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About this User Guide

This guide describes how to use HSPICE to simulate and analyze your circuit 
designs.

Conventions

The following conventions are used in Synopsys documentation.

Convention Description

Courier Indicates command syntax.

Italic Indicates a user-defined value, such as object_name.

Purple ■ Within an example, indicates information of special 
interest.

■ Within a command-syntax section, indicates a default 
value, such as:

include_enclosing = true | false

Bold ■ Within syntax and examples, indicates user input—text 
you type verbatim.

■ Indicates a graphical user interface (GUI) element that has 
an action associated with it.

[ ] Denotes optional parameters, such as:

write_file [-f filename]

... Indicates that parameters can be repeated as many times as 
necessary:

pin1 pin2 ... pinN

| Indicates a choice among alternatives, such as

low | medium | high

\ Indicates a continuation of a command line.
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K-2015.06



Customer Support
Customer Support

Customer support is available through SolvNet online customer support and 
through contacting the Synopsys support center.

Accessing SolvNet
SolvNet includes an electronic knowledge base of technical articles and 
answers to frequently asked questions about Synopsys tools. SolvNet also 
gives you access to a wide range of Synopsys online services, which include 
downloading software, viewing documentation, and entering a call to the 
Support Center.

To access SolvNet:

1. Go to the SolvNet Web page at https://solvnet.synopsys.com.

2. If prompted, enter your user name and password. (If you do not have a 
Synopsys user name and password, follow the instructions to register with 
SolvNet.)

If you need help using SolvNet, click Help on the SolvNet menu bar.

/ Indicates levels of directory structure.

Edit > Copy Indicates a path to a menu command, such as opening the 
Edit menu and choosing Copy.

Ctrl+C Indicates a keyboard combination, such as holding down the 
Ctrl key and pressing the C key.

Convention Description
xxxiv HSPICE® User Guide: Basic Simulation and Analysis
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Customer Support
Contacting Synopsys Support
If you have problems, questions, or suggestions, you can contact Synopsys 
support in the following ways:
■ Go to the Synopsys Global Support site on synopsys.com. There you can 

find e-mail addresses and telephone numbers for Synopsys support centers 
throughout the world.

■ Go to either the Synopsys SolvNet site or the Synopsys Global Support site 
and open a case online (Synopsys user name and password required).
HSPICE® User Guide: Basic Simulation and Analysis xxxv
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Part 1:  Introduction to HSPICE

This manual is organized according to the following Parts:
■ Introduction to HSPICE
■ Elements and Devices
■ Parameters, Functions, and Output
■ Analyses and Simulation
■ Variation, Optimization, and Statistical Analysis
■ Encryption, Errors/Warnings, and Demonstration Files

Part 1 presents the following chapters/topics:
■ Chapter 1, HSPICE Overview
■ Chapter 2, Setup
■ Chapter 3, Startup and Simulation
■ Chapter 4, Distributed Processing, Multithreading, and HSPICE 

Precision Parallel
■ Chapter 5, Using Interactive Mode
■ Chapter 6, HSPICE GUI for Windows
■ Chapter 7, Input Netlist and Data Entry
HSPICE® User Guide: Basic Simulation and Analysis 1
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1

1HSPICE Overview

Describes HSPICE features and the simulation process.

HSPICE ships hundreds of examples for your use; see Listing of 
Demonstration Input Files for paths to demo files.

Synopsys HSPICE is an optimizing analog circuit simulator. You can use it to 
simulate electrical circuits in steady-state, transient, and frequency domains.

HSPICE is unequalled for fast, accurate circuit and behavioral simulation. It 
facilitates circuit-level analysis of performance and yield by using Monte Carlo, 
worst-case, parametric sweep, and data-table sweep analyses, and employs 
the most reliable automatic-convergence capability (see Figure 1). 

Figure 1 Synopsys HSPICE Design Features
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Chapter 1: HSPICE Overview
Features
HSPICE forms the cornerstone of a suite of Synopsys tools and services that 
allows accurate calibration of logic and circuit model libraries to actual silicon 
performance.

Only memory can limit the size of the circuits that HSPICE can simulate. 
HSPICE can address a maximum of 4-GB memory on UNIX/Linux depending 
on your system. On Windows, HSPICE normally can address a maximum of 2-
GB memory, or maximum of 3-GB memory with Windows large memory mode 
enabled. For details, consult with Microsoft regarding application memory 
limitation on Windows.

For a description of commands and options that you can include in your 
HSPICE netlist, see HSPICE Netlist Commands and HSPICE Netlist 
Simulation Control Options, in the HSPICE Reference Manual: Commands and 
Control Options. 

These topics are covered in the following sections:
■ Features
■ HSPICE Features for Running Higher-Level Simulations
■ Simulation Structure
■ Parser Syntax Requirements (Unsupported Formats)
■ Use of Example Syntax
■ Recommended HSPICE Resources

Features

Synopsys HSPICE is compatible with most SPICE variations and has the 
following additional features:
■ Superior convergence.
■ Accurate modeling including many foundry models.
■ Hierarchical node names and reference.
■ Circuit optimization for models and cells with incremental or simultaneous 

multiparameter optimizations in AC, DC, and transient simulations.
■ Interpreted Monte Carlo and worst-case design support.
■ Input, output, and behavioral algebraics for cells with parameters.
4 HSPICE® User Guide: Basic Simulation and Analysis
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Chapter 1: HSPICE Overview
Features
■ Cell characterization tools to characterize standard cell libraries.
■ Geometric lossy-coupled transmission lines for PCB, multichip, package, 

and IC technologies.
■ Discrete component, pin, package, and vendor IC libraries.
■ Interactive graphing and analysis of multiple simulation waveforms by using 

with waveform viewers such as Custom WaveViewTM.
■ Flexible license manager that allocates licenses intelligently based on run 

status and user-specified job priorities.

If you suspend a simulation job (Ctrl-Z), the load sharing facility (LSF) 
license manager signals HSPICE to release that job’s license. This frees the 
license for another simulation job, or so the stopped job can reclaim the 
license and resume. You can also prioritize simulation jobs you submit; LSF 
automatically suspends low-priority simulation jobs to run high-priority jobs. 
When the high-priority job completes, LSF releases the license back to the 
lower-priority job, which resumes at the point of suspension. To resume the 
LSF job on the same terminal, type either fg or bg.

■ A number of circuit analysis types (see Figure 2) and device modeling 
technologies.

■ Support for the Compiled Function Library (CFL) function: Enables dynamic 
linking to HSPICE during run time through a built-in mathematical function 
or user-defined function written in C. You can include multiple C functions in 
each library. A general CFL function input argument can come from a 
predefined parameter value, a mathematical expression of multiple 
predefined parameter values, a built-in mathematical function in the 
standard library, or an output of another evaluated CFL function. The CFL 
function allows users to initialize a data structure and return its address as 
an input argument of another CFL function. CFL is a static function is usable 
only for parameter evaluations. See Compiled Function Library Environment 
Variable to set the required environment variable and file path. See 
also, .OPTION CFLFLAG in the HSPICE Reference Manual: Commands 
and Control Options. 
HSPICE® User Guide: Basic Simulation and Analysis 5
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Chapter 1: HSPICE Overview
Features
Figure 2 Synopsys HSPICE Modeling Technologies

The following sections introduce these topics:
■ Custom CMI
■ TSMC Model Interface
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HSPICE provides the ability to integrate models with the Custom CMI for which 
HSPICE uses a dynamically linked shared library. Consult your HSPICE 
technical support team for access to the HSPICE CMI API application note and 
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TSMC Model Interface
HSPICE provides the ability to invoke the TMI flow using proprietary TSMC 
model files and compiled libraries. Jointly developed by Synopsys and TSMC 
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Chapter 1: HSPICE Overview
HSPICE Features for Running Higher-Level Simulations
with additional instance parameters and equations for advanced process 
technology.
■ Because Modeling API code is in C, it is available in a compiled format for 

HSPICE and Synopsys FastSPICE products to link to during the simulation. 
TMI-settings to invoke the flow and the location of a .so file require TSMC 
model libraries. Use .OPTION TMIPATH and .OPTION TMIFLAG to 
access these libraries. The simulators enable automatic platform selection 
on the .so file. Both HSPICE and the Synopsys FastSPICE products 
provide the tool binaries and support the same *.so file.

■ Use the existing HSPICE and FastSPICE commands to run the simulation.
■ The API also performs automatic platform selection on the .so file. Both 

HSPICE and HSIM provide the tool binaries and support the same *.so file.

Use the existing HSPICE and HSIM commands to run the simulation.
■ HSICE supports hybrid simulation with both TMI models and non-TMI 

models.
■ A TMI model parameter, tmimodel (available in TSMC's SPICE model 

parameter libraries), enables you to switch between the built-in model only 
and the TMI model:

• tmimodel = 1 turns on the TMI model

• tmimodel = 0 (default) turns on the native/built-in models without 
calling TMI

(Contact Synopsys Technical Support for further information.) See also the 
HSPICE Reference Manual: Commands and Control Options for .OPTION 
TMIFLAG and .OPTION TMIPATH.

HSPICE Features for Running Higher-Level Simulations

Simulations at the integrated circuit level and at the system level require careful 
planning of the organization and interaction between transistor models and 
subcircuits. Methods that work for small circuits may have too many limitations 
for higher-level simulations.

You can use the following HSPICE features to organize how simulation circuits 
and models run:
HSPICE® User Guide: Basic Simulation and Analysis 7
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Chapter 1: HSPICE Overview
Simulation Structure
■ Explicit include files – .INCLUDE statement.
■ Implicit include files –.OPTION SEARCH=‘lib_directory’.
■ Algebraics and parameters for devices and models –.PARAM statement.
■ Parameter library files –.LIB statement.
■ Automatic model selector – LMIN, LMAX, WMIN, and WMAX model 

parameters.
■ Parameter sweep – sweep analysis statements.
■ Statistical analysis – sweep monte analysis statements.
■ Multiple alternative –.ALTER statement.
■ Automatic measurements .MEASURE statement.
■ Condition-controlled netlists (IF-ELSEIF-ELSE-ENDIF statements 

(HSPICE only)).

Simulation Structure

The following sections discuss these topics:
■ Experimental Methods Supported by HSPICE
■ HSPICE Basic Analysis Types
■ Measurement System in HSPICE
■ Simulation Process Overview

Experimental Methods Supported by HSPICE
Typically, you use experiments to analyze and verify complex designs. These 
experiments can be simple sweeps, more complex Monte Carlo and 
optimization analyses, or setup and hold violation analyses of DC, AC, and 
transient conditions.
8 HSPICE® User Guide: Basic Simulation and Analysis
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Chapter 1: HSPICE Overview
Simulation Structure
Figure 3 Simulation Program Structure

For each simulation experiment, you must specify tolerances and limits to 
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The following are examples of multipoint experiments:
■ Process variation – Monte Carlo or worst-case model parameter variation.
■ Element variation – Monte Carlo or element parameter sweeps.

Transient AC 

Options

Initial Stimuli Results LibraryCircuit Analysis

Single point 
Analysis

Optimization Sweep
Worst Case

Timing

DC 

Statistical
Violations

Conditions

Simulation Experiment
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■ Voltage variation – VCC, VDD, or substrate supply variation.
■ Temperature variation – design temperature sensitivity.
■ Timing analysis – basic timing, jitter, and signal integrity analysis.
■ Parameter optimization – balancing complex constraints, such as speed 

versus power, or frequency versus slew rate versus offset (analog circuits).

HSPICE Basic Analysis Types

DC Analysis of an Inverter
You can analyze the DC behavior of the simple MOS inverter shown in the 
following figure:

Figure 4 MOS Inverter Circuit

Follow these steps to analyze the DC behavior:

1. Type the following netlist data into a file named quickDC.sp.

CLOAD

VCC

OUT

VCC

VIN

M2

M1

IN

+
_

+
_ 0.75 pF
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Inverter Circuit
.OPTION POST
.DC VIN 0 5 0.1
.PRINT DC V(IN) V(OUT)
M1 OUT IN VCC VCC PCH L=1U W=20U
M2 OUT IN 0 0 NCH L=1U W=20U
VCC VCC 0 5
VIN IN 0 0 PULSE .2 4.8 2N 1N 1N 5N 20N
CLOAD OUT 0 .75P
.MODEL PCH PMOS LEVEL=1
.MODEL NCH NMOS LEVEL=1
.END

You can find the complete netlist for this example in $installdir/demo/
hspice/apps/quickDC.sp.

2. Run the HSPICE analysis by typing the following command:

hspice -i quickDC.sp -o quickDC.lis

3. Use WaveView to examine the voltage waveform at the inverter OUT node.

Figure 5 on page 11 shows the waveforms.

Figure 5 Voltage at Inverter Node v(out)
HSPICE® User Guide: Basic Simulation and Analysis 11
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AC Analysis of an RC Network
Figure 6 on page 12 shows a simple RC network with a DC and AC source 
applied. The circuit consists of:
■ Two resistors, R1 and R2.
■ Capacitor C1.
■ Voltage source V1. 
■ Node 1 is the connection between the source positive terminal and R1. 
■ Node 2 is where R1, R2, and C1 are connected. 
■ HSPICE ground is always node 0.

Figure 6 RC Network Circuit

The netlist for this RC network is based on demonstration netlist quickAC.sp, 
which is available in directory $installdir/demo/hspice/apps:

A SIMPLE AC RUN
.OPTION LIST NODE POST
.OP
.AC DEC 10 1K 1MEG
.PRINT AC V(1) V(2) I(R2) I(C1)
V1 1 0 10 AC 1
R1 1 2 1K
R2 2 0 1K
C1 2 0 .001U
.END

R1
1k

2

R2
1k C1

0.001uF

V1
10 VDC
1VAC

+
_

1

0
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Follow this procedure to perform AC analysis for an RC network circuit.

1. Type the above netlist into a file named quickAC.sp.

2. To run a HSPICE analysis, type:

hspice quickAC.sp > quickAC.lis

When the run finishes, HSPICE displays:

>info:     ***** hspice job concluded

This is followed by a line that shows the amount of real time, user time, and 
system time needed for the analysis.

Your run directory includes the following new files:

• quickAC.ac0

• quickAC.ic0

• quickAC.lis

• quickAC.st0

3. Use an editor to view the .lis and .st0 files to examine the simulation results 
and status. 

4. Run WaveView. 

5. From the File menu, select File > Import > Waveform File.

6. Select the quickAC.ac0 file from the Open: Waveform Files window. 

7. Display the voltage at node 2 by using a log scale on the x-axis.

Figure 7 on page 14 shows the waveform that HSPICE produces if you sweep 
the response of node 2, as you vary the frequency of the input from 1 kHz to 1 
MHz.
HSPICE® User Guide: Basic Simulation and Analysis 13
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Figure 7 RC Network Node 2 Frequency Response

As you sweep the input from 1 kHz to 1 MHz, the quickAC.lis file displays:
■ Input netlist.
■ Details about the elements and topology.
■ Operating point information.
■ Table of requested data.

The quickAC.ic0 file contains information about DC operating point 
conditions. The quickAC.st0 file contains information about the simulation 
run status. 

To use the operating point conditions for subsequent simulation runs, execute 
the .LOAD statement.

Transient Analysis of an RC Network
Follow these steps to run a transient analysis of a RC network with a pulse 
source, a DC source, and an AC source:

1. Type the following netlist into a file named quickTRAN.sp.
14 HSPICE® User Guide: Basic Simulation and Analysis
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A SIMPLE TRANSIENT RUN
.OPTION LIST NODE POST
.OP
.TRAN 10N 2U
.PRINT TRAN V(1) V(2) I(R2) I(C1)
V1 1 0 10 AC 1 PULSE 0 5 10N 20N 20N 500N 2U
R1 1 2 1K
R2 2 0 1K
C1 2 0 .001U
.END

This example uses demonstration netlist quickTRAN.sp, which is available 
in directory $installdir/demo/hspice/apps.

Note: The V1 source specification includes a pulse source. For the 
syntax of pulse sources and other types of sources, see 
Chapter 9, Sources and Stimuli.

2. To run HSPICE, type the following:

hspice quickTRAN.sp > quickTRAN.lis

3. To examine the simulation results and status, use an editor and view 
the .lis and .st0 files. 

4. Run WaveView and open the .sp file.

5. From the File menu, select File > Import Waveform > File. 

6. Select the quickTRAN.tr0 file from the Open: Waveform Files window.

7. Display the voltage at nodes 1 and 2 on the x-axis.

Figure 8 shows the waveforms.
HSPICE® User Guide: Basic Simulation and Analysis 15
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Figure 8 Voltages at RC Network Circuit Node 1 and Node 2

Transient Analysis of an Inverter
As a final example, you can analyze the transient behavior of the simple MOS 
inverter shown in Figure 9.

Figure 9 MOS Inverter Circuit

CLOAD

VCC

OUT

VCC

VIN

M2

M1

IN

+
_

+
_ 0.75 pF
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Follow these steps to analyze this behavior:

1. Type the following netlist data into a file named quickINV.sp.

Inverter Circuit
.OPTION LIST NODE POST
.TRAN 200P 20N
.PRINT TRAN V(IN) V(OUT)
M1 OUT IN VCC VCC PCH L=1U W=20U
M2 OUT IN 0 0 NCH L=1U W=20U
VCC VCC 0 5
VIN IN 0 0 PULSE .2 4.8 2N 1N 1N 5N 20N
CLOAD OUT 0 .75P
.MODEL PCH PMOS LEVEL=1
.MODEL NCH NMOS LEVEL=1
.END

You can find the complete netlist for this example in directory 
$installdir/demo/hspice/apps/quickINV.sp.

2. To run HSPICE, type the following:

hspice quickINV.sp > quickINV.lis

3. Use WaveView to examine the voltage waveforms, at the inverter IN and 
OUT nodes. Figure 10 on page 18 shows the waveforms.
HSPICE® User Guide: Basic Simulation and Analysis 17
K-2015.06



Chapter 1: HSPICE Overview
Simulation Structure
Figure 10 Voltage at MOS Inverter Nodes v(in) and v(out)

Measurement System in HSPICE
The measurement system in this manual always refers to MKS units (meter, 
kilogram, second measurement), unless otherwise stated. HSPICE expects 
length and width units of meters. But HSPICE does directly support units of 
“mil” (0.001inch, 25.4e-06 meters) as input.

This example defines a transmission line with a length of 0.4 inches:

T1 IN 0 OUT 0 Z0=50 f=1meg L=400mil

To get the results you expect, use caution when mixing units of measure.

For reference, some other “m” units can become confusing. Mega, sometimes 
expressed as “meg” or “x”, may look like “m” (mili):

1m = 1e-3 (mili)

1meg = 1x = 1e6 (mega)

1u = 1e-6 (micro)
18 HSPICE® User Guide: Basic Simulation and Analysis
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Simulation Process Overview
Figure 11 shows the HSPICE simulation process. 

Figure 11 Simulation Process

hspice -i demo.sp -o demo.lis 

Select version
Select best architecture
Run HSPICE

Find license file in
LM_LICENSE_FILE
Get FLEXlm license token

installdir/hspice.ini
Read $cwd/hspice.ini, or ~hspice.ini, or

Read input file: demo.sp
Open temp. files in $tmpdir
Open output file
Read hspice.ini file

Read .INCLUDE statement files
Read .LIB

Read implicit include (.inc) files

Read .ic file (optional)
Find operating point
Write .ic file (optional)

Open measure data files .mt0
Initialize outer loop sweep
Set analysis temperature

Open graph data file .tr0
Perform analysis sweep

Process library delete/add
Process parameter and
topology changes

Close all files
Release all tokens

2. Run script

3. Licensing

4. Simulation

5. Design input

6. Library input

7. Operating point

8. Multipoint analysis

9. Single point analysis

10. Worst case .ALTER

11. Clean up

1. Invocation

initial file

initialization
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Parser Syntax Requirements (Unsupported Formats)

The following table defines the unsupported formats:

See Reserved Keywords for additional information.

Use of Example Syntax

To copy and paste proven syntax, use the demonstration files shipped with your 
installation of HSPICE (see Listing of Demonstration Input Files). Do not 
attempted to copy and paste from the documentation as you may create 
unexpected results. Text used in formatting may include hidden characters, 
white space, etc. for visual clarity.

Unsupported format/Rule Examples Result

1. Unsupported format/syntax in any 
line

".temp 55" Error message issued

2. Unbalanced brackets, quotes + P_CGDL' Error message issued

3. Unbalanced brackets, quotes in one 
line

.probe v(1 Warning message issued

4. In model definition, model parameter 
value written with quotes instead of 
equal sign ("a=20" instead of 
a=20)

+ "XTIS = 3" Error message issued

5. Strictly following brackets 
(parentheses)/equals wherever 
necessary

.measure dc VT find 
+ par('v(2)*pnorp')
+ when I1(MAIN) pspvtl

VSOURCE in 0 PWL TD=
+ 10ps R 0ps 

Error message issued 
(should be:)
I1(MAIN)=pspvtl
(should be:)
VSOURCE in 0 PWL 
+ TD = 10ps R=0ps

6. Incomplete model parameter 
definition in model

XW=
or
+ CGDL = 

Error message issued

7. Entry name must exactly match in 
both the .lib call and the .lib definition

.lib 'typical.lib' 'slow' 
or
.lib 'typical.lib' slow
...matches: .lib slow

slow=slow
'slow'='slow'
otherwise, error issued
20 HSPICE® User Guide: Basic Simulation and Analysis
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Recommended HSPICE Resources

In addition to the multiple manuals that cover HSPICE features you can access 
other material created by HSPICE R&D, CAEs, ACs, and training specialists. 
See the following resources:
■ Synopsys SolvNet
■ HSPICE Product Website
■ Analog Insights Blog
■ SNUG Presentations and Papers
■ HSPICE Demonstration Netlists

Synopsys SolvNet 
A wealth of useful information relating to HSPICE in the form of application 
notes, articles, troubleshooting, workarounds, recorded trainings, white papers, 
and time-saving scripts is available through Synopsys SolvNet (https://
solvnet.synopsys.com).

Sign up for an account if you do not already have one and enter “HSPICE” to 
search for supplementary information, from getting started to in-depth articles 
of Synopsys User Group (SNUG) presentations.

To get tool and methodology training, click Getting Started with HSPICE.

HSPICE Product Website
Enter www.hspice.com on your Internet browser to view presentations and 
mini-demos of recent HSPICE features. 

This website provides links to:
■ Access HSPICE white papers
■ Download a library of HSPICE compatible Verilog-A modules
■ Sign up for HSPICE feature webinars
■ Learn about product feature including integration with Custom Designer

Analog Insights Blog
Synopsys presents valuable technical discussions on its interactive blog site at: 
http://blogs.synopsys.com/analoginsights/

HSPICE users can read and participate in discussions, use model tips and go 
to links of other useful sites. This blog is a in a lively collection of recent posts, 
HSPICE® User Guide: Basic Simulation and Analysis 21
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Q&A’s, and reports from the field moderated by the Staff Technical Marketing 
Manager for circuit simulation products.

SNUG Presentations and Papers
Synopsys User Group events are held in multiple cities and countries each 
year. The proceedings include tutorials, presentations, and papers written by 
HSPICE product CAEs, ACs, and customers. You may be able to use some of 
this material in projects that you are working on with similar content. Go to: 
http://www.synopsys.com/Community/SNUG/Pages/
snugresults.aspx?qry=HSPICE

Articles and presentations require a SolvNet password. 

HSPICE Demonstration Netlists 
HSPICE delivers nearly 350 demonstration files with each release. These 
demo netlists, many with “readme” files, illustrate use of the HSPICE 
commands and control options for multiple applications. 

Find the example directories for:
■ HSPICE at $installdir/demo/hspice/
■ HSPICE Advanced Analyses at $installdir/demo/hspice/

rf_examples/

For a full listing of the demo file categories and brief descriptions of the netlists, 
go to Listing of Demonstration Input Files in this manual (for HSPICE 
examples) or, for RF examples, RF Demonstration Input Files in the HSPICE 
User Guide: Advanced Analog Simulation and Analysis.
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Describes the environment variables, standard I/O files, invocation commands, 
simulation modes, and current parser notation.

HSPICE ships hundreds of examples for your use; see Listing of 
Demonstration Input Files for paths to demo files.

For descriptions of individual HSPICE commands mentioned in this chapter, 
see the HSPICE Reference Manual: Commands and Control Options.

These sections discuss the following topics:
■ Setting Environment Variables
■ Standard Input Files
■ Standard Output Files
■ Working Directory Path Character Limit
■ Continuing HSPICE Simulations after a Power-down

Setting Environment Variables

The following sections discuss these topics:
■ License Variables
■ Temporary Directory Variable
■ Windows Variables
■ Shared Libraries Environment Variable
■ Compiled Function Library Environment Variable
■ Using Environment Variables as Include Statements
HSPICE® User Guide: Basic Simulation and Analysis 23
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■ Setting Environment for 64-bit HSPICE
■ Setting Distributed Processing Environment Variable
■ Verilog-A (pVA) Environment Variables

License Variables
HSPICE requires you to set the LM_LICENSE_FILE environment variable. 
This variable specifies the location of the license.dat license file. Set the 
LM_LICENSE_FILE environment variable to port@hostname to point to a 
license file on a server.
■ If you are using the C shell, add the following line to the .cshrc file:

setenv LM_LICENSE_FILE port@hostname

■ If you are using the Bash or Bourne shell, add these lines to the .bashrc 
or .profile file:

LM_LICENSE_FILE=port@hostname
export LM_LICENSE_FILE

The port and host name variables correspond to the TCP port and license 
server host name specified in the SERVER line of the Synopsys license file. 

Each license file can contain licenses for many packages from multiple 
vendors. You can specify multiple license files by separating each entry. For 
UNIX/Linux use a colon (:) and for Windows, use a semicolon (;).

For details about setting license file environment variable, see “Setting Up 
HSPICE for Each User” in the Installation Guide. 

The following sections discuss:
■ License Queuing Variable
■ Controlling the License Queueing Interval
■ License Server Down Iterations
■ Using the FlexLM MAX Option
■ HSPICE License Schedule
■ Limiting the Number of Licenses for Your Group
24 HSPICE® User Guide: Basic Simulation and Analysis
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License Queuing Variable
The optional META_QUEUE environment variable is a useful feature that causes 
HSPICE to wait for an available license. It is particularly helpful in environments 
where the tool runs sequentially from batch files and a license checkout failure 
could result in the loss of important data. (AvanWaves also supports use of this 
environment variable.) META_QUEUE, however, does not queue across license 
“pools” (which are illegal in FLEXlm).

Setting the META_QUEUE environment variable to 1 enables queueing of 
HSPICE licenses:

setenv META_QUEUE 1

If you have five HSPICE or advanced analog feature floating licenses and have 
checked out all five licenses, then with the META_QUEUE environment variable 
enabled, the next job submitted waits in the queue until a license is available. 
When you have enabled META_QUEUE and all available licenses are in use, 
HSPICE issues another message advising that no licenses are available.

Irrespective whether META_QUEUE is enabled or not, the HSPICE tool queries 
and queues on all of the servers listed in the LM_LICENSE_FILE variable. 

For example: LM_LICENSE_FILE = 
27000@server1:27000@server2:27000@server3

Controlling the License Queueing Interval
Setting the environment variable META_QUEUE causes HSPICE to wait for an 
available license from the license server. If no license becomes available, 
HSPICE waits indefinitely. There may be times where it is desirable to abandon 
the queueing attempt, such as during scripted operations. 

You can set the environment variable: META_QUEUE_TIME. The argument to 
META_QUEUE_TIME is in seconds. Example: 

#!/bin/csh -f
setenv META_QUEUE 1
setenv META_QUEUE_TIME 3600
hspice -i myjob.sp -o outfile

Here, META_QUEUE enables HSPICE to wait for an available license. Next, it 
sets META_QUEUE_TIME to 3600 seconds. The license request de-queues if 
no license is available in 3600 seconds (60 minutes), and the script can 
continue. This feature is available on all platforms.
HSPICE® User Guide: Basic Simulation and Analysis 25
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Note: Setting META_QUEUE_TIME to -1 (setenv 
META_QUEUE_TIME -1) sets the queueing time to infinity, that 
is, there will be no time limit for the queueing time.

License Server Down Iterations
The default behavior when the license server is down is to try to reconnecting 
to the license server indefinitely, which is in conformance with other Synopsys 
tools.

For backward compatibility, you can use the environment variable 
HSPICE_LIC_EXIT. When set, for example, in cshell, using the command 
setenv HSPICE_LIC_EXIT 1, HSPICE exits after 60 tries to reconnect.

A limited number of retries is available in advanced client-server mode (-CC). 

Using the FlexLM MAX Option
The FlexLM MAX option is used to limit the number of licenses available to a 
user, user group, host or host group.

For example, If you want to limit the number of HSPICE licenses to the user 
group designers to 5, then you must specify the option file as:

MAX 5 hspice GROUP designers

If a user in the group starts a HSPICE job that exceeds the MAX option value 
and if META_QUEUE is set, then the job is queued instead of terminated.

HSPICE License Schedule

Limiting the Number of Licenses for Your Group
You can create a license option file named snpslmd.opt in the directory 
where the license file is located. In the example file below:

HOST_GROUP HSPICEGR 1.160.10.240  238.17.159.4
MAX 2 hspice HOST_GROUP HSPICEGR

.... the first line creates a group named HSPICEGR followed by a list of the IP 
addresses of the machines in that group. The second line defines (for the 

Number of Cores 1-2 3-4 5-6 7-8 9-10 11-12 13-14 15-16

All HSPICE analysis incl. HB, SN, Transient 
Noise, StatEye, and HPP

1 2 3 4 5 6 7 8
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license server) that the group is allowed a maximum of two HSPICE licenses. 

You can change the name of the file and its directory. The option file also allows 
you to reserve licenses for a group and create groups by user name instead of 
IP address. For more information about license option files, see the 
Administration_Guide.pdf (installed with the Synopsys Common 
Licensing product). 

Temporary Directory Variable
Specify the location to deposit scratch files by setting the tmpdir (UNIX/ 
Linux), TEMP or TMP (Windows) environment variable. HSPICE opens three 
scratch files in the /tmp directory.

In the Windows environment, HSPICE opens three scratch files in the 
c:\path\TEMP (or \TMP) directory. To change this directory, reset the 
tmpdir environment variable in the HSPICE command script.

For example:

attocs306% setenv tmpdir /my_area/scratch/project

Windows Variables
Setting the HSPWIN_KEY environment variable to 1 checks out the hspicewin 
license token first when an you run an HSPICE simulation. If you do not set the 
environment variable to 1, HSPICE checks out an hspice token first. The 
HSPWIN_KEY environment variable is only available on the Windows platform.

Note: When installing the HSPICE program on Windows, the 
ADMINISTRATOR priority is essential for successful installation.

You may encounter the licensing prompt either when using non-administrator 
priority installed HSPICE or even after correctly setting the LM_LICENSE_FILE 
or SNPS_LICENSE_FILE. If this occurs, set the FLEXLM_BATCH environment 
variable to 1 as the user environment to disable the pop-up. For details on 
licensing management and control, scroll down to Documentation > FLEXnet 
User Manual on the Synopsys license supporting website: http://
www.synopsys.com/Support/Licensing/Licensing/Pages/default.aspx

Environment Variables in Windows HSPUI
There are a number of environment variables which are useful in HSPICE but if 
you add or change one in Windows, you must close and reopen the application 
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for the variable to take effect. HSPUI retrieves the current environment 
variables on startup and does not have a mechanism to dynamically update 
environment variables. 

Shared Libraries Environment Variable
If you get an “error while loading shared libraries” message, it is 
due to an OS issue, relating to a missing library on your machine. For example, 
if you are using an hspice 64-bit machine, verify that the library exists in the /
usr/lib directory. Depending on the HSPICE platform you are using, hspice 
32-bit (usr/lib) or hspice-64-bit (usr/lib64) shared libraries may require 
the setting of the following environment variable: 

setenv LD_LIBRARY_PATH  /usr/lib:/usr/lib64

Verify that your OS is compatible with the Synopsys Platforms 
recommendations given in URL:
http://www.synopsys.com/Support/Licensing/SupportPlatform/
ReleaseSupport/Pages/default.aspx

Compiled Function Library Environment Variable
Set the CFL environment variable and the specified path and *.so file as 
follows:

setenv CFL_COMPILED_LIB CFL library_file_name

For example:

% setenv CFL_COMPILED_LIB  /path/libcfl.so

See Features for a discussion of the CFL capability.

Using Environment Variables as Include Statements 
To use environment variables as include statements:

1. Set an environment variable to the name of the file that you want to include.

% setenv MY_OWN_INCLUDE_FILE inv.inc 

2. Use the environment variable in the netlist:
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* 
.inc '$MY_OWN_INCLUDE_FILE'   $ include the file inv.inc
.option list
.op
X1 in out inv
c1 out 0 0.1p
.global vdd gnd
.model n nmos level= 49
.model p pmos level= 49
vdd vdd  0  5
vin in 0 pulse 0 5 0 1n 1n  5n 10n
.tran 10p 100n
.option post=2
.end

Result: HSPICE includes the file defined by the environment variable in the 
netlist.

Setting Environment for 64-bit HSPICE
You can control selection of the 64 bit HSPICE binary by setting an 
environment variable, HSPICE_64. When you run the wrapper script for 
“hspice”, if it detects the existence of this variable it automatically selects the 64 
bit version of the program. 

Note: Always invoke HSPICE from the bin directory which uses the 
wrapper script and performs important functions for setting the 
HSPICE environment.

For example, enter:

% setenv HSPICE_64 1
% hspice -v  HSPICE Version D-2010 64-BIT
% unsetenv HSPICE_64
% hspice -v HSPICE Version C-2009.09 32-BIT

Setting Distributed Processing Environment Variable
Only if you run the HSPICE binary directly, set the following environment 
variable before invoking DP:
setenv CDPL_HOME $INSTALLDIR/hspice/cdpl

For Synopsys distributed processing, the HSPICE wrapper sets up 
$CDPL_HOME automatically. The Synopsys Common Distributed Processing 
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Library (CDPL) provides the engine for the -dp command-line invocation. The 
-mp (multiprocessing) calls are interchangeable with DP.

Verilog-A (pVA) Environment Variables
The pVA library allows both absolute path and relative paths in .hdl 
statements; alternatively, you can use environment variables. For example:

.hdl "/tmp/design01/lib/INV_linux4020110.pvalib"

.hdl "${PVA_PATH}/${LIBNAME}_${PLATFORM}4020110.pvalib"

.hdl "../../lib/${PVA_LIBRARY}.pvalib"

Where: You can define ${PVA_PATH}, ${LIBNAME}, ${PLATFORM}, and 
${PVA_LIBRARY} using the setenv UNIX command.

In addition, to prevent re-compiling, you can set the PVA_DIR environment 
variable to the name of the directory that you want to share the compiled 
Verilog-A modules. In the following example, the environment variable redirects 
*.pvadir to directory ${PVA_DIR}.pvadir. 

setenv PVA_DIR  $abs|relative_path/xyz

Standard Input Files

This section describes the standard input files to HSPICE.

The following sections discuss these topics:
■ Design and File Naming Conventions
■ Initialization File (hspice.ini)
■ DC Operating Point Initial Conditions File
■ Input Netlist File
■ Library Input File

Design and File Naming Conventions
The design name identifies the circuit and any related files, including:
■ Schematic and netlist files.
■ Simulator input and output files.
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■ Design configuration files.
■ Hardcopy files

HSPICE extracts the design name from their input files, and performs actions 
based on that name. HSPICE reads and writes files related to the current 
circuit design. Files related to a design usually reside in one directory. The 
output file is stdout on UNIX platforms, which you can redirect.Table 1 lists 
input file types, and their standard names. The sections that follow describe 
these files.

Initialization File (hspice.ini)
The initialization file enables you to specify user defaults. If HSPICE reads one 
hspice.ini file, HSPICE includes its contents at the top of the input file. All 
HSPICE simulations look for ONE implicit hspice.ini file. The HSPICE 
default search order for the hspice.ini file is:

1. cwd/hspice.ini                 — current working directory

2. $HOME/hspice.ini                  — user HOME directory

3. $installdir/hspice.ini     — HSPICE installation directory

You can use an initialization file to set options (for .OPTION statements) and to 
access libraries. To include customized initialization files, you can define 
default_include=filename in a command.inc or meta.cfg file.

Table 1 Input Files

Input File Type File Name

Output configuration file meta.cfg

Initialization file hspice.ini

DC operating point initial conditions file design.ic#

Input netlist file design.sp

Library input file library_name
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DC Operating Point Initial Conditions File
The DC operating point initial conditions file, design.ic#, is an optional input file 
that contains initial DC conditions for particular nodes. You can use this file to 
initialize DC conditions, by using either a .NODESET or an .IC statement. 

A .SAVE statement can also create a design.ic# file. A subsequent .LOAD 
statement initializes the circuit to the DC operating point values that you 
specified in this file. 

Input Netlist File
The input netlist file, design.sp, contains the design netlist. Optionally, it can 
also contain statements that specify the type of analysis to run, type of output 
desired, and what library to use.

Library Input File
You use library_name files to identify libraries and macros that need 
inclusion for simulating design.sp.

Standard Output Files

This section describes the standard output files from HSPICE. Table 2 lists the 
various types of output files produced. For information about the standard 
output file while performing advanced analog function, see HSPICE Advanced 
Analog Output Files in the HSPICE User Guide: Advanced Analog Simulation 
and Analysis.

Table 2 HSPICE Output Files and Extensions

Output File Type Extension

AC analysis measurement results .ma#1 

AC analysis results (from .POST statement) .ac# 

Monte Carlo results .mc#
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AC Analysis Results File
HSPICE writes AC analysis results to file output_file.ac#, where # is 
0-9999, according to your specifications following the .AC statement. These 
results list the output variables as a function of frequency. 

Data mining results .mpp0

DC analysis measurement results .ms# 

DC analysis results (from .POST statement) .sw# 

Digital output .a2d 

FFT analysis graph data (from FFT statement) .ft# 

Hardcopy graph data (from meta.cfg PRTDEFAULT) .gr#2

Operating point information (from .OPTION OPFILE statement) .dp#

Operating point node voltages (initial conditions) .ic# 

Output listing .lis, or user-specified 

Output status .st# 

Output tables (from .DCMATCH OUTVAR statement) .dm#

Subcircuit cross-listing .pa# 

Transient analysis measurement results .mt# 

Transient analysis results (from .POST statement) .tr# 

Waveform viewing files from .OPTION WDF argument for use with 
Synopsys WaveView/SX tools

*_wdf.tr#, 
*_wdf.sw#, or 
*_wdf.ac#

1. # can be either a sweep number or a hardcopy file number. For .ac#, .dp#, .dm#, .ic#, .st#, 
.sw#, and .tr# files, # is from 0 through 9999.

2. Requires a .GRAPH statement (obsolete), or a pointer to a file in the meta.cfg file. The 
Windows and Linux versions of HSPICE do not generate this file.

Table 2 HSPICE Output Files and Extensions

Output File Type Extension
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AC Analysis Measurement Results File
HSPICE writes measurement results of an AC analysis to file 
output_file.ma# when the input file includes a .MEASURE AC statement.

DC Analysis Results File
HSPICE writes DC analysis results to file output_file.sw#, where # is 
0-9999, when the input file includes a .DC statement. This file contains the 
results of the applied stepped or swept DC parameters that the statement 
defines. The results can include noise, distortion, or network analysis.

DC Analysis Measurement Results File
HSPICE writes DC analysis measurement results to file output_file.ms# 
when the input file includes a .MEASURE DC statement.

FFT Analysis Graph Data File
The FFT analysis graph data file, output_file.ft#, contains the graphical 
data to display the FFT analysis waveforms. 

Operating Point Information File
HSPICE writes operating point information to file design.dp# when the input file 
includes an .OPTION OPFILE=1 statement. 

Operating Point Node Voltages File
HSPICE writes operating point node voltages to file output_file.ic#, 
where # is 
0 to 9999, when the input file includes a .SAVE statement. These node 
voltages are the DC operating point initial conditions.
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Output Listing File
The output listing is a text file.You can name it output_file (no file 
extension), output_file.lis, or a file extension that you specify, depending 
on which format you use to start the simulation. 

The output file includes the following information:
■ Name of the simulator used.
■ Version of the HSPICE simulator used.
■ Synopsys message block.
■ Input filename.
■ User name.
■ License details.
■ Copy of the input netlist file.
■ Node count.
■ Operating point parameters.
■ Actual control option values that HSPICE uses for the present simulation 

(useful when options such as RUNLVL override user-set values.)
■ Details of the volt drop, current, and power for each source and subcircuit.
■ Results of a .PRINT statement.
■ Results of the .OPTION statements.
■ Total CPU time (the sum of op point, transient, readin, errchk, setup, and 

output times).
■ In the following snippet of a *.lis file, you can see that the total cpu time 

is the sum of op point, transient, readin, errchk, setup and output analysis 
times.

analysis           time    # points   tot. iter  conv.iter
op point           0.00           1 4
transient 0.07  446328 64 32 rev= 3
readin             0.01
errchk             0.01
setup              0.00
output             0.00
total cpu time 0.09 seconds
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The different analyses stand for time required to:

• Op point: Do operating point analysis.

• Transient: Do transient analysis.

• Readin:    Read the user data file and any additional library files, and 
generate an internal representation of the information.

• Errchk:    Check the errors and evaluate the models.

• Output:    Prepare the output files and to process all prints and plots.

• Setup:     Construct a sparse matrix pointer system.

• Total CPU time is the time taken for the simulation only. It differs slightly 
from run to run, even though runs are identical. It does not include 
memory/disk allocation time or disk I/O time. You can calculate this by 
subtracting job ended time from job started time.

Output Status File
The output status file, output_file.st#, where # is 0-9999, contains the 
following runtime reports:
■ Start and end times for each CPU phase.
■ Options settings, with warnings for obsolete options.
■ Status of preprocessing checks for licensing, input syntax, models, and 

circuit topology.
■ Convergence strategies that HSPICE uses on difficult circuits.

You can use the information in this file to diagnose problems, particularly when 
communicating with Synopsys Customer Support.

Output Tables
The .DCMATCH output tables file, output_file.dm#, contains the variability 
data from analysis. 
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Subcircuit Cross-Listing File
If the input netlist includes subcircuits, HSPICE automatically generates a 
subcircuit cross-listing file, output_file.pa#, where # is 0-9999. This file 
relates the subcircuit node names, in the subcircuit call, to the node names 
used in the corresponding subcircuit definitions. In HSPICE advanced 
analyses, you cannot replicate output commands within subcircuit (subckt) 
definitions.

Transient Analysis Measurement Results File
HSPICE writes transient analysis measurement results to file 
output_file.mt# when the input file includes an .MEASURE TRAN 
statement. 

Transient Analysis Results File
HSPICE places the results of transient analysis in file output_file.tr#, 
where # is 0-9999, which you set in the -n command-line argument. This file 
lists the numerical results of transient analysis. A .TRAN statement in the input 
file, together with an .OPTION POST statement, creates this post-analysis file. 
If the input file includes an .OPTION POST statement, then the output file 
contains simulation output suitable for a waveform display tool.

Waveform Viewing File
After you use .OPTION WDF for transient, DC, or AC analyses, for the WDF 
waveform file, HSPICE automatically appends _wdf into the output file root 
name to specify that it is in WDF format. The file names appear as: 
*_wdf.tr#, *_wdf.sw#, or *_wdf.ac#.

For example, HSPICE names the WDF waveform output file 
design_wdf.tr0.
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Working Directory Path Character Limit

HSPICE has a limitation on the number of characters in a path name plus a file 
name of 1024 characters. For example:

hspice -i path_name/input_file -o out_file

When specifying a path and file name using -i or -o, the length must be 1024 
characters or fewer. If the working directory path is greater than 1024 
characters, HSPICE aborts with a signal 11 error. 

To check the length of the working directory path, use the UNIX command:

% pwd | wc -c 

Workaround
Because this can be an issue for automated programs that create pathnames 
based on appending long design and cell names, there is a workaround. Users 
on Linux/UNIX platforms can create a soft link in their local design directory to 
the file at the end of the long path. 

% ln -s /long/directory/path/target.inc target.inc

Then, include the link instead of the actual file: 

 .inc target.inc 

This way, the file created by the automated program doe not require relocation.

Continuing HSPICE Simulations after a Power-down

When a power-down occurs, one of the following situations can occur:

1. The license server shuts down.

2. The machine running the HSPICE job shuts down.

3. Both the license server and the machine running the HSPICE job shuts 
down.

For case 1, if the power down happens only to the license server, then HSPICE 
gives you a 30-minute grace period to reconnect to the license server. If power 
is restores and the license server is up within 30 minutes, then any interrupted 
HSPICE jobs start up from where they stopped.
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For cases 2 and 3, if the machine running the HSPICE jobs power down, then 
you can make use of .STORE and -restore features in HSPICE.

The .STORE command can save the simulation state to a file at a certain time 
or set of times.

For more information of using the .STORE command, see Storing and 
Restoring Checkpoint Files.
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3Startup and Simulation

Describes the invocation commands, and simulation modes.

HSPICE ships numerous examples for your use; see Listing of Demonstration 
Input Files for paths to demo files.

For descriptions of individual HSPICE commands mentioned in this chapter, 
see the HSPICE Reference Manual: Commands and Control Options.

For simulations involving multiple cores, distributed processing, multithreading 
and HSPICE Precision Parallel (HPP), see Chapter 4, Distributed Processing, 
Multithreading, and HSPICE Precision Parallel.

The following sections discuss these topics:
■ Running HSPICE Simulations
■ Using Isomorphic Analyses in Subckt Blocks
■ Running HSPICE Simulations on Windows
■ Running HSPICE Interactively
■ Using HSPICE in Client-Server Mode
■ Running HSPICE to Calculate New Measurements
HSPICE® User Guide: Basic Simulation and Analysis 41
K-2015.06



Chapter 3: Startup and Simulation
Running HSPICE Simulations
Running HSPICE Simulations

Use the following syntax to start HSPICE:

hspice 
[-i path/input_file] 
[-o path/output_file] [-n number] 
[-html path/html_file] [-gz] [-d]
[-C path/input_file] [-CC path/input_file] [-I] [-K] 
[-L command_file] [-S] [-case 0|1]
[-datamining -i  datamining.cfg [-o outname]
[-dp [#num][-dpconfig dp_configuration_file] [-merge]]
[-mp process_count] [-mt thread_count] [-hpp] 
[-meas measure_file] [-mrasim [0|1|2|3]][-top subcktname]
[-restore checkpoint_file]
[-hdl file_name][-hdlpath pathname] 
[-vamodel name] [-vamodel name2...]
[-sae] [-help] [-doc] [-h] [-v]

For a description of the hspice command syntax and arguments, see hspice 
in the HSPICE Reference Manual: Commands and Control Options. For 
multiple processing, multithreading, distributed processing, and HSPICE 
Precision Parallel features, see Chapter 4, Distributed Processing, 
Multithreading, and HSPICE Precision Parallel.

HSPICE provides a quick demo file for a simple LRC circuit to test your 
installation (see demo.sp under Benchmark Examples in this user guide).

When you invoke an HSPICE simulation, the following sequence of events 
occurs:

1. Invocation.

For example, at the shell prompt, enter:

hspice demo.sp > demo.out &

This command invokes the UNIX hspice shell command on input netlist file 
demo.sp and directs the output listing to file demo.out. The “&” character 
at the end of the command invokes HSPICE in the background, so that you 
can continue to use the window and keyboard while HSPICE runs.

2. Script execution.

The hspice shell command starts the HSPICE executable from the 
appropriate architecture (machine type) directory. The UNIX run script 
launches a HSPICE simulation. This procedure establishes the environment 
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for the HSPICE executable. The script prompts for information, such as the 
platform that you are using, and the version of HSPICE to run. (When you 
install HSPICE, available versions are pre-determined.)

3. Licensing.

HSPICE supports the FLEXlm licensing management system. When you 
use FLEXlm licensing, HSPICE reads the LM_LICENSE_FILE environment 
variable to find the location of the license.dat file.

If HSPICE cannot authorize access, the job terminates at this point, and 
prints an error message in the output listing file.

4. Simulation configuration.

HSPICE reads the appropriate meta.cfg file. The search order for the 
configuration file is the user login directory, and then the product installation 
directory.

5. Design input.

HSPICE opens the input netlist file demo.sp. If this file does not exist, a “no 
input data” error appears in the output listing file. 

(UNIX/Linux) HSPICE opens three scratch files in the /tmp directory. To 
change this directory, reset the tmpdir environment variable in the 
HSPICE command script. (Windows) HSPICE opens three scratch files in 
the c:\path\TEMP (or \TMP) directory. To change this directory, reset the 
TEMP or TMP environment variable in the HSPICE command script.

HSPICE opens the output listing file demo.out for writing. If you do not own 
the current directory, HSPICE terminates with a file open error.

The following is an example of a simple HSPICE input netlist:

*Inverter Circuit
.OPTION LIST NODE POST
.TRAN 200P 20N SWEEP TEMP -55 75 10
.PRINT TRAN V(IN) V(OUT)
M1 VCC IN OUT VCC PCH L=1U W=20U
M2 OUT IN 0 0 NCH L=1U W=20U
VCC VCC 0 5
VIN IN 0 0 PULSE .2 4.8 2N 1N 1N 5N 20N 
CLOAD OUT 0 .75P
.MODEL PCH PMOS
.MODEL NCH NMOS
.ALTER
CLOAD OUT 0 1.5P
.END
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6. Library input.

HSPICE reads any files that you specified in .INCLUDE and .LIB 
statements.

7. Operating point initialization.

HSPICE reads any initial conditions that you specified in .IC 
and .NODESET commands, finds an operating point (that you can save with 
a .SAVE command), and writes any operating point information that you 
requested.

8. Analysis.

HSPICE can perform a single or multipoint sweep of the design and produce 
one set of output files. In the Step 5 example above, the .TRAN statement 
causes HSPICE to perform a multipoint transient sweep analysis for 20ns 
for temperatures that range from -55C to 75C, in steps of 10C.

9. Worst-case .ALTER. 

You can vary simulation conditions, and repeat the specified single or 
multipoint analysis. The above example changes CLOAD from 0.75 pF to 1.5 
pF, and repeats the multipoint transient analysis. You can activate multi-
processing while running .ALTER cases by entering hspice -dp or -mp on 
the command line.

10. Suspending a simulation

Suspend a simulation job by pressing Ctrl-Z. The load sharing facility (LSF) 
frees up the license for another simulation job. To resume the job, on the 
same terminal, type either fg or bg to access a license and continue the 
simulation.

11. Normal termination.

After you complete the simulation, HSPICE closes all files it opened and 
releases all license tokens.

Using Isomorphic Analyses in Subckt Blocks

The isomorphic analyses feature enables you to run unrelated analyses 
(.DC, .AC, and .TRAN) many times during a simulation by grouping the set of 
analyses into a subcircuit, which performs multiple analyses in one simulation 
with calls to the subcircuit. The usage model is: Specify the analyses 
commands within the subckt definition block and then instantiate the subckt to 
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perform the analyses. Each call of the subcircuit is an individual analysis with 
its own set of parameters.

The syntax is as follows:

.subckt analyses_sb [start=p1 stop=p2 steps=p3]

.DC …

.AC …

.TRAN …

.ends analyses_sb

...followed by the analysis call:

x1 analyses_sb [start=a1] [stop=a2] [steps=a3]
x2 analyses_sb [start=b1] [stop=b2] [steps=b3]

For information on the available analyses, see the following list:

See also:
■ Chapter 13, Initializing DC-Operating Point Analysis
■ .DC in the HSPICE Reference Manual: Commands and Control Options
■ Chapter 14, AC Small-Signal and Noise Analysis
■ .AC in the HSPICE Reference Manual: Commands and Control Options
■ Chapter 15, Transient Analysis
■ .TRAN in the HSPICE Reference Manual: Commands and Control Options

Data Inputs and Outputs
Input is in the form of a subckt block call. You can specify the different analyses 
inside the subckt and then call the subckt. Each call performs all the specified 
analyses in the subckt.

You generate output files based on the analyses specified. The suffix number 
increases for every “same type” of analysis.

For example:

.subckt analyses_sb start_dc=-25 stop_dc=25 steps_dc=5
+ steps_tran=1n stop_tran=10n
.DC  TEMP start_dc stop_dc steps_dc
.TRAN steps_tran stop_tran
ends analyses_sb
….
x1 analyses_sb start_dc=25 stop_dc=75 steps_dc=10
x2 analyses_sb steps_tran=2n
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This example creates the output files: *.sw0,*.sw1 and *.tr0,*.tr1.

Isomorphic Analyses Example

The following example shows how to specify different analyses within the 
subckt block.

.subckt analyses_sb start_dc=-25 stop_dc=25 steps_dc=5
+ steps_tran=1n stop_tran=10n
.DC TEMP start_dc stop_dc steps_dc
.TRAN steps_tran stop_tran
.ends analyses_sb

This example specifies both .DC and .TRAN analyses within the subckt. To 
invoke these analyses you can call the subckts.

x1 analyses_sb start_dc=25 stop_dc=75 steps_dc=10
x2 analyses_sb steps_tran=2n
x3 analyses_sb

■ Each subckt call performs DC and Transient analysis.
■ Parameters defined in the subcircuit calls override the default values in the 

subcircuit definition.
■ If the subckt calls do not define the parameters they take the default values 

given in the subcircuit.

Limitations
The subcircuit block only supports DC, AC, and transient analyses inside it.

Running HSPICE Simulations on Windows

You can use the MS-DOS command window to run HSPICE in command line 
mode, similar to UNIX/Linux. 

For example:

1. Open an MS-DOS command window (Run > cmd).

2. Enter your case directory.

3. Type the following to invoke HSPICE and view command line help:
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c:\synopsys\Hspice_release_version\bin\hspice

4. Or type the following command to run a simulation:

C:\synopsys\Hspice_release_version\bin\hspice filename.sp -o

Running HSPICE Interactively

For a full discussion, refer to Chapter 5, Using Interactive Mode. Interactive 
mode enables you to use these HSPICE commands at the HSPICE prompt to 
help you simulate circuits interactively:

The following sections discuss these topics:
■ Starting Interactive Mode
■ Running a Command File in Interactive Mode
■ Quitting Interactive Mode

Starting Interactive Mode
To invoke the interactive mode, enter:

hspice -I

You can also use the help command at the HSPICE prompt for an annotated 
list of the commands supported in the interactive mode.

ac [...statement] cd

dc [...statement] edit

help info outflag

input list [lineno]

load filename ls [directory]

measure [statement] op

print [tran/ac/dc],v/vm/vr/vi/vp/vdb pwd

quit run

save netlist/command filename set outflag true | false

tran [...statement]
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The interactive mode also supports saving commands into a script file. To save 
the commands that you use and replay them later, enter:

hspice> save command filename

Running a Command File in Interactive Mode
To run the command you have saved in a command file, enter:

hspice> -I -L filename

Quitting Interactive Mode
To exit the interactive mode and return to the system prompt, enter:

hspice> quit

Using HSPICE in Client-Server Mode

When you run many small simulation cases, you can use the client/server 
mode to improve performance. This performance improvement occurs because 
you check out and check in an HSPICE license only once. This is an effective 
measure when you characterize cells. (For an advanced procedure see 
Launching the Advanced Client-Server Mode (-CC).)

The following sections discuss these topics:
■ To Start Client-Server Mode
■ To Simulate a Netlist in Client-Server Mode
■ To Quit Client-Server Mode
■ Launching the Advanced Client-Server Mode (-CC)

Table 3 Supported Platforms

Linux RHEL Linux SUSE Sun/Solaris Windows

Yes Yes Yes Yes
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To Start Client-Server Mode
Starting the client/server mode creates an HSPICE server and checks out an 
HSPICE license. To start the client/server mode, enter:

hspice -C

Server
The server name is a specific name connected with the machine on which 
HSPICE runs. When you create the server, HSPICE also generates a 
hidden .hspicecc directory in your home directory. HSPICE places some 
related files in this directory, and removes them when the server exits.

HSPICE Client/Server mode does not let one user create several servers on 
the same machine.

When you create a server, the output on the screen is: 

*************************************** 
*Starting HSPICE Client/Server Mode...* 
*************************************** 
Checking out HSPICE license... 
HSPICE license has been checked out. 
*********************************************** 
*Welcome to HSPICE Client/Server Mode!* 

After you create the server, it automatically runs in the background. If the server 
does not receive any request from a client for one hour, the server releases the 
license and exits automatically.

Client
The client can send a request to the server to determine the HSPICE license 
status, or to kill the server.
■ If the request is to check the license status, the server checks, and replies 

to the client. The syntax of this request is:

hspice -C casename.sp 

Where casename is the name of the circuit design to simulate.
■ If the client receives ok, it begins to simulate the circuit design. 
■ If the client receives no, it exits. 
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■ If the server receives several requests at the same time, it queues these 
requests, and process them in the order that the server received them.

■ If HSPICE does not find a server, it creates a server first. Then the server 
checks out an HSPICE license, and simulates the circuit.

■ If the request is to kill the server, the server releases the HSPICE license 
and other sources, and exits. 

When you kill the server, any simulation cases in the queue on that server 
do not run, and the server's name disappears from the hidden .hspicecc 
directory in your home directory. 

If you do not specify an output file, HSPICE directs output to the client terminal. 
Use this syntax to redirect the output to a file, instead of to the terminal: 

% hspice -C casename.sp output_file

The following message is printed in the *.lis file when you are running a job in 
client-server mode:

Connect to server hostname:port

To Simulate a Netlist in Client-Server Mode
Once you have started the client/server mode, which automatically checks out 
an HSPICE license, you can run simulations. To simulate a netlist in client/
server mode, enter:

hspice -C path/input_file

Note: This mode also supports other HSPICE command line options. 
For a description of the options shown, see hspice in the HSPICE 
Reference Manual: Commands and Control Options.

To Quit Client-Server Mode
Quitting the client/server mode releases the HSPICE license and exits 
HSPICE. To exit the client/server mode, enter:

hspice -C -K 
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Launching the Advanced Client-Server Mode (-CC)
The Advanced Client/Server Mode provides an efficient interface for cell 
characterization applications and allows for multiprocessing if the given case 
contains .Alter, Tran Sweep, or Monte Carlo analyses. The advanced C/S 
mode facilitates the Client/Server mode as follows:
■ Checks out an HSPICE license once and locks it to do multiple simulations 

in sequence.
■ Reads in the common file only once in multiple simulations with different 

circuits, when they include a common file, which may a contain subcircuit or 
model definition. 

■ Provides an easy-to-use interface. 

Note: To set the environment to enable netlist echoing in -CC mode, 
enter:

setenv HSP_LIS_201012

Note: The Client user ID should be same as the user ID which started 
the server. 

The following sections present these topics:
■ Advanced Client-Server Command Syntax
■ Application Instances

Advanced Client-Server Command Syntax
These commands start the HSPICE server, do simulations including 
multiprocessing, and stop the server. The tables that follow describe the 
arguments.

1. To start the server, enter:

hspice -CC [-share inc_file] [-port hostname:port_num] 
+ [-mp [process_count]] [-o output]
+ [-stop idle_time]

Table 4 Supported Platforms

Linux RHEL Linux SUSE Sun-Solaris Windows

Yes Yes Yes No
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2. To begin a simulation, enter: 

hspice -CC input_file [-port hostname:port_num]
+ [-o output_file] 

Explanation: The port information must come after the input file 
information on the command line.

3. To stop the HSPICE server, enter:

hspice -CC -K [-port hostname:port_num]

Application Instances
In the following instances, assume you want to run five netlist files (t1.sp, 
t2.sp, … t5.sp), and this group includes a common file. Also assume that all 
five files are in the same directory: /home1/user1/test/testcase. 

Argument Description

-CC Launches the advanced HSPICE C/S mode. After the server starts, it runs in background.

-port hostname:
port_num

Starts server on the designated port hostname:port_num.

If you do not specify this argument, it uses the default port number (25001). If the default port is 
not available, HSPICE chooses any free port. 

When you start the server or run a case with -port hostname:port_num, it ignores the 
hostname. But you can stop the server with
-port hostname:port_num to implement remote control.

HSPICE prints out port information to the screen.

-share inc_file Specifies a common file name shared by different circuits.

-mp 
[process_count]

On UNIX platforms, option -mp [process_count] triggers a multi process simulation when the 
server receives a netlist with .alter and sweep analyses. The optional process_count is a 
nonzero integer, (the initial value of available child process number to fork). If you do not set 
process_count, then HSPICE uses the CPU number of the server as the default.

On the client side, you do not need to specify -mp. See Running Multithreading Simulations on 
page 66 for details and limitations.

-stop idle_time The idle time unit=hour(s).“idle_time” means that the server has not received any client request. 
If you do not specify an “idle_time” the server quits automatically after the default idle_time of 1 
hour.

-o output_file Specifies the output file name. If you do not specify an “output_file” i, HSPICE uses the shared 
file root filename as the output file root filename. If there is no shared file, no output file is 
generated.

-K Shuts down the client server.
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t1.sp

V1 1 0 dc 1.05
V2 2 0 dc 0
.temp 125
.inc "/home1/user1/test/model/model_file"
.inc "101.spc"
.end

t2.sp

V1 1 0 dc 1.05
V2 2 0 dc 0
.temp 125
.inc "/home1/user1/test/model/model_file"
.inc "102.spc"
.end

...

 t5.sp

V1 1 0 dc 1.05
V2 2 0 dc 0
.temp 125
.inc "/home1/user1/test/model/model_file"
.inc "105.spc"
.end

Use the following commands, to invoke the HSPICE C/S mode to run this group 
of cases. The work path is: /home1/user1/test/testcase

1. Start the HSPICE server on the default port and read in the common file:
hspice -CC -share /home1/user1/test/model/model_file

2. Run a simulation on the default port without reading in the common file 
again.  
hspice -CC t1.sp

Explanation: Since the .inc "/home1/user1/test/model/
model_file" statement appears in each netlist, HSPICE does not read it 
in again because the server has already processed the information.

3. Repeat Step 2 until you simulate all cases.

4. Exit the HSPICE Client/Server mode. 
hspice -CC -K

The sequence of commands is:
HSPICE® User Guide: Basic Simulation and Analysis 53
K-2015.06



Chapter 3: Startup and Simulation
Using HSPICE in Client-Server Mode
hspice -CC -share  /home1/user1/test/model/model_file 
hspice -CC t1.sp 
hspice -CC t2.sp
hspice -CC t3.sp
hspice -CC t4.sp
hspice -CC t5.sp
hspice -CC -K

Notes
■ If you start the server and run simulations by Perl script, use the system 

($cmd) instead of '$cmd' to avoid hanging the server.

For example:

#!/usr/bin/perl
##Start server without designated port, redirect output 
##information 
$cmd = "hspice -CC >& log "; 
system($cmd);

##Get the port_num on which server is started 
open (IN,"log"); 
while (<IN>) {
if ($_ =~ "started on") {
$portnum=$'; }
  }
close (IN);

##Stop server
$cmdn ="hspice -CC -K -port $portnum";
system($cmdn);

■ To use multiple servers, you need to specify multiple ports. If you submit 
several scripts to start multiple servers, you need to specify multiple ports. 
If you do not designate port numbers to a multiple-cpu machine or to a 
machine in computer farm environment, only one server starts on the default 
port number. If the default port is not available, HSPICE chooses any free 
port. HSPICE also prints out port information. The printed message is 
similar to "Server is started on port=port_num".To assure that 
the simulation runs successfully in a different script, add  -port 
$port_num.

For example:

#!/depot/perl-5.8.3/bin/perl -w
##start server without designated port, redirect output
##information
$cmd = "hspice -CC >& log ";
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system($cmd) ;
##get the port_num on which server is started
$portnum=`grep port= log|awk {{print $6}}`;
##do simulation
$cmd1 = "hspice -CC test1.sp -port $portnum";
system($cmd1) ;
...
##stop server
$cmdn ="hspice -CC -K -port $portnum";
system($cmdn) ;

■ To avoid redefinition errors, verify that the common file both in
“-share inc_file” and in “.inc inc_file” of every netlist has the 
same absolute path and file name.  For example, there are 5 netlist files, 
t1.sp, t2.sp, t3.sp, t4.sp, and t5.sp to be run and this group of 
netlists includes a common file. Assume that all these 5 files are in the same 
directory /home1/user1/test/testcase.

The following is the correct usage:

hspice -CC -share /home1/user1/test/model/model_file
hspice -CC t1.sp
hspice -CC t2.sp
hspice -CC t3.sp
hspice -CC t4.sp
hspice -CC t5.sp
hspice -CC -K

Each of the netlists includes .inc "/home1/tom/test/model/
model_file" In every case, the absolute path name of the common file 
in .inc "/home1/user1/test/model/model_file"... is the same as 
the absolute path name of the common file specified by
-share /home1/user1/test/model/model_file. 

The common file /home1/user1/test/model/model_file will only 
be read in once and .inc "/home1/user1/test/model/
model_file" will be ignored in every case. 

Running HSPICE to Calculate New Measurements

To calculate new measurements from previous simulation results produced by 
HSPICE, you can rerun HSPICE. 

To get new measurements from a previous simulation, enter:
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hspice -meas measure_file -i wavefile [-o outputfile]

For a description of the options shown, see hspice in the HSPICE Reference 
Manual: Commands and Control Options.
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4Distributed Processing, Multithreading, and
HSPICE Precision Parallel

Describes the distributed processing (DP), multithreading, and HSPICE 
Precision Parallel simulation modes available in HSPICE. Although, 
multiprocessing is functionally replaced by distributed processing, you can still 
run multiprocessing.

For descriptions of individual HSPICE commands mentioned in this chapter, 
see the HSPICE® Reference Manual: Commands and Control Options.

The following sections discuss these topics:
■ Running Multiple Simulations
■ Running Distributed Processing on a Network Grid
■ Running Distributed Processing on One Machine
■ Running Multithreading Simulations
■ Running Multithreading and Distributed Processing Concurrently
■ HSPICE Precision Parallel
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Running Multiple Simulations 

Use the following syntax to start HSPICE depending on the type of multiple or 
parallel processes available on your site:

hspice [-dp [process_count]
+           [-dpconfig dp_configuration_file]
+           [-dplocation NFS|TMP]
+           [-merge]
+           [-dpgui]]
+      [-mt thread_count]
+      [-hpp] 

For a description of the hspice command syntax and arguments, see Invoking 
HSPICE in the HSPICE® Reference Manual: Commands and Control Options. 

Important: Multithreading and HSPICE Precision Parallel are available 
on Windows platform, but not distributed processing.

For information on running batch file jobs from the HSPICE user interface, see 
Running Multiple Simulations on page 85.

Running Distributed Processing on a Network Grid

You can submit an HSPICE simulation job to a network of machines for parallel 
processing on the following network grids: SGE, LSF, RTDA, RSH, and SSH. 
These machine cluster/compute farm manager modes are controlled by the 
dp_configuration_file. 

Distributed processing (DP) uses the Synopsys Common Distributed 
Processing Library (CDPL). For Synopsys DP, the HSPICE wrapper sets up 
$CDPL_HOME automatically. If you run the HSPICE binary directly, set the 
following environment variable before invoking DP:

setenv CDPL_HOME $INSTALLDIR/hspice/cdpl

For more information on using CDPL, see $INSTALLDIR/hspice/cdpl/
doc/CDPLUsersManual.pdf.
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The supported platforms (for both 32-bit and 64-bit) are: 

Typical configuration files have the following forms, depending on the type of 
network grid:

Where, the flag column posts the value 1 if the host can be used as a worker or 
0 if it cannot. The slots column notes the number of workers that can be 
started on the particular host and has a value of -1 for grid types SGE, LSF, and 
RTDA.

For more information, please refer to the CDPL User Guide.

Linux RHEL Linux SUSE Solaris Windows

Yes Yes Yes No

#flag hostname slots tmpDir protocol command

SGE 1 -1 /tmp SGE qsub -P bnormal

LSF 1 -1 /tmp LSF bsub -q bnormal

RTDA 1 -1 /tmp RTDA nc run -e “SNAPSHOT”

NetBatch 1 -1 /tmp NB nbjob run

RSH 1 

1

rhas74

rhas75

2

4

/tmp

/tmp

RSH

RSH

rsh

rsh

SSH 1

1

rhas74

rhas75

3

3

/tmp

/tmp

SSH

SSH

ssh

ssh
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The following is the illustration of DP flow:

CDPL flow terminology:
■ An HSPICE job starts on the master (local machine or a farm machine).
■ Workers may be on the same or different hosts than the master.
■ Master does pre-parsing, job distributing, and post-parsing. Workers run the 

simulation jobs.
■ The simulation is performed in parallel, but the initial parse and the final file 

merge/summary steps are executed in scalar mode.

Using DP reduces runtimes for sequential simulations such as Monte Carlo, 
.ALTER, and sweep with no loss in accuracy. For example, solving 1 million 
Monte Carlo points takes approximately the same time as 10000 Monte Carlo 
points (plus the time for results integration) if 100 cores are used.

Example 1 Distribute a job into 10 processes on an SGE farm.

hspice -dp 10 -dpconfig sge.cfg -i input -o output

sge.cfg file example:
1||-1|/tmp|SGE|qsub -P bnormal -V -cwd -l arch=glinux, 
os_version=WS6.0

Example 2 Distribute a job into 10 processes on an LSF farm, each process runs two 
threads.

hspice -dp 10 -dpconfig lsf.cfg -mt 2 -i input -o output

lsf.cfg file example:
1||-1|/tmp|LSF|bsub -q bnormal -n 2 -R "arch==glinux && 
os_version==WS6_0"
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Example 3 Distribute a job into 10 processes on two machines with RSH protocol, 
with four processes on host1, six processes on host2.

hspice -dp 10 -dpconfig rsh.cfg -i input.sp -o output

rsh.cfg file example:
1|host1|4|/tmp|RSH|rsh
1|host2|6|/tmp|RSH|rsh

For more information on starting DP from the HSPICE command-line prompt, 
see the Invoking HSPICE section in the HSPICE® Reference Manual: 
Commands and Control Options. 

Important: HSPICE DP uses the same license keys as HSPICE. Each 
process running on the machine cluster checks out one 
copy of the license key. HSPICE DP turns on 
META_QUEUE=1 automatically, so that, if there are no 
licenses available, workers will wait in queue, instead of 
quitting the jobs. 

The following sections discuss these topics:
■ HSPICE DP Feature Support
■ Output Files
■ HSPICE DP Limitations

HSPICE DP Feature Support
HSPICE DP supports the following features for .AC, .DC, and .TRAN analyses:
■ .ALTER blocks 
■ Monte Carlo
■ Bisection analysis/optimization with Monte Carlo
■ Data block
■ Parametric sweep
■ .AC|.DC sweep1 sweep2

■ The /tmp directory is the default location to store output files temporarily, 
and those files will be moved back to the current run directory when the 
simulation finishes. Use -dplocation NFS to change the store location to 
the current run directory. This option allows users to see results at an early 
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stage, but it may slow down performance. If the /tmp directory space is not 
enough for a simulation, such as a large Monte Carlo job, use this option to 
avoid the /tmp disk from becoming full.

■ Use -dpgui to launch DP Manager, an interactive graphic tool to monitor 
DP status. Please refer to the DP Manager User Guide for more details.

■ DP works with the following command-line options:

• -hpp

• -mt thread_count

• -hdl

• -hdlpath

• -vamodel

• -gz

■ HSPICE automatically turns on .OPTION WARN_SEP when running DP to 
separate warnings into a file, while suppressing them in the *.lis file.

■ HSPICE DP follows the .OPTION MCBRIEF set by the user; if this option is 
not set, HSPICE DP will set it to 5.

■ HSPICE provides load balance for Monte Carlo analysis, data block, and 
parametric sweeps:

• DP may create many more tasks than workers.

• Workers located on fast machines process more tasks.

• Workers located on slow machines process fewer tasks.

Output Files
The following table lists the names of the possible output files generated for 
.ALTER, Monte Carlo, data block, and parametric sweep simulations. They 
may not appear at the same time as the output file generation depends on the 
type of simulation and the -merge option. See Table 6 and Table 7 for more 
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details.

Table 5 Output File Descriptions

Output File Name Comments

output_dp/
output.dp_parseonly_report

Contains the information that the DP pre-parser collects; 
HSPICE controls the DP behavior according to its content.

output_dp/task#/output.lis Without -merge, the *.lis for each task remains in the 
worker subdirectory.

output.lis Merged from all the *.lis files generated by all workers.

output_dp.lis New file created by HSPICE DP. It contains parts of the 
errors and warnings generated by the simulation, Monte 
Carlo results, and DP run-time statistics. 

output_dp.progress New file created by HSPICE DP. It contains the DP 
progress status. This file is updated every two minutes.

output.st0 Merged from all the *.st0 files generated by all workers.

output.mt# (ALTER) The *.mt# files generated by all the .ALTER blocks.

output.mt0 Merged from all the *.mt0 files generated by all workers.

output.mc# (ALTER) The *.mc# files generated by all the .ALTER blocks.

output.mc0 Merged from all the *.mc0 files generated by all workers.

output.tr# The waveform files generated by all the .ALTER blocks. 

output_dp/worker#/output.tr0 The waveform file generated by each worker for Monte 
Carlo, data block, or parametric sweep. 

output.tr0@mc.grp A waveform group file for Monte Carlo. When using 
Custom WaveView to open this file, the tool can load all the 
output_dp/worker#/output.tr0# files 
automatically. Use version G-2012.06 or later of Custom 
WaveView for maximum compatibility.

output.tr0@ds.grp A waveform group file for data block or parametric sweep. 
When using Custom WaveView to open this file, the tool 
can automatically load all the 
output_dp/worker#/output.tr0 files. Use version 
G- 2012.06 or later of Custom WaveView for maximum 
compatibility.

$HOME/.synopsys/cdpl/
master.hostname.pid.timestamp.bc
ast 

A broadcasting file used by DP Monitor.
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output_dp/

master.hostname.pid.err

An error message file for the DP master.

output_dp/

master.hostname.pid.log

A log file for the DP master.

output_dp/

worker.W#.hostname.pid.log

Log files for DP workers.

Table 6 Output files without “-merge” option

.ALTER Block Monte Carlo, Data Block, Parametric Sweep

output_dp/
output.dp_parseonly_report

output_dp/output.dp_parseonly_report

output_dp/worker#/output.lis output_dp/worker#/output.lis

output_dp.lis output_dp.lis

output_dp.progress output_dp.progress

output.mc# output.mc0

output.st# output_dp/worker#/output.st0

output.mt# output_dp/worker#/output.mt0

output.tr# output_dp/worker#/output.tr0

output.tr0@mc.grp (Monte Carlo only) 
output.tr0@ds.grp (data block or 
parametric sweep only)

$HOME/.synopsys/cdpl/

master.hostname.pid.timestamp.bcast

$HOME/.synopsys/cdpl/
master.hostname.pid.timestamp.bcast

output_dp/master.hostname.pid.err output_dp/master.hostname.pid.err

output_dp/master.hostname.pid.log output_dp/master.hostname.pid.log

output_dp/

worker.W#.hostname.pid.log

output_dp/worker.W#.hostname.pid.log 

Table 5 Output File Descriptions

Output File Name Comments
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HSPICE DP Limitations
The following limitations apply to DP:
■ When a case has both .ALTER blocks and Monte Carlo (data block or 

parametric sweep), DP is based on the .ALTER blocks only.
■ HSPICE ignores DP when a simulation has the following:

• Multiple .TRAN, .DC, or .AC statements and no .ALTER block

• Temperature sweeps and no .ALTER block

• .LOAD command with RUN=PREVIOUS

• TMI ageing .OPTION TMIAGE to 1

• .OPTION RADEGFILE (MOSRA analysis)

Table 7 Output files with “-merge” option

.ALTER Block Monte Carlo, Data Block, Parametric Sweep

output_dp/output.dp_parseonly_report output_dp/output.dp_parseonly_report

output_dp.lis output_dp.lis

output.lis output.lis

output_dp.progress output_dp.progress

output.st0 output.st0

output.mt# output.mt0

output.mc# output.mc0

output.tr# output.tr0

$HOME/.synopsys/cdpl/
master.hostname.pid.timestamp.bcast 

$HOME/.synopsys/cdpl/
master.hostname.pid.timestamp.bcast 

test_dp/master.hostname.pid.err test_dp/master.hostname.pid.err

test_dp/master.hostname.pid.log test_dp/master.hostname.pid.log

test_dp/worker.W#.hostname.pid.log test_dp/worker.W#.hostname.pid.log 
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• Advanced analog features
■ HSPICE ignores .OPTION ALTCC during a DP run.

Running Distributed Processing on One Machine

DP runs not only on a network, but also on one multicore machine. When 
running on one multicore machine, processes are only distributed on one 
machine. DP is functionally the same as the earlier multiprocessing (MP) 
technology, but it has better efficiency.

When using DP on a network, the configuration option (-dpconfig) is not 
needed for DP on a multicore machine. This will make the DP usage exactly the 
same as earlier MP: simply replace -mp with -dp.

Example 4 Distribute a job into four processes on a local 8-core machine, each 
process uses two threads, 8 cores are used.

New Usage: hspice -dp 4 -mt 2 -i input -o output
Old Usage: hspice -mp 4 -mt 2 -i input -o output

Example 5 Distribute a job into all processes on a local machine, the process count 
can be omitted.

New Usage: hspice -dp -i input -o output
Old Usage: hspice -mp -i input -o output

Running Multithreading Simulations

HSPICE can use multiple cores or processors within a single node using 
multithreading for model evaluations and matrix solving to significantly improve 
simulation performance. In circuits composed primarily of active devices, model 
evaluation takes the most time. For designs with many linear resistors and 
capacitors (such as post-layout circuits), matrix solving takes most of the time. 
Using multithreading will improve the performance of both model evaluation 
and matrix solving.

Note: 
■ One license is required per two cores.
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■ If the specified number of threads is larger than the number 
of cores, multithreading will reduce the number of threads to 
the number of cores. For example, if you specify "-mt 12" 
on an 8-core machine, HSPICE will issue a warning and 
change this to "-mt 8".

To determine the number of available processors and cores:

For example, running four threads (two licenses are needed):

hspice -mt 4 -i input.sp -o output

This section covers the following topics:
■ Performance Improvement Estimations
■ Multithreading on Windows

Performance Improvement Estimations
You can start to understand the improvement to multithreading performance 
from the following equation:

Tmt=Tserial + Tparallel/Ncpu + Toverhead

where:
■ Tserial represents HSPICE calculations that do not thread.
■ Tparallel represents threaded HSPICE calculations.
■ Ncpu is the number of CPUs used.
■ Toverhead is the overhead from multithreading. Typically, this represents 

a small fraction of the total run-time.

For example, for a 151-stage NAND ring oscillator using LEVEL 49, 
Tparallel is about 80% of T1cpu (the CPU time associated with a single 

Platform Action

Linux Examine the processor, physical ID, and core ID flags in the /proc/cpuinfo file.

Solaris Use the /usr/platform/platform_name/sbin/prtdiag path, where 
platform_name is determined by uname -i.

Windows Invoke the Task Manager, click the Performance tab, and count the number of CPU 
Usage History graphs.
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CPU) if you run with two threads on a multi-CPU machine. Ideally, assuming 
Toverhead=0, you can achieve a speedup of:

T1cpu/(0.2T1cpu + 0.8T1cpu/2cpus)=1.67

The typical Tparallel value is 0.6 to 0.7 for moderate-to-large circuits.

Running more threads does not necessarily mean the simulation would be 
faster. If there are not enough active devices or elements, a small number of 
threads sometimes may run faster.

Multithreading on Windows
HSPICE multithreading can be used on Windows. The maximum possible 
number of threads is the number of cores, even if you specify a larger number 
in the HSPICE user interface. Using multithreading with hyperthreading is not 
recommended because no performance gain will be obtained from 
hyperthreading. Check with the BIOS vender to see how to turn off 
hyperthreading.

On the Windows platform, from the HSPICE user interface (HSPUI):

1. Select the correct hspice.exe version in the Version box. 

2. Select MultiCpu Option and select the mt number.

3. Select the input case and run.

Running Multithreading and Distributed Processing 
Concurrently

You can run multithreading and DP at the same time. Multithreading can speed 
up large circuit simulation while DP can speed up multijob simulations 
(.ALTER, Monte Carlo, and data sweep). If you have a large circuit with 
multiple jobs to run, multithreading plus DP can greatly boost the performance.

Note: You can run both DP and multithreading simultaneously only on 
Linux platforms.

The following is the command usage for concurrent multithreading and DP:

hspice -dp process_count 
       [-dpconfig configuration_file] 
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       -mt thread_count
       -i input.sp
       -o output_file

where: 
■ process_count is a nonzero integer, which defines the initial value of 

available child process numbers to fork. 
■ thread_count is the maximum number of threads used in model 

evaluation and matrix solving. Every process in DP uses the same number 
of threads defined here.

■ -dpconfig configuration_file is optional and can be omitted if the 
job is running on a local machine.

Note: The number of licenses checked out equals the number of 
threads divided by 2 and multiplied by the number of DPs. For 
example, -dp 10 -mt 4 will check out 20 licenses.

DP takes priority in CPU resource allocation. HSPICE triggers multithreading 
only if a remainder of CPU resources after DP’s process_count is satisfied. 

If the number of cores available for multithreading is not sufficient (after 
-dp) for the specified thread count, HSPICE lowers the value of the thread 
count to that of available cores.

Example 1:

hspice -dp 6 -mt 4 -i input.sp -o input

Core=8

Monte=1000 

Total multiprocessed jobs=6

Thread count reset to 1 because only 2 cores left and must have equal threads 
across processes.

Example 2:

hspice -dp 6 -mt 4 -i input.sp -o input

Core=18

Monte=1000 

Total multiprocessed jobs=6
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Thread count reset to 3 since there are sufficient cores to have 3 threads per 
process.

Example 3:

hspice -dp 2 -mt 4 -i input.sp -o input

Core=4

Monte=1000 

Total multiprocessed jobs=2

Thread count is reset to 2.

HSPICE Precision Parallel

HSPICE takes advantage of the latest multicore technology to speed up 
prelayout and post-layout circuit transient simulations especially for 
medium-to-large size blocks including PLLs, ADCs, DACs, SERDES, and other 
full mixed-signal circuits of over 10 million elements. 

HSPICE Precision Parallel (HPP) scales performance from one to eight cores 
and beyond with no loss in accuracy. For a short demonstration of HPP, go to 
the HSPICE page on the Synopsys website and click Videos > Introducing 
HSPICE Precision Parallel Technology.

HPP can be activated by inserting -hpp on the command line for a single-core 
run, and it can be combined with multithreading to speed up transient analysis 
simulations even further by inserting -hpp and -mt N on the command line, 
where N is the number of threads. HPP is a transient engine, so it will not help 
with .AC, .DC, or other analyses.

When running the -hpp multicore algorithm with multithreading, every two 
threads requires one HSPICE license.

For example:

hspice -mt 8 -hpp -i input.sp -o ouput.lis

Note: Four HSPICE licenses are used.

Table 8 Supported Platforms

Linux RHEL Linux SUSE Sun/Solaris Windows

Yes Yes Yes Yes
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Note: On Windows platforms, HPP scalability depends on the machine 
configuration. Personal laptops show poor scalability, while 
Windows server with Xeon could achieve higher scalability.

HPP Status Reporting in *.lis File
When you run HPP, the *.lis file shows running updates for the simulation 
status and the CPU utilization. 

For example:

98.8% time = 34.597003 us ( etc = 56.4 sec, ett = 2:16:41 )
( wall = 2:15:44 cpu = 1:02:14:45 s=11.6008 ) 

where:

% - Percentage of simulation completion
time = Transient time (seconds) 
etc = Estimated time to completion (seconds)
ett =  Estimated total time 
wall=  Wall-clock time 
cpu = Total CPU time 
s = Number of CPUs used

HPP Limitations
The following features and commands are not supported:
■ For Monte Carlo:

• .Variation block

• .Traditional AGAUSS style sampling method

Note: HPP uses the option sampling_method=SRS by 
default.

■ Transient noise analysis-HPP does not support the stochastic differential 
equation (SDE) method.

■ IBIS: .ICM
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HSPICE Precision Parallel
In HPP, templates are supported only for the following models:
■ BSIM3
■ BSIM4
■ PSP
■ BSIM-CMG

In HPP, the IVTH feature and LX142( ) are supported only for the following 
models:
■ BSIM4
■ BSIM-CMG
■ MOS101
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This chapter describes how to use the interactive mode in HSPICE.

Note: HSPICE advanced analog analyses does not support interactive 
mode.

HSPICE ships hundreds of examples for your use; see Listing of 
Demonstration Input Files for paths to demo files.

The following sections discuss these topics:
■ Invoking Interactive Mode
■ Using Interactive Mode on the Windows Platform
■ Examples

Invoking Interactive Mode

Start interactive mode by using the hspice executable in the 
$installdir/arch directory (for example, $installdir/sparcOS5). 

To start the interactive mode, from the command prompt, type:

% hspice -I
HSPICE >

The interactive environment functions from a special HSPICE-shell. You can 
use many commands while in this environment to simplify your design work.

The following sections discuss these topics:
■ Quitting Interactive Mode
■ Executing an Interactive Script
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Quitting Interactive Mode
You quit an interactive mode session by entering:

HSPICE > quit

Executing an Interactive Script
You can also use interactive commands in a command script file. To execute an 
interactive script, from the command prompt, type:

% hspice -I -L command_script

Where command_scriptis the name of the file containing the interactive 
commands.

Using Interactive Mode on the Windows Platform

To start Windows Interactive Mode, open a Windows Command Prompt 
Launch the command prompt window by entering cmd into Start > Run or 
through Start > All Programs > Accessories. From the command prompt, 
type:

C: \>hspice -I

The interactive environment functions from a special HSPICE shell. You can 
use the same commands as you do under UNIX. For example:

HSPICE > load case.sp
HSPICE > run

To quit an interactive mode, enter:

HSPICE > quit

Examples

The examples in this section examples show you how to use the interactive 
environment commands. 
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Examples
The following sections discuss these topics:
■ Getting Help
■ Creating a Netlist
■ Specifying an Analysis
■ Running an Analysis
■ Viewing a Netlist
■ Loading and Running an Existing Netlist
■ Using Environment Commands
■ Recording and Saving Interactive Commands to a File
■ Printing a Voltage Value During Simulation
■ Using a Command File to Run in Interactive Mode
■ Running Multiple Testcases

Getting Help
You use the help command to show the interactive mode syntax; for example,

% hspice -I
HSPICE > help

list [lineno]
input
edit 
ls [directory] 
load filename
run 
pwd
cd directory
info outflag 
set outflag true/false
save [netlist/command] filename
quit 
help
dc [...statement]         (as in the netlist)
ac [...statement]         (as in the netlist)
tran [...statement]       (as in the netlist)
op 
measure [...statement]          (as in the netlist)
print [tran/ac/dc] v/vm/vr/vi/vp/vdb
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Creating a Netlist
Use the input command to create a netlist by using the vi text editor; for 
example,

% hspice -I
HSPICE > input
R1 1 0 2
V1 1 0 3
.print I(R1)
.end

Save the file and exit vi.

Specifying an Analysis
Use the ac, dc, or tran command to specify an analysis; for example,

HSPICE > dc v1 -5v 5v 0.5v

Running an Analysis
Use the run command to simulate a netlist; for example,

HSPICE > run > info: ***** hspice job concluded

HSPICE outputs the simulation results. This output is equivalent to a .lis file.

Viewing a Netlist
Use the list command to view a netlist; for example,

HSPICE > list
1  * this is an interactive mode example 
2 
3  R1 1 0 2 
4  V1 1 0 3 
5  .print I(R1) 
6  .end 
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Loading and Running an Existing Netlist
Use the load command to read an existing netlist; for example, to load a netlist 
named “tt1.sp“:

% hspice -I
HSPICE > load tt1

Use the list command to view a netlist; for example, to view the tt1.sp netlist:

HSPICE > list
1  * this is an interactive mode example 
2 
3  R1 1 0 2 
4  V1 1 0 3 
5  .print I(R1) 
6  .end 

Use the dc command to specify an analysis and then run HSPICE:

HSPICE > dc v1 -5v 5v 0.5v
HSPICE > run
> info: ***** hspice job concluded

Use the list command to view a netlist again. Notice that the DC analysis is 
in the interactive mode netlist. The original netlist, tt1.sp, is unchanged.

HSPICE > list
1  * this is an interactive mode example 
2 
3  R1 1 0 2 
4  V1 1 0 3 
5  .print I(R1) 
6  .dc v1 -5v 5v 0.5v
7  .end 

Use the run command to simulate the netlist:

HSPICE > run
> info: ***** hspice job concluded

Use the cd command to change the current working directory to /home/usr:

HSPICE > cd /home/usr

Use the pwd command to print the full pathname of the current directory:

HSPICE > pwd
> /home/usr
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Use the quit command to terminate the interactive mode:

HSPICE > quit
%

Using Environment Commands
Use the load command to read netlist “tt3.sp” and the list command to view it:

% hspice -I
HSPICE > load tt3.sp
HSPICE > list
R1 1 0 2 
V1 1 0 3 
.print I(R1) 
.param a=10, t=24
.dc v(1) -5v 5v 0.5v
.end

Use the ls command to list the files in the current working directory:

HSPICE > ls
tt.sp
tt.sw0
:

Use the set outflag command to prevent printing simulation results to 
stdout (the default is true):

HSPICE > set outflag false
HSPICE > run

Use the info outflag command to view the current setting of outflag:

HSPICE > info outflag
false
HSPICE > quit
%

Recording and Saving Interactive Commands to a File
Use the load command to read netlist “tt6.sp” and print the full pathname of 
the current directory:

% hspice -I
HSPICE > load tt6.sp
HSPICE > pwd
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Write all interactive commands entered to file int1.cmd:

HSPICE > save command int1
HSPICE > ls 
int1.cmd
tt6.sp
tt6.sw0 
HSPICE > input 
R1 1 0 2 
V1 1 0 3 
.print I(R1) 
.end 
HSPICE > save netlist ex.sp 
HSPICE > ls 
int1.cmd
tt6.sp
tt6.sw0
ex.sp 
HSPICE > quit

Quit interactive mode and return to the system prompt.

Printing a Voltage Value During Simulation
This example prints a voltage value during simulation:

% hspice -I 
HSPICE > load tt2.sp 
HSPICE > list 
1  * this is an interactive mode example 
2 
3  R1 1 0 2 
4  V1 1 0 3 
5  .print I(R1) 
6  .dc  v1  -5v  5v  0.5v 
HSPICE > print dc v(1,0) 
HSPICE > run 
v(1, 0)  0.000000 
v(1, 0)  0.000000 
v(1, 0)  0.000000 
v(1, 0)  0.000000 
v(1, 0)  0.000000 
v(1, 0)  0.000000 
v(1, 0)  0.000000 
v(1, 0)  0.000000 
v(1, 0)  0.000000 
v(1, 0)  0.000000 
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v(1, 0)  0.000000 
v(1, 0)  0.000000 
v(1, 0)  0.000000 
v(1, 0)  0.000000 
v(1, 0)  0.000000 
v(1, 0)  0.000000 
v(1, 0)  0.000000 
v(1, 0)  0.000000 
v(1, 0)  0.000000 
v(1, 0)  0.000000 
v(1, 0)  0.000000 
>info:        ***** hspice job concluded 
HSPICE > quit 
% 

Using a Command File to Run in Interactive Mode
Use the -I -L arguments to invoke interactive mode on a command file and 
run it; for example,

% hspice -I -L int1.cmd

Running Multiple Testcases
To run multiple testcases and save the license check-in and check-out times, 
you can use the command file similar the following example. Use any text editor 
to create a command file named bat.cmd containing these entries:

load tt.sp 
run 
load qq.sp 
run 
quit 

Run HSPICE in interactive mode to execute bat.cmd:

% hspice -I -L bat.cmd 
... 
% ls 
tt.sp
tt.sw0
qq.sp
qq.sw0 

HSPICE checks out a license only one time and then simulates both tt.sp 
and qq.sp netlists.
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6HSPICE GUI for Windows

Describes how to use the HSPICE GUI for Windows.

To open the HSPICE GUI for Windows, click the HSPUI icon. Figure 12 shows 
the directory structure for the HSPICE GUI for Windows (HSPUI).

Figure 12 Directory Structure

This following section discuss these topics:
■ Working With Designs
■ Configuring the HSPICE GUI for Windows
■ Running Multiple Simulations
■ SPutil, Metaencrypt and Converter Utilities, Client/Server Operation
■ CMI Directory Structure

Working With Designs

You can create a new design in several ways. HSPUI allows you to browse for 
an input file with the file suffix .sp or .spi for HSPICE.

Design dir

Sim. output
.lis

Measures
.mt#,.ma#,.ms#

Raw output
.tr#,.ac#,.sw#

Sim. input
*.sp

Design 
Config
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Figure 13 HSPUI Main Window

In HSPUI, you can open a design file in one of the following ways:
■ Select File > Open in the menu bar.
■ Select the file folder icon in the icon bar.
■ Click the Browse button next to the Input netlist file list.

For the preceding three cases, HSPUI opens a standard Windows file 
browser to help you select the design file for opening.

■ Click the down arrow in the Input netlist file list and select one of the last-
opened eight designs (to reopen the design).

Configuring the HSPICE GUI for Windows

You can customize the HSPUI configuration by selecting Configuration > 
Options from the menu bar or by clicking the Options icon in the icon bar. 
HSPUI then displays the Options dialog box (see Figure 14 on page 83) 
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consisting of four tabs namely, Default Launch, Setup Editor, Simulation 
Window Mode, and Save Configuration.

Figure 14 HSPUI Options Dialog Box
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You can configure options in each of these tabs (see the following table).

Table 9 HSPUI Options

Tab Option Description and Default Value

Default Launch Environment 
setting

-

Netlist file suffix The file suffix of the netlist file. Default: 
.sp

Listing file suffix The file suffix of the listing file. Default: 
.lis

HSPUI HSPUI version. Default: the version 
defined in the installdir environment 
variable that is set up during HSPICE 
installation.

HSPICE HSPICE version. Default: the version 
defined in the installdir environment 
variable that is set up during HSPICE 
installation.

Waveview Full path to the Custom WaveView 
executable (wv.exe).

Setup Editor Editor Default: notepad.exe

Simulation 
Window Mode

Simulation window Can be one of the following:
■ Popup (default)
■ Minimized
■ Silent
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Launching WaveView in HSPUI
After you configure the path to WaveView in the HSPUI Options dialog box, you 
can launch Waveview in one of the following ways:
■ Select Tools > WaveView in the menu bar.
■ Click the WaveView icon in the icon bar.
■ Click the WaveView action icon.

HSPICE automatically links the existing simulation results into WaveView, 
when you launch WaveView.

Note: There should be no whitespaces in the path to the waveform file.

Running Multiple Simulations

You can use HSPUI to build a list of simulations, from different directories, for 
consecutive HSPICE simulation. You can use the HSPUI multi-jobs dialog box 
to create and run multiple simulations.

