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About This Guide

This user guide focuses on advanced analog analysis and modeling and 
concentrates on advanced analog circuit characterization, noise modeling and 
analysis, and behavioral analysis including Verilog-A.

Conventions

This manual follows these typographical conventions in Synopsys HSPICE 
documentation.

Convention Description

Courier Indicates command syntax.

Italic Indicates a user-defined value, such as object_name.

Bold Indicates user input—text you type verbatim—in syntax and examples. 
For a graphical user interface, Bold indicates a GUI element such as a 
button, menu, field, or other control.

[ ] Denotes optional parameters, such as:

write_file [-f filename]

( ) When shown, the parentheses ( ) are part of the syntax. For example: 
+ LISTFREQ=(1k 100k 10meg)

... Indicates that parameters can be repeated as many times as necessary:

pin1 pin2 ... pinN

| Indicates a choice among alternatives, such as

low | medium | high

+ Indicates a continuation of a command line.

/ Indicates levels of directory structure.

Edit > Copy Indicates a path to a menu command, such as opening the Edit menu and 
choosing Copy.
HSPICE® User Guide: Advanced Analog Simulation and Analysis xiii
K-2015.06



Customer Support
Customer Support

Customer support is available through SolvNet online customer support and 
through contacting the Synopsys Technical Support Center.

Accessing SolvNet
SolvNet includes an electronic knowledge base of technical articles and 
answers to frequently asked questions about Synopsys tools. SolvNet also 
gives you access to a wide range of Synopsys online services, which include 
downloading software, viewing Documentation on the Web, and entering a call 
to the Support Center.

To access SolvNet:

1. Go to the SolvNet Web page at https://solvnet.synopsys.com.

2. If prompted, enter your user name and password. (If you do not have a 
Synopsys user name and password, follow the instructions to register with 
SolvNet.)

If you need help using SolvNet, click Help on the SolvNet menu bar.

Contacting the Synopsys Technical Support Center
If you have problems, questions, or suggestions, you can contact the Synopsys 
Technical Support Center in the following ways:
■ Open a case with your local support center from the Web by going to 

https://solvnet.synopsys.com/EnterACall (Synopsys user name and 
password required). Choose the Open A Support Case tab to begin.

■ Send an e-mail message to your local support center.

• E-mail support_center@synopsys.com from within North America. 

Control-c Indicates a keyboard combination, such as holding down the Control key 
and pressing c.

Convention Description
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Customer Support
• Find other local support center e-mail addresses at 
http://www.synopsys.com/support/support_ctr.

■ Telephone your local support center.

• Call (800) 245-8005 from within the continental United States.

• Call (650) 584-4200 from Canada.

• Find other local support center telephone numbers at 
http://www.synopsys.com/support/support_ctr.
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1

1HSPICE Advanced Analog Features

Describes how to use HSPICE advanced analog analyses, take advantage of 
its specialized features, and use the Custom WaveView tool; introduces the 
HSPICE solutions for noise analysis.

HSPICE advanced analog analyses is a set of analysis and design capabilities 
that supports the design of advanced analog and high-speed circuits. HSPICE 
advanced analog analyses includes several modeling, simulation, and 
measurement additions that augment the ultimate-accuracy analog circuit 
simulation capabilities. 

HSPICE advanced analog analyses accepts a netlist file from standard input 
and delivers the ASCII text simulation results to HTML or to standard output. 
Standard error output reports error and warning messages.

These following sections cover these topics:
■ Introduction to HSPICE Advanced Analog Analyses
■ Use of Example Syntax

Introduction to HSPICE Advanced Analog Analyses

The following sections discuss the advanced analog features:
■ HSPICE Advanced Analog Analyses Features
■ Using HSPICE Advanced Analog Analyses
■ HSPICE Advanced Analog Output Files
■ Using Custom WaveView
■ Creating a Configuration File
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Introduction to HSPICE Advanced Analog Analyses
■ Using Wildcards
■ Limiting Output Data Size
■ Generating Measurement Output Files
■ Optimization
■ Optimizing with HB Measurements
■ Optimizing with HBNOISE or PHASENOISE Measurements
■ Using CHECK Statements
■ POWER DC Analysis
■ Detecting and Reporting Surge Currents
■ Advanced Analog Demonstration Input Files

HSPICE Advanced Analog Analyses Features
This section briefly introduces the features of both the simulation engine and 
the waveform display tool. 
■ Steady-state frequency-domain analyses for linear and nonlinear circuits.
■ The.HBLSP command invokes periodically driven nonlinear circuit analyses 

for power-dependent S parameters. 
■ Harmonic Balance (.HB) analysis by using Direct and Krylov solvers. 

The.HB command invokes the single and multi tone Harmonic Balance 
algorithm for periodic steady state analysis. 

■ TRANFORHB element parameter to recognize V/I sources that include SIN 
and PULSE transient descriptions as well as PWL and VMRF sources.

■ Harmonic balance-based periodic AC analysis. The  .HBAC command 
invokes periodic AC analysis for analyzing small-signal perturbations on 
circuits that operate in a large-signal periodic steady state.

■ Harmonic Balance-based Periodic Noise analysis (.HBNOISE) for noise 
analysis of periodically modulated circuits, includes stationary, 
cyclo-stationary, and frequency-dependent noise effects.

■ Autonomous Harmonic Balance analysis. The.HBOSC command invokes 
the multi tone, oscillator-capable Harmonic Balance algorithm for periodic 
steady state analysis.
2 HSPICE® User Guide: Advanced Analog Simulation and Analysis
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Introduction to HSPICE Advanced Analog Analyses
■ Perturbation analysis for Oscillator Phase Noise. The .HBAC command 
invokes phase periodic AC noise for oscillators circuits that operate in a 
large-signal steady-state.

■ Oscillator phase noise analysis, including both a nonlinear perturbation 
method and a PAC method, and includes stationary, cyclo-stationary, 
frequency-dependent, and correlated noise effects. 

■ Frequency translation S-parameter and noise figure extraction with 
the .HBLIN command.

■ Envelope analysis. The.ENV command: invokes standard envelope 
simulation. The .ENVOSC command invokes envelope startup simulation. 
The.ENVFFT command invokes envelope Fast Fourier Transform 
simulation.

■ .OPTION HBTRANINIT, HBTRANPTS, and HBTRANSTEP for transient 
analysis of ring oscillators.

■ Calculation of the transfer function from an arbitrary source and harmonic in 
the circuit to a designated output with the .HBXF command.

■ .OPTION SIM_ACCURACY provides simplified accuracy control for all 
simulations while .OPTION SIM_ORDER and SIM_TRAP improve transient 
analysis simulation controls.

■ DSPF Flow for fast analysis by using parasitic data from layout.
■ Shooting Newton steady-state time domain analysis; the Shooting Newton 

algorithm provides functionality to support the following commands: .SN, 
.SNAC .SNFT, .SNNOISE, .SNOSC, and .SNXF. 

■ Periodic Time-Dependent Noise Analysis (.PTDNOISE) calculates the 
noise spectrum and the total noise at a point in time. This analysis 
determines jitter in a digital threshold circuit from the total noise and the 
digital signal slew rate. 

■ HSPICE advanced analog analyses supports ISUB syntax with the 
exception of wildcard support with the “?” sign. For example, HSPICE 
advanced analog analyses does not support isub(x1.a?).

■ HSPICE advanced analog analyses supports HSPICE Precision Parallel 
(-HPP) for multi-threading simulations.

■ HSPICE advanced analog analyses supports case sensitivity.
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Chapter 1: HSPICE Advanced Analog Features
Introduction to HSPICE Advanced Analog Analyses
HSPICE advanced analog analyses also includes the following measurement 
capabilities:
■ 1dB compression point.
■ Intercept points (for example, IP2, IP3).
■ Mixer conversion gain and noise figure.
■ VCO output spectrum.
■ Oscillator phase noise.
■ Options simplify specifying levels of accuracy. As a result, HSPICE provides 

effective simulation solutions for advanced analog, high-speed, and PCB 
signal integrity circuit challenges.

■ Verilog-A is supported for all advanced analog analyses. 

Standard restrictions for Verilog-A in periodic steady-state analysis are the 
same as other advanced analog simulators that use Verilog-A. For example:

• Verilog-A modules that are time-dependent are illegal for HB or SN 
unless the time dependence is periodic with a period that matches the 
HB or SN setup.

• Verilog-A modules with “internal states” may not work correctly in HB or 
SN because the engine cannot track the internal state, so HB or SN may 
accept convergence to a periodic steady-state even though the internal 
state may not be in periodic steady state.

• Some event-driven constructs in Verilog-A may not be compatible with 
HB.

■ For netlist input guidelines, see Input Netlist and Data Entry in the HSPICE 
User Guide: Basic Simulation and Analysis.

■ For information on use of Parameters and Functions, see Parameters and 
Functions in the HSPICE User Guide: Basic Simulation and Analysis.

■ For information on use of Monte Carlo sweeps, see Monte Carlo - Traditional 
Flow Statistical Analysis in the HSPICE User Guide: Basic Simulation and 
Analysis.
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K-2015.06



Chapter 1: HSPICE Advanced Analog Features
Introduction to HSPICE Advanced Analog Analyses
Using HSPICE Advanced Analog Analyses
HSPICE advanced analog analyses provides several analyses that support the 
simulation and analysis of radio-frequency integrated circuits (RFICs). The 
advanced analog analyses include:
■ Steady-State Harmonic Balance Analysis
■ Steady-State Shooting Newton Analysis and Shooting Newton with Fourier 

Transform (.SNFT)
■ Harmonic Balance Oscillator Analysis (.HBOSC)
■ Shooting Newton Oscillator Analysis(.SNOSC)
■ Large Signal Periodic AC, Transfer Function, and Noise Analyses and 

Multitone Harmonic Balance AC Analysis (.HBAC)
■ Shooting Newton AC Analysis (.SNAC)
■ Large Signal Periodic AC, Transfer Function, and Noise Analyses
■ Shooting Newton Noise Analysis (.SNNOISE)
■ Multitone Harmonic Balance Transfer Function Analysis (.HBXF)
■ Shooting Newton Transfer Function Analysis (.SNXF)
■ Frequency Translation S-Parameter (HBLIN) Extraction
■ Envelope Analysis

Important: You can enable analytical derivative computation of 
expression-based element evaluations in all advanced 
analog analyses for extensive accuracy by using the 
.OPTION EQN_ANALYTICAL_DERIV described in the 
HSPICE Reference Manual: Commands and Control 
Options.

HSPICE Advanced Analog Output Files
The following table shows the output file extensions that HSPICE advanced 
analog analyses produce. The base file name of each output file is the same as 
the input netlist file’s base name. The # at the end of each file extension 
represents the .ALTER run from which the file came. 
HSPICE® User Guide: Advanced Analog Simulation and Analysis 5
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In general, text output from .PRINT commands is for users, while binary output 
from .PROBE or .OPTION POST is input for the Custom WaveView tool.

Command Description Text Output Output for Custom 
WaveView

.ENV Envelope analysis .printev# .ev#

.ENVFFT Envelope FFT (none) .fe#

.ENVOSC Oscillator Startup .printev# .ev#

.HB Harmonic Balance .printhb# .hb#

.HBAC Harmonic Balance AC .printhb# .hb#

.HBLIN Harmonic Balance 
Linear Analysis

.PRINT output:  .printhl#
S-param output: .SnP

.PROBE output: .hl#
S-param output: .SnP

.HBLSP .HBLSP large-signal .PRINT output: .printls#
S-param output: .p2d

.PROBE output: .ls#
S-param output: .p2d

.HBLSP small-signal .PRINT output: .printss#
S/noise output: .S2P#

.PROBE output: .ss#
S/noise output: .S2P#

.HBNOISE HBAC noise .printsnpn# .pn#

.HBOSC Harmonic Balance OSC .printhb# .hb#

.HBXF Transfer Functions .printxf# .xf#

.PHASENOISE Phase Noise (SNOSC) .printsnpn# .pn#

Phase Noise (HBOSC) .printpn# .pn#

Jitter .printjt# .jt#

.PTDNOISE Periodic Time 
Dependent Noise (HB)

.printptn# .ptn#

Periodic Time 
Dependent Noise (SN)

 .printsnptn# .snptn#

.SN Shooting Newton 
Analysis

.printsn# .sn#

.SNAC Shooting Newton AC .printsnac# .snac#

.SNNOISE Shooting Newton Noise .printsnpn# .snpn#
6 HSPICE® User Guide: Advanced Analog Simulation and Analysis
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Using Custom WaveView
Synopsys Custom WaveView supports viewing and processing of HSPICE 
output files. This section presents a basic overview of how to use the tool.
■ To start the Custom WaveView tool, type wv on the UNIX/Linux command 

line.
■ Choose File > Import Waveform File (or press CTRL-O) to open the Open 

Waveform Files dialog box. Use the File Filters to limit the file names to 
Waveform Files. The preceding table lists the HSPICE advanced analog file 
types. When you open a file, its contents appear in the file browser. The file 
browser lists all open plot files. Click on the '+' near a waveform file name, 
to display the hierarchy of the waveform. Clicking on the top level or any 
hierarchy level to display the contents of the waveform file to appear in the 
signal browser. To plot one of the signals listed here in the waveform, you 
can either double-click the signal label or select, drag, and drop the signal 
label to the waveview.

■ To create a panel, use the Panel > New menu and select the panel type, 
X-Y, Smith Chart, or Polar Plot. You can also use the panel icon in the tool 
bar to create new panels.

■ To create a new chart, use the File > New menu. Select either XY Graph, 
Smith Chart, or Polar Chart. You can also use the first three icons in the 
tool bar to create new chart windows.

■ Use the Custom WaveView tool bar to change how signals look, delete 
signals, group or ungroup signals. 

.SNOSC Shooting Newton OSC .printsn# .sn#

.SNXF Shooting Newton 
Transfer Function

.printsnxf# .snxf#

.TRANNOISE Transient Noise  .printtrpn# .trpn#

Jitter  .printtrjt# .trjt#

Autocorrelation Function  none .trzn#

Command Description Text Output Output for Custom 
WaveView
HSPICE® User Guide: Advanced Analog Simulation and Analysis 7
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■ Right-click on a frequency-domain signal name and use the To Time 
Domain command to convert the histogram waveform (for example, from 
an .hb0 file) to a time domain waveform.

■ Configure the axis scale and grid by right-clicking a horizontal or vertical axis 
and selecting the desired scale or grid from the context sensitive menu.

■ Zoom in and out, using the zoom icons on the tool bar, or use the mouse 
cursor to select an area directly on the waveform.

■ You can use dynamic meters to see the signal's precise value at different 
points. From the menu, select Tools > Dynamic Meter or use the Dynamic 
Meter icon in the tool bar. Select and configure the desired Dynamic Meter. 
You can then move the meter to the desired location on the selected signal.

■ To use the measurement tools, choose Tools > Measurement. You can use 
the following advanced analog options available under the All tab of the 
Measurement Tool window:

• 1db compression point (P1dB). 

• 2nd order intercept point (IP2).

• 3rd order intercept point and spurious free dynamic range (IP3/SFDR).

Creating a Configuration File
You can create a configuration file, called .hspicerf, to customize your HSPICE 
advanced analog simulation. HSPICE first searches for .hspicerf in your current 
working directory, then in your home directory as defined by $HOME. Following 
are the configuration options available in HSPICE:

Keyword Description Example

flush_waveform Flushes a waveform. If you do not specify a percentage, 
then the default value is 20%.

flush_waveform 
percent%

ground_floating_node Uses .IC statements to set floating nodes in a circuit to 
ground. You can select three options for grounding floating 
nodes:
■ If set to 1, grounds only floating nodes (gates, bulk, 

control nodes, non-rail bulk) that the .IC set includes.
■ If set to 2, adds unconnected terminals to this set.
■ If set to 3, uses .IC statements to ground all floating 

nodes, including dangling terminals.

ground_floating_
node 1

hier_delimiter Changes the delimiter for subcircuit hierarchies from “.” to 
the specified symbol.

hier_delimiter /
8 HSPICE® User Guide: Advanced Analog Simulation and Analysis
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html Stores all HSPICE output in HTML format. htmlhspicerf test
This example creates a file 
named test.html in the 
current directory.

integer_node Removes leading zeros from node names. For example, 
HSPICE considers 0002 and 2 to be the same node. 

Without this keyword, 0002 and 2 are two separate nodes.

integer_node

max_waveform_size Automatically limits the waveform file size.
■ If the number is less than 5000, HSPICE resets it to 2G.
■ If you do not set the number, HSPICE uses the default, 

2G.
■ If you do not set the line, the file size has no limit.

max_waveform_
size 2000000000

negative_td Allows negative time delay input in pwl (piecewise linear 
with repeat), pl (piecewise linear), exp (exponential, rising 
time delay only), sin (damped sinusoidal), pulse 
(trapezoidal pulse), and am (amplitude modulation) 
formats.

If you do not set 
negative_td, a negative 
time delay defaults to zero.

port_element_
voltage_ matchload 

Allows the alternate Port element definition. A Port element 
consists of a voltage source in series with a resistor. 

For the explanation that follows, let the user-specified DC, 
AC, or transient value of the Port element be V, and let the 
voltage across the overall port element be Vp.

By default, HSPICE advanced analog analyses sets the 
internal voltage source value to V. The value of Vp is lower 
than V, depending on the internal impedance and the 
network's input impedance.

With the alternate definition, the internal voltage source 
value is adjusts to 2*V, so that Vp=V when the Port 
element's impedance matches the network input 
impedance. The actual value of Vp still depends on the port 
and network impedances.

port_element_
voltage_
matchload

rcxt_divider Defines the hierarchy delimiter in the active nodes file in 
RCXT format.

rcxt_divider /

skip_nrd_nrs Directs HSPICE advanced analog analyses to consider 
transistors with matching geometries (except for NRD and 
NRS) as identical for pre-characterization purposes.

skip_nrd_nrs

unit_atto Activates detection of the “atto.” unit. Otherwise, HSPICE 
advanced analog analyses assumes that “a” represents 
“amperes.”

unit_atto

v_supply Changes the default voltage supply range for 
characterization. 

v_supply 3

Keyword Description Example
HSPICE® User Guide: Advanced Analog Simulation and Analysis 9
K-2015.06



Chapter 1: HSPICE Advanced Analog Features
Introduction to HSPICE Advanced Analog Analyses
Note: For more information about wildcards, see Using Wildcards.

This section covers the following topics:
■ Inserting Comments in a .hspicerf File

Inserting Comments in a .hspicerf File
To insert comments into your .hspicerf file, include a number sign character (#) 
as the first character in a line. For example, this configuration file shows how to 
use comments in a .hspicerf file:

# sample configuration file
# the next line of code changes the delimiter
# for subcircuit hierarchies from "," to "^"
hier_delimiter ^
# the next line of code matches any groups of "*" characters
wildcard_match_all *
# the next line of code matches one "?" character
wildcard_match_one ?
# the next line of code begins the range expression with
# the "[" character
wildcard_left_range [
# the next line of code ends the range expression with
# the "]" character
wildcard_right_range ]

Using Wildcards
You can use wildcards to match node names. HSPICE advanced analog uses 
wildcards somewhat differently than standard HSPICE.

wildcard_left_range Begins range expression. wildcard_left_
range [

wildcard_match_all Matches any group of characters. wildcard_match_
all *

wildcard_match_one Matches any single character. wildcard_match_
one ?

wildcard_right_range Ends range expression. wildcard_right_
range ]

Keyword Description Example
10 HSPICE® User Guide: Advanced Analog Simulation and Analysis
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Before you use wildcards, you must define the wildcard configuration in 
a .hspicerf file. For example, you can define the following wildcards in 
a .hspicerf file:

file .hspicerf
wildcard_match_one ?
wildcard_match_all *
wildcard_left_range [
wildcard_right_range ]

The .PRINT, .PROBE, .LPRINT, and .CHECK statements supports wildcards 
in HSPICE. 

For more information about using wildcards in an HSPICE configuration file, 
see Using Wildcards in PRINT and PROBE Statements in the HSPICE User 
Guide: Basic Simulation and Analysis.

Limiting Output Data Size
For multi-million transistor simulations, an unrestricted waveform file can grow 
to several gigabytes in size. The file becomes unreadable in some waveform 
viewers, and requires excessive space on the hard drive. 

This section describes options that limit the number of nodes output to the 
waveform file to reduce the file size. HSPICE supports the following options to 
control the output:

Control Option Description

.OPTION SIM_POSTTOP Use this option to limit the data written to your waveform file to data from 
only the top n level nodes. This option outputs instances up to n levels 
deep.

Note: To enable the waveform display interface, you also need the 
POST option.

.OPTION SIM_POSTSKIP Use this option to have the SIM_POSTTOP option skip any instances 
and their children that the subckt_definition defines.

.OPTION SIM_POSTAT Use this option to limit the waveform output to only the nodes in the 
specified subcircuit instance.

This option can operate in conjunction with the SIM_POSTTOP option 
and when present, has precedence over the SIM_POSTSKIP option.
HSPICE® User Guide: Advanced Analog Simulation and Analysis 11
K-2015.06



Chapter 1: HSPICE Advanced Analog Features
Introduction to HSPICE Advanced Analog Analyses
Generating Measurement Output Files
You can make measurements with the .MEASURE statement when using 
HSPICE advanced analog analyses.

The results of the .MEASURE statements appear in a file with one of the 
following filename extensions:
■ .mb# for measurements in HB analysis
■ .mp# for measurements in HBNOISE and SNNOISE analysis
■ .mpn# for measurements from PHASENOISE analysis when using HB to 

obtain the steady state solution
■ .msnpn# for measurements from PHASENOISE analysis when using SN to 

obtain the steady state solution
■ .msnptn# for measurements in PTDNOISE analysis

For more information about .MEASURE statements, see HSPICE Netlist 
Commands in the HSPICE Reference Manual: Commands and Control 
Options.

Optimization
To perform optimization, create an input netlist file that specifies:
■ Optimization parameters with upper and lower boundary values along with 

an initial guess.
■ A HB or HBOSC optimization statement
■ An optimization model statement
■ Optimization measurement statements for optimization parameters

.OPTION SIM_POSTDOWN Use this option to include an instance and all children of that instance 
in the output.

This option can operate in conjunction with the SIM_POSTTOP option 
and when present, has precedence over the SIM_POSTSKIP option.

.OPTION SIM_POSTSCOPE Use this option to specify the signal types to probe from within a scope.

Control Option Description
12 HSPICE® User Guide: Advanced Analog Simulation and Analysis
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If you provide the input netlist file, optimization specifications, limits, and initial 
guess, then the optimizer reiterates the simulation until it finds an optimized 
solution.

Usage Notes and Examples
■ Optimization works for HB, HBOSC, and HBAC analyses.
■ You can add the GOAL options in every meaningful .MEASURE statement, 

like FIND-WHEN, FIND-AT, and so forth.
■ A data sweep does not need definition in the .HB statement for HB 

optimization to use the measured result from .MEASURE HBNOISE, or 
PHASENOISE statements. Therefore, this type of optimization does not 
support parameter sweep.

■ Optimize multiple parameters with multiple goals by selecting .MODEL OPT 
LEVEL=0 (modified Lavenberg-Marquardt method).

■ Optimize single parameters in single measurement situations by selecting 
.MODEL OPT LEVEL=1 (bisection method).

■ Examples

• Setting optimization parameters

.param W=opt1(231u, 100u, 800u)

.param Rs=opt1(10,8,20)

• Optimization analysis statement

.HB tones=2.25g 2.5g nharms=6,3
 + sweep Pin_dbm -30 0 2
 + sweep optimize = opt1 
 + results = gain $measure result to tune the parameters
 + model= optmod1

• Selecting an optimization model

.model optmod1 opt level=1 $Bisection method
 + itropt=40 relin=1e-4 relout=1e-6 $ accuracy settings

• Measurement statements to tune the optimization parameters

.measure HB vif find vdb(if+)[-1,1] at 10e-6

.measure HB vrf find vdb(rf+)[0,1] at 10e-6

.measure HB gain=param('vif-vrf') goal=-2

• Measurement statement to find the fundamental frequency from HB 
analysis:

.measure HB frequency_max FIND ‘HERTZ[1]’ at=0
HSPICE® User Guide: Advanced Analog Simulation and Analysis 13
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Optimizing with HB Measurements
The required statements are:
■ Analysis statement

.HB TONES=f1[f2 ... fn] [NHARMS=h1 [,h2 ... hn]]
+ SWEEP parameter_sweep OPTIMIZE=OPTxxx RESULT=measname 
+ MODEL=mname

■ Measure statement

.MEASURE HB measname FIND out_var1 AT=val GOAL=val

Optimizing with HBNOISE or PHASENOISE 
Measurements
The required statements are:
■ Analysis statement

.HB TONES=f1[f2...fn] [NHARMS=h1 [,h2...hn]]
+ SWEEP OPTIMIZE=OPTxxx RESULT=measname MODEL=mname

For example:

.HBOSC tone=1g nharms=5 PROBENODE=out,gnd,0.8
+ SWEEP OPTIMIZE=opt1 RESULT=y1,y2 MODEL=m1
.MODEL m1 OPT level=0
.PHASENOISE v(out) DEC 1 1k 1G
.MEAS PHASENOISE y1 FIND PHNOISE at 10k goal=-150dBc
.MEAS PHASENOISE y2 RMSJITTER PHNOISE units=sec goal=1p

■ Measure statement

.MEASURE HBNOISE measname FIND out_var1 AT=val GOAL=val

.MEASURE PHASENOISE measname FIND out_var1 AT=val
+ GOAL=val

Using CHECK Statements
The CHECK statements in HSPICE advanced analog analyses offer the 
following instrumentation:
■ Setting Global Hi/Lo Levels
■ Slew, Rise, and Fall Conditions
14 HSPICE® User Guide: Advanced Analog Simulation and Analysis
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■ Edge Timing Verification
■ Setup and Hold Verification
■ IR Drop Detection

The results of these statements appear in a file with an .err extension. To 
prevent creating unwieldy files, HSPICE advanced analog analyses reports 
only the first 10 violations for a particular check in the .err file.

Setting Global Hi/Lo Levels
You use the .CHECK GLOBAL_LEVEL statement to globally set the desired 
high and low definitions for all CHECK statements. For example,

.CHECK GLOBAL_LEVEL (hi lo hi_th lo_th)

This statement defines values for hi, lo, and the thresholds. 

For syntax and description of this statement, see .CHECK GLOBAL_LEVEL in 
the HSPICE Reference Manual: Commands and Control Options.

Slew, Rise, and Fall Conditions
You use the .CHECK SLEW statement to verify that a slew rate occurs within 
the specified window of time. For example,

.CHECK SLEW (min max) node1 [node2 ...] [(hi lo hi_th lo_th)]

Figure 1 SLEW Example

For syntax and description of this statement, see .CHECK SLEW in the 
HSPICE Reference Manual: Commands and Control Options.

You use the .CHECK RISE statement to verify that a rise time occurs within the 
specified window of time. For example,

.CHECK RISE (min max) node1 [node2 ...] [(hi lo hi_th lo_th)]

3.3
2.6

0.0

0.7

1ns < t < 3ns
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Figure 2 RISE Time Example

For syntax and description of this statement, see .CHECK RISE in the HSPICE 
Reference Manual: Commands and Control Options.

You use the .CHECK FALL statement to verify that a fall time occurs within the 
specified window of time. For example,

.CHECK FALL (min max) node1 [node2 ...>] [(hi lo hi_th lo_th)]

For syntax and description of this statement, see .CHECK FALL in the HSPICE 
Reference Manual: Commands and Control Options.

Edge Timing Verification
The edge condition verifies that a triggering event provokes an appropriate 
RISE or FALL action, within the specified time window. You use the .CHECK 
EDGE statement to verify this condition. For example,

.CHECK EDGE (ref RISE|FALL min max RISE|FALL) 
+ node1 [node2 . . . ] [(hi lo hi_th low_th)] 

Figure 3 EDGE Example

HI
HI_thresh

LO

LO_thresh

1.5 ns < t < 2.2 ns

HI
HI_thresh

LO

LO_thresh

CLKvoutA

1ns < t < 3 ns
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For syntax and description of this statement, see .CHECK EDGE in the 
HSPICE Reference Manual: Commands and Control Options.

Setup and Hold Verification
You use the .CHECK SETUP and .CHECK HOLD statements to ensure that 
specified signals do not switch for a specified period of time. For example,

.CHECK SETUP (ref RISE|FALL duration RISE|FALL) node1
+[node2 . . . ] [(hi lo hi_th low_th)]
.CHECK HOLD (ref RISE|FALL duration RISE|FALL) node1
+[node2 . . . ] [(hi lo hi_th low_th)] 

■ For a SETUP condition, this is the minimum time before the triggering event, 
during which the specified nodes cannot rise or fall.

Figure 4 SETUP Example

For syntax and description of this statement, see .CHECK SETUP in the 
HSPICE Reference Manual: Commands and Control Options.

■ For a HOLD condition, specify the minimum time after the triggering event, 
before the specified nodes can rise or fall. 

HI
HI_thresh

LO

LO_thresh

nodeAv1

t >=2ns
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Figure 5 HOLD Example

For syntax and description of this statement, see .CHECK HOLD in the 
HSPICE Reference Manual: Commands and Control Options.

IR Drop Detection
You use the .CHECK IRDROP statement to verify that the IR drop does not 
exceed, or does not fall below, a specified value for a specified duration. For 
example,

.CHECK IRDROP ( volt_val time ) node1 [node2 . . . ]
+ [( hi lo hi_th low_th )]

Figure 6 IR Drop Example

For syntax and description of this statement, see .CHECK IRDROP in the 
HSPICE Reference Manual: Commands and Control Options.

POWER DC Analysis
You use the .POWERDC (standby current) statement to calculate the DC 
leakage current of a design hierarchy. For example,

HI
HI_thresh

LO

LO_thresh

nodeA vin*

t >=2ns

t <=1ns

v1

-2 volts
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.POWERDC keyword subckt_name1... 

This statement creates a table that lists the measurements of the AVG, MAX, 
and MIN values for the current of every instance in the subcircuit. This table 
also lists the sum of the power of each port in the subcircuit.

You use the SIM_POWERDC_HSPICE option to increase the accuracy of 
operating point (OP) calculations.

Or for even higher accuracy in operating point calculations, you use the 
SIM_POWERDC_ACCURACY option. 

For syntax and description of this statement and options, see .POWERDC, 
.OPTION SIM_POWERDC_ACCURACY, or .OPTION 
SIM_POWERDC_HSPICE in the HSPICE Reference Manual: Commands and 
Control Options.

This section covers the following topics:
■ Power DC Analysis Output Format
■ POWER Analysis

Power DC Analysis Output Format
*** Leakage Current Result ***
Subckt Name=XXX
Instance Name Port Max(A) Min(A) Avg(A)
Total Power Max(W) Min(W) Avg(W)
NOTE:  Power=Sum{Ii * Vi} 
Subckt Name=XXX
Instance Name Port Max(A) Min(A) Avg(A) 
Total Power Max(W) Min(W) Avg(W)

Example:

.global vdd vss

.powerdc all
x1 in1 mid1 inv
x2 mid1 out1 inv
.subckt inv in out
mn out in vss vss nch
mp vdd in out vdd pch
.ends
.end
HSPICE® User Guide: Advanced Analog Simulation and Analysis 19
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Output:

*** Leakage Current Result ***
Subckt Name=Top Level
Instance Name Port Max(A) Min(A) Avg(A)

x1 in .......
x1 out .......
x2 in .......
x2 out .......
Total Power .......

Subckt Name=inv
Instance Name Port Max(A) Min(A) Avg(A)

mn d .......
mn g .......
mn s .......
mn b .......
mp d .......
mp g .......
mp s .......
mp b .......
Total Power .......

POWER Analysis
The .POWER statement in HSPICE creates a table, which by default contains 
the measurements for AVG, RMS, MAX, and MIN for every signal specified. For 
example,

.POWER signals [REF=vname FROM=start_time TO=end_time]

By default, the scope of these measurements are from 0 to the maximum time 
point specified in the .TRAN statement.

For syntax and description of .POWER statement, see .POWER in the HSPICE 
Reference Manual: Command and Control Options.

In the following example, no simulation start and stop time exists for the x1.in 
signal, so the simulation scope for this signal runs from the start (0ps) to the 
last .tran time (100ps).

.power x1.in

.tran 4ps 100ps

In the following example, you can use the FROM and TO times to specify a 
separate measurement start and stop time for each signal. In this example:
■ The scope for simulating the x2.in signal is from 20ps to 80ps.
■ The scope for simulating the x0.in signal is from 30ps to 70ps.
20 HSPICE® User Guide: Advanced Analog Simulation and Analysis
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.param myendtime=80ps

.power x2.in REF=a123 from=20ps to=80ps

.power x0.in REF=abc from=30ps to=’myendtime - 10ps’

Setting Default Start and Stop Times
In addition to using FROM and TO times in a .POWER statement, you can also 
use the SIM_POWERSTART and SIM_POWERSTOP options with .POWER 
statements to specify default start and stop times for measuring signals during 
simulation. These times apply to all signals that do not have their own defined 
FROM and TO measurement times. For example,

.OPTION SIM_POWERSTART=time

.OPTION SIM_POWERSTOP=time

These options control the power measurement scope; the default is for the 
entire run.

For syntax and description of these options, see .OPTION 
SIM_POWERSTART or .OPTION SIM_POWERSTOP in the HSPICE 
Reference Manual: Command and Control Options.

Controlling Power Analysis Waveform Dumps
Use the SIM_POWERPOST option to dump the control-power analysis 
waveform. For example,

.OPTION SIM_POWERPOST=ON|OFF

When you consider the potentially enormous number of signals, there is no 
waveform dump by default for the signals in the .POWER statement. Setting 
SIM_POWERPOST=ON turns on power analysis waveform dumping.

Detecting and Reporting Surge Currents
The .SURGE statement in HSPICE advanced analog analyses automatically 
detects and reports a current surge that exceeds the specified surge tolerance. 
For example,

.SURGE surge_threshold surge_width node1 [node2 .... noden]

This statement reports any current surge that is greater than surge_threshold 
for a duration of more than surge_width.

For additional information, see .SURGE in the HSPICE Reference Manual: 
Commands and Control Options.
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Advanced Analog Demonstration Input Files
The following is a listing of shipped demonstration files for illustrating HSPICE 
advanced analog analyses functionality. All of these example files are available 
at:

 $installdir/demo/hspice/rf_examples 

File Name Description 

acpr.sp Envelope simulation example

bjt.inc Transistor model library used by osc.sp

cmos49_model.inc Transistor model library used by example circuits

cmos90nmWflicker.lib   Transistor model library used by phasefreqdet.sp

gpsvco.sp Oscillator and Phase Noise analysis example

gsmlna.sp LNA Linear analysis example

gsmlnaIP3_A.sp 3rd order intercept point example

mix_hb.sp Mixer HB analysis example

mix_hbac.sp MIxer HBAC analysis example

mix_snac.sp Mixer Shooting Newton AC example

mix_tran.sp Mixer transient analysis example

osc.sp Oscillator tuning curve and phase noise analysis example

pa.sp Power amplifier HB analysis example

pfdcpGain.sp Shooting Newton analysis example 

phasefreqdet.sp Shooting Newton and noise analysis example

ringoscSN.sp Shooting Newton and Phase Noise analysis example

tsmc018.m Transistor model library used by ringoscSN.sp
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Use of Example Syntax

To copy and paste proven syntax use the demonstration files shipped with your 
installation of HSPICE (see Listing of Demonstration Input Files in HSPICE 
User Guide: Basic Simulation and Analysis). Attempting to copy and paste from 
the book or help documentation may present unexpected results, as text used 
in formatting may include hidden characters, white space, etc. for visual clarity 
only.
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Part 1:  Time Domain, Steady-State
Analysis

Part 1 presents the following chapters /topics:
■ Chapter 2, Steady-State Harmonic Balance Analysis
■ Chapter 3, Steady-State Shooting Newton Analysis
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2

2Steady-State Harmonic Balance Analysis

Describes how to use harmonic balance analysis for frequency-driven and 
steady-state analysis.

This chapter provides an introduction to Harmonic Balance (.HB) analysis 
command. You can use steady-state analysis on a circuit if it contains only DC 
and periodic sources. These analyses assume that all “start-up” transients 
have completely died out with only the steady-state response remaining. These 
analyses treat sources that are not periodic or DC as zero-valued. For more 
information, see Chapter 3, Steady-State Shooting Newton Analysis. 

The following sections discuss these topics:
■ Harmonic Balance Analysis
■ Steady-State HB Sources
■ Phase Differences Between HB and SIN Sources
■ Tutorial Examples Harmonic Balance Analysis
■ References

Harmonic Balance Analysis

Harmonic balance analysis (HB) is a frequency-domain, steady-state analysis 
technique. Use this analysis technique on a circuit excitable by DC and periodic 
sources of one or more fundamental tones. The solution that HB finds is a set 
of phasors for each harmonic signal in the circuit. You can think of this solution 
as a set of truncated Fourier series. HSPICE advanced analog analyses allows 
you to specify the solution spectrum to use in an analysis. HB analysis then 
finds the set of phasors at these frequencies that describes the circuit 
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response. The result is a set of complex valued Fourier series coefficients that 
represent the waveforms at each node in the circuit.

Evaluation of linear circuit elements takes place in the frequency domain, while 
evaluation of nonlinear elements occurs in the time domain. The nonlinear 
response then transforms to the frequency domain where it adds to (or 
“balances” with) the linear response. The resulting composite response 
satisfies KCL and KVL (Kirchoff's current and voltage laws) with the circuit 
solution.

Typical applications include performing intermodulation analysis, oscillator 
analysis, and gain compression analysis, on amplifiers and mixers. HB analysis 
also serves as a starting point for periodic AC and noise analyses.

For more information on control options, see .HB command in the HSPICE 
Reference Manual: Commands and Control Options.

This section covers the following topics:
■ Features Supported
■ Harmonic Balance Equations
■ Harmonic Balance Output Measurements
■ HB .PRINT and .PROBE Output Syntax
■ HB Output Data Files and Examples
■ HB Error and Warning Messages
■ Calculating Power Measurements After HB Analyses
■ Calculations for Time-Domain Output
■ Using .MEASURE with .HB Analyses

Features Supported
HB supports the following features:
■ All existing HSPICE advanced analog analyses models.
■ Unlimited number of independent input tones.
■ Sources with multiple HB specifications.
■ SIN, PULSE, VMRF, and PWL sources with TRANFORHB=1.

Prerequisites and Limitations
The following prerequisites and limitations apply to HB:
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■ Requires one .HB statement.
■ Treats sources without a DC, HB, or TRANFORHB description as a 

zero-value for HB unless the sources have a transient description, in which 
case, the time=0 value becomes a DC value.

Harmonic Balance Equations
We can write Kirchoff's current law in the time domain as:

Equation 1

■ i(v(t)) represents the resistive currents from nonlinear devices
■ q represents the charges from nonlinear devices
■ y represents the admittance of the linear devices in the circuit
■ is represents the vector of independent current sources

■ v is a variable that represents the circuit unknowns, both node voltages and 
branch currents, and f(v,t) is an error term that goes to zero to satisfy 
Kirchoff's current law.

Transforming this equation to the frequency domain results in:

Equation 2

Note: Time-differentiation transforms to multiplication by j terms 
(which make up the  matrix) in the frequency domain. The 
convolution integral transforms to a simple multiplication. The Y 
matrix is the circuit’s modified nodal admittance matrix.

All terms above are vectors that represent the circuit response at each analysis 
frequency.

The following equation shows the vector of (complex-valued) unknowns in the 
frequency domain for a circuit with K analysis frequencies and N unknowns.

f v t  i v t  
td

d q v t   y t – v   d

–

t

 is t + + + 0= =

F V  I V  Q V  Y  V Is+ + + 0= =
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Equation 3

HSPICE advanced analog analyses finds the unknown vector (V), to satisfy the 
system of nonlinear equations in the equation above. The Newton-Raphson 
technique uses either a direct solver to factor the Jacobian matrix, or an indirect 
solver. The HSPICE advanced analog analyses indirect solver is in the 
Generalized Minimum Residual (GMRES) Solver, a Krylov technique, and uses 
a matrix-implicit algorithm.

Harmonic Balance Output Measurements
This section explains the harmonic balance output measurements you receive 
after HSPICE runs an HB simulation.

The HB cosine sources interpret in real/imaginary and polar formats according 
to Equation 4:

Equation 4

Note that this equation relates real/imaginary and polar formats with the 
standard convention:

Equation 5

V V 1 0  V 1 1   V 1 K 1–  V 2 0   V N K 1– =

v t  A t +  Re Ae
j t +   Re Ae

j
e

jt ==cos=

Re Ae
j t cos j t sin+  =

Re VR jVI+  t cos j t sin+  =

VR t cos VI at sin–=

A  cos t cos A  sin t sin–=

VR jVI Ae
j

=+

VR A  cos=

VI A  sin=

A VR
2

VI
2

+=

tan
VI

VR
------=
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The result of HB analysis is a complex voltage (current) spectrum at each 
circuit node (or specified branch). Let a[i] be the real part and b[i] be the 
imaginary part of the complex voltage at the ith frequency index. The Fourier 
series expansion gives the conversion to a steady-state time-domain waveform 
is as in Equation 6:

Equation 6

Where: 
■ v(t) is the resulting time domain waveform.
■ N+1 is the total number of harmonics (including DC) in the frequency 

domain spectrum of the *.hb0 file (the zero-th data point represents DC).
■ a[i] is the real component at the ith frequency
■ b[i] is the imaginary component at the ith frequency
■ f[i] is the ith frequency value (with i=0 representing the zero frequency 

DC term). These frequencies do not need a harmonic relationship.

This frequency domain (Fourier coefficient) representation converts to a 
steady-state time domain waveform when you use the .PRINT or .PROBE 
HBTRAN output option or you invoke the To Time Domain function on complex 
spectra within Custom WaveView.

HB .PRINT and .PROBE Output Syntax
This section describes the syntax for the HB .PRINT and .PROBE statements.

.PRINT HB TYPE(NODES|ELEMENTS)[INDICES]

v(t) = a[0] + a[1]*cos(2f[1]*t) – b[1]*sin(2f[1]*t)
+ a[2]*cos(2f[2]*t) – b[2]*sin(2f[2]*t)
+ a[3]*cos(2f[3]*t) – b[3]*sin(2f[3]*t)
+ . . .
+ a[N]*cos(2f[N]*t) – b[N]*sin(2f[N]*t)
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.PROBE HB TYPE(NODES|ELEMENTS)[INDICES]

Use the following output syntax to transform HB data into the time domain:

.PRINT hbtran ov1 [ov2...] 

.PROBE hbtran ov1 [ov2...] 

Where ov1 ... are the output variables to print or probe.

Outputting Phase Noise Source as ASCII Data Files Using *.printpn0
HB phase noise and phase noise analyses can output simulation results as 
ASCII data in *.printpn0 files for HBOSC and HBNOISE. Extend the E- and 

Parameter Description

TYPE Specifies a harmonic type node or element. 

TYPE can be one of the following:
■ Voltage type:

V = voltage magnitude and phase in degrees
VR = real component
VI = imaginary component
VM = magnitude
VP - Phase in degrees 
VPD - Phase in degrees
VPR - Phase in radians
VDB - dB units
VDBM - dB relative to 1 mV

■ Current type:
I = current magnitude and phase in degrees
IR = real component
II = imaginary component
IM = magnitude
IP - Phase in degrees 
IPD - Phase in degrees
IPR - Phase in radians
IDB - dB units
IDBM - dB relative to 1 mV

■ Power type: P = Power in Watts or Pdbm = Power in dBm
■ Frequency type: 

‘HERTZ[i]’ (for single tone analysis), ‘HERTZ[i][j]’ (for two-tone analysis), 
‘HERTZ[i][j][k]’ (for 3-tone analysis), etc. 
You must specify the harmonic index integer for the HERTZ keyword. The 
frequency of the specified harmonics results.

INDICES Index to tones in the form [n1, n2,..., nN], where nj is the index of the HB tone and the 
HB statement contains N tones. Wildcards are illegal if you use the INDICES keyword. 

TYPE can be one of the following:
■ Voltage type – a single node name (n1), or a pair of node names, (n1,n2)
■ Current type – an element name (elemname)
■ Power type – a resistor (resistorname) or port (portname) element name.
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G- voltage-controlled source syntax to make the phase noise data in ASCII 
phase noise files double as input for specifying behavioral noise sources.

Usage Model
The syntax for the voltage controlled voltage (E) or current (G) source is as 
follows:

Exxx node1 node2 noise file='filename' [mname='measname']
Gxxx node1 node2 noise file='filename' [mname='measname'] 

Where file='filename' is the name of the ASCII phase noise data file. The 
file 'design.printpn0', name is typically designates an .HBOSC phase 
noise analysis or .HBNOISE analysis output file.

Use mname='measname' to select the appropriate noise measurement name 
from the *.printpn0 file.

 measname can be one of the following:
■ NLP_L(f) - selects the nlp_L(f) phase noise data in units of dBc/Hz
■ PAC_L(f) - selects the pac_l(f) phase noise data in units of dBc/Hz
■ BPN_L(f) - selects the bpn_l(f) phase noise data in units of dBc/Hz
■ ONOISE - selects the onoise data based on .HBNOISE or .SNNOISE 

analysis

HB Output Data Files and Examples
The results of an HB analysis are complex spectral components at each 
frequency point. The a[i] is the real part, and b[i] is the imaginary part of the 
complex voltage at frequency index i. The conversion to a steady state time-
domain is then given by the Fourier series expansion.

An HB analysis produces these output data files:
■ Output from the .PRINT HB statement is written to a .printhb# file. 

• The header contains the large signal fundamental frequencies. 

• The columns of data are labeled as HERTZ, followed by frequency 
indices, and then the output variable names. 

• The sum of the frequency indices, multiplied by the corresponding 
fundamental frequencies, add up to the frequency in the first column.
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■ Output from the .PROBE HB statement is written to a .hb# file. It is in the 
same format as the HSPICE transient analysis .tr# file. Besides the output 
waveform, it contains the information of harmonic indices and basic tone 
frequencies.

■ Output from the .PRINT HBTRAN statement is written to a printer file. The 
format is identical to a .print# file.

■ Output from the .PROBE HBTRAN statement is written to a .hr# file. The 
format is identical to a .tr# file.

■ Reported performance log statistics are written to a .lis file.

.HB Output Example

.PRINT HB P(rload)      $ RMS power (spectrum) 
                        $ dissipated at the rload resistor
.PROBE HB V(n1,v2)      $ Differential voltage (spectrum) 
                        $ between the n1,n2 nodes
.PRINT HB VP(out)[1]    $ Phase of voltage at the out 
                        $ node, at the fundamental 
                        $ frequency
.PROBE HB P(Pout)[2,-1] $ RMS power delivered to the Pout
                        $ port, at third-order intermod
.PRINT HBTRAN V(n1)     $ Voltage at n1 in time domain
.PROBE HBTRAN V(n1, n2) $ Differential voltages between n1 
 $ and n2 node in time domain.

HB Error and Warning Messages
HB Analysis Error Messages
Following are the error messages issued by HSPICE simulator when using the 
.HB analysis:

File Description

HB_ERR.1 Harmonic numbers must be positive non-zero.

HB_ERR.2 No .hb frequencies given.

HB_ERR.3 Negative frequency given.

HB_ERR.4 Number of harmonics should be greater than zero.

HB_ERR.5 Different number of tones, nharms.

HB_ERR.6 Bad probe node format for oscillator analysis.
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HB Analysis Error Messages
Following are the warning messages issued by HSPICE when using the .HB 
analysis:

HB_ERR.7 Bad format for FSPTS.

HB_ERR.8 Bad .hb keyword.

HB_ERR.9 Tones must be specified for .hb analysis.

HB_ERR.10 Nharms or intmodmax must be specified for .hb analysis.

HB_ERR.11 Source harmonic out of range.

HB_ERR.12 Source named in the tones list is not defined.

HB_ERR.13 Source named in the tones list does not have TRANFORHB specified.

HB_ERR.14 Source named in the tones list has no transient description.

HB_ERR.15 Source named in the tones list must be HB, SIN, PULSE, PWL, or VMRF.

HB_ERR.16 Tone specification for the source is inconsistent with its frequency.

HB_ERR.17 HB oscillator analysis has reached the NULL solution.

HB_ERR.18 Bad subharms format.

HB_ERR.19 Modtone may not be set to the same value as tone.

File Description

HB_WARN.1 .hb multiply defined. Last one will be used.

HB_WARN.2 Tone specified for V/I source not specified in .HB command.

HB_WARN.3 HB convergence not achieved.

HB_WARN.4 Source specifies both HB and transient description. HB description will be 
used.

HB_WARN.5 Source specifies exponential decay. HB will ignore it.

HB_WARN.6 Source specifies a non-positive frequency.

HB_WARN.7 Source does not fit the HB spectrum.

File Description
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Calculating Power Measurements After HB Analyses
Two types of power measurements are available: dissipated power in resistors 
and delivered power to port elements. The following describes the subtle 
differences between these two measurements:

Power Dissipated in a Resistor
All power calculations make use of the fundamental phasor power relationship 
given as the following equation, where voltage V and current I are complex 
phasors given in peak values (not rms, nor peak-to-peak):

Equation 7

In the case of a simple resistor, its current and voltage relate to each other 
according to Vn=InR. Equation 8 gives the power dissipated in a resistor of 

(real) value R at frequency index :

Equation 8

Power Delivered to a Port Element
The port element can be either a source or sink for power. You can use a 
special calculation that computes the power flowing into a port element even if 
the port element itself is the source of that power. In Figure 7 a Port element 
connects to a circuit (the Port element may or may not include a voltage 
source). 

HB_WARN.8 Source cannot be used with the TRANFORHB option.

HB_WARN.9 Frequency not found from transient analysis

HB_WARN.10 .hb/.hbosc will be ignored due to .env/.envosc.

HB_WARN.11 HBTRANINIT does not support more than one input tone.

File Description

Prms
1
2
---Re VI =

n

Prms resistor  n 
Vn

2

2R
-----------=
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Figure 7 Port Element

Let Vn be the (peak) voltage across the terminals of the port element (at 
frequency index n). Let In be the (peak) current into the (1st) terminal of the 
port element (at frequency index n). Let Zo be the impedance value of the z0 
port element. Then, you can compute the power wave flowing into the terminals 
of the port element (at frequency index n) according to:

Equation 9

This power expression remains valid whether or not the port element includes 
an internal voltage source at the same frequency. If the port element includes a 
voltage source at the same frequency, you can use this power calculation to 
compute the magnitude of the related large-signal scattering parameters. 

If you expand the preceding formula, you can determine the power delivered to 
a port element with (real) impedance Zo:

Equation 10

This power value represents the power incident upon and delivered to the port 
element's load impedance (Zo) due to other power sources in the circuit, and 
due to reflections of its own generated power.
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If you use the port element as a load resistor (no internal source), the 
preceding equation reduces to that for the simple resistor. 

If you use the port element as a power source (with non-zero available power, 
i.e. a non-zero Vs) and it terminates in a matched load (Zo), the port 
power-measurement returns 0 W, because no power is reflected. 

You can request power measurements in the form of complete spectra or in the 
form of scalar quantities that represent power at a particular element. To 
request a complete power spectrum, use the following syntax.

.PRINT HB P(Elem) 

.PROBE HB P(Elem) 

To request a power value at a particular frequency tone, use the following 
syntax:

.PRINT HB P(Elem)[<n1<,n2<n3,...>>>]

.PROBE HB P(Elem)[<n1<,n2<,n3,...>>>]

The Elem is the name of either a Resistor (R) or Port (P) element, and n1,n2, 
and n3 are integer indices used for selecting a particular frequency in the 
Harmonic Balance output spectrum.

Example 1 Prints a table of the RMS power (spectrum) dissipated by resistor R1.

.PRINT HB P(R1)

Example 2 Outputs the RMS power dissipated by resistor R1 at the fundamental HB 
analysis frequency following a one-tone analysis.

.PROBE HB P(R1)[1]

Example 3 Prints the power dissipated by resistor R1 at DC following a one-tone 
analysis.

.PRINT HB P(R1)[0]

Example 4 Outputs the RMS power dissipated by resistor R1 at the (low-side) 3rd 
order intermodulation product after an HB two-tone analysis.

.PROBE HB P(R1)[2,-1]

Example 5 Prints the RMS power dissipated by resistor R1 at the (high-side) 3rd 
order intermodulation product after an HB two-tone analysis.

.PRINT HB P(R1)[-1,2]

Example 6 Outputs the RMS power (spectrum) delivered to port element Pload.

.PROBE HB P(Pload)
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Example 7 Prints the RMS power delivered to port element Pload at the fundamental 
HB analysis frequency following a one-tone analysis.

.PRINT HB P(Pload)[1] $

Example 8 Outputs the RMS power delivered to port element Pload at the (low-side) 
3rd order intermodulation product after an HB two-tone analysis.

.PROBE HB P(Pload)[2,-1]

Calculations for Time-Domain Output
In addition to a frequency-domain output, HB analysis also supports a time-
domain output. The simulation generates an equivalent time-domain waveform 
according to the Fourier series expansion by way of

Equation 11

Where m starts from 0 to the number of frequency points in the HB simulation.

The output syntax is

.PRINT [HBTRAN | HBTR] V(n1)

.PROBE [HBTRAN | HBTR] V(n1)

The output time ranges from 0 to twice the period of the smallest frequency in 
the HB spectra.

Minimizing Gibbs Phenomenon
You can use the HB_GIBBS option for HBTRAN output to minimize Gibbs’ 
phenomenon that may occur in transforming a square-wave signal from the 
frequency domain to the time domain. The syntax is .OPTION HB_GIBBS=n 
(defaults to zero, which is equivalent to not using it at all). The result is that the 

A  function filters HBTRAN waveforms before they transform to the 
time domain via FFT. This option applies only to single-tone output. For 
example:

.option hb_gibbs = 2

...

.print hbtran v(2)

V n1 @time t SUMOVERm REALV n1  m   ""  m  t cos IMAG(V n1  m –  m t tsin=

c x sin N
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Figure 8 Upper square-wave signal shows HB_GIBBS = 2, while the lower shows 
the option = 0

Using .MEASURE with .HB Analyses
■ For transient analysis (TRAN), the independent variable for 

calculating .MEASURE is time. 
■ For AC analysis, the independent variable for calculating .MEASURE is 

frequency. 
■ However, as with DC analysis, the use of a .MEASURE command is peculiar 

for HB analysis, because it has no obvious independent variable. 

In HSPICE advanced analog analyses, the independent variable for HB 
.MEASURE analysis is the first swept variable specified in the .HB simulation 
control statement. This variable can be anything: frequency, power, voltage, 
current, a component value, and so on. 
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Example 9 For the following .HB simulation control statement, the independent 
variable is the swept tone frequency, and the .MEASURE command 
values return results based on this frequency sweep:

* HARMONIC BALANCE tone-frequency sweep for amplifier
.param freq1=1.91e9 power=1e-3
.HB tones=freq1 nharms=10 sweep freq1 LIN 10 1.91e9 2.0e9
.MEASURE HB Patf0 FIND P(Rload)[1] AT=1.95e9 $ Power at
+ f0=1.95Ghz
.MEASURE HB Frq1W WHEN P(Rload)[1]=1. $ freq1 @ 1 Watt
.MEASURE HB BW1W TRIG AT=1.92e9 TARG P(Rload)[1] VAL=1. 
+ CROSS=2 $ 1 Watt bandwidth
.MEASURE HB MaxPwr MAX P(Rload)[1] FROM=1.91e9 TO=2.0e9 
+ $ Finds max output power 
.MEASURE HB MinPwr MIN P(Rload)[1] FROM=1.91e9 TO=2.0e9  
+ $ Finds min output power 

Example 10 In the following example, the independent variable is the power variable, 
and the .MEASURE values return results based on the power sweep. 
Units are in Watts. 

