flow:

[SW13] [FATAL] No Advanced Lint licenses available for
279
Synopsys, Inc.

Must Rules

Rules in SpyGlass Auto Verify
Distributed Computing Flow

Potential Issues
This violation appears if you do not specify licenses for the SpyGlass Auto
Verify solution.

Consequences of Not Fixing
If you do not fix this violation, SpyGlass run does not proceed further.

How to Debug and Fix
To fix this violation, provide licenses of SpyGlass Auto Verify solution for
the distributed computing flow.

Message 14

The following message appears to indicate inadequate SpyGlass Auto
Verify licenses available for distributed computing flow:

[SW14] [WARNING] Only '<num>' Advanced Lint licenses available
for Distributed Computing

Potential Issues
This violation appears if you specify insufficient number of licenses for
SpyGlass Auto Verify solution.

Consequences of Not Fixing

If n licenses for SpyGlass Auto Verify solution are available, only n-1
licenses are used for distributed computing as one of the license is used by
the main process.

How to Debug and Fix
To fix this violation, specify adequate number of licenses of SpyGlass Auto
Verify solution for distributed computing flow.

Message 15

The following message appears if you specify an invalid option
<option-name> in the LSF_CMD keyword in a parallel file:

[SW15] [WARNING] Unsupported option '<option-name>' specified
in LSF_CMD field is ignored for Distributed Computing Flow
280
Synopsys, Inc.

Must Rules

Rules in SpyGlass Auto Verify
Potential Issues

This violation appears if you specify an invalid option <option-name> in
the LSF_CMD keyword in a parallel file.

Consequences of Not Fixing
If you do not fix this violation, distributed computing does not run.

How to Debug and Fix

To fix this violation, specify supported options with the LSF_CMD keyword
in a parallel file.

Example Code and/or Schematic

Not applicable

Default Severity Label

Fatal | Warning

Rule Group

Sanity

Reports and Related Files

Auto Verify Central Report
281
Synopsys, Inc.

Must Rules

Rules in SpyGlass Auto Verify
SGDC_av_meta_design_hier01
Checks the presence of constraint meta_design_hier

When to Use

Use this rule to check if the meta_design_hier constraint is specified
in a VHDL or mixed design that has the av_dump_assertions parameter set
to sva.

Description

The SGDC_av_meta_design_hier01 rule reports the absence of the
meta_design_hier constraint when the av_dump_assertions parameter
is set to sva in a VHDL or mixed design.

If the meta_design_hier constraint is not specified for a top module,
the rule uses the default name TB.DESIGN_INST for <testbench
name>.<top-module-name>.

Parameter(s)

 av_dump_assertions: The default value is “”. Set this parameter to sva to
generate SystemVerilog Assertions (SVA) for partially-proved assertions
of rule Av_staticnet01 and Av_deadcode01.

Constraint(s)

 meta_design_hier: Use this constraint to specify a top-level design and a
hierarchical design for VHDL and mixed designs.

Messages and Suggested Fix

The following message appears if you do not specify the meta_design_hier
constraint when the av_dump_assertions parameter is set to sva in a VHDL
or mixed design:

[ERROR] Constraint "meta_design_hier" not specified for design
'<design-name>'. Default test-bench and design name will be
used in generated SVA

Potential Issues
282
Synopsys, Inc.

Must Rules

Rules in SpyGlass Auto Verify
This violation appears if you do not specify the meta_design_hier constraint
when the av_dump_assertions parameter is set to sva in a VHDL or mixed
design.

Consequences of Not Fixing
If you do not fix this violation, the SGDC_av_meta_design_hier01 rule uses
the default name TB.DESIGN_INST for <testbench name>.<top-
module-name>.

Because of the default test bench and design name used in generated
assertions, syntax errors may appear during the simulation run.

How to Debug and Fix
To fix this violation, perform the following actions:
 Specify the meta_design_hier constraint when the av_dump_assertions

parameter is set to sva in a VHDL or mixed design.

 Replace the default names with the actual test bench and design
instance name before running simulation.

Example Code and/or Schematic

Not applicable

Default Severity Label

Error

Rule Group

Non-fatal must rule

Reports and Related Files

Auto Verify Central Report
283
Synopsys, Inc.

SGDC_fsm_setup01

Rules in SpyGlass Auto Verify
SGDC_fsm_setup01

When to Use

Use this rule to perform sanity checks on the fsm constraint.

Prerequisites

Specify the fsm constraint.

Description

The SGDC_fsm_setup01 rule reports different types of issues in the fsm
constraint. For information on the types of issues reported, see Messages
and Suggested Fix.

Parameter(s)

None

Constraint(s)

fsm (Mandatory): Use this constraint to specify FSM details in a design.

Messages and Suggested Fix

Message 1

The following message appears:

[WARNING] Fsm constraint with logical name '<fsm-name>' ignored
(Reason: Missing module name and state variable in the first
specification)

Potential Issues
This violation appears if the first fsm constraint specified with a logical
name (-name) is not specified with a module name (-module) and a
state variable (-state_variables).

See Example 1 - Missing Module and State Variable for an FSM.

Consequences of Not Fixing
The reported constraint is ignored from SpyGlass analysis.
284
Synopsys, Inc.

SGDC_fsm_setup01

Rules in SpyGlass Auto Verify
How to Debug and Fix

To fix this violation, specify a module (-module) and a state variable
(-state_variables) for the reported fsm constraint.

Message 2

The following message appears:

[WARNING] Fsm constraint with logical name '<fsm-name>' mapped
to state variable '<state-variable>' of module '<module-name>'
(All previous specifications of Fsm constraints with same
logical name ignored)

Potential Issues

This violation appears if the same logical name (-name) is specified to
multiple fsm constraints of different module names (-module) or state
variables (-state_variables).

See Example 2 - Same Logical Name for Multiple FSMs.

Consequences of Not Fixing
If you do not fix this violation, all the fsm constraints for which both the
following conditions hold true are ignored from SpyGlass analysis:
 fsm constraints that have the same logical name as that of the reported

constraint.
 fsm constraints that are declared before the reported constraint

How to Debug and Fix

To fix this violation, use a unique combination of logical name (-name),
module name (-module), and state variables (-state_variables) to
uniquely identify an FSM.

Message 3

The following message appears:

[WARNING] State value '<state-value>' specified in
-state_values field of Fsm constraint with state variable
'<state-variable>' (Module: <module-name>) ignored (Reason:
Invalid state value)
285
Synopsys, Inc.

SGDC_fsm_setup01

Rules in SpyGlass Auto Verify
Potential Issues
This violation appears if an invalid state value is specified to the
-state_values argument of the fsm constraint.

See Example 3 - Invalid State Value of an FSM.

Consequences of Not Fixing
If you do not fix this violation, the reported constraint is ignored from
SpyGlass analysis.

How to Debug and Fix

Specify a valid state to the -state_values argument of the reported
fsm constraint.

Message 4

The following message appears:

[WARNING] State value '<state-value>' specified in
-state_values field of Fsm constraint with state variable
'<state-variable>' (Module: <module-name>) is to be
<appended|removed> (All previous specification for same state
value ignored)

Potential Issues

This violation appears if a state value specified by the -state_values
argument of the fsm constraint is already specified to be removed (-
remove) or appended (-append) by a previous fsm constraint.

See Example 4 - FSMs with Duplicate State Values.

Consequences of Not Fixing
If you do not fix this violation then other than the reported fsm constraint,
all the fsm constraints declared before the reported constraint with the
same state value are ignored from SpyGlass analysis.

How to Debug and Fix
Remove the fsm constraint with duplicate state value.

Message 5

The following message appears:
286
Synopsys, Inc.

SGDC_fsm_setup01

Rules in SpyGlass Auto Verify
[WARNING] Transition specified with state value '<state-value>'
in -from_state_value field of Fsm constraint with state
variable '<state-variable>' (Module: <module-name>) ignored
(Reason: Invalid state value)

Potential Issues
This violation appears if an invalid state value is specified to the
-from_state_value argument of the fsm constraint.