Save 
Configuration

Save configuration 
at

■ Installed Path (root permission): 
writes the configuration to 
installdir\hspui.cfg.

■ User local HOME: writes the 
configuration to 
%APPDATA%\Synopsys\HSPICE\hspu
i.cfg.

Note: HSPUI saves the 
configuration if you select 
Automatic save 
configuration when exit and 
the configuration is changed, 
or if you select File > Save 
Configuration from the menu 
bar.

Table 9 HSPUI Options

Tab Option Description and Default Value
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You can open the HSPUI multi-jobs dialog box in one of the following ways:
■ Select Tools > Multi-jobs in the menu bar.
■ Click the Multi-jobs icon in the icon bar.
■ Click the Multi-jobs action icon.

Figure 15 HSPUI Multi-jobs Dialog Box

The following sections discuss these topics:
■ Building the Batch Job List
■ Simulating a Batch Job
■ Running Multithreading and HPP
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Building the Batch Job List
To build a batch job list:

1. Open the HSPUI multi-jobs dialog box.

2. Click the Load icon and use the file browser to locate the directory 
containing the files that you want to simulate.

You can also use File > Load from the menu bar, or click the Load button 
next to the Working directory field.

3. Select any file in the directory to load all the files with the extension .sp or 
.spi into the Case List column in the dialog box.

4. To remove files that you do not want to simulate, select the file or files to be 
removed, in the Case List column, and then click the Delete File icon.

After selecting the files to be removed, you can also remove them by 
selecting Actions > Delete File from the menu bar.

5. To append files to the Case List column, from a different directory, click the 
Append icon and use the file browser to locate the directory containing the 
files you want to append.

You can also use File > Append from the menu bar.

Simulating a Batch Job 
You can simulate the batch job list that you have created in one of the following 
ways:

Using a Batch File
After building the batch jobs list, click the Save icon to create a batch simulation 
file (*.bat file). You can also use File > Save from the menu bar, to create the 
batch simulation file.

Run the simulation by clicking the *.bat file in Windows Explorer or by running 
the *.bat file in an MS-DOS cmd window.

Using HSPUI
After building the batch jobs list, you can simulate the files in HSPUI.

1. To simulate all the files in the batch jobs list, select the All icon, or select 
Actions > Select All from the menu bar. Click the Simulate icon, or select 
Actions > Simulate from the menu bar, to start the consecutive simulations.
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2. To simulate a single file, select the file using the left mouse button and click 
the Simulate icon to start the simulation.

3. To simulate a group of files, first select the files. You can use the left mouse 
button to select a single file. Then press and hold the Ctrl key to add another 
selected file (selected with the left mouse button) to the list. You can also 
press and hold the Shift key to select all files between the first file and the 
currently-selected file.

After you select the group of files to simulate, click the Simulate icon to start 
the consecutive simulations.

Typical Batch Workflow
A typical workflow using the Multi-jobs window contains the following steps:

1. Load your netlist files:

Click the Load icon. HSPUI opens the file browser. In the browser, navigate 
to the drive and directory where your netlist files are located and select any 
file.

2. Add/delete files from the run list as required:

Use the Delete file icon to delete selected files and the Append icon to add/
append files.

Note: Deleting a file only removes it from the run list and not from 
your hard-drive.

3. Edit the HSPICE files in the run list as required:

Select the file to be edited and click the Edit icon to open the file in the text 
editor. You can also right-click a selected file in the run list and select Edit 
from the context-sensitive menu.

4. Simulate the netlists:

HSPUI simulates only the jobs that you select in the run list.

To select a job, click the job file in the run list. You can select multiple files 
by holding down either the Ctrl key or the Shift key while clicking the files. To 
select all files in the job list, use the Select all icon.

After you select the jobs, click the Simulate icon to run the selected jobs 
sequentially, in the same order.

5. View simulation results:
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After the simulations are complete, HSPUI displays the list of all files 
generated by HSPICE for each design. To view the contents of a file, click 
the down arrow near the file name.

To open a text file such as a listing (*.lis) file in the text editor, right-click 
the file name and select Edit from the context-sensitive menu.

To view the waveforms for each design, click the WaveView icon to invoke 
WaveView.

6. Create a batch file for running the simulation outside HSPUI:

To create a batch (*.bat) file with the list of jobs to be run (outside HSPUI), 
click either the File Save or File Save As icon.

The saved DOS batch file contains the full path to the HSPICE executable 
and the path and design name for each job in the run list. You can execute 
the *.bat file from the DOS command prompt or by double-clicking the file 
in Windows Explorer.

Running Multithreading and HPP
You can also run simulations using multithreading with or without HPP. You can 
enable both multithreading and HPP using the check boxes in the main HSPUI 
window. You can set the number of threads in the list box.

SPutil, Metaencrypt and Converter Utilities, Client/
Server Operation

For information about use of the S-parameter utility (SPutil) refer to
S-parameter Standalone Manipulation Utility in the HSPICE User Guide: Signal 
Integrity Modeling and Analysis.

For information about use of the metaencrypt utility for encryption of files, 
refer to Chapter 31, Library and Data Encryption.

For information about use of the Converter utility for the conversion of output by 
HSPICE, refer to Using the HSPICE Output Converter Utility.

The C/S mode check boxes allow you to start and use the HSPICE traditional 
client/server mode. For information about Client/Server usage, refer to Using 
HSPICE in Client-Server Mode.
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CMI Directory Structure

For information on the Custom Common Model Interface (CMI) directory 
structure for Windows platforms, contact your Synopsys technical support team 
to access the application note for the HSPICE CMI.
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7Input Netlist and Data Entry

Describes the input netlist file and methods of entering data for HSPICE. 

HSPICE ships hundreds of examples for your use; for HSPICE demo cases, 
see Listing of Demonstration Input Files for paths to demo files. For HSPICE 
advanced analog analyses demo cases, see RF Demonstration Input Files in 
HSPICE User Guide: Advanced Analog Simulation and Analysis.

For descriptions of individual HSPICE commands referenced in this chapter, 
see HSPICE Netlist Commands in the HSPICE Reference Manual: Commands 
and Control Options.

The following sections discuss these topics:
■ Input Netlist File Guidelines
■ Input Netlist File Composition
■ Using Subcircuits
■ Subcircuit Call Statement Discrete Device Libraries

Input Netlist File Guidelines

HSPICE operates on an input netlist file, and store results in either an output 
listing file or a graph data file. An input file, with the name design.sp, contains 
the following:
■ Design netlist (subcircuits, macros, power supplies, and so on).
■ Statement naming the library to use (optional).
■ Specifies the type of analysis to run (optional).
■ Specifies the type of output desired (optional).
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Input Netlist File Guidelines
■ Each netlist line (logical record) cannot exceed 1024 characters. Use the “+” 
line continuation character to break up lines > 1024 characters in length to 
avoid generating an error.

■ An input filename can be up to 1024 characters long for all platforms except 
PC Windows, which has a limitation of 256 characters. 

■ HSPICE has a limitation on the number of characters in a path name plus a 
file name of 1024 characters (except PC Windows, 256 characters or fewer). 
For example:

hspice -i path_name/input_file -o out_file

When specifying a path and file name using -i or -o, the length must be 
1024 characters or fewer on all platforms. If the working directory path is 
greater than 1024 characters, HSPICE aborts with an error message. 

■ Model names in a netlist must begin with a letter. If you enter a model name 
with a leading integer HSPICE issues a parsing error.

■ To generate input netlist and library input files, HSPICE uses either a 
schematic netlister or a text editor. 

■ Statements in the input netlist file can be in any order, except that the first 
line is a title line. In HSPICE, the last .ALTER submodule must appear at 
the end of the file and before the .END statement.

Note: If you do not place an .END statement at the end of the input 
netlist file, HSPICE issues an error message.

■ For information on compressed netlist usage see Compressed Netlist 
Guidelines on page 108.

■ Netlist input processing is case insensitive, except for file names and their 
paths (see Case Sensitivity on page 95).

The following sections discuss these topics:
■ Input Line Format
■ Case Sensitivity
■ Special Characters
■ First Character
■ Delimiters
■ Instance Names
■ Hierarchy Paths
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■ Numbers
■ Parameters and Expressions
■ Reserved Keywords
■ Input Netlist File Structure
■ Schematic Netlists
■ Compressed Netlist Guidelines

Input Line Format
■ The input reader can accept an input token, such as:

• A statement name.

• A node name.

• A parameter name or value. 

Any valid string of characters between two token delimiters is a token. 
You can use a character string as a parameter value in HSPICE, but not 
when performing HSPICE advanced analog analyses. See Delimiters 
on page 100.

■ A limitation of 1024 characters per line exists for an input statement or 
equation. 

■ Continuation lines:

• Prepend a "+" character at the beginning of the continued line when the 
continuation is between tokens. For example:

R1 1 0
+ R='res1-res2'

• Use a double backslash "\\" at the end of the line for continuation when 
the continuation is inside a token or string. Whitespaces are optional to 
precede the string continuation. A whitespace must not precede the 
token continuation, nor can a whitespace precede the double 
backslash. For example:
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*** string continuation ***
R6 4 0 R='res1-\\             
res2'
R5 4 0 R='res1- \\
res2'
*** token continuation ***
R4 node1 no\\
de2 R= 'res1-res2'

Here, the double slash equals R4 node1 node2 R='res1-res2'.
■ If you do not invoke the -case 1 command-line switch, HSPICE ignores 

differences between upper and lower case in input lines, except in quoted 
filenames and or after the .INC or .LIB commands.

■  HSPICE automatically completes parentheses and quotation marks if they 
carry over to (+) continued lines.

■ To indicate “to the power of” in your netlist, use two asterisks (**). For 
example, 2**5 represents two to the fifth power (25).

■ HSPICE ignores all characters after the following listed statement lines:

• .include 'filename'

• .lib 'filename' corner

• .enddata, .end, .endl, .ends and .eom

For example:

.include 'biasckt.inc';    $ semicolon ignored

.lib 'mos25l.l' tt, $ comma ignored

■ Parameter names must begin with an alphabetic character, but thereafter 
can contain numbers and some special characters. See Special Characters.

• When you use an asterisk (*) or a question mark (?) with 
a .PRINT, .PROBE, .LPRINT (Valid only for advanced analog 
functions), or.CHECK (Valid only for advanced analog functions) 
statement, HSPICE uses the character as a wildcard. For additional 
information, see Using Wildcards on Node Names on page 117.

• When you use curly braces ( { }), HSPICE converts them to square 
brackets ( [ ] ) automatically.

• Names become input tokens. Token delimiters must precede and follow 
names. See Delimiters.

• Names can be up to 1024 characters long and are not case-sensitive.
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• Do not use any of the time keywords as a parameter name or node 
name in your netlist. 

•  Reserved operator keywords include these symbols: ( ) = ‘

Do not use the symbol '=' as part of any parameter or node name that 
you define. Use of the symbol '=' as names causes a syntax error, and 
HSPICE stops immediately.

Do not use the symbol '(' or ')' as part of any parameter name that you 
define. Use of the symbol '(' or ')' as part of parameter names causes a 
syntax error.

Do not use the symbol '(' or ')' as part of node name that you define. The 
symbol "(" or ")" used as node names is treated as a delimiter like a 
space instead of part of node names.

Case Sensitivity
Where net, instance, parameter, and measure names, and any other name 
labels for downstream tools, require case sensitivity, HSPICE provides a 
mechanism to enable case-sensitive simulation. (Case insensitivity is 
unaffected for HSPICE keywords, commands, and options.) To invoke case 
sensitivity, on the HSPICE command-line enter:

 -case 1

For example, HSPICE reads a netlist with case sensitivity when you enter:

%hspice -case 1 -i design.sp -o design.lis

Case-sensitivity applies for the following instances:
■ Parameter Names
■ Node Names
■ Instance Names
■ Model Names
■ Subcircuit Names
■ Data Names
■ Measure Names 
■ File Names and Paths (enabled by default)
■ Library Entry Names
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Mixed-case data is writable to wavefiles. To ensure backward compatibility in 
Custom WaveView, in the Waveview tab of the Preference Settings form, 
switch on the Case Sensitive HSPICE Waveform Files check box.

Special Characters
Table 10 on page 96 lists the special characters usable as part of node names, 
element parameter names, and element instance names. For details, see the 
appropriate sections in this chapter.

To avoid unexpected results or error messages, do not use the following 
mathematical characters in a parameter name in HSPICE: * - + ^ and /.

Table 10 HSPICE Netlist Special Characters

Special Character 
“Legal anywhere”=first 
character or any 
position in name
“Included only”=any 
position except first 
character

Node Name Instance Name 
(cannot be the 
first character; 
element key 
letter only)

Parameter Name 
(cannot be the first 
character, element 
key letter only)

Delimiters

~ tilde HSPICE: Legal 
anywhere
HSPICE advanced 
analog analyses: 
Included only 

Included only Included only n/a

! exclamation point Legal anywhere Included only Not recommended1 n/a

 @ at sign Legal anywhere Included only Included only n/a

# pound sign Legal anywhere Included only Included only n/a

$ dollar sign Avoid using the $ 
character in a node 
name

Included only Included only In-line comment 
character

% percent HSPICE: Legal 
anywhere
HSPICE advanced 
analog analyses: 
Included only

Included only HSPICE: included only
Illegal in HSPICE 
advanced analog 
analyses

n/a
96 HSPICE® User Guide: Basic Simulation and Analysis
K-2015.06



Chapter 7: Input Netlist and Data Entry
Input Netlist File Guidelines
^ caret HSPICE: Legal 
anywhere
HSPICE advanced 
analog analyses: 
included only

Included only HSPICE: included only 
(avoid usage),
Illegal in HSPICE 
advanced analog 
analyses

“To the power of”, i.e., 
2^5, two raised to the 
fifth power

& ampersand HSPICE: Legal 
anywhere HSPICE 
advanced analog 
analyses Included 
only

Included only Included only n/a

 * asterisk HSPICE: included 
only (avoid using * 
in node names), 
Illegal in HSPICE 
advanced analog 
analyses

Included only HSPICE: included only 
(avoid using in 
parameter names),
Illegal in HSPICE 
advanced analog 
analyses

Comment in both 
HSPICE. Wildcard 
character. Double 
asterisk (**) is 
“To the power of”.

( ) parentheses Illegal Illegal Illegal Token delimiter

- minus HSPICE: included 
only
HSPICE advanced 
analog analyses: 
Legal anywhere

Included only Included only (avoid 
usage)

n/a

_ underscore Legal anywhere Included only Included only n/a

+ plus sign HSPICE: included 
only
HSPICE advanced 
analog analyses: 
Legal anywhere

Included only HSPICE: included only 
(avoid usage);
Illegal in HSPICE 
advanced analog 
analyses

Continues previous 
line including 
expressions and 
algebraics except for 
quoted strings

\ backslash Illegal Illegal Illegal Continuation 
character (preferred 
usage is a "+")

Table 10 HSPICE Netlist Special Characters

Special Character 
“Legal anywhere”=first 
character or any 
position in name
“Included only”=any 
position except first 
character

Node Name Instance Name 
(cannot be the 
first character; 
element key 
letter only)

Parameter Name 
(cannot be the first 
character, element 
key letter only)

Delimiters
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\\ double 
backslash 
(requires a 
whitespace before 
to use as a 
continuation)

HSPICE: included 
only HSPICE 
advanced analog 
analyses: Legal 
anywhere

Illegal Illegal Continuation 
character for quoted 
strings (preserves 
whitespace)

= equals Illegal Illegal optional in

.PARAM statements

Token delimiter

 <  > less/more than; '<' 
and '>' are 

treated as a 
relation operators 
in an expression

HSPICE: Illegal to 
use <...> as node 
name or first 
character;
Legal to follow a 
first character (i.e., 
n<0>)

Illegal Legal as less than/ 
more than relational 
operators in an 
expression

n/a

? question mark HSPICE: Legal 
anywhere HSPICE 
advanced analog 
analyses:  Illegal

Included only Included only Wildcard in character 
in HSPICE

/ forward slash Legal Included only Illegal n/a

{ } curly braces HSPICE: included 
only, converts { } to 
[ ] No conversion 
for HSPICE 
advanced analog 
analyses

Included only Included only Auto-converts to 
square brackets 
( [ ] ) 
Single ( { ) or ( } ) can 
be used in Variation 
Blocks

[ ] square brackets Included only Included only Included only n/a

| pipe HSPICE: Legal 
anywhere
HSPICE advanced 
analog analyses: 
Included only 

Included only Included only n/a

, comma Illegal Illegal Illegal Token delimiter

Table 10 HSPICE Netlist Special Characters

Special Character 
“Legal anywhere”=first 
character or any 
position in name
“Included only”=any 
position except first 
character

Node Name Instance Name 
(cannot be the 
first character; 
element key 
letter only)

Parameter Name 
(cannot be the first 
character, element 
key letter only)

Delimiters
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First Character
The first character in every line specifies how HSPICE interprets the remaining 
line. Table 11 lists and describes the valid characters.

. period Illegal Included only Included only Netlist keyword, (i.e., 
.TRAN, .DC, etc.). 
Hierarchy delimiter 
when used in node 
names

: colon Included only Included only Illegal Delimiter for element 
attributes

; semi-colon Included only Included only Included only n/a

" " double-quotes Illegal Illegal Illegal Expression and 
filename delimiter

‘ ’ single quotes Illegal Illegal Illegal Expression and 
filename delimiter

Blank 
(whitespace)

Use before \ or \\ 
line continuations

Token delimiter

Tab Tab Token delimiter

1. Using a parameter containing '!' in an expression will cause an error, since '!' is parsed as a part of a 
relational operator.

Table 11 First Character Descriptions

Line If the First Character is... Indicates

First line of a netlist Any character Title or comment line. The first line of an 
included file is a normal line and not a 
comment.

Table 10 HSPICE Netlist Special Characters

Special Character 
“Legal anywhere”=first 
character or any 
position in name
“Included only”=any 
position except first 
character

Node Name Instance Name 
(cannot be the 
first character; 
element key 
letter only)

Parameter Name 
(cannot be the first 
character, element 
key letter only)

Delimiters
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Delimiters
■ An input token is any item in the input file that HSPICE recognizes. Input 

token delimiters are: tab, blank (whitespace), comma (,), and parentheses 
( ).

■ Single (‘) or double quotes (“) delimit expressions and filenames.
■ Colons (:) delimit element attributes (for example, M1:VGS).
■ Periods (.) indicate hierarchy. For example, X1.X2.n1 is the n1 node on the 

X2 subcircuit of the X1 circuit.

Note: The equal sign (=) it is a token delimiter in the sense only that 
when you define a parameter, both the parameter name and 
parameter value are tokens, so the '=' is a token delimiter. 
However, you cannot enter '=' anywhere in a line like you would 
a comma, space, tab, or in the case of HSPICE, parentheses.

For example: the following is incorrect and returns an error 
message:

xtest2====(a),,(b)=,=,==(mysub====r1=1000=r2=1000(((,,

Instance Names
The names of element instances begin with the element key letter (see 
Table 12), except in subcircuits where instance names begin with X. 
(Subcircuits are interchangeably known as macros or modules.) Instance 

Subsequent lines of netlist, 
and all lines of included 
files

. (period) Netlist keyword. For example,
.TRAN 0.5ns 20ns

c, C, d, D, e, E, f, F, g, G, h, H, i, I, 
j, J, k, K, l, L, m, M, q, Q, r, R, s, S, 
v, V,w,W

Element instantiation

*(asterisk) Comment line

+(plus) Continues previous line

Table 11 First Character Descriptions (Continued)

Line If the First Character is... Indicates
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names can be up to 1024 characters long. In HSPICE, the .OPTION LENNAM 
defines the length of names in printouts (default=16).

Table 12 Element Identifiers

Letter 
(First 
Char)

Element Example Line

B IBIS buffer b_io_0 nd_pu0 nd_pd0 nd_out nd_in0 
nd_en0 nd_outofin0 nd_pc0 nd_gc0

C Capacitor Cbypass 1 0 10pf

D Diode D7 3 9 D1

E Voltage-controlled voltage source Ea 1 2 3 4 K

F Current-controlled current source Fsub n1 n2 vin 2.0

G Voltage-controlled current source G12 4 0 3 0 10

H Current-controlled voltage source H3 4 5 Vout 2.0

I Current source I A 2 6 1e-6

J JFET or MESFET J1 7 2 3 GAASFET

K Linear mutual inductor (general form) K1 L1 L2 1

L Linear inductor LX a b 1e-9

M MOS transistor M834 1 2 3 4 N1

P Port P1 in gnd port=1 z0=50

Q Bipolar transistor Q5 3 6 7 8 pnp1

R Resistor R10 21 10 1000

S S parameter element S1 nd1 nd2 s_model2

V Voltage source V1 8 0 5

T,U,W Transmission Line W1 in1 0 out1 0 N=1 L=1

X Subcircuit call X1 2 4 17 31 MULTI WN=100 LN=5
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Hierarchy Paths
■ A period (.) indicates path hierarchy.
■ Paths can be up to 1024 characters long.
■ Path numbers compress the hierarchy for post-processing and listing files.
■ You can find path number cross references in the listing and in the 

design.pa0 file.
■ The .OPTION PATHNUM controls whether the list files show full path names 

or path numbers.

Numbers
You can enter numbers as integer, floating point, floating point with an integer 
exponent, or integer or floating point with one of the scale factors listed in 
Table 13. 

Table 13 Scale Factors

Scale Factor Prefix Symbol Multiplying Factor

T tera T 1e+12 

G giga G 1e+9 

ME,MEG, X, or Z mega M,ME, X, or Z 1e+6 

K kilo k 1e+3 

MI or MIL n/a MI or MIL 25.4e-6

U micro  1e-6 

N nano n 1e-9 

P pico p 1e-12 

F femto f 1e-15

A atto a 1e-18

DB DB db 10(value/20)

MIN MIN min 60
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Note: Scale factor A is not a scale factor in a character string that 
contains amps. For example, HSPICE interprets a “20amps” 
string as 20 amperes of current, not as 20e-18mps.

■ Numbers can use exponential format or engineering key letter format (1e-12 
or 1p), but to use both (1e-6u), you must specify .OPTION 
MIXED_NUM_FORMAT = 1.

■ To designate exponents, use D or E.
■ The .OPTION EXPMAX limits the exponent size.
■ HSPICE interprets trailing alphabetic characters as units comments.
■ Units comments do not go through a checking process.
■ The .OPTION INGOLD controls the format of numbers in printouts.
■ The .OPTION NUMDGT=x controls the listing printout accuracy.
■ The .OPTION MEASDGT=x controls the measure file printout accuracy.
■ In HSPICE, .OPTION VFLOOR=x specifies the smallest voltage for which 

HSPICE prints the value. Smaller voltages print as 0.
■ The DB scale factor s interpreted in the same manner by HSPICE, HPP, and 

RF. 

Parameters and Expressions 
■ Parameter names in HSPICE use HSPICE name syntax rules, except that 

names must begin with an alphabetic character. The other characters must 
be either a number, or a special character. See Table 10 on page 96 in the 
Special Characters section for a listing of legal parameter names. For 
example, a “%” is legal if included in HSPICE, but illegal in HSPICE 

HR HR hr 3600

DAY DAY day 86400

YR YR yr 31536000

Table 13 Scale Factors (Continued)

Scale Factor Prefix Symbol Multiplying Factor
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advanced analog analyses.
■ To define parameter hierarchy overrides and defaults, use the .OPTION 

PARHIER=global | local statement.
■ If you create multiple definitions for the same parameter or option, HSPICE 

uses the last parameter definition or .OPTION statement, even if that 
definition occurs later in the input than a reference to the parameter or 
option. HSPICE does not warn you when you redefine a parameter.

■ You must define a parameter before you use that parameter to define 
another parameter.

■ When you select design parameter names, be careful to avoid conflicts with 
parameterized libraries.

■ To delimit expressions, always use single or double quotes. Otherwise, if a 
mathematical character (+ - * /) is within a string, HSPICE regards the string 
also as an expression.

■ Expressions cannot exceed 4096 characters.
■ For readability, use a double backslash preceded by a whitespace ( \\) at 

end of a line, to continue the line.
■ Use the PAR (expression or parameter) function to evaluate expressions in 

output statements.
■ Limitation 1: If you define a parameter as an expression containing output 

signals such as v(node) or i(element), this parameter applies only in an 
element value expression directly. HSPICE does not evaluate it to another 
parameter.

For example, the following is correct:

.param a='2*sqrt(V(p,n))'  
r1 p n '1k+a'

The following definition is correct, but this definition points up the limitation 
and is not permitted because HSPICE generates an incorrect result: 

.param a='2*sqrt(v(p,n))'

.param b='a+1'
 r1 p n '1k+b'

It is best to use a user-defined function to replace the previous example, so 
that all of r1 and r2 are correct.
104 HSPICE® User Guide: Basic Simulation and Analysis
K-2015.06



Chapter 7: Input Netlist and Data Entry
Input Netlist File Guidelines
.param a(x)='2*sqrt(x)'

.param b(x)='a(x)+1'
r1 p n '1k+a(V(p,n))'
r2 p n '1k+b(V(p,n))'

■ Limitation 2: If you use an expression containing output signals such as 
v(node) or i(element) is used in an element value directly, the element only 
can be R, C, L, E, or G.

Correct

G1 1 0 cur='((1-(a0*v(gate)))/b0)' 

Incorrect

I1 1 0 cur='((1-(a0*v(gate)))/b0)'

Reserved Keywords
Reserved keywords are those which are illegal for a parameter name and/or 
node name. The following keywords are not “global” and are analysis/syntax-
specific; that is, you can use these keywords in some specific statements, but 
not in other statements. For example, you cannot use pwl as a parameter name 
in the V source, but you can use it in an R-element. You can use these 
keywords as parameter names with single quotes anywhere. Table 14 on 
page 105 lists the illegal keywords for the specified element type. Table 15 on 
page 106 lists the illegal keywords for the specified command.

Table 14 Reserved Keywords and Elements

Elements Illegal Keywords

B-element FILE, MODEL, NOWARN, COMPL_TR

Bjt/Jfet element OFF, IC,TNODEOUT

Capacitor POLY, TC, SENS

Diode OFF, IC

E/G-element POLY, PWL,AND, NAND, PPWL, NPWL, OR, NOR, LAPLACE, POLE, VCCS, OPAMP, DELAY, 
TRANSFORMER, VCR, VCCAP, VCVS, SPUR, FREQ, ZTRANS, VMRF, FOSTER, NOISE, 
NOISEFILE, MNAME, PHASE, SCALE, MAX, PAR

F/H-elements POLY, PWL, AND, NAND, OR, NOR, VMRF, CCCS, CCVS, DELAY
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Independent 
Sources and Port 
element

SIN, PU, PWL, EXP, PULSE, PE, SFFM, AM, PAT, PL, HB, HBAC, DATA, AC, DC, LSAC, SNAC, 
PHOTO, NEUT, COS, VMRF, LFSR, PUL, HBLIN, R, BITSTREAM, PWLFILE, MOD, FILTER

Inductor POLY, TC, SENS, RELUCTANCE, TRANSFORMER_NT, FILE

Resistor POLY,TC,SENS

S-element ZO, Z0, MNAME

T/U- element IC

W-element RLGCFILE, PRINTZO, RLGCMODEL,TABLEMODEL, FSMODEL, UMODEL, SMODEL

Table 15 Reserved Keywords and Commands

Commands Illegal Keywords

.AC/.DC UIC, MONTE, DATA, SWEEP, POI, DEC, LIN, OCT, RESULTS, LIST, OPTIMIZE, 
SWEEPBLOCK, EXPLORE

.DATA MER, LAM, FILE, MERGE

.FQMODEL DATA

.FSOPTION COMPUTETABLE

.LAYERSTACK LAYER

.LIN FORMAT, LISTFREQ, FILENAME

.PAT DATA

.PKG/.EBD/.IBIS/.ICM FILE, MODEL, COMPONENT, NOWARN, MOD_SEL

.SAVE/.LOAD FILE

.SHAPE DATA, VERTEX, N

.STIM PWL, DATA, VEC, TRAN, AC, DC, FILENAME

.TRAN UIC, MONTE, DATA, SWEEP, POI, DEC, LIN, OCT, 
RESULTS, LIST, OPTIMIZE, SWEEPBLOCK, RESULT

Table 14 Reserved Keywords and Elements (Continued)

Elements Illegal Keywords
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Input Netlist File Structure
An input netlist file should consist of one main program. In HSPICE, an input 
netlist can contain one or more optional submodules. HSPICE uses a 
submodule (preceded by an .ALTER statement) to automatically change an 
input netlist file; then rerun the simulation with different options, netlist, analysis 
statements, and test vectors. 

You can use several high-level call statements (such as .INCLUDE and .LIB) 
to structure the input netlist file modules. These statements can call netlists, 
model parameters, test vectors, analysis, and option macros into a file from 
library files or other files. The input netlist file also can call an external data file, 
which contains parameterized data for element sources and models. You must 
enclose the names of included or internally specified files in single or double 
quotation marks when they begin with a number (0-9).

Schematic Netlists
HSPICE typically uses netlisters to generate circuits from schematics, and 
accept either hierarchical or flat netlists. 

The process of creating a schematic involves:
■ Symbol creation with a symbol editor.
■ Circuit encapsulation.
■ Property creation.
■ Symbol placement.
■ Symbol property definition.
■ Wire routing and definition

Table 16 Input Netlist File Sections

Sections Examples Definition

Title .TITLE The first line in the netlist is the title of the input netlist file. 
(HSPICE)

Set-up .OPTION .IC or
.NODESET,
.PARAM,
.GLOBAL

Sets conditions for simulation.
Initial values in circuit and subcircuit.
Set parameter values in the netlist.
Set node name globally in netlist.
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Compressed Netlist Guidelines
To save disk space and to improve performance on large netlists, HSPICE 
supports the .gzip file format for both input files (design.sp) and these 
statements:
■ .inc

■ .lib

■ .load

Sources Sources and digital inputs Sets input stimuli (I or V element).

Netlist Circuit elements
.SUBKCT, .ENDS, or
.MACRO, .EOM

Circuit for simulation.
Subcircuit definitions.

Analysis .DC, .TRAN, .AC, and so on.
.SAVE and .LOAD
.DATA, 
.TEMP

Statements to perform analyses.
Save and load operating point information. (HSPICE)
Create table for data-driven analysis.
Set temperature analysis.

Output .PRINT, .PROBE,
.MEASURE

Statements to output variables.
Statement to evaluate and report user-defined functions of a 
circuit.

Library, 
Model and 
File 
Inclusion

.INCLUDE General include files.

.MALIAS Assigns an alias to a diode, BJT, JFET, or MOSFET. 

.MODEL Element model descriptions.

.LIB Library.

.OPTION SEARCH Search path for libraries and included files. (HSPICE)

Alter blocks
(HSPICE 
Only)

.ALIAS, .ALTER, .DEL LIB Renames a previous model.
Sequence for in-line case analysis.
Removes previous library selection.

End of 
netlist

.END Required statement; end of netlist.

Table 16 Input Netlist File Sections (Continued)

Sections Examples Definition
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However, HSPICE does not support the S-parameter and RLGC file input types 
in the .gz format.

When both design.sp and design.sp.gz exist, HSPICE always selects 
the exact match file first, if it exists. For example:

1. If .include design.sp is in the netlist, then HSPICE picks design.sp.

2. If .include design.sp.gz is in the netlist, then HSPICE picks 
design.sp.gz

3. If .include design.sp is in the netlist and only design.sp.gz exists, 
then HSPICE chooses design.sp.gz.

4. If .include design.sp.gz is in the netlist and only design.sp exists, 
then HSPICE uses design.sp.

Input Netlist File Composition

The HSPICE circuit description syntax is compatible with the SPICE input 
netlist format. Figure 17 and Figure 17 on page 110 show the basic structure of 
an input netlist and note comment and continuation characters.

Figure 16 Basic netlist structure
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Figure 17 Sections of a netlist 

The following is an example of a simple netlist file, called inv_ckt.in. It 
shows a small inverter test case that measures the timing behavior of the 
inverter. 

To create the circuit:

1. Define MOSFET models for the PMOS/NMOS transistors of the inverter.

2. Insert the power supplies for both VDD and GND power rails.

3. Insert the pulse source to the inverter input.

This circuit uses transient analysis and produces output graphical waveform 
data for the input and output ports of the inverter circuit.

* Sample inverter circuit
* **** MOS models *****
.MODEL n1 NMOS LEVEL=3 THETA=0.4 ...
.MODEL p1 PMOS LEVEL=3 ...
* ***** Define power supplies and sources *****
VDD VDD 0 5
VPULSE VIN 0 PULSE 0 5 2N 2N 2N 98N 200N
VGND GND 0 0
* ***** Actual circuit topology *****
M1 VOUT VIN VDD VDD p1
M2 VOUT VIN GND GND n1
* ***** Analysis statement *****
.TRAN 1n 300n
* ***** Output control statements *****
.OPTION POST PROBE
.PROBE V(VIN) V(VOUT)
.END

Element and input 
control statements

Analysis/output 
control statements

Title line: HSPICE automatically reads the first line as a comment
* Comments (all lines beginning with an asterisk)
*
Input control statements
Netlist body: description of circuit topology.
.MODEL statements
*
.OPTION statements
.OPTION with option statements
.PRINT and other output statements.
Analysis statement (such as .POWER, .TRAN)
.END
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For a description of individual commands used in HSPICE netlists, see 
HSPICE Netlist Commands in the HSPICE Reference Manual: Commands and 
Control Options.

The following sections discuss these topics:
■ HSPICE Topology Rules
■ Title of Simulation
■ Comments and Line Continuation
■ Element and Source Statements
■ Defining Subcircuits
■ Node Name (or Node Identifier) Conventions
■ Element, Instance, and Subcircuit Naming Conventions
■ Subcircuit Node Names
■ Path Names of Subcircuit Nodes
■ Abbreviated Subcircuit Node Names
■ Automatic Node Name Generation
■ Global Node Names
■ Circuit Temperature
■ Data-Driven Analysis
■ Library Calls and Definitions
■ Defining Parameters
■ Altering Design Variables and Subcircuits
■ Connecting Nodes
■ Deleting a Library
■ Ending a Netlist
■ Condition-Controlled Netlists (IF-ELSE)

HSPICE Topology Rules
When constructing the circuit description HSPICE does not allow certain 
topologies. See Figure 18 on page 112. The following rules apply: 

1. No voltage loops (no voltage sources in parallel with no other elements). 
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2. No ideal voltage source in closed inductor loop. 

3. No stacked current sources (no current sources in series). 

4. No ideal current source in closed capacitor loop.

Figure 18 Illegal topologies in HSPICE

Title of Simulation
You set the simulation title in the first line of the input file. HSPICE always reads 
this line, and uses it as the title of the simulation, regardless of the line’s 
contents. The simulation prints the title verbatim, in each section heading of the 
output listing file.

To set the title, you can place a .TITLE statement on the first line of the netlist. 
However, HSPICE does not require the .TITLE syntax. 

The first line of the input file is always the implicit title. If any statement appears 
as the first line in a file, simulation interprets it as a title, and does not execute it.

An .ALTER statement does not support use of the .TITLE statement. To 
change a title for a .ALTER statement, place the title content in the .ALTER 
statement itself.

I

4.
I

I

3.

v

2.
v v

1.
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Comments and Line Continuation
The first line of a netlist is always a comment, regardless of its first character; 
comments that are not the first line of the netlist require an asterisk (*) as the 
first character in a line or a dollar sign ($) directly in front of the comment 
anywhere on the line. For example,

* comment_on_a_line_by_itself
-or-
HSPICE_statement $ comment_following_HSPICE_input

You can place comment statements anywhere in the circuit description. 

You must use the dollar sign ($) comments that do not begin in the first 
character position on a line (for example, for comments that follow simulator 
input on the same line). If it is not the first nonblank character, then you must 
precede the dollar sign by either:
■ Whitespace
■ Comma (,)
■ Valid numeric expression.

You can also place the dollar sign within node or element names.

 For example,

* RF=1K GAIN SHOULD BE 100
$ MAY THE FORCE BE WITH MY CIRCUIT
VIN 1 0 PL 0 0 5V 5NS $ 10v 50ns
R12 1 0 1MEG $ FEED BACK
.PARAM a=1w$comment a=1, w treated as a space and ignored
.PARAM a=1k$comment a=1e3, k is a scale factor

A dollar sign is the preferred way to indicate comments because of the flexibility 
of its placement within the code. 

Line continuations require a plus sign (+) as the first character in the line that 
follows. Here is an example of comments and line continuation in a netlist file:

.ABC Title Line (HSPICE ignores the netlist keyword
* on this line because the first line is always a comment)
* This is a comment line
.MODEL n1 NMOS $ this is an example of an inline comment
* This is a comment line and the following line is a continuation
+ LEVEL=3 
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Element and Source Statements
Element statements describe the netlists of devices and sources. Use nodes to 
connect elements to one another. Nodes can be either numbers or names. 
Element statements specify: 
■ Type of device.
■ The nodes to the connected device.
■ Operating electrical characteristics of the device.

Element statements can also reference model statements that define the 
electrical parameters of the element. 

Table 17 lists the parameters of an element statements.

Table 17 Element Parameters  

Parameter Description

elname Element name that cannot exceed 1023 characters, and must begin with a specific letter for each 
element type:

B IBIS buffer (HSPICE Only)
C Capacitor
D Diode
E,F,G,H Dependent current and voltage sources
I Current (inductance) source
J JFET or MESFET
K Mutual inductor
L Inductor model or magnetic core mutual inductor model
M MOSFET
Q BJT
P Port
R Resistor
S, S-parameter mode
T, U, W Transmission line
V Voltage source
X Subcircuit call

node1 ... Node names identify the nodes that connect to the element. The node name begins with a letter 
and can contain a maximum of 1023 characters. For a listing of legal and illegal special characters 
usable in node names, see the Special Characters section, Table 10 on page 96.

mname HSPICE requires a model reference name for all elements, except passive devices.

pname1 ... An element parameter name identifies the parameter value that follows this name.

expression Any mathematical expression containing values or parameters, such as param1 * val2
114 HSPICE® User Guide: Basic Simulation and Analysis
K-2015.06



Chapter 7: Input Netlist and Data Entry
Input Netlist File Composition
For descriptions of element statements for the various types of supported 
elements, see the chapters about individual types of elements in this user 
guide.

Example 1
Q1234567 4000 5000 6000 SUBSTRATE BJTMODEL AREA=1.0

The preceding example specifies a bipolar junction transistor, with its collector 
connected to node 4000, its base connected to node 5000, its emitter 
connected to node 6000, and its substrate connected to the SUBSTRATE node. 
The BJTMODEL name references the model statement, which describes the 
transistor parameters.

M1 ADDR SIG1 GND SBS N1 10U 100U

The preceding example specifies a MOSFET named M1, where:
■ drain node=ADDR
■ gate node=SIG1
■ source node=GND
■ substrate nodes=SBS

The preceding element statement calls an associated model statement, N1. 
The MOSFET dimensions are width=100 microns and length=10 microns.

Example 2
M1 ADDR SIG1 GND SBS N1 w1+w l1+l

The preceding example specifies a MOSFET named M1, where:
■ drain node=ADDR
■ gate node=SIG1
■ source node=GND
■ substrate nodes=SBS

val1 ... Value of the pname1 parameter, or of the corresponding model node. The value can be a number 
or an algebraic expression.

M=positive int Element multiplier. Replicates val element times, in parallel. Do not assign a negative value or zero 
as the M value.

Table 17 Element Parameters (Continued) 

Parameter Description
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The preceding element statement calls an associated model statement, N1. 
MOSFET dimensions are algebraic expressions (width=w1+w, and 
length=l1+l).

Defining Subcircuits
You can create a subcircuit description for a commonly used circuit, and include 
one or more references to the subcircuit in your netlist.
■ Use .SUBCKT and .MACRO statements to define subcircuits within your 

HSPICE netlist.
■ Use the .ENDS statement to terminate a .SUBCKT statement.
■ Use the .EOM statement to terminate a .MACRO statement.
■ Use Xsubcircuit_name (the subcircuit call statement) to call a subcircuit 

that you previously defined in a .MACRO or .SUBCKT command in your 
netlist, where subcircuit_name is the element name of the subcircuit that 
you are calling.

■ Use the .INCLUDE statement to include another netlist as a subcircuit in the 
current netlist.

Node Name (or Node Identifier) Conventions
Nodes are the points of connection between elements in the input netlist. You 
can use either names or numbers to designate nodes. Node numbers can be 
from 1 to 999999999999999 (1-1e16); node number 0 always equals ground. 
When the node name begins with a letter or a valid special character, the node 
name can contain a maximum of 1024 characters. 

The following are conventions regarding node names:
■ In addition to letters and digits, node names can include, but NOT always 

begin with some special characters. See the Special Characters section, 
Table 10 on page 96. 

■ If you use braces { } in node names, HSPICE changes them to brackets [ ]. 
■ You cannot use the following characters in node names: 

() ,=,‘, <blank>
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■ You should avoid using the dollar sign ($) after a numerical digit in a node 
name because HSPICE assumes whatever follows the “$” symbol is an in-
line comment (see Comments and Line Continuation on page 113 for 
additional information). It can cause error and warning messages 
depending on the location of the node with the “$”. For example, HSPICE 
generates an error to indicate that a resistor node is missing:

R1 1$ 2 1k

Also, in this example, HSPICE issues a warning indicating that the value of 
resistor R1 is limited to 1e-5 and interprets the line as “R1 2 1” without a 
defined value:

R1 2 1$ 1k

■ The period (.) is a reserved character for use as a separator between a 
subcircuit name and a node name: subcircuitName.nodeName. If a node 
name contains a period, the node HSPICE considers it a top level node 
unless there is a valid match to a subcircuit name and node name in the 
hierarchy.

■ The sorting order for operating point nodes is:

a-z, !, #, $, %, *, +, -, /

■ To make node names global across all subcircuits, use a .GLOBAL 
statement (see Global Node Names on page 122).

■ Simulation treats nodes with the 0, GND, GND!, and GROUND node names as 
a ground node, and produces v(0) into the output files. Besides these 
ground nodes, HSPICE regards all node names as separate nodes. For 
example, 0 and 0.3 are different nodes, 1A and 1 are different nodes, 2~ and 
2 are different nodes.

Note: Nodes named as 0, GND, GND!, and GROUND, in .subckt 
line, are not treated as global HSPICE ground. Such nodes 
are instanced by the node in the corresponding .subckt 
instances (X elements).

The following sections discuss these topics:
■ Using Wildcards on Node Names
■ Wildcard Applications and Examples

Using Wildcards on Node Names
You can use wildcards to match node names. 
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■ The ? wildcard matches any single character. For example, 9? matches 92, 
9a, 9A, and 9%.

■ The * wildcard matches any string of zero or more characters. For example:

• If your netlist includes a resistor named r1 and a voltage source named 
vin, then .PRINT i(*) prints the current for both of these elements: 
i(r1) and i(vin).

• And .PRINT v(o*) prints the voltages for all nodes whose names start 
with o; if your netlist contains nodes named in and out, this example 
prints only the v(out) voltage. For example, the following prints the 
results of a transient analysis for the voltage at the matched node name.

.PRINT TRAN V(9?t*u)

■ Wildcards must begin with a letter or a number; wildcards must begin with 
output type V, I or P; for example,

.PROBE v(*) $ correct format

.PROBE * $ incorrect format

.PROBE ix* $ correct format

Wildcard Applications and Examples
Here are some practical applications for these wildcards:
■ If your netlist includes a resistor named r1 and a voltage source named 

vin, then .PRINT i(*) prints the current for both elements i(r1) and 
i(vin).

■ The statement .PRINT v(o*) prints the voltages for all nodes whose 
names start with o; if your netlist contains nodes named in and out, this 
example prints only the v(out) voltage. 

■ If your netlist contains nodes named 0, 1, 2, and 3, then .PRINT v(0,*) 
or .PRINT v(0 *) prints the voltage between node 0 and each of the other 
nodes: v(0,1), v(0,2), and v(0,3).

■ Wildcards can set initial conditions in .IC and .NODESET statements. Node 
names including wildcards in .IC and .NODESET must start with “v()”. For 
example, .NODESET v(a*)=5.

Examples
The following examples use wildcards with .PRINT, .PROBE, .LPRINT, .IC 
and .NODESET statements. 
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■ Probe node voltages for nodes at all levels.

.PROBE v(*)

■ Probe all nodes whose names start with “a”. For example: a1, a2, a3, a00, 
ayz.

.PROBE v(a*)

■ Print node voltages for nodes at the first level and all levels below the first 
level, where zero-level are top-level nodes. For example: X1.A, X4.554, 
Xab.abc123.

.PRINT v(*.*)

■ Probe node voltages for all nodes whose name start with “x” at the first level 
and all levels below the first level, where zero-level are top-level nodes. For 
example: x1.A, x4.554, xab.abc123.

.PROBE v(x*.*)

■ Print node voltages for nodes whose names start with “x” at the second-level 
and all levels below the second level. For example: x1.x2.a, 
xab.xdff.in.

.PRINT v(x*.??)

■ Match all first-level nodes with names that are exactly two characters long. 
For example: x1.in, x4.12.

.PRINT v(x*.*.*)

■ In HSPICE advanced analog analyses, print the logic state of all top-level 
nodes, whose names start with b. For example: b1, b2, b3, b56, bac.

.LPRINT (1,4) b*

■ Set transient initial conditions to all nodes. For example:

 .ic v(*)=val

initializes nodal voltages for DC operating point analysis to nodes whose 
names start with “a”, such as: a1, a2, a11, a21.

     .nodeset v(a*)=val

If a specified node also matches a wildcard in .IC or .NODESET, then the 
specified value overrides the wildcard's value. For example, if .ic 
v(a*)=5 v(a1)=10, then v(a1)will be 10.
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Element, Instance, and Subcircuit Naming Conventions
Instances and subcircuits are elements and as such, follow the naming 
conventions for elements. 

Element names in HSPICE begin with a letter designating the element type, 
followed by up to 1023 alphanumeric and special characters as defined in 
Table 10 on page 96. Element type letters are R for resistor, C for capacitor, M 
for a MOSFET device, and so on (see Element and Source Statements on 
page 114).

Subcircuit Node Names
HSPICE assigns two subcircuit node names. 
■ To assign the first name, HSPICE uses the (.) extension to concatenate the 

circuit path name with the node name — for example, X1.XBIAS.M5. Node 
designations that start with the same number, followed by any letter, are the 
same node. For example, 1c and 1d are the same node.

■ The second subcircuit node name is a unique number that HSPICE 
automatically assigns to an input netlist subcircuit. The ( : ) extension 
concatenates this number with the internal node name, to form the entire 
subcircuit’s node name (for example, 10:M5). The output listing file cross-
references the node name. 

Note: HSPICE advanced analog analyses does not support short 
names for internal subcircuits, such as 10:M5.

■ To indicate the ground node, use either the number 0, the name GND, 
or !GND. Every node should have at least two connections, except for 
transmission line nodes (unterminated transmission lines are permitted) 
and MOSFET substrate nodes (which have two internal connections). 
HSPICE terminates floating power supply nodes with a 1Megohm resistor 
and a warning message. 

Path Names of Subcircuit Nodes
A path name consists of a sequence of subcircuit names, starting at the 
highest-level subcircuit call, and ending at an element or bottom-level node. 
Periods separate the subcircuit names in the path name. The maximum length 
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of the path name, including the node name, is 1024 characters. You can use 
path names in .PRINT, .NODESET, and .IC statements, as another way to 
reference internal nodes (that is, nodes not appearing on the parameter list). 
You can use the path name to reference any node, including any internal node. 
Subcircuit node and element names follow the rules shown in Figure 19 on 
page 121.

Figure 19 Subcircuit Calling Tree, with Circuit Numbers and Instance Names 

In Figure 19, the path name of the sig25 node in the X4 subcircuit is 
X1.X4.sig25. You can use this path in HSPICE statements, such as:

.PRINT v(X1.X4.sig25)

Abbreviated Subcircuit Node Names
In HSPICE, you can use circuit numbers as an alternative to path names, to 
reference nodes or elements in .PRINT, .NODESET, or .IC statements. The 
compilation process assigns a circuit number to all subcircuits, creating an 
abbreviated path name:

subckt-num:name

Note: HSPICE advanced analog analyses does not recognize this type 
of abbreviated subcircuit name.

0 (CKT)

1 (X1) 2 (X2)

3 (X3) 4 (X4)

sig24 sig26sig25

n (abc) is 
circuit number (instance name)
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The subcircuit name and a colon precede every occurrence of a node or 
element in the output listing file. For example, 4:INTNODE1 is a node named 
INTNODE1, in a subcircuit assigned the number 4.

Any node not in a subcircuit has a 0: prefix (0 references the main circuit). To 
identify nodes and subcircuits in the output listing file, HSPICE uses a circuit 
number that references the subcircuit where the node or element appears. 

Abbreviated path names let you use DC operating point node voltage output, as 
input in a .NODESET statement for a later run. 

You can copy the part of the output listing titled Operating Point Information or 
you can type it directly into the input file, preceded by a .NODESET statement. 
This eliminates recomputing the DC operating point in the second simulation.

Automatic Node Name Generation 
HSPICE can automatically assign internal node names. To check both nodal 
voltages and branch currents, you can use the assigned node name when you 
print or plot. HSPICE supports several special cases for node assignment — 
for example, simulation automatically assigns node 0 as a ground node.

For CSOS (CMOS Silicon on Sapphire), if you assign a value of -1 to the bulk 
node, the name of the bulk node is B#. Use this name to print the voltage at the 
bulk node. When printing or plotting current — for example .PRINT I(R1)—
HSPICE inserts a zero-valued voltage source. This source inserts an extra 
node in the circuit named Vnn, where nn is a number that HSPICE 
automatically generates; this number appears in the output listing file.

Global Node Names
The .GLOBAL statement globally assigns a node name, in HSPICE. This 
means that all references to a global node name, used at any level of the 
hierarchy in the circuit, connect to the same node.

The most common use of a .GLOBAL statement is if your netlist file includes 
subcircuits. This statement assigns a common node name to subcircuit nodes. 
Another common use of .GLOBAL statements is to assign power supply 
connections of all subcircuits. For example, .GLOBAL VCC connects all 
subcircuits with the internal node name VCC. 

Ordinarily, in a subcircuit, the node name consists of the circuit number, 
concatenated to the node name. When you use a .GLOBAL statement, 
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HSPICE does not concatenate the node name with the circuit number, and 
assigns only the global name. You can then exclude the power node name in 
the subcircuit or macro call.

Circuit Temperature
To specify the circuit temperature for an HSPICE simulation, use the .TEMP 
command, the TEMP parameter in the .DC, .AC, and .TRAN statements, or the 
TEMP/TEMPER parameter in the first column of the .DATA statement. 
HSPICE compares the circuit simulation temperature against the reference 
temperature in the TNOM control option. HSPICE uses the difference between 
the circuit simulation temperature and the TNOM reference temperature to 
define derating factors for component values.

HSPICE advanced analog analyses supports only the last .TEMP command in 
a netlist, if you use multiple .TEMP commands.

Data-Driven Analysis
In data-driven analysis, you can modify any number of parameters, then use 
the new parameter values to perform an operating point, DC, AC, or transient 
analysis. An array of parameter values can be either inline (in the simulation 
input file) or stored as an external ASCII file. The .DATA statement associates 
a list of parameter names with corresponding values in the array. 

HSPICE supports the entire functionality of the .DATA statement. (See 
.DATA in the HSPICE Reference Manual: Commands and Control Options.) 
However, HSPICE advanced analog analyses supports .DATA only for:
■ Data-driven analysis.
■ Inline or external data files.

For more details about using the .DATA statement in different types of analysis, 
see Chapter 13, Initializing DC-Operating Point Analysis and Chapter 15, 
Transient Analysis.

Library Calls and Definitions
To create and read from libraries of commonly used commands, device models, 
subcircuit analysis, and statements in library files, use the .LIB call statement. 
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As HSPICE encounters each .LIB call name in the main data file, it reads the 
corresponding entry from the designated library file, until it finds an .ENDL 
statement. In HSPICE, you can also place a .LIB call statement in an .ALTER 
block.

The following sections discuss these topics:
■ Library Building Rules
■ Automatic Library Selection (HSPICE)

Library Building Rules
■ A library cannot contain .ALTER statements.
■ A library can contain nested .LIB calls to itself or to other libraries. If you 

use a relative path in a nested .LIB call, the path starts from the directory 
of the parent library, not from the work directory. If the path starts from the 
work directory, HSPICE can also find the library, but it prints a warning. Only 
the constraints of your system configuration limit the depth of nested calls.

■ A library cannot contain a call to a library of its own entry name, within the 
same library file.

■ A HSPICE library cannot contain the .END statement. 
■ .ALTER processing cannot change .LIB statements, within a file that 

an .INCLUDE statement calls.

Automatic Library Selection (HSPICE)
Automatic library selection searches a sequence of up to 40 directories. The 
hspice.ini file sets the default search paths. 

Use this file for directories that you want HSPICE to always search. HSPICE 
searches for libraries in the order specified in .OPTION SEARCH statements. 

When HSPICE encounters a subcircuit call, the search order is: 

1. Read the input file for a .SUBCKT or .MACRO with the specified call name.

2. Read any .INC files or .LIB files for a .SUBCKT or .MACRO with the 
specified call name.

3. Search the directory with the input file for the call_name.inc file.

4. Search the directories in the .OPTION SEARCH list.

You can use the HSPICE library search and selection features to simulate 
process corner cases, using .OPTION SEARCH =‘libdir’ to target different 
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process directories. For example, if you store an input or output buffer 
subcircuit in a file named iobuf.inc, you can create three copies of the file, to 
simulate fast, slow and typical corner cases. Each file contains different 
HSPICE transistor models, representing the different process corners. Store 
these files (all named iobuf.inc) in separate directories.

Defining Parameters
The .PARAM statement defines parameters. Parameters in HSPICE are names 
that have associated numeric values. You can define parameters through 
predefined analysis or measurement 

The following sections discuss these topics:
■ Predefined Analysis
■ Measurement Parameters

Predefined Analysis
HSPICE provides several specialized analysis types, which require a way to 
control the analysis. For the syntax used in these .PARAM commands, see the 
description of the .PARAM command in the HSPICE Reference Manual: 
Commands and Control Options.

HSPICE supports the following predefined analysis parameters:
■ Temperature functions (fn)
■ Optimization guess/range
■ Monte Carlo functions

HSPICE also supports the following predefined parameter types, that HSPICE 
advanced analog analyses does not support:
■ frequency
■ time

Measurement Parameters
A .MEASURE statement produces a measurement parameter. In general, the 
rules for measurement parameters are the same as those for standard 
parameters. While a .PARAM statement disallows definition of measurement 
parameters, the .MEASURE statement directly defines such parameters. For 
more information, see .MEASURE Parameter Types on page 403.
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Altering Design Variables and Subcircuits 
The following rules apply when you use an .ALTER block to alter design 
variables and subcircuits in HSPICE. This section does not apply to HSPICE 
advanced analog analyses.
■ If the name of a new element, .MODEL statement, or subcircuit definition is 

identical to the name of an original statement of the same type, then the new 
statement replaces the old. Add new statements in the input netlist file.

■ You can alter element and .MODEL statements within a subcircuit definition. 
You can also add a new element or .MODEL statement to a subcircuit 
definition. To modify the topology in subcircuit definitions, put the element 
into libraries. To add a library, use .LIB; to delete, use .DEL LIB. 

■ If you want to change temperature points in multiple .ALTER statements 
then, parameterizing the .TEMP statement and updating the .PARAM 
statement in each .ALTER statement is recommended, instead of 
specifying the .TEMP value in the .ALTER blocks. 

■ If a parameter name in a new .PARAM statement in the .ALTER module is 
identical to a previous parameter name, then the new assigned value 
replaces the old value. 

■ If you used parameter (variable) values for elements (or model parameter 
values) when you used .ALTER, use the .PARAM statement to change 
these parameter values. Do not use numerical values to redescribe 
elements or model parameters.

■ If you used an .OPTION statement (in an original input file or a .ALTER 
block) to turn on an option, you can turn that option off. 

■ Each .ALTER simulation run prints only the actual altered input. A 
special .ALTER title identifies the run.

■ .ALTER processing cannot revise .LIB statements within a file that 
an .INCLUDE statement calls. However, .ALTER processing can 
accept .INCLUDE statements, within a file that a .LIB statement calls. 

This section covers the following topics:
■ Using Multiple .ALTER Blocks
■ Adding or Changing Analyses in .ALTER Blocks
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Using Multiple .ALTER Blocks
■ For the first simulation run, HSPICE reads the input file, up to the 

first .ALTER statement, and performs the analyses up to that .ALTER 
statement. 

■ After it completes the first simulation, HSPICE reads the input between the 
first .ALTER statement, and either the next .ALTER statement or the .END 
statement. 

■ HSPICE then uses these statements to modify the input netlist file. 
■ HSPICE then resimulates the circuit. 
■ For each additional .ALTER statement, HSPICE first performs the 

simulation based on the netlist modified by the previous .ALTER statement.
■ HSPICE then performs another simulation by using the input between the 

current .ALTER statement, and either the next .ALTER statement or 
the .END statement. 

If you do not want to rerun the simulation that precedes the first .ALTER 
statement, every time you run an .ALTER simulation, then do the following:

1. Put the statements that precede the first .ALTER statement, into a library. 

2. Use the .LIB statement in the main input file. 

3. Put a .DEL LIB statement in the .ALTER section, to delete that library for 
the .ALTER simulation run. 

Adding or Changing Analyses in .ALTER Blocks
When you add a new analysis statement (.TRAN, .AC, .DC, .TEMP, etc.) in an 
.ALTER block, the added analysis statement does not replace the analysis 
statement previously defined in the top level. Instead, the analysis command in 
each .ALTER runs in addition to the analysis statement in the top level. This 
will cause HSPICE to output more analysis results files than expected.

Example 1:
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In the following example, a new temperature statement is added in each 
.ALTER block.

* top level netlist
V1 1 0 pulse 0 1 0 1n 1n 2n 4n
R1 1 2 1k tc1=0.01
R2 2 0 1k tc1=0.005
.temp 60
.tran 1n 20n
.alter 1
.temp -40
.alter 2
.temp 110
.end

The .TEMP commands from the top level and each alter are cumulative and 
HSPICE will generate 6 *.tr# files as follows:

Top level: *.tr0 @ temp=60
Alter 1:   *.tr1 @ temp=60
           *.tr2 @ temp=-40
Alter 2:   *.tr3 @ temp=60
           *.tr4 @ temp=-40
           *.tr5 @ temp=110

To output only one *.tr# file for each temperature value, it is recommended 
that the .TEMP value be parameterized and only one .TEMP statement at the 
top level be used.

* top level netlist
.param tc=60   $ temperature control
V1 1 0 pulse 0 1 0 1n 1n 2n 4n
R1 1 2 1k tc1=0.01
R2 2 0 1k tc1=0.005
.temp 'tc'
.tran 1n 20n
.alter 1
.param tc=-40
.alter 2
.param tc=110
.end

Example 2:
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In the following example, a new transient analysis with a different simulation 
time is added in each .ALTER block.

* top level netlist
.param pw=10n per=20n
V1 1 0 pulse 0 1 0 1n 1n 'pw' 'per'
R1 1 2 1k
R2 2 0 1k
.tran 1n 20n
.alter 1
.param pw=7.5n per=15n
.tran 1n 15n
.alter 2
.param pw=5n per=10n
.tran 1n 10n
.end

This netlists will generate 6 *.tr# files instead of the expected 3 *.tr# files. 
To generate the desired 3 *.tr# files, you can parameterize the tstop value 
in the .TRAN analysis statement. Then use only one .TRAN statement and 
change the parameterized tstop value in each .ALTER block:

* top level netlist
.param pw=10n per=20n
.param ts=20n   $ tstop value
V1 1 0 pulse 0 1 0 1n 1n 'pw' 'per'
R1 1 2 1k
R2 2 0 1k
.tran 1n 'ts'
.alter 1
.param pw=7.5n per=15n
.param ts=15n
.alter 2
.param ts=10n
.param pw=5n per=10n
.end

Connecting Nodes
Use a .CONNECT statement to connect two nodes in your HSPICE netlist, so 
that simulation evaluates two nodes as only one node. Both nodes must be at 
the same level in the circuit design that you are simulating: you cannot connect 
nodes that belong to different subcircuits.
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Deleting a Library
Use a .DEL LIB statement to remove library data from memory. The next time 
you run a simulation the .DEL LIB statement removes the .LIB call 
statement, with the same library number and entry name from memory. You 
can then use a .LIB statement to replace the deleted library. 

You can use a .DEL LIB statement with a .ALTER statement.

Ending a Netlist
An .END statement must be the last statement in the input netlist file. Text that 
follows the .END statement is a comment, and has no effect on the simulation. 

An input file that contains more than one simulation run must include an .END 
statement for each simulation run. You can concatenate several simulations 
into a single file. 

Condition-Controlled Netlists (IF-ELSE)
You can use the IF-ELSE structure (HSPICE only) to change the circuit 
topology, expand the circuit, set parameter values for each device instance, 
select different model cards, reference subcircuits, or define subcircuits in each 
IF-ELSE block.

.if (condition1)
statement_block1

# The following statement block in {braces} is 
# optional, and you can repeat it multiple times:
{ .elseif (condition2)

statement_block2
}

# The following statement block in [brackets] 
# is optional, and you cannot repeat it:
[ .else

statement_block3
]
.endif

The following example provides a quick overview of using the IF-ELSE 
construct:
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*
.tran 1n 100ns
.option post
.param  variable = 2
vin1 source 0 0 pwl 0ns 0v 20ns 0v 21ns 5v 30ns 5v 31ns 0v 40ns 
+ 0v 41ns 5v 50ns 5v 70ns 5v 71ns 0v 80ns 0v 81ns 5v 
+ 90ns 5v 91ns 0v 100ns 0v
Rin source 1 1000
x1 1 2 resistor
r1 2 0 1k
.subckt resistor 1 2 
.if (variable==1)
r22 1 2 1k
.elseif (variable==2)
r22 1 2 2k
.else
r22 1 2 3k
.endif
.ends
.print v(2) i(1)
.alter
.param variable=1
.alter
.param variable=3
.end

Guidelines for Using IF-ELSE Blocks (HSPICE Only)
The following guidelines aid in usage of the .IF, .ELSE-IF, or .ELSE.
■ In an .IF, .ELSEIF, or .ELSE condition statement, complex Boolean 

expressions must not be ambiguous. For example, change (a==b && 
c>=d) to ( (a==b) && (c>=d) ).

■ In an IF, ELSEIF, or ELSE statement block, you can include most valid 
HSPICE analysis and output statements. The exceptions are: 

• .END, .ALTER, .GLOBAL, .DEL LIB, .MALIAS, .ALIAS, .LIST, 
.NOLIST, and .CONNECT statements.

• .OPTIONS search, d_ibis, d_imic, d_lv56, biasfi, modsrh, 
cmiflag,and nxx.

■ You can include IF-ELSEIF-ELSE statements in subcircuits and subcircuits 
in IF-ELSEIF-ELSE statements. 

■ You can use IF-ELSEIF-ELSE blocks to select different submodules to 
structure the netlist (using .INC, .LIB, and .VEC statements).
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■ If two or more models in an IF-ELSE block have the same model name and 
model type, they must also be the same revision level.

■ Parameters in an IF-ELSE block do not affect the parameter value within the 
condition expression. HSPICE updates the parameter value only after it 
selects the IF-ELSE block.

■ You can nest IF-ELSE blocks.
■ You can include .SUBCKT and .MACRO statements within an IF-ELSE block. 
■ You can include an unlimited number of ELSEIF statements within an 

IF-ELSE block.
■ You cannot use an IF-ELSE block within another statement. In the following 

example, HSPICE does not recognize the IF-ELSE block as part of the 
resistor definition:

r 1 0
.if (r_val>10k)
+ 10k
.else
+ r_val
.endif

■ You can use string parameters in conditional expressions in IF-ELSEIF-
ELSE blocks. When using a string parameter, str() is optional.

Example:

X_M1 OUT1 IN1  SUB1 DEV=str('TYP1') L=1 W=1
.SUBCKT SUB1 D G S Dev=str('DT') X=L Y=W
.if ( Dev==str('TYP1') && X==1 && Y==1 )   $ Dev is equivalent 
to str(Dev)
.include 'file1'
.elseif ( Dev==str('DT') && X*Y>=2 )
.include 'file2'
.endif
.ENDS

Using Subcircuits

Reusable cells are the key to saving labor in any CAD system. This also applies 
to circuit simulation, in HSPICE. 
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■ To create and simulate a reusable circuit, construct it as a subcircuit.
■ Use parameters to expand the utility of a subcircuit.

Traditional SPICE includes the basic subcircuit, but does not provide a way to 
consistently name nodes. However, HSPICE provides a simple method for 
naming subcircuit nodes and elements: use the subcircuit call name as a prefix 
to the node or element name.

In HSPICE advanced analog analyses, you cannot replicate output commands 
within subcircuit (subckt) definitions.

Figure 20 Subcircuit Representation

The following input creates an instance named X1 of the INV cell macro, which 
consists of two MOSFETs, named MN and MP:

X1 IN OUT VD_LOCAL VS_LOCAL inv W=20
.MACRO INV IN OUT VDD VSS W=10 L=1 DJUNC=0
MP OUT IN VDD VDD PCH W=W L=L DTEMP=DJUNC
MN OUT IN VSS VSS NCH W=’W/2’ L=L DTEMP=DJUNC
.EOM

Note: To access the name of the MOSFET, inside of the INV subcircuit 
that X1 calls, the names are X1.MPand X1.MN. So to print the 
current that flows through the MOSFETs, use .PRINT I 
(X1.MP).

The following sections cover these topics.
■ Hierarchical Parameters
■ Undefined Subcircuit Search (HSPICE)
■ Troubleshooting Subcircuit Node Issues

MP

MN

INV
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Hierarchical Parameters
You can use two hierarchical parameters, the M (multiply) parameter and the S 
(scale) parameter. 

The following section discuss these topics:
■ M (Multiply) Parameter
■ S (Scale) Parameter
■ Using Hierarchical Parameters to Simplify Simulation

M (Multiply) Parameter
The most basic HSPICE subcircuit parameter is the M (multiply) parameter. 
This keyword is common to all elements, including subcircuits, except for 
voltage sources. The M parameter multiplies the internal component values. 
This, in effect, creates parallel copies of the element.

For example, if you have an invertor and specify M=2, then HSPICE multiplies 
the internal component by 2. The M parameter multiplies the internal 
component values, which, in effect, creates parallel copies of the element. To 
simulate 32 output buffers switching simultaneously, you need to place only one 
subcircuit; for example,

X1 in out buffer M=32

Figure 21 How Hierarchical Multiply Works

X1 in out inv M=2

UNEXPANDED EXPANDED

M=8

M=6

mp out in vdd pch W=10 L=1 M=4

mn out in vss nch W=5 L=1 M=3
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Multiply works hierarchically. For a subcircuit within a subcircuit, HSPICE 
multiplies the product of both levels. Values of M must be positive. Do not 
assign a negative value or zero as the M value.

S (Scale) Parameter
To scale a subcircuit, use the S (local scale) parameter. This parameter 
behaves in much the same way as the M parameter in the preceding section.

.OPTION hier_scale=value

.OPTION scale=value
X1 node1 node2 subname S=valueM parameter

The .OPTION HIER_SCALE statement defines how HSPICE interprets the S-
parameter, where value is either:
■ 0 (the default), indicating a user-defined parameter, or
■ 1, indicating a scale parameter.

The .OPTION SCALE statement defines the original (default) scale of the 
subcircuit. The specified S scale is relative to this default scale of the subcircuit.

The scale in the subname subcircuit is value*scale. Subcircuits can originate 
from multiple sources, so scaling is multiplicative (cumulative) throughout your 
design hierarchy. 

x1 a y inv S=1u
subckt inv in out
x2 a b kk S=1m
.ends

In this example:
■ HSPICE scales the X1 subcircuit by the first S scaling value, 1u*scale. 
■ Because scaling is cumulative, HSPICE then scales X2 (a subcircuit of X1), 

in effect, by the S scaling values of both X1 and X2: 1m*1u*scale.

Using Hierarchical Parameters to Simplify Simulation
You can use the hierarchical parameter to simplify simulations. For example, 
see the following listing and Figure 22 on page 136.
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X1 D Q Qbar CL CLBAR dlatch flip=0
.macro dlatch
+ D Q Qbar CL CLBAR flip=vcc
.nodeset v(din)=flip
xinv1 din qbar inv
xinv2 Qbar Q inv
m1 q CLBAR din nch w=5 l=1
m2 D CL din nch w=5 l=1
.eom

Figure 22 D Latch with Nodeset

HSPICE does not limit the size or complexity of subcircuits; they can contain 
subcircuit references, and any model or element statement. However, in 
HSPICE advanced analog analyses, you cannot replicate output commands 
within subcircuit definitions. 

To specify subcircuit nodes in .PRINT statements, specify the full subcircuit 
path and node name. Use a .print/.probe/.measure statement to print the 
hierarchical parameter. For example:

x1 1 0 sub1
.subckt sub1 n1 n2
.param p1=1
...
.ends
.tran ...
.print tran par('x1.p1')
.measure tran m1 param='x1.p1'

You add function valp() to refer to a parameter defined in subckt for output 
(including a forward slash). For example:

.meas tran asdf param='valp(x1/p1)'

cl

QD

.Nodeset 

din

clbar

Q
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Undefined Subcircuit Search (HSPICE)
If a subcircuit call is in a data file that does not describe the subcircuit, HSPICE 
automatically searches directories in the following order: 

1. Current directory for the file.

2. Directories specified in .OPTION SEARCH = “directory_path_name” 
statements.

3. Directory containing the Discrete Device Library.

HSPICE searches for the model reference name file that has an .inc suffix. 
For example, if the data file includes an undefined subcircuit, such as 
X 1 1 2 INV, HSPICE searches the system directories for the inv.inc file 
and when found, places that file in the calling data file.

Troubleshooting Subcircuit Node Issues
Use the following workarounds or solutions to subcircuit-related errors:
■ Subcircuit Name Missing Error
■ Duplicated Subckt Definition Error
■ Duplicate Node Message
■ Duplicating Ports
■ Using Assigned Circuit Numbers instead of Full Path Node Names
■ Simple Reporting of Floating Nodes
■ Rules for Defining Subcircuit Global and Local Nets

Subcircuit Name Missing Error
Simulation of a subcircuit named 16_inv, for example, results in an error 
issued: 

**error** (/remote/user/hspice/inv.sp:18) subcircuit name missing

HSPICE does not support subcircuit names that begin with a number. 
Subcircuit names must begin with an alpha character and can contain up to 
1023 additional alphanumeric and special characters.

Duplicated Subckt Definition Error
Use .OPTION REDEFSUB to define how multiple subcircuit definitions in the 
netlist are treated.
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The syntax for the REFDEFSUB option is as follows:

.OPTION REDEFSUB =[0|1|2]

The default value is 0 which causes HSPICE to issue an error message if there 
are multiple subcircuit definitions.

Set REFDEFSUB=1 for HSPICE to use the last subcircuit definition.

Set REFDEFSUB=2 for HSPICE to use the first subcircuit definition.

Duplicate Node Message
In the .SUBCKT definition, if HSPICE finds two or more node names that are 
the same, it issues the following error:

**error** subcircuit definition duplicates node node_name 

**error**  .ends  card missing at readin

In the following example, for the .SUBCKT definition, the node “in” gets two 
definitions. The second definition of the node “in” is a duplicate of the first node, 
which is illegal in HSPICE.:

.subckt ABC in in out

.

.

.ends

Duplicating Ports
To create duplicate ports in HSPICE you can define them in the instance 
definition of the subcircuit.

For example:

.subckt DUP A B C D

.

.

.ends

If you want to make node “B” a duplicate of node “A” then the instance 
definition should look like:

XDUP A A C D DUP

Using Assigned Circuit Numbers instead of Full Path Node Names
In HSPICE, you can use circuit numbers as an alternative to the full subcircuit 
path names to reference nodes or elements in .PRINT, .NODESET or .IC 
statements. 
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HSPICE assigns a circuit number to all subcircuits in the netlist. The circuit 
number abbreviates the path name, as follows: subckt-num:name

You can find the abbreviated path name information in the *.pa0 file. Nodes 
that are not in a subcircuit have a 0 prefix which references the main or top 
level circuit.

Simple Reporting of Floating Nodes
HSPICE can report simple instances of floating nodes when there is no path to 
ground. The *.lis file prints: **warning** only 1 connection at node. 
You can increase the number of warning messages printed by setting .option 
warnlimit=n in the netlist.

The list file reports nodes that have no DC path to ground (such as a cap with 
one node to gnd and no connect on other end), but there is no way to check for 
tri-state nodes.

Rules for Defining Subcircuit Global and Local Nets
The following rules apply (from lowest precedence to highest):

1. An internal subckt net with the same name as a global net is global:

.subckt res net1
R1 net1 gnd 100 $ local gnd is connected to global net gnd
.ends

2. Interface subckt pins on a subckt are always local:

.subckt res2 net1 gnd
R1 net1 gnd  100 $ local gnd is connected to local net net2, 

not to global gnd
.end
X1 net1 net2 res2

3. An instance connected to a global net will make the subckt pin and its 
internal connections global:

.subckt res2 net1 
R1 net1 gnd  100 $ local gnd is connected to global net gnd 

through interface pin gnd
.end
X1 net1 gnd res2
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Subcircuit Call Statement Discrete Device Libraries

The Synopsys Discrete Device Library (DDL) is a collection of HSPICE device 
models of discrete components, which you can use with HSPICE. The 
$installdir/parts directory contains the various subdirectories that form 
the DDL. Synopsys used its own ATEM discrete device characterization system 
to derive the BJT, MESFET, JFET, MOSFET, and diode models from laboratory 
measurements. The behavior of op-amp, timer, comparator, SCR, and 
converter models closely resembles that described in manufacturers’ data 
sheets. HSPICE has a built-in op-amp model generator.

Note: The value of the $INSTALLDIR environment variable is the 
pathname to the directory where you installed HSPICE. This 
installation directory contains subdirectories, such as /parts and 
/bin. It also contains certain files, such as a prototype meta.cfg 
file, and the license files.

The following sections discuss these topics:
■ DDL Library Access
■ Vendor Libraries
■ Subcircuit Library Structure

DDL Library Access
To include a DDL library component in a data file, use the X subcircuit call 
statement with the DDL element call. The DDL element statement includes the 
model name, which the actual DDL library file uses. 

For example, the following element statement creates an instance of the 
1N4004 diode model:

X1 2 1 D1N4004

Where D1N4004 is the model name. 

See Element and Source Statements on page 114 and the HSPICE Reference 
Manual: Elements and Device Models for descriptions of element statements.

Optional parameter fields in the element statement can override the internal 
specification of the model. For example, for op-amp devices, you can override 
the offset voltage, and the gain and offset current. Because the DDL library 
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devices are based on HSPICE circuit-level models, simulation automatically 
compensates for the effects of supply voltage, loading, and temperature.

HSPICE accesses DDL models in several ways:
■ The installation script creates an hspice.ini initialization file. 
■ HSPICE writes the search path for the DDL and vendor libraries into a 

.OPTION SEARCH=‘lib_path’ statement. 

This provides immediate access to all libraries for all users. It also 
automatically includes the models in the input netlist. If the input netlist 
references a model or subcircuit, HSPICE searches the directory to which 
the DDLPATH environment variable points for a file with the same name as 
the reference name. This file is an include file so its filename suffix is .inc. 
HSPICE installation sets the DDLPATH variable in the meta.cfg configuration 
file.

■ Set .OPTION SEARCH=‘lib_path’in the input netlist.

Use this method to list the personal libraries to search. HSPICE first 
searches the default libraries referenced in the hspice.ini file, then searches 
libraries in the order listed in the input file.

■ Directly include a specific model, using the .INCLUDE statement. For 
example, to use a model named T2N2211, store the model in a file named 
T2N2211.inc, and put the following statement in the input file:

.INCLUDE path/T2N2211.inc

This method requires you to store each model in its own .inc file, so it is not 
generally useful. However, you can use it to debug new models, when you 
test only a small number of models.

Vendor Libraries
The vendor library is the interface between commercial parts and circuit or 
system simulation.
■ ASIC vendors provide comprehensive cells, corresponding to inverters, 

gates, latches, and output buffers.
■ Memory and microprocessor vendors supply input and output buffers.
■ Interface vendors supply complete cells for simple functions and output 

buffers, to use in generic family output.
■ Analog vendors supply behavioral models.
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To avoid name and parameter conflicts, models in vendor cell libraries should 
be within the subcircuit definitions. 

Figure 23 Vendor Library Usage

Subcircuit Library Structure
The .OPTION SEARCH command is an implicit include command. The include 
file can contain .lib calls in addition to the subcircuit definition. (See 
Figure 23 for a graphic view.) Your library structure must adhere to 
the .INCLUDE statement specification in the implicit subcircuit. You can use 
this statement to specify the directory that contains the subname.inc 
subcircuit file, and then reference the subname in each subcircuit call.

The component naming conventions for each subcircuit is:

subname.inc

Store the subcircuit in a directory that is accessible by a.OPTION 
SEARCH=‘lib_path’ statement. 

Create subcircuit libraries in a hierarchy. Typically, the top-level subcircuit fully 
describes the input/output buffer; any hierarchy is buried inside. The buried 
hierarchy can include model statements, lower-level components, and 

/usr/lib/vendor/buffer_f.inc

.macro buffer_f in out vdd vss

.inc ‘/usr/lib/vendor/buffer.inc’

.eom

.lib ‘/usr/lib/vendor/skew.dat’ ff
/usr/lib/vendor/skew.dat

.lib ff $ fast model

.param vendor_xl=-.1u

.inc ‘/usr/lib/vendor/model.dat’

.endl ff

/usr/lib/vendor/model.dat

.model nch nmos level=28
+ xl=vendor_xl ...

/usr/lib/vendor/buffer.inc

.macro buffer in out vdd vss
m1 out in vdd vdd nch w=10 l=1
...

x1 in out vdd vss buffer_f .OPTION search=‘/usr/lib/vendor’
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parameter assignments. Your library cannot use .LIB or .INCLUDE 
statements anywhere in the hierarchy. 
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Part 2:  Elements and Devices

Part 2 presents the following chapters/topics:
■ Chapter 8, Elements
■ Chapter 9, Sources and Stimuli
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8Elements

Describes the syntax for the basic elements of a circuit netlist in HSPICE. 

HSPICE ships hundreds of examples for your use; see Listing of 
Demonstration Input Files for paths to demo files. See Benchmark Examples 
and Applications of General Interest Examples for demo files showing usage of 
elements.

Elements are local and sometimes customized instances of a device model 
that you specified in your design netlist. Elements (instances) use standard 
device models as their bases. For descriptions of the standard device models, 
see the HSPICE Reference Manual: Elements and Device Models and the 
HSPICE Reference Manual: MOSFET Models. For signal integrity applications 
see the HSPICE User Guide: Signal Integrity Modeling and Analysis. 

Element names can be up to 1024 characters.

The following sections discuss these topics:
■ Passive Elements
■ Multi-Terminal Linear Elements
■ Port Element
■ Active Elements
■ IBIS Buffers (HSPICE Only)
■ TMI Dummy Device

Passive Elements

This section describes the passive elements: resistors, capacitors, and 
inductors. See Multi-Terminal Linear Elements for discussion of the W-, U-, and 
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S-elements. See also, T-element (Ideal Transmission Lines) in the HSPICE 
User Guide: Signal Integrity Modeling and Analysis.

The content of this section includes:
■ Values for Elements
■ Resistor Elements in a HSPICE Netlist
■ Capacitors
■ Inductors

Values for Elements
HSPICE advanced analog analyses accepts equation-based resistors and 
capacitors. You can specify the value of a resistor or capacitor as an arbitrary 
equation, involving node voltages or variable parameters. Unlike HSPICE, you 
cannot use parameters to indirectly reference node voltages in HSPICE 
advanced analog analyses.

Resistor Elements in a HSPICE Netlist
Rxxx n1 n2 [mname] [R=]resistance [TC1 TC2] [SCALE=val]
+ [M=val] 
+ [AC=val] [DTEMP=val] [L=val] [W=val] [C=val]
+ [NOISE=val]

Rxxx n1 n2 [mname] [R=]resistance [TC1=val]
+ [TC2=val] [SCALE=val] [M=val]
+ [AC=val] [DTEMP=val] [L=val] [W=val] 
+ [C=val] [NOISE=val]
Rxxx n1 n2 [R=]‘equation’ …

Parameter Description

Rxxx Resistor element name. Must begin with R, followed by up to 1023 alphanumeric and 
special characters as defined in Table 10 on page 96.

n1 Positive terminal node name.

n2 Negative terminal node name.

mname Resistor model name. Use this name in elements, to reference a resistor model.
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Resistance can be a value (in units of ohms) or an equation. Required 
parameters are the two nodes, and the resistance or model name. If you 
specify other parameters, the node and model name must precede those 
parameters. Other parameters can follow in any order. If you specify a resistor 
model (see Passive Device Models in the HSPICE Reference Manual: 
Elements and Device Models), the resistance value is optional.

For output templates for resistor models, see Table 31 on page 415.

TC TC1 alias. The current definition overrides the previous definition. 

TC1 First-order temperature coefficient for the resistor. See Passive Device Models in the 
HSPICE Reference Manual: Elements and Device Models, for temperature-dependent 
relations.

TC2 Second-order temperature coefficient for the resistor.

SCALE Element scale factor; scales resistance and capacitance by its value. Default=1.0. 

R=resistance Resistance value at room temperature. This can be:
■ a numeric value in ohms
■ a parameter in ohms

M Multiplier to simulate parallel resistors. For example, for two parallel instances of a 
resistor, set M=2, to multiply the number of resistors by 2. Default=1.0. 

AC Resistance for AC analysis. Default=Reff.

DTEMP Temperature difference between the element and the circuit, in degrees Celsius. 
Default=0.0. To modify the temperature for a particular element, use the DTEMP 
parameter in an instance line.

L Resistor length in meters. Default=0.0, if you did not specify L in a resistor model. 

W Resistor width. Default=0.0, if you did not specify W in the model. 

C Capacitance connected from node n2 to bulk. Default=0.0, if you did not specify C in a 
resistor model 

user-defined 
equation

Can be a function of any node voltages, element currents, temperature, frequency, or 
time

NOISE ■ NOISE=0, do not evaluate resistor noise.
■ NOISE=1, evaluate resistor noise (default).

R= ‘equation’ ■ a function of any node voltages
■ a function of branch currents
■ any independent variables such as time, hertz, and temper

Parameter Description
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HSPICE Examples
In the following example, the R1 resistor connects from the Rnode1 node to the 
Rnode2 node, with a resistance of 100 ohms.

R1 Rnode1 Rnode2 100

The RC1 resistor connects from node 12 to node 17, with a resistance of 1 
kilohm, and temperature coefficients of 0.001 and 0.

RC1 12 17 R=1k TC1=0.001 TC2=0

The Rterm resistor connects from the input node to ground, with a resistance 
determined by the square root of the analysis frequency (non-zero for AC 
analysis only).

Rterm input gnd R=’sqrt(HERTZ)’

The Rxxx resistor connects from node 98999999 to node 87654321 with a 
resistance of 1 ohm for DC and time-domain analyses, and 10 gigohms for AC 
analyses.

Rxxx 98999999 87654321 1 AC=1e10

HSPICE Advanced Analog Analyses Examples
Some basic examples for HSPICE advanced analog analyses include:
■ R1 is a resistor whose resistance follows the voltage at node c.

R1 1 0 ‘v(c)’

■ R2 is a resistor whose resistance is the sum of the absolute values of nodes 
c and d.

R2 1 0 ‘abs(v(c)) + abs(v(d))’

■ R3 is a resistor whose resistance is the sum of the rconst parameter, and 
100 times tx1 for a total of 1100 ohms. 

.PARAM rconst=100 tx1=10 
R3 4 5 ‘rconst + tx1 * 100’

Linear Resistors
Rxxx node1 node2 modelname [R =] value [TC1=val] 
+ [TC2=val] [W=val] [L=val] [M=val] 
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+ [C=val] [DTEMP=val] [SCALE=val]

Example
R1 1 2 10.0
Rload 1 GND RVAL

.param rx=100
R3 2 3 RX TC1=0.001 TC2=0
RP X1.A X2.X5.B .5
.MODEL RVAL R

In the example above, R1 is a simple 10 linear resistor and Rload calls a 
resistor model named RVAL The netlist defines the RVAL model later in the 
netlist. 

Note: If a resistor calls a model, then you do not need to specify a 
constant resistance, as you do with R1. 

Parameter Description

Rxxx Name of a resistor

node1 and node2 Names or numbers of the connecting nodes

modelname Name of the resistor model

value Nominal resistance value, in ohms

R Resistance, in ohms, at room temperature

TC1, TC2 Temperature coefficient

W Resistor width

L Resistor length

M Parallel multiplier

C Parasitic capacitance between node2 and the substrate

DTEMP Temperature difference between element and circuit

SCALE Scaling factor
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■ R3 takes its value from the RX parameter, and uses the TC1 and TC2 
temperature coefficients, which become 0.001 and 0, respectively. 

■ RP spans across different circuit hierarchies, and is 0.5.

Behavioral Resistors 
Rxxx n1 n2 . . . [R=] ‘equation’ . . .

Note: The equation can be a function of any node voltage or branch 
current, and any independent variables such as time, hertz, or 
temper.

Example
R1 A B R=‘V(A) + I(VDD)’

Frequency-Dependent Resistors
Rxxx n1 n2 [R=] ‘equation’ [CONVOLUTION=[0|1|2]]
+ [FBASE=value] [FMAX=value]

The equation can only be a function of time-independent variables such as 
HERTZ, and temperature. 

Parameter Description

CONVOLUTION  Indicates which method to use (at the instance level only).
■ 0: Acts the same as the conventional method. This is the default.
■ 1 : Applies recursive convolution, and if the rational function is not accurate 

enough, it switches to linear convolution.
■ 2 : Applies linear convolution.

FBASE Specifies the lower bound of the transient analysis frequency. For 
CONVOLUTION=1 mode, HSPICE starts sampling at this frequency. For 
CONVOLUTION=2 mode, HSPICE uses this value as the base frequency point for 
Inverse Fourier Transformation.

For recursive convolution, the default value is 0Hz, and for linear convolution, 
HSPICE uses the reciprocal of the transient period.

FMAX Specifies the possible maximum frequency of interest. The default value is the 
frequency point where the function reaches close enough to infinity value. This 
assumes that frequency point reaches 10THz and the monotonous function is 
approaching the infinity value.

The equation should be a function of HERTZ. If CONVOLUTION turns on when a 
HERTZ keyword is not in the equation, it is automatically turns off to let the resistor 
behave conventionally. The equation can be a function of temperature, but it 
cannot be node voltage or branch current and time.
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You can model a frequency-dependent resistor and use it in the time domain 
only when CONVOLUTION=1. 

Example
R1 1 2 r='1.0 + 1e-5*sqrt(HERTZ)' CONVOLUTION=1

Skin Effect Resistors
Rxxx n1 n2 R=value Rs=value

The Rs indicates the skin effect coefficient of the resistor.

Equation 1 shows the expression of the complex impedance of the resistor:

Equation 1

Where, Ro is the DC resistance, j is the imaginary term and f is the frequency. 
The imaginary part of the equation represents the frequency-dependent 
inductance.

In the time domain, HSPICE uses the following rational function to represent 
Equation 1: 

Equation 2

Recursive convolution evaluates the rational function skin effect resistor. An 
advantage of using the skin effect resistor is that it automatically guarantees 
the causality.

Capacitors
For a full demonstration example of voltage variable capacitance see the path 
to the calg2.sp netlist noted in the section Behavioral Application Examples.

Cxxx n1 n2 [mname] [C=]capacitance [TC1=val] 
+ [TC2=val] [SCALE=val] [IC=val] [M=val]
+ [W=val] [L=val] [DTEMP=val]
Cxxx n1 n2 [C=]’equation’ [CTYPE=0|1] 
+ [above_options...]

Polynomial form:

R f  Ro 1 j+  Rs f  +=

H  
k

k j+
------------------

k
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Cxxx n1 n2 POLY c0 c1... [IC=val] [M=val]

Parameter Description

Cxxx Capacitor element name. Must begin with C, followed by up to 1023 alphanumeric 
and special characters as defined in Table 10 on page 96.

n1 Positive terminal node name.

n2 Negative terminal node name.

mname Model name; mname must refer to a capacitor model defined in the netlist using 
a .MODEL construct. 

C=capacitance Capacitance at room temperature—a numeric value or a parameter in farads.

TC1 First-order temperature coefficient for the capacitor. See Passive Device Models 
in the HSPICE Reference Manual: Elements and Device Models, for temperature-
dependent relations.

TC2 Second-order temperature coefficient for the capacitor.

SCALE Element scale parameter, scales capacitance by its value. Default=1.0.

IC The initial voltage across the capacitor, in volts when the UIC parameter in the 
.TRAN statement us used. When the UIC parameter is used, HSPICE does not 
calculate the initial DC operating point and the voltage will be across the capacitor 
at transient simulation time=0 and will be released at time>0 to allow the 
capacitor voltage to vary with circuit operation.

If you use an .IC statement to set an initial voltage across the capacitor, then the 
.IC statement overrides the IC value set on the instance.

M Multiplier, used to simulate multiple parallel capacitors. Default=1.0

W Capacitor width, in meters. Default=0.0, if you did not specify W in a capacitor 
model.

L Capacitor length, in meters. Default=0.0, if you did not specify L in a capacitor 
model.

DTEMP Element temperature difference from the circuit temperature, in degrees Celsius. 
Default=0.0.

C=’equation’ Capacitance at room temperature, specified as a function of
■ any node voltages
■ any branch currents
■ any independent variables such as time, hertz, and temper
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You can specify capacitance as a numeric value, in units of farads, as an 
equation, or as a polynomial of the voltage. The only required fields are the two 
nodes, and the capacitance or model name. 
■ If you use the parameter labels, the nodes and model name must precede 

the labels. Other arguments can follow in any order. 
■ If you specify a capacitor model (see Passive Device Models in the HSPICE 

Reference Manual: Elements and Device Models), the capacitance value is 
optional.

If you use an equation to specify capacitance, the CTYPE parameter 
determines how HSPICE calculates the capacitance charge. The calculation is 
different, depending on whether the equation uses a self-referential voltage 
(that is, the voltage across the capacitor, where the equation determines the 
capacitance).

To avoid syntax conflicts, if a capacitor model has the same name as a 
capacitance parameter, HSPICE uses the model name. 

For output templates for capacitor models, see Table 32 on page 416.

Example 1
In the following example, C1 assumes its capacitance value from the model, 
not the parameter.

.PARAMETER CAPXX=1
C1 1 2 CAPXX
.MODEL CAPXX C CAP=1

Example 2
In the following example, the C1 capacitors connect from node 1 to node 2, with 
a capacitance of 20 picofarads:

C1 1 2 20p

CTYPE Determines capacitance charge calculation for elements with capacitance 
equations. If the C capacitance is a function of V(n1[,n2]), set CTYPE=0. Use this 
setting correctly, to ensure proper capacitance calculations, and correct simulation 
results. Default=0.

POLY Keyword, to specify capacitance as a non-linear polynomial.

c0 c1... Coefficients of a polynomial, described as a function of the voltage across the 
capacitor. c0 represents the magnitude of the 0th order term, c1 represents the 
magnitude of the 1st order term, and so on. You cannot use parameters as 
coefficient values.

Parameter Description
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In this next example, Cshunt refers to three capacitors in parallel, connected 
from the node output to ground, each with a capacitance of 100 femtofarads.

Cshunt output gnd C=100f M=3

The Cload capacitor connects from the driver node to the output node. The 
voltage on the capcontrol node, times 1E-6, determines the capacitance. The 
initial voltage across the capacitor is 0 volts.

Cload driver output C=’1u*v(capcontrol)’ CTYPE=1 IC=0v

The C99 capacitor connects from the in node to the out node. The polynomial 
C=c0 + c1*v + c2*v*v, where v is the voltage across the capacitor, determines 
the capacitance.

C99 in out POLY 2.0 0.5 0.01

Linear Capacitors
Cxxx node1 node2 [modelname] [C=]val [TC1=val]
+ [TC2=val] [W=val] [L=val] [DTEMP=val]
+ [M=val] [SCALE=val] [IC=val] [SHRINK=val]

The value of a linear capacitor can be a constant, or an expression of 
parameters.

Parameter Description

Cxxx Name of a capacitor. Must begin with C, followed by up to 1023 alphanumeric and 
special characters as defined in Table 10 on page 96.

node1 and node2 Names or numbers of connecting nodes.

value Nominal capacitance value, in Farads.

modelname Name of the capacitor model.

C Capacitance, in Farads, at room temperature.

TC1, TC2 Specifies the temperature coefficient.

W Capacitor width.

L Capacitor length.

M Multiplier to simulate multiple parallel capacitors.

DTEMP Temperature difference between element and circuit.
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Example
Cbypass 1 0 10PF
C1 2 3 CBX
.MODEL CBX C
CB B 0 10P IC=4V
CP X1.XA.1 0 0.1P

In this example:
■ Cbypass is a straightforward, 10-picofarad (PF) capacitor. 
■ C1, which calls the CBX model, does not have a constant capacitance. 
■ CB is a 10 PF capacitor, with an initial voltage of 4V across it.
■ CP is a 0.1 PF capacitor.

Frequency-Dependent Capacitors
You can specify frequency-dependent capacitors by using the C=’equation’ 
with the HERTZ keyword. The HERTZ keyword represents the operating 
frequency. In time domain analyses, an expression with the HERTZ keyword 
behaves differently according to the value assigned to the CONVOLUTION 
keyword.

Syntax
Cxxx n1 n2 C=’equation’ [CONVOLUTION=[0|1|2]]
+ [FBASE=val] [FMAX=val]

SCALE Scaling factor.

IC Initial capacitor voltage across the capacitor.

SHRINK Local shrink factor; a value of shrink=1 disables shrinking. See .OPTION SHRINK for 
more information.

Parameter Description

n1 n2 Names or numbers of connecting nodes.

Parameter Description
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Example
C1 1 2 C='1e-6 - HERTZ/1e16' CONVOLUTION=1 fbase=10 
+ fmax=30meg

Behavioral Capacitors in HSPICE
Cxxx n1 n2 . . . C=‘equation’ CTYPE=0 or 1

You can specify the capacitor value as a function of any node voltage or branch 
current, and any independent variables such as time, hertz, and temper.

equation Expressed as a function of HERTZ. If CONVOLUTION=1 or 2 and HERTZ is not 
in the equation, CONVOLUTION turns off and the capacitor behaves 
conventionally.