* HARMONIC BALANCE power sweep for amplifier
.param freq1=1.91e9 power=1e-3
.HB tones=freq1 nharms=10 sweep power DEC 10 1e-6 1e-3
.MEASURE HB Pat1uW FIND P(Rload)[1] AT=1e-6 $ Pout at 1uW
.MEASURE HB Pin1W WHEN P(Rload)[1]=1. $ Pin @ 1 Watt Pout
.MEASURE HB Prange1W TRIG AT=1.92e9 TARG P(Rload)[1] VAL=1. 
+ CROSS=2 $ 1W oper. range

.MEASURE HB ssGain DERIV P(Rload)[1] AT=1e-5 
+ $ relative power gain at 10uW input 
.MEASURE HB Gain3rd DERIV P(Rload)[3] AT=1e-5 
+ $ 3rd harmonic gain at 10uW input 
.MEASURE HB PAE1W FIND ‘(P(Rload)[1]-power)/P(Vdc)[0]’
+ WHEN P(Rload)[1]=1 $ PAE at 1 Watt output 
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Example 11 In this example, the independent variable is again the power variable, and 
the .MEASURE values return results based on the power sweep. This is a 
two-tone sweep, where both input frequency sources are at the same 
power level in Watts. 

* HARMONIC BALANCE two-tone sweep for amplifier
* An IP3 calculation is made at 10uW in the sweep
.param freq1=1.91e9 freq2=1.91e9 power=1e-3
.HB tones=freq1,freq2 nharms=6,6 sweep power DEC 10 1e-6 1e-3
.MEASURE HB Pf1dBm FIND ’10.*LOG(P(Rload)[1,0]/1.e-3)’ 
+ AT=1e-5 $ P(f1) at 10uW input
.MEASURE HB P2f1_f2dBm FIND ’10.*LOG(P(Rload)[2,-1]/1.e-3)’ 
+ AT=1e-5 $ P(2f1-f2) at 10uW input
.MEASURE HB OIP3dBm PARAM = ‘0.5*(3.*Pf1dBm-P2f1_f2dBm)’
.MEASURE HB IIP3dBm PARAM = ‘OIP3dBm-Pf1dBm+20.0’
.MEASURE HB AM2PM DERIV VP(outp,outn)[1] AT=1e-5 
+ $ AM to PM Conversion in Deg/Watt 

If you do not specify an HB sweep, then .MEASURE assumes a single-valued 
independent variable sweep. 

You can apply the measurements to current, voltage, and power waveforms. 
The independent variable for measurements is the swept variable (such as 
power), not the frequency axis that corresponds to a single HB steady state 
point.

HSPICE advanced analog analyses also supports the .MEASURE [HBTRAN | 
HBTR] ... syntax. Similar to the .PROBE and .PRINT HBTR statements in 
the section Calculations for Time-Domain Output, you apply a.MEASURE HBTR 
statement on the signals obtained in the same way. Moreover, like a .MEASURE 
statement in transient analysis, the independent variable in a .MEASURE HBTR 
statement is time.

HSPICE advanced analog analyses optimization can read the data from 
.MEASURE HB and .MEASURE HBTR statements. Due to the difference in the 
independent variable between the .MEASURE HB and .MEASURE HBTR 
statements, you cannot mix these two types of measurements in an HSPICE 
advanced analog analyses optimization. But you can combine a .MEASURE 
HBTR statement with a .MEASURE PHASENOISE statement (see Measuring 
Phase Noise with .MEASURE PHASENOISE) and a .MEASURE HBNOISE 
statement (see Measuring HBNOISE Analyses with .MEASURE) in an HSPICE 
advanced analog analyses optimization flow.
42 HSPICE® User Guide: Advanced Analog Simulation and Analysis
K-2015.06



Chapter 2: Steady-State Harmonic Balance Analysis
Steady-State HB Sources
Steady-State HB Sources

The fundamental frequencies used with harmonic balance analysis are 
specified with the .HB TONES command. These frequencies can then be 
referenced by their integer indices when specifying steady-state signal sources. 
For example, the .HB specification given by the following line:

.HB TONES=1900MEG,1910MEG INTMODMAX=5

This specifies two fundamental frequencies:  and 
. Their mixing product at 10 MHz can then be referenced 

using indices as , while their 3rd order intermodulation product at 1.89 

GHz can be referenced as .

Steady-state voltage and current sources are identified with the HB keyword 
according to

[HB [mag [phase [harm [tone [mod harm [modtone]]]]]]]

The source is mathematically equivalent to a cosine signal source that follows 
the equation

where:

Values for tone and modtone (an optional modulating tone) must be non-
negative integers that specify index values for the frequencies specified with 
the .HB TONES command. Values for harm (harmonic) and modharm 
(modulating tone harmonic) must be integers (negative values are OK) that 
specify harmonic indices. 

Example 12 The following example is a 1.0 Volt (peak) steady-state cosine voltage 
source, which is at the fundamental HB frequency with zero phase and 
with a zero volt DC value:

Vsrc  in   gnd   DC  0  HB  1.0  0  1  1

f tone 1=  1.9GHz=

f tone 2=  1.91GHz=

f 2  f 1 –

2f 1  f 2 –

A t + cos

A mag=

 2 harm f tone  modharm+ f mo toned =

 
180
--------- phase=
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Example 13 The following example is a steady-state cosine power source with 1.0mW 
available power, which is implemented with a Norton equivalent circuit 
and a 50 ohm input impedance:

Isrc  in   gnd   HB  1.0e-3  0  1  1  power=1 z0=50

Example 14 Five series voltage sources sum to produce a stimulus of five equally 
spaced frequencies at and above 2.44 GHz using modharm and 
modtone parameters. These are commensurate tones (an integer 
relation exists); therefore, you only need to specify two tones when 
invoking the HB analysis.

.param Vin=1.0

.param f0=2440MEG

.param deltaf=312.5K 

.param fcenter='f0 + 2.0*deltaf'
Vrfa in ina HB 'Vin' 0 1 1 $ 2.440625 

GHz
Vrfb ina inb HB 'Vin' 0 1 1 -1 2 $ 
2.4403125 GHz
Vrfc inb inc HB 'Vin' 0 1 1 -2 2 $ 
2.440 GHz
Vrfd inc ind HB 'Vin' 0 1 1 +1 2 $ 
2.4409375 GHz
Vrfe ind gnd HB 'Vin' 0 1 1 +2 2 $ 2.44125 

GHz
.HB tones=fcenter,deltaf intmodmax=5

Phase Differences Between HB and SIN Sources

The HB steady-state cosine source has a phase variation compared to the 
TRAN time-domain SIN source. The SIN source (with no offset, delay or 
damping) follows the equation:

Equation 12

while the HB sources follow

Equation 13

In order for the two sources to yield identical results it is necessary to align 
them by setting their phase values accordingly using: 

A t + sin

A t + cos
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Equation 14

Equation 15

Example 15 To specify sources with matching phase for HB and TRAN analysis, use 
a convention similar to:

** Example #1 with equivalent HB and SIN sources
** SIN source is given +90 phase shift
.param freq1=2400MEG Vin=1.0
Vsrc in gnd DC 0 HB 'Vin' 0 1 1 SIN(0 'Vin' 'freq1' 0 0 90)
.HB tones=freq1 intmodmax=7
** Example #2 with equivalent HB and SIN sources
** HB source is given -90 phase shift to align with SIN
.param freq1=2400MEG Vin=1.0
Vsrc in gnd DC 0 HB 'Vin' -90 1 1 SIN(0 'Vin' 'freq1' 0)
.HB tones=freq1 intmodmax=7
** Example #3 with equivalent .HB and .TRAN sources
** SIN source is activated for HB using "TRANFORHB" 
.param freq1=2400MEG Vin=1.0
Vsrc in gnd DC 0 SIN(0 'Vin' 'freq1' 0) TRANFORHB=1
.HB tones=freq1 intmodmax=7

Tutorial Examples Harmonic Balance Analysis

The following sections present these tutorial examples:
■ Example 1: Using HB Analysis for a Power Amplifier
■ Example 2: Using HB Analysis for a Low Noise Amp

Example 1: Using HB Analysis for a Power Amplifier
The .HB command computes periodic steady-state solutions of circuits. This 
analysis uses the Harmonic Balance (HB) technique for computing such 
solutions in the frequency domain. The circuit can be driven by a voltage, 
power, or current source, or it may be an autonomous oscillator. The HB 
algorithm represents the circuit’s voltage and current waveforms as a Fourier 
series, that is, a series of sinusoidal waveforms.

A t + cos A t  90+ + sin=

A t + sin A t  90–+ cos=
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To set up a periodic steady-state analysis, the HSPICE input netlist must 
contain:
■ An .HB command to activate the analysis. The .HB command specifies the 

base frequency (or frequencies, also called tones) for the analysis, and the 
number of harmonics to use for each tone. The .HB command can specify 
base tones so that the circuit solution is represented as a multi-dimensional 
Fourier series. The number of terms in the series are determined by the 
number of harmonics; more harmonics result in higher accuracy, but also 
longer simulation times and higher memory usage. 

■ One or more signal sources for driving the circuit in HB analysis, if the circuit 
is driven. In the case of autonomous oscillator analysis, no signal source is 
required. Signal sources are specified using the HB keyword on the voltage 
or current source syntax. Power sources are specified by setting the power 
switch on voltage/current sources to 1; in this case, the source value is 
treated as a power value in Watts instead of a voltage or current. 

Optionally, the netlist can also contain a set of control option for optimizing HB 
analysis performance.

The following example shows how to set up a Harmonic Balance analysis on an 
NMOS Class C Power Amplifier. The example compares transient analysis 
results to Harmonic Balance results.

Figure 9 Power Amplifier
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The following netlist performs both a transient and a Harmonic Balance 
analysis of the amplifier driven by a sinusoidal input waveform. The accurate 
option is set to ensure sufficient number of time points for comparison with HB. 
This example is included with the HSPICE advanced analog analyses 
distribution as pa.sp and is available in directory $installdir/demo/
hspice/rf_examples/.

.options POST accurate

.param f0=950e6 PI=3.1415926 Ld=2e-9 Rload=5 Vin=3.0

.param Lin=0.1n Vdd=2 Cd='1.0/(4*PI*PI*f0*f0*Ld)'
M1 drain gt 0 0 CMOSN L=0.35u W=50u AS=100p AD=100p
PS=104u PD=104u M=80
Ls in gt   Lin $ gate tuning
Ld drain vdd Ld $ drain tuning
Cd drain 0    Cd
Cb drain out   INFINITY $ DC block
Rload out   0   Rload
Vdd vdd 0   DC    Vdd
Vrf1 in   0   DC 'Vin/2.0' 
+ SIN ('Vin/2' 'Vin/2' 'f0' 0 0 90)
+ HB 'Vin/2' 0.0 1 1 
.hb tones=f0 nharms=10 
.tran 10p 10n 
.probe hb p(Rload) 
.probe tran p(Rload)
.include cmos49_model.inc
.end

An HB analysis uses the following:
■ An .HB command:

.hb tones=f0 nharms=10 

For a single tone analysis with base frequency 950 MHz and 10 harmonics. 
■ The HB source in Vrf1: 

HB ‘Vin/2’ 0.0 1 1. 

This creates a sinusoidal waveform matching the transient analysis one. 
The amplitude is Vin/2=1.5 V, and it applies to the first harmonic of the first 
tone, 950 MHz. 

■ A .PROBE command for plotting the output power:

.probe hb p(Rload) 

To run this netlist, type the following command:
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hspicerf pa.sp

This produces two output files named pa.tr0 and pa.hb0, containing the 
transient and HB output, respectively. To view and compare the output:

1. Type wv at the prompt to invoke Custom WaveView. 

2. Use File > Import Waveform File and select the pa.tr0 and pa.hb0 files 
from the Open: Waveform Files dialog box.

3. Select the v(out) signal from the pa.hb0 in the signal browser. Double-click 
on the signal name or drag and drop the signal in the waveform. The 
histogram shows lines at 950MHz, and multiples thereof, up to 9.5GHz.

4. In the waveform, right click in the name area of the panel containing the 
signal v(out), left-click on the waveform label for v(out) from the pa.hb0 file. 
From the Panel menu, choose Signal 'v(out)' > To Time-Domain.

5. In the Convert to Time Domain window, change the X-End (sec) value to 
10n.

6. Click OK to accept the settings. 

7. The new waveform shows a new time domain waveform named IFT.0|v(out).

8. Select the v(out) signal from the pa.tr0 in the signal browser. Drag and 
drop the signal in the waveform containing IFT.0|v(out). This should overlay 
the IFT.0|v(out) and v(out) signals on the same waveform. Zoom into the 
transitions to see the slight differences between the waveforms.

Example 2: Using HB Analysis for a Low Noise Amp
This example performs a simulation on a Low Noise Amplifier circuit using two 
closely-spaced steady-state tones to study the compression and third order 
distortion properties of the amplifier. The example file gsmlnaIP3_A.sp is 
located at: $installdir/demo/hspice/rf_examples/.

See Figure 10 for the schematic view.
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Figure 10 Schematic showing instantiation for Low Noise Amplifier
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Figure 11 Low Noise Amplifier netlist, Part 1

** NMOS 0.25um Cascode LNA for GSM applications
** setup for s-parameter and noise parameter measurements
.temp 27
.options post
.param Vdd=2.3
**
** Cascode LNA tuned for operation near 1 GHz
**
M1 _n4 _n3 _n5 _n5 CMOSN l=0.25u w=7.5u
+ as=15p ad=15p ps=19u pd=19u m=80
M2 _n6 _n1 _n4 _n4 CMOSN l=0.25u w=7.5u
+ as=15p ad=15p ps=19u pd=19u m=80
M3 rfo _n6 gnd gnd CMOSN l=0.25u w=7.5u
+ as=15p ad=15p ps=19u pd=19u m=40
r1 _vdd _n6 400
l1 _n5 gnd l=0.9nH
l2 rfin _n3 l=13nH
lchk rfin rfinb INFINITY
cblk rfin rfind INFINITY
vvb _n1 gnd dc=1.19 $ bias for common base device
vinb rfinb gnd dc=0.595
vvdd _vdd gnd dc=Vdd
rfb rfo _n6 120 $ feedback
**
**
** Two-tone input source (DC blocked at this time)
**
Vin rfind gnd dc=0 power=1 z0=50 $ 50 Ohm src
+ HB Pin 0 1 1 $ tone 1
+ HB Pin 0 1 2 $ tone 2
Rload rfo _vdd R=255
**
** HB test bench to measure IP3 and IP2
.HB tones=900MEG, 910MEG nharms=11 11 intmodmax=7
+ SWEEP Pin dec 10 1e-8 1e-3
.print HB P(Rload) P(Rload)[1,0] P(Rload) [2,0] P(Rload)[2,-1]
.probe HB P(Rload) P(Rload)[1,0] P(Rload) [2,0] P(Rload)[2,-1]
**

**
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Figure 12 Low Noise Amplifier netlist, Part 2

** Approximate parameters for TSMC 0.25 Process (MOSIS run T17B)
**
.MODEL CMOSN NMOS ( LEVEL = 49
+VERSION = 3.1 TNOM = 27 TOX = 5.8E-9
+XJ = 1E-7 NCH = 2.3549E17 VTH0 = 0.3819327
+K1 = 0.477867 K2 = 2.422759E-3 K3 = 1E-3
+K3B = 2.1606637 W0 = 1E-7 NLX = 1.57986E-7
+DVT0W = 0 DVT1W = 0 DVT2W = 0
+DVT0 = 0.5334651 DVT1 = 0.7186877 DVT2 = -0.5
+U0 = 289.1720829 UA = -1.300598E-9 UB = 2.3082E-18
+UC = 2.841618E-11 VSAT = 1.482651E5 A0 = 1.6856991
+AGS = 0.2874763 B0 = -1.833193E-8 B1 = -1E-7
+KETA = -2.395348E-3 A1 = 0 A2 = 0.4177975
+RDSW = 178.7751373 PRWG = 0.3774172 PRWB = -0.2
+WR = 1 WINT = 0 LINT = 1.88839E-8
+XL = 3E-8 XW = -4E-8 DWG = -1.2139E-8
+DWB = 4.613042E-9 VOFF = -0.0981658 NFACTOR = 1.2032376
+CIT = 0 CDSC = 2.4E-4 CDSCD = 0
+CDSCB = 0 ETA0 = 5.128492E-3 ETAB = 6.18609E-4
+DSUB = 0.0463218 PCLM = 1.91946 PDIBLC1 = 1
+PDIBLC2 = 4.422611E-3 PDIBLCB = -0.1 DROUT = 0.9817908
+PSCBE1 = 7.982649E10 PSCBE2 = 5.200359E-10 PVAG = 9.31443E-3
+DELTA = 0.01 RSH = 3.7 MOBMOD = 1
+PRT = 0 UTE = -1.5 KT1 = -0.11
+KT1L = 0 KT2 = 0.022 UA1 = 4.31E-9
+UB1 = -7.61E-18 UC1 = -5.6E-11 AT = 3.3E4
+WL = 0 WLN = 1 WW = 0
+WWN = 1 WWL = 0 LL = 0
+LLN = 1 LW = 0 LWN = 1
+LWL = 0 CAPMOD = 2 XPART = 0.5
+CGDO = 5.62E-10 CGSO = 5.62E-10 CGBO = 1E-12
+CJ = 1.641005E-3 PB = 0.99 MJ = 0.4453094
+CJSW = 4.179682E-10 PBSW = 0.99 MJSW = 0.3413857
+CJSWG = 3.29E-10 PBSWG = 0.99 MJSWG = 0.3413857
+CF = 0 PVTH0 = -8.385037E-3 PRDSW = -10
+PK2 = 2.650965E-3 WKETA = 7.293869E-3 LKETA = -6.070E-3)
*
.meas hb fund1_mag max v(rfo) [1,0]
.meas hb fund2_mag max v(rfo) [0,1]
.meas hb harm1_mag max v(rfo) [2,-1]
.meas hb harm2_mag max v(rfo) [-1,2]
.meas hb fund1 param ='20*log10(fund1_mag)'
.meas hb fund2 param ='20*log10(fund2_mag)'
.meas hb harm1 param ='20*log10(harm1_mag)'
.meas hb harm2 param ='20*log10(harm2_mag)'
.meas hb IIP31 param ='fund1+(fund1-harm1)/2'
.meas hb IIP32 param ='fund1+(fund2-harm2)/2'
*

.END
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First, a voltage source element is used as a two-tone power source by setting 
the power flag and a source impedance of 50 ohms is specified. The HB 
keyword is used to identify the amplitude (interpreted as Watts with the power 
flag set to 1), phase, harmonic index, and tone index for each tone.

Vin rfind gnd dc=0 power=1 z0=50 $ 50 Ohm src
+ HB Pin 0 1 1 $ tone 1
+ HB Pin 0 1 2 $ tone 2

Second, the .HB command designates the frequencies of the two tones and 
establishes the power sweep. The intmodmax parameter has been set to 7 to 
include intermodulation harmonic content up to 7th order effects.

.HB tones=900MEG,910MEG nharms=11 intmodmax=7
+ SWEEP Pin dec 10 1e-8 1e-3

Last, the HSPICE advanced analog analyses ability to specify a specific 
harmonic term is used in the .PRINT and .PROBE statements to pull out the 
signals of particular interest. Notice the three different formats:

1. The following reference dumps a complete spectrum in RMS Watts for the 
power across resistor Rload.

.PRINT HB P(Rload)

2. The following reference selectively dumps the power in resistor Rload at the 
first harmonic of the 1st tone.

.PRINT HB P(Rload)[1,0]

3. The following reference selectively dumps the power in resistor Rload at the 
3rd intermodulation product frequency (890 MHz).

.PRINT HB P(Rload)[2,-1]

To run this simulation, type the following at the command line:

hspice -i gsmlnaIP3_A.sp -o

Viewing Results using Custom WaveView
For this analysis, the .PRINT statement will generate a 
gsmlnaIP3_A.printhb0 file. Assume you want to find the output power 
through the load resistor at the first tone, when the input power is 0.1mW.

To view the file:

1. Type wv at the prompt to invoke Custom WaveView.

2. Use File > Import Waveform File and select the gsmlnaIP3_A.hb0 file.
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3. Select the signal Pr(rload) [1,0] in the signal browser. Drag and drop 
the signal in the waveform. The X-axis is the input power and the Y-axis is 
the output power. The output power on the Y-axis is displayed in dBm but the 
input power on the X-axis is displayed in watts. To make the 1dB 
compression point measurement, it is necessary to change the X-axis scale 
to dBm.

4. To change the X-axis scale to dBm, right-click the X-axis and select 
Attributes from the menu. At the bottom right of the X-axis Attributes menu, 
select dBm10 from the type pull-down menu and click Apply. Close the 
menu by clicking Close. 

5. To measure the 1dB compression point of the amplifier, select 
Measurement from the tools menu. In the Measurement Tools window, the 
available measurements are listed by category on the left side of the 
window. Scroll down to the RF measurements and select P1dB. Click OK; 
this places a dynamic meter in the waveform.

6. Move the dynamic meter near the signal, the meter will show the 1dB 
compression point, the linear gain of the amplifier, and the input power 
where the 1dB compression point is measured. For best results, the 
asymptotic line drawn by the dynamic meter should overlay the linear 
portion of the amplifier power curve.
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Figure 13 1dB Compression Point

7. Use Waveview > New to open a new waveform.

8. Select the signals Pr(rload)[1,0], Pr(rload)[2,-1], and 
Pr(rload)[2,0] in the signal browser. Drag and drop the signals in the 
waveform. Change the X-axis scale to dBm as described in step 4.

9. The 3rd order intercept point is also measured by using the measurement 
tool. In the measurement section, select IP3/SFDR. Click OK; this will place 
a dynamic meter in the waveform.

10. Move the dynamic meter near the Pr(rload)[1,0] signal, the meter will 
show the 3rd order intercept point and the input power where the 3rd order 
intercept point is measured. For best results, the asymptotic lines drawn by 
the dynamic meter should overlay the linear portion of the 
Pr(rload)[1,0] and Pr(rload)[2,-1] signals.
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Figure 14 3rd Order Intercept Point

Device Model Cards
The following is an NMOS model in cmos49_model.inc file used in the power 
amplifier example. It is available in directory $installdir/demo/hspice/
rf_examples.

**
** NMOS IC Quadrature VCO circuit for GPS local oscillator

** 
** Twin differential negative resistance VCOs
** using NMOS transistors for varactors, coupled
** to produce quadrature resonances.
** Design based on 0.35um CMOS process.
**
** References:
**  >P. Vancorenland and M.S.J. Steyaert, "A 1.57-GHz fully
**    integrated very low-phase-noise quadrature VCO,"
**    IEEE Trans. Solid-State Circuits, May 2002, pp.653-656.
**  >J. van der Tang, P. van de Ven, D. Kasperkovitz, and A. 
Roermund,
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**   "Analysis and design of an optimally coupled 5-GHz quadrature
**    LC oscillator,"  IEEE Trans. Solid-State Circuits, May 2002, 
**    pp.657-661.
**  >F. Behbahani, H. Firouzkouhi, R. Chokkalingam, S. Delshadpour,
**   A. Kheirkhani, M. Nariman, M. Conta, and S. Bhatia,
 
**   "A fully integrated low-IF CMOS GPS radio with on-chip analog
**   image rejection,"  IEEE Trans. Solid-State Circuits, Dec. 2002,
**   pp. 1721-1727. 
**
** Setup for Harmonic Balance Analysis
**
** Oscillation Frequency: ~ 1575 MHz (GPS L1 frequency)
** Amplitude:  ~5 Volts peak-to-peak (zero to 5V)
** Vdd: 2.5 V
** 
**
** Simulation Options :
.option POST 
**
.param Vtune=2.0  $ Failures: vtune=1
.param Cval=0.2p
*---------------------------------
Vtune vc gnd  DC Vtune
Vdd vdd gnd 2.5
*---------------------------------
* First oscillator section
** Low-Q resonator with Vdd at center tap of inductors
R1a IP ri 100k  $ These R's set the Q
R1b ri IN 100k
L1 IP vdd 16.5nH
L2 vdd IN 16.5nH
Cc1 IP gnd Cval $ I to Q 
Cc2 IN gnd Cval $ -I to Q
** Differential fets
M1 IP IN cs gnd NMOS l=0.35u w=15u
M2 IN IP cs gnd NMOS l=0.35u w=15u
** Bias fet - bias at Vdd -- too high?
Mb cs  vdd gnd gnd NMOS l=0.35u w=15u
** fets used as varactors 
Mt1 vc IP vc gnd NMOS l=0.35u w=2u M=50
Mt2 vc IN vc gnd NMOS l=0.35u w=2u M=50
*---------------------------------
** Second oscillator section
** Low-Q resonator with Vdd at center tap of inductors
R1a_b QP ri_b 100k  $ These R's set the Q
R1b_b ri_b QN 100k
L1_b QP vdd 16.5nH
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L2_b vdd QN 16.5nH
Cc1_b QP gnd Cval $ -Q to -I
Cc2_b QN gnd Cval $ -Q to I
** Differential fets
M1_b QP QN cs_b gnd NMOS l=0.35u w=15u
M2_b QN QP cs_b gnd NMOS l=0.35u w=15u
** Bias fet - bias at Vdd -- too high? 2nd in parallel 
Mb_b cs_b  vdd gnd gnd NMOS l=0.35u w=15u
** fets used as varactors 

Mt1_b vc QP vc gnd NMOS l=0.35u w=2u M=50
Mt2_b vc QN vc gnd NMOS l=0.35u w=2u M=50
*
*-------------------------------
* Differentiators Coupling transistors for quadrature
*
.param Cdiff=0.14p difMsize=50u
vidiff  dbias gnd 1.25 
viqdiff vdcdif gnd 1.75 
Midiff1 dQP dbias gnd gnd NMOS l=0.35u w=difMsize
Midiff2 dQN dbias gnd gnd NMOS l=0.35u w=difMsize
Midiff3 dIN dbias gnd gnd NMOS l=0.35u w=difMsize
Midiff4 dIP dbias gnd gnd NMOS l=0.35u w=difMsize
Cdiff1  dQP QP Cdiff
Cdiff2  dQN QN Cdiff
Cdiff3  dIN IN   Cdiff
Cdiff4  dIP IP   Cdiff
Mc_QP1 IP vdcdif dQP gnd NMOS l=0.35u w=difMsize
Mc_QN2 IN vdcdif dQN gnd NMOS l=0.35u w=difMsize
Mc_QN3 QP vdcdif dIN gnd NMOS l=0.35u w=difMsize
Mc_QP4 QN vdcdif dIP gnd NMOS l=0.35u w=difMsize
*-------------------------------
* Transient Analysis Test Bench

* Use to show oscillator start up
* 2mA pulse used to start oscillator
*iosc IP IN PULSE ( 0 2m .01n .01n .01n 10n 1u )
*.probe tran v(IP) v(IN) 
*.print tran v(IP) v(IN) 
*.TRAN .01n 10n 
*------------------------------
* Harmonic Balance Test Bench 
*
.sweepblock vtune_sweep 

+ 0 5 0.2 
+ 2 3 0.1
.HBOSC tones=1550e6 nharms=12
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+ PROBENODE=IP,QN,4
+ sweep Vtune sweepblock=vtune_sweep
**
.phasenoise dec 10 100 1e7
.print phasenoise phnz
.probe phasenoise phnz 
.print hb v(IP,IN) v(IP,IN)[1] v(QP,QN) v(QP,QN)[1]
.probe hb v(IP,IN) v(IP,IN)[1] v(QP,QN) v(QP,QN)[1]
.probe hb hertz[1][1]
* 
* NMOS Device from MOSIS 0.35um Process
*  
* BSIM3 VERSION 3.1 PARAMETERS
*
* DATE: Mar  8/00
* LOT: n9co                  WAF: 07
* Temperature_parameters=Default
*
.MODEL NMOS NMOS (                                LEVEL   = 49
+VERSION = 3.1            TNOM    = 27 TOX = 7.9E-9
+XJ      = 1.5E-7         NCH     = 1.7E17         VTH0 = 0.5047781
+K1      = 0.5719698      K2      = 0.0197928      K3      = 33.4446099
+K3B     = -3.1667861     W0      = 1E-5           NLX     = 2.455237E-7
+DVT0W = 0              DVT1W   = 0              DVT2W   = 0
+DVT0    = 2.8937881      DVT1    = 0.6610934      DVT2    = -0.0446083
+U0      = 421.8714618    UA      = -1.18967E-10   UB      = 1.621684E-18
+UC      = 3.422111E-11   VSAT    = 1.145012E5     A0      = 1.119634
+AGS     = 0.1918651      B0      = 1.800933E-6    B1      = 5E-6
+KETA    = 3.313177E-3    A1      = 0              A2      = 1
+RDSW    = 984.149934     PRWG    = -1.133763E-3   PRWB    = -7.19717E-3
+WR      = 1              WINT    = 9.590106E-8    LINT    = 1.719803E-8
+XL      = -5E-8          XW      = 0              DWG     = -2.019736E-9
+DWB     = 6.217095E-9    VOFF    = -0.1076921     NFACTOR = 0
+CIT     = 0              CDSC    = 2.4E-4         CDSCD   = 0
+CDSCB   = 0              ETA0    = 0.0147171      ETAB    = -7.256296E-3
+DSUB    = 0.3377074      PCLM    = 1.1535622      PDIBLC1 = 2.946624E-4
+PDIBLC2 = 4.171891E-3    PDIBLCB = 0.0497942      DROUT   = 0.0799917
+PSCBE1  = 3.380501E9     PSCBE2  = 1.69587E-9     PVAG    = 0.4105571
+DELTA   = 0.01           MOBMOD  = 1              PRT     = 0
+UTE     = -1.5           KT1     = -0.11          KT1L    = 0
+KT2     = 0.022          UA1     = 4.31E-9        UB1     = -7.61E-18
+UC1     = -5.6E-11       AT      = 3.3E4          WL      = 0
+WLN     = 1              WW      = -1.22182E-15   WWN     = 1.1657
+WWL     = 0              LL      = 0              LLN     = 1
+LW      = 0              LWN     = 1              LWL     = 0
+CAPMOD  = 2              XPART   = 0.4            CGDO    = 3.73E-10
+CGSO    = 3.73E-10       CGBO    = 1E-11          CJ      = 8.988141E-4
+PB      = 0.8616985      MJ      = 0.3906381      CJSW    = 2.463277E-10
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+PBSW    = 0.5072799      MJSW    = 0.1331717      PVTH0   = -0.0143809
+PRDSW   = -81.683425     WRDSW   = -107.8071189   PK2     = 1.210197E-3
+WKETA   = -1.00008E-3    LKETA   = -6.1699E-3     PAGS    = 0.24968    
+AF      = 1.0            KF      = 1.0E-30     )
*
.END

The following is the BJT model file, bjt.inc used in oscillator example. It is 
available in directory $installdir/demo/hspice/rf_examples/.

* RF Wideband NPN Transistor die SPICE MODEL
.MODEL RF_WB_NPN   NPN
+ IS = 1.32873E-015 BF = 1.02000E+002
+ NF = 1.00025E+000 VAF = 5.19033E+001
+ EG = 1.11000E+000 XTI = 3.00000E+000
+ CJE = 2.03216E-012 VJE = 6.00000E-001
+ MJE = 2.90076E-001 TF = 6.55790E-012
+ XTF = 3.89752E+001 VTF = 1.09308E+001
+ ITF = 5.21078E-001 CJC = 1.00353E-012
+ VJC = 3.40808E-001 MJC = 1.94223E-001
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3Steady-State Shooting Newton Analysis

Describes HSPICE advanced analog analyses steady-state time domain 
analysis based on a Shooting-Newton algorithm.

These topics are covered in the following sections:
■ Shooting Newton Steady-State Time Domain Analysis (.SN)
■ Shooting Newton with Fourier Transform (.SNFT)
■ Shooting Newton Analysis — Tutorial Example

Shooting Newton Steady-State Time Domain Analysis 
(.SN)

An advanced Shooting Newton (SN) algorithm provides additional performance 
and functionality to HSPICE advanced analog analyses for time-domain, 
steady-state analysis. 

Shooting-Newton adds analysis capabilities for PLL components, digital 
circuits/logic, such as ring oscillators, frequency dividers, phase/frequency 
detectors (PFDs), switched capacitor filters, and for other digital logic circuits 
and RF components that require steady-state analysis, but operate with 
waveforms that are more square wave than sinusoidal.

For more information on control options, see .SN command in the HSPICE 
Reference Manual: Commands and Control Options.

The Shooting-Newton algorithm effectively analyzes applications including:
■ Ring oscillators (see Chapter 4, Oscillator and Phase Noise Analysis)
■ Frequency dividers (prescalers)
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■ Mixer conversion gain
■ Phase-frequency detectors (PFDs)
■ Mixer noise figure

Functionality includes:
■ Both driven and oscillator (autonomous) analyses
■ Time Domain or Frequency analysis based on advanced Shooting Newton 

algorithm
■ Shooting Newton with Fourier Transform (.SNFT)
■ Shooting Newton AC Analysis (.SNAC)
■ Shooting Newton Oscillator Analysis(.SNOSC)
■ Oscillator and Phase Noise Analysis

This section covers the following topics:
■ SN .PRINT and .PROBE Output Syntax

SN .PRINT and .PROBE Output Syntax
The output from .SN analysis is generated in both time and frequency domains.

The time domain output variables are the same as for standard transient 
analysis:
■ individual nodal voltages: V(n1 [,n2])
■ branch currents: I(Vxx)
■ element power dissipation: In(element)

It is also possible to output the results from Shooting Newton analysis in terms 
of complex, frequency-domain output variables. This output format is activated 
by using the “SNFD” keyword in the output syntax.

For output in the frequency domain, the syntax is identical to the Harmonic 
Balance output syntax:

.PRINT SNFD TYPE (NODES|ELEMENTS)[INDICES]
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.PROBE SNFD TYPE (NODES|ELEMENTS)[INDICES]

Output Files
The time domain data are output to printsn0 and .sn0 files. Frequency 
domain data are output to .printsnf0 and .snf0 files.

Output Format 
The format for time domain output is the same as standard transient analysis. 
For frequency domain output, the format is similar to HB. The main difference is 
that Shooting Newton output in the frequency domain is single tone only.

The results of an SN analysis are complex spectral components at each 
frequency point. The a[i] is the real part, and b[i] is the imaginary part of the 

Parameter Description

SNFD TYPE Specifies a harmonic type node or element. 

TYPE can be one of the following:
■ Voltage type:

V = voltage magnitude and phase in degrees
VR = real component
VI = imaginary component
VM = magnitude
VP - Phase in degrees 
VPD - Phase in degrees
VPR - Phase in radians
VDB - dB units
VDBM - dB relative to 1 mV

■ Current type:
I = current magnitude and phase in degrees
IR = real component
II = imaginary component
IM = magnitude
IP - Phase in degrees 
IPD - Phase in degrees
IPR - Phase in radians
IDB - dB units
IDBM - dB relative to 1 mV

■ Power type – P
■ Frequency type: hertz[index], hertz[index1, index2, ...]. You must specify the 

harmonic index for the hertz variable. The frequency of the specified harmonics is 
dumped.

INDICES Is the harmonic index of the SNFD tone. Index is limited to the single tone associated 
with the SN analysis.

SNFD TYPE can be one of the following:
■ Voltage type – a single node name (n1), or a pair of node names, (n1,n2)
■ Current type – an element name (elemname)
■ Power type – a resistor (resistorname) or port (portname) element name.
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complex voltage at frequency index i. The conversion to a steady state time-
domain is then given by the Fourier series expansion.

An SN analysis produces these output data files:
■ Output from the .PRINT SN statement is written to a .printsn# file. 

• The header contains the large signal fundamental frequencies. 

• The columns of data are labeled as HERTZ, followed by frequency 
indices, and then the output variable names. 

• The sum of the frequency indices, multiplied by the corresponding 
fundamental frequencies, add up to the frequency in the first column.

■ Output from the .PROBE SN statement is written to a .sn# file in the same 
format as the HSPICE transient analysis .tr# file. It contains the information 
of harmonic indices and basic tone frequencies plus the output waveform.

■ Reported performance log statistics are written to a .lis file:

• Name of SN data file.

• Simulation time:

DC operating point (op) time

SN time 

Total simulation time

• Memory used

• Size of matrix (nodes * harmonics)

• Final SN residual error

Shooting Newton with Fourier Transform (.SNFT)

The .SNFT command is to the .SN analysis what .FFT is to the TRAN analysis, 
a means to provide spectrum analysis. Spectrum analysis represents a time-
domain signal, within the frequency domain. .SNFT uses the Fourier transform: 
a Discrete Fourier Transform (DFT) uses sequences of time values to 
determine the frequency content of analog signals, in circuit simulation. 
The .SNFT statement uses the internal time point values.

By default, the .SNFT statement uses a second-order interpolation to obtain 
waveform samples, based on the number of points that you specify.
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Note: True distributed components (such as ideal delays or 
transmission lines) are not supported; components with hidden 
states are not supported.

.SN analysis assumes that all stimuli are periodic with period T. If the circuit is 
driven with more than one periodic stimulus, then the frequencies must be all 
co-periodic and T must match the common period or some integer multiple of it. 
The .SN analysis only supports .tran (time-domain) periodic signal sources. 
(Refer to the .tran analysis for a detailed documentation on transient signal 
sources).

You can use windowing functions to reduce the effects of waveform truncation 
on the spectral content. You can also use the .SNFT command to specify:
■ output format
■ frequency
■ number of harmonics
■ total harmonic distortion (THD)

For more information, see .SNFT command in the HSPICE Reference Manual: 
Commands and Control Options

This section covers the following topics:
■ Other Shooting Newton Analyses
■ SN Error and Warning Messages

Other Shooting Newton Analyses
The following Shooting Newton Analyses are also supported by HSPICE 
advanced analog analyses.
■ .SNFT is equivalent to the .FFT command in transient (.TRAN) analysis. 

.SNFT uses Fourier transform to represent a time domain signal in the 
frequency domain. For more information, see Shooting Newton with Fourier 
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Transform (.SNFT). 
■ .SNAC is used to perform a linear analysis of a driven (or non-autonomous) 

circuit, where the linear coefficients are modulated by a periodic, 
steady-state signal. The functionality is similar to the .HBAC command. For 
more information, see Shooting Newton AC Analysis (.SNAC). 

■ .SNXF is used to calculate transfer functions from an arbitrary number of 
small signal sources to a designated output in a circuit under periodic steady 
state conditions. For more information, see Shooting Newton Transfer 
Function Analysis (.SNXF).

SN Error and Warning Messages
Error messages are displayed with convergence recommendations in cases of 
non-convergence within the maximum number of Shooting-Newton iterations.

Error messages are displayed for software errors such as segmentation 
violations, and abort conditions such as:
■ unrecognized format, i.e., unrecognized V/I source.
■ faulty input values, i.e., wrong sign, out of range value.
■ unspecified values, i.e., unspecified tone.
■ inconsistent values, i.e., non-commensurable tones.
■ duplicate values, i.e., same entry, given more than one, the last one is 

always taken.

Shooting Newton Analysis — Tutorial Example

While the Harmonic Balance (HB) algorithm represents the circuit's voltage and 
current waveforms as a Fourier series (a series of sinusoidal waveforms), the 
Shooting Newton (SN) algorithm provides analysis capability for digital logic 
circuits and advanced analog components that require steady-state analysis, 
but operate with waveforms that tend to be square instead of sinusoidal. 
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This section covers the following topics:
■ Shooting Newton — Analysis Setup
■ Driven Phase Frequency Detector Example
■ Ring Oscillator Example

Shooting Newton — Analysis Setup
To set up a time-domain, steady-state analysis, the HSPICE input netlist must 
contain:
■ A .SN command to activate the analysis. The .SN command specifies:
■ The expected period of the steady-state waveforms, which must match the 

period of any input waveforms. The period is specified in time domain units 
(seconds). Alternatively, you may specify a frequency in Hz.

■ A time resolution, which is analogous to the transient analysis (.TRAN) 
command’s TSTEP parameter and will affect the time step size selection. It 
also affects the number of frequency terms used in small-signal analyses, 
such as periodic AC or noise analysis. The time resolution is typically 
specified in seconds but, alternatively, may be specified in the frequency 
domain as a number of harmonics.

■ A transient initialization time that is used by HSPICE advanced analog 
analyses to run a basic transient simulation of this length before attempting 
Newton-Raphson iterations to converge on a steady-state solution. This 
parameter is optional. If it is not specified, the specified period is used as the 
initialization time. The initial transient analysis is used for circuit stabilization 
before the steady state solution is found. Larger initialization values typically 
result in convergence that is more robust.

■ For oscillator circuits, a .SNOSC command is used to activate the analysis. 
The .SNOSC command specifies:

■ The approximate frequency of oscillation specified either as a frequency (in 
Hertz) or as the time domain period.

■ The number of high frequency harmonics. Alternatively, a time resolution in 
seconds can be specified.

■ A transient initialization time that is used by HSPICE advanced analog 
analyses to run a basic transient simulation of this length before attempting 
Newton-Raphson iterations to converge on a steady state solution. This 
parameter is optional. If it is not specified, the period of the specified 
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frequency of oscillation is used as the initialization time. For oscillators we 
recommend specifying a transient initialization time since the default 
initialization time is usually too short to effectively stabilize the circuit.

■ A node at which to probe for oscillation conditions.
■ If the tuning curve of a VCO is to be analyzed, the optional parameter 

MAXTRINITCYCLES can be specified.
■ One or more signal sources for driving the circuit in SN analysis, if the circuit 

is driven. In the case of autonomous oscillator analysis, no signal source is 
required. The sources are required to be time domain sources and must 
match the period specified in the .SN command.

Driven Phase Frequency Detector Example
This example demonstrates the Shooting Newton-based analysis of a driven 
phase-frequency detector. Extracted portions of the input file are presented 
below. The complete phasefreqdet.sp input file for this example is located 
at $installdir/demo/hspice/rf_examples/.

Figure 15 Driven Phase Frequency Detector

* Phase Frequency Detector Example
*
.global vdd gnd
.options wl post 
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* DC sources
vsup vdd 0 DC 1.0

* Reference signal (sine wave)
vref xin gnd DC 0 sin( 0.5 0.5 0.5g)
* Input buffers (square up Ref sine wave)
xfin1 xin fin1 inv
xfin2 fin1 FIN inv3

* Compare signal (sine wave)
vcRef cin gnd DC 0 sin( 0.5 0.5 0.5g 0.0 0.0 phase)    
$ phase shift
* Input buffers (square up compare sine wave)
xcfin1 cin cfin1 inv
xcfin2 cfin1 cFIN inv3
*
** Phase/frequency detector
xPFD cFIN FIN pdn pu phasedet
** Chargepump
xCP LFIN Ibias pdn pu chargepump
** Bias voltage
vIbias Ibias gnd 0.15     $ Sets charge pump bias!
Vload LFIN 0 0

* Harmonic Balance Test Bench
*
.param phase=0.0     $ phase shift in degrees

.opt snaccuracy=30

.SN tres=10p period=2n SWEEP phase POI 5 0.0 22.5 45.0 67.5 90.0 

.SNNOISE V(pu,pdn) Vref
+ DEC 21 100 10MEG      $ offset frequency sweep
+ [0,1]                 $ Take low frequency noise
*
.probe sn v(fin) v(cfin) v(pu) v(pdn) v(lfin) i(vibias)
.print snfd i(vload) i(vload) [0]
.probe snfd i(vload) i(vload) [0]
.probe SNNOISE  ONOISE
.print SNNOISE  ONOISE
.end

During the analysis, the phase of the input signal is swept between 0 degrees 
and 90 degrees using five equally spaced steps. This enables you to measure 
the phase detector gain at the output load. The .SN command syntax specifies 
the expected period of the steady-state waveforms (2nS) and the time 
resolution (10pS) in the time domain.
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A periodic, time-varying AC noise analysis based on the Shooting Newton 
algorithm is performed using the .SNNOISE command. The .SNNOISE 
analysis requires an output node (v(pu, pdn)) where the noise is to be 
measured, an input noise source (Vref) which serves as the reference for the 
noise computation and, a frequency sweep for the noise analysis. Optionally, 
an index term can be defined. The index term specifies the output frequency 
band at which the noise is evaluated. For this case, you will evaluate the low 
frequency noise of the phase frequency detector.

The time-domain signals v(cfin), v(fin), v(pu) and v(pdn), and v(lfin) are probed. 
The gain of the phase frequency detector can be found by probing the 
frequency domain value of v(lfin) at DC (frequency indices 0).

During the simulation, the simulation status is displayed on the screen. In 
addition to the screen display, more detailed status, cpu time, and memory 
usage information is also written to the phasefreqdet.lis file.

Viewing Results in Custom WaveView
You can view the time-domain, phasefreqdet.sn0 file, the frequency 
domain, phasefreqdet.snf0 file, and the noise results, 
phasefreqdet.snpn0 file in Custom WaveView:

1. Enter wv at the prompt to start Custom WaveView.

2. The time domain results are used to show the input and output waveforms 
of the phase frequency detector. Use File > Import Waveform File to open 
the phasefreqdet.sn0 file.

3. Select the input signals, v(cfin) and v(fin), and the output signals, v(pu) and 
v(pdn) from the signal browser. Drag and drop the selected signals in the 
waveform. Figure 16 on page 71 shows the waveforms for the selected input 
and output signals.
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Figure 16 Phase Frequency Detector Signals

4. The frequency domain results are used to show the gain of the phase 
frequency detector. Use File > Import Waveform File to open the 
phasefreqdet.snf0 file.

5. Use Waveview > New to open a new waveform.

6. Select the signal i(vload):(0) from the signal browser. Drag and drop the 
signal i(vload):(0) in the waveform. The signal is the DC component of the 
i(vload) signal spectrum. By default, the magnitude and phase of the load 
current are plotted. To measure the gain of the phase frequency detector 
verses phase, only the magnitude is required. Figure 17 on page 72 shows 
the gain of the phase frequency detector.
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Figure 17 Phase Frequency Detector Gain

7. Next, plot the output noise of the phase frequency detector. Use File > 
Import Waveform File to open the phasefreqdet.snpn0 
file.phasefreqdet.snpn0 file.

8. Use Waveview > New to open a new waveform.

9. Select the signal onoise() from the signal browser. Drag and drop the signal 
onoise() in the waveform. The noise results are shown in Figure 18 on 
page 73. This displays the noise at the output, v(pu, vpd) at each phase 
value swept in the .SN command.

10. Change the X-axis scale to log by left clicking on the X-axis and selecting 
Log Scale from the X-Axis menu.
72 HSPICE® User Guide: Advanced Analog Simulation and Analysis
K-2015.06



Chapter 3: Steady-State Shooting Newton Analysis
Shooting Newton Analysis — Tutorial Example
Figure 18 Phase Detector Output Noise

Ring Oscillator Example
The Shooting Newton algorithm provides fast and effective analysis for ring 
oscillators. The ringoscSN.sp input file for this example is located at 

$installdir/demo/hspice/rf_examples/.
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Figure 19 Ring Oscillator

.title ringosc

.subckt inv in out vdd 
mn1 out in 0 0 nmos l=0.25u w=2u
mp1 out in vdd vdd pmos l=0.25u w=6u
.ends

vdd vdd 0 3
x1 1 2 vdd inv
x2 2 3 vdd inv
x3 3 4 vdd inv
x4 4 5 vdd inv
x5 5 6 vdd inv
x6 6 7 vdd inv
x7 7 1 vdd inv
c1 1 0 0.022p
.ic v(1)=3
.options post
.options snaccuracy=50

.snosc tones=335meg nharms=10 oscnode=1 trinit=10n

.phasenoise v(7) dec 10 100 10meg

.probe sn v(7)

.probe snfd v(7)

.print phasenoise phnoise v(7)

.probe phasenoise phnoise v(7)

.end

This analysis finds the oscillation frequency of the ring oscillator. Since the 
circuit is an oscillator, no input source is required. The oscillator is started by 
setting an initial condition at the input of the ring (node 1). In the .SNOSC 
74 HSPICE® User Guide: Advanced Analog Simulation and Analysis
K-2015.06



Chapter 3: Steady-State Shooting Newton Analysis
Shooting Newton Analysis — Tutorial Example
command, the node that the analysis will probe for oscillation conditions is 
specified, as well as the approximate frequency of oscillation. The number of 
harmonics to include in the analysis is specified, as well.

The phase noise characteristics of the oscillator are analyzed by using the 
.PHASENOISE command. The .PHASENOISE command requires that an 
output node, pair of nodes, or a two-port element and a frequency sweep be 
specified. The frequency sweep is used to calculate the phase noise analysis at 
the specified offset frequencies, measured from the oscillation carrier 
frequency. For this example phase noise analysis, the default Nonlinear 
Perturbation (NLP) method is used.

The signals v(7) will be probed in both the frequency and time domain. The 
measure statement is used to measure the fundamental frequency of the 
oscillator.

Simulation Status Output
During the simulation, the simulation status is displayed on the screen. In 
addition to the screen display, more detailed status, cpu time and memory 
usage information is also written to the ringoscSN.lis file.

Viewing Results in Custom WaveView
You can view the time-domain, ringoscSN.sn0 file, the frequency domain, 
ringoscSN.snf0 file, and the phase noise, ringoscSN.snpn0 file in 
Custom WaveView.

1. Enter wv at the prompt to start Custom WaveView.

2. Use File > Import Waveform File to open the ringoscSN.sn0 file. 

3. Select the signal v(7) from the signal browser. Drag and drop the signal v(7) 
to the right side of waveform so that panels are opened in row / column 
format. The time domain trace shown at the right side of Figure 20 on 
page 76.

4. Use File > Import Waveform File to open the ringoscSN.snf0 file.

5. Select the signal v(7) from the signal browser. Drag and drop the signal v(7) 
to the right side of waveform so that panels are opened in row / column 
format. The frequency domain spectrum is shown at the left side of 
Figure 20 on page 76.
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Figure 20 Ring Oscillator Output

6. Use File > Import Waveform File to open the ringoscSN.snpn0 file.

7. Use Waveview > New to open a new waveform.

8. Select the signal nlp_l(f) from the signal browser. Drag and drop the signal 
nlp_l(f) signal in the waveform. Figure 21 on page 77 shows the resulting 
phase noise results for the oscillator.
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Figure 21 Ring Oscillator Phase Noise
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Part 2:  Oscillator and PLL Analysis

The following chapters/topics are included in this Part:
■ Chapter 4, Oscillator and Phase Noise Analysis
■ Chapter 5, Large Signal Periodic AC, Transfer Function, and 

Noise Analyses
■ Chapter 6, S-parameter Analyses
■ Chapter 7, Envelope Analysis
■ Chapter 8, Post-Layout Analysis
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4Oscillator and Phase Noise Analysis

Describes how to use HSPICE advanced analog functions to perform oscillator 
and phase noise analysis on oscillator circuits.

Two main groups categorize oscillators:
■ Ring oscillators: These oscillators tend to have low Q and operate based on 

delay of digital cells such as inverters. Ring oscillators have strong nonlinear 
behavior and output signals are often square-wave-like. You can analyze 
Ring oscillators in either the frequency domain using Harmonic Balance 
analysis or in the time domain using Shooting Newton analysis.

■ Harmonic oscillators: Common harmonic oscillators are LC and crystal 
oscillators. These oscillators tend to have a high Q, making it difficult to find 
the oscillation frequency. Their behavior tends to be only mildly nonlinear 
and their output signals tend to be close to purely sinusoidal. Harmonic 
Balance analysis is most effective for analyzing harmonic oscillators.

HSPICE advanced analog analyses includes special analysis algorithms for 
finding the steady-state solution for oscillator circuits. No driving sources set 
the frequencies of operation in oscillators. The fundamental oscillation 
frequency is one of the unknowns that the simulator solves for. HSPICE 
advanced analog analyses provides two approaches: harmonic balance 
analysis or a Shooting Newton algorithm-based analysis.

This section covers the following topics:
■ Harmonic Balance Oscillator Analysis (.HBOSC)
■ Shooting Newton Oscillator Analysis(.SNOSC)
■ Phase Noise Analysis (.PHASENOISE)
■ Accumulated Jitter Measurement for Closed Loop PLL Analysis
■ Clock Source with Random Jitter
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■ Small-Signal Phase-Domain Noise Analysis (.ACPHASENOISE)
■ Behavioral Noise Sources
■ References

Harmonic Balance Oscillator Analysis (.HBOSC)

Because the frequencies of driving sources do not determine the frequency of 
oscillation, the simulator solves for a slightly different set of nonlinear equations 
as in the following equation:

Equation 16

HSPICE harmonic balance oscillator analysis (.HBOSC) adds the fundamental 
frequency of oscillation to the list of unknown circuit quantities. To 
accommodate the extra unknown, HSPICE sets the phase to zero (or 
equivalently, the imaginary part of one unknown variable — generally a node 
voltage). The phases of all circuit quantities are relative to the phase, at this 
reference node (referred to as the “PROBENODE”).

Additionally, the HBOSC analysis tries to avoid the “degenerate solution,” 
where all non-DC quantities are zero. Although this is a valid solution of the 
above equation (it is the correct solution, if the circuit does not oscillate), 
HBOSC analysis might find this solution incorrectly, if the algorithm starts from 
a bad initial solution.

The HBOSC analysis follows a technique similar to that described by Ngoya, et 
al, which uses an internally-applied voltage probe to find the oscillation voltage 
and frequency. The source resistance of this probe is a short circuit at the 
oscillation frequency, and an open circuit otherwise. HSPICE advanced analog 
analyses uses a two-tier Newton approach to find a non-zero probe voltage, 
which results in zero probe current.

HB analysis of the oscillator circuit uses the DC solution as a starting point. 
This analysis requires, in addition to the DC solution, initial values for both the 
oscillation frequency and the probe voltage. HBOSC analysis calculates the 
small-signal admittance that the voltage probe sees over a range of 
frequencies in an attempt to find potential oscillation frequencies. Oscillation is 
likely to occur where the real part of the probe current is negative, and the 
imaginary part is zero. You can use the FSPTS parameter to specify the 
frequency search. You must also supply an initial guess for the large signal 

F V 0  I V 0  Q V 0  Y 0 V Is+ + +=
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probe voltage. A value of one-half the supply voltage is often a good starting 
point.

For more information on control options, see .HBOSC command in the HSPICE 
Reference Manual: Commands and Control Options.

The following sections discuss these topics:
■ HB Simulation of Ring Oscillators
■ .HBOSC Output Syntax
■ Using the .MEASURE Command with .HBOSC
■ Troubleshooting Convergence Problems
■ Tutorial Examples Using HBOSC Analysis

HB Simulation of Ring Oscillators
Ring oscillators require a slightly different simulation approach in HB. Since 
their oscillation is due to the inherent delay in the inverters of the ring, they are 
best modeled in the time domain and not in the frequency domain.