See Example 5 - Invalid State Value To the -from_state_value Argument.

Consequences of Not Fixing
If you do not fix this violation, the reported constraint is ignored from
SpyGlass analysis.

How to Debug and Fix

Specify a valid state to the -from_state_value argument of the
reported fsm constraint.

Message 6

The following message appears:

[WARNING] Transition specified with state value '<state-value>'
in -to_state_value field of Fsm constraint with state variable
'<state-variable>' (Module: <module-name>) ignored (Reason:
Invalid state value)

Potential Issues

This violation appears if an invalid state value is specified to the -
to_state_value argument of the fsm constraint.

See Example 6 - Invalid State Value To the -to_state_value Argument.

Consequences of Not Fixing
If you do not fix this violation, the reported constraint is ignored from
SpyGlass analysis.

How to Debug and Fix

Specify a valid state to the -to_state_value argument of the reported
fsm constraint.
287
Synopsys, Inc.

SGDC_fsm_setup01

Rules in SpyGlass Auto Verify
Message 7

The following message appears:

[WARNING] Transition specified from state value '<state-
value1>' to state value '<state-value2>' for Fsm constraint
with state variable '<state-variable>' (Module: <module-name>)
is to be <removed|appended> (All previous specification for
same transition ignored)

Potential Issues

This violation appears if a state value specified by the -state_values
argument of the fsm constraint is already specified to be removed (-
remove) or appended (-append) by a previous fsm constraint.

See Example 7 - FSMs with Duplicate State Values.

Consequences of Not Fixing
If you do not fix this violation then other than the reported fsm constraint,
all the fsm constraints declared before the reported constraint with the
same state value are ignored from SpyGlass analysis.

How to Debug and Fix
Remove the fsm constraint with duplicate state value.

Message 8

The following message appears:

[WARNING] Fsm constraint with state variable '<state-variable>'
(Module: <module-name>) completely ignored (Reason: State
variable not found in the module)

Potential Issues
This violation appears if the state variable specified by the
-state_variables argument of the fsm constraint is missing in the
design.

See Example 8 - Missing State Variable.

Consequences of Not Fixing
The reported constraint is ignored from SpyGlass analysis.

How to Debug and Fix
288
Synopsys, Inc.

SGDC_fsm_setup01

Rules in SpyGlass Auto Verify
Specify a valid state variable that exists in the design.

Message 9

The following message appears:

[WARNING] Fsm constraint with state variable '<state-variable>'
(Module: <module-name>) partially ignored (Reason: State Value
'<state-value>' specified to be appended is SpyGlass auto-
detected or duplicate user-specification)

Potential Issues
This violation appears if the FSM state value to be added is automatically
detected by SpyGlass or different width state values evaluating to the
same logical value are specified by the user.

See Example 9 - State Variable Automatically Detected By SpyGlass.

Consequences of Not Fixing
The reported constraint is partially ignored from SpyGlass analysis.

-state_values can take multiple inputs, but this violation is reported
only for individual input. Therefore, the constraint is partially ignored for a
particular state value.

How to Debug and Fix
Remove the reported state variable from the FSM.

Message 10

The following message appears:

[WARNING] Fsm constraint with state variable '<state-variable>'
(Module: <module-name>) partially ignored (Reason: State Value
'<state-value>' specified to be removed is not SpyGlass auto-
detected or duplicate user-specification)

Potential Issues
This violation appears if the FSM state value to be removed is not
automatically detected by SpyGlass or different width state values
evaluating to the same logical value are specified by the user.

See Example 10 - State Variable Not Detected Automatically By SpyGlass.
289
Synopsys, Inc.

SGDC_fsm_setup01

Rules in SpyGlass Auto Verify
Consequences of Not Fixing
The reported constraint is partially ignored from SpyGlass analysis.

-state_values can take multiple inputs, but this violation is reported
only for individual input. Therefore, the constraint is partially ignored for a
particular state value.

How to Debug and Fix
The reported constraint is partially ignored from SpyGlass analysis.

How to Debug and Fix
Remove the reported state variable from the FSM.

Message 11

The following message appears:

[WARNING] Fsm constraint with state variable '<state-variable>'
(Module: <module-name>) partially ignored (Reason: Transition
from state value '<state-value1>' to state value '<state-
value2>' specified to be appended is SpyGlass auto-detected or
duplicate user-specification)

Potential Issues
This violation appears if the FSM transition to be added is automatically
detected by SpyGlass or different width state values of transition
evaluating to the same logical transition are specified by the user.

See Example 11 - FSM Transition Automatically Detected By SpyGlass.

Consequences of Not Fixing
The reported constraint is partially ignored from SpyGlass analysis.

There can be multiple transitions, but this violation is reported only for
individual transition. Therefore, the constraint is partially ignored for a
particular transition.

How to Debug and Fix
Remove the reported FSM transition from the fsm constraint.
290
Synopsys, Inc.

SGDC_fsm_setup01

Rules in SpyGlass Auto Verify
Message 12

The following message appears:

[WARNING] Fsm constraint with state variable '<state-variable>'
(Module: <module-name>) partially ignored (Reason: Transition
from state value '<state-value1>' to state value '<state-
value2>' specified to be removed is not SpyGlass auto-detected
or duplicate user-specification)

Potential Issues
This violation appears if the FSM transition to be removed is not
automatically detected by SpyGlass or different width state values of
transition evaluating to the same logical transition are specified by the
user.

See Example 12 - FSM Transition Not Automatically Detected By spyGlass.

Consequences of Not Fixing
The reported constraint is partially ignored from SpyGlass analysis.

There can be multiple transitions, but this violation is reported only for
individual transition. Therefore, the constraint is partially ignored for a
particular transition.

How to Debug and Fix
Remove the reported FSM transition from the fsm constraint.

Message 13

The following message appears:

[WARNING] Fsm constraint with logical name '<fsm-name>' mapped
to state variable '<state-variable>' of module '<module-name>'
(All previous specifications of Fsm constraints with same state
variable and module name ignored)

Potential Issues
This violation appears if duplicate fsm constraint specifications with the
same state variable and module.

See Example 13 - FSM Logical Name Mapped to a State Variable.

Consequences of Not Fixing
The last specification is considered and all the remaining duplicate
291
Synopsys, Inc.

SGDC_fsm_setup01

Rules in SpyGlass Auto Verify
specifications are ignored from SpyGlass analysis.

How to Debug and Fix
Remove duplicate fsm constraint specifications with the same state variable
and module.

Message 14

The following message appears:

[WARNING] Fsm constraint ignored (Reason: Missing logical name,
module name and state variable)

Potential Issues

This violation appears if an fsm constraint is defined without the -name
argument or without the combination of the -module and
-state_variables arguments.

See Example 14 - Missing Mandatory Arguments.

Consequences of Not Fixing
The reported constraints are ignored from SpyGlass analysis.

How to Debug and Fix

Specify either the -name argument or the combination of the -module
and -state_variables arguments to the fsm constraint.

Message 15

The following message appears:

[WARNING] Fsm constraint with state variable '<state-variable>'
(Module: <module-name>) completely ignored (Reason: All state
variables specified in constraint are not outputs of sequential
element)

Potential Issues
This violation appears if all the state variables specified to an fsm constraint
are not the output of any sequential element.

See Example 15 - FSM State Variable is Not the Output of a Sequential Element.

Consequences of Not Fixing
The reported constraints are ignored from SpyGlass analysis.
292
Synopsys, Inc.

SGDC_fsm_setup01

Rules in SpyGlass Auto Verify
How to Debug and Fix

Update the -state_variables argument of the reported fsm constraint
to specify the state variables that are the output of a sequential element.