The equation can be a function of temperature, but it does not support variables 
of node voltage, branch current, or time. If these variables exist in the 
expression and CONVOLUTION=1 or 2, then the simulation considers only 
their values at the operating point in calculation.

CONVOLUTION Specifies the method used.
■ 0 (default): HERTZ=0 in time domain analysis.
■ 1 or 2: performs Inverse Fast Fourier Transformation (IFFT) linear 

convolution.

FBASE Base frequency to use for transient analysis. This value becomes the base 
frequency point for Inverse Fast Fourier Transformation (IFFT) when 
CONVOLUTION=1 or 2. If you do not set this value, the base frequency is a 
reciprocal value of the transient period.

FMAX Maximum frequency to use for transient analysis. Used as the maximum 
frequency point for Inverse Fourier Transformation. If you do not set this value, 
the simulation takes the reciprocal value of RISETIME.

Parameter Description

CTYPE Determines the calculation mode for elements that use capacitance equations. Set this 
parameter carefully, to ensure correct simulation results. HSPICE advanced analog 
analyses extends the definition and values of CTYPE, relative to HSPICE:
■ CTYPE=0, if C depends only on its own terminal voltages—that is, a function of 

V(n1[, n2]).
■ CTYPE=1, if C depends only on outside voltages or currents.
■ CTYPE=2, if C depends on both its own terminal and outside voltages. This is the 

default for HSPICE advanced analog analyses. HSPICE does not support 
CTYPE=2.

Parameter Description
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Example
C1 1 0 C=’1e-9*V(10)’ CTYPE=1 
V10 10 0 PWL(0,1v t1,1v t2,4v)

DC Block Capacitors
Cxxx node1 node2 [C=] INFINITY [IC=val]

When the capacitance of a capacitor is infinity, this element takes the name of 
“DC block.” In HSPICE, you specify an INFINITY value for such capacitors.

HPSICE does not support any other capacitor parameters for DC block 
elements because HSPICE assumes that an infinite capacitor value is 
independent of any scaling factors.

The DC block acts as an open circuit for all DC analyses. HSPICE calculates 
the DC voltage across the nodes of the circuit. In all other (non-DC) analyses, a 
DC voltage source of this value represents the DC block—HSPICE does not 
allow dv/dt variations.

DC Block and Choke Elements
In HSPICE advanced analog analyses, you can specify an INFINITY value for 
capacitors and inductors to model ideal DC block and choke elements. The 
following input syntax is for the DC block (ideal infinite capacitor):

Syntax
Cxxx node1 node2 [C=] INFINITY [IC=val]

HSPICE advanced analog analyses does not support any other capacitor 
parameters for DC block elements, because HSPICE advanced analog 
analyses assumes that the infinite capacitor value is independent of 
temperature and scaling factors. The DC block acts as an open circuit for all DC 
analyses. HSPICE advanced analog analyses calculates the DC voltage 
across the circuit’s nodes. In all other (non-DC) analyses, a DC voltage source 
of this value represents the DC block (that is, HSPICE advanced analog 
analyses does not then allow dv/dt variations). 

The following input syntax is for the Choke (ideal infinite inductor):

Syntax
Lxxx node1 node2 [L=] INFINITY [IC=val]

HSPICE advanced analog analyses does not support any other inductor 
parameters, because HSPICE advanced analog analyses assumes that the 
infinite inductance value is independent of temperature and scaling factors. The 
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choke acts as a short circuit for all DC analyses. HSPICE advanced analog 
analyses calculates the DC current through the inductor. In all other (non-DC) 
analyses, a DC current source of this value represents the choke (that is, 
HSPICE advanced analog analyses does not then allow di/dt variations). 

Charge-Conserved Capacitors
Cxxx node1 node2 q=’expression’

HSPICE supports AC, DC, TRAN, and PZ analyses for charge-conserved 
capacitors.

The expression supports the following parameters and variables:
■ Parameters

• node voltages

• branch currents
■ Variables

• time

• temper

• hertz

Note: Transient analyses do not support the hertz variable.

You must use parameters directly in an equation. HSPICE does not support 
parameters that represent an equation containing variables.

Error Handling

If you use an unsupported parameter in an expression, HSPICE issues an error 
message and aborts the simulation. HSPICE ignores unsupported analysis 
types and then issues warning a message.

Limitations

The following syntax does not support charge-conserving capacitors:

Cxx node1 node2 C=’expression’

HSPICE does not implicitly convert capacitor equations to charge equations.

Example 1: Capacitance-based Capacitor
C1 a b C=‘Co*(1+alpha*V(a,b)’ ctype=0
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You can obtain Q by integrating ‘C’ w.r.t V(a,b)

Example 2: Charge-based Capacitor
C1 a b Q=‘Co*V(a,b)(1+0.5*alpha*V(a,b))

Example 3: Capacitance-based Capacitor
.option list node post
r1 1 2 100
r2 3 0 200
Vin 1 0 pulse(0 5v 1ns 2ns 2ns 10ns 20ns)
C1 2 3 c='cos(v(2,3)) + v(1,2)’ ctype=2
.tran 1ns 100ns
.print tran  i(c1)
.end

Example 4: Charge-based Capacitor
.option list node post
r1 1 2 100
r2 3 0 200
Vin 1 0 pulse(0 5v 1ns 2ns 2ns 10ns 20ns)
C1 2 3 q='sin(v(2,3)) + v(2,3)*v(1,2)'
.tran 1ns 100ns
.print tran  i(c1)
.end

Inductors
For demonstration examples of magnetics netlists, see Magnetics Examples 
demo files for magnetic cores, L-elements and K-elements. This link provides 
paths to several files available from the HSPICE installation directory.

General form:

Lxxx n1 n2 [L=]inductance [TC1=val] 
+ [TC2=val] [SCALE=val] [IC=val] [M=val] 
+ [DTEMP=val] [R=val]
Lxxx n1 n2 L=‘equation’ [LTYPE=val] [above_options...]

Polynomial form:

Lxxx n1 n2 POLY c0 c1... [above_options...]

Magnetic winding form:
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Lxxx n1 n2 NT=turns [above_options...]

Parameter Description

Lxxx Inductor element name. Must begin with L, followed by up to 1023 alphanumeric and 
special characters as defined in Table 10 on page 96.

n1 Positive terminal node name. 

n2 Negative terminal node name.

TC1 First-order temperature coefficient for the inductor. See Passive Device Models in the 
HSPICE Reference Manual: Elements and Device Models, for temperature-dependent 
relations.

TC2 Second-order temperature coefficient for the inductor.

SCALE Element scale parameter; scales inductance by its value. Default=1.0.

IC The current forced through the inductor for the duration of the DC operating point 
calculation, in amperes. HSPICE uses this value as the DC operating point current only.

If the .TRAN statement uses UIC, then HSPICE does not calculate the DC operating 
point. For this case, the current will flow through the inductor at transient simulation 
time=0 and will be released at time>0 to allow the inductor current to vary with circuit 
operation.

L=inductance Inductance value. This can be:
■ a numeric value, in henries
■ a parameter in henries

M Multiplier, used to simulate parallel inductors. Default=1.0.

DTEMP Temperature difference between the element and the circuit, in degrees Celsius. 
Default=0.0.

R Resistance of the inductor, in ohms. Default=0.0.

L=‘equation’ Inductance at room temperature, specified as:
■ a function of any node voltages
■ a function of branch currents
■ any independent variables such as time, hertz, and temper

LTYPE Calculates inductance flux for elements, using inductance equations. If the L inductance 
is a function of I(Lxxx), then set LTYPE=0. Otherwise, specify LTYPE=1. Use this setting 
correctly, to ensure proper inductance calculations, and correct simulation results. 
Default=0.

POLY Keyword that specifies the inductance, calculated by a polynomial.
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In this syntax, the inductance can be either a value (in units of henries), an 
equation, a polynomial of the current, or a magnetic winding. Required fields 
are the two nodes, and the inductance or model name. 
■ If you specify parameters, the nodes and model name must be first. Other 

parameters can be in any order. 
■ If you specify an inductor model (see Passive Device Models in the HSPICE 

Reference Manual: Elements and Device Models), the inductance value is 
optional.

For a listing of output templates for inductor (L-element) models, see Table 33 
on page 416.

Example 1
In the following example, the L1 inductor connects from the coilin node to the 
coilout node, with an inductance of 100 nanohenries.

L1 coilin coilout 100n

Example 2
The Lloop inductor connects from node 12 to node 17. Its inductance is 1 
microhenry, and its temperature coefficients are 0.001 and 0.

Lloop 12 17 L=1u TC1=0.001 TC2=0

Example 3
The Lcoil inductor connects from the input node to ground. The product of the 
current through the inductor, and 1E-6, determines its inductance.

Lcoil input gnd L=’1u*i(input)’ LTYPE=0

Example 4
The L99 inductor connects from the in node to the out node. The polynomial 
L=c0 + c1*i + c2*i*i, where i is the current through the inductor, determines its 
inductance. The inductor also has a specified DC resistance of 10 ohms.

L99 in out POLY 4.0 0.35 0.01 R=10 

c0 c1... Coefficients of a polynomial in the current, describing the inductor value. c0 is the 
magnitude of the 0th order term, c1 is the magnitude of the 1st order term, and so on.

NT=turns Number of turns of an inductive magnetic winding.

Parameter Description
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Example 5
The L inductor connects from node 1 to node, as a magnetic winding element, 
with 10 turns of wire.

L 1 2 NT=10

Linear Inductors
Lxxx node1 node2 [L =] inductance [TC1=val] [TC2=val]
+ [M=val] [DTEMP=val] [IC=val]

Example:
LX A B 1E-9
LR 1 0 1u IC=10mA

■ LX is a 1-nH inductor.

■ LR is a 1-uH inductor, with an initial current of 10 mA.

Frequency-Dependent Inductors
You can specify frequency-dependent inductors with the L=’equation’ with 
the HERTZ keyword. The HERTZ keyword represents the operating frequency. 
In time domain analyses, an expression with the HERTZ keyword behaves 
differently according to the value assigned to the CONVOLUTION keyword.

Parameter Description

Lxxx Name of an inductor.

node1 and node2 Names or numbers of the connecting nodes.

inductance Nominal inductance value, in Henries.

L Inductance, in Henries, at room temperature.

TC1, TC2 Temperature coefficient.

M Multiplier for parallel inductors.

DTEMP Temperature difference between the element and the circuit.

IC The current forced through the inductor for the duration of the DC operating 
point calculation, in amperes.
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Syntax
Lxxx n1 n2 L=’equation’ [CONVOLUTION=[0|1|2] [FBASE=value] 
+ [FMAX=value]]

Example
L1 1 2 L='0.5n + 0.5n/(1 + HERTZ/1e8)' CONVOLUTION=1 fbase=10
+ fmax=30meg

AC Choke Inductors
Syntax
Lxxx node1 node2 [L=] INFINITY [IC=val]

When the inductance of an inductor is infinity, this element takes the name “AC 
choke.” In HSPICE, you specify an INFINITY value for inductors.

Parameter Description

Lxxx Inductor element name. Must begin with L, followed by up to 1023 alphanumeric and 
special characters as defined in Table 10 on page 96

n1 n2 Positive and negative terminal node names.

equation The equation should be a function of HERTZ. If CONVOLUTION turns on when a 
HERTZ keyword is not in the equation, CONVOLUTION automatically turns off and 
the inductor behaves conventionally.The equation can be a function of temperature, 
but it does not support variables of node voltage, branch current, or time. If these 
variables exist in the equation with CONVOLUTION on, the calculation considers 
only their values at the operating point.

CONVOLUTION  Indicates which method to use:
■ 0 (default): Acts the same as the conventional method.
■ 1 : Applies recursive convolution, and if the rational function is not accurate 

enough, it switches to linear convolution.
■ 2 : Applies linear convolution.

FBASE Specifies the lower bound of the transient analysis frequency. 
■ For CONVOLUTION=1 mode, HSPICE starts sampling at this frequency. 
■ For CONVOLUTION=2 mode, HSPICE uses this value as the base frequency 

point for Inverse Fourier Transformation.
■ For recursive convolution, the default value is 0Hz.
■ For linear convolution, HSPICE uses the reciprocal of the transient period.

FMAX Specifies the possible maximum frequency of interest. The default value is the 
frequency point where the function reaches close enough to infinity value. This 
assumes that the frequency reaches 10THz and that the monotonous function is 
approaching the infinity value.
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HSPICE does not support any other inductor parameters because it assumes 
that the infinite inductance value is independent of temperature and scaling 
factors. The AC choke acts as a short circuit for all DC analyses and HSPICE 
calculates the DC current through the inductor. In all other (non-DC) analyses, 
a DC current source of this value represents the choke—HSPICE does not 
allow di/dt variations.

Reluctors
Syntax
Reluctance Inline Form

Lxxx n1p n1n ... nNp nNn 
+ RELUCTANCE=(r1, c1, val1, r2, c2, val2, ... , rm, cm, valm)
+ [SHORTALL=yes | no] [IGNORE_COUPLING=yes | no]

Reluctance External File Form

Lxxx n1p n1n ... nNp nNn RELUCTANCE
+ FILE=”filename1” [FILE=”filename2” [...]]
+ [SHORTALL=yes | no] [IGNORE_COUPLING=yes | no]

Parameter Description

Lxxx Name of a reluctor. Must begin with L, followed by up to 1023 alphanumeric 
and special characters as defined in Table 10 on page 96.

n1p n1n ... 
nNp nNn

Names of the connecting terminal nodes. The number of terminals must be 
even. Each pair of ports represents the location of an inductor.

RELUCTANCE Keyword to specify reluctance (inverse inductance).

r1, c1, val1,
r2, c2, val2, ...
rm, cm, valm

Reluctance matrix data. In general, K is sparse and only non-zero values 
appear in the matrix. A triplet (r,c,val) represents each matrix entry. The value 
r and c are integers referring to a pair of inductors from the list of terminal 
nodes. If there are 2*N terminal nodes, there are N inductors, and the r and c 
values must be in the range [1,N].
The val value is a reluctance value for the (r,c) matrix location, and the unit 
for reluctance is the inverse Henry (H-1).
The reluctance_matrix specifies only terms along and above the diagonal.
The simulator fills in the lower triangle to ensure symmetry. If you specify 
lower diagonal terms, the simulator converts that entry to the appropriate 
upper diagonal term.
If you supply multiple entries for the same (r,c) location, it only uses the first 
one, and ignores the others. A warning advises of the ignored entries.
You must assign a positive value all diagonal entries of the reluctance matrix.
The reluctance matrix should be positive definite.
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Example
This example has 9 segments (or ports) with 12 nodes, and can potentially 
generate a 9x9 reluctance matrix with 81 elements. 

L_ThreeNets a 1 1 2 2 a_1 b 4 4 5 5 b_1 c 7 7 8 8 c_1
+ RELUCTANCE=(
+ 1 1 103e9
+ 1 4 -34.7e9
+ 1 7 -9.95e9
+ 4 4 114e9
+ 4 7 -34.7e9
+ 7 7 103e9
+ 2 2 103e9
+ 2 5 -34.7e9
+ 2 8 -9.95e9
+ 5 5 114e9
+ 5 8 -34.7e9
+ 8 8 103e9
+ 3 3 103e9
+ 3 6 -34.7e9
+ 3 9 -9.95e9
+ 6 6 114e9
+ 6 9 -34.7e9
+ 9 9 103e9 )
+ SHORTALL = no IGNORE_COUPLING = no

Alternatively, you can specify the same element by using:

L_ThreeNets a 1 1 2 2 a_1 b 4 4 5 5 b_1 c 7 7 8 8 c_1 RELUCTANCE
+ FILE="reluctance.dat" SHORTALL = no IGNORE_COUPLING = no

Where reluctance.dat contains:

FILE=”filename1” For the external file format, the data files should contain three columns of 
data. Each row should contain an (r,c,val) triplet separated by white space. 
The r, c, and val values may be expressions surrounded by single quotes. You 
can specify multiple files to spread the reluctance data over several files, if 
necessary. 

SHORTALL ■ SHORTALL=yes: Converts all inductors in this model to short circuits, and 
ignores all reluctance matrix values.

■ SHORTALL=no (default): Does not convert inductors to short circuits, and 
does not ignore reluctance matrix values.

IGNORE_COUPLING ■ IGNORE_COUPLING=yes: Ignores all off-diagonal terms (that is, re-sets 
them to zero).

■ IGNORE_COUPLING=no (default): Does not do off-diagonal terms.

Parameter Description
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+ 1 1 103e9
+ 1 4 -34.7e9
+ 1 7 -9.95e9
+ 4 4 114e9
+ 4 7 -34.7e9
+ 7 7 103e9
+ 2 2 103e9
+ 2 5 -34.7e9
+ 2 8 -9.95e9
+ 5 5 114e9
+ 5 8 -34.7e9
+ 8 8 103e9
+ 3 3 103e9
+ 3 6 -34.7e9
+ 3 9 -9.95e9
+ 6 6 114e9
+ 6 9 -34.7e9
+ 9 9 103e9

The following shows the mapping between the port numbers and node pairs:

Mutual Inductors
General form:

Kxxx Lyyy Lzzz [K=coupling | coupling]

Mutual core form:

Kaaa Lbbb [Lccc ... Lddd] mname [MAG=magnetization]

Parameter Description

Kxxx Mutual inductor element name. Must begin with K, followed by up to 1023 
alphanumeric and special characters as defined in Table 10 on page 96.

Lyyy Name of the first of two coupled inductors.

Lzzz Name of the second of two coupled inductors.

K=coupling Coefficient of mutual coupling. K is a unitless number, with magnitude > 0. If K is 
negative, the direction of coupling reverses. This is equivalent to reversing the 
polarity of either of the coupled inductors. Use the K=coupling syntax when using 
a parameter value or an equation, and the keyword “k=” can be omitted.

-------------------------------------------------------------------------------------
|Ports      |   1   |   2   |   3   |   4   |   5   |   6   |   7   |   8   |   9   | 
|Node pairs | (a,1) | (1,2) |(2,a_1)| (b,4) | (4,5) |(5,b_1)| (c,7) | (7,8) |(8,c_1)|
-------------------------------------------------------------------------------------
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In this syntax, coupling is a unitless value from zero upward, representing the 
coupling strength. If you use parameter labels, the nodes and model name 
must be first. Other arguments can be in any order. If you specify an inductor 
model (see Passive Device Models in the HSPICE Reference Manual: 
Elements and Device Models), the inductance value is optional.

You can determine the coupling coefficient, based on geometric and spatial 
information. To determine the final coupling inductance, HSPICE divides the 
coupling coefficient by the square-root of the product of the self-inductances.

When using the mutual inductor element to calculate the coupling between 
more than two inductors, HSPICE can automatically calculate an approximate 
second-order coupling. See the third example for a specific situation. 

Note: The automatic inductance calculation is an estimation, and is 
accurate for a subset of geometries. The second-order coupling 
coefficient is the product of the two first-order coefficients, which 
is not correct for many geometries.

For a listing of output templates for mutual inductor (K-element) models, see 
Table 34 on page 416.

Example 1
This example couples the Lin and Lout inductors, with a coefficient of 0.9.

K1 Lin Lout 0.9

Example 2
This example couples the Lhigh and Llow inductors, with a coefficient equal to 
the value of the COUPLE parameter.

Kaaa Saturable core element name. Must begin with K, followed by up to 1023 
alphanumeric and special characters as defined in Table 10 on page 96.

Lbbb, Lccc, Lddd Names of the windings about the Kaaa core. Requires one winding element, and 
each winding element must use the magnetic winding syntax. Write all winding 
elements with the same magnetic core model in one mutual inductor statement in 
the netlist.

mname Saturable core model name. (See Passive Device Models in the HSPICE 
Elements and Device Models Manual for more information.)

MAG=

magnetization

Initial magnetization of the saturable core. You can set this to +1, 0, or -1, where 
+/- 1 refer to positive and negative values of the BS model parameter. (See 
Passive Device Models in the HSPICE Reference Manual: Elements and Device 
Models for more information.)

Parameter Description
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Kxfmr Lhigh Llow K=COUPLE

■ The K1 mutual inductor couples L1 and L2.
■ The K2 mutual inductor couples L2 and L3. 

Example 3
The coupling coefficients are 0.98 and 0.87. HSPICE automatically calculates 
the mutual inductance between L1 and L3, with a coefficient of 
0.98*0.87=0.853.

K1 L1 L2 0.98
K2 L2 L3 0.87

Ideal Transformer
Kxxx Li Lj [k=IDEAL | IDEAL]

Ideal transformers use the IDEAL keyword with the K element to designate 
ideal K transformer coupling.

Equation 3 presents multiple coupled inductors. The IDEAL keyword activates 
the equation set for non-DC values. Ij is the current into the first terminal of Lj.

Equation 3

Equation 4

HSPICE can solve any I or V in terms of L ratios and treats DC as expected—
while it treats inductors as short circuits. The simulation ignores mutual 
coupling for DC.

You can couple inductors that use the INFINITY keyword with IDEAL K 
elements. In this situation, all inductors involved must have the INFINITY 
value, and for K=IDEAL, the ratio of all L values is unity. Then, for two L values:

v2= v1
i2 + i1=0

Example 1
This example is a standard 5-pin ideal balun transformer subcircuit. Two pins 
are gnd for standard operation. With all K values being IDEAL, the absolute L 
values are not crucial—only their ratios are important. 

v1

L1
---------- v2

L2
---------- v3

L3
---------- v4

L4
----------  ...= = = =

0 il L1  i2 L2  i3 L3  i4 L4  ...+ + + +=
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**
**   all K's ideal  -----o out1
**                  Lo1=.25 
**   o----in-       -----o 0
**         Lin=1    Lo2=.25 
** 0 o-------       -----o out2
**
.subckt BALUN1  in  out1  out2
Lin    in    gnd   L=1
Lo1    out1  gnd   L=0.25
Lo2    gnd   out2  L=0.25
K12    Lin  Lo1    IDEAL
K13    Lin  Lo2    IDEAL
K23    Lo1  Lo2    IDEAL
.ends

Example 2
This example is a 2-pin ideal 4:1 step-up balun transformer subcircuit with 
shared DC path (no DC isolation). Input and output have a common pin, and 
both inductors have the same value. Note that Rload=4*Rin.

**
**   all K's ideal 
**in o-------------------o out=in 
**                  L1=1 
**                  -----o 0
**                  L2=1 
**                  -----o out2
**
** With all K's ideal, the actual L's values are
** not important -- only their ratio to each other.
.subckt BALUN2 in  out2 
L1     in   gnd   L=1
L2     gnd  out2  L=1
K12    L1   L2   IDEAL
.ends

Example 3
This example is a 3-pin ideal balun transformer with shared DC path (no DC 
isolation). All inductors have the same value (here set to unity).
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**
**   all K's ideal  -----o out1
**                  Lo2=1 
**                  -----o 0
**                  Lo1=1 
**                  -----o out2
**    in            Lin=1
**   o-------------------o in 
**
.subckt BALUN3 in  out1  out2 
Lo2    gnd  out1  L=1
Lo1    out2 gnd   L=1
Lin    in   out2  L=1
K12    Lin  Lo1  IDEAL
K13    Lin  Lo2  IDEAL
K23    Lo1  Lo2  IDEAL
.ends

For a description of the S-parameter (SP) model syntax, see S-parameter 
Modeling Using the S-element in the HSPICE User Guide: Signal Integrity 
Modeling and Analysis.

Ideal Transformer Format in HSPICE Advanced Analog 
Analyses
The ideal transformer format simplifies modeling of baluns. They previously 
used mutual inductors (K elements) with the IDEAL keyword. A given balun 
model required Multiple L and K elements. The ideal transformer model allows 
modeling of a balun using a single L element.

In the ideal transformer format, you do not to specify no absolute inductance or 
reluctance values. Instead, you specify the transformer’s coupling 
characteristics using inductor number-of-turns values. The behavior of the ideal 
transformer depends on ratios of the inductors’ number of turns.

Syntax
Lxxx n1p n1n ... nNp nNn TRANSFORMER_NT=(nt1, ... , ntN)

Parameter Description

Lxxx Inductor element name. Must begin with L, followed by up to 1023 
alphanumeric and special characters as defined in Table 10 on page 96.

n1p n1n ... nNp nNn Positive and negative terminal node names. The number of terminals must 
be even. Each pair of reports represents the location of an inductor. 
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The ideal transformer element obeys the standard ideal transformer equations:

Example
L1 1 0 0 2 3 0 transformer_nt=(1,2,2)

Multi-Terminal Linear Elements

A multi-terminal linear element such as a transmission line is a passive element 
that connects any two conductors at any distance apart. One conductor sends 
the input signal through the transmission line, and the other conductor receives 
the output signal from the transmission line. The signal is voltage between the 
conductors that is transmitted from one end of the pair to the other end. 

Examples of transmission lines include:
■ Power transmission lines
■ Telephone lines
■ Waveguides
■ Traces on printed circuit boards and multi-chip modules (MCMs)
■ Bonding wires in semiconductor IC packages
■ On-chip interconnections

The following sections discuss:
■ S-element (Scattering Parameter Data)
■ W-element (Distributed Transmission Lines)
■ U-element (Lumped Transmission Lines)

TRANSFORMER_NT Number of turns values. These parameters must match the number of 
inductors.

Parameter Description

1

nt1
-------

2

nt2
------- 

N

ntN
--------= = =

i1nt1 i2nt2  iNntN+ + + 0=
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S-element (Scattering Parameter Data) 
All HSPICE analyses can use the S-element. For more information about S-
parameters, see S-parameter Modeling Using the S-element in the HSPICE 
User Guide: Signal Integrity Modeling and Analysis. 

Frequency-Dependent Multi-Terminal (S-element)
When used with the generic frequency-domain model (.MODEL SP), an S-
element is a convenient way to describe the behavior of a multi-terminal 
network.

The S-element describes a linear time-invariant system, and provides a series 
of data that describe the frequency response of the system. The S-element is 
particularly useful for high-frequency characterization of distributed passive 
structures. A common use of the S-element is in microwave circuits such as 
spiral inductors, because electronic devices in this frequency domain no longer 
act as they do in low frequencies. In this case, you must consider distributed 
system parameters. See the example below for an application of the state 
space stamping to generate a frequency invariant modified nodal analysis 
(NMA) matrix from frequency-dependent characteristics with the Shooting 
Newton (.SN) algorithm. 

For scattering parameter element and model syntax, see S-element Syntax 
and S Model Syntax in the HSPICE User Guide: Signal Integrity Modeling and 
Analysis.

Example 
The following netlist and data file (test.rfm) show how the S-element “S1” 
uses the “STAMP=YSTS” configuration which invokes the state space 
stamping to generate a frequency invariant modified nodal analysis (NMA) 
matrix from frequency-dependent characteristics. This stamping method allows 
the Shooting-Newton algorithm (.SN) to obtain the steady state. Note that 
unless there is RFM file input, the S-element first applies the rational function 
approximation (equivalent behavior to RATIONAL_FUNCTION=1) to the 
original S-parameters to generate the state space stamping. 
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======= main netlist =======
*** .SN with s-element example
P1 n1 gnd port=1 dc=1v ac=1v pulse(1 0 1n 1n 1n 10n 20n)
P2 n2 gnd port=2 dc=1v ac=1v pulse(1 0 1n 1n 1n 10n 20n)

S1 n1 n2 0 mname=s_model
.model s_model S n=2
+ rfmfile='test.rfm'
+ STAMP=YSTS
.SN tone=0.05Ghz nharms=32
.option post accurate
.end

The following is from the .lis file for this netlist.

======= rational function matrix file (test.rfm) ======
VERSION 200600 NPORT 2 MATRIX_TYPE Y SYMMETRIC PRECFAC 0.75 Z0 50 50
BEGIN 1 1

BEGIN_REAL 9
DC 2.10290261e-02
2.80562648113e+07  1.791888661818e+00
1.36806220992e+08 -5.313505935943e+01
1.16867967247e+09  2.840375731037e+06
1.23552099406e+09 -4.257158329976e+06
1.92568095149e+09  3.038955064913e+06
4.15005808751e+09 -8.058749095413e+06
1.00149288271e+10  3.846931398394e+06
2.27536895845e+10  1.702938150800e+05
3.54118199282e+10 -1.243885701867e+07

BEGIN_COMPLEX 5
5.53251427579e+05  1.28282249537e+06 -3.17377193705e-03 -
1.20935639131e-03
2.39642428296e+09  1.39710928734e+08 -1.99538130185e+07 -
6.93072640638e+07
2.41275272760e+09  4.88535891322e+09  2.92904966609e+04  
4.08311621367e+04
9.49575839142e+08 -2.82753080087e+10 -1.69178467311e+05 -
1.42790736653e+04

3.74702282735e+10 2.26461714292e+1
6.18960971035e+06  2.73309486084e+05 END BEGIN 2 2 DC 2.10290261e-
02

BEGIN REAL 9
2.80562648113e+07  1.79188866181e+00
1.36806220992e+08 -5.31350593594e+01
1.16867967247e+09  2.84037573103e+06
1.23552099406e+09 -4.25715832997e+06
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1.92568095149e+09  3.03895506491e+06
4.15005808751e+09 -8.05874909541e+06
1.00149288271e+10  3.84693139839e+06
2.27536895845e+10  1.70293815080e+05
3.54118199282e+10 -1.24388570186e+07

BEGIN_COMPLEX 5
5.53251427579e+05  1.28282249537e+06 -3.17377193705e-03 -
1.20935639131e-03
2.39642428296e+09  1.39710928734e+08 -1.99538130185e+07 -
6.93072640638e+07
2.41275272760e+09  4.88535891322e+09  2.92904966609e+04  
4.08311621367e+04
9.49575839142e+08 -2.82753080087e+10 -1.69178467311e+05 -
1.42790736653e+04 3.74702282735e+10  2.26461714292e+10 
6.18960971035e+06  2.73309486084e+05 
END

W-element (Distributed Transmission Lines)
The W-element supports 5 formats to specify the transmission line properties:
■ Model 1: RLGC-Model specification

• Internally specified in a .model statement

• Externally specified in a different file
■ Model 2: U-Model specification

• RLGC input for up to five coupled conductors

• Geometric input (planer, coax, twin-lead)

• Measured-parameter input

• Skin effect
■ Model 3: Built-in field solver model

• Standard format (using geometric data with the W-element)

• Tabular format
■ Model 4: Frequency-dependent tabular model
■ Model 5: S-parameter Model

W-element Statement
The general syntax for a lossy (W-element) transmission line element is:
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RLGC input form:

Wxxx in1 [in2 [...inx]] refin out1 [out2 [...outx]] 
+ refout [RLGCfile=filename | RLGCMODEL=name] N=val L=val 

U Model form:

Wxxx in1 [in2 [...inx]] refin out1 [out2 [...outx]] 
+ refout Umodel=modelname N=val L=val

Field solver form:

Wxxx in1 [in2 [...inx]] refin out1 [out2 [...outx]] 
+ refout FSmodel=modelname N=val L=val

Table Model form:

Wxxx in1 [in2 [...inx] refin out1 [out2 [...outx]] 
+ refout N=val L=val TABLEMODEL=name

S Model form:

Wxxx in1 [in2 [...inx]] refin out1 [out2 [...outx]]
+ refout Smodel=modelname [NODEMAP=XiYj...] N=val L=val

Parameter Description

Wxxx Lossy (W-element) transmission-line element name. Must start with W, 
followed by up to 1023 alphanumeric and special characters as defined in 
Table 10 on page 96.

inx Signal input node for xth transmission line (Requires in1).

refin Ground reference for input signal

outx Signal output node for the xth transmission line (each input port must have a 
corresponding output port).

refout Ground reference for output signal.

N Number of conductors (excluding the reference conductor).

L Physical length of the transmission line, in units of meters.

RLGCfile=filename File name reference for the file containing the RLGC information for the 
transmission lines (for syntax, see Using the W-element in the HSPICE User 
Guide: Signal Integrity Modeling and Analysis).

RGLCMODEL=
modelname

RLGC model name
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The number of ports on a single transmission line is unlimited. You must 
provide one input and output port, the ground references, a model or file 
reference, a number of conductors, and a length. 

Example 1
The W1 lossy transmission line connects the in node to the out node:

W1 in gnd out gnd RLGCfile=cable.rlgc N=1 L=5

Where,
■ Both signal references are gnd
■ The RLGC file name: cable.rlgc
■ The transmission line is 5 meters long.

Example 2
The Wcable element is a two-conductor lossy transmission line:

Wcable in1 in2 gnd out1 out2 gnd Umodel=umod_1 N=2 
+ L=10

where:

Umodel=modelname U-model lossy transmission-line model reference name. A lossy 
transmission line model, used to represent the characteristics of the W-
element transmission line.

FSmodel=
modelname

Internal field solver model name. References the PETL internal field solver 
as the source of the transmission-line characteristics (for syntax, see Using 
the Field Solver to Extract Tx Line Parameters in the HSPICE User Guide: 
Signal Integrity Modeling and Analysis). 

Smodel=modelname S Model name reference, which contains the S-parameters of the 
transmission lines (for the S Model syntax, see the HSPICE User Guide: 
Signal Integrity Modeling and Analysis).

TABLEMODEL=
modelname

Name of the frequency-dependent tabular model. 

NODEMAP String that assigns each index of the S parameter matrix to one of the W-
element terminals. This string must be an array of pairs that consists of a 
letter and a number, (for example, Xn), where
■ X= I, i, N, or n to indicate near end (input side) terminal of the W-element
■ X= O, o, F, or f to indicate far end (output side) terminal of the W-element.

The default value for NODEMAP is “I1I2I3...InO1O2O3...On”

Parameter Description
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■ in1 and in2 input nodes connect to the out1 and out2 output node
■ Both signal references are gnd.
■ umod_1 references the U-model.
■ The transmission line is 10 meters long.

Example 3
The Wnet1 element is a five-conductor lossy transmission line:

Wnet1 i1 i2 i3 i4 i5 gnd o1 gnd o3 gnd o5 gnd 
+ FSmodel=board1 N=5 L=1m

where:
■ The i1, i2, i3, i4 and i5 input nodes connect to the o1, o3, and o5 output 

nodes.
■ The i5 input and three outputs (o1, o3, and o5) are all gnd.
■ board1 references the Field Solver model.
■ The transmission line is 1 millimeter long.

Example 4: S Model Example
Wnet1 i1 i2 gnd o1 o2 gnd
+ Smodel=smod_1 nodemap=i1i2o1o2
+ N=2 L=10m

where:
■ in1 and in2 input nodes connect to the out1 and out2 output node.
■ Both signal references are gnd.
■ smod_1 references the S Model.
■ The transmission line is 10 meters long.

You can specify parameters in the W-element card in any order. You can 
specify the number of signal conductors, N, after the node list. You can also mix 
nodes and parameters in the W-element card.

You can specify only one of the RLGCfile, FSmodel, Umodel, or Smodel 
models, in a single W-element card.

Figure 24 on page 180 shows node numbers for the element syntax.
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Figure 24 Terminal Node Numbering for the W-element

For additional information about the W-element, see W- and T-elements 
Transmission-line Modeling in the HSPICE User Guide: Signal Integrity 
Modeling and Analysis.

U-element (Lumped Transmission Lines)
Uxxx in1 [in2 [...in5]] refin out1 [out2 [...out5]] 
+ refout mname L=val [LUMPS=val]

Parameter Description

Uxxx Lossy (U-element) transmission line-element name. Must begin with U, followed by up 
to 1023 alphanumeric and special characters as defined in Table 10 on page 96.

inx Requires signal input node for the xth transmission-line (in1).

refin Ground reference for the input signal.

outx Signal output node for the xth transmission line (each input port must have a 
corresponding output port).

refout Ground reference for the output signal.

N+1 conductor line

Signal Conductors
1.1

1.2

1.N

1’ 2’

2.N

2.2

2.1
[v2]1

[v2]2

[v2]N

[i2]1

[i 2]2

[i2]N

R(f), L(f), G(f), C(f)[v1]1
[i1]1

[v1]2

[v1]N

[i1]2

[i1]N

Reference conductor

.

.

.

.

.

.

.

.

.

+_

0 x

+_
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In this syntax, there is a limit to the number of ports on a single transmission 
line — five in and five out. These are the required parameters: one input and 
output port, the ground references, a model reference, and a length.

Example 1
The U1 transmission line connects the in node to the out node:

U1 in gnd out gnd umodel_RG58 L=5

■ Both signal references are gnd.
■ umodel_RG58 references the U-model.
■ The transmission line is 5 meters long.

Example 2
The Ucable transmission line connects the in1 and in2 input nodes to the out1 
and out2 output nodes:

Ucable in1 in2 gnd out1 out2 gnd twistpr L=10

■ Both signal references are gnd.
■ twistpr references the U-model.
■ The transmission line is 10 meters long.

Example 3
The Unet1 element is a five-conductor lossy transmission line:

Unet1 i1 i2 i3 i4 i5 gnd o1 gnd o3 gnd o5 gnd Umodel1 L=1m

■ The i1, i2, i3, i4, and i5 input nodes connect to the o1, o3, and o5 output 
nodes.

■ The i5 input, and the three outputs (o1, o3, and o5) are all gnd.
■ Umodel1 references the U-model.
■ The transmission line is 1 millimeter long.

mname Model reference name for the U-model lossy transmission-line.

L Physical length of the transmission line, in units of meters.

LUMPS Number of lumped-parameter sections used to simulate the element.

Parameter Description
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Using the Scattering Parameter Element in HSPICE

The S- (scattering) element gives you a convenient way to describe a multi-
terminal network. You can use the S-element in conjunction with the generic 
frequency-domain model (.MODEL SP), or data files that describe frequency-
varying behavior of a network, and provide discrete frequency-dependent data 
such as a Touchstone file and a Common Instrumentation Transfer and 
Interchange (CITI) file. See the HSPICE User Guide: Signal Integrity Modeling 
and Analysis for more information.

In particular, the S-parameter in the S-element represents the generalized 
scattering parameter (S) for a multi-terminal network.

The S-parameter and the Y-parameter satisfy the following relationship:

Equation 5

where Yr is the characteristic admittance matrix of the reference system. The 
following formula relates Yr to the Zr characteristic impedance matrix:

Equation 6

Similarly, you can convert the Y-parameter to the S-parameter as follows:

Equation 7

The follow sections discuss these topics:
■ S-element (Generic Multiport)
■ S-element Syntax
■ Frequency-Dependent Multi-Terminal (S-element) in HSPICE Advanced 

Analog Analyses

 S-element (Generic Multiport)
The S-element uses the following parameters to define a frequency-dependent, 
multi-terminal network:

Y Yrs I S–  I S+  1–
Yrs=

Yr Zr '
1–
YrsYrs Yr'ZrsZrs Zr= = =

S I Zrs+ YZrs  1–  I ZrsYZrs– =
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■ S (scattering)
■ Y (admittance) 

You can use an S-element in the following types of analyses:
■ DC
■ AC
■ Transient
■ Small Signal

For a description of the S-parameter and SP model analysis, see S-parameter 
Modeling Using the S-element in the HSPICE User Guide: Signal Integrity 
Modeling and Analysis. 

S-element Syntax
Use the following S-element syntax to show the connections within a circuit:

Sxxx nd1 nd2 ... ndN ndRef 
+ [ENFORCE_PASSIVE=0|1]
+ [MNAME=Smodel_name] [FQMODEL=sp_model_name] 
+ [TYPE=[s|y]] [Z0=[value | vector_value]]
+ [FBASE = base_frequency] [FMAX=maximum_frequency] 
+ [PRECFAC=val] [DELAYHANDLE=[1|0|ON|OFF]] 
+ [DELAYFREQ=val]
+ [INTERPOLATION=STEP|LINEAR|SPLINE|HYBRID]
+ [INTDATTYP=[RI|MA|DBA]] [HIGHPASS=[1|2|3|4]]
+ [LOWPASS=[0|1|2]3] [MIXEDMODE=[0|1]]
+ [DATATYPE=data_string]
+ [NOISE=[1|0]] [NoiPassiveChk=1|0] [DTEMP=val]
+ [PASSIVE=[0|1]]
+ [RATIONAL_FUNC=[0|1]] [RATIONAL_FUNC_REUSE=[0|1]]
+ [STAMP=[S|Y|YSTS|SSTS]] [M=int]
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Parameter Description

nd1 nd2...ndN Nodes of an S-element (see Figure 25 on page 188) and Node Example. 
Three kinds of definitions are present:
■ With no reference node ndRef, the default reference node is GND. Each 

node ndi (i=1~N) and GND construct one of the N ports of the S-element.
■ Defines ndRef with one reference node. Each node ndi (i=1~N) and the 

ndRef construct one of the N ports of the S-element.
■ With an N reference node, each port has its own reference node. You can 

write the node definition in a clearer way as:
nd1+ nd1- nd2+ nd2- ... ndN+ ndN-
Each pair of the nodes (ndi+ and ndi-, i=1~N) constructs one of the N 
ports of the S-element.

ndRef Reference node

ENFORCE_PASSIVE With the ENFORCE_PASSIVE=1 keyword, the S-element statement checks 
passivity of all the given frequency sampling points. Once HSPICE finds 
passivity violations, the S-element seeks a minimum amount of loss property 
which restores passivity of all the violated points then adds the loss to all the 
given frequency points. 

MNAME Name of the S model; (Supports string parameters in calling an MNAME.)

FQMODEL Frequency behavior of the parameters. .MODEL statement of sp type, which 
defines the frequency-dependent matrices array

TYPE Parameter type:
■ S: (scattering) (default)
■ Y: (admittance) 

Z0 (or Zo) Characteristic impedance value for the reference line (frequency-
independent). For multiple terminals (N>1), HSPICE assumes that the 
characteristic impedance matrix of the reference lines is diagonal, and that 
you set diagonal values to Z0. Default=50 .

FBASE Base frequency to use for transient analysis. This value becomes the base 
frequency point for Inverse Fast Fourier Transformation (IFFT).
■ If you do not set this value, the base frequency is a reciprocal value of the 

transient period. 
■ If you set a frequency that is smaller than the reciprocal value of the 

transient, then transient analysis performs circular convolution, and uses 
the reciprocal value of FBASE as its base period.

FMAX Maximum frequency use in transient analysis. Used as the maximum 
frequency point for Inverse Fast Fourier Transformation (IFFT).
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PRECFAC In almost all cases, you do not need to specify a value for this parameter. This 
parameter specifies the precondition factor keyword used for the precondition 
process of the S-parameter. A precondition avoids an infinite admittance 
matrix. The default is 0.75, which is good for most cases.

DELAYHANDLE DELAYHANDLE in S-element simulation extracts a system delay before 
constructing the system impulse response. This may help to improve 
transient accuracy when the system does have delay, such as transmission 
line system. Recommendation: Because S-parameters represent a system 
which has delay, turn DELAYHANDLE on. When DELAYHANDLE is ON (or 
1) the S-element extracts propagation delay to simplify transfer functions, 
then proceeds to approximation. In the time domain, HSPICE handles the 
extracted delay separately.

DELAYFREQ Delay frequency for transmission-line type parameters. The default is FMAX. 
If the DELAYHANDLE is OFF, but DELAYFREQ is nonzero, HSPICE still 
simulates the S-element in delay mode.

INTERPOLATION The interpolation method:
■ STEP: piecewise step
■ SPLINE: b-spline curve fit
■ LINEAR: piecewise linear (default)
■ HYBRID: HSPICE combines different interpolation/extrapolation 

methods, and switches automatically between them to get the best 
accuracy. If needed, it also does causality correction down to DC. It is 
most useful for the S-parameters showing local resonances, and provides 
the proper interpolation and low-frequency extrapolation method for each 
entry of the S matrix, which shows different behaviors. For best accuracy, 
provide low frequency examples.

INTDATTYP Data type for the linear interpolation of the complex data.
■ RI: real-imaginary based interpolation
■ DBA: dB-angle based interpolation
■ MA: magnitude-angle based interpolation (default) 

HIGHPASS Method to extrapolate higher frequency points.
■ 0: cut off
■ 1: use highest frequency point
■ 2: perform linear extrapolation with the highest 2 points
■ 3: apply the window function to gradually approach the cut-off level 

(default)
■ 4: Estimates average derivatives of the phase and magnitude from 

highest 10% of sampling points. Extrapolation uses the highest sampling 
point and these derivatives. 

Parameter Description
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LOWPASS Method to extrapolate lower frequency points.
■ 0: Cut off.
■ 1: Make use of the S matrix at the magnitude of the lowest given 

frequency point; Set the magnitude value of each entry as the element of 
DC matrix. The real part of the extrapolated value at DC point determines 
the sign of each value (default).

■ 2: Perform linear extrapolation with the magnitude of the lowest two 
points.

■ 3: Perform rational function approximation based on low end frequency 
extrapolation.

MIXEDMODE Set to =1 if the parameters are in the mixed mode.

DATATYPE A string used to determine the order of the indices of the mixed-signal 
incident or reflected vector. The string must be an array of a letter and a 
number (Xn) where:
■ X = D to indicate a differential term

= C to indicate a common term
= S to indicate a single (grounded) term

■ n = the port number

NOISE Activates thermal noise.
■ 1 (default): Element generates thermal noise 
■ 0: Considers element noiseless

NoiPassiveChk Checks S-parameter for passivity in noise analysis (only).
■ 1 (default): Checks for passivity; if it fails at any frequency, thermal noise 

is off for the specific frequency point.
■ 0: Disables the passivity checker; thermal noise is always on.

DTEMP Temperature difference between the element and the circuit, expressed in 
×C. The default is 0.0. 

Calculates element temperature as:
T = Element temperature (×K)

= 273.15 (×K) + circuit temperature (×C) 
+ DTEMP (×C)

Where you specify circuit temperature by using either the .TEMP statement, 
or by sweeping the global TEMP variable in .DC, .AC, or .TRAN statements.

When a you do not use a.TEMP statement or TEMP variable, .OPTION 
TNOM, sets the circuit temperature, which defaults to 25 ×C unless you 
use .OPTION SPICE, which raises the default to 27 ×C.

Parameter Description
186 HSPICE® User Guide: Basic Simulation and Analysis
K-2015.06



Chapter 8: Elements
Using the Scattering Parameter Element in HSPICE
The nodes of the S-element must come first. If you do not declare the MNAME, 
you must specify the FQMODEL. You can specify all the optional parameters in 
both the S-element and S model statements, except for the MNAME argument.

PASSIVE Activates passive checker to help debug passive models. The default is 0 for 
the S-element where 0=deactivate and 1=activate.The default tolerance 
value is TOL=1e-2. The eigenvalue vector of matrix (I-S*S') is “ev”. Each of 
the elements of the eigenvalue vector is ev[i]. 
If RE(ev[i]) < -(TOL*0.1), HSPICE issues this warning message: **warning** 
[model_name] passivity warning, real part of eigenvalue of (I-S*S') is smaller 
than < -1e-3 at F=xxxx. Simulation results may not be accurate.

If RE(ev[i]) < -(TOL), HSPICE issues the following error message:

**error** [model_name] passivity violation, real part of eigenvalue of (I-S*S') 
is smaller than < -1e-2 at F=xxxx.

RATIONAL_FUNC ■ 0: (default) Performs the same as the conventional S-element. (Performs 
FBASE/FMAX-based linear convolution.)

■ 1: Performs rational function approximation then recursive convolution; 
also handles non-causal S-parameters

RATIONAL_FUNC_
REUSE

The S-element rational function approximation process stores the fitting data 
into a binary file named MODEL_NAME.yrf (DEHAYHANDLE=0) or 
MODEL_NAME.yrfd (DELAYHANDLE=1). The S-element seeks these files 
and reuse when available, if RATIONAL_FUNC_REUSE=1 (default). 
Reusing rational function data increases efficiency especially for large 
systems.
■ 0: Discard previously extracted rational function data and re-run the 

rational function approximation.
■ 1: (default) Reuse rational function data if available.

STAMP ■ Y: Conventional admittance based stamp
■ S: Scattering parameter based stamp (Note 1)
■ YSST: Admittance parameter based state space stamp (Note 2)
■ SSST: Scattering parameter based state space stamp (Note 2) 
Note 1: Although Y and S stamp types behave mathematically equivalent, if 
you select the S type, the S-element activates a procedure to reduce memory 
consumption by taking matrices’ sparseness into account.
Note 2: You can activate YSTS and SSTS stamp methods when you specify 
RATIONAL_FUNC=1. The state space stamping embeds all the state 
variables for extracted rational function matrix into the modified nodal 
analysis (NMA) matrix instead of performing recursive convolution 
integration. Although this stamping method may incur additional 
computational cost, since it produces frequency invariant NMA matrix, it 
enables time domain steady state (called .SN in HSPICE advanced analog 
analyses) analysis to handle frequency-dependent S-parameter blocks.

M S-element multiplier; replicates element int times, in parallel; default is 1. Do 
not assign a negative value or zero as the M value.

Parameter Description
HSPICE® User Guide: Basic Simulation and Analysis 187
K-2015.06



Chapter 8: Elements
Using the Scattering Parameter Element in HSPICE
You can enter the optional arguments in any order, and the parameters 
specified in the element statement have a higher priority.

Figure 25 Terminal Node Notation

Node Example
The following example illustrates the nd1 nd2...ndN—no reference, single 
reference, and multi-reference parameters.

**S-parameter example

.opt post

.ac lin 500 1Hz 30MegHz

.tran 0.1ns 10ns

V1 n1 0 ac=1v PULSE 0v 5v 5n 0.5n 0.5n 25n

* no reference
S_no_ref n1 n2 mname=s_model

* single reference
S_one_ref n1 n3 gnd mname=s_model

*multi-reference
S_multi_ref n1 gnd n4 gnd mname=s_model
Rt1 n2 0 50
Rt2 n3 0 50
Rt3 n4 0 50

N+1 terminal system

nd1

[i]1
[vinc]1

[vref]1

(+) [v]1

.

.

.

ndN

[i]N

[vinc]N

[vref]N

(+) [v]N

(-) ndR

(reference node)

.

.

.

...
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* 50 ohm resistor
.MODEL s_model S
+ N=2 FQMODEL=SFQMODEL TYPE=S Z0=50 50
.MODEL SFQMODEL SP N=2 SPACING=POI INTERPOLATION=LINEAR 
+ MATRIX=NONSYMMETRIC
+ DATA=1
+  1.0  0.333333333 0.0  0.666666667 0.0  0.666666667 0.0 
0.333333333 0.0

.end

The S-element must have a call to one of the supported S-parameter file 
formats (Touchstone, Citi or .SC#). HSPICE gets the number of ports from the 
S-parameter file You can also explicitly specify N=n where ‘n’ is the number of 
ports.
■ For n terminals, the S-element assumes no reference node.
■ For n+1 terminals, the S-element assumes one reference node.
■ For 2n terminals, the S-element assumes signal nodes and n reference 

nodes. Each pair of nodes is a signal and a reference node.

Frequency-Dependent Multi-Terminal (S-element) in 
HSPICE Advanced Analog Analyses
All HSPICE analyses can use the S-element. When used with the generic 
frequency-domain model (.MODEL SP), an S-element is a convenient way to 
describe the behavior of a multi-terminal network.

The S-element describes a linear time-invariant system, and provides a series 
of data that describe the frequency response of the system. The S-element is 
particularly useful for high-frequency characterization of distributed passive 
structures. A common use of the S-element is in microwave circuits such as 
spiral inductors, because electronic devices in this frequency domain no longer 
act as they do in low frequencies. In this case, you must consider distributed 
system parameters. See the example below for an application of the state 
space stamping to generate a frequency invariant modified nodal analysis 
(NMA) matrix from frequency-dependent characteristics by using the Shooting 
Newton (.SN) algorithm. 

For scattering parameter element/model, see S-element Syntax and S Model 
Syntax in the HSPICE User Guide: Signal Integrity Modeling and Analysis.
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Example 
The following netlist and data file (test.rfm) show how the S-element “S1” 
uses the “STAMP=YSTS” configuration which invokes the state space 
stamping to generate a frequency invariant modified nodal analysis (NMA) 
matrix from frequency-dependent characteristics. This stamping method allows 
the Shooting-Newton algorithm (.SN) to obtain the steady state. Note that 
without RFM file input, the S-element first applies the rational function 
approximation (equivalent behavior to RATIONAL_FUNCTION=1) to the 
original S-parameters to generate the state space stamping. 

======= main netlist =======
*** .SN with s-element example
P1 n1 gnd port=1 dc=1v ac=1v pulse(1 0 1n 1n 1n 10n 20n)
P2 n2 gnd port=2 dc=1v ac=1v pulse(1 0 1n 1n 1n 10n 20n)

S1 n1 n2 0 mname=s_model
.model s_model S n=2
+ rfmfile='test.rfm'
+ STAMP=YSTS
.SN tone=0.05Ghz nharms=32
.option post accurate
.end

The following is an excerpt from the .lis file for this netlist.

======= rational function matrix file (test.rfm) ======
VERSION 200600 NPORT 2 MATRIX_TYPE Y SYMMETRIC PRECFAC 0.75 Z0 50 50
BEGIN 1 1
BEGIN_REAL 9
DC 2.10290261e-02
2.80562648113e+07  1.791888661818e+00
1.36806220992e+08 -5.313505935943e+01
1.16867967247e+09  2.840375731037e+06
1.23552099406e+09 -4.257158329976e+06
1.92568095149e+09  3.038955064913e+06
4.15005808751e+09 -8.058749095413e+06
1.00149288271e+10  3.846931398394e+06
2.27536895845e+10  1.702938150800e+05
3.54118199282e+10 -1.243885701867e+07
BEGIN_COMPLEX 5
5.53251427579e+05  1.28282249537e+06 -3.17377193705e-03 -
1.20935639131e-03
2.39642428296e+09  1.39710928734e+08 -1.99538130185e+07 -
6.93072640638e+07
2.41275272760e+09  4.88535891322e+09  2.92904966609e+04  
4.08311621367e+04
9.49575839142e+08 -2.82753080087e+10 -1.69178467311e+05 -
1.42790736653e+04
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3.74702282735e+10 2.26461714292e+1
6.18960971035e+06  2.73309486084e+05 END BEGIN 2 2 DC 2.10290261e-
02
BEGIN REAL 9
2.80562648113e+07  1.79188866181e+00
1.36806220992e+08 -5.31350593594e+01
1.16867967247e+09  2.84037573103e+06
1.23552099406e+09 -4.25715832997e+06
1.92568095149e+09  3.03895506491e+06
4.15005808751e+09 -8.05874909541e+06
1.00149288271e+10  3.84693139839e+06
2.27536895845e+10  1.70293815080e+05
3.54118199282e+10 -1.24388570186e+07
BEGIN_COMPLEX 5
5.53251427579e+05  1.28282249537e+06 -3.17377193705e-03 -
1.20935639131e-03
2.39642428296e+09  1.39710928734e+08 -1.99538130185e+07 -
6.93072640638e+07
2.41275272760e+09  4.88535891322e+09  2.92904966609e+04  
4.08311621367e+04
9.49575839142e+08 -2.82753080087e+10 -1.69178467311e+05 -
1.42790736653e+04 3.74702282735e+10  2.26461714292e+10 
6.18960971035e+06  2.73309486084e+05 
END

Port Element

The port element (P-element) identifies the ports used in .LIN analysis and in 
other all other analyses behaves as either a noiseless impedance or a voltage 
source in series with the port impedance (DC, AC, or TRAN). Each port 
element requires a unique port number. Each port has an associated system 
impedance, Z0. If you do not explicitly specify the system impedance, the 
default is 50 ohms. 
■ You can use this element as a pure terminating resistance or as a voltage or 

power source.
■ You can use the RDC, RAC, RHB, RHBAC, and RTRAN values to override the 

port impedance value for a particular analysis.

The port element accepts transient waveforms AM, EXP, PULSE, PWL, SFFM, 
SIN, LFSR and, for signal integrity usage, the PAT source.

The mixed-mode port element has an additional reference pin that allows 
further flexibility in creating, detecting, and separating common-mode and 
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differential-mode signals. It is useful for measuring mixed-mode S-parameters 
(see Using the P-element for Mixed-Mode Measurement). 

Syntax
Pxxx p n port=portnumber
+ [Z0=val] $Port Impedance
+ [DC mag] [AC mag phase] [HBAC mag phase] $Voltage/Power Info
+ [HB mag phase harm tone modharm modtone] 
+ [transient_waveform] [ENCODE=DW8B10B] [RD_INIT=0|1]
+ [TRANFORHB=[0|1]] [DCOPEN=[0|1]]
+ [power=[0|1|2|W|dbm]] $Power Switch
+ [RDC=val] [RAC=val] $ Source Impedance Overrides
+ [RHBAC=val] [RHB=val] [RTRAN=val]
+ [Emphasis_Level=val] [Emphasis_Time=val] $ Emphasis
+ [DCD=val] [DCD_TYPE=0|1|2|3] $ Duty Cycle Distortion
+ [PJ=val] [PJ_TYPE=0|1|2|3] $ Period Jitter
+ [RJ=val1, [val2, ... valN]] [VN=val] $ Rand Jitter Stateye
+ [AMI_OBJ=filename] [AMI_PARAM=filename] [AMI_CDR=0|1]$AMI

Parameter Description

port=portnumber The port number. Numbered sequentially beginning with 1 with no shared 
port numbers.

z0=val
(or Zo=val)

Port impedance (Ohms). (Default: 50). Sets port characteristic impedance 
used for .LIN analysis, sets port termination impedance for other analyses, 
and also sets source impedance when you use the port element as a signal 
source.

DC mag DC voltage or power source value. 

AC mag phase AC voltage or power source value.

HBAC mag phase (HSPICE advanced analog analyses) HBAC voltage or power source value. 

HB mag phase harm tone 
modharm modtone

(HSPICE advanced analog analyses) HB voltage, current, or power source 
value. Allows multiple HB specifications with different harm, tone, 
modharm, and modtone values. 
■ phase is in degrees
■ harm and tone are indices corresponding to the tones specified in 

the .HB statement. Indexing starts at 1 (corresponding to the first 
harmonic of a tone).

■ modtone and modharm specify sources for multi-tone simulation. A 
source specifies a tone and a harmonic, and up to 1 offset tone and 
harmonic (modtone for tones and modharm for harmonics). Then it 
describes the signal as:
V(or I)=mag*cos(2*pi*
(harm*tone+modharm*modtone)*t + phase)
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transient_waveform (Transient analysis) Voltage or power source waveform. Any one of 
waveforms: AM, EXP, PULSE, PWL, SFFM, SIN, or PRBS. Does not allow 
multiple transient descriptions.

ENCODE=DW8b10b Keyword to specify 8b/10b encoding.

RD_INIT=0|1 Initial value of Running Disparity. Running Disparity.1 is the name of the 
one-bit memory that recalls the bias of the last unbalanced code word: 
Specifies that a Running Disparity value of zero is synonymous with 
negative Running Disparity (?).
■ 0: Specifies that a Running Disparity value of one is synonymous with 

negative Running Disparity (-)
■ 1: Specifies that a Running Disparity value of one is synonymous with 

positive Running Disparity (+).

TRANFORHB=[0|1] ■ (HSPICE advanced analog analyses) 0 (default): Ignores the transient 
description if you specify an HB value or a DC value. If you do not 
provide a DC or HB value and TRANFORHB=0, then HB analysis treats 
the source as a DC source, and the DC source value is the time=0 
value.

■ 1: HB analysis uses the transient description if its value is VMRF, SIN, 
PULSE, PWL, or LFSR. If the type is a non-repeating PWL source, the 
simulation treats the time=infinity value as a DC analysis source value. 
For example, the simulation treats the following statement as a DC 
source with value=1 for HB analysis:
v1 1 0 PWL (0 0 1n 1 1u 1)
+ TRANFORHB=1
In contrast, the following statement is a 0V DC source: 
v1 1 0 PWL (0 0 1n 1 1u 1)
+ TRANFORHB=0 
The simulation treats the following statement as a periodic source with 
a 1u period that uses PWL values: 
v1 1 0 PWL (0 0 1n 1 0.999u 1 1u 0) R
+ TRANFORHB=1 

To override the global TRANFORHB option, explicitly set TRANFORHB for 
a voltage or current source.

DCOPEN Switch for open DC connection if you have not set DC mag. 
■ 0 (default): P-element behaves as an impedance termination.
■ 1: P-element behaves as an open circuit in DC operating point 

analysis. .LIN analysis mainly uses DCOPEN=1 so the P-element does 
not affect the self-biasing device under test by opening the termination 
at the operating point. 

RDC=val (DC analysis) Series resistance (overrides z0).

RAC=val (AC analysis) Series resistance (overrides z0). 

RHBAC=val (HSPICE advanced analog HBAC analysis) Series resistance (overrides 
z0). 

Parameter Description
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RHB=val (HSPICE advanced analog HB analysis) Series resistance (overrides z0). 

RTRAN=val (Transient analysis) Series resistance (overrides z0).

power=[0 | 1 | 2 | W | dbm] Power switch. Causes treatment of the signal amplitude quantities specified 
with the port element to as power levels instead of voltage levels. The port 
element then becomes a power source, realized as a voltage source in 
series with the port impedance (Z0). The simulation calculates the voltage 
source value internally as that is necessary to realize the appropriate RMS 
available power. For transient analysis, this is only appropriate for DC and 
SIN sources.
■ When 0 (default), power entry disabled.
■ When 1 or W, power given in units of Watts.
■ When 2 or dBm, power given in units of dBm (dB relative to 1 mW).

Emphasis_Level Aids in .STATEYE analysis pre-emphasis and de-emphasis

Emphasis_Time Aids in .STATEYE analysis pre-emphasis and de-emphasis

DCD Aids in .STATEYE analysis; specifies peak percentage of the duty cycle 
distortion (DCD). Default value is zero.

DCD_TYPE Aids in .STATEYE analysis; specifies variation type. Default type for non-
zero DCD is 1 (constant). 
■ 0: no DCD
■ 1: constant DCD
■ 2: uncorrelated triangular DCD variation
■ 3: uncorrelated sinusoidal DCD variation

PJ Aids in .STATEYE analysis; specifies periodic jitter (voltage) magnitude. 
Default value is zero.

PJ_TYPE Aids in .STATEYE analysis; specifies variation type. Default type for non-
zero DCD is 1 (constant). 
■ 0: no periodic jitter
■ 1: constant voltage shift
■ 2: uncorrelated triangular jitter variation
■ 3: uncorrelated sinusoidal jitter variation

RJ An array of the real numbers to specify the standard deviation of the 
Gaussian random jitter. The array must be in the order of the port element 
index. By default, the simulation does not add random jitter.

VN (Voltage noise); aids in .STATEYE analysis. Specify the standard deviation 
of the Gaussian random voltage noise. By default, the simulation does not 
add random voltage noise.

AMI_OBJ Aids in .STATEYE analysis; specifies an Algorithmic Modeling Interface 
(AMI) shared object (typically, lib*.so for UNIX, *.dll for Windows)

Parameter Description
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Example
For example, the following port element specifications identify a 2-port network 
with 50-ohm reference impedances between the “in” and “out” nodes.

P1 in gnd port=1 z0=50
P2 out gnd port=2 z0=50

Computing scattering parameters requires z0 reference impedance values. 
The order of the port parameters (in the P-element) determines the order of the 
S, Y, and Z parameters. Unlike the .NET command, the .LIN command does 
not require you to insert additional sources into the circuit. To calculate the 
requested transfer parameters, HSPICE automatically inserts these sources as 
needed at the port terminals. You can define an unlimited number of ports.

Using the Port Element for Mixed-Mode Measurement
To measure mixed mode S-parameters you can use a port element with three 
terminals. Except for the number of external terminals, the syntax of the port 
element remains the same. The LIN analysis function internally sets the 
necessary drive mode (common/differential) of these mixed mode port 
elements. For analyses other than the LIN analysis (such as DC, AC, TRAN, 
and so on), the mixed-mode P-element acts as a differential driver that drives 
positive nodes with half of their specified voltage and the negative nodes with a 
negated half of the specified voltage. Figure 26 on page 196 shows the block 
diagram of the mixed mode port element.

AMI_PARAM Aids in .STATEYE analysis; specifies an AMI parameter file (*.ami)

AMI_CDR Aids in .STATEYE. Switch to use AMI_GetWave's clock data recovery 
(CDR) output in eye diagram generation. Default value is 0 (disabled state). 

Parameter Description
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Figure 26 Mixed Mode Port Element

Active Elements
■ Diode Element
■ Bipolar Junction Transistor (BJT) Element
■ JFETs and MESFETs
■ MOSFETs
■ Extended MOSFET Element Support Using .OPTION MACMOD

Diode Element
Geometric (LEVEL=3) or Non-Geometric (LEVEL=1) form:

Dxxx nplus nminus mname [AREA=area] [PJ=val] 
+ [WP=val] [LP=val] [WM=val] [LM=val] [OFF] 
+ [IC=vd] [M=val] [DTEMP=val]

Dxxx nplus nminus mname [W=width] [L=length] [WP=val] 
+ [LP=val] [WM=val] [LM=val] [OFF] [IC=vd] [M=val] 
+ [DTEMP=val]

Fowler-Nordheim (LEVEL=2) form:

n1+

n1-

P1 n1+ n1- nl_ref Zo=50

Z0

Z0

V+

V-

P1 (Port element)

n1_ref
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Dxxx nplus nminus mname [W=val] [L=val] [WP=val] 
+ [OFF] [IC=vd] [M=val]

Parameter Description

Dxxx Diode element name. Must begin with D, followed by up to 1023 alphanumeric and 
special characters as defined in Table 10 on page 96.

nplus Positive terminal (anode) node name. The series resistor for the equivalent circuit 
attaches to this terminal.

nminus Negative terminal (cathode) node name.

mname References diode model name.

AREA Area of the diode (unitless for LEVEL=1 diode, and square meters for LEVEL=3 diode). 
This affects saturation currents, capacitances, and resistances (diode model 
parameters are IK, IKR, JS, CJO, and RS). The SCALE option does not affect the area 
factor for the LEVEL=1 diode. Default=1.0. Overrides AREA from the diode model. If 
you do not specify the AREA, HSPICE calculates it from the width and length.

PJ Periphery of junction (unitless for LEVEL=1 diode, and meters for LEVEL=3 diode). 
Overrides PJ from the diode model. If you do not specify PJ, HSPICE calculates it from 
the width and length specifications.

WP Width of polysilicon capacitor, in meters (for LEVEL=3 diode only). Overrides WP in the 
diode model. Default=0.0.

LP Length of polysilicon capacitor, in meters (for LEVEL=3 diode only). Overrides LP in the 
diode model. Default=0.0.

WM Width of metal capacitor, in meters (for LEVEL=3 diode only). Overrides WM in the 
diode model. Default=0.0.

LM Length of metal capacitor, in meters (for LEVEL=3 diode only). Overrides LM in the 
diode model. Default=0.0.

OFF Sets the initial condition for this element to OFF, in DC analysis. Default=ON.

IC=vd Initial voltage, across the diode element. Use this value when you specify the UIC 
option in the .TRAN statement. The .IC statement overrides this value.

M Multiplier, to simulate multiple diodes in parallel. The M setting affects all currents, 
capacitances, and resistances. Default=1.

DTEMP The difference between the element temperature and the circuit temperature, in 
degrees Celsius. Default=0.0.

W Width of the diode, in meters (LEVEL=3 diode model only)

L Length of the diode, in meters (LEVEL=3 diode model only)
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You must specify two nodes and a model name. If you specify other 
parameters, the nodes and model name must be first and the other parameters 
can appear in any order.

For a listing of output templates for diode (D-element) models, see Table 41 on 
page 418.

Example 1
The D1 diode, with anode and cathode, connects to nodes 1 and 2. Diode1 
specifies the diode model.

D1 1 2 diode1

Example 2
The Dprot diode, with anode and cathode, connects to both the output node 
and ground, references the firstd diode model, and specifies an area of 10 
(unitless for LEVEL=1 model). The initial condition has the diode OFF.

Dprot output gnd firstd 10 OFF

Example 3
The Ddrive diode, with anode and cathode, connects to the driver and output 
nodes. The width and length are 500 microns. This diode references the 
model_d diode model.

Ddrive driver output model_d W=5e-4 L=5e-4 IC=0.2

Bipolar Junction Transistor (BJT) Element
For a full demonstration file of a BJT element bipolar analog test case, see the 
path to senseamp.sp in Benchmark Examples in this user guide. See also 
BJT and Diode Examples.

Qxxx nc nb ne [ns] mname [area] [OFF] 
+ [IC=vbeval,vceval] [M=val] [DTEMP=val]

Qxxx nc nb ne [ns] mname [AREA=area] [AREAB=val] 
+ [AREAC=val] [OFF] [VBE=vbeval] [VCE=vceval] 
+ [M=val] [DTEMP=val]

Parameter Description

Qxxx BJT element name. Must begin with Q, then up to 1023 alphanumeric and special 
characters as defined in Table 10 on page 96.
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The only required fields are the collector, base, and emitter nodes, and the 
model name. The nodes and model name must precede other fields in the 
netlist.

For a listing of output templates for BJT (Q element) models, see Table 42 on 
page 419.

Example 1
In the Q1 BJT element:

Q1 1 2 3 model_1

■ The collector connects to node 1.
■ The base connects to node 2.

nc Name of collector terminal node.

nb Name of case terminal node.

ne Name of emitter terminal node.

ns Name of substrate terminal node, which is optional. You can also use the BULK 
parameter to set this name in the BJT model.

mname BJT model name reference.

area, 
AREA=area

Emitter area multiplying factor, which affects currents, resistances, and capacitances. 
Default=1.0.

OFF Sets initial condition for this element to OFF, in DC analysis. Default=ON.

IC=vbeval, 
vceval, VBE, 
VCE

Initial internal base-emitter voltage (vbeval) and collector-emitter voltage (vceval). 
HSPICE uses this value when the .TRAN statement includes UIC. The .IC statement 
overrides it.

M Multiplier, to simulate multiple BJTs in parallel. The M setting affects all currents, 
capacitances, and resistances. Default=1.

DTEMP The difference between the element temperature and the circuit temperature, in 
degrees Celsius. Default=0.0.

AREAB Base area multiplying factor, which affects currents, resistances, and capacitances. 
Default=AREA.

AREAC Collector area multiplying factor, which affects currents, resistances, and capacitances. 
Default=AREA.

Parameter Description
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■ The emitter connects to node 3.
■ model_1 references the BJT model.

Example 2
In the following, Qopamp1 BJT element:

Qopamp1 c1 b3 e2 s Mod1stagepnp AREA=1.5 AREAB=2.5 
AREAC=3.0

■ The collector connects to the c1 node.
■ The base connects to the b3 node.
■ The emitter connects to the e2 node.
■ The substrate connects to the s node. 
■ Mod1stagepnp references the BJT model. 
■ The AREA area factor is 1.5.
■ The AREAB area factor is 2.5.
■ The AREAC area factor is 3.0.

Example 3
In the Qdrive BJT element:

Qdrive driver in output model_npn 0.1

■ The collector connects to the driver node.
■ The base connects to the in node.
■ The emitter connects to the output node.
■ model_npn references the BJT model.
■ The area factor is 0.1.

JFETs and MESFETs
Jxxx nd ng ns [nb] mname [[AREA=area | [W=val] 
+ [L=val]] [OFF] [IC=vdsval,vgsval] [M=val] 
+ [DTEMP=val]

Jxxx nd ng ns [nb] mname [[AREA=area] | [W=val] 
+ [L=val]] [OFF] [VDS=vdsval] [VGS=vgsval] 
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+ [M=val] [DTEMP=val]

The syntax only requires drain, gate, and source nodes, and model name 
fields. Node and model names must precede other fields.

For a listing of output templates for JFET (J-element) models, see Table 43 on 
page 421.

Example 1
In the J1 JFET element:

J1 1 2 3 model_1

■ The drain connects to node 1.
■ The source connects to node 2.

Parameter Description

Jxxx JFET or MESFET element name. Must begin with J, followed by up to 1023 
alphanumeric and special characters as defined in Table 10 on page 96.

nd Name of drain terminal node

ng Name of gate terminal node

ns Name of source terminal node

nb Name of bulk terminal node, which is optional.

mname JFET or MESFET model name reference

area, AREA=area Area multiplying factor that affects the BETA, RD, RS, IS, CGS, and CGD model 
parameters. Default=1.0, in units of square meters.

W FET gate width in meters 

L FET gate length in meters 

OFF Sets initial condition to OFF for this element, in DC analysis. Default=ON.

IC=vdsval, vgsval, 
VDS, VGS

Initial internal drain-source voltage (vdsval) and gate-source voltage (vgsval). Use 
this argument when the .TRAN statement contains UIC. The .IC statement 
overrides it.

M Multiplier to simulate multiple JFETs or MESFETs in parallel. The M setting affects 
all currents, capacitances, and resistances. Default=1.

DTEMP The difference between the element temperature and the circuit temperature, in 
degrees Celsius. Default=0.0. 
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■ The gate connects to node 3.
■ model_1 references the JFET model.

Example 2
In the following Jopamp1 JFET element:

Jopamp1 d1 g3 s2 b Mod1stage AREA=100u

■ The drain connects to the d1 node.
■ The source connects to the g3 node.
■ The gate connects to the s2 node.
■ Mod1stage references the JFET model.
■ The area is 100 microns.

Example 3
In the Jdrive JFET element:

Jdrive driver in output model_jfet W=10u L=10u

■ The drain connects to the driver node.
■ The source connects to the in node.
■ The gate connects to the output node.
■ model_jfet references the JFET model.
■ The width is 10 microns.
■ The length is 10 microns.

MOSFETs
Mxxx nd ng ns [nb] mname [[L=]length] [[W=]width] 
+ [AD=val] AS=val] [PD=val] [PS=val] 
+ [NRD=val] [NRS=val] [RDC=val] [RSC=val] [OFF] 
+ [IC=vds,vgs,vbs] [M=val] [DTEMP=val] 
+ [GEO=val] [DELVTO=val]
.OPTION WL
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Mxxx nd ng ns [nb] mname [width] [length] [other_options...]

Parameter Description

Mxxx MOSFET element name. Must begin with M, followed by up to 1023 alphanumeric and 
special characters as defined in Table 10 on page 96. 

nd Name of drain terminal node.

ng Name of gate terminal node.

ns Name of source terminal node.

nb Name of bulk terminal node, which is optional. 

mname MOSFET model name reference or subckt name if you set .OPTION MACMOD.

L MOSFET channel length, in meters. This parameter overrides .OPTION DEFL, with a 
maximum value of 0.1m. Default=DEFL.

W MOSFET channel width, in meters. This parameter overrides .OPTION DEFW. 
Default=DEFW.

AD Drain diffusion area. Overrides .OPTION DEFAD. Default=DEFAD, if you set the ACM=0 
model parameter. 

AS Source diffusion area. Overrides .OPTION DEFAS. Default=DEFAS, if you set the 
ACM=0 model parameter. 

PD Perimeter of drain junction, including channel edge. Overrides.OPTION DEFPD. 
Default=DEFAD, if you set the ACM=0 or 1 model parameter. Default=0.0, if you set 
ACM=2 or 3.

PS Perimeter of source junction, including channel edge. Overrides .OPTION DEFPS. 
Default=DEFAS, if you set the ACM=0 or 1 model parameter. Default=0.0, if you set 
ACM=2 or 3. 

NRD NRD (Number of squares of drain diffusion for resistance calculations) 
overrides .OPTION DEFNRD.

For nonCMI models such as BSIM3 etc… Default=DEFNRD, if you set ACM=0 or 1 
model parameter. Default=0.0, if you set ACM=2 or 3

For CMI models such as BSIM4 etc… Default=1.0
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The only required fields are the drain, gate and source nodes, and the model 
name. The nodes and model name must precede other fields in the netlist. If 
you did not specify a label, use the second syntax with the .OPTION WL 
statement, to exchange the width and length options.

For a full listing of output templates for MOSFET models, see MOSFET Output 
Templates in the HSPICE Reference Manual: MOSFET Models.

Example
In the following M1 MOSFET element:

M1 1 2 3 model_1

■ The drain connects to node 1.
■ The gate connects to node 2.

NRS NRS (Number of squares of source diffusion for resistance calculations) 
overrides .OPTION DEFNRS.

For nonCMI models such as BSIM3 etc… Default=DEFNRS, if you set ACM=0 or 1 
model parameter. Default=0.0, if you set ACM=2 or 3

For CMI models such as BSIM4 etc… Default=1.0

RDC Additional drain resistance due to contact resistance, in units of ohms. This value 
overrides the RDC setting in the MOSFET model specification. Default=0.0.

RSC Additional source resistance due to contact resistance, in units of ohms. This value 
overrides the RSC setting in the MOSFET model specification. Default=0.0.

OFF Sets initial condition for this element to OFF, in DC analysis. Default=ON. This command 
does not work for depletion devices. 

IC=vds, vgs, 
vbs

Initial voltage across external drain and source (vds), gate and source (vgs), and bulk 
and source terminals (vbs). Use these arguments with .TRAN UIC. .IC statements 
override these values.

M Multiplier, to simulate multiple MOSFETs in parallel. Affects all channel widths, diode 
leakages, capacitances, and resistances. Default=1.

DTEMP The difference between the element temperature and the circuit temperature, in 
degrees Celsius. Default=0.0. 

GEO Source/drain sharing selector for a MOSFET model parameter value of ACM=3. 
Default=0.0. 

DELVTO Zero-bias threshold voltage shift. Default=0.0. 

Parameter Description
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■ The source connects to node 3.
■ model_1 references the MOSFET model.

In the following Mopamp1 MOSFET element:

Mopamp1 d1 g3 s2 b Mod1stage L=2u W=10u

■ The drain connects to the d1 node.
■ The gate connects to the g3 node.
■ The source connects to the s2 node.
■ Mod1stage references the MOSFET model.
■ The length of the gate is 2 microns.
■ The width of the gate is 10 microns.

In the following Mdrive MOSFET element:

Mdrive driver in output bsim3v3 W=3u L=0.25u DTEMP=4.0

■ The drain connects to the driver node.
■ The gate connects to the in node.
■ The source connects to the output node.
■ bsim3v3 references the MOSFET model.
■ The length of the gate is 3 microns.
■ The width of the gate is 0.25 microns.

■ The device temperature is 4 Celsius higher than the circuit temperature.

Extended MOSFET Element Support Using .OPTION 
MACMOD
Use option MACMOD to enable HSPICE to access a subckt definition for 
MOSFETs, diodes, and BJTs, when no model reference exists. MACMOD=1 
treats subcircuits as primitive models with an “M” instantiation .OPTION 
MACMOD syntax is:

.OPTION MACMOD= [1|2|3|0]

When macmod=1, HSPICE seeks a subckt definition for the M/Q/D*** element 
if no model reference exists. The desired subckt name must match (case 
insensitive) the mname field in the M/Q/D*** instance statement. In addition, the 
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number of terminals of the subckt must match with the M/Q/D*** element which 
references it; otherwise HSPICE aborts the simulation based on no definition 
for the M/Q/D*** element.

The following limitations apply when macmod=1:

1. Element template output does not support elements which use subckt 
definitions.

2. This feature does not support a element if a string parameter defines the 
mname.

3. The number of terminals for a HSPICE element must be within the range of 
3-7; any number of terminals that is out of this range causes the simulation 
to fail.

When macmod=2, HSPICE seeks a MOSFET/BJT/Diode model definition when 
it cannot find matching subckt or Verilog-A definition for an X-element. The 
targeted MODEL card could be either a HSPICE built-in model or CMI model. If 
the model card that matched with the X-element reference name is not a type 
of MOSFET/BJT/Diode model, the simulator errors out with message of 
reference "not found."

The following limitations apply when macmod=2:

1. The feature of “string parameter supported in model name” does not apply 
to X-elements that are mapped to the model cards; i.e., reference name of 
the X-element must be constant string characters.

2. Subckt direct port probing command, isub() does not support X-elements 
mapped to the model cards.

3. HSPICE MOSRA analysis does not work on the X-elements, even when 
they directly map to compact model cards.

When macmod=3, HSPICE enables both of the above features; HSPICE seeks 
a .subckt definition for an M/Q/D-element if there is no matching model 
reference; HSPICE seeks a .model definition for an X-element if there is no 
matching .subckt or Verilog-A definition. Usage considerations and 
limitations remain the same for both features, respectively. When .OPTION 
TMIFLAG  1, .OPTION MACMOD automatically equals 3.

The case of no .OPTION MACMOD in the input files or MACMOD=0 disables the 
above two features; HSPICE ignores the MACMOD option if you set any value 
other than 1|2|3|0.

The MACMOD option is a global option; if there are multiple MACMOD options in 
one simulation, HSPICE uses the value of the last MACMOD option.
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When .option macmod=2 or .option macmod=3, for isub(x*.n), if x* is 
a MOSFET instance and n is 1, 2, 3, 4, d, g, s, or b (and not a valid subcircuit 
port number), isub(x*.n) is equivalent to i_number(x*), as in the 
following examples:
■ isub(*.1)/isub(*.d) => i1(*)
■ isub(*.2)/isub(*.g) => i2(*)
■ isub(*.3)/isub(*.s) => i3(*)
■ isub(*.4)/isub(*.b) => i4(*)

Example 1
**
.option MACMOD=1
M1 net1 net2 net3 net4 nch l=0.2u w=0.2u p1=1
.model nch nmos level=49 ….
.subckt nch d g s b w=1 l=1 p1=gp1
.if (p1 > 0)
Mnch d g s b model_1 w=w l=l
.else
Mnch d g s b model_2 w=w l=l
.endif
.ends

In Example 1, extended MOSFET is on. However, because the mname in 
a.MODEL statement matches the mname of the M1 element, element M1uses 
model nch rather than the subckt definition. The simulation ignores the extra 
instance parameter p1.

Example 2
**
.option MACMOD
.param gp1=1 gp2=2 gp3=3
M1 net1 net2 net3 net4 nch l=0.2u w=0.2u p1=gp1 p2=gp2 p3=gp3
.subckt nch d g s b w=1 l=1 p1=gp1 p2=gp2 p3=gp3
.if (p1 > 0 && p2==1 && p3 ==1)
Mnch d g s b model_1 w=w l=l
.else if ( p1 == 0 && p2 ==1 && p3 ==1)
Mnch d g s b model_2 w=w l=l
.else
Mnch d g s b model_3 w=w l=l
.endif
.ends
.model model_1 nmos level=49 ...
.model model_2 nmos level=53 ...
.model model_3 nmos level=54 ...
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In Example 2, extended MOSFET element support is on; since there is no 
matching .MODEL statement, M1 uses subckt definition nch; after evaluation, 
M1 results in a MOSFET element that species MOSFET model model_3.

Example 3
**
.option MACMOD
.param gp1=1 gp2=2 gp3=3
M1 net1 net2 net3 net4 nch l=0.2u w=0.2u p1=gp1 p2=gp2 p3=gp3
.subckt nch d g s b w=1 l=1 p1=gp1 p2=gp2 p3=gp3
.if (p1 > 0 && p2==1 && p3 ==1)
Mnch d g s b model_1 w=w l=l
.else if ( p1 == 0 && p2 ==1 && p3 ==1)
Mnch d g s b model_2 w=w l=l
.else
Mnch d g s b model_3 w=w l=l
.endif
C1 g 0 1p
.ends

Example 3 shows extended MOSFET element support turned on. Instance M1 
uses macro model nch, which is a subckt definition that consists of one 
MOSFET device and one capacitor.

MACMOD Option Limitations
■ The number of terminals for M*** must be within the range of 3 to 7. A 

number of terminals outside of that range cause the simulation to fail. 
■ A string parameter must not define a MOSFET element’s mname.
■ The MACMOD option only applies to HSPICE MOSFET elements.
■ Element template output does not support MOSFET elements which use 

subckt definitions.

For example, if Example 3 includes the output command:

.PRINT LX8(M1) LV9(M1)

—then HSPICE ignores the above output command. Because M1 is using a 
subckt definition, it is no longer a HSPICE primitive MOSFET device.
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■ The desired subckt name must match the mname field in the M*** instance 
statement. The match of subckt name and the mname field is case 
insensitive.

■ The .MODEL definition takes precedence over a subckt definition even when 
.OPTION MACMOD is on.

Direct X-Element Mapping to a MOSFET Model Card
HSPICE seeks a MOSFET model definition when it cannot find a matching 
subckt or Verilog-A definition for an X-element. This applies mainly to a 
custom model, which can only become enabled by the .option CMIFLAG or 
.option TMIFLAG; Subckt or Verilog-A module definitions always take 
preference over the CMI model card. 

HSPICE considers the X-elements that are mapped to model cards as 
MOSFET devices with certain. The following sections describe these usage 
considerations and limitations. For information about HSPICE CMI and TMI, 
contact the Synopsys support team.

Considerations
Syntax check rules of MOSFET devices apply to the X-elements directly 
mapping to MOSFET model cards, such as:

1. The valid instance parameter list of that X-element becomes the valid 
instance parameter list of the particular MOSFET model in the mapping 
model card; HSPICE ignores invalid instance parameter of that X-element; 
default values of the mapping MOSFET model apply to any undefined 
instance parameter by comparing with the corresponding MOSFET model. 

2. The .PARAM netlist commands cannot override MOSFET instance 
parameters which are device native parameters; such instance parameter 
rules apply to X-elements with direct mapping to MOSFET model cards, i.e., 
instance parameters of such an X-element become native device 
parameters, thus netlist .PARAM commands cannot be override them. 

3. The number of terminals of the X-element must be in the valid range of its 
mapping MOSFET model; or simulator exits with an error message.

Limitations

1. The feature of “string parameter supported on MOSFET model name” does 
not apply to X-elements that are mapped to MOSFET model cards. In other 
words, you must write a reference name of the X-element as constant string 
characters.
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2. The Subckt direct port probing command, Isub() does not support X-
elements mapped to MOSFET model cards.

IBIS Buffers (HSPICE Only)

The general syntax of a B-element card for IBIS I/O buffers is:

bxxx node_1 node_2 ... node_N
+ file='filename' model='model_name'
+ keyword_1=value_1 ... [keyword_M=value_M]

Example 1

The Input buffer name is B1. The four terminals names are nd_pc, nd_gc, 
nd_in and nd_out_of_in. The IBIS model named IBIS_IN is in the file 
named test.ibs. The values specified in IBIS_IN guide HSPICE to connect 
nd_pc and nd_gc to the voltage sources. Do not manually connect voltage 
sources to these nodes. 

B1 nd_pc nd_gc nd_in nd_out_of_in
+ file='test.ibs'
+ model='IBIS_IN' 

Example 2

The output buffer name is B2. The six terminals names are nd_pu, nd_pd, 
nd_out, nd_in, and nd_pc, nd_gc. Here, nd_pc, nd_gc are optional 
terminals. If you do not set these names, the netlist uses the optional terminal 

Parameter Description

bxxx Buffer name; starts with the letter B followed by up to 1023 alphanumeric and 
special characters, which Table 10 on page 96 defines.

node_1 node_2 ... 
node_N

List of I/O buffer external nodes. The number of nodes and their meaning are 
specific to different buffer types.

file=’filename’ Name of the IBIS file.

model=’model_name’ Name of the model.

keyword_i=value_i Assigns a value of value_i to the keyword_i keyword. Specify optional keywords 
in brackets ( [ ] ). For more information about IBIS keywords, see Specifying 
Required and Optional Common Keywords in the HSPICE User Guide: Signal 
Integrity Modeling and Analysis.
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names instead. The IBIS model named IBIS_OUT in the file named 
test.ibs. The values specified in IBIS_OUT guide HSPICE to connect 
nd_pc and nd_gc to the voltage sources. Do not manually connect voltage 
sources to these nodes.

B2 nd_pu nd_pd nd_out nd_in [nd_pc nd_gc]
+ file = 'test.ibs'
+ model = 'IBIS_OUT'

Example 3

The IO buffer name is B3. The eight terminals names are nd_pu, nd_pd, 
nd_out, nd_in, nd_en, nd_out_of_in, and nd_pc, nd_gc. Here, nd_pc, 
nd_gc are optional terminals. If you do not set these names, the netlist uses 
the optional terminal names instead. The IBIS model named IBIS_IO is in the 
IBIS file named test.ibs. The values specified in IBIS_IO guide HSPICE to 
connect nd_pc and nd_gc to the voltage sources. Do not manually connect 
voltage sources to these nodes.

B3 nd_pu nd_pd nd_out nd_in nd_en nd_out_of_in [nd_pc nd_gc]
+ file = 'test.ibs'
+ model = 'IBIS_IO'

For more examples, see Modeling Input/Output Buffers Using IBIS Files in the 
HSPICE User Guide: Signal Integrity Modeling and Analysis.

TMI Dummy Device

The general syntax of a TMI dummy device is:

Nxxx node_1 node_2 ... node_N
+ inst_param_1=value_1...[inst_param_1=value_M]
+ keyword_1=value_1 ... [keyword_M=value_M]

Parameter Description

Nxxx TMI Dummy Device name. Must begin with N, followed by up to 1023 
alphanumeric and special characters as defined in Table 10 on page 96.

node_1 node_2 ... 
node_N

Terminal node name.

mname Name of the TMI Dummy model.
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inst_param_1...
inst_param_M

Name of the instance parameter.

Parameter Description
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9Sources and Stimuli

Describes element and model statements for independent sources, dependent 
sources, analog-to-digital elements, and digital-to-analog elements supported 
by HSPICE. 

This chapter also explains each type of element and model statement and 
provides explicit formulas and examples to show how various combinations of 
parameters affect the simulation.

HSPICE ships over a dozen sources examples for your use; see Listing of 
Demonstration Input Files for paths to demo files and Sources Examples.

The following section discuss these topics:
■ Independent Source Elements
■ Independent Source Functions
■ Voltage and Current Controlled Elements
■ Power Sources
■ Voltage-Dependent Voltage Sources — E-elements
■ Current-dependent Current Sources — F-elements
■ Voltage-dependent Current Sources — G-elements
■ Current-dependent Voltage Sources — H-elements
■ HSPICE Advanced Analog Analyses Sources and Stimuli
■ Specifying a Digital Vector File and Mixed Mode Stimuli
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Independent Source Elements 

Use independent source element (current, I-element, or voltage, V-element) 
statements to specify DC, AC, transient, and mixed independent voltage and 
current sources. These elements are also the associated analysis sources 
depend on the analysis you perform. The zero time value of the transient 
source of a calculated transient operating point overrides the value of the DC 
source. (For discussion of P-elements, see Port Element.)

The following sections discuss these topics:
■ Source Element Conventions
■ Independent Source Element Syntax
■ DC Sources
■ AC Sources
■ Transient Sources
■ Mixed Sources

Source Element Conventions
You do not need to ground voltage sources. HSPICE assumes that positive 
current flows from the positive node, through the source, to the negative node. 
A positive current source forces current to flow out of the n+ node, through the 
source, and into the n- node.

You can use parameters as values in independent sources. Do not use any of 
the following reserved keywords to identify these parameters: AC, ACI, AM, DC, 
EXP, PAT, PE, PL, PU, PULSE, PWL, R, RD, SFFM, POWER, or SIN

Independent Source Element Syntax
Vxxx n+ n- [[DC=] dcval tranfun [AC=acmag acphase]] 
+ POWER=[0|1|2|w|dbm]

Ixxx n+ n- [[DC=] dcvaltranfun [AC=acmag acphase]]
+ POWER=[0|1|2|w|dbm] [M=val]
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For a listing of output templates for independent voltage source (V-element) 
models (HSPICE only), see Table 39.

For a listing of output templates for independent current source (I-element) 
models (HSPICE only), see Table 40.

For a listing of output templates for independent current (I-element) models, 
see Table 40.

Parameter Description

Vxxx Independent voltage-source element name. Must begin with V, followed by up to 1023 
alphanumeric and special characters.

Ixxx Independent current source element name. Must begin with I, followed by up to 1023 
alphanumeric and special characters. 

n+ Positive node.

n- Negative node.

DC=dcval DC source keyword and value in volts. Used for the operating point calculation for all 
simulations except transient. Transient analysis calculates an additional operating 
point with the tranfun value at time zero. Default=0.0.

tranfun Transient source function (one or more of: AM, DC, EXP, PAT, PE, PL, PU, PULSE, 
PWL, SFFM, SIN). The functions specify the characteristics of a time-varying source. 
See the individual functions for syntax.

AC AC source keyword for use in AC small-signal analysis.

acmag Magnitude (RMS) of the AC source, in volts.

acphase Phase of the AC source, in degrees. Default = 0.0. 

M Multiplier, to simulate multiple parallel current sources. HSPICE multiplies source 
current by M. Default = 1.0.

power=[0 | 1 | 2 
| W | dbm]

Power switch:
■ When 0 (default), the element is treated as a voltage or current source.
■ When 1 or W, the element is treated as a power source, realized as a voltage 

source with a series impedance or a current source with a parallel impedance. In 
this case, the source value is interpreted as RMS available power in units of 
Watts.

■ When 2 or dbm, the element is treated as a voltage source with a series 
impedance or a current source with a parallel impedance. Values are in dbms. 
You can use this parameter for transient analysis if the power source is either DC 
or SIN.
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Example 1
VX 1 0 5V

where:
■ The VX voltage source has a 5-V DC bias. 
■ The positive terminal connects to node 1.
■ The negative terminal is the ground.

Example 2
VB 2 0 DC=VCC

where:
■ The VCC parameter specifies the DC bias for the VB voltage source. 
■ The positive terminal connects to node 2.
■ The negative terminal is the ground.

Example 3
VH 3 6 DC=2 AC=1,90

where:
■ The VH voltage source has a 2-V DC bias, and a 1-V RMS AC bias, with 

90-deg phase offset. 
■ The positive terminal connects to node 3.
■ The negative terminal connects to node 6.

Example 4
IG 8 7 PL(1MA OS 5MA 25MS)

where:
■ The piecewise-linear relationship defines the time-varying response for the 

IG current source, which is 1 MA at time=0, and 5 MA at 25 ms. 
■ The positive terminal connects to node 8.
■ The negative terminal connects to node 7.

Example 5
VCC in out DC=0 PWL 0 0 10NS VCC 15NS VCC 20NS 0

where:
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■ The DC=0 keyword specifies the initial DC bias value for the VCC voltage 
source. 

■ The piecewise-linear relationship defines the time-varying response for the 
VCC voltage source, which is 0 V at time 0, VCC from 10 to 15 ns, and back 
to 0 volts at 20 nanoseconds. 

■ The positive terminal connects to the in node.
■ The negative terminal connects to the out node. 
■ HSPICE will determine the operating point using the specified DC bias 

value. If no initial DC bias value is specified, HSPICE determines the 
operating point using the initial transient source value and outputs the 
following informational message: DC voltage reset to initial 
transient source value.

Example 6
Vin1 in 0 DC=0 PULSE(-1 1 10n 1n 1n 20n 40n)

where:
■ The DC=0 specifies the DC bias for the Vin1 voltage source.
■ The positive terminal connects to the in node.
■ The negative terminal connects to the ground (0) node.
■ The output high voltage is 1 V.
■ The output low voltage is -1 V.
■ The delay is 10 ns.
■ The rise and fall times are each 1 ns.
■ The high pulse width is 20 ns.
■ The period is 40 ns.
■ HSPICE will determine the operating point using the specified DC bias 

value. If no initial DC bias value is specified, HSPICE determines the 
operating point using the initial transient source value and output the 
following informational message: DC voltage reset to initial 
transient source value.