In addition, ring oscillator waveforms frequently approach square waves, which 
require a large number of harmonics in the frequency domain. An accurate 
initial guess is important for an accurate HB simulation. 

The HSPICE advanced analog HBOSC analysis typically starts from the DC 
solution and looks for potential resonances in the linear portion of the circuit to 
determine the initial guess for the oscillation frequency. However, these 
resonances generally do not exist in ring oscillators, which do not contain linear 
resonant elements.

HB analysis provides a second method of obtaining a good initial guess 
specifically intended for ring oscillators for the oscillation frequency. Instead of 
starting from the results of a DC analysis, this method starts from the result of a 
transient analysis. This method,Transient Initialization, also provides a good 
initial guess for all the voltages and currents in the circuit.

The recommended setup for ring oscillators is therefore:
■ Set up .HBOSC without FSPTS.
■ Choose one of the nodes in the ring as the PROBENODE.
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■ Recommendation: since ring oscillators tend to have square-wave-like 
output signals which have significant high frequency content, a relatively 
large value, perhaps 50, for nharms. Ring oscillators with more stages tend 
to need more harmonics.

■ Set HBTRANINIT to a value that represents ~5-10 oscillator periods, and 
make sure that you include an .ic command or other transient analysis setup 
to start the oscillator in transient simulation. Longer HBTRANINIT times may 
result in faster HBOSC convergence, at the expense of additional CPU time 
spent on HBTRANINIT.

.HBOSC Output Syntax
The output syntax for .HBOSC analysis is identical to that for HB analysis (see 
Chapter 2, Steady-State Harmonic Balance Analysis). To output the final 
frequency of oscillation, use the HERTZ keyword. For example, HERTZ[1] 
identifies the fundamental frequency of oscillation.

Note: For PROBENODE = n1 n2 vp, where vp is a voltage, units must 
be in volts.

See also Outputting Phase Noise Source as ASCII Data Files Using *.printpn0.

Using the .MEASURE Command with .HBOSC
Since .HBOSC requires an .HB analysis, the measure statements for this 
analysis are the same as for .HB analysis. For example,

.MEASURE HB result FIND out_var AT=val

Troubleshooting Convergence Problems
This section lists the most common causes of convergence problems, how to 
recognize them, and resolve them.

The HSPICE advanced analog harmonic balance oscillator analysis consists of 
a two-tier iterative analysis of inner loop and outer loop iterations. In the outer 
loop iteration, HBOSC iterates to reduce any reported “probe errors” for each 
outer loop iteration. Each outer loop iteration involves a non-autonomous 
Harmonic Balance (HB) circuit solution; this non-autonomous solve is the inner 
loop iteration.
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If HBOSC has inner loop convergence problems, the simulation may hang on 
the first outer loop iteration or you may see warning messages such as:

Warning: HB_WARN.3: Final HB residual value > HB_TOL.
Rank of HB Jacobian = 155
Warning: HB_WARN.3: HB convergence failure in non-autonomous HB.

The simulation lists the probe voltage and probe frequency for each outer loop 
iteration. If an outer loop convergence problem occurs, you may see the 
following:
■ Decreasing probe voltage values.
■ Wildly fluctuating values of probe frequency.

Osc probe : voltage = 0.218234 frequency = 
6.240794122744832e+09

■ A warning message which indicates that the oscillator simulation has 
reached a non-oscillating DC solution.

Warning: HB_ERR.18: HB oscillator analysis has reached the 
NULL solution.

The following sections discuss these topics:
■ General Convergence Issues
■ Outer Loop Convergence
■ Inner Loop Convergence

General Convergence Issues
The following sections discuss these topics:
■ Probe Node Location
■ Incorrect Source Values
■ GMRES Convergence
■ Accuracy of Initial Guess

Probe Node Location

Since convergence is sensitive to the probe node location, you can often track 
convergence problems to this setting.

A common scenario is that the oscillator's output signal passes through one or 
more buffers, and a designer may think of the buffer output as the oscillator 
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output. A frequent mistake places the probe node at the output of the buffer, but 
this causes HB convergence problems. In this case, move the probe node to 
the oscillator part of the circuit. Often, it is necessary to select an internal node 
of a subcircuit to achieve this.

The most typical symptom of this problem is inner loop convergence failure. For 
ring oscillators, always choose a node that is part of the ring, i.e., connecting 
two stages of the ring; for harmonic oscillators, choose a node close to the 
oscillator.

Incorrect Source Values

If the original netlist simulates the oscillator in transient analysis, some voltage 
or current sources may have transient descriptions (e.g., PWL) to start the 
oscillator. For example, you can ramp a voltage supply to simulate a power-up 
to start the oscillator:

Vvdd vdd 0 PWL (0 0 1n 3)

In this case, the user would like HBOSC to use 3 as the voltage source value, 
but HBOSC uses 0 because harmonic balance uses the explicit DC value of 
the source. HSPICE advanced analog analyses tries to interpret your sources 
intelligently but, in some cases it may not be able to determine what you 
intended. 

For the above example, there are a few ways to ensure that HSPICE advanced 
analog analyses correctly interprets the source.
■ Remove the explicit DC value. If you only provide a transient description, HB 

uses the time=infinity value of the source.
■ Add TRANFORHB=1

Vvdd vdd 0 PWL (0 0 1n 3) TRANFORHB=1

The TRANFORHB=1 keyword causes HB to use the transient analysis 
description in HB and HBOSC.

■ Add an explicit HB value

Vvdd vdd 0 PWL (0 0 1n 3) HB 3 0 0

This causes HB to treat the source as a 3V DC source since the HB value 
specifies the 0th harmonic). If you provide an HB value, HSPICE advanced 
analog analyses ignores the PWL description and uses “HB 3 0 0” 
(amplitude=3, phase=0, harmonic=0) instead. The PWL description is still 
applies for HBTRANINIT.
86 HSPICE® User Guide: Advanced Analog Simulation and Analysis
K-2015.06



Chapter 4: Oscillator and Phase Noise Analysis
Harmonic Balance Oscillator Analysis (.HBOSC)
Incorrect source values usually result in the following:
■ High residual value after HBTRANINT. Usually, HBTRANINIT should 

produce a good starting point for HB or HBOSC. Typical residuals after 
HBTRANINIT are 1e-4 or 1e-5. If the initial residual printed immediately 
after HBTRANINIT completes is high, there may be a source problem. In the 
VDD ramping example above, you might see a residual value of 3.Outer 
loop may converge to DC solution because incorrect source values result in 
a non-oscillatory circuit:

Warning: HB_ER.18: HB oscillator analysis has reached the NULL 
solution.

■ In some cases, inner loop non-convergence may occur.

GMRES Convergence

When you set the default value for .option HBSOLVER (=1), HSPICE advanced 
analog analyses uses a GMRES iterative solver to solve the linear systems that 
arise on each inner loop Newton-Raphson step. If GMRES does not solve the 
linear systems accurately enough, then the inner loop may not converge. 

The GMRES solver is controlled by two options:
■ HBKRYLOVTOL: relative tolerance for GMRES solver. Default is 0.01, or 

1%. For some circuits, setting this option helps inner loop convergence:

.option HBKRYLOVTOL=1e-3

■ HBKRYLOVDIM: dimension of Krylov subspace to use in GMRES iteration. 
Also controls maximum number of GMRES iterations. The HSPICE 
advanced analog analyses .lis file lists the number of GMRES iterations 
taken for each Newton-Raphson step. If that number is equal to 
HBKRYLOVDIM, you may improve convergence by increasing 
HBKRYLOVDIM. Example:

.option HBKRYLOVDIM=80

The symptom for GMRES convergence difficulty is always inner loop 
convergence failure, or slow inner loop convergence. If this problem occurs, the 
inner loop convergence is often good until the residual reaches a fairly low 
value like 1e-8 or 1e-7, and then stagnates.

Accuracy of Initial Guess

Both inner loop and outer loop convergence improves significantly if the 
starting point or initial guess of the iterative method is good.
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Outer Loop Convergence
For outer loop convergence, the initial guess consists simply of the oscillation 
frequency and first harmonic amplitude at the probe node location. If inner loop 
convergence is successful but outer loop convergence is not, then you may 
need to provide a better frequency or amplitude guess.

If you use HBTRANINIT, then you can improve the accuracy of the initial guess 
by use of one of the following methods:
■ Increase the HBTRANINIT time, simply by increasing the value of the 

HBTRANINIT option.
■ Increase the HBTRANINIT accuracy. You can increase the transient 

analysis accuracy by setting .option DELMAX or .option SIM_ACCURACY. 
For example, you may set

.option SIM_ACCURACY=10 HBTOL=1e-8

SIM_ACCURACY simultaneously tightens transient and HB accuracy 
tolerances. If you want HB accuracy to remain unaffected, you may also 
want to set HBTOL as in the example above.

■ Increase accuracy of time domain to frequency domain conversion of 
HBTRANINIT results, by increasing HBTRANPTS or equivalently, 
decreasing HBTRANSTEP. For example:

.option HBTRANSTEP=1p

If you are using FSPTS, you can increase the number of points. Sometimes, it 
is best to supply a guess manually by removing FSPTS and adjusting the 
TONES value.

If you do not use HBTRANINIT, you may be able to improve convergence by 
manually adjusting the PROBENODE amplitude guess.

To evaluate the effectiveness of your option settings, look at the “probe error” 
reported after the first outer loop iteration:

Iteration 1                                                                    
Osc probe : voltage = 0.2 frequency = 5.980000000000000e+09   
hb residual = 7.628260e-10 
Rank of HB Jacobian = 9102  
Probe error = 0.000154462  
dv = -0.0411324 df =-2.30464430e+08 

A smaller probe error value indicates a better initial guess.
88 HSPICE® User Guide: Advanced Analog Simulation and Analysis
K-2015.06



Chapter 4: Oscillator and Phase Noise Analysis
Harmonic Balance Oscillator Analysis (.HBOSC)
Inner Loop Convergence
If inner loop convergence is a problem, it may be because the initial voltage 
waveform values are not close to the solution. The only way to improve the 
voltage values is by using HBTRANINIT. While this does not work well for 
harmonic oscillators, it does work well for ring oscillators. You can improve the 
accuracy of HBTRANINIT as described in the outer loop convergence section 
above.

If the initial residual is large after HBTRANINIT, you may want to check to make 
sure that the voltage and current sources are consistent between HB and 
transient analysis.

The following section discuss these topics:
■ Insufficient Number of Harmonics
■ Presence of Frequency Divider

Insufficient Number of Harmonics

If the number of harmonics specified is too small to represent the signals 
present in the circuit, you may see either convergence problems in either the 
inner or outer loop, or the solution may converge to an unreasonable frequency 
value.

It is difficult to know when the number of harmonics is insufficient, but if you 
suspect an insufficiency, it is a simple experiment to increase the value of 
NHARMS. If you achieved convergence and the number of harmonics is large 
enough, then the magnitude of the spectral data for all signals should 
significantly decay with increasing frequency. If the spectral data for node 
voltages has not decayed at the highest harmonics included in the simulation, 
increase the value of NHARMS.

Presence of Frequency Divider

If a frequency divider is present and not accounted for by the SUBHARMS 
setting, convergence is not possible because the Harmonic Balance spectrum 
does not include the necessary low frequency components. As a result, inner 
loop convergence fails. When debugging HBOSC convergence problems, it is 
necessary to rule out the possibility of presence of frequency dividers early in 
the process.

If a frequency divider is present, you can simulate the circuit if you set 
SUBHARMS to the largest frequency division present in the circuit. If a 
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frequency divider is present, it is almost always necessary to use the 
HBTRANINIT option to achieve convergence.

To get optimal performance, it is recommend that you set 

.option HBSOLVER=2

This activates a hybrid time/frequency-domain preconditioner which is 
particularly effective on frequency dividers.

Tutorial Examples Using HBOSC Analysis 
The following tutorial examples illustrate:
■ Example 1— Colpitts Oscillator
■ Example 2 — Using HBOSC for a CMOS GPS VCO

Example 1— Colpitts Oscillator
This section demonstrates HSPICE advanced analog oscillator analysis by 
using a single transistor oscillator circuit. Oscillator analysis is an extension of 
Harmonic Balance in which you solve for the base frequency. In oscillator 
analysis, the user supplies a guess at the base frequency, and it requires no 
voltage or current source stimulus.

To activate oscillator analysis, include a .HBOSC command with:
■ The TONE parameter set to a guess of the oscillation frequency.
■ The PROBENODE parameter set to identify an oscillating node or pair of 

nodes. Always specify a pair of nodes; if only one node oscillates, specify 
ground as the second node. To speed up the simulation, also supply a guess 
at the magnitude of the oscillating voltage across these nodes.

■ The FSPTS parameter set to a frequency range and number of search 
points. When you set FSPTS, HSPICE advanced analog analyses precedes 
the HBOSC analysis with a frequency search in the specified range to obtain 
an optimal initial guess for the oscillation frequency. This can accelerate the 
HB oscillator convergence.

In conjunction with oscillator analysis, HSPICE advanced analog analyses can 
perform phase noise analysis. Phase noise analysis measures the effect of 
transistor noise on the oscillator frequency. You activate phase noise analysis 
by using the .PHASENOISE command; this command sets a set of frequency 
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points for phase noise analysis. The .PRINT and .PROBE commands output 
phase noise values.

The following netlist, osc.sp, simulates an oscillator, and performs phase 
noise analysis. This example file is available in the HSPICE distribution in the 
directory $installdir/demo/hspice/rf_examples/. 

Figure 22 Colpitts Oscillator

Use the .HBOSC command with the PROBENODE and FSPTS parameters set. 

PROBENODE=emitter,0,4.27

Identifies the emitter node as an oscillating node, and provides a guess value 
of 4.27 volts for the oscillation amplitude at the emitter node. 

FSPTS=40,9e6,1.1e7

Causes an initial frequency search using 40 equally-spaced points between 9 
and 11 MHz.

In the .PHASENOISE, .PRINT, and .PROBE commands:
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.PHASENOISE V(emitter) dec 10 10k 1meg

Runs phase noise analysis at the specified offset frequencies, measured from 
the oscillation carrier frequency. The frequency points specified here are on a 
logarithmic scale, 10 points per decade, 10 kHz to 1 MHz.
■ .PROBE PHASENOISE PHNOISE and the similar .PRINT command 

instruct HSPICE advanced analog analyses to output phase noise results to 
the osc.pn0 and osc.printpn0 files.

**
** Uses emitter resistor limiting to keep output sinusoidal.
** Output can be taken at the emitter (eml node). 
**
*---------------------------------------------------------
* Options for Oscillator Harmonic Balance Analysis...
*
.OPTIONS post sim_accuracy=100 hbsolver=0
*---------------------------------------------------------
* Bias NPN transistor for 5V Vce, 10mA Ic
* Emitter follower Colpitts design
Vcc collector 0      9V
Q1 collector base emitter emitter RF_WB_NPN
Re1   emitter   eml     100
RLoad eml        0      300
Rb1   collector base 4300 
Rb2   base       0     5600
*
*---------------------------------------------------------
* Capacitive feedback network
Ce   0    eml      100pF
Cfb base eml      100pF
Cbb base bb       470pF
Lb bb     0      6uH
*---------------------------------------------------------
* Simulation control for automated oscillator analysis
*
.HBOSC tones=1.0e7 nharms=15
+PROBENODE=emitter,0,4.27
+FSPTS=40,9.e6,1.1e7
*
.PHASENOISE V(emitter) DEC 10 10K 1MEG
+METHOD=0 CARRIERINDEX=1
*
.print hbosc vm(eml) vp(eml) vr(emitter) vi(emitter)
.print hbosc vm(emitter) vp(emitter) P(Rload)
.print phasenoise phnoise 
.probe phasenoise phnoise
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.probe hbosc v(emitter) v(eml)

.include bjt.inc

.END

After you run this netlist, examine the osc.printhb0 file. 
■ At the top is the oscillator frequency (about 10.14 MHz) and the .PRINT 

HBOSC output. 
■ The first 2 lines show that the eml node oscillates around 3 V with an 

amplitude of about 2.85 V.
■ The emitter node oscillates around 4V with an amplitude of about 4.27 V.

Also examine the osc.printpn0 file, which contains the phase noise results 
in text form.

You can view the osc.hb0 and osc.pn0 files in Custom WaveView.

1. Type wv at the prompt to invoke Custom WaveView.

2. Use File > Import Waveform File and select the osc.hb0 file from the 
Open: Waveform Files dialog box.

3. Select the v(emitter) signal in the signal browser. Double-click on the signal 
name or drag and drop the signal in the waveform.

4. In the waveform, right-click in the name area of the panel containing the 
signal v(emitter), left-click on the waveform label for v(emitter) in the 
waveform. From the Panel menu, choose Signal 'v(emitter)' > To Time-
Domain.

5. To accept the defaults for range and interval, click OK in the Convert to Time 
domain window.

6. In a new waveform, you should now see a time domain waveform named 
IFT.0|v(emitter).

To run a transient simulation for comparison:

1. Use the .TRAN 1n 10u command.

2. Add ic=10n to the Lb inductor. 

The resulting waveforms should be the same as those from HB oscillator 
analysis.

Example 2 — Using HBOSC for a CMOS GPS VCO
This second oscillator analysis example involves two negative resistance 
oscillators coupled at 90 degrees. The MOS capacitors double as varactors. 
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This VCO topology is common for GPS applications and produces quadrature 
LO outputs near 1550 MHz. The purpose of this example is to generate the 
VCO tuning curve (output level and frequency as a function of tuning voltage), 
as well as its phase noise characteristics as a function of tuning voltage.

You activate the oscillator analysis by using the .HBOSC command:
■ The TONE parameter sets an oscillation frequency (near 1550 MHz).
■ The NHARMS parameter sets the harmonic content to 11th order.
■ The PROBENODE parameters identify the drain pins across the first oscillator 

section as the pair of oscillating nodes. This is a differential oscillator, and 
the approximate value for this differential amplitude is 6.1 V. 

■ The FSPTS parameters set the search frequency range between 1500 and 
1600 MHz. 

■ The SWEEP parameters set a tuning voltage sweep from 2.0 to 3.2 V. 

The following example uses the demonstration netlist gpsvco.sp, which is 
available in directory $installdir/demo/hspice/rf_examples/. This 
netlist simulates the oscillator schematic Figure 23 and performs phase noise 
analysis.

Figure 23 VCO Schematic 
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**
** NMOS IC Quadrature VCO circuit for GPS local oscillator
** 
** Twin differential negative resistance VCOs using NMOS
** transistors for varactors, coupled to produce quadrature
** resonances.
** Design based on 0.35um CMOS process.
**
** References:
**  >P. Vancorenland and M.S.J. Steyaert, "A 1.57-GHz fully
**    integrated very low-phase-noise quadrature VCO,"
**    IEEE Trans. Solid-State Circuits, May 2002, pp.653-656.
**  >J. van der Tang, P. van de Ven, D. Kasperkovitz, and A. 
Roermund,
**   "Analysis and design of an optimally coupled 5-GHz quadrature
**    LC oscillator,"  IEEE Trans. Solid-State Circuits, May 2002, 
**    pp.657-661.
**  >F. Behbahani, H. Firouzkouhi, R. Chokkalingam, S. Delshadpour,
**   A. Kheirkhani, M. Nariman, M. Conta, and S. Bhatia, 
**   "A fully integrated low-IF CMOS GPS radio with on-chip analog
**   image rejection,"  IEEE Trans. Solid-State Circuits, Dec. 2002,
**   pp. 1721-1727. 
** Setup for Harmonic Balance Analysis
** Oscillation Frequency: ~ 1575 MHz (GPS L1 frequency)
** Amplitude:  ~5 Volts peak-to-peak (zero to 5V)
** Vdd: 2.5 V
** 
** HSPICE Simulation Options:
*.option delmax=1n ACCURATE LIST NODE
**
** HSPICE advanced analog simulation options :
.option sim_accuracy=10  
**
*.option savehb=’a.hbs’ loadhb=’a.hbs’
.option POST
.param Vtune=2.0  $ Failures: vtune=1
.param Cval=0.2p
*---------------------------------
Vtune vc gnd  DC Vtune
Vdd vdd gnd 2.5
*---------------------------------
* First oscillator section
** Low-Q resonator with Vdd at center tap of inductors
R1a IP ri 100k  $ These R’s set the Q
R1b ri IN 100k
L1 IP vdd 16.5nH
L2 vdd IN 16.5nH
Cc1 IP gnd Cval $ I to Q 
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Cc2 IN gnd Cval $ -I to Q
** Differential fets
M1 IP IN cs gnd NMOS l=0.35u w=15u
M2 IN IP cs gnd NMOS l=0.35u w=15u
** Bias fet - bias at Vdd -- too high?
Mb cs  vdd gnd gnd NMOS l=0.35u w=15u
** fets used as varactors 
Mt1 vc IP vc gnd NMOS l=0.35u w=2u M=50
Mt2 vc IN vc gnd NMOS l=0.35u w=2u M=50
*---------------------------------
** Second oscillator section
** Low-Q resonator with Vdd at center tap of inductors
R1a_b QP ri_b 100k  $ These R’s set the Q
R1b_b ri_b QN 100k
L1_b QP vdd 16.5nH
L2_b vdd QN 16.5nH
Cc1_b QP gnd Cval $ -Q to -I
Cc2_b QN gnd Cval $ -Q to I
** Differential fets
M1_b QP QN cs_b gnd NMOS l=0.35u w=15u
M2_b QN QP cs_b gnd NMOS l=0.35u w=15u
** Bias fet - bias at Vdd -- too high? 2nd in parallel 
Mb_b cs_b  vdd gnd gnd NMOS l=0.35u w=15u
** fets used as varactors 
Mt1_b vc QP vc gnd NMOS l=0.35u w=2u M=50
Mt2_b vc QN vc gnd NMOS l=0.35u w=2u M=50
*
*-------------------------------
* Differentiators Coupling transistors for quadrature
*
.param Cdiff=0.14p difMsize=50u
vidiff  dbias gnd 1.25 
viqdiff vdcdif gnd 1.75 
Midiff1 dQP dbias gnd gnd NMOS l=0.35u w=difMsize
Midiff2 dQN dbias gnd gnd NMOS l=0.35u w=difMsize
Midiff3 dIN dbias gnd gnd NMOS l=0.35u w=difMsize
Midiff4 dIP dbias gnd gnd NMOS l=0.35u w=difMsize
Cdiff1  dQP QP Cdiff
Cdiff2  dQN QN Cdiff
Cdiff3  dIN IN   Cdiff
Cdiff4  dIP IP   Cdiff
Mc_QP1 IP vdcdif dQP gnd NMOS l=0.35u w=difMsize
Mc_QN2 IN vdcdif dQN gnd NMOS l=0.35u w=difMsize
Mc_QN3 QP vdcdif dIN gnd NMOS l=0.35u w=difMsize
Mc_QP4 QN vdcdif dIP gnd NMOS l=0.35u w=difMsize
*-------------------------------
* Transient Analysis Test Bench
* stimulate oscillation with 2mA pulse
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*iosc IP IN PULSE ( 0 2m .01n .01n .01n 10n 1u )
*.probe tran v(IP) v(IN) 
*.print tran v(IP) v(IN) 
*.TRAN .01n 10n 
*------------------------------
* Harmonic Balance Test Bench 
*
.sweepblock vtune_sweep 
+ 0 5 0.2 
+ 2 3 0.1
.HBOSC tones=1550e6 nharms=12
+ PROBENODE=IP,QN,4
+ sweep Vtune sweepblock=vtune_sweep
**
.phasenoise v(IP,IN)dec 10 100 1e7
.print phasenoise phnoise
.probe phasenoise phnoise 
.print hb v(IP,IN) v(IP,IN)[1] v(QP,QN) v(QP,QN)[1]
.probe hb v(IP,IN) v(IP,IN)[1] v(QP,QN) v(QP,QN)[1]
.probe hb hertz[1]
* 
* NMOS Device from MOSIS 0.35um Process
*  
* BSIM3 VERSION 3.1 PARAMETERS
*
* DATE: Mar  8/00
* LOT: n9co                  WAF: 07
* Temperature_parameters=Default
*
.MODEL NMOS NMOS (                                LEVEL   = 49
+VERSION = 3.1            TNOM    = 27             TOX     = 7.9E-9
+XJ      = 1.5E-7         NCH     = 1.7E17         VTH0    = 0.5047781
+K1      = 0.5719698      K2      = 0.0197928      K3      = 33.4446099
+K3B     = -3.1667861     W0      = 1E-5           NLX     = 2.455237E-7
+DVT0W   = 0              DVT1W   = 0              DVT2W   = 0
+DVT0    = 2.8937881      DVT1    = 0.6610934      DVT2    = -0.0446083
+U0      = 421.8714618    UA      = -1.18967E-10   UB      = 1.621684E-18
+UC      = 3.422111E-11   VSAT    = 1.145012E5     A0      = 1.119634
+AGS     = 0.1918651      B0      = 1.800933E-6    B1      = 5E-6
+KETA    = 3.313177E-3    A1      = 0              A2      = 1
+RDSW    = 984.149934     PRWG    = -1.133763E-3   PRWB    = -7.19717E-3
+WR      = 1              WINT    = 9.590106E-8    LINT    = 1.719803E-8
+XL      = -5E-8          XW      = 0              DWG     = -2.019736E-9
+DWB     = 6.217095E-9    VOFF    = -0.1076921     NFACTOR = 0
+CIT     = 0              CDSC    = 2.4E-4         CDSCD   = 0
+CDSCB   = 0              ETA0    = 0.0147171      ETAB    = -7.256296E-3
+DSUB    = 0.3377074      PCLM    = 1.1535622      PDIBLC1 = 2.946624E-4
+PDIBLC2 = 4.171891E-3    PDIBLCB = 0.0497942      DROUT   = 0.0799917
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+PSCBE1  = 3.380501E9     PSCBE2  = 1.69587E-9     PVAG    = 0.4105571
+DELTA   = 0.01           MOBMOD  = 1              PRT     = 0
+UTE     = -1.5           KT1     = -0.11          KT1L    = 0
+KT2     = 0.022          UA1     = 4.31E-9        UB1     = -7.61E-18
+UC1     = -5.6E-11       AT      = 3.3E4          WL      = 0
+WLN     = 1              WW      = -1.22182E-15   WWN     = 1.1657
+WWL     = 0              LL      = 0              LLN     = 1
+LW      = 0              LWN     = 1              LWL     = 0
+CAPMOD  = 2              XPART   = 0.4            CGDO    = 3.73E-10
+CGSO    = 3.73E-10       CGBO    = 1E-11          CJ      = 8.988141E-4
+PB      = 0.8616985      MJ      = 0.3906381      CJSW    = 2.463277E-10
+PBSW    = 0.5072799      MJSW    = 0.1331717      PVTH0   = -0.0143809
+PRDSW   = -81.683425     WRDSW   = -107.8071189   PK2     = 1.210197E-3
+WKETA   = -1.00008E-3    LKETA   = -6.1699E-3     PAGS    = 0.24968    
+AF      = 1.0            KF      = 1.0E-30     )
*
.END

Figure 24 displays the results of the analysis, along with Figure 25 on page 99, 
Figure 26 on page 99, and Figure 27 on page 100 using Custom WaveView for 
VCO waveforms, tuning curves, and phase noise response.

Figure 24 VCO Spectra Output 
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Figure 25 VCO Waveform Output

Figure 26 VCO Tuning Curves Output 
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Figure 27 VCO Phase Noise Response

Shooting Newton Oscillator Analysis(.SNOSC)

The analysis described in Chapter 3, Steady-State Shooting Newton Analysis 
also provides a very effective means for finding the steady-state for oscillator 
circuits. 

Ring oscillators are best suited for time domain analysis by using Shooting 
Newton because they tend to: 
■ have a low Q
■ operate based on digital delays
■ have strongly nonlinear behavior
■ output signals that are piece-wise-linear or square-wave-like

HBOSC is superior for sinusoidal waveforms. As with the Harmonic Balance 
approach, the goal is to solve for the additional unknown oscillation frequency. 
Shooting Newton accomplishes this by considering the period of the waveform 
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as an additional unknown, and solving the boundary conditions at the 
waveform endpoints that coincide with steady-state operation. As with regular 
Shooting Newton analysis, you can specify input in terms of time or frequency 
values. 

For more information on control options, see .SNOSC command in the HSPICE 
Reference Manual: Commands and Control Options.

.SNOSC Output Syntax
The output syntax for .SNOSC analysis is identical to that for SN analysis (see 
Chapter 2, Steady-State Harmonic Balance Analysis). To output the final 
frequency of oscillation, use the HERTZ keyword. For example, HERTZ[1] 
identifies the fundamental frequency of oscillation.

See also Using Noise Analysis Results as Input Noise Source.

Phase Noise Analysis (.PHASENOISE)

.PHASENOISE analysis autonomous oscillators. Phase Noise analysis 
requires first running either harmonic balance (HBOSC) or Shooting Newton 
(SNOSC) analysis, and then PHASENOISE analysis. The PHASENOISE 
analysis itself is identical whether you run SNOSC or HBOSC.

For more information on control options, see .PHASENOISE command in the 
HSPICE Reference Manual: Commands and Control Options.

The following figure shows a simple free-running oscillator, which includes a 
port with injected current.

Figure 28 Oscillator with Injected Current

The following equation presents how an ideal oscillator would be insensitive to 
perturbations with a fixed amplitude, frequency:

in

+

-

v(t)
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Equation 17

A noisy oscillator has amplitude and phase fluctuations we can write as:

Equation 18

In the preceding equation: 
■ A(t) is the time varying amplitude for the noisy oscillator.

■  is the time varying phase for the noisy oscillator.

■  is the frequency of oscillation. 

In most applications, the phase noise is of particular interest, because it 
represents frequency fluctuations about the fundamental, which you cannot 
remove. These fluctuations are random processes. Typical expressions are in 
terms of their power spectral density. For most oscillators, the phase noise is a 
low-frequency modulation that creates sidebands in the oscillator’s spectrum, 
about . 

For example, the following equation represents a simple sinusoidal variation in 
the phase:

Equation 19

■  is the peak phase deviation, specified as 

■  is the peak angular frequency deviation. 

For , the following equation approximates the output:

Equation 20

That is, when the peak phase deviation is small, the result is frequency 
components on each side of the fundamental with amplitude . 
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The Single-Sideband Phase Noise is the ratio of noise power to carrier 

power in a 1Hz bandwidth, at offset , which in this case can be 

written as:

Equation 21

This model for oscillator noise shows that sidebands about the fundamental, 
due to noise, directly relate directly to the spectrum of the phase fluctuations 

. The more general definition of phase noise relates it to the spectral 
density of phase fluctuations, i.

Equation 22

HSPICE advanced analog analyses uses several sophisticated analysis 
techniques for computing the power spectrum of the phase variations to yield 
the phase noise response. This information informs of the spectrum of the 
oscillator about the fundamental frequency, and informs of its random jitter 
characteristics.

Any .PHASENOISE analysis results in the calculation of a curve fit for a 
power-law model according to:

Equation 23

The .lis file reports the coefficients , , , and .

The .lis file includes a table which models the phase noise, including the 
behavioral model fit and its fit error.

L fm 
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|-------------------------------------------------------------|
| L(f) = 10*log10( a3/f^(2+ef) + a2/f^2 + a1/f^(ef) + a0 ) dBc/Hz|
| a3 = 0.000000e+00  |
| a2 = 3.165111e-02 |
| a1 = 0.000000e+00 |
| a0 = 0.000000e+00 |
| ef = 1.000000e+00 |
| Average fit error = 1.6185e+00 dB |
| Maximum fit error = 8.4862e+00 dB @ 1.0000e+07 Hz  |

This section covers the following topics:
■ Identifying Phase Noise Spurious Signals
■ Phase Noise Algorithms
■ PHASENOISE Output Syntax
■ Measuring Phase Noise with .MEASURE PHASENOISE
■ Amplitude Modulation/Phase Modulation Separation

Identifying Phase Noise Spurious Signals
Realistic phase noise responses include spurs. Spurs are contributions to the 
phase noise that result from deterministic signals present within the circuit. In 
most cases, the spurs are very small signals and do not interfere with the 
steady-state operation of the oscillator, but do add energy to the output 
spectrum of the oscillator. You may need to include the energy that the spurs 
add in jitter measurements. The phase noise spurs feature adds an additional 
analysis option that can predict the spurious contributions to the jitter.

To activate the new phase noise spur analysis, use the SPURIOUS keyword in 
the .PHASENOISE command. An additional .HBAC analysis predicts the 
spurious contributions to the phase noise.

Use a voltage or current source can to add spurious signals to an oscillator 
circuit. The keyword SPUR identifies the spurious signal.

Syntax
Exxxx n1 n2 … [SPUR mag phase freq] … $ voltage spur
Gxxxx n1 n2 … [SPUR mag phase freq] … $ current spur

where:
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■ mag is the amplitude in volts or amps
■ phase is the phase in degrees
■ freq is the frequency in Hz

The source is equivalent to a steady-state sinusoidal source at the specified 
amplitude, phase, and frequency values and only the spurious analysis uses it. 
All other analyses ignore it. The SPUR keyword is combinable into a source 
that other analyses use. Recommendation: add SPUR sources as separate 
sources.

Phase Noise Algorithms
HSPICE advanced analog analyses provides three algorithms for oscillator 
phasenoise: nonlinear perturbation, periodic AC, and broadband calculations. 
The METHOD parameter to 0, 1, or 2, respectively, selects these algorithms.

Each algorithm has its regions of validity and computational efficiency, so some 
thought is necessary to obtain meaningful results from a PHASENOISE 
simulation. In each simulation, for each algorithm, the region of validity 
depends on the particular circuit. However, you can apply general rules that to 
oscillator types (that is, ring or harmonic) to identify a valid region. You can use 
techniques to check validity of your simulation results.

This section covers the following algorithms:
■ Nonlinear Perturbation Algorithm
■ Periodic AC Algorithm
■ Broadband Phase Noise Algorithm

Nonlinear Perturbation Algorithm
The nonlinear perturbation (NLP) algorithm, which is the default selection, is 
typically the fastest computation, but is valid only in a region close to the carrier. 
Generally, you want to use this algorithm if you interested in phasenoise close 
to the carrier and do not need to determine a noise floor. NLP computation time 
is almost independent of the number of frequency points in the phasenoise 
frequency sweep.

Periodic AC Algorithm
The periodic AC (PAC) algorithm is valid in a region away from the carrier and is 
slower than the NLP algorithm. Use the PAC algorithm for getting phasenoise in 
the far carrier region and when you need to determine a noise floor. 
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The computation time for the PAC algorithm is approximately linearly 
dependent on the number of frequency points in the phasenoise frequency 
sweep. If you are using the PAC algorithm, you should try to minimize the 
number of points in the sweep. 

Another issue is that the PAC algorithm becomes more ill-conditioned as you 
approach the carrier. This means that you may have to generate a steady-state 
solution with more harmonics to get an accurate simulation as you get closer to 
the carrier. So, if you find that the PAC is rolling off at close-in frequencies, you 
should rerun HB analysis with a larger number of harmonics. Although, 
typically, you do not see improvements in PAC accuracy beyond more than 
about 100-200 harmonics. 

Early in your testing, the best way to verify that NLP and PAC are giving 
accurate results is to run both algorithms over a broad frequency range and 
check that the curves have some range in frequency where they overlap. 
Typically, you see the NLP curve rolling off at 20 to 30 dB/decade as frequency 
increases, characteristic of white noise or 1/f noise behavior. Also, the PAC 
curve at first is flat or even noisy close to the carrier. At some point though, you 
see this curve match the NLP roll-off. 

The lowest frequency at which the curves overlap defines the point, fPAC above 
which the PAC algorithm is valid. Sometimes, by increasing the number of HB 
harmonics, it is possible to move fPAC to lower frequencies. The highest 
frequency at which the curves overlap defines the point, fNLP below which the 
NLP algorithm is valid. A rough rule of thumb is that fPAC = fo/Q, where fo is the 
carrier frequency and Q is the oscillator Q-value. This implies that for high-Q 
oscillators, such as crystal and some harmonic oscillators, that PAC is accurate 
to values quite close to the carrier. 

Broadband Phase Noise Algorithm
The Broadband Phase Noise (BPN) algorithm allows phase noise simulation 
over a broad frequency range. The BPN algorithm runs both the NLP and PAC 
algorithms and then connects them in the overlap region to generate a single 
phase noise curve. This algorithm is ideal for verifying the NLP and PAC 
accuracy regions and when you require a phase noise response over a broad 
frequency range.

PHASENOISE Output Syntax
You can analyze element phase noise through the .PRINT and .PROBE 
statements. HSPICE supports the output of the phase noise and phase noise 
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due to a specified element. In addition, by using specialized keywords, you can 
output phase noise due to noise source types. To generate output, you must 
enable the listsources option of the .PHASENOISE command (=on).

Whole Circuit and Specified Element Phase Noise
A single phnoise keyword specifies the phase noise for the whole circuit, and 
the phnoise(element_name) specifies the phase-noise value of a specified 
element in the circuit.

.PRINT PHASENOISE phnoise phnoise(element_name)

.PROBE PHASENOISE phnoise phnoise(element_name)

In this syntax, the standalone phnoise is the phase noise parameter. For 
example:

.PROBE PHASENOISE phnoise

The .PHASENOISE statement outputs raw data to the *.pn# and 
*.printpn# files. HSPICE advanced analog analyses outputs the phnoise 
data in decibels, relative to the carrier signal, per hertz, across the output 
nodes in the .PHASENOISE statement (Units: dBc/Hz). The data plot is a 
function of the offset frequency. 

 HSPICE advanced analog analyses outputs phnoise to the .pn# file if you 
set .OPTION POST. 

Frequency-Dependent and Frequency-independent Sources
■ The phnoise_fdep keyword variable collects all frequency-dependent 

noise sources' contributions to the phase noise.
■ The phnoise_findep keyword variable collects all frequency 

independent noise sources' contributions. 

.print phasenoise phnoise_fdep

.print phasenoise phnoise_findep
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Table 1 Summary of Noise Type Dependences

Noise type frequency-dependent bias-dependent

phnoise_stationary No No

The following syntax is frequency-independent and bias-independent:

.print phasenoise phnoise_stationary

phnoise_cyclostationary or 
phnoise_cyclo

No Yes

The following syntax is frequency-independent and bias-dependent:

.print phasenoise phnoise_cyclo

or

.print phasenoise phnoise_cyclostationary

Where: cyclo or cyclostationary means anything bias-dependent.

phnoise_flicker Yes No

The following syntax is bias-independent and frequency-dependent:

.print phasenoise phnoise_flicker

phnoise_cycloflicker Yes Yes

The following syntax is frequency-dependent and bias-dependent:

.print phasenoise phnoise_cycloflicker

or

.print phasenoise phnoise_cyclostationaryflicker

phnoise_fdep is the union of phnoise_Flicker and 
phnoise_cycloflicker noise types

phnoise_findep is the union of phnoise_stationary and 
phnoise_cyclostationary noise types
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Example 1

This example performs an oscillator analysis, by searching for frequencies in 
the vicinity of 900 MHz, followed by a phase noise analysis at frequency offsets 
from 100 Hz to 10 MHz.

.HBOSC TONE=900MEG NHARMS=9 
+ PROBENODE=gate,gnd,0.65 
.PHASENOISE V(gate,gnd) DEC 10 100 1.0e7 
+ METHOD=0 CARRIERINDEX=1 $use NLP algorithm
+ listsources=on
.PROBE PHASENOISE phnoise
.PRINT PHASENOISE phnoise(X1)

Example 2

This example performs a VCO analysis, by searching for frequencies in the 
vicinity of 2.4 GHz. This example uses eleven harmonics and sweeps the VCO 
tuning voltage from 0 to 5 V. HSPICE advanced analog analyses uses the 
nonlinear perturbation (NLP) algorithm to perform a phase noise analysis 
based on the fundamental frequency for each tuning voltage value.

.HBOSC TONE=2400MEG NHARMS=11 
+ PROBENODE=drainP,drainN,1.0 
+ FSPTS=20,2100MEG,2700MEG 
+ SWEEP Vtune 0.0 5.0 0.2 
.PHASENOISE V(drainP,drainN) DEC 10 100 1.0e7 
+ METHOD=0 CARRIERINDEX=1 $use NLP algorithm
+ listsouces=on
.PROBE PHASENOISE phnoise
.PRINT PHASENOISE phnoise(X2)

See Also
■ Using Noise Analysis Results as Input Noise Sources.

Measuring Phase Noise with .MEASURE PHASENOISE
The HSPICE advanced analog optimization flow can read the measured data 
from a .MEASURE PHASENOISE analysis. You can combine this flow in the 
HSPICE advanced analog analyses optimization routine with a .MEASURE 
HBTR analysis (see Using .MEASURE with .HB Analyses) and a .MEASURE 
HBNOISE analysis (see Measuring HBNOISE Analyses with .MEASURE). 
The .MEASURE PHASENOISE syntax supports the following measurements:
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■ FIND

.MEASURE PHASENOISE result FIND phnoise at = IFB_value

— yields the result of a variable value at a specific input frequency band 
(IFB) point. For example:

.MEASURE PHASENOISE np1 find PHNOISE at=100K 

■ WHEN

.MEASURE PHASENOISE result WHEN phnoise=value

—yields the input frequency point at a specific phnoise value. For example:

.MEASURE PHASENOISE fcorn1 when PHNOISE=-120

■ RMS, average, min, max, and peak-to-peak

.MEASURE PHASENOISE result func phnoise
+ [FROM = IFB1] [TO = IFB2]

—yields the average, RMS, minimum, maximum, or peak-to-peak value of 
the phase noise from frequency IFB1 to frequency IFB2, where the value 
of func can be RMS, AVG, MIN, MAX or PP. If you do not specify FROM and 
TO, HSPICE calculates the value is over the frequency range that you 
specify in the .PHASENOISE command. For example:

.measure PHASENOISE agn1 AVG phnoise from=100k to=10meg

■ Integral evaluation

.MEASURE PHASENOISE result INTEGRAL phnoise 
+ [FROM = IFB1] [TO = IFB2]

—integrates the phase noise value from the IFB1 frequency to the IFB2 
frequency. For example:

.MEASURE PHASENOISE rns1 INTEGRAL phnoise from=50k to 500k

■ Derivative evaluation 

.MEASURE PHASENOISE result DERIVATIVE phnoise AT = IFB1

—finds the derivative of phase noise at the IFB1 frequency point. For 
example:

.MEASURE PHASENOISE fdn1 DERIVATIVE phnoise at=10meg
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Note: .MEASURE PHASENOISE cannot contain an expression that uses 
a phasenoise variable as an argument. You also cannot 
use .MEASURE PHASENOISE for error measurement and 
expression evaluation of the .PHASENOISE command.

See also, the .MEASURE PHASENOISE command in the HSPICE Reference 
Manual: Commands and Control Options.

Amplitude Modulation/Phase Modulation Separation
You can separate the Amplitude Modulation (AM) and Phase Modulation (PM) 
components of the total noise by calculating components in-phase (AM 
component) and in quadrature (PM component) with the carrier by using PAC 
and BPN PHASENOISE analysis. The output and measure syntax separates 
AM/PM noise. 

Turn this feature on by setting the .OPTION PHNOISEAMPM=1 (see .OPTION 
PHNOISEAMPM in the HSPICE Reference Manual: Commands and Control 
Options. See also, Important Note for AM/PM Users at the end of this section.
■ If you use the NLP algorithm (METHOD=0) default, HSPICE advanced 

analog analyses calculates only the phase noise component. 
■ If you use either the PAC algorithm (METHOD=1) or the BPN algorithm 

(METHOD=2), HSPICE advanced analog analyses adds both the phase and 
amplitude noise components together to show the total noise at the output. 

AM/PM .PRINT and .PROBE Statement Syntax 
.PROBE PHASENOISE phnoise [la] [ltotal] [onoise]
.PRINT PHASENOISE phnoise [la] [ltotal] [onoise]

Keywords for AM/PM separations are:
■ Phase Modulation term only: phnoise
■ Amplitude Modulation term only: la
■ Total phase noise term: ltotal 
■ Voltage noise term: onoise

For example:

.probe phasenoise phnoise la ltotal $ AM modulation and 
total phase noise
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Add a Noise type suffix to each of these noise terms, phnoise, la, ltotal, 
onoise, to select specific noise-type components:

Example
.PROBE PHASENOISE la_phnoise_cyclostationary

You can also show AM/PM separation for individual noise elements. (To enable 
this capability, the listsources option of .PHASENOISE must = on. This 
example outputs the phase modulation noise associated only with Cyclo-
stationary sources (i.e., sources that are bias dependent, but not frequency 
dependent).

Noise Element output is of the form Noise_term(element_name), where 
Noise_term can be phnoise, la, ltotal, onoise, and element_name is a 
valid netlist element name.

Example
.PROBE PHASENOISE la(x1)

Output File Format
■ File *.printpn#: Writes output from the .PRINT statement when using 

HB to obtain the steady state solution.
■ File *.pn#: Writes output from the .PROBE statement when using HB to 

obtain the steady state solution.

Table 2 Summary of Noise_term

Noise type frequency-dependent bias-dependent

Noise_term_phnoise_stationary No No

Noise_term_phnoise_cyclostationary No Yes

Noise_term_phnoise_flicker Yes No

Noise_term_phnoise_cycloflicker Yes Yes

Noise_term_phnoise_fdep The union of phnoise_Flicker and 
phnoise_cycloflicker noise types

Noise_term_phnoise_findep The union of phnoise_stationary and 
phnoise_cyclostationary noise types
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■ File *.printsnpn#: Writes output from the .PRINT statement when using 
SN to obtain the steady state solution.

■ File *.snpn#: Writes output from the .PROBE statement when using SN to 
obtain the steady state solution.

The .PHASENOISE command line parameters Listfreq, ListCount, 
Listfloor, and Listsources control and list Noise source contributions 
sequentially.The listsources argument must =on to generate a noise list 
block is for each output parameter specified in the .PRINT/.PROBE statement 
e.g., phnoise, la, ltotal, onoise.

.MEASURE Syntax and File Format

.MEASURE PHASENOISE extends output variables to the set: am[noise] 
pm[noise]

Measure File Format
■ File *.mpn#: Writes output from the .MEASURE statement when using HB 

to obtain the steady state solution.
■ File *.msnpn#: Writes output from the .MEASURE statement when using 

SN to obtain the steady state solution.

Interpreting Phase Noise Analysis Results
A typical phase noise plot consists of a line, which drops off as a function of 
frequency, at a slope of -20dbc/decade where white noise dominates, or -
30dbc/decade where flicker noise dominates. At very low offset frequencies, 
the phase noise rolls off at according to a Lorentzian shape, such that it never 
exceeds 0 dbc/Hz even for very low offset frequencies. The 0 dbc/Hz value 
represents the power of the carrier oscillation, at 0 offset frequency. At very 
high offset frequencies, the slope can deviate from -20 dbc/decade due to the 
existence of a noise floor or a circuit feedback effect.

Numerical methods for phase noise analysis have limitations. The main 
limitation in the PAC phase noise algorithm is that it rolls off too quickly at low 
offset frequencies. In the low frequency region, you can trust NLP. The main 
limitation of the NLP algorithm is that it does not cover all high frequency 
effects, so you can trust PAC in the high frequency region.

The BPN algorithm attempts to combine the NLP and PAC results to generate a 
single result that is valid for all offset frequencies. It may fail if it cannot identify 
an overlap region where NLP and PAC results match. If the tool can not find an 
overlap region you should attempt to increase nharms on the .HBOSC 
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command, as this increases the accuracy of both algorithms, especially PAC. 
PAC accuracy is more sensitive to nharms than NLP.

If you suspect the phase noise results to be inaccurate, check the following:

1. Is the .HBOSC steady state solution fully converged? 

Explanation: The NLP or PAC small-signal noise analysis requires a highly 
accurate steady state solution.

2. Did the phase noise analysis fully converge?

Explanation: Phase noise analysis uses a GMRES iterative linear solver. 
If this iterative solver reaches its iteration limit before full convergence, the 
results are not reliable. Check the number of Krylov iterations that the phase 
noise analysis required. If it took the maximum number of iterations (as set 
by PHASENOISE_KRYLOV_ITR, default=1000), then the results did not 
fully converge and you should not trust them.
You can use the options PHASENOISE_KRYLOV_DIM, 
PHASENOISE_KRYLOV_TOL, and PHASENOISE_KRYLOV_ITR to 
control the GMRES solver. You can increase PHASENOISE_KRYLOV_DIM 
to improve the convergence rate at the expense of memory, or increase 
PHASENOISE_KRYLOV_ITR to allow more iterations.

Important Note for AM/PM Users
There are discrepancies that may occur between this feature and the traditional 
PAC phase noise analysis in HSPICE advanced analog analyses. Total phase 
noise (i.e., ltotal) is the sum of two terms, the amplitude modulation (am) 
and phase modulation (phnoise). Traditionally, PAC phase noise reports the 
phnoise (phase modulation component) and ltotal (total phase noise) 
terms as identical, with the assumption that the am term (amplitude modulation 
component) was zero. 

The PAC phase noise am/pm feature described in this section separately 
calculates the am and phnoise components. The am/pm feature affects all 
phase noise measurements that involve either PAC or BPN. In most cases the 
differences between PHNOISEAMPM=1 and =0 are small unless you expect a 
significant AM component. You may see a slight decrease in the new phase 
noise (phase-modulation) component when compared to the old calculation. 

For example, the random jitter calculations are accurate only when they involve 
the PM component of phase noise. When basing calculation on ltotal, or you 
include AM noise, the process may introduce a small error.
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NLP phase noise (method=0) only calculates the phnoise component; the am/
pm option does not affect this method.

BPN phase noise (method=2) is affected in that the far side component is 
derived from the PAC phase noise.

Workaround: Ensure that.OPTION PHNOISEAMPM=0 (the default). This 
assures that Periodic AC phase noise amplitude-modulation (AM) component 
is zero to maintain backward compatibility and traditional results for phnoise 
and jitter.

Accumulated Jitter Measurement for Closed Loop PLL 
Analysis

Enhancements to HSPICE advanced analog analyses include considerable 
support for a variety of jitter measurements. Many of these are important in a 
PLL flow, where you use the HBOSC or SNOSC analyses to compute a phase 
noise response for an oscillator or VCO, to derive the resulting random jitter 
from phase noise. In the PLL methodology, you use other HSPICE advanced 
analog analyses to compute phase noise contributions from the other PLL 
building blocks. You then perform a closed loop analysis by using phase-
domain models for both signal and noise responses that takes into account the 
noise contributions from all such blocks. To complete this flow is the ability to 
compute “Accumulated Jitter” or “Timing Jitter” for the closed loop PLL. The 
accumulated jitter response is essentially an integral transformation of the 
closed-loop PLL response. The following sections show how you can measure 
accumulated jitter directly from the phase noise-output of an open loop 
oscillator analysis. 

In the PLL flow, you interpret the closed loop phase noise from the results of a 
linear HSPICE advanced analog .AC/.NOISE analysis. The following sections 
describe a capability that allows direct measurement of accumulated jitter from 
the results of this closed loop noise analysis, without any special interpretation 
of the results. 
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This section covers the following topics:
■ Jitter Measurements from Phase Noise

Jitter Measurements from Phase Noise
These sections discuss the following topics:
■ Jitter Definitions
■ Jitter Output Syntax
■ .MEASURE Statements for Jitter
■ Peak-to-Peak Jitter

Jitter Definitions
HSPICE advanced analog analyses provides several random jitter (RJ) 
measurements. This section defines, describes, and compares the various jitter 
measurements provided. You derive random jitter measurements from the 
results of an HSPICE advanced analog phase noise analysis. The following 
presents the relationships between phase noise and the random jitter 
measurements, and their means for calculation. The types of random jitter 
measurements include: Timing, Phase, Period, Tracking, Long-Term, and 
Cycle-to-Cycle Jitter.

Timing jitter is a measurement of oscillator uncertainty in the time domain. For 
clock applications, time domain measurements are preferable, since most 
specifications of concern involve time domain values.

Timing jitter is the standard deviation of the timing uncertainty, which is a 
function of the auto-correlation function in the power spectrum of the phase 
variations. Timing Jitter is the square root of the variance (standard deviation 
squared) of the timing uncertainty between two clock edges separated by an 
interval given by , where  is the ideal clock period. You can write it 

as a function of the auto-correlation function of the power spectrum of phase 
variations as:

Equation 24

where TIE refers to the Time Interval Error. Call this measurement Timing 
Jitter, Accumulated Jitter, or N-Cycle Jitter, since it represents the jitter that 
may accumulate over an interval of many periods.

 N To= To

TIE
2   2

o
2

--------- R 0  R  – =
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The Weiner-Khintchine Theorem [1] relates the auto correlation function to the 
power spectrum of phase variations as in the following equation:

Equation 25

where  is the double-sided power spectrum of phase variations, and  

is the single-sideband phase noise. The auto-correlation for  is given by:

Equation 26

which defines  in HSPICE advanced analog analyses known as RMS 

Phase Jitter. 

Using the identity  we can then write:

Equation 27

to enable currently supported HSPICE advanced analog analyses jitter 
measurements to be written as:

Equation 28

From these definitions, several other key jitter measurements can be derived, 
including Period Jitter, Tracking Jitter, Long-Term Jitter, and Cycle-to-Cycle 
Jitter. 
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Period Jitter is equivalent to the value for Timing Jitter for a one period interval. 
We therefore have:

Equation 29

Tracking Jitter is equivalent to the value (in units of seconds) for RMS Phase 
Jitter, or:

Equation 30

Long-Term Jitter is equivalent to times the Tracking Jitter, i.e.:

Equation 31

Cycle-to-Cycle Jitter is based on the difference between adjacent Period Jitter 
measurements. It is given by:

Equation 32

In general, each of the above calculations must be performed carefully over 
limits of integration to accurately calculate jitter expressions based on the finite 
frequency limits provided for the phase noise analysis. Linear interpolation is 
used, but the phase noise generally follows more of a power law expansion. 

Jitter Output Syntax
The timing jitter calculations are derived from the results of phase noise 
analysis. The phase noise output syntax supports the JITTER keyword as an 
output keyword in addition to the PHNOISE keyword.

.PRINT PHASENOISE PHNOISE JITTER

.PROBE PHASENOISE PHNOISE JITTER 

PER TIE T0  2
0
------ 2 L

0



 f sin
2 fT0 df= = "Period Jitter"

tr ph

rms

0
---------- 1

0
------ 2 L

0



 f df= = = “Tracking Jitter”

2
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0
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0
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If the JITTER keyword is present, the .PHASENOISE statement also outputs 
the raw jitter data to *.jt0 and *.printjt0 data files. The PHNOISE data is 
given in units of dBc/Hz, i.e., dB relative to the carrier, per Hz, across the output 
nodes specified by the PHASENOISE statement. The data plot is a function of 
offset frequency. If the JITTER keyword is present, .PHASENOISE outputs the 
TIE Timing Jitter (Accumulated Jitter) data to *.jt0 and *.printjt0 data 
files. These data are plotted as a function of time in units of seconds. The jitter 
calculations make use of some of the parameters given in the .PHASENOISE 
syntax. 

The time samples for timing jitter output make use of the same number of 
points as the phase noise frequency sweep specification.