Message 16

The following message appears:

[WARNING] Fsm constraint with state variable '<state-variable>'
(Module: <module-name>) completely ignored (Reason: FSM
specified to be removed is not auto-detected by SpyGlass)

Potential Issues
This violation appears if the fsm constraint is ignored from SpyGlass
analysis because the specified FSM is not automatically detected by
SpyGlass.

Consequences of Not Fixing
The reported constraint is ignored from SpyGlass analysis.

How to Debug and Fix
Remove the reported fsm constraint.

Message 17

The following message appears:

[WARNING] Fsm constraint with state variable '<state-variable>'
(Module: <module-name>) completely ignored (Reason: FSM
specified to be added has no valid state or transition
specification)

Potential Issues
This violation appears if all the state variables specified to an fsm constraint
is ignored from SpyGlass analysis because the specified fsm constraint does
not have a valid state/transition specification.
293
Synopsys, Inc.

SGDC_fsm_setup01

Rules in SpyGlass Auto Verify
Consequences of Not Fixing
The reported constraint is ignored from SpyGlass analysis.

How to Debug and Fix
Add a valid state/transition specification to the reported fsm constraint.

Example Code and/or Schematic

This section has the following examples:
 Example 1 - Missing Module and State Variable for an FSM

 Example 2 - Same Logical Name for Multiple FSMs

 Example 3 - Invalid State Value of an FSM

 Example 4 - FSMs with Duplicate State Values

 Example 5 - Invalid State Value To the -from_state_value Argument

 Example 6 - Invalid State Value To the -to_state_value Argument

 Example 7 - FSMs with Duplicate State Values

 Example 8 - Missing State Variable

 Example 9 - State Variable Automatically Detected By SpyGlass

 Example 10 - State Variable Not Detected Automatically By SpyGlass

 Example 11 - FSM Transition Automatically Detected By SpyGlass

 Example 12 - FSM Transition Not Automatically Detected By spyGlass

 Example 13 - FSM Logical Name Mapped to a State Variable

 Example 14 - Missing Mandatory Arguments

 Example 15 - FSM State Variable is Not the Output of a Sequential Element

Example 1 - Missing Module and State Variable for an FSM

Consider the following constraints:

fsm -name myFsm_3 -remove
fsm -name myFsm_3 -module block_fsm -state_variables state

For the above specifications, the SGDC_fsm_setup01 rule reports Message 1
because of a missing module name and a state variable in the first
294
Synopsys, Inc.

SGDC_fsm_setup01

Rules in SpyGlass Auto Verify
constraint specification.

Example 2 - Same Logical Name for Multiple FSMs

Consider the following constraints:

fsm -name myFsm_3 -module top -state_variables state
-from_state_value 10 -to_state_value 11

fsm -name myFsm_3 -module block_fsm -state_variables state
-remove

For the above specifications, the SGDC_fsm_setup01 rule reports
Message 2, as shown below:

Fsm constraint with logical name 'myFsm_3' mapped to state
variable 'state' of module 'block_fsm' (All previous
specifications of Fsm constraints with same logical name
ignored)

Example 3 - Invalid State Value of an FSM

Consider the following constraints:

fsm -name myFsm_1 -module Fsm -state_variables state1[2]
state1[1] state1[0]

fsm -name myFsm_1 -state_values d2 d4

fsm -name myFsm_1 -from_state_value d7 -to_state_value d3

For the above specifications, the SGDC_fsm_setup01 rule reports the
following messages (Message 3), as shown below:

State value 'd2' specified in -state_values field of Fsm
constraint with state variable 'state1[2] state1[1] state1[0]'
(Module: Fsm) ignored (Reason: Invalid state value)

State value 'd4' specified in -state_values field of Fsm
constraint with state variable 'state1[2] state1[1] state1[0]'
(Module: Fsm) ignored (Reason: Invalid state value)
295
Synopsys, Inc.

SGDC_fsm_setup01

Rules in SpyGlass Auto Verify
Example 4 - FSMs with Duplicate State Values

Consider the following constraints:

fsm -name myFsm_1 -module Fsm -state_variables state1[2]
state1[1] state1[0] -state_values 010

fsm -name myFsm_1 -state_values 111

fsm -name myFsm_1 -state_values 111 -remove

For the above specifications, the SGDC_fsm_setup01 rule reports the
following message (Message 4):

State value '111' specified in -state_values field of Fsm
constraint with state variable 'state1[2] state1[1] state1[0]'
(Module: Fsm) is to be removed (All previous specification for
same state value ignored)

Example 5 - Invalid State Value To the -from_state_value Argument

Consider the following constraints:

fsm -name myFsm_1 -module Fsm -state_variables state1[2]
state1[1] state1[0]

fsm -name myFsm_1 -state_values d2 d4

fsm -name myFsm_1 -from_state_value d7 -to_state_value d3

For the above specifications, the SGDC_fsm_setup01 rule reports the
following message (Message 5):

Transition specified with state value 'd7' in -from_state_value
field of Fsm constraint with state variable 'state1[2]
state1[1] state1[0]' (Module: Fsm) ignored (Reason: Invalid
state value)

Example 6 - Invalid State Value To the -to_state_value Argument

Consider the following constraints:

fsm -name myFsm_1 -module Fsm -state_variables state1[2]
state1[1] state1[0]
296
Synopsys, Inc.

SGDC_fsm_setup01

Rules in SpyGlass Auto Verify
fsm -name myFsm_1 -state_values "AB"

fsm -name myFsm_1 -state_values 11ABCDEF0

fsm -name myFsm_1 -from_state_value FF -to_state_value 110

fsm -name myFsm_1 -from_state_value 110 -to_state_value 250A

fsm -name myFsm_1 -from_state_value 110 -to_state_value S456

fsm -name myFsm_1 -from_state_value F1 -to_state_value 110

fsm -name myFsm_1 -from_state_value F1 -to_state_value
WACHIRA

For the above specifications, the SGDC_fsm_setup01 rule reports the
following message (Message 6):

Transition specified with state value '250A' in -to_state_value
field of Fsm constraint with state variable 'state1[2]
state1[1] state1[0]' (Module: Fsm) ignored (Reason: Invalid
state value)

Transition specified with state value 'S456' in -to_state_value
field of Fsm constraint with state variable 'state1[2]
state1[1] state1[0]' (Module: Fsm) ignored (Reason: Invalid
state value)

Example 7 - FSMs with Duplicate State Values

Consider the following constraints:

fsm -name myFsm_1 -module Fsm -state_variables state1[2]
state1[1] state1[0]

fsm -name myFsm_1 -from_state_value 000 -to_state_value 111

fsm -name myFsm_1 -from_state_value 000 -to_state_value 111
-remove

For the above specifications, the SGDC_fsm_setup01 rule reports the
following message (Message 7):

Transition specified from state value '000' to state value
'111' for Fsm constraint with state variable 'state1[2]
state1[1] state1[0]' (Module: Fsm) is to be removed (All
297
Synopsys, Inc.

SGDC_fsm_setup01

Rules in SpyGlass Auto Verify
previous specification for same transition ignored)

Example 8 - Missing State Variable

Consider the following constraints:

fsm -name myFsm_3 -module block_fsm -state_variables
s_t_a_t_e -remove

For the above specifications, the SGDC_fsm_setup01 rule reports the
following message (Message 8):

Fsm constraint with state variable 's_t_a_t_e' (Module:
block_fsm) completely ignored (Reason: State variable not found
in the module)
298
Synopsys, Inc.