Example 7
VIN 13 2 0.001 AC 1 SIN (0 1 1MEG)
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where:
■ The VIN voltage source has a 0.001-volt DC bias, and a 1-volt RMS AC 

bias. 
■ The sinusoidal time-varying response ranges from 0 to 1 volts, with a 

frequency of 1 megahertz. 
■ The positive terminal connects to node 13.
■ The negative terminal connects to node 2.

Example 8
ISRC 23 21 AC 0.333 45.0 SFFM (0 1 10K 5 1K)

where:
■ The ISRC current source has a 1/3-amp RMS AC response, with a 45-

degree phase offset.
■ The frequency-modulated, time-varying response ranges from 0 to 1 volts, 

with a carrier frequency of 10 kHz, a signal frequency of 1 kHz, and a 
modulation index of 5. 

■ The positive terminal connects to node 23.
■ The negative terminal connects to node 21.

Example 9
VMEAS 12 9

where:
■ The VMEAS voltage source has a 0-volt DC bias.
■ The positive terminal connects to node 12.
■ The negative terminal connects to node 9.

DC Sources 
For a DC source, you can specify the DC current or voltage in different ways:

V1 1 0 DC=5V
V1 1 0 5V
I1 1 0 DC=5mA
I1 1 0 5mA
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■ The first two examples specify a DC voltage source of 5 V, connected 
between node 1 and ground. 

■ The third and fourth examples specify a 5 mA DC current source, between 
node 1 and ground. 

■ The direction of current in both sources is from node 1 to ground.

AC Sources 
AC analysis uses AC current and voltage sources as impulse functions. To 
specify the magnitude and phase of the impulse, use the AC keyword.

V1 1 0 AC=10V,90
VIN 1 0 AC 10V 90

The preceding two examples specify an AC voltage source, with a magnitude of 
10 V and a phase of 90 degrees. To specify the frequency sweep range of the 
AC analysis, use the .AC analysis statement. 

Transient Sources 
For transient analysis, you can specify the source as a function of time. The 
following functions are available:
■ Trapezoidal pulse (PULSE function)
■ Sinusoidal (SIN function)
■ Exponential (EXP function)
■ Piecewise linear (PWL function)
■ Single-frequency FM (SFFM function)
■ Single-frequency AM (AM function)
■ Pattern (PAT function)
■ Pseudo Random-Bit Generator Source (PRBS function)

Mixed Sources 
Mixed sources specify source values for more than one type of analysis. For 
example, you can specify a DC source, an AC source, and a transient source; 
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all of which connect to the same nodes. In this case, when you run specific 
analyses, HSPICE selects the appropriate DC, AC, or transient source. In a DC 
analysis, if the mixed source DC value is missing, the simulation replaces it with 
the zero-time value of its transient source by default. Otherwise, for DC 
analysis, HSPICE uses the DC source value for operating point calculation for 
all analyses except TRAN; TRAN analysis calculates an additional operating 
point with the zero-time source transient value.

Example
VIN 13 2 0.5 AC 1 SIN (0 1 1MEG)

where:
■ DC source of 0.5 V
■ AC source of 1 V
■ Transient damped sinusoidal source

Each source connects between nodes 13 and 2.

For DC analysis, HSPICE uses its dc value 0.5 volts and selects this operating 
point for the AC analysis to come. In transient analysis, HSPICE calculates 
another operating point by using zero source value because the sinusoidal 
source is zero at time zero.

Independent Source Functions

HSPICE also provides a data-driven version of PWL (not supported in HSPICE 
advanced analog analyses). If you use the data-driven PWL, you can reuse the 
results of an experiment or of a previous simulation, as one or more input 
sources for a transient simulation. See Sources Examples 
(/datadriven_pwl.sp) for syntax of a data-driven sweep.

If you use the independent sources supplied with HSPICE, you can specify 
several useful analog and digital test vectors for steady state, time domain, or 
frequency domain analysis. For example, in the time domain, you can specify 
both current and voltage transient waveforms, as exponential, sinusoidal, 
piecewise linear, AM, or single-sided FM functions, and pattern (for HSPICE 
signal integrity).
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HSPICE uses the following types of independent source functions:
■ Trapezoidal Pulse Source
■ Sinusoidal Source Function
■ Exponential Source Function
■ Repeat Option in Sinusoidal and Exponential Sources
■ Piecewise Linear Source
■ PWLZ High Impedance State
■ Single-Frequency FM Source
■ Single-Frequency AM Source
■ Pattern Source
■ Pseudo Random-Bit Generator Source

Trapezoidal Pulse Source
HSPICE provides a trapezoidal pulse source function which starts with an initial 
delay from the beginning of the transient simulation interval to an onset ramp. 
During the onset ramp, the voltage or current changes linearly from its initial 
value to the pulse plateau value. After the pulse plateau, the voltage or current 
moves linearly along a recovery ramp back to its initial value. The entire pulse 
repeats, with a period named per, from onset to onset.

Vxxx n+ n- PU[LSE] [(]v1 v2 [td [tr [tf [pw [per]]]]] [)]
+ [RMSJITTER=val PERJITTER=val [SEED=val]]
Ixxx n+ n- PU[LSE] [(]v1 v2 [td [tr [tf [pw [per]]]]] [)]
+ [RMSJITTER=val PERJITTER=val [SEED=val]]

Parameter Description

Vxxx, Ixxx Independent voltage/ current source, which exhibits the pulse response.

PULSE Keyword for a pulsed time-varying source. The short form is PU.

v1 Initial value of voltage or current before the pulse onset (units: volts/amps).

v2 Pulse plateau value (units of volts or amps).

td Delay (propagation) time in seconds from the beginning of the transient interval to the first 
onset ramp. Default=0.0 
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Linear interpolation determines the intermediate points.

Note: TSTEP is the printing increment, and TSTOP is the final time.

Effect of Jitter on the PULSE Source
The effect of jitter on the PULSE source results in random shifts of the rise and 
fall transitions that normally take place at:

RISE edge: 

FALL edge: 

tr Duration of the onset ramp (in seconds) from the initial value to the pulse plateau value 
(reverse transit time). Default = TSTEP 

tf Duration of the recovery ramp (in seconds) from the pulse plateau back to the initial value 
(forward transit time). Default TSTEP 

pw Pulse width (the width of the plateau portion of the pulse), in seconds. Default =TSTOP. 

per Pulse repetition period, in seconds. Default = TSTEP 

rmsjitter RMS value for random phase jitter, in seconds.

perjitter RMS value for period jitter, adjusts the magnitude of the random time.

seed Used to generate random number sequences with different seed value. The value is a 
negative integer, defaults to –1.

Table 18 Time-Value Relationship for a PULSE Source

Time Value

0 v1

td v1

td + tr v2

td + tr + pw v2

td + tr + pw + tf v1

tstop v1

Parameter Description

td n T0 t td n T0+ +

td pw n T0 t td tr pw tf n+ + T0+ + + +
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The jitter effect is equivalent to introducing random shifts in the period  
consistent with the 1st order jitter model based on Period Jitter, also according 
to the expression for period variations . The specified 

syntax determines the first period of the PULSE source, yet all subsequent 
pulse periods are random according to .

The PULSE source with jitter still maintains constant rise and fall times. This 
creates some uncertainty in how the pulse width ( ) varies as the period 
varies due to jitter.

HSPICE advanced analog analyses uses a special calculation that holds the 
rise and fall times (  and ) constant, and also holds the 50% Duty Cycle 
constant. The halfway points on the rise and fall times determines the 50 
percent duty cycle definition. This results in the pulse width ( ) change due to 
jitter variations as:

Equation 8

Also, this sets the minimum period for a PULSE source with jitter to be , 
resulting in the extreme case of a sawtooth waveform.

A Gaussian random number generator computes the random  variations 
after each leading edge of the clock sources. For flexibility, the SEED parameter 
(integer) generates different random number sequences when you specify 
different SEED integers for initialization.

Example 1
The following example shows the pulse source connected between node 3 and 
node 0. In the pulse:
■ The output high voltage is 1 V.
■ The output low voltage is –1 V.
■ The delay is 2 ns.
■ The rise and fall time are each 2 ns.
■ The high pulse width is 50 ns.
■ The period is 100 ns.

0T

T0 Tj T0 T t +=

T0 T t +

pw

tr tf

pw

pwj pw
Tj

T0
----- 
  1

2
--- t r tf 

Tj

T0
-----
 1

–++=

tr tf+

T t 
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■ The RMS value for period jitter is 10 ns.
■ The seed is –1.

VIN 3 0 PULSE (-1 1 2NS 2NS 2NS 50NS 100NS) perjitter=10ns seed=-1

Example 2
The following example is a pulse source which connects between node 99 and 
node 0. The syntax shows parameter values for all specifications:

V1 99 0 PU lv hv tdlay tris tfall tpw tper

Example 3
The following example shows an entire netlist which contains a PULSE voltage 
source. In the source:
■ The initial voltage is 1 V.
■ The pulse voltage is 2 V.
■ The delay time, rise time, and fall time are each 5 ns.
■ The pulse width is 20 ns.
■ The pulse period is 50 ns.

This example uses demonstration netlist pulse.sp, which is available in 
directory $installdir/demo/hspice/sources:

file pulse.sp test of pulse
.option post 
.tran .5ns 75ns
vpulse 1 0 pulse( v1 v2 td tr tf pw per )
r1 1 0 1
.param v1=1v v2=2v td=5ns tr=5ns tf=5ns pw=20ns per=50ns
.end

Example 27 shows the result of simulating this netlist in HSPICE.
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Figure 27 Pulse Source Function

Sinusoidal Source Function 
HSPICE provides a damped sinusoidal source function, which is the product of 
a dying exponential with a sine wave. To apply this waveform, you must specify:
■ Sine wave frequency
■ Exponential decay constant
■ Beginning phase
■ Beginning time of the waveform

Vxxx n+ n- SIN [(] vo va [freq [td [q [j]]]] [)]
+ [[RMSJITTER=val PERJITTER=val [SEED=val]]
Ixxx n+ n- SIN [(] vo va [freq [td [q [j]]]] [)]
+ [[RMSJITTER=val PERJITTER=val [SEED=val]] 

Parameter Description

Vxxx, Ixxx Independent voltage source that exhibits the sinusoidal response.
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The following table of expressions defines the waveform shape:

In these expressions, TSTOP is the final time.

Example
VIN 3 0 SIN (0 1 100MEG 1NS 1e10)

This damped sinusoidal source connects between nodes 3 and 0. In this 
waveform:

SIN Keyword for a sinusoidal time-varying source.

vo Voltage or current offset in volts or amps.

va Voltage or current peak value (vpeak), in volts or amps.

freq Source frequency in Hz. Default = 1/TSTOP. 

td Time (propagation) delay before beginning the sinusoidal variation, in seconds. Default 
= 0.0. Response is 0 V or A, until HSPICE reaches the delay value, even with a nonzero 
DC voltage. 

q Damping factor, in units of 1/s. Default = 0.0. 

j Phase delay, in units of degrees. Default = 0.0. 

rmsjitter RMS value for random phase jitter, in seconds.

perjitter RMS value for period jitter used to adjust the magnitude of the random time.

seed Used to generate random number sequences with different seed value. The value is a 
negative integer. Defaults to –1.

Table 19 Waveform Shape Expressions

Time Value

0 to td

td to tstop

Where  and  are the damping factor and phase delay in the syntax.

vo va SIN
2   

360
-------------------- 
 +

vo va Exp T ime td –  q – +

SIN 2  freq time td– x t +  j
360
---------+ 

 
 
 

q j
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■ Peak value is 1 V.
■ Offset is 0 V.
■ Frequency is 100 MHz.
■ Time delay is 1 ns.
■ Damping factor is 1e10.
■ Phase delay is 0 deg.

See Figure 28 for a plot of the source output.

Figure 28 Sinusoidal Source Function

This example uses demonstration netlist sin.sp, which is available in 
directory $installdir/demo/hspice/sources:
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*file: sin.spsinusoidal source
.options post 

.param v0=0 va=1 freq=100meg delay=2n theta=5e7 phase=0
v 1 0 sin(v0 va freq delay theta phase)
r 1 0 1
.tran .05n 50n
.end

Exponential Source Function 
HSPICE provides a exponential source function, in an independent voltage or 
current source.

Vxxx n + n- EXP [(] v1 v2 [td1 [t1 [td2 [t2]]]] [)]
Ixxx n+ n- EXP [(] v1 v2 [td1 [t1 [td2 [t2]]]] [)] 

Table 20 SIN Voltage Source

Parameter Value

initial voltage 0 volts

pulse voltage 1 volt

delay time 2 nanoseconds

frequency 100 MHz

damping factor 50 MHz

Parameter Description

Vxxx, Ixxx Independent voltage source, with an exponential response.

EXP Keyword for an exponential time-varying source.

v1 Initial value of voltage or current, in volts or amps. 

v2 Pulsed value of voltage or current, in volts or amps. 

td1 Rise delay time, in seconds. Default=0.0. 

td2 Fall delay time, in seconds. Default=td1+TSTEP. 

t1 Rise time constant, in seconds. default=TSTEP 
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TSTEP is the printing increment, and TSTOP is the final time.

The following table of expressions defines the waveform shape:

Example
VIN 3 0 EXP (-4 -1 2NS 30NS 60NS 40NS)

The above example describes an exponential transient source, which connects 
between nodes 3 and 0. In this source:
■ Initial t=0 voltage is -4 V.
■ Final voltage is -1 V. 
■ Waveform rises exponentially from -4 V to -1 V with a time constant of 30 ns.
■ At 60 ns, the waveform starts dropping to -4 V again, with a time constant of 

40 ns.

t2 Fall time constant, in seconds. default=TSTEP 

Table 21 Waveform Shape Definitions

Time Value

0 to td1

td1 to td2

td2 to tstop

Parameter Description

v1

v1 v2 v1–  1 exp
Time td1–

1
---------------------------– 

 –+

v1 v2 v1–  1 exp
Time td1– 

1
--------------------------------– 

 –

v1 v2– 

+

1
Time td2– 

2
--------------------------------– 

 exp–





+
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Figure 29 Exponential Source Function

This example uses demonstration netlist exp.sp, which is available in 
directory $installdir/demo/hspice/sources:

*file: exp.sp exponential independant source
.options post 
.param v0=-4 va=-1 td1=5n tau1=30n tau2=40n td2=80n
v 1 0 exp(v0 va td1 tau1 td2 tau2)
r 1 0 1
.tran .05n 200n
.end

This example shows an entire netlist, which contains an EXP voltage source. In 
this source:
■ Initial t=0 voltage is -4 V.
■ Final voltage is -1 V. 
■ Waveform rises exponentially from -4 V to -1 V with a time constant of 30 ns.
■ At 80 ns, the waveform starts dropping to -4 V again, with a time constant of 

40 ns.
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Repeat Option in Sinusoidal and Exponential Sources
You can use the R-repeat option in SIN (damping) and EXP (damping) sources. 
The syntax is:

sin (0 1 300meg 10n 1e8 R=val)

or

exp (1 2 10n 30n 60n 20n R=val)

Where val can be a number specified or a parameter. A syntax of R=R is 
acceptable. For SIN/EXP, the R option means the length of each repeated 
period. For example:

VIN1 in out SIN (1.2 0.11 4G 5.5NS 2e9 180 R=1.2n)

This SIN function repeats from the beginning of the SIN waveform to R=1.2n.

Note: The SIN/EXP R-option is not fully consistent with PWL. For 
PWL, the R-option specifies the start point of the waveform to 
repeat. In the example below, this pwl function repeats from 
r=2n to the last defined points (5n,0).

v1 1 0 pwl 0 0 0.5n 0.5 2n 0.8 5n 0 r=2n

Piecewise Linear Source 
HSPICE provides a piecewise linear source function in an independent voltage 
or current source.

Note: For controlled sources (E, F, G and H), the '(1)' or '(2)' after the 
PWL syntax means that the transfer function described by the 
piecewise-linear function is a 1-dimensional or 2-dimensional 
PWL function. 

The following sections discuss these topics:
■ General PWL Form
■ MSINC and ASPEC Form
■ Data-Driven Piecewise Linear Source
■ File-Driven PWL Source
HSPICE® User Guide: Basic Simulation and Analysis 231
K-2015.06



Chapter 9: Sources and Stimuli
Independent Source Functions
General PWL Form
Vxxx n+ n- PWL [(] t1 v1 [t2 v2 t3 v3…] [R= [repeat]] 
+ [TD=delay] [)]
Ixxx n+ n- PWL [(] t1 v1 [t2 v2 t3 v3…] [R= [repeat]]
+ [TD=delay] [)]

MSINC and ASPEC Form
Vxxx n+ n- PL [(] t1 v1 [t2 v2 t3 v3…] [R= [repeat]] 
+ [TD=delay] [)]
Ixxx n+ n- PL [(] t1 v1 [t2 v2 t3 v3…] [R= [repeat]] 
+ [TD=delay] [)] 

■ Each pair of values (t1, v1) specifies that the value of the source is v1 (in 
volts or amps), at time t1. 

■ Linear interpolation between the time points determines the value of the 
source, at intermediate values of time. 

■ The PL form of the function accommodates ASPEC style formats, and 
reverses the order of the time-voltage pairs to voltage-time pairs. 

■ If you do not specify a time-zero point, HSPICE uses the DC value of the 
source, as the time-zero source value. 

HSPICE does not force the source to terminate at the TSTOP value, specified in 
the .TRAN statement.

If the slope of the piecewise linear function changes below a specified 
tolerance, the timestep algorithm might not choose the specified time points as 

Parameter Description

Vxxx, Ixxx Independent voltage source; uses a piecewise linear response.

PWL Keyword for a piecewise linear time-varying source.

v1 v2 … vn Current or voltage values at the corresponding timepoint.

t1 t2 … tn Timepoint values, where the corresponding current or voltage value is valid. 

R=repeat Keyword and time value to specify a repeating function. With no argument, the source 
repeats from the beginning of the function. repeat is the time, in units of seconds, 
which specifies the start point of the waveform to repeat. This time needs to be less 
than the greatest time point, tn.

TD=delay Time, in units of seconds, which specifies the length of time to delay (propagation 
delay) the piecewise linear function.
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simulation time points. To obtain a value for the source voltage or current, 
HSPICE extrapolates neighboring values. As a result, the simulated voltage 
might deviate slightly from the voltage specified in the PWL list. To force 
HSPICE to use the specified values, use .OPTION SLOPETOL, which reduces 
the slope change tolerance.

R causes the function to repeat. You can specify a value after this R, to indicate 
the beginning of the function to repeat. The repeat time must equal a 
breakpoint in the function. For example, if t1=1, t2=2, t3=3, and t4=4, then the 
repeat value can be 1, 2, or 3.

Specify TD=val to cause a delay at the beginning of the function. You can use 
TD with or without the repeat function.

Example
This example uses demonstration netlist pwl.sp, which is available in 
directory $installdir/demo/hspice/sources:

file pwl.sp repeated piecewise linear source
.option post 
.tran 5n 500n
v1 1 0 pwl 60n 0v, 120n 0v, 130n 5v, 170n 5v, 180n 0v, r
r1 1 0 1

v2 2 0 pl 0v 60n, 0v 120n, 5v 130n, 5v 170n, 0v 180n, r 60n
r2 2 0 1
.end

This example shows an entire netlist, which contains two piecewise linear 
voltage sources. The two sources have the same function:
■ First is in normal format. The repeat starts at the beginning of the function.
■ Second is in ASPEC format. The repeat starts at the first timepoint.

See Figure 30 for the difference in responses.
HSPICE® User Guide: Basic Simulation and Analysis 233
K-2015.06



Chapter 9: Sources and Stimuli
Independent Source Functions
Figure 30 Results of Using the Repeat Function

Data-Driven Piecewise Linear Source
HSPICE provides a data-driven piecewise linear source function in an 
independent voltage or current source.

Vxxx n+ n- PWL (TIME, PV)
Ixxx n+ n- PWL (TIME, PV)
.DATA dataname
TIME PVt1 v1t2 v2t3 v3t4 v4. . . .
.ENDDATA
.TRAN DATA=datanam

Use with a .DATA statement that contains time-value pairs. For each tn-vn 
(time-value) pair that you specify in the .DATA block, the data-driven PWL 
function outputs a current or voltage of the specified tn duration and with the 

Parameter Description

TIME Parameter name for time value, provided in a .DATA statement.

PV Parameter name for amplitude value, provided in a .DATA statement.
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specified vn amplitude. This source enables simulation results reuse as an 
input source in another simulation. Transient analysis must be data-driven.

Example
This example uses demonstration netlist datadriven_pwl.sp, which is 
available in directory $installdir/demo/hspice/sources:

*DATA DRIVEN PIECEWISE LINEAR SOURCE 
.options list node post
V1 1 0 PWL(TIME, pv1) 
R1 1 0 1 
V2 2 0 PWL(TIME, pv2) 
R2 2 0 1 
.DATA dsrc 
TIME pv1 pv2 
0n 5v 0v 
5n 0v 5v 
10n 0v 5v 
.ENDDATA 
.TRAN DATA=dsrc 
.print v(1) v(2)
.END

This example is an entire netlist, containing two data-driven, piecewise linear 
voltage sources. The .DATA statement contains the two sets of values 
referenced in the pv1 and pv2 sources. .TRAN references the data name; 
there should be no time in .TRAN because DATA includes time.

File-Driven PWL Source
You can specify a text file containing time, voltage (or current) pairs into a PWL 
source. The text file could be either a table,
0 0
1n 0.1
2n 0.2
or a list (commas optional)0 0, 1n 0.1, 2n 0.2, ...

Vxxx n1 n2 PWL PWLFILE='filename' [col1,[col2]] [R [=repeat]]
+ [TD=delay]
Ixxx n1 n2 PWL PWLFILE='filename' [col1,[col2]] [R [=repeat]]
+ [TD=delay]

Note: The values for col1 and col2 are numeric and should start at 
1. The default is col1=1 (time values) and col2=2 (voltage 
values).
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Here, PWLFILE can use a string parameter.

Example
Vit n1 n2 PWL PWLFILE='Imod.dat'
.parameter pwl_data_file=str('pwl.dat')
V1 in out PWL PWLFILE=str(pwl_data_file)

PWLZ High Impedance State
The high Z state of the PWLZ source adds the capability to disconnect the PWL 
source for time periods marked with the keyword Z.

Vxxx n+ n- PWLZ [(] t1 val1 [t2 val2 t3 z t4 val4 ...] 
+ [R [=repeat]] [TD=delay] [)]

You can use the keyword Z in place of the source value. You can disconnect 
the voltage source for time periods you mark with the keyword Z.

Example

In this example, node 5 connects to a 0V source at time 0, and rises from 0V to 
0.75V in 2 ns. Between 2 ns and 10 ns, the voltage-source value rises from 
0.75V to 1.5V. The voltage-source value stays at 1.5V between 10 ns and 50 
ns. At 50 ns, node 5 disconnects from the voltage source until 60 ns. It re-
connects to a 0.75V voltage source after 60 ns. 

VXD 5 0 pwlz (0 0 2N 0.75 10N 1.5 50N z 60N 0.75)

Parameters Description

Vxxx Independent voltage source; capable of having high impedance during 
periods of times.

PWLZ Keyword for a piecewise linear time-varying source with high impedance.

val1 val2... valn Voltage values at the corresponding time points.

t1 t2 ... tn Time point values.

R=repeat Keyword and time value to specify a repeating function. With no argument, 
the source repeats from the beginning of the function. repeat is the time, 
in units of seconds, which specifies the start point of the waveform to repeat. 
This time needs to be less than the greatest time point, tn.

TD = delay Time, in units of seconds, which specifies the length of time to delay 
(propagation delay) the piecewise linear function.
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Single-Frequency FM Source 
HSPICE provides a single-frequency FM source function, in an independent 
voltage or current source. 

Vxxx n+ n- SFFM [(] vo va [fc [mdi [fs]] [)]
Ixxx n+ n- SFFM [(] vo va [fc [mdi [fs]] [)]

The following expression defines the waveform shape:

Equation 9

Example
This example uses demonstration netlist sffm.sp, which is available in 
directory $installdir/demo/hspice/sources:

*file: sffm.spfrequency modulation source
.options post
vsff1 15 0 dc 3v sffm(0v 1v 20k 10 5k)
rssf1 15 0 1
.tran .001ms .5ms
.probe tran v(15)
.end

This example shows an entire netlist, which contains a single-frequency, 
frequency-modulated voltage source. In this source.

Parameter Description

Vxxx, Ixxx Independent voltage source, which exhibits the frequency-modulated response.

SFFM Keyword for a single-frequency, frequency-modulated, time-varying source.

vo Output voltage or current offset, in volts or amps.

va Output voltage or current amplitude, in volts or amps. 

fc Carrier frequency, in Hz. Default=1/TSTOP. 

mdi Modulation index, which determines the magnitude of deviation from the carrier 
frequency. Values normally lie between 1 and 10. Default=0.0. 

fs Signal frequency, in Hz. Default=1/TSTOP. 

sourcevalue vo va SIN 2  fc Time mdi SIN 2  fs Time   +   +=
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■ The offset voltage is 0 volts.
■ The maximum voltage is 1 millivolt. 
■ The carrier frequency is 20 kHz.
■ The signal is 5 kHz, with a modulation index of 10 (the maximum wavelength 

is roughly 10 times as long as the minimum).

Figure 31 Single Frequency FM Source

Single-Frequency AM Source 
HSPICE provides a single-frequency AM source function in an independent 
voltage or current source.

Vxxx n+ n- AM [(] sa oc fm fc [td] [)]
Ixxx n+ n- AM [(] sa oc fm fc [td] [)]

Parameter Description

Vxxx, Ixxx Independent voltage source, which exhibits the amplitude-modulated response.

AM Keyword for an amplitude-modulated, time-varying source.
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The following expression defines the waveform shape:

Equation 10

Example
This example uses demonstration netlist amsrc.sp, which is available in 
directory $installdir/demo/hspice/sources:

*file amsrc.sp amplitude modulation
.option post 
.tran .01m 20m

v1 1 0 am(10 1 100 1k 1m)
r1 1 0 1

v2 2 0 am(2.5 4 100 1k 1m)
r2 2 0 1

v3 3 0 am(10 1 1k 100 1m)
r3 3 0 1
.end

This example shows an entire netlist, which contains three amplitude-
modulated voltage sources. 
■ In the first source:

• Amplitude is 10.

• Offset constant is 1.

• Carrier frequency is 1 kHz.

• Modulation frequency of 100 Hz.

• Delay is 1 millisecond. 

sa Signal amplitude, in volts or amps. Default=0.0.

fc Carrier frequency, in hertz. Default=0.0.

fm Modulation frequency, in hertz. Default=1/TSTOP.

oc Offset constant, a unitless constant that determines the absolute magnitude of the 
modulation. Default=0.0.

td Delay time (propagation delay) before the start of the signal, in seconds. Default=0.0. 

sourcevalue sa oc SIN 2  fm Time td–    +  SIN 2  fc Time td–     =
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■ In the second source, only the amplitude and offset constant differ from the 
first source:

• Amplitude is 2.5.

• Offset constant is 4.

• Carrier frequency is 1 kHz.

• Modulation frequency of 100 Hz.

• Delay is 1 millisecond. 
■ The third source exchanges the carrier and modulation frequencies, 

compared to the first source:

• Amplitude is 10.

• Offset constant is 1.

• Carrier frequency is 100 Hz.

• Modulation frequency of 1 kHz.

• Delay is 1 millisecond.

Figure 32 Amplitude Modulation Plot
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Pattern Source
HSPICE provides a pattern source function, in an independent voltage or 
current source. The pattern source function uses four states, '1','0','m', and 'z', 
which represent the high, low, middle voltage, or current and high impedance 
state respectively. The series of these four states is a “b-string.” (HSPICE 
supports eight-bit data byte conversion to a 10-bit transmission character—8B/
10B encoding for the PAT keyword.) 

Vxxx n+ n- PAT [(] vhi vlo td tr tf  tsample data [RB=val]
+ [R=repeat] [ENCODE=DW8b10b] [RD_INIT=0|1] [)]
Ixxx n+ n- PAT [(] vhi vlo td tr tf  tsample data [RB=val]
+ [R=repeat] [ENCODE=DW8b10b] [RD_INIT=0|1] [)]

Parameter Description

Vxxx, Ixxx Independent voltage source that exhibits a pattern response.

PAT Keyword for a pattern time-varying source.

vhi High voltage or current value for pattern sources (units of volts or amps).

vlo Low voltage or current value for pattern sources (units of volts or amps).

td Delay (propagation) time in seconds from the beginning of the transient interval to the first 
onset ramp. It can be negative. The state in the delay time is the same as the first state 
specified in data.

tr Duration of the onset ramp (in seconds) from the low value to the high value (reverse 
transit time).

tf Duration of the recovery ramp (in seconds) from the high value back to the low value 
(forward transit time). 

tsample Time spent at '0' or '1' or 'M' or 'Z' pattern value (in seconds).

data String of '1', '0', 'M', 'Z' representing a pattern source, or ‘K’ representing 8b/10b encoding 
control string (or control word). If the first alphabetic character is 'B', which represents it 
as a binary bit stream, the series is a b-string. '1' represents the value for high voltage or 
current, '0' is the value for low voltage or current, 'M' represents the value which is equal 
to 0.5*(vhi+vlo). If the first alphabetic character is 'K', which represents the control string 
in the 8b10b encoder. Then a series binary bit stream (such as k00010001, similar to the 
original b-string) follows the k-string. In a K-string, the bit stream must be '1' or '0'. You can 
not use 'M' and 'Z'. The definition of K-string follows the form of “DW_8b10b_enc” in the 
Synopsys DesignWare Building Block IP. If you do not apply encode=dw8b10b in the 
netlist, then the K-string takes the same function as B-string.
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The time from 0 to the first transition is: 

tdelay+N*tsample-tr(tf)/2

■ N is the number of the same bit from the beginning. 
■ If the first transition is rising, this equation uses tr.
■ If the first transition is falling, it uses tf.

Example
The following example shows a pattern source with two b-strings: 

*FILE: pattern source gereral form 
v1 1 0 pat (5 0 0n 1n 1n 5n b1011 r=1 rb=2 b0m1z)
r1 1 0 1

In this pattern:
■ High voltage is 5 v
■ Low voltage is 0 v
■ Time delay is 0 n
■ Rise time is 1 n
■ Fall time is 1 n
■ Sample time is 5 n

RB Keyword to specify the starting bit when repeating. The repeat data starts from the bit 
indicated by RB. RB must be an integer. HSPICE reports an error If the value is larger than 
the length of the b-string. If the value is less than 1, HSPICE resets it to 1 automatically.

R=repeat Keyword to specify the number of times to execute the repeating operation. With no 
argument, the source repeats from the beginning of the b-string. If R=-1, it means the 
repeating operation continues forever. R must be an integer and if it is less than -1, 
HSPICE resets it to 0 automatically.

ENCODE=D
W8b10b

Keyword to specify 8b/10b encoding.

RD_INIT=0|1 Initial value of Running Disparity. The one bit memory that recalls the bias of the last 
unbalanced code word is the Running Disparity.1: Specifies that a Running Disparity value 
of zero is synonymous with negative Running Disparity.
■ 0: Specifies that a Running Disparity value of one is synonymous with negative 

Running Disparity (-)
■ 1: Specifies that a Running Disparity value of one is synonymous with positive 

Running Disparity (+).

Parameter Description
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The first b-string is 1011, which repeats once and then repeats from the 
second bit, which is 0. The second b-string is 0m1z. Since the example 
specifies neither R and RB here, HSPICE sets them to the default values, R=0, 
RB=1.

Example
The following b-string and its repeat time R and repeating start bit RB cannot 
use a parameter — HSPICE considers it as a undivided unit which only the 
.PAT command can define.

*FILE:pattern source using parameter
.param td=40ps tr=20ps tf=80ps tsample=400ps 
VIN 1 0 PAT (2 0 td tr tf tsample b1010110 r=2) 
r1 1 0 1

In this pattern:
■ High voltage is 2 V. 
■ Low voltage is 0 V.
■ Time delay is 40 ps. 
■ Rise time is 20 ps. 
■ Fall time is 80 ps. 
■ Sample time is 400 ps. 
■ Data is 1010110.

The following sections discuss these topics:
■ Nested-Structure Pattern Source
■ Pattern-Command Driven Pattern Source
■ Workaround to 1024 Character Limitation for Long Pattern Sources

Nested-Structure Pattern Source
HSPICE provides Nested Structure (NS) for the pattern source function to 
construct complex waveforms. NS is a combination of a b-string and other 
nested structures defined in a .PAT command (see Pattern-Command Driven 
Pattern Source on page 244).

The following general syntax is for an NS pattern source.

Vxxx n+ n- PAT [(] vhi vlo td tr tf tsample
+ [component 1 ... component n] [RB=val] [R=repeat] [)]
Ixxx n+ n- PAT [(] vhi vlo td tr tf tsample
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+ [component 1 ... component n] [RB=val] [R=repeat] [)]

If the component is a b-string, you can follow it with R=repeat and RB=val to 
specify the repeat time and repeating start bit.

Example
*FILE: Pattern source using nested structure
v1 1 0 pat (5 0 0n 1n 1n 5n [b1011 r=1 rb=2 b0m1z] r=2 rb=2)
r1 1 0 1

When expanding the nested structure, you generate the pattern source as:

'b1011 r=1 rb=2 b0m1z b0m1z b0m1z'

The whole NS repeats twice, and each time it repeats from the second b0m1z 
component.

Pattern-Command Driven Pattern Source
The following general syntax is for including a pattern-command driven pattern 
source in an independent voltage or current source. You can reset the RB and R 
of a b-string or NS in an independent source. With no argument, the R and RB 
are the same when you define it in the pattern command.

Vxxx n+ n- PAT [(] vhi vlo td tr tf tsample PatName [RB=val]
+ [R=repeat] [)]
Ixxx n+ n- PAT [(] vhi vlo td tr tf tsample Patname [RB=val]
+ [R=repeat] [)]

Additional syntax applies to the .PAT command-driven pattern source:

.PAT PatName=data [RB=val] [R=repeat]

.PAT PatName=[component 1...component n] [RB=val] [R=repeat]

Parameter Description

component Component is the element that makes up NS, which can be a b-string or a PAT name 
defined in other PAT commands. You must use Brackets ( [ ] ).

RB=val Keyword to specify the starting component when repeating. The repeat data starts from 
the component indicated by RB. RB must be an integer. HSPICE reports an error if RB is 
larger than the length of the NS. If RB is less than 1, HSPICE resents it automatically to 1.

R=repeat Keyword to specify number of executions of the repeating operation. With no argument, 
the source repeats from the beginning of the NS. If R=-1, the repeating operation 
continues indefinitely. R must be an integer, and if it is less than -1, HSPICE resets it 
automatically to 0.
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The PatName is the pattern name that has an associated b-string or nested 
structure. 

Example 1
v1 1 0 pat (5 0 0n 1n 1n 5n a1 a2 r=2 rb=2)
.PAT a1=b1010 r=1 rb=1
.PAT a2=b0101 r=1 rb=1

The final pattern source is:

b1010 r=1 rb=1 b0101 r=2 rb=2

When the independent source uses the .PAT command to specify its pattern 
source, you can reset r and rb.

Example 2
*FILE 2: Pattern source driven by pattern command
v1 1 0 pat (5 0 0n 1n 1n 5n [a1 b0011] r=1 rb=1) 
.PAT a1=[b1010 b0101] r=0 rb=1

The final pattern source is:

b1010 b0101 b0011 b1010 b0101 b0011

A pattern source can reference the a1 which is a predefined NS.

Workaround to 1024 Character Limitation for Long Pattern 
Sources
HSPICE limits pattern sources to 1024 characters, including the.PAT 
statement. To work around this limitation, you can define multiple pattern 
statements and combine them using another pattern statement.

Example
To combine the patterns, first define several separate patterns such as:

.pat p1=b10000000001000100001100100001010011000111

.pat p2=b0100001001010100101101100011010111001111

.pat p3=b1000010001100101001110100101011011010111

Next, define another pattern source that combines the previous ones

.pat p4=p1 p2 p3

Finally, use the combined pattern source in your source statement:

V1 1 0 pat (5 0 0n 20p 30p 200p p4)
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Pseudo Random-Bit Generator Source
HSPICE Pseudo Random Bit Generator Source (PRBS) function, in an 
independent voltage or current source. You can use this function in several 
applications from cryptography and bit-error-rate measurement, to wireless 
communication systems employing spread spectrum or CDMA techniques. 
PRBS uses a Linear Feedback Shift Register (LFSR) to generate a pseudo 
random bit sequence. (HSPICE supports eight-bit data byte conversion to a 10-
bit transmission character—8B/10B encoding for the LFSR keyword.) 

Vxxx n+ n- LFSR [(] vlow vhigh tdelay trise tfall rate seed 
+ [taps] [rout=val] [ENCODE=DW8b10b] [RD_INIT=0|1] [)]
Ixxx n+ n- LFSR [(] vlow vhigh tdelay trise tfall rate seed 
+ [taps] [rout=val] [ENCODE=DW8b10b] [RD_INIT=0|1] [)]

Parameter Description

LFSR Specifies the voltage or current source as PRBS.

vlow The minimum voltage or current level.

vhigh The maximum voltage or current level.

tdelay Specifies the initial time delay to the first transition.

trise Specifies the duration of the onset ramp (in seconds) from the initial value to the pulse 
plateau value (reverse transit time).

tfall Specifies the duration of the recovery ramp (in seconds) from the pulse plateau back to the 
initial value (forward transit time).

rate The bit rate.

seed The initial value (in integer form) of the LFSR loaded into the shift register. Because the 
operation of the register is deterministic, its current (or previous) state completely 
determines the stream of values produced by the register. 

taps The bits used to generate feedback.

rout The output resistance.

ENCODE=D
W8b10b

Keyword to specify 8b/10b encoding.
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Example 1
The following example shows the pattern source that connects node in and 
node gnd.

Example of LFSR, output is 1100011111001101:

vin out gnd LFSR (0 1 0 1n 1n 10meg 3 [2, 5] rout=10)
.option POST
.tran 10p 10u
.end

Where,
■ The output low voltage is 0 , and the output high voltage is 1 v.
■ The delay time is 0 ms.
■ The rise and fall times are each 1 ns.
■ The bit rate is 10meg bits/s.
■ The seed is 3 (bits: 00011).
■ The taps are at the output of the 2nd and 5th shift registers and are XOR'd 

together as the input to the first shift register.
■ The output resistance is 10 ohm.

Example 2
The following example shows the pattern source connected between node 1 
and node 0:

.PARAM td1=2.5m tr1=2n 
vin 1 0 LFSR (2 4 td1 tr1 1n 6meg 2 [10, 5, 3, 2])

Where,
■ The output low voltage is 2 v, and the output high voltage is 4 v.
■ The delay is 2.5 ms.
■ The rise time is 2 ns, and the fall time is 1 ns.

RD_INIT=0|
1

Initial value of Running Disparity. The one bit memory that recalls the bias of the last 
unbalanced code word is the Running Disparity.1: Specifies that a Running Disparity value 
of zero is synonymous with negative Running Disparity (?).
■ 0: Specifies that a Running Disparity value of one is synonymous with negative 

Running Disparity (-)
■ 1: Specifies that a Running Disparity value of one is synonymous with positive Running 

Disparity (+).

Parameter Description
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■ The bit rate is 6meg bits/s.
■ The seed is 2.
■ The taps are [10, 5, 3, 2].
■ The output resistance is 0 ohm.

Example 3
This example uses demonstration netlist prbs.sp, which is available in 
directory $installdir/demo/hspice/sources:

* prbs.sp 
.OPTION POST 
.TRAN 0.5n 50u 
V1 1 0 LFSR (0 1 1u 1n 1n 10meg 1 [5, 2] rout=10) 
R1 1 0 1 
.END

Example 4
To generate a PRBS source that includes jitter, use the following steps:

1. Construct your usual linear feedback shift register (LFSR) generator.

2. Construct a matching (T,tr,tf) PULSE source as a clock, but add jitter to it 
with the PERJITTER keyword.

3. Use the PULSE source to gate (buffer) the LFSR output (through an ideal 
AND gate, VCCS, or similar function).

The following sections discuss these topics:
■ Linear Feedback Shift Register
■ Conventions for Feedback Tap Specification
■ Example: Noise Generator Used for a Pulse or DC Level

Linear Feedback Shift Register 
A LFSR consists of several simple-shift registers in which a binary-weighted 
modulo-2 sum of the taps feeds back to the input. The modulo-2 sum of two1-
bit binary numbers yields 0 if the two numbers are identical and 1 if the differ is 
0+0=0, 0+1=1, or 1+1=0. See Figure 33 on page 249.
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Figure 33 LFSR Diagram

For any given tap, the weight “gi” is either 0, (meaning “no connection”), or 1, 
(meaning it feeds back). Two exceptions are g0 and gm, which are always 1 
and therefore always connected. The gm is not really a feedback connection, 
but rather an input-assigned feedback weight of the shift register for 
mathematical purposes.

The first number in your TAPS definition defines the maximum number of bits. 
For example [23, 22, 21, 20, 19, 7] denotes a 23-stage LFSR. The TAPS 
definition is a specific feedback tap sequence that generates an
M-Sequence PRB. The LFSR stages can range from 2 to 64 bits. You cannot 
set the seed to zero; HSPICE reports an error and exits the simulation if you set 
the seed to zero.

Conventions for Feedback Tap Specification 
You can express a given set of feedback connections in a convenient and easy-
to-use shorthand form with the connection numbers listed within a pair of 
brackets. The g0 connection is implied and not listed since it is always 
connected. Although gm is also always connected, it is listed to convey the shift 
register size (number of registers).

The following line is a set of feedback taps where j is the total number of 
feedback taps (not including g0), f(1)=m is the highest-order feedback tap (and 
the size of the LFSR), and f(j) are the remaining feedback taps:

[f(1), f(2), f(3), ..., f(j)] 

output

g(m)

input

g(1) g(2) g(m-1)g(0)

D(n)

D(1)D(2)D(n-2)D(n-1)
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Example
The following line shows that the number of registers is 7 and the total number 
of feedback taps is 4:

[7, 3, 2, 1]

The following feedback input applies for this specification: 

D(n)=[D(n-7)+D(n-3)+D(n-2)+D(n-1)] mod 2 

Example: Noise Generator Used for a Pulse or DC Level
The following example creates a DC source voltage with a random noise of 
0.1v max amplitude in a spice stimulus.

* Generate transient noise to pulse or DC source
.options post=2 probe
* instantiate the noise generator
x_noise n_noise 0 tr_nsrc
r_load  n_noise 0 1k
* Add noise to a clock signal
*v_clk clk 0 pulse (0 1.8 10n 10n 10n 90n 200n)
* or add noise to DC level...
v_clk clk 0 5
* Add the noise. Amplitude is .1v
E_jtr clk_jtr clk VCVS n_noise 0 0.1
.tran 1n 500n
.probe tran v(n_noise) v(clk) v(clk_jtr)
.subckt tr_nsrc np nn  $ subcircuit generating transient noise
**********************************************************
*** To make the nature of output signal more random   ****
*** generate 10 separate PRBS sources and sum them up ****
**********************************************************
v1 n1 nn LFSR (0 1 0p 5p 5p 2g 10001 [10,9,6,3,1] )
v2 n2 nn LFSR (0 1 0p 5p 5p 2g 5313 [10,9,6,3,1] )
v3 n3 nn LFSR (0 1 0p 5p 5p 2g 9 [10,9,6,3,1] )
v4 n4 nn LFSR (0 1 0p 5p 5p 2g 213 [10,9,6,3,1] )
v5 n5 nn LFSR (0 1 0p 5p 5p 2g 741 [10,9,6,3,1] )
v6 n6 nn LFSR (0 1 0p 5p 5p 2g 397 [10,9,6,3,1] )
v7 n7 nn LFSR (0 1 0p 5p 5p 2g 4793 [10,9,6,3,1] )
v8 n8 nn LFSR (0 1 0p 5p 5p 2g 7039 [10,9,6,3,1] )
v9 n9 nn LFSR (0 1 0p 5p 5p 2g 12031 [10,9,6,3,1] )
va na nn LFSR (0 1 0p 5p 5p 2g 50071 [10,9,6,3,1] )
******************************************
*** Sum up the 10 random pulse signals ***
******************************************
esum ns nn POLY(10) n1 nn n2 nn n3 nn n4 nn n5 nn n6 nn n7 nn n8 
nn n9 nn na nn 
+ 0 1 1 1 1 1 1 1 1 1 1
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*** Filter out the DC component of the summed voltage ***
cs ns out 1p
rs out nn 1k
*** Insert two sets of RC filter to smooth the  ***
*** edges and eliminate high frequency components ***
e_1 nout_f1 nn vcvs out nn 1
rf1 nout_f1 no_f1 2k
cf1 no_f1 nn .35p 
e_2 nout_f2 nn vcvs no_f1 nn 1
rf2 nout_f2 np 2k
cf2 np nn .35p 
.ends
.end

Voltage and Current Controlled Elements

HSPICE provides two voltage-controlled and two current-controlled elements, 
known as E-, G-, H-, and F-elements. You can use these controlled elements to 
model:
■ MOS transistors
■ Bipolar transistors
■ Tunnel diodes
■ SCRs
■ Analog functions, such as:

• operational amplifiers

• summers

• comparators

• voltage-controlled oscillators

• modulators

• switched capacitor circuits

Depending on whether you used the polynomial or piecewise linear functions, 
the controlled elements can be:
■ Linear functions of controlling-node voltages.
■ Non-linear functions of controlling-node voltages.
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■ Linear functions of branch currents.
■ Non-linear functions of branch currents.

The functions of the E, F, G, and H controlled elements are different. 
■ The E-element can be:

• A voltage-controlled voltage source

• A behavioral voltage source

• An ideal op-amp.

• An ideal transformer.

• An ideal delay element.

• A piecewise linear, voltage-controlled, multi-input AND, NAND, OR, or 
NOR gate.

■ The F-element can be:

• A current-controlled current source.

• An ideal delay element.

• A piecewise linear, current-controlled, multi-input AND, NAND, OR, or 
NOR gate.

■ The G-element can be:

• A voltage-controlled current source.

• A behavioral current source.

• A voltage-controlled resistor.

• A piecewise linear, voltage-controlled capacitor.

• An ideal delay element.

• A piecewise linear, multi-input AND, NAND, OR, or NOR gate.
■ The H-element can be:

• A current-controlled voltage source.

• An ideal delay element.

• A piecewise linear, current-controlled, multi-input AND, NAND, OR, or 
NOR gate.

The next section describes polynomial and piecewise linear functions. Later 
sections describe element statements for linear or nonlinear functions. For full 
PWL examples, see PWL/DATA/VEC Converter on page 436.
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The following sections discuss these topics:
■ Polynomial Functions
■ Piecewise Linear Function

Polynomial Functions
You can use the controlled element statement to define the controlled output 
variable (current, resistance, or voltage), as a polynomial function of one or 
more voltages or branch currents. You can select several polynomial equations, 
by using the POLY(NDIM) parameter in the E, F, G, or H-element statement. 
Syntax can be either POLY=INTEGER_NUMBER or POLY(INTEGER_NUMBER)

For example, either of the following are legitimate statements for an E-element 
instance with the POLY function:

E1 e1 0 POLY=2 e11 0 e12 0 1 2 3

or:

E1 e1 0 POLY(2) e11 0 e12 0 1 2 3

Polynomial values can be:

Each polynomial equation includes polynomial coefficient parameters (P0, P1 
… Pn), which you can set to explicitly define the equation.

One-Dimensional Function
If the function is one-dimensional (a function of one branch current or node 
voltage), the following expression determines the FV function value: 

Value Description

POLY(1) One-dimensional equation (function of one controlling variable).

POLY(2) Two-dimensional equation (function of two controlling variables).

POLY(3) Three-dimensional equation (function of three controlling variables).

POLY(n) Multi-dimensional equation (function of n controlling variables). HSPICE advanced 
analog analyses has a maximum allowable dimension limit of 3. 
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Equation 11

Note: If you specify one coefficient in a one-dimensional polynomial, 
HSPICE assumes that the coefficient is P1 (P0=0.0). Use this as 
input for linear controlled sources.

The following controlled source statement is a one-dimensional function. This 
voltage-controlled voltage source connects to nodes 5 and 0. 

E1 5 0 POLY(1) 3 2 1 2.5

In the above source statement, the single-dimension polynomial function 
parameter, POLY(1), informs HSPICE that E1 is a function of the difference of 
one nodal voltage pair. In this example, the voltage difference is between nodes 
3 and 2, so FA=V(3,2). 

The dependent source statement then specifies that P0=1 and P1=2.5. From 
the one-dimensional polynomial equation above, the defining equation for 
V(5,0) is:

Equation 12

You can also express V(5,0) as E1:

Equation 13

Two-Dimensional Function
If the function is two-dimensional (that is, a function of two node voltages or two 
branch currents), the following expression determines FV: 

Parameter Description

FV Controlled voltage or current from the controlled source.

P0. . .PN Coefficients of a polynomial equation.

FA Controlling branch current, or nodal voltage.

FV P0 P1 FA  P2 FA2  P3 FA3  P4 FA4  P5 FA5  …+ + + + + +=

V 5 0  1 2.5 V 3 2( , )+=

E1 1 2.5 V 3 2( , )+=
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Equation 14

For a two-dimensional polynomial, the controlled source is a function of two 
nodal voltages or currents. To specify a two-dimensional polynomial, set 
POLY(2) in the controlled source statement. 

For example, generate a voltage-controlled source that specifies the controlled 
voltage, V(1,0), as:

Equation 15

or:

Equation 16

To implement this function, use this controlled-source element statement: 

E1 1 0 POLY(2) 3 2 7 6 0 3 0 0 0 4

This example specifies a controlled voltage source, which connects between 
nodes 1 and 0. Two differential voltages control this voltage source:
■ Voltage difference between nodes 3 and 2.
■ Voltage difference between nodes 7 and 6.

That is, FA=V(3,2), and FB=V(7,6). The polynomial coefficients are:
■ P0=0
■ P1=3
■ P2=0
■ P3=0
■ P4=0
■ P5=4

Three-Dimensional Function
For a three-dimensional polynomial function, with FA, FB, and FC as its 
arguments, the following expression determines the FV function value: 

FV P0 P1 FA  P2 FB  P3 FA
2  P4 FA FB   P5 FB

2 
P6 FA

3  P7 FA
2

FB   P8 FA FB
2   P9 FB

3  ...
+ + + + +

+ + + + +
=

V 1 0  3 V 3 2( , ) 4 V 7 6( , )2+=

E1 3 V 3 2( , ) 4 V 7 6( , )2+=
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Equation 17

For example, generate a voltage-controlled source that specifies the voltage 
as: 

Equation 18

or:

Equation 19

The resulting three-dimensional polynomial equation is:

Substitute these values into the voltage controlled voltage source statement:

E1 1 0 POLY(3) 3 2 7 6 9 8 0 3 0 0 0 0 0 4 0 0 0 0 0 0 
+ 0 0 0 0 0 5

The preceding example specifies a controlled voltage source, which connects 
between nodes 1 and 0. Three differential voltages control this voltage source: 
■ Voltage difference between nodes 3 and 2.
■ Voltage difference between nodes 7 and 6.
■ Voltage difference between nodes 9 and 8.

FV P0 P1 FA  P2 FB  P3 FC  P4 FA2 + + + +=

P5 FA FB   P6 FA FC   P7 FB2  P8 FB FC  + + + +

P9 FC2  P10 FA3  P11 FA2 FB   P12 FA2 FC  + + + +

P13 FA FB2   P14 FA FB FC    P15 FA FC2  + + +

P16 FB3  P17 FB2 FC   P18 FB FC2  + + +

P19 FC3  P20 FA4  …+ + +

V 1 0  3 V 3 2( , ) 4 V 7 6( , )2 5 V 9 8( , )3+ +=

E1 3 V 3 2( , ) 4 V 7 6( , )2 5 V 9 8( , )3+ +=

FA V 3 2( , )=

FB V 7 6( , )=

FC V 9 8( , )=

P1 3=

P7 4=

P19 5=
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That is:
■ FA=V(3,2)

■ FB=V(7,6)

■ FC=V(9,8)

The statement defines the polynomial coefficients as:
■ P1=3
■ P7=4
■ P19=5
■ Other coefficients are zero.

N-Dimensional Function
Express an N-dimensional polynomial function as:

Equation 20

where, , represent the k independent controlling branch 

current, or nodal voltage, and  are the 

coefficients.

Piecewise Linear Function
You can use the one-dimensional piecewise linear (PWL) function to model 
special element characteristics, such as those of:
■ Tunnel diodes
■ Silicon-controlled rectifiers
■ Diode breakdown regions

To describe the piecewise linear function, specify measured data points. 
Although data points describe the device characteristic, HSPICE automatically 
smooths the corners, to ensure derivative continuity. This, in turn, results in 
better convergence. 

FV p0 pijFx1 p2jFx2 ____ pijFxk+ + + j

j 1–

k

+=

Fx1, Fx2, Fk

pij, i 1 2 k  1 2 n = =
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The DELTA parameter controls the curvature of the characteristic at the 
corners. The smaller the DELTA, the sharper the corners are. The maximum 
DELTA limits to half of the smallest breakpoint distance. If the breakpoints have 
sufficient separation, specify the DELTA to a proper value. 
■ You can specify up to 100 point pairs. 
■ You must specify at least two point pairs (each point consists of an x and a 

y coefficient).

To model bidirectional switch or transfer gates, G-elements use the NPWL() 
and PPWL() functions, which behave the same way as NMOS and PMOS 
transistors. 

You can also use the piecewise linear function to model multi-input AND, 
NAND,OR, and NOR gates. In this usage, only one input determines the state 
of the output. 
■ In AND and NAND gates, the input with the smallest value determines the 

corresponding output of the gates. 
■ In OR and NOR gates, the input with the largest value determines the 

corresponding output of the gates.

Power Sources

These sections describe independent power sources and controlled power 
sources.

The following sections discuss these topics:
■ Independent Sources
■ Controlled Sources

Independent Sources
A power source is a special kind of voltage or current source that supplies the 
network with a pre-defined power which varies by time or frequency. The 
source produces a specific input impedance.

To apply a power source to a network, you can either one of the following:
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■ A Norton-equivalent circuit (if you specify this circuit and a current source)—
the I (current source) element 

■ A Thevenin-equivalent circuit (if you specify this circuit and a voltage 
source)—the V (voltage source) element 

As with other independent sources, an HSPICE simulation assumes that 
positive current flows from the positive node through the source to the negative 
node. A power source is a time-variant or frequency-dependent utility source; 
therefore, the value/phase can be a function of either time or frequency.

A power source is a subclass of the independent voltage/current source, with 
some additional keywords or parameters:

You can use I and V elements in DC, AC, and transient analysis. The I and V 
elements can be data-driven. Supported power source formats include:
■ DC 
■ SIN, a damped sinusoidal function.

The following sections discuss these topics:
■ Using the Keyword POWER
■ Calculation for Total Dissipated Power and for Voltage Source Power
■ Subcircuit Power Calculation

Using the Keyword POWER
If you use the POWER keyword in the netlist, then a simulation recognizes a 
current/voltage source as a power source:

Vxxx n+ n- [[DC=] dcval tranfun [AC=acmag acphase]]
+ power=[0|1|2|w|dbm]
Ixxx n+ n- [[DC=] dcval tranfun [AC=acmag acphase]]
+ power=[0|1|2|w|dbm] [M=val]

Parameter Description

DC=dcval DC source keyword and value in volts. Used for the operating point calculation for all 
simulations except transient. Transient analysis calculates an additional operating 
point with the tranfun value at time zero. Default=0.0.

tranfun Transient source function (When POWER is on, transient source function only 
supports SIN). The functions specify the characteristics of a time-varying source. 
See the individual functions for syntax.

AC  AC source keyword for use in AC small-signal analysis.
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Example 1

This example applies a 5-W power source to node 10 and node 20, in a 
Thevenin-equivalent manner. The impedance of this power source is 50 ohms.

V11 10 20 power=1 dc=5

Example 2

This example applies a 20-dbm power source to node 1 and to ground, in a 
Norton-equivalent manner. The source impedance is 50 ohms.

Iname 1 0 power=2 dc=20

Example 3

This example applies a 1 dbm (available) AC power source to node 1 and 
ground, in a Thevenin-equivalent manner. The impedance of this power source 
is 50 ohms.

V11 1 0 power=dbm ac=1

Example 4

This example applies a 1-W (available) sinusoidal power source to node 1 and 
0, in a Norton-equivalent manner. The source impedance is 50 ohms.

Iname 1 0 power=w sin(0 1 1k)

acmag Magnitude (RMS) of the AC source in volts or in watts or dbms when the power 
switch is turned on.

acphase Phase of the AC source, in degrees. Default=0.0.

power=[0 | 1 | 
2 | W | dbm]

Power switch
■ When 0 (default), element treated as a voltage or current source.
■ When 1 or W, the element is treated as a power source, and realized as a voltage 

source with a series impedance or a current source with a parallel impedance. In 
this case, the source value is interpreted as RMS available power in units of 
watts.

■ When 2 or dbm, the element is treated as a voltage source with a series 
impedance or a current source with a parallel impedance. Values are in dbms. 
You can use this parameter for transient analysis if the power source is either DC 
or SIN. When POWER is on, a 50-ohm source impedance is added 
automatically.

Parameter Description
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Calculation for Total Dissipated Power and for Voltage Source 
Power
You can use two keywords to calculate power:
■ The POWER keyword calculates the total dissipated power of the circuit.
■ The SRC_PWR keyword calculates the total power from the voltage source of 

the circuit.

 For example, if you have the following circuit:

********************************
vvdd vdd 0 5
vin in 0 pulse(0 5 0 1n 1n 4n 10n)
rout out 0 10k
cout out 0 cload
x1 in out inv
.subckt inv in out
mn out in 0 0 nch W=10u L=1u
mp out in vdd vdd pch W=10u L=1u
********************************

...you can use .MEAS TRAN POWER to calculate the total dissipated power in 
resistors. The total dissipated power is p(r0) + p(r1). 

You can use .MEAS TRAN SRC_PWR to calculate the total power from the 
voltage source. The total power from the voltage source is 
p(r0) + p(r1) + p(c0). HSPICE can verify this with the following 
statement:

.print tran tot_pwr=par('p(r0) + p(r1) + p(c0)')

Note that HSPICE does not add the power of each independent source (V and 
I).

For power measurements, HSPICE computes the dissipated or stored power in 
each passive element (R, L, C), and source (V, I, G, E, F, and H). To compute 
this power, HSPICE multiplies the voltage across an element and the 
corresponding branch current. However, for semiconductor devices, HSPICE 
measures only the dissipated power, excluding the power stored in the device 
junction or parasitic capacitances from the device power computation. The 
avg(P(Vdd)) function measures both the dissipated power and the stored 
power while avg(P(X)) measures only the dissipated power for semiconductor 
devices. If the circuit contains semiconductor devices, the results of the 
avg(P(X)) function can be erroneous. The recommended method to measure 
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the average power of the entire circuit in this case is to measure the average 
power of the source by using the avg(P(Vdd)) function.

Subcircuit Power Calculation
To print or probe an element or subcircuit power, use the variables, 
P(element_name) or P(instance_name_of_subckt). For example, if 
you have the following circuit:

vvdd vdd 0 5
vin in 0 pulse(0 5 0 1n 1n 4n 10n)
rout out 0 10k
cout out 0 cload
x1 in out inv
.subckt inv in out
mn out in 0 0 nch W=10u L=1u
mp out in vdd vdd pch W=10u L=1u

The total circuit POWER is -( p(vin) + p(vvdd) ), which is equal to 
p(rout)+p(cout)+p(x1). You can verify this by using the parameter 
expression. 

Measuring Leakage Power
When you probe P(Instance_name), HSPICE includes the gate tunneling 
current in the power function calculations.

Troubleshooting Differences in Rise/Fall Power Input Signals and Power 
Measurements
You may note a difference between the AVG power calculations for the rise time 
and fall time for input signals. There should not be a difference. However, if you 
measure the AVG subcircuit power using P(Instance_name) for an inverter 
subcircuit, for example, you may note that HSPICE excludes the energy stored 
in the output and includes the energy discharged from the capacitor for fall 
time. 

If there is any difference in the measured results, try running the simulation with 
the most accurate settings by setting .OPTION RUNLVL=6. In addition, you 
can set .OPTION DELMAX to the minimum rise or fall time of your circuit.

Controlled Sources
In addition to independent power sources, you also can create four types of 
controlled sources:
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■ Voltage-controlled voltage source (VCVS), or E-element
■ Current-controlled current source (CCCS), or F-element
■ Voltage-controlled current source (VCCS), or G-element
■ Current-controlled voltage source (CCVS), or H-element

Voltage-Dependent Voltage Sources — E-elements

This section explains E-element syntax statements and defines their 
parameters. 

Voltage-Controlled Voltage Source (VCVS)
The following sections discuss these topics:
■ Linear
■ Polynomial (POLY)
■ Piecewise Linear (PWL)
■ Multi-Input Gates
■ Delay Element
■ Laplace Transform
■ Pole-Zero Function
■ Frequency Response Table
■ Foster Pole-Residue Form
■ Behavioral Voltage Source (Noise Model)
■ Ideal Op-Amp
■ Ideal Transformer
■ E-element Parameters

Linear
Exxx n+ n- [VCVS] in+ in- gain [MAX=val] [MIN=val] 
+ [SCALE=val] [TC1=val] [TC2=val] [ABS=1] [IC=val]
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For a description of these parameters, see E-element Parameters on page 271.

Polynomial (POLY)
Exxx n+ n- [VCVS] POLY(NDIM) in1+ in1- ... 
+ inndim+ inndim-TC1=val [TC2=val] [SCALE=val] 
+ [MAX=val] [MIN=val] [ABS=1] p0 p1… [IC=val]

In this syntax, dim (dimensions) 3. HSPICE has no limitation for dimensions 
while the HSPICE advanced analog analyses maximum dimensions are 3. 
Otherwise, HSPICE reports an error message. For a description of these 
parameters, see E-element Parameters on page 271. For a description of 
possible POLY syntaxes, see Polynomial Functions on page 253.

Piecewise Linear (PWL)
Exxx n+ n- [VCVS] PWL(1) in+ in- [DELTA=val] 
+ [SCALE=val] [TC1=val] [TC2=val] x1,y1 x2,y2 ...   
+ x100,y100 [IC=val]

For a description of these parameters, see E-element Parameters on page 271.

Multi-Input Gates
Exxx n+ n- [VCVS] gatetype(k) in1+ in1- ... inj+ inj- 
+ [DELTA=val] [TC1=val] [TC2=val] [SCALE=val] 
+ x1,y1 ...   x100,y100 [IC=val] 

In this syntax, gatetype(k) can be AND, NAND, OR, or NOR gates. For a 
description of these parameters, see E-element Parameters on page 271.

Delay Element
Exxx n+ n- [VCVS] DELAY in+ in- TD=val [SCALE=val] 
+ [TC1=val] [TC2=val] [NPDELAY=val]

For a description of these parameters, see E-element Parameters on page 271.

Laplace Transform
Voltage Gain H(s):

Exxx n+ n- LAPLACE in+ in-   k0, k1, ..., kn / d0, d1, ..., dm
+ [SCALE=val] [TC1=val] [TC2=val]

For a description of these parameters, see E-element Parameters on page 271.
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Transconductance H(s):

Gxxx n+ n- LAPLACE in+ in-   k0, k1, ..., kn / d0, d1, ..., dm 
+ [SCALE=val] [TC1=val] [TC2=val] [M=val]

H(s) is a rational function, in the following form:

Equation 21

You can use parameters to define the values of all coefficients (k0, k1, ..., d0, 
d1, ...).

For a description of the G-element parameters, see G-element Parameters on 
page 286.

Example
Glowpass 0 out LAPLACE in 0   1.0 / 1.0 2.0 2.0  1.0
Ehipass out 0 LAPLACE in 0 0.0,0.0,0.0,1.0 / 1.0,2.0,2.0,1.0

The Glowpass element statement describes a third-order low-pass filter with 
the transfer function:

Equation 22

The Ehipass element statement describes a third-order high-pass filter with 
the transfer function:

Equation 23

For full demonstration netlists using E-elements for Laplace transforms, use the 
paths shown as follows in Filters Examples on page 1081:
■ lowloss.sp (RL line model using Laplace behavioral element)
■ rcline.sp (RC line model using Laplace elements)
■ ninth.sp (active low pass filter using Laplace elements)

H s 
k0 k1s  knsn+ + +

d0 d1s  dmsm+ + +
---------------------------------------------------=

H s  1
1 2s 2s2 s3+ + +
----------------------------------------=

H s  s3

1 2s 2s2 s3+ + +
----------------------------------------=
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Pole-Zero Function
Voltage Gain H(s):

Exxx n+ n- POLE in+ in- a az1, fz1, ..., azn, fzn / b, 
+ ap1, fp1, ..., apm, fpm [SCALE=val] [TC1=val]
+ [TC2=val]

For a description of these parameters, see E-element Parameters on page 271.

Transconductance H(s):

Gxxx n+ n- POLE in+ in- a az1, fz1, ..., azn, fzn / b,
+ ap1, fp1, ..., apm, fpm [SCALE=val] [TC1=val]
+ [TC2=val] [M=val]

The following equation defines H(s) in terms of poles and zeros:

Equation 24

The complex poles or zeros are in conjugate pairs. The element description 
specifies only one of them, and the program includes the conjugate. You can 
use parameters to specify the a, b, , and f values.

For a description of the G-element parameters, see G-element Parameters on 
page 286.

Example
Ghigh_pass 0 out POLE in 0 1.0 0.0,0.0 / 1.0 0.001,0.0
Elow_pass out 0 POLE in 0 1.0 / 1.0, 1.0,0.0 0.5,0.1379

The Ghigh_pass statement describes a high-pass filter with the transfer 
function:

Equation 25

The Elow_pass statement describes a low-pass filter with the transfer 
function:

Equation 26

H s 
a s z1 j2fz1–+  s zn j2fzn–+  s zn j2fzn+ + 

b s p1 j2fp1–+  s pm j2fpm–+  s pm j2fpm+ + 
-------------------------------------------------------------------------------------------------------------------------------------------------------=

H s  1.0 s 0.0 j 0.0+ + 
1.0 s 0.001 j 0.0+ + 
-----------------------------------------------------------=

H s  1.0
1.0 s 1+  s 0.5 j2 0.1379+ +  s 0.5 j2 0.1379 –+ 
----------------------------------------------------------------------------------------------------------------------------------------------------=
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For a full demonstration netlist of the G- and E-elements used in a behavioral 
model, use the path shown for low_pass.sp in Filters Examples on 
page 1081.

Frequency Response Table
Voltage Gain H(s):

Exxx n+ n- FREQ in+ in- f1, a1, f1, ..., fi, ai, f1 
+ [DELF=val] [MAXF=val] [SCALE=val] [TC1=val]
+ [TC2=val] [LEVEL=val] [ACCURACY=val]

For a description of these parameters, see E-element Parameters on page 271

Transconductance H(s):

Gxxx n+ n- FREQ in+ in- f1, a1, f1, ..., fi, ai, f1
+ [DELF=val] [MAXF=val] [SCALE=val] [TC1=val]
+ [TC2=val] [M=val] [LEVEL=val] [ACCURACY=val]

where:
■ Each fi is a frequency point, in hertz.
■ ai is the magnitude, in dB.
■ f1 is the phase, in degrees. 

At each frequency, HSPICE uses interpolation to calculate the network 
response, magnitude, and phase. HSPICE interpolates the magnitude (in dB) 
logarithmically as a function of frequency. It also interpolates the phase (in 
degrees) linearly as a function of frequency.

Equation 27

Equation 28

For a description of the G-element parameters, see G-element Parameters on 
page 286.

H j2f 
ai ak–

filog fklog–
----------------------------- 
  flog filog–  ai+=

H j2f 
i k–

fi fk–
--------------- 
  f fi–  i+=
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Example
Eftable output   0 FREQ input   0 
+ 1.0k   -3.97m   293.7
+ 2.0k   -2.00m   211.0
+ 3.0k   17.80m   82.45
+ ...... ...
+ 10.0k -53.20    -1125.5

■ The first column is frequency, in hertz.
■ The second column is magnitude, in dB.
■ The third column is phase, in degrees. 

Set the LEVEL to 1 for a high-pass filter.

Set the last frequency point to the highest frequency response value that is a 
real number with zero phase. 

You can use parameters to set the frequency, magnitude, and phase in the 
table.

For a full demonstration file showing a behavioral model using a G- table 
element, see the path to the demo file phaseshift.sp in Filters Examples on 
page 1081.

Foster Pole-Residue Form
Gain E(s) form

Exxx n+ n- FOSTER in+ in- k0 k1
+ (Re{A1}, Im{A1})/ (Re{p1}, Im{p1})
+ (Re{A2}, Im{A2})/ (Re{p2}, Im{p2})
+ (Re{A3}, Im{A3})/ (Re{p3}, Im{p3})
+ ...

For a description of these parameters, see E-element Parameters on page 271.

Transconductance G(s) form:

Gxxx n+ n- FOSTER in+ in- k0 k1
+ (Re{A1}, Im{A1})/ (Re{p1}, Im{p1})
+ (Re{A2}, Im{A2})/ (Re{p2}, Im{p2})
+ (Re{A3}, Im{A3})/ (Re{p3}, Im{p3})
+ ...

In the above syntax, parenthesis, commas, and slashes are separators—they 
have the same meaning as a space. Four numbers represent a pole-residue 
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pair (real and imaginary part of the residue, then real and imaginary part of the 
pole).

You must ensure that Re[pi]<0; otherwise, the simulations diverge. Also, ensure 
passivity of the model (for an N-port admittance matrix Y, Re{Y} should be 
positive-definite), or the simulation is likely to diverge.

For a description of the G-element parameters, see G-element Parameters on 
page 286.

Example
To represent a G(s) in the form:

Equation 29

You would input:

G1 1 0 FOSTER 2 0 0.001 1e-12 
+(0.0004, 0)/(-1e10, 0) (0.001, -0.006)/(-1e8, 1.8e10)

Note: For real poles, enter half the residue value because the netlist 
applies it twice. In the above example, the first pole-residue pair 
is real. You write it as “A1/(s-p1)+A1/(s-p1)”; therefore, enter 
0.0004 rather than 0.0008.

Behavioral Voltage Source (Noise Model)
You can implement a behavioral voltage noise source with an E-element. As 
noise elements, these are two-terminal elements that represent a noise source 
connected between two specified nodes. The E-element specifies a voltage 
noise source with the noise value V2/HZ. The noise source can be bias- and/or 
frequency-dependent. 

For noise sources using expressions, the E-element takes the form:

Exxx n+ n- noise=’expression’

where Exxx is the voltage-controlled element name, which must begin with “E”, 
followed by up to 1023 alphanumeric and special characters.
n+ is the positive node.

G s  0.001 1 10
12–

s
0.0008

s 1 10
10+

---------------------------- 0.001 j0.006– 

s 1 10
8

j1.8 10
10+– –

-------------------------------------------------------------------

0.001 j0.006+ 

s 1 10
8

j1.8 10
10–– –

------------------------------------------------------------------

+ + ++=
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n- is the negative node.
noise=’expression’ can contain the bias, frequency, or other parameters.

Data form:

Exxx n+ n- noise data=dataname
.DATA dataname
+ pname1 pname2
+ freq1 noise1
+ freq2 noise2
+ ...
.enddata

The data form defines a basic frequency-noise table. The .DATA statement 
contains two parameters: frequency and noise to specify the noise value at 
each frequency point. The unit for frequency is hertz, and the unit for noise is 
decibels relative to the carrier (dBc/Hz). Noise files report the same units. See 
also, Using Noise Analysis Results as Input Noise Sources on page 314.

HSPICE supports the following syntaxes:
■ Exxx n1 n2 noise data=dataname

■ Exxx n1 n2 noise data=datablock

■ Exxx n1 n2 noisefile='filename'

■ Exxx n1 n2 noise='expression'

■ Exxx n1 n2 noise='Table(arg1,f1,v1,f2,v2...)'
■ Exxx n1 n2 noise='Table(arg1,dotDataBlockName)', where 

dotDataBlockName is the .data statement reference

Ideal Op-Amp
Exxx n+ n- OPAMP in+ in- 

You can also substitute LEVEL=1 in place of OPAMP:

Exxx n+ n- in+ in- level=1

For a description of these parameters, see E-element Parameters on page 271.

Ideal Transformer
Exxx n+ n- TRANSFORMER in+ in- k

You can also substitute LEVEL=2 in place of TRANSFORMER:

Exxx n+ n- in+ in- level=2 k 
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For a description of these parameters, see E-element Parameters on page 271.

Figure 34 Equivalent VCVS and Ideal Transformer HSPICE Models

E-element Parameters
The following list describes the E-element parameters:

Note: In syntax diagrams, if a parameter is not shown as required or 
optional, it is not supported.

Parameter Description

ABS Output is an absolute value, if ABS = 1.

ACCURACY Used only with the frequency response table.
■ 0: Default. This method generates more accurate results and achieves better 

performance.
■ 1: Provides more accurate results for frequency table forms, as compared to 

ACCURACY=0.

DELAY Keyword for the delay element. Same as for the voltage-controlled voltage source, except 
it has an associated propagation delay, TD. This element adjusts propagation delay in 
macro (subcircuit) modeling.

DELAY is a reserved word; do not use it as a node name.

<=>

I2I1

V2V1

k:1 I2I1

V2V1

I1=k*I2 V1=k*V2

+
-

<=>V2V1
V2=g*V2

V2+
-

V1

+
-

..

VCVS (op-amp) with Gain = g

Ideal transformer with ratio K

Equivalent HSPICE model

Equivalent HSPICE model
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DELTA Controls the curvature of the piecewise linear corners. This parameter defaults to one-
fourth of the smallest distance between breakpoints. The maximum is one-half of the 
smallest distance between breakpoints.

Exxx Voltage-controlled element name. Must begin with E followed by up to 1023 
alphanumeric and special characters.

gain Voltage gain.

gatetype(k) Can be AND, NAND, OR, or NOR. k represents the number of inputs of the gate. x and 
y represent the piecewise linear variation of output as a function of input. In multi-input 
gates, only one input determines the state of the output.

IC Initial condition: initial estimate of controlling voltage values. If you do not specify IC, the 
default = 0.0.

in +/- Positive or negative controlling nodes. Specify one pair for each dimension.

k Ideal transformer turn ratio: or number of gates input.

MAX Maximum output voltage value. The default is undefined and sets no maximum value.

MIN Minimum output voltage value. The default is undefined and sets no minimum value.

n+/- Positive or negative node of a controlled element.

NDIM Number of polynomial dimensions. If you do not set POLY(NDIM), HSPICE assumes a 
one-dimensional polynomial. NDIM must be a positive number.

NPDELAY Sets the number of data points to use in delay simulations. The default value is the larger 
of either 10, or the smaller of TD/tstep and tstop/tstep. That is: 

The .TRAN statement specifies tstep and tstop values.

LEVEL=0|1|2 Function keyword such as VCVS, VCAP, and so forth:
■ LEVEL = 0: Voltage-Controlled Current Source (VCVS).
■ LEVEL = 1: Ideal Op-Amp (OPAMP).
■ LEVEL = 2: Ideal Transformer (TRANSFORMER).

OPAMP
or Level=1

The keyword for an ideal op-amp element. OPAMP is a HSPICE reserved word; do not 
use it as a node name.

Parameter Description

V(in+,in-) k V(n+,n-)=

NPDELAYdefault max
min TD tstop 

tstep
--------------------------------------- 10=
272 HSPICE® User Guide: Basic Simulation and Analysis
K-2015.06



Chapter 9: Sources and Stimuli
Voltage-Dependent Voltage Sources — E-elements
P0, P1 … The polynomial coefficients. 

If you specify one coefficient, HSPICE assumes that it is P1 (P0 = 0.0), and that the 
element is linear. 

If you specify more than one polynomial coefficient, the element is nonlinear, and P0, P1, 
P2 ... represent them (see Polynomial Functions on page 253).

POLY Keyword for the polynomial function. If you do not specify POLY(ndim), HSPICE 
assumes a one-dimensional polynomial. 

Ndim must be a positive number.

PWL() Keyword for the piecewise linear function; must include parenthetical ().

SCALE Multiplier for the element value.

TC1,TC2 First-order and second-order temperature coefficients. Temperature changes update the 

SCALE: 

TD Keyword for the time (propagation) delay.

TRANSFORM
ER 
or LEVEL=2

Keyword for an ideal transformer. TRANSFORMER is a reserved word; do not use it as 
a node name.

VOL Voltage output that flows from n+ to n-. The expression that you define can be a function 
of:
■ node voltages
■ branch currents
■ time (time variable)
■ temperature (temper variable)
■ frequency (hertz variable)

VCVS Keyword for a voltage-controlled voltage source. VCVS is a reserved word; do not use it 
as a node name. The VCVS keyword is optional for E-elements and not required for 
LAPLACE, FREQ and FOSTER forms.

x1,... Controlling voltage across the in+ and in- nodes. The x values must be in increasing 
order.

y1,... Corresponding element values of x.

LAPLACE Laplace transform resolves a function into its moments (see Laplace Transform on 
page 264)

FREQ Response table (see Frequency Response Table on page 267)

FOSTER Pole residue form (see Foster Pole-Residue Form on page 268)

Parameter Description

SCALEeff SCALE 1 TC1 t TC2 t2++ =
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For a listing of output templates for current-controlled current source 
E-elements models (HSPICE only), see Table 36 on page 417.

E-element Examples
For full demonstration examples of circuits using E-elements, see the paths to 
the following netlist files in the section Behavioral Application Examples:
■ behave.sp (AND/NAND gates)
■ compar.sp (behavioral comparator with hysteresis)
■ pwl7.sp (modeling inverter by using a PWL VCVS)
■ sampling.sp (Sampling a sine wave using an expression)
■ swcap5.sp (Fifth-order elliptic switched capacitor filter—

OPAMP(LEVEL=1))
■ idealop.sp (Ninth-order low-pass filter, OPAMP)
■ integ.sp (Integrator circuit, GAIN)
■ pll_bvp.sp (PLL build with behavioral source, PWL)

The following sections provide these examples:
■ Ideal OpAmp
■ Voltage Summer
■ Polynomial Function
■ Zero-Delay Inverter Gate
■ Delayed and Inverted Signal
■ Differential Amplifiers and Opamp Signals
■ Ideal Transformer
■ Voltage-Controlled Oscillator (VCO)
■ Switching between Two Voltage Sources Connected to the Same Node

Ideal OpAmp
You can use the voltage-controlled voltage source to build a voltage amplifier 
with supply limits. 
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■ The output voltage across nodes 2,3 is v(14,1) * 2. 
■ The value of the voltage gain parameter is 2. 
■ The MAX parameter sets a maximum E1 voltage of 5 V. 
■ The MIN parameter sets a minimum E1 voltage output of –5 V. 

Example
If V(14,1)=-4V, then HSPICE sets E1 to –5 V, and not –8 V as the equation 
suggests:

Eopamp 2 3 14 1 MAX=+5 MIN=-5 2.0

To specify a value for polynomial coefficient parameters, use the following 
format:

.PARAM CU=2.0
E1 2 3 14 1 MAX=+5 MIN=-5 CU

For a full demonstration netlist of the E-element used for an active low pass 
filter using behavioral opamp models, use the path shown for low_pass9a.sp 
in Filters Examples on page 1081.

Voltage Summer
An ideal voltage summer specifies the source voltage as a function of three 
controlling voltages: 
■ V(13,0)
■ V(15,0)
■ V(17,0)

To describe a voltage source, the voltage summer uses this value: 

This example represents an ideal voltage summer. It initializes the three 
controlling voltages for a DC operating point analysis, to 1.5, 2.0, and 17.25 V.

EX 17 0 POLY(3) 13 0 15 0 17 0 0 1 1 1 IC=1.5,2.0,17.25

Polynomial Function
A voltage-controlled source also can output a nonlinear function using a one-
dimensional polynomial. This example does not specify the POLY parameter, 
so HSPICE assumes it is a one-dimensional polynomial—that is, a function of 

V 13 0( , ) V 15 0( , ) V 17 0( , )+ +
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one controlling voltage. The equation corresponds to the element syntax. 
Behavioral equations replace this older method:

V (3,4)=10.5 + 2.1 *V(21,17) + 1.75 *V(21,17)2”
E2 3 4 POLY 21 17 10.5 2.1 1.75 

E2 3 4 VOLT=“10.5 + 2.1 *V(21,17) + 1.75 *V(21,17)2”
E2 3 4 POLY 21 17 10.5 2.1 1.75 

Zero-Delay Inverter Gate
Use a piecewise linear transfer function to build a simple inverter with no delay:

Einv out 0 PWL(1) in 0 .7v,5v 1v,0v

Delayed and Inverted Signal
You can use an E-element to invert a signal to generate a delayed signal which 
is the inverse of another signal. Use the following syntax to generate a delayed 
signal (TD); it is the inverse of the input signal (in):

.option list node post
Vin in 0 pwl(0 0 10n 0 13n 2v 23n 2v 24n 0v)      $$ input signal

to be inverted and delayed
Edelay in_delay 0 DELAY in 0 TD=2n $$ signal 

"in_delay" is the "in" signal delayed by TD
Edelay_inv out_inv 0  PWL(1) in_delay 0 0v 2v 2v 0v $$ signal 

"out_inv" is the inverted and delayed "in" signal
.tran .1n 30n
.print v(in_delay) v(out_inv) v(in)
.end

Differential Amplifiers and Opamp Signals 
E-elements define a differential voltage source to use with differential amplifiers 
or op-amps. E-elements also can provide differential signals to drive circuits 
requiring differential signals: 

******spice definition*****
VID 7 0 DC 0 ac=1 SIN (0 0.70 1MEG)
E+ in+ 10 7 0 0.5   $ differential signal 1, level can be varied 
by changing gain
E- in- 10 7 0 -0.5  $ differential signal 2
VIC 10 0 DC 0.3V  $VIC is the common mode signal source

For a full demonstration example of AND/NAND gates and use of the E-
element, see the path to the behave.sp netlist noted in the section Behavioral 
Application Examples.
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For a full netlist differential block analysis example, see also:
$installdir/demo/hspice/behave/diff.sp.

Ideal Transformer
If the turn ratio is 10 to 1, the voltage relationship is V(out)=V(in)/10. 

Etrans out 0 TRANSFORMER in 0 10

You can also substitute LEVEL=2 in place of TRANSFORMER:

Etrans out 0 in 0 level=2 10

Voltage-Controlled Oscillator (VCO)
The VOL keyword defines a single-ended input which controls output of a VCO. 

Example 1
In this example, the voltage at the control node controls the frequency of the 
sinusoidal output voltage at the out node. v0 is the DC offset voltage, and gain 
is the amplitude. The freq · control portion of the equation specifies the 
frequency of the output, which is a sinusoidal voltage.

Evco out 0 VOL=’v0+gain*SIN(6.28 freq*v(control)*TIME)’

Note: This equation is valid only for a steady-state VCO (fixed voltage). 
If you sweep the control voltage, this equation does not apply.

Example 2
In this example, a Verilog-A module controls VCO output by tracking phase to 
ensure continuity:
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`include "disciplines.vams"
 
module vco(vin, vout);
 inout vin, vout;
 electrical vin, vout;
 parameter real amp = 1.0;
 parameter real offset = 1.0;
 parameter real center_freq = 1G;
 parameter real vco_gain = 1G;
 real phase;
 
 analog begin
  phase = idt(center_freq + vco_gain*V(vin), 0.0);
  V(vout) <+ offset+amp*sin(6.2831853*phase);
 end
endmodule

Example 3
This example is a controlled-source equivalent of the Verilog-A module shown 
in the previous example. Like the previous example, it establishes a continuous 
phase and therefore, a continuous output voltage: 

.subckt vco in out amp=1 offset=1 center_freq=1 vco_gain=1

.ic v(phase)=0
cphase phase 0 1e-10
g1 0 phase cur='1e-10*(center_freq+vco_gain*v(in))'
eout out 0 vol='offset+amp*sin(6.2831853*v(phase))'
.ends

Example 4
In this example, controlled-sources control VCO output:

.param pi=3.1415926

.param twopi='2*pi'

.subckt vco in inb out outb f0=100k kf=50k out_off=0.0 out_amp=1.0
gs 0 s poly(2) c 0 in inb 0 'twopi*1e-9*f0' 0 0 'twopi*1e-9*kf'
gc c 0 poly(2) s 0 in inb 0 'twopi*1e-9*f0' 0 0 'twopi*1e-9*kf'
cs s 0 1e-9 ic=0
cc c 0 1e-9 ic=1
eout out 0 vol='out_off+(out_amp*v(s))'
eoutb outb 0 vol='out_off+(out_amp*v(c))'
.ic v(c)=1 v(s)=0
.ends
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Switching between Two Voltage Sources Connected to the 
Same Node
You can use the HSPICE voltage controlled voltage source (E-element) to 
design a behavioral switch by creating a netlist as follows:

.option post
Vin1 in1 0 pwl ...        $ source 1
Vin2 in2 0 pwl ...        $ source 2
Ein in 0 vol='v(in1)*v(ctrl) + v(in2)*(1-v(ctrl))' 
   $ behavioral switch
vctrl ctrl 0 pwl 0 1 49n 1 50n 0         $ control voltage
.tran 1n 100n
.end

In this example, the v(ctrl) value is 1 initially so that v(in)=v(in1). At 
50 ns, the control voltage changes to 0 and v(in)=v(in2). 

You can also design a Verilog-A module as a behavioral switch.

See also:
■ Using G- and E-elements in the HSPICE User Guide: Advanced Analog 

Simulation and Analysis.
■ Filters Examples on page 1081 (bandstopl.sp) for a demonstration of the 

E-element as a filter.

Using the E-element for AC Analysis
The following equation describes an E-element:

E1 ee 0 vol=f(v(1), v(2))

In an AC analysis computes voltage as follows:

v(ee)=A*delta_v1+B*delta_v2

where:
■ A is the derivative of f(v(1), v(2)) to v(1) at the operating point.
■ B is the derivative of f(v(1), v(2)) to v(2) at the operating point.
■ delta_v1 is the AC voltage variation of v(1).
■ delta_v2 is the AC voltage variation of v(2).
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Example
This example uses demonstration netlist eelm.sp, which is available in 
directory $installdir/demo/hspice/sources:

***************************************************** 
****** E element for AC analysis 
.option post 
.op 
*CASE1-Mixed and zero time unit has zero value(tran) 
v_n1 n1 gnd dc=6.0 pwl 0.0 6.0 1.0n 6.0 ac 5.0 
v_n2 n2 gnd dc=4.0 pwl 0.0 4.0 1.0n 6.0 ac 2.0 
e1 n3 gnd vol='v(n1)+v(n2)' 
e2 n4 gnd vol='v(n1)*v(n2)' 
r1 n1 gnd 1 
r2 n2 gnd 1 
r3 n3 gnd 1 
r4 n4 gnd 1 
.tran 10p 3n 
.ac dec 1 1 100meg 
.print ac v(n?) 
.end
*****************************************************

The AC voltage of node n3 is:

v(n3)=1.0 *v(n1)(ac)  +  1.0 * v(n2)(ac)
=  1.0 * 5.0    +  1.0  *  2.0
=  7.0  (v)

The AC voltage of node n4 is:

v(n4)=v(n2)(op) * v(n1)(ac) + v(n1)(op) * v(n2)(ac)
=  4.0   *   5.0  +  6.0   *  2.0
=  32.0 (v)

Current-dependent Current Sources — F-elements

This section explains the F-element syntax and parameters. 

Note: G-elements with algebraics make F-elements obsolete. You can 
still use F-elements for backward-compatibility with existing 
designs.
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The following section introduces this topic:
■ Current-controlled Current Source (CCCS) Syntax

Current-controlled Current Source (CCCS) Syntax
The following sections provide these syntax examples:
■ Linear
■ Polynomial (POLY)
■ Piecewise Linear (PWL)
■ Multi-Input Gates
■ Delay Element
■ F-element Parameters
■ F-element Examples

Linear
Fxxx n+ n- [CCCS] vn1 gain [MAX=val] [MIN=val] [SCALE=val] 
+ [TC1=val] [TC2=val] [M=val] [ABS=1] [IC=val]

Polynomial (POLY)
Fxxx n+ n- [CCCS] POLY(ndim) vn1 [... vnndim] [MAX=val] 
+ [MIN=val] [TC1=val] [TC2=val] [SCALE=val] [M=val] 
+ [ABS=1] p0 [p1…] [IC=val]

In this syntax, dim (dimensions)  3.

Piecewise Linear (PWL)
Fxxx n+ n- [CCCS] PWL(1) vn1 [DELTA=val] [SCALE=val]
+ [TC1=val] [TC2=val] [M=val] x1,y1 ... x100,y100 [IC=val] 

For a full demo file example, go to Behavioral Application Examples and take 
the path to the pwl8.sp file (smoothing the triangle waveform by using the 
PWL CCCS).

Multi-Input Gates
Fxxx n+ n- [CCCS] f(k) vn1, ... vnk [DELTA=val] 
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+ [SCALE=val] [TC1=val] [TC2=val] [M=val] [ABS=1] 
+ x1,y1 ...   x100,y100 [IC=val] 

In this syntax, gatetype(k) can be AND, NAND, OR, or NOR gates.

Delay Element

Note: G-elements with algebraics make F-elements obsolete. You can 
still use F-elements for backward-compatibility with existing 
designs.

Fxxx n+ n- [CCCS] DELAY vn1 TD=val [SCALE=val] 
+ [TC1=val][TC2=val] NPDELAY=val

F-element Parameters
The following list describes the F-element parameters:

Parameter Description

ABS Output is an absolute value, if ABS = 1.

CCCS Keyword for current-controlled current source. CCCS is a HSPICE reserved keyword; 
do not use it as a node name.

DELAY Keyword for the delay element. Same as for a current-controlled current source, but has 
an associated propagation delay, TD. Adjusts the propagation delay in the macro model 
(subcircuit) process. DELAY is a reserved word; do not use it as a node name.

DELTA Controls the curvature of piecewise linear corners. The default is 1/4 of the smallest 
distance between breakpoints. The maximum is 1/2 of the smallest distance between 
breakpoints.

Fxxx Element name of the current-controlled current source. Must begin with F, followed by 
up to 1023 alphanumeric and special characters.

gain Current gain.

gatetype(k) AND, NAND, OR, or NOR. k is the number of inputs for the gate. x and y are the 
piecewise linear variation of the output, as a function of input. In multi-input gates, only 
one input determines the output state. Do not use the above keywords as node names.

IC Initial condition (estimate) of the controlling current(s), in amps. If you do not specify IC, 
the default = 0.0.

M Number of replications of the element in parallel.

MAX Maximum output current. Default=undefined; sets no maximum.
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For a listing of output templates for current-controlled current source F-element 
(HSPICE only) models, see Table 37 on page 417.

MIN Minimum output current. Default = undefined; sets no minimum.

n+/- Connecting nodes for a positive or negative controlled source.

NDIM Number of polynomial dimensions. If you do not specify POLY(NDIM), HSPICE 
assumes a one-dimensional polynomial. NDIM must be a positive number. 

NPDELAY Number of data points to use in delay simulations. The default value is the larger of 
either 10 or the smaller of TD/tstep and tstop/tstep. That is, 

The .TRAN statement 

specifies the tstep and tstop values.

P0, P1 … The polynomial coefficients.

If you specify one coefficient, HSPICE assumes it is P1 (P0=0.0), and the source 
element is linear. 

If you specify more than one polynomial coefficient, then the source is nonlinear, and 
HSPICE assumes that the polynomials are P0, P1, P2 … See Polynomial Functions on 
page 253.

POLY Keyword for the polynomial function. If you do not specify POLY(ndim), HSPICE 
assumes that this is a one-dimensional polynomial. Ndim must be a positive number.

PWL Keyword for the piecewise linear function.

SCALE Multiplier for the element value.

TC1,TC2 First-order and second-order temperature coefficients. Temperature changes update 

the SCALE: 

TD Keyword for the time (propagation) delay.

vn1 … Names of voltage sources, through which the controlling current flows. Specify one 
name for each dimension.

x1,... Controlling current, through the vn1 source. Specify the x values in increasing order.

y1,... Corresponding output current values of x.

Parameter Description

NPDELAYdefault max
min TD tstop 

tstep
--------------------------------------- 10=

SCALEeff SCALE 1 TC1 t TC2 t2++ =
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F-element Examples
Example 1
This example describes a current-controlled current source connected between 
nodes 13 and 5. The current which controls the value of the controlled source 
flows through the voltage source named VSENS.

F1 13 5 VSENS MAX=+3 MIN=-3 5

Note: To use a current-controlled current source, you can place a 
dummy independent voltage source into the path of the 
controlling current. 

The defining equation is: 

Equation 30

■ Current gain is 5.
■ Maximum current flow through F1 is 3 A.
■ Minimum current flow is -3 A. 

If I(VSENS)=2 A, then this examples sets I(F1) to 3 amps, not 10 amps (as 
the equation suggests). You can define a parameter for the polynomial 
coefficient(s):

.PARAM VU=5
F1 13 5 VSENS MAX=+3 MIN=-3 VU

Example 2
This example is a current-controlled current source, with the value:

I(F2)=1e-3 + 1.3e-3  I(VCC)

Current flows from the positive node, through the source, to the negative node. 
The positive controlling-current flows from the positive node, through the 
source, to the negative node of vnam (linear), or to the negative node of each 
voltage source (nonlinear).

F2 12 10 POLY VCC 1MA 1.3M

Example 3
This example is a delayed, current-controlled current source. 

Fd 1 0 DELAY vin TD=7ns SCALE=5

I F1  5 I VSENS =
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Example 4
This example is a piecewise-linear, current-controlled current source.

Filim 0 out PWL(1) vsrc -1a,-1a 1a,1a

Voltage-dependent Current Sources — G-elements

This section explains G-element syntax statements, and their parameters.

HSPICE supports G-elements (and E-elements). The G-element specifies a 

current noise source with the noise value in . The noise source can be 
bias and/or frequency dependent. For a white noise source, use a constant 
value for 'expression'.

For noise sources using expressions, the G-element takes the form:

gname n1 n2 noise='expression'

For full demonstration files for voltage-dependent current sources using G-
element parameters for NPWL/PPWL/NAND circuits, see the paths to these 
example netlists in the section Behavioral Application Examples. 
■ det_dff.sp (double edge-triggered flip-flop)
■ diode.sp (behavioral diode by using a PWL VCCS)
■ dlatch.sp (CMOS D-latch by using behavioral models)

Refer to other demonstration files in the following sections for specific circuits 
that use the G-element.