The output of timing jitter information uses a corresponding time sampling 
derived via:

Equation 33

.MEASURE Statements for Jitter
The jitter-specific .MEASURE statements specify the jitter keywords as follows. 
(For discussion of the BER parameter, see below.)

.MEASURE PHASENOISE Jname PERJITTER phnoise 
+ [UNITS=(sec|rad|UI)] [BER=val]
.MEASURE PHASENOISE Jname CTCJITTER phnoise 
+ [UNITS=(sec|rad|UI)] [BER=val]
.MEASURE PHASENOISE Jname RMSJITTER phnoise
+ [FROM start_frequency] [TO end_frequency] 
+ [UNITS=(sec|rad|UI)] [BER=val]
.MEASURE PHASENOISE Jname PHJITTER phnoise 
+ [FROM start_frequency] [TO end_frequency]
+ [UNITS=(sec|rad|UI)] [BER=val] 
.MEASURE PHASENOISE Jname TRJITTER phnoise
+ [FROM start_frequency] [TO end_frequency]
+ [UNITS=(sec|rad|UI)] [BER=val]
.MEASURE PHASENOISE Jname LTJITTER phnoise 
+ [FROM start_frequency] [TO end_frequency]
+ [UNITS=(sec|rad|UI)] [BER=val]

RMSJITTER, PHJITTER, and TRJITTER are synonymous measurements, all 
based on the calculations described related to the RMS Phase Jitter value in 
units of seconds given by . These measurements allow control 

1
1

T0
------ 2

2
T0
------ ...,N

N
T0
------===

ph rms 0=
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of the integration range using the FROM and TO parameters. The 
measurements for PERJITTER, and CTCJITTER use the full offset frequency 
sweep range given for the phase noise analysis to compute values (the FROM 
and TO parameters are ignored if entered). 

As given currently in HSPICE advanced analog analyses, the frequency 
intervals can be modified for these jitter calculations (if desired, although not 
recommended), and UNITS can be selected between seconds, radians, and 
Unit Intervals. The following table specifies the calculation used for 
units=seconds for each jitter measurement.

Example:

.meas phasenoise rj RMSJITTER phnoise from 1K to 100K
+ units = rad

Peak-to-Peak Jitter
As noted in .MEASURE Statements for Jitter, an additional BER (Bit Error 
Rate) parameter is supported. This parameter allows you to convert any jitter 
value from an RMS value into a Peak-to-Peak value. The RMS jitter values 
correspond to a 1-sigma standard deviation value for the Gaussian distribution 
of the jitter. Peak-to-peak values represent the full span of the Gaussian 
distribution. Since this span is theoretically unbounded for truly random 
distributions, the conversion to peak-to-peak values has to be interpreted as 
spanning some number of sigma values. You can arrive at this number (in other 
words, “sigma multiplier”) by specifying a corresponding Bit Error Rate. 

MEASURE name Calculation used (Units=sec)

RMSJITTER

PHJITTER

TRJITTER

PERJITTER

LTJITTER

CTCJITTER

ph rms 0=

ph rms 0=

ph rms 0=

PER

T  2rms o=

CTC
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The term “BER” corresponds to the unitless Bit Error Rate that allows for this 
conversion. The following table shows some example conversions from various 
BER values into a “sigma multiplier” value which corresponds to the number of 
sigma standard deviations in converting from RMS to peak-to-peak values: 

These conversions are done in accordance with the relationship:

Equation 34

where,  is the complementary error function, and  is the Sigma Multiplier. 
Support for peak-to-peak conversions is included for a continuous range of 

Bit Error Rate Sigma Multiplier

10-3 6.180

10-4 7.438

10-5 8.530

10-6 9.507

10-7 10.399

10-8 11.224

10-9 11.996

10-10 12.723

10-11 13.412

10-12 14.069

10-13 14.698

10-14 15.301

10-15 15.883

10-16 16.444

1
2
---erfc


2 2
-------------- BER=

erfc 
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BER values from (and some values extrapolated outside 
this range). 

Specification of the BER parameter results in the output of the peak-to-peak 
jitter value, and not the RMS value. Labels for the measurements show 
appropriate “rms” and “p-p” labels. A BER parameter set to BER=0 is 
equivalent to having no parameter, and only results in the RMS calculation. 

Errors/Warnings 
Error handling and recovery is exercised to capture obvious errors in input 
specifications. The following error checking is performed:
■ Calculations are be performed if oscillator or phase noise analysis fails. 
■ ERROR if L(f) > 1 over any part of the frequency sweep (non-dB form).
■ ERROR if L(f) < 0 over any part of the frequency sweep (non-dB form).
■ Error if any time or frequency samples are negative values. 
■ ERROR if BER < 0 for any Jitter measurement.
■ WARNING if BER > 1 for any Jitter measurement.
■ WARNING if f0 < 10 Hz. Message: “Jitter calculations may be ineffective for 

offset frequencies under 10 Hz.” 

Clock Source with Random Jitter

For .AC-related .NOISE analysis, see Clock Source with Random Jitter in the 
HSPICE User Guide: Basic Simulation and Analysis.

Small-Signal Phase-Domain Noise Analysis 
(.ACPHASENOISE)

To see the influence that oscillator or VCO phase noise can have on a system 
where it is present, it is necessary to perform a phase-domain analysis where 
the circuit variables are phase, and the input noise stimuli are phase noise. This 
is the purpose of the .ACPHASENOISE analysis in HSPICE advanced analog 
analyses.

10
16–

    10
3– 
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This type of analysis is critical, for example, in analyzing the effects of noise in 
a phase-locked loop (PLL). In a PLL design flow, the HBOSC or SNOSC 
analyses are used to compute a phase noise response for an oscillator or VCO. 
HSPICE advanced analog analyses can be used to compute phase noise 
contributions from the other PLL building blocks. A closed loop PLL analysis 
can then be performed by using phase-domain models for both signal and 
noise responses, where the noise contributions from all blocks are input as 
phase noise stimuli. Such an analysis can be performed to determine the PLL 
closed-loop phase noise, based on the contributions of each block, determined 
by an open loop analysis. 

For more information on control options, see .ACPHASENOISE command in 
the HSPICE Reference Manual: Commands and Control Options.

This section covers the following topics:
■ ACPHASENOISE Analysis .PRINT and .PROBE Syntax

ACPHASENOISE Analysis .PRINT and .PROBE Syntax
The unique aspect of the .ACPHASENOISE analysis is that it allows the small 
signal noise calculation results to be interpreted as phase noise values. The 
available .print/.probe measurements reflect this. The .print/.probe 
output syntax are the “JITTER” and “PHNOISE” keywords consistent with the 
HSPICE advanced analog .phasenoise analysis, namely: 

.PRINT ACPHASENOISE PHNOISE JITTER

.PROBE ACPHASENOISE PHNOISE JITTER 

As with the .PHASENOISE analysis, the .ACPHASENOISE analysis outputs raw 
data to *.pn0 and *.printpn0 files. The PHNOISE data is given in units of 
dBc/Hz, i.e., dB relative to the carrier, per Hz, across the output nodes specified 
by the .ACPHASENOISE statement. The data plot is a function of offset 
frequency. If the “JITTER” keyword is present, .ACPHASENOISE also outputs 
the accumulated TIE jitter data to *.jt0 and *.printjt0 data files. These 
data are plotted as a function of time in units of seconds. The Timing Jitter data 
itself has units of seconds. The timing jitter calculations make use of the 
parameters given in the .ACPHASENOISE syntax, such as “freq” and 
“interval”. 

See also Using Noise Analysis Results as Input Noise Sources.
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.MEASURE Support for ACPHASENOISE
Single valued jitter measurements are available from .MEASURE statements. 
Examples include period jitter, cycle-to-cycle jitter, and phase jitter 
measurements, respectively, as shown below:

.MEASURE ACPHASENOISE Jname PERJITTER phnoise 
+ [UNITS=(sec|rad|UI)] [BER=val]

.MEASURE ACPHASENOISE Jname CTCJITTER phnoise 
+ [UNITS=(sec|rad|UI)] [BER=val
 
.MEASURE ACPHASENOISE Jname PHJITTER phnoise 
+ [FROM start_frequency [TO end_frequency]
+ [UNITS=(sec|rad|UI)] [BER=val] 

Behavioral Noise Sources

In HSPICE advanced analog analyses, you can use the G-element to specify 
noise sources. Frequency domain noise analyses (.NOISE, .HBNOISE, and 
.PHASENOISE) take these noise sources into account.

You can attach noise sources to behavioral models. For example, you can use 
a G-element with the VCCAP parameter to model a varactor, which includes a 
noise model. You can also simulate effects such as substrate noise, including 
its effect on oscillator phase noise. You can also use this G-element syntax to 
simulate behavioral descriptions of substrate noise during any frequency 
domain noise analysis, which includes phase noise analysis. For example,

gname node1 node2 noise=’noise_equation’
gname node1 node2 node3 node4 noise=’noise_equation’

The first line creates a simple two-terminal current noise source, whose value 
is described in A2/(Hz). The output noise generated from this noise source is:

noise_equation*H

Where H is the transfer function from the terminal pair (node1,node2) to the 
circuit output, where HSPICE advanced analog analyses measures the output 
noise. 

The second line produces a noise source correlation between the 
(node1,node2) and (node3,node4) terminal pairs. The resulting output noise 
is calculated as noise_equation*sqrt(H1*H2*); where:
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■ H1 is the transfer function from (node1,node2) to the output.
■ H2 is the transfer function from (node3,node4) to the output.
■ The * on H1*H2* represents the complex conjugate of H1 and H2.

The noise_equation expression can involve node voltages and currents through 
voltage sources.

For the PAC phasenoise simulation to evaluate the frequency-dependent noise, 
the frequency-dependent noise factor in the phasenoise must be expressed in 
between the parentheses. For example:

gname node1 node2 noise = '(frequency_dependent_noise)*
bias_dependent_noise'

This is only true when the total noise can be expressed in this form and when 
the frequency-dependent noise can be evaluated in the PAC phasenoise 
simulation. You can also input the behavioral noise source as a noise table with 
the help of the predefined Table() function. The Table() function takes two 
formats:
■ Noise table can be input directly through the Table() function. For 

example:

gname node1 node2 noise = 'Table(arg1,f1,v1,f2,v2,......)'

■ The f1,v1,f2,v2,..... parameters describe the noise table. When arg1 == 
f1, the function returns v1. The arg1 can be an expression of either 
HERTZ, bias, or both. For example, arg1 = 'HERTZ * 1.0E+3'.

■ The noise table can be input through a .DATA structure:

.DATA d1 
+ x y 
+ f1 v1 
+ f2 v2 
.ENDDATA

gname node1 node2 noise = 'TABLE(arg1,d1)' 

The x, y parameters in the DATA structure are two placeholder strings that can 
be set to whatever you prefer even if they are in conflict with other parameters 
in the netlist. The arg1 parameter can be an expression of HERTZ and bias. 
When arg1 == f2, the function returns v2. 
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This section covers the following topics:
■ Using Noise Analysis Results as Input Noise Sources
■ Power Supply Current and Voltage Noise Sources

Using Noise Analysis Results as Input Noise Sources
SN phase noise and phase noise analyses can output simulation results as 
ASCII data in *.printsnpn0 files for SNOSC and SNNOISE. By extending 
the E and G voltage-controlled source syntax, the phase noise data in ASCII 
phase noise files can used as input for specifying behavioral noise sources

Usage Model
The syntax for the voltage controlled voltage (E) or current (G) source is as 
follows:

Exxx node1 node2 noisefile='filename' [mname='measname']
Gxxx node1 node2 noisefile='filename' [mname='measname'] 

Where, 

noisefile='filename' is the name of the ASCII phase noise data file. The 
file name is typically designated as 'design.printsnpn0', for a .SNOSC 
phase noise analysis or .SNNOISE analysis. But it also 
supports .PHASENOISE, .HBNOISE, .NOISE, and .ACPHASENOISE outputs.

mname='measname' is used to select the appropriate noise measurement 
name to be taken from the *.printpn0 file.

measname can be one of the following:
■ NLP_L(f) - selects the nlp_L(f) phase noise data in units of dBc/Hz
■ PAC_L(f) - selects the pac_l(f) phase noise data in units of dBc/Hz
■ BPN_L(f) - selects the bpn_l(f) phase noise data in units of dBc/Hz
■ ONOISE - selects the onoise data based on .SNNOISE analysis

The following syntaxes are supported in HSPICE advanced analog analyses:
■ Exxx n1 n2 noise data=dataname

■ Exxx n1 n2 noise data=datablock

■ Exxx n1 n2 noisefile='filename'

■ Exxx n1 n2 noise='expression'
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■ Exxx n1 n2 noise='Table(arg1,f1,v1,f2,v2...)'
■ Exxx n1 n2 noise='Table(arg1,dotDataBlockName)'

where: dotDataBlockName is the .data statement reference

Power Supply Current and Voltage Noise Sources
You can implement the power supply noise source with G and E elements. The 
G-element for the current noise source and the E-element for the voltage noise 
source. As noise elements, they are two-terminal elements that represent a 
noise source connected between two specified nodes. 

Syntax
Expression form

Gxxx node1 node2 noise=‘expression’
Exxx node1 node2 noise=‘expression’

The G noise element represents a noise current source and the E noise 
element represents a noise voltage source. The xxx parameter can be set with 
a value up to 1024 characters. The node1 and node2 are the positive and 
negative nodes that connect to the noise source. The noise expression can 
contain the bias, frequency, or other parameters. 

Data form

Gxxx node1 node2 noise data=dataname
Exxx node1 node2 noise data=dataname
.data dataname
+ pname1 pname2
+ freq1 noise1
+ freq2 noise2
+ ...
.enddata

The data form defines a basic frequency-noise table. The .DATA statement 
contains two parameters: frequency and noise to specify the noise value at 
each frequency point. The unit for frequency is hertz, and the unit for noise is 
A2/Hz (for G current noise source) or V2/Hz (for E voltage noise source).

Example
The following netlist shows a 1000 ohm resistor (g1) using a G-element. The 
g1noise element, placed in parallel with the g1 resistor, delivers the thermal 
noise expected from a resistor. The r1 resistor is included for comparison: The 
noise due to r1 should be the same as the noise due to g1noise.
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* Resistor implemented using g-element
v1 1 0 1
r1 1 2 1k
g1 1 2 cur='v(1,2)*0.001'
g1noise 1 2
+ noise='4*1.3806266e-23*(TEMPER+273.15)*0.001'
rout 2 0 1meg
.ac lin 1 100 100
.noise v(2) v1 1 
.end
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5Large Signal Periodic AC, Transfer Function, and
Noise Analyses

Describes how to use both harmonic balance-based and Shooting Newton-
based AC, and transfer function analyses, as well as nonlinear, steady-state 
noise analysis.

The following topics are presented in this section:
■ Multitone Harmonic Balance AC Analysis (.HBAC)
■ Shooting Newton AC Analysis (.SNAC)
■ Multitone Harmonic Balance Noise (.HBNOISE)
■ Shooting Newton Noise Analysis (.SNNOISE)
■ Periodic Time-Dependent Noise Analysis (.PTDNOISE)
■ Multitone Harmonic Balance Transfer Function Analysis (.HBXF)
■ Shooting Newton Transfer Function Analysis (.SNXF)

Multitone Harmonic Balance AC Analysis (.HBAC)

You use the .HBAC (Harmonic Balance AC) statement for analyzing linear 
behavior in large-signal periodic systems. The .HBAC statement uses a 
periodic AC (PAC) algorithm to perform linear analysis of autonomous 
(oscillator) or non-autonomous (driven) circuits, where the linear coefficients 
are modulated by a periodic, steady-state signal.

Multitone HBAC analysis extends single-tone HBAC to quasi-periodic systems 
with more than one periodic, steady-state tone. One application of multitone 
HBAC is to more efficiently determine mixer conversion gain under the 
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influence of a strong interfering signal than is possible by running a swept 
three-tone HB simulation.

The following sections discuss these topics:
■ Prerequisites and Limitations
■ Input Syntax
■ Output Syntax
■ HBAC Output Data Files
■ Using the .MEASURE Command with .HBAC
■ Errors and Warnings
■ Tutorial Example - Using Multi-Tone HB and HBAC Analyses for a Mixer

Prerequisites and Limitations
The following prerequisites and limitations apply to HBAC: 
■ Requires one and only one .HBAC statement. If you use multiple .HBAC 

statements, HSPICE advanced analog analyses uses only the last .HBAC 
statement.

■ Requires one and only one .HB statement. 
■ Supports arbitrary number of tones.
■ Requires placing the parameter sweep in the .HB statement.
■ Requires at least one HB source. 
■ Requires at least one HBAC source. 
■ Supports unlimited number of HB and HBAC sources.
■ The requested maximum harmonic in a .PROBE or .PRINT statement must 

be less than or equal to half the number of harmonics specified in harmonic 
balance (that is, max_harm <= num_hb_harms / 2).
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Input Syntax
.HBAC frequency_sweep

HBAC Analysis Options
The following options directly relate to a HBAC analysis and override the 
corresponding PAC options if specified in the netlist:
■ .OPTION HBACTOL, default = 1x10-8, Range = 1x10-14 to Infinity
■ .OPTION HBACKRYLOVDIM, default = 300, Range = 1 to Infinity
■ .OPTION HBACKRYLOVITER | HBAC_KRYLOV_ITER, default = 1000, 

Range = 1 to Infinity

If these parameters are not specified, then the following conditions apply:
■ If HBACTOL > HBTOL, then HBACTOL = HBTOL 
■ If HBACKRYLOVDIM < HBKRYLOVDIM, then HBACKRYLOVDIM = 

HBKRYLOVDIM 

Output Syntax
This section describes the syntax for the HBAC .PRINT and .PROBE 
statements. These statements are similar to those used for HB analysis.

.PRINT and .PROBE Statements

.PRINT HB TYPE(NODES | ELEM)[INDICES]

.PROBE HB TYPE(NODES | ELEM)[INDICES]

Parameter Description

frequency_sweep Frequency sweep range for the input signal (also referred to as the input 
frequency band (IFB) or fin). You can specify LIN, DEC, OCT, POI, or 
SWEEPBLOCK. Specify the nsteps, start, and stop frequencies using the 
following syntax for each type of sweep:
■ LIN nsteps start stop
■ DEC nsteps start stop
■ OCT nsteps start stop
■ POI nsteps freq_values
■ SWEEPBLOCK=swblockname
■ DATA=dataname
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Parameter Description

TYPE Specifies a harmonic type node or element. 

TYPE can be one of the following:
■ Voltage type –

V = voltage magnitude and phase in degrees
VR = real component
VI = imaginary component
VM = magnitude
VP - Phase in degrees 
VPD - Phase in degrees
VPR - Phase in radians
VDB - dB units
VDBM - dB relative to 1 mV

■ Current type –
I = current magnitude and phase in degrees
IR = real component
II = imaginary component
IM = magnitude
IP - Phase in degrees 
IPD - Phase in degrees
IPR - Phase in radians
IDB - dB units
IDBM - dB relative to 1 mV

■ Power type – P
■ Frequency type – hertz[index], hertz[index1, index2, ...] You must specify the harmonic index for 

the hertz variable. The frequency of the specified harmonics is dumped.

NODES | ELEM NODES or ELEM can be one of the following:
■ Voltage type – a single node name (n1), or a pair of node names, (n1,n2)
■ Current type – an element name (elemname)
■ Power type – a resistor (resistorname) or port (portname) element name
■ Frequency type – the harmonic index for the hertz variable. The frequency of the specified 

harmonics is dumped.

INDICES Index to tones in the form [n1, n2, ..., nK, +/-1]. 
■ nj is the index of the j-th HB tone and the .HB statement contains K tones
■ +/-1 is the index of the HBAC tone

Wildcards are not supported if this parameter is used.

You can transform HB data into the time domain and output by using the following syntax:.PRINT 
HBTRAN ov1 [ov2 ... ovN].PROBE HBTRAN ov1 [ov2 ... ovN]. See TYPE above for voltage and 
current type definitions.
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HBAC Output Data Files
An HBAC analysis produces these output data files:
■ Output from the .PRINT statement is written to a .printhb# file. This data 

is against the IFB points.

• The header contains the large-signal fundamental and the range of 
small-signal frequencies. 

• The columns of data are labeled as F(Hz), followed by the output 
variable names. Each variable name has the associated mixing pair 
value appended. 

All N variable names and all M mixing pair values are printed for each 
swept small-signal frequency value (a total of N*M for each frequency 
value).

■ Output from the .PROBE statement is written to a .hb# file. This data is 
against the IFB points.

■ Reported performance log statistics are written to a .lis file:

• Number of nodes

• Number of FFT points

• Number of equations

• Memory in use

• CPU time

• Maximum Krylov iterations

• Maximum Krylov dimension

• Target GMRES residual

• GMRES residual

• Actual Krylov iterations taken

• Frequency (swept input frequency values).

Using the .MEASURE Command with .HBAC
Since .HBAC requires an .HB analysis, the measure statements for this 
analysis are the same as for .HB analysis. For example:
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.MEASURE HB result FIND out_var AT=val

Errors and Warnings
The following error and warning messages are used when HSPICE encounters 
a problem with a HBAC analysis.

Error Messages
HBAC frequency sweep includes negative frequencies. HBAC allows only 
frequencies that are greater than or equal to zero.

No HB statement is specified (error at parser). HBAC requires an HB statement 
to generate the steady-state solution.

Warning Messages
More than one HBAC statement (warning at parser). HSPICE advanced analog 
analyses uses only the last HBAC statement in the netlist.

No HBAC sources are specified (error at parser). HBAC requires at least one 
HBAC source.

GMRES Convergence Failure. When GMRES (Generalized Minimum 
Residual) reaches the maximum number of iterations and the residual is 
greater than the specified tolerance. The HBAC analysis generates a warning 
and then continue as if the data were valid. This warning reports the following 
information:
■ Final GMRES Residual
■ Target GMRES Residual
■ Maximum Krylov Iterations
■ Actual Krylov Iterations taken

Tutorial Example - Using Multi-Tone HB and HBAC 
Analyses for a Mixer
The example in this section shows how to use HSPICE advanced analog 
analyses to analyze a circuit driven by multiple input stimuli with different 
frequencies. Mixer circuits provide a typical example of this scenario: in this 
case, there might be two input signals (LO and RF), which are mixed to 
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produce an IF output signal. In this case, HSPICE advanced analog analyses 
offers two options:
■ Multi-tone HB analysis: specify the LO and RF base frequencies as two 

separate tones on the .HB command.
■ Periodic AC analysis (HBAC): if one of the inputs is a small-signal, you can 

use a faster linear analysis to analyze its effect. For example, if a mixer’s LO 
is a large signal, but RF is a small signal, a single-tone HB analysis using 
the LO frequency can be combined with HBAC in place of a 2-tone HB 
analysis.

To demonstrate both techniques, this example analyzes an ideal mixer built 
using behavioral elements. It is based on demonstration netlist mix_tran.sp, 
which is available in directory $installdir/demo/hspice/rf_examples/
.

* Ideal mixer example: transient analysis
.OPTIONS POST
vlo lo 0 1.0 sin (1.0 0.5 1.0g 0 0 90)
rrf1 rf1 rf 1.0   
g1 0 if cur='1.0*v(lo)*v(rf)' $ mixer element
c1 0 if q='1.0e-9*v(lo)*v(rf)' $ mixer element
rout if ifg 1.0
vctrl ifg 0 0.0
h1 out 0 vctrl 1.0 $ convert I to V
rh1 out 0 1.0
vrf rf1 0 sin (0 0.001 0.8GHz 0 0 114)
.tran 10p 10n
.opt sim_accuracy=100
.end

This example uses behavioral controlled current and charge sources to 
simulate a mixer. The LO signal is driven by a 0.5 Volt sinusoid at 1 GHz, and 
RF is driven by a 10mV signal at 800 MHz. The mixer output is the voltage at 
node out, v(out). 

Two-tone HB Approach
To analyze this circuit using 2-tone HB, add:
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■ HB source for LO: add HB 0.5 0 1 1 to the LO voltage source; this sets 
the amplitude to 0.5, no phase shift for the first harmonic of the first tone, 
which is 1 GHz. 

■ HB source for RF: add HB 0.001 24 1 2 to the RF voltage source; this 
sets the amplitude to 0.001, 24 degrees phase shift for the first harmonic of 
the second tone (0.8 GHz). 

■ An .HB command specifying both tones: .hb tones=1g 0.8g nharms=6 3; 
only a small number of harmonics is required to resolve the signals. 

The complete mix_hb.sp netlist for 2-tone HB analysis is then:

* Ideal mixer example: 2-tone HB analysis
.OPTIONS POST
vlo lo 0 1.0 sin (1.0 0.5 1.0g 0 0 90) HB 0.5 0 1 1
rrf1 rf1 rf 1.0   
g1 0 if cur='1.0*v(lo)*v(rf)' $ mixer element
c1 0 if q='1.0e-9*v(lo)*v(rf)' $ mixer element
rout if ifg 1.0
vctrl ifg 0 0.0
h1 out 0 vctrl 1.0 $ convert I to V
rh1 out 0 1.0
vrf rf1 0 sin (0 0.001 0.8GHz 0 0 114) HB 0.001 24 1 2
.opt sim_accuracy=100
.hb tones=1g 0.8g nharms=6 3
.end

This example is available in directory $<installdir>/demo/hspice/
rf_examples/.

HBAC Approach
To analyze this circuit using HBAC, start with the 2-tone HB analysis setup, and 
modify it as follows:
■ Replace the RF HB signal with an HBAC signal: change HB 0.001 24 1 

2 to HBAC 0.001 24; this deactivates the source for HB and activates it for 
HBAC with the same magnitude and phase. 

■ Specify the frequency in the .HBAC command.
■ Change the .HB command to single tone:

.HB tones=1g nharms=6

HBAC takes care of the second tone.
■ Add a .HBAC command
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.HBAC lin 1 0.8g 0.8g

This command runs an analysis at a single frequency point, 0.8 GHz. In 
general, HBAC analysis can sweep the advanced analog frequency over a 
range of values.

The following is the complete mix_hbac.sp netlist for HBAC analysis of this 
simple mixer. This netlist also contains commands for performing periodic noise 
analysis. It is available in directory $installdir/demo/hspice/
rf_examples/.

* Ideal mixer example: HBAC analysis
.OPTIONS POST
vlo lo 0 1.0 sin (1.0 0.5 1.0g 0 0 90)
+ HB 0.5 0 1 1
rrf1 rf1 rf 1.0   
g1 0 if cur='1.0*v(lo)*v(rf)' $ mixer element
c1 0 if q='1.0e-9*v(lo)*v(rf)' $ mixer element
rout if ifg 1.0
vctrl ifg 0 0.0
h1 out 0 vctrl 1.0 $ convert I to V
rh1 out 0 1.0
vrf rf1 0 sin (0 0.001 0.8GHz 0 0 114)
+ HBAC 0.001 24 
.opt sim_accuracy=100
.hb tones=1g nharms=6 
.hbac lin 1 0.8g 0.8g
* Noise analysis
.hbnoise v(out) rrf1 lin 40 0.1g 4g
.print hbnoise onoise nf
.probe hbnoise onoise nf
.end

Comparing Results
After running all three netlists above, you will have generated 3 output files:
■ mix_tran.tr0
■ mix_hb.hb0
■ mix_hbac.hb0

You can compare the results of the three analyses in Custom WaveView. 

1. To run the netlists and start Custom WaveView, type:
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hspicerf mix_tran.sp
hspicerf mix_hb.sp
hspicerf mix_hbac.sp
wv &

2. Use File > Import Waveform File and select the mix_tran.tr0, 
mix_hb.hb0, and mix_hbac.hb0 files from the Open: Waveform Files 
dialog box. A histogram displays.

3. Select the v(out) signal from the mix_hb.hb0 file in the signal browser. 
Double-click on the signal name or drag and drop the signal in the waveform. 
You should see a histogram similar to the one from the mix_hb.hb0 file.

4. Convert the HB and HBAC histograms to time domain. In the waveform, 
right-click in the name area of the panel containing the signal v(out), left-
click on the waveform label for v(out) from the mix_hb.hb0 file. From the 
Panel menu, choose Signal 'v(out)' > To Time-Domain. To accept the 
defaults for range and interval, click OK in the Convert to Time domain 
window.

5. Repeat Step 4 for the v(out) signal from the mix_hbac.hb0 file.

6. Use Waveview > New to open a new waveform.

7. Select the v(out) signal from the mix_tran.tr0 file in the signal browser. 
Double-click on the signal name or drag and drop the signal in the waveform.

8. Compare the time domain waveforms from the mix_hb.hb0 and 
mix_hbac.hb0 files with the time domain waveform from the 
mix_tran.tr0 file. In the file browser, click on IFT under derived 
waveforms. The signals 0|v(out) and 1|v(out) should appear in the signal 
browser. Select the 0|v(out) and 1|v(out) signals and drag and drop them in 
the waveform. All three time domain signals should be displayed in the same 
panel. The three signals are almost indistinguishable from each other.

You can also use HBAC to perform noise analysis on advanced analog circuits 
by using the .HBNOISE command, which is included in the mix_hbac.sp 
netlist. 
■ The .HBNOISE command invokes noise analysis, identifying an output 

node where the noise is measured, an input noise source (in this case, rrf1) 
which serves as a reference for noise figure computation, and a frequency 
sweep for the noise analysis. 

■ The .PRINT and .PROBE hbnoise commands instruct HSPICE advanced 
analog analyses to save the output noise and noise figure at each frequency 
in the mix_hbac.printpn0 and mix_hbac.pn0 output files.
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This ideal mixer is noiseless, except for the resistors at the input and output.

The mix_hbac.lis file contains detailed data on the individual noise source 
contributions of the resistors. You can view mix_hbac.printpn0 to see the 
output noise and noise figure at each frequency. In WaveView, you can view 
mix_hbac.pn0 to plot the output noise and noise figure data as a function of 
frequency.

Shooting Newton AC Analysis (.SNAC)

You use the Shooting Newton AC (.SNAC) statement for analyzing linear 
behavior in large-signal periodic systems. The .SNAC statement uses a 
periodic AC (PAC) and Shooting Newton algorithm to perform linear analysis of 
nonautonomous (driven) circuits, where the linear coefficients are modulated 
by a periodic, steady-state signal.

The following section describes the periodic AC analysis based on a Shooting 
Newton algorithm. This functionality is similar to the Harmonic Balance (HBAC) 
for periodic AC analysis.

The following section discuss these topics:
■ Prerequisites and Limitations
■ Input Syntax
■ Output Syntax
■ SNAC Output Data Files
■ Using the .MEASURE Command with .SNAC
■ Errors and Warnings
■ SNAC Example

Prerequisites and Limitations
The following prerequisites and limitations apply to SNAC:
■ Requires one and only one .SNAC statement. If you use multiple .SNAC 

statements, HSPICE advanced analog analyses uses only the last .SNAC 
statement.

■ Requires one and only one .SN statement.
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■ Requires placing the parameter sweep in the .SN statement.
■ Requires at least one Periodic source.
■ Limited to simulations that can be reduced to a single tone SN analysis.
■ Supports unlimited number of sources.
■ The requested maximum harmonic in a .PROBE or .PRINT statement must 

be less than or equal to half the number of harmonics specified in the SN 
statement (that is, max_harm  nharms / 2).

Input Syntax
.SNAC frequency_sweep

Output Syntax
This section describes the syntax for the SNAC .PRINT and .PROBE 
statements. These statements are similar to those used for HB analysis.

.PRINT and .PROBE Statements

.PRINT SN TYPE(NODES | ELEM)[INDICES]

.PROBE SN TYPE(NODES | ELEM)[INDICES]

Parameter Description

frequency_sweep Frequency sweep range for the input signal (also referred to as the input frequency band 
(IFB) or fin). You can specify LIN, DEC, OCT, POI, or SWEEPBLOCK. Specify the nsteps, 
start, and stop frequencies using the following syntax for each type of sweep:
■ LIN nsteps start stop
■ DEC nsteps start stop
■ OCT nsteps start stop
■ POI nsteps freq_values
■ SWEEPBLOCK=swblockname
■ DATA=dataname



142 HSPICE® User Guide: Advanced Analog Simulation and Analysis
K-2015.06



Chapter 5: Large Signal Periodic AC, Transfer Function, and Noise Analyses
Shooting Newton AC Analysis (.SNAC)
Parameter Description

TYPE Specifies a harmonic type node or element. 

TYPE can be one of the following:
■ Voltage type –

V = voltage magnitude and phase in degrees
VR = real component
VI = imaginary component
VM = magnitude
VP - Phase in degrees 
VPD - Phase in degrees
VPR - Phase in radians
VDB - dB units
VDBM - dB relative to 1 mV

■ Current type –
I = current magnitude and phase in degrees
IR = real component
II = imaginary component
IM = magnitude
IP - Phase in degrees 
IPD - Phase in degrees
IPR - Phase in radians
IDB - dB units
IDBM - dB relative to 1 mV

■ Power type – P
■ Frequency type – hertz[index], hertz[index1, index2, ...] You must specify the harmonic index 

for the hertz variable. The frequency of the specified harmonics is dumped.

NODES | 
ELEM

NODES or ELEM can be one of the following:
■ Voltage type – a single node name (n1), or a pair of node names, (n1,n2)
■ Current type – an element name (elemname)
■ Power type – a resistor (resistorname) or port (portname) element name
■ Frequency type – the harmonic index for the hertz variable. The frequency of the specified 

harmonics is dumped.

INDICES Index to tones in the form [n1, +/-1]. 
■ n1 is the index of the SN tone
■ +/-1 is the index of the SNAC tone

Wildcards are not supported if this parameter is used.

You can transform SN data into the time domain and output by using the following syntax:.PRINT 
SNTRAN ov1 [ov2 ... ovN]. PROBE SNTRAN ov1 [ov2 ... ovN]. See TYPE above for voltage and 
current type definitions.
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SNAC Output Data Files
A SNAC analysis produces these output data files:
■ Output from the .PRINT statement is written to a .printsnac# file. 
■ This data is against the IFB points.
■ The header contains the large-signal fundamental and the range of small-

signal frequencies.
■ The columns of data are labeled as F(Hz), followed by the output variable 

names. Each variable name has the associated mixing pair value 
appended. All N variable names and all M mixing pair values are printed for 
each swept small-signal frequency value (a total of N*M for each frequency 
value).

■ Output from the .PROBE statement is written to a .snac# file. 

Reported performance log statistics are written to a .lis file:
■ Number of nodes
■ Number of FFT points
■ Number of equations
■ Memory in use
■ CPU time
■ Maximum Krylov iterations
■ Maximum Krylov dimension
■ Target GMRES residual
■ GMRES residual
■ Actual Krylov iterations taken
■ Frequency (swept input frequency values)

Using the .MEASURE Command with .SNAC
Since .SNAC requires an .SN analysis, the measure statements for this 
analysis are the same as for .SN analysis.  For example,

.MEASURE SN result FIND out_var AT=val
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Errors and Warnings
The following error and warning messages are used when HSPICE encounters 
a problem with a SNAC analysis.

Error Messages
SNAC frequency sweep includes negative frequencies. SNAC allows only 
frequencies that are greater than or equal to zero.

No SN statement is specified (error at parser). SNAC requires an SN statement 
to generate the steady-state solution.

Warning Messages
More than one SNAC statement (warning at parser). HSPICE advanced analog 
analyses uses only the last SNAC statement in the netlist.

No SNAC sources are specified (error at parser). SNAC requires at least one 
SNAC source.

GMRES Convergence Failure. When GMRES (Generalized Minimum 
Residual) reaches the maximum number of iterations and the residual is 
greater than the specified tolerance. The SNAC analysis generates a warning 
and then continue as if the data were valid. This warning reports the following 
information:
■ Final GMRES Residual
■ Target GMRES Residual
■ Maximum Krylov Iterations
■ Actual Krylov Iterations taken

SNAC Example
The following example is shipped with the HSPICE distribution as 
mix_snac.sp and is available in directory:
$installdir/demo/hspice/rf_examples/.
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* Test SNAC: ideal I,Q mixer -rrd
.OPTIONS PROBE
.OPTIONS POST=2
$.OPTIONS snmaxiter=100
.OPTIONS SNACCURACY=5
vlo lo 0 1.0 cos(1.0 0.5 1g) $ Periodic, Large-Signal SN Input
rlo lo 0 1.0
rrf rf 0 1.0 $ Noise source
rrf1 rf1 rf 1.0 $ Noise source
g1 0 if cur='1.0*v(lo)*v(rf)' $ mixer element
c1 0 if q='1.0e-9*v(lo)*v(rf)' $ mixer element
rout if ifg 1.0
vctrl ifg 0 0.0
h1 out 0 vctrl 1.0 
rh1 out 0 1.0
vrf rf1 0 snac .001 24.0 $ Small signal for SNAC with 1-tone
SN Input
.sn tones=1.0g nharms=3
.snac lin 1 0.8g 0.8g
.print sn v(rf1) v(lo) v(out)
.print snfd v(rf1) v(lo) v(out)
.print snac v(rf1) v(lo) v(out)
.measure snac vout1 find v(out)[1,-1] at=0.8g
.measure snac vout2 find v(out)[0,1] at=0.8g
.measure snac vout3 find v(out)[1,1] at=0.8g
.measure sn vlo1 find v(lo) at=0.5n
.measure sn vlo2 find v(lo) at=1n
.measure snfd vlo3 find v(lo)[1] at=1
.end

Steady-State Voltage and Current Sources

The I (current source) and V (voltage source) elements include extensions that 
allow you to use them as sources of steady-state sinusoidal signals for HB /
HBAC and SN/SNAC analyses. When you use a power parameter to specify 
the available power, you can also use these elements as power sources.

For a general description of the I and V elements, see Power Sources in the 
HSPICE User Guide: Basic Simulation and Analysis.

I and V Element Syntax
Vxxx p n
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+ $ **** Voltage or Power Information ********
+ [[dc] mag] [ac [mag [phase]]] [HBAC [mag [phase]]]
+[SNAC [mag [phase]]]
+ [hb [mag [phase [harm [tone [modharm [modtone]]]]]]] 
+ [transient waveform] [TRANFORHB=[1|0]]

+ $ **** Power Switch ********
+ [power=[0 | 1 | W | dbm]] [z0=val] [rdc=val] [rac=val]
+ [RHBAC=val] [rhb=val] [rtran=val]

Ixxx p n
+ $ **** Current or Power Information ********
+ [[dc] mag] [ac [mag [phase]]] [HBAC [mag [phase]]]
+ [SNAC [mag [phase]]]
+ [hb [mag [phase [harm [tone [modharm [modtone]]]]]]] 
+ [transient waveform] [TRANFORHB=[1|0]]

+ $ **** Power Switch ********
+ [power=[0 | 1 | W | dbm]] [z0=val] [rdc=val] [rac=val]
+ [RHBAC=val] [rhb=val] [rtran=val]

Parameter Description

[[dc] mag] DC voltage or power source value. You don’t need to specify DC 
explicitly (default=0).

[ac [mag [phase]]] AC voltage or power source value.

[HBAC [mag [phase]]] Advanced analog HBAC voltage or power source value.

[SNAC [mag [phase]]] Advanced analog SNAC voltage or power source value.

[hb [mag [phase [harm [tone 
[modharm [modtone]]]]]]]

Advanced analog HB voltage, current, or power source value. Multiple 
HB specifications with different harm, tone, modharm, and modtone 
values are allowed. 
■ phase is in degrees
■ harm and tone are indices corresponding to the tones specified in 

the .HB statement. Indexing starts at 1 (corresponding to the first 
harmonic of a tone).

■ modtone and modharm specify sources for multi-tone simulation. A 
source specifies a tone and a harmonic, and up to 1 offset tone and 
harmonic (modtone for tones and modharm for harmonics). The 
signal is then described as:
V(or I) = mag*cos(2*pi*
(harm*tone+modharm*modtone)*t + phase)
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[transient waveform] (Transient analysis) Any one of waveforms: AM, EXP, PULSE, PWL, 
SFFM, or SIN. Multiple transient descriptions are not allowed.

[power=[0 | 1 | W | dbm]] (HSPICE advanced analog analyses) Power Switch
■ When 0 (default), element treated as a voltage or current source.
■ When 1 or W, element treated as a power source, realized as a 

voltage source with a series impedance. In this case, the source 
value is interpreted as RMS available power in units of Watts.

■ When dbm, element treated as a power source in series with the 
port impedance. Values are in dbms.

You can use this parameter for Transient analysis if the power source 
is either DC or SIN.

[z0=val] (LIN analysis) System impedance used when converting to a power 
source, inserted in series with the voltage source. Currently, this only 
supports real impedance.
■ When power=0, z0 defaults to 0.
■ When power=1, z0 defaults to 50 ohms.

You can also enter zo=val.

[rdc=val] (DC analysis) Series resistance (overrides z0).

[rac=val] (AC analysis) Series resistance (overrides z0). 

[RHBAC=val] (HSPICE advanced analog HBAC analysis) Series resistance 
(overrides z0). 

[rhb=val] (HSPICE advanced analog HB analysis) Series resistance (overrides 
z0). 

[rtran=val] (Transient analysis) Series resistance (overrides z0).

Parameter Description
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Example 1
This example shows an HB source for a single tone analysis:

.hb tones=100MHz harms=7

I1 1 2 dc=1mA hb 3mA 0. 1 1

I1 is a current source with a the following time-domain description: 

I1=1mA + 3mA*cos(2*pi*1.e8*t)

Example 2
This example shows HB sources used for a two-tone analysis:

.hb tones=1.e9 1.1e9 intmodmax=5 
Vin lo 0 dc=0. hb 1.5 90 1 1 

Vrf rf 0 dc=0. hb 0.2 0 1 2

These sources have the following time-domain descriptions: 

Vin=1.5*cos(2*pi*1.e9*t - 90*pi/180) V 

Vrf = 0.2*cos(2*pi*1.1e9*t) V

Example 3
The following HB source uses a modtone and modharms:

.hb tones=2.e9 1.9e9 harms=5 5 

[TRANFORHB=[0|1]] ■ 0 (default): The transient description is ignored if an HB value is 
given or a DC value is given. If no DC or HB value is given and 
TRANFORHB=0, then HB treats the source as a DC source, and 
the DC source value is the time=0 value.

■ 1: HB analysis uses the transient description if its value is VMRF, 
SIN, PULSE, PWL, or LFSR. If the type is a non-repeating PWL 
source, then the time=infinity value is used as a DC source value. 
For example, the following statement is treated as a DC source with 
value=1 for HB:
v1 1 0 PWL (0 0 1n 1 1u 1) TRANFORHB=1
In contrast, the following statement is a 0V DC source: 
v1 1 0 PWL (0 0 1n 1 1u 1) TRANFORHB=0 
The following statement is treated as a periodic source with a 1us 
period that uses PWL values: 
v1 1 0 PWL (0 0 1n 1 0.999u 1 1u 0) R

TRANFORHB=1 

To override the global TRANFORHB option, explicitly set 
TRANFORHB for a V/I source.

Parameter Description
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Vm input gnd dc=0.5 hb 0.2 0. 1 1 -1 2 

Vm has the following time-domain description: 

Vm = 0.5 + cos(2*pi*1.e8*t)

Example 4
This example uses an HB source specified with a SIN source and 
HBTRANINIT.

.hb tone=1.e8 harms=7 

Vt 1 2 SIN(0.1 1.0 2.e8 0. 0. 90) tranforhb=1

Vt is converted to the following HB source:

Vt 1 2 dc=0.1 hb 1.0 0.0 2 1

Example 5
This example shows a power source (the units are Watts).

.hb tones=1.1e9 harms=9

Pt Input Gnd power=1 Z0=50. 1m 0. 1 1

Pt delivers 1 mW of power through a 50-ohm impedance.

Phase Noise and Buffer Chains

Phase noise is specific to oscillators. However, for buffer chains you can do 
periodic noise analysis. Phase noise that may be contributed by buffer, 
amplifier, divider, or multiplier circuits is often referred to as residual phase 
noise. There are three commands in HSPICE advanced analog analyses that 
can apply help you predict such noise: .HBNOISE, .SNNOISE, 
and .PTDNOISE. These analyses compute the noise spectral density at an 
output variable taking into consideration modulation effects.

.HBNOISE and .SNNOISE compute the average noise over one period, 
assuming your circuit is driven by a periodic input signal.

.PTDNOISE computes the noise at one specific time point within the period, or 
it can compute the noise as a function of time over one period. .PTDNOISE can 
also convert the noise to a “jitter” value, which would be an uncertainty in the 
timing as opposed to the uncertainty in the output voltage.
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See the following sections for detailed information on these commands:
■ Multitone Harmonic Balance Noise (.HBNOISE)
■ Shooting Newton Noise Analysis (.SNNOISE)
■ Periodic Time-Dependent Noise Analysis (.PTDNOISE)

Multitone Harmonic Balance Noise (.HBNOISE)

An HBNOISE (Harmonic Balance noise) analysis simulates the noise behavior 
in periodic systems and is designed for use with driven circuits. It employs a 
Periodic AC (PAC) algorithm to perform noise analysis of nonautonomous 
(driven) circuits under periodic, steady-state tone conditions. This can be 
extended to quasi-periodic systems having more than one periodic, steady-
state tone. One application for a multitone HBNOISE analysis is determining 
mixer noise figures under the influence of a strong interfering signal. 

The PAC method simulates noise assuming that the stationary noise sources 
and/or the transfer function from the noise source to a specific output are 
periodically modulated.
■ The modulated noise source (thermal, shot, or flicker) is modeled as a 

cyclostationary noise source.
■ A PAC algorithm solves the modulated transfer function.
■ You can also use the HBNOISE PAC method with correlated noise sources, 

including the MOSFET level 9 and level 11 models, and the behavioral noise 
source in the G-element (Voltage Dependent Current Source).

You use the .HBNOISE statement to perform a Periodic Noise Analysis.

The following sections discuss these topics:
■ Supported Features
■ Input Syntax
■ Output Syntax
■ Output Data Files
■ Measuring HBNOISE Analyses with .MEASURE
■ Errors and Warnings
■ HBNOISE Example
HSPICE® User Guide: Advanced Analog Simulation and Analysis 151
K-2015.06



Chapter 5: Large Signal Periodic AC, Transfer Function, and Noise Analyses
Multitone Harmonic Balance Noise (.HBNOISE)
Supported Features
HBNOISE supports the following features:
■ All existing HSPICE advanced analog noise models.
■ Uses more than one single-tone, harmonic balance to generate the steady-

state solution.
■ Unlimited number of HB sources (using the same tone, possibly multiple 

harmonics).
■ Includes stationary, cyclostationary, frequency-dependent, and correlated 

noise effects.
■ Swept parameter analysis.
■ Results are independent of the number of HBAC sources in the netlist.

Prerequisites and Limitations
The following prerequisites and limitations apply to HBNOISE:
■ Requires one .HB statement (which determines the steady-state solution).
■ Requires at least one HB source or one TRANFORHB source.
■ Requires placing the parameter sweep in the .HB statement.
■ The requested maximum harmonic in .HBNOISE must be less than or equal 

to half the number of harmonics used in harmonic balance (that is, 
max_harm <= num_hb_harms/2).

Input Syntax
.HBNOISE [output] [insrc] [parameter_sweep] 
+ [n1, n2, ..., nk,+/-1]
+ [listfreq=(frequencies|none|all)] [listcount=val]
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+ [listfloor=val] [listsources=on|off]

Parameter Description

output Output node, pair of nodes, or 2-terminal element. HSPICE advanced analog 
analyses references equivalent noise output to this node (or pair of nodes). 
Specify a pair of nodes as V(n+,n-). If you specify only one node, V(n+), then 
HSPICE advanced analog analyses assumes that the second node is ground. 
You can also specify a 2-terminal element name that refers to an existing element 
in the netlist.

insrc An input source. If this is a resistor, HSPICE advanced analog analyses uses it as 
a reference noise source to determine the noise figure. If the resistance value is 
0, the result is an infinite noise figure.

parameter_sweep Frequency sweep range for the input signal. Also referred to as the input 
frequency band (IFB) or fin). You can specify LIN, DEC, OCT, POI, 
SWEEPBLOCK, DATA, MONTE, or OPTIMIZE sweeps. Specify the nsteps, start, 
and stop frequencies using the following syntax for each type of sweep:
■ LIN nsteps start stop
■ DEC nsteps start stop
■ OCT nsteps start stop
■ POI nsteps freq_values
■ SWEEPBLOCK=swblockname

n1,n2,...,nk, 
+/-1 

Index term defining the output frequency band (OFB or fout) at which the noise is 
evaluated. Generally,
fout=ABS(n1*f1+n2*f2+...+nk*fk+/-fin)
where:
■ f1,f2,...,fk are the first through k-th steady-state tones determined from the 

harmonic balance solution
■ fin is the IFB defined by parameter_sweep.

The default index term is [1,1,...1,-1]. For a single tone analysis, the default mode 
is consistent with simulating a low-side, down conversion mixer where the 
advanced analog signal is specified by the IFB and the noise is measured at a 
down-converted frequency that the OFB specifies. In general, you can use the 
[n1,n2,...,nk,+/-1] index term to specify an arbitrary offset. The noise figure 
measurement is also dependent on this index term.
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Output Syntax
The HSPICE advanced analog HB and SN noise analyses can output the 
output noise (onoise), noise figures (NF, SSNF and DSNF) and, the input 
referred noise (inoise). This section describes the syntax for the HBNOISE 
.PRINT and .PROBE statements. 

.PRINT and .PROBE Statements

.PRINT HBNOISE [ONOISE] [NF] [SSNF] [DSNF] [INOISE]

listfreq Prints the element noise value to the .lis file. You can specify at which frequencies 
the element noise value is printed. The frequencies must match the 
sweep_frequency values defined in the parameter_sweep, otherwise they are 
ignored.

In the element noise output, the elements that contribute the largest noise are 
printed first. The frequency values can be specified with the NONE or ALL 
keyword, which either prints no frequencies or every frequency defined in 
parameter_sweep. Frequency values must be enclosed in parentheses. For 
example:listfreq=(none)
listfreq=(all)
listfreq=(1.0G)
listfreq=(1.0G, 2.0G)The default value is NONE.

listcount Prints the element noise value to the .lis file, which is sorted from the largest to 
smallest value. You do not need to print every noise element; instead, you can 
define listcount to print the number of element noise frequencies. For 
example, listcount=5 means that only the top 5 noise contributors are printed. 
The default value is 1.

listfloor Prints the element noise value to the .lis file and defines a minimum meaningful 
noise value (in V/Hz1/2 units). Only those elements with noise values larger than 
listfloor are printed. The default value is 1.0e-14 V/Hz1/2.

listsources Prints the element noise value to the .lis file when the element has multiple 
noise sources, such as a FET, which contains the thermal, shot, and 1/f noise 
sources. You can specify either ON or OFF: ON Prints the contribution from each 
noise source and OFF does not. The default value is OFF.

Parameter Description
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.PROBE HBNOISE [ONOISE] [NF] [SSNF] [DSNF] [INOISE]

Output Data Files
An HBNOISE analysis produces these output data files:
■ Output from the .PRINT statement is written to a .printpn# file.
■ Output from the .PROBE statement is written to a .pn# file.

Both the *.printpn# and *.pn# files output data against the input frequency 
band points.

■ Standard output information is written to a .lis file:

• simulation time

• HBNOISE linear solver method

• HBNOISE simulation time

• total simulation time

Parameter Description

ONOISE Outputs the voltage noise at the output frequency band (OFB) across the output nodes 
in the .HBNOISE statement. The data is plotted as a function of the input frequency 
band (IFB) points. Units are in V/Hz1/2. Simulation ignores ONOISE when applied to 
autonomous circuits.

NF
SSNF

NF and SSNF both output a single-side band noise figure as a function of the IFB 
points:

NF = SSNF = 10 Log(SSF)

Single side-band noise factor, SSF = {(Total Noise at output, at OFB, originating from 
all frequencies) - (Load Noise originating from OFB)} / (Input Source Noise originating 
from IFB).

DSNF DSNF outputs a double side-band noise figure as a function of the IFB points.

DSNF = 10 Log(DSF)

Double side-band noise factor, DSF = {(Total Noise at output, at the OFB, originating 
from all frequencies) - (Load Noise originating from the OFB)} / (Input Source Noise 
originating from the IFB and from the image of IFB).

INOISE Outputs input referred noise which can be printed, probed, or measured.
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See also Using Noise Analysis Results as Input Noise Source.

Measuring HBNOISE Analyses with .MEASURE

Note: A .MEASURE HBNOISE statement cannot contain an expression 
that uses a HBNOISE variable as an argument. Also, you cannot 
use a .MEASURE HBNOISE statement for error measurement 
and expression evaluation of HBNOISE.

The .MEASURE HBNOISE syntax supports several types of measurements:
■ Find-when 

.MEASURE HBNOISE result FIND out_var1 
+ AT = Input_Frequency_Band value

The previous measurement yields the result of a variable value at a specific 
IFB point.

.MEASURE HBNOISE result FIND out_var1 
+ WHEN out_var2 = out_var3

The previous measurement yields the result at the input frequency point 
when out_var2 == out_var3.

.MEASURE HBNOISE result WHEN out_var2 = out_var3

The previous measurement yields the input frequency point when out_var2 
== out_var3.

■ Average, RMS, min, max, and peak-to-peak 

.MEASURE HBNOISE result [RMS] out_var [FROM = IFB1] 
+ [TO = IFB2]

■ Integral evaluation 

.MEASURE HBNOISE result INTEGRAL out_var 
+ [FROM = IFB1] [TO = IFB2]

This measurement integrates the out_var value from the IFB1 frequency to 
the IFB2 frequency.

■ Derivative evaluation

.MEASURE HBNOISE result DERIVATIVE out_var AT = IFB1
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This measurement finds the derivative of out_var at the IFB1 frequency 
point.

Note: .MEASURE HBNOISE cannot contain an expression that uses 
an hbnoise variable as an argument. You also cannot 
use .MEASURE HBNOISE for error measurement and 
expression evaluation of HBNOISE.

■ Input referred noise

.MEASURE [HBNOISE|SNNOISE] result FIND inoise
+ AT = IFB_value

This measurement yields the result of the input referred noise at a specific 
input frequency band point.

.MEASURE [HBNOISE|SNNOISE] result FIND inoise
+ WHEN out_var2 = out_var3

This measurement yields the result at the input frequency point when 
out_var2 == out_var3.

.MEASURE HBNOISE result func inoise [FROM = IFB1]
+ [TO = IFB2]

Where func is one of the following measurement types:

• AVG (average): Calculates the area under the inoise curve, divided by 
the periods of interest.

• MAX (maximum): Reports the maximum value of inoise over the 
specified interval.

• MIN (minimum): Reports the minimum value of inoise over the specified 
interval.

• PP (peak-to-peak): Reports the maximum value, minus the minimum 
value of inoise over the specified interval.

• RMS (root mean squared): Calculates the square root of the area under 
the inoise curve, divided by the period of interest.

.MEASURE HBNOISE result INTEGRAL inoise
+ [FROM =IFB1] [TO = IFB2]

This measurement integrates the inoise value from the IFB1 frequency to 
the IFB2 frequency.
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.MEASURE HBNOISE result DERIVATIVE inoise AT = IFB1

This measurement finds the derivative of inoise at the IFB1 frequency point.