SGDC_fsm_setup01

Rules in SpyGlass Auto Verify
Example 9 - State Variable Automatically Detected By SpyGlass

Consider the following files specified for SpyGlass analysis:

For the above example, the SGDC_fsm_setup01 rule reports the following
message (Message 9):

Fsm constraint with state variable 'state1[2] state1[1]
state1[0]' (Module: Fsm) partially ignored (Reason: State Value
'010' specified to be appended is auto-detected by SpyGlass)

`define S0 3'b001
`define S1 3'b010
`define S2 3'b100
`define S3 3'b000
module Fsm(clk1, clk2,ctl, rst, state,

 input clk1, clk2,ctl, rst;
 output [3:0] state, state1;
 output out;
 reg [3:0] state, state1;
 reg a, b, out ;
 always@(posedge clk1)
 b <= 0;
 always@(posedge clk2)
 a <= 1;

 always@(posedge clk2 or negedge rst)
 if(!rst)
 begin
 state1 <= `S0;
 out <= 0;
 end
 else begin
 case({state1[2],state1[1],state1[0]})
 `S0 : state1 <= `S1;
 `S1 : out <= 1;
 `S2 : if (ctl)
 state1 <= `S1;
 `S3 : begin
 if (ctl)
 state1 <= `S2;
 else
 state1 <= `S0;
 end
 default : ; // Do nothing
 endcase
 end
 endmodule

input_RTL.v

fsm -name myFsm_1 -module Fsm -state_variables

fsm -name myFsm_1 -module Fsm -state_variables

fsm -name myFsm_1 -module Fsm -state_variables

state1, out);

SGDC
....
...

 state1[2] state1[1] state1[0]

 state1[2] state1[1] state1[0] -state_values111

 state1[2] state1[1] state1[0] -state_values001
 -remove

 -state_values 010 1010

299
Synopsys, Inc.

SGDC_fsm_setup01

Rules in SpyGlass Auto Verify
Example 10 - State Variable Not Detected Automatically By SpyGlass

Consider the following constraints:

fsm -name myFsm_3 -module block_fsm -state_variables state
-remove

fsm -name myFsm_3 -state_values 11

fsm -name myFsm_3 -state_values 00 100 -remove

fsm -name myFsm_3 -from_state_value 11 -to_state_value 01

fsm -name myFsm_3 -from_state_value 10 -to_state_value 10
-remove

fsm -name myFsm_4 -module new_fsm -state_variables state3
-remove

fsm -name myFsm_4 -state_values 11

fsm -name myFsm_4 -state_values 01 -remove

fsm -name myFsm_4 -from_state_value 10 -to_state_value 11
-append

fsm -name myFsm_4 -from_state_value 00 -to_state_value 00
-remove

For the above specifications, the SGDC_fsm_setup01 rule reports the
following messages (Message 10):

Fsm constraint with state variable 'state' (Module: block_fsm)
partially ignored (Reason: State Value '00' specified to be
removed is not auto-detected by SpyGlass)

Fsm constraint with state variable 'state3' (Module: new_fsm)
partially ignored (Reason: State Value '01' specified to be
removed is not auto-detected by SpyGlass)

Example 11 - FSM Transition Automatically Detected By SpyGlass

Consider the following constraints:

fsm -name myFsm_3 -module block_fsm -state_variables state

fsm -name myFsm_3 -from_state_value 10 -to_state_value 10
300
Synopsys, Inc.

SGDC_fsm_setup01

Rules in SpyGlass Auto Verify
fsm -name myFsm_3 -from_state_value 110 -to_state_value 010

fsm -name myFsm_4 -module new_fsm -state_variables state3

fsm -name myFsm_4 -from_state_value 00 -to_state_value 00

For the above specifications, the SGDC_fsm_setup01 rule reports the
following messages (Message 11):

Fsm constraint with state variable 'state' (Module: block_fsm)
partially ignored (Reason: Transition from state value '10' to
state value '10' specified to be appended is auto-detected by
SpyGlass)

Fsm constraint with state variable 'state3' (Module: new_fsm)
partially ignored (Reason: Transition from state value '00' to
state value '00' specified to be appended is auto-detected by
SpyGlass)

Example 12 - FSM Transition Not Automatically Detected By spyGlass

Consider the following constraints:

fsm -name myFsm_3 -module block_fsm -state_variables state

fsm -name myFsm_3 -from_state_value 11 -to_state_value 01
-remove

fsm -name myFsm_3 -from_state_value 111 -to_state_value 101
-remove

fsm -name myFsm_4 -module new_fsm -state_variables state3

fsm -name myFsm_4 -from_state_value 10 -to_state_value 11
-remove

For the above specifications, the SGDC_fsm_setup01 rule reports the
following messages (Message 12):

Fsm constraint with state variable 'state' (Module: block_fsm)
partially ignored (Reason: Transition from state value '11' to
state value '01' specified to be removed is not auto-detected
by SpyGlass)

Fsm constraint with state variable 'state3' (Module: new_fsm)
partially ignored (Reason: Transition from state value '10' to
301
Synopsys, Inc.

SGDC_fsm_setup01

Rules in SpyGlass Auto Verify
state value '11' specified to be removed is not auto-detected
by SpyGlass)

Example 13 - FSM Logical Name Mapped to a State Variable

Consider the following constraints:

fsm -name myFsm_1 -module Fsm -state_variables state

fsm -name myFsm_2 -module Fsm -state_variables state

For the above specifications, the SGDC_fsm_setup01 rule reports the
following messages (Message 13):

Fsm constraint with logical name 'myFsm_2' mapped to state
variable 'state' of module 'Fsm' (All previous specifications
of Fsm constraints with same state variable and module name
ignored)

Example 14 - Missing Mandatory Arguments

Consider the following constraints:

fsm

fsm -remove

fsm -append

fsm -state_values 001

fsm -state_values 001 -remove

fsm -state_values 001 -append

fsm -from_state_value 001 -to_state_value 110

fsm -from_state_value 001 -to_state_value 110 -append

fsm -from_state_value 001 -to_state_value 110 -remove

For each of the above specifications, the SGDC_fsm_setup01 rule reports
the following message (Message 14):

Fsm constraint ignored (Reason: Missing logical name, module
302
Synopsys, Inc.

SGDC_fsm_setup01

Rules in SpyGlass Auto Verify
name and state variable)

Example 15 - FSM State Variable is Not the Output of a Sequential
Element

Consider the following constraints:

fsm -name myFsm_1 -module Fsm -state_variables sys_if_state

For the above specification, the SGDC_fsm_setup01 rule reports the
following messages (Message 15):

Fsm constraint with state variable 'sys_if_state' (Module: Fsm)
completely ignored (Reason:Is Not All state variables
specified in constraint are not outputs of sequential element)

Default Severity Label

Warning

Reports and Related Files

None
303
Synopsys, Inc.

SGDC_fsm_setup01

Rules in SpyGlass Auto Verify
304
Synopsys, Inc.

The OVL Support
This section describes the OVL assertions as checked by the Av_ovl01 rule.

It covers the following topics:
 Common Assertion Arguments

 OVL Assertions
305
Synopsys, Inc.

Common Assertion Arguments

The OVL Support
Common Assertion Arguments
SpyGlass Auto Verify solution supports both OVL 1.0 and OVL 2.0. The
following table lists commonly used OVL parameters:

NOTE: In OVL 2.0, the flag parameter has been renamed to
action_on_new_start.

The following table lists the commonly used OVL ports:

Parameters Purpose
severity_level Severity of the failure with default value of 0.
options Vendor options. Currently, the only supported option is

options=1, which defines the assertion as a constraint on
formal tools. The default value is options=0, or no options
specified.
Note: In OVL 2.0, the options parameter has been renamed
to property_type.

msg Error message that will be printed if the assertion fires.

Ports Purpose
clk Triggering or clocking event that monitors the assertion.
reset_n Signal indicating completed initialization (for example, a

local copy of reset_n of a global reference to reset_n).
test_expr Expression being verified at the positive edge of clk.
306
Synopsys, Inc.

OVL Assertions

The OVL Support
OVL Assertions
This section describes the following commands:
assert_always assert_always_on_edge assert_change
assert_cycle_sequence assert_decrement assert_delta
assert_even_parity assert_fifo_index assert_frame
assert_handshake assert_implication assert_increment
assert_never assert_next assert_no_overflow
assert_no_transition assert_no_underflow assert_odd_parity
assert_one_cold assert_one_hot assert_proposition
assert_quiescent_state assert_range assert_time
assert_transition assert_unchange assert_width
assert_win_change assert_win_unchange assert_window
assert_zero_one_hot
307
Synopsys, Inc.