 Gxxx n+ n- [VCCS|LEVEL=0] in+ in- ...

■ LEVEL=0 is a voltage-controlled current source (VCCS).
■ LEVEL=1 is a voltage-controlled resistor (VCR).
■ LEVEL=2 is a Voltage-controlled capacitor (VCCAP), negative piecewise 

linear (NPWL).
■ LEVEL=3 is a VCCAP, positive piecewise linear (PPWL).

The following sections introduce these topic:
■ Voltage-controlled Current Source (VCCS)
■ Behavioral Current Source (Noise Model)
■ Voltage-controlled Resistor (VCR)

A
2Hz
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■ Voltage-Controlled Capacitor (VCCAP)
■ G-element Examples

Voltage-controlled Current Source (VCCS)
The following sections discuss these topics:
■ G-element Parameters
■ Linear
■ Polynomial (POLY)
■ Piecewise Linear (PWL)
■ Multi-Input Gate
■ Delay Element
■ Laplace Transform
■ Pole-Zero Function
■ Frequency Response Table
■ Foster Pole-Residue Form

G-element Parameters
The following list describes the G-element parameters.

Parameter Description

ABS Output is an absolute value, if ABS = 1.

ACCURACY Used only with the frequency response table.
■ 0: Default. This method generates more accurate results and achieves better 

performance.
■ 1: Provides more accurate results for frequency table forms, as compared to 

ACCURACY=0.

CUR, VALUE, 
NOISE

Current output that flows from n+ to n-. The expression that you define can be a 
function of:
■ node voltages
■ branch currents
■ time (time variable)
■ temperature (temper variable)
■ frequency (hertz variable)
Note: CUR is preferred over CURRENT.
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DELAY Keyword for the delay element. Same as in the voltage-controlled current source, but 
has an associated propagation delay, TD. Adjusts propagation delay in macro 
(subcircuit) modeling. DELAY is a keyword; do not use it as a node name.

DELTA Controls curvature of piecewise linear corners. Defaults to 1/4 of the smallest distance 
between breakpoints. Maximum is 1/2 of the smallest distance between breakpoints.

Gxxx Name of the voltage-controlled element. Must begin with G followed by up to 1023 
alphanumeric and special characters.

gatetype(k) AND, NAND, OR, or NOR. The k parameter is the number of inputs of the gate. x and  
y represent the piecewise linear variation of the output, as a function of the input. In 
multi-input gates, only one input determines the state of the output.

LEVEL=0|1|2|3 Function keyword such as VCCS, VCAP, and so forth.
■ LEVEL=0: Voltage-controlled current source (VCCS).
■ LEVEL=1: Voltage-controlled resistor (VCR).
■ LEVEL=2: Voltage-controlled capacitor (VCCAP), negative piecewise linear 

(NPWL).
■ LEVEL=3: VCCAP, positive piecewise linear (PPWL).

IC Initial condition. Initial estimate of the values of controlling voltages. If you do not 
specify IC, the default 0.0.

in +/- Positive or negative controlling nodes. Specify one pair for each dimension.

M Number of replications of the elements in parallel.

MAX Maximum value of the current or resistance. The default is undefined and sets no 
maximum value.

MIN Minimum value of the current or resistance. The default is undefined and sets no 
minimum value.

n+/- Positive or negative node of the controlled element.

NDIM Number of polynomial dimensions. If you do not specify POLY(NDIM), HSPICE 
assumes a one-dimensional polynomial. NDIM must be a positive number. 

NPDELAY Sets the number of data points to use in delay simulations. The default value is the 
larger of either 10, or the smaller of TD/tstep and tstop/tstep. That is: 

.

The .TRAN statement specifies the tstep and tstop values.

NPWL Models symmetrical bidirectional switch/transfer gate, NMOS.

Parameter Description

NPDELAYdefault max
min TD tstop 

tstep
--------------------------------------- 10=
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P0, P1 … The polynomial coefficients: 
■ If you specify one coefficient, HSPICE assumes that it is P1 (P0 = 0.0), and the 

element is linear. 
■ If you specify more than one polynomial coefficient, the element is nonlinear, and 

the coefficients are P0, P1, P2 ... (see Polynomial Functions on page 253).

POLY Keyword for the polynomial dimension function. If you do not specify POLY(ndim), 
HSPICE assumes that it is a one-dimensional polynomial. Ndim must be a positive 
number.

PWL() Keyword for the piecewise linear function; must include parenthetical ().

PPWL Models symmetrical bidirectional switch/transfer gate, PMOS.

SCALE Multiplier for the element value.

SMOOTH For piecewise-linear, dependent-source elements, SMOOTH selects the curve-
smoothing method. See Turning off Smoothing.

A curve-smoothing method simulates exact data points that you provide. You can use 
this method to make HSPICE simulate specific data points, which correspond to either 
measured data or data sheets.

Choices for SMOOTH are 1 or 2:

1. Selects the original HSPICE smoothing method.
2. Selects the improved smoothing method which uses the data points that you 

provide. This is the default smoothing method.

TC1,TC2 First-order and second-order temperature coefficients. Temperature changes update 

the SCALE: .

TD Keyword for the time (propagation) delay.

transconductan
ce

Voltage-to-current conversion factor.

transfactor Voltage-to-resistance conversion factor.

VCCAP Keyword for voltage-controlled capacitance element. VCCAP is a reserved HSPICE 
keyword; do not use it as a node name.

VCCS Keyword for the voltage-controlled current source. VCCS is a reserved HSPICE 
keyword; do not use it as a node name.

VCR Keyword for the voltage controlled resistor element. VCR is a reserved HSPICE 
keyword; do not use it as a node name. The LAPLACE, FREQ and FOSTER forms of 
G elements do not require the VCR. 

x1,... Controlling voltage, across the in+ and in- nodes. Specify the x values in increasing 
order.

Parameter Description

SCALEeff SCALE 1 TC1 t TC2 t2++ =
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For a list of output templates for voltage-controlled current source G-element 
models (HSPICE only), see Table 35 on page 417.

Linear
Gxxx n+ n- [VCCS] in+ in- transconductance [MAX=val] 
+ [MIN=val] [SCALE=val] [M=val] [TC1=val] [TC2=val] 
+ [ABS=1] [IC=val] 

For a description of the G-element parameters, see G-element Parameters on 
page 286.

Polynomial (POLY)
Gxxx n+ n- [VCCS] POLY(NDIM) in1+ in1- ... [inndim+ inndim-] 
+ [MAX=val] [MIN=val] [SCALE=val] [M=val] [TC1=val]
+ [TC2=val] [ABS=1] P0[P1…] [IC=val]

For a description of the G-element parameters, see G-element Parameters on 
page 286. For a description of possible POLY syntaxes, see Polynomial 
Functions on page 253.

For a full demonstration file for voltage-dependent current sources using G-
element parameters for a polynomial example, see the path to the example 
netlist pll_bvp.sp (PLL build with behavioral source) in the section 
Behavioral Application Examples. 

Piecewise Linear (PWL)
Gxxx n+ n- [VCCS] PWL(1) in+ in- [DELTA=val] 
+ [SCALE=val] [M=val] [TC1=val] [TC2=val] 
+ x1,y1 x2,y2 ... x100,y100 [IC=val] [SMOOTH=val]
Gxxx n+ n- [VCCS] NPWL(1) in+ in- [DELTA=val] 
+ [SCALE=val] [M=val] [TC1=val][TC2=val] 
+ x1,y1 x2,y2 ... x100,y100 [IC=val] [SMOOTH=val]

y1,... Corresponding element values of x.

LAPLACE Laplace transform resolves a function into its moments (see Laplace Transform on 
page 264)

FREQ Response table (see Frequency Response Table on page 267)

FOSTER Pole residue form (see Foster Pole-Residue Form on page 268)

Parameter Description
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Gxxx n+ n- [VCCS] PPWL(1) in+ in- [DELTA=val] 
+ [SCALE=val] [M=val] [TC1=val] [TC2=val] 
+ x1,y1 x2,y2 ... x100,y100 [IC=val] [SMOOTH=val]

For a description of the G-element parameters, see G-element Parameters on 
page 286.

For a set of full demonstration files for voltage-dependent current sources using 
G-element parameters for PWL examples, see the paths to the example netlists 
as follows in the section Behavioral Application Examples:
■ switch.sp (test for PWL switch element)
■ swrc.sp (switched capacitor RC circuit)
■ pwl2.sp (PPW-VCCS with a gain of 1 amp/volt)
■ pwl4.sp (eight-input NAND gate)
■ ivx.sp (characteristics of the PMOS and NMOS as a switch)
■ vcob.sp (voltage-controlled oscillator by using PWL functions)

Multi-Input Gate
Gxxx n+ n- [VCCS] gatetype(k) in1+ in1- ... 
+ ink+ ink- [DELTA=val] [TC1=val] [TC2=val] [SCALE=val] 
+ [M=val] x1,y1 ... x100,y100[IC=val]

In this syntax, gatetype(k) can be AND, NAND, OR, or NOR gates. For a 
description of the G-element parameters, see G-element Parameters on 
page 286. 

For a full demonstration example of AND/NAND gates that uses the G-element 
see also the path to the behave.sp netlist noted in the section Behavioral 
Application Examples.

Delay Element
Gxxx n+ n- [VCCS] DELAY in+ in- TD=val [SCALE=val] 
+ [TC1=val] [TC2=val] NPDELAY=val

For a description of the G-element parameters, see G-element Parameters on 
page 286.

Laplace Transform
For details, see Laplace Transform on page 264.
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Pole-Zero Function
For details, see Pole-Zero Function on page 266.

Frequency Response Table
For details, see Frequency Response Table on page 267.

Foster Pole-Residue Form
For details, see Foster Pole-Residue Form on page 268.

Behavioral Current Source (Noise Model)
Expression form
Gxxx node1 node2 noise=’noise_expression’

You can set the xxx parameter with a value up to 1024 characters. The node1 
and node2 are the positive and negative nodes that connect to the noise 
source. The noise expression can contain the bias, frequency, or other 
parameters, and involve node voltages and currents through voltage sources.

For a description of the G-element parameters, see G-element Parameters on 
page 286.

This syntax creates a simple two-terminal current noise source; A2/Hz 
describes its value. The output noise generated from this noise source is: 

noise_expression*H

H is the transfer function from the terminal pair (node1,node2) to the circuit 
output which measures the output noise. 

You also can implement a behavioral noise source with an E-element. As noise 
elements, they are two terminal elements that represent a noise source 
connected between two specified nodes: 

gname node1 node2 node3 node4 noise=’expression’

This syntax produces a noise source correlation between the terminal pairs 
(node1 node2) and (node3 node4). Compute the resulting output noise as:

noise_expression*sqrt(H1*H2*)

■ H1 is the transfer function from (node1,node2) to the output.
■ H2 is the transfer function from (node3,node4) to the output.
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The noise expression can involve node voltages and currents through voltage 
sources.

Data form
Gxxx node1 node2 noise data=dataname
.DATA dataname
+ pname1 pname2
+ freq1 noise1
+ freq2 noise2
+ ...
.enddata

The data form defines a basic frequency-noise table. The .DATA statement 
contains two parameters: frequency and noise to specify the noise value at 
each frequency point. The unit for frequency is hertz, and the unit for noise is 
A2/Hz.

The G-element with noise sources supports the following syntaxes:
■ Gxxx n1 n2 noise data=dataname

■ Gxxx n1 n2 noise data=datablock

■ Gxxx n1 n2 noisefile='filename'

■ Gxxx n1 n2 noise='expression'

■ Gxxx n1 n2 noise='Table(arg1,f1,v1,f2,v2...)'

■ Gxxx n1 n2 noise='Table(arg1,dotDataBlockName)', where 
dotDataBlockName is the .data statement reference

For a description of the G-element parameters, see G-element Parameters on 
page 286.

Example
The following netlist shows a 1000-ohm resistor (g1) using a G-element. The 
g1noise element, placed in parallel with the g1 resistor, delivers the thermal 
noise expected from a resistor. The following example includes the r1 resistor 
for comparison: The noise due to r1 should be the same as the noise due to 
g1noise:
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* Resistor implemented using g-element
v1 1 0 1
r1 1 2 1k
g1 1 2 cur='v(1,2)*0.001'
g1noise 1 2
+ noise='4*1.3806266e-23*(TEMPER+273.15)*0.001'
rout 2 0 1meg
.ac lin 1 100 100
.noise v(2) v1 1 
.end

Voltage-controlled Resistor (VCR)

Note: The LAPLACE, FREQ and FOSTER forms of G-elements do not 
require the VCR.

The following sections discuss these topics:
■ Linear
■ Polynomial (POLY)
■ Piecewise Linear (PWL)
■ Multi-Input Gates

Linear
Gxxx n+ n- VCR in+ in- transfactor [MAX=val] [MIN=val] 
+ [SCALE=val] [M=val] [TC1=val] [TC2=val] [IC=val] 

For a description of the G-element parameters, see G-element Parameters on 
page 286.

Polynomial (POLY)
Gxxx n+ n- VCR POLY(NDIM) in1+ in1- ... 
+ [inndim+ inndim-] [MAX=val] [MIN=val][SCALE=val] 
+ [M=val] [TC1=val] [TC2=val]    P0 [P1…] [IC=vals] 

For a description of the G-element parameters, see G-element Parameters on 
page 286.

Piecewise Linear (PWL)
Gxxx n+ n- VCR PWL(1) in+ in- [DELTA=val] [SCALE=val] 
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+ [M=val] [TC1=val] [TC2=val] x1,y1 x2,y2 ... x100,y100 
+ [IC=val] [SMOOTH=val]
Gxxx n+ n- VCR NPWL(1) in+ in- [DELTA=val] [SCALE=val] 
+ [M=val] [TC1=val] [TC2=val] x1,y1 x2,y2 ... x100,y100 
+ [IC=val] [SMOOTH=val]
Gxxx n+ n- VCR PPWL(1) in+ in- [DELTA=val] [SCALE=val] 
+ [M=val] [TC1=val] [TC2=val] x1,y1 x2,y2 ... x100,y100 
+ [IC=val] [SMOOTH=val]

For a description of the G-element parameters, see G-element Parameters on 
page 286.

Multi-Input Gates
Gxxx n+ n- VCR gatetype(k) in1+ in1- ... ink+ ink- 
+ [DELTA=val] [TC1=val] [TC2=val] [SCALE=val] [M=val] 
+ x1,y1 ... x100,y100 [IC=val]

For a description of the G-element parameters, see G-element Parameters on 
page 286.

Voltage-Controlled Capacitor (VCCAP)
Gxxx n+ n- VCCAP PWL(1) in+ in-   [DELTA=val] 
+ [SCALE=val] [M=val] [TC1=val] [TC2=val] 
+ x1,y1 x2,y2 ... x100,y100 [IC=val] [SMOOTH=val]

HSPICE uses either LEVEL=2 (NPWL) or LEVEL=3 (PPWL) based on the 
relationship of the (n+, n-) and (in+, in-) nodes. For a description of the G-
element parameters, see G-element Parameters on page 286.

Use the NPWL and PPWL functions to interchange the n+ and n- nodes, but use 
the same transfer function. 

The following sections summarize these actions:
■ NPWL Function
■ PPWL Function

NPWL Function
For the in- node connected to n+:
■ If v(n+,n-) < 0, then the controlling voltage is v(in+,in-). 
■ Otherwise, the controlling voltage is v(in+,n-).
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For the in- node connected to n-:
■ If v(n+,n-) > 0, then the controlling voltage is v(in+,in-). 
■ Otherwise, the controlling voltage is v(in+,n+).

PPWL Function
For the in- node, connected to n+:
■ If v(n+,n-) > 0, then the controlling voltage is v(in+,in-). 
■ Otherwise, the controlling voltage is v(in+,n-).

For the in- node, connected to n-:
■ If v(n+,n-) < 0, then the controlling voltage is v(in+,in-). 
■ Otherwise, the controlling voltage is v(in+,n+).

If the in- node does not connect to either n+ or n-, then HSPICE changes NPWL 
and PPWL to PWL.

G-element Examples
The following section provide illustrative examples for the G-element:
■ Modeling Switches
■ Switch-level MOSFET
■ Runtime Current Source with Equation Containing Output Variable
■ Voltage-controlled Capacitor
■ Zero-delay Gate
■ Delay Element
■ Diode Equation
■ Diode Breakdown
■ Diode Lookup Table (versus Model)
■ Triodes
■ Behavioral Noise Model
■ Turning off Smoothing
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■ Using Dependent Sources to Convert I to V and V to I
■ Additional Full Demonstration Netlists Using G-Element

Modeling Switches
You can model a switch to be open or closed based on simulation time or a pair 
of controlling nodes.

Switch Example 1: Time-varying switch—use the built-in function TIME to 
change the value of R from 0 (closed) to 100g ohm (open) when the simulator 
reaches time value T1:

R1 n1 n2 '100g*(TIME <= T1)'

As long as TIME T1, the expression evaluates to zero and so does the 
resistor (switch) value. You could easily rewrite the resistor to switch from 
closed to open: 

R1 n1 n2 '100g*(TIME >= T1)'

Switch example 2: Voltage-controlled switch—use a voltage-controlled resistor 
and the PWL (piece-wise linear) function. The point-value pair represents the 
controlling input voltage and output resistance, respectively:

G_Switch n1 n2 VCR PWL(1) c1 c2 0v,100g 1v,1p

where:
■ n1 and n2 are the poles of the switch.
■  c1 and c2 are the control nodes

In the following sample netlist, the switch is controlled by the PWL voltage 
source to switch at 1us: 

* g-element switch
.option post
V_ctrl c1 0 PWL (0 0v .99u 0v 1u 1v)
G_Switch  n1 n2 VCR PWL(1) c1 0 0v,100g 1v,1p
V_ref n1 0 10v
R_load n2 0 100
.tran .1u 2u
.end
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Switch-level MOSFET
To model a switch-level n-channel MOSFET, use the N-piecewise linear 
resistance switch. The resistance value does not change when you switch the d 
and s node positions.

Gnmos d s VCR NPWL(1) g s LEVEL=1 0.4v,150g 
+ 1v,10meg 2v,50k 3v,4k 5v,2k

For a full demonstration example, see the path to the acl.sp netlist noted in 
the section Behavioral Application Examples.

Runtime Current Source with Equation Containing Output 
Variable
HSPICE does not support a runtime output variable such as v(gate) in the 
example equation that follows. If the .DATA block has a runtime current source 
(I-element) where an equation contains runtime output variable such as 
v(gate), as in this example equation:

I0 1 0 '(1-a0*v(gate))/b0'
vg  gate  0 '(gt_vl)'  $ (gt_vl) 

then the recommended method is to use the G-element:

g0 1 0 cur='((1-(a0*v(gate)))/b0)'

For a full demonstration example of runtime current (amplitude modulator with 
pulse waveform carrier), see the path to the amp_mod.sp netlist noted in the 
section Behavioral Application Examples. See also the path to galg1.sp for 
sampling a sine wave with a current source in Behavioral Application 
Examples.

Voltage-controlled Capacitor
The capacitance value across the (out,0) nodes varies linearly (from 1 p to 5 p), 
when voltage across the ctrl,0 nodes varies between 2 and 2.5 V. The 
capacitance value remains constant at 1 picofarad when below the lower 
voltage limit, and at 5 picofarads when above the upper voltage limit:

Gcap out 0 VCCAP PWL(1) ctrl 0 2v,1p 2.5v,5p

Zero-delay Gate
To implement a two-input AND gate, use an expression and a piecewise linear 
table: 
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■ The inputs are voltages at the a and b nodes.
■ The output is the current flow from the out to 0 node. 
■ HSPICE multiplies the current by the SCALE value—which in this example, 

is the inverse of the load resistance, connected across the out,0 nodes:

Gand out 0 AND(2) a 0 b 0 SCALE=’1/rload’ 0v,0a 1v,.5a 
+ 4v,4.5a 5v,5a

Delay Element
A delay is a low-pass filter type delay, similar to that of an op-amp. In contrast, a 
transmission line has an infinite frequency response. A glitch input to a G-delay 
attenuates in a way that is similar to a buffer circuit. In this example, the output 
of the delay element is the current flow from the out node to the 1 node with a 
value equal to the voltage across the (in, 0) nodes, multiplied by the SCALE 
value, and delayed by the TD value: 

Gdel out 0 DELAY in 0 TD=5ns SCALE=2 NPDELAY=25

For a full demonstration example of delay parameter (five-stage ring oscillator – 
macromodel CMOS inverter), see the path to the ring5bm.sp netlist. 

Diode Equation
To model forward-bias diode characteristics from node 5 to ground, use a 
runtime expression. The saturation current is 1e-14 amp and the thermal 
voltage is 0.025 V:

Gdio 5 0 CUR=’1e-14*(EXP(V(5)/0.025)-1.0)’

Diode Breakdown
You can model the diode breakdown region to a forward region. When voltage 
across a diode is above or below the piecewise linear limit values (–2.2 V, 2 V), 
the diode current remains at the corresponding limit values (-1a, 1.2a):

Gdiode 1 0 PWL(1) 1 0 -2.2v,-1a -2v,-1pa .3v,.15pa
+.6v,10ua 1v,1a 2v,1.2a
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Diode Lookup Table (versus Model)
In HSPICE you can use the diode lookup-table values in a G-element (VCCS) 
as a PWL table. The following is a simple netlist using the lookup table values in 
a G-element:

.option post
Gdiode 1 0 PWL(1) 1 0 -2.2v,-1a -2v,-1pa .3v,.15pa 
+ .6v,10ua 1v,1a 2v,1.2a
V1 1 0 2v
.op
.print i(*)
.tran 1n 10n
.end

The only limitation is that the maximum number of I-V value pairs for a PWL 
G-element is 100.

Triodes
Both of the following voltage-controlled current sources implement a basic 
triode: 
■ The first example uses the poly(2) operator to multiply the anode and grid 

voltages together and to scale by 0.02. 
■ The second example uses the explicit behavioral algebraic description:

gt i_anode cathode poly(2) anode,cathode 
+ grid,cathode 0 0 0 0 .02 
gt i_anode cathode 
+ cur=’20m*v(anode,cathode)*v(grid,cathode)’

Behavioral Noise Model
The following netlist shows a 1000-ohm resistor (g1) implemented using a 
G-element. The g1noise element, placed in parallel with the g1 resistor, 
delivers the thermal noise expected from a resistor. The following example 
includes the r1 resistor for comparison. The noise due to r1 should be the 
same as the noise due to g1noise:
HSPICE® User Guide: Basic Simulation and Analysis 299
K-2015.06



Chapter 9: Sources and Stimuli
Voltage-dependent Current Sources — G-elements
* Resistor implemented using g-element
v1 1 0 1
r1 1 2 1k
g1 1 2 cur='v(1,2)*0.001'
g1noise 1 2 noise='sqrt(4*1.3806266e-23*(TEMPER+273.15)*0.001)'
rout 2 0 1meg
.ac lin 1 100 100
.noise v(2) v1 1 
.end

Turning off Smoothing
By default, a PWL controlled source performs smoothing on corners which may 
introduce some error. To turn off the smoothing, use DELTA=0 in the G-element 
definition:

Gtest BB 0 VCCS PWL(1) B E 0,0 0.1,0 1,1 2,2 DELTA=0

You also can set DELTA to a small value to achieve some smoothing that can 
help convergence, but reduce the difference from the ideal PWL.

Using Dependent Sources to Convert I to V and V to I
You can convert voltage to current using the G-element and current to voltage 
by using the H-element (see Current-controlled Voltage Source (CCVS)—H-
Element). To use the H-element for a I to V conversion, you also must use a 
dummy voltage source. For example:

* I-V and V-I conversion
.option post list node
*** I-V Conversion ****
I_in       p1 0  1
vdummy     p2 p1 0   $ dummy voltage source
H_in    p2  0 CCVS vdummy 1
R_fc       p2  p3 10
C_fc       p3  0 500fF
*** V-I Conversion ****
G_in       p4  p5 VCCS p3 0 1
Rs    p5  p6 1
C1         p4  p5 500fF
C2    p4  p6 500fF
.tran 10p 1n
.probe tran v(p?) i(g*) 
.end
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Additional Full Demonstration Netlists Using G-Element
For an additional set of full demonstration files for voltage-dependent current 
sources using G-element parameters examples, see the paths to the example 
netlists as follows in the section Behavioral Application Examples:
■ pdp.sp (phase detector by using behavioral NAND gates Multi-Input 

NAND).
■ ringb.sp (ring oscillator by using behavioral model—NAND).
■ vcob.sp (voltage-controlled oscillator by using PWL functions—PWL/

NAND).
■ rtest.sp (voltage-controlled resistor, inverter chain—Level=1).
■ vcob.sp (voltage-controlled oscillator by using PWL functions).
■ See Filters Examples (lcline.sp) for a demonstration of a G-element as 

a filter.

Current-dependent Voltage Sources — H-elements

This section explains H-element syntax statements and defines their 
parameters.

Note: E-elements with algebraics make H-elements obsolete. You can 
still use H-elements for backward-compatibility with existing 
designs.

For a listing of output templates for current-controlled voltage source (H-
element) models (HSPICE only), see Table 38 on page 418.

The following section introduces the topics for the CCVS source:
■ Current-controlled Voltage Source (CCVS)—H-Element

Current-controlled Voltage Source (CCVS)—H-Element
The following sections discuss these topics:
■ Linear
■ Polynomial (POLY)
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■ Piecewise Linear (PWL)
■ Multi-Input Gate
■ Delay Element

Linear
Hxxx n+ n- [CCVS] vn1 transresistance [MAX=val] [MIN=val] 
+ [SCALE=val] [TC1=val][TC2=val] [ABS=1] [IC=val]

Polynomial (POLY)
Hxxx n+ n- [CCVS] POLY(NDIM) vn1 [... vnndim] 
+ [MAX=val][MIN=val] [TC1=val] [TC2=val] [SCALE=val] 
+ [ABS=1] P0 [P1…] [IC=val] 

Piecewise Linear (PWL)
Hxxx n+ n- [CCVS] PWL(1) vn1 [DELTA=val] [SCALE=val] 
+ [TC1=val] [TC2=val] x1,y1 ...   x100,y100 [IC=val] 

For full demonstration examples of H-element PWL netlist files, go to 
Behavioral Application Examples and follow the paths to these two netlists:
■ op_amp.sp (OPAMP from Chua and Lin)
■ pwl10.sp (OPAMP used as a voltage follower)

Multi-Input Gate
Hxxx n+ n- gatetype(k) vn1, ...vnk [DELTA=val] [SCALE=val] 
+ [TC1=val] [TC2=val] x1,y1 ...   x100,y100 [IC=val] 

In this syntax, gatetype(k) can be AND, NAND, OR, or NOR gates.

Delay Element

Note: E-elements with algebraics make CCVS elements obsolete. You 
can still use CCVS elements for backward-compatibility with 
existing designs.

Hxxx n+ n- [CCVS] DELAY vn1 TD=val [SCALE=val] [TC1=val] 
+ [TC2=val] [NPDELAY=val]
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Parameter Description

ABS Output is an absolute value, if ABS = 1.

CCVS Keyword for the current-controlled voltage source. CCVS is a HSPICE reserved keyword; 
do not use it as a node name.

DELAY Keyword for the delay element. Same as for a current-controlled voltage source, but has an 
associated propagation delay, TD. Use this element to adjust the propagation delay in the 
macro (subcircuit) model process. DELAY is a HSPICE reserved keyword; do not use it as 
a node name.

DELTA Controls curvature of piecewise linear corners. The default is 1/4 of the smallest distance 
between breakpoints. Maximum is 1/2 of the smallest distance between breakpoints.

gatetype(k) Can be AND, NAND, OR, or NOR. The k value is the number of inputs of the gate. The x 
and y terms are the piecewise linear variation of the output, as a function of the input. In 
multi-input gates, one input determines the output state.

Hxxx Element name of current-controlled voltage source. Must start with H followed by up to 1023 
alphanumeric and special characters.

IC Initial condition (estimate) of the controlling current(s), in amps. If you do not specify IC, the 
default = 0.0.

MAX Maximum voltage. Default is undefined; sets no maximum.

MIN Minimum voltage. Default is undefined; sets no minimum.

n+/- Connecting nodes for positive or negative controlled source.

NDIM Number of polynomial dimensions. If you do not specify POLY(NDIM), HSPICE assumes a 
one-dimensional polynomial. NDIM must be a positive number.

NPDELAY Number of data points to use in delay simulations. The default value is the larger of either 
10, or the smaller of TD/tstep and tstop/tstep. That 

is: .

The .TRAN statement specifies the tstep and tstop values.

P0, P1 . . . Polynomial coefficients:
■ If you specify one polynomial coefficient, the source is linear, and HSPICE assumes that 

the polynomial is P1 (P0 = 0.0). 
■ If you specify more than one polynomial coefficient, the source is nonlinear. HSPICE 

assumes the polynomials are P0, P1, P2 … See Polynomial Functions on page 253.

NPDELAYdefault max
min TD tstop 

tstep
--------------------------------------- 10=
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Example 1
The following example selects a linear current-controlled voltage source. The 
controlling current flows through the dependent voltage source, called VCUR: 

HX 20 10 VCUR MAX=+10 MIN=-10 1000 

Example 2
The defining equation of the CCVS is: 

Equation 31

The defining equation specifies that the voltage output of HX is 1000 times the 
value of the current flowing through VCUR: 
■ If the equation produces a value of HX greater than +10 V, the MAX 

parameter sets HX to 10 V. 
■ If the equation produces a value of HX less than -10 V, the MIN parameter 

sets HX to -10 V. 

VCUR is the name of the independent voltage source through which the 
controlling current flows. If the controlling current does not flow through an 

POLY Keyword for polynomial dimension function. If you do not specify POLY(ndim), HSPICE 
assumes a one-dimensional polynomial. Ndim must be a positive number.

PWL Keyword for a piecewise linear function.

SCALE Multiplier for the element value.

TC1,TC2 First-order and second-order temperature coefficients. Temperature changes update the 

SCALE: 

TD Keyword for the time (propagation) delay.

transresista
nce

Current-to-voltage conversion factor.

vn1 … Names of voltage sources, through which controlling current flows. You must specify one 
name for each dimension.

x1,... Controlling current, through the vn1 source. Specify the x values in increasing order.

y1,... Corresponding output voltage values of x.

Parameter Description

SCALEeff SCALE 1 TC1 t TC2 t2++ =

HX 1000 I VCUR =
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independent voltage source, you must insert a dummy independent voltage 
source.

Example 3
The following example describes a dependent voltage source: 

.PARAM CT=1000
HX 20 10 VCUR MAX=+10 MIN=-10 CT
HXY 13 20 POLY(2) VIN1 VIN2 0 0 0 0 1 IC=0.5, 1.3

The value is as follows:

Equation 32

This two-dimensional polynomial equation specifies:
■ FA1=VIN1
■ FA2=VIN2
■ P0=0
■ P1=0
■ P2=0
■ P3=0
■ P4=1

The initial controlling current is .5 mA through VIN1, and 1.3 mA for VIN2. 

Positive controlling current flows from the positive node through the source to 
the negative node of vnam (linear). The (nonlinear) polynomial specifies the 
source voltage as a function of the controlling currents.

HSPICE Advanced Analog Analyses Sources and 
Stimuli

The following section discuss use of advanced analog analyses-specific 
sources:
■ Steady-state Voltage and Current Sources
■ Steady-state HB Sources
■ Phase Differences Between HB and SIN Sources

V I VIN1  I VIN2 =
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■ Behavioral Noise Sources
■ Function Approximations for Distributed Devices
■ Complex Signal Sources and Stimuli
■ SWEEPBLOCK in Sweep Analyses
■ Clock Source with Random Jitter

Steady-state Voltage and Current Sources
The I (current source) and V (voltage source) elements include extensions that 
allow you to use them as sources of steady-state sinusoidal signals for HB and 
HBAC analyses. When you use a power parameter to specify the available 
power, you also can use these elements as power sources.

For a general description of the I and V elements, see Power Sources on 
page 258.

I and V Element Syntax
Vxxx p n
+ $ **** Voltage or Power Information ********
+ [[dc] mag] [ac [mag [phase]]] [HBAC [mag [phase]]]
+[SNAC [mag [phase]]]
+ [hb [mag [phase [harm [tone [modharm [modtone]]]]]]] 
+ [transient waveform] [TRANFORHB=[1|0]]

+ $ **** Power Switch ********
+ [power=[0 | 1 | W | dbm]] [z0=val] [rdc=val] [rac=val]
+ [RHBAC=val] [rhb=val] [rtran=val]

Ixxx p n
+ $ **** Current or Power Information ********
+ [[dc] mag] [ac [mag [phase]]] [HBAC [mag [phase]]]
+[SNAC [mag [phase]]]
+ [hb [mag [phase [harm [tone [modharm [modtone]]]]]]] 
+ [transient waveform] [TRANFORHB=[1|0]]

+ $ **** Power Switch ********
+ [power=[0 | 1 | W | dbm]] [z0=val] [rdc=val] [rac=val]
+ [RHBAC=val] [rhb=val] [rtran=val]
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Parameter Description

[[dc] mag] DC voltage or power source value. You do not need to specify DC explicitly. The 
default = 0.

[ac [mag [phase]]] AC voltage or power source value.

[HBAC [mag [phase]]] (HSPICE advanced analog analyses) HBAC voltage or power source value.

[SNAC [mag [phase]]] (HSPICE advanced analog analyses) SNAC voltage or power source value.

[hb [mag [phase [harm 
[tone [modharm 
[modtone]]]]]]]

(HSPICE advanced analog analyses) HB voltage, current, or power source 
value. Multiple HB specifications with different harm, tone, modharm, and 
modtone values are legal: 
■ phase is in degrees.
■ harm and tone are indices corresponding to the tones specified in the .HB 

statement. Indexing starts at 1 (corresponding to the first harmonic of a 
tone).

■ modtone and modharm specify sources for multitone simulation. A source 
specifies a tone and a harmonic, and up to 1 offset tone and harmonic 
(modtone for tones and modharm for harmonics). The following describes 
the signal as:
V(or I) = mag*cos(2*pi*
(harm*tone+modharm*modtone)*t + phase)

[transient waveform] (Transient analysis) Any one of waveforms: AM, EXP, PULSE, PWL, SFFM, or 
SIN. Multiple transient descriptions are illegal.

[power=[0 | 1 | W | dbm]] (HSPICE advanced analog analyses) Power Switch:
■ When 0 (default), element treated as a voltage or current source.
■ When 1 or W, element treated as a power source, realized as a voltage 

source with a series impedance. In this case, HSPICE interprets the source 
value as RMS available power in units of watts.

■ When dbm, element treated as a power source in series with the port 
impedance. Values are in dbms.

You can use this parameter for Transient analysis if the power source is either 
DC or SIN.

[z0=val] (LIN analysis) System impedance used when converting to a power source, 
inserted in series with the voltage source. Currently, this only supports real 
impedance:
■ When power=0, z0 defaults to 0.
■ When power=1, z0 defaults to 50 ohms.

You can also enter zo=val.

[rdc=val] (DC analysis) Series resistance (overrides z0).
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Example 1
This example shows an HB source for a single tone analysis:

.hb tones=100MHz harms=7

I1 1 2 dc=1mA hb 3mA 0. 1 1

I1 is a current source with a the following time-domain description: 

I1=1mA + 3mA*cos(2*pi*1.e8*t)

Example 2
This example shows HB sources used for a two-tone analysis:

.hb tones=1.e9 1.1e9 intmodmax=5 
Vin lo 0 dc=0. hb 1.5 90 1 1 

Vrf rf 0 dc=0. hb 0.2 0 1 2

These sources have the following time-domain descriptions: 

Vin=1.5*cos(2*pi*1.e9*t - 90*pi/180) V 

Vrf = 0.2*cos(2*pi*1.1e9*t) V

[rac=val] (AC analysis) Series resistance (overrides z0). 

[RHBAC=val] (HSPICE advanced analog HBAC analysis) Series resistance (overrides z0). 

[rhb=val] (HSPICE advanced analog HB analysis) Series resistance (overrides z0). 

[rtran=val] (Transient analysis) Series resistance (overrides z0).

[TRANFORHB=[0|1]] ■ 0 (default): HSPICE advanced analog analyses ignores the transient 
description when an HB or DC value exists. If no DC or HB value exists and 
TRANFORHB=0, then HB treats the source as a DC source, and the DC 
source value is the time=0 value.

■ 1: HB analysis uses the transient description if its value is VMRF, SIN, 
PULSE, PWL, or LFSR. If the type is a nonrepeating PWL source, then a 
DC source value uses the time=infinity value. For example, the following 
statement is treated as a DC source with value=1 for HB:
v1 1 0 PWL (0 0 1n 1 1u 1) TRANFORHB=1
In contrast, the following statement is a 0V DC source: 
v1 1 0 PWL (0 0 1n 1 1u 1) TRANFORHB=0 
The following statement is treated as a periodic source with a 1 us period 
that uses PWL values: 
v1 1 0 PWL (0 0 1n 1 0.999u 1 1u 0) R

TRANFORHB=1 
To override the global TRANFORHB option, explicitly set TRANFORHB for a V/
I source.

Parameter Description
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Example 3
The following HB source uses a modtone and modharms:

.hb tones=2.e9 1.9e9 harms=5 5 

Vm input gnd dc=0.5 hb 0.2 0. 1 1 -1 2 

Vm has the following time-domain description: 

Vm = 0.5 + cos(2*pi*1.e8*t)

Example 4
This example uses an HB source specified with a SIN source and 
HBTRANINIT.

.hb tone=1.e8 harms=7 
Vt 1 2 SIN(0.1 1.0 2.e8 0. 0. 90) tranforhb=1

Where Vt converts to the following HB source:

Vt 1 2 dc=0.1 hb 1.0 0.0 2 1

Example 5
This example shows a power source (the units are watts).

.hb tones=1.1e9 harms=9

Pt Input Gnd power=1 Z0=50. 1m 0. 1 1

Pt delivers 1 mW of power through a 50-ohm impedance.

Steady-state HB Sources
Use the .HB TONES command to specify the fundamental frequencies used 
with harmonic balance analysis. Then you can reference these frequencies by 
their integer indices when specifying steady-state signal sources. For example:

.HB TONES=1900MEG,1910MEG INTMODMAX=5

This specifies two fundamental frequencies:  and 
. Then you can reference their mixing product at 10 MHz 

using indices as , while you reference their third-order intermodulation 

product at 1.89 GHz as .

Identify steady-state voltage and current sources with the HB keyword 
according to:

f tone 1=  1.9GHz=

f tone 2=  1.91GHz=

f 2  f 1 –

2f 1  f 2 –
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[HB [mag [phase [harm [tone [modharm [modtone]]]]]]]

The source is mathematically equivalent to a cosine signal source that follows 
the equation:

where:

Values for tone and modtone (an optional modulating tone) must be non-
negative integers that specify index values for the frequencies specified with 
the .HB TONES command. Values for harm (harmonic) and modharm 
(modulating tone harmonic) must be integers (negative values are acceptable) 
that specify harmonic indices. 

Example 1
The following example is a 1.0-V (peak) steady-state cosine voltage source, 
which is at the fundamental HB frequency with 0 phase and with a 0-V DC 
value:

Vsrc  in   gnd   DC  0  HB  1.0  0  1  1

Example 2
The following example is a steady-state cosine power source with 1.0-mW 
available power, which is implemented with a Norton equivalent circuit and a 
50-ohm input impedance:

Isrc  in   gnd   HB  1.0e-3  0  1  1  power=1 z0=50

Example 3
Five series voltage sources sum to produce a stimulus of five equally spaced 
frequencies at and above 2.44 GHz using modharm and modtone parameters. 
These are commensurate tones (an integer relation exists); therefore, you only 
need to specify two tones when invoking the HB analysis.

A t + cos

A mag=

 2 harm f tone  modharm+ f mo toned =

 
180
--------- phase=
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.param Vin=1.0

.param f0=2440MEG

.param deltaf=312.5K 

.param fcenter='f0 + 2.0*deltaf'
Vrfa in ina HB 'Vin' 0 1 1 $ 2.440625 

GHz
Vrfb ina inb HB 'Vin' 0 1 1 -1 2 $ 
2.4403125 GHz
Vrfc inb inc HB 'Vin' 0 1 1 -2 2 $ 
2.440 GHz
Vrfd inc ind HB 'Vin' 0 1 1 +1 2 $ 
2.4409375 GHz
Vrfe ind gnd HB 'Vin' 0 1 1 +2 2 $ 2.44125 

GHz
.HB tones=fcenter,deltaf intmodmax=5

Phase Differences Between HB and SIN Sources
The HB steady-state cosine source has a phase variation compared to the 
TRAN time-domain SIN source. The SIN source (with no offset, delay or 
damping) follows the equation:

Equation 33

while the HB sources follow:

Equation 34

For the two sources to yield identical results, you must align them by setting 
their phase values accordingly using: 

Equation 35

Equation 36

To specify sources with matching phase for HB and TRAN analysis, use a 
convention similar to:

A t + sin

A t + cos

A t + cos A t  90+ + sin=

A t + sin A t  90–+ cos=
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** Example #1 with equivalent HB and SIN sources
** SIN source is given +90 phase shift
.param freq1=2400MEG Vin=1.0
Vsrc in gnd DC 0 HB 'Vin' 0 1 1 SIN(0 'Vin' 'freq1' 0 0 90)
.HB tones=freq1 intmodmax=7
** Example #2 with equivalent HB and SIN sources
** HB source is given -90 phase shift to align with SIN
.param freq1=2400MEG Vin=1.0
Vsrc in gnd DC 0 HB 'Vin' -90 1 1 SIN(0 'Vin' 'freq1' 0)
.HB tones=freq1 intmodmax=7
** Example #3 with equivalent .HB and .TRAN sources
** SIN source is activated for HB using "TRANFORHB" 
.param freq1=2400MEG Vin=1.0
Vsrc in gnd DC 0 SIN(0 'Vin' 'freq1' 0) TRANFORHB=1
.HB tones=freq1 intmodmax=7

Behavioral Noise Sources
In HSPICE advanced analog analyses, you can use the G-element to specify 
noise sources. Frequency domain noise analyses (.NOISE, .HBNOISE, and 
.PHASENOISE) take these noise sources into account.

You can attach noise sources to behavioral models. For example, you can use 
a G-element with the VCCAP parameter to model a varactor which includes a 
noise model. You also can simulate effects such as substrate noise including its 
effect on oscillator phase noise. You also can use this G-element syntax to 
simulate behavioral descriptions of substrate noise during any frequency 
domain noise analysis, which includes phase noise analysis. For example:

gname node1 node2 noise=’noise_equation’
gname node1 node2 node3 node4 noise=’noise_equation’

The first line creates a simple two-terminal current noise source whose value is 
described in A2/(Hz). The output noise generated from this noise source is:

noise_equation*H

Where H is the transfer function from the terminal pair (node1,node2) to the 
circuit output, where HSPICE advanced analog analyses measures the output 
noise. 

The second line produces a noise source correlation between the 
(node1,node2) and (node3,node4) terminal pairs. The resulting output noise is 
calculated as noise_equation*sqrt(H1*H2*); where: 
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■ H1 is the transfer function from (node1,node2) to the output
■ H2 is the transfer function from (node3,node4) to the output.

The noise_equation expression can involve node voltages and currents through 
voltage sources.

For the PAC phasenoise simulation to evaluate the frequency-dependent noise, 
the frequency-dependent noise factor in the phasenoise must be expressed in 
between the parentheses. For example:

gname node1 node2 noise = '(frequency_dependent_noise)*
bias_dependent_noise'

This is only true when the total noise can be expressed in this form and when 
the frequency-dependent noise can be evaluated in the PAC phasenoise 
simulation. You also can input the behavioral noise source as a noise table with 
the help of predefined Table() function. The Table() function takes two formats:
■ Noise table can be input directly through the Table() function. For example:

gname node1 node2 noise = 'Table(arg1,f1,v1,f2,v2,......)'

■ The f1,v1,f2,v2,..... parameters describe the noise table. When arg1 == f1, 
the function returns v1. The arg1 can be an expression of either HERTZ, 
bias, or both. For example, arg1 = 'HERTZ * 1.0E+3'.

■ The noise table can be input through a .DATA structure:

.DATA d1 
+ x y 
+ f1 v1 
+ f2 v2 
.ENDDATA

gname node1 node2 noise = 'TABLE(arg1,d1)' 

The x, y parameters in the DATA structure are two placeholder strings that can 
be set to whatever you prefer even if they are in conflict with other parameters 
in the netlist. The arg1 parameter can be an expression of HERTZ and bias. 
When arg1 == f2, the function will return v2. 

The following sections discuss these topics:
■ Using Noise Analysis Results as Input Noise Sources
■ Syntax Rules for Behavioral Noise Source Files
■ Power Supply Current and Voltage Noise Sources
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Using Noise Analysis Results as Input Noise Sources
By extending the E- and G- voltage-controlled source syntax, the phase noise 
or noise data in ASCII phase noise and noise files can used as input for 
specifying behavioral noise sources.

Usage Model
The syntax for the voltage controlled voltage (E) or current (G) source is:

Exxx node1 node2 noisefile='filename' [mname='measname']
Gxxx node1 node2 noisefile='filename' [mname='measname'] 

where: 

noisefile='filename' is the name of the ASCII noise data file. Phase 
noise analysis and noise analyses can output simulation results as ASCII data 
using .PRINT statements. The file name is designated as 
'design.printsnpn0' for .SNOSC phase noise and .SNNOISE analyses. 
For .PHASENOISE, .HBNOISE and .ACPHASENOISE analyses, the file name 
is designated as 'design.printpn0'. For .NOISE analyses, the file name 
is designated as 'design.printac0'.

mname='measname' is used to select the appropriate noise measurement 
name to be taken from the *.printpn0, *.printsnpn0, or *.printac0 
file.

measname can be one of the following:
■ NLP_L(f) – selects the nlp_L(f) phase noise data in units of dBc/Hz.
■ PAC_L(f) – selects the pac_l(f) phase noise data in units of dBc/Hz.
■ BPN_L(f) – selects the bpn_l(f) phase noise data in units of dBc/Hz.
■ ONOISE – selects the onoise data based on .SNNOISE or .NOISE analysis.

The following syntaxes are supported in both HSPICE advanced analog 
analyses and HSPICE:
■ Exxx n1 n2 noise data=dataname

■ Exxx n1 n2 noise data=datablock

■ Exxx n1 n2 noisefile='filename'

■ Exxx n1 n2 noise='expression'

■ Exxx n1 n2 noise='Table(arg1,f1,v1,f2,v2...)'
■ Exxx n1 n2 noise='Table(arg1,dotDataBlockName)', where 

dotDataBlockName is the .data statement reference.
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Syntax Rules for Behavioral Noise Source Files
You can use ASCII noise data files not generated by .PRINT statements when 
you follow these syntax rules:
■ A noise file always needs a header (do not include frequency or noise points 

in the header line, as they will be ignored).
■ The items in the header must be consistent with the number of data 

columns. 
■ You can use noise keywords in the header (see below).
■ The noise value units depend on your use of the MNAME keyword.

You can use noise keywords like ONOISE, and the phase noise keywords, 
PAC_L(f), BPN_L(f), and, NLP_L(f). This is useful for *.printac#, 
*.printpn#, or *.printsnpn# files and use of the MNAME keyword to 
specify the noise data column to be used. For example, if you do a phase noise 
analysis and specify broadb and phase noise (method=2 in the .PHASENOISE 
command), the *.printpn# file contains three columns of phase noise data: 
PAC_L(f), BPN_L(f), and, NLP_L(f).

If MNAME is not specified with the behavioral noise source, then HSPICE 
assumes that the second column in the noise file represents the desired noise 
values, and the MNAME string is read from the noise file header. The first 
column is always assumed to contain frequency values.

The MNAME keyword is used to differentiate units. If you use MNAME=ONOISE 
and the file contains ONOISE in the header, then the noise units are interpreted 
as V/sqrt(Hz). The same is true with MNAME=ONOISE(M) and 
MNAME=ONOISE(MAG). If MNAME is set to PAC_L(f), BPN_L(f), NLP_L(f), 
or PHNOISE, then units are interpreted as dBc/Hz. With MNAME=ONOISE(DB), 
units are taken as dB/Hz (20*Log(onoise)), as are other MNAME keywords that 
end in DB or (DB). Most other MNAME keywords are generally interpreted in 
V^2/Hz units, unless the name ends in(M) or (MAG), which are taken to be
V/sqrt(Hz). Depending on the noise units, different interpolation schemes are 
used for frequencies needed between noise data points. Noise in dB/Hz or 
dBc/Hz units use logarithmic interpolation (in x and y), while non-dB units use 
linear interpolation in V^2/Hz.

Noise File Examples

The following examples provide sample noise results noting the various noise 
value units:
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Example 1: Phase noise file generated by using .PRINT phasenoise 
phnoise statement. The noise units are dBc/Hz:

HERTZ  NLP_L(f)
10.0000000000k     -130.2612492663
12.5892541179k     -132.2612484153
15.8489319246k     -134.2612470666
19.9526231497k     -136.2612449295
25.1188643151k     -138.2612415429
31.6227766017k     -140.2612361768
39.8107170553k     -142.2612276743
50.1187233627k     -144.2612142034
63.0957344480k     -146.2611928626
79.4328234724k     -148.2611590575
100.0000000000k    -150.2611055150
125.8925411794k    -152.2610207237
158.4893192461k    -154.2608864692
199.5262314969k    -156.2606739394
251.1886431510k    -158.2603375701
316.2277660168k    -160.2598053187
398.1071705535k    -162.2589632779
501.1872336273k    -164.2576312765
630.9573444802k    -166.2555240055
794.3282347243k    -168.2521885144
1.0000000000x      -170.2469020563

Example 2: Noise file generated by using .PRINT snnoise onoise 
statement. The noise units are V/sqrt(Hz):

HERTZ  ONOISE()
100.0000     1.6699u
526.4105k    46.8034n
1.0527x      45.1538n
1.5790x      44.6096n
2.1053x      44.3405n
2.6317x      44.1804n
3.1580x      44.0744n
3.6843x      43.9990n
4.2106x      43.9425n
4.7369x      43.8986n
5.2632x      43.8634n
5.7895x      43.8345n
6.3158x      43.8102n
6.8421x      43.7894n
7.3684x      43.7714n
7.8948x      43.7556n
8.4211x      43.7415n
8.9474x      43.7288n
9.4737x      43.7172n
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10.0000x     43.7067n

Example 3: User-generated noise file. Units are in dBc/Hz:

HERTZ  NOISE(DB)
10.0     -120
100.0    -125
1.0k     -130
5.0k     -135
10.0k    -140
100.0k   -150

Power Supply Current and Voltage Noise Sources
You can implement the power supply noise source with G- and E-elements. 
The G-element for the current noise source and the E-element for the voltage 
noise source. As noise elements, they are two-terminal elements that represent 
a noise source connected between two specified nodes. 

Syntax
Expression form:

Gxxx node1 node2 noise=‘expression’
Exxx node1 node2 noise=‘expression’

The G noise element represents a noise current source and the E noise 
element represents a noise voltage source. The xxx parameter can be set with 
a value up to 1024 characters. The node1 and node2 are the positive and 
negative nodes that connect to the noise source. The noise expression can 
contain the bias, frequency, or other parameters. 

Data form:

Gxxx node1 node2 noise data=dataname
Exxx node1 node2 noise data=dataname
.data dataname
+ pname1 pname2
+ freq1 noise1
+ freq2 noise2
+ ...
.enddata

The data form defines a basic frequency-noise table. The .DATA statement 
contains two parameters: frequency and noise to specify the noise value at 
each frequency point. The unit for frequency is hertz, and the unit for noise is 
A2/Hz (for G current noise source) or V2/Hz (for E voltage noise source).
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Example
The following netlist shows a 1000-ohm resistor (g1) using a G-element. The 
g1noise element, placed in parallel with the g1 resistor, delivers the thermal 
noise expected from a resistor. The r1 resistor is included for comparison; the 
noise due to r1 should be the same as the noise due to g1noise:

* Resistor implemented using g-element
v1 1 0 1
r1 1 2 1k
g1 1 2 cur='v(1,2)*0.001'
g1noise 1 2
+ noise='4*1.3806266e-23*(TEMPER+273.15)*0.001'
rout 2 0 1meg
.ac lin 1 100 100
.noise v(2) v1 1 
.end

Function Approximations for Distributed Devices
High-order rational function approximations constructed for distributed devices 
used at RF frequencies are obtained in the pole-residue form (also known as 
Foster canonical form). The popular method of recursive convolution also uses 
this form. 

HSPICE supports the pole-residue form for its frequency-dependent controlled 
sources (G and E-elements). You can enter the pole-residue form directly 
without first converting to another form.

Foster Pole-Residue Form for Transconductance or Gain
The Foster pole-residue form for transconductance G(s) or gain E(s) has the 
form:

Equation 37

where:

G s  k0 k1s
Ai

s pi–
------------

Ai


s pi
–

---------------+
 
 
 

i 1=

N

+ +=
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■ k0, k1 are real constants.

■ Residues Ai and poles pi are complex numbers (or real as a special case of 
complex.

■ Asterisk (*) denotes the expression’s complex conjugate.

Advantages of Foster Form Modeling
The advantages of Foster canonical form modeling are:
■ Models high-order systems. It can theoretically model systems having 

infinite poles without numerical problems.
■ Equivalent to Laplace and Pole-zero models.
■ Popular method of recursive convolution uses this form.

G and E-element Syntax
Transconductance G(s) form:

Gxxx n+ n- FOSTER in+ in- k0 k1
+ (Re{A1}, Im{A1})/ (Re{p1}, Im{p1})
+ (Re{A2}, Im{A2})/ (Re{p2}, Im{p2})
+ (Re{A3}, Im{A3})/ (Re{p3}, Im{p3})
+ ...

Gain E(s) form:

Exxx n+ n- FOSTER in+ in- k0 k1
+ (Re{A1}, Im{A1})/ (Re{p1}, Im{p1})
+ (Re{A2}, Im{A2})/ (Re{p2}, Im{p2})
+ (Re{A3}, Im{A3})/ (Re{p3}, Im{p3})
+ ...

In this syntax, parentheses, commas, and slashes are separators—they have 
the same meaning as a space. A pole-residue pair is represented by four 
numbers (real and imaginary part of the residue, then real and imaginary part 
of the pole).

You must ensure that Re[pi]<0; otherwise, the simulations will certainly diverge. 
Also, it is a good idea to ensure passivity of the model (for an N-port admittance 
matrix Y, Re{Y} should be positive-definite), or the simulation is likely to 
diverge).

Example
To represent a G(s) in the form:
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Equation 38

You would input:

G1 1 0 FOSTER 2 0 0.001 1e-12 
+(0.0004, 0)/(-1e10, 0) (0.001, -0.006)/(-1e8, 1.8e10)

Note: In the case of a real poles, half the residue value is entered 
because it is essentially applied twice. In the above example, the 
first pole-residue pair is real, but you still must write it as “A1/(s-
p1)+A1/(s-p1)”; therefore, 0.0004 is entered rather than 0.0008.

Complex Signal Sources and Stimuli
To predict radio-frequency integrated circuit (RFIC) performance, some 
analyses require simulations that use representative RF signal sources. Among 
the representative sources available in HSPICE advanced analog analyses is 
the complex modulated RF source. Also known as the Vector Modulated 
source, it allows digital modulation of an RF carrier using in-phase and 
quadrature components created from a binary data stream.

Vector-modulated RF (VMRF) Source
Digital RF waveforms are typically constructed by modulating an RF carrier with 
in-phase (I) and quadrature (Q) components. In HSPICE advanced analog 
analyses, this is accomplished using the Vector Modulated RF (VMRF) signal 
source.

The VMRF signal source function is supported both for independent voltage 
and current sources (V and I elements), and with controlled sources (E, F, G, 
and H elements): 

G s  0.001 1 10
12–

s
0.0008

s 1 10
10+

---------------------------- 0.001 j0.006– 

s 1 10
8

j1.8 10
10+– –

-------------------------------------------------------------------

0.001 j0.006+ 

s 1 10
8

j1.8 10
10–– –

------------------------------------------------------------------

+ + ++=
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■ When used with independent sources, a baseband data stream can be input 
in binary or hexadecimal format, and the scheme used to divide the data into 
I and Q signals can be specified. 

■ With controlled VMRF sources, the modulating I and Q signals can be 
separately specified with other signal sources (such as a PWL source) and 
then used as control inputs into the VMRF source.

VMRF Implementation

The VMRF source is a mathematical implementation of the following block 
diagram:

The following equation calculates the time and frequency domain stimuli from 
the quadrature modulated signal sources:

Equation 39

The discrete ideal I (in-phase) and Q (quadrature) signal components are 
digital. Discrete values allow uniform scaling of the overall signal. HSPICE 
advanced analog analyses generates data streams for the I and Q signals 
based on interpreting the data string, breaking the data string into a binary 
representation, and then using the bit pairs to assign values for the I and Q 
data streams.

l(t)

Serial to

Q(t)

Data in
cos(wt)

sin(wt)

S(t)
Parallel

s t  I t  2fct 0+  Q t  2fct 0+ sin–cos=
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For BPSK (binary phase shift keying) modulation, the discrete signals are 

scaled so that :

For QPSK (quadrature phase shift keying) modulation, the data stream is 
broken into bit pairs to form the correct I and Q values. This function is 
represented as the serial to parallel converter:

To generate a continuous-time waveform, the VMRF source takes the resulting 
digital I and Q data streams and passes them through ideal filters. Rectangular 
and Nyquist (raised-cosine) filter options are available. Thus, the output 
waveforms are band-limited according to the specified data rate.

Voltage and Current Source Elements
The V and I elements can include VMRF signal sources that you can use to 
generate BPSK and QPSK waveforms. 

V and I Element Syntax

Vxxx n+ n- VMRF [(] AMP=sa FREQ=fc PHASE=ph MOD=MOD 

Data In I Data Q Data

0

1

Data In I Data Q Data

00

01

10

11

I
2

Q
2

+ 1=

1–

2
------- 1–

2
-------

1

2
-------

1

2
-------

1–

2
-------

1–

2
-------

1–
2

-------
1

2
-------

1

2
-------

1–

2
-------

1

2
-------

1

2
-------
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+ FILTER=FIL FILCOEF=filpar RATE=Rb BITSTREAM=data 
+ [TRANFORHB=0/1] [)]

Ixxx n+ n- VMRF [(] AMP=sa FREQ=fc PHASE=ph MOD=MOD 
+ FILTER=FIL FILCOEF=filpar RATE=Rb BITSTREAM=data 
+ [TRANFORHB=0/1] [)]

Parameter Description

Vxxx Independent voltage source.

Ixxx Independent current source.

n+ n- Positive and negative controlled source connecting nodes.

VMRF Keyword that identifies and activates the Vector Modulated RF signal source.

AMP Signal amplitude (in volts or amps).

FREQ Carrier frequency in hertz. Set fc=0.0 to generate baseband I/Q signals. For 
harmonic balance analysis, the frequency spacing must coincide with the .HB 
TONES settings.

PHASE Carrier phase (in degrees). If fc=0.0, 
■ ph=0 and baseband I(t) is generated
■ ph=-90 and baseband q(t) is generated
■ Otherwise, 

MOD One of the following keywords identifies the modulation method used to convert a 
digital stream of information to I(t) and Q(t) variations:
■ BPSK (binary phase shift keying)
■ QPSK (quadrature phase shift keying)

FILTER One of the following keywords identifies the method used to filter the I and Q signals 
before modulating the RF carrier signal:
■ COS (raised cosine Nyquist filter)
■ RECT (rectangular filtering)

FILCOEF Filter parameter for the COS filter: 0 filpar 1

RATE Bit rate for modulation (bits per second):
■ For BPSK modulation, the data rate and the symbol rate are the same.
■ For QPSK modulation, the symbol rate is half the data rate.

The Rb value must be greater than zero.

s t  I t  0  Q t  0 sin–cos=
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You also can use the standard V source and I source options for nontransient 
simulations (such as DC=val and AC=mag,ph) a with the VMRF source.

Example
BITSTREAM=01010010011100b

BITSTREAM A binary (b) or hexadecimal (h) string that represents an input data stream.

Valid data string characters are:
■ 0 or 1 for binary (b) mode.
■ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, a, b, c, d, e, or f for hexadecimal (h) 

mode.

For example:
■ 01010011b (binary)
■ 0F647A30E9h (hexadecimal)

Parameter Description

data

1/dr

.707

1/dr

BPSK I and Q Signals
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The Rb parameter represents the data rate. The associated symbol rate 
represents how fast the I and Q data streams change. The period for each bit of 
data is:

Equation 40

The symbol rate depends on whether you select BPSK or QPSK modulation:
■ For BPSK, the symbol rate is the same as the data rate:

■ For QPSK modulation, two bits are used to create each symbol so the 
symbol rate is half the data rate.

The period for each symbol is computed as:

.707

1/dr

QPSK I Signal

.707

1/dr

QPSK Q Signal

Tb
1

Rb
------=

R
BPSK

S Rb=

R
QPSK

S

Rb

2
------=
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Equation 41

This value is necessary for establishing the characteristics of Nyquist filters.

The following equation calculates the raised cosine (COS) filter response:

Equation 42

The VMRF signal source is designed primarily for TRAN and HB analyses and 
can generate baseband signals. You also can specify DC and AC values as 
with any other HSPICE signal source:
■ In DC analysis, the VMRF source is a constant DC source.
■ In AC analysis, the source is a short or an open, unless you specify an AC 

value.
■ In HB analysis, you must specify .OPTION TRANFORHB on the source 

statement line. The TRANFORHB option supports the VMRF signal source as 
well as the SIN, PULSE, and PWL sources.

The VMRF quadrature signal source typically involves an HF carrier signal that 
is modulated with a baseband signal on a much different time scale. You must 
set source and simulation control parameters appropriately to avoid time-
consuming simulations in both the time and frequency domains.

E, F, G, and H Element Statements

For E, F, G, and H elements, you can use the VMRF function to modulate I(t) 
and Q(t) signals with a RF carrier signal. The I and Q signal are driven by PWL 
sources that might be generated by an external tool, such as MATLAB. The 
PWL source accepts a text file containing time and voltage (or current) pairs.

When the VMRF function is used with controlled sources, it is anticipated that 
the in-phase (I) and quadrature (Q) signals are not digital, but continuous-time 
analog signals. The VMRF function therefore includes no filtering, and merely 
serves to create the complex modulation on the RF carrier:
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1
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Hrc f  Tscos
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2
-------- f
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2Ts

------------– 
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Exxx n+ n- [VCVS] VMRF [(] Iin+ Iin- Qin+ Qin- FREQ=fc 
+ PHASE=ph [SCALE=A] [)]

Fxxx n+ n- [CCCS] VMRF [(] VI VQ FREQ=fc PHASE=ph 
+ [SCALE=A] [)]

Gxxx n+ n- [VCCS] VMRF [(] Iin+ Iin- Qin+ Qin- FREQ=fc 
+ PHASE=ph [SCALE=A] [)]

Hxxx n+ n- [CCVS] VMRF [(] VI VQ FREQ=fc PHASE=ph 
+ [SCALE=A] [)]

Parameter Description

Exxx Voltage-controlled voltage source.

Fxxx Current-controlled current source.

Gxxx Voltage-controlled current source.

Hxxx Current-controlled current source.

VCVS Keyword for voltage-controlled voltage source.

CCCS Keyword for current-controlled current source.

VCCS Keyword for voltage-controlled current source.

CCVS Keyword for current-controlled current source.

n+ n- Positive and negative controlled source connecting nodes.

VMRF Keyword that identifies and activates the vector-modulated RF signal source.

Iin+ Iin- Node names for input I(t) signal.

Qin+ Qin- Node names for input Q(t) signal.

VI VQ

FREQ Carrier frequency in hertz. Set fc=0.0 to generate baseband I/Q signals.

PHASE Carrier phase (in degrees). If fc=0.0, 
■ ph=0 and baseband I(t) is generated
■ ph=-90 and baseband Q(t) is generated

SCALE Unit-less amplitude scaling parameter.
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Example
Emod1 inp1 inn1 VMRF It_plus It_neg Qt_plus Qt_neg
+ freq=1g phase=0 scale=1.5

SWEEPBLOCK in Sweep Analyses
You can use the .SWEEPBLOCK statement to specify complicated sweeps. 
Sweeps affect:
■ DC sweep analysis. 
■ Parameter sweeps around TRAN, AC, or HB analyses.
■ Frequency values used in AC or HBAC analyses. 

Currently, HSPICE supports the following types of sweeps:
■ Linear sweeps: sweeps a variable over an interval with a constant 

increment. The syntax is one of the following:

• Variable start stop increment 

• Variable lin npoints start stop 
■ Logarithmic sweeps: sweeps a variable over an interval. To obtain each 

point, this sweep multiplies the previous point by a constant factor. You can 
specify the factor as a number of points per decade or octave as in: 

• Variable dec npoints start stop

• Variable oct npoints start stop
■ Point sweeps: a variable takes on specific values that you specify as a list. 

The syntax is:

variable poi npoints p1 p2 … 

■ Data sweeps: a .DATA statement identifies the swept variables and their 
values. The syntax is: 

data=dataname 

You can use the SWEEPBLOCK feature to combine linear, logarithmic, and point 
sweeps which creates more complicated sets of values over which a variable is 
swept.

The .TRAN, .AC, .DC, and .HB commands can specify 
SWEEPBLOCK=swblockname as a sweep instead of LIN, DEC, OCT, and so 
forth. Also, you can use SWEEPBLOCK for frequency sweeps with 
the .AC, .HBAC, .PHASENOISE, and .HBNOISE commands. 
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All commands that can use SWEEPBLOCK must refer to the SWEEPBLOCK 
sweep type. In addition, you must specify SWEEPBLOCK as one of the syntax 
types allowed for frequency sweeps with the .HBAC, .PHASENOISE, 
and .HBNOISE commands.

The following sections discuss these topics:
■ Input Syntax
■ Using SWEEPBLOCK in a DC Parameter Sweep
■ Using in Parameter Sweeps in TRAN, AC, and HB Analyses
■ Using in Parameter Sweeps in HBAC Analyses
■ Limitations

Input Syntax
The SWEEPBLOCK feature creates a sweep whose set of values is the union of 
a set of linear, logarithmic, and point sweeps. To specify the set of values in the 
SWEEPBLOCK, use the .SWEEPBLOCK command. This command also assigns 
a name to the SWEEPBLOCK. For example:

.SWEEPBLOCK swblockname sweepspec [sweepspec 
+ [sweepspec […]]]]

You can use SWEEPBLOCK to specify DC sweeps, parameter sweeps, AC and 
HBAC frequency sweeps, or wherever HSPICE accepts sweeps.

You can specify an unlimited number of sweepspec parameters. Each 
sweepspec can specify a linear, logarithmic, or point sweep by using one of 
the following forms:

start stop increment 
lin npoints start stop 
dec npoints start stop 
oct npoints start stop 
poi npoints p1 p2 … 

Example
The following example specifies a logarithmic sweep from 1 to 1e9 with more 
resolution from 1e6 to 1e7:

.sweepblock freqsweep dec 10 1 1g dec 1000 1meg 10meg

Using SWEEPBLOCK in a DC Parameter Sweep
To use the sweepblock in a DC parameter sweep, use the following syntax:
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.DC swblockname sweepspec [sweepspec [sweepspec […]]]]

Each sweepspec can be a linear, logarithmic, point, or data sweep, or it can be 
in the form:

variable SWEEPBLOCK=swblockname

The SWEEPBLOCK syntax sweeps the specified variable over the values 
contained in the SWEEPBLOCK.

Example
.dc vin1 0 5 0.1 vin2 sweepblock=vin2vals

Using in Parameter Sweeps in TRAN, AC, and HB Analyses
To use sweepblock in parameter sweeps on .TRAN, .AC, and .HB 
commands and any other commands that allow parameter sweeps, use the 
following syntax:

variable sweepblock=swblockname

Example 1
.tran 1n 100n sweep rout sweepblock=rvals

AC and HBAC analysis frequency sweeps can use 
sweepblock=swblockname to specify the frequency values. 

Example 2
.ac sweepblock=freqsweep

Using in Parameter Sweeps in HBAC Analyses
To use sweepblock in parameter sweeps on .HBAC commands with a 
logarithmic sweep from 1 to 1 GHz that has more resolution from 10 to 
100 MHz, and any other commands that allow parameter sweeps, use the 
following syntax:

.sweepblock=freqsweep

Example 1
.sweepblock freqsweep 
+ dec 10 1 1g
+ dec 1000 1meg 10meg

.hb tones=1g nharms=6

.hbac sweepblock=freqsweep
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Limitations
■ You cannot use recursive SWEEPBLOCK specifications. That is, 

a .SWEEPBLOCK command cannot refer to another SWEEPBLOCK to build its 
list of values.

■ You cannot include data sweeps in a .SWEEPBLOCK statement.

Clock Source with Random Jitter
In many applications involving signal integrity, advanced analog analyses, and 
mixed-signal design, it is desirable to have an ideal signal source, such as a 
sine wave or square wave that also includes a non-ideal random drift in phase 
(jitter). Such a source is useful for representing non-ideal clock sources during 
time-domain transient simulation. Modeling jitter in this way can be used to 
examine eye-diagram behavior or study how jitter may propagate through a 
circuit or system. A source with jitter is useful for representing non-ideal clock 
sources during time-domain transient simulation.

The RMSJITTER and PERJITTER parameters allow you to add phase and 
period jitter to SIN, COS, and PULSE time domain sources.

Syntax of SIN, COS, and Pulse Sources
The syntax of SIN source is:

Vxxx n+ n- SIN [(] vo va [freq [td [q [j ]]]] [)] 
+ [RMSJITTER=val PERJITTER=val SEED=val]]
Ixxx n+ n- SIN [(] vo va [freq [td [q [j ]]]] [)]
+ [RMSJITTER=val PERJITTER=val SEED=val]]

The syntax of COS source is:

Vxxx n+ n- COS [(] vo va [freq [td [q][j]]]] [)] 
+ [RMSJITTER=val PERJITTER=val SEED=val]]
Ixxx n+ n- COS [(] vo va [freq [td [q] [j]]]] [)]
+ [RMSJITTER=val PERJITTER=val SEED=val]]

The syntax for the PULSE source is:

Vxxx n+ n- PU[LSE] [(]v1 v2 [td [tr] [tf] [pw] [per]]]] [)] 
+ [RMSJITTER=val PERJITTER=val SEED=val]]
Ixxx n+ n- PU[LSE] [(]v1 v2 [td [tr] [tf] [pw] [per]]]] [)]
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+ [RMSJITTER=val PERJITTER=val SEED=val]]

The sine wave behavior following the td time delay now becomes:

Equation 43

The new cosine wave becomes:

Equation 44

Parameter Description

Vxxx, Ixxx Independent voltage/ current source, which exhibits the pulse response.

vo Voltage or current offset in volts or amps.

va Voltage or current peak value (vpeak), in volts or amps.

PULSE Keyword for a pulsed time-varying source. The short form is PU.

v1 Initial value of voltage or current before the pulse onset (units: volts/amps).

v2 Pulse plateau value (units of volts or amps).

td Delay (propagation) time in seconds from the beginning of the transient interval to the first 
onset ramp. Default=0.0 

tr Duration of the onset ramp (in seconds) from the initial value to the pulse plateau value 
(reverse transit time). Default = TSTEP 

tf Duration of the recovery ramp (in seconds) from the pulse plateau back to the initial value 
(forward transit time). Default TSTEP 

pw Pulse width (the width of the plateau portion of the pulse), in seconds. Default =TSTOP. 

per Pulse repetition period, in seconds. Default = TSTEP 

rmsjitter RMS value for random phase jitter, in seconds.

perjitter RMS value for period jitter, adjusts the magnitude of the random time.

seed Used to generate random number sequences with different seed value. The value is a 
negative integer, defaults to –1.

V t  e
t– td  –

+ V0 Va 2f0 t td–  
180
--------- + t dd–+sin+=

V t  e
t– td  –

+ V0 Va 2cos f0 t td– x t   
180
---------+ ++=
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The effect of jitter on the PULSE source results in random shifts of the rise and 
fall transitions that takes place at:

RISE edge: 

FALL edge: 

The jitter effect is equivalent to introducing random shifts in the period  

consistent with the 1st order jitter model based on period jitter. 

A Gaussian random number generator computes the time deviation  after 
each leading edge of the clock sources. For flexibility, the SEED parameter 
(integer) is supported for generating different random number sequences when 
different SEED integers are used for initialization. SEED does not set a fixed 
time deviation. It only changes the sequence of random samples. By HSPICE 
(Monte Carlo) convention, the default value for SEED is 1. 

An interpretation of PERJITTER is to view it as causing each period of the 
PULSE/SIN/COS to be a random variable , where period  will have a 

Gaussian distribution about the (mean) given period value of . The standard 

deviation of this Gaussian is the PERJITTER value (it is considered RMS 
period jitter), which results in a bell curve distribution centered about period .

 Apply the following considerations when using PERJITTER: 

■  should be forced to be between:  since period cannot go 

negative, and the curve should be symmetrical.

■ It is reasonable to require that . Otherwise, the jitter 

would result in very large period changes and many would be .

■ To establish a waveform reference, the first period should be  (in other 

words, no jitter in the first period). This helps to establish good eye diagrams.

Example
As an alternative to using a Verilog-A module, you can generate a pseudo-
random binary sequence (PRBS) using the following steps:

1. Construct your usual linear feedback shift register (LFSR) generator.

2. Construct a matching (T,tr,tf) PULSE source as a clock, but add jitter to it 
with the PERJITTER keyword.

3. Use the PULSE source to gate (buffer) the LFSR output (through an ideal 
AND gate, VCCS, and so forth).

td n T0 t td tr n T0+ + +

td pw n T0 t td pw tf n T0+ + + + +

T0

x t 

Tj Tj

T0

T0

Tj 0 Tj 2 T0 

2 PERJITTER T0

Tj 0

T0
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Specifying a Digital Vector File and Mixed Mode Stimuli

HSPICE input netlists support digital vector files. A VEC file consists of three 
parts:
■ Vector Pattern Definition section
■ Waveform Characteristics section
■ Tabular Data section

To incorporate this information into your simulation, include the .VEC command 
in your netlist. 

For paths to full demonstration files (digstim.vec—2 bit adder with PWL 
input, m2bit.sp, and m2bit_v.sp—same as m2bit.sp, except uses vector 
stimulus file, see Benchmark Examples in this guide.

The following sections discuss these topics:
■ Vector Patterns
■ Defining Tabular Data
■ Waveform Characteristics
■ Modifying Waveform Characteristics
■ Using the Context-Based Control Option (CBC)
■ Comment Lines and Line Continuations
■ Parameter Usage
■ Digital Vector File Example

Vector Patterns
The Vector Pattern Definition section defines the vectors, their names, sizes, 
signal direction, sequence or order for each vector stimulus, and so on. A 
RADIX line must occur first and the other lines can appear in any order in this 
section. All keywords are case-insensitive. 

The following is an example Vector Pattern Definition section:
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; start of Vector Pattern Definition section
RADIX 1111 1111
VNAME A B C D E F G H
IO IIII IIII
TUNIT ns

These four lines are required and appear in the first lines of a VEC file: 
■ RADIX defines eight single-bit vectors. 
■ VNAME gives each vector a name. 
■ IO determines which vectors are inputs, outputs, or bidirectional signals. In 

this example, all eight are input signals. 
■ TUNIT indicates that the time unit for the tabular data to follow is in units of 

nanoseconds. 

For additional information about these keywords, see Defining Tabular Data on 
page 335. 

Defining Tabular Data
Although the Tabular Data section generally appears last in a VEC file (after the 
Vector Pattern and Waveform Characteristics definitions), this chapter 
describes it first to introduce the definitions of a vector. 

The Tabular Data section defines (in tabular format) the values of the signals at 
specified times. Rows in the Tabular Data section must appear in chronological 
order because row placement carries sequential timing information. Its general 
format is:

time1 signal1_value1 signal2_value1 signal3_value1...
time2 signal1_value2 signal2_value2 signal3_value2...
time3 signal1_value3 signal2_value3 signal3_value3...
.
.

Where timex is the specified time, and signaln_valuen is the value of specific 
signals at specific points in time. The set of values for a particular signal (over 
all times) is a vector which appears as a vertical column in the tabular data and 
vector table. The set of all signal1_valuen constitutes one vector. 

For example: 

11.0 1000 1000
20.0 1100 1100
33.0 1010 1001
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This example shows that:
■ At 11.0 time units, the value for the first and fifth vectors is 1.
■ At 20.0 time units, the first, second, fifth, and sixth vectors are 1.
■ At 33.0 time units, the first, third, fifth, and eighth vectors are 1. 

The following sections discuss these topics:
■ Input Stimuli
■ Expected Output
■ Verilog Value Format
■ Periodic Tabular Data

Input Stimuli
HSPICE converts each input signal into a PWL voltage source and a series 
resistance. Table 22 shows the legal states for an input signal. Signal values 
can have any of these legal states.

Expected Output
HSPICE converts each output signal into a .DOUT statement in the netlist. 
During simulation, HSPICE compares the actual results with the expected 
output vectors. If the states are different, an error message appears. The legal 

Table 22 Legal States for an Input Signal

State Description

0 Drive to ZERO (gnd). Resistance set to 0.

1 Drive to ONE (vdd). Resistance set to 0.

Z, z Floating to HIGH IMPEDANCE. A TRIZ statement defines resistance value.

X, x Drive to ZERO (gnd). Resistance set to 0.

L Resistive drive to ZERO (gnd). An OUT or OUTZ statement defines resistance value.

H Resistive drive to ONE (vdd). An OUT or OUTZ statement defines resistance value.

U, u Drive to ZERO (gnd). Resistance set to 0.
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states for expected outputs include the values listed in Table 23.

For example:

...
IO OOOO
; start of tabular section data
11.0 1001
20.0 1100
30.0 1000
35.0 xx00

where:
■ The first line is a comment line because of the semicolon character. 
■ The second line expects the output to be 1 for the first and fourth vectors, 

while all others are expected to be low. 
■ At 20 time units, HSPICE expects the first and second vectors to be high, 

and the third and fourth to be low. 
■ At 30 time units, HSPICE expects only the first vector to be high, and all 

others low. 
■ At 35 time units, HSPICE expects the output of the first two vectors to be 

“don’t care”; it expects vectors 3 and 4 to be low. 

Verilog Value Format
HSPICE accepts Verilog-sized format to specify numbers. For example:

<size> ’<base format> <number>

Table 23 Legal States for an Output Signal

State Description

0 Expect ZERO.

1 Expect ONE.

X, x Don’t care.

U, u Don’t care.

Z, z Expect HIGH IMPEDANCE (don’t care). Simulation evaluates Z, z as “don’t care” because 
HSPICE cannot detect a high impedance state.
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where:
■ <size> specifies the number of bits, in decimal format. 
■ <base format> indicates:

• binary (’b or ’B)

• octal (’o or ’O)

• hexadecimal (’h or ’H). 
■ <number> values are combinations of the 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, 

D, E, and F characters. Depending on what base format you choose, only a 
subset of these characters might be legal.

You also can use unknown values (X) and high-impedance (Z) in the 
<number> field. An X or Z sets four bits in the hexadecimal base, three bits 
in the octal base, or one bit in the binary base.

If the most significant bit of a number is 0, X, or Z, HSPICE automatically 
extends the number (if necessary) to fill the remaining bits with 0, X, or Z, 
respectively. If the most significant bit is 1, HSPICE uses 0 to extend it.

For example:

4’b1111
12’hABx
32’bZ
8’h1

This example specifies values for: 

• 4-bit signal in binary

• 12-bit signal in hexadecimal

• 32-bit signal in binary

• 8-bit signal in hexadecimal

Equivalents of these lines in non-Verilog format, are:

1111
AB xxxx
ZZZZ ZZZZ ZZZZ ZZZZ ZZZZ ZZZZ ZZZZ ZZZZ
0000 0001

Periodic Tabular Data
Tabular data is often periodic, so you do not need to specify the absolute time 
at every time point. When you specify the PERIOD statement, the Tabular Data 
338 HSPICE® User Guide: Basic Simulation and Analysis
K-2015.06



Chapter 9: Sources and Stimuli
Specifying a Digital Vector File and Mixed Mode Stimuli
section omits the absolute times. For more information, see Defining Tabular 
Data on page 335.

For example, the PERIOD statement in the following sets the time interval to 
10 ns between successive lines in the tabular data. This is a shortcut when you 
use vectors in regular intervals throughout the entire simulation: 

RADIX 1111 1111
VNAME A B C D E F G H
IO IIII IIII
TUNIT ns
PERIOD 10
; start of vector data section
1000 1000
1100 1100
1010 1001

Waveform Characteristics
The Waveform Characteristics section defines various attributes for signals, 
such as the rise or fall time, the thresholds for logic high or low, and so on. For 
example: 

TRISE 0.3 137F 0000
TFALL 0.5 137F 0000
VIH 5.0 137F 0000
VIL 0.0 137F 0000

The waveform characteristics are based on a bit-mask. Where:
■ The TRISE (signal rise time) setting of 0.3ns applies to the first four vectors, 

but not to the last four. 
■ The example does not show how many bits are in each of the first four 

vectors, although the first vector is at least one bit. 
■ The fourth vector is four bits because F is hexadecimal for binary 1111. 
■ All bits of the fourth vector have a rise time of 0.3ns for the constant you 

defined in TUNIT. This also applies to TFALL (fall time), VIH (voltage for 
logic-high inputs), and VIL (voltage for logic-low inputs). 

Modifying Waveform Characteristics
The TDELAY, IDELAY, and ODELAY statements define the delay time of the 
signal, relative to the absolute time of each row in the Tabular Data section: 
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■ TDELAY applies to the input and output delay time of input, output, and 
bidirectional signals.

■ IDELAY applies to the input delay time of input and bidirectional signals.
■ ODELAY applies to the output delay time of output and bidirectional signals.

The other statements are defined as follows:
■ SLOPE statement specifies the rise and fall times for the input signal. To 

specify the signals to which the slope applies, use a mask.
■ TFALL statement sets an input fall time for specific vectors.
■ TRISE statement sets an input rise time for specific vectors.
■ TUNIT statement defines the time unit.
■ TRIZ statement specifies the output impedance, when the signal (for which 

the mask applies) is in tristate; TRIZ applies only to the input signals.
■ VIH statement specifies the logic-high voltage for each input signal to which 

the mask applies.
■ VIL statement specifies the logic-low voltage for each input signal to which 

the mask applies.
■ the VREF statement (similar to the TDELAY statement) specifies the name 

of the reference voltage for each input vector to which the mask applies. 
VREF applies only to input signals.

■ VTH statement (similar to the TDELAY statement) specifies the logic 
threshold voltage for each output signal to which the mask applies. The 
threshold voltage determines the logic state of output signals for 
comparison with the expected output signals.

■ VOH statement specifies the logic-high voltage for each output signal to 
which the mask applies.

■ VOL statement specifies the logic-low voltage for each output signal to which 
the mask applies.

The OUT and OUTZ keywords are equivalent and specify output resistance for 
each signal (for which the mask applies); OUT (or OUTZ) applies only to input 
signals.
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Using the Context-Based Control Option (CBC)
The OPTION CBC (Context-Based Control) specifies the direction of 
bidirectional signals. A bidirectional signal is an input if its value is 0, 1, or Z; 
conversely, a bidirectional signal is an output if its value is H, L, U, or X.

For example:

RADIX 1 1 1
IO I O B
VNAME A Z B
OPTION CBC
10.0 0 X L
20.0 1 1 H
30.0 1 0 Z

This example sets up three vectors, named A, Z, and B. Vector A is an input, 
vector Z is an output, and vector B is a bidirectional signal (defined in the IO 
statement).

The OPTION CBC line turns on context-based control. The next line sets vector 
A to a logic-low at 10.0 ns, and vector Z is “do not care.” Because the L value 
is under vector B, HSPICE expects a logic-low output.

At 20 ns, vector A transitions high, and the expected outputs at vectors Z and B 
are high. Finally, at 30 ns, HSPICE expects vector Z to be low, vector B 
changes from an output to a high-impedance input, and vector the A signal 
does not change.

Comment Lines and Line Continuations
Any line in a VEC file that begins with a semicolon (;) is a comment line. 
Comments also can start at any point along a line. HSPICE ignores characters 
after a semicolon. For example:

; This is a comment line
radix 1 1 4 1234 ; This is a radix line

As in netlists, any line in a VEC file that starts with a plus sign (+) is a 
continuation from the previous line.
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Parameter Usage
You can use .PARAM statements with some VEC statements when you run 
HSPICE. These VEC statements fall into the three groups, which are described 
in the following sections. No other VEC statements, except those identified 
here, support .PARAM statements.

First Group
■ PERIOD

■ TDELAY

■ IDELAY

■ ODELAY

■ SLOPE

■ TRISE

■ TFALL

For these statements, the TUNIT statement defines the time unit. If you do not 
include a TUNIT statement, the default time unit value is nanoseconds. 

Do not specify absolute unit values in a .PARAM statement. For example, if in 
your netlist:

.param myperiod=10ns $ ‘ns’ makes this incorrect

And in your VEC file:

tunit ns
period myperiod

What you wanted for the time period is 10 ns; however, because you specified 
absolute units, 1e-8ns is the value used. In this example, the correct form is:

.param myperiod=10

Second Group
■ OUT or OUTZ
■ TRIZ

In these statements, the unit is ohms: 
342 HSPICE® User Guide: Basic Simulation and Analysis
K-2015.06



Chapter 9: Sources and Stimuli
Specifying a Digital Vector File and Mixed Mode Stimuli
■ If you do not include an OUT (or OUTZ) statement, the default is 0. 
■ If you do not include a TRIZ statement, the default is 1000 M. 

The .PARAM definition for this group follows the HSPICE syntax.

For example, if in your netlist:

.param myout=10 $ means 10 ohm

.param mytriz= 10Meg $ means 10,000,000 ohm, don't 
$ confuse Meg with M, M means 0.001

And in your VEC file:

out myout
triz mytriz

Then, HSPICE returns 10 ohm for OUT and 10,000,000 ohm for TRIZ.

Third Group
■ VIH

■ VIL

■ VOH

■ VOL

■ VTH

In these statements, the unit is volts.
■ If you do not include an VIH statement, the default is 3.3. 
■ If you do not include a VIL statement, the default is 0.0. 
■ If you do not include a VOH statement, the default is 2.64. 
■ If you do not include an VOL statement, the default is 0.66. 
■ If you do not include an VTH statement, the default is 1.65. 

Digital Vector File Example
; specifies # of bits associated with each vector
radix 1 2 444
;********************************************************
; defines name for each vector. For multi-bit vectors,
; innermost [] provide the bit index range, MSB:LSB
vname v1 va[[1:0]] vb[12:1] 
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;actual signal names: v1, va[0], va[1], vb1, vb2, ... vb12
;********************************************************
; defines vector as input, output, or bi-directional
io i o bbb
; defines time unit
tunit ns
;********************************************************
; vb12-vb5 are output when ‘v1’ is ‘high’
enable v1 0 0 FF0
; vb4-vb1 are output when ‘v1’ is ‘low’
enable ~v1 0 0 00F
;********************************************************
; all signals have a delay of 1 ns
; Note: do not put the unit (such as ns) here again. 
; HSPICE multiplies this value by the specified ‘tunit’.
tdelay 1.0
; va[1] and va[0] signals have 1.5ns delays
tdelay 1.5 0 3 000
;********************************************************
; specify input rise/fall times (if you want different
; rise/fall times, use the trise/tfall statement.)
; Note: do not put the unit (such as ns) here again. 
; HSPICE multiplies this value by the specified ‘tunit’.
slope 1.2
;********************************************************
; specify the logic ‘high’ voltage for input signals
vih 3.3 1 0 000
vih 5.0 0 0 FFF
; to specify logic low, use ‘vil’
;********************************************************
; va & vb switch from ‘lo’ to ‘hi’ at 1.75 volts
vth 1.75 0 1 FFF

;****************************************************
; tabular data section
10.0 1 3 FFF
20.0 0 2 AFF
30.0 1 0 888
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Part 3:  Parameters, Functions, and
Output

Part 3 presents the following chapters/topics:
■ Chapter 10, Parameters and Functions
■ Chapter 11, Simulation Output
■ Chapter 12, Using Verilog-A
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10Parameters and Functions

Describes how to use parameters within HSPICE netlists.

Parameters are similar to the variables used in most programming languages. 
Parameters hold a value that you assign when you create your circuit design or 
that the simulation calculates based on circuit solution values. Parameters can 
store static values for a variety of quantities (resistance, source voltage, rise 
time, and so on). You can also use them in sweep or statistical analysis.

HSPICE ships numerous examples for your use; see Listing of Demonstration 
Input Files for paths to demo files.

For descriptions of individual commands referenced in this chapter, see 
HSPICE Netlist Commands in the HSPICE Reference Manual: Commands and 
Control Options.

These topics are covered in the following sections:
■ Using Parameters in Simulation (.PARAM)
■ Using Algebraic Expressions
■ Built-In Functions and Variables
■ Parameter Scoping and Passing

Using Parameters in Simulation (.PARAM)

Defining Parameters 
Parameters in HSPICE are names that you associate with numeric values. 
(See Assigning Parameters on page 349.) You can use any of the methods 
described in Table 24 on page 349 to define parameters. 
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Note: A .PARAM statement with no definition is illegal.

A parameter definition in HSPICE always uses the last value found in the input 
netlist (subject to local versus global parameter rules). These definitions assign 
a value of 3 to the DupParam parameter.

.PARAM DupParam=1

...

.PARAM DupParam=3

HSPICE assigns 3 as the value for all instances of DupParam, including 
instances that are earlier in the input than the .PARAM DupParam=3 
statement.

Parameter Description

Simple assignment .PARAM SimpleParam=1e-12

Algebraic definition ■ .PARAM AlgebraicParam=‘SimpleParam*8.2’
■ SimpleParam excludes the output variable.
■ You can also use algebraic parameters in .PRINT and .PROBE 

statements. For example:
■ .PRINT AlgebraicParam=par(’algebraic expression’)
■ You can use the same syntax for .PROBE statements. See Using 

Algebraic Expressions on page 354.

User-defined function .PARAM MyFunc( x, y )=‘Sqrt((x*x)+(y*y))’

Character string definition .PARAM paramname=str(‘string’)

Subcircuit default .SUBCKT SubName ParamDefName=Value | str(‘string’)

.MACRO SubName ParamDefName=Value | str(‘string’)

Subcircuit call instance Xxxx nodename1 ... nodenamen 
+ SubName 
+ ParamDefName=Value | str('string')

Predefined analysis function .PARAM mcVar=AGAUSS(1.0,0.1)

.MEASURE statement .MEASURE [DC | AC | TRAN] result TRIG ...
+ TARG ... [GOAL=val] [MINVAL=val]
+ [WEIGHT=val] [MeasType] [MeasParam]

(See Specifying User-Defined Analysis (.MEASURE) on page 401.)

.PRINT | .PROBE .PRINT | .PROBE
+ outParam=Par_Expression 
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All parameter values in HSPICE are IEEE double floating point numbers. The 
parameter resolution order is:

1. Resolve all literal assignments.

2. Resolve all expressions.

3. Resolve all function calls.

Table 24 shows the parameter passing order.

Assigning Parameters
You can assign the following types of values to parameters:
■ Constant real number
■ Algebraic expression of real values
■ Predefined function
■ Function that you define
■ Circuit value
■ Model value

To invoke the algebraic processor, enclose a complex expression in single 
quotes. A simple expression consists of one parameter name. 

The parameter keeps the assigned value, unless:
■ A later definition changes its value, or 
■ An algebraic expression assigns a new value during simulation. HSPICE 

does not warn you, if it reassigns a parameter.

Table 24 Parameter Passing Order

.OPTION PARHIER=GLOBAL .OPTION PARHIER=LOCAL

Analysis sweep parameters Analysis sweep parameters

.PARAM statement (library) .SUBCKT call (instance)

.SUBCKT call (instance) .SUBCKT definition (symbol)

.SUBCKT definition (symbol) .PARAM statement (library)
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Note: Parameters you define using .PARAM statements are constants; 
they cannot vary as a function of simulation time. However, you 
can use elements such as resistors and capacitors whose values 
can vary as a function of time by using the keyword TIME, i.e., 

Ctime 1 2 q='1p*time'

Example: Modeling an eFuse
You can model an electrically programmable eFUSE device as follows. 
Instantiate an eFUSE as a subcircuit and pass a parameter that determines 
whether the eFUSE is “blown” or intact: 

.subckt efuse in out blown=0
 Rfuse in out r='2*(1-blown)+100e6*blown'
.ends efuse

If blown=0, then the fuse is intact (2 ohms). If blown=1 then the fuse is blown 
and you get the much higher resistance of 100 meg. To use the eFUSE, 
instantiate it with a subcircuit call: 

xefuse1 in out efuse blown=0

Alternately, you can control the eFUSE with a parameter setting: 

.param blown=1
x1 in out efuse

Inline Parameter Assignments
To define circuit values, use a direct algebraic evaluation:

r1 n1 0 R=’1k/sqrt(HERTZ)’ $ Resistance for frequency

Parameters in Output
To use an algebraic expression as an output variable in a .PRINT, .PROBE  
or .MEASURE statement, use the PAR keyword. In addition to using quotations, 
you must define the parameter inside the PAR(‘...’) statement for output. 
HSPICE issues an error message if the parentheses do not surround the 
quotes or if you use the keyword incorrectly as in PAR= instead of 
PAR(‘...’). 

Example
.PRINT DC v(3) gain=PAR(‘v(3)/v(2)’) PAR(‘v(4)/v(2)’)
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Reusing the PAR(...) Output as Input to Other Elements
You can use the par(...) output as the input voltage to another elements. 

For example:

.print tran v(5) par('5*cos(6.28*v(10)*v(5)*k/360)')

You can use the signal either as the input to another element in the same 
simulation (see Example 1), or you can save the signal and use it as input in 
another simulation (see Examples 2 and 3). You can use the definitions in print 
or probe output statements only in output statements. They cannot be referred 
by any other definitions. For example, you can use the E-element:

Example 1

e1 in 0 vol='5*cos(6.28*v(10)*v(5)*k/360)'

Example 2: Then, you can uses the node 'in' as the input to the other element 
in the same netlist, as shown in this example.

M1 dr in src subr pch w=2u l=1u
.subckt inv vdd 0 A B
   M1  A B  vdd  vdd  pch  w=6u  l=1u
   M2  A B  0    0    nch  w=3u  l=1u
   .ends inv
   x1 vdd  0  in out inv

Example 3: You can use .STIM statements to save the signal from the first 
simulation in order to create a PWL source.