The HSPICE advanced analog analyses optimization flow can read the 
measured data from a .MEASURE HBNOISE analysis. This flow can be 
combined in the HSPICE advanced analog analyses optimization routine with a 
.MEASURE HBTR analysis (see Using .MEASURE with .HB Analyses) and a 
.MEASURE PHASENOISE analysis (see Measuring Phase Noise 
with .MEASURE PHASENOISE).

Errors and Warnings
HBNOISE Errors

See the list of HBAC Errors and Warnings.

HBNOISE Example
This example performs an HB analysis, then runs an HBNOISE analysis over a 
range of frequencies, from 9.0e8 to 9.2e8 Hz. Simulation outputs the output 
noise at V(out) and the single side-band noise figure versus IFB, from 1e8 to 
1.2e8 Hz, to the *.pn0 file. The netlist for this example is shown immediately 
following.

$$*-Ideal mixer + noise source
$ prints total noise at the output (1.57156p V/sqrt-Hz),
$ single-sideband noise figure, (3.01 dB) 
$ double-sideband noise figure. (0 dB) 
.OPTION PROBE
.OPTION POST=2
vlo lo 0 0.0 hb 1.0 0 1 1$ Periodic, HB Input
Ilo lo 0 0
rsrc rfin rf1 1.0$ Noise source
c1 0 if q='1.0e-9*v(lo)*v(rfin)' $ mixer element
g1 0 if cur=’1.0*v(lo)*v(rfin)’ $ mixer element
rout if 0 1.0
vrf rf1 0 $ hbac 2.0 0.0 
.hb tones=1.0g nharms=4 $ sweep mval 1 2 1
.HBNOISE rout rsrc lin 11 0.90g 0.92g
.print HBNOISE onoise ssnf dsnf
.probe HBNOISE onoise ssnf dsnf
.end
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Shooting Newton Noise Analysis (.SNNOISE)

A SNNOISE (Shooting Newton noise) analysis simulates the noise behavior in 
periodic systems. It uses a Periodic AC (PAC) algorithm to perform noise 
analysis of non-autonomous (driven) circuits under periodic, steady-state tone 
conditions. SNNOISE is similar to the HBNOISE analysis. 

The PAC method simulates noise assuming that the stationary noise sources 
and/or the transfer function from the noise source to a specific output are 
periodically modulated.
■ The modulated noise source (thermal, shot, or flicker) is modeled as a 

cyclostationary noise source.
■ A PAC algorithm solves the modulated transfer function.
■ You can also use the SNNOISE PAC method with correlated noise sources, 

including the MOSFET Level 9 and Level 11 models, and the behavioral 
noise source in the G-element (Voltage Dependent Current Source). 

You use the .SNNOISE statement to perform a Periodic Noise Analysis.

The following sections discuss these topics:
■ Supported Features
■ Input Syntax
■ Output Syntax
■ Output Data Files
■ Measuring SNNOISE Analyses with .MEASURE
■ SNNOISE Analysis Example

Supported Features
SNNOISE supports the following features:
■ All existing HSPICE advanced analog noise models.
■ Uses Shooting Newton to generate the steady-state solution.
■ Unlimited number of sources.
■ Includes stationary, cyclostationary, frequency-dependent, and correlated 

noise effects.
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■ Swept parameter analysis.
■ Results are independent of the number of SNAC sources in the netlist.

Prerequisites and Limitations
The following prerequisites and limitations apply to SNNOISE:
■ Requires one .SN statement (which determines the steady-state solution).
■ Requires at least one Periodic source. Does not recognize HB sources.
■ Requires placing the parameter sweep in the .SN statement.

Input Syntax
.SNNOISE [output] [insrc] [parameter_sweep] 
+ [n1+/-1]
+ [listfreq=(frequencies|none|all)] [listcount=val]
+ [listfloor=val] [listsources=on|off]

Parameter Description

output Can be an output node, pair of nodes, or a 2-terminal element. HSPICE advanced analog 
analysis references the equivalent noise output to this node (or pair of nodes). Specify a pair 
of nodes as V(n+,n-). If you specify only one node V(n+), then HSPICE advanced analog 
analysis assumes that the second node is ground. You can also specify a 2-terminal element 
name that refers to an existing element in the netlist. If the 2-terminal element is a voltage 
source, then HSPICE advanced analog analysis outputs the noise current through the voltage 
source in A/sqrt(Hz). For all other 2-terminal devices, HSPICE outputs the noise voltage 
across the device in V/sqrt(Hz).

insrc An input source. If this is a resistor, HSPICE advanced analog analyses uses it as a reference 
noise source to determine the noise figure. If the resistance value is 0, the result is an infinite 
noise figure.

parameter_sweep Frequency sweep range for the input signal. Also referred to as the input frequency band (IFB) 
or fin). You can specify LIN, DEC, OCT, POI, SWEEPBLOCK, DATA, MONTE, or OPTIMIZE 
sweeps. Specify the nsteps, start, and stop frequencies using the following syntax for each 
type of sweep:
■ LIN nsteps start stop
■ DEC nsteps start stop
■ OCT nsteps start stop
■ POI nsteps freq_values
■ SWEEPBLOCK=swblockname
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n1,+/-1 Index term defining the output frequency band (OFB or fout) at which the noise is evaluated. 
Generally,
fout=ABS(n1*f1+/-fin)
Where:

f1 is the fundamental harmonic (tone) determined in the Shooting Newton analysis

n1 is the associated harmonic multiplier

n1,n2,...,nk are the associated harmonic multipliers; n1 can be any non-negative integer 
nharm defined in the .SN statement; +/-1 is fixed, either +1 or -1

fin is the IFB defined by parameter_sweep.

The default index term is [1,-1]. For a single tone analysis, the default mode is consistent with 
simulating a low-side, down conversion mixer where the advanced analog signal is specified 
by the IFB and the noise is measured at a down-converted frequency that the OFB specifies. 
In general, you can use the [n1,+/-1] index term to specify an arbitrary offset. The noise figure 
measurement is also dependent on this index term. See Specifying Variant Indices and 
Measuring SNNOISE Analyses with .MEASURE.

listfreq Prints the element noise value to the .lis file. You can specify at which frequencies the element 
noise value is printed. The frequencies must match the sweep_frequency values defined in the 
parameter_sweep, otherwise they are ignored.

In the element noise output, the elements that contribute the largest noise are printed first. The 
frequency values can be specified with the NONE or ALL keyword, which either prints no 
frequencies or every frequency defined in parameter_sweep. Frequency values must be 
enclosed in parentheses. For example:listfreq=(none)
listfreq=(all)
listfreq=(1.0G)
listfreq=(1.0G, 2.0G)
The default value is NONE.

listcount Prints the element noise value to the .lis file, which is sorted from the largest to smallest value. 
You do not need to print every noise element; instead, you can define listcount to print the 
number of element noise frequencies. For example, listcount=5 means that only the top 5 
noise contributors are printed. The default value is 1.

listfloor Prints the element noise value to the .lis file and defines a minimum meaningful noise value 
(in V/Hz1/2 units). Only those elements with noise values larger than listfloor are printed. 
The default value is 1.0e-14 V/Hz1/2.

listsources Prints the element noise value to the .lis file when the element has multiple noise sources, 
such as a FET, which contains the thermal, shot, and 1/f noise sources. You can specify either 
ON or OFF: ON Prints the contribution from each noise source and OFF does not. The default 
value is OFF.

Parameter Description
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Specifying Variant Indices
.SNNOISE is the appropriate HSPICE advanced analog analysis for the 
computation of noise at the output of a sample and hold circuit. When 
using .SNNOISE, you need to specify the indices as [0,1] instead of the default 
[1,-1]. When you specify the indices as [0,1], you get results that are “what you 
see is what you get” with respect to the frequency sweep specified in 
the .SNNOISE command. There are two more important things to consider 
when using .SNNOISE. You must use enough harmonics to resolve the clock 
edge and you will want a high density of SN time points. It is recommended that 
the number of time points be between 2 and 20 times the number of harmonics 
used. To increase the density of the time points during the .SN analysis, you 
can use the option DELMAX to specify a maximum time step.

For example, you can use the following settings:

.OPTION SNACCURACY=50

.OPTION DELMAX=5p

.SN TONES=5e6 nharms=2000 trinit=800n

.SNNOISE v(vo) vsin [0,1] dec 100 1e6 1e9 

This example uses 100 points per decade for the frequency sweep instead of 
1000 points per decade. This is to speed up the simulation. It does not affect 
the accuracy of the results.

Output Syntax
This section describes the syntax for the SNNOISE .PRINT and .PROBE 
statements. 

.PRINT and .PROBE Statements

.PRINT SNNOISE [ONOISE] [NF] [SSNF] [DSNF] [INOISE]

.PROBE SNNOISE [ONOISE] [NF] [SSNF] [DSNF] [INOISE]

Parameter Description

ONOISE Outputs the voltage noise at the output frequency band (OFB) across the output nodes 
in the .SNNOISE statement. The data is plotted as a function of the input frequency 
band (IFB) points. Units are in V/Hz1/2. Simulation ignores ONOISE when applied to 
autonomous circuits.
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Output Data Files
An SNNOISE analysis produces these output data files:
■ Output from the .PRINT statement is written to a .printsnpn# file.
■ Output from the .PROBE statement is written to a .snpn# file.

Both the *.printsnpn# and *.pn# files output data against the input 
frequency band points.

■ Standard output information is written to a .lis file:

• simulation time

• SNNOISE linear solver method

• SNNOISE simulation time

• total simulation time

See also Using Noise Analysis Results as Input Noise Sources.

Measuring SNNOISE Analyses with .MEASURE

Note: A .MEASURE SNNOISE statement cannot contain an expression 
that uses a SNNOISE variable as an argument. Also, you cannot 
use a .MEASURE SNNOISE statement for error measurement 
and expression evaluation of SNNOISE.

NF
SSNF

NF and SSNF both output a single-side band noise figure as a function of the IFB 
points:

NF = SSNF = 10 Log(SSF)

Single side-band noise factor, SSF = {(Total Noise at output, at OFB, originating from 
all frequencies) - (Load Noise originating from OFB)} / (Input Source Noise originating 
from IFB).

DSNF DSNF outputs a double side-band noise figure as a function of the IFB points.

DSNF = 10 Log(DSF)

Double side-band noise factor, DSF = {(Total Noise at output, at the OFB, originating 
from all frequencies) - (Load Noise originating from the OFB)} / (Input Source Noise 
originating from the IFB and from the image of IFB).

INOISE Outputs input referred noise which can be printed, probed, or measured.

Parameter Description
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The .MEASURE SNNOISE syntax supports four types of measurements:
■ Find-when 

.MEASURE SNNOISE result FIND out_var1 
+ At = Input_Frequency_Band value

The previous measurement yields the result of a variable value at a specific 
IFB point.

.MEASURE SNNOISE result FIND out_var1 
+ WHEN out_var2 = out_var3

The previous measurement yields the result at the input frequency point 
when out_var2 == out_var3.

.MEASURE SNNOISE result WHEN out_var2 = out_var3

The previous measurement yields the input frequency point when out_var2 
== out_var3.

■ Average, RMS, min, max, and peak-to-peak 

.MEASURE SNNOISE result [RMS] out_var [FROM = IFB1] 
+ [TO = IFB2]

■ Integral evaluation 

.MEASURE SNNOISE result INTEGRAL out_var 
+ [FROM = IFB1] [TO = IFB2]

This measurement integrates the out_var value from the IFB1 frequency to 
the IFB2 frequency.

■ Derivative evaluation

.MEASURE SNNOISE result DERIVATIVE out_var AT = IFB1

This measurement finds the derivative of out_var at the IFB1 frequency 
point.

Note: .MEASURE SNNOISE cannot contain an expression that uses 
an hbnoise variable as an argument. You also cannot 
use .MEASURE SNNOISE for error measurement and 
expression evaluation of SNNOISE.

■ Input referred noise:
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.MEASURE SNNOISE result FIND inoise
+ AT = IFB_value

This measurement yields the result of the input referred noise at a specific 
input frequency band point.

.MEASURE SNNOISE result FIND inoise
+ WHEN out_var2 = out_var3

This measurement yields the result at the input frequency point when 
out_var2 == out_var3.

.MEASURE SNNOISE result func inoise [FROM = IFB1]
+ [TO = IFB2]

Where func is one of the following measurement types:

• AVG (average): Calculates the area under the inoise curve, divided by 
the periods of interest.

• MAX (maximum): Reports the maximum value of inoise over the 
specified interval.

• MIN (minimum): Reports the minimum value of inoise over the specified 
interval.

• PP (peak-to-peak): Reports the maximum value, minus the minimum 
value of inoise over the specified interval.

• RMS (root mean squared): Calculates the square root of the area under 
the inoise curve, divided by the period of interest.

.MEASURE SNNOISE result INTEGRAL inoise
+ [FROM =IFB1] [TO = IFB2]

This measurement integrates the inoise value from the IFB1 frequency to 
the IFB2 frequency.

.MEASURE SNNOISE result DERIVATIVE inoise AT = IFB1

This measurement finds the derivative of inoise at the IFB1 frequency point.

SNNOISE Analysis Example
This example performs an SN analysis, then runs an SNNOISE analysis over a 
range of frequencies, from 9.0e8 to 9.2e8 Hz. Simulation outputs the output 
noise at V(out) and the single side-band noise figure versus IFB, from 9.0e8 to 
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9.2e8 Hz, to the *.pn0 file. The netlist for this example is shown immediately 
following.

*
$$*-Ideal mixer + noise source
$ prints total noise PSD at the output (2.47e-20 V^2) when q=0
$ single-sideband noise figure, (3.01 dB) 
$ double-sideband noise figure. (0 dB)
.OPTION PROBE
.OPTION POST=2
vlo lo 0 0.0 cos (0 1.0 1.0g 0 0 0)
Ilo lo 0 0
rsrc rfin rf1 1.0$ Noise source
g1 0 if cur='1.0*v(lo)*v(rfin)' $ mixer element
c1 0 if q='1.0e-9*v(lo)*v(rfin)' $ mixer element
rout if 0 1.0
vrf rf1 0 $ hbac 2.0 0.0 
.option delmax=0.002n
.SN tones=1G   nharms=4 trstab=10n
.SNNOISE rout rsrc lin 11 0.90g 0.92g
.probe SNNOISE onoise ssnf dsnf
.print SNNOISE onoise ssnf dsnf
.end

Periodic Time-Dependent Noise Analysis (.PTDNOISE)

While HBNOISE and SNNOISE calculate a time-averaged power spectral 
density, there are applications where a characterization of the time-
dependence of the noise is required. These applications include computation of 
jitter associated with a noisy signal crossing a threshold and computation of the 
noise associated with discretization of an analog signal, which computes the 
noise in a periodically driven circuit at a point in time. Periodic Time-Dependent 
noise analysis (PTDNOISE) calculates the noise spectrum and the total noise 
at a point in time. Jitter in a digital threshold circuit can then be determined from 
the total noise and the digital signal slew rate.

Circuits driven by large periodic signals produce cyclostationary noise, that is, 
the noise characteristics are periodic in time. Cyclostationary noise can be 
characterized in several ways, with the particular application determining which 
is appropriate.[9] The time-average power spectral density (PSD) ignores 
frequency correlations in the noise, but is adequate when the fundamental 
frequency of the cyclostationary noise is much larger than the bandwidth of 
interest. The time-average PSD is calculated in the HBNOISE/SNNOISE 
166 HSPICE® User Guide: Advanced Analog Simulation and Analysis
K-2015.06



Chapter 5: Large Signal Periodic AC, Transfer Function, and Noise Analyses
Periodic Time-Dependent Noise Analysis (.PTDNOISE)
analyses. [10] 

The harmonic power spectral density (HPSD) or equivalently, the auto-
correlation function, R(t1,t2), contains the correlation information between 
noise sidebands that is necessary to build behavioral cyclostationary noise 
sources and to separate the amplitude modulation (AM) and phase modulation 
(PM) noise components. (See Amplitude Modulation/Phase Modulation 
Separation for more information. 

The time-dependent power spectral density (TDPSD) can be integrated over 
frequency to yield the time-dependent noise (TDN). TDN can then be used to 
determine jitter associated with a noisy signal crossing a threshold. PTDNOISE 
analysis allows the calculation of TDPSD, TDN, and jitter. In addition, you can 
calculate both the time-domain power spectral density (TDSN) and the 
integrated noise (time-dependent noise, TDN) at multiple time points.

By measuring the jitter associated with a noisy signal crossing a threshold, jitter 
is modeled by displacing the time in a noise free signal v(t) with a stochastic 
process j(t).

Equation 35

We can also determine the voltage at this node including the time-dependent 
noise n(t):

Equation 36

by equating these two representations, expanding in a Taylor series, and 
dropping higher order terms, as follows:

Equation 37

Equation 38

In terms of variances, jitter is then defined as:

Equation 39

Vjitter t  v t j t + =

Vn t  v t  n t +=

V t  n t + v t j t +  v t  dv t  dt j t + += =

N t  dv t  dt j t =

Var j t   n
2

t  dv t  dt 2=
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The following sections discuss these topics:
■ PTDNOISE Input Syntax
■ PTDNOISE Output Syntax and File Format
■ Error Handling and Warnings
■ Usage Example

PTDNOISE Input Syntax
.PTDNOISE output TIME=[val|meas|sweep]
+ [TDELTA=time_delta]
+ frequency_sweep
+ [listfreq=(frequencies|none|all)] 
+ [listcount=val] [listfloor=val]
+ [listsources=on|off]

Parameter Description

output Is an output node, pair of nodes, or 2-terminal elements. HSPICE advanced analog analyses 
references the equivalent noise output to this node (or pair of nodes). Specify a pair of nodes 
as V(n+,n-); only one node as V(n+, n-). If you specify only one node, V(n+), then HSPICE 
advanced analog analyses assumes the second node is ground. You can also specify a 2-
terminal element name that refers to an existing element in the netlist.

TIME Time point at which time domain noise is evaluated. Specify either a time point explicitly, such 
as: TIME=value, where value is either numerical or a parameter name or a .MEASURE name 
associated with a time domain .MEASURE command located in the netlist. PTDNOISE uses 
the time point generated from the .MEASURE command to evaluate the noise characteristics. 
This is useful if you want to evaluate noise or jitter when a signal reaches some threshold value.

TDELTA A time value used to determine the slew rate of the time-domain output signal. Specified as 
TDELTA=value. The signal slew rate is then determined by the output signal at TIME +/- 
TDELTA and dividing this difference by 2 x TDELTA. This slew rate is then used in the calculation 
of the strobed jitter. If this term is omitted a default value of 0.01 x the .SN period is assumed.

frequency_sweep Frequency sweep range for the output noise spectrum. The upper and lower limits also specify 
the integral range in calculating the integrated noise value. Specify LIN,DEC, OCT, POI, 
SWEEPBLOCK, DATA sweeps. Specify the nsteps, start, and stop frequencies using the 
following syntax for each type of sweep:
■ LIN nsteps start stop
■ DECnsteps start stop
■ OCT nsteps start stop
■ POI nsteps freq_values
■ SWEEPBLOCK=swblockname
■ DATA dataname
168 HSPICE® User Guide: Advanced Analog Simulation and Analysis
K-2015.06



Chapter 5: Large Signal Periodic AC, Transfer Function, and Noise Analyses
Periodic Time-Dependent Noise Analysis (.PTDNOISE)
PTDNOISE Output Syntax and File Format
PTDNOISE output syntax allows for the output of a single parameter: onoise, 
where, onoise is the noise voltage spectral density at each frequency point 
specified by the frequency_sweep keyword for the time points specified by the 

TIME keyword. The units are .

.PROBE PTDNOISE onoise

listfreq Prints the element noise value to the .lis file. This information is only printed if a noise 
spectrum is requested in a PRINT or PROBE statement. (See PTDNOISE Output Syntax and 
File Format.) You can specify which frequencies the element noise is printed. The frequencies 
must match the sweep_frequency values defined in the frequency_sweep, otherwise they are 
ignored.

In the element noise output, the elements that contribute the largest noise are printed first. The 
frequency values can be specified with the NONE or ALL keyword, which either prints no 
frequencies or every frequency defined in frequency_sweep. Frequency values must be 
enclosed in parentheses. For example:
■ listfreq=(none)
■ listfreq=(all)
■ listfreq=(1.0)
■ listfreq=(1.0G, 2.0G)
The default value is NONE.

listcount Prints the element noise value to the .lis file, which is sorted from the largest to smallest 
value. You do not need to print every noise element; instead, you can define listcount to print 
the number of element noise frequencies. For example, listcount=5 means that only the top 
5 noise contributors are printed. The default value is 1.

listfloor Prints the element noise value to the .lis file and defines a minimum meaningful noise value 
(in V/Hz1/2 units). Only those elements with noise values larger than listfloor are printed. 
The default value is 1.0e-14 V/Hz1/2.

listsources Prints the element noise value to the .lis file when the element has multiple noise sources, 
such as a MOSFET, which contains the thermal, shot, and 1/f noise sources. You can specify 
either ON or OFF: ON prints the contribution from each noise source and OFF does not. The 
default value is OFF.

Parameter Description

V

Hz
-----------
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.PRINT PTDNOISE onoise

Output File Format
The following PTDNOISE output files are generated depending on the user 
input:

.MEASURE Syntax and File Format
The syntax for .MEASURE PTDNOISE is: 

.MEASURE PTDNOISE result [integnoise|jitter|slewrate]

Parameter Units Description

onoise Noise voltage spectral density at each frequency point specified by 
frequency_sweep at the time point specified by time_value 

File Description

*.printptn# Writes output from the .PRINT statement when using HB to obtain the steady state 
solution 

*.ptn# Writes output from the .PROBE statement when using HB to obtain the steady state 
solution

*.printsnptn# Reports output from the .PRINT statement when using SN to obtain the steady state 
solution.

*.snptn# Writes output from the .PROBE statement when using SN to obtain the steady state 
solution.

*.lis Standard output file *.lis contains the following information:
■ Performance Statistics Log
■ Number of Nodes
■ Number of FFT Points
■ Number of Equations
■ Memory in use
■ Maximum Krylov iterations
■ Maximum Krylov Dimension
■ Target GMRES Residual
■ Gmres Residual
■ Actual Krylov Iterations taken 
■ Frequency (swept input frequency values)

Noise source contributions are listed sequentially and are controlled by the 
PTDNOISE command line parameters: listtime, listfreq, listcount, listfloor, and 
listsources.

V

Hz
-----------
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.MEASURE PTDNOISE allows for the measurement of these parameters: 
integnoise, time-point, tdelta-value, slewrate, and strobed jitter.

Note: .MEASURE PTDNOISE is ignored when a TIME=sweep is 
specified in the netlist and a warning message is issued.

Measure File Format

Error Handling and Warnings
Error messages are generated under the following circumstances:
■ PTDNOISE frequency sweep includes negative frequencies. PTDNOISE 

allows only frequencies that are greater than or equal to zero.
■ PTDNOISE time sweep includes negative times. PTDNOISE allows only 

time points that are greater than or equal to zero.
■ No SN statement is specified (error at parser). PTDNOISE requires an SN 

statement to generate the steady-state solution.
■ Incorrect match to .MEASURE statement.

A warning is issued for a PTDNOISE convergence failure. When the gmres 
solver reaches the maximum number of iterations and the residual is greater 
than the specified tolerance, PTDNOISE generates a warning and then 

Parameter Units Description

integnoise V Voltage noise integrated over a frequency range specified by 
frequency_range at the time point specified by TIME=val. 

slewrate v/sec Output signal slewrate at the time point specified by TIME=val.

jitter sec Calculated from the noise voltage (integrated over the frequency range 
specified by frequency_range), divided by the slew rate at the same 
node(s), at the time point specified by TIME=val. 

File Description

*.msnptn# Contains output from the .MEASURE statement when using .SN to obtain the steady 
state solution.
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continue as if the data were valid. The Warning reports the following 
information:
■ Final GMRES Residual
■ Target GMRES Residual
■ Maximum Krylov Iterations
■ Actual Krylov Iterations taken

Usage Example
The following test case illustrates the PTDNOISE analysis for a simple inverter.

* Simple RC + Inverter - rcInvPTDNoise.sp
* rrd Jan 03, 2007
* Simulates PSD(t,f) of a simple inverter
* sweep time points 
.param f0 = 5.0e8
.sn tones=f0 nharms=4 trinit=10n
.PTDNOISE v(out1) TIME=lin 3 0 2n TDELTA=.1n dec 5 1e5 1e10
+ listfreq=(1e6,1e8)
+ listcount=1
+ listsources=ON

.MEASURE PTDNOISE strobejit STROBEJITTER onoise FROM = 1e4 TO = 
1e10
$.measure SN t1 trig AT=0 targ v(out1) val=1.5 fall=1

.opt post 

.probe ptdnoise onoise 

.print ptdnoise onoise

.probe sn v(out1)

vd    vdd  0   3.0
.global vdd 
vgate in0  0   COS(1.5 1.4 'f0'  0 0 0)
rin   in0 in1 50
rout  out1  0    .1g

xo1 in1 out1 inv

.subckt inv in out
m1 out in 0 0 n l=350e-9 w=4.5e-6
m2 out in vdd vdd p l=350e-9 w=4.5e-6
.ends
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.MODEL N NMOS
+Level= 49 Tnom=27.0 version =3.1 TLEVC= 1
*
***

.MODEL P PMOS
+Level= 49 Tnom=27.0 version =3.1 TLEVC= 1

.end

Troubleshooting .PTDNOISE Simulation

When performing jitter measurements on a clock buffer using PTDNOISE 
analysis, you may get unusual results. If you define noise frequencies that are 
multiples of your input clock, you get  large values in your jitter measurement. 
When you sweep through frequencies that are multiples of the clock, PTD noise 
up-converts frequency=0 flicker noise. (These contributions can be large, 

since flicker noise typically has a  dependence where .) For this 
reason you should avoid sweeping through multiples of the clock frequency.

Note also, the flicker noise is limited at very small frequencies so you do not 
see infinite noise.

Multitone Harmonic Balance Transfer Function 
Analysis (.HBXF)

The .HBXF command calculates the transfer function from a given source in 
the circuit to a designated output. Frequency conversion is calculated from the 
input frequencies to a single output frequency that is specified with the 
command. The relationship between the .HBXF command and the input/output 
is expressed in the following equation:

Equation 40

where:

freq
n–

n 1

Ym j0  HBXFm n, j0 j  + ,  Xn j  +  
W
=
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■  is the transfer function from input port n to the 

output port m
■ W is the set of all possible harmonics

■  is the input frequency

■  is the offset frequency

■ m is the output node number
■ n is the input node number

■  is the output frequency

■ Y is the output (voltage or current)
■ X is the input (voltage or current)

The following sections discuss these topics:
■ Supported Features
■ Input Syntax
■ Output Syntax
■ Output Data Files
■ Using the .MEASURE Command with .HBXF
■ Example
■ HBXF Test Listing

Supported Features
The .HBXF command supports the following features:
■ All existing HSPICE advanced analog models and elements
■ Sweep parameter analysis
■ Unlimited number of HB sources

Prerequisites and Limitations
The following prerequisites and limitations apply to the .HBXF command:

HBXFm n, j0 j  + , 

 +



0
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■ Only one .HBXF statement is required. If you use multiple .HBXF 
statements, HSPICE advanced analog analyses uses only the last .HBXF 
statement.

■ At least one .HB statement is required, which determines the steady-state 
solution.

■ Parameter sweeps must be placed in .HB statements.

Input Syntax
.HBXF out_var freq_sweep

Output Syntax
This section describes the syntax for the HBXF .PRINT and .PROBE 
statements. 

.PRINT and .PROBE Statements

.PRINT HBXF TYPE (NODES | ELEM)

Parameter Description

out_var Specify i(2_port_elem) or V(n1[,n2])

freq_sweep Frequency sweep range for the input signal (also referred to as the input frequency 
band (IFB or fin)). A sweep of type LIN, DEC, OCT, POI, or SWEEPBLOCK. 
Specify the nsteps, start, and stop frequencies using the following syntax for each 
type of sweep:
■ LIN nsteps start stop
■ DEC nsteps start stop
■ OCT nsteps start stop
■ POI nsteps freq_values
■ SWEEPBLOCK=swblockname
Note: 

Specify the frequency sweep range for the output signal. HSPICE advanced 
analog analyses determines the offset frequency in the input sidebands; for 
example,

f1 = abs(fout - k*f0) s.t. f1<=f0/2

The f0 is the steady-state fundamental tone, and f1 is the input frequency. 
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.PROBE HBXF TYPE (NODES | ELEM)

Output Data Files
An HBXF calculation produces these output data files:
■ Output from the .PRINT statement is written to a .printxf# file.

• The output is in ohms, siemens, or undesignated units, and the header 
in the output file is Z(..). Y(..) or GAIN(..).

■ Output from the .PROBE statement is written to an

.xf# file.
■ Reported performance log statistics are written to a .lis file:

• HBXF CPU time

• HBXF peak memory usage

Using the .MEASURE Command with .HBXF
Since .HBXF requires an .HB analysis, the measure statements for this 
analysis are the same as for .HB analysis.  For example,

.MEASURE HB result FIND out_var AT=val

Example
Based on the HB analysis, the following example computes the trans-
impedance from isrc to v(1).

Parameter Description

TYPE TYPE can be one of the following:
■ TFV = existing source
■ TFI = placeholder value for the current source attached to the given node.
The transfer function is computed on the output variables and input current or 
voltage.

NODES | ELEM NODES or ELEM can be one of the following:
■ Voltage type – a single node name (n1), or a pair of node names, (n1,n2)
■ Current type – an element name (elemname)
■ Power type – a resistor (resistorname) or port (portname) element name.
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.hb tones=1e9 nharms=4

.hbxf  v(1) lin 10 1e8 1.2e8

.print hbxf tfv(isrc)  tfi(n3)

HBXF Test Listing
* Test HBXF: nonlinear order-2 poly equation 
.OPTIONS  PROBE
.OPTIONS POST=2
vlo lo 0 cos(0 1.0 1g 0 0) tranforhb=1
rlo lo 0 50
vrf1 rf1 0 0
rrf1 rf1 0 50
E1 out 0 POLY(2) lo 0 rf1 0  0 1 1 1 10 1
rout out 0 50
.hb tones=1g nharms=5
.hbxf v(out) lin 2 100meg 200meg
.print hb v(out) v(rf1) v(lo)
.print hbxf tfv(vrf1) tfv(vlo)
.end

Shooting Newton Transfer Function Analysis (.SNXF)

The .SNXF command calculates transfer functions from an arbitrary number of 
small signal sources to a designated output in a circuit under periodic steady 
state conditions. Frequency conversion is calculated from multiple input 
frequencies to a single output at a single frequency that is specified on the 
command line.

Prerequisites and Limitations
The following prerequisites and limitations apply to the .SNXF command:
■ Only one .SNXF statement is required. If you use multiple .SNXF 

statements, HSPICE advanced analog analyses uses only the last one.
■ At least one .SN statement is required, which determines the steady-state 

solution.
■ Parameter sweeps must be placed in .SN statements.

The following sections discuss these topics:
■ Input Syntax
■ Output Syntax
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■ Output Data Files
■ Using the .MEASURE Command with .SNXF
■ Example
■ SNXF Test Listing

Input Syntax
.SNXF out_var freq_sweep

Parameter Description

Output Syntax
This section describes the syntax for the SNXF .PRINT and .PROBE 
statements.

.PRINT and .PROBE Statements

.PRINT SNXF TYPE(NODES | ELEM)

.PROBE SNXF TYPE(NODES | ELEM)

Parameter Description

TYPE can be one of the following:

Parameter Description

out_var Specify i(2_port_elem) or V(n1[,n2])

freq_sweep Frequency sweep range for the input signal (also referred to as the input frequency 
band (IFB or fin)). A sweep of type LIN, DEC, OCT, POI, or SWEEPBLOCK. 
Specify the nsteps, start, and stop frequencies using the following syntax for each 
type of sweep:
■ LIN nsteps start stop
■ DEC nsteps start stop
■ OCT nsteps start stop
■ POI nsteps freq_values
■ SWEEPBLOCK=swblockname

Specify the frequency sweep range for the output signal. HSPICE advanced 
analog analyses determines the offset frequency in the input sidebands Fin, where 
Fin = abs(n*F0 +/- Fout). F0 is the steady-state fundamental tone, and Fout is the 
output frequency. SNXF then generates the transfer functions from all of the input 
sidebands (the Fin values) to the output frequency Fout.
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■ TFV = existing source
■ TFI = placeholder value for the current source attached to the given node.

The transfer function is computed on the output variables and input current or 
voltage .NODES | ELEM NODES or ELEM can be one of the following:
■ Voltage type – a single node name (n1), or a pair of node names, (n1,n2)
■ Current type – an element name (elemname)
■ Power type – a resistor (resistorname) or port (portname) element name

Output Data Files
An SNXF calculation produces these output data files:
■ Output from the .PRINT statement is written to a .printsnxf# file. The 

output is in ohms, siemens, or undesignated units, and the header in the 
output file is Z(..). Y(..) or GAIN(..).

■ Output from the .PROBE statement is written to an .snxf# file.

Reported performance log statistics are written to a .lis file:
■ SNXF CPU time
■ SNXF peak memory usage

Using the .MEASURE Command with .SNXF
Since .SNXF requires an .SN analysis, the measure statements for this 
analysis are the same as for .SN analysis.  For example,

.MEASURE SN result FIND out_var AT=val

Example
Based on the SN analysis, the following example computes the 
transimpedance from isrc to v(1).

.SN tones=1e9 nharms=4

.SNXF v(1) lin 10 1e8 1.2e8
print SNXF TFV(isrc) TFI(n3)
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SNXF Test Listing

* Test SNXF: nonlinear order-2 poly equation 
.OPTIONS  PROBE
.OPTIONS POST=2
vlo lo 0 cos(0 1.0 1g 0 0)
rlo lo 0 50
vrf1 rf1 0 0
rrf1 rf1 0 50
E1 out 0 POLY(2) lo 0 rf1 0  0 1 1 1 10 1
rout out 0 50
.opt delmax=.01n
.sn tones=1g nharms=5
.snxf v(out) lin 2 100meg 200meg
.print sn v(out) v(rf1) v(lo)
.print snxf tfv(vrf1) tfv(vlo)
.end
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6S-parameter Analyses

Describes how to do frequency translation and large-signal S-parameter 
extraction, as well as noise parameter calculation.

These topics are covered in the following sections:
■ Frequency Translation S-Parameter (HBLIN) Extraction
■ Large-Signal S-parameter (HBLSP) Analysis

This chapter discusses various techniques supported in HSPICE advanced 
analog analyses for extracting circuit scattering parameters. Since advanced 
analog circuits can operate under large-signal and small-signal conditions, 
there are several types of scattering parameters that are useful to measure.

Linear small-signal scattering parameters represent the advanced analog 
frequency-domain transfer characteristics for a circuit that is operating at its DC 
bias condition, but the stimulus and response signals are sufficiently small that 
they do not influence the operating point. This type of analysis is performed 
using the .LIN analysis. For information on doing small-signal S-parameter 
analysis (.LIN), see Linear Network Parameter Analysis in the HSPICE User 
Guide: Signal Integrity Modeling and Analysis.

In the case of advanced analog mixers and receiver front-ends, some of the 
input and output frequencies of interest involve a frequency translation. This 
translation is intentional and caused by nonlinear mixing in the circuit due to 
devices being driven by large-signal periodic waveforms. This type of scattering 
parameter analysis therefore must begin by solving the large-signal periodic 
response, and then finding the small-signal behavior about this large-signal 
operating point. This capability is provided by the .HBLIN analysis, which has 
setup and analysis control options similar to .LIN, but is capable of extracting 
S-parameters about a large-signal periodic steady-state operating point. 

In the case of circuits such as power amplifiers, the extraction of scattering 
parameters is also important, but the circuit stimulus and response signals may 
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themselves be large-signal periodic waveforms. And, it can be important to 
analyze how these S-parameter vary as a function of input power levels. This 
capability is provided by the .HBLSP Large-Signal S-parameter analysis, which 
uses large-signal stimulus signals for the S-parameter extractions. 

Frequency Translation S-Parameter (HBLIN) Extraction

Frequency translation scattering parameter (S-parameter) extraction is used to 
describe N-port circuits that exhibit frequency translation effects, such as 
mixers. The analysis is similar to the existing LIN analysis, except that the 
circuit is first linearized about a periodically varying operating point instead of a 
simple DC operating point. After the linearization, the S-parameters between 
circuit ports that convert signals from one frequency band to another are 
calculated.

You use the .HBLIN statement to extract frequency translation S-parameters 
and noise figures.

Frequency translation S-parameter describes the capability of a periodically 
linear time varying systems to shift signals in frequency. The S-parameters for 
a frequency translation system are similar to the S-parameters of a linear-time-
varying system, it is defined as: 

Equation 41

The incident waves, , and reflected waves, , are defined by using 

these equations: 

b S a=

Si,j;m,n  
bi,m  

aj,n  
-------------------=

ak j p n   0=

ai n,   bi n,  
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Equation 42

where:

■  is the fundamental frequency (tone).

■ n is a signed integer.
■ i is the port number.

■  is the input wave at the frequency  on the ith port.

■  is the reflected wave at the frequency  on the ith port.

■  is the Fourier coefficient at the frequency  of the 

voltage at port i.

■  is the Fourier coefficient at the frequency  of the current 

at port i.

■  is the reference impedance at port i.

■ V and I definitions are Fourier coefficients rather than phasors.

For a multi-tone analysis, it can be expressed as:

Equation 43

ai n,  
Vi  n0+  Z0iIi  n0+ +

2 Z0i

---------------------------------------------------------------------------=

bi n,  
Vi  n0+  Z0iIi  n0+ –

2 Z0i

---------------------------------------------------------------------------=

0

ai n,    n0+

bi n,    n0+

Vi  n0+   n0+

Ii  n0+   n0+

Z0i

b S a=

Si j, m1...mN n1, n2, ...nN;
 

bi m1, m2, ...mN
 

aj n1, n2, ...nN
 

---------------------------------------=

ak p1, p2, ...pN k j pq nq,   0=
HSPICE® User Guide: Advanced Analog Simulation and Analysis 185
K-2015.06



Chapter 6: S-parameter Analyses
Frequency Translation S-Parameter (HBLIN) Extraction
Equation 44

where:

■  is the ith tone.

The frequency translate S-parameters are calculated by applying different 
 to different ports.

Limitations
The HBLIN analysis has these known limitations:
■ Noise parameters are not calculated for mixed-mode operation.
■ Only the S-parameters corresponding to the set of frequencies specified at 

each port are extracted.
■ Multiple small-signal tones are not supported.
■ The port (P) element impedance cannot be specified as complex.

HB Analysis
An HB analysis is required prior to an HBLIN analysis. To extract the frequency 
translation S-parameters, a sweep of the small-signal tone is necessary. You 
can identify the small-signal tone sweep in the .HBLIN command or in the .HB 
command together with a SS_TONE specification.

For additional information regarding HB analysis, see Harmonic Balance 
Analysis on page 27.

ai n1, n2, ...nN
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+
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---------------------------------------------------------------------------------------------------=
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+
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2 Zoi

------------------------------------------------------------------------------------------------=

j

nj j 1 N= 
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Port Element
You must use a port (P) element as the termination at each port of the system. 
To indicate the frequency band that the S-parameters are extracted from, it is 
necessary to specify a harmonic index for each P-element. 

Port Element Syntax
Without SS_TONE

Pxxx p n n_ref PORT=portnumber
+ [HBLIN = [H1, H2, ... HN, +/-1]] ... 

With SS_TONE

Pxxx p n n_ref [PORT=portnumber]
+ [HBLIN = [H1, H2, ... +/-1 ... HN]] ... 

HBLIN Analysis
You use the .HBLIN statement to extract frequency translation S-parameters 
and noise figures.

Input Syntax
Without SS_TONE

.HBLIN frequency_sweep
+ [NOISECALC = [1|0|yes|no]] [FILENAME=file_name]
+ [DATAFORMAT = [ri|ma|db]]
+ [MIXEDMODE2PORT = [dd|cc|cd|dc|sd|sc|cs|ds]]

With SS_TONE

.HBLIN [NOISECALC = [1|0|yes|no]] [FILENAME=file_name]

Parameter Description

n_ref Reference node used when a mixed-mode port is specified.

PORT The port number. Numbered sequentially beginning with 1 with no shared port 
numbers.

HBLIN Integer vector that specifies the harmonic index corresponding to the tones defined in 
the .HB command. The +/-1 term corresponds to the small-signal tone specified by 
SS_TONE in the .HB command. If there is no SS_TONE in the .HB command, the +/-
1 term must be at the last entry of HBLIN vector.
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+ [DATAFORMAT = [ri|ma|db]]
+ [MIXEDMODE2PORT = [dd|cc|cd|dc|sd|sc|cs|ds]]

Example 1
Single-tone analysis with frequency translation. In this example, the 2-port S-
parameters from RF (1G-del_f) to IF (del_f) are extracted. The LO signal is 
specified by normal voltage source Vlo. The frequency on port 1 is in the RF 
band, 1G-del_f, and the frequency on port 2 is in the IF band, del_f. The IF 
band is swept from 0- to 100-MHz. The results are output to file ex1.s2p.

Parameter Description

frequency_sweep Frequency sweep range for the input signal (also referred to as the input 
frequency band (IFB) or fin). You can specify LIN, DEC, OCT, POI, or 
SWEEPBLOCK. Specify the nsteps, start, and stop frequencies using the 
following syntax for each type of sweep:
■ LIN nsteps start stop
■ DEC nsteps start stop
■ OCT nsteps start stop
■ POI nsteps freq_values
■ SWEEPBLOCK=swblockname
■ DATA=dataname

NOISECALC Enables calculating the noise figure. The default is no (0).

FILENAME Specifies the output file name for the extracted S-parameters or the object 
name after the -o command-line option. The default is the netlist file name.

DATAFORMAT Specifies the format of the output data file.
■ dataformat=RI, real-imaginary. 
■ dataformat=MA, magnitude-phase. This is the default format for 

Touchstone files.
■ dataformat=DB, DB(magnitude)-phase.

MIXEDMODE2PORT Describes the mixed-mode data map of output mixed mode S-parameter 
matrix. The availability and default value for this keyword depends on the first 
two port (P element) configuration as follows:
■ case 1: p1=p2=single-ended (standard-mode P element) 

available: ss 
default: ss 

■ case 2: p1=p2=balanced (mixed-mode P element) 
available: dd, cd, dc, cc 
default: dd 

■ case 3: p1=balanced p2=single-ended 
available: ds, cs 
default: ds 

■ case 4: p1=single p2=balanced 
available: sd, sc 
default: sd
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p1 RFin gnd port=1 HBLIN=(1,-1)
p2 IFout gnd port=2 HBLIN=(0,1)
Vlo LOin gnd DC 0 HB 2.5 0 1 1
.HB tones=1G harms=5
.HBLIN lin 5 0 100meg noisecalc=no filename=ex1
+ dataformat=ma

Example 2
Another single-tone analysis with frequency translation example. In this 
example, the 3-port S-parameters are extracted. Port 3 provides the periodic 
large signal. The frequency on port 1 is del_f, the frequency on port 2 is 
1G*2-del_f, and the frequency on port 3 is 1G*1+del_f. The small-signal 
frequency is swept from 0 to 100MHz. HBNOISE calculation is required. The 
results are output to file ex2.s3p.

p1 1 0 port=1 HBLIN=(0, 1)
p2 2 0 port=2 HBLIN=(2, -1)
p3 3 0 port=3 hb 0.5 0 1 1 HBLIN=(1, 1)
.HB tones=1G harms=5
.HBLIN lin 5 0 100meg noisecalc=yes filename=ex2

Output Syntax
This section describes the syntax for the HBLIN .PRINT and .PROBE 
statements. 

.PRINT and .PROBE Statements

.PRINT HBLIN Smn | Smn(TYPE) | S(m,n) | S(m,n)(TYPE)

.PROBE HBLIN Smn | Smn(TYPE) | S(m, n) | S(m, n)(TYPE)

.PRINT HBLIN SXYmn | SXYmn(TYPE) | SXY(m,n) | SXY(m,n)(TYPE)

.PROBE HBLIN SXYmn | SXYmn(TYPE) | SXY(m, n) | SXY(m, n)(TYPE)

.PRINT HBLIN NF SSNF DSNF

.PROBE HBLIN NF SSNF SSNF
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Output Data Files
An HBLIN analysis produces these output data files:
■ The S-parameters from the .PRINT statement are written to a  .printhl# 

file.
■ The extracted S-parameters from the .PROBE statement are written to a  

.hl# file.

Parameter Description

Smn | Smn(TYPE) |
S(m,n) | S(m,n)(TYPE)
SXYmn | SXYmn(TYPE) |
SXY(m,n) | SXY(m,n)(TYPE)

Complex 2-port parameters. Where:
■ m = 1 or 2
■ n = 1 or 2
■ X and Y are used for mixed-mode S-parameter output. 
■ The values for X and Y can be D (differential), C (common), or 

S (single-end).
TYPE = R, I, M, P, PD, D, DB, or DBM
■ R = real
■ I = imaginary
■ M = magnitude
■ P = PD = phase in degrees
■ D = DB = decibels
■ DBM = decibels per 1.0e-3

NF
SSNF

NF and SSNF both output a single-side band noise figure as a 
function of the IFB points:

NF = SSNF = 10 Log(SSF)

Single side-band noise factor, SSF = {(Total Noise at output, at 
OFB, originating from all frequencies) - (Load Noise originating 
from OFB)} / (Input Source Noise originating from IFB).

DSNF DSNF outputs a double side-band noise figure as a function of the 
IFB points. 

DSNF = 10 Log(DSF) 

Double side-band noise factor, DSF = {(Total Noise at output, at the 
OFB, originating from all frequencies) - (Load Noise originating 
from the OFB)} / (Input Source Noise originating from the IFB and 
from the image of IFB).
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Large-Signal S-parameter (HBLSP) Analysis

Use the .HPSLP command to invoke periodically driven nonlinear circuit 
analyses for power-dependent S-parameters. An HBLSP analysis provides 
three kinds of analyses for periodically-driven nonlinear circuits, such as those 
that employ power amplifiers and filters:
■ Two-port power-dependant (large-signal) S-parameter extraction
■ Two-port small-signal S-parameter extraction
■ Two-port small-signal noise parameter calculation 

Unlike small-signal S-parameters, which are based on linear analysis, power-
dependent S-parameters are based on harmonic balance simulation. Its 
solution accounts for nonlinear effects such as compression and variation in 
power levels.

The definition for power-dependent S-parameters is similar to that for small-
signal parameters. Power-dependent S-parameters are defined as the ratio of 
reflected and incident waves by using this equation: 

b = S * a  ;      S[i, j]=b[i,n]/a[j,n]     when a[k,n](k!=j)=0

The incident waves, a[i, n], and reflected waves, b[i, n], are defined by using 
these equations: 

a[i, n] = (V[i](n*W0) + Zo[i] * I[i](n*W0)) / (2 * sqrt(Zo[i])) 

b[i, n] = (V[i](n*W0) - Zo[i] * I[i](n*W0)) / (2 * sqrt(Zo[i]))

Where:
■ W0 is the fundamental frequency (tone).

■ n is a signed integer.
■ i is the port number.

■ a[i, n] is the input wave at the frequency n*W0 on the ith port.

■ b[i, n] is the reflected wave at the frequency n*W0 on the ith port.

■ V[i](n*W0) is the Fourier coefficient at the frequency n*W0 of the voltage at 
port i.
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■ I[i](n*W0) is the Fourier coefficient at the frequency n*W0 of the current at 
port i.

■ Zo[i] is the reference impedance at port i.

An HBLSP analysis only extracts the S-parameters on the first harmonic (that 
is, n=1).

.HBLSP Syntax

.HBLSP NHARMS=nh [POWERUNIT=dbm|watt]
+ [SSPCALC=1|0|YES|NO] [NOISECALC=1|0|YES|NO]
+ [FILENAME=file_name] [DATAFORMAT=ri|ma|db]
+ FREQSWEEP freq_sweep POWERSWEEP power_sweep

Argument Description

NHARMS Number of harmonics in the HB analysis triggered by the .HBLSP command.

POWERUNIT Power unit. Default is watt.

SSPCALC Extract small-signal S-parameters. Default is 0 (NO).

NOISECALC Perform small-signal 2-port noise analysis. Default is 0 (NO).

FILENAME Output data .p2d filename. Default is the netlist name or the object name after the 
-o command-line option. 

DATAFORMAT Format of the output data file. Default is ma (magnitude, angle).

FREQSWEEP Frequency sweep specification. A sweep of type LIN, DEC, OCT, POI, or 
SWEEPBLOCK. Specify the nsteps, start, and stop times using the following 
syntax for each type of sweep:
■ LIN nsteps start stop
■ DEC nsteps start stop
■ OCT nsteps start stop
■ POI nsteps freq_values
■ SWEEPBLOCK=swblockname

This keyword must appear before the POWERSWEEP keyword.
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Limitations
The HBLSP analysis has these known limitations:
■ Power-dependent S-parameter extraction is a 2-port analysis only. Multiport 

power-dependent S-parameters are not currently supported.
■ The intermodulation data block (IMTDATA) in the .p2d file is not supported.
■ The internal impedance of the P (port) Element can only be a real value. 

Complex impedance values are not supported.

Input Syntax
.HBLSP NHARMS=nh [POWERUNIT=[dbm|watt]]
+ [SSPCALC=[1|0|YES|NO]] [NOISECALC=[1|0|YES|NO]]
+ [FILENAME=file_name] [DATAFORMAT=[ri|ma|db]]
+ FREQSWEEP freq_sweep POWERSWEEP power_sweep 

POWERSWEEP Power sweep specification. A sweep of type LIN, DEC, OCT,POI, or 
SWEEPBLOCK. Specify the nsteps, start, and stop times using the following 
syntax for each type of sweep:
■ LIN nsteps start stop
■ DEC nsteps start stop
■ OCT nsteps start stop
■ POI nsteps power_values
■ SWEEPBLOCK=swblockname

This keyword must follow the FREQSWEEP keyword.

Parameter Description

NHARMS Number of harmonics in the HB analysis triggered by the .HBLSP statement.

POWERUNIT Power unit. Default is watt.

SSPCALC Extract small-signal S-parameters. Default is 0 (NO).

NOISECALC Perform small-signal 2-port noise analysis. Default is 0 (NO).

FILENAME Output data .p2d filename. Default is the netlist name or the object name after the 
-o command-line option. 

Argument Description
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Note: The FREQSWEEP and POWERSWEEP keywords must appear at the 
end of an .HBLSP statement.

Examples
Example 1 does 2-port single-tone, power-dependent S-parameter extraction, 
without frequency translation:
■ Frequency sweep: The fundamental tone is swept from 0 to 1G
■ Power sweep: The power input at port 1 is swept from 6 to 10 Watts. 
■ Five harmonics are required for the HB analysis. Large-signal S-parameters 

are extracted on the first harmonic. 
■ Five harmonics are required in the HBLSP triggered HB analysis.
■ The DC value in p1 statement is used to set DC bias, which is used to 

perform small-signal analyses.
■ Small-signal S-parameters are required extracted. 
■ Small-signal two-port noise analysis is required.
■ The data will be output to the ex1.p2d file. 

DATAFORMAT Format of the output data file. Default is ma (magnitude, angle).

FREQSWEEP Frequency sweep specification. A sweep of type LIN, DEC, OCT, POI, or 
SWEEPBLOCK. Specify the nsteps, start, and stop times using the following 
syntax for each type of sweep:
■ LIN nsteps start stop
■ DEC nsteps start stop
■ OCT nsteps start stop
■ POI nsteps freq_values
■ SWEEPBLOCK=swblockname

This keyword must appear before the POWERSWEEP keyword.

POWERSWEEP Power sweep specification. A sweep of type LIN, DEC, OCT,POI, or 
SWEEPBLOCK. Specify the nsteps, start, and stop frequencies using the 
following syntax for each type of sweep:
■ LIN nsteps start stop
■ DEC nsteps start stop
■ OCT nsteps start stop
■ POI nsteps power_values
■ SWEEPBLOCK=swblockname

This keyword must follow the FREQSWEEP keyword.

Parameter Description
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Example 16 2-Port, Single Tone

p1 1 0 port=1 dc=1v
p2 2 0 port=2 
.hblsp nharms=5 powerunit = watt
+ sspcalc=1 noisecalc=1 filename=ex1
+ freqsweep lin 5 0 1G powersweep lin 5 6 10

Example 2 generates large scale S-parameters as a function of input for a 
differential equalizer.

Example 17 4-Port Network

* hblsp example
.opt post
p1 n1 0 port=1 ac=1
p2 n2 0 port=2
*** put your DUT
R1 n1 n2 10***
.hblsp nharms=5
+ freqsweep lin 4 1k 10k
+ powersweep lin 2 5 10
.end

Output Syntax
This section describes the syntax for the HBLSP .PRINT and .PROBE 
statements. These statements only support S and noise parameter outputs. 
Node voltage, branch current, and all other parameters are not supported in 
HBLSP .PRINT and .PROBE statements.

.PRINT and .PROBE Statements

.PRINT HBLSP Smn | Smn(TYPE) | S(m, n) | S(m, n)(TYPE)
+ ...small signal 2-port noise params...
.PROBE HBLSP Smn | Smn(TYPE) | S(m, n) | S(m, n)(TYPE)
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+ ...small signal 2-port noise params...

Output Data Files
An HBLSP analysis produces these output data files:
■ The large-signal S-parameters from the .PRINT statement are written to 

a .printls# file. 
■ The small-signal S-parameters from the .PRINT statement are written to 

a .printss# file.
■ The large-signal S-parameters from the .PROBE statement are written to 

a .ls# file.
■ The small-signal S-parameters from the .PROBE statement are written to 

a .ss# file.
■ The extracted large- and small-signal S and noise parameters are written to 

a .p2d file. 

The large-signal and small-signal S-parameters from the .PROBE statement 
are viewable in Custom WaveView.

Parameter Description

Smn | Smn(TYPE) |
S(m,n) | S(m,n)(TYPE)

Complex 2-port parameters. Where:
■ m = 1 or 2
■ n = 1 or 2
■ TYPE = R, I, M, P, PD, D, DB, or DBM

R = real
I = imaginary
M = magnitude
P = PD = phase in degrees
D = DB = decibels
DBM = decibels per 1.0e-3

... small signal 2-port noise 
parameters ...

G_AS | NF | RN | YOPT | GAMMA_OPT | NFMIN | 
VN2 | ZCOR | GN | RHON | YCOR | ZOPT | IN2

For a description of these parameters, see Linear Network 
Parameter Analysis in the HSPICE User Guide: Signal Integrity 
Modeling and Analysis.
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Describes how to use envelope simulation.

These topics are covered in the following sections:
■ Envelope Simulation
■ Envelope Analysis Commands
■ Nonautonomous Form
■ Oscillator Analysis Form
■ Fast Fourier Transform Form
■ Output Syntax

Envelope Simulation

Envelope simulation combines features of time- and frequency-domain 
analysis. Harmonic Balance (HB) solves for a static set of phasors for all the 
circuit state variables, as shown in this equation:

Equation 45

In contrast, envelope analysis finds a dynamic, time-dependent set of phasors, 
as this equation shows:

v t  a0 ai itcos bi itsin+ 

i 1=

N

+=
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Equation 46

Thus, in envelope simulation, each signal is described by the evolving 
spectrum. Envelope analysis is generally used on circuits excited by signals 
with significantly different timescales. An HB simulation is performed at each 
point in time of the slower-moving ( ) timescale. In this way, for example, a 2-
tone HB simulation can be converted into a series of related 1-tone simulations 
where the transient analysis proceeds on the ( ) timescale, and 1-tone HB 
simulations are performed with the higher frequency tone as the fundamental 
frequency.