OVL Assertions

The OVL Support
assert_always

Declaration

assert_always
[#(severity_level, options, msg)]
inst_name(clk, reset_n, test_expr);

SpyGlass Handling

The Av_ovl01 rule reports test expressions test_expr that are not always
evaluated TRUE at every positive edge of the triggering event or clock clk.
308
Synopsys, Inc.

OVL Assertions

The OVL Support
assert_always_on_edge

Declaration

assert_always_on_edge
[#(severity_level, edge_type, options, msg)]
inst_name (clk, reset_n, sampling_event, test_expr);

Where:
 edge_type:

 0: no edge

 1: positive edge

 2: negative edge

 3: any edge

 sampling_event: Expression that defines when to evaluate test_expr.
Transition of sampling_event must match transition selected by
edge_type in order for test_expr to be evaluated.

SpyGlass Handling

The Av_ovl01 rule reports test expressions test_expr that are not always
evaluated TRUE at the edge of an event.
309
Synopsys, Inc.

OVL Assertions

The OVL Support
assert_change

Declaration

assert_change
 [#(severity_level, width, num_cks, flag, options, msg)]
inst_name(clk, reset_n, start_event, test_expr);

Where:
 width: width of test expression test_expr

 num_cks: is the number of cycles, from a start signal activation, within
which the test expression is supposed to change value

 flag:

 0: Ignore any subsequent start while monitoring the test signal
starting from a first start signal (default).

 1: Each start signal occurrence will cause the monitoring to restart.

 2: The property fails when a start occurs while monitoring a test
signal due to a previous activation of the start signal.

 start_event: Event that triggers monitoring of the test_expr.

SpyGlass Handling

The Av_ovl01 rule reports those test expressions, test_expr, that do not
change value (0 to 1 or 1 to 0) within specified number of cycles, num_cks,
of a starting event.

Check the width within which the test expression has changed value for
correctness.
310
Synopsys, Inc.

OVL Assertions

The OVL Support
assert_cycle_sequence

Declaration

assert_cycle_sequence
 [#(severity_level, num_cks, necessary_condition, options,

msg)]
inst_name (clk, reset_n, event_sequence);

Where:
 num_cks: The number of cycles the analysis is covering.

The maximum number supported clock cycles is 64.
 necessary_condition: 2'b00, 2'b01, 2'b10, or 2'b11. The default is

2'b00.
 event_sequence: A Verilog or VHDL concatenation expression, where

each bit represents an event.

SpyGlass Handling

The Av_ovl01 rule reports user-defined sequencing of events
event_sequence that are not followed correctly during functional checking.

The assert_cycle_sequence assertion checks the following:

 If necessary_condition is 2'b00 or 2'b10:
This assertion checks to ensure that if all num_cks-1 first events of
event_sequence are true, then the last one (event_sequence[0])
must occur. The check is done in pipe-lined mode.

 If necessary_condition is 2'b01:
This assertion checks to ensure that once the first event
(event_sequence[num_cks-1]) occurs, all the remaining events
occur. The check is done in pipe-lined mode.

 If necessary_condition is 2'b11:
This assertion checks to ensure that once the first event
(event_sequence[num_cks-1]) occurs, all the remaining events
occur. The check is done in non pipe-lined mode.

NOTE: In pipe-lined mode, the first events are checked repeatedly for a match. If a new
match is found, a check is started again.
311
Synopsys, Inc.

OVL Assertions

The OVL Support
assert_decrement

Declaration

assert_decrement
[#(severity_level, width, value, options, msg)]
inst_name(clk, reset_n, test_expr);

Where:
 width: width of test expression test_expr

 value: The value by which the test_expr is supposed to decrease.

SpyGlass Handling

The Av_ovl01 rule reports test expressions test_expr whose actual value is
decreased by any number other than the specified decrement value.
312
Synopsys, Inc.

OVL Assertions

The OVL Support
assert_delta

Declaration

assert_delta
[#(severity_level, width, min, max, options, msg)]
inst_name(clk, reset_n, test_expr);

Where:
 width: width of test expression test_expr

 min: Minimum change in value

 max: Maximum change in value

SpyGlass Handling

The Av_ovl01 rule reports test expressions test_expr whose actual value
changes by a number outside the specified range.
313
Synopsys, Inc.

OVL Assertions

The OVL Support
assert_even_parity

Declaration

assert_even_parity
[#(severity_level, width, options, msg)]
inst_name (clk, reset_n, test_expr);

Where:
 width: width of test expression test_expr

SpyGlass Handling

The Av_ovl01 rule reports test expressions test_expr where odd number of
bits are asserted at any time.
314
Synopsys, Inc.

OVL Assertions

The OVL Support
assert_fifo_index

Declaration

assert_fifo_index
[#(severity_level, depth, push_width, pop_width, options,

msg)]
inst_name(clk, reset_n, push, pop);

Where:
 depth: Depth of the FIFO, which is the maximum number of pushes

allowed
 push_width: The width of the push signal. Maybe greater than one if

multiple pushes are allowed in one cycle
 pop_width: The width of the pop signal. Maybe greater than one if

multiple pops are allowed in one cycle
 push: The value of push indicates the number of writes that are

occurring on that particular clock cycle. The push_width defines the
width of the push expression. By default, only a single write can be
performed on a particular clock cycle.

 pop: The value of pop indicates the number of reads that are occurring
on that particular clock cycle. The pop_width defines the width of the
pop expression. By default, only a single read can be performed on a
particular clock cycle.

SpyGlass Handling

The Av_ovl01 rule reports FIFOs that either overflow or underflow.

The Av_ovl01 rule is not validating a FIFO but rather the environment of
FIFO for compliance with FIFO’s attributes. The Av_ovl01 rule is violated in
both cases when there is a write into a FIFO which is already full, or when
a read from an empty FIFO is requested.
315
Synopsys, Inc.

OVL Assertions

The OVL Support
assert_frame

Declaration

assert_frame
[#(severity_level, min_cks, max_cks, flag, options, msg)]
inst_name(clk, reset_n, start_event, test_expr);

Where:
 min_cks: the test signal must occur after min_cks cycles. If min_cks is 0

then the check ensures that test signal is occurring before max_cks,
however it may happen at the same time as start.

 max_cks: the test signal must occur before max_clk cycles. If 0 then
test signal must occur at the same time as the start signal. max_cks
must be greater than or equal to min_cks.

 flag: if 0 then ignore any subsequent start while monitoring the test
signal starting from a first start signal (default). If 1 then each start
signal occurrence will cause the monitoring to restart. If 2 then the
assertion fails when a start occurs while monitoring a test signals due to
a previous activation of the start signal.

 start_event: Starting event that triggers monitoring of the test_expr.
The start_event is a cycle transition from 0 to 1.

SpyGlass Handling

The Av_ovl01 rule reports test expressions test_expr that are not activated
within a minimum min_cks and maximum max_cks number of cycles when
the start signal is high (start_event).
316
Synopsys, Inc.

OVL Assertions

The OVL Support
assert_handshake

Declaration

assert_handshake
[#(severity_level, min_ack_cycle, max_ack_cycle,

req_drop, deassert_count, max_ack_length, options,
msg)]
inst_name(clk, reset_n, req, ack);

Where:
 min_ack_cycle: ack is expected to occur at or after min_ack_cycle

cycles.
 max_ack_cycle: ack is expected to occur at or before max_ack_cycle

cycles.
 req_drop: Check if req is active until ack occurs

 deassert_count: req is expected to be deactivated deassert_count
cycles after ack arrival.

 max_ack_length: ack is expected to be max_ack_cycle cycles wide or
less. Also check if req is active for the entire deassert_count cycles after
ack.

 req: Signal that starts the transaction.

 ack: Signal that terminates the transaction.