.stim tran pwl filename=test1 vsrc[0]=v(in) node1=A node2=B 
from=0.0ns to=10ns 
+ npoints=100
.stim tran pwl filename=test2 vsrc[1]=v(in) node1=C node2=D 
from=0.0ns to=10ns 
+ npoints=50

In this example, the .STIM command creates two stimulus files named 
test1.pwl0_tr0 and test2.pwl2_tr0. Each has a voltage source: one 
namedvsrc[0], applied between nodes A and B, and one named vsrc[1], 
applied between nodes C and D. The stimulus files have a PWL source function 
based on the voltage of node 'in' during the time 0.0ns to 10ns with 50 
points (for vsrc[0]) and 100 points (for vsrc[1]).

Contents of the test1.pwl0_tr0 file:

vsrc[0] A B PWL
+  0.           5.0000 
+  200.00000p   2.2114 
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+  400.00000p   2.4666 
+  600.00000p   -362.1421m 
 ......................... 

Contents of the test2.pwl1_tr0 file:

vsrc[1] C D PWL
+  0.            5.0000 
+  100.00000p   -1.8008 
+  200.00000p   -3.2748 
+  300.00000p   -1.3264 
.........................

You can use the PWL files generated from the .STIM commands as inputs to 
another simulation.

Load the signal in WaveView and then export the (x,y) data of the signal in text 
format by selecting File > Save > Plotfiles. You need to edit the data so it looks 
like a PWL source by adding a source definition and line continuation 
characters. 

User-Defined Function Parameters 
You can define a function that is similar to the parameter assignment, but you 
cannot nest the functions more than two deep.
■ An expression can contain parameters that you did not define. 
■ A function must have at least one argument, and can have up to 20 (and in 

many cases, more than 20) arguments. 
■ You can redefine functions.

The format of a function is:

funcname1(arg1[,arg2...])=expression1
+ [funcname2(arg1[,arg2...])=expression2] off

Parameter Description

funcname Specifies the function name. This parameter must be distinct from array names and 
built-in functions. In subsequently defined functions, you must previously define all 
embedded functions.

arg1, arg2 Specifies variables used in the expression.

off Voids all user-defined functions.
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Example
.PARAM f(a,b)=POW(a,2)+a*b g(d)=SQRT(d) 
+ h(e)=e*f(1,2)-g(3) 

Using Parameter Functions to Evaluate Expressions 
Containing Dynamic Signals
When you use a parameter function to evaluate expression that contain 
dynamic signals, you must provide a user-defined function. Otherwise, you get 
unexpected results and generate a warning message.

For example, in the following netlist, a node-voltage (dynamic signal) is once at 
t=0 and keeps this value for the entire simulation. Because the value is only 
evaluated at the beginning of the simulation and not at each time step, the 
results are not as expected.

* Test Case
VIN D 0 pwl 0 1 10n 5
.param aaa='v(D)-v(0)'
.tran 0.1n 20n
vdd vdd 0 5
R1 vdd 0  'v(D) - v(0)'
R2 vdd 0  'aaa'
.options post
.probe i(*)
.tran 0.1n 20n
.end

If you replace the constant parameter assignment with user-defined parameter 
functions, the function .param aaa(x)='x' causes HSPICE to evaluate the 
parameter at each time point during the simulation to give you the expected 
results.

* Test Case
VIN D 0 pwl 0 1 10n 5
.param aaa(x)='x'
.tran 0.1n 20n
vdd vdd 0 5
R1 vdd 0  'V(D) - V(0)'
R2 vdd 0  'aaa(V(D,0))'
.options post
.probe i(*)
.end
HSPICE® User Guide: Basic Simulation and Analysis 353
K-2015.06



Predefined Analysis Function
HSPICE includes specialized analysis types, such as Optimization and Monte 
Carlo, that require a way to control the analysis.

Measurement Parameters
.MEASURE statements produce a measurement parameter. The rules for 
measurement parameters are the same as for standard parameters, except 
that a .MEASURE statement defines measurement parameters, but a .PARAM 
statement does not define them. For a description of the .MEASURE statement, 
see Specifying User-Defined Analysis (.MEASURE) on page 401.

.PRINT and .PROBE Parameters

.PRINT,and.PROBE statements in HSPICE produce a print parameter. The 
rules for print parameters are the same as the rules for standard parameters, 
except that you define the parameter directly in a.PRINT  or.PROBE 
statement, not in a .PARAM statement

For more information about the.PRINT or .PROBE statements, see Displaying 
Simulation Results on page 375.

Multiply Parameter
The most basic subcircuit parameter in HSPICE is the M (multiply) parameter. 
For a description of this parameter, see M (Multiply) Parameter on page 134.

Using Algebraic Expressions

Note: Synopsys HSPICE uses double-precision numbers (15 digits) for 
expressions, user-defined parameters, and sweep variables.

In HSPICE, an algebraic expression, with quoted strings, can replace any 
parameter in the netlist. 
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In HSPICE, you can then use these expressions as output variables 
in .PRINT, statements. Algebraic expressions can expand your options in an 
input netlist file. 

Some uses of algebraic expressions are:
■ Parameters:

.PARAM x=’y+3’

■ Functions:

.PARAM rho(leff,weff)=’2+*leff*weff-2u’

■ Algebra in elements:

R1 1 0 r=’ABS(v(1)/i(m1))+10’

■ Algebra in .MEASURE statements:

.MEAS vmax MAX V(1)

.MEAS imax MAX I(q2)

.MEAS ivmax PARAM=’vmax*imax’

■ Algebra in output statements:

.PRINT conductance=PAR(‘i(m1)/v(22)’)

Output requires uses the following basic syntax for algebraic expressions:

PAR(‘algebraic expression’)

In addition to using quotations, you must define the expression inside the 
PAR(‘...’) statement for output. HSPICE issues an error message if the 
parentheses do not surround the quotes. The continuation character for quoted 
parameter strings is a double backslash (\\). 
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Built-In Functions and Variables

In addition to simple arithmetic operations (+, -, *, /), use the built-in functions 
listed in Table 25 on page 356 and the variables listed in Table 24 on page 349 
in HSPICE expressions.

Table 25 Synopsys HSPICE Built-in Functions

HSPICE Form Function Class Description

sin(x) sine trig Returns the sine of x (radians) 

cos(x) cosine trig Returns the cosine of x (radians) 

tan(x) tangent trig Returns the tangent of x (radians) 

asin(x) arc sine trig Returns the inverse sine of x (radians) 

acos(x) arc cosine trig Returns the inverse cosine of x (radians) 

atan(x) arc tangent trig Returns the inverse tangent of x (radians) 

sinh(x) hyperbolic sine trig Returns the hyperbolic sine of x (radians) 

cosh(x) hyperbolic 
cosine

trig Returns the hyperbolic cosine of x (radians) 

tanh(x) hyperbolic 
tangent

trig Returns the hyperbolic tangent of x (radians) 

abs(x) absolute value math Returns the absolute value of x: |x| 

sqrt(x) square root math Returns the square root of the absolute value of x: 
sqrt(-x)=-sqrt(|x|) 

pow(x,y) absolute power math Returns the value of x raised to the integer part of y: 
x(integer part of y) 

pwr(x,y) signed power math Returns the absolute value of x, raised to the y 
power, with the sign of x: (sign of x)|x|y 

x**y power If x<0, returns the value of x raised to the integer 
part of y.

If x=0, returns 0.

If x>0, returns the value of x raised to the y power.
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log(x) natural 
logarithm

math Returns the natural logarithm of the absolute value 
of x, with the sign of x: (sign of x)log(|x|) 

log10(x) base 10 
logarithm

math Returns the base 10 logarithm of the absolute value 
of x, with the sign of x: (sign of x)log10(|x|) 

exp(x) exponential math Returns e, raised to the power x: ex 

db(x) decibels math Returns the base 10 logarithm of the absolute value 
of x, multiplied by 20, with the sign of x: 
(sign of x)20log10(|x|) 

int(x) integer math Returns the integer portion of x (which ignores the 
fractional portion of the number). 

nint(x) integer math Rounds x up or down, to the nearest integer.

sgn(x)

sign(x)

return sign math ■ Returns -1 if x is less than 0.
■ Returns 0 if x is equal to 0.
■ Returns 1 if x is greater than 0. 

sign(x,y) transfer sign math Returns the absolute value of x, with the sign of y: 
(sign of y)|x| 

floor(x) integer math Rounds down to the nearest integer (ignores the 
fractional part of the number).

ceil(x) integer math Rounds up to the nearest integer (ignores the 
fractional part of the number).

def(x) parameter 
defined

control ■ Returns 1 if parameter x is defined.
■ Returns 0 if parameter x is not defined.

min(x,y) smaller of two 
args

control Returns the numeric minimum of x and y 

max(x,y) larger of two 
args

control Returns the numeric maximum of x and y 

val(element) get value various Returns a parameter value for a specified element. 
For example, val(r1) returns the resistance value of 
the r1 resistor.

val(element.
parameter)

get value various Returns a value for a specified parameter of a 
specified element. For example, val(rload.temp) 
returns the value of the temp (temperature) 
parameter for the rload element.

Table 25 Synopsys HSPICE Built-in Functions

HSPICE Form Function Class Description
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val(model_type:
model_name.
model_param)

get value various Returns a value for a specified parameter of a 
specified model of a specific type. For example, 
val(nmos:mos1.rs) returns the value of the rs 
parameter for the mos1 model, which is an nmos 
model type. CMI models (Level 54 and greater) do 
not support this form. See Measuring the Value of 
MOSFET Model Card Parameters for an example 
and details.

valm
(elem_name.
model_param)

get value Returns a value for a specified model parameter of 
a specified element. For example, valm(m1.vth0) 
returns the value of vth0 parameter of the model 
card that uses m1. valm() supports only vth0, lmin, 
lmax, wmin, wmax, lref, wref, xl, dl, dell, xw, dw, 
delw, scalm, lmlt, wmlt and level54, level57 and 
level70. See Measuring the Value of MOSFET 
Model Card Parameters for an example and details.

valp(parameter) get value Returns a value for a specified parameter. The 
parameter can only be a named parameter as 
defined in a subcircuit. For example:

.meas tran asdf param='valp(x1/
zzz.p1)'

An expression is not permitted. 

lv(Element)
or
lx(Element)

element 
templates

various Returns various element values during simulation. 
See Element Template Output (HSPICE Only) on 
page 400 for more information. 

v(Node),
i(Element)...

circuit output 
variables

various Returns various circuit values during simulation. 
See DC and Transient Output Variables on 
page 384 for more information. 

cond ?x : y ternary 
operator

Returns x if cond is not zero. Otherwise, returns y.
.param z= ‘condition ? x:y’

< relational 
operator
(less than)

Returns 1 if the left operand is less than the right 
operand. Otherwise, returns 0.
.para x=y<z (y less than z)

<= relational 
operator (less 
than or equal)

Returns 1 if the left operand is less than or equal to 
the right operand. Otherwise, returns 0.
.para x=y<=z (y less than or equal to z)

> relational 
operator
(greater than)

Returns 1 if the left operand is greater than the right 
operand. Otherwise, returns 0.
.para x=y>z (y greater than z)

Table 25 Synopsys HSPICE Built-in Functions

HSPICE Form Function Class Description
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Example
.parameters p1=4 p2=5 p3=6
r1 1 0 value='p1 ? p2+1 : p3' 

HSPICE reserves the variable names listed in Table 26 on page 359 for use in 
elements, such as E, G, R, C, and L. You can use them in expressions, but you 
cannot redefine them; for example, this statement would be illegal:

.param temper=100

>= relational 
operator 
(greater than or 
equal)

Returns 1 if the left operand is greater than or equal 
to the right operand. Otherwise, returns 0.
.para x=y>=z (y greater than or equal to z)

== equality Returns 1 if the operands are equal. Otherwise, 
returns 0.

.para x=y==z (y equal to z)

!= inequality Returns 1 if the operands are not equal. Otherwise, 
returns 0.

.para x=y!=z (y not equal to z)

&& Logical AND Returns 1 if neither operand is zero. Otherwise, 
returns 0. .para x=y&&z (y AND z)

|| Logical OR Returns 1 if either or both operands are not zero. 
Returns 0 only if both operands are zero.

.para x=y||z (y OR z)

Table 26 Synopsys HSPICE Special Variables

HSPICE Form Function Class Description

time current simulation 
time

control Uses parameters to define the current simulation 
time, during transient analysis. 

Table 25 Synopsys HSPICE Built-in Functions

HSPICE Form Function Class Description
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Parameter Scoping and Passing 

If you use parameters to define values in subcircuits, you need to create fewer 
similar cells, to provide enough functionality in your library. You can pass circuit 
parameters into hierarchical designs, and assign different values to the same 
parameter within individual cells, when you run simulation. 

For example, if you use parameters to set the initial state of a latch in its 
subcircuit definition, then you can override this initial default in the instance call. 
You need to create only one cell, to handle both initial state versions of the 
latch.

You can also use parameters to define the cell layout. For example, you can 
use parameters in a MOS inverter, to simulate a range of inverter sizes, with 
only one cell definition. Local instances of the cell can assign different values to 
the size parameter for the inverter. 

In HSPICE, you can also perform Monte Carlo analysis or optimization on a cell 
that uses parameters. 

How you handle hierarchical parameters depends on how you construct and 
analyze your cells. You can construct a design in which information flows from 
the top of the design, down into the lowest hierarchical levels. 
■ To centralize the control at the top of the design hierarchy, set global 

parameters. 
■ To construct a library of small cells that are individually controlled from 

within, set local parameters and build up to the block level.

temper current circuit 
temperature

control Uses parameters to define the current simulation 
temperature, during transient/temperature 
analysis. You can use the HSPICE simulation 
temperature in an equation by using the temper 
variable parameter. For example:
.temp 20 50 100
.par x=”temper/2”
v0 1 0 1
r0 1 0 r=x

hertz current simulation 
frequency

control Uses parameters to define the frequency, during 
AC analysis.

Table 26 Synopsys HSPICE Special Variables (Continued)

HSPICE Form Function Class Description
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This section describes the scope of parameter names, and how HSPICE 
resolves naming conflicts between levels of hierarchy.

Library Integrity
Integrity is a fundamental requirement for any symbol library. Library integrity 
can be as simple as a consistent, intuitive name scheme, or as complex as 
libraries with built-in range checking.

Library integrity might be poor if you use libraries from different vendors in a 
circuit design. Because vendors do not standardize names of circuit 
parameters, two components can include the same parameter name for 
different functions. For example, one vendor might build a library that uses the 
name Tau as a parameter to control one or more subcircuits in their library. 
Another vendor might use Tau to control a different aspect of their library. If you 
set a global parameter named Tau to control one library, you also modify the 
behavior of the second library, which might not be the intent.

If the scope of a higher-level parameter is global to all subcircuits at lower levels 
of the design hierarchy, higher-level definitions override lower-level parameter 
values with the same names. The scope of a lower-level parameter is local to 
the subcircuit where you define the parameter (but global to all subcircuits that 
are even lower in the design hierarchy). Local scoping rules in HSPICE prevent 
higher-level parameters from overriding lower-level parameters of the same 
name. 

Reusing Cells
Parameter name problems also occur if different groups collaborate on a 
design. Global parameters prevail over local parameters, so all circuit 
designers must learn the names of all parameters, even those used in sections 
of the design for which they are not responsible. This can lead to a large 
investment in standard libraries. To avoid this situation, use local parameter 
scoping, to encapsulate all information about a section of a design, within that 
section.

Creating Parameters in a Library
To ensure that the input netlist includes critical, user-supplied parameters when 
you run simulation, you can use “illegal defaults”—that is, defaults that cause 
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the simulator to abort if you do not supply overrides for the defaults.

If a library cell includes illegal defaults, you must provide a value for each 
instance of those cells. If you do not, the simulation aborts.

For example, you might define a default MOSFET width of 0.0. HSPICE aborts 
because MOSFET models require this parameter.

Example 1
* Subcircuit default definition
.SUBCKT Inv A Y Wid=0 $ Inherit illegal values by default
mp1 NodeList Model L=1u W=’Wid*2’
mn1 NodeList Model L=1u W=Wid
.ENDS

* Invoke symbols in a design
x1 A Y1 Inv $ Bad! No widths specified
x2 A Y2 Inv Wid=1u $ Overrides illegal value for Width

This simulation aborts on the x1 subcircuit instance because you never set the 
required Wid parameter on the subcircuit instance line. The x2 subcircuit 
simulates correctly. Additionally, the instances of the Inv cell are subject to 
accidental interference because of exposure of the Wid global parameter is 
expose outside the domain of the library. Anyone can specify an alternative 
value for the parameter, in another section of the library or the circuit design. 
This might prevent the simulation from catching the condition on x1.

Example 2
In this example, the name of a global parameter conflicts with the internal 
library parameter named Wid. Another user might specify such a global 
parameter, in a different library. In this example, the user of the library has 
specified a different meaning for the Wid parameter, to define an independent 
source.

.Param Wid=5u $ Default Pulse Width for source
v1 Pulsed 0 Pulse ( 0v 5v 0u 0.1u 0.1u Wid 10u )
...
* Subcircuit default definition
.SUBCKT Inv A Y Wid=0 $ Inherit illegals by default
mp1 NodeList Model L=1u W=’Wid*2’
mn1 NodeList Model L=1u W=Wid
.Ends
* Invoke symbols in a design
x1 A Y1 Inv $ Incorrect width!
x2 A Y2 Inv Wid=1u  $ Incorrect! Both x1 and x2 
$ simulate with mp1=10u and 
$ mn1=5u instead of 2u and 1u.
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Under global parameter scoping rules, simulation succeeds, but incorrectly. 
HSPICE does not warn that the x1 inverter has no assigned width because the 
global parameter definition for Wid overrides the subcircuit default.

Note: Similarly, sweeping with different values of Wid dynamically 
changes both the Wid library internal parameter value, and the 
pulse width value to the Wid value of the current sweep.

In global scoping, the highest-level name prevails, when resolving name 
conflicts. Local scoping uses the lowest-level name.

When you use the parameter inheritance method, you can specify to use local 
scoping rules. 

When you use local scoping rules, the Example 2 netlist correctly aborts in x1 
for W=0 (default Wid=0, in the .SUBCKT definition, has higher precedence, 
than the .PARAM statement). This results in the correct device sizes for x2. This 
change can affect your simulation results, if you intentionally or accidentally 
create a circuit such as the second one shown above.

You can use an alternative to the test of the width in the Example 2 netlist: 
Use .OPTION DEFW to achieve a limited version of library integrity. This option 
sets the default width for all MOS devices during a simulation. Part of the 
definition is still in the top-level circuit, so this method can still make unwanted 
changes to library values, without notification from the HSPICE simulator.

Table 27 compares the three primary methods to configure libraries, to achieve 
required parameter checks for default MOS transistor widths.

Table 27 Methods for Configuring Libraries

Method
Parameter 
Location Pros Cons

Local On a .SUBCKT 
definition line

Protects library from global circuit 
parameter definitions, unless you 
override it. Single location for default 
values.

Global At the global level and 
on .SUBCKT definition 
lines

Works with all HSPICE versions. An indiscreet user, another vendor 
assignment, or the intervening 
hierarchy can change the library. 
Cannot override a global value at a 
lower level.

Special .OPTION DEFW 
statement

Simple to do. Third-party libraries, or other 
sections of the design, might depend 
on .OPTION DEFW.
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String Parameter (HSPICE Only)
HSPICE uses a special delimiter to identify string and double parameter types. 
The single quotes (‘), double quotes (“), or curly brackets ( {} ) do not work for 
these kinds of delimiters. Instead, use the sp1=str('string') keyword for an sp1 
parameter definition and use the str(sp1) keyword for a string parameter 
instance.

Example
The following sample netlist shows an example of how you can use these 
definitions for various commands, keywords, parameters, and elements:

xibis1 vccq vss out in IBIS
+ IBIS_FILE=str('file1.ibs') IBIS_MODEL=str('model1')
xibis2 vccq vss out in IBIS
+ IBIS_FILE=str('file2.ibs') IBIS_MODEL=str('model2')

.subckt IBIS vccq vss out in
+ IBIS_FILE=str('file.ibs')
+ IBIS_MODEL=str('ibis_model')
ven en 0 vcc
BMCH vccq vss out in en v0dq0 vccq vss buffer=3
+ file= str(IBIS_FILE) model=str(IBIS_MODEL)
+ typ=typ ramp_rwf=2 ramp_fwf=2 power=on
.ends

HSPICE supports these kinds of definitions and instances with the following 
netlist components:
■ .PARAM statements
■ .SUBCKT statements
■ S-parameter FQMODEL in both the S-parameter instance and S-parameter 

model and the TSTONEFILE keyword in the S-element
■ FILE and MODEL keywords
■ B-elements
■ W-element keywords RLGCFILE, RLGCMODEL,UMODEL, FSMODEL, 

TABLEMODEL, and SMODEL
■ .IF and .ELSEIF conditions
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String Parameters in Passive and Active Component 
Keywords
You can include string parameters in all HSPICE passive and active component 
model name keywords. When you define a parameter that is a character string, 
use the keyword str('string'). When you use an instance of the 
parameter, the parameter name is str(parameter_name).

Syntax
For passive elements:

Rxxx n1 n2 [mname [str(mname)]] Rval [TC1 [TC2][TC]] [SCALE=val]
+ [M=val] [AC=val] [DTEMP=val] [L=val] [W=val] [C=val] 
+[NOISE = val]
Cxxx n1 n2 [mname [str(mname)]] [C = ]capacitance [[TC1 = ]val]
+ [[TC2 = ]val] [SCALE = val] [IC = val] [M = val]
+ [W = val] [L = val] [DTEMP = val]
Lxxx n1 n2 [L = ]inductance [mname [str(mname)]] [[TC1 = ]val]
+ [[TC2 = ]val] [SCALE = val] [IC = val] [M = val]
+ [DTEMP = val] [R = val]

For active elements, define the model name by using the original syntax, or 
string parameter model-name syntax. (See the HSPICE Reference Manual: 
MOSFET Models for full listing of transistor parameters that can be overridden 
in transistor definitions.)

Dxxx nplus nminus str(mname) [[AREA = ]area] [[PJ = ]val]
+ [WP = val] [LP = val] [WM = val] [LM = val] [OFF]
+ [IC = vd] [M = val] [DTEMP = val]
Qxxx nc nb ne [ns] str(mname) [area] [OFF]
+ [IC = vbeval,vceval] [M = val] [DTEMP = val]
Jxxx nd ng ns [nb] str(mname) [[[[AREA] = area | [W = val]
+ [L = val]] [OFF] [IC = vdsval,vgsval] [M = val]
+ [DTEMP = val]
Mxxx nd ng ns [nb] str(mname) [[L = ]length] [[W = ]width]
+ [AD = val] AS = val] [PD = val] [PS = val]
+ [NRD = val] [NRS = val] [RDC = val] [RSC = val] [OFF]
+ [IC = vds,vgs,vbs] [M = val] [DTEMP = val]
+ [GEO = val] [DELVTO = val]
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Example
.param mypmos=str('p')
.param mynmos=str('n')
.lib 'ltst.lib' TT

.subckt circuit vout vin vdd nmod=str('nch')pmod=str('pch')
m1 vout vin vdd vdd str(pmod) w=4u l=5u
m2 vout vin 0 0 str(nmod) w=2u l=5u
.ends circuit

x1 vout vin vdd circuit dtemp=11 nmod=str(mynmos)pmod=str(mypmos)

Parameter Defaults and Inheritance
Use the .OPTION PARHIER parameter to specify scoping rules. 

Syntax:
.OPTION PARHIER=[GLOBAL | LOCAL]

The default setting is GLOBAL.

Example
This example explicitly shows the difference between local and global scoping 
for using parameters in subcircuits.

The input netlist includes the following:

.OPTION parhier=[global | local]

.PARAM DefPwid=1u

.SUBCKT Inv a y DefPwid=2u DefNwid=1u
Mp1 MosPinList pMosMod L=1.2u W=DefPwid
Mn1 MosPinList nMosMod L=1.2u W=DefNwid
.ENDS

Set the .OPTION PARHIER=parameter scoping option to GLOBAL. The 
netlist also includes the following input statements:
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xInv0 a y0 Inv $ override DefPwid default,
$ xInv0.Mp1 width=1u
xInv1 a y1 Inv DefPwid=5u $ override DefPwid=5u,
$ xInv1.Mp1 width=1u

.measure tran Wid0 param=’lv2(xInv0.Mp1)’ $ lv2 is the
$ template for

.measure tran Wid1 param=’lv2(xInv1.Mp1)’ $ the channel 
$ width

$ ‘lv2(xInv1.Mp1)’
.ENDS

Simulating this netlist produces the following results in the listing file:

wid0=1.0000E-06
wid1=1.0000E-06

If you change the .OPTION PARHIER=parameter scoping option 
to LOCAL:

xInv0 a y0 Inv $ not override .param 
$ DefPwid=2u,
$ xInv0.Mp1 width=2u

xInv1 a y1 Inv DefPwid=5u $ override .param 
$ DefPwid=2u,
$ xInv1.Mp1 width=5u:

.measure tran Wid0 param=’lv2(xInv0.Mp1)’$ override the

.measure tran Wid1 param=’lv2(xInv1.Mp1)’$ global .PARAM

...

Simulation produces the following results in the listing file:

wid0=2.0000E-06
wid1=5.0000E-06

Parameter Passing
Figure 35 on page 368 shows a flat representation of a hierarchical circuit, 
which contains three resistors.

Each of the three resistors obtains its simulation time resistance from the Val 
parameter. The netlist defines the Val parameter in four places, with three 
different values.
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Figure 35 Hierarchical Parameter Passing Problem

The total resistance of the chain has two possible solutions: 0.3333 and 
0.5455. 

You can use .OPTION PARHIER to specify which parameter value prevails, 
when you define parameters with the same name at different levels of the 
design hierarchy.

Under global scoping rules, if names conflict, the top-level assignment .PARAM 
Val=1 overrides the subcircuit defaults, and the total is 0.3333 Under local 
scoping rules, the lower level assignments prevail, and the total is 0.5455 
(one, two, and three ohms in parallel).

The example in Figure 35 produces the results in Table 28, based on how you 
set .OPTION PARHIER to local/global: 

Table 28 PARHIER=LOCAL vs. PARHIER=GLOBAL Results

Element PARHIER=Local PARHIER=Global

r1 1.0 1.0

r2 2.0 1.0

r3 3.0 1.0

1 V

TEST OF PARHIER
.OPTION list node post=2 
+ ingold=2 
+ parhier=[Local|Global]
.PARAM Val=1
x1 n0 0 Sub1
.SubCkt Sub1 n1 n2 Val=1

r1 n1 n2 Val
x2 n1 n2 Sub2

.Ends Sub1

.SubCkt Sub2 n1 n2 Val=2
r2 n1 n2 Val
x3 n1 n2 Sub3

.Ends Sub2

.SubCkt Sub3 n1 n2 Val=3
r3 n1 n2 Val

.Ends Sub3

.OP

.END

Sub1 Sub2 Sub3

r3r2r1+

-
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Parameter Passing Solutions
The following checklist determines whether you see simulation differences 
when you use the default scoping rules. These checks are especially important 
if your netlists contain devices from multiple vendor libraries.
■ Check your subcircuits for parameter defaults, on the .SUBCKT or .MACRO 

line.
■ Check your subcircuits for a .PARAM statement, within a .SUBCKT 

definition.
■ To check your circuits for global parameter definitions, use the .PARAM 

statement.
■ If any of the names from the first three checks are identical, set up two 

HSPICE simulation jobs: one with .OPTION PARHIER=GLOBAL, and one 
with .OPTION PARHIER=LOCAL. Then look for differences in the output.
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11Simulation Output

Describes how to use output format statements and variables to display steady 
state, frequency, and time domain simulation results. 

You can also use output variables in behavioral circuit analysis, modeling, and 
simulation techniques. To display electrical specifications such as rise time, 
slew rate, amplifier gain, and current density, use the output format features.

HSPICE ships hundreds of examples for your use; see Listing of 
Demonstration Input Files for paths to demo files.

For descriptions of individual HSPICE commands referenced in this chapter, 
see the HSPICE Reference Manual: Commands and Control Options.

Note: Parameter Storage Format (PSF) output supports all HSPICE 
analyses in the HSPICE integration to the Cadence® Virtuoso® 
Analog Design Environment. 

Platform limitation: PC Windows does not support PSF format for 
HSPICE. 

The following sections discuss these topics:
■ Overview of Output Statements
■ Displaying Simulation Results
■ Selecting Simulation Output Parameters
■ Specifying User-Defined Analysis (.MEASURE)
■ Expected State of Digital Output Signal (.DOUT)
■ Reusing Simulation Output as Input Stimuli (HSPICE Only)
■ Element Template Listings
■ Vdmargin Output
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■ Output Listing (*.lis) File with .OPTION LIS_NEW Set
■ For MOSFET Information Use .OPTION LIST
■ HPP Status Updates in *.lis File
■ Verilog-A Simulation Output
■ Field Solver *.str File
■ Redirecting the Simulation Output Results Files to a Different Directory
■ Getting Data Out of HSPICE Plot Files
■ Using the HSPICE Output Converter Utility
■ Troubleshooting Issues

Overview of Output Statements

The following sections discuss these topics:
■ Output Commands
■ Output Variables
■ Output Analysis Type

Output Commands
The input netlist file contains output statements, including .PRINT, 
PROBE, .MEASURE, .DOUT, and .STIM. Each statement specifies the output 
variables, and the type of simulation result, to display—such as .DC, .AC, 
or .TRAN. When you specify .OPTION POST, HSPICE puts all output 
variables referenced in .PRINT, .PROBE, .MEASURE, .DOUT, and .STIM 
statements into HSPICE output files. 

Use the .STIM command if you want to reuse the simulation results in another 
simulation. For example:

.stim tran pwl filename=new v(2)

In the example, the .STIM command creates a file with an extension 
.pwl0_tr# and the results are in the form of a PWL source.

HSPICE advanced analog analyses supports only .OPTION POST, .OPTION 
PROBE, .PRINT, .PROBE, and .MEASURE statements. It does not 
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support .DOUT or .STIM statements. Refer to the HSPICE Reference Manual: 
Commands and Control Options for information on all listed statements. See 
Table 30 on page 395 for output table variable types.

Output Variables
The output format statements require special output variables, to print or plot 
analysis results for nodal voltages and branch currents. HSPICE uses the 
following output variables: 
■ DC and transient analysis
■ AC analysis
■ element template (HSPICE only)
■ .MEASURE statement
■ parametric analysis 

For HSPICE, DC and transient analysis displays:
■ individual nodal voltages: V(n1 [,n2])
■ branch currents: I(Vxx)
■ element power dissipation: In(element)

Table 29 Output Statements

Output 
Statement Description

.PRINT Prints numeric analysis results in the output listing file (and post-processor data, 
if you specify .OPTION POST). See .PRINT.

.PROBE Outputs data to post-processor output files, but not to the output listing (used 
with .OPTION PROBE, to limit output). See .PROBE.

.MEASURE Prints the results of specific user-defined analyses (and post-processor data, if 
you specify .OPTION POST), to the output listing file. See .MEASURE or .MEAS.

.DOUT (HSPICE 
only)

Specifies the expected final state of an output signal. See .DOUT or Expected 
State of Digital Output Signal (.DOUT).

.STIM 
(HSPICE only)

Specifies simulation results to transform to PWL, Data Card, or Digital Vector File 
format. See .STIM.
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AC analysis displays imaginary and real components of a nodal voltage or 
branch current, and the magnitude and phase of a nodal voltage or branch 
current. AC analysis results also print impedance parameters, and input and 
output noise.

Element template analysis displays element-specific nodal voltages, branch 
currents, element parameters, and the derivatives of the element’s node 
voltage, current, or charge. 

The .MEASURE statement variables define the electrical characteristics to 
measure in a .MEASURE statement analysis.

Parametric analysis variables are mathematical expressions, which operate on 
nodal voltages, branch currents, element template variables (HSPICE only), or 
other parameters that you specify. Use these variables when you run 
behavioral analysis of simulation results. See Using Algebraic Expressions on 
page 354.

Output Analysis Type
An output statement matches the last analysis command in the netlist before it. 
When there are no analysis statements before output statements with no 
analysis type, the HSPICE simulator automatically assigns the 'TRAN' analysis 
type to the output statements. It also adds a message in the output listing file to 
inform you that TRAN type was assigned to the .meas/.probe/.print/
.plot statement without an analysis type, with no analysis statements before 
it.

Consider the following example:

.tran 20p 1.0n sweep sigma -3 3 0.5

.tran 20p 1.0n sweep monte=20

.meas mover max v(2,1)

In the preceding example, .meas matches the second .tran statement and 
generates only one measure output file.

Consider another example:

.meas max_m max v(2)

.print v(n3)

.dc vg 1 5 1

In the second example, there are no .dc or .tran, or .ac statements before 
the .meas and .print statements. Also, no analysis type is provided in the 
.meas and .print statements. Hence, the HSPICE simulator assigns the 
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'TRAN' analysis type to the .meas and .print statements. Also, there is only 
a .dc statement, so you cannot get any output from .meas and .print during 
DC analysis.

Displaying Simulation Results

The following sections describes the statements that you can use to display 
simulation results for your specific requirements.
■ .PRINT Statement
■ .PROBE Statement
■ Using Wildcards in PRINT and PROBE Statements
■ Print Control Options
■ Printing the Subcircuit Output
■ Using .MODEL_INFO to Print Model Parameters
■ Progress Message Time Estimates

.PRINT Statement
The .PRINT statement specifies output variables for which HSPICE prints 
values.

To simplify parsing of the output listings, HSPICE prints a single x in the first 
column, to indicate the beginning of the .PRINT output data. A single y in the 
first column indicates the end of the .PRINT output data.

HSPICE advanced analog analyses prints the .PRINT output data to a 
separate file.

You can include wildcards in .PRINT statements. 

You can also use the iall keyword in a .PRINT statement, to print all branch 
currents of all diode, BJT, JFET, or MOSFET elements in your circuit design. 
HSPICE outputs complex data for i(*), i1(*), i2(*), i3(*), i4(*) of an AC analysis 
into *.ac# files when specifying the POST, PSF, CSDF or WDF formats for 
both the .PRINT and .PROBE commands. 
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Example
If your circuit contains four MOSFET elements (named m1, m2, m3, m4), 
then .PRINT iall (m*)is equivalent to .PRINT i(m1) i(m2) i(m3) i(m4). It 
prints the output currents of all four MOSFET elements. A resultant PSF file has 
only one signal, i(c0), that contains two real and imaginary points (Re, Im) for 
each AC frequency point. In other words, if you open the PSF file in a waveform 
viewer, you see one signal name that contains both the real and Imaginary 
data, per frequency point.

Statement Order
HSPICE creates different .sw0 and .tr0 files, based on the order of 
the .PRINT and .DC statements. If you do not specify an analysis type for 
a .PRINT command, the type matches the last analysis command in the 
netlist, before the .PRINT statement.

.PROBE Statement
HSPICE usually saves all voltages, supply currents, and output variables. 
Set .OPTION PROBE, to save output variables only. Use the .PROBE 
statement to specify the quantities to print in the output listing.

If your interest is only in the output data file, and you do not want tabular or plot 
data in your listing file, set .OPTION PROBE and use .PROBE to select the 
values to save in the output listing.

You can include wildcards in .PROBE statements. 

Using Wildcards in PRINT and PROBE Statements
You can include wildcards in .PRINT and .PROBE statements. Refer to this 
example netlist in the discussion that follows:

* test wildcard
.option post
v1 1 0 10
r1 1 n20 10
r20 n20 n21 10
r21 n21 0 10
.dc v1 1 10 1
***Wildcard equivalent for:
*.print i(r1) i(r20) i(r21) i(v1)
.print i(*)
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***Wildcard equivalent for:
*.probe v(0) v(1)
.probe v(?)
***Wildcard equivalent for:
*.print v(n20) v(n21)
.print v(n2?)
***Wildcard equivalent for:
*.probe v(n20, 1) v(n21, 1)
.probe v(n2*, 1)
.end

The following sections discuss these topics.
■ Supported Wildcard Templates
■ Using filter in .PRINT and .PROBE Statements
■ Using level in .PRINT and .PROBE Statements
■ Switching to .PROBE to Output Subcircuit Port Names

Supported Wildcard Templates
v vm vr vi vp vdb vt
i im ir ii ip idb it
p pm pr pi pp pdb pt
lxn<n> lvn<n> (n is a number 0~9)
i1 im1 ir1 ii1 ip1 idb1 it1
i2 im2 ir2 ii2 ip2 idb2 it2
i3 im3 ir3 ii3 ip3 idb3 it3
i4 im4 ir4 ii4 ip4 idb4 it4
iall isub

For details on wildcard templates, see .PRINT statement (see Selecting 
Simulation Output Parameters on page 383).

When you use the wildcard i(*) in a .print or .probe statement, HSPICE 
outputs all branch currents.

For .AC analysis, to plot all currents for each valid AC output-variable type, you 
can also use the following in statements:

im(*) ir(*) ip(*) idb(*) it(*)

In the preceding test case (named test wildcard), if you use an .AC 
statement instead of a .DC statement, you can use any valid AC output-
variable types with the wildcards v(n2?) and v(n2*,1). For example:

vm(n2?) vr(n2?) vi(n2?) vp(n2?) vdb(n2?) vt(n2?)
vm(n2*,1) vr(n2*,1) vi(n2*,1) vp(n2*,1) vdb(n2*,1) vt(n2*,1)
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To output the branch current at all terminals of a diode, BJT, JFET or MOSFET, 
use the output template iall. For example, iall(m*) is equivalent to:

i1(m*)  i2(m*)  i3(m*)  i4(m*)

Using filter in .PRINT and .PROBE Statements
You can include the filter clause in .PRINT and .PROBE statements:

filter=pattern

HSPICE does not print nodes/elements that match the pattern specified in the 
filter clause when it prints node voltage(s) and/or element current(s) that you 
specify by wildcard patterns such as: .print v(x1.x2.*). Each filter 
applies to all wildcard voltages/currents that the current .print or .probe 
statement prints.

For example:

.print v(x1.x2.*) i(x1.x2.*) filter=’x1.x2.n*’ filter=’x1.x2.a*’

This syntax example prints the voltages of all nodes in subckt x1.x2 that do 
not start with n or a, and the current of all elements in subckt x1.x2 that do not 
start with either n or a.

Using level in .PRINT and .PROBE Statements
You can include the level clause in .PRINT and .PROBE statements:

level=val2

This setting is effective only when you specify the wildcard character in the 
output variable. The level value val2 specifies the number of hierarchical 
depth levels when the wildcard node/element name matches.
■ When you set val2 to 1, the wildcard match applies to the same depth level 

where the .print statement is.
■ When the val2 is 2, it applies to the same level and to one level below the 

current level where .print is.
■ When val2 is -1, the wildcard match applies to all the depth levels below 

and including the current level of .print statement.
■ The default value of val2 is -1.
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Switching to .PROBE to Output Subcircuit Port Names
In cases where you have a subcircuit whose port names are different than 
instance node names, you can replace the .PRINT command with .PROBE to 
print voltage values of a subcircuit. 

For example, assume you have a netlist as follows:

x3 1 2 inv
  .subckt inv in out

  mn out in 0 0 nch w=1u l=90n 
  mp out in 1 1 pch w=1u l=90n

  .ends
.print tran v(*)

By default HSPICE prints only the instance node names and not the subcircuit 
ports. If you include .print v(*) in the netlist, HSPICE outputs the top level 
instance nodes 1 and 2. However, if you want to print the subcircuit ports in 
and out then you need to use .OPTION PROBE along with an explicit .PROBE 
command. In this case:.PROBE tran v(x1.in) v(x1.out)

The following netlist outputs the subcircuit port waveforms:

.OPTION POST PROBE
x3 1 2 inv
  .subckt inv in out

  mn out in 0 0 nch w=1u l=90n 
  mp out in 1 1 pch w=1u l=90n

  .ends
.PROBE tran v(x1.in) v(x1.out)

Print Control Options
The codes that you can use to specify the element templates for output in 
HSPICE are: 
■ .OPTION INGOLD for output in exponential form.
■ .OPTION POST where an interactive waveform viewer displays plots.

HSPICE supports the following plot file formats: *.tr#, *.ac#, and *.sw#. If 
a plot fails to open, it is due to one of the following reasons:
■ Does not support the waveform file format.
■ Does not read the file format.
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■ Does not find the file.
■ File exceeds the max size of (x).

Changing the File Descriptor Limit (HSPICE Only)
A simulation that uses a large number of .ALTER statements might fail 
because of the limit on the number of file descriptors. For example, for a Sun 
workstation, the default number of file descriptors is 64, so a design with more 
than 50 .ALTER statements probably fails, with the following error message:

error could not open output spool file /tmp/tmp.nnn
a critical system resource is inaccessible or exhausted

To prevent this error on a Sun workstation, enter the following operating system 
command, before you start the simulation:

limit descriptors 128

For platforms other than Sun workstations, ask your system administrator to 
help you increase the number of files that you can open concurrently.

Printing the Subcircuit Output 
The following examples demonstrate how to print or plot voltages of nodes that 
are in subcircuit definitions, using .PRINT.

Note: In the following example, you can substitute .PROBE,  instead 
of .PRINT.

Example 1
.GLOBAL vdd vss
X1 1 2 3 nor2
X2 3 4 5 nor2
.SUBCKT nor2 A B Y
.PRINT v(B) v(N1) $ Print statement 1
M1 N1 A vdd vdd pch w=6u l=0.8u
M2 Y B N1 vdd pch w=6u l=0.8u
M3 Y A vss vss vss nch w=3u l=0.8u
M4 Y B vss vss nch w=3u l=0.8u
.ENDS

Print statement 1 prints out the voltage on the B input node, and on the N1 
internal node for every instance of the nor2 subcircuit.

.PRINT v(1) v(X1.A) $ Print statement 2
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The preceding .PRINT statement specifies two ways to print the voltage on the 
A input of the X1 instance.

.PRINT v(3) v(X1.Y) v(X2.A) $ Print statement 3

The preceding .PRINT statement specifies three different ways to print the 
voltage at the Y output of the X1 instance (or the A input of the X2 instance).

.PRINT v(X2.N1) $ Print statement 4

The preceding .PRINT statement prints the voltage on the N1 internal node of 
the X2 instance.

.PRINT i(X1.M1) $ Print statement 5

The preceding .PRINT statement prints out the drain-to-source current, 
through the M1 MOSFET in the X1 instance.

Example 2
X1 5 6 YYY
.SUBCKT YYY 15 16
X2 16 36 ZZZ
R1 15 25 1
R2 25 16 1

.ENDS

.SUBCKT ZZZ 16 36
C1 16 0 10P
R3 36 56 10K
C2 56 0 1P

.ENDS

.PRINT V(X1.25) V(X1.X2.56) V(6)

This example prints voltage analysis results at node 56, within the X2 and X1 
subcircuits. The full path, X1.X2.56, specifies that node 56 is within the X2 
subcircuit, which in turn is within the X1 subcircuit.

Value Description

V(X1.25) Local node to the YYY subcircuit definition, which the X1 subcircuit calls.

V(X1.X2.56) Local node to the ZZZ subcircuit. The X2 subcircuit calls this node; X1 calls X2.

V(6) Voltage of node 16, in the X1 instance of the YYY subcircuit.
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Using .MODEL_INFO to Print Model Parameters
Use the command .MODEL_INFO ALL |Instance1,...Instance2, ... 
to generate a text output file with the suffix *.model_info#. (ALL overrides 
Instance1,...Instance2.) See .MODEL_INFO in the HSPICE Reference Manual: 
Commands and Control Options.

Different MOSFET instances may use the same model card, to avoid printing of 
duplicate model information and reduce the file size, so the unique model card 
prints only once.

The output file contains two parts, instance information and model information. 
The instance information section contains the instance name and its 
corresponding model name used. The model information section contains all 
model parameters of each unique model card. Each instance and .model 
statement is in one line. For example:

Output file: *. model_info#

<sweep param =…> 

*** mosfets ***

Element Name           Model Name

Instance_name1        model_name

Instance_name2        model_name

…

*** models ***

.model     Model_name1     model_par1 =val1 model_par2=val2 …

.model     Model_name2     model_par1 =val1 model_par2=val2 …

Sample *.model_info# Output File

Input file: test.sp….

X1 c d test1
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X2 a b test2

.model_info  x1.m1 x2.m2

.Subckt test1 d g
m1 d g d1 pw nch w=0.2u l=0.03u
m2 d1 g s nw pch w=0.5u l=0.03u
.model pch.1 pmos level=54 version=4.6 
+ binunit=1   paramchk=1   mobmod=0
+  …
.model pch.2 pmos level=54 version=4.6 
+ binunit=1   paramchk=1   mobmod=0
+  …
.model pch.26 pmos level=54 version=4.6 

Progress Message Time Estimates
During the simulation, simulation progress messages are displayed to the 
screen. In the simulation progress messages, etc is the estimated time to 
completion and ett is the estimated total time. See the sample below.

99.6% time = 199.200374 ns ( etc = 1:05, ett = 4:26:22 )
( wall = 4:25:16 cpu = 1:11:06:58 s=7.9424 )
99.7% time = 199.404835 ns ( etc = 49.4 sec, ett = 4:26:20 )
( wall = 4:25:30 cpu = 1:11:08:49 s=7.94239 )
99.8% time = 199.600000 ns ( etc = 32.9 sec, ett = 4:26:20 )
( wall = 4:25:47 cpu = 1:11:11:04 s=7.94241 )
99.9% time = 199.800806 ns ( etc = 16.5 sec, ett = 4:26:22 )
( wall = 4:26:05 cpu = 1:11:13:28 s=7.9424 )
100.0% time = 200.000000 ns ( etc = 0.0 sec, ett = 4:26:19 )
( wall = 4:26:19 cpu = 1:11:15:12 s=7.94241 )
100.0% time = 200.000000 ns ( etc = 0.0 sec, ett = 4:26:19 )
( wall = 4:26:19 cpu = 1:11:15:12 s=7.94241 )

Selecting Simulation Output Parameters

Parameters provide the appropriate simulation output. To define simulation 
parameters, use the .OPTION and .MEASURE statements, and define specific 
variable elements.

The following sections discuss these topics:
■ DC and Transient Output Variables
■ Operating Point Variables
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■ AC Analysis Output Variables
■ Element Template Output (HSPICE Only)

DC and Transient Output Variables
■ Voltage differences between specified nodes (or between one specified 

node and ground).
■ Current output for an independent voltage source.
■ Current output for any element.
■ Current output for a subcircuit pin.
■ Element templates (HSPICE only). For each device type, the templates 

contain:

• values of variables that you set

• state variables

• element charges

• capacitance currents

• capacitances

• derivatives

• user-specified element length

• user-specified element width

Print Control Options on page 379 summarizes the codes that you can use, to 
specify the element templates for output in HSPICE.

The following sections discuss these topics.
■ Nodal Capacitance Output
■ Nodal Voltage
■ Current: Independent Voltage Sources
■ Terminal Voltage: MOS Instance
■ Current: Element Branches
■ Current: Subcircuit Pin
■ Independent Source Power Output
■ Wildcard Support
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■ User-defined Element Length and Width
■ Print Power
■ Diode Power Dissipation
■ BJT Power Dissipation
■ JFET Power Dissipation
■ MOSFET Power Dissipation

Nodal Capacitance Output
Syntax
Cap(nxxx)

For nodal capacitance output, HSPICE prints or plots the capacitance of the 
specified node nxxxx.

Example
.print dc Cap(5) Cap(6)

Nodal Voltage
Syntax

V(n1[,n2])

Current: Independent Voltage Sources
Syntax
I(Vxxx)

Parameter Description

n1, n2 HSPICE prints or plots the voltage difference (n1-n2) between the specified nodes. If 
you omit n2, HSPICE prints or plots the voltage difference between n1 and ground 
(node 0).

Parameter Description

Vxxx Voltage-source element name. If an independent power supply is within a subcircuit, 
then to access its current output, append a dot and the subcircuit name to the element 
name. For example, I(X1.Vxxx).
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Example
.PRINT TRAN I(VIN)
.PRINT DC I(X1.VSRC)
.PRINT DC I(XSUB.XSUBSUB.VY)

Terminal Voltage: MOS Instance
Syntax
Vn(MOSFET_name)

Example

The following example outputs the gate node voltage for the MOSFET.

.probe tran v2(XINST1.MN0)

Current: Element Branches

Note: The direction of the current can follow the HSPICE-specific mode 
or the generic current polarity mode, based on use of the 
.OPTION GEN_CUR_POL=ON|OFF. The default is OFF. 
See .OPTION GEN_CUR_POL in the HSPICE Reference 
Manual: Commands and Control Options.

Syntax
In(Wwww)
Iall(Wwww)

Parameter Description

n Node position number in the element statement. n is 1, 2, 3 or 4. For example: v1 
is the first node (drain) voltage.

MOSFET_name MOSFET instance name. To access current output for an element in a subcircuit, 
append a dot and the subcircuit name to the element name. For example, 
v3(X1.Wwww).

Parameter Description

n Node position number, in the element statement. For example, if the element contains 
four nodes, I3 is the branch-current output for the third node. If you do not specify n, 
HSPICE assumes the first node.

Wwww Element name. To access current output for an element in a subcircuit, append a dot 
and the subcircuit name to the element name. For example, I3(X1.Wwww).
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Example 1
I1(R1)

This example specifies the current through the first R1 resistor node. 

Example 2
I4(X1.M1)

This example specifies the current, through the fourth node (the substrate 
node) of the M1 MOSFET, defined in the X1 subcircuit.

Example 3
I2(Q1)

The last example specifies the current, through the second node (the base 
node) of the Q1 bipolar transistor.

To define each branch circuit, use a single element statement. When HSPICE 
evaluates branch currents, by default, it inserts a zero-volt power supply, in 
series with branch elements to enable the HSPICE current direction rule to be 
more device-aware. The .OPTION GEN_CUR_POL=ON|OFF is available to 
allow use of Custom Designer + HSPICE. When .OPTION GEN_CUR_POL=ON, 
the i2() ... in() direction uses a generic direction rule, that is: the current in 
is positive, and the current out is negative (see Figure 36 on page 388 through 
Figure 41 on page 389).

If HSPICE cannot interpret a .PRINT statement that contains a branch current, 
it generates a warning.

Branch current direction for the elements in s defined in terms of arrow-notation 
(current direction) and node-position number (terminal type). (See Figure 36 
though Figure 41.)

Iall (Wwww) An alias just for diode, BJT, JFET, and MOSFET devices. 
■ If Wwww is a diode, it is equivalent to:

I1(Wwww) I2(Wwww). 
■ If Wwww is one of the other device types, it is equivalent to:

I1(Wwww) I2(Wwww) I3(Wwww) I4(Wwww)

Parameter Description
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Figure 36 Resistor (node1, node2)

Figure 37 Inductor (node1, node2); capacitor (node 1, node2)

Figure 38 Diode (node1, node2)

Figure 39 JFET (node1, node2, node3) - n-channel 

I1 (R1)

I2 (R1)

node1

node2

R1

.OPTION GEN_CUR_POL=ON.OPTION GEN_CUR_POL=OFF (default)

I1 (R1)

I2 (R1)

node1

node2

R1

node1

node2

I1(L1)

I2(L1)

I1(C1)

I2(C1)

.OPTION GEN_CUR_POL=ON.OPTION GEN_CUR_POL=OFF (default)

node1

node2

I1(L1)

I2(L1)

I1(C1)

I2(C1)

I1 (D1)

I2 (D1)

node1 (anode, P-type, + node)

node2 (anode, N-type, - node)

I1 (D1)

I2 (D1)

node1 (anode, P-type, + node)

node2 (anode, N-type, - node)

.OPTION GEN_CUR_POL=ON.OPTION GEN_CUR_POL=OFF (default)

node2

node1 (drain node)

node2 (source node)
I3 (J1)

I1 (J1)

(gate node)
I2 (J1)

.OPTION GEN_CUR_POL=ON.OPTION GEN_CUR_POL=OFF (default)

node2

node1 (drain node)

node2 (source node)
I3 (J1)

I1 (J1)

(gate node)
I2 (J1)
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Figure 40 MOSFET (node1, node2, node3, node4) - n-channel    

Figure 41 BJT (node1, node2, node3, node4) - npn 

Current: Subcircuit Pin
Syntax
ISUB(X****.****)

Example
.PROBE ISUB(X1.PIN1)

Independent Source Power Output
Syntax
SRC_PWR

Example
.print [dc|tran] src_pwr

For power calculations, HSPICE computes dissipated or stored power in each 
passive element (R, L, C), and source (V, I, G, E, F, and H). To compute this 

node1 (drain node)

I1 (M1)

node2 (gate node)

   I2 (M1)

node3 (source node)

I3 (M1)

node4 (substrate node)

I4 (M1)

node1 (drain node)

I1 (M1)

node2 (gate node)

   I2 (M1)

node3 (source node)

I3 (M1)

node4 (substrate node)

I4 (M1)

node1 (drain node)

I1 (M1)

node2 (gate node)

   I2 (M1)

node3 (source node)

I3 (M1)

node4 (substrate node)

I4 (M1)

.OPTION GEN_CUR_POL=ON.OPTION GEN_CUR_POL=OFF (default)

node2 (base node)
I2 (Q1)

node1 (collector node)
I1 (Q1)

node4 (substrate node)
I4 (Q1)

node3 (emitter node)
I3 (Q1)

node2 (base node)
I2 (Q1)

node1 (collector node)
I1 (Q1)

node4 (substrate node)
I4 (Q1)

node3 (emitter node)
I3 (Q1)

.OPTION GEN_CUR_POL=ON.OPTION GEN_CUR_POL=OFF (default)
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power, HSPICE multiplies the voltage across an element, and its corresponding 
branch current. 

However, for semiconductor devices, HSPICE calculates only the dissipated 
power. It excludes the power stored in the device junction or parasitic 
capacitances from the device power computation. The following sections show 
equations for calculating the power that different types of devices dissipate.

HSPICE also computes the total power of a circuit, which is the dissipated 
power + stored power. Total power is the negative value of sum of independent 
sources. 

Note: Since HSPICE compute only the dissipated power for 
semiconductor devices, total power is not the sum of power of 
elements that exclude independent sources.

Wildcard Support
Wildcard support is available for current subcircuit pins in single and multiple 
hierarchies using asterisk (*) and question mark (?) characters. (Exception: (?) 
is disallowed.) For example:

Single Hierarchy

.print isub(x1.*) isub(x1.a?)

Multi-level Hierarchy

.print isub(x1.x2.*) isub(x1.x?.a?)

User-defined Element Length and Width
.PRINT [DC | TRAN] ul(element_name)Length 
.PRINT [DC | TRAN] uw(element_name)Width 

The user-defined length and width for MOSFETs, JFETs, BJTs, diodes, 
capacitors, and resistors can be printed. Supported analysis types are DC and 
transient.

Parameter Description

ul Element length specified by the user.

uw Element width specified by the user.
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Example 1: This example prints user-defined lengths.

.PRINT DC ul(m1)

.PRINT TRAN ul(m1)

Example 2: This example prints user-defined widths.

.PRINT DC uw(m1)

.PRINT TRAN uw(m1)

Print Power
.PRINT [DC | TRAN] P(element_or_subcircuit_name)POWER 

HSPICE calculates power only for transient and DC sweep analyses. Use 
the .MEASURE statement to compute the average, RMS, minimum, maximum, 
and peak-to-peak value of the power. The POWER keyword invokes the total 
power dissipation output.

HSPICE advanced analog analyses supports p(instance) but not the POWER 
variable in DC/transient analysis.

Example
.PRINT TRAN P(M1) P(VIN) P(CLOAD) POWER
.PRINT TRAN P(Q1) P(DIO) P(J10) POWER
.PRINT TRAN POWER $ Total transient analysis 
* power dissipation
.PRINT DC POWER P(IIN) P(RLOAD) P(R1)
.PRINT DC POWER P(V1) P(RLOAD) P(VS)
.PRINT TRAN P(Xf1) P(Xf1.Xh1)

Diode Power Dissipation

Parameter Description

Pd Power dissipated in the diode.

Ido DC component of the diode current.

Icap Capacitive component of the diode current.

Vp'n Voltage across the junction.

Vpp' Voltage across the series resistance, RS.

Pd Vpp' Ido Icap+  Vp'n Ido+=
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ot
BJT Power Dissipation
■ Vertical

■ Lateral

Parameter Description

Ibo DC component of the base current.

Ico DC component of the collector current.

Iso DC component of the substrate current.

Pd Power dissipated in a BJT.

Ibtot Total base current (excluding the substrate current).

Ictot Total collector current (excluding the substrate current).

Ietot Total emitter current.

Istot Total substrate current.

Vb'e' Voltage across the base-emitter junction.

Vbb' Voltage across the series base resistance, RB.

Vc'e' Voltage across the collector-emitter terminals.

Vcc' Voltage across the series collector resistance, RC.

Vee' Voltage across the series emitter resistance, RE.

Vsb' Voltage across the substrate-base junction.

Vsc' Voltage across the substrate-collector junction.

Pd Vc'e' Ico Vb'e' Ibo Vcc' Ictot Vee' Ietot Vsc' Iso Vcc' Ist–++ + +=

Pd Vc'e' Ico Vb'e' Ibo Vcc' Ictot Vbb' Ibtot Vee' Ietot++ + +=

Vsb' Iso Vbb' Istot–
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JFET Power Dissipation

MOSFET Power Dissipation

Parameter Description

Icgd Capacitive component of the gate-drain junction current.

Icgs Capacitive component of the gate-source junction current.

Ido DC component of the drain current.

Igdo DC component of the gate-drain junction current.

Igso DC component of the gate-source junction current.

Pd Power dissipated in a JFET.

Vd's' Voltage across the internal drain-source terminals.

Vdd' Voltage across the series drain resistance, RD.

Vgd' Voltage across the gate-drain junction.

Vgs' Voltage across the gate-source junction.

Vs's Voltage across the series source resistance, RS.

Parameter Description

Ibdo DC component of the bulk-drain junction current.

Ibso DC component of the bulk-source junction current.

Icbd Capacitive component of the bulk-drain junction current.

Icbs Capacitive component of the bulk-source junction current.

Icgd Capacitive component of the gate-drain current.

Icgs Capacitive component of the gate-source current.

Pd Vd's' Ido Vgd' Igdo Vgs' Igso  +++=
Vs's Ido Igso Icgs+ +  Vdd'+ Ido Igdo– Icgd– 

Pd Vd's' Ido Vbd' Ibdo Vbs' Ibso  +++=
Vs's Ido Ibso Icbs Icgs+ + +  Vdd' Ido Ibdo– Icbd– Icgd– +
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Operating Point Variables
When you set PRINT/.PROBE OP, only the OP information specified in the 
statement is output. These commands have a higher priority than the .OP 
command.

Nodal Voltage Syntax

V(n1[,n2])

Example 1: This example only outputs the operating point information of 
variables I(VIN) and I(X1.VSRC).

.PRINT OP v(1) v(2)

Current: Independent Voltage Sources Syntax

I(Vxxx)

Example 2: This example only outputs the operating point information of the 
variables I(VIN) and I(X1.VSRC).

.PRINT OP I(VIN) I(X1.VSRC)

For detailed information on controlling the files to which operating point 
information is written see: .OP, .OPTION OPFILE and .OPTION SPLIT_DP.

AC Analysis Output Variables
Output variables for AC analysis include:

Ido DC component of the drain current.

Pd Power dissipated in the MOSFET.

Vbd' Voltage across the bulk-drain junction.

Vbs' Voltage across the bulk-source junction.

Vd's' Voltage across the internal drain-source terminals.

Vdd' Voltage across the series drain resistance, RD.

Vs's Voltage across the series source resistance, RS.

Parameter Description
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■ Voltage differences between specified nodes (or between one specified 
node and ground).

■ Current output for an independent voltage source.
■ Current output for a subcircuit pin.
■ Element branch current.
■ Impedance (Z), admittance (Y), hybrid (H), and scattering (S) parameters.
■ Input and output impedance, and admittance.

Table 30 lists AC output-variable types. In this table, the type symbol appends 
the variable symbol, to form the output variable name. For example, VI is the 
imaginary part of the voltage, or IM is the magnitude of the current.

Specify real or imaginary parts, magnitude, phase, decibels, and group delay 
for voltages and currents.

The following sections topics discuss these topics:
■ Algebraic Expressions
■ Nodal Capacitance Output
■ Nodal Voltage
■ Current: Independent Voltage Sources
■ Current: Element Branches
■ Current: Subcircuit Pin
■ Group Time Delay

Table 30 AC Output Variable Types

Type Symbol Variable Type

DB decibel

I imaginary part

M magnitude

P phase

R real part

T group delay
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■ Network
■ Noise and Distortion

Algebraic Expressions
Syntax
PAR('algebraic expression')

Starting from HSPICE 2013.03-SP1, if the 'algebraic expression' 
contains the node voltage or element branch current, the values of the 
expression displayed in *.ac# file is output in complex data including both real 
and imaginary components. The expression is evaluated based on the complex 
data type. If the 'algebraic expression' does not contain any node 
voltage or element branch current, the values of expression are real type 
instead of complex type.

For a complex expression, the results of .PRINT in the .lis file are the 
magnitude of the complex data.

Example

Example 1:

.print ac Cxx=par('v(n1)-v(n2)')

In example 1, the results of Cxx are complex data in the *.ac# file and in the 
.lis file; they are magnitude values.

The real, imaginary and magnitude values are calculated as:

Cxx_real= real( v(n1) ) -real ( v(n2) )
Cxx_imag=imag( v(n1) ) -imag (v(n2) )
Cxx_mag=sqrt(Cxx_real*Cxx_real)+Cxx_imag*Cxx_imag)

Example 2:

.param p1=2 p2=3

.print ac Rxx=par('p1-p2')

In example 2, the results of Rxx are real data in the *.ac# file.

Nodal Capacitance Output
Syntax
Cap(nxxx)
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For nodal capacitance output, HSPICE prints the capacitance of the specified 
node nxxxx.

Example
.print ac Cap(5) Cap(6)

Nodal Voltage
Syntax
Vz(n1<,n2>)

Example
This example applies to HSPICE, but not to HSPICE advanced analog 
analyses. It prints the magnitude of the AC voltage of node 5, using the VM 
output variable. HSPICE uses the VDB output variable to print the voltage at 
node 5, and uses the VP output variable to print the phase of the nodal voltage 
at node 5.

.PRINT AC VM(5) VDB(5) VP(5)

Current: Independent Voltage Sources
Syntax
Iz(Vxxx)

Example
.PRINT AC IR(V1) IM(VN2B) IP(X1.X2.VSRC)

Parameter Description

z Specifies the voltage output type (see Table 30)

n1, n2 Specifies node names. If you omit n2, HSPICE assumes ground (node 0).

Parameter Description

z Current output type (see Table 30).

Vxxx Voltage-source element name. If an independent power supply is within a subcircuit, 
then to access its current output, append a dot and the subcircuit name to the element 
name. For example, IM(X1.Vxxx).
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Current: Element Branches
Syntax
Izn(Wwww)

.PRINT AC IP1(Q5) IM1(Q5) IDB4(X1.M1)

If you use the form In(Xxxx) for AC analysis output, then HSPICE prints the 
magnitude value, IMn(Xxxx).

Current: Subcircuit Pin
Syntax
ISUB(X****.****)

Example
.PROBE ISUB(X1.PIN1)

Group Time Delay
AC analysis associates the TD group time delay. TD is the negative derivative 
of the phase in radians, with respect to radian frequency. HSPICE uses the 
difference method to compute TD:

AC analysis associates T with the group time delay. The group time delay, T, is 
the negative derivative of the phase in radians, with respect to radian 
frequency. HSPICE uses the difference method to compute T:

phase1 and phase2 are the phases (in degrees) of the specified signal, at the 
f1 and f2 frequencies (in hertz).

Parameter Description

z Current output type (see Table 30).

n Node position number, in the element statement. For example, if the element contains 
four nodes, IM3 denotes the magnitude of the branch current output for the third node.

Wwww Element name. If the element is within a subcircuit, then to access its current output, 
append a dot and the subcircuit name to the element name. For example, 
IM3(X1.Wwww).

T
1

360
---------–

phase2 phase1– 
f2 f1– 

------------------------------------------------=
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Syntax
.PRINT AC VT(10) VT(2,25) IT(RL)
.PRINT AC IT1(Q1) IT3(M15) IT(D1)

Note: Because the phase has a discontinuity every 360°, T shows the 
same discontinuity, even though T is continuous.

Example
INTEG.SP ACTIVE INTEGRATOR 
****** INPUT LISTING
******
V1 1 0 .5 AC 1
R1 1 2 2K
C1 2 3 5NF
E3 3 0  2 0 -1000.0
.AC DEC  15  1K 100K
.PRINT AC VT(3) VP(3)
.END

Network
Syntax
Xij (z), ZIN(z), ZOUT(z), YIN(z), YOUT(z)

Example
.PRINT AC Z11(R) Z12(R) Y21(I) Y22 S11 S11(DB)
.PRINT AC ZIN(R) ZIN(I) YOUT(M) YOUT(P) H11(M)
.PRINT AC S22(M) S22(P) S21(R) H21(P) H12(R)

Parameter Description

X Specifies Z (impedance), Y (admittance), H (hybrid), or S (scattering).

ij i and j can be 1 or 2. They identify the matrix parameter to print.

z Output type (see Table 30). If you omit z, HSPICE prints the magnitude of the output 
variable.

ZIN Input impedance. For a one-port network, ZIN, Z11, and H11 are the same.

ZOUT Output impedance.

YIN Input admittance. For a one-port network, YIN and Y11 are the same. 

YOUT Output admittance.
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Noise and Distortion
This section describes the variables used for noise and distortion analysis.

Syntax
ovar <(z)>

Example
.PRINT DISTO HD2(M) HD2(DB)

Prints the magnitude and decibel values of the second harmonic distortion 
component, through the load resistor that you specified in the .DISTO 
statement (not shown). You cannot use the .DISTO statement in HSPICE 
advanced analog analyses.

.PRINT NOISE INOISE ONOISE 

Note: You can specify the noise and distortion output variable, and 
other AC output variables, in the .PRINT AC statements.

Element Template Output (HSPICE Only)
The .PRINT, and .PROBE statements use element templates to output user-
input parameters, state variables, stored charges, capacitor currents, 
capacitances, and derivatives of variables. See Element Template Listings on 
page 415. 

Syntax
The property syntax is:

Elname:Property 

Parameter Description

ovar Noise and distortion analysis parameter. It can be ONOISE (output noise), INOISE 
(equivalent input noise), or any of the distortion analysis parameters (HD2, HD3, 
SIM2, DIM2, DIM3).

z Output type (only for distortion). If you omit z, HSPICE outputs the magnitude of the 
output variable.

Parameter Description

Elname Name of the element.
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Example:

.PRINT TRAN V(1,12) I(X2.VSIN) I2(Q3) DI01:GD

.PRINT TRAN X2.M1:CGGBO M1:CGDBO X2.M1:CGSBO

The alias syntax is:

LVnn(Elname)
LXnn(Elname)

Example
.PRINT TRAN V(1,12) I(X2.VSIN) I2(Q3) DI01:GD
.PRINT TRAN X2.M1:CGGBO M1:CGDBO X2.M1:CGSBO

Specifying User-Defined Analysis (.MEASURE)

Use the .MEASURE statement to modify information, and to define the results of 
successive HSPICE simulations. 

Computing the measurement results uses postprocessing output. If you use 
the INTERP option to reduce the size of the postprocessing output, then the 
measurement results can contain interpolation errors. For more information, 
see .OPTION INTERP in the HSPICE Reference Manual: Commands and 
Control Options.

Property Property name of an element, such as a user-input parameter, state variable, stored 
charge, capacitance current, capacitance, or derivative of a variable.

Parameter Description

LV Form to obtain output of user-input parameters, and state variables.

LX Form to obtain output of stored charges, capacitor currents, capacitances, and derivatives 
of variables.

nn Code number for the desired parameter (See Element Template Listings on page 415 and 
MOSFET Output Templates, Table 4, Parameters in MOSFET Output Templates).

Elname Name of the element.

Parameter Description
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This section describes the fundamental measurement modes and includes the 
following topics:
■ .MEASURE Statement Order
■ .MEASURE Parameter Types
■ FIND and WHEN Functions
■ Continuous Measurement
■ Equation Evaluation
■ Average, RMS, MIN, MAX, INTEG, PP, and EM_AVG
■ INTEGRAL Function
■ DERIVATIVE Function
■ ERROR Function
■ Generating a Measure File (*.mt0, *.ac0, etc.) with All Values in a Single 

Row
■ Outputting Pass/Fail Measure Data
■ Measurements in MOSRA Analysis

.MEASURE Statement Order
The .MEASURE statement matches the last analysis command in the netlist 
before the .MEASURE statement.

Example
.tran 20p 1.0n sweep sigma -3 3 0.5
.tran 20p 1.0n sweep monte=20
.meas mover max v(2,1)

In this example, .meas matches the second .tran statement and generates 
only one measure output file.

Users need to be aware that there are certain differences on how HSPICE 
handles .measures are handle in the case of complex measurements. 
Complex .MEASURE statements are measure statements dependent on other 
measure statements. 

“Undefined variables” is a common reported issue in .measure cases for 
HSPICE that lead to failed measurements. You may not find the same case in 
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the FASTSPICE tools due to the differences in how other tools process 
.measures.

Note: HSPICE has a dependency requirement which may not exist in 
other formats. Fastspice simulators XA, Nanosim, and HSIM 
support various languages, including HSPICE and other major 
EDA simulators. These Fastspice simulators process .measure 
results in very flexible manner. These simulators read and reread 
a netlist for variable identification. Then, XA, NS, and HSIM 
perform simulation, write results, and then post-process the 
results to determine the .measure results.

If a .MEASURE statement does not execute, then HSPICE writes 0.0e0 in 
the .mt# file as the .MEASURE result, and writes FAILED in the output listing 
file. Use .OPTION MEASFAIL to write results to the .mt#, .ms#, or .ma# files. 
For more information, see .OPTION MEASFAIL in the HSPICE Reference 
Manual: Commands and Control Options.

To control the output variables, listed in .MEASURE statements, use 
the .PUTMEAS option. For more information, see the .OPTION PUTMEAS 
option in the HSPICE Reference Manual: Commands and Control Options.

Note: If a .measure statement uses the result of previous .meas 
statement, then the calculation starts when the previous 
calculation concludes. HSPICE outputs zero until the previous 
result concludes.

For information on measuring MOSFET parameters, see Measuring the Value 
of MOSFET Model Card Parameters.

.MEASURE Parameter Types
You cannot use measurement parameter results that the .PARAM statements 
in .SUBCKT blocks produce, outside of the subcircuit. That is, you cannot pass 
any measurement parameters defined in .SUBCKT statements, as bottom-up 
parameters in hierarchical designs.

Measurement parameter names must not conflict with standard parameter 
names. HSPICE issues an error message if it encounters a measurement 
parameter with the same name as a standard parameter definition.

To prevent .MEASURE statement parameters from overwriting parameter values 
in other statements, HSPICE keeps track of parameter types. If you use the 
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same parameter name in both a .MEASURE statement and a .PARAM 
statement at the same hierarchical level, the simulation terminates and reports 
an error. 

No error occurs if parameter assignments are at different hierarchical 
levels. .PRINT statements that occur at different levels do not print hierarchical 
information for parameter name headings.

Example
In HSPICE advanced analog analyses output, you cannot apply .MEASURE to 
waveforms generated from another .MEASURE statement in a parameter 
sweep.

The following example illustrates how HSPICE handles .MEASURE statement 
parameters.

...

.MEASURE tran length TRIG v(clk) VAL=1.4 
+ TD=11ns RISE=1 TARGv(neq) VAL=1.4 TD=11ns
+ RISE=1 
.SUBCKT path out in width=0.9u length=600u
+ rm1 in m1 m2mg w='width' l='length/6'
...
.ENDS

In the above listing, the length in the resistor statement:

rm1 in m1 m2mg w='width' l='length/6'

does not inherit its value from length in the .MEASURE statement:

.MEASURE tran length ... 

because they are of different types.

The correct value of l in rm1 should be:

l=length/6=100u

 In transient analysis, you should not derive the value from a measured value.

FIND and WHEN Functions
The FIND and WHEN functions of the .MEASURE statement specify to measure:
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■ Any independent variables (time, frequency, parameter).
■ Any dependent variables (voltage or current for example).
■ Derivative of a dependent variable, if a specific event occurs.

You can use these measure statements in unity gain frequency or phase 
measurements. You can also use these statements to measure the time, 
frequency, or any parameter value:
■ When two signals cross each other.
■ When a signal crosses a constant value.

The measurement starts after a specified time delay, TD. To find a specific 
event, set RISE, FALL, or CROSS to a value (or parameter), or specify LAST for 
the last event. 

LAST is a reserved word; you cannot use it as a parameter name in the above 
measure statements. For definitions of parameters of the measure statement, 
see Displaying Simulation Results on page 375.

For a full demonstration file for FIND and WHEN functions follow the path to 
ampgain.sp, which sets unity gain frequency of a BJT diff pair, in Circuit 
Optimization Examples on page 1078 in this user guide.

Continuous Measurement
The continuous measurement feature allows you to specify the continuous 
measurement of a result derived from a DC, AC, or transient analysis. This 
feature only applies to TRIG-TARG and Find-When functions. For example:

.measure tran_cont vout1 find v(out1) when v(a1)=2.5 fall=1

The .measure statements continuously finds the voltage out1 when the 
voltage value of node a1 reaches to 2.5 starting from the first falling edge.

See .MEASURE (Continuous Results) in the HSPICE Reference Manual: 
Commands and Control Options.

Continuous Measure Output Files
HSPICE outputs the continuous measure output into a separate files of the 
following types:

output_prefix_measure_result.mt#
 output_prefix_measure_result.ms#
 output_prefix_measure_result.ma#
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The file is in text format and readable directly. For example:

.measure tran_cont vout1_cont find v(out1) when v(a1)=2.5 fall=1

The additional output file name is t1_vout1_cont.mt, if the output file prefix 
is t1.

Note: Continuous measurement output is not written to the *.lis file.

The following is an example of an output file for the measure statement:

.measure tran_cont crossing when v(1) = v(2) t1_crossing.mt
1.      crossing, result=1.000000000000e-09
2.      crossing, result=1.000000000000e-07
3.      crossing, result=2.000000000000e-07
4.      crossing, result=3.000000000000e-07
5.      crossing, result=4.000000000000e-07
6.      crossing, result=5.000000000000e-07
7.      crossing, result=6.000000000000e-07
8.      crossing, result=7.000000000000e-07
9.      crossing, result=8.000000000000e-07
10.    crossing, result=9.000000000000e-07
11.    crossing, result=1.000000000000e-06

Equation Evaluation
Use the Equation Evaluation form of the .MEASURE statement to evaluate an 
equation that is a function of the results of previous .MEASURE statements. The 
equation must not be a function of node voltages or branch currents.

The expression option is an arithmetic expression that uses results from 
other prior .MEASURE statements. If equation or expression includes node 
voltages or branch currents, Unexpected results may incur.

Average, RMS, MIN, MAX, INTEG, PP, and EM_AVG
Average (AVG), RMS, MIN, MAX, and peak-to-peak (PP) measurement modes 
report statistical functions of the output variable, rather than analysis values. 
■ AVG calculates the area under an output variable divided by the periods of 

interest.
■ RMS divides the square root of the area under the output variable square by 

the period of interest. 
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■ MIN reports the minimum value of the output function over the specified 
interval. 

■ MAX reports the maximum value of the output function over the specified 
interval. 

■ PP (peak-to-peak) reports the maximum value minus the minimum value 
over the specified interval.

Note: AVG, RMS, and INTEG have no meaning in a DC data sweep, 
so if you use them, HSPICE issues a warning message.

■ EM_AVG Calculates the average electromigration current. For a symmetric 
bipolar waveform, the current is:
I_avg (0, T/2) - R*Iavg (T/2, T), where R is the recovery factor you specify 
by using .option em_recovery. This measurement also supports 
wildcards.

Measuring Recovered Electromigration
The .MEAS keyword, EM_AVG, enables you to calculate “recovered” average 
current due to electromigration. Recovered average current is specially 
meaningful for bipolar currents (such as output of the inverter), as the 
mathematical average for such a waveform is zero.The keyword uses the From-
To measurement function to provide a range to measure. For example:

.measure tran em em_avg I(out) from=5n to=50n

where out is the node which specifies the measurement point.

The example does the following operations:

1. Measure the average of positive part of the waveform (Ipos_avg) from 5ns 
to 50ns.

2. Measure the average of negative part (absolute value) of the waveform 
(Ineg_avg) from 5ns to 50ns.

3. Does the operation “max(Ipos_avg,Ineg_avg) - R*min(Ipos_avg,Ineg_avg)”,

Where R is a user-provided coefficient using .option 
em_recovery=value. The default value of em_recovery is 1. 
See .OPTION EM_RECOVERY in the HSPICE Reference Manual: 
Commands and Control Options.

4. The polarity of em_avg current is same as the polarity of the 
max(Ipos_avg,Ineg_avg). Positive, if abs(pos) is more than abs(neg) and 
otherwise.
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For this feature HSPICE also supports wildcards (*) during em_avg 
measurement. For example:

.meas tran em em_avg I(m*) from=10n to=100n

INTEGRAL Function
The INTEGRAL function reports the integral of an output variable, over a 
specified period.

DERIVATIVE Function
The DERIVATIVE function provides the derivative of:
■ An output variable, at a specified time or frequency. 
■ Any sweep variable, depending on the type of analysis.
■ A specified output variable, when some specific event occurs.

In the following HSPICE advanced analog analyses example, the SLEW 
measurement provides the slope of V(OUT) during the first time, when V(1) is 
90% of VDD.

.MEAS TRAN SLEW DERIV V(OUT) WHEN V(1)=‘0.90*VDD’

ERROR Function
The relative error function reports the relative difference between two output 
variables. You can use this format in optimization and curve-fitting of measured 
data. The relative error format specifies the variable to measure and calculate 
from the .PARAM variable. To calculate the relative error between the two, 
HSPICE uses the ERR, ERR1, ERR2, or ERR3 function. With this format, you 
can specify a group of parameters to vary, to match the calculated value and 
the measured data. The following discusses the ERR equations:
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Error Equations
ERR
1. ERR sums the squares of (M-C)/max (M, MINVAL) for each point.

2. It then divides by the number of points.

3. Finally, it calculates the square root of the result. 

• M (meas_var) is the measured value of the device or circuit response. 

• C (calc_var) is the calculated value of the device or circuit response. 

• NPTS is the number of data points.

ERR1
ERR1 computes the relative error at each point. For NPTS points, HSPICE 
calculates NPTS ERR1 error functions. For device characterization, the ERR1 
approach is more efficient than the other error functions (ERR, ERR2, ERR3).

, i=1,NPTS

HSPICE does not print out each calculated ERR1 value. When you set the 
ERR1 option, HSPICE calculates an ERR value, as follows:

ERR2
This option computes the absolute relative error, at each point. For NPTS 
points, HSPICE calls NPTS error functions.

, i=1,NPTS

The returned value printed for ERR2 is:

ERR
1

NPTS
---------------

Mi Ci–

max MINVAL Mi( , )
---------------------------------------------- 
 

2

i 1=

NPTS



1 2/

=

ERR1i

Mi Ci–

max MINVAL Mi( , )
----------------------------------------------=

ERR
1

NPTS
--------------- ERR1i

2

i 1=

NPTS



1 2/

=

ERR2i
Mi Ci–

max MINVAL Mi( , )
----------------------------------------------=
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ERR3

, i=1,NPTS

The + and - signs correspond to a positive and negative M/C ratio.

Note: If the M measured value is less than MINVAL, HSPICE uses 
MINVAL instead. If the absolute value of M is less than the IGNOR 
or YMIN value, or greater than the YMAX value, the error 
calculation does not consider this point.

Generating a Measure File (*.mt0, *.ac0, etc.) with All 
Values in a Single Row
The MEASFORM option allows you to change how the measure values are 
written to the measure file. If you set MEASFORM=1, then HSPICE writes the 
measure values in a single space-delimited row.

You can also use MEASFORM=3 to output values in a single row and generate 
the file in CSV file format (*.csv) that can be opened in Excel by double-
clicking on the file name.

By default, a transient measure file (*.mt0) looks like:

tdelay           vmax             vmin             trise
tfall            temper           alter#
  1.781e-09          5.0072        -4.504e-03        4.778e-09

  3.386e-09         25.0000        1

By using either .OPTION MEASFORM=1 or .OPTION MEASFORM=3, the 
measure file appears as:

tdelay  vmax vmin        trise       tfall      temper  alter#
1.781e-09 5.0072  -4.504e-03  4.778e-09 3.386e-09 25.0000 1

ERR
1

NPTS
--------------- ERR2i

i 1=

NPTS

=

ERR3i

Mi

Ci
------log

max MINVAL Mi( , ) log
-----------------------------------------------------------------=
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Outputting Pass/Fail Measure Data
You can use .measure to create a logic equation that describes the pass/fail 
condition. It outputs a 0/1 value for pass/fail in the .mt0 file. For example:

.meas m1 find v(1) at=10n

.meas m2 find v(2) at=10n

.meas pass param="(m1 > 1) && (m2 < 2)"

Measurements in MOSRA Analysis
When working with measurements in a MOSFET model reliability analysis 
(MOSRA), you need to use a workaround for measurements beyond the first 
mt0 file. For example, in the following netlist, four measures fail:

.param t_step=600u

.tran 0.1u  '2*t_step'
vBGR BGR 0 pulse ( 0 3 0ns 10us 10us 50u 100u)
.meas tran vbgr_out  find V(BGR) at='t_step/20'
.meas tran trise1  when V(BGR)='0.9*vbgr_out'
 rise=last
.mosra reltotaltime=3.15e+8 relstep=7.88e+7
.option post=1 probe
.end

The file returns the following:

result of mt0
vbgr_out  trise1    temper    alter#
    3.0000    1.109e-03      25.0000        1.0000
results of mt1,2,3,4
 vbgr_out   trise1    temper     alter#
    3.0000      failed      25.0000        1.0000

The first .measure statement is independent of .MOSRA analysis, so the first 
measure file (*.mt0) succeeds. The second .measure statement depends on 
.MOSRA analysis, therefore next four measure files (mt1, mt2, mt3, mt4) fail.

Workaround
The workaround to this issue is:

1.  Run the simulation without the .measure statement. This generates 
*.tr0, *.tr1 ... files.

2. Copy the .measure statement to another file named (for example) 
measure_file.
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.param t_step=600u

.meas tran vbgr_out  find V(BGR)      at='t_step/20'

.meas tran trise1  when V(BGR)='0.9*vbgr_out' rise=last

.end

3. Run the post process measure utility as follows to successfully generate all 
measurement files:

hspice -meas measure_file -i *.tr1 -o tr1.lis
hspice -meas measure_file -i *.tr2 -o tr2.lis
hspice -meas measure_file -i *.tr3 -o tr3.lis
hspice -meas measure_file -i *.tr4 -o tr4.lis

Expected State of Digital Output Signal (.DOUT)

The digital output (.DOUT) statement specifies the expected final state of an 
output signal (HSPICE only). During simulation, HSPICE compares the 
simulated results with the expected output vector. An error results if states are 
different. The .DOUT statement uses either of two syntaxes. In both syntaxes, 
the time and state parameters define the expected output of the nd node.
■ The first syntax specifies a single threshold voltage, VTH. Any voltage level 

above VTH is high; any level below VTH is low.

.DOUT nd VTH (time state time_state)

where:

nd is the node name

VTH is the single voltage threshold

time is an absolute time-point (max 60)

state is one of the following expected conditions of the nd node, at the 
specified time:

0: expect  ZERO, LOW

1: expect ONE, HIGH

else: Do not care
■ The second syntax defines a threshold for both a logic high (VHI) and low 

(VLO).

.DOUT nd VLO VHI (time state time_state)

where:
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nd is the node name

VLO is the voltage of the logic low state

VHI is the voltage of the logic high state

time is an absolute time-point (max 60)

state is one of the following expected conditions of the nd node, at the 
specified time:

0: expect ZERO, LOW

1: expect ONE, HIGH

else: Do not care

Note: If you specify both syntaxes (VTH, plus VHI and VLO), then 
HSPICE processes only VTH, and ignores VHI and VLO.

For both cases, the time, state pair describes the expected output. During 
simulation, HSPICE compares the simulated results against the expected 
output vector. If the states are different, HSPICE reports an error.

The legal values for state are:
■ 0: Expect ZERO
■ 1: Expect ONE
■ X, x: Do not care.
■ U, u:Do not care
■ Z, z: Expect HIGH IMPEDANCE (do not care).

Example
The .PARAM statement in the following example sets the value of the VTH 
variable to 3. The .DOUT statement operates on the node1 node and uses 
VTH as its threshold voltage.

.PARAM VTH = 3.0

.DOUT node1 VTH(0.0n 0 1.0n 1
+ 2.0n X 3.0n U 4.0n Z 5.0n 0)

When node1 is above 3V, HSPICE considers it a logic 1; otherwise, it is a logic 
0.
■ At 0ns, the expected state of node1 is logic-low
■ At 1ns, the expected state is logic-high
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■ At 2ns, 3ns, and 4ns, the expected state is “do not care”
■ At 5ns, the expected state is again logic-low

HSPICE supports multiple nodes in the .DOUT statement. This enables you to 
verify signals at the same time point in a single.DOUT statement.

For example:.DOUT  B C D (0n 1 1 0 5n 0 0 0)

Reusing Simulation Output as Input Stimuli (HSPICE 
Only)

You can use the .STIM statement to reuse the results (output) of one 
simulation, as input stimuli in a new simulation.

Note: .STIM is an abbreviation of .STIMULI. You can use either form 
to specify this statement in HSPICE.

The .STIM statement specifies:
■ Expected stimulus (PWL source, data card, or VEC file). 
■ Signals to transform.
■ Independent variables.

One .STIM statement produces one corresponding output file. To control the 
precision and data format, you can use the same options as you would in a 
normal simulation. For example:

.option numdgt=6    $ sets precision, range is 0 to 10, numdgt=4 
is the default

.option ingold=0    $ sets format, 0=eng 1=combined 2=exponential

These settings affect how data prints out for your entire testcase. There is no 
way to only affect the .STIM command because the simulation data is the 
source of the output of the .STIM command.

For the syntax and description of the .STIM statement, see the .STIM 
command in the HSPICE Reference Manual: Commands and Control Options.
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Output Files
The .STIM statement generates the following output files:

Element Template Listings

A full and extensive listing of MOSFET output templates, is in the HSPICE 
Reference Manual: MOSFET Models, MOSFET Output Templates.

Output File Type Extension

PWL Source *.pwl$_tr# The .STIM statement writes PWL source results to 
output_file.pwl$_tr#. This output file results from a .STIM [tran] 
pwl statement in the input file.

Data Card .dat$_tr#, .dat$_ac#, or .dat$_sw#The .STIM statement writes 
DATA Card results to output_file.dat$_sw#, output_file.dat$_ac#, 
or output_file.dat$_tr#. This output file is the result of a .stim [tran| 
ac|dc] data statement in the input file.

Digital Vector File .vec$_tr#The .STIM statement writes Digital Vector File results to 
output_file.vec$_tr#. This output file is the result of a .stim [tran] 
vec statement in the input file.

Symbol Description

tr | ac | sw ■ tr=transient analysis.
■ ac=AC analysis.
■ sw=DC sweep analysis.

# Either a sweep number, or a hard-copy file number. For a single sweep run, the 
default number is 0.

$ Serial number of the current .STIM statement, within statements of the same 
stimulus type (pwl, data, or vec).

$=0 ~ n-1 (n is the number of the .STIM statement of that type). The initial $ value is 0.

For example, if you specify three .STIM pwl statements, HSPICE generates three 
PWL output files, with the suffix names pwl0_tr#, pwl1_tr#, and pwl2_tr#.

Table 31 Resistor (R-element)

 Name Alias Description

G LV1 Conductance at analysis temperature.
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R LV2 Resistance at analysis temperature.

TC1 LV3 First temperature coefficient.

TC2 LV4 Second temperature coefficient.

Table 32 Capacitor (C-element)

 Name Alias Description

CEFF LV1 Computed effective capacitance.

IC LV2 Initial condition.

Q LX0 Charge, stored in capacitor.

CURR LX1 Current, flowing through capacitor.

VOLT LX2 Voltage, across capacitor.

Table 33 Inductor (L-element)

Name Alias Description

LEFF LV1 Computed effective inductance.

IC LV2 Initial condition.

FLUX LX0 Flux, in the inductor.

VOLT LX1 Voltage, across inductor.

CURR LX2 Current, flowing through inductor.

Table 34 Mutual Inductor (K-element)

Name Alias Description

K LV1 Mutual inductance.

Table 31 Resistor (R-element) (Continued)

 Name Alias Description
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Table 35 Voltage-Controlled Current Source (G-element)

Name Alias Description

CURR LX0 Current, through the source, if VCCS.

R LX0 Resistance value, if VCR.

C LX0 Capacitance value, if VCCAP.

CV LX1 Controlling voltage.

CQ LX1 Capacitance charge, if VCCAP.

DI LX2 Derivative of the source current, relative to the control voltage.

ICAP LX2 Capacitance current, if VCCAP.

VCAP LX3 Voltage, across capacitance, if VCCAP.

Table 36 Voltage-Controlled Voltage Source (E-element)

Name Alias Description

VOLT LX0 Source voltage.

CURR LX1 Current, through source.

CV LX2 Controlling voltage.

DV LX3 Derivative of the source voltage, relative to the control current.

Table 37 Current-Controlled Current Source (F-element)

Name Alias Description

CURR LX0 Current, through source.

CI LX1 Controlling current.

DI LX2 Derivative of the source current, relative to the control current.
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Table 38 Current-Controlled Voltage Source (H-element)

Name Alias Description

VOLT LX0 Source voltage.

CURR LX1 Source current.

CI LX2 Controlling current.

DV LX3 Derivative of the source voltage, relative to the control current.

Table 39 Independent Voltage Source (V-element)

Name Alias Description

VOLT LV1 DC/transient voltage.

VOLTM LV2 AC voltage magnitude.

VOLTP LV3 AC voltage phase.

Table 40 Independent Current Source (I-element)

Name Alias Description

CURR LV1 DC/transient current.

CURRM LV2 AC current magnitude.

CURRP LV3 AC current phase.

Table 41 Diode (D-element)

Name Alias Description

AREA LV1 Diode area factor.

AREAX LV23 Area, after scaling.

IC LV2 Initial voltage, across diode.

VD LX0 Voltage, across diode (VD), excluding RS (series resistance).
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IDC LX1 DC current, through diode (ID), excluding RS. Total diode current is the 
sum of IDC and ICAP.

GD LX2 Equivalent conductance (GD).

QD LX3 Charge of diode capacitor (QD).

ICAP LX4 Current, through the diode capacitor.

Total diode current is the sum of IDC and ICAP.

C LX5 Total diode capacitance.

PID LX7 Photo current, in diode.

Table 42 BJT (Q-element)

Name Alias Description

AREA LV1 Area factor.

ICVBE LV2 Initial condition for base-emitter voltage (VBE).

ICVCE LV3 Initial condition for collector-emitter voltage (VCE).

MULT LV4 Number of multiple BJTs.

FT LV5 FT (Unity-gain bandwidth).

ISUB LV6 Substrate current (DC only, not accounted for charge-induced current).

GSUB LV7 Substrate conductance.

LOGIC LV8 LOG 10 (IC).

LOGIB LV9 LOG 10 (IB).

BETA LV10 BETA.

LOGBETAI LV11 LOG 10 (BETA) current.

ICTOL LV12 Collector current tolerance.

IBTOL LV13 Base current tolerance.

Table 41 Diode (D-element) (Continued)

Name Alias Description
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RB LV14 Base resistance.

GRE LV15 Emitter conductance, 1/RE.

GRC LV16 Collector conductance, 1/RC.

PIBC LV18 Photo current, base-collector.

PIBE LV19 Photo current, base-emitter.

VBE LX0 VBE.

VBC LX1 Base-collector voltage (VBC).

CCO LX2 Collector current (CCO) (DC only, not accounted for charge-induced 
current).

CBO LX3 Base current (CBO) (DC only, not accounted for charge-induced 
current).

GPI LX4 g=¹ib /¹vbe, constant vbc.

GU LX5 g=¹ib /¹vbc, constant vbe.

GM LX6 gm=¹ic /¹vbe+ ¹ic /¹vbe, constant vce.

G0 LX7 g0=¹ic /¹vce, constant vbe.

QBE LX8 Base-emitter charge (QBE).

CQBE LX9 Base-emitter charge current (CQBE).

QBC LX10 Base-collector charge (QBC).

CQBC LX11 Base-collector charge current (CQBC).

QCS LX12 Current-substrate charge (QCS).

CQCS LX13 Current-substrate charge current (CQCS).

QBX LX14 External base-collector charge (QBX).

CQBX LX15 External base-collector charge current (CQBX).

GXO LX16 1/Rbeff Internal conductance (GXO).

Table 42 BJT (Q-element) (Continued)

Name Alias Description
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CEXBC LX17 Base-collector equivalent current (CEXBC).

CAP_BE LX19 cbe capacitance (C).

CAP_IBC LX20 cbc internal base-collector capacitance (C).

CAP_SCB LX21 csc substrate-collector capacitance for vertical transistors.

csb substrate-base capacitance for lateral transistors.

CAP_XBC LX22 cbcx external base-collector capacitance.

CMCMO LX23  ¹(TF*IBE) /¹vbc.

VSUB LX24 Substrate voltage.

Table 43 JFET (J-element)

Name Alias Description

AREA LV1 JFET area factor.

VDS LV2 Initial condition for drain-source voltage.

VGS LV3 Initial condition for gate-source voltage.

PIGD LV16 Photo current, gate-drain in JFET.

PIGS LV17 Photo current, gate-source in JFET.

VGS LX0 VGS.

VGD LX1 Gate-drain voltage (VGD).

CGSO LX2 Gate-to-source (CGSO).

CDO LX3 Drain current (CDO).

CGDO LX4 Gate-to-drain current (CGDO).

GMO LX5 Transconductance (GMO).

GDSO LX6 Drain-source transconductance (GDSO).

GGSO LX7 Gate-source transconductance (GGSO).

Table 42 BJT (Q-element) (Continued)

Name Alias Description
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GGDO LX8 Gate-drain transconductance (GGDO).

QGS LX9 Gate-source charge (QGS).

CQGS LX10 Gate-source charge current (CQGS).

QGD LX11 Gate-drain charge (QGD).

CQGD LX12 Gate-drain charge current (CQGD).

CAP_GS LX13 Gate-source capacitance.

CAP_GD LX14 Gate-drain capacitance.

QDS LX16 Drain-source charge (QDS).

CQDS LX17 Drain-source charge current (CQDS).

GMBS LX18 Drain-body (backgate) transconductance (GMBS).

Table 44 Saturable Core Element (K-element) 

Name Alias Description

MU LX0 Dynamic permeability (mu), Weber/(amp-turn-meter).