In HSPICE advanced analog analyses, any voltage or current source identified 
as a HB source either in a V or I element statement, or by an .OPTION 
TRANFORHB command, is used for HB simulations at each point in time. All 
other sources are associated with the transient timescale. Also, the input 
waveforms can be represented in the frequency domain as RF carriers 
modulated by an envelope by identifying a VMRF signal source in a V or I 
element statement. The amplitude and phase values of the sampled envelope 
are used as the input signal for HB analysis.

Some typical applications for envelope simulation are amplifier spectral 
regrowth, adjacent channel power ration (ACPR), and oscillator startup and 
shutdown analyses.

Envelope Analysis Commands
This section describes those commands specific to envelope analysis. These 
commands are:
■ Standard envelope simulation (.ENV)
■ Oscillator simulation, both startup and shutdown (.ENVOSC)
■ Envelope Fast Fourier Transform (.ENVFFT)

Nonautonomous Form
.ENV TONES=f1 [f2...fn] NHARMS=h1 [h2...hn]

v t  a0 t̂  ai t̂  itcos bi t̂  itsin+ 

i 1=

N

+=

t̂

t̂

t̂
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+ ENV_STEP=tstep ENV_STOP=tstop

Description
You use the .ENV command to do standard envelope simulation. The 
simulation proceeds just as it does in standard transient simulation, starting at 
time=0 and continuing until time=env_stop. An HB analysis is performed at 
each step in time. You can use Backward-Euler (BE), trapezoidal (TRAP), or 
level-2 Gear (GEAR) integration. 

Recommended option settings are:
■ For BE integration, set .OPTION SIM_ORDER=1. 
■ For TRAP, set .OPTION SIM_ORDER=2 (default) METHOD=TRAP (default). 
■ For GEAR, set .OPTION SIM_ORDER=2 (default) METHOD=GEAR.

Example
.env tones=1e9 nharms=6 env_step=10n env_stop=1u

Oscillator Analysis Form
.ENVOSC TONE=f1 NHARMS=h1 ENV_STEP=tstep ENV_STOP=tstop
+ PROBENODE=n1,n2,vosc <FSPTS=num, min, max>

Parameter Description

TONES Carrier frequencies, in hertz.

NHARMS Number of harmonics.

ENV_STEP Envelope step size, in seconds.

ENV_STOP Envelope stop time, in seconds.

Parameter Description

TONE Carrier frequencies, in hertz.

NHARMS Number of harmonics.

ENV_STEP Envelope step size, in seconds.

ENV_STOP Envelope stop time, in seconds.

PROBENODE Defines the nodes used for oscillator conditions and the initial probe voltage value.
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Description
You use the .ENVOSC command to do envelope simulation for oscillator startup 
or shutdown. 

Oscillator startup or shutdown analysis with this command must be helped 
along by converting a bias source from a DC description to a PWL description 
that either:
■ Starts at a low value that supports oscillation and ramps up to a final value 

(startup simulation)
■ Starts at the DC value and ramps down to zero (shutdown simulation).

In addition to solving for the state variables at each envelope time point, the 
.ENVOSC command also solves for the frequency. This command is intended to 
be applied to high-Q oscillators that take a long time to reach steady-state. For 
these circuits, standard transient analysis is too costly. Low-Q oscillators, such 
as typical ring oscillators, are more efficiently simulated with standard transient 
analysis.

Example
.envosc tone=250Meg nharms=10 env_step=20n env_stop=10u
+ probenode=v5,0,1.25

Fast Fourier Transform Form
.ENVFFT output_var [NP=val] [FORMAT=keyword]
+[<WINDOW=keyword] [ALFA=val]

FSPTS Specifies the frequency search points used in the initial small-signal frequency 
search. Usage depends on oscillator type.

Parameter Description

output_var Any valid output variable.

NP The number of points to use in the FFT analysis. NP must be a power of 2. If not 
a power of 2, then it is automatically adjusted to the closest higher number that is 
a power of 2. The default is 1024.

FORMAT Specifies the output format:

NORM= normalized magnitude
UNORM=unnormalized magnitude (default)

Parameter Description
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Description
You use the .ENVFFT command to perform Fast fourier Transform (FFT) on 
envelope output. This command is similar to the .FFT command. The only 
difference is that transformation is performed on real data with the .FFT 
command, and with the .ENVFFT command, the data being transformed is 
complex. You usually want to do this for a specific harmonic of a voltage, 
current, or power signal. 

Example
.envfft v(out)[1]

Output Syntax
The results from envelope simulation can be made available through the 
.PRINT, .PROBE, and .MEASURE commands. This section describes the basic 
syntax you can use for this purpose.

.PRINT or .PROBE
You can print or probe envelope simulation results by using the following 
commands:

.PRINT ENV ov1 <ov2... >

.PROBE ENV ov1 <ov2... >

Where ov1... are the output variables to print or probe.

WINDOW Specifies the window type to use:

RECT=simple rectangular truncation window (default)
BART=Bartlett (triangular) window
HANN=Hanning window
HAMM=Hamming window
BLACK=Blackman window
HARRIS=Blackman-Harris window
GAUSS=Gaussian window
KAISER=Kaiser-Bessel window

ALFA Controls the highest side-lobe level and bandwidth for GAUSS and KAISER 
windows. The default is 3.0.

Parameter Description
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.MEASURE
In HSPICE advanced analog analyses, the independent variable for envelope 
simulation is the first tone. Otherwise and except for the analysis type, the 
.MEASURE statement syntax is the same as the syntax for HB; for example,

.MEASURE ENV result ...

Envelope Output Data File Format
The results of envelope simulations are written to *.ev# data files by the 
.PROBE statement. The format of an *.ev# data file is equivalent to an *.hb# 
data file with the addition of one fundamental parameter sweep that represents 

the slowly-varying time-envelope variation  of the Fourier coefficients and 
frequencies. You can recognize this swept parameter” in the *.ev# file by the 
keyword env_time. 

Each row in the tabulated data of an *.ev# file includes values for identifying 
frequency information, the complex data for the output variables, and 
information on the envelope time sweep. For example, the header for a data file 
dump for output variables v(in) and v(out) that follow a 2-tone envelope 
analysis, have entries for: 

hertz  v(in)  v(out)  n0  f0  n1  f1  sweep  env_time  $&%#

Which result in data blocks with floating point values following:

t̂

202 HSPICE® User Guide: Advanced Analog Simulation and Analysis
K-2015.06



Chapter 7: Envelope Analysis
Envelope Simulation
env_time[0]  
f[0]  a[0]{v(in)}  b[0] {v(in)}  a[0] {v(out)}  b[0] {v(out)}  n0  
f0  n1  f1  
f[1]  a[1]{v(in)}  b[1] {v(in)}  a[1] {v(out)}  b[1] {v(out)}  n0  
f0  n1  f1  
...
f[N]  a[N]{v(in)}  b[N] {v(in)}  a[N] {v(out)}  b[N] {v(out)}  n0  
f0  n1  f1  

env_time[1]  
f[0]  a[0]{v(in)}  b[0] {v(in)}  a[0] {v(out)}  b[0] {v(out)}  n0  
f0  n1  f1  
f[1]  a[1]{v(in)}  b[1] {v(in)}  a[1] {v(out)}  b[1] {v(out)}  n0  
f0  n1  f1  
...
f[N]  a[N]{v(in)}  b[N] {v(in)}  a[N] {v(out)}  b[N] {v(out)}  n0  
f0  n1  f1  

...

env_time[M-1]  
f[0]  a[0]{v(in)}  b[0] {v(in)}  a[0] {v(out)}  b[0] {v(out)}  n0  
f0  n1  f1  
f[1]  a[1]{v(in)}  b[1] {v(in)}  a[1] {v(out)}  b[1] {v(out)}  n0  
f0  n1  f1  
...
f[N]  a[N]{v(in)}  b[N] {v(in)}  a[N] {v(out)}  b[N] {v(out)}  n0  
f0  n1  f1  

Where there are M data blocks corresponding to M envelope time points, with 
each block containing N+1 rows for the frequency data. The units for the 
env_time sweep are seconds. 
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8Post-Layout Analysis

Describes the post-layout analysis flow, including post-layout back-annotation, 
DSPF and SPEF files, linear acceleration, check statements, and power 
analysis.

These topics are covered in the following sections:
■ Post-Layout Back-Annotation
■ Linear Acceleration Control Options Summary

Post-Layout Back-Annotation

A traditional, straightforward, “brute-force” flow runs an RC extraction tool that 
produces a detailed standard parasitic format (DSPF) file. DSPF is the 
standard format for transferring RC parasitic information. This traditional flow 
then feeds this DSPF file into the circuit simulation tool for post-layout 
simulation. 

A key problem is that the DSPF file is flat. Accurately simulating a complete 
design, such as an SRAM or an on-chip cache, is a waste of workstation 
memory, disc space usage, and simulation runtime. Because this DSPF file is 
flat, control and analysis are limited.
■ How do you set different options for different blocks for better trade-off 

between speed and accuracy? 
■ How do you perform a power analysis on a flat netlist to check the power 

consumption? 
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■ This traditional flow flattens all nodes after extraction so it is more difficult to 
compare the delay before and after extraction. 

■ This traditional flow can also stress the limits of an extraction tool so 
reliability also becomes an issue.

HSPICE advanced analog analyses provides a flow that solves all of these 
problems. 
■ Star-RCXT generates a hierarchical Layout Versus Schematic (LVS) ideal 

netlist, and flat information about RC parasitics in a DSPF or (standard 
parasitic exchange format (SPEF) file. 

■ HSPICE advanced analog analyses uses the hybrid flat-hierarchical 
approach to back-annotate the RC parasitics, from the DSPF or SPEF file, 
into the hierarchical LVS ideal netlist. 

Using the hierarchical LVS ideal netlist cuts simulation runtime and CPU 
memory usage. Because HSPICE advanced analog analyses uses the 
hierarchical LVS ideal netlist as the top-level netlist, you can fully control the 
netlist. For example:
■ You can set different modes to different blocks for better accuracy and speed 

trade-off. 
■ You can run power analysis, based on the hierarchical LVS ideal netlist, to 

determine the power consumption of each block. If you use the hierarchical 
LVS ideal netlist, you can reuse all post-processing statements from the pre-
layout simulation for the post-layout simulation. This saves time, and the 
capacity of the verification tool is not stressed so reliability is higher.

HSPICE advanced analog analyses supports only the XREF:COMPLETE flow 
and the XREF:NO flow from Star-RCXT. Refer to the Star-RCXT User Guide for 
more information about the XREF flow.

To generate a hierarchical LVS ideal netlist with Star-RCXT, include the 
following options in the Star-RCXT command file.

*** for XREF:NO flow ***
NETLIST_IDEAL_SPICE_FILE: ideal_spice_netlist.sp
NETLIST_IDEAL_SPICE_TYPE: layout
NETLIST_IDEAL_SPICE_HIER:YES

*** for XREF:COMPLETE flow ***
NETLIST_IDEAL_SPICE_FILE: ideal_spice_netlist.sp
NETLIST_IDEAL_SPICE_TYPE: schematic
NETLIST_IDEAL_SPICE_HIER:YES
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Note: Before version 2002.2, Star-RCXT used 
NETLIST_IDEAL_SPICE_SKIP_CELLS to generate the 
hierarchical ideal SPICE netlist. HSPICE advanced analog 
analyses can still simulate post-layout designs using the 
brute-force flow, but the post-layout flow is preferable in HSPICE 
advanced analog analyses.

HSPICE advanced analog analyses supports the following post-layout flows to 
address post-layout simulation scenarios. 
■ Standard Post-Layout Flow
■ Selective Post-Layout Flow
■ Additional Post-Layout Options

Standard Post-Layout Flow
Use this flow mainly for analog or mixed signal design, and high-coverage 
verification runs when you need to back-annotate RC parasitics into the 
hierarchical LVS ideal netlist. In this flow, HSPICE advanced analog analyses 
expands all nets from the DSPF or SPEF file. To expand only selected nets, 
use see Selective Post-Layout Flow.
HSPICE® User Guide: Advanced Analog Simulation and Analysis 207
K-2015.06



Chapter 8: Post-Layout Analysis
Post-Layout Back-Annotation
Figure 29 Standard Post-Layout Flow

Standard Post-Layout Flow Control Options
The standard post-layout flow options are SIM_DSPF and SIM_SPEF. Include 
one of these options in your netlist. For example,

.OPTION SIM_DSPF=“[scope] dspf_filename”

.OPTION SIM_SPEF=“spec_filename”

In the SIM_DSPF syntax, scope can be a subcircuit definition or an instance. If 
you do not specify scope, it defaults to the top-level definition. HSPICE 
advanced analog analyses requires both a DSPF file and an ideal netlist. Only 
flat DSPF files are supported; hierarchy statements, such as .SUBCKT and .x1, 
are ignored.

Very large circuits generate very large DSPF files; this is when using either the 
SIM_DSPF or the SIM_DSPF_ACTIVE option can really improve performance.

.html

Back-annotation

Ideal Netlist
DSPF

Extraction Tool

SPEF
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You can specify a DSPF file in the SIM_SPEF option, or a SPEF file in the 
SIM_DSPF option. The scope function is not supported in the SPEF format.

For descriptions and usage examples, see .OPTION SIM_DSPF and .OPTION 
SIM_SPEF in the HSPICE Reference Manual: Commands and Control 
Options.

Example
$  models
.MODEL p pmos
.MODEL n nmos
.INCLUDE add4.dspf
.OPTION SIM_DSPF=“add4.dspf”
.VEC “dspf_adder.vec”
.TRAN 1n 5u
vdd vdd 0 3.3
.OPTION POST
.END

SIM_DSPF With SIM_LA Option
The SIM_DSPF option accelerates the simulation by more than 100%. By using 
the SIM_LA option at the same time, you can further reduce the total CPU time:

$  models
.MODEL p pmos
.MODEL n nmos
.INCLUDE add4.dspf
.OPTION SIM_DSPF="add4.dspf" 
.OPTION SIM_LA=PACT
.VEC "dspf_adder.vec"
.TRAN 1n 5u
vdd vdd 0 3.3
.OPTION POST
.END 

To expand only active nodes, such as those that move, include the 
SIM_DSPF_ACTIVE option in your netlist. For example:

.OPTION SIM_DSPF_ACTIVE=“active_net_filename”

This option is most effective when used with a large design—for example, over 
5K transistors. Smaller designs lose some of the performance gain, due to 
internal overhead processing. 

For syntax and description of SIM_DSPF_ACTIVE option, see .OPTION 
SIM_DSPF_ACTIVE in the HSPICE Reference Manual: Commands and 
Control Options.
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When you have included the appropriate control option, run HSPICE advanced 
analog analyses, using the ideal netlist. 

The structure of a DSPF file is: 

*|DSPF 1.0
*|DESIGN “demo”
*|Date “October 6, 1998”
...
.SUBCKT < name > < pins >
* Net Section
C1 ...
R1 ...
...
* Instance Section
...
.ENDS
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Selective Post-Layout Flow

Figure 30 Selective Post-Layout Flow

You can use the selective post-layout flow to simulate a post-layout design for a 
memory or digital circuit, and for a corner-point verification run. Instead of back-
annotating all RC parasitics into the ideal netlist, the selective post-layout flow 
automatically detects and back-annotates only active parasitics, into the 
hierarchical LVS ideal netlist. For a high-latency design, the selective post-
layout flow is an order of magnitude faster than the standard post-layout flow.
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Note: The selective post-layout flow applies only to advanced analog 
transient analyses and cannot be used with other analyses such 
as DC, AC, or HB.

Selective Post-Layout Flow Control Options
To invoke the selective post-layout flow, include one of the options listed in 
Table 3 in your netlist.

Table 3 Selective Post-Layout Flow Options

Syntax Description

SIM_DSPF_ACTIVE 
-or-
SIM_SPEF_ACTIVE 

HSPICE advanced analog analyses performs a preliminary verification 
run to determine the activity of the nodes and generates two ASCII files: 
active_node.rc and active_node.rcxt. These files save all active node 
information in both Star-RC format and Star-RCXT format. 

By default, a node is considered active if the voltage varies by more than 
0.1V. To change this value, use the SIM_DSPF_VTOL or 
SIM_SPEF_VTOL option.

For descriptions and usage examples, see  OPTION SIM_DSPF_ACTIVE 
and .OPTION SIM_SPEF_ACTIVE in the HSPICE Reference Manual: 
Commands and Control Options.

SIM_DSPF_VTOL
-or-
SIM_SPEF_VTOL

HSPICE advanced analog analyses performs a second simulation run by 
using the active_node file, the DSPF or SPEF file, and the hierarchical LVS 
ideal netlist to back-annotate only active portions of the circuit. If a net is 
latent, then HSPICE advanced analog analyses does not expand the net. 
This saves simulation runtime and memory.
■ value is the tolerance of the voltage change.
■ scopen can be a subcircuit definition (which has an @ prefix), or a 

subcircuit instance.
By default, HSPICE advanced analog analyses performs only one 
iteration of the second simulation run. Use the SIM_DSPF_MAX_ITER or 
SIM_SPEF_MAX_ITER option to change it.

For descriptions and usage examples, see .OPTION SIM_DSPF_VTOL 
and .OPTION SIM_SPEF_VTOL in the HSPICE Reference Manual: 
Commands and Control Options.
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Additional Post-Layout Options
Other post-layout options are listed in Table 4.

SIM_DSPF_MAX_ITER
-or-
SIM_SPEF_MAX_ITER

value is the maximum number of iterations for the second simulation run.

Some of the latent nets might turn active after the first iteration of the 
second run. In this case:
■ Resimulate the netlist to ensure the accuracy of the post-layout 

simulation. 
■ Use SIM_DSPF_MAX_ITER or SIM_SPEF_MAX_ITER to set the 

maximum number of iterations for the second run. If the active_node 
remains the same after the second simulation run, HSPICE advanced 
analog analyses ignores these options.

For descriptions and usage examples, see .OPTION 
SIM_DSPF_MAX_ITER and .OPTION SIM_SPEF_MAX_ITER in the 
HSPICE Reference Manual: Commands and Control Options.

Table 4 Additional Post-Layout Options

Syntax Description

SIM_DSPF_RAIL
-or-
SIM_SPEF_RAIL

By default, HSPICE advanced analog analyses does not back-annotate 
parasitics of the power-net. To back-annotate power-net parasitics, 
include one of these options in the netlist.

Default=OFF. ON expands nets in a power rail as it expands all nets.

SIM_DSPF_SCALER
SIM_SPEF_SCALER
-or-
SIM_DSPF_SCALEC
SIM_SPEF_SCALEC

Scales the resistance or capacitance values.
■ scaleR is the scale factor for resistance
■ scaleC is the scale factor for capacitance.

SIM_DSPF_LUMPCAPS
-or-
SIM_SPEF_LUMPCAPS

If HSPICE advanced analog analyses cannot back-annotate an instance 
in a net because one or more instances are missing in the hierarchical 
LVS ideal netlist, then by default HSPICE advanced analog analyses 
does not evaluate the net. Instead of ignoring all parasitic information for 
this net, HSPICE advanced analog analyses includes these options to 
connect a lumped capacitor with a value equal to the net capacitance to 
this net.

Default = ON adds lumped capacitance; ignores other net contents.

Table 3 Selective Post-Layout Flow Options (Continued)

Syntax Description
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Unsupported SPEF Options
HSPICE advanced analog analyses does not yet support the following IEEE-
481 SPEF options:
■ Hierarchical SPEF definition (multiple SPEF files connected with a 

hierarchical definition): 
■ *DEFINE and *PDEFINE
■ *R_NET and *R_PNET definition

■ *D_PNET definition.

Selective Extraction Flow
Use the selective extraction flow if disk space is limited. Especially use this 
option when simulating a full-chip post-layout design, where block latency is 
high. HSPICE advanced analog analyses feedbacks the active net information 
to Star-RCXT to extract only the active parasitic.

The major advantage of this flow is a smaller DSPF or SPEF file, which saves 
disk space.

SIM_DSPF_INSERROR 
-or-
SIM_SPEF_INSERROR

HSPICE advanced analog analyses supports options to skip the 
unmatched instance, and continue the evaluation of the next instance.

The default is OFF. ON skips unmatched instances and continues the 
evaluation.

SIM_SPEF_PARVALUE This option affects only values in a SPEF file that have triplet format: 
float:float:float, which this option interprets as best:average:worst. 

In such cases:
■ If SIM_SPEF_PARVALUE=1, HSPICE advanced analog analyses 

uses best. 
■ If SIM_SPEF_PARVALUE=2 (default), HSPICE advanced analog 

analyses uses average.
■ If SIM_SPEF_PARVALUE=3, HSPICE advanced analog analyses 

uses worst.

Table 4 Additional Post-Layout Options (Continued)

Syntax Description
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Figure 31 Selective Extraction Flow

Note: HSPICE advanced analog analyses generates an active node 
file in both Star-RC and Star-RCXT format. It then expands the 
active node file to the Star-RCXT command file to extract only 
active parasitics. 

Overview of DSPF Files
In general, an SPF (Standard Parasitic Format) file describes interconnect 
delay and loading, due to parasitic resistance and capacitance. DSPF (Detailed 
Standard Parasitic Format) is a specific type of SPF file that describes the 
actual parasitic resistance and capacitance components of a net. DSPF is a 
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standard output format commonly used in many parasitic extraction tools, 
including Star-RCXT. The HSPICE advanced analog circuit simulator can read 
DSPF files.

DSPF File Structure
The DSPF standard is published by Open Verilog International (OVI). For 
information about how to obtain the complete DSPF specification, or any other 
documents from OVI, see:

http://www.ovi.org/document.html

The OVI DSPF specification requires the following file structure in a DSPF file. 
Parameters in {braces} are optional:

DSPF_file : :=

*|DSPF{version}
{*|DESIGN design_name}
{*|DATE date}
{*|VENDOR vendor}
{*|PROGRAM program_name}
{*|VERSION program_version}
{*|DIVIDER divider}
{*|DELIMITER delimiter}

.SUBCKT
*|GROUND_NET

{path divider} net_name
*|NET {path divider} net_name ||

{path divider} instance_name ||
pin_name

net_capacitance

*|P (pin_name pin_type 
pinCap 

{resistance {unit} {O}
capacitance {unit} {F}}

{x_coordinate y_coordinate})

||

*|I {path divider} instance_name 
delimiter pin_name

{path divider} instance_name
pin_name pin_type
pinCap 

{resistance {unit} {O}
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capacitance {unit}{F}}
{x_coordinate y_coordinate}

*|S ({path divider} net_name ||
{path divider} instance_name

delimiter pin_name ||
pin_name
instance_number
{x_coordinate y_coordinate})

capacitor_statements
resistor_statements

subcircuit_call_statements
.ENDS

{.END}

Table 5 DSPF Parameters

Parameter Definition

*|DSPF Specifies that the file is in DSPF format.

{version} Version number of the DSPF specification (optional).

*| Words that start with *| are keywords.

|| Or (use the option either preceding or following ||). For example, *|P || *I 
means you can use either the *|P option or the *|I option.

design_name Name of your circuit design (optional).

date Date and time when a parasitic extraction tool (such as Star-RCXT) 
generated the DSPF file (optional).

vendor Name of the vendor (such as Synopsys) whose tools you used to generate 
the DSPF file (optional).

program_name Name of the program (such as Star-RCXT) that generated the DSPF file 
(optional).

program_version Version number of the program that generated the DSPF file (optional).

divider Character that divides levels of hierarchy in a circuit path (optional). If you 
do not define this parameter, the default hierarchy divider is a slash (/). For 
example, X1/X2 indicates that X2 is a subcircuit of the X1 circuit.

delimiter Character used to separate the name of an instance and a pin in a 
concatenated instance pin name, or a net name and a sub-node number 
in a concatenated sub-node name. If you do not define this parameter, the 
default delimiter is a colon (:).
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path Hierarchical path to a net, instance, or pin, within a circuit.

net_name Name of a net in a circuit or subcircuit.

instance_name Name of an instance of a subcircuit.

pin_name Name of a pin on an instance of a subcircuit.

pinCap Capacitance of a pin.

pin_type ■ I (input)
■ O (output)
■ B (bidirectional)
■ X (don’t care)
■ S (switch)
■ J (jumper)

resistance Resistance on a pin in ohms for input (I), output (O), or bidirectional (B) 
pins. You can use resistance-capacitance (RC) pairs to model pin 
characteristics by using a higher-order equivalent RC ladder circuit than a 
single capacitor model. For example: C0 {R1 C1 R2 C2...}. Attaching RC 
pairs increases the order of the equivalent circuit from the first (C0) order. 
For X, S, and J pin types, simulation ignores this generalized capacitance 
value, but you should insert a 0 value as a place-holder for format integrity.

The resistance value can be a real number or an exponent (optionally 
followed by a real number). You can enter an O (ohms) after the value.

capacitance Capacitance on a pin in farads for input (I), output (O), or bidirectional (B) 
pins. Use as part of a resistance-capacitance (RC) pair. Optionally enter 
an F (farads) after the value.

unit ■ K (kilo)
■ M (milli)
■ U (micro)
■ N (nano)
■ P (pico)
■ F (femto)

x_coordinate Location of a pin relative to the x (horizontal) axis.

y_coordinate Location of a pin relative to the y (vertical) axis.

capacitor_ statements SPICE-type statements that define capacitors in the subcircuit.

resistor_ statements SPICE-type statements that define resistors in the subcircuit.

Table 5 DSPF Parameters (Continued)

Parameter Definition
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DSPF File Example
*|DSPF 1.0
*|DESIGN "my_circuit"
*|DATE June 15, 2002 14:12:43
*|VENDOR "Synopsys"
*|PROGRAM "Star-RC"
*|VERSION "Star-RCXT 2002.2"
*|DIVIDER /
*|DELIMITER :
.SUBCKT BUFFER OUT IN
* Description of Nets
*GROUND_NET VSS
*|NET IN 1.221451PF
*|P(IN 1 0.0 0 10)
*|I(DF1:A DF1 A I 0.0PF 10.0 10.0)
*|I(DF1:B DF1 B I 0.0PF 10 0 20.0)
*|S(IN:1 5.0 10.0)(IN:2 5.0 20.0)

C1 IN VSS 0.117763PF
C2 IN:1 VSS 0.276325PF
C3 IN:2 VSS 0.286325PF
C4 DF1:A VSS 0.270519PF
C5 DF1:B VSS 0.270519PF
R20 IN N:1 1.70333E00
R21 IN:1 DF1:A 1.29167E-01
R22 IN:1 IN:2 1.29167E-01
R23 IN:2 DF1:B 1.70333E-01

*|NET BF 0.287069PF
*|I(DF1:C DF1 C O 0.0PF 12.0 15.0)
*|I(INV1:IN INV1 IN I 0.0PF 30.0 15.0)

C6 DF1:C VSS 0.208719PF
C7 INV1:IN VSS 0.783500PF
R24 DF1:C INV1:IN 1.80833E-01

*|NET OUT 0.148478PF
*|S(OUT:1 45.0 15.0)
*|P(OUT O 0.0PF 50.0 5.0)
*|I(INV1:OUT INV1 OUT O 0.0PF 40.0 15.0)

C8 INV1:OUT VSS 0.147069PF
C9 OUT:1 VSS 0.632813PF

subcircuit_call_
statements

Statements that call the subcircuit from higher-level circuits.

.END Marks the end of the file (optional).

Table 5 DSPF Parameters (Continued)

Parameter Definition
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C10 OUT VSS 0.776250PF
R25 INV1:OUT OUT:1 3.11000E00
R26 OUT:1 OUT 3.03333E00

* Description of Instances
XDF1 DF1:A DF1:B DF1:C DFF
XINV1 INV1:IN INV1:OUT INV
.ENDS
.END

Overview of SPEF Files
The Standard Parasitics Exchange Format (SPEF) file structure is described in 
IEEE standard IEEE-1481. For information about how to obtain the complete 
SPEC (IEEE-1481) specification, or any other documents from IEEE, see:

http://www.ieee.org/products/onlinepubs/stand/standards.html

SPEF File Structure
The IEEE-1481 specification requires the following file structure in a SPEF file. 
Parameters in [brackets] are optional:
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SPEF_file : :=

*SPEF version
*DESIGN design_name
*DATE date
*VENDOR vendor
*PROGRAM program_name
*VERSION program_version
*DESIGN_FLOW flow_type {flow_type}
*DIVIDER divider
*DELIMITER delimiter
*BUS_DELIMITER bus_prefix bus_suffix
*T_UNIT time_unit NS|PS
*C_UNIT capacitance_unit FF|PF
*R_UNIT resistance_unit OHM|KOHM
*L_UNIT inductance_unit HENRY|MH|UH

[*NAME_MAP name_index name_id|bit|path|name|physical_ref]
[*POWER_NETS logical_power_net physical_power_net ...]
[*GROUND_NETS ground_net ...]
[*PORTS logical_port I|B|O 

*C coordinate ...
*L par_value
*S rising_slew falling_slew [low_threshold high_threshold]
*D cell_type]

[*PHYSICAL_PORTS [physical_instance delimiter] 
physical_port I|B|O
*C coordinate ...
*L par_value
*S rising_slew falling_slew [low_threshold high_threshold]
*D cell_type]

[*DEFINE logical_instance design_name |
*PDEFINE physical_instance design_name]

*D_NET net_path total_capacitance 
[*V routing_confidence]
[*CONN 

*P [logical_instance delimiter] logical_port|physical_port
I|B|O 
*C coordinate ...
*L par_value
*S rising_slew falling_slew 

[low_threshold high_threshold]
*D cell_type

|
*I [physical_instance delimiter] logical_pin|physical_node

I|B|O 
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*C coordinate ...
*L par_value
*S rising_slew falling_slew 

[low_threshold high_threshold]
*D cell_type

*N net_name delimiter net_number coordinate
[*CAP cap_id node1 [node2] capacitance]
[*RES res_id node1 node2 resistance]
[*INDUC induc_id node1 node2 inductance]

*END

Table 6 SPEF Parameters

Parameter Definition

*SPEF Specifies that the file is in SPEF format.

{version} Version number of the SPEF specification, such as “IEEE 1481-1998”.

* Words that start with an asterisk (*) are keywords.

| Or. For example, NS|PS means choose either nanoseconds or picoseconds as the 
time units.

design_name Name of your circuit design.

date Date and time when a parasitic extraction tool (such as Star-RCXT) generated the 
SPEF file.

vendor Name of the vendor (such as Synopsys) whose tools you used to generate the 
SPEF file (optional).

program_name Name of the program (such as Star-RCXT) that generated the SPEF file.

program_version Version number of the program that generated the SPEF file.
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flow_type One or more of the following flow types:
■ EXTERNAL_LOADS: The SPEF file defines all external loads (if any). If you do 

not specify this flow type, then some or all external loads are not defined in this 
SPEF file. If HSPICE advanced analog analyses cannot find external load data 
outside the SPEF file, it reports an error.

■ EXTERNAL_SLEWS: The SPEF file defines all external slews (if any). If you 
do not specify this flow type, then some or all external slews are not defined in 
this SPEF file. If HSPICE advanced analog analyses cannot find external slew 
data outside the SPEF file, it reports an error.

■ FULL_CONNECTIVITY: A SPEF file defines all net connectivity. If you do not 
specify this flow type, then some or all net connectivity is not defined in this 
SPEF file. If HSPICE advanced analog analyses cannot find connectivity data 
outside the SPEF file, it issues an error. This flow does not look for presence or 
absence of power and ground nets, or any other nets that do not correspond to 
the logical netlist. If a SPEC file includes FULL_CONNECTIVITY and 
MISSING_NETS, HSPICE advanced analog analyses reports an error.

■ MISSING_NETS: If any logical nets are not defined in the netlist, HSPICE 
advanced analog analyses merges missing parasitic data from another source. 
If it does not find another source, HSPICE advanced analog analyses rereads 
the netlist and estimates the missing parasitics. This flow does not look for 
presence or absence of power and ground nets, or any other nets that do not 
correspond to the logical netlist. If you use FULL_CONNECTIVITY and 
MISSING_NETS in the same SPEF file, HSPICE advanced analog analyses 
reports an error.

■ NETLIST_TYPE_VERILOG, NETLIST_TYPE_VHDL87, 
NETLIST_TYPE_VHDL93, or NETLIST_TYPE_EDIF: Specifies the type of 
naming conventions used in the SPEF file. If you specify more than one format 
in one SPEF file, HSPICE advanced analog analyses reports an error.

■ ROUTING_CONFIDENCE positive_integer: Specifies a default routing 
confidence value for all nets in the SPEF file.

■ ROUTING_CONFIDENCE_ENTRY positive_integer character_string: 
Specifies one or more characters that represent additional routing confidence 
values, which you can assign to nets in the SPEF file.

flow_type
(continued)

■ NAME_SCOPE LOCAL|FLAT: Specifies whether paths in the SPEF file are 
LOCAL (relative to the current SPEF file) or FLAT (relative to the top level of 
your circuit design).

■ SLEW_THRESHOLDS low high: Specifies low and high default input slew 
thresholds for your circuit design as a percentage of the voltage level for the 
input pin.

■ PIN_CAP NONE|INPUT_OUTPUT|INPUT_ONLY: Specifies the type of pin 
capacitance to include when calculating the total capacitance for all nets in the 
SPEF file, either no capacitance, all input and output capacitances, or only 
input capacitances.

divider Character used to divide levels of hierarchy in a circuit path name. Must be one of 
the following characters: . / : |

For example, X1/X2 means that X2 is a subcircuit of the X1 circuit.

Table 6 SPEF Parameters (Continued)

Parameter Definition
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delimiter Character used to separate the name of an instance and a pin in a concatenated 
instance pin name. Must be one of these characters: . / : |

bus_prefix
bus_suffix

Delimiter characters that precede and follow a bus bit or an arrayed instance 
number. If these characters are not matching pairs, HSPICE advanced analog 
analyses reports an error. Valid bus delimiter prefix and suffix character pairs are 
brackets “[ ]”, braces “{ }”, parentheses “(  )”, or angle brackets “< >”>

time_unit A positive number. For example, 10 PS means use time units of 10 picoseconds. 5 
NS means use time units of 5 nanoseconds.

capacitance_unit A positive number. For example, 10 PF means capacitance units of 10 picofarads. 
5 FF means use capacitance units of 5 femtoseconds.

resistance_unit Positive number. For example, 10 OHM sets resistance units to 10 ohms. 5 KOHM 
sets resistance units to 5 kilo ohms.

inductance_unit A positive number. For example, 10 HENRY means use inductance units of 10 
henries. 5 MH means use inductance units of 5 millihenries. 2 UH means use 
inductance units of 2 micro-henries.

name_index Name used throughout a SPEF file. To reduce file space, you can map other names 
to this name.

name_id|bit|path|name|
physical_ref

A name identifier, bit, path, name, or physical reference to map to the name_index.

logical_power_net Logical path (or logical path index) to a power net.

physical_power_net Physical path (or physical path index) to a power net. You can specify multiple 
logical_power_net physical_power_net pairs.

ground_net Name of a net to use as a ground net. You can specify multiple ground net names.

logical_port Logical name of an input, output, or bidirectional port.

coordinate Geometric location of a logical or physical port.

par_value Either a single float value, or a triplet in float:float:float form.

rising_slew Rising slew of the waveform for the port. T_UNIT defines the time unit for the 
waveform.

falling_slew Rising slew of the waveform for the port. T_UNIT defines the time unit for the 
waveform.

low_threshold Low voltage threshold as a percentage of the port’s input voltage. Can bed one float 
value or a triplet in float:float:float form.

Table 6 SPEF Parameters (Continued)

Parameter Definition
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high_threshold High voltage threshold as a percentage of the input voltage for the port. Either a 
single float value or a triplet in float:float:float form.

cell_type Type of cell that drives the port. If you do not know the cell type, use the reserved 
word UNKNOWN_DRIVER as the cell type.

physical_port Physical name of an input, output, or bidirectional port.

logical_instance Logical name of a subcircuit in your design_name circuit design. You can specify 
more than one logical_instance. Whenever you specify a logical instance name, 
you must set NAME_SCOPE to FLAT. If you connect a logical net to a physical port, 
HSPICE advanced analog analyses reports an error.

physical_instance Physical name of a subcircuit in your design_name circuit design. You can specify 
more than one physical_instance. Whenever you specify a physical instance name, 
you must set NAME_SCOPE to FLAT. If you connect a physical net to a logical port, 
HSPICE advanced analog analyses reports an error.

routing_confidence One of the following positive integers:
■ 10: Statistical wire load model.
■ 20: Physical wire load model.
■ 30: Physical partitions with locations, no cell placement.
■ 40: Estimated cell placement with Steiner tree-based route.
■ 50: Estimated cell placement with global route.
■ 60: Final cell placement with Steiner route.
■ 70: Final cell placement with global route.
■ 80: Final cell placement, final route, 2d extraction.
■ 90: Final cell placement, final route, 2.5d extraction.
■ 100: Final cell placement, final route, 3d extraction.

logical_pin Logical name of a pin.

physical_node Physical name of a node.

net_name Name of a net in a circuit or subcircuit.

cap_id Unique identifier for capacitance between two specific nodes.

res_id Unique identifier for resistance between two specific nodes.

induc_id Unique identifier for inductance between two specific nodes.

node1 First of two nodes, between which you are specifying a capacitance, resistance, or 
inductance value.

Table 6 SPEF Parameters (Continued)

Parameter Definition
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SPEF File Example
*SPEF "IEEE 1481-1998"
*DESIGN "My_design"
*DATE "11:26:34 Friday June 28, 2002"
*VENDOR "Synopsys, Inc."
*PROGRAM "Star-RCXT"
*VERSION "2002.2."
*DESIGN_FLOW "EXTERNAL_LOADS" "EXTERNAL_SLEWS" "MISSING_NETS"
*DIVIDER /
*DELIMITER :
*BUS_DELIMITER [ ]
*T_UNIT 1 NS
*C_UNIT 1 PF
*R_UNIT 1 OHM
*L_UNIT 1 HENRY

*POWER_NETS VDD
*GND_NETS VSS

*PORTS
CONTROL O *L 30 *S 0 0
FARLOAD O *L 30 *S 0 0
INVX1FNTC_IN I *L 30 *S 5 5
NEARLOAD O *L 30 *S 0 0
TREE O *L 30 *S 0 0

If you use triplet format, the above section would look like this:

node2 Second of two nodes, between which you are specifying a capacitance, resistance, 
or inductance value. For a capacitance value, if you do not specify a second node 
name, HSPICE advanced analog analyses assumes that the second node is 
ground.

capacitance Specifies the capacitance value assigned to a cap_id identifier. capacitance_unit 
defines the units of capacitance. For example, if you set capacitance to 5 and 
capacitance_unit to 10 PF, then the actual capacitance value is 50 picoFarads.

resistance Specifies the resistance value assigned to a res_id identifier. resistance_unit 
defines the units of resistance. For example, if you set resistance to 5 and 
resistance_unit to 5 KOHM, then the actual resistance value is 25 kilo ohms.

inductance Specifies the resistance value assigned to an induc_id identifier. inductance_unit 
defines the units of inductance. For example, if you set inductance to 6 and 
inductance_unit to 2 UH, then the actual inductance value is 12 microhenries.

Table 6 SPEF Parameters (Continued)

Parameter Definition
226 HSPICE® User Guide: Advanced Analog Simulation and Analysis
K-2015.06



Chapter 8: Post-Layout Analysis
Post-Layout Back-Annotation
*PORTS
CONTROL O *L 30:30:30 *S 0:0:0 0:0:0
FARLOAD O *L 30:30:30 *S 0:0:0 0:0:0
INVX1FNTC_IN I *L 30:30:30 *S 5:5:5 5:5:5
NEARLOAD O *L 30:30:30 *S 0:0:0 0:0:0
TREE O *L 30:30:30 *S 0:0:0 0:0:0

This triplet formatting principle applies to the rest of this example.

*D_NET INVX1FNTC_IN 0.033
*CONN
*P INVX1FNTC_IN I
*I FL_1281:A *L 0.033
*END
*D_NET INVX1FNTC 2.033341

*CONN
*I FL_1281:X O *L 0.0
*I I1184:A I *L 0.343
*I FL_1000:A I *L 0.343
*I NL_1000:A I *L 0.343
*I TR_1000:A I *L 0.343

*CAP
216 FL_1000:A 0.346393
217 I1184:A 0.344053
218 INVX1FNTC_IN 0
219 INVX1FNTC_IN:10 0.154198
220 INVX1FNTC_IN:11 0.117827
221 INVX1FNTC_IN:12 0.463063
222 INVX1FNTC_IN:13 0.0384381
223 INVX1FNTC_IN:14 0.00246845
224 INVX1FNTC_IN:15 0.00350198
225 INVX1FNTC_IN:16 0.00226712
226 INVX1FNTC_IN:17 0.0426184
227 INVX1FNTC_IN:18 0.0209701
228 INVX1FNTC_IN:2 0.0699292
229 INVX1FNTC_IN:20 0.019987
230 INVX1FNTC_IN:21 0.0110279
231 INVX1FNTC_IN:24 0.0192603
232 INVX1FNTC_IN:25 0.0141824
233 INVX1FNTC_IN:3 0.0520437
234 INVX1FNTC_IN:4 0.0527105
235 INVX1FNTC_IN:5 0.1184749
236 INVX1FNTC_IN:6 0.0468458
237 INVX1FNTC_IN:7 0.0391578
238 INVX1FNTC_IN:8 0.0113856
239 INVX1FNTC_IN:9 0.0142528
240 NL_1000:A 0.344804
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241 TR_000:A 0.34506

*RES
152 INVX1FNTC_IN INVX1FNTC_IN:18 8.39117
153 INVX1FNTC_IN INVX1FNTC_IN:5 25.1397
154 INVX1FNTC_IN:11 INVX1FNTC_IN:20 4.59517
155 INVX1FNTC_IN:12 INVX1FNTC_IN:13 3.688
156 INVX1FNTC_IN:13 INVX1FNTC_IN:17 25.102
157 INVX1FNTC_IN:14 INVX1FNTC_IN:16 0.0856444
158 INVX1FNTC_IN:14 NL_1000:A 0.804
159 INVX1FNTC_IN:15 INVX1FNTC_IN:16 1.73764
160 INVX1FNTC_IN:15 INVX1FNTC_IN:24 0.307175
161 INVX1FNTC_IN:17 INVX1FNTC_IN:25 5.65517
162 INVX1FNTC_IN:18 FL_1000:A 1/36317
163 INVX1FNTC_IN:2 INVX1FNTC_IN:4 6.95371
164 INVX1FNTC_IN:2 INVX1FNTC_IN:5 50.9942
165 INVX1FNTC_IN: INVX1FNTC_IN:21 4.71035
166 INVX1FNTC_IN: I1184:A 0.403175
167 INVX1FNTC_IN: TR_1000:A 0.923175
168 INVX1FNTC_IN: INVX1FNTC_IN:12 31.7256
169 INVX1FNTC_IN: INVX1FNTC_IN:4 11.9254
170 INVX1FNTC_IN: INVX1FNTC_IN:7 25.3618
171 INVX1FNTC_IN: INVX1FNTC_IN:6 23.3057
172 INVX1FNTC_IN: INVX1FNTC_IN:24 8.64717
173 INVX1FNTC_IN: INVX1FNTC_IN:8 7.46529
174 INVX1FNTC_IN: INVX1FNTC_IN:10 2.04729
175 INVX1FNTC_IN: INVX1FNTC_IN:10 10.8533
176 INVX1FNTC_IN: INVX1FNTC_IN:11 1.05164

*END

*D_NET NE_794 1.98538

*CONN
*I NL_1039:X O *L 0 *D INVX
*I NL_2039:A I *L 0.343
*I NL_1040:A I *L 0.343

*CAP
3387 NE_794 0
3388 NE_794:1 0.0792492
3389 NE_794:10 0.0789158
3390 NE_794:11 0.0789991
3391 NE_794:12 0.0789991
3392 NE_794:13 0.0792992
3393 NE_794:14 0.00093352
3394 NE_794:15 0.00063346
3395 NE_794:16 0.0792992
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3396 NE_794:17 0.80116
3397 NE_794:18 0.80116
3398 NE_794:19 0.00125452
3399 NE_794:2 0.0789158
3400 NE_794:20 0.00336991
3401 NE_794:21 0.00668512
3402 NE_794:23 0.00294932
3403 NE_794:25 0.00259882
3404 NE_794:26 0.00184653
3405 NE_794:3 0.0789158
3406 NE_794:4 0.0796826
3407 NE_794:5 0.0796826
3408 NE_794:6 0.0789991
3409 NE_794:7 0.0789991
3410 NE_794:8 0.0793992
3411 NE_794:9 0.0789158
3412 NL_1039:X 0.00871972
3413 NL_1040:A 0.344453
3414 NL_2039:A 0.343427

*RES
2879 NE_794:1 NE_794:13 66.1953
2880 NE_794:1 NE_794:2 0.311289
2881 NE_794:11 NE_794:12 0.311289
2882 NE_794:13 NE_794:14 0.353289
2883 NE_794:14 NE_794:19 0.365644
2884 NE_794:15 NE_794:16 0.227289
2885 NE_794:15 NE_794:20 0.239644
2886 NE_794:17 NE_794:18 0.14
2887 NE_794:19 NE_794:21 0.0511746
2888 NE_794:2 NE_794:9 65.9153
2889 NE_794:20 NE_794:23 1.15117
2890 NE_794:21 NL_1039:X 3.01917
2891 NE_794:25 NE_794:26 0.166349
2892 NE_794:26 NL_1040:A 0.651175
2893 NE_794:3 NE_794:10 65.9153
2894 NE_794:3 NE_794:4 0.311289
2895 NE_794:4 NE_794:17 66.5437
2896 NE_794:5 NE_794:18 66.5437
2897 NE_794:5 NE_794:6 0.311289
2898 NE_794:6 NE_794:11 65.98853
2899 NE_794:7 NE_794:12 65.9853
2900 NE_794:7 NE_794:8 0.311289
2901 NE_794:8 NE_794:16 66.3213
2902 NE_794:9 NE_794:10 0.311289
2903 NL_1039:X NE_794:25 1.00317
2904 NL_2039:A NE_794:23 0.171175
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*END

Linear Acceleration

Linear acceleration, by using the SIM_LA option, accelerates the simulation of 
circuits that include large linear RC networks. To achieve this acceleration, 
HSPICE advanced analog analyses reduces all matrices that represent RC 
networks. The result is a smaller matrix that maintains the original port 
behavior, yet achieves significant savings in memory and computation. Thus, 
the SIM_LA option is ideal for circuits with large numbers of resistors and 
capacitors, such as clock trees, power lines, or substrate networks.

In general, the RC elements are separated into their own network. The nodes 
shared by both main circuit elements (including .PRINT, .PROBE, 
and .MEASURE statements), and RC elements. are the port nodes of the RC 
network,. All other RC nodes are internal nodes. The currents flowing into the 
port nodes are a frequency-dependent function of the voltages at those nodes. 

The multiport admittance of a network represents this relationship.
■ The SIM_LA option formulates matrices to represent multiport admittance. 
■ Then, to eliminate as many internal nodes as possible, it reduces the size of 

these matrices, while preserving the admittance, otherwise known as port 
node behavior. 

■ The amount of reduction depends on the f0 upper frequency, the threshold 
frequency where SIM_LA preserves the admittance. This is shown 
graphically in Figure 32.
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Figure 32 Multiport Admittance vs. Frequency

The SIM_LA option is very effective for post-layout simulation, because of the 
volume of parasitics. For frequencies below f0, the approx signal matches that 
of the original admittance. Above f0, the two waveforms diverge, but 
presumably the higher frequencies are not of interest. The lower the f0 
frequency, the greater the amount of reduction.

For the syntax and description of this control option, see .OPTION SIM_LA in 
the HSPICE Reference Manual: Commands and Control Options.

You can choose one of two algorithms, explained in the following sections:
■ PACT Algorithm
■ PI Algorithm

PACT Algorithm
The PACT (Pole Analysis via Congruence Transforms) algorithm reduces the 
RC networks in a well-conditioned manner, while preserving network stability. 
■ The transform preserves the first two moments of admittance at DC (slope 

and offset), so that DC behavior is correct (see Figure 33).
■ The algorithm preserves enough low-frequency poles from the original 

network to maintain the circuit behavior up to a specified maximum 
frequency f0, within the specified tolerance. 

This approach is the most accurate of the two algorithms, and is the default. 
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Figure 33 PACT Algorithm

PI Algorithm
This algorithm creates a pi model of the RC network. 
■ For a two-port, the pi model reduced network consists of:

• a resistor connecting the two ports, and 

• a capacitor connecting each port to ground

The result resembles the Greek letter pi. 
■ For a general multiport, SIM_LA preserves the DC admittance between the 

ports, and the total capacitance that connects the ports to ground. All 
floating capacitances are lumped to ground.

Linear Acceleration Control Options Summary
In addition to .OPTION SIM_LA, other options are available to control the 
maximum resistance and minimum capacitance values to preserve, and to limit 
the operating parameters of the PACT algorithm. Table 7 on page 233 contains 
a summary of these control options. For the syntax and descriptions of these 
options, see HSPICE Netlist Simulation Control Options in the HSPICE 
Reference Manual: Commands and Control Options.
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Example
In this example, the circuit has a typical risetime of 1ns. Set the maximum 
frequency to 1 GHz, or set the minimum switching time to 1ns.

.OPTION SIM_LA_FREQ = 1GHz
-or-
.OPTION SIM_LA_TIME = 1ns

Table 7 PACT Options

Syntax Description

.OPTION SIM_LA=PACT | PI Activates linear matrix reduction and selects between two 
methods.

.OPTION SIM_LA_FREQ=<value> Upper frequency where you need accuracy preserved. 
value is the upper frequency for which the PACT algorithm 
preserves accuracy. If value is 0, PACT drops all 
capacitors, because only DC is of interest. The maximum 
frequency required for accurate reduction depends on both 
the technology of the circuit and the time scale of interest. 
In general, the faster the circuit, the higher the maximum 
frequency. The default is 1GHz.

.OPTION SIM_LA_MAXR=<value> Maximum resistance for linear matrix reduction. value is the 
maximum resistance preserved in the reduction. SIM_LA 
assumes that any resistor greater than value has an infinite 
resistance, and drops the resistor after reduction finishes. 
The default is 1e15 ohms.

.OPTION SIM_LA_MINC=<value> Minimum capacitance for linear matrix reduction. value is 
the minimum capacitance preserved in the reduction. After 
reduction completes, SIM_LA lumps any capacitor smaller 
than value to ground. The default is 1e-16 farads.

.OPTION SIM_LA_MINMODE=
ON|OFF

Reduces the number of nodes instead of the number of 
elements. 

.OPTION SIM_LA_TIME=<value> Minimum time for which accuracy must be preserved. value 
is the minimum switching time for which the PACT algorithm 
preserves accuracy. HSPICE advanced analog analyses 
does not accurately represent waveforms that occur more 
rapidly than this time. SIM_LA_TIME is simply the dual of 
SIM_LA_FREQ. The default is equivalent to setting 
LA_FREQ=1 GHz. The default is 1ns.

.OPTION SIM_LA_TOL=<value> Error tolerance for the PACT algorithm. value is the error 
tolerance for the PACT algorithm, is between 0.0 and 1.0. 
The default is 0.05.
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However, if spikes occur in 0.1ns, HSPICE will not accurately simulate them. To 
capture the behavior of the spikes, use:

.OPTION SIM_LA_FREQ = 10GHz
-or-
.OPTION SIM_LA_TIME = 0.1ns

Note: Higher frequencies (smaller times) increase accuracy, but only 
up to the minimum time step used in HSPICE.
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Part 3:  Noise Analyses

Note: For .AC-related .NOISE analysis, see AC Small-Signal and 
Noise Analysis in the HSPICE User Guide: Basic Simulation and 
Analysis.
This Part contains the following chapters/topics:
■ Chapter 9, Transient Noise Analysis
■ Chapter 10, Simulation of Random Noise
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9

9Transient Noise Analysis

Describes the HSPICE solutions to perform transient noise analysis and 
compute noise statistics and their variation over time for circuits driven with non-
periodic waveforms.

Transient noise analysis shows the effect of noise on the signal magnitude. It is 
also useful to see how noise affects the timing of the signal. From the transient 
noise analysis results, you can measure jitter. The two jitter measurements are 
time interval error (TIE) and autocorrelation function. TIE measures the time-
shift behavior relative to a reference signal. The autocorrelation function tracks 
the relative time-shift behavior of the signal.

This chapter describes two approaches:
■ Monte Carlo (default), where HSPICE uses random signal sources to 

predict the statistical characteristics of the circuit performance due to device 
noise. (See Monte Carlo Noise Analysis on page 241.)

■ Stochastic Differential Equation (SDE), for advanced users, which makes a 
direct prediction of the actual statistics of the output waveforms. (See 
Stochastic Differential Equation (SDE) Analysis on page 247.)

HSPICE includes several different algorithms for understanding circuit behavior 
based on noise generated internally by electronic devices and thermal noise. 
PHASENOISE analysis computes the effects noisy elements have on the 
output spectrum of oscillators. HBNOISE and SNNOISE analyses compute the 
small-signal variations that noise can create under large-signal steady-state 
operating conditions (see Multitone Harmonic Balance Noise (.HBNOISE) or 
Shooting Newton Noise Analysis (.SNNOISE). Periodic time-domain noise 
(PTDNOISE) analysis computes the noise statistics of a periodic signal, and 
how those statistics vary with time over the period of the steady-state signal 
(see Periodic Time-Dependent Noise Analysis (.PTDNOISE). What makes 
Transient Noise Analysis unique compared to these other approaches is that its 
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noise analysis is a complement to the fully nonlinear dynamic time-domain 
.TRAN simulation of HSPICE. 

For additional information and graphical illustration of the HSPICE transient 
noise solution, see the webinar link: Jitter Analysis Using HSPICE Transient 
Noise Techniques at http://www.hspice.com and https://www.synopsys.com/
news/pubs/snug/sanjose11/ma6_tutorial_HSPICE_trannoise.pdf (requires 
Synopsys SolvNet user ID and password).

Note: For .AC-related .NOISE analysis, see AC Small-Signal and 
Noise Analysis in the HSPICE User Guide: Basic Simulation and 
Analysis.

The following sections discuss in these topics:
■ Overview of HSPICE Transient Noise Analysis
■ Monte Carlo Noise Analysis
■ Stochastic Differential Equation (SDE) Analysis
■ Jitter Measurements from .TRANNOISE Results
■ Error Handling, Error Recovery, Status Reporting
■ References

Overview of HSPICE Transient Noise Analysis

A variety of noise measurements are desirable from circuit simulation. The 
traditional SPICE .noise analysis provides a measurement of the RMS noise 
voltage at an output node as a function of frequency. This RMS value is similar 
to a measurement of the standard deviation of an equivalent Gaussian 
distribution of noise present at the output node of interest due to the 
contributing random noise sources within the circuit. The .noise analysis is a 
small-signal analysis That gives an output noise (onoise) value over the .ac 
frequency range. 