SpyGlass Handling

The Av_ovl01 rule reports handshaking problems with the request and
acknowledge signals of a protocol.

The check ensures that acknowledge is occurring within a defined range of
cycles after a request has been sent; checks the acknowledge width
against its spec; if required by the user, ensures that the request is active
until arrival of acknowledge and remain active for specified number of
cycles after arrival of acknowledge; also ensures that the request is
inactivated within a specified number of cycles from acknowledge
activation. Both request and acknowledge signals must go inactive before a
handshake validation starts.
317
Synopsys, Inc.

OVL Assertions

The OVL Support
assert_implication

Declaration

assert_implication
[#(severity_level, options, msg)]
inst_name(clk, reset_n, antecedent_expr, consequent_expr);

Where
 antecedent_expr: Expression verified at the positive edge of clk.

 consequent_expr: Expression verified if antecedent_expr is TRUE.

SpyGlass Handling

The Av_ovl01 rule reports “consequence” expressions consequent_expr that
are not evaluated TRUE after an “antecedent” expression antecedent_expr
has become TRUE.

Please note that the assert_implication assertion can be also
validated using the following statement:

assert_always
imply(clk, consequent_expr || !antecedent_expr);
318
Synopsys, Inc.

OVL Assertions

The OVL Support
assert_increment

Declaration

assert_increment
[#(severity_level, width, value, options, msg)]
inst_name(clk, reset_n, test_expr);

Where:
 width: width of test expression test_expr

 value: The value by which the test_expr is supposed to increase.

SpyGlass Handling

The Av_ovl01 rule reports test expressions test_expr whose actual value is
increased by any number other than the specified increment value.
319
Synopsys, Inc.

OVL Assertions

The OVL Support
assert_never

Declaration

assert_never
[#(severity_level, options, msg)]
inst_name (clk, reset_n, test_expr);

SpyGlass Handling

The Av_ovl01 rule reports test expressions test_expr that are evaluated to
be TRUE.
320
Synopsys, Inc.

OVL Assertions

The OVL Support
assert_next

Declaration

assert_next
[#(severity_level, num_cks, check_overlapping, only_if,

options, msg)]
inst_name(clk, reset_n, start_event, test_expr);

Where:
 num_cks, Number of clock cycles after start event at which test

expression must be evaluated ‘1’
 check_overlapping, if ‘1’, allows another check to start upon a new start

pulse while the first check is continuing.
 only_if, if ‘1’ causes a failure if the test expression is evaluated true

without a prior start event.
 start_event: Starting event that triggers monitoring of the test_expr.

SpyGlass Handling

The Av_ovl01 rule reports test expressions test_expr where no event
happens exactly after the specified number of cycles num_cks counted
from the start event start_event.
321
Synopsys, Inc.

OVL Assertions

The OVL Support
assert_no_overflow

Declaration

assert_no_overflow
[#(severity_level, width, min, max, options, msg)]
inst_name (clk, reset_n, test_expr);

Where:
 width: width of test expression test_expr

 min: Lower bound value below which the test expression cannot take
value while it transitions from max value.

 max: Upper bound value above which the test expression cannot take
value while it transitions from max value.

SpyGlass Handling

The Av_ovl01 rule reports test expressions test_expr that changes value
from a maximum value to another value outside the min-max range.

No message is reported if the value outside the min-max range is reached
from a value different from the max value.
322
Synopsys, Inc.

OVL Assertions

The OVL Support
assert_no_transition

Declaration

assert_no_transition
[#(severity_level, width, options, msg)]
inst_name (clk, reset_n, test_expr, start_state,

next_state);

Where:
 width: width of test expression test_expr

 start_state: Source state of unwanted transition

 next_state: Destination transition of unwanted transition.

SpyGlass Handling

The Av_ovl01 rule reports test expressions test_expr that changes value
from a given state start_state to another state next_state.
323
Synopsys, Inc.

OVL Assertions

The OVL Support
assert_no_underflow

Declaration

assert_no_underflow
[#(severity_level, width, min, max, options, msg)]
inst_name (clk, reset_n, test_expr);

Where:
 width: width of test expression test_expr

 min: Lower bound value below which the test expression cannot take
value while it transitions from the min value.

 max: Upper bound value above which the test expression cannot take
value while it transitions from the min value.

SpyGlass Handling

The Av_ovl01 rule reports test expressions test_expr that changes value
from the min value to another value outside the min-max range.

No message is reported if the value outside the min-max range is reached
from a value different from the min value.
324
Synopsys, Inc.

OVL Assertions

The OVL Support
assert_odd_parity

Declaration

assert_odd_parity
[#(severity_level, width, options, msg)]
inst_name (clk, reset_n, test_expr);

Where:
 width: width of test expression test_expr

SpyGlass Handling

The Av_ovl01 rule reports test expressions test_expr where an even
number of bits are asserted at any time.
325
Synopsys, Inc.

OVL Assertions

The OVL Support
assert_one_cold

Declaration

assert_one_cold
[#(severity_level, width, inactive, options, msg)]
inst_name(clk, reset_n, test_expr);

Where:
 width: width of test expression test_expr

 inactive: If inactive is 0, then the test_expr must be one_cold or all 0. If
inactive is 1, then the test_expr must be one_cold or all 1.

SpyGlass Handling

The Av_ovl01 rule reports test expressions test_expr that have been
asserted to be one_cold encoded but are not modeled to be one_cold
encoded.

The cause of this violation may be obvious if the signals are defined in a
case statement with clear encoding. But the one_cold-encoded signals may
be independent signals defined in different places in the RTL code. First,
determine why you assumed the signals should be one_cold encoded. If
the assumption is correct, then check why the signals are not one_cold
encoded.
326
Synopsys, Inc.

OVL Assertions

The OVL Support
assert_one_hot

Declaration

assert_one_hot
[#(severity_level, width, options, msg)]
inst_name(clk, reset_n, test_expr);

Where:
 width: width of test expression test_expr

SpyGlass Handling

The Av_ovl01 rule reports test expressions test_expr that have been
asserted to be one_hot encoded but are not modeled to be one_hot
encoded.

The cause of this violation may be obvious if the signals are defined in a
case statement with clear encoding. But the one_hot-encoded signals may
be independent signals defined in different places in the RTL code. First,
determine why you assumed the signals should be one_hot encoded. If the
assumption is correct, then check why the signals are not one_hot
encoded.
327
Synopsys, Inc.

OVL Assertions

The OVL Support
assert_proposition

Declaration

assert_proposition
[#(severity_level, options, msg)]
inst_name(reset_n, test_expr);

Where:
 width: width of test expression test_expr

SpyGlass Handling

The Av_ovl01 rule reports test expressions test_expr that are not always
evaluated to be TRUE.

The assert_proposition assertion requires that the expression
should always be TRUE whereas the assert_always assertion requires that
the expression should be TRUE for all active edges of the clock.
328
Synopsys, Inc.

OVL Assertions

The OVL Support
assert_quiescent_state

Declaration

assert_quiescent_state
[#(severity_level, width, options, msg)]
inst_name(clk,reset_n, state_expr, check_value,

sample_event);

Where:
 width: width of state expression state_expr

 state_expr: The state signals

 check_value: The state_expr must be at this value at the edge of event

 sample_event: The event at which the check is performed
NOTE: SpyGlass Auto Verify solution does not support Verilog macros specific to the

assert_quiescent_state OVL assertion.

SpyGlass Handling

The Av_ovl01 rule reports state expressions state_expr that are not in the
state check_value at the edge of event sample_event.
329
Synopsys, Inc.

OVL Assertions

The OVL Support
assert_range

Declaration

assert_range
[#(severity_level, width, min, max, options, msg)]
inst_name(clk, reset_n, test_expr);

Where:
 width: width of test expression test_expr

 min: minimum value allowed for the test expression test_expr

 max: maximum value allowed for the test expression test_expr. Default
is 2**width – 1.