H LX1 Magnetizing force (H), Ampere-turns/meter.

B LX2 Magnetic flux density (B), Webers/meter2.

Table 45 Saturable Core Winding

Name Alias Description

LEFF LV1 Effective winding inductance (Henry).

IC LV2 Initial condition.

FLUX LX0 Flux, through winding (Weber-turn).

VOLT LX1 Voltage, across winding (Volt).

Table 43 JFET (J-element) (Continued)

Name Alias Description
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Vdmargin Output

Output template Vdmargin(m*), alias: LX286(m*), is provided to probe the 
Vdmargin simulation result of either selected or all MOSFET elements. The 
template prints in the *.lis file and as .sw0/.tr0 files. For example:

.print dc Vdmargin(m1) Vdmargin(m2)

For operating point analysis, Vdmargin is reported in the OP output; for DC 
sweep, Vdmargin is calculated at every sweep point; for Tran analysis, only the 
points specified in the .OP command are calculated.

Here, HSPICE only calculates Vdmargin at the following points: 1n, 2.5n, 10n:

.op 1n 2.5n 10n

If Vdmargin is not found in the sweep range, HSPICE reports Vdmargin=Vd0, 
with the following warning message:

**Warning** Vdmargin of m1 is out of range

See .IVDMARGIN and .OPTION IVDMARGIN in the HSPICE Reference 
Manual: Commands and Control Options for more information.

Output Listing (*.lis) File with .OPTION LIS_NEW Set

The following is a sample of what HSPICE generates during a simulation in the 
output listing file *.lis when you set .OPTION LIS_NEW in the netlist. See 
Output Listing File for discussion of the contents of the file.

***************************************************************
Project : $ring oscillator (Non-Alter) <Project name is the first 
line of netlist>

***************************Loading Files***********************
Loading….. '<path>/Main File.sp'
Loading '<path>/netlist.spc'
Loading '<path>/library.lib'

***************************************************************
******Options used simulation file*****************************

.option list converge=1
***************************************************************
*******************HSPICE Convergence Details*******************

Trying... Newton Iteration..
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Message: Newton Iteration convergence 
failure!,resetting dcon option to 1 and retrying

Trying… damped pseudo-transient…

Message: Success!
(Iterations: 1023)
Message: (mention if compromised with accuracy, 

dcgmin etc.)
Recommendation:
You can speed up your simulation by specifying:
             .OPTION CONVERGE=1

***************************************************************
*********** Analysis Details*******************************

Starting <DC/TRAN/AC/…> Analysis
Step: 1ps
End Time: 200ns
writing output to file:top_wdf.tr0
Format: WDF v2.0
Precision: Single (32b)

Probed signals: 48

Simulation completed : 10% transient time: 20ns elapsed time: 10 
mins
Simulation completed : 20% transient time: 40ns elapsed time: 21 
mins
Simulation completed : 30% transient time: 60ns elapsed time: 30 
mins
Simulation completed : 40% transient time: 80ns elapsed time: 42 
mins

Simulation completed : 50% transient time: 100ns 
elapsed time: 50 mins

Simulation completed : 60% transient time: 120ns 
elapsed time: 1 hr 1 mins

Simulation completed : 70% transient time: 140ns 
elapsed time: 1hr 10 mins

Simulation completed : 80% transient time: 160ns 
elapsed time: 1hr 21 mins

Simulation completed : 90% transient time: 180ns 
elapsed time: 1hr 40 mins
Simulation completed : 100% transient time:200ns elapsed time: 
1hr 60 mins
*****************(Print info)**<e.g., .option 
LIST,OPTS,NODES,etc.>

**************Measured Values for the Netlist*******************
  

 t_period=  1.0330E-07  targ=  1.5498E-06   trig=  1.4465E-06
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***************************************************************

******  Circuit Statistics  ******
 Resistors           : 480
  Capacitors          : 282
 Current Sources     : 1
  MOSFETs             : 22
  Voltage Sources     : 24
**********************************
  Total Elements      : 65
  Total Nodes         : 47
**********************************
****************Resource Summary*******************************
******  HSPICE Multi-Threading Info  ****** < To be printed only 
if multi-threading is used >
  Command Line Threads Count:                      1
  Available CPU Count:                             2
  Actual Model Evaluation(Load) Threads Count:     1
  Actual Solver Threads Count:                     1 
 
******************************************* 
******  HSPICE Multi-Processing Info  ****** < To be printed only 
if multi-processing is used >
  Command Line Core Count:                      1
  Available CPU core Count:                     2
  Actual Model Evaluation(Load) Core Count:     1
  Actual Solver Core Count:                     1 
 
*******************************************
*******  Runtime Summary (seconds)  *******
  Analysis           Time    # Points   tot. iter  conv.iter
  op point           1.01           1         455
  transient         36.73     3000001       88865   31379 rev=0
  readin             0.24
  errchk             0.03
  setup              0.04
  output             0.00
 peak memory used         1253  kbytes
  total cpu time           12338.31 seconds
  total elapsed time          11241 seconds
  job started at     09:00:05 05/09/2008
  job ended   at     09:00:46 05/09/2008
***************************************************************
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In the Runtime Summary, note the following definitions:
■ # Points: TSTOP/TSTEP+1
■ tot.iter: Total number of iterations in transient analysis taken by the tool 

to find the solution.
■ conv.iter: Count of only the iterations that converge. This number equals 

the number of time points which HSPICE evaluates to form the waveforms. 
■ rev (on the transient row): Number of times that the simulator had to 

reject timestep (reversals). This measures how difficult the design is to 
simulate; if rev is very high, it means the circuit is difficult to converge. Each 
rejected timestep equals eight iterations and no solution.

■ When you use .OPTION LIS_NEW=1, any .PRINT statement in your 
netlist generates a text file containing the simulation results. For a transient 
analysis, the file has the extension, .printtr#.

For MOSFET Information Use .OPTION LIST

To print the effective width and length after scaling include .OPTION LIST in 
your netlist. Then search for mosfets in your listing file. For example:

**** mosfets
**** BSIM4 Model (Level 54)
 element name        1:mn1         1:mn2         1:mn3         1:mn4
 drain               1:104         1:158         1:164         1:160
 gate                1:0           1:102         1:214         1:106
 source              1:157         1:195         1:159         1:165
 bulk                0:vss         0:vss         0:vss         0:vss
 model               0:nch         0:nch         0:nch         0:nch
 w eff             288.0000n     288.0000n     288.0000n     288.0000n
 l eff              90.0000n      90.0000n      90.0000n      90.0000n

You can see w eff and l eff (scaled) for each MOS instance in the 
circuit name directory section. The "1" in 1:mn1 refers to the subckt 
instance number:

  ******  circuit name directory
 circuit number to circuit name directory
   number circuitname                     definition         multiplier
        0 main circuit
        1 xmn1.                           nch_mac           1.00

Where, "1:mn1" refers to xmn1.mn1.
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You can also use HSPICE MOSFET output templates. For details, see 
MOSFET Output Templates in the HSPICE Reference Manual: MOSFET 
Models. To illustrate here, the general syntax is:

.print tran | dc LV1(mn1)  $ effective length for all MOSFET 
models except levels 54, 57, 69 and 70.

.print tran | dc LV2(mn1) $ effective width for all MOSFET 
models except levels 54, 57, 69 and 70.

.print tran | dc LX63(mn1) $ effective length for MOSFET model 
levels 54, 57, 69 and 70.

.print tran | dc LX62(mn1) $ effective width for MOSFET model 
levels 54, 57, 69 and 70.

For MOS models inside subckts, preface the MOS instance name with the 
subckt name:

.print tran LX62(xmn1.mn1) $ using the subckt name

.print tran LX62(1:mn1)    $ using the subckt number

You can also wildcard the subckt name and/or the MOS instance name:

.print tran LX63(*.mn1)    $ all MN1 lengths one level down

.print tran LX63(XMN1.*)   $ all MOS instance lengths below XMN1

.print tran LX63(*.*)      $ all MOS instance lengths two levels down

.print tran LX63(*)        $ all MOS instance lengths in the design

The following is a complete example, naming the outputs width and length:

.print tran width=par('lx62(1:mn1)') length=par('lx63(1:mn1)')

The output in your listing file then appears as follows:

 time       width       length
 0.          288.0000n     90.0000n

 100.00000p    288.0000n     90.0000n
  200.00000p    288.0000n     90.0000n 
  300.00000p    288.0000n     90.0000n
HSPICE® User Guide: Basic Simulation and Analysis 427
K-2015.06



Chapter 11: Simulation Output
HPP Status Updates in *.lis File
HPP Status Updates in *.lis File

When you run HPP, the *.lis file shows running updates for the simulation 
status and the CPU utilization. In the example below the lines translate as 
follows:

Percentage of simulation completion time = simulation time (microseconds or 
nanoseconds) us, ns) (etc = (estimated time to completion) sec, ett = 
(estimated total time )

(wall = (wall clock time) cpu = (total cpu time) s=(number of CPUs - utilization )

Running HSPICE Precision Parallel (HPP)
NDD transient simulation
.
HSolve ...
NDD 128
Running 12 threads.
… …
0.1% time = 36.651039 ns ( etc = 16:26:42, ett = 16:27:41 )
( wall = 59.3 sec cpu = 10:17 s=10.4114 ) 
0.2% time = 75.222362 ns ( etc = 8:29:41, ett = 8:30:42 )
( wall = 1:01 cpu = 10:40 s=10.4468 ) 
0.3% time = 107.888373 ns ( etc = 5:45:15, ett = 5:46:17 )
( wall = 1:02 cpu = 10:52 s=10.4711 ) 
0.5% time = 175.565655 ns ( etc = 3:29:14, ett = 3:30:17 )
( wall = 1:03 cpu = 11:01 s=10.4822 ) 
0.6% time = 222.354196 ns ( etc = 2:56:22, ett = 2:57:26 ) 
( wall = 1:03 cpu = 11:10 s=10.4989 ) 
0.8% time = 282.247477 ns ( etc = 2:13:33, ett = 2:14:37 ) 
( wall = 1:04 cpu = 11:19 s=10.5132 )
****
99.5% time = 34.825176 us ( etc = 25.4 sec, ett = 2:16:27 )
( wall = 2:16:02 cpu = 1:02:18:07 s=11.6009 )
99.6% time = 34.860195 us ( etc = 22.0 sec, ett = 2:16:30 )
( wall = 2:16:08 cpu = 1:02:19:17 s=11.601 ) 
99.7% time = 34.895010 us ( etc = 16.9 sec, ett = 2:16:37 )
( wall = 2:16:20 cpu = 1:02:21:46 s=11.6011 ) 
99.8% time = 34.930731 us ( etc = 11.6 sec, ett = 2:16:46 )
( wall = 2:16:35 cpu = 1:02:24:32 s=11.6011 )  
99.9% time = 34.966635 us ( etc = 5.9 sec, ett = 2:16:46 )
( wall = 2:16:40 cpu = 1:02:25:36 s=11.601 ) 
100.0% time = 35.000000 us ( etc = 0.0 sec, ett = 2:16:44 )
( wall = 2:16:44 cpu = 1:02:26:23 s=11.6009 )
******
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Verilog-A Simulation Output

The HSPICE standard output files consist of these basic files:
■ The *.valog file, Verilog-A log file, which contains Verilog-A specific 

message from compiling and simulating phase. The contents of *.valog 
file also echoes to the *.lis file.

■ Compiled Verilog-A code (*.pvalib file) (when you compile Verilog-A 
modules manually).

Verilog-A Output Directory
The Verilog-A output directory -o.pvadir/ contains the following shared 
output (*.so) intermediate files on Linux/UNIX (and *.dll files on the 
Windows platform). 

For example:

For further information, see Chapter 12, Using Verilog-A.

File Type Contains

pvaRTL.log Log file output from gcc compilation output

pvaRTL_linux.so Runtime library input to HSPICE and HSPICE advanced analog analyses 
simulators

pvaEnv Storage information for incrementally compiling user Verilog-A files

Command-line statement Creates this directory:

hspice test.sp -o output output.pvadir

hspice test.sp test.pvadir

hspice test.sp -o test test.pvadir

hspice test.sp -o /remote/hspice/benchmark /remote/hspice/
benchmark.pvadir
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Field Solver *.str File

HSPICE creates an *.str file when a field solver model is created. The 
*.str file is a Tcl interpretation of the layerstack. View the layerstack by using 
the “wish" command on Linux machines. (No equivalent command exists on 
Windows machines.) Mouse over the dielectric and conductors to see the 
characteristics of the materials reported in the lower left corner of the window.

Figure 42 Field Solver *.str file

While you can use the “wish“ command to view your layerstack, you cannot 
zoom, edit, or netlist out a new stack. You can edit the *.str file. However, any 
changes you make are not reflected in your field solver model.

For detailed information, see Visualizing Cross-Sectional Geometric 
Information in the HSPICE User Guide: Signal Integrity Modeling and Analysis.
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Redirecting the Simulation Output Results Files to a 
Different Directory

If you need to redirect the simulation-output result files to a directory other than 
the current working directory, use either of the following two options. At a 
command line prompt, enter either:

% hspice -i test.sp -o /root/user/hspice/result/test.lis

HSPICE redirects the simulation results to the specified location /root/
user/hspice/result. Alternatively, enter:

% hspice -i test.sp -o results/test.lis

Where, HSPICE redirects the simulation results to the specified folder with 
respect to the current working directory. However, you should create the 
destination folder before you start the simulation. Otherwise, HSPICE returns 
an error message and aborts.

Directing .PRINT Output to a Separate File 
Set .OPTION LIS_NEW in your netlist, to print the data from .PRINT 
statements to a separate file.

Refer to .OPTION LIS_NEW in the HSPICE Reference Manual: Commands 
and Control Options for more details.

Getting Data Out of HSPICE Plot Files

The waveform file formats *.tr0, *.ac0, etc., are proprietary formats. 
HSPICE designed these formats for native waveform viewers and not for other 
programs or scripts. HSPICE does not publish proprietary formats, as these 
files can change between releases following enhancements.

However, there are some alternatives for extracting waveform data from 
HSPICE. The following example illustrates some common methods. This 
example performs a simple frequency sweep of a tank circuit and creates some 
AC analysis points. At about 160Hz (the resonant frequency of the circuit) the 
current drops to its lowest point then goes back up. The .probe command 
selects the signals desired in the table data. Here is the netlist: 
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Title: tank circuit frequency sweep
* reference: http://www.allaboutcircuits.com/vol_2/chpt_6/2.html
.option ingold=1 probe resmin=1e-15 csdf
 v1 1 0 ac 1
 c1 1 0 10u ic=1
 r1 1 2 1e-12
 l1 2 0 100m ic=.1
.ac lin 20 100 200
.print ac im(v1)
.plot ac im(v1)
.probe ac im(v1)
.stim data filename=foo my_current im(v1) 
.end

Likely, the best option is to use File > Export Waveform Data in Custom 
WaveView (or CTRL-E). 

1. You name the output file, set a step size, and the result looks like this:

#format table ## [Custom WaveView] 14:00:27 Mon Aug 24 2009
FREQ         im(v1)
 1.000E+002  9.632E-003
 1.010E+002  9.418E-003
 1.020E+002  9.204E-003
 1.030E+002  8.990E-003
 1.040E+002  8.776E-003
 1.050E+002  8.562E-003
...

2. You can use .option csdf (instead of post) to create a column-delimited 
format that is much easier to parse, especially with a limited number of 
signals. The *.ac0 file still stores this data, in but is now in the CSDF format. 

#N 'im(v1)'
#C  1.00000e+002    1   9.63231e-003 /0.0
#C  1.05263e+002    1   8.50584e-003 /0.0
#C  1.10526e+002    1   7.45516e-003 /0.0
#C  1.15789e+002    1   6.46993e-003 /0.0
...

Note: If you accidentally leave .option post in your netlist and it 
occurs after csdf, the file reverts back to the traditional plot 
file format and HSPICE issues the message: 

**warning** multiple output options specified, using post

3. Use the “stim” data card. In the example above, you create an ASCII file 
foo.dat0_ac0. However, the file does not preserve the frequency values, 
only the magnitudes. In the .stim card, “data” is a keyword that creates a 
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file which HSPICE can read in with the .data statement but is also user-
readable. The output file is takes the name “foo”, and the data set name is 
“my_current”. 

.data my_current
 imv1
  9.632e-03
  8.506e-03
  7.455e-03
  6.470e-03
  5.542e-03
  4.663e-03

...

4. When you use .OPTION LIS_NEW=1, any .PRINT statement in your netlist 
generates a text file containing the simulation results. For a AC analysis, the 
file has the extension, .printac#. 

freq    i mag
                    v1
  100.00000     9.632e-03
  105.26316     8.506e-03
  110.52632     7.455e-03
  115.78947     6.470e-03
  121.05263     5.542e-03

...

5.  Use the HSPICE Output Converter Utility, documented in the following 
section, Using the HSPICE Output Converter Utility. The converter utility 
converts *.tr#, *.ac#, and *.sw# files to PSF and PWL/DATA/VEC files. 

A final important point is when dealing with AC voltages and currents: be sure 
to specify which of the complex parts you want in your output. The default is 
real + imaginary but you can select which components you get by adding a 
“modifier” after the v for voltage:
■ .print ac vm(v1) — voltage magnitude
■ .print ac vr(v1) — the real part
■ .print ac vi(v1) — the imaginary part
■ .print ac vdb(v1) — voltage in dB

For a discussion of how to control the time point intervals of data in a plot file, 
refer to How TSTEP Affects a Transient Simulation.
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Compressing Waveform Files
HSPICE can generate compressed waveform files. You need to add the -gz 
command to the hspice command line. For example:

hspice -i test.sp -o test  -gz

HSPICE generates a compressed format waveform file named test.tr0.gz. 
For many cases, your use of compression saves disk space by 30% to 40%. 
Compression is supported for transient, AC, and DC analysis. You can use 
Custom Explorer/Waveview to view the compressed waveform files generated 
by HSPICE.

Using the HSPICE Output Converter Utility

This section describes how to convert output generated by HSPICE.

The converter utility is a post-process tool that converts the output files (*.tr#, 
*.ac#, and *.sw#) generated by HSPICE. Use the converter to get the 
Parameter Storage Format (PSF) output files directly from the .tr#, .ac#, 
or .sw# files generated by HSPICE with the POST output control option. Or, 
use the converter to get the PWL Source, DATA Card, and Digital Vector File 
(VEC) from the *.tr#, *.ac#, and *.sw# files generated by HSPICE with the 
POST or CSDF control options. You can reuse these stimuli in a new simulation.

Note: HSPICE advanced analog analyses does not support he 
converter utility.

The following sections discuss these topics:
■ PSF Converter
■ PWL/DATA/VEC Converter
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PSF Converter 

Syntax
converter -t PSF -i input_file [-o output_file] [-a |-b]

Example
converter -t PSF -i testpost.tr0 -o testpsf

The input file is testpost.tr0, which HSPICE generates with the POST 
option. The output file name is testpsf. After running, HSPICE generates two 
new files: testpsf.psf and logFile. The testpsf.psf file is a PSF file 
that you can view with the Analog Waveform Display (AWD). The logFile is 
necessary for the AWD to load the waveform.

Table 46 Supported Platforms

Linux RHEL Linux SUSE Solaris Windows IBM AIX5.1

Yes Yes Yes Yes Yes

Table 47 PSF Converter Parameters

Argument Description

-t Specifies the file type (must be psf).]

-i Specifies input file name. The input file must be the output file that HSPICE generates 
with the POST output control option. 

-o Specifies output file name. The converter assigns a .psf as the extension of the 
output file. If you do not specify the output file name, the converter appends _psf to 
the root name of the input file, and it remains the extension of the input file.

-a Specifies the ASCII format for the output file.

-b Specifies the binary format for the output file. By default, the output file is in binary 
format. The content included in angled brackets (< >) is optional.
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PWL/DATA/VEC Converter

The PWL/DATA/VEC Converter is mainly for reusing previous simulation results 
directly from the *.tr#, *.ac#, and *.sw# files produced by HSPICE. The 
converter is in accordance with the .STIM statement in the HSPICE netlist.

Syntax
converter -t PWL/DATA/VEC -i input_file <-o output_file>

Note: Transient analysis must generate the input file for PWL and VEC.

Prompt User Mode
The PWL/DATA/VEC Converter is a prompt user mode. The converter displays 
corresponding prompts and asks you to input some data after you start it 
successfully.

Input the following at the command line and press the Enter key: 

Converter -t PWL -i sample.tr0

Linux SUSE Linux RHEL Solaris Windows IBM 

Yes Yes Yes Yes Yes 

Table 48 PWL/DATA/VEC Converter Parameters

Argument Description

-t Specifies the type of the stimulus (PWL).

-i Specifies the input file name. Input files are the output files which HSPICE generates with 
the POST=x or CSDF=x output control options.

-o Specifies the output file name. If you do not specify the output file name, the converter 
automatically assigns the following file names: 
■ input_filename.tr#_PWL#
■ input_filename.ac#_DAT#
■ input_filename.tr#_DAT#
■ input_filename.sw#_DAT#
■ input_filename.tr#_VEC#

The content included by angled brackets (< >) is optional. 
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The following input prompts appear one at a time and require your specified 
entries on the command line.

1. Enter the number of output variables(>0):

Specify the number of output variables from the waveform file to convert.

2. Enter output variables reused:

Specify the name of the node(s) in the design to convert. The node names 
must match a node name in the waveform file that you are converting.

3. Enter name of the source (optional):

If you do not specify a source, the source name is vmnode_name.

4. Enter positive node name (optional):

If you do not specify a positive node, the positive node name is be the same 
as node name(s) specified for the output variable(s).

5. Enter negative node name (optional):

If you do not specify a negative node, HSPICE specifies 0 (ground) as the 
negative node for each node name.

6. Enter independent variable type [1--from/to, 2--
dispersed]:

This input line is optional. If you do in put anything and you press the Enter 
key, the input prompts end, the executable automatically runs and generates 
the design_name.tr0_PWL0 stimuli file that contains all time points from 
the original waveform file.

If you specify an independent variable type, the utility displays the following 
prompts. For each prompt, you need to provide a value.

7. For 1-- from/to,

Enter the start point:

Starting point of the output file. 

8. Enter the end point:

Ending point of the output file.

9. Enter the number of output points:

 Number of output points.

10. For 2-- :dispersed

Enter the dispersed points:
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Enter a list of time points you want to write to the file.

Once you enter the necessary information at the last prompt and press the 
Return key, the executable automatically runs and generates the 
design_name.tr0_PWL0 stimuli files.

Input Line Dependencies
The input lines you use must adhere to the following conditions:
■ Variables used in a PWL source must be voltage or current signals.
■ Variables used in a VEC file can only be voltage signals.
■ PWL Source Names must begin with V or I.
■ Dispersed time points must be increasing in value when the stimulus type is 

PWL or VEC.
■ For the optional items, you can enter the Return Key directly to adopt the 

default value.

Running the Converter Utility in Batch Mode
While the converter is interactive, prompting you with a series of questions, you 
can run in batch mode by redirecting input from an “answer” file. 

The command to run the converter in batch mode has two parts and requires 
two files. The first file (see the following batch file), invokes the converter and 
tells it the waveform file to use. The second file is the “answer file” containing 
the answers to the conversion questions. The section titled Prompt User Mode 
lists the questions asked by the converter. You can create sample batch files 
using the following syntax:

 converter -t pwl -i file1.tr0 < answers1.txt 
 converter -t pwl -i file2.tr0 < answers2.txt 

where, file1.tr0 and file2.tr0 are HSPICE generated transient output 
files. The above creates file1.tr0_PWL0 and file2.tr0_PWL0.

Examples of input files with answers:

// single PWL created :
 1          // # of signals 
 v(nd)      // names of signals
 vsig1      // name of PWL source
 sig1       // + node of PWL
 0          // - node of PWL
 1          // choose 1 for from/to , 2 to define each point
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 0          // start time
 600p       // end time
 100        // # of points
//   Answer file to create multiple PWL signals in one tr0_PWL0 file
// after first answer, an answer is needed for each 
// signal even if they are the same
             2
             v(sig1) v(sig2)
             vsig1 vsig2
             n1 n2
             0 0 
             1 1
             0 0
             100n 100n
             100 100

Troubleshooting Issues

The following sections discuss these topics:
■ Resolving Inductor/Voltage Source Loop Errors
■ Voltage Source Missing Rising and Falling Edges

Resolving Inductor/Voltage Source Loop Errors
HSPICE issues an inductor/voltage source loop error when:
■ Two or more voltage sources connect to the same nodes.
■ A voltage source with an inductor connects directly across its nodes.
■ Two or more inductors connect in a loop and there is no limit to the current.

Avoid using these topologies. 

However, if HSPICE reports this error, then follow these steps to correct the 
error:

1. Find out where the topology exists and correct it.

2. Combine multiple voltage sources into a single equivalent voltage source.

3. Limit the current by connecting a small series resistance (1n ohm or smaller) 
to the voltage source loop.
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Voltage Source Missing Rising and Falling Edges 
If you define rise and fall times in an independent voltage source, and the rise 
and fall times are missing when you look at the waveform of the source, it is 
because HSPICE defines the source as:

V1 in 0 pulse 0 5 10n 1n 1n 200n 333n 
.option post=2

 See Figure 43 for the resulting waveform.

Figure 43 Rise and Fall times missing

When you set .option POST=2, HSPICE prints the waveform file as ASCII 
data.

When used with the default post-processing output version, 
POST_VERSION=9601, limits the number of significant digits. This can cause a 
loss of resolution in the waveforms.

If you set .option POST_VERSION=2001 in addition to  .option POST=2, 
then the ASCII waveform data contains more significant digits and the 
resolution increases and the rising and falling edges are present (Figure 44).
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Figure 44 Rising, falling edges present

Using POST_VERSION=2001 ensures that file header displays the correct 
number of output variables when the number of variables exceeds 9999.
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12Using Verilog-A

Describes how to use Verilog-A in HSPICE simulations.

Verilog-A derives from the IEEE 1364 Verilog Hardware Description Language 
(HDL) specification for describing behavior in analog systems. The Verilog-A 
language that HSPICE supports is compliant with Verilog-AMS Language 
Reference Manual, Version 2.2. The section Unsupported Language Features 
on page 497 lists limitations. 

The Verilog-A implementation in HSPICE supports a mixed design of Verilog-A 
descriptions and transistor-level SPICE netlists with a simple use model. 
Verilog-A supports most analysis features available in HSPICE for Verilog-A 
based devices, including AC, DC, transient analysis, statistical analysis, and 
optimization. 

For information on Verilog-A integrated with 3D-IC modularization, see Using 
Verilog-A Modules Within the .MODULE Scope on page 675.

These sections discuss the following topics:
■ Getting Started
■ Introduction to Verilog-A Data Types and System Tasks and I/O Functions
■ Simulation with Verilog-A Modules
■ Loading Verilog-A Modules
■ Instantiating Verilog-A Devices
■ Instantiating Primitive Elements inside Verilog-A Modules
■ Instantiating HSPICE Subcircuits inside Verilog-A Modules
■ Output Simulation Data
■ SPICE Netlist and Verilog-A Interactions
■ Encrypting Verilog-A Files
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■ Using the Standalone Compiler
■ Supported LRM 2.4 Syntax and Features
■ Sharing of Pre-Compiled Verilog-A Files by Multiple Users
■ Performance Considerations with HSPICE
■ Enhanced Verilog-A Syntax
■ Known Limitations
■ Verilog-A (pVA) Messages
■ Environment Variables and Command Options
■ Example: Verilog-A Frequency Divider Model
■ Downloading a Verilog-A Test Library

Getting Started

This section explains how to started with Verilog-A in the HSPICE environment. 

Figure 45 HSPICE and Verilog-A

Verilog-A devices use the following conventions:
■ Load modules into HSPICE with either the .HDL netlist command or the –

hdl command-line option (not supported in advanced analog analyses).   
■ HSPICE instantiates modules in the same manner as HSPICE subcircuits. 

Use "X" as the first character for the name of instance.
■ Modify instance and model parameters the same as you do with any other 

HSPICE subckt instances.

*Simple Verilog-A amplifier
.hdl amp.va
vs 1 0 1
rs 1 2 1
x1 2 3 va_amp gain=10
rl 3 0 1

module amp.va (in, out);
parameter real gain = 1.0;
electrical in, out;
analog begin
    V(out) <+ gain * V(in);
    end
endmodule
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■ Module names may conflict with any HSPICE built-in device keyword by 
using the vamodel and spmodel to pick the subcircuit or Verilog-A module to 
use.

■ Output node voltages and branch currents by using conventional output 
commands.

To run an HSPICE Verilog-A simulation, locate and run the “hspice” script, in 
the $installdir/hspice/bin/hspice. 

Introduction to Verilog-A Data Types and System Tasks 
and I/O Functions

The following Verilog-A module provides an overview of the language. See the 
Verilog-AMS LRM 2.2 from Accellera for syntax and usage details.

The following sections discuss these topics:
■ Data Types
■ System Tasks and I/O Functions

Data Types
Several Verilog-A data types are available. The parameter type passes values 
from the netlist to the Verilog-A module.

String Operators and Semantics
Table  describes the string operators and their meanings.

Operators Semantics

Str1 == Str2 Equality. Checks whether the two strings are equal. Result is 1 if they are equal and 
0 if they are not.

Str1 ! = Str2 Inequality. Logical negation of ==

Str1 < Str2
Str1 <= Str2
Str1 > Str2
Str1 >= Str2

Comparison. Relational operators return 1 if the corresponding condition is true 
using the lexicographical ordering of the two strings Str1 and Str2.
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System Tasks and I/O Functions
System functions provide access to system-level tasks as well as access to 
simulator information.

{Str1,Str2,...,Strn} Concatenation.

{M{Str}} Replication. Multiplier M must be of integral type and can be non-constant.

Table 49 Verilog-A System Tasks and I/O Functions

Function Description

$fopen() Opens a file for writing and assigns it to an associated 32 bit multichannel 
descriptor or a file descriptor, determined by the absence or presence of the type 
argument:
multi_channel_desc = $fopen("file");
file_desc = $fopen("file", type);
Unlike multichannel descriptors, you cannot combine file descriptors with the 
bitwise OR operator to direct output to multiple files. Instead, the file descriptor 
opens files for input, output, and both input and output, as well as for append 
operations, based on the value of argument type, according to the following table:
Argument Description
“r” or “rb”  Open for reading
“w” or “wb”  Truncate to zero length or create for writing
“a” or “ab”   Append; open for writing at end of file; or create for writing
“r+” or “r+b” Open for update (reading or writing)
or “rb+”
“w+” or “w+b” Truncate or create for update
or “wb+”
“a+” or “a+b” Append; open for create for update at end of file
or “ab+”
For example,
hdl1 = $fopen("append_mode.txt", "a");
hdl2 = $fopen("overwrite_mode.txt", "w");

The following expansions are not part of the LRM2.2.

File names can use an escape sequence
"%I" to represent the name of the instance in the file name. For example,

 hdl1=$fopen("%I_data.txt")

When called from an instance, X2 looks for a file called X2_data.txt. Also, you can 
use the tilde "~" to reference the value of the environment variable $HOME (or 
%HOMEDRIVE%%HOMEPATH% on win32). The tilde expands to the full path of 
the home directory, so if $HOME=/user/default, then

 hdl1=$fopen("~/datafiles/%I_data.txt") 

called from instance X1 looks for a file  "/user/default/datafiles/
X1_data.txt".

Operators Semantics
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$fclose() Closes a file from a previously-opened channel(s).
$fclose(multi_channel_descriptor);

$fscanf() Non-LRM 2.2 function. Provides a means to read data from files. Syntax:
[integer_return_value =] $fscanf

(multi_channel_descriptor, format_string 
[, list_of_arguments]);

where: 
multi_channel_descriptor is the multichannel descriptor returned by the 
$fopen command at the opening of the file; format_string is a string 
describing how the data is to be matched; 
list_of_arguments is optional and comma-separated, and stores the read data 
that matches the list of arguments.

The allowed commands for the format_string are the same as those available 
for the $strobe() function argument. Each data value read is sequentially 
matched to the corresponding argument in the list_of_arguments.

The list_of_arguments must have the correct number of variables to match 
the data value types in the 
format_string. The optional return value of the function is set to the number of 
valid arguments read during the operation; if the return value is not used, a warning 
is issued.

The channel specified in the multi_channel_descriptor must be assigned to 
an open file by using the $fopen() function. 

Example: 

The following example reads an integer, real, and character value from the file 
data.txt and puts the values in int_value, real_value, and char_value, 
respectively. The integer valid is set to the number of valid reads, in this case, 3.

integer multi_ch_desc, valid, int_value, 
char_value;

real real_value;

@(initial_step)

multi_ch_desc = $fopen ("data.txt", "r");

valid = $fscanf (multi_ch_desc, "%d %e %c",

int_value, real_value, char_value);

$fstrobe()
$fdisplay()
$fwrite()

Writes simulation data to an opened channel(s) when the simulator has converged. 
Follows format for $strobe.
$fstrobe(multi_channel_descriptor,
"information to be written");

Table 49 Verilog-A System Tasks and I/O Functions (Continued)

Function Description
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Simulation with Verilog-A Modules

When simulating with Verilog-A in HSPICE, you need to have the following 
basic input files:
■ HSPICE netlist/model card (Mandatory)
■ Verilog-A model file (for example, *.va or *.vams file) or encrypted Verilog-A 

file
■ If a Verilog-A model file is provided without an extension, HSPICE 

automatically appends .va. For example, if the command is entered as
.hdl “xyz”

then HSPICE opens the file as ./xyz.va.
■ HSPICE Verilog-A feature setup options (Optional, but mandatory under 

certain conditions)

Basic output files:
■ HSPICE standard output files
■ The *.valog file, Verilog-A log file, which contains Verilog-A specific 

message from compiling and simulating phase. The contents of *.valog file 
is also echoed to the *.lis file.

$fflush() Non-LRM 2.2 function. Writes any buffered output to the file(s) specified by the file 
descriptor. 

Syntax:

$fflush (multi_channel_descriptor); 
where: multi_channel_descriptor is an integer that represents opened 
file(s).

The following example illustrate typical uses for the $fflush command.

$fflush (multi_ch_desc);

Table 49 Verilog-A System Tasks and I/O Functions (Continued)

Function Description
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Verilog-A Output Directory
The Verilog-A output directory <-o>.pvadir/ contains the following intermediate 
files on UNIX (and *.dll files on the Windows platform):

For example:

The Verilog-A output directory <-o>.pvadir/ can be overridden by 

setenv PVA_DIR $absolute|relative_path

The environment variable creates a new runtime library path, shares the 
existing path, or reuses pre-compiled VA code in the existing runtime library.
The following intermediate directories on UNIX (and *.dll files on the Windows 
platform) are created: 

File Type Contains

pvaRTL.log Log file output from gcc compilation

pvaRTL_platform.so Runtime library input to HSPICE simulators

pvaEnv Storage information for incrementally compiling user Verilog-A files

Command-line Statement Will create:

hspice test.sp -o output output.pvadir

hspice test.sp test.pvadir

hspice test.sp -o test test.pvadir

hspice test.sp -o /remote/hspice/benchmark /remote/hspice/benchmark.pvadir

Command-line Statement Will create:

hspice test.sp -o output $absolute|relative_path.pvadir

hspice test.sp $absolute|relative_path.pvadir

hspice test.sp -o test $absolute|relative_path.pvadir

hspice test.sp -o /remote/hspice/benchmark $absolute|relative_path.pvadir
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Loading Verilog-A Modules

This section describes and loading Verilog-A modules into HSPICE and 
specifying cell names for Verilog-A definitions. A module must be loaded before 
it can be instantiated.

Verilog modules are loaded into HSPICE in one of two ways: 
■ by including an .HDL statement in an HSPICE netlist
■ by using the -hdl command-line option (not supported in advanced analog 

analyses). 

Files can be in the current directory or specified via an absolute or relative path. 
The Verilog-A file is assumed to have a *.va extension when only a prefix is 
provided. For example, .hdl “model” looks for a file named “model” first and 
then model.va file if "model" is not found. 

Use the -vamodel command-line option to specify cell names for Verilog-A 
definitions (not supported in advanced analog analyses).

For a description of the .hdl statement, see the .HDL command in the 
HSPICE Reference Manual: Commands and Control Options. For a description 
of the -hdl and -vamodel command-line options, see hspice in the HSPICE 
Reference Manual: Commands and Control Options.

The following sections discuss these topics:
■ .hdl Command Module Selection
■ .hdl Command Module Alias
■ Verilog-A File Search Path
■ Verilog-A File Loading Considerations

.hdl Command Module Selection
The .hdl command module selection uses the following syntax,

.hdl use_va {module_selection}

For more information, see pVA Compiles ALL Modules in an .hdl Statement.
450 HSPICE® User Guide: Basic Simulation and Analysis
K-2015.06



Chapter 12: Using Verilog-A
Loading Verilog-A Modules
.hdl Command Module Alias
The .hdl command module alias uses the following syntax,

.hdl filename {module_name module_alias}

Note: Following conditions apply while defining a module alias:
■ module_name and module_alias must be specified in 

pairs.
■ HSPICE supports multiple pair specifications.

The optional module_name and module_alias parameters do not apply to 
HSPICE advanced analog analyses. 

Example 1

.hdl 'fast.va' 'RES' 'FAST_RES'

...
x1 1 2 fast_res r=1
...

The case of the module_name and module_alias arguments are defined by 
single quotes or double quotes, because Verilog-A is case sensitive.

In the example above, Verilog-A uses the case sensitive RES to find the module 
in the fast.va file. When Verilog-A finds RES, it changes the name internally 
to FAST_RES for HSPICE to use.

Then HSPICE converts FAST_RES to fast_res (lower case) and uses it to 
find the x1 instance in the spice netlist.

Example 2

.hdl ’fast.va' RES FAST_RES

...
x1 1 2 fast_res r=1
...

Without single or double quotes, RES and FAST_RES are converted to lower 
case by HSPICE and Verilog-A uses the lower case res and returns 
fast_res (d,e)to HSPICE for the x1 1 2 fast_res r=1 subcircuit 
instance.

Note: In the following example, the names of the modules are treated 
as two different modules:

module RES (A,B)
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module res (d,e)

Hence, there will be no error messages generated during 
Verilog-A compilation.

Verilog-A File Search Path
During a simulation, HSPICE searches in the current directory for Verilog-A 
files. You can also provide a search path via either the -hdlpath command-
line option (not supported in advanced analog analyses) or the 
HSP_HDL_PATH environment variable to have HSPICE search other directories 
for the files. The -hdlpath HSPICE command-line option is provided for 
HSPICE Verilog-A use only, which defines the search path specifically for 
Verilog-A files.

For a description of the -hdlpath command-line option, see hspice in the 
HSPICE Reference Manual: Commands and Control Options. 

When a Verilog-A file cannot be found in the current working directory or the 
directory defined by -hdlpath, or there is no -hdlpath defined, HSPICE 
searches for the Verilog-A file in a directory defined by HSP_HDL_PATH. 

The directory search order for Verilog-A files is:

1. Current working directory; for example:

• Command-line: hspice res.sp -o res

• In SPICE netlist: .hdl “res.va”

HSPICE opens the ./res.va file.

2. Path defined by -hdlpath on the HSPICE command line or -I on the 
CustomSim (CSim) command-line

3. Path defined by setenv HSP_HDL_PATH

4. Path defined by .OPTION SEARCH (see .OPTION SEARCH)

The path defined by either -hdlpath or HSP_HDL_PATH can consist of a set 
of directory names. The path separator must follow HSPICE conventions or 
platform conventions (i.e., “:” on UNIX, “;” on Windows). Path entries that do 
not exist are ignored and no error or warning messages are issued.

On Windows the name of the directory can have white spaces between words; 
but UNIX cannot have white spaces. The file name cannot have a white space 
on either Windows or UNIX.
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Examples
These example assume the c-shell is used.

UNIX platform:

setenv HSP_HDL_PATH /lib_path/veriloga:/lib_path/compact_model

Windows platform:

setenv HSP_HDL_PATH 
d:\lib_path\veriloga;d:\lib_path\compact_model

(With white space in folder name)

setenv HSP_HDL_PATH d:\Documents and Settings\
My Documents\lib_path\veriloga;d:\lib_path\compact_model

Verilog-A File Loading Considerations
Several restrictions and issues must be considered when loading Verilog-A 
modules:
■ You can place an .HDL statement anywhere in the top-level circuit. All 

Verilog-A modules are loaded into the system prior to any device 
instantiation.

■ An .HDL statement is not allowed inside a .subckt or IF-ELSEIF-ELSE 
block; otherwise, the simulation will exit with an error message.

■ When a module to be loaded has the same name as a previously-loaded 
module, or the names differ in case only, the first module will be used.

In a spice netlist that has an .ALTER block, the simulator will select the 
current module name from the current . ALTER block if there is a duplicate 
module name (res1) For example:
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Figure 46 Module name duplication in an .alter statement

■ The .hdl command can be followed by variable statements surrounded by 
double quotes. For example:

.hdl "/tmp/design01/lib/INV.VA"

.hdl "${VA_PATH}/${DEVICE_NAME}.VA"

.hdl "../../lib/${VA_LIBRARY}.VA"

Where: ${VA_PATH}, ${DEVICE_NAME}, and ${VA_LIBRARY} can be 
defined by the setenv UNIX command.

■ -Ddefine=value and -Iinclude-path options are allowed in the .hdl 
command in the HSPICE netlist. For example in an HSPICE netlist there can 
be two .hdl commands, the second .hdl command cannot accept the -D 
or -I option from the first .hdl command. For example:

.hdl "res.va -I/remote/hspice/compact -DXYZ=1" 

.hdl "cap.va"

Instantiating Verilog-A Devices

Verilog-A devices are X elements. A Verilog-A device can have zero or more 
nodes and can accept zero or more parameter assignments. Verilog-A devices 
also support the concept of a model card.

.hdl res.va
vs 1 0 1
rs 1 2 1
x1 2 3 va_amp gain=10
rl 3 0 1
.alter
.hdl "../res.va"
...

 

module res1 (in, out);
parameter real gain = 1.0;
electrical in, out;
analog begin
    V(out) <+ gain * V(in);
    end
endmodule

module res1 (in, out);
parameter real gain = 2.0;
electrical in, out;
analog begin
    V(out) <+ gain * V(in);
    end
endmodule

...

.end
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Syntax
X<inst> <nodes> moduleName | ModelName param=value | 

param=str('strvalue') | param=str(strparm)

Where, strparm can be defined by a .PARAM command.

Verilog-A module definitions are unique in each HSPICE simulation. A 
Verilog-A module that matches the name, or differs only in case of a previously 
loaded module is ignored. A Verilog-A module definition is ignored if its name 
conflicts with HSPICE built-in models. Verilog-A devices parameters can be re-
assigned In either instance statements or model card statements (see Using 
Model Cards with Verilog-A Modules) invalid parameters that are not 
predefined in the Verilog-A module file are ignored. HSPICE issues warning 
messages on those invalid parameters.

Parameters that are defined in a Verilog-A module file are treated as device 
parameters to that particular module, they are not netlist parameters and thus 
can not be overridden by the .PARAM command directly. For example:

*
.param w=1u
.hdl "nmos_va.va"
**  nmos_va is the Verilog-A module name
**  'w', 'l' are nmos_va module parameters.

x1 d g s b nmos_va w=0.35u l=0.35u
x2 d g s b nmos_va w=w l=0.35u
...

The 'w' for x1 is 0.35u, it is not overridden by the .param command. Only 'w' of 
x2 is re-assigned to '1u' because its device parameter 'w' has been pre-
assigned to a netlist parameter 'w', and thus can be overridden by a .param 
command.

The following sections discuss these topics:
■ Using Model Cards with Verilog-A Modules
■ No Restrictions on Verilog-A Module Names
■ Overriding Subcircuits with Verilog-A Modules

Using Model Cards with Verilog-A Modules
Verilog-A modules may use a model card with similar usage to HSPICE 
standard built-in devices. Any parameter may be specified on that card. When 
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an instance uses a model card it inherits the parameter values on the card and 
overrides those with any that may be specified directly on the instance itself. 
The Verilog-A module name is allowed to conflict with the following built-in 
device keywords.

AMP, C, CORE, D, L, NJF, NMOS, NPN, OPT, PJF, PLOT, PMOS, PNP, R, U, 
W, SP

The model card type should be the same as the Verilog-A module name. Every 
Verilog-A module can have one or more associated model cards.

Unlike built-in device model cards and instances, you can specify any module 
parameter in Verilog-A model cards, instance statements, or inherited 
parameter values from module definitions. Instance parameters always 
override model parameters. If the model card includes parameters that are not 
predefined in its associated module file, HSPICE issues a warning message, 
ignores the definition, and continues with the simulation.

Syntax
.model mname type pname1= pname2= pname3= …

Example
For the following examples, assume the following Verilog-A module is used:

module va_amp(in, out);
electrical in, out;
input in;
output out;
parameter real gain=1.0;
parameter real fc=100e6;
...
analog begin

Its associated model cards can then be:

.model myamp va_amp gain=2 fc=200e6

.model myamp2 va_amp gain=10

Argument Description

mname User-defined model name reference. Elements must use this name to refer to this model 
card.

type Model type, it must be the same as Verilog-A module name.

pname# Parameter name. Every parameter must be predefined in its associated Verilog-A module 
with default parameter value set. For legibility, use either blanks or commas to separate 
each assignment. Use a plus sign (+) to start a continuation line.
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The instantiations of Verilog-A module va_amp are:

x1 n1 n2 myamp
x2 n3 n4 myamp gain=3.0
x3 n5 n6 myamp gain=2.0 fc=150e6
x4 n7 n8 myamp2 fc=300e6
x5 n9 n10 va_amp

■ Instance x1 inherits model myamp parameters (that is, gain=2, 
fc=200e6).

■ Instance x2 inherits fc=200e6 from model myamp, but overrides gain with 
the value 3.0.

■ Instance x3 overrides all model myamp parameters.
■ Instance x4 inherits parameter gain=10 from model myamp2, and 

overrides parameter fc, which is an implicit parameter in myamp2.
■ Instance x5 does not use a model card and directly instantiates the 

Verilog-A module va_amp and inherits all module va_amp default 
parameters, which are gain=1.0 and fc=100e6.

For any X element, the default search order to find the cell definition is:

1. HSPICE subcircuit definition

2. HSPICE model card

3. Verilog-A module definition

No Restrictions on Verilog-A Module Names
There are no restrictions on Verilog-A module names. You can use vamodel or 
spmodel to select the model you want.

Overriding Subcircuits with Verilog-A Modules
If both a subcircuit and a Verilog-A module have the same case-insensitive 
name, by default, HSPICE uses the subcircuit definition. This behavior can be 
changed by setting vamodel options, either at the command line or in 
a .OPTION statement. The vamodel options are not supported in HSPICE 
advanced analog analyses.

The VAMODEL option works on cell-based and model card definitions. Instance-
based overriding is not supported.
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The following sections discuss these topics:
■ Netlist Option
■ Command-line Option
■ Disabling .OPTION vamodel with .OPTION spmodel (HSPICE Only)
■ Using Vector Buses or “Ports”
■ Using Variable Width Buses
■ Using Integer Parameters
■ Implicit Parameter M Support
■ Module and Parameter Name Case Sensitivity
■ M Instance Using Verilog-A

Netlist Option
Syntax
.OPTION vamodel[=name]

This option is not supported in HSPICE advanced analog analyses. The name 
is the cell name that uses a Verilog-A definition rather than the subcircuit when 
both exist. Each vamodel option can take no more than one name. Multiple 
names need multiple vamodel options.

If no name is provided for the vamodel option, HSPICE uses the Verilog-A 
definition whenever it is available. 

Example 1
.option vamodel=vco

This example instructs HSPICE to use Verilog-A definition for all instantiations 
of cell vco. 

Example 2
.option vamodel=vco vamodel=chargepump

This example instructs HSPICE to use Verilog-A definition for all instantiations 
of cell vco and cell chargepump.

Example 3
.option vamodel

This example instructs HSPICE to always use the Verilog-A definition whenever 
it is available. 
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Command-line Option
Syntax
-vamodel name -vamodel name2 …

This command-line option is not supported in HSPICE advanced analog 
analyses. The name is the cell name that uses a Verilog-A definition rather than 
subcircuit when both are exist. Each command-line -vamodel option can take 
no more than one name. Repeat -vamodel if multiple Verilog-A modules are 
defined.

If no name after -vamodel is supplied, then in any case the Verilog-A 
definition, whenever it is available, overrides the subcircuit.

The following examples show various ways to set the option and the resulting 
HSPICE behavior.

Example 1
This example instructs HSPICE to use Verilog-A definition for all instantiations 
of cell vco.

hspice pll.sp -vamodel vco 

Example 2
This example instructs HSPICE to use Verilog-A definition for all instantiations 
of cell vco and cell chargepump.

hspice pll.sp -vamodel vco -vamodel chargepump

Example 3
This example instructs HSPICE to always use a Verilog-A definition whenever it 
is available. 

hspice pll.sp -vamodel

Disabling .OPTION vamodel with .OPTION spmodel (HSPICE 
Only)
Use the .OPTION spmodel netlist option to switch back to the HSPICE 
definition. For example, if you override the HSPICE definition with the Verilog-A 
definition using .OPTION vamodel, use .OPTION spmodel during .ALTER 
analysis to revert to the HSPICE definition, which is the same as the VAMODEL 
option. The SPMODEL option works on cell-based definitions only. Instance-
based overriding is not supported.
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Syntax
.OPTION spmodel[=name]

The name is the cell name that will use spice definition. Each spmodel option 
can take no more than one name; multiple names need multiple spmodel 
options.

Example 1
This example disables the previous .OPTION vamodel, but has no effect on 
the other vamodel options if they are specified for the individual cells. For 
example, if .option vamodel=vco is set, the cell of vco uses the Verilog-A 
definition whenever it is available.

.option spmodel

Example 2
This example disables the previous .option vamodel=chargepump, which 
causes all instantiations of chargepump to re-use the subcircuit definition.

.option spmodel=chargepump

Using Vector Buses or “Ports”
The Verilog-A language supports the concept of buses (vector ports), whereas 
HSPICE does not. If you instantiate a module that has a vector port, the 
connections to individual bus signals in the HSPICE netlist must be specified. 
The Verilog-A module internally expands the vector port and connects them to 
the signals inside the Verilog-A module. 

Example
Given a Verilog-A module with a vector port defined:

module d2a(in, out);
electrical [1:4] in;
electrical out;

analog ...

Its instantiation in HSPICE can be: 

x1 in1 in2 in3 in4 o1 d2a

In this case, the nodes in1 through in4 are mapped to ports in[1] -> in[4], 
respectively. If the bus in Verilog-A module is specified as electrical [4:1], then 
the signals would be connected as in1 -> in4 to in[4] -> in[1], respectively.
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Using Variable Width Buses
Verilog-A supports the variable-width bus, which is a port or a node array 
whose size is variable from instance to instance.

Example 1
This example defines a Verilog-A module port with a variable width bus:

module varray (p, n);
   parameter integer w=4;
   inout [w-1:0] p;
   inout [0:w-1] n;
   electrical [w-1:0] p;
   electrical [0:w-1] n;
   parameter real I0 = 1e-6;
   genvar i;
   analog begin
     generate i (0, w-1) begin
       I(p[i],n[w-1-i]) <+ I0 * (exp(V(p[i],n[w-1-i])/0.0257) - 1.0);
     end
   end
endmodule

Its instantiation in HSPICE can be:

x1 1 2     0 0     varray w=2
x2 1 2 3   0 0 0   varray w=3
x3 1 2 3 4 0 0 0 0 varray w=4

Example 2
This example defines a Verilog-A internal node with a variable width array:

module res(p,n);
     inout p, n;
     electrical p, n;
     parameter integer width=2;
     electrical [width:1] node;
     parameter real R = 1k;
     integer i;
     analog begin
       for (i = 1; i <= width; i = i + 1) begin
         I(p, node[i]) <+ V(p, node[i])/R;
         I(node[i], n) <+ V(node[i], n)/R;
       end
     end
   endmodule

Its instantiation in HSPICE can be:
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r1 3 2 1k
x1 2 0 res width=2
r2 3 4 1k
x2 4 0 res width=4

This is equivalent to two resistors connected in series with 'width' and a number 
of branches in parallel.

Using Integer Parameters
HSPICE netlist parameters are all of type real. When an integer Verilog-A 
parameter is assigned a real value, it is rounded to the nearest integer value. 

Implicit Parameter M Support
Verilog-A supports the multiplicity factor. A Verilog-A device can have 
parameter that is not device specific:

M      Multiplicity factor

If a loaded Verilog-A module has parameter named either “M” or “m”, then that 
module parameter cannot be set in the instance line. The “M” or “m” parameter 
in the instance line always means the “Multiplicity factor” parameter and the 
appropriate multiplicity factor is applied to the Verilog-A device during the 
simulation. The implicit device parameter scaling factor S and the temperature 
difference between the element and circuit, DTEMP, are not supported.

Module and Parameter Name Case Sensitivity
Verilog-A is case-sensitive, whereas HSPICE is case-insensitive. This places 
certain restrictions on use in terms of module and parameter names and output 
control.

Module Names

When an attempt to load a second module into the system with a module name 
that differs from a previously loaded module by case only, then the second 
module is ignored and a warning message is issued.

Module Parameters 

Parameters in the same module with names that only differ by case cannot be 
redefined in either Verilog-A instance line or Verilog-A .MODEL cards. HSPICE 
issues an error message and exits the simulation.
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Example
In this example a simple amplifier accepts two parameters, gain and Gain, as 
input to the module.

module my_amp(in, out); 
electrical in, out; 
parameter real gain = 1.0; 
parameter real Gain = 1.0; 
analog V(out) <+ (Gain+gain)*V(in); 

endmodule

If you instantiate this module as:

x1 n1 n2 my_amp Gain=1

HSPICE cannot uniquely define the Gain parameter, so a warning message is 
issued and the definition of Gain is ignored. This module can be instantiated as 
is, provided neither the Gain nor gain parameter is assigned in the netlist.

M Instance Using Verilog-A
If you set .OPTION MACMOD=1, the M instance can be used to call Verilog-A 
modules.

Instantiating Primitive Elements inside Verilog-A 
Modules

HSPICE Verilog-A supports instantiation of HSPICE primitive devices inside 
Verilog-A modules. You can instantiate primitive devices with the same feature 
set as Verilog-A modules. For example, the following is part of an HSPICE 
netlist, which defines one pmos model, one nmos model, and calls a Verilog-A 
module, 'inva'.

*
.param ww=50u
.hdl 'inv.va'
.model n nmos level=49 version = 3.0
.model p pmos level=49 version = 3.0
 vvdd vdd 0 3.3
vgnd gnd 0 0
vin in 0 pulse 0 3.3 0 1p 1p  100n 200n
x1 in out vdd gnd inva parm_w=ww 
…
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The following is the Verilog-A module file, inv.va, which instantiates an HSPICE 
primitive nmos device and a pmos device, whose model definitions are in the 
.model statements of the HSPICE netlist above. Note that the Verilog-A 
function $mfactor is used to define the M (multiplicity) factor in the 
hierarchical instance of the HSPICE primitive MOSFET device.

//
`include "discipline.h"
module inva(in, out,vdd, gnd);
input in,vdd, gnd;
output out;
electrical in, vdd, gnd, out;
parameter  parm_w=5.0u, parm_l=0.35u;
n # (.w(parm_w), .l(parm_l), .$mfactor(30), .dtemp(100)) 
m1(out,in, gnd, gnd);
p # (.w(10u),.l(parm_l), .$mfactor(30), .dtemp(100))  p1(out,in, 
vdd, vdd);

endmodule

Instantiating HSPICE Subcircuits inside Verilog-A 
Modules

HSPICE Verilog-A supports instantiation of HSPICE subcircuits from within 
Verilog-A modules. Subcircuits are instantiated using the format of a Verilog-A 
hierarchical instantiation, using the subcircuit and parameter names defined in 
the HSPICE netlist.

Devices HSPICE Model Levels and Comments

MOSFET 1,2,3,4,5,49,50,53,54,55,57,58,59,61,62,63,64,68,72,73

BJT 1

JFET 1

Diode 1, 2, 3 (See the following example)

Resistor The resistor and capacitor can be instantiated via a modelcard or directly. 
For example:
resistor #(.r(r)) my_dev2(p,n);Capacitor

Inductor The inductor must be instantiated directly. For example:
inductor #(.l(l)) my_dev1(p,n);
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For example, the following is part of an HSPICE netlist, which defines a 
subcircuit named my_rcnetwork with one node and two parameters. The 
netlist instantiates a Verilog-A module called va_amp. This module will in turn 
instantiate the my_rcnetwork subcircuit. 

.hdl 'modules.va'

.param local_r=50 local_c=1p

.subckt my_rcnetwork(n1) r=local_r p=local_c
R1 n1 0 r
C1 n1 0 c
.ends
vin in 0 pulse 0 3.3 0 1p 1p 100n 200n
x1 in out va_amp gain=2 r_filter=25 c_filter=2p
...

The following is the Verilog-A module file, modules.va, which defines the 
module va_amp.

`include "discipline.h"
module va_amp(in, out);
input in;
output out;
electrical in, out;
parameter real gain=1.0;
parameter real r_filter=50;
parameter real c_filter=1p;
// Instantiate the HSPICE subcircuit:
my_rcnetwork #(.r(r_filter), .c(c_filter))
 my_filter1(in);
my_rcnetwork #(.r(r_filter), .c(c_filter)) my_filter2(in);
analog 
   V(out) <+ gain * V(in);
endmodule

The subcircuit my_rcnetwork is instantiated twice, at node in and node out. 
The input parameters to the Verilog-A module, r_filter and c_filter, are 
passed to the subcircuit my_rcnetwork parameters r and c using the 
Verilog-A parameter passing syntax.

Output Simulation Data

Verilog-A devices support the same output capabilities as built-in devices. You 
can access the following Verilog-A device quantities via any of these HSPICE 
output statements: .PRINT,.PROBE, .DOUT, and so forth.
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■ Port current
■ Port voltage
■ Internal node voltage (HSPICE only)
■ Internal named branch current (HSPICE only)
■ Internal module variables (HSPICE only)
■ Module parameters (HSPICE only)

The following sections discuss these topics:
■ V() and I() Access Functions
■ Output Bus Signals
■ Output Internal Module Variables (HSPICE only)
■ Output Module Parameters (HSPICE only)
■ Case Sensitivity in Simulation Data Output
■ Using Wildcards in Verilog-A (HSPICE only)
■ Port Probing and Branch Current Reporting Conventions
■ Unsupported Output Function Features

V() and I() Access Functions 
You can access port voltage and internal node voltage of Verilog-A devices via 
the V() function. Port current and internal branch currents can be accessed via 
the I() function.

The internal nodes of Verilog-A devices are accessible via the V() function 
when the full hierarchical name is provided. The port current and named 
branches (on the instance base only) can be accessible via the I() function.

Examples:
In the following examples, assume the Verilog-A module definition fragment is:
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module va_fnc(plus, minus);
inout plus, minus;
electrical plus, minus;
electrical int1, int2;
branch (int1, int2) br1;
  //creates an internal branch br1 between internal
  //nodes int1 and int2;

analog begin

And the Verilog-A module may be instantiated in the netlist as:

x1 1 2 va_fnc

To print the current on Verilog-A device port name plus for the instance x1:

.print I(x1.plus)

The plus is the port name defined in Verilog-A module, not the netlist node 
name.

To print the Verilog-A module internal node named int1 for the instance x1:

.print V(x1.int1)

If the va_fnc module is hierarchical and has a child instance called c1 with an 
internal node int1 then the node int1 can be output as

.print V(x1.c1.int1)

That is, the full HSPICE instance name is concatenated with the full internal 
Verilog-A instance name to form the complete name.

You can probe branch current with HSPICE output commands. In the previous 
Verilog-A module, there is an internal branch name br1 declared. To probe the 
branch current

.print I(x1.br1)

Output Bus Signals
Verilog-A bus signals can be accessed with HSPICE output commands using 
the Verilog-A naming and accessing conventions.

Example
Given an example Verilog-A module:
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module my_bus(in, out);
electrical in;
electrical [1:4] out;
…

And instantiated in the netlist as

x1 1 2 3 4 5 my_bus

...then values at vector port out can be output by explicitly listing each position.

.print v(x1.out[1]), v(x1.out[2]), v(x1.out[3]), v(x1.out[4])

Bus elements can also be specified using wildcards, as described in the 
section Using Wildcards in Verilog-A (HSPICE only) on page 470. 

Output Internal Module Variables (HSPICE only)
Verilog-A internal variables, by default, are hidden from output. However, 
module variables with a description or units attribute, or both, are known as 
output variables, and HSPICE provides access to their values; for example, 
suppose a module for a MOS transistor with the following declaration at module 
scope provides the output variable cgs:

(* desc="gate-source capacitance", units="F" *) real cgs;

The cgs module variable can be printed just like a normal parameter variable. 

Syntax
Instance:internal_variable

Example
.print xva_vco:freq

This example outputs internal variable frequency value of Verilog-A instance 
xva_vco.

Output Module Parameters (HSPICE only)
You can apply HSPICE element templates to HSPICE primitives that are 
instantiated in Verilog-A modules. The element templates are found in Element 
Template Listings on page 415.
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Example

For a netlist instantiation of a Verilog-A device:

. model mod1 npn beta=222
X1 c b 0 0 va_wrapper area=0.25 m=2
...
.PRINT TRAN X1.Q1:BETA LV2(X1.Q1)

where the Verilog-A source code definition of a module name va_wrapper:

`include "disciplines.vams"
module va_wrapper(c,b,e,s);
electrical c,b,e,s;
parameter real area=1.0;
mod1 #(.area(area)) q1(c,b,e,s);
endmodule

This example outputs the BETA value and the icvbe (template element alias 
lv2) for the Verilog-A instance X1 that in turn instantiated a primitive BJT of the 
model mod1 in an instance Q1.

.PROBE/.PRINT Commands in HSPICE
The following table shows the HSPICE command syntax for .PROBE/.PRINT 
Verilog-A values.

Values HSPICE Identifier

Port/node voltage V(inst_hierarchy.name)

Port current I(inst_hierarchy.name)

Branch voltage V(inst_hierarchy.bname)

Branch current I(inst_hierarchy.bname)

Variable inst_hierarchy:var_name  (Note colon separator)

Examples:

 x1.x2:signal

 x1.x2.x3:signal

Parameter inst_hierarchy:par_name (Note colon separator)
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Case Sensitivity in Simulation Data Output
When Verilog-A information is output via the HSPICE output commands, the 
case of the node names associated with the quantities to be output is ignored. 
Contributions from the Verilog-A noise sources that have the same name when 
case is ignored are combined.

Example
I(d,s) <+ white_noise(4*k*T/R1, "thermalnoise");
I(d2,s2) <+ white_noise(4*k*T/R2, "ThermalNoise");

The two noise contributions are combined into one contribution called 
thermalnoise in the output files.

Using Wildcards in Verilog-A (HSPICE only)
Verilog-A names support the use of wildcards to simplify using the output 
commands. 

Examples:
Given the Verilog-A module, 

module test(p,n);
electrical p,n;
electrical int1, int2;
…

instantiated as

x1 1 2 test

then all of the internal nodes (in this case int1 and int2) can be printed using 
the command:

.print v(x1.*)

All indices of a bus in the module:

module my_bus(in, out);
electrical in;
electrical [1:4] out;
…

Can be specified as:
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x1 1 2 3 4 5 my_bus
.print v(x1.out[*])
.print v(x1.*)

Both of the internal nodes, int1 and int2 for the child ch1 in the instance 
x_par1 can be specified using 

.print v(x_par1.ch1.int*)

The HSPICE .OPTION POST command does not output internal nodes from 
Verilog-A modules. Use the wildcard feature to specify a Verilog-A instance if 
you need to output all internal nodes.

Port Probing and Branch Current Reporting 
Conventions
When printing and reporting currents for Verilog-A devices, HSPICE follows the 
same conventions when specifying the direction of current flow as in built-in 
devices. A positive branch current implies that current is flowing into the device 
terminal or internal branch.

Unsupported Output Function Features
The following output functions are not supported:
■ Port probing: In( ), where n is the node number). Instead, you can use 

I(instance.port_name_in_module). 
■ Iall(): Instead, you can output all the terminal currents using a wild card.
■ Isub(): This is not applicable to Verilog-A components.
■ P() and Power(): Instead, you can use the $strobe Verilog-A function.
■ Nodal capacitance
■ Group delay
■ Direct current probing on MOSFET elements that are instantiated inside 

Verilog-A modules.
■ Element template output on MOSFET elements that are instantiated inside 

Verilog-A modules.
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SPICE Netlist and Verilog-A Interactions

Passing .OPTION EXPMAX = value
Set the option EXPMAX to increase the linearization of the Verilog-A exp() 
function to start after the limit (value) is set with that option. In the example, 
.OPTION EXPMAX=200, the value is 200.

analog begin
I(d,s) <+ exp(300)

end

In other simulators this option is equivalent to the option VAMAXEXP used in 
Verilog-A, only. But in HSPICE the .OPTION EXPMAX=value works in both 
the HSPICE netlist and Verilog-A.

Passing the Parameter String
You can pass the parameter string from the HSPICE netlist to Verilog-A through 
the spice instance. But the variable (file1, 2) with the declared string should 
be preceded by the str function in the HSPICE instance.

.hdl "vpwlf_param.va"

.PARAM 
+       file1=str('input1.pwl')
+       file2=str('input2.pwl')

xv0 vout0 0 vpwlf_param file_name=str(file1) DELAYT=0 VOFFSET=0
xv1 vout1 0 vpwlf_param file_name=str(file1) DELAYT=0 VOFFSET=0
....
....
xv2 vout2 0 vpwlf_param file_name=str(file2) DELAYT=0 VOFFSET=0
xv3 vout3 0 vpwlf_param file_name=str(file2) DELAYT=0 VOFFSET=0
....

In the Verilog-A module, 

module vpwlf_param (a, b);

To receive the string from the HSPICE instance, you have to declare the 
parameter string

file_name="input.pwl";
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Passing the M-Factor 
pVA handles the issue of passing from the M-factor in a SPICE netlist to the 
Verilog-A parameter real (*inherited_mfactor*) m=2, parameter real m, 
and $mfactor as shown in the following example:

.option accurate post=1

.hdl "cap.va'
r1 1 2 1k

x1 2 0 cap m=4 ---- netlist parameter m

v1 1 0 pwl 0 0 10n 1 20n 1 30n 0
.tran 1p 30n
.probe v(*)
.end

module cap(vp, vn); --- cap.va
 inout vp, vn;
 electrical vp, vn;
 parameter real (* integer inherited_mfactor; *) m=2 ---- case 2
 or
 parameter real m=2 ---- case 3
 parameter real c = 1e-12;
 real qocm;
 analog begin
 qocm = c*m;   I(vp, vn) <+ ddt(qocm*V(vp,vn));
 $strobe("XYZ qocm=%g  $mfactor=%g  m=%g", qocm, $mfactor,m );
 end
endmodule

pVA provides three options of multiplicity factors which are controlled by the 
Unix system command setenv. Option 2 is the default for pVA.

Option 1: setenv PVA_INHERIT_MFACTOR 0 
1. Enable Simulator multiplicity factor.

2. Enable Verilog-A multiplicity factor, if m is used in contribution

3. (C) treated as a local parameter in case 2 and 3

4. pVA will output the following result if setenv PVA_INHERIT_MFACTOR 0

5. (B) parameter m passed to $mfactor
HSPICE® User Guide: Basic Simulation and Analysis 473
K-2015.06



Chapter 12: Using Verilog-A
SPICE Netlist and Verilog-A Interactions
6. Both parameter M and m are treated as the same parameter m

Option 2: Default
1. Enable Simulator multiplicity factor.

2. Enable Verilog-A multiplicity factor, if m is used in contribution

3. (B) parameter m overrides (C) parameter m in case 2 and 3

4. (C) treated as a local parameter in case 2 and 3

5. (B) parameter m passed to $mfactor

6. Both parameter M and m are treated as the same parameter m

Option 3: setenv PVA_MULTIPLIER 1
1. Disable Simulator multiplicity factor.

2. Enable Verilog-A multiplicity factor, if m is used in contribution

3. (B) parameter m overrides (C) parameter m

4. pVA will output the following result if setenv PVA_MULTIPLIER 1

(A) (B) (C) (D) (E) Results in Verilog-A 
HSPICE|CSim|FineSim

Case # Netlist 
Instance 
m=

Verilog-A Parameter m= Parameter m in Verilog-A m $mfactor

2 4 (*inherited_mfactor *) m=2 (C) treated as a local 
parameter

2 4

3 4 2 (C) treated as a local 
parameter

2 4

(A) (B) (C) (D) (E) Results in Verilog-A 
HSPICE|CSim|FineSim

Case # Netlist 
Instance 
m=

Verilog-A Parameter m= Parameter m in Verilog-A m $mfactor

2 4 (*inherited_mfactor *) m=2 (B) overrides (C) 4 4

3 4 2 (C) treated as a local 
parameter

2 4
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5. $mfactoris always set to 1

6. Upper case parameter M is not treated as the same parameter m in Option 
3 in pVA

Illegal Format for $strobe
In the following example, the declared integer must print the %d format instead 
of %s.

 integer error_bin[9:0];
 $strobe( "--- %m : CHECK:@%.3fns, where wrong [9:0] 
%s%s_%s%s%s%s_%s%s%s%s",
 $abstime/1e-09,
 error_bin[9], error_bin[8], error_bin[7], error_bin[6],
 error_bin[5], error_bin[4], error_bin[3], error_bin[2],
 error_bin[1], error_bin[0]);

*pvaE* format %s does not match the argument type ($strobe).

Illegal Format for $fscanf
Format specification %b is defined for display only. For example, the following is 
illegal:

integer symb;
$fscanf (fd, "%b", symb);

The following is a legal example (see Case 6: Using $fscanf with the String 
Format to Read a Bit File on page 484).

string symb;
$fscanf (fd, "%s", symb);

(A) (B) (C) (D) (E) Results in Verilog-A 
HSPICE|CSim|FineSim

Case # Netlist 
Instance 
m=

Verilog-A Parameter m= Parameter m in Verilog-A m $mfactor

2 4 (*inherited_mfactor *) m=2 (B) overrides (C) 4 1

3 4 2 (B) overrides (C) 4 1
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Illegal Syntax for the Argument in laplace_ Command
The following syntax is incorrect:

V(o)<+laplace_nd(V(i),[1,0],[1,tau]); 

The following error message is issued:

*pvaE* Syntax error, unsupported syntax or illegal keyword at/
before '['

The correct syntax replaces the square brackets with curly braces:

V(o)<+laplace_nd(V(i),{1,0},{1,tau}); 

Encrypting Verilog-A Files

Verilog-A module files are supported for encryption only when using 8byte key 
and tripleDES private or random key. The information below provides detailed 
examples of using encryption with Verilog-A.

Legend: For the following table these keyword letters are defined.
■ d: -d option (metaencrypt command option)
■ p: with a.prot and .unprot block in Verilog-A file
■ no: no option -d and/or .prot & .unprot block in Verilog-A file
■ dp: -d option and with a.prot block the in the Verilog-A file
■ nodp: without -d option and with .prot block in the Verilog-A file
■ dnop: with -d option and without a .prot block in the Verilog-A file
■ nodnop: without -d option and without a .prot block in the Verilog-A file

Case Encryption Method HSPICE and CustomSim/pVA

1 dp/8byte_key supported

2 dp/traditional_freelib unsupported

3 dp/triple_des_priv supported

4 dp/triple_des_rand supported
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Note: Here are some important notes:

1. The HSPICE commands .PROT and .UNPROT are case 
insensitive in the Verilog-A file. 

2. Unlike HSPICE, which always requires the netlist to begin in 
column 1, the Verilog-A file can be free form (beginning in 
any column).

3. You can comment out any .PROT and .UNPROT block by 
using the double forward slash (//.PROT).

4. You can mix Verilog-A encrypted and non-encrypted input in 
an HSPICE netlist.

Encryption Examples

Case 1: dp/8byte_key

metaencrypt -i simple.va -o simple.inc -t AbCd12Eg -d VA
hspice testbench.sp -o testv
testbench.sp:

* .hdl simple.va  $-- original file

5 nodp/8byte_key supported

6 nodp/traditional_freelib unsupported

7 nodp/triple_des_priv supported

8 nodp/triple_des_rand supported

9 dnop/8byte_key unsupported

10 dnop/traditional_freelib unsupported

11 dnop/triple_des_priv unsupported

12 dnop/triple_des_rand unsupported

13 nodnop/8byte_key supported

14 nodnop/traditional_freelib unsupported

15 nodnop/triple_des_priv supported

16 nodnop/triple_des_rand supported

Case Encryption Method HSPICE and CustomSim/pVA
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.hdl simple.inc $-- encryption file

.....

.....

.end

simple.va:

`include "disciplines.vams"
`include "constants.vams"
module res(plus,minus);

inout plus, minus;
electrical plus,minus;
.PROT

 parameter integer vvdd = 1;
    analog begin
         V(plus,minus) <+ 1*I(plus,minus);
         $strobe("=CasE= %d => simple.va\n", vvdd);
    end

.UNPROT
endmodule

simple.inc:

`include "disciplines.vams"
`include "constants.vams"
module res(plus,minus);

inout plus, minus;
electrical plus,minus;

.inc "VA/simple.va.enc1"
endmodule

VA/simple.va.enc1:

.PROT v200102
^@<88><88><88><88><82>Ã<82>Â¿RKf<9d>^@^@^@r{0Â¢Â³Ã^Vt^@^@^@Â¿RK
f<9d>Â¤Ã§<8c>Â¦x<83>Ã®^U^@^A^Dh9>W^?^WÃ XÃ 

In the Case 1 example:
■ metaencrypt -i simple.va -o simple.inc -t AbCd12Eg -d VA 

is the command line invocation
■ simple.va is the original file, without encryption
■ simple.inc is the encrypted file
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■ .inc "VA/simple.va.enc1" replaces the .PROT/.UNPROT block in the 
simple.va file

■ hspice testbench.sp -o testv launches the HSPICE simulation with 
the encrypted Verilog-A file, simple.inc

Case 7: nodp/triple_des_priv

metaencrypt -i simple.va -o simple.inc -t privkey 
0123456789ABCDEF9876543210FEDCBA1357924680ACEBDF

hspice testbench.sp -o testv

testbench.sp:

***.hdl simple.va
.hdl simple.inc
....
....

simple.va:

`include "disciplines.vams"
`include "constants.vams"
module res(plus,minus);
inout plus, minus;
electrical plus,minus;
.PROT

    parameter integer vvdd = 1;
    analog begin
         V(plus,minus) <+ 1*I(plus,minus);
         $strobe("=CasE= %d => simple.va\n", vvdd);
    end

.UNPROT
 endmodule

simple.inc:

 .PROT PRIVKEY

Â°^@^@^B^A^@^A^@^BÃºgÃ>Â¹PÂ"^MÂ½bÂx<87>Â¾<97>Ã¯pÂ¾^_X^T^AÃaPÂ¤Â
ºÃ^Qu#Ã^@^@^@^@^@^@^@^A<88><88><88><88><88><88><88><88><88><88>
<88><88><88><88><88><88><88><88><88><88><88><88><88><8><88><88>
<88><88><88>_\o<8b>Ã¯ÃÃ¸:Âª<94>%^?
....
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In the Case 7 example:
■ metaencrypt -i simple.va -o simple.inc -t privkey 

0123456789ABCDEF9876543210FEDCBA1357924680ACEBDF is the 
command line invocation for triple_des_priv using the private key

■ hspice testbench.sp -o testv launches the HSPICE simulation with 
the encrypted Verilog-A file, simple.inc

■ simple.va is the original file, without encryption
■ simple.inc is the encrypted file
■ simple.va is totally replaced by simple.inc

Case 16: nodnop/triple_des_rand

metaencrypt -i simple.va -o simple.inc -t randkey
hspice testbench.sp -o test

testbench.sp:

***.hdl simple.va
.hdl simple.inc
v1 1 0 10
x1 1 0 res
.tran 10n 100n
.print tran i(v1)
.end

simple.va:

 `include "disciplines.vams"
`include "constants.vams"
module res(plus,minus);
inout plus, minus;
electrical plus, minus;
parameter integer vvdd = 1;

    analog begin
         V(plus,minus) <+ 1*I(plus,minus);
         $strobe("=CasE= %d => simple.va\n", vvdd);
    end
 endmodule

simple.inc:

.PROT RANDKEY
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In the Case 16 example:
■ metaencrypt -i simple.va -o simple.inc -t randkey is the 

command line invocation for triple_des_rand using the random key
■ hspice testbench.sp -o testv launches the HSPICE simulation with 

the encrypted Verilog-A file, simple.inc
■ simple.va is the original file, without encryption and without a.PROT/

.UNPROT block
■ simple.inc is the encrypted file
■ simple.va is totally replaced by simple.inc

See Also
Chapter 31, Library and Data Encryption

Using the Standalone Compiler

Verilog-A modules used in HSPICE simulations are automatically compiled and 
cached in the current working directory by the simulator. You can compile files 
manually if you wish (to check syntax only of Verilog-A). The utility is pva (for 
the default 32-bit platforms). For 64-bit platforms you need to set: 
setenv HSPICE_64 1 or -64 on the command-line input. The local 
command-line option (-64, -32) overrides the global (setenv). For example:

setenv HSPICE_64 1

pva -32 ...

The result is that pva will use 32-bit platforms.

General pVA Command-line Syntax
pva VA-file(s) [-o outlib] [-Ddefine=val][-Iinclude-path] 
[-hdlpath pathname] -64|-32
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Where
■ pva: Indicate scripts to run on 32-bit. For 64-bit platforms use the setenv 

HSPICE_64 1 or pva -64 on the command-line.
■ VA-file(s): *.va, *.vams, or 1.va 2.va files.
■ -o out:

• pVA creates the out.pvadir directory in which the intermediate files 
will reside.

• The default directory is pvadir if there is no -o option input.
■ -hdlpath pathname

■ -Ddefine=val applies define name to all input V-A pre-processors.
■ -Iinclude-path adds a search path of the header files for input Verilog-

A files; otherwise the default include paths are applied 
($HSP_HOME/include).

Using a Unified Verilog-A Library (pVA) is Obsolete

Note: Use the encryption methods outlined in the section Encrypting 
Verilog-A Files on page 476.

Supported LRM 2.4 Syntax and Features

Note: HSPICE supports LRM 2.4 features on a case-by-case basis. 
Users who require additional LRM 2.4 feature support need to 
contact the Synopsys Technical Support Center.

Go to http://solvnet.synopsys.com/EnterACall (Synopsys user 
name and password required). Send an e-mail message to your 
local support center. E-mail support_center@synopsys.com 
from within North America. Find other local support center e-mail 
addresses at http://www.synopsys.com/support/support_ctr.

HSPICE currently supports the following LRM Version 2.4, June 1, 2014 
features:
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How pVA handles Strings 
Case 1: Parameter String

For example, in the first line pVA treats the patha type as a string.

parameter string patha="./xyz";
parameter pathb="./xyz";

In the second line, pVA treats pathb as a string because it is enclosed within 
double quotes, even if it is not declared as a string.

Case 2: String Variables
string  tbl_fn;
tbl_fn="tbl.tbl";

For example:

module myva(oo, ii);
output oo;
input ii;
electrical ii;
electrical oo;
string tbl_fn;
analog begin
  @(initial_step) begin
    tbl_fn = "tbl.tbl";
  end
  V(oo) <+ $table_model(V(ii), tbl_fn, "1CC");
end
endmodule

Case 3: Concatenating String Parameters

The following is a SPICE netlist:

x0 a b eva_test datapath=str("data1") parameter datapath=""; 

pVA automatically decides the string type based on "" if there is not a string 
declared.

parameter string datapath="";
parameter string dataname="data.tbl";
string filename;
analog begin
 filename={datapath,dataname};
 $display("file=%s " ,filename);
end
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The resulting file name of the concatenated file is: 

data1data.tbl

Case 4: Length of String—string.len()
Parameter string bit_string="00110011100000111010";
J=(J+1)%string.len(bit_string);

Verilog-AMS LRM 2.4 states “Verilog-AMS includes the string data type from 
IEEE std 1800-2005 SystemVerilog.” The implementation of string length query 
function, string.len(), is derived from the IEEE standard and satisfies the 
requirement of LRM 2.4.

Case 5: String functions ${pattern}.{len()|substr(  ,  ),atoi()}
module bitstream (dout, doutb, cm);

...

...
parameter string bits = “00111110101100000101”;
string strtemp;
integer length, position, bit;
analog begin

@(initial_step) begin
length=bits.len();
...
position=0;

end
...
...
begin

strtemp= bits.substr(position, position+1-1);
bit = strtemp.atoi();
...

end
end

endmodule

Case 6: Using $fscanf with the String Format to Read a Bit File
The following example uses a 10bit.dat file which contains

1010110011
1110111101
...

// This model loads 256 10-bit symbols from 10bit.dat file
module test (dout, doutb, clk);
input clk;
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output dout, doutb;
electrical clk, dout, doutb;
parameter string fpat = "10bit.dat";
parameter integer sym_totnum = 252 from [1:256];
parameter integer lsbfirst = 1 from [0:1];
integer fd;
integer pat[0:2559];
integer sym_num, pbit_num, sbit_num;
string symb;
analog begin
 @(initial_step) begin
 fd = $fopen(fpat, "r");
 for (sym_num = 0; sym_num < sym_totnum;
 sym_num = sym_num + 1) begin
 $fscanf(fd, "%s", symb);
 $strobe("[test]  symbol[%d] = \t[%s]",sym_num,symb);
 for (sbit_num = 0; sbit_num < 10;
 sbit_num = sbit_num + 1) begin
 pbit_num = sym_num * 10 + lsbfirst
 * sbit_num + (1 - lsbfirst) * (9-sbit_num);
 case (symb[sbit_num])
 "0" : pat[pbit_num] = 0;
 "1" : pat[pbit_num] = 1;

endcase
 end
 end
 $fclose(fd);
 end
end //analog
endmodule

String Data Type
pVA supports the string data type. See 3.3 in the Accellera Verilog-AMS 
Language Reference Manual, Analog & Mixed-Signal Extensions to Verilog 
HDL, Version 2.3.1, June 1, 2009.

string s1 = "hello world";

Module Port With Discipline
pVA supports the module port with discipline. See 6.6.2 in the Accellera 
Verilog-AMS Language Reference Manual, Analog & Mixed-Signal Extensions 
to Verilog HDL, Version 2.3.1, June 1, 2009.
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module nlres (inout electrical a, inout electrical b);

$simparam$str Parameter System Function
pVA supports the $simparam$str, which is similar to $simparam. It is used for 
returning string-valued simulation parameters. The following table provides the 
string parameter names supported by $simparam$str.

See 9.15 in the Accellera Verilog-AMS Language Reference Manual, Analog & 
Mixed-Signal Extensions to Verilog HDL, Version 2.3.1, June 1, 2009.

String Description

analysis_name The name of the current analysis, for example 
TRlastTP

analysis_type The type of the current analysis, for example dc, 
tran, and ac

cwd The current working directory in which the 
simulator was started.

module The name of the module from which 
$simparam$str is called.

instance The hierarchical name of the instance from which 
$simparam$str is called.

path The hierarchical path to the $simparam$str 
function.
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Example
module testbench;
             dut dut1;
 endmodule

 module dut;
        analog begin
            begin : BLOCK
             $strobe ("%s\n%s\n%s\n%s\n%s\n%s", 
                            $simparam$str("analysis_name"), 
                            $simparam$str("analysis_type"), 
                            $simparam$str("cwd"), 
                            $simparam$str("module"), 
                            $simparam$str("instance"), 
                            $simparam$str("path"));
             end
        end
 endmodule

The preceding example produces the following results:

 TRlastTP  
 TRAN  
 /users/test/LRM231/simparam_str 
 dut  
 x1.dut1 
 x1.dut1.BLOCK

File Input-Output System Tasks and Functions
pVA supports $swrite, $sformat, $fgets, $sscan, $fseek, $ftell, 
$rewind, and $feof. 

cross, above, and timer with Support for enable
timer (start_time [,period [,time_tol [,enable]]])

See 5.10.3.1 for cross, 5.10.3.2 for above, 5.10.3.3  timer  in the Accellera 
Verilog-AMS Language Reference Manual, Analog & Mixed-Signal Extensions 
to Verilog HDL, Version 2.3.1, June 1, 2009.
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Parameter arrays
Example 1

parameter real poles[0:3] = ’{ 1.0, 3.198, 4.554, 2.00 };

See 3.4.4 in the Accellera Verilog-AMS Language Reference Manual, Analog & 
Mixed-Signal Extensions to Verilog HDL, Version 2.3.1, June 1, 2009.

Parameter Value Range
pVA supports ':' only for the parameter integer and real type in value range. 
However ',' can be used for the string type in value range. See 3.4.2 value 
range specification in the Accellera Verilog-AMS Language Reference Manual, 
Analog & Mixed-Signal Extensions to Verilog HDL, Version 2.3.1, June 1, 2009.

Example
parameter integer ipar = 1 from [1:255];
parameter real rpar = 1.0 from (0:255);
parameter string ttype = "NMOS" from `{ "NMOS", "PMOS" };

param_assignment ::=
parameter_identifier = constant_mintypmax_expression { value_range }
| parameter_identifier range = constant_arrayinit { value_range }

value_range ::=
value_range_type ( value_range_expression : value_range_expression )
| value_range_type ( value_range_expression : value_range_expression ]
| value_range_type [ value_range_expression : value_range_expression )
| value_range_type [ value_range_expression : value_range_expression ]
| value_range_type '{ string { , string } }
| exclude constant_expression

Passing Array to Analog Function
analog function integer array_mult;
     inout q[0:`ARRAY_SIZE];
     integer q[0:`ARRAY_SIZE];
     integer i;
     begin
         for (i = 0; i <= `ARRAY_SIZE; i = i + 1) begin
            q[i] = q[i] * 2;
         end
         array_mult = i;
     end
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endfunction
integer x[0:`ARRAY_SIZE];
integer i, retval;
analog begin

for (i = 0; i <= `ARRAY_SIZE; i = i + 1) begin
x[i] = i;

end
 retval = array_mult(x);

for (i = 0; i <= `ARRAY_SIZE; i = i + 1) begin
$strobe("x[%d] = %d\n", i, x[i]);

end
I(p,n) <+ V(p,n) / r;

end

See 4.7.1 in the Accellera Verilog-AMS Language Reference Manual, Analog & 
Mixed-Signal Extensions to Verilog HDL, Version 2.3.1, Aug. 4.

Analog Initial
analog initial begin

generate i (0,`NUM_BITS-1) begin
if (((sel_val >> i)%2) == 1) begin

v_tmp[i] = vhigh;
end else begin

v_tmp[i] = vlow;
end //else

end //generate
end //initial_step

See 5.2.1 in the Accellera Verilog-AMS Language Reference Manual, Analog & 
Mixed-Signal Extensions to Verilog HDL, Version 2.3.1, Aug. 4.

$arandom
See 9.13.1 in the Accellera Verilog-AMS Language Reference Manual, Analog 
& Mixed-Signal Extensions to Verilog HDL, Version 2.3.1, Aug. 4.
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Support ; at the End of Nature and Discipline Identifiers
discipline electrical;

domain continuous;
potential Voltage;
flow Current;

enddiscipline

discipline ddiscrete;
domain discrete;

enddiscipline;

See Page 37, 327, A.1.6 Nature Declaration, and A.1.7 Discipline Declaration 
in the Accellera Verilog-AMS Language Reference Manual, Analog& Mixed-
Signal Extensions to Verilog HDL, Version 2.3.1, Aug. 4.

Sharing of Pre-Compiled Verilog-A Files by Multiple 
Users

Use the following procedure to allow pre-compiled Verilog-A files to be shared 
by multiple users.

The environment variable PVA_GENSO generates the compiled Verilog-A code 
that can be reused by different users, when you set the value of the 
environment variable to 1.

That is, to share pre-compiled Verilog-A files, use the following command:

% setenv PVA_GENSO 1

After the simulation is complete, pVA keeps all the intermediate files in the 
design_name.pvadir directory. Do not delete this directory.

To share or reuse pre-compiled Verilog-A files, you should also set the 
environment variable PVA_USESO to the full path to the compiled Verilog-A 
files, using the following command:

% setenv PVA_USESO /directory_path/design_name.pvadir

Note: The user sharing/reusing the pre-compiled Verilog-A files must 
use the same version of HSPICE, CSim, or FineSim that was 
used to create the files.
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Performance Considerations with HSPICE

The following sections discuss these topics: 
■ Environment Variables for Forcing Compilation of Verilog-A Modules
■ Reusing Pre-Compiled Verilog-A Files in Simultaneous Multiple Simulations
■ pVA Compiles ALL Modules in an .hdl Statement
■ pVA Time Derivative Function Performance Tuning Tip

Environment Variables for Forcing Compilation of 
Verilog-A Modules
The following environment variables can be used to force pVA to compile 
Verilog-A modules to generate the runtime library pvaRTL_platform.so, 
when the internal default is not sufficient for long simulations. 

Reusing Pre-Compiled Verilog-A Files in Simultaneous 
Multiple Simulations
Use the following procedure to reuse pre-compiled Verilog-A files in 
simultaneous multiple simulations. The environment variable PVA_USESO 
points to a shared runtime library path to reuse pre-compiled VA code in the 
existing runtime library.

Environment Variable Value Comment

PVA_GCC_FLAGS_G 1 Very fast, no optimization i.e., cell characterization

PVA_GCC_FLAGS_O0 1 Less fast, some optimization

PVA_GCC_FLAGS_O1 1 Incrementally slower, more optimization

PVA_GCC_FLAGS_O2 1 Slower still, even more optimization

PVA_GCC_FLAGS_O3 1 Slow compilation, maximum optimization, i.e., long, transient 
simulations
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Begin by creating a pvadir directory

1. You must run HSPICE to create a shared pvadir directory. HSPICE 
automatically creates the directory when you run HSPICE with Verilog-A 
instances.

Example of a simple HSPICE dummy netlist 'test.sp' with a Verilog instance:

*Dummy netlist test.sp
.hdl res.va
.end

Run HSPICE as follows:

setenv PVA_GENSO 1
hspice test.sp -o HSPICE_results/test

The pvadir directory is created: HSPICE_results/test.pvadir

2. Using pre-compiled Verilog-A files: Once the pvadir directory has been 
created, you can use it for future HSPICE simulations that use the same 
Verilog-A files in the .hdl command. It is recommended that you copy the 
pvadir to a central location. Use the PVA_USESO variable to point to that 
pvadir directory:
setenv PVA_USESO $absolute|$relative_path

Note: The $absolute|$relative_path can be written with or 
without  .pvadir  because pVA appends the .pvadir if 
there is no .pvadir.

Example of PVA_GENSO and PVA_USESO Usage in C-Shell Commands: 
Step 1: Setting Shared Runtime Library — setenv PVA_GENSO 1
setenv PVA_GENSO 1
hspice test.sp -o HSPICE_results/test
if ( $status != 0 ) exit 999
if ( -d ./shared-location.pvadir )
rm -r -f ./shared-location.pvadir
cp -r -p HSPICE_results/test.pvadir ./shared-location.pvadir

Step 2: Running Simultaneous Jobs — setenv PVA_USESO 
$absolute|$relative_path
setenv PVA_USESO ./shared-location.pvadir
hspice test1.sp -o hsp/final_results1
hspice test2.sp -o hsp/final_results2
hspice test4.sp -o hsp/final_results4
hspice test5.sp -o hsp/final_results5
.....
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Or:

setenv PVA_USESO ./shared-location.pvadir
bsub hspice test1.sp -o hsp/final_results1
bsub hspice test2.sp -o hsp/final_results2
bsub hspice test4.sp -o hsp/final_results4
bsub hspice test5.sp -o hsp/final_results5
bsub .....

Note: The following are important considerations.

1. pVA looks for XYZ.pvadir if you set XYZ or XYZ.pvadir, 
when PVA_USESO is set. 

2. pVA can accept a parameterized array or port sizes in a 
shared runtime library if the parameter value is passed from 
the HSPICE netlist. 

3. If you execute Step 1 and Step 2 at the same time, you do 
not need to be concerned that the HSPICE version changed 
or a Verilog-A file model changed.

4. The user sharing/reusing the pre-compiled Verilog-A files 
must use the same version of HSPICE that was used to 
create the files.

pVA Compiles ALL Modules in an .hdl Statement
pVA does not support Compile on Demand, as it harms performance if there 
are unused modules in the .hdl statements in an HSPICE netlist. pVA 
compiles all of the modules in .hdl statements; but in an HSPICE netlist you 
can add 

.hdl "use_va pfet_core nfet_core"

Then, pVA selects only the two specified Verilog-A modules (pfet_core and 
nfet_core) to create the runtime library pvaRTL_platform.so. 

To identify these two modules, you can grep the string Creating Verilog-
A from the <-o>.valog file. And then do a sort and uniq get the output of the 
two modules. For example:

grep "Creating Verilog-A" <-o>.valog |sort| uniq | \
sed -e ’s/.*module //’
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Case Sensitivity
Use double quotes to keep the case as written, otherwise HSPICE coverts the 
text to lower case. 

For example, in the following command,

.hdl use_va Pfet_core Nfet_core

HSPICE converts Pfet_core and Nfet_core to pfet_core and 
nfet_core if there are no double quotes. 

Automatic Hierarchy
pVA automatically finds the child modules of the parent module. 

For example, the runtime library pvaRTL_platform.so includes the child 
modules of the pfet_core and the nfet_core if these two modules are 
hierarchial Verilog-A.

pVA Time Derivative Function Performance Tuning Tip
When there are ddt (time derivative function) usages in a charge model such 
as a capacitor, it is often beneficial to include the constant capacitance inside 
the ddt expression, if the capacitance does not change during the simulation. 
Unified Verilog-A (pVA) does this automatically, but may miss some cases. For 
example:

C = param1 * param2;

I(p,n) <+ C * ddt(V(p,n));

Since the C variable only depends on parameters, it must remain the same 
during the simulation. Rewriting the statement as follows may benefit the 
performance of the simulation:

I(p,n) <+ ddt(C * V(p,n));
494 HSPICE® User Guide: Basic Simulation and Analysis
K-2015.06



Chapter 12: Using Verilog-A
Enhanced Verilog-A Syntax
Enhanced Verilog-A Syntax

The following enhanced syntaxes are available in Synopsys Verilog-A (pVA):

1. The ‘include syntax can be followed by variable statements surrounded 
by double quotes. For example:

‘include "/tmp/design01/discipline.h"
‘include "${VA_PATH}/${DEVICE_NAME}/discipline.h"
‘include "../../lib/${VA_LIBRARY}.inc"

Where: ${VA_PATH}, ${DEVICE_NAME}, and ${VA_LIBRARY} can be 
defined by the setenv UNIX command.