More advanced examples of noise measurements include Phase Noise and 
Timing Jitter. Timing Jitter, in particular, is a measurement of a clock or 
oscillator's random noise over a time interval. Timing Jitter represents the 
standard deviation (or variance) of the timing uncertainty (i.e. the random drift 
of the clock edges) as a function of time. It is therefore a time-domain noise 
measurement that HSPICE typically evaluates at each cycle or half-cycle. For 
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some clocks, oscillators, and PLLs, you can separate this measurement into 
time-independent and time-dependent contributions, and written as

Equation 47

where  represents the time-dependent variance,  is the time advance, 
and  is the autocorrelation function that relates to the power spectrum of 

phase variations as

Equation 48

These special relationships allow the computation of timing jitter from the 
results of .phasenoise analysis, since we can assume , and 

therefore derive the time-varying noise from the frequency-domain phase noise 
simulation solution. 

Other measurements of time-dependent or time-varying noise are also 
desirable for circuits other than clocks and oscillators, and for situations other 
than steady-state operation. The purpose of such measurements is usually 
similar: derive useful information on the time-varying statistical behavior of the 
circuit due to its internal noise sources. 

Transient Noise Analysis is a typical .TRAN simulation, but with all random 
noise sources within the circuit activated as contributing signal sources. The 
Monte Carlo Noise analysis is a transient noise simulation approach that uses 
uncorrelated random signal sources for device noise in such a way that you can 
seed all noise signals uniquely. In addition, you can repeatedly, from run-to-run, 
predict the statistical characteristics of circuit performance due to device noise. 
You can typically examine the resulting outputs by using histogram plots to 
measure the statistical behavior.

Modeling Frequency-Dependent Noise Sources 
Transient noise techniques require that you model noise sources in the time 
domain. These techniques model device noise sources in terms of standard 
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white Gaussian noise processes. You write the standard white Gaussian noise 
process as . 

You calculate white noise source models in terms of intensity functions. For 
example, if Equation 49 gives the (frequency dependent) noise from a time 
varying conductance

Equation 49

...then you can model in terms of intensity as the random time-domain current 
given by

Equation 50

In the case of flicker noise, it is necessary to create the 1/f power spectrum of 
flicker noise sources by filtering a  process. You can accomplished this with 
the following rational function transfer relationship:

Equation 51

Since you can model all flicker sources over the same frequency range (i.e., 
bandwidth), you can use this same transfer function for all sources. Tests show 
that the above fit is very accurate using one pole/zero per octave. This 
modeling technique shows reasonable fits using one pole/zero for every two 
octaves, or even with one pole/zero per decade. This fitting algorithm is 
therefore frequency range-specific, which is why you use the parameters FMAX 
and FMIN for specifying frequency ranges for Transient Noise Analysis similar 
to the modeling of the frequency-dependent S-element. 

The Trannoise analysis includes a time-domain noise source for all noise 
contributions within all devices. So, for example, if the transistor model in use 
includes induced gate noise, so does .TRANNOISE. For example, if you use a 
BSIM4 model, and the model parameter set includes values for Induced Gate 
Noise, then .TRANNOISE includes this noise in the simulation.
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Monte Carlo Noise Analysis

The equations for Monte Carlo transient noise analysis define the Monte Carlo 
approach:

The time-domain system of equations for transient analysis drives the Modified 
Nodal Analysis (MNA) system described by the following vector state equation:

Equation 52

Consider this the noiseless system that HSPICE solves for during a normal 
transient analysis. You can consider Transient noise analysis a similar analysis 
where we now inject noise from all device noise models to give the modified 
equation:

Equation 53

This system reflects the added noise sources and HSPICE can solved for it in 
the same manner as transient analysis. However, if we consider each noise 
source related to a white Gaussian noise function, we must create an 
ensemble of waveforms for our unknown x(t) vector to predict the output 
statistics. This type of simulation involves generating multiple uncorrelated 
noise source waveforms for all noise sources, and then running multiple 
simulations in a Monte Carlo fashion. This approach is the Monte-Carlo Noise 
Simulation. This method cannot directly measure the statistics of output signals 
due to input noise (as with .NOISE), but instead models noise sources as 
independent time-domain stimuli. Generating statistical information in this 
approach requires running a plurality of simulations over a variety of random 
noise-source sequences (to create an ensemble of output waveforms) and then 
analyzing the statistics of the ensemble using histograms of other plots. When 
the system behavior is ergodic, it is possible to run a single very long duration 
simulation in order to capture the statistical variations of the output signal over 
time (as with an eye-diagram). Monte-Carlo modeling of the noise sources 
uses a sum of sinusoids with random phases [2], or random number generators 
with the appropriate statistical distributions[3]. An advantage of the Monte-
Carlo approach is its ability to capture very nonlinear noise behaviors. This is 
useful, for example, when you know that the responses of circuits with noise 
have non-Gaussian variations about their noiseless simulations. 

f x· x t   0=

f x· x t   jn t –=
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Monte Carlo Noise Techniques Available in HSPICE
HSPICE provides these Monte Carlo techniques for transient noise analysis:

1. Single-run Monte Carlo: (default) A single transient analysis that includes 
time-varying noise contributions to all output waveforms. With ergodic 
systems, the statistics of output variables are observable over time. 

2. Multi-run Monte Carlo: Multiple transient analyses, each including time-
varying noise, with unique seeding from run to run, form an ensemble of 
simulations. Output waveform statistics are observable across the ensemble 
at specific time points. 

Single-run Monte Carlo features are:
■ Simulation includes statistically accurate noise source contributions from all 

devices. 
■ Adjustable bandwidth for noise-source frequency responses. 
■ Fastest approach possible; based on single .TRAN analysis.
■ Effective for ergodic simulations (viewing statistical variations over time).
■ Use the following process for Single Monte Carlo Trannoise analysis 

• Run as typical .TRAN analysis.

• Post process waveforms to measure resulting noise effects. 

• Use FMIN to set low-frequency flicker noise limits.

• Use FMAX to set maximum noise-source waveform bandwidth and 
ensure Nyquist sampling.

• Vary seed values to re-run simulations with uniquely different noise 
waveforms.

■ The multi-run Monte Carlo approach is useful for characterizing statistics at 
specific time events.

■ Multi-run Monte Carlo provides data ensembles for histogram generation.

Setting up a Monte Carlo .TRANNOISE Analysis
The transient noise analysis requires an accompanying .tran analysis which 
determines the time-sampling, matrix solutions, and deterministic output 
waveforms. The .TRANNOISE command activates transient noise and 
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computes the additional noise variables. This is consistent with how .NOISE 
computes additional noise outputs when you add it to an .AC analysis.

The following sections discuss these topics:
■ Monte Carlo Input Syntax
■ Monte Carlo Output Data
■ Controlling Noise in Subcircuits
■ Monte Carlo Examples

Monte Carlo Input Syntax

Monte Carlo Single Sample Approach
.TRANNOISE output [METHOD=MC] [SEED=val] [START=val]
+ [FMIN=val] [FMAX=val|auto] [SCALE=val]
+ [AUTOCORRELATION=0|1|2|off|on]
+ [PHASENOISE=0|1|2]
+ [REF=srcName]

Monte Carlo Multi-Sample Approaches
.TRANNOISE output [METHOD=MC] SAMPLES=val [SEED=val] 
+ [START=val] [FMIN=val][FMAX=val|auto] [SCALE=val]
+ [AUTOCORRELATION=0|1|2|off|on]
+ [PHASENOISE=0|1|2]
+ [REF=srcName]

or

.TRANNOISE output [METHOD=MC] [SAMPLES=List(…)] 
+ [START=val][FMIN=val][FMAX=val|auto] [SCALE=val]
+ [AUTOCORRELATION=0|1|2|off|on]

Keyword Description

output (Required) Output node, pair of nodes, or 2-terminal element. HSPICE references Noise 
calculations to this node (or node pair). Specify a pair of nodes as V(n+,n-). If you specify 
only one node, V(n+), then HSPICE reads the second node as ground. If you specify a 2-
terminal element, HSPICE treats the noise voltage across this element as the output. 

METHOD=MC|SDE
 

Specifies Monte Carlo or SDE transient noise analysis method. The default, or, if 
METHOD is not specified, is the single-sample Monte Carlo method. Specifying 
METHOD=SDE is required to select the transient noise analysis SDE method.

METHOD=MC | SDE is position independent.
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Note: FMAX has a dramatic effect on TRANNOISE, since it controls 
the amount of energy each noise source can emit. Therefore, 
huge values of FMAX (like 100G) can result in huge 

SAMPLES=val Specifies the number of Monte Carlo samples to use for the analysis. The default, or if you 
do not specify SAMPLES, is 1, the single-sample Monte Carlo method. For the multi-
sample Monte Carlo method, you must specify SAMPLES as greater than 1.

SEED=val (Optional) Specifies the beginning simulation sample. Default=2, if you do not specify a 
value for SEED. If you set SEED=1 HSPICE performs a noiseless simulation.

SAMPLES= List(...) Where List can take the form:
■ LIST (num1, num2, num3, …) List of sample SEED values to execute. 
■ LIST(<num1:num2><num3><num4:num5>) List of sample SEED value ranges; for 

example: from num1 to num2, sample num3, and samples from num4 to num5 are 
executed.

START=val (Default=0) Start time during transient analysis when noise sources are activated..

FMIN (Optional) Sets base frequency for modeling frequency-dependent noise sources. Sets 
low-frequency flicker noise limit for contributing noise sources. (Default: 1/TSTOP); See 
Note below.

FMAX (Optional) Maximum frequency used for modeling frequency-dependent noise sources. 
Sets maximum noise-source waveform bandwidth and ensures Nyquist sampling. 
Default: 1/(2*TSTEP). When FMAX=auto, HSPICE picks this frequency value 
automatically. See Note below.

SCALE Scale factor that you can apply to uniformly amplify the intensity of all device noise 
sources to exaggerate their contributions. Default: 1.0 

AUTOCORRELATION (Optional for MC approaches) Used to enable the autocorrelation function calculation at 
the specified output.
■ AUTOCORRELATION=0 (OFF) - (default) Does not calculate autocorrelation function.
■ AUTOCORRELATION=1 (ON) - Calculates autocorrelation function at the specified 

output.
■ AUTOCORRELATION=2 - Calculates autocorrelation function iat the specified output, 

with normalization applied over the simulation interval.

PHASENOISE=0|1|2 ■ PHASENOISE=0: (default) Phase noise calculations are disabled. 
■ PHASENOISE=1: Uses Delay-Line measurement approach to compute phase noise.
■ PHASENOISE=2: Uses Phase Detector method for phase noise calculations

 REF=srcName Where srcName can be either:
■ PULSE voltage or current source.
■ SIN voltage or current source.
The rises edges of the SIN or PULSE source are used to establish the phase reference 
for phase noise calculations.

Keyword Description
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instantaneous noise levels. FMIN sets the low frequency limit for 
flicker noise, and therefore controls the energy in flicker noise 
sources. You can expect some significant differences with FMAX 
and FMIN changes: Noise power increases linearly with FMAX; 
flicker noise power can scale as 1/FMIN. 

FMAX is a critical parameter for controlling TRANNOISE 
performance. This keyword sets the noise bandwidth of noise 
sources which also controls the maximum time step taken. A 
large FMAX can cause very slow simulation performance. The 
default value of FMAX is the inverse of the .TRAN tstep value. In 
some circumstances very small tstep values can causes poor 
performance. A good setting for FMAX is ~2X the fastest clock 
frequency in the circuit under test. 

Monte Carlo Output Data
The .TRANNOISE analysis outputs raw data to a *.trpn0 and *.printtr0 
files. Formatting of data output is consistent with that used for *.pn0 and 
*.snpn0 data files. These output files organize data according to the sample 
number in the Monte Carlo index. 

The first sample (index=1) creates a noise-free simulation, i.e., disables all 
noise sources for this simulation.With index=2, all subsequent simulations use 
unique random number seeding to create unique simulation results due to 
noise. 

Controlling Noise in Subcircuits
Substantial performance improvements can be obtained by removing noise 
from non-critical circuit blocks. It can also be useful to disable various noise 
contributors to isolate and identify the dominant circuit noise effects. Transient 
noise analysis allows you to ignore noise contributions at the subcircuit level.

To ignore the noise contribution, add the NOISE=0 parameter to any subcircuit 
instance specified by an X-element. NOISE=0 is treated as a hierarchical 
parameter, causing noise to be disabled down through the subcircuit's 
hierarchy. 
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Monte Carlo Examples
The following example generates 30 Monte Carlo noise simulations that starts 
with a noiseless (index=1) simulation. 

.TRANNOISE v(out) SAMPLES=30

The following example generates 20 Monte Carlo noise simulations that starts 
with the seed value (i.e., index) of 31 for the first simulation. 

.TRANNOISE v(out) SAMPLES=20 SEED=31

The following example generates a single noise simulation, with seed value of 
50, and amplifies all noise sources by a factor of 10.

.TRANNOISE v(out) SEED=50 SCALE=10.0

The following example generates six Monte Carlo transient noise simulations 
with seed values of 1, 3, 4, 5, 9 and 10. Normalized autocorrelation is 
computed for each v(out) output.

.TRANNOISE v(out) SAMPLES=LIST(1,3:5,9:10) AUTOCORRELATION=2

Correlating Noise Results: .TRANNOISE (Monte Carlo) 
and .NOISE
Comparing noise results between .TRANNOISE and .NOISE simulations 
requires some careful setups:

1. Pay attention to the bandwidth (i.e., frequency sweep) that you are using for 
.NOISE. When you run .TRANNOISE, the simulation is always bandwidth-
limited, and based on the time-stepping (tsteps) and time interval (tstop) of 
the simulation. You want to reflect the same bandwidth in the .NOISE 
simulation, as well. (See below for the reason.)

2. If possible, test your circuit for natural bandwidth limitations, i.e., the onoise 
output rolls off substantially beyond some frequency. This is true of post-
layout circuits that have some capacitance at every node. If your circuit has 
natural BW limits, then item #1 above is not critical. 

3. Run your .noise simulation, and monitor the Total Output Noise Voltage in 
units of Volts. This is the integrated ONOISE over the bandwidth of interest. 
ONOISE values are in Volts-per-unit-sqrt(Hertz). To compare with the time 
domain, you need to know the Hertz. The (integrated) total output noise 
voltage prints to the .lis file.
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4. Set up your .TRANNOISE simulation such that the noise does not alter the 
large-signal behavior of the circuit. .NOISE is a small-signal simulation. Try 
to keep .trannoise signals small (e.g., no big PULSE sources) so the 
comparisons are valid. Note that with .TRANNOISE, you do not need an 
input signal, as the noise becomes the signal.

5. With your .TRANNOISE command, set FMAX to match the integration 
bandwidth (freq range) you use for your .NOISE analysis. Note that if you 
want to see low-frequency range (flicker effects), your .TRAN command 
may need a big TSTOP value. There is no need to set the FMIN parameter, 
since this sets the noise generation. You still need a big TSTOP to observe 
this generated noise.

6. To compare with a single-run Monte Carlo simulation, create a .measure 
command to measure RMS voltage for the same node(s) you used for 
.NOISE output. If you cannot avoid a nonlinear transient startup for your 
circuit, you may need a FROM and TO for this .MEASURE to look past it. Your 
.MEASURE result matches your Total Output Noise Voltage if the only signal 
at this node is due to noise.

7. To compare with a multi-run Monte Carlo simulation, .MEASURE the voltage 
at a particular time point of interest. Then, when you run the simulation, the 
Monte Carlo report gives results you can compare with .NOISE. You may 
need many samples to get stable statistical results for a single time point.

Stochastic Differential Equation (SDE) Analysis

Transient Noise Analysis predicts waveform statistics at particular time points. 
One method to accomplish this is to run the multi-sample Monte Carlo 
approach, and then use the ensemble of simulation results to generate 
histograms at the time points of interest. Histograms that measure vertical 
distributions reveal voltage noise. Histograms that measure horizontal time-
shift distributions reveal jitter. In those cases where it is desirable to have a 
highly accurate distribution curve, it may be necessary to simulate with a large 
number of Monte Carlo samples. SDE analysis can provide a more efficient 
alternative in such cases. Instead of requiring a large ensemble of results, SDE 
performs special calculations that directly predict the statistics of the output 
waveforms. 

Let the time-domain signal resulting from a regular transient analysis (i.e., with 

noise ignored) for a specific output node be written as .v
s

t out
HSPICE® User Guide: Advanced Analog Simulation and Analysis 247
K-2015.06



Chapter 9: Transient Noise Analysis
Stochastic Differential Equation (SDE) Analysis
Let the time-domain signal resulting from an analysis with signal and noise for 

the same output node be written as .

We can define the noise voltage component  to be:

Equation 54

We can define a variance equal to the expected value of this noise component 
at a given time to be:

Equation 55

If we assume that the noise variations are small, we can create a linear 
Stochastic Differential Equation (SDE) for the noise contribution vector  

(on entry in the vector being the output noise ). This SDE may be 

formulated in terms of time-varying coefficient matrices that are evaluated for a 
normal transient analysis, which are functions of the noise-free solution vector 

 and derived from the noise-free transient analysis computations [1]:

Equation 56

We can then create and solve a linear ordinary differential equation (ODE) 

system for the time-varying noise correlation matrix :

Equation 57

where  and  are derived from , , and , and  indicates 
the transpose operation.

In general, simultaneously solving for both the deterministic and stochastic 
differential equations can therefore give us the complete time-dependent output 
signal waveform vector , as well as the complete time-varying noise 
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correlation/covariance matrix . The entries in this matrix 

represent time-dependent variance values  for output signals . 

This output can be interpreted and plotted as a time-varying RMS noise voltage 

waveforms for . The results of such a transient + noise 

analysis include the usual deterministic transient analysis waveforms, including 

the mean voltage output , and also its (stochastic) time-varying RMS 

noise component . In this sense, the SDE analysis method provides 

typical SPICE output waveforms for circuit unknowns, plus the additional 
waveform representing the time-varying statistics of the circuit. The 
.TRANNOISE SDE method therefore activates this special analysis and makes 
this output available to the user.

Stochastic Differential Equation (SDE) Dynamic noise statistics are computed 
in the form of a time-varying covariance matrix. SDE techniques allow the 
output of a variance waveform for any output signal. Variance waveforms can 
be used to construct probability density plots.

The SDE approach gives probability density information, and, like the multi-run 
Monte Carlo approach, is useful for characterizing statistics at specific time 
events.

The following topics are discussed in these sections:
■ SDE Approach Input Syntax
■ SDE Output Data
■ SDE Examples

SDE Approach Input Syntax
.TRANNOISE output METHOD=SDE
+ [TIME=(all|val)]
+ [FMIN=val] [FMAX=val] [SCALE=val]

K t  xn t xn t T=

2
t n v

n
t out

v
n
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v
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SDE Output Data
The .TRANNOISE SDE analysis outputs raw data to the *.tr0 and 
*.printtr0 files consistent with transient analysis. The .PRINT/.PROBE 
output syntax supports the following measurements:

.print trannoise ONOISE ONOISE(M) VRMS(n1[,n2]) 

.probe trannoise ONOISE ONOISE(M) VRMS(n1[,n2]) 

where: 

Keyword Description

output (Required) Output node, pair of nodes, or 2-terminal element. Noise calculations are 
referenced to this node (or node pair). Specify a pair of nodes as V(n+,n-). If you specify 
only one node, V(n+), then HSPICE advanced analog analyses reads the second node 
as ground. If you specify a 2-terminal element, the noise voltage across this element is 
treated as the output. 

METHOD | SDE Specifies SDE transient noise analysis method. 

TIME (Optional) Used to specify additional time points (breakpoints) where time-domain noise 
should be evaluated in addition to those time points that will be evaluated as part of the 
normal time-stepping algorithm.

Use this parameter to force noise evaluation at important time points of interest (such as 
rising/falling edges). 
■ TIME=all: (default) causes time-domain noise ONOISE values to be computed and 

available for output at all time points selected by the .TRAN command time-step 
algorithm.

■ TIME=val: Specifies a single additional time point at which time domain noise is 
measured. The value can be numeric or a parameter. A .TRAN analysis at this time 
point will be forced.

Note that time-domain noise calculations require an accompanying .TRAN analysis at 
each time point. The TIME parameter may therefore add transient analysis time-points 
(breakpoints) as needed while values given outside the range of the .TRAN command 
constraints are ignored

FMIN (Optional) Base frequency used for modeling frequency dependent noise sources. Sets 
low-frequency flicker noise limit for contributing noise sources. (Default: 1/TSTOP) See 
Note below.

FMAX (Optional) Maximum frequency used for modeling frequency dependent noise sources. 
Sets maximum noise source waveform bandwidth and ensures Nyquist sampling. 
Default: 1/TSTEP; See Note below.

SCALE Scale factor that can be applied to uniformly amplify the intensity of all device noise 
sources to exaggerate their contributions. Default: 1.0 
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■ The ONOISE and ONOISE(M) outputs are the same. They represent noise 
voltage or current at the node or branch specified by the output keyword. 
The ONOISE represents the RMS noise voltage component (square root of 
the variance), units in Volts, of the noise at the specified output present in 
addition to the noise-less transient voltage.

Note: ONOISE is only output when you use SDE method; when 
using the Monte Carlo method, ONOISE is 0.

■ VRMS: The output of RMS noise voltages at other nodes (i.e., the output for 
general nodal noise voltage values).

The actual instantaneous output voltage is the sum of the signal plus noise 
components:

Equation 58

Where the noise component  has an assumed Gaussian distribution (in 

) as:

And the output signal  is that resulting from the (deterministic) .TRAN 

analysis. The time-varying RMS noise voltage waveforms (i.e., for onoise) are 

related to the variance at the specified outputs as given by  

where: .

SDE Examples
Example 1. SDE method with maximum frequency of 5GHz.

.TRANNOISE v(7) METHOD=SDE FMAX=5g

Example 2. Activates SDE noise analysis, and dumps the ONOISE output to the 
*.tr0 file:

.TRANNOISE v(out) METHOD SDE

.PROBE TRANNOISE ONOISE

vout t s n+
vout t s

vout t n
+=

vout t n

x

1

 2
--------------e

x2–

22
---------

vout t s

v
n

t RMS 2
t n=

2
t n vout t n

vout t n=
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Example 3. Activates SDE noise analysis, placing a lower bound on flicker 
noise to be 10kHz, and an upper bound on all noise power at 100MHz:

.TRANNOISE v(out) METHOD=SDE FMIN=10k FMAX=100MEG

Jitter Measurements from .TRANNOISE Results

While transient noise analysis shows the effect of noise on the signal 
magnitude, it is also useful to see how the noise affects the timing of the signal. 
From the transient noise analysis results, jitter can be measured. The two jitter 
measurements are time interval error or TIE and autocorrelation function. TIE 
measures the time-shift behavior relative to a reference signal and is best 
measured using WaveView. The autocorrelation function tracks the relative 
time-shift behavior of the signal.

The following topics include:
■ Output Data Files
■ Measure TIE Jitter and Jitter Spectrum Example

Output Data Files
The output data from the autocorrelation function (.AUTOCORRELATION=1) 
calculations is output to the ASCII formatted *.trnz# file if you add a .PROBE 
statement to probe ONOISE. For example:

.PROBE trannoise onoise
252 HSPICE® User Guide: Advanced Analog Simulation and Analysis
K-2015.06



Chapter 9: Transient Noise Analysis
Jitter Measurements from .TRANNOISE Results
Measure TIE Jitter and Jitter Spectrum Example

The following clock buffer example circuit uses a single run Monte Carlo 
transient noise analysis. Post-processing is performed using WaveView.

Analysis Setup Details

* Transient noise example
.option post probe
.option runlvl=5
.param freq=2000MEG period='1/freq'
* Reference Clock
Vsrc  ref  gnd  DC 0 PULSE (0.0 'vdd'
+ '0.975*period' '0.05*period' '0.05*period'
+ '0.45*period' 'period')
* Clock Buffer Circuit
* Analysis setup
.tran '0.05*period' '520*period'
.trannoise v(outb26) FMAX=50G SCALE=10
.probe tran v(ref) v(outa) v(outb14) v(outb26) 
.end
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Figure 34 Single-run Monte Carlo Transient Noise gives noisy clock/data waveforms

Figure 35 WaveView: Jitter vs. Time measurement to get Timing Interval Error (TIE) 
Jitter vs. Time. Measurement based on the reference signal
254 HSPICE® User Guide: Advanced Analog Simulation and Analysis
K-2015.06



Chapter 9: Transient Noise Analysis
Error Handling, Error Recovery, Status Reporting
Figure 36 FFT of the TIE Jitter samples show the Jitter Spectrum

Error Handling, Error Recovery, Status Reporting

The following error checks are made with transient noise analysis:
■ Verify that the specified output node exists.
■ Verify non-negative integer values for “list” entries. 

Note: Invalid values for FMIN and FMAX will be ignored and default 
values will be used. 

The SDE solving can be substantially slower than transient analysis. Status 
reporting includes noise analysis progress. 
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10Simulation of Random Noise

Describes the characteristics of random signals, types of noise, component 
noise models, and noise simulation in HSPICE.

HSPICE ships several examples for your use; see Applications of General 
Interest Examples in the HSPICE User Guide: Basic Simulation and Analysis 
for paths to demo files.

Note: For .AC-related .NOISE analysis, see AC Small-Signal and 
Noise Analysis in the HSPICE User Guide: Basic Simulation and 
Analysis.

The following topics are covered in these sections:
■ Introduction to Noise Sources
■ Characteristics of Random Signals
■ Noise Types
■ Component Noise Models and HSPICE Noise Simulation

Introduction to Noise Sources

One of the essential techniques in designing an analog circuit is to be able to 
identify major noise sources in the circuit and know how to minimize their affect 
to an acceptable level. Noise can be loosely defined as a disturbance signal 
with random amplitude, which is usually an unwanted phenomenon in a circuit.

It is important to limit the power of noise to a low level relative to that of signal; 
otherwise, the signal can be greatly distorted or completely indistinguishable. 
They rely on simulation tools to help them identify the dominant sources of 
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noise in the circuit, measure the noise levels (in power, current, or voltage), and 
eventually make changes in the design to reduce the noise levels if necessary.

Two types of noise are commonly defined: inherent and interference.
■ Inherent noise is the noise created by the elements internal to the circuit 

(resistors, diodes, and transistors) caused by movement of electrons in the 
circuit.

■ Interference noise refers to the unwanted signals from the environment 
absorbed by the circuit.

Eliminating interfering noise can be done by different methods of signal 
shielding or code modulation so the signal can be differentiated from the noise. 
Inherent noise, however, can only be affected by changes in the circuit topology 
and the bias currents.

This chapter discusses only inherent noise and the HSPICE simulations related 
to it. Whenever the term “noise” is used, it refers to “inherent noise”.

Presented first in the following sections are some theoretical definitions for 
noise sources in an analog circuit. These are followed by a discussion on how 
HSPICE performs noise simulation and how to interpret outputs from noise 
simulation.

Characteristics of Random Signals

The following sections describe noise sources in the time and frequency 
domains, and methods to deal with multitude noise sources in a circuit, 
according to these topics:
■ Probability Distribution Function versus Power Spectral Density
■ Multiple Noise Sources in a Circuit
■ Summary

Probability Distribution Function versus Power Spectral 
Density
Noise is a signal with random amplitude. Figure 37 illustrates a sample noise 
signal in the time domain. The vertical axis could be either a branch current or 
a node voltage.
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Figure 37 Typical noise signal (voltage or current) in the time domain

To simulate a noise source in the time domain, you have to know the Probability 
Distribution Function (PDF) of that signal and then create a voltage or current 
source that produces a random output signal conforming to the PDF. Figure 38 
demonstrates a sample PDF for a random signal with Gaussian distribution. 
Extracting PDF parameters out of circuit components is not straightforward and 
therefore not common in analyzing noise.

Figure 38 PDF for a random signal with Gaussian probability distribution

However, noise can be easily modeled and measured in the frequency domain. 
The noise models in the frequency domain also relate directly to the 
component and circuit characteristics. This is the reason noise analyses are 
usually done in the frequency domain.

While we cannot obtain a deterministic value for the noise amplitude in the time 
domain because it is a random variable, it is quite possible to determine the 
power of the noise if the noise is bandwidth limited. In other words, it is true that 
the amplitude of a noise signal changes randomly in the time domain. However, 
its power, as defined by Equation 59 is a fixed and finite value if and only if the 

PDF

Signal Amplitude
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signal is bandwidth limited.

Definition of Power for a noise voltage (a) and current (b), normalized for a 1-
ohm load:

Equation 59

The power of a signal can also be described in the frequency domain; by 
means of a Power Spectral Density (PSD). A PSD identifies the portion of 
signal power present as a function of signal frequency. Figure 39 illustrates two 
PSD graphs. 

Graph A resembles the PSD of a typical data signal in high speed and 
advanced analog communication; a signal with a limited bandwidth. It can be 
seen from the graph that the composing frequencies of the signal are between 
DC (0 Hz) and 200 MHz, with the bulk of power being concentrated around 100 
MHz.

Graph B shows a signal with a flat power distribution; meaning that the power is 
equally distributed across all frequencies. Such a signal is referred to as “white 
noise”. Resistor thermal noise possesses such a PSD.

Figure 39 Sample PSD graphs

To obtain the total power of a signal within a certain bandwidth, you must 
calculate the area under the PSD curve within the given frequency range, as 
defined in Equation 60.

P limT  1 T v t  2

T 2–

T 2

 dt      Eq. a=

P limT  1 T i t  2

T 2–

T 2

 dt      Eq. b=

PSDPSD

¶ ¶
100 MHz 200 MHz

A B
Signal with the bulk of power Signal with power equally
concentrated around 100 MHz distributed across all frequencies
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Definition of power based in the frequency domain, normalized for a 1 ohm 
load:

Equation 60

An example of power calculation in the frequency domain for a noise signal is 
shown in Figure 40. In this example, the PSD is a flat curve with a value of 
5 x 10-20 V2/Hz. 

Figure 40 Sample PSD graphs

The power of the noise between the frequencies 500 MHz and 800 MHz is 
equal to the shaded area under the curve and is given by:

The root mean square (RMS) value of the noise signal is given by Equation 61. 
The RMS value of a signal is defined as a DC value that would render the same 
power as the signal in question. For the general sinusoidal signal Acos(t), the 
RMS value is .

RMS value of a signal is the root of the 1 ohm normalized signal power:

Equation 61

Which means the RMS voltage value of the noise signal in the above example 
is: 

P PSD
f_1

f_2

 f df=

¶
500 MHz 800 MHz

5 x 10-20
PSD

Pn 5 10
20–

df 800M 500M– 5 10
20– 1.5 10

11– V
2

==
500M

800M

=

A 2

vrms P=

vrms 1.5 10
11– 5.48V= =
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This means that the power of the noise is identical to that of a sinusoidal signal 
with a RMS value of 5.48 uV.

Multiple Noise Sources in a Circuit
In the usual case of dealing with a multitude of noise sources in a circuit, it is 
important to know how to add up the effects of noise to obtain the accumulated 
noise value.

If the noise sources are completely independent (that is, un-correlated), such 
as the noises generated by two separate resistors, their powers add up to their 
RMS values. Figure 41 shows how two independent noise sources, in this case 
both voltage sources, add up.

Figure 41 Noise summation: independent noise signals add in squared values

It might not be evident from the equation for VnTotal in Figure 41 that when there 
are several noise sources in a circuit, only reducing the biggest noise 
contributors will reduce the total noise significantly. Reducing the smaller 
sources, even by large amounts does not have a considerable affect on the 
overall noise value because the power of two of signals magnifies the 
dominance of bigger sources over smaller ones.

To clarify this point, consider the case where two noise sources are present, 
with RMS values of v1 = 2 uV and v2 = 9 uV. The total noise is given by:

*

*

vnTotal 2 2 9 2+ 9.21V= =
262 HSPICE® User Guide: Advanced Analog Simulation and Analysis
K-2015.06



Chapter 10: Simulation of Random Noise
Noise Types
Now if in an attempt to lower the total noise the designer of the circuit cuts the 2 
uV source by 50%, the total noise will be:

Now, if instead we cut the 9 uV source by only 10%, the total noise will be:

This emphasizes the fact that to reduce the total noise, we should first 
concentrate on the strongest source of noise.

Summary
Important points from this section are:
■ Inherent noise is best modeled in the frequency domain by its PSD.
■ The power of noise depends on the bandwidth of the system and is defined 

as the area under the PSD curve between two given frequencies.
■ When multiple noise sources are present, the square of their voltage (or 

current) values add.
■ When multiple sources of noise are present in a circuit, the most effective 

way of reducing the total noise is to focus on reducing the most dominant 
noise contributor.

Noise Types

The following sections identify and describe three common types of noise in 
analog circuits:
■ Thermal Noise
■ Flicker Noise
■ Shot Noise
■ Summary

vnTotal 1 2 9 2+ 9.06V= =

vnTotal 2
2  8.1

2 + 8.34V= =
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Thermal Noise
Thermal noise is generated by random movements of electrons in a resistive 
conductor. Any circuit element with resistive characteristics, whether a resistor 
or the base junction series resistor in a BJT’s small signal model, disseminates 
thermal noise. The models for thermal noise voltage source and their 
equivalent current source are shown in Figure 42.

Figure 42 Thermal noise voltage sources and their equivalent circuits

The voltage and current PSD functions for resistor thermal noise are:

where:
k is Boltzmann’s constant equal to 1.38 x 10-23.
T is the temperature in Kelvin degrees: 1 °K = °C + 273. For a room 
temperature of 25 °C (88 °F), the default temperature setting in HSPICE, T will 
be 298 °K.
R is the resistance in ohms.

It should be noted that the two voltage and current PSD models are equivalent, 
they both produce the same amount of open circuit voltage or short circuit 
current and can be used interchangeably during noise analysis.

Notice that thermal noise voltage PSD is proportional to the resistance while 
the current PSD is inversely proportional to the resistance. By looking at the 

*R

R

R

vn

in

A B C
Resistor Resistor modeled as a noiseless Resistor modeled as a noiseless

resistor and a shunt current sourceresistor and a series noise voltage

Vn
2

f  4kTR= v
2

Hz

In
2
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2

Hz
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PSD models, a general conclusion can be made; presence of bigger resistors 
in a circuit usually translates to a bigger thermal noise voltage.

The PSD models have been explicitly described as functions of frequency to re-
emphasize the fact that the PSD is only meaningful in the frequency domain 
context.

The above models suggest that PSDs are flat across all frequencies. This 
assumption will no longer be true for frequencies above a few hundred 
gigahertz.

Example 1
What will be the RMS voltage value of thermal noise generated by a 10 kohm 
resistor operating in the 1- to 1.2-GHz frequency range? Assuming a room 
temperature of 25 °C or 298 °K, the PSD function will be (see also Figure 43):

Figure 43 Noise models for 10 kohm resistor

Flicker Noise
Flicker noise is noise generated by fluctuations in the average current travel 
time in a conductor. As electrons take different random paths to get from one 

Vn
2
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end of a resistor to the other at any given time, the average current will 
experience different resistance along the way, leading to fluctuations in current, 
hence the generation of flicker noise. Figure 44 on page 266 illustrates how 
electrons can fall into paths with different lengths while flowing through a 
resistor. 

Figure 44 Paths for current through a resistor

By shrinking the cross-section area of the conducting material, there will be 
smaller differences between different current paths and the flicker noise will 
shrink. That is why thin film resistors have a much smaller flicker noise than 
carbon rod resistors, which have a much larger conducting cross-section.

In addition, at high frequencies, the current tends to travel through the outer 
surface of the conductor, a phenomenon know as “skin effect”, effectively 
shrinking the conducting cross-section to a very thin layer. This results in 
smaller differences in the current path lengths and consequently smaller flicker 
noise. Because of stronger flicker noise effects at higher frequencies, flicker 
noise is inversely proportional to frequency. That is why it is also called “1/f 
noise”. Flicker noise is only significant at lower frequency values, but it can 
have a major impact on nonlinear circuits at advanced analog frequencies. 

The major sources of flicker noise in analog circuits are semiconductor 
components. Resistors can be manufactured to produce small amount of flicker 
noise and are not usually taken into account for calculation of flicker noise in a 
circuit. 

Flicker noise is usually represented as a current PSD for resistors and 
semiconductors with this equation:

Electrons taking a long path to get through the resistor

Electrons taking a short path to get through the resistor

I
2
n f  KfI f= A

2
Hz
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Where,
I is the current through the resistor.
f is frequency in hertz.
Kf is a constant which depends on the characteristics and geometry of the 
conductor.

The PSD for flicker noise is depicted in Figure 45.

Figure 45 PSD for flicker noise

HSPICE uses more general models for CMOS flicker noise PSDs. One of the 
models used for CMOS transistor is the SPICE2/Berkeley noise model:

where:
Kf is the flicker noise parameter.
Af is the current exponent.
Cox is the Gate oxide capacitance.
L is the effective length of the transistor.
Ef is the frequency exponent. 

Another model used by HSPICE for flicker noise calculation is the BSIM model, 
which looks very similar to the above equation. It is important to note that you 
usually must not be concerned with the value settings of these parameters. 
They must be defined and set to proper values in the transistor models defined 
in the technology library.

The combined PSD for flicker and thermal noise is shown in Figure 46 on 
page 268.

PSD

¶
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2

f  KfI
Af CoxL

2
f
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2
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HSPICE® User Guide: Advanced Analog Simulation and Analysis 267
K-2015.06



Chapter 10: Simulation of Random Noise
Noise Types
Figure 46 PSD of combined thermal and flicker noise

Note that flicker noise is the dominant source of noise at lower frequencies and 
as its magnitude shrinks at higher frequencies, the thermal noise will become 
the dominant source of noise. Thermal noise is also referred to as “the noise 
floor” because that is the minimum possible amount of noise in a circuit.

Shot Noise
Shot noise is only generated by semiconductor elements and is caused by 
random passage of electrons and holes across a potential barrier, such as a 
P-N junction. Shot noise is often represented by a current PSD, known as 
“Schottky formula”:

Where,
q = 1.6 x 10-19 C is the charge of an electron.
I is the bias current of the junction and can be Ic, collector bias currents for a 
BJT transistor.

Shot noise PSD curves are flat across all frequencies.

PSD



Thermal noise
floor

I
2
n f  2qI= A

2
Hz
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Summary
The three major types of noise in an analog circuit are:
■ Thermal noise, also known as white noise, is generated by resistors in the 

circuit. Thermal noise is a function of conductor resistance.
■ Flicker noise, also called 1/f noise, is mainly generated by transistors in a 

circuit. It is a function of component geometry and its magnitude drops as 
frequency increases.

■ Shot noise is caused by bias currents in the base and collector of BJT 
transistors.

Component Noise Models and HSPICE Noise 
Simulation

The following sections describes how HSPICE models noisy elements, 
calculates the total output noise PSD, obtain the total output noise voltage PSD, 
and how the RMS output noise voltage can be deduced from the total output 
noise PSD.

The following topics are discussed:
■ Element Noise Models
■ HSPICE Noise Simulation
■ Summary

Element Noise Models
Each resistor, diode, and transistor in a circuit generates at lease some type of 
inherent noise. HSPICE models the noise generating elements in a circuit as a 
noiseless element combined with a noise current or voltage source with a 
known PSD. Figure 47 includes the listing of the four noise generating elements 
in analog circuits and their equivalent noise models.
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Figure 47 Noise generating circuit elements and their noise models

The noise model for a diode is identical to that of a resistor with a resistance of:

Where,
Rd is the equivalent resistance of the diode.
k is Boltzmann’s constant.
q is the charge of an electron.
Id is the bias current of the diode.

HSPICE Noise Simulation
To perform noise analysis in HSPICE, a .NOISE statement along with an .AC 
statement must be used. The .NOISE syntax for the noise analysis is:

*
R

Thermal noise

Flicker noise

Thermal noise voltage for

V2 (f) Channel resistance

I2 (f)

V2 (f)

Shot noise current due

A B

C

Resistor and Diode noise model MOS noise model

BJT noise model

*

V2 (f)

* I2 (f)

I2 (f)

Combined flicker noise and

thermal noise voltage

voltage

voltage

Base-Emitter series resistance to Collector bias current

Base bias current shot noise

Rd kT qId=
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.NOISE v(out ,ref) src interval

The frequency points at which the noise calculations are performed are the 
same points defined by the .AC statement. The noise calculations for each 
frequency point will be output to the listing file.

RX Transfer Function
RX is the transfer function from the noise source to the circuit output. Since the 
noise sources for built-in devices are all current sources with PSDs (power 
spectral densities) in A2/Hz, and the output is usually a voltage (specified 
on .NOISE statements), RX is a transimpedance (V/A).

The total output noise voltage is the integrated output noise. The output noise 
at a given frequency is a PSD in V^2/Hz. This can be integrated over the 
frequency range (using the .AC command) to get a total output noise in V^2, if 
you take the square root, you get the total output noise in V.

For example (see Example 48 on page 271), take a simple common source 
NMOS amplifier to show how HSPICE calculates the output noise. Note that in 
this example, the output port element (P2) is used as a pull-up resistor in the 
circuit. For the path to the demo file, noise_app_orig.sp, see Applications 
of General Interest Examples in HSPICE User Guide: Basic Simulation and 
Analysis. The full path to this example is $installdir/demo/hspice/
apps/noise_app_orig.sp.

Figure 48 A common source NMOS amplifier and its netlist

The first step in the noise analysis is to set all the signal voltage and current 
sources to 0. The equivalent circuit for our example, after setting vdd=0, is 

Rs

vdd

sInput

d

Port 1

Output

Port 2

* A Common Source NMOS amplifier
.options list post
.model n_tran nmos level=49 version=3.22 AF=.826 KF=4e-29

vdd vdd 0 DC=5
p1 in 0 port=1 ac=0.1 dc=2.1 z0=50
p2 out vdd port=2 z0=20k
rs in g1 50
m1 out g1 0 0 n_tran l=1.5u w=40u
.ac dec 10 10Meg 10G
.noise v(out) p1 1
.print ac v(out) onoise

.end
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shown in Figure 49.

Figure 49 Equivalent circuit after independent V and I sources are set 0

HSPICE models each resistor, diode, and transistor with its noise model, and 
then calculates the output voltage resulting from the noise signal, one element 
at a time.

To start, it replaces Rs with its noise model, as shown in Figure 50, and 
calculates the PSD of the noise voltage as seen at the output port. HSPICE 
reports an output voltage PSD of 85.4443x10-18 V2/Hz, caused by the thermal 
noise model of Rs. The value rx shown is used to obtain the voltage transfer 
function from the Rs noise source to the output port:

HSPICE uses rx for its internal calculations and you need not pay particular 
attention to it.

Figure 50 Circuit noise model for Rs and analysis output at 100 MHz

The circuit for calculating the PSD of output noise generated by the NMOS is 
given in Figure 51.

Rs

s

Input
d

Output

50

Voltage Transfer Function rx
output_voltage

element_noise_current
------------------------------------------------------==
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Figure 51 Circuit noise model for NMOS and analysis output

The total PSD at 100 MHz will be the sum of all individual PSDs (the square of 
noise signals add):

It is common to represent the total noise generated by a circuit as the 
equivalent input noise (otherwise called input referred noise). The input referred 
noise voltage/current is the voltage/current that if applied at the input of the 
noise-free circuit, would have generated the same output voltage as the total 
output noise voltage.

Rs

s

Input
d

Output

50
+ –

V
n 

(f
)

frequency = 100.0000x      hz

 *** resistor squared noise voltages (sq v/hz)

 element     0:rs        

    total   85.4443a    

       rx 509.3796 

Vn f 2
85.443 10

18–=

Rs

s

Input
d

Output

50
+ –

Vn (f)
In(f)

 frequency = 100.0000x      hz

 

** mosfet squared noise voltages (sq v/hz)

 element     0:m1

       rd    0.

       rs    0.

       id    3.4544f

       rx   18.4636k

       fn   14.7854a

    total   3.4691f

Vn f 2
3.4691 10

15–=

V
2
nTotal f 100MHz=  85.4443 10

18– 3.4691 10
15–

3.5546 10
15–=+= V

2
Hz

VnTotal f 100MHz=  3.5546 10
15– 59.6204 10

9–= = V Hz
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To calculate the equivalent input noise signal, you have to obtain the transfer 
function from input to output. For the example circuit above, the transfer 
function will be:

In the case where the input source is a current source instead of a voltage 
source, the TF would be the ratio of output voltage over input current. 

The equivalent input noise voltage (or current in case of the input current 
source) is given by:

The input referred noise is useful to calculate the circuit's “noise figure,” which 
is a measure of how much a circuit is generating inherent noise, a large noise 
figure indicates a high level of noise generation by the circuit. Noise figure is 
defined as:

Where Noise Factor is given by:

Example 52 on page 275 shows the HSPICE noise analysis summary output 
for the above circuit. 

TF
Output Voltage
Input Voltage
------------------------------------- V out 

VS
-----------------= =

Input Referred Noise
Total Output Noise Voltage

TF
------------------------------------------------------------------=

Noise Figure 10 log Noise Factor  =

Noise Factor 1
Input Referred Inherent Noise Power
Power of External Noise at the Input
-----------------------------------------------------------------------------------------+=
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Figure 52 Noise summary for noise performed at 100 MHz

Summary
To summarize,
■ HSPICE model elements as noiseless elements connected to noise-

generating voltage and current sources.
■ To calculate the total output noise PSD, set all signal and supply sources to 

zero. The tool then, one-by-one, replaces the noise generating elements 
with their equivalent noise models, and calculates the noise voltage PSD at 

**** total output noise voltage         =   3.5546f      sq v/hz

                                                           =   59.6204n     v/rt hz

    

      transfer function value:

        v(out)/vs                        =  10.1876

      equivalent input noise at vs       =   5.8523n      /rt hz

**** the results of the sqrt of integral (v**2 / freq)

      from fstart up to 100.0000x     hz. using more freq points

      results in more accurate total noise values.

 **** total output noise voltage   =  570.7076u      volts

 **** total equivalent input noise =   55.7041u

V
2
n f 100MHz= 

Vn f 100MHz= 

TF
Vn f 100MHz=  TF

Vrms Vn
2

f  fd
10Meg

100Meg

=

Vrms TF 
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the output caused by the element's noise source (similar to an .AC 
analysis). It then repeats the same process for the next noise-generating 
element.

■ Once the output noise PSDs are calculated for all elements, HSPICE adds 
the PSDs together to obtain the total output noise voltage PSD.

■ The RMS output noise voltage and the input referred noise can be deduced 
from the total output noise PSD.
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Applications

This Part contains the following chapters/topics.
■ Chapter 11, Behavioral Modeling
■ Chapter 12, Modeling Filters and Networks
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11Behavioral Modeling

Describes how to create and use behavioral models.

Behavioral modeling substitutes more abstract, less computationally intensive, 
circuit models for lower-level descriptions of analog functions. These simpler 
models emulate the transfer characteristics of the circuit elements that they 
replace, but with increased efficiency. Behavioral modeling substantially 
reduces the actual simulation time per circuit. At the level of an entire design 
and simulation cycle, design efficiency greatly increases, and you can complete 
a design (from concept to marketable product) in substantially less time. 

HSPICE ships numerous examples for your use; see Behavioral Application 
Examples for paths to demo files.

These topics are presented in the following sections:
■ Behavioral Design Process
■ Using Behavioral Elements
■ Voltage and Current Controlled Elements
■ Modeling with Digital Behavioral Components
■ Calibrating Digital Behavioral Components
■ Analog Behavioral Elements
■ Op-Amps, Comparators, and Oscillators
■ Phase-Locked Loops (PLL)
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Behavioral Design Process

HSPICE provides specific modeling elements that promote the use of 
behavioral and mixed signal techniques. These models include controllable 
sources that you can configure, to emulate op-amps, single-input or multi-input 
logic gates, or any system with a continuous algebraic transfer function. 
■ You can create these functions in algebraic form, or in the form of coordinate 

pairs. 
■ You can use digital stimulus files, to enter logic waveforms into the 

simulation deck, rather than using piecewise linear sources to enter digital 
waveforms. 

■ You can define clock rise times, fall times, periods, and voltage levels.

With HSPICE behavioral models, the typical design cycle for a circuit or system 
is:

1. Fully simulate a subcircuit, with pertinent inputs, characterizing its transfer 
functions.

2. Determine which HSPICE elements, singularly or in combination, 
accurately describe the transfer function.

3. Reconfigure the subcircuit appropriately.

4. After you verify the behavioral model, substitute the model into the larger 
system, in place of the lower-level subcircuit.

Using Behavioral Elements

Behavioral elements offer a higher level of abstraction, and faster processing, 
compared to a lower-level description of an analog function. 
■ System-level designers can use function libraries of subcircuits, containing 

these elements, to describe parts such as:

• Op-amps

• Vendor-specific output buffer drivers

• TTL drivers

• Logic-to-analog converters
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• Analog-to-logic simulator converters
■ Integrated Circuit designers can use these elements to reduce design time, 

especially when designing filters and signal processors.

Behavioral elements use an arbitrary algebraic equation, as a transfer function 
to either a voltage (E) or current (G) source. This function can include:
■ Nodal voltages
■ Element currents
■ Time
■ Other parameters which you define

A good example of this is a VCO, where control is the input voltage node, 
and osc is the oscillator output:

Evco osc 0 VOL=’voff+gain*\\
SIN(6.28*freq*(1+V(control))*TIME)’

You can use subcircuits to encapsulate a function. 
■ If you split the function definition from the use, you create a hierarchy. 
■ If you pass parameters into the subcircuit, you create a parameterized cell. 
■ If you create a full transistor cell library, and a behavioral representation 

library, you can include mixed-signal functions within HSPICE. 

You can use the built-in OPTIMIZE function to calibrate the behavioral 
elements from a full transistor circuit.
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Figure 53 Netlisting by Signal Mode

The following sections discuss these topics:
■ Controlled Sources
■ Libraries

Controlled Sources 
Controlled sources model both analog and digital circuits, at the behavioral 
level. This reduces simulation times for mixed signals, and models system-level 
operations. Controlled sources also model gate-switching action, for behavioral 
modeling of digital circuits. For analog behavioral modeling, you can program 
the controlled sources as mathematical functions. These functions can be 
either linear or non-linear, depending on other nodal voltages and branch 
currents.

Libraries
The Discrete Device Library contains standard industry IC components. You 
can use this library to model board-level designs that contain any of the 
following:
■ Transistors
■ Diodes

 Optimization

Accuracy

Signal Mode

Circuit Representation

High Level Speed

Full
Transistor
Subcircuit

Behavioral
Subcircuit
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■ Opamps
■ Comparators
■ Converters
■ IC pins
■ Printed circuit board traces
■ Coaxial cables

You can also model drivers and receivers, to analyze transmission line effects, 
power line noise, and signal line noise.

Voltage and Current Controlled Elements

HSPICE provides two voltage-controlled and two current-controlled elements, 
known as E, F, G, and H-elements. For a description of these elements, see 
Sources and Stimuli, in HSPICE User Guide: Basic Simulation and Analysis.

Modeling with Digital Behavioral Components

The following sections show how to model, using digital behavioral components 
and discuss these topics:
■ Behavioral AND and NAND Gates
■ Behavioral D-Latch
■ Behavioral Double-Edge Triggered Flip-Flop

Behavioral AND and NAND Gates
The following example uses a G Element to model a 2-input AND gate. An 
E Element models a two-input NAND gate. Figure 54 shows the resulting 
waveforms. This example is located in the following directory:

$installdir/demo/hspice/behave/behave.sp
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Figure 54 NAND/AND Gates

Behavioral D-Latch
This example uses one input NAND gates, and NPWL/PPWL functions, to model 
a D flip-flop.
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Figure 55 D-Latch

Example
This example is located in the following directory:

$installdir/demo/hspice/behave/dlatch.sp

The file contains the following examples:
■ Waveforms
■ Subcircuit Definitions for Behavioral N-Channel MOSFET
■ Behavioral P-Channel MOSFET

QB

Q

CLKN

CLK

CLKN

CLK

DATA

A

RX

D – LATCH
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Figure 56 D-Latch Response

Behavioral Double-Edge Triggered Flip-Flop
This example uses the D_LATCH subcircuit from the previous example, and 
several NAND gates, to model a double-edged, triggered flip-flop.

Example
This example is located in the following directory:

$installdir/demo/hspice/behave/det_dff.sp
■ Main Circuit
■ Subcircuit Definitions
286 HSPICE® User Guide: Advanced Analog Simulation and Analysis
K-2015.06



Chapter 11: Behavioral Modeling
Modeling with Digital Behavioral Components
Figure 57 Double-Edge Triggered Flip-Flop

Figure 58 Double Edge Triggered Flip-Flop Response

D-Latch

Q

QB

W3

W2

D-Latch

Clock
Clock Q

QD

Clock
Clock Q

QD

Clck

D

Clckn

R1

W1

R2

Q3
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Calibrating Digital Behavioral Components
■ Building Behavioral Lookup Tables
■ Optimizing Behavioral CMOS Inverters
■ Optimizing Behavioral Ring Oscillators

Building Behavioral Lookup Tables
The following simulation demonstrates an ACL family output buffer, with 2ns 
delay, and 1.8ns rise and fall time. It also shows ground and VDD supply 
currents, and internal ground bounce due to the package.

Figure 59 ACL Family Output Buffer

The following commands automatically measure the datasheet quantities, such 
as TPHL, risetime, maximum power dissipation, and ground bounce.

vdd

D
OUT
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.MEAS tphl trig v(D) val=’.5*vdd’ rise=1
+ targ v(out) val=’.5*vdd’ fall=1
.MEAS risetime trig v(out) val=’.1*vdd’ rise=1
+ targ v(out) val=’.9*vdd’ rise=1
.MEAS max_power max power
.MEAS bounce max v(xin.v_local)

The inverter consists of capacitors, diodes, one-dimensional lookup table 
MOSFETs, and a special low-pass delay element. A property of the low-pass 
delay element, attenuates pulses that are narrower than the delay value.

Figure 60 Inverter

Subcircuit Definition
.subckt inv in out v+ v-
cout+ out_l v+ 2p
cout- out_l v- 2p
xmp out_l inx v+ pmos
xmn out_l inx v- nmos
e inx v- delay in v- td=1n
din v- in dx
.model dx d cjo=2pf
chi in v+ .5pf
.ends inv

Delay

V+

V-

OUTIN
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One-dimensional lookup tables represent the behavioral MOSFETs.

Behavioral N-Channel MOSFET
The following example is a Drain Gate source.

.subckt nmos 1 2 3
gn 3 1 VCR npwl(1) 2 3 scale=0.008
* VOLTAGE RESISTANCE
+ 0. 495.8840g
+ 200.00000m 456.0938g
+ 400.00000m 141.6902g
+ 600.00000m 7.0624g
+ 800.00000m 258.9313meg
+ 1.00000 6.4866meg
+ 1.20000 842.9467k
+ 1.40000 21.6882k
+ 1.60000 170.8367k
+ 1.80000 106.4944k
+ 2.00000 72.7598k
+ 2.20000 52.4632k
+ 2.40000 38.5634k
+ 2.60000 8.8056k
+ 2.80000 5.2543k
+ 3.00000 4.3553k
+ 3.40000 3.4950k
+ 3.80000 2.0534k
+ 4.20000 2.7852k
+ 4.60000 2.5k
+ 5.0 2.3k
.ends nmos

The preceding example is a voltage-versus-resistance table. It shows, for 
example, that the resistance at 5 V is 2.3 kohms.