SpyGlass Handling

The Av_ovl01 rule reports test expressions test_expr that do not always
have a value in the min-max range.
330
Synopsys, Inc.

OVL Assertions

The OVL Support
assert_time

Declaration

assert_time
[#(severity_level, num_cks, flag, options, msg)]
inst_name(clk, reset_n, start_event, test_expr);

Where:
 num_cks: test expression must hold for that many cycles

 flag:

 0: Ignore any event once a first event has been started

 1: Restart the check whenever a new event is asserted

 2: Fail if a new event occurs after a first event has triggered the
monitoring process

 start_event: Starting with this event the test expression must hold for
the given number of cycles

SpyGlass Handling

The Av_ovl01 rule reports test expressions test_expr that are not asserted
for num_cks cycles starting at the edge of event start_event.
331
Synopsys, Inc.

OVL Assertions

The OVL Support
assert_transition

Declaration

assert_transition
[#(severity_level, width, options, msg)]
inst_name(clk, reset_n, test_expr, start_state,

next_state);

Where:
 width: width of test expression test_expr

 start_state: Source state of the transition

 next_state: Destination state of the transition

SpyGlass Handling

The Av_ovl01 rule reports test expressions test_expr that have a transition
out of state start_state to a state other than state next_state.
332
Synopsys, Inc.

OVL Assertions

The OVL Support
assert_unchange

Declaration

assert_unchange
[#(severity_level, width, num_cks, flag, options, msg)]
inst_name(clk, reset_n, start_event, test_expr);

Where:
 width: width of test expression test_expr

 num_cks: number of clock cycles after start event during which the test
expression should remain unchanged

 flag:

 0: Ignore repetition of start_event

 1: Re-start with a new start_event

 2: Report violation if a new start_event is occurring while validating a
previous sequence

 start_event: Event triggering observation of the test expression

SpyGlass Handling

The Av_ovl01 rule reports test expressions test_expr that change value
within num_cks cycles after event start_event.
333
Synopsys, Inc.

OVL Assertions

The OVL Support
assert_width

Declaration

assert_width
[#(severity_level, min_cks, max_cks, options, msg)]
inst_name(clk, reset_n, test_expr);

Where:
 min_cks: The test_expr should remain TRUE for at least the specified

minimum number of clock cycles. When min_cks is set to 0, then there
is no minimum check (that is, test_expr may occur at start event).

 max_cks: The test_expr should not remain TRUE longer than the
specified maximum number of clock cycles. When max_cks is set to 0,
then there is no maximum check (any value is valid).

SpyGlass Handling

The Av_ovl01 rule reports test expressions test_expr that do not evaluate to
TRUE for a specified minimum number of clock cycles and evaluate to TRUE
for more than a maximum number of clock cycles.
334
Synopsys, Inc.

OVL Assertions

The OVL Support
assert_win_change

Declaration

assert_win_change
[#(severity_level, width, options, msg)]
inst_name(clk, reset_n, start_event, test_expr,

end_event);

Where:
 width: width of test expression test_expr

 start_event: starting event after which the test expression test_expr is
supposed to change value

 end_event: End event before which the test expression test_expr is
supposed to change value

SpyGlass Handling

The Av_ovl01 rule reports test expressions test_expr that changes value
before the start event start_event or after the end event end_event.
335
Synopsys, Inc.

OVL Assertions

The OVL Support
assert_win_unchange

Declaration

assert_win_unchange
[#(severity_level, width, options, msg)]
inst_name(clk, reset_n, start_event, test_expr,

end_event);

Where:
 width: width of test expression test_expr

 start_event: starting event after which the test expression test_expr is
not supposed to change value

 end_event: End event before which the test expression test_expr is not
supposed to change value

SpyGlass Handling

The Av_ovl01 rule reports test expressions test_expr that changes value
after the start event start_event or before the end event end_event.
336
Synopsys, Inc.

OVL Assertions

The OVL Support
assert_window

Declaration

assert_window
[#(severity_level, options, msg)]
inst_name(clk, reset_n, start_event, test_expr,

end_event);

Where:
 start_event: starting event after which (at the next clock tick) the test

expression test_expr is supposed to hold true
 end_event: End event at the end of which the test expression test_expr

is allowed to be false

SpyGlass Handling

The Av_ovl01 rule reports test expressions test_expr that do not always
evaluate to TRUE from the start event start_event to the end event
end_event.
337
Synopsys, Inc.

OVL Assertions

The OVL Support
assert_zero_one_hot

Declaration

assert_zero_one_hot
[#(severity_level, width, options, msg)]
inst_name(clk, reset_n, test_expr);

SpyGlass Handling

The Av_ovl01 rule reports test expressions test_expr that are neither
one_hot encoded nor all “0”s.
338
Synopsys, Inc.

Appendix:
SGDC Constraints
SpyGlass Design Constraints (SGDC) provides additional design
information that is not apparent in an RTL.

In addition, you can restrict SpyGlass analysis to certain objects in a design
by specifying these objects by using SGDC commands.
339
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SGDC Constraints
SpyGlass Design Constraints
The following table lists the SGDC commands used by SpyGlass Auto Verify
solution:

SpyGlass Auto Verify
breakpoint clock define_tag
formal_analysis_filter ip_block meta_design_hier
reset set_case_analysis special_module
simulation_data watchpoint
340
Synopsys, Inc.

List of Topics

About This Book ... 7
Analysis and Verification.. 77
assert_always .. 308
assert_always_on_edge .. 309
assert_change ... 310
assert_cycle_sequence.. 311
assert_decrement... 312
assert_delta .. 313
assert_even_parity ... 314
assert_fifo_index.. 315
assert_frame ... 316
assert_handshake .. 317
assert_implication .. 318
assert_increment ... 319
assert_never ... 320
assert_next ... 321
assert_no_overflow .. 322
assert_no_transition ... 323
assert_no_underflow .. 324
assert_odd_parity .. 325
assert_one_cold ... 326
assert_one_hot .. 327
assert_proposition .. 328
assert_quiescent_state ... 329
assert_range ... 330
assert_time ... 331
assert_transition .. 332
assert_unchange.. 333
assert_width.. 334
assert_win_change... 335
assert_window... 337
assert_win_unchange ... 336
assert_zero_one_hot .. 338
Asynchronous Resets .. 21
atime.. 24
audit .. 35
341
Synopsys, Inc.

Auto Verify Central Report ... 76
Auto Verify Report .. 73
Auto Verify-FSM Report ... 80
Av_complexity01_fsm.csv Tab.. 92
Av_complexity01_InstanceBased.csv Tab .. 90
Av_complexity01_module.csv Tab .. 88
av_dcode_analysis.. 25
av_dcode_report .. 25
av_dump_assertions ... 26
av_dump_instance_complexity ... 27
av_dump_liveness .. 27
av_enable_crpt .. 28
av_flopcount.. 28
av_force_soft_reset .. 29
av_ignore_preformal_run_time .. 30
av_msgmode ... 30
av_run_time .. 31
av_seqdepth .. 32
Av_staticreg02 Spreadsheet Report... 85
av_violation_count ... 32
Bidirectional Ports... 21
Black Boxes ... 20
buscompress.. 33
Changing the Percentage Range ... 70
Changing the Percentage-Range Color ... 70
Clock Cycle Count and Sequential Depth .. 14
Common Assertion Arguments ... 306
Configuring the Complexity Percentage.. 69
Constant Value Control Signals in OVL Assertions/Assumptions........................... 57
Contents of This Book .. 8
Custom-Style Encoding ... 80
dead_code_scope ... 36
Definitions and Concepts in SpyGlass Auto Verify .. 13
Design Virtual Cycle .. 15
Details of the Uninitialized_Sequential_Elements Spreadsheet Report 83
detect_assign_fsm.. 37
detect_ifelse_fsm ... 38
detect_nested_fsm ... 38
Enabling and Disabling Assertions ... 65
Finite-State Machines (FSMs) ... 22
Formal Setup Rules... 142
342
Synopsys, Inc.

Functional Analysis Report ... 93
Functional Analysis ... 13
Functional Constraints... 51
fv_dcode_all_inst ... 39
fv_debug_sim_cycles .. 42
fv_parallelfile ... 40
Gated Clocks ... 22
ieffort ... 33
Impact of Constraints on Functional Analysis.. 51
Impact of Property and Constraint Modules .. 60
Implicit Properties Rules.. 151
Implicit Properties .. 13
include_construct ... 43
Info Rules ... 106
Initial State ... 16
Latches ... 21
Library Cells .. 20
License Used by SpyGlass Auto Verify ... 12
Memory Blocks... 21
Messages Reported in the Overconstrain Info File ... 99
modulelist ... 46
Must Rules .. 257
Over Constraint.. 52
Overconstrain Info File .. 98
Overview of SpyGlass Auto Verify ... 18
OVL Assertions Format.. 53
OVL Assertions in Combinational Circuits ... 58
OVL Assertions... 307
Parameters of SpyGlass Auto Verify .. 24
passfail ... 35
Possible Values of the dead_code_scope Parameter .. 36
Processing Property and Constraint Modules... 61
Properties Specification using OVL .. 53
Property and Constraint Management.. 63
Property and Property Analysis... 13
Property File Example ... 65
Property File Format ... 63
Property File Processing .. 65
Property Status Reported during Functional Analysis ... 99
propfile ... 46
Register Info Report ... 101
343
Synopsys, Inc.

Report Header.. 94
Reports and Diagnosis Files in SpyGlass Auto Verify .. 72
reset_convention.. 43
resetoff ... 44
Restrictions in Using OVL ... 60
Sample Auto Verify Central Report .. 77
Sample Register Info Report .. 102
Schematic Highlight and Cross Probing .. 67
scope.. 47
Section A: Run Parameters .. 95
Section B: Clock Information.. 95
Section C: Reset Information ... 95
Section D: Set-Case Analysis Settings ... 96
Section E: Initial State of the Design ... 96
Section F: Results Summary (Current) .. 96
Section G: Results Summary (Cumulative)... 97
Section H: Assertion Details ... 97
Separate File OVL Support ... 59
Setup and Design Audit ... 76
SGDC_fsm_setup01.. 284
show_static_latches .. 44
solvemethod .. 45
Source RTL Design.. 20
Specifying Functional Constraints.. 52
SpyGlass Design Constraints .. 340
Standard OVL Properties.. 14
Standard Properties Rules.. 253
staticnet_scope .. 45
Stuck-Net.. 17
The Av_complexity01 Spreadsheet Report ... 88
The Complexity Browser .. 69
Tristate Buses .. 21
Typographical Conventions ... 9
Uninitialized_Sequential_Elements Spreadsheet Report...................................... 81
vcdfile... 48
vcdfulltrace.. 48
vcdtime... 48
verbose... 49
Waveform Display and Cross Probing .. 68
xassign_casedefault .. 49
344
Synopsys, Inc.

	SpyGlass® Auto Verify Rules Reference Guide
	Preface
	About This Book
	Contents of This Book
	Typographical Conventions

	Using the Rules in the SpyGlass Auto Verify Solution
	License Used by SpyGlass Auto Verify
	Definitions and Concepts in SpyGlass Auto Verify
	Functional Analysis
	Property and Property Analysis
	Implicit Properties
	Standard OVL Properties
	Clock Cycle Count and Sequential Depth
	Design Virtual Cycle
	Initial State
	Stuck-Net

	Overview of SpyGlass Auto Verify
	Source RTL Design
	Library Cells
	Black Boxes
	Memory Blocks
	Bidirectional Ports
	Asynchronous Resets
	Latches
	Tristate Buses
	Gated Clocks
	Finite-State Machines (FSMs)

	Parameters of SpyGlass Auto Verify
	atime
	av_dcode_analysis
	av_dcode_report
	av_dump_assertions
	av_dump_instance_complexity
	av_dump_liveness
	av_enable_crpt
	av_flopcount
	av_force_soft_reset
	av_ignore_preformal_run_time
	av_msgmode
	av_run_time
	av_seqdepth
	av_violation_count
	buscompress
	ieffort
	audit
	passfail
	dead_code_scope
	detect_assign_fsm
	detect_ifelse_fsm
	detect_nested_fsm
	fv_dcode_all_inst
	fv_parallelfile
	fv_debug_sim_cycles
	include_construct
	reset_convention
	resetoff
	show_static_latches
	solvemethod
	staticnet_scope
	propfile
	modulelist
	scope
	vcdtime
	vcdfile
	vcdfulltrace
	verbose
	xassign_casedefault

	Functional Constraints
	Impact of Constraints on Functional Analysis
	Specifying Functional Constraints
	Over Constraint

	Properties Specification using OVL
	OVL Assertions Format
	Constant Value Control Signals in OVL Assertions/ Assumptions
	OVL Assertions in Combinational Circuits
	Separate File OVL Support
	Restrictions in Using OVL
	Impact of Property and Constraint Modules
	Processing Property and Constraint Modules

	Property and Constraint Management
	Property File Format
	Property File Example
	Property File Processing
	Enabling and Disabling Assertions

	Schematic Highlight and Cross Probing
	Waveform Display and Cross Probing
	The Complexity Browser
	Configuring the Complexity Percentage

	Reports and Diagnosis Files in SpyGlass Auto Verify
	Auto Verify Report
	Auto Verify Central Report
	Auto Verify-FSM Report
	Uninitialized_Sequential_Elements Spreadsheet Report
	Av_staticreg02 Spreadsheet Report
	The Av_complexity01 Spreadsheet Report
	Functional Analysis Report
	Overconstrain Info File
	Property Status Reported during Functional Analysis
	Register Info Report

	Rules in SpyGlass Auto Verify
	Info Rules
	Av_clkinf01
	Av_complexity01
	Av_fsminf01
	Av_fsminf02
	Av_Info_Case_Analysis
	Av_initstate01
	Av_report01
	Av_rstinf01

	Formal Setup Rules
	Av_sanity03
	Av_sanity04
	Av_svasetup01

	Implicit Properties Rules
	Av_bitstuck01
	Av_staticnet01
	Av_bus01
	Av_bus02
	Av_case01
	Av_case02
	Av_case03
	Av_deadcode01
	Av_dontcare01
	Av_fsm_analysis
	Av_divide_by_zero
	Av_negative_shift
	Av_fsm01
	Av_fsm02
	Av_range01
	Av_setreset01
	Av_staticreg01
	Av_staticreg02
	Av_syncfifo01

	Standard Properties Rules
	Av_ovl01

	Must Rules
	Av_license01
	Av_init01
	Av_initseq01
	Av_multitop01
	Av_sanity01
	Av_sanity02
	Av_sanity06
	SGDC_av_meta_design_hier01

	SGDC_fsm_setup01

	The OVL Support
	Common Assertion Arguments
	OVL Assertions
	assert_always
	assert_always_on_edge
	assert_change
	assert_cycle_sequence
	assert_decrement
	assert_delta
	assert_even_parity
	assert_fifo_index
	assert_frame
	assert_handshake
	assert_implication
	assert_increment
	assert_never
	assert_next
	assert_no_overflow
	assert_no_transition
	assert_no_underflow
	assert_odd_parity
	assert_one_cold
	assert_one_hot
	assert_proposition
	assert_quiescent_state
	assert_range
	assert_time
	assert_transition
	assert_unchange
	assert_width
	assert_win_change
	assert_win_unchange
	assert_window
	assert_zero_one_hot

	Appendix: SGDC Constraints
	SpyGlass Design Constraints