2. The CPU time function, $$cputime() is illustrated by the following 
example.

module test(in, out, expected, error);
electrical in, out, expected, error;
inout      in, out, expected, error;
real x, Calculated_result;
real Expected_result;
real c1, c2, c3;
integer i, j;
analog begin : main
    c1 = $$cputime();
    x = V(in);
    x = x*x;
    Calculated_result = ddx(x, V(in));
    Expected_result = 2*V(in);
    V(out) <+ Calculated_result;
    V(expected) <+ Expected_result;
    V(error) <+ abs(Calculated_result-Expected_result);
    c2 = $$cputime();
    for(i = 0; i < 10000; i++) begin
        for(j = 0; j < 1000; j++) begin
             sel = sel + i + j;
        end
    end
    c3 = $$cputime();
    $strobe("===cputime: c2-c1(%5.2f), c3-c2(%5.2f)", c2-c1, 

c3-c2);
end
endmodule
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Known limitations for Verilog-A with HSPICE include:

C Language Keywords Limitation
Unified Verilog-A translates the Verilog-A file to C language. Therefore, to avoid 
conflicts, the following Standard ANSI C keywords cannot be used in the 
Verilog-A file:

If you use C (or GCC extension) keywords in port names, the compilation fails 
with the message “*pvaE* Bad C code detected“. Further down in your 
listing file you will also see that the model was not found: "Definition of 
model/subckt "shift" is not found for the element "x1"." 

GCC Extension Keywords Prohibited 
asm, typeof, inline

analysis() Function Behavior
The analysis() function definition assumes that the operating point (OP) 
analysis associated with any user-specified analysis is unique to that user-
specified analysis. For example, if you specify the following function, it must 
return 1 for AC analysis and 1 for its underlying operation point (OP) analysis. 

analysis("ac")

Similarly, analysis("tran") must return 1 for transient analysis and 1 for its 
underlying OP analysis. In HSPICE, a single “common” OP analysis is 
performed in the setup that is outside the context of AC, transient, or other 
analyses. Since that OP is outside the context of the user-specified analysis, 
the analysis() function does not know the parent analysis type (during the OP 
analysis). The analysis (“ac”), analysis (“tran”), and so on, returns 0 during this 
“common” OP analysis. You can ensure that the analysis function returns true 
(1) during these analyses by adding “static” to the list of functions.

auto default float register struct volatile

break do for return switch while

case double goto short typedef

char else if signed union

const enum int sizeof unsigned

continue extern long static void
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Example

if ( analysis("ac") )
begin

// do something
end

should be written as:

if( analysis("ac", "static") )
begin

// do something
end

The same is true for the “tran” and “noise” analysis names.

Unsupported Language Features
The following Verilog-A LRM 2.2 Language Features are not supported. 
■ Unified Verilog-A (pVA) ignores input, output, and inout enforcement 

described in LRM 2.2, section 7.1.

module test(in,out);
electrical in,out;
input in;
output out;
real out_value;
analog begin

out_value = 1.0;
V(in) <+ out_value; // Input node used as output 

// is not prevented, V(in) will be 
// assigned to out_value

end
endmodule

■ exclude in parameter with an expression:

For example:

parameter real value=0;
parameter real par=0 from (-inf:inf) exclude 1.0*value+0;

■ Out-of-module-references as described in the LRM 2.2, section 7.

In this example, the reference to example2.net inside the example1 
module is not supported.
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module example1;
electrical example2.net; // Feature not supported

endmodule
module example2;

electrical net; 
endmodule

■ Time tolerances on transition() functions, as described in LRM 2.2, section 
4.4.9.1, respectively.

transition(expr[,td [,rise_time [,fall_time [,time_tol ] ] ] ])

■ reg-strings as described in Section 2.6 of LRM 2.2.
■ Output variables and string parameters on paramsets.
■ $monitor

■ The following are limitations in HSPICE advanced analog Verilog-A only:

• $simparam simulation parameter 

• 0 port module

• Delays (absdelay()), event-controlled constructs, memory states 
(variables that hold their value between timesteps), and explicit time-
dependent functions are not supported in HSPICE advanced analog 
analyses. 

Array/vector parameter support
HSPICE does not support array/vector parameters, hence a Verilog-A array/
vector parameter cannot be passed through a SPICE netlist. 
Use the following workaround:

Create a wrapper module, instead:

module wrapper...
parameter p1,p2,p3...
    c1 (.p({p1,p2,p3,...}) child(...)

...and instantiate the wrapper:

x1 1 2... wrapper p1=1 p2=10...

Verilog-A (pVA) Messages 

When compiling a Verilog-A module using the pVA compiler, you may see 
pvaI, pvaW, pvaE, or pvaNIY messages. 
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These messages have the following meanings:
■ pvaI: Informational message that has no effect on compilation and 

simulation results.
■ pvaW: Warning message that possibly could affect compilation and 

simulation results.
■ pvaE: Error detected by pVA. The compilation or simulation is aborted.
■ pvaNIY: The Verilog-A function is “Not Implemented Yet” by pVA.

These messages give useful information and help you in debugging the 
Verilog-A module. For example:

*pvaI* #### Total 131 line-size(s), 29 expr(s), 2 contr(s), 4 
init(s), 4 behav(s), 2 port(s)
*pvaW* macro `P_Q redefined at (constants.vams:34)

Troubleshooting Error Messages
If HSPICE aborts and issues the following error:

**error** call to epvaHDLinit failed

...this error can occur when your system configuration is not sourcing the 
meta.cshrc file. You also see the following error in the *.lis file:

*pvaE* Please invoke hspice script instead of binary

To avoid these errors, you need to set the HSP_HOME environment variable and 
source the meta.cshrc file:

%setenv HSP_HOME  /root/hspice_installation/hspice
%source  $HSP_HOME/bin/cshrc.meta

If the error persists, check the compiler log file, *.pvadir/pvaRTL.log for 
errors. If an error is found, then the Verilog-A (pVA) compiler has an issue that 
requires further debugging. Contact the support center for further assistance.
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Environment Variables and Command Options

The following table summarizes Verilog-A (pVA) environment variables and 
equivalent options on the HSPICE command-line, HSPICE command control 
options, and .hdl command options:

Table 50 Environment Variables and Command Options

Environment Variable (setenv) HSPICE command-
line option

HSPICE 
command 

.hdl
command

Command Value -option .OPTION option

PVA_RMRTL
See Note 1 below

1|0

PVA_SKIP_LRM
See Note 2 below

1|0

PVA_GCC_FLAGS_G 1

PVA_GCC_FLAGS_O0 1

PVA_GCC_FLAGS_O1 1

PVA_GCC_FLAGS_O2 1

PVA_GCC_FLAGS_O3 1

HSP_HDL_PATH 
See Verilog-A File Search 
Path on page 452

path/
dir_name

-hdlpath See 
Verilog-A File Search 
Path on page 452

-I 
See Verilog-A File 
Loading 
Considerations on 
page 453

-D 
See Verilog-A File 
Loading 
Considerations on 
page 453

-hdl See Loading 
Verilog-A Modules on 
page 450

.hdl See 
Loading Verilog-A 
Modules on page 450

-vamodel See 
Overriding Subcircuits 
with Verilog-A 
Modules on page 457

vamodel See 
Overriding Subcircuits 
with Verilog-A 
Modules on page 457
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Note: Here are some important notes:

1. PVA_RMRTL — When you have a series of .ALTERs in an 
HSPICE netlist, pVA clears all intermediate files in the 
.pvadir before it executes the next .ALTER command.

2. PVA_SKIP_LRM — Some Verilog-A syntax is illegal 
according to the LRM 2.2, but it is acceptable if you specify 
setenv PVA_SKIP_LRM. However, HSPICE/pVA does not 
guarantee the correctness of the result. 

Example: Verilog-A Frequency Divider Model

You can use Verilog-A to model circuit behavior before committing the design to 
hardware. For example, you can model the building blocks of a PLL (phase 
detector, vco, frequency divider, etc.) by using Verilog-A and their functionality 
can be verified and fine-tuned using HSPICE or CustomSim.

macmod=1 See 
Overriding Subcircuits 
with Verilog-A 
Modules on page 457

use_va modnm1 
modnm2 ... See 
Performance 
Considerations 
with HSPICE 
on page 491.

-hpp bypass_va=1

PVA_GENSO 1|0

PVA_USESO path/
dir_name

Table 50 Environment Variables and Command Options (Continued)

Environment Variable (setenv) HSPICE command-
line option

HSPICE 
command 

.hdl
command

Command Value -option .OPTION option
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Because Verilog-A is a standard language managed by Accellera, it is portable 
to any SPICE-based simulator.

The following is an example of a programmable Verilog-A frequency divider 
model that can be used in a PLL circuit instead of full transistor level 
implementation.

`include "constants.vams";
`include "disciplines.vams";
`include "compact.vams";
//
// Based on the OVI Verilog-A Language Reference Manual, version 
2.2, 2004
//
//  
 
module freq_divider(vtrig, vout_q);
input vtrig;
output vout_q;
electrical vtrig, vout_q;
//electrical vtrig, vout_q, vout_qbar;
parameter real vlogic_high = 3;
parameter real vlogic_low = 0;
parameter real vtrans = 1.5;
parameter real tdel = 0.1n from [0:inf);
parameter real trise = 1n from (0:inf);
parameter real tfall = 1n from (0:inf);
parameter integer div_ratio = 2 from (0:inf);
   integer q;
   integer out;
   integer x;
   real count;
   analog begin
// Initializing variables.
      @ ( initial_step ) begin
         x = 1;
          count = 1.1;
      end
// Count triggering at rising edge.
        @ (cross( V(vtrig) - vtrans))
        if ( count <= div_ratio) begin
        count = count +1;
        out = vlogic_high * x;
        end
// Frequency dividing.
        else begin
        x = abs(x - 1);
        count = 1.1;
        end
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// Output.
        V(vout_q) <+ transition( out, tdel, trise, tfall );
        end
endmodule

Note that all of the variables declared in the parameter section (vlogic_high, 
vlogic_low, tdel, div_ratio, etc.) can be instantiated at the instance statement in 
the top level SPICE netlist or testbench. The key part of the divider function in 
the model is the "x = abs(x-1);" statement. The value of x toggles between 
0 and 1 at each iteration. For example if div_ratio is 2, it will take two iterations 
of positive going edges of the input signal to complete one clock cycle at the 
output.

Here is an example testbench to test the frequency divider with divide ratio set 
to 3:

* Frequency divider.
X1 vin vout freq_divider div_ratio=3
Rout vout 0 1k
V0 vin 0 pulse 0 3 10n 1n 1n 10n 20n
  
.tran .1n 300n
.probe v(*)
.option post
.hdl veriloga.va.hspice
.end

Below is the output waveform of the frequency divider testbench.
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Figure 47 Output waveform of the frequency divider testbench

Downloading a Verilog-A Test Library

HSPICE makes available for download a free library of Verilog-A modules 
through an agreement with Accellera. This library contains Verilog-A modules 
from the LRM 2.2, updated to work with HSPICE, and testbenches to exercise 
them. The modules include A/D and D/A converters, filters, a variety of 
amplifiers, diodes, S/H circuits, and a VCO. The modules can be used as a 
starting point for adding second order effects, calibrated behavior, or for 
creating more sophisticated functional blocks.

Go to:

http://www.synopsys.com/Tools/Verification/AMSVerification/CircuitSimulation/

HSPICE/Pages/default.aspx
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Part 4:  Analyses and Simulation

Part 4 presents the following chapters/topics:
■ Chapter 13, Initializing DC-Operating Point Analysis
■ Chapter 14, AC Small-Signal and Noise Analysis
■ Chapter 15, Transient Analysis
■ Chapter 16, Spectrum Analysis
■ Chapter 17, Pole-Zero Analysis
■ Chapter 18, MOSFET Model Reliability Analysis (MOSRA)
■ Chapter 19, Post-Layout Simulation: RC Network Reduction and 

Back-Annotation
■ Chapter 20, Multi-Technology Simulation of 3D Integrated Circuit

The following analyses are described in the HSPICE® User Guide: 
Signal Integrity Modeling and Analysis.
■ Linear Network Parameter Analysis
■ Statistical Eye Analysis
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13Initializing DC-Operating Point Analysis

Describes DC initialization and operating point analysis. 

HSPICE ships numerous examples for your use; see Listing of Demonstration 
Input Files for paths to demo files.

For descriptions of individual HSPICE commands referenced in this chapter, 
see the HSPICE Reference Manual: Commands and Control Options. For 
discussion of use of the .DC command in a subckt block, see Using Isomorphic 
Analyses in Subckt Blocks on page 44.

The following sections cover these topics:
■ Simulation Flow—Initialization and Analysis
■ DC Initialization and Operating Point Calculation
■ .DC Statement—DC Sweeps
■ Other DC Analysis Statements
■ Accuracy and Convergence
■ Reducing DC Errors
■ Diagnosing Convergence Problems

Simulation Flow—Initialization and Analysis

Before it performs .OP, .DC sweep, .AC, or .TRAN analyses, HSPICE first sets 
the DC operating point values for all nodes and sources. To do this, HSPICE 
does one of the following:
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■ Calculates all values
■ Applies values specified in .NODESET and .IC statements
■ Applies values stored in an initial conditions file.

The .OPTION OFF statement, and the OFF and IC=val element parameters, 
also control initialization. 

Initialization is fundamental to simulation. HSPICE starts any analysis with 
known-nodal voltages (or initial estimates for unknown voltages) and some 
branch currents. It then iteratively finds the exact solution. Initial estimates that 
are close to the exact solution increase the likelihood of a convergent solution 
and a lower simulation time.

A transient analysis first calculates a DC operating point using the DC 
equivalent model of the circuit (unless you specify the UIC parameter in 
the .TRAN statement). HSPICE then uses the resulting DC operating point as 
an initial estimate to solve the next timepoint in the transient analysis. 

The following describes the process:

1. If you do not provide an initial guess or if you provide only partial information, 
HSPICE provides a default estimate for each node in the circuit.

2. HSPICE then uses this estimate to iteratively find the exact solution. 

The .NODESET and .IC statements supply an initial guess for the exact DC 
solution of nodes within a circuit. 

3. To set the seed value for the iterative dc algorithm for any circuit node to any 
value, use the .NODESET statement. 

4. HSPICE then connects a voltage source equivalent, to each initialized node 
(a current source, with a GMAX parallel conductance, set with a .OPTION 
statement). 

5. HSPICE next calculates a DC operating point, with the .NODESET voltage 
source equivalent connected. 

6. HSPICE disconnects the equivalent voltage sources, which you set in 
the .NODESET statement, and recalculates the DC operating point. 

This is the DC operating point solution. 
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Figure 48 Equivalent Voltage Source: NODESET and .IC

The .IC statement provides both an initial guess and a solution for selected 
nodes within the circuit. Nodes that you initialize with the .IC statement 
become part of the solution of the DC operating point.

Use .IC and .NODESET statements in a .DC analysis, in addition to .TRAN 
statements, unless you set .OPTION DCIC=0. You can also use the OFF 
option to initialize active devices. The OFF option works with .IC 
and .NODESET voltages as follows:

1. If the netlist includes any .IC or .NODESET statements, HSPICE sets node 
voltages, according to those statements.

2. If you set the OFF option, HSPICE sets values to zero for the terminal 
voltages of all active devices (BJTs, diodes, MOSFETs, JFETs, MESFETs) 
that you do not set in .IC or .NODESET statements, or by sources.

3. If element statements specify any IC parameters, HSPICE sets those initial 
conditions.

4. HSPICE uses the resulting voltage settings, as the initial guess at the 
operating point. 

Use OFF to find an exact solution, during an operating point analysis, in a 
large circuit. The majority of device terminals are at zero volts for the 
operating point solution. To initialize the terminal voltages to zero for 
selected active devices, set the OFF parameter in the element statements 
for those devices. 

After HSPICE finds a DC operating point, use .SAVE to store operating-
point node voltages in a design.ic file. Then use the .LOAD statement to 
restore operating-point values from the *.ic file for later analyses. 

When you set initial conditions for Transient Analysis:

I=GMAX*V GMAX
To Initialization

Node
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■ If you include UIC in a .TRAN statement, HSPICE starts a transient 
analysis, using node voltages specified in an .IC statement. 

■ Use the .OP statement, to store an estimate of the DC operating point, 
during a transient analysis. 

■ An internal timestep too small error message indicates that the circuit failed 
to converge. The cause of the failure can be that HSPICE cannot use stated 
initial conditions to calculate the actual DC operating point.

Figure 49 shows the simulation flow for DC analysis in HSPICE.

Figure 49 DC Initialization and Operating Point Analysis Simulation Flow
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DC Initialization and Operating Point Calculation

Use a .OP statement in HSPICE to:
■ Calculate the DC operating point of a circuit
■ Produce an operating point during a transient analysis

A simulation can only have one .OP statement.

The following sections discuss these topics:
■ .OP Statement — Operating Point
■ Element Statement IC Parameter
■ Initial Conditions and UIC Parameters
■ .SAVE and .LOAD Statements (HSPICE Only)

.OP Statement — Operating Point 
When you include an .OP statement in an input file, HSPICE calculates the DC 
operating point of the circuit. You can also use the .OP statement to produce an 
operating point, during a transient analysis. 

If an analysis requires calculating an operating point, you do not need to 
specify the .OP statement; HSPICE calculates an operating point. If you use 
a .OP statement, and if you include the UIC keyword in a .TRAN analysis 
statement, then simulation omits the time=0 operating point analysis, and 
issues a warning in the output listing.
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Output
***** OPERATING POINT INFORMATION TNOM=25.000 TEMP=25.000
***** OPERATING POINT STATUS IS ALL SIMULATION TIME IS 0.
NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE
+ 0:2=0 0:3=437.3258M 0:4=455.1343M
+ 0:5=478.6763M 0:6=496.4858M 0:7=537.8452M
+ 0:8=555.6659M 0:10=5.0000 0:11=234.3306M

 **** VOLTAGE SOURCES
SUBCKT
ELEMENT 0:VNCE 0:VN7 0:VPCE 0:VP7
VOLTS 0 5.00000 0 -5.00000
AMPS -2.07407U -405.41294P 2.07407U 405.41294P
POWER 0. 2.02706N 0. 2.02706N
 TOTAL VOLTAGE SOURCE POWER DISSIPATION=4.0541 N WATTS
**** BIPOLAR JUNCTION TRANSISTORS
SUBCKT

ELEMENT 0:QN1 0:QN2 0:QN3 0:QN4
* Note: HSPICE advanced analog analyses does not 
*       support qn(element) 
* charge output.

MODEL 0:N1 0:N1 0:N1 0:N1
IB 999.99912N 2.00000U 5.00000U 10.00000U
IC -987.65345N -1.97530U -4.93827U -9.87654U
VBE 437.32588M 455.13437M 478.67632M 496.48580M
VCE 437.32588M 17.80849M 23.54195M 17.80948M
VBC 437.32588M 455.13437M 478.67632M 496.48580M
VS 0. 0. 0. 0.
POWER 5.39908N 875.09107N 2.27712U 4.78896U
BETAD -987.65432M -987.65432M -987.65432M -987.65432M
GM 0. 0. 0. 0.
RPI 2.0810E+06 1.0405E+06 416.20796K 208.10396K
RX 250.00000M 250.00000M 250.00000M 250.00000M
RO 2.0810E+06 1.0405E+06 416.20796K 208.10396K
CPI 1.43092N 1.44033N 1.45279N 1.46225N
CMU 954.16927P 960.66843P 969.64689P 977.06866P
CCS 800.00000P 800.00000P 800.00000P 800.00000P
BETAAC 0. 0. 0. 0.
FT 0. 0. 0. 0.

Element Statement IC Parameter
Use the element statement parameter, IC=<val>, to set DC terminal voltages 
for selected active devices. 

HSPICE uses the value, set in IC=<val>, as the DC operating point value.
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Example
This example describes an H-element dependent-voltage source:

HXCC 13 20 VIN1 VIN2 IC=0.5, 1.3

The current, through VIN1, initializes to 0.5 mA. The current, through VIN2, 
initializes to 1.3 mA.

Initial Conditions and UIC Parameters
Use the .IC (or .DCVOLT), for the IC parameter on an element statement, and 
the .NODESET commands to set transient initial conditions in HSPICE. How it 
initializes depends on whether the .TRAN analysis statement includes the UIC 
parameter. If you do not specify the UIC parameter in the .TRAN statement, 
HSPICE computes the DC operating point solution before the transient 
analysis. The node voltages that you specify in the .IC statement determine 
the DC operating point. 

HSPICE uses the node voltages that you specify in the .NODESET statement 
only in the first iteration to set an initial guess for the DC operating point 
analysis. Transient analysis releases the initialized nodes to calculate the 
second and later time points. 

If you specify the UIC parameter in the .TRAN statement, HSPICE does not 
calculate the initial DC operating point, but directly enters transient analysis. 

When you use .TRAN with UIC, HSPICE determines the .TRAN node values 
(at time zero) by searching for the first value found in this order: from .IC 
value, then IC parameter on an element statement, then .NODESET value; 
otherwise it uses a voltage of zero. Note that forcing a node value of the DC 
operating point may not satisfy KVL and KCL. In this event you likely see 
activity during the initial part of the simulation. This may happen if you use UIC 
and do not specify some node values, specify too many (conflicting) .IC 
values, or force node values and the topology changes. In this event, you likely 
see activity during the initial part of the simulation. Forcing a node voltage 
applies a fixed equivalent voltage source during DC analysis and transient 
analysis removes the voltage sources to calculate the second and later time 
points.

Therefore, to correct DC convergence problems use .NODESET commands 
(without .TRAN with UIC) liberally (when you can provide a good guess) and 
use .ICs sparingly (when you know the exact node voltage).
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.SAVE and .LOAD Statements (HSPICE Only)
HSPICE saves the operating point, unless you use the .SAVE LEVEL=NONE 
statement. HSPICE restores the saved operating-point file, only if the input file 
contains a .LOAD statement.

The .SAVE statement in HSPICE stores the operating point of a circuit, in a file 
that you specify. You can save the operating point data as either an .IC or a 
.NODESET statement. For quick DC convergence in subsequent simulations, 
use the .LOAD statement to input the contents of this file. HSPICE saves the 
operating point by default, even if the HSPICE input file does not contain 
a .SAVE statement. To not save the operating point, specify .SAVE 
LEVEL=NONE.

A parameter or temperature sweep saves only the first operating point.

If any node initialization commands, such as .NODESET and .IC, appear in the 
netlist after the .LOAD command, then they overwrite the .LOAD initialization. If 
you use this feature to set particular states for multistate circuits (such as flip-
flops), you can still use the .SAVE command to speed up the DC convergence.

.SAVE and .LOAD work even on changed circuit topologies. Adding or deleting 
nodes results in a new circuit topology. HSPICE initializes the new nodes, as if 
you did not save an operating point. HSPICE ignores references to deleted 
nodes, but initializes coincidental nodes to the values that you saved from the 
previous run. 

When you initialize nodes to voltages, HSPICE inserts Norton-equivalent 
circuits at each initialized node. The conductance value of a Norton-equivalent 
circuit is GMAX=100, which might be too large for some circuits.

If using .SAVE and .LOAD does not speed up simulation, or causes simulation 
problems, use .OPTION GMAX=1e-12 to minimize the effect of Norton-
equivalent circuits on matrix conductances. 

HSPICE still uses the initialized node voltages to initialize devices. Do not use 
the .LOAD command for concatenated netlist files.

.DC Statement—DC Sweeps 

You can use the .DC statement in DC analysis to: 
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■ Sweep any parameter value.
■ Sweep any source value.
■ Sweep temperature range.
■ Perform a DC Monte Carlo (random sweep) analysis.
■ Perform a data-driven sweep.
■ Perform a DC circuit optimization for a data-driven sweep.
■ Perform a DC circuit optimization, using start and stop.
■ Perform a DC model characterization.

The .DC statement format depends on the application that uses it. For syntax 
details, refer to the .DC command in the HSPICE Reference Manual: 
Commands and Control Options.

The following sections discuss these topics:
■ Multi-dimensional DC Sweep

Multi-dimensional DC Sweep
To get the measure results of a multi-dimensional .DC sweep in a single 
measure file, you need to create a dummy inner sweep, and use the .DATA 
block to sweep the multi-dimensional data points in the outer sweep.

In the following example, the .DATA block sweeps pvdd for each temperature. 
The measure results of all the 6 data points is recorded in the same measure 
file.

******2D sweep measure setup
v0 1 0 pvdd
r0 1 0 1k

.param dummy=1 $ define dummy outer sweep

.dc dummy 1 1 1 SWEEP DATA=vpoint $ vpoint contains 2D sweep params

.DATA vpoint
+ temp pvdd
+ 15  1
+ 15  2
+ 15  3
+ 40  1
+ 40  2
+ 40  3
.ENDDATA
HSPICE® User Guide: Basic Simulation and Analysis 515
K-2015.06



Chapter 13: Initializing DC-Operating Point Analysis
Other DC Analysis Statements
* Measure current at each pvdd and temperature value
.measure dc cur_res find i(r0) when par('dummy')=1 
.end

Other DC Analysis Statements 

HSPICE also provides the following DC analysis statements. Each statement 
uses the DC-equivalent model of the circuit in its analysis. For .PZ, the 
equivalent circuit includes capacitors and inductors.

HSPICE includes DC control options, and DC initialization statements, to model 
resistive parasitics and initialize nodes. These statements enhance 
convergence properties and accuracy of simulation. This section describes 
how to perform DC-related, small-signal analysis.

DC Initialization Control Options

Use control options in a DC operating-point analysis, to control DC 
convergence properties and simulation algorithms. Many of these options also 
affect transient analysis because DC convergence is an integral part of 
transient convergence. Include the following options for both DC and transient 
convergence:
■ Absolute and relative voltages
■ Current tolerances
■ Matrix options

Statement Description

.DCMATCH A technique for computing the effects of local variations in device characteristics on 
the DC solution of a circuit.

.PZ Performs pole/zero analysis. 

.SENS Obtains DC small-signal sensitivities of output variables for circuit parameters. 

.TF Calculates DC small-signal values for transfer functions (ratio of output variable, to 
input source). 
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See .OPTION PHD for the PHD flow that can show performance improvement 
in simulations that require large DC OP convergence iterations. Use .OPTION 
statements to specify the following options, which control DC analysis:

DC and AC analysis also use some of these options. Many of these options 
also affect the transient analysis because DC convergence is an integral part of 
transient convergence. For a description of transient analysis, see Chapter 15, 
Transient Analysis.

Accuracy and Convergence

Convergence is the ability to solve a set of circuit equations, within specified 
tolerances, and within a specified number of iterations. In numerical circuit 
simulation, a designer specifies a relative and absolute accuracy for the circuit 
solution. The simulator iteration algorithm then attempts to converge to a 
solution that is within these set tolerances. That is, if consecutive simulations 
achieve results within the specified accuracy tolerances, circuit simulation has 
converged. How quickly the simulator converges, is often a primary concern to 
a designer—especially for preliminary design trials. So designers willingly 
sacrifice some accuracy for simulations that converge quickly.

The following sections discuss these topics:
■ Accuracy Tolerances
■ Autoconverge Process

Accuracy Tolerances
HSPICE uses accuracy tolerances that you specify, to assure convergence. 
These tolerances determine when, and whether, to exit the convergence loop. 

ABSTOL DCFOR DV ICSWEEP MAXAMP PIVOT

CAPTAB DCHOLD GDCPATH ITLPTRAN NEWTOL PIVTOL

CONVERGE DCIC GRAMP ITL1 NOPIV RESMIN

CSHDC DCON GSHDC ITL2 OFF SPARSE

DCCAP DCSTEP GSHUNT KCLTEST PHD SYMB
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For each iteration of the convergence loop HSPICE subtracts previously 
calculated values from the new solution and compares the result with the 
accuracy tolerances. 

If the difference between two consecutive iterations is within the specified 
accuracy tolerances, the circuit simulation has converged.

| Vnk - Vnk-1 | <=accuracy tolerance

■ Vnk is the solution at the n timepoint for iteration k.

■ Vnk-1 is the solution at the n timepoint for iteration k - 1.

As Table 51 shows, HSPICE defaults to specific absolute and relative values. 
You can change these tolerances, so that simulation time is not excessive, and 
you do not compromise accuracy.

HSPICE compares nodal voltages and element currents to the values from the 
previous iteration. 
■ If the absolute value of the difference is less than ABSVDC or ABSI, then the 

node or element has converged. 

ABSV and ABSI set the floor value, below which HSPICE ignores values. 
Values above the floor use RELVDC and RELI as relative tolerances. If the 
iteration-to-iteration absolute difference is less than these tolerances, then 
it is convergent. 

Note: ABSMOS and RELMOS are the tolerances for MOSFET drain 
currents. 

Table 51  Absolute and Relative Accuracy Tolerances

Type .OPTION Default

Nodal Voltage Tolerances ABSVDC 50 v

RELVDC .001 

Current Element Tolerances ABSI 1 nA

RELI .01 

ABSMOS 1 uA

RELMOS .05 
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Accuracy settings directly affect the number of iterations before convergence. 
■ If accuracy tolerances are tight, the circuit requires more time to converge. 
■ If the accuracy setting is too loose, the resulting solution can be inaccurate 

and unstable.

Table 52 shows an example of the relationship between the RELVDC value, and 
the number of iterations.

Autoconverge Process
If a circuit does not converge in the number of iterations that ITL1 specifies, 
HSPICE initiates an autoconvergence process. This process manipulates 
DCON, GRAMP, and GMINDC, and even CONVERGE in some cases. Figure 50 on 
page 521 shows the autoconverge process.

Note: HSPICE uses autoconvergence in transient analysis, but it also 
uses autoconvergence in DC analysis if the Newton-Raphson 
(N-R) method fails.

Table 52  RELV vs. Accuracy and Simulation Time for 2 Bit Adder

RELVDC Iteration Delay (ns) Period (ns) Fall time (ns)

.001 540 31.746 14.336 1.2797

.005 434 31.202 14.366 1.2743

.01 426 31.202 14.366 1.2724

.02 413 31.202 14.365 1.3433

.05 386 31.203 14.365 1.3315

.1 365 31.203 14.363 1.3805

.2 354 31.203 14.363 1.3908

.3 354 31.203 14.363 1.3909

.4 341 31.202 14.363 1.3916

.4 344 31.202 14.362 1.3904
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In the process flow shown in Figure 50 on page 521:
■ Setting .OPTION DCON=-1 disables Steps 2 and 3. 
■ Setting .OPTION CONVERGE=-1 disables Steps 4 and 5.
■ Setting .OPTION DCON=-1 CONVERGE=-1 disables Steps 2, 3, 4, and 5.
■ If you set the DV option to a value other than the default, Step 2 uses the 

value you set for DV, but Step 3 changes DV to 1e6. 
■ Setting .OPTION GRAMP has no effect on autoconverge. Autoconverge sets 

GRAMP independently.
■ If you set .OPTION GMINDC, then GMINDC ramps to the value you set, 

instead of to 1e-12, in Steps 2 and 3.

Effects of GMINDC 
The GMINDC option helps stabilize the circuit, during DC operating-point 
analysis. For MOSFETs, GMINDC helps stabilize the device in the vicinity of the 
threshold region. HSPICE inserts GMINDC between:
■ Drain and bulk
■ Source and bulk
■ Drain and source

The drain-to-source GMINDC helps to:
■ Linearize the transition from cutoff to weakly on
■ Smooth-out model discontinuities
■ Compensate for the effects of negative conductances.

The pn junction insertion of GMINDC in junction diodes linearizes the low 
conductance region. As a result, the device behaves like a resistor in the low-
conductance region. This prevents the occurrence of zero conductance, and 
improves the convergence of the circuit.If a circuit does not converge, HSPICE 
automatically sets the DCON option. This option invokes GMINDC ramping, in 
steps 2 and 3 of Figure 50 on page 521. 

Figure 51 on page 522 shows GMINDC for various elements.
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Figure 50 Autoconvergence Process Flow Diagram
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Ramps GMINDC from GMINDC10GRAMP to 1e-12.

STEP 3 [GMINDC ramping method]
Relaxes DV to 1e6.
Ramps GMINDC from the successful point in Step 3 to 1e-12. 

STEP 4 [Pseudo tran method]
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STEP 6 [GMATH ramping method]
Adds CSHDC from each node to ground.
Ramps gmath=cshdc/delta in the range of 1.0e-12 to 10.0.
Set gmath to zero, if convergence occurs with gmath under 
1.0e-12, and iterates once more to a stable DC bias point.

STEP 5 [GSHUNT ramping algorithm]
Ramping the GSHUNT parameter from 1e-4 to 0 obtains the
solution at every GSHUNT point by invoking Newton-Raphson,
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Try CONVERGE=5
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Figure 51 GMINDC Insertion
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Reducing DC Errors

To reduce DC errors, perform the following steps: 

1. To check topology, set .OPTION NODE, to list nodal cross-references.

• Do all MOS p-channel substrates connect to either VCC or positive 
supplies?

• Do all MOS n-channel substrates connect to either GND or negative 
supplies?

• Do all vertical NPN substrates connect to either GND or negative 
supplies?

• Do all lateral PNP substrates connect to negative supplies?

• Do all latches have either an OFF transistor, a .NODESET, or an .IC, 
on one side?

• Do all series capacitors have a parallel resistance, or is .OPTION 
DCSTEP set?

2. Verify your .MODEL statements.

• Check all model parameter units. Use model printouts to verify actual 
values and units because HSPICE multiplies some model parameters 
by scaling options.

• Are subthreshold parameters of MOS models at reasonable values? 

• Are JS and JSW set in the MOS model for the DC portion of a diode 
model? A typical JS value is 1e-4A/M2.

• Are CJ and CJSW set in MOS diode models?

• Is weak-inversion NG and ND set in JFET/MESFET models?

• Make sure that DIODE models have non-zero values for saturation 
current, junction capacitance, and series resistance.

• Use MOS ACM=1, ACM=2, or ACM=3 source and drain diode 
calculations to automatically generate parasitics.

3. General remarks:

• Ideal current sources require large values of .OPTION GRAMP, 
especially for BJT and MESFET circuits. Such circuits do not ramp up 
with the supply voltages, and can force reverse-bias conditions, leading 
to excessive nodal voltages. 
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• Schmitt triggers are unpredictable for DC sweep analysis, and 
sometimes for operating points for the same reasons that oscillators and 
flip-flops are unpredictable. Use slow transient.

• Large circuits tend to have more convergence problems because they 
have a higher probability of uncovering a modeling problem.

• Circuits that converge individually, but fail when combined, usually have 
a modeling problem.

• Open-loop op-amps have high gain, which can lead to difficulties in 
converging. Start op-amps in unity-gain configuration, and open them 
up in transient analysis, by using a voltage-variable resistor, or a resistor 
with a large AC value (for AC analysis).

4. Check your options:

• Remove all convergence-related options, and try first with no 
special .OPTION settings.

• Check non-convergence diagnostic tables for non-convergent nodes. 
Look up non-convergent nodes in the circuit schematic. They are 
usually latches, Schmitt triggers, or oscillating nodes.

• For stubborn convergence failures, bypass DC all together, and 
use .TRAN with UIC set. Continue transient analysis until transients 
settle out, then specify the .OP time, to obtain an operating point during 
the transient analysis. To specify an AC analysis during the transient 
analysis, add an .AC statement to the .OP time statement.

• SCALE and SCALM scaling options have a significant effect on 
parameter values in both elements and models. Be careful with units.

The following sections discuss these topics:
■ Shorted Element Nodes
■ Inserting Conductance, Using DCSTEP
■ Floating-Point Overflow

Shorted Element Nodes
HSPICE disregards any capacitor, resistor, inductor, diode, BJT, or MOSFET if 
all of its leads connect together. The simulation ignores it in its component tally, 
and issues a warning:  
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**warning**
all nodes of element x:<name> are connected together

Inserting Conductance, Using DCSTEP 
In a DC operating-point analysis, failure to include conductances in a capacitor 
model results in broken circuit loops (because a DC analysis opens all 
capacitors). This might not be solvable. If you include a small conductance in 
the capacitor model, the circuit loops are complete, and HSPICE can solve 
them. 

Modeling capacitors as complete opens generates this error:

No DC Path to Ground 

For a DC analysis, use .OPTION DCSTEP, to assign a conductance value to 
all capacitors in the circuit. DCSTEP calculates the value as: 

conductance=capacitance/DCSTEP

In Figure 52 on page 525, HSPICE inserts conductance (G), in parallel with 
capacitance (Cg). This provides current paths around capacitances, in DC 
analysis.

Figure 52 Conductance Insertion
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Floating-Point Overflow 
If MOS conductance is negative or zero, HSPICE might have difficulty 
converging. An indication of this type of problem is a floating-point overflow, 
during matrix solutions. HSPICE detects floating-point overflow, and invokes 
the Damped Pseudo Transient algorithm (CONVERGE=1), to try to achieve DC 
convergence without requiring you to intervene. If GMINDC is 1.0e-12 or less 
when a floating-point overflows, HSPICE sets it to 1.0e-11. 

Diagnosing Convergence Problems 

Before simulation, HSPICE diagnoses potential convergence problems in the 
input circuit, and provides an early warning, to help you in debugging your 
circuit. If HSPICE detects a circuit condition that might cause convergence 
problems, it prints the following message into the output file:

Warning: Zero diagonal value detected at node ( ) in equation 
solver, which might cause convergence problems. If your 
simulation fails, try adding a large resistor between 
node ( ) and ground. 

The following sections discuss these topics:
■ Non-Convergence Diagnostic Table
■ Traceback of Non-Convergence Source
■ Solutions for Non-Convergent Circuits

Non-Convergence Diagnostic Table 
If a circuit cannot converge, HSPICE automatically generates two printouts, 
called the diagnostic tables: 
■ Nodal voltage printout: Prints the names of all no-convergent node voltages, 

and the associated voltage error tolerances (tol).
■ Element printout: Lists all non-convergent elements, and their associated 

element currents, element voltages, model parameters, and current error 
tolerances (tol).
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The element-printout diagnostic tables associate the error tolerances: tolds, 
tolbd, and tolbs. These indicate how close the element currents (drain to 
source, bulk to drain, and bulk to source) are to a convergent solution.

For the tolxx variables, a value close to or below 1.0 is a convergent solution.

The equation for tol is: 

where RELMOS, ABSMOS are HSPICE control options.

 In  --> current value at nth iteration

 In-1 --> current value at (n-1)th iteration

This equation calculates the values for tolds, tolbs, and tolbd by substituting 
corresponding currents values to the equation.

To locate the branch current or nodal voltage that causes non-convergence, 
use the following steps:

1. Analyze the diagnostic tables. Look for unusually large values of branch 
currents, nodal voltages or tolerances. 

2. After you locate the cause, use the .NODESET or .IC statements, to 
initialize the node or branch. 

If circuit simulation does not converge, HSPICE automatically generates a 
non-convergence diagnostic table, indicating:

• The quantity of recorded voltage failures. 

• The quantity of recorded branch element failures. 

Any node in a circuit can create voltage failures, including hidden nodes 
(such as extra nodes that parasitic resistors create).  

3. Check the element printout for the subcircuit, model, and element name for 
all parts of the circuit where node voltages or currents do not converge. 

For example, Table 53 on page 528 identifies the xinv21, xinv22, xinv23, and 
xinv24 inverters, as problem subcircuits in a ring oscillator. It also indicates that 
the p-channel transistors, in the xinv21, xinv22, xinv24 subcircuits, are 
nonconvergent elements. The n-channel transistor of xinv23 is also a 
nonconvergent element. 

The table lists voltages and currents for the transistors, so you can check 
whether they have reasonable values. The tolds, tolbd, and tolbs error 
tolerances indicate how close the element currents (drain to source, bulk to 

tol
abs In In In– – 

RELMOS max abs In  abs In 1–  ABSMOS+   
----------------------------------------------------------------------------------------------------------------------------------------=
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drain, and bulk to source) are, to a convergent solution. For tol variables, a 
value close to or below 1.0 is a convergent solution. In Table 53, the tol values 
that are around 100, indicate that the currents were far from convergence. The 
table displays the element current and voltage values (id, ibs, ibd, vgs, vds, and 
vbs). Examine whether these values are realistic, and determine the transistor 
regions of operation.

Traceback of Non-Convergence Source
To locate a non-convergence source, trace the circuit path for error tolerance. 
For example, in an inverter chain, the last inverter can have a very high error 
tolerance. If this is the case, examine the error tolerance of the elements that 
drive the inverter. If the driving tolerance is high, the driving element could be 
the source of non-convergence. However, if the tolerance is low, check the 
driven element as the source of non-convergence.

Examine the voltages and current levels of a non-convergent MOSFET to 
discover the operating region of the MOSFET. This information can flow to the 

Table 53 Subcircuit Voltage, Current, and Tolerance

subckt
element
model

xinv21
21:mphc1
0:p1

xinv22
22:mphc1
0:p1

xinv23
23:mphc1
0:p1

xinv23
23:mnch1
0:n1

xinv24
24: mphc1
0:p1

id 27.5809f 140.5646u 1.8123p 1.7017m 5.5132u

ibs 205.9804f 3.1881f 31.2989f 0. 200.0000f

ibd 0. 0. 0. -168.7011f 0.

vgs 4.9994 -4.9992 69.9223 4.9998 -67.8955

vds 4.9994 206.6633u 69.9225 -64.9225 2.0269

vbs 4.9994 206.6633u 69.9225 0. 2.0269

vth -653.8030m -745.5860m -732.8632m 549.4114m -656.5097m

tolds 114.8609 82.5624 155.9508 104.5004 5.3653

tolbd 0. 0. 0. 0. 0.

tolbs 3.534e-19 107.1528m 0. 0. 0.
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location of the discontinuity in the model—for example, subthreshold-to-linear, 
or linear-to-saturation.

When considering error tolerances, check the current and nodal voltage values. 
If you set these values extremely low, you divide an relatively large number by a 
very small number. This produces a large calculation result, which can cause 
the non-convergence errors. To solve this, increase the value of the absolute-
accuracy options.

Use the diagnostic table, with the DC iteration limit (ITL1 option), to find the 
sources of non-convergence. When you increase or decrease ITL1, HSPICE 
prints output for the problem nodes and elements for a new iteration—that is, 
the last iteration of the analysis that you set in ITL1.

Solutions for Non-Convergent Circuits 
Non-convergent circuits generally result from:
■ Poor Initial Conditions
■ Inappropriate Model Parameters
■ PN Junctions (Diodes, MOSFETs, BJTs)
■ Troubleshooting DC Bias Point and DC Sweep Non-Convergence
■ Convergence Failure: Too Many Current Probes in Netlist
■ Troubleshooting: Nodes set to initial conditions with .IC may not always 

begin at those voltage values

Poor Initial Conditions
Multi-stable circuits need state information, to guide the DC solution. You must 
initialize ring oscillators and flip-flops. These multi-stable circuits can either 
produce an intermediate forbidden state, or cause a DC convergence problem. 
To initialize a circuit, use the .IC statement, which forces a node to the 
requested voltage. Ring oscillators usually require you to set only one stage.
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Figure 53 Ring Oscillator

The best way to set up the flip-flop is to use an .IC statement in the subcircuit 
definition.

Example
The following example sets the local Qset parameter to 0, and uses this value 
for the .IC statement, to initialize the Q latch output node. As a result, all 
latches have a default state of Q low. Set Qset to vdd to call a latch, which 
overrides this state.

.subckt latch in Q Q/ d Qset=0

.ic Q=Qset

...

.ends
Xff data_in[1] out[1] out[1]/ strobe LATCH Qset=vdd

Inappropriate Model Parameters
If you impose non-physical model parameters, you might create a 
discontinuous IDS or capacitance model. This can cause an internal timestep 
too small error, during the transient simulation. The mosivcv.sp demonstration 
file shows IDS, VGS, GM, GDS, GMB, and CV plots for MOS devices. A sweep 
near threshold from Vth-0.5 V to Vth+0.5 V (using a delta of 0.01 V), 
sometimes discloses a possible discontinuity in the curves.

1 2 3 4 5

.IC V(1)=5V
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Figure 54 Discontinuous I-V Characteristics

If simulation does not converge when you add a component or change a 
component value, then the model parameters are not appropriate or do not 
correspond to physical values they represent. 

To locate the problem, follow these steps:

1. Check the input netlist file for non-convergent elements. 

Devices with a TOL value greater than 1, are non-convergent. 

Vds

Ids

Vds

I-V characteristics exhibiting
saturation conductance = zero

I-V exhibiting VDSAT slope error

Ids

Ids

Vds

I-V exhibiting negative resistance region
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2. Find the devices at the beginning of the combined-logic string of gates that 
seem to start the non-convergent string.

3. Check the operating point of these devices very closely, to see what region 
they operate in. 

Model parameters associated with this region are probably inappropriate.

Circuit simulation uses single-transistor characterization, to simulate a large 
collection of devices. If a circuit fails to converge, the cause can be a single 
transistor, anywhere in the circuit.

PN Junctions (Diodes, MOSFETs, BJTs)
PN junctions found in diode, BJT, and MOSFET models, might exhibit non-
convergent behavior, in both DC and transient analysis.

Example
PN junctions often have a high off resistance, and result in an ill-conditioned 
matrix. To overcome this, use .OPTION GMINDC and .OPTION GMIN to 
automatically parallel every PN junction in a design, with a conductance. 

Non-convergence can occur if you overdrive the PN junction. This happens if 
you omit a current-limiting resistor, or if the resistor has a very small value. In 
transient analysis, protection diodes are often temporarily forward-biased (due 
to the inductive switching effect). This overdrives the diode, and can result in 
non-convergence, if you omit a current-limiting resistor.

Troubleshooting DC Bias Point and DC Sweep Non-
Convergence
The following procedures trade runtime performance and loosen certain 
tolerance bounds to overcome DC non-convergence. HSPICE steps from one 
DC convergence algorithm to another other to find a solution. You can assist 
this process as follows (in the same order).

1. Remove or comment out all simulation control options from your HSPICE 
testbench/netlists to allow the default auto-convergence procedure to work.

2. For circuits with feedback or multiple bias states (FF and latches), it is 
important to provide HSPICE with an initial guess that is close to the final 
solution. Use the .NODESET command to set initial voltage guesses. In 
particular, focus on those nodes the output *.lis file lists as 
nonconvergent.

.nodeset v(in)=0 v(out)=3.3
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3. Use the symbolic (.OPTION SYMB) operating point algorithm which finds 
initial guesses before calculating the operating point.

.option SYMB=1

Explanation: When you use the SYMB option, HSPICE assumes the circuit 
is digital and assigns a low/high state to all nodes as a reasonable initial 
voltage guess. This option improves DC convergence for oscillators, logic, 
and mixed-signal circuits.

4. Increase ITL1 from default value of 200 up to 500 in steps of 100. To further 
help DC sweep analysis, you may increase ITL2 in the same manor which 
increases the number of iterations HSPICE takes at each DC sweep point.

.option ITL1=300 ITL2=300

Explanation: If increasing ITL2 does not help DC sweep analysis, the 
problem likely lies in model discontinuities. In other words, if you set 
ITL2=400 and do not solve the convergence problem, it is unlikely that any 
further increase of the value of ITL2 can help convergence. As a 
workaround, try to increase and offset the sweep size in an attempt to miss 
model problems.

Original: .dc vin 0v 3.3v .1v
Increase: .dc vin 0v 3.3v .2v
Offset: .dc vin .01v 3.31v .1v

5. HSPICE tries various convergence algorithms to achieve DC convergence. 
Read the .lis file to see where HSPICE was when the job aborted. 
HSPICE first tries DCON=1,2, then converge=1. If this is not enough, try the 
other two converge choices along with larger gmindc values 
(CONVERGE=3 is the source stepping method listed in “Inside SPICE”). 
However, do not set gmindc larger than 1e-9.

.option converge=2 gmindc=1e-11

.option converge=3 gmindc=1e-11

6. If certain active element nodes seem to be non-convergent, you may have 
HSPICE perform 2 DC bias point calculations. HSPICE performs the first 
calculation with the active elements turned off. Then, this solution becomes 
the first guess for the DC solution with the elements turned on. You may 
choose one or more elements to turn off, declared on the element line.

Diode n1 n2 diode_model off
Qbjt n1 n2 n3 bjt_model off
Mosfet n1 n2 n3 n4 mos_model off
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Convergence Failure: Too Many Current Probes in Netlist
HSPICE accomplishes probing current by the insertion of a zero-volt source. 
When you explicitly add large numbers of current probes or by use of wildcard 
syntax such as .probe i(*), the size of the solution matrix increases 
significantly which can lead to convergence failures. These failures generate 
the message: **diagnostic** rebuilding matrix with pivot 
option for special current probe process 

An error message follows: **error** no convergence in operating 
point.

Workarounds: 
■ Reduce the number of current probes by only probing specific nodes of 

interest, or adding a qualification to the wildcard. 
■ Create a saved operating point and tell HSPICE to use those initial 

conditions in the transient analysis. 

The basic steps are: 
■ Run HSPICE without all the current probes, but include a .OP statement to 

create an initial conditions (.ic0) file. 
■ Include that file in your netlist. Example: 

.include my_design.ic0 
■ Add “uic” for Use Initial Conditions on the .TRAN line. Example: 

.tran 1n 100n uic

Then, it is possible that the design runs to completion even with the large 
number of current probes. 

For more information on non-convergence, refer to Autoconverge Process and 
Reducing DC Errors.

Troubleshooting: Nodes set to initial conditions with .IC may 
not always begin at those voltage values
The value set by .IC is not a voltage source, but a voltage source equivalent in 
the form of a current source with a parallel conductance. By default, that 
conductance is 100 mho (siemens) for an effective resistance of .01 ohms. The 
GMAX parameter sets that default conductance.

For example, if a Norton equivalent circuit created by that source is comparable 
with the conductance of other parts of the circuit, the DC node voltages deviate 
from those specified in .IC statement. Adjusting the GMAX parameter can 
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reduce this effect. For instance, setting GMAX to 1e6 creates a very low 
internal resistance. Here is a simple case that illustrates the effect of changing 
GMAX from its default value. 

*** initial condition test ***
.option ingold=1
v01 n1 0 1v
r01 n1 n2 1m
r02 n2 n3 1m
r03 n3 0 1m
*.option gmax=1e6 
.ic v(n2)=.25v v(n3)=.25v
.print tran v(n2) v(n3)
.tran 1n 5n
.end
******************************

Results with GMAX defaulting to 100 siemens...

 time    voltage      voltage 
 n2           n3   
 0.  0.6386       0.3160  
 1.0000e-09      0.6667       0.3333  
 2.0000e-09      0.6667       0.3333  
 3.0000e-09      0.6667       0.3333 
 4.0000e-09      0.6667       0.3333
 5.0000e-09      0.6667       0.3333

Results with GMAX set to 1e6 siemens...

 time    voltage      voltage
 n2           n3  
 0.            0.2507       0.2498   

  1.0000e-09      0.6667       0.3333   
  2.0000e-09      0.6667       0.3333 
 3.0000e-09      0.6667       0.3333   
  4.0000e-09      0.6667       0.3333   
  5.0000e-09      0.6667       0.3333

Note that the initial conditions are much closer to the desired values. 
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14AC Small-Signal and Noise Analysis

Describes how to perform AC and noise small signal analyses in HSPICE.

This chapter covers AC small signal analysis, AC analysis of an RC network, 
noise analysis, and other AC analysis statements. For information on output 
variables, see AC Analysis Output Variables on page 394.

HSPICE ships numerous examples for your use; see Applications of General 
Interest Examples for paths to demo files.

For descriptions of individual HSPICE commands referenced in this chapter, 
see HSPICE Netlist Commands in the HSPICE Reference Manual: Commands 
and Control Options.

For discussion of use of the .AC command in subcircuit blocks, see Using 
Isomorphic Analyses in Subckt Blocks on page 44 in this manual.

For discussion of Transient Noise Analysis and Simulation of Random Noise, 
see the HSPICE User Guide: Advanced Analog Simulation and Analysis.

These topics are covered in the following sections:
■ Using the .AC Statement
■ AC Small Signal Analysis
■ Using .NOISE for Small-Signal Noise Analysis
■ Using .AC/.NOISE Analyses with .TRAN
■ Measuring Total Noise
■ Using .LSTB for Loop Stability Analysis
■ Other AC Analysis Statements - .DISTO, .NET, and .SAMPLE
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Using the .AC Statement

You can use the .AC statement for the following applications:
■ Single/double sweeps
■ Sweeps using parameters
■ .AC analysis optimization
■ Random/Monte Carlo analyses

For .AC command syntax, see the .AC command in the HSPICE Reference 
Manual: Commands and Control Options.

.AC Control Options
You can use the following .AC control options when performing an AC analysis:

For syntax descriptions for these options, see HSPICE Netlist Simulation 
Control Options in the HSPICE Reference Manual: Commands and Control 
Options.

.AC Command Examples
Example 1
.AC DEC 10 1K 100MEG

This example performs a frequency sweep by 10 points per decade from 1kHz 
to 100MHz.

Example 2
.AC LIN 100 1 100HZ

This example runs a 100-point frequency sweep from 1- to 100-Hz.

Example 3
.AC DEC 10 1 10K SWEEP cload LIN 20 1pf 10pf

ABSH RELH UNWRAP

MAXAMP DI
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This example performs an AC analysis for each value of cload. This results 
from a linear sweep of cload between 1- and 10-pF (20 points), sweeping the 
frequency by 10 points per decade from 1- to 10-kHz.

Example 4
.AC DEC 10 1 10K SWEEP rx POI 2 5k 15k

This example performs an AC analysis for each value of rx, 5k and 15k, 
sweeping the frequency by 10 points per decade from 1- to 10-kHz.

Example 5
.AC DEC 10 1 10K SWEEP DATA=datanm

This example uses the .DATA statement to perform a series of AC analyses, 
modifying more than one parameter. The datanm file contains the parameters.

Example 6
.AC DEC 10 1 10K SWEEP MONTE=30

This example illustrates a frequency sweep and a Monte Carlo analysis with 30 
trials.

Example 7
AC DEC 10 1 10K SWEEP MONTE=10 firstrun=15

This example illustrates a frequency sweep and a Monte Carlo analysis from 
the 15th to the 24th trials.

Example 8
.AC DEC 10 1 10K SWEEP MONTE=list(10 20:30 35:40 50)

This example illustrates a frequency sweep and a Monte Carlo analysis at 10th 
trial and then from the 20th to 30th trial, followed by the 35th to 40th trial and 
finally at 50th trial.

AC Small Signal Analysis

AC small signal analysis in HSPICE computes AC output variables as a 
function of frequency (see Figure 55 on page 540). HSPICE first solves for the 
DC operating point conditions. It then uses these conditions to develop linear, 
small-signal models for all non-linear devices in the circuit.
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Figure 55 AC Small Signal Analysis Flow

In HSPICE, the output of AC Analysis includes voltages and currents.

HSPICE converts capacitor and inductor values to their corresponding 
admittances: 

 for capacitors

for inductors

Resistors can have different DC and AC values. If you specify AC=<value> in 
a resistor statement, HSPICE uses the DC value of resistance to calculate the 
operating point, but uses the AC resistance value in the AC analysis. When you 
analyze operational amplifiers, HSPICE uses a low value for the feedback 
resistance to compute the operating point for the unity gain configuration. You 
can then use a very large value for the AC resistance in AC analysis of the 
open loop configuration.

AC analysis of bipolar transistors is based on the small-signal equivalent circuit, 
as described in the HSPICE Elements and Device Models Manual. MOSFET 

ABSH

UNWRAP

AC options: 

RELH
MAXAMP
DI

ACTransient

Simulation Experiment

AC Small-Signal Simulations

DC

DC options, to solve
operating-point

.AC

.NOISE

.DISTO

.SAMPLE

.LSTB

.LIN

yC jC=

yL
1

jL
---------=
540 HSPICE® User Guide: Basic Simulation and Analysis
K-2015.06



Chapter 14: AC Small-Signal and Noise Analysis
Using .NOISE for Small-Signal Noise Analysis
AC-equivalent circuit models are described in the HSPICE Elements and 
Device Models Manual.

The AC analysis statement can sweep values for:
■ Frequency.
■ Element.
■ Temperature.
■ Model parameter.
■ Randomized (Monte Carlo) distribution.
■ Optimization and AC analysis.

Additionally, as part of the small-signal analysis tools, HSPICE provides:
■ Noise analysis.
■ Distortion analysis.
■ Network analysis.
■ Sampling noise.

You can use the .AC statement in several different formats, depending on the 
application. You can also use the .AC statement to perform data-driven 
analysis in HSPICE.

Using .NOISE for Small-Signal Noise Analysis

A circuit noise analysis can be performed associated with a small-signal .AC 
analysis. The .NOISE command will activate a noise analysis that calculates 
the output noise generated based on the contributions from all noise sources 
within the circuit. This noise may be from passive elements, such as thermal 
(Johnson) noise in resistors, or from sources such as shot, channel, and flicker 
noise present within transistors. Most transistors will have several noise 
sources. For descriptions of noise models for each device type, see the 
HSPICE Reference Manual: Elements and Device Models. In most cases, the 
individual noise sources in HSPICE lack statistical correlation, and this allows 
their contributions to output noise to be computed independently. The total 
output noise voltage is the RMS sum of the individual noise contributions:
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Equation 45

Where,

 is the output noise spectral density ( ) at the AC analysis 
frequency.

 is the mean-squared noise spectral density ( ) for each noise 

current source due to thermal, shot, flicker, or other noise.

 is the equivalent transimpedance between each noise current source and 

the output.

 is the number of noise sources associated with all circuit elements.

This analysis will be performed for every frequency specified with the .AC 
command. The output for noise analysis is specified in the .NOISE syntax:

Basic Syntax:
.NOISE v(out <,ref>) src <interval>

The output noise (onoise) voltage is computed at the out node specified; if the 
(optional) ref node is also given, the output is taken as the differential output 
noise voltage v(out,ref). Noise analysis requires the specification of an 
independent input source (src). This allows the calculation of the equivalent 
input noise given by

Equation 46

Where,

 is the equivalent input noise spectral density at the input source.  is the 
gain between the input source (src) and the output.

The .NOISE analysis can also generate a summary for how each noise 
generator within the circuit will contribute to output noise. Specify an integer 
value for interval to include a device noise summary for every interval 
frequency points in the HSPICE output listing. No summary is included unless 
interval is specified. The .NOISE analysis will also compute the total 
integrated noise over the AC frequency range, which will also be included in the 
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output listing. The output summary will include values for the device noise 
sources given in Table 54 on page 543 — Table 56 on page 545.

To request .NOISE analysis results (magnitude and decibel) with .print/
.probe use:

.probe noise onoise onoise(m) onoise(db)

.probe noise inoise inoise(m) inoise(db)

Results will be included in the *.ac0 file. Output noise voltage or current units 

are either  or , respectively. Device-level noise source 
contributions will also be included in the *.ac0 file (unless you have set 
.option probe=1). The naming convention and units for device level noise 
contributions is also shown in the following tables.

To ensure that device noise models will be included in the analysis, verify that 
noise parameters are being set in your transistor models. Include values for AF 
and KF, for example, if you wish to activate flicker noise models for your 
devices. 

See also, Using Noise Analysis Results as Input Noise Sources in the HSPICE 
User Guide: Advanced Analog Simulation and Analysis.

For a complete description of the .NOISE command syntax and examples, see 
the .NOISE command in the HSPICE Reference Manual: Commands and 
Control Options. Note that the .NOISE analysis requires an .AC statement, and 
that if more than one .NOISE statement is included, HSPICE will run only the 
last statement. 

Table 54 .NOISE Measurements Available for MOSFETs

.ac .lis Unit Description

nd rd Output thermal noise due to drain resistor

ns rs Output thermal noise due to source resistor

ni id Output channel thermal noise

V Hz A Hz

V
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Hz
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V
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Hz
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V
2

Hz
-------
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nf fn Output flicker noise

ntg total Total output noise: 

TOT=RD + RS + ID + FN

Table 55 .NOISE Measurements Available for BJTs

.ac .lis Unit Description

rb rb Output thermal noise due to base resistor

rc rc Output thermal noise due to collector resistor

re re Output thermal noise due to emitter resistor

nb ib Output noise due to base shot noise source

nc ic Output thermal noise due to collector shot noise source

nf fn Output noise due to flicker noise source

nt total Total output noise: 

TOT=RB + RC + RE + IB + IC + FN

Table 54 .NOISE Measurements Available for MOSFETs (Continued)

.ac .lis Unit Description
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Using .AC/.NOISE Analyses with .TRAN

In some situations, a .TRAN analysis may be needed to establish the operating 
point used for .AC or .NOISE analysis. 

To do this, use the combination of commands as shown in the example below:

.TRAN 1n 5u   $ Transient analysis

.OP 1u 2 u 3u $ Request operating point analysis 

.AC DEC 100 1 20e9 $ AC analysis 

.NOISE V(out) V1 $ NOISE analysis

HSPICE performs separate .AC analyses for all time values specified as well 
as one .AC run at time zero. This happens during the .TRAN analysis as it 
does the .OP and .AC evaluations, and results in separate *.AC0 files with 
unique labels for each time value specified. An *.ac0@tranop.grp file is also 
created when you run .AC/.NOISE with .TRAN analysis.

In addition, the .OP used at the time values specified is fully dynamic, meaning 
it uses all sources and non-linearities involved at that time value during 
the .TRAN. The charges and currents of the .TRAN are used and preserved for 
the .AC. It does this by using the derivatives (C=dQ/dv, G=dI/dv) at that point in 
the .TRAN for computing the .AC small-signal analysis. 

The .AC and .NOISE analysis is then performed at this operating point. 

Table 56 .NOISE Measurements Available for Diodes

.ac .lis Unit Description

nr rs Output noise due to diode series resistance

ni id Output noise due to shot noise

nf fn Output noise due to flicker noise

nt total Total output noise: 

TOT=RS + ID + FN
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For additional information, see .OP analysis in the HSPICE Reference Manual: 
Commands and Control Options. 

Measuring Total Noise

You can measure total noise using the .MEASURE command with ac. After 
performing a small signal noise analysis, HSPICE prints the total output noise 
voltage to the *.lis file. For example:

**** total output noise voltage   =   51.8809m   volts

You can get the total noise output as reported in the *.lis or the *.noise# 
file by using the following two .MEASURE commands:

.meas ac int_noise_sq integ par('onoise(m)*onoise(m)')
+ from='fstart' to='fstop'

.meas ac total_noise_v param='sqrt(int_noise_sq)'

Using .LSTB for Loop Stability Analysis

Stability analysis can be applied on feedback circuits to analyze loop gain and 
phase characteristics in the frequency domain. Examples of circuits with 
feedback are amplifiers, bandgaps, oscillators, and voltage regulators. The 
.LSTB command aids in studying the analog circuit stability margin both for 
oscillators and the circuits which are not supposed to be oscillating. Stability 
analysis is performed without breaking the feedback loop of the circuit on AC 
analysis while maintaining the DC operating point and considering AC loading.

A 0V DC voltage source is required to place in series in the loop of interest. 
Two voltage sources are required for differential or common-mode loop 
analysis. The .LSTB command measures the loop gain by successive injection 
(Middlebrook Technique, see http://authors.library.caltech.edu/4537/1/
MIDieeemm06.pdf). 

A zero voltage source is placed in series in the loop: one pin of the voltage loop 
must be connected to the loop input, the other pin to the loop output. The 
orientation of inserted voltage sources in differential/common-mode testing is 
significant. It is required that the positive terminal of both voltage sources go to 
the input of amplifier or go to the output of amplifier. 
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The .LSTB command can be used for these modes: single-ended, differential, 
and common. This analysis supports .PRINT / .PROBE / .MEASURE 
statements and can be used with .ALTER to generate multiple loop analyses. 
The functionality is available on all platforms.

For command syntax and additional examples, refer to .LSTB and .MEASURE 
LSTB in the HSPICE Reference Manual: Commands and Control Options. 

Note: When measuring loop gain for the circuit by using AC analysis, if 
you open the feedback loop and use AC analysis, you run the risk 
of changing the DC operating points on either side of the loop 
and changing the impedances on both sides of the loop from 
their closed loop impedance. This will give you errors in your 
results.

However, there is a two-step AC analysis technique that uses 
ideal voltage and current sources to measure the voltage and 
current gains. After you get the voltage and current gains, you 
need to post-process the results to get the final loop gain. This 
method works without introducing errors into the results.

Output Formats for Loop Stability (.LSTB) Analysis
The outputs for loop stability analysis are as follows:
■ The gain margin (GM), phase margin (PM), unity gain frequency (FU) and 

gain at minimum frequency (ADC) are reported in the *.lis file. 
■ The Loop Gain is reported to the *.cx# file, which is always produced for 

.LSTB analysis. The *.cx# file is a general file for all the complex outputs. 
It contains the data for waveforms as complex vectors.

■ If you specify.probe ac lstb(db) lstb(mag) lstb(real) 
lstb(imag) lstb(phase), the specific format of loop gain goes to the 
*.ac# file for viewing.

■ If an *.ac# file is produced with .probe ac lstb, then both *.ac# and 
*.cx# file could be used to view magnitude, phase, real, and imaginary 
versus frequency as complex vectors.

Loop Stability Analysis Usage
.LSTB mode=[single|diff|comm]
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+ vsource=[vlstb|vlstbp,vlstbn]

Examples

Single-mode loop analysis on loop indicated by vx voltage source:

.LSTB mode=single vsource=vx

Differential-mode loop analysis on loops indicated by vp and vn voltage 
sources:

.LSTB mode=diff vsource=vp,vn

Common-mode loop analysis on loops indicated by vp and vn voltage sources:

.LSTB mode=comm vsource=vp,vn

Using .ALTER for Loop Stability Analysis
You can perform multiple loop stability analyses using .alter blocks. This is 
useful in cases where the circuit has multiple feedback loops. The top-level 
netlist should contain the .AC analysis command and the first LSTB analysis 
command. The .alter blocks to define different loop conditions can contain 
different LSTB analysis commands and any altered parameters. You should not 
redefine the .AC analysis command in the .alter blocks because this will 
cause HSPICE to produce unexpected results.

An example:

* top level LSTB analysis
.include 'netlist.cir'
.ac DEC 10 1e3 1e9      $ AC analysis for all loops
.lstb mode=single vsource=vx1
.probe ac lstb
* alter 1
.alter loop1
.lstb mode=single vsource=vx2
* alter 2
.alter loop2
.lstb mode=single vsource=vx3
.end

Single-Ended Mode Example: Ideal Inverter
The following is an example available in the demo directory that ships with 
HSPICE showing use of a single-ended mode input netlist. (See 
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$installdir/demo/hspice/lstb/single.sp.)

Figure 56 Ideal inverter amplifier with single pole

This example netlist simulates single mode loop stability for a single-pole ideal 
inverter amplifier.

.GLOBAL gnd!

 v1 vin net59 dc=0 
 v0 vs gnd! dc=0 ac=1 sin ( 0 1 1e6 0 0 0 )
 e3 net60 gnd! vcvs vin gnd! -1000 max=1 min=-1 abs=0
r0 net59 vout r=1e6 

 r1 vs vin r=1e6
 r2 net60 vout r=1e3 
 c0 vout gnd! c='1n'
 
.ac DEC '100' '100' '100e9'

 .lstb mode=single vsource=v1
 .option post
.probe ac lstb(m) lstb(db) lstb(p) lstb(r) lstb(i) 
.end
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The sequence of commands, controls, and parameters is as follows:

1. Insert a 0V voltage source in the feedback path

2. Specify an input source 

3. Specify an ideal amplifier

4. Specify a feedback resistor

5. Specify a source resistor

6. Specify an output pole 

7. Perform an .AC analysis (required)

8. Perform a single-mode .LSTB analysis

9. Add the .PROBE command for signals to be plotted

Differential Mode Example: Bandgap
The following is partial netlist showing the addition of two 0V DC sources for 
stability:

.subckt bandgap_low_voltage agnd avdd vbg
xi57 agnd net317 avdd v4_i v2_i vgate opamp_p
vlstbn v4_i v4 0 $0V DC source for stability loop analysis
vlstbp v2_i v2 0 $0V DC source for stability loop analysis
*
*
.ends bandgap_low_voltage
.AC DEC 100 100 10e9 $ AC analysis is required
.LSTB mode=diff vsource=xi4.vlstbp,xi4.vlstbn $ LSTB analysis
.option post probe
.probe AC lstb(m) lstb(p) lstb(db) $ Probe mag, phase, dB
.measure LSTB pm phase_margin $ Measure phase margin
.end
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Figure 57 Adding two 0V voltage sources to bandgap subcircuit

Differential mode output can be viewed in both X-Y and Polar plots:

Add two 0V voltage sources
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Figure 58 Custom WaveView plots enable you to access differential output

The *.lis output for this differential mode analysis is as follows:

*** LSTB analysis ***
gain_margin(dB) = 13.23320
phase_margin(deg) = 51.28824
unity_gain_freq(Hz) = 9.6913777E+07
loop_gain_mini_freq(dB) = 50.47896

Controlling LSTB Warning Messages
To avoid re-running simulations if there a syntax error in the.LSTB statement 
you can use .OPTION STRICT_CHECK. Use of this option is especially useful 

551dB

551°
552 HSPICE® User Guide: Basic Simulation and Analysis
K-2015.06



Chapter 14: AC Small-Signal and Noise Analysis
Other AC Analysis Statements - .DISTO, .NET, and .SAMPLE
when running long AC and LSTB analyses on a batch machine and the AC 
analysis succeeds.

You can use .OPTION STRICT_CHECK to control the following messages:

1. The second v-source for diff/comm mode testing',' is missing in LSTB 
statement.',' Analysis is omitted.'

2. 'The v-source name in LSTB',' statement is invalid. Analysis is omitted.

3. 'The mode type is missing in',' LSTB statement. Analysis is omitted.'

4. 'The mode type in LSTB statement',' is invalid. Analysis is omitted.'

5. 'Expected a keyword in LSTB statement.',' Analysis is omitted.'

6.  'The v-sources are missing in',' LSTB statement. Analysis is omitted.'

7. 'The v-source for single mode is',' missing in LSTB statement.',' Analysis is 
omitted.'

8.  'The first v-source for diff/comm mode testing',' is missing in LSTB 
statement.',' Analysis is omitted.'

9.  'The second v-source for diff/comm',' mode in LSTB statement is missing.',' 
Analysis is omitted.'

10.  'Found an invalid keyword "',1a7,'" for LSTB analysis.'

11.  'The second v-source for diff/comm mode testing',' is missing in LSTB 
statement.',' Analysis is omitted.'

For details on usage, see .OPTION STRICT_CHECK in the HSPICE 
Reference Manual: Commands and Control Options.

Other AC Analysis Statements - .DISTO, .NET, 
and .SAMPLE

The following sections describe the commands you can use to perform other 
types of AC analyses:
■ Using .DISTO for Small-Signal Distortion Analysis
■ .NET Parameter Analysis
■ Using .SAMPLE for Noise Folding Analysis
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Using .DISTO for Small-Signal Distortion Analysis
The .DISTO statement computes the distortion characteristics of the circuit in 
an AC small-signal, sinusoidal, steady-state analysis. HSPICE computes and 
reports five distortion measures at the specified load resistor. The analysis is 
performed assuming that one or two signal frequencies are imposed at the 
input. The first frequency, F1 (used to calculate harmonic distortion), is the 
nominal analysis frequency set by the .AC statement frequency sweep. The 
optional second input frequency, F2 (used to calculate intermodulation 
distortion), is set implicitly by specifying the skw2 parameter, which is the ratio 
F2/F1.

For command syntax and examples, see the .DISTO command in the HSPICE 
Reference Manual: Commands and Control Options.

.NET Parameter Analysis
HSPICE uses the AC analysis results to perform network analysis. The .NET 
analysis can only extract linear transfer parameters for one- and two-port 
networks. Because of this limitation, .LIN analysis is the preferred linear 
network analysis method, see Linear Network Parameter Analysis in HSPICE® 
User Guide: Signal Integrity Modeling and Analysis.

 The .NET statement defines Z, Y, H, and S-parameters to calculate. The 
following list shows various combinations of the .NET statement for network 
matrices that HSPICE calculates:

.NET Vout Isrc V = [Z]  [I]

.NET Iout Vsrc I = [Y] [V]

.NET Iout Isrc [V1 I2]T = [H] [I1 V2]T

.NET Vout Vsrc [I1 V2]T = [S] [V1 I2]T

([M]T represents the transpose of the M matrix).

Note: The preceding list does not mean that you must use combination 
(1) to calculate Z parameters. However, if you specify .NET 
Vout Isrc, HSPICE initially evaluates the Z matrix parameters. 
It then uses standard conversion equations to determine S-
parameters or any other requested parameters.

Figure 59 shows the importance of variables in the .NET statement. Here, 
Isrc and Vce are the DC biases, applied to the BJT.
554 HSPICE® User Guide: Basic Simulation and Analysis
K-2015.06



Chapter 14: AC Small-Signal and Noise Analysis
Other AC Analysis Statements - .DISTO, .NET, and .SAMPLE
Figure 59 Parameters with .NET V(2) Isrc

This .NET statement provides an incorrect result for the Z parameter 
calculation:

.NET V(2) Isrc

When HSPICE runs AC analysis, it shorts all DC voltage sources; all DC 
current sources are open-circuited. As a result, V(2) shorts to ground and its 
value is zero in AC analysis. This affects the results of the network analysis. 

In this example, HSPICE attempts to calculate the Z parameters (Z11 and 
Z21), defined as Z11=V1/I1 and Z21=V2/I1 with I2=0. The above example does 
not satisfy the requirement that I2 must be zero. Instead, V2 is zero, which 
results in incorrect values for Z11 and Z21.

Figure 60 shows the correct biasing configurations for performing network 
analysis for the Z, Y, H, and S-parameters.
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Figure 60 Network Parameter Configurations

Example
To calculate the H parameters, HSPICE uses the .NET statement.

.NET I(VC) IB

VC denotes the voltage at the C node, which is the collector of the BJT. With 
this statement, HSPICE uses the following equations to calculate H parameters 
immediately after AC analysis:

To calculate Hybrid parameters (H11 and H21), the DC voltage source (VCE) 
sets V2 to zero, and the DC current source (IB) sets I1 to zero. Setting I1 and 
V2 to zero, precisely meets the conditions of the circuit under examination: the 
input current source is open-circuited, and the output voltage source shorts to 
ground.
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A data file containing measured results can drive external DC biases applied to 
a BJT. Not all DC currents and voltages (at input and output ports) might be 
available. When you run a network analysis, examine the circuit and select 
suitable input and output variables. This helps you to obtain correctly calculated 
results. The following example demonstrates HSPICE network analysis of a 
BJT.

Using .SAMPLE for Noise Folding Analysis
For data acquisition of analog signals, data sampling noise often needs to be 
analyzed. This is accomplished with the .SAMPLE statement used in 
conjunction with the .NOISE and .AC statements. The SAMPLE analysis 
performs a simple noise folding analysis at the output node.

For the syntax and description of the .SAMPLE statement, see the .SAMPLE 
command in the HSPICE Reference Manual: Commands and Control Options.
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15Transient Analysis

Describes how to use transient analysis to compute the circuit solution.

Transient analysis computes the circuit solution, as a function of time, over a 
time range specified in the .TRAN statement. 

For descriptions of individual HSPICE commands referenced in this chapter, 
see the HSPICE Reference Manual: Commands and Control Options.

For discussion of use of the .TRAN command in subcircuit blocks, see Using 
Isomorphic Analyses in Subckt Blocks on page 44.

For full description of analyzing time-variant noise, see Transient Noise 
Analysis in the HSPICE User Guide: Advanced Analog Simulation and 
Analysis.

HSPICE ships hundreds of examples for your use; see Listing of 
Demonstration Input Files for paths to demo files.

The following sections present these topics:
■ Simulation Flow
■ Overview of Transient Analysis
■ Transient Control Options
■ Simulation Speed and Accuracy Using the RUNLVL Option
■ Numerical Integration Algorithm Controls
■ Dynamic Check Using the .BIASCHK Statement
■ Storing and Restoring Checkpoint Files
■ Troubleshooting: Internal Time Step, Measurement Errors
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Simulation Flow

Figure 61 on page 560 illustrates the simulation flow for transient analysis in 
HSPICE.

Figure 61 Transient Analysis Simulation Flow

Overview of Transient Analysis

Transient analysis simulates a circuit at a specific time. Some of its algorithms, 
control options, convergence-related issues, and initialization parameters are 
different than those used in DC analysis. However, a transient analysis first 
performs a DC operating point analysis, unless you specify the UIC option in 
the .TRAN statement. 
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simulation

Simulation Experiment
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Unless you set the initial circuit operating conditions, some circuits (such as 
oscillators, or circuits with feedback) do not have stable operating point 
solutions. For these circuits, either:
■ Break the feedback loop, to calculate a stable DC operating point, or 
■ Specify the initial conditions in the simulation input. 

For setting initial conditions, see Initial Conditions and UIC Parameters.

Example
In the following example, the UIC parameter (in the .TRAN statement) 
bypasses the initial DC operating point analysis. The .OP statement calculates 
the transient operating point (at t=20 ns), during the transient analysis.

.TRAN 1ns 100ns UIC

.OP 20ns

In a transient analysis, the internal "timestep too small" error message 
indicates that the circuit failed to converge. The cause of this convergence 
failure might be that stated initial conditions are not close enough to the actual 
DC operating point values. Use the commands in this chapter to help achieve 
convergence in a transient analysis. See also: Troubleshooting: Internal Time 
Step, Measurement Errors.

The following sections discuss these topics.
■ Data-Driven vs. Outer Parameter Sweeps
■ Transient Analysis Output

Data-Driven vs. Outer Parameter Sweeps
The following defines the differences between a data-driven sweep and an 
outer parameter sweep.

Data-Driven Sweep
The use of a data set allows the sweeping of both nonuniform values and 
multiple parameters. You need to specify each value to vary in the simulation. 
This method generates one output file for the entire simulation. When viewing 
signals, the traces correspond to each parameter sweep. 
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Example: Data-Driven Sweep

.tran 1n 100n sweep data=mydata

.data mydata param1 param2 ...
val1  vala ...
val2  valb ...
 ....
.enddata

Parameter Sweep
When you express the values of a parameter by using decade, octave, linear, or 
point-of-interest variation, you can use the sweep keyword to control the 
parameter. This method does not allow for the sweeping of multiple 
parameters. Similar to the data-driven sweep, HSPICE creates only one output 
file with the signals having multiple traces. Be sure to sequence the var 
(param) before the type (DEC, LIN).

Examples

In this example, param varies 10 times for each decade from 1 to 10 u and a 
transient analysis runs for each value.

.tran 1n 100n sweep param DEC 10 1u 10u

In this example, param varies 5 equal times from 1u to 10u with a transient 
analysis for each value.

.tran 1n 100n sweep param LIN 5 1u 10u

Sweeping Multiple Parameters
Although HSPICE does not directly provide the facility to sweep multiple 
parameters, it does offer the .DATA table structure. A perl script is available to 
allow you to specify lists of parameters and values at
https://solvnet.synopsys.com/retrieve/021478.html 

This script creates a .DATA table with all permutations of the listed values. It 
also allows you to create .ALTERs instead of a .DATA table, if preferred. For 
usage details, run hspice_param_sweeper -h.

The script's output goes to STDOUT, so redirect it to a file, for example: 
hspice_param_sweeper > param_sweep.sp), and then .INCLUDE the file 
into your HSPICE netlist. If you choose to create .ALTERs, make sure you 
.INCLUDE them at the very end of your netlist.

If you create a .DATA table, you can invoke it as follows:

.TRAN 10p 100n SWEEP DATA=sweeper_params
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Here is a sample input to the script.

vddr: 1.1, 1.0, 0.9
  vssr: 0.0
  temp: 0, 55, 100

Note that temp is a special parameter that sweeps the simulation temperature. 
This example produces a .DATA table with 9 rows (3*1*3) containing all 
combinations of the listed parameter values, or 1 base sim + 8 .ALTERs if you 
use the -alter option.

Here is the output produced by the sample input.

 .DATA sweeper_params temp vddr vssr
 0 1.1 0.0
 55 1.1 0.0
100 1.1 0.0
  0 1.0 0.0
 55 1.0 0.0
100 1.0 0.0
 0 0.9 0.0
 55 0.9 0.0
100 0.9 0.0
 .ENDDATA

After you download the script named hspice_param_sweeper.gz (right-
click and select “Save Target As...”), be sure to modify the first line of the script 
to point to your local installation of perl. The default path should work on most 
systems.

Specifying Data Driven Timesteps
Instead of using a constant time step in a .TRAN statement, you can specify 
the timesteps using an inline data statement for the transient simulation.

The data defined in the .DATA statement should define the time point and 
current value for a PWL current source. In the following example, the .DATA 
statement tstep_val defines the time step, step_val and the current value, ival. 
HSPICE uses the timesteps defined in the .DATA statement during the 
transient simulation.

Ipwl nd1 0 PWL (step_val ival)
.tran DATA = tstep_val
.DATA tstep_val step_val ival
+ 10p 1m
+ 30p 10m
+ 70P 10m
+ 100p 100m
.ENDDATA
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The time step value specified in the data table (DATA=tstep_val) controls the 
print intervals.

Transient Analysis Output
.print tran ov1 [ov2 ... ovN]
.probe tran ov1 [ov2 ... ovN]
.measure tran measspec

The ov1, ... ovN output variables can include the following:
■ V(n): voltage at node n.
■ V(n1<,n2>): voltage between the n1 and n2 nodes.

■ Vn(d1): voltage at nth terminal of the d1 device.

■ In(d1): current into nth terminal of the d1 device.

■ ‘expression’: expression, for the plot variables above

You can use wildcards to specify multiple output variables in a single command. 
Output content depends on .OPTION POST or .OPTION PROBE.

Transient Control Options

Method, tolerance, and limit options in this section modify the behavior of 
transient analysis integration routines. Delta is the internal time step. TSTEP 
and TSTOP are the step and stop values in the .TRAN statement. 

Parameter Description

 *.print Writes the output from the .PRINT statement to a *.print file. HSPICE does not 
generate a *.print# file.
■ The header line contains column labels.
■ The first column is time.
■ The remaining columns represent the output variables specified with .PRINT. 
■ Rows that follow the header contain the data values for simulated time points.

 *.tr# Writes output from the .PROBE, .PRINT, or .MEASURE statement to a *.tr# file.
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Table 57 lists the options for RUNLVL.

For discussion of METHOD options, see Numerical Integration Algorithm 
Controls on page 569.

Simulation Speed and Accuracy Using the RUNLVL 
Option

The RUNLVL algorithm, which is on by default in HSPICE, focuses on a 
balance between speed and accuracy. The RUNLVL algorithm:

1. Uses an enhanced Local Truncation Error (LTE) method based on nodal 
voltage for time step control. This is advantageous because voltage is the 
target result users want from a simulation, and there is a clear mathematical 
relation between error tolerance and time step.

2. Adopts a new Newton-Raphson (NR) iteration method for transient analysis. 
It not only improves the convergence but also makes the convergence 
faster.

3. Improves the BYPASS algorithm, as well.

Table 57 Transient Control Options with RUNLVL Turned On, by Category

Method Tolerance and Limit Output

BYPASS
MAXORD
METHOD=

Backward-Euler (BE)
GEAR
TRAP
BDF

PURETP
TRCON

ACCURATE
AUTOSTOP
BKPSIZ
BYTOL
CSHUNT
DELMAX

GMIN
GSHUNT
ITL4
MBYPASS
MAXAMP
MU
RUNLVL

POST

INTERP
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The following sections discuss these topics:
■ RUNLVL Features

RUNLVL Features
The RUNLVL algorithm provides the following characteristics:
■ Simplifies accuracy control by setting RUNLVL values between 1 and 6 with 

6 discrete settings (1=fastest, 6=most accurate).
■ Avoids interpolation error in .MEASURE statements by using the 

interpolating polynomial used by the time integration method.
■ Dynamically checks for correct handling of input signals and controlled 

sources between computed time steps to avoid setting small time steps 
before transient simulation start.

■ Allows HSPICE to take time steps no larger than (Tstop-Tstart)/20. 
DELMAX automatically sets (Tstop-Tstart)/20 if there is no specific setting 
of DELMAX. The effect is that, for example, HSPICE can take larger time 
steps for flat regions.

The RUNLVL algorithm scales all simulation tolerances simultaneously and 
affects time step control, convergence, and model bypass all at once.

This algorithm activates only by use of .OPTION RUNLVL=value. Higher 
values of RUNLVL result in smaller time steps (more Newton-Raphson 
iterations) to meet stricter error tolerances, and higher simulation accuracy.

A valid value for .OPTION RUNLVL is an integer from 1 to 6. Values outside of 
this range cause an error. The default value for RUNLVL is 3. This is the 
recommended starting setting. For simulations that require high accuracy use 
higher values. Use lower values for simulating pure digital or mostly digital 
circuits. HSPICE uses the last setting if you specify multiple settings of RUNLVL 
options.

The .OPTION RUNLVL invokes the advanced simulation algorithm, with the 
default value of RUNLVL=3. This is the recommended starting setting. 
However, you can set it to a higher value if the circuit type is pure analog and/or 
the simulation needs high accuracy.

Table 58 Guidelines for RUNLVL Settings

Circuit type RUNLVL Setting

Digital RUNLVL=1-3
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A *.lis file reports the RUNLVL flag and its effective value. HSPICE sets the 
RUNLVL option automatically in the $install_dir/hspice/hspice.ini 
file, when it generates the file during the installation process. 

All HSPICE simulations first try to find ONE implicit hspice.ini file and take it as 
the first include file; the search order for hspice.ini is:

1. Current working directory

2. User's home directory

3. $install_dir/hspice directory

Interactions Between .OPTION RUNLVL and Other Options
Refer to Table 59 for information on how RUNLVL affects the values of other 
options. Since the latest algorithm invoked by RUNLVL sets the time step and 
error tolerance internally, many transient error tolerance and time step control 
options are no longer valid; furthermore, to assure the greatest efficiency of the 
RUNLVL algorithm, you should let the new engine manage everything itself. 
HSPICE recommends other Options not to tune in the table, as well.

Note: If you set no value for RUNLVL, its value defaults to =3. 

Analog or mixed signal accuracy RUNLVL=3-5

Cell characterization RUNLVL=5-6

Table 59 Options and Interactions

Option Default value with
RUNLVL=3

User definition
ignored

Recommended not to 
tune

ABSV/VNTOL 50u  x

ABSVAR 500m x  

ACCURATE* 1 0   

BYPASS* a 2

CHGTOL 1.0f x  

DI 100  x

Table 58 Guidelines for RUNLVL Settings
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DVDT 4 x  

DVTR 1.0k x  

FAST** 2 0 x  

FS 250m  x

FT 250m x  

IMIN/ITL3 3 x  

LVLTIM 4 x  

METHOD*** 3 TRAP

RELQ 10m x  

RELTOL 1.0m  x

RELV 1.0m  x

RELVAR 300.0m x  

RMAX 5 x

RMIN 1.0n  x

1. * ACCURATE and BYPASS notes:
1. If you set .option ACCURATE then HSPICE limits the RUNLVL value to 5 or 6. Specifying a RUNLVL 
less than 5 results in a simulation at RUNLVL=5. When both ACCURATE and RUNLVL are set, the RUNLVL 
algorithm will be used. 

2. When RUNLVL is set, BYPASS is set to 2. Users can re-define the BYPASS value by setting .option 
BYPASS=<value>; this behavior is independent of the order of RUNLVL and BYPASS;

2. **The FAST option is disabled by the RUNLVL option; setting the RUNLVL value to 1 is comparable to 
setting the FAST option. 

3. ***RUNLVL can work with METHOD=GEAR; in cases where GEAR only determines the numeric 
integration method during transient analysis, the other options that were previously set by GEAR (when 
there is no RUNLVL) now are determined by the RUNLVL mode. This behavior is independent of the order 
of RUNLVL and METHOD. See the following table.

Table 59 Options and Interactions (Continued)

Option Default value with
RUNLVL=3

User definition
ignored

Recommended not to 
tune
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The interactions of RUNLVL and GEAR are shown in Table 60.

Numerical Integration Algorithm Controls

In HSPICE transient analysis, you can select one of several options solve the 
circuit differential algebraic equations:
■ Backward-Euler
■ Gear
■ Trapezoidal
■ BDF (Backward Differentiation Formulae)

Table 60 RUNLVL option and GEAR method interactions

Option GEAR with RUNLVL=1-6

BYPASS 2

BYTOL 100u

LVLTIM Disabled by runlvl

MAXORD 3 for RUNLVL=6
2 for RUNLVL=1-5

MBYPASS 2

RMAX Disabled by runlvl

Table 61 Integration Method

Integration 
Algorithm

Option Settings Comments

Backward-
Euler (BE)

METHOD=GEAR MAXORD=1 or

METHOD=GEAR MU=0

Backward-Euler only

GEAR METHOD=GEAR
METHOD=GEAR MAXORD=2|3

Combines GEAR and BE
2nd/3rd order increases accuracy

TRAP METHOD=TRAP
METHOD=TRAP PURETP

Combines Trapezoidal and BE
Trapezoidal only
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The advanced multicore algorithm (-mn) which you can use in multithread 
simulation (-mt) supports 2nd order GEAR, TRAP, and BDF methods. TRAP is 
the default method. Each integration algorithm has advantages and 
disadvantages. 

The following sections discuss these topics:
■ TRAP
■ GEAR and Backward-Euler
■ BDF

TRAP
The trapezoidal is often the preferred algorithm because of its high accuracy 
level and low simulation time. Recommendation: use the pure trapezoidal 
(PURETP) for oscillators to avoid numerical damping which can cause 
oscillator simulations to die out when you view output in a waveform plot. Unlike 
GEAR, using the TRAP method (.OPTION METHOD = TRAP) is not subject to 
automatic selection after the circuit fails to converge using GEAR method.

GEAR and Backward-Euler
The GEAR method is an appropriate algorithm for convergence. 2nd-order 
GEAR is more accurate than Backward-Euler and 3rd-order GEAR is more 
accurate than 2nd-order GEAR. Recommendation: use the GEAR method for 
those circuit simulations that require high accuracy on current such as leakage 
current measurement.

If the circuit fails to converge using the Trapezoidal integration method, HSPICE 
uses the autoconvergence process where it changes to the GEAR method to 
run the transient analysis again from time=0. 

BDF METHOD=BDF

METHOD=GEAR

Higher order integration (Backward 
Differentiation Formulae)

HSPICE automatically selects BDF based 
on circuit type when METHOD=GEAR; 

To prohibit GEAR from automatically 
selecting BDF, use .OPTION MAXORD.

Table 61 Integration Method (Continued)

Integration 
Algorithm

Option Settings Comments
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When appropriate, to take advantage of high accuracy on medium to large 
analog and mixed signal circuits and also improve performance by using fewer 
iterations per time point, HSPICE automatically switches from method GEAR to 
BDF. However, circuits with some design constructs such as oscillators may not 
simulate correctly using BDF. In these cases, you can override the automatic 
selection of BDF by also using .OPTION MAXORD = [1|2|3]. 

BDF
The BDF method is a high-order integration method that uses the backward 
differentiation formulae. Since BDF is for high accuracy applications, HSPICE 
recommends a RUNLVL setting of 3 or above. The you can use the BDF 
method with multithreading.

Two tolerance options are available to the user for the BDF method: .OPTIONS 
BDFRTOL (relative) and BDFATOL (absolute); each has a default of 1e-3. BDF 
can provide a speed enhancement to mixed-signal circuit simulation, especially 
for circuits with a large number of devices. The BDF method provides no 
performance advantage for use with small circuits in standard cell 
characterization. BDF could be an alternative to GEAR when TRAP fails to 
converge.

The BDFATOL and BDFRTOL options operate independent of .OPTIONS 
RUNLVL and ACCURATE settings with the following exception: 

If either .OPTION RUNLVL or ACCURATE follows an .OPTION BDFATOL or 
BDFRTOL value, the RUNLVL or ACCURATE setting overrides the tolerance of 
the BDF algorithm. If you set ACCURATE with or without RUNLVL, the default for 
BDFATOL or BDFRTOL always defaults to 1e-5.

RUNLVL BDFATOL and BDFRTOL

1 1e-2

2 1e-2 

3 1e-3

4 1e-4 

5 1e-4 

6 1e-5
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Dynamic Check Using the .BIASCHK Statement

The .BIASCHK statement can monitor the voltage bias, current, device-size, 
expression and region during transient analysis, and reports:
■ Element name
■ Time
■ Terminals
■ Bias that exceeds the limit
■ Number of times the bias exceeds the limit for an element

For the syntax and description of this statement, see the .BIASCHK command 
in the HSPICE Reference Manual: Commands and Control Options.

HSPICE saves the information as both a warning and a BIASCHK summary in 
the *.lis file. You can use this command only for active elements, resistors, 
capacitors, and subcircuits.

You can also use .OPTION BIASFILE and .OPTION BIAWARN with 
a .BIASCHK statement.

The following limitations apply to the .BIASCHK statement:
■ Only these models support .BIASCHK: diode, jfet, nmos, pmos, bjt, and r/c 

models, as well as subcircuits.
■ Only W and L MOSFET models support device-size checks.
■ There is support for wildcards in element and model names and except 

definitions but not in expressions.

Four methods are available to check the data with the .BIASCHK command:
■ Limit and noise method
■ Maximum method
■ Minimum method
■ Region method

Note: Only MOSFET models support the region method of data 
checking.

Limit and Noise Method
For a transient simulation that uses the limit and noise method to check the 
data, use the following syntax:
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For local_max

v(tn-1) > limit_value

The bias corresponds to any one of the following two conditions:
■ v(tn-1) > v(tn) && v(tn-1) >= v(tn-2)

■ v(tn-1) >= v(tn) && v(tn-1) > v(tn-2)

local_min: The minimum bias after the time last local max occurs.

A transient analysis records the local_max if it is greater than the limit. In the 
summary HSPICE reports after transient analysis, the 
local_max(next)replaces the local_max(current)when the following 
comparison is true:

local_max(current) - local_min < noise && local_max(next) - local_min < noise 
&& local_max(current) < local_max(next)

At the end of the simulation, the listing file reports all local_max values as 
BIASCHK warnings. During other analyses, HSPICE issues warnings when the 
value you want to check is greater than the limit_value you specify.

Maximum Method
Use this syntax for a transient simulation that specifies the maximum method:

For local_max:

v(tn-1) > max_value

The bias corresponds any one of the following two conditions:
■ v(tn-1) > v(tn) && v(tn-1) >= v(tn-2)

■ v(tn-1) >= v(tn) && v(tn-1) > v(tn-2)

HSPICE lists all local_max values as BIASCHK warnings during a transient 
analysis. During other analyses, HSPICE issues warnings when the value you 
want to check is greater than max_value you specify.

Minimum Method
For a transient simulation that specifies the minimum method to check the data, 