Creating a Behavioral Inverter Lookup Table
You can create an inverter lookup table in three simple steps: 

1. Simulate an actual transistor level inverter, using a DC sweep of the input. 

2. Print the V/I output, for the output pullup and pulldown transistors. 

3. Copy the printed output into the volt lookup table element, for the controlled 
resistor.

The following test file, inv_vin_vout.sp, calculates RN (the effective pulldown 
resistor transfer function) and RP (the pullup transfer function).
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■ RN is calculated as Vout/I(mn), where mn is the pulldown transistor. 
■ RP is calculated as (VCC-Vout)/I(mp), where mp is the pullup transfer 

function.

The actual calculation uses a more accurate method, to obtain the series 
resistance of the transistor, as in Figure 61.

Figure 61 VIN versus VOUT

The first graph in Figure 62 shows VIN versus VOUT.

The second graph shows the computed transfer resistances (RP and RN), as a 
function of VIN.

Vdx

Vsx

Vd
Vs

RD

RS

Rtot= (Vds-Vsx)/Ids

Rtot= RD + RS + (vd-vs)/Ids

RD = 1/LV16(mn)

RS = 1/LV17(mn)

(vd-vs) = LX3(mn)

Ids = LX4(mn)

For greater accuracy:
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Figure 62 RP and RN as a Function of VIN

The HSPICE file used to calculate RP and RN is located in the following 
directory:

$installdir/demo/hspice/behave/inv_vin_vout.sp

Optimizing Behavioral CMOS Inverters
To calibrate behavioral models, run HSPICE on the full transistor version of a 
cell. Then optimize the behavioral model to this data.

V
ol

t [
Li

n]
5.0

4.0

3.0

2.0

1.0

Volts [Lin]

INV.VCB.TOB
OUT

V
ol

t [
Li

n]

9.9e-1

110.4X
10.0X

1.4X
110.4K

10.0K
1.0K

500.0

9.0e-1
1.0e-1
1.0e-1

10.4
1.4

0 1.0 2.0 3.0 4.0 5.0

INV.VCB.TOB
RB

RB110.4
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Figure 63 CMOS Inverter and its Equivalent Circuit

In this example, HSPICE uses the LEVEL 3 MOSFET model to simulate the 
CMOS inverter. 

1. To obtain the input and output resistances, HSPICE performs a .TF transfer 
function analysis (.TF V(out) Vin). 

2. To obtain the transfer function table of the inverter, HSPICE performs the DC 
analysis, and sweeps the input voltage (.DC Vin 0 5 .1). 

3. HSPICE uses this table, in the PWL element, to represent the transfer 
function of the inverter. 

4. A voltage-controlled PWL capacitance adjusts the rise and fall time of the 
inverter, in the equivalent circuit, across the output resistance. 

5. The delay element obtains the propagation delay, across the output RC 
circuit. 

6. HSPICE uses the inverter in a ring oscillator, to adjust the input capacitance. 

7. HSPICE uses optimization analysis for all adjustments in this example. The 
data file and the results are shown.

Example
This example is located in the following directory:

$installdir/demo/hspice/behave/invb_op.sp

outin

in out

CoutRoutRinCin 1KEt

VCC

Gd
HSPICE® User Guide: Advanced Analog Simulation and Analysis 293
K-2015.06



Chapter 11: Behavioral Modeling
Calibrating Digital Behavioral Components
The invb_op.sp file contains the following sections:
■ Subcircuit Definition
■ Inverter Using Model
■ Optimization Results
■ Optimization Completed
■ Optimized Parameters OPTINV
■ Optimize Results Measure Names and Values

Figure 64 CMOS Inverter Response

Optimizing Behavioral Ring Oscillators
To optimize behavioral ring oscillator performance, review the examples in this 
section.

Example Five-Stage Ring Oscillator
This example is located in the following directory:

$installdir/demo/hspice/behave/ring5bm.sp

The ring5bm.sp file also contains the results of the five-stage ring oscillator 
example.
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Figure 65 Ring Oscillator Response

Analog Behavioral Elements

The following components are examples of analog behavioral building blocks. 
Each component demonstrates a basic HSPICE feature:
■ integrator: ideal op-amp E-element source
■ differentiator: ideal op-amp E-element source
■ ideal transformer: ideal transformer E-element source
■ AM modulator: algebraic G-element source
■ data sampler: algebraic E-element source

HSPICE uses an ideal op-amp to model the integrator circuit, and a VCVS to 
adjust output voltage. The following equation calculates output of the integrator:

Vout
gain

Ri Ci
----------------– Vin

0

t
 dt Vout 0 + =
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Figure 66 Integrator

Figure 67 Response of Integrator to a Triangle Waveform

Example
This example is located in the following directory:

$installdir/demo/hspice/behave/integ.sp

The integ.sp file also contains the following sections:

-

+
•

CiRi

Vin Egain
Vout

out1 -
+

-
+
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■ Control and options
■ Subcircuit definition
■ Circuit

The following sections discuss these topics:
■ Behavioral Differentiator
■ Ideal Transformer
■ Behavioral Amplitude Modulator
■ Behavioral Data Sampler

Behavioral Differentiator
HSPICE uses an ideal op-amp to model a differentiator, and a VCVS to adjust 
the magnitude and polarity of the output. The following equation calculates the 
differentiator response:

For a high-frequency signal, the output of a differentiator can overshoot the 
edges. To smooth this out, you can use a simple RC filter.

Figure 68 Differentiator

Example
This example is located in the following directory:

$installdir/demo/hspice/behave/diff.sp

Vout gain– Rd Cd
td

d Vin  =

R

C-

+
•

Cd
Rd

Vin Egain
Vout

out1 -
+

-
+
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The diff.sp file also contains the following sections:
■ Control and Options
■ Subcircuit Definition
■ Circuit

Figure 69 Response of a Differentiator to a Triangle Waveform

Ideal Transformer
The following example uses the ideal transformer to convert 8-ohms 
impedance of a loudspeaker, to 800 ohms impedance. This is a proper load 

value for a power amplifier, .

MATCHING IMPEDANCE BY USING IDEAL TRANSFORMER
E OUT 0 TRANSFORMER IN 0 10 
RL OUT 0 8
VIN IN 0 1
.OP
.END

Rin n
2

RL=
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Figure 70 Ideal Transformer Example

Behavioral Amplitude Modulator
This example, which uses a G-element as an amplitude modulator with a pulse

waveform carrier, is located in the following directory:

$installdir/demo/hspice/behave/amp_mod.sp

See also AM Modulation in HSPICE User Guide: Basic Simulation and 
Analysis.

+

-

V1

IN OUT

RLVIN

10:1

Ideal

I1 I2

V1 = k.V2
I2 = -k.I1

-
+

+

-

V2
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Figure 71 Amplitude Modulator Waveforms

Behavioral Data Sampler
An example of sampling behavioral data is located in the following directory:

$installdir/demo/hspice/behave/sampling.sp:
300 HSPICE® User Guide: Advanced Analog Simulation and Analysis
K-2015.06



Chapter 11: Behavioral Modeling
Op-Amps, Comparators, and Oscillators
Figure 72 Sampled Data

Op-Amps, Comparators, and Oscillators
■ 741 Op-Amp from Controlled Sources
■ Inverting Comparator with Hysteresis
■ Voltage-Controlled Oscillator (VCO)
■ LC Oscillator

741 Op-Amp from Controlled Sources
To model the A741 operational amplifier, use PWL controlled sources. A 
piecewise linear CCVS (source “h”) limits the output to ±15 V.
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Figure 73 Operational Amplifier

Example
This example is located in the following directory:

$installdir/demo/hspice/behave/op_amp.sp

The op_amp.sp file also contains the following sections:
■ Main Circuit
■ RC Circuit With Pole At 9 MHz
■ Output Limiter to 15 V

in+

in-

rin

rin+

rin-

g c r

r1

c1 c3 c4c2 heoe

outout1 out2

I(g) = F(Vin+ - Vin-)
e = V(out1)
eo = V(out2)
V(out) = F (  I(h) )

-
+

-
+

-
+

r2 r0r3 r4
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Figure 74 AC Analysis Response

Figure 75 Transient Analysis Response
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Inverting Comparator with Hysteresis
A piecewise-linear VCVS models an inverting comparator.

Figure 76 Inverting Comparator with Hysteresis

Two reference voltages correspond to the volow and vohigh voltages of Ecomp:

When Vin exceeds Vrefhigh, the Vout output changes to Volow. For Vin values 
less than Vreflow, the output changes to Vohigh.

An example is located in the following directory:

$installdir/demo/hspice/behave/compar.sp

+
-

Ecomp

Rf
Rb Cb

a

b

Vin

Vout

Vohigh

Volow

Vout

Vab

1u-2u

Open loop characteristic of
comparator Ecomp

+
-

Vreflow
Volow Rb

Rb Rf+
----------------------------= Vrefhigh

Vohigh Rb
Rb Rf+

------------------------------=
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Figure 77 Response of Comparator

Voltage-Controlled Oscillator (VCO)
In this example, a one-input NAND (functioning as an inverter) models a five-
stage ring oscillator. PWL capacitance switches the load capacitance of this 
inverter from 1pF to 3 pF. As the simulation results indicate, the oscillation 
frequency decreases, as the load capacitance increases.

Example
This example is based on demonstration netlist vcob.sp, which is available in 
directory $<installdir>/demo/hspice/behave. This file also contains a sample 
subcircuit definition.

VOB [Lin]

COHPAE.TRO
VIN

V
ol

t [
Li

n]
1.0

V
ol

t [
Li

n]
V

ol
t [

Li
n]

VCN [Lin]

Time [Lin]

COHPAE.TRO
VOUT

COHPAE.TRO
VOUT

VOUT

2.000 500.0 1.00 1.90

1.0-3.0 -2.0 -1.0 0 3.02.0

0

-1.0

-2.0

0

5.0

0

0

1.0-3.0 -2.0 -1.0 0 3.02.00
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vcob.sp voltage controlled oscillator using pwl functions
.option post
.global ctrl
.tran 1n 100n
.ic v(in)=0 v(out1)=5
.probe tran v(in) 
x1 in out1 inv
x2 out1 out2 inv
x3 out2 out3 inv
x4 out3 out4 inv
x5 out4 in inv
vctrl ctrl 0 pwl(0,0 35n,0 40n,5)
*
* macro definitions
*
.subckt inv in out rout=1k
gcout out 0 pwl(1) ctrl 0 level=2 delta=.01
+ 4.5 1p
+ 4.6 3p
rout out 0 rout
gn 0 out nand(1) in 0 scale='1.0k/rout'
+ 0. 5.00ma
+ 0.25 4.95ma
+ 0.5 4.85ma
+ 1.0 4.75ma
+ 1.5 4.42ma
+ 3.5 1.00ma
+ 4.000 0.50ma
+ 4.5 0.20ma
+ 5.0 0.05ma
.ends inv
*

.end
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Figure 78 Voltage Controlled Oscillator Response

LC Oscillator
The initial capacitor charge is 5 V. The value of capacitance is the function of 
voltage, at node 10. The capacitance value becomes four times higher, at the t2 
time. The following equation calculates the frequency of this LC circuit:

At the t2 time, the frequency must be halved. The amplitude of oscillation 
depends on the condition of the circuit, when the capacitance value changes. 

The stored energy is:

At the t2 time, when V=0, if C changes to A C, then: 

freq
1

6.28 L C
-------------------------------=

E 0.5 C V 2  0.5 L I
2  +=

E 0.5 C Vm
2

I  0= = E 0.5 L Im
2

V  0= =

0.5 L Im
2  0.5 Vm

2 0.5 A C  Vm2 = =
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and from the above equation:

The second condition that HSPICE considers is when V=Vin, if C changes to A 
C, then:

Therefore, HSPICE modifies the voltage amplitude, between Vm/sqrt(A) and 
Vm/A, depending on the circuit condition when the circuit switches. This 
example tests the CTYPE=0 and 1 results. The result for CTYPE=1 must be 
correct because capacitance is a function of voltage at node 10, not a function 
of the voltage across the capacitor itself.

Example
This example is based on demonstration netlist calg2.sp, which is available in 
directory $installdir/demo/hspice/behave:

* in this example the ctype 0 and 1 is tested. the result for
* ctype=1 must be correct because capacitance is function of
* voltage at node 10, not voltage across itself.
*
.option post
.ic v(1)=5 v(2)=5
c1 1 0 c='1e-9*v(10)' ctype=1
l1 1 0 1m
*
c2 2 0 c='1e-9*v(10)' ctype=0
l2 2 0 1m
*
v10 10 0 pwl(0sec,1v t1,1v t2,4v)
r10 10 0 1

Vm Vm

A
--------=

Qm A Vm=

Qm Qm=

C Vm A C Vm =

Vm Vm
A
--------=
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Op-Amps, Comparators, and Oscillators
Figure 79 Correct Result Corresponding to CTYPE=1

Figure 80 Incorrect Result Corresponding to CTYPE=0

COLOR.TOP
VCL

V
ol

t [
Li

n]

Time [Lin]

4.0
V

ol
t [

Li
n]

2.0

0

-2.0

-4.0

10.0

5.0

0

-5.0

-10.0 0 10.0 20.0 30.0 40.0 50.0 60.0

COLOR.TOP
Q1

COLOR.TOP
VC2

V
ol

t [
Li

n]

Time [Lin]

4.0

V
ol

t [
Li

n]

2.0

0

-2.0

-4.0

30.0

20.0

10.0

0

-10.0
0 10.0 20.0 30.0 40.0 50.0 60.0

COLOR.TOP
Q2

40.0
HSPICE® User Guide: Advanced Analog Simulation and Analysis 309
K-2015.06



Chapter 11: Behavioral Modeling
Phase-Locked Loops (PLL)
Phase-Locked Loops (PLL)

The following sections explain material having to do with phase-locked loops.

These are the topics discussed:
■ Phase Detector, with Multi-Input NAND Gates
■ Phase Locked Loop Modeling

Phase Detector, with Multi-Input NAND Gates
This circuit uses behavioral elements, to implement the inverters, with 2, 3, and 
4 input NAND gates.

Figure 81 Phase Detector

Example
An example is located in the following directory:

HR

Q1

Q2

Q3

Q4

R

Y

NY

YN

H4

U1

D1

V2

D2
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$installdir/demo/hspice/behave/pdb.sp

This file also contains sample subcircuit definitions.

Figure 82 Phase Detector Response

Phase Locked Loop Modeling
A Phase-locked Loop (PLL) circuit synchronizes to an input waveform, within a 
selected frequency range. This returns an output voltage that is proportional to 
variations in the input frequency. It has three basic components: 
■ A voltage-controlled oscillator (VCO), which returns an output waveform that 

is proportional to its input voltage.
■ A phase detector, which compares the VCO output to the input waveform, 

and returns an output voltage, depending on their phase difference.
■ A loop filter, which filters phase detector voltage. Returns output voltage, 

which forms the VCO input (and external voltage output) of the PLL.
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Phase-Locked Loops (PLL)
Figure 83 Behavioral Phase-Locked Loop

The PLL can be implemented using behavioral elements (Figure 83) or using 
bipolar transistors (Figure 84 on page 313 and Figure 85 on page 314). 

The netlist for the behavioral PLL is the pll_bvp.sp file and the netlist for the full 
bipolar PLL is pll.sp file. The netlist for the full bipolar PLL contains the loop 
filter and the output circuit. Both netlist files are available in directory:
 $installdir/demo/hspice/behave. 

The PLL transfer function shows a linear region of voltage vs. (periodic) time 
which is defined as the “lock” range.

 The results of transient simulations (Figure 84) show minimal difference 
between implementations. However, run time statistics show that the behavioral 
model reduces simulation time, to one-third that of the full circuit.

If you use this PLL in a larger system simulation (for example, an AM tracking 
system), include the behavioral model. This model substantially reduces 
simulation run time, and still accurately represents the subcircuit.

Phase Detector Loop Filter

Voltage Controlled Oscillator

Out

OutB Rloop

Rloop Cloop

InSignal Out

InInB

InBSignal OutB
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Phase-Locked Loops (PLL)
Figure 84 Behavioral (PLL_BVP Curve) vs. Bipolar (PLL_Curve) Simulation
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Phase-Locked Loops (PLL)
Figure 85 Bipolar Phase Detector
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12Modeling Filters and Networks

Describes modeling filters and networks, including Laplace transforms.

When you apply Kirchhoff’s laws to circuits that contain energy storage 
elements, the result is simultaneous differential equations, in the time domain. 
A simulator must solve these equations, to analyze the circuit’s behavior. 
Solving any equation that is higher than first order can be difficult, and classical 
methods cannot easily solve some driving functions.

In both cases, to simplify the solution, you can use Laplace transforms. These 
transforms convert time domain equations, containing integral and differential 
terms, into algebraic equations in the frequency domain.

HSPICE ships numerous examples for your use; see Filters Examples in 
HSPICE User Guide: Basic Simulation and Analysis for paths to demo files.

The following sections discuss these topics:
■ Transient Modeling
■ Using G- and E-elements
■ Laplace and Pole-Zero Modeling
■ Modeling Switched Capacitor Filters
■ References

Transient Modeling

The Laplace transform method provides an easy way to relate a circuit’s 
behavior, in time and frequency-domains. This facilitates simultaneous work in 
those domains.
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Transient Modeling
The algorithm that Synopsys HSPICE uses for Laplace and pole/zero transient 
modeling, offers better performance than the Fast Fourier Transform (FFT) 
algorithm. To invoke Laplace and pole/zero transient modeling, use a LAPLACE 
or POLE function call in a source element statement.

Laplace transfer functions are especially useful in top-down system design, 
when you use ideal transfer functions instead of detailed circuit designs. In 
HSPICE, you can also mix Laplace transfer functions, with transistors and 
passive components. Using this capability, you can model a system as the sum 
of the contributing ideal transfer functions. You can then progressively replace 
these functions with detailed circuit models, as they become available. 
Conventional uses of Laplace transfer functions include control systems, and 
behavioral models that contain non-linear elements.

Laplace transforms reduce the time needed to design and simulate large 
interconnect systems, such as clock distribution networks. You can use 
asymptotic waveform evaluation (AWE) and other methods, to create a Laplace 
transfer function model. The AWE model can use only a few poles to represent 
the large circuit. You can input these poles through a Laplace transform model, 
to closely approximate the delay and overshoot characteristics of many 
networks, in a fraction of the original simulation time.

You can use pole/zero analysis to help determine the stability of the design. 
You can use the POLE function in HSPICE when the poles and zeros of the 
circuit are specified, or you can use the .PZ statement (see .PZ in HSPICE 
Reference Manual: Commands and Control Options) to derive the poles and 
zeros from the transfer function.

Frequency response is an important analog circuit property. It is normally the 
ratio of two complex polynomials (functions of complex frequencies), with 
positive real coefficients. The form of frequency response can be either the 
locations of poles and zeros, or a frequency table.

The usual way to design complex circuits is to interconnect smaller functional 
blocks of known frequency responses, either in pole/zero or frequency table 
form. For example, to design a band-reject filter, you can interconnect a low-
pass filter, a high-pass filter, and an adder. Study the function of the complex 
circuit, in terms of its component blocks, before you design the actual circuit. 
After you test the functionality of the component blocks, you can use these 
blocks as a reference in optimization techniques, to determine the value of the 
complex element.
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Using G- and E-elements
■ Laplace Transform Function Call
■ Element Statement Parameters
■ Z Transform Function Call
■ G- and E-element Notes
■ Laplace Band-Reject Filter
■ Laplace Low-Pass Filter
■ Circular Convolution Example

Laplace Transform Function Call
Use the G- and E-elements as linear functional blocks, or as elements with 
specific frequency responses.

In the following equations, H(s) denotes the frequency response (also called 
the impulse response), where s is a complex frequency variable ( ). To 
obtain the frequency response, perform an AC analysis, and set AC=1 in the 
input source (the Laplace transform of an impulse is 1). The following 
expression relates the input and output of the G- and E-elements, with 
specified frequency response:

where X is the input, Y is the output, and H is the transfer function, at the f 
frequency.

AC analysis uses the above relation, at any frequency, to determine the 
frequency response. For operating point and DC sweep analysis, the relation is 
the same, but the frequency is zero.

The transient analysis is more complicated than the frequency response. The 
output is a convolution of the input waveform, with the impulse response h(t):

In discrete form, the output is:

s j2f=

Y j2f  Hj 2f  Xj 2f =

y t  x   h t –  d  

–

t

=
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, k = 0, 1, 2, ...

where you can obtain h(t) from H(f), using the inverse Fourier integral:

The following equation calculates the inverse discrete Fourier transform:

, m = 0, 1, 2, ..., N-1

where N is the number of equally-spaced time points, and  is the time interval 
or time resolution.

For the frequency response table form (FREQ) of the LAPLACE function, 
HSPICE uses a performance-enhanced algorithm, to convert H(f) to h(t). This 
algorithm requires N to be a power of 2. The following equation determines the 
fn frequency point:

,     n = 0, 1, 2, ..., N-1

where n > N/2 represents the negative frequencies. The following equation 
determines the Nyquist critical frequency:

Because the negative frequency responses are the image of the positive 
responses, you need to specify only N/2 frequency points, to evaluate N time 
points of h(t). The larger the value of fc is, the more accurate the transient 
analysis results are. However, for large fc values, the  becomes smaller, and 
computation time increases.

The maximum frequency of interest depends on the functionality of the linear 
network. For example, in a low-pass filter, you can set fc to the frequency at 
which the response drops by 60 dB (a factor of 1000).

y k   x m  h k m–   

m 0=

k

=

h t  H f  ej2ft df

–



=

h m  1
N 
------------ H fn  e

j2nm
N

----------------


n 0=

N 1–

=

fn
n

N 
------------=

fc fN/2
1

2 
-----------= =

H fc 
Hmax

1000
---------------=
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After you select or calculate fc, the following equation can determine :

The following equation calculates the frequency resolution:

which is inversely proportional to the maximum time (N), over which HSPICE 
evaluates h(t). Therefore, the transient analysis accuracy also depends on the 
frequency resolution, or the number of points (N).

You can specify the frequency resolution (DELF) and the maximum frequency 
(MAXF) in the G- or E-element statement. To calculate N, HSPICE uses 2
MAXF/DELF. Next, HSPICE modifies N as a power of 2. The effective DELF is 2
MAXF/N, to reflect the changes in N.

Element Statement Parameters
These keywords are common to the three forms described above:
■ Laplace
■ Pole-zero
■ Frequency response table

Table 8 Element Statement Parameters

Parameter Description

ACCURACY Used only with the frequency response table.

0: Default. This method generates more accurate results and achieves better 
performance.
1: Provides more accurate results for frequency table forms, as compared to 
ACCURACY=0

DELF, DELTA Frequency resolution f. The inverse of DELF is the time window, over which 
HSPICE calculates h(t) from H(s). A smaller DELF value means more accurate 
transient analysis, and longer CPU time. The number of points (N) used to convert 
H(s) to h(t) is N=2MAXF/DELF. Because N must be a power of 2, HSPICE adjusts 
the DELF value. The default is 1/TSTOP. In the G-element, with FREQ and 
ACCURACY = 0 or 1, to perform circular convolution for periodic input, HSPICE 
limits the period. To do this, HSPICE sets DELF = 1/T:T < TSTOP.

 1
2 fc
-----------=

f f1
1

N 
------------= =
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Z Transform Function Call
Z transform functions are used for G- and E-elements (controlled

behavioral sources), which is similar to the Laplace form function (see Laplace 
Transform Function Call for more details).

H(z) denotes the frequency response, where z is a complex frequency variable. 

Its value is: 

where,  and 
MAXF denotes the Nyquist critical frequency.

FREQ Keyword to indicate that a frequency response table describes the transfer function. 
Do not use FREQ as a node name in a G- or
E-element. This is not the same as the FREQ model parameter that plots symbol 
frequency in .PRINT/.PROBE statements (or the deprecated .PLOT/.GRAPH 
statements.

LAPLACE Keyword to indicate that a Laplace transform function describes the transfer 
function. Do not use LAPLACE as a node name, on a G- or E-element.

LEVEL Used only in elements with a frequency-response table. Set this parameter to 1, if 
the element is a high-pass filter.

M G-element multiplier. This parameter represents M G-elements in parallel. Default 
is 1.

MAXF, MAX Maximum, or the Nyquist critical frequency. The larger the MAXF value, the more 
accurate the transient results are, and the longer the CPU time. The default is 

. These parameters apply only when you also use the FREQ 
parameter.

POLE Keyword to indicate that the pole and zero location describes the transfer function. 
Do not use POLE as a node name, on a G- or 
E-element.

SCALE Element value multiplier.

TC1,TC2 First-order and second-order temperature coefficients. The default is zero. The 
temperature updates the 

SCALE:

Table 8 Element Statement Parameters (Continued)

Parameter Description

1024 DELF

SCALEeff SCALE 1 TC1 t TC2 t2++ =

z e
j w 

=

w 2 Pl f fs = fs 2 MAXF=
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Z Transform Syntax
Transconductance H(z):

Gxxx n+ n- ZTRANS in+ in- k0, k1, ..., kn
+ / d0, d1, ..., dm
+ [MAXF=val][SCALE=] [TC1=val] [TC2=val] [M=val]

Voltage Gain H(z):

Exxx n+ n- ZTRANS in+ in- k0, k1, ..., kn
+ / d0, d1, ..., dm
+ [MAXF=val][SCALE=] [TC1=val] [TC2=val]

H(z) is a rational function, in the following form:

You can use parameters to define the values of all coefficients 

Example:

Glow_pass 0 out ZTRANS in 0 0.0317 0.0951
+ 0.0951 0.0317 / 1.0 -1.459 0.9104 -0.1978
Ehigh_pass out 0 ZTRANS in 0 -0.0082 -0.1793
+ 0.6579 -0.1793 -0.0082 / 1

The Glow_pass element statement describes a third-order low-pass filter, with 
the transfer function:

The Ehigh_pass element statement describes a fourth-order highpass filter, 
with the transfer function:

H z  k0 k1 z 1–
k2 z

2– ... kn z
n–+ + + +

d0 d1 z 1–
d2 z

2– ... dm z
m–+ + + +

---------------------------------------------------------------------------------------------=

k0 k1 ...,d0 d1 ...   

H z  0.0317 0.0951
1–

0.0951
2–

0.0317z
3–

+ + +

1.0 1.459z
1–

– 0.9104z
2 –

0.1978z
3–

+ +
------------------------------------------------------------------------------------------------------=

H z  0.0082 0.1793z
1–

– 0.06579z
2–

0.1793z
3–

–+=
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G- and E-element Notes
■ If elements in the data file specify frequency responses, do not use pole/

zero analysis. If you specify MAXF=<par> in a G- or E-element Statement, 
HSPICE warns that it is ignoring MAXF. This is normal.

■ HSPICE performs circular convolution, when G-element ACCURACY = 0 or 
1 (see Figure 92 on page 329).

Laplace Band-Reject Filter
This example models an active band-reject filter, with 3-dB points at 100 and 
400 Hz, and <35 dB of attenuation, between 175 and 225 Hz. The band-reject 
filter contains low-pass and high-pass filters, and an adder. The low-pass and 
high-pass filters are fifth-order Chebyshev, with 0.5-dB ripple.

Figure 86 Band-Reject Filter

Example
This example is located in the following directory:
$installdir/demo/hspice/filters/BandstopL.sp

The BandstopL.sp file also contains a sample band-reject filter circuit.

Low-Pass

High-Pass

Input Output
S
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Figure 87 Frequency Response of the Band-Reject Filter

Figure 88 Transient Response of the Band-Reject Filter to a 250 Hz Sine Wave

Laplace Low-Pass Filter
This example simulates a third-order low-pass filter, with a Butterworth transfer 
function. It also compares the results of both the actual circuit and the 
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functional G Element, with the third-order Butterworth transfer function, for AC 
and transient analysis.

Figure 89 Third-Order Active Low-Pass Filter

The third-order Butterworth transfer function that describes the above circuit is:

The following example is the input listing for the above filter. Parameters set the 
pole locations for the G Element. Also, this listing specifies only one of the 
complex poles. The program derives the conjugate pole. The output of the 
circuit is the out node, and the output of the functional element is outg.

Example
An example of a third-order low-pass Butterworth filter is located in the 
following directory:
$installdir/demo/hspice/filters/Low_Pass.sp

The Low_Pass.sp file also contains a sample circuit description.

In
Out

1 1

1
1.392F 0.2024F

3.546F

+

-

H s  1.0
1.0 s 1+  s 0.5 j2 0.1379+ +  s 0.5 j2 0.1379 –+ 
----------------------------------------------------------------------------------------------------------------------------------------------------=
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Figure 90 Frequency Response of Circuit and Functional Element

Figure 91 Transient Response of Circuit and Functional Element to a Pulse
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Circular Convolution Example
This 30-degree phase-shift filter uses circular convolution. If DELF=10 MHz, 
HSPICE uses inverse fast Fourier transform (IFFT) to obtain the period of time 
domain response for the G-element. This value is based on the input frequency 
table, and is 100 ns. The FREQ G-element performs the convolution integral 
from t - T to t, assuming that all control voltages at t<0 are zero. t is the target 
time point, and T is the period of the time domain response, for the G-element.

In this example, during time points from 0 to 100 ns, HSPICE uses harmonic 
components higher than 10 MHz, due to the input transition at t=0. So the 
circuit does not behave as a phase shift filter. After one period (t>100 ns), 
HSPICE performs circular convolution, based on a period of 100 ns. The 
transient result represents a 30-degree phase shift, for continuous periodic 
control voltage.

Notes
■ V(ctrl): control voltage input.
■ V(expected): node. Represents an ideal 30-degree shifted wave for the 

input.
■ V(test): output of the G Element.

30-Degree Phase Shift Circuit File
This example illustrates a 30-degree phase-shift filter. It is based on 
demonstration netlist phaseshift.sp, which is available in directory $<installdir>/
demo/hspice/filters.
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****
.tran 0.1n 300n
.OPTION post ingold=2 accurate
Vctrl ctrl gnd sin (0 1 10e6)
Gtest gnd test freq ctrl gnd
+ 1.0e00 0 30
+ 1.0e01 0 30
+ 1.0e02 0 30
+ 1.0e03 0 30
+ 1.0e04 0 30
+ 1.0e05 0 30
+ 1.0e06 0 30
+ 1.0e07 0 30
+ 1.0e08 0 30
+ 1.0e09 0 30
+ 1.0e10 0 30
+ MAXF=1.0e9 DELF=10e6
Rtest test gnd 1
Iexpected gnd 3 sin (0 1 10e6 0 0 30)
Vmes 3 expected 0v
Rexpected expected gnd 1
.end

Figure 92 Transient Response of the 30 Degree Phase Shift Filter
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Laplace and Pole-Zero Modeling

The following sections discuss these topics:
■ Laplace Transform (LAPLACE) Function
■ Laplace Transform POLE (Pole/Zero) Function
■ AWE Transfer Function Modeling
■ Y-parameter Line Modeling
■ Comparison of Circuit and Pole/Zero Models

Laplace Transform (LAPLACE) Function
HSPICE provides two types of LAPLACE function calls: one for 
transconductance, and one for voltage gain transfer functions. See Using G- 
and E-elements on page 319 for the general forms, and Element Statement 
Parameters on page 321 for descriptions of the parameters.

General Form of the Transfer Function
To use LAPLACE modeling function, you must find the k0, ..., kn and d0, ..., dm 
coefficients of the transfer function. The transfer function is the s-domain 
(frequency domain) ratio, of the output for a single-source circuit, to the input, 
with initial conditions set to zero. The following equation represents the Laplace 
transfer function:

where:
■ s is the complex frequency, j2f.
■ Y(s) is the Laplace transform of the output signal.
■ X(s) is the Laplace transform of the input signal.

Note: To obtain the impulse response H(s), HSPICE performs AC 
analysis, where AC=1 represents the input source. The 
Laplace transform of an impulse is 1. For an element with an 
infinite response at DC (such as a unit step function H(s)=1/

H s  Y s 
X s 
-----------=
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s), HSPICE calculations use the value of the EPSMIN option 
(the smallest number possible on the platform) as the transfer 
function.

The general form of the transfer function H(s) in the frequency domain, is:

The order of the numerator for the transfer function cannot be greater than the 
order of the denominator. The exception is differentiators, for which the transfer 
function H(s) = ks. You can use parameter values for all k and d coefficients of 
the transfer function, in the circuit descriptions.

Finding the Transfer Function
The first step in determining the transfer function of a circuit is to convert the 
circuit to the s-domain. To do this, transform the value for each element, into its 
s-domain equivalent form.

Table 9 on page 331 and Table 10 on page 332 show transforms that convert 
some common functions to the s-domain. The next section provides examples 
of using transforms, to determine transfer functions.

Table 9 Laplace Transforms for Common Source Functions

f(t), t>0 Source Type L{f(t)}= F(s)

(t) impulse 1

u(t) step

t ramp

e-at exponential

sin t sine

H s 
k0 k1s  knsn+ + +

d0 d1s  dmsm+ + +
---------------------------------------------------=

1
s
---

1

s
2
----

1
s a+
-----------

w

s
2

w
2

+
-----------------
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cos t cosine

sine

cosine

hyperbolic sine

hyperbolic cosine

te-at damped ramp

damped sine

damped cosine

Table 10 Laplace Transforms for Common Operations

f(t) L{f(t)} = F(s)

Table 9 Laplace Transforms for Common Source Functions (Continued)

f(t), t>0 Source Type L{f(t)}= F(s)

s

s
2

w
2

+
-----------------

sin(t+ ) s  sin   cos+

s
2 2

+
----------------------------------------------

cos(t+ ) s  cos   sin–

s
2 2

+
----------------------------------------------

sinht 

s
2 2

–
-----------------

cosht s

s
2 2

–
-----------------

1

s a+ 2
-------------------

e-at sint 
s a+ 2 2

+
--------------------------------

e-at cost s a+

s a+ 2 2
+

--------------------------------

Kf t  KF s 
332 HSPICE® User Guide: Advanced Analog Simulation and Analysis
K-2015.06



Chapter 12: Modeling Filters and Networks
Laplace and Pole-Zero Modeling
(u is the step function)

 (u is the step function)

Table 10 Laplace Transforms for Common Operations (Continued)

f(t) L{f(t)} = F(s)

f1 t  f2 t  f3 t  +–+ F1 s  F2 s  F3 s  +–+
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Determining the Laplace Coefficients
The following examples describe how to determine the appropriate coefficients, 
for the Laplace modeling function call.

Laplace Example 1 – Voltage Gain Transfer Function

To find the voltage-gain transfer function for the circuit in Figure 93 on 
page 334, convert the circuit to its equivalent s-domain circuit, and solve for vo / 
vg.

Figure 93 LAPLACE Example 1 Circuit

Use transforms fromTable 10 on page 332 to convert the inductor, capacitor, 
and resistors. L{f(t)} represents the Laplace transform of f(t):

Table 10 Laplace Transforms for Common Operations (Continued)

f(t) L{f(t)} = F(s)

f t t1–  e
t1s–

F s 

vg = 2 sin 3t
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To convert the voltage source to the s-domain, use the sin  t transform from 
Table 9 on page 331:

Figure 94 on page 335 displays the s-domain equivalent circuit.

Figure 94 S-Domain Equivalent of the LAPLACE Example 1 Circuit

Summing the output currents from the n2 node:

Solve for vo:

The voltage-gain transfer function is:
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For the Laplace function call, use the kn and dm coefficients for the transfer 
function, in the form:

The coefficients from the above voltage-gain transfer function are:

k0 = 5 x 106 k1 = 1000

d0 = 25 x 106d1 = 6000 d2 = 1

Using these coefficients, the following is a Laplace modeling function call, for 
the voltage-gain transfer function of the circuit in Figure 93 on page 334:

LAPLACE Example 2 – Differentiator

To model a differentiator, use either G or E elements, as shown in the following 
example.

In the frequency domain:

E-element: 

G-element: 

In the time domain:

E-element: 

G-element: 

For a differentiator, the voltage gain transfer function is:

In the general form of the transfer function:

H s 
k0 k1s  kns

n
+ + +

d0 d1s  dms
m

+ + +
---------------------------------------------------=

Vout ksVin=

Iout ksVin=

vout k
td

dVin
=

iout k
td

dVin
=

H s 
Vout

Vin
---------- ks= =

H s 
k0 k1s  knsn+ + +

d0 d1s  dmsm+ + +
---------------------------------------------------=
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If you set k1 = k and d0 = 1, and the remaining coefficients are zero, then the 
equation becomes:

Using the k1 = k and d0 = 1 coefficients, in the Laplace modeling, the circuit 
descriptions for the differentiator are:

Edif out GND LAPLACE in GND 0 k / 1
Gdif out GND LAPLACE in GND 0 k / 1

LAPLACE Example 3 – Integrator

You can use G or E Elements to model an integrator, as follows:

In the frequency domain:

E Element: 

G Element: 

In the time domain:

E Element: 

G Element: 

For an integrator, the voltage gain transfer function is:

In the general form of the transfer function:

As in the previous example, if you set k0 = k and d1 = 1, then the equation 
becomes:

H s  ks
1
----- ks= =

Vout
k
s
-- Vin=

Iout
k
s
-- Vin=

vout k Vin td=

iout k Vin td=

H s 
Vout

Vin
---------- k

s
--= =

H s 
k0 k1s  kns

n
+ + +

d0 d1s  dms
m

+ + +
---------------------------------------------------=

H s  k 0  0+ + +
0 s  0+ + +
--------------------------------- k

s
--= =
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Laplace Transform POLE (Pole/Zero) Function
The following sections describe the general form of the pole/zero transfer 
function. It also provides examples of converting specific transfer functions, into 
pole/zero circuit descriptions.

The topics discussed are as follows:
■ POLE Function Call
■ General Form of the Transfer Function
■ Reduced Form of the Transfer Function
■ RC Line Modeling

POLE Function Call
You can use the POLE function if the poles and zeros of the circuit are available. 
You can derive the poles and zeros from the transfer function, as described in 
this chapter, or you can use the .PZ statement to find them, as described in 
.PZ in HSPICE Reference Manual: Commands and Control Options.

HSPICE provides two forms of the LAPLACE function call: one for 
transconductance, and one for voltage gain transfer functions. See Using G- 
and E-elements on page 319 for the general forms, and for optional 
parameters.

To use the POLE pole/zero modeling function, find the a, b, f, and  coefficients 
of the transfer function. The transfer function is the s-domain (frequency 
domain) ratio of the output, for a single-source circuit to the input, with initial 
conditions set to zero.

General Form of the Transfer Function
The general expanded form of the pole/zero transfer function H(s) is:

You can use parameters to set the a, b, , and f values.

The following is an example:

Ghigh_pass 0 out   POLE in 0 1.0   0.0,0.0 / 1.0 0.001,0.0
Elow_pass out 0    POLE in 0   1.0 / 1.0, 1.0,0.0  0.5,0.1379

H s 
a s z1 j2fz1+ +  s z1 j2fz1–+  s zn j2fzn+ +  s zn j2fzn–+ 

b s p1 j2fp1+ +  s p1 j2fp1–+  s pm j2fpm+ +  s pm j2fpm–+ 
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------=
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fzn
fpm
-------------
The Ghigh_pass statement describes a high pass filter, with the transfer 
function:

The Elow_pass statement describes a low-pass filter, with the transfer 
function:

To write a pole/zero circuit description for an element, you need to know H(s) 
transfer function of the element, in terms of the a, b, f, and   coefficients.

Before you use the values of these coefficients in POLE function calls (in the 
circuit description), you must simplify the transfer function, as described in the 
next section.

Reduced Form of the Transfer Function
Complex poles and zeros occur in conjugate pairs (a set of complex numbers 
differ only in the signs of their imaginary parts):

, for poles.

, for zeros.

To write the transfer function in pole/zero format, supply coefficients for one 
term of each conjugate pair. HSPICE provides the coefficients for the other 
term. If you omit the negative complex roots, the result is the reduced form of 
the transfer function, Reduced{H(s)}. 

To find the reduced form, collect all general-form terms that have negative 
complex roots:

Then discard the right-hand term, which contains all terms with negative roots. 
What remains is the reduced form:

H s  1.0 s 0.0 j 0.0+ + 
1.0 s 0.001 j 0.0+ + 
-----------------------------------------------------------=

H s  1.0
1.0 s 1+  s 0.5 j2 0.1379+ +  s 0.5 j2 0.1379 –+ 
----------------------------------------------------------------------------------------------------------------------------------------------------=

s pm j2fpm+ +  s pm j2fpm–+ 

s zn j2fzn+ +  s zn j2fzn–+ 

H s 
a s z1 j2fz1+ +  s zn j2fzn+ + 

b s p1 j2fp1+ +  s pm j2fpm+ + 
----------------------------------------------------------------------------------------------------

a s z1 j2fz1–+  s zn j2–+
b s p1 j2fp1–+  s pm j2–+
---------------------------------------------------------------------------------------=

Reduced H s  
a s z1 j2fz1+ +  s zn j2fzn+ + 

b s p1 j2fp1+ +  s pm j2fpm+ + 
----------------------------------------------------------------------------------------------------=
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For this function, find the a, b, f, and   coefficients to use in a POLE function, 
for a voltage-gain transfer function. The following examples show how to 
determine the coefficients, and write POLE function calls for a high-pass filter 
and a low-pass filter.

POLE Example 1 – Highpass Filter

For a high-pass filter with a transconductance transfer function, such as: 

Find the a, b,  , and f coefficients needed to write the transfer function in the 
general form shown previously. You can then see the conjugate pairs of 
complex roots. You need to supply only one of each conjugate pair of roots, in 
the Laplace function call. HSPICE automatically inserts the other root.

To transform the function into a form that is more similar to the general form of 
the transfer function, rewrite the transconductance transfer function as:

Because this function has no negative imaginary parts, it is already in the 
HSPICE reduced form (reference number 2) shown previously.

You can now identify the a, b, f, and   coefficients, so that the H(s) transfer 
function matches the reduced form. This matching process obtains the values:

n = 1, m = 1

a = 1.0 z1 = 0.0 fz1 = 0.0

b = 1.0 p1 = 0.001 fp1 = 0.0

Using these coefficients in the reduced form, provides the transfer function:

So the general transconductance transfer function POLE function call:

Gxxx n+ n- POLE in+ in- a  z1,fz1...  zn,fzn / 
b  p1,fp1...  pm,fpm

for an element named Ghigh_pass, becomes:

Ghigh_pass gnd out POLE in gnd 1.0 0.0,0.0 / 
+ 1.0 0.001,0.0

H s  s
s 0.001+ 
---------------------------=

H s  1.0 s 0.0+ 
1.0 s 0.001+ 
----------------------------------=

s
s 0.001+ 
---------------------------
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----
POLE Example 2 – Low-Pass Filter

For a low-pass filter, with the following voltage-gain transfer function:

you need to find the a, b, , and f coefficients, to write the transfer function in 
the general form, so that you can identify the complex roots with negative 
imaginary parts.

To separate the reduced form, Reduced{H(s)}, from the terms with negative 
imaginary parts, rewrite the voltage-gain transfer function as:

So:

or:

Now assign coefficients in the reduced form, to match the specified voltage 
transfer function. The following coefficient values produce the transfer function:

n = 0, m = 2,
a =1.0 b = 1.0 p1 = 1.0 fp1 = 0 p2 = 0.5 fp2 = 0.15

You can substitute these coefficients in the POLE function-call, for a voltage-
gain transfer function:

Exxx n+ n- POLE in+ in- a z1,fz1...zn,fzn / 
b p1,fp1...pm,fpm

for an element named Elow_pass, to obtain the following statement:

Elow_pass out GND POLE in 1.0 / 1.0 1.0,0.0 0.5,0.15

H s  1.0
1.0 s 1.0 j2 0.0+ +  s 0.5 j2 0.15+ +  s 0.5 j2 0.15–+ 
--------------------------------------------------------------------------------------------------------------------------------------------------------------=

H s  1.0
1.0 s 1.0 j2 0.0+ +  s 0.5 j2 0.15+ + 
----------------------------------------------------------------------------------------------------------- 1.0

s 0.5 j2 0.15–+ 
--------------------------------------------------=

Reduced H s   1.0
s 0.5 j2 0.15–+ 
--------------------------------------------------=

Reduced H s   1.0
1.0 s 1.0+  s 0.5 j2 0.15+ + 
-------------------------------------------------------------------------------------=

a s z1 j2fz1+ +  s zn j2fzn+ + 
b s p1 j2fp1+ +  s pm j2fpm+ + 
---------------------------------------------------------------------------------------------------- 1.0

1.0 s 1.0 j2 0.0+ +  s 0.5 j2 0.15+ +
-------------------------------------------------------------------------------------------------------=
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RC Line Modeling
Most RC lines can use very simple models, with only a single dominant pole. 
You can use AWE methods to find the dominant pole, computed based on the 
total series resistance and capacitance, or determined using the Elmore delay.

The Elmore delay uses the (d1-k1) value as the time constant, for a single-pole 
approximation to the complete H(s), where H(s) is the transfer function of the 
RC network for a specified output. The inverse Laplace transform of h(t) is H(s):

Actually, the Elmore delay is the first moment of the impulse response, and so 
corresponds to a first-order AWE result.

Figure 95 Circuits for a RC Line

Example
This example is based on demonstration netlist rcline.sp, which is available in 
directory $<installdir>/demo/hspice/filters:

DE t h t  td
0



=

v1

(1)

+
- +

-

200 (2) 80 (3) 160 (4) 200 (5)
(6)

e1
0.8pF0.7pF0.8pF0.6pF
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****
.Tran 0.02ns 3ns
.OPTION Post Accurate List Probe
v1 1 0 PWL 0ns 0 0.1ns 0 0.3ns 5 1.3ns 5 1.5ns 0
r1 1 2 200
c1 2 0 0.6pF
r2 2 3 80
c2 3 0 0.8pF
r3 3 4 160
c3 4 0 0.7pF
r4 4 5 200
c4 5 0 0.8pF
e1 6 0 LAPLACE 1 0 1 / 1 1.16n
.Probe v(1) v(5) v(6)
.Print v(1) v(5) v(6)
.End

To closely approximate the output of the RC circuit (shown in Figure 95), you 
can use a single-pole response, as shown in Figure 96.

Figure 96 Transient Response of the RC Line and Single-Pole Approximation
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In Figure 96, the single-pole approximation has less delay: 1 ns, compared to 
1.1 ns for the full RC line model, at 2.5 V. The single-pole approximation also 
has a lower peak value than the RC line model. All other things being equal, a 
circuit with a shorter time constant results in less filtering, and allows a higher 
maximum voltage value. The single-pole approximation produces a lower 
amplitude (and less delay) than the RC line because the single pole neglects 
the other three poles in the actual circuit. However, a single-pole approximation 
still provides very good results for many problems.

AWE Transfer Function Modeling
Approximations, using single-pole transfer functions, can cause larger errors for 
low-loss lines than for RC lines because lower resistance allows ringing. Circuit 
ringing creates complex pole pairs in transfer function approximation. You need 
at least one complex pole pair, to represent low-loss line response. Figure 97 is 
a typical low-loss line, and the transfer function sources used to test various 
approximations. To obtain the transfer functions, HSPICE uses asymptotic 
waveform evaluation.

Figure 97 Circuits for a Low-Loss Line

The sample file located in the following directory is a Low-Loss Line circuit file:
$installdir/demo/hspice/filters/lowloss.sp

Figure 98 shows a transient response of a low-loss line. It also shows 
E Element Laplace models, using one, two, and four poles. The single-pole 

v1
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model shows none of the ringing of the higher-order models. Also, all E models 
must adjust the gain of their response, for the finite load resistance, so the 
models are not independent of the load impedance. The 0.94-gain multiplier in 
the models take care of the 25-ohm source, and the 400-ohm load-voltage 
divider. These approximations are good delay estimations.

Figure 98 Transient Response of the Low-Loss Line

Although the two-pole approximation provides reasonable agreement with the 
transient overshoot, the four-pole model offers almost perfect agreement. The 
actual circuit has six poles. You can use scaling to bring some of the very small 
numbers in the Laplace model, above the 1e-28 limit of HSPICE. The SCALE 
parameter multiplies ever Y-parameter in the LAPLACE specification, by the 
same value (in this case 1.0E-20).

A low-loss line allows reflections between the load and source, compared to the 
loss of an RC line, which usually isolates the source from the load. So you can 
either incorporate the load into the AWE transfer function approximation, or 
create a HSPICE device model that allows source/load interaction. If you allow 
source/load interaction, you do not need to perform the AWE expansions each 
time that you change load impedances. This allows HSPICE to handle non-
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linear loads, and removes the need for a gain multiplier, as in the circuit file 
shown. You can use four voltage-controlled current sources, or G Elements, to 
create a Y-parameter model for a transmission line. The 
Y-parameter network provides the needed source/load interaction. The next 
example shows such a Y-parameter model, for a low-loss line.

Y-parameter Line Modeling
A model that is independent of load impedance, is more complicated. You can 
still use AWE techniques, but you need a way for the load voltage and current 
to interact with the source impedance. For a transmission line of 100 ohms and 
0.4 ns total delay (as shown in Figure 99), to compare the response of the line, 
use a Y-parameter model and a single-pole model.

Figure 99 Line and Y-parameter Modeling

Figure 100 shows the voltage and current definitions for a Y-parameter model.
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Figure 100 Y Matrix for the Two-Port Network

The following equations describe the general network in Figure 100, which you 
can translate into G Elements:

Figure 101 shows a schematic for a set of two-port Y-parameters. The circuit 
consists mostly of G Elements.

Figure 101 Schematic for the Y-parameter Network

A Pade expansion of the Y-parameters for a transmission line, determines the 
Laplace parameters for the Y-parameter model, as shown in matrix form in the 
following equation:

I1

+

-

Vin

Y11 Y12

Y21 Y22

I2

Vout

+

-

I1 Y11Vin Y12Vout+=

I2 Y21Vin Y22Vout+=

VoutVin I1

Gy11 Gy12 Gy21 Gy22

I2

GND
I1 = y11Vin + y12Vout
I2 = y21Vin + y22Vout
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where p is the product of the propagation constant, times the line length.

A Pade approximation contains polynomials, in both the numerator and the 
denominator. A Pade approximation can model both poles and zeros, and coth 
and csch functions also contain both poles and zeros, so a Pade approximation 
provides a better low-order model, than a series approximation does. 

The following equation calculates the Pade expansion of coth(p) and csch(p), 
with a second-order numerator and a third-order denominator:

When you substitute ( ) for p, HSPICE generates polynomial 
expressions for each G Element. When you substitute 400 nH for L, 40 pF for 

C, 0.1 meter for length, and 100 for Zo, ( ) in the matrix equation 
above, you can use the resulting values in a circuit file. 

The circuit file shown in the following sections uses all of the equation 
substitutions. The Pade approximations have different denominators for csch 
and coth, but the circuit file contains identical denominators. Although the 
actual denominators for csch and coth are only slightly different, using them 
can cause oscillations in the HSPICE response. To avoid this problem, use the 
same denominator in the coth and csch functions in the example. The 
simulation results might vary, depending on which denominator you use as the 
common denominator because the coefficient of the third-order term changes 
(but by less than a factor of 2).

This sample LC Line circuit file is located in the following directory:
$installdir/demo/hspice/filters/lcline.sp

Figure 102 compares the output of the Y-parameter model, with that of a full 
transmission line simulation, and with that obtained for a single-pole transfer 
function. In the latter case, the gain for the load impedance is incorrect, so the 
function produces an incorrect final voltage level. As expected, the Y parameter 
model provides the correct final voltage level. Although the Y parameter model 
provides a good approximation of the circuit delay, it contains too few poles to 
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model all of the transient details. However, the Y-parameter model provides 
excellent agreement with the overshoot and settling times.

Figure 102 Transient Response of the Y-parameter Line Model

Comparison of Circuit and Pole/Zero Models
This example simulates a ninth-order, low-pass filter circuit, and compares the 
results with its equivalent pole/zero description, using an E Element. The 
results are identical, but the pole/zero model runs about 40% faster.The 
example shown in Simulation Time Summary on page 349 shows the total 
CPU times for the two methods. For larger circuits, the computation time saving 
can be much higher.

Figure 103 on page 350 and Figure 104 on page 351 display the transient and 
frequency response comparisons, resulting from the two modeling methods.
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analysis time # points # iter conv.iter
op point 0.23 1 3
ac analysis 0.47 151 151
transient 0.75 201 226 113 rev=0
readin 0.22
errchk 0.13
setup 0.10
output 0.00
total cpu time 1.98 seconds

Pole/zero model simulation times:

analysis time # points #
 iter conv.iter
op point 0.12 1 3
ac analysis 0.22 151 151
transient 0.40 201 222 111 rev=0
readin 0.23
errchk 0.13
setup 0.02
output 0.00
total cpu time 1.23 seconds

Figure 103 Transient Responses of the Circuit and Pole/Zero Models
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Figure 104 AC Analysis Responses of the Circuit and Pole/Zero Models

Modeling Switched Capacitor Filters

The following sections discuss these topics:
■ Switched Capacitor Network
■ Switched Capacitor Filter Example
■ Input File for Switched Capacitor Filter

Switched Capacitor Network
You can model a resistor as a capacitor and switch combination. The value of 
the equivalent is proportional to the frequency of the switch, divided by 
capacitance.

Construct a filter from MOSFETs and capacitors, where the filter characteristics 
are a function of the switching frequency of the MOSFETs.
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To quickly determine the filter characteristics, use ideal switches (voltage 
controlled resistors), instead of MOSFETs. The resulting simulation speed-up 
can be as great as 7 to 10 times faster than a circuit using MOSFETs.

To construct an RC network, the model uses a resistor and a capacitor, along 
with a switched-capacitor equivalent network. The RCOUT node is the resistor/
capacitor output, and VCROUT is the switched-capacitor output.

The GVCR1 and GVCR2 switches, and the C3 capacitance, model the resistor. 
The following equation calculates the resistor value:

where Tswitch is the period of the PHI1 and PHI2 pulses.

Figure 105 VCR1.SP Switched Capacitor RC Circuit

Switched Capacitor Filter Example
This example is a fifth-order elliptic, switched-capacitor filter. The passband is 
0-1 kHz, with loss less than 0.05 dB. This results from cascading models of the 
switches. The resistance is1 ohm when the switch is closed, and 100 Megohm 
when it is open. The E Element models op-amps as an ideal op-amp. This 

Res
Tswitch

C3
--------------------=
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example provides the transient response of the filter, for 1 kHz and 2 kHz 
sinusoidal input signals.

Figure 106 Linear Section 

Figure 107 High_Q Biquad Section 
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Figure 108 Low_Q Biquad Section 

Input File for Switched Capacitor Filter
This sample input file for a switched capacitor filter is located in the following 
directory:

$installdir/demo/hspice/behave/swcap5.sp

This file also contains the following examples:
■ Sample and Hold
■ Linear Section
■ High_Q Biquad Section
■ Low_Q Biquad Section
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Figure 109 Response to 1-kHz Sinusoidal Input

Figure 110 Response to 2-kHz Sinusoidal Input
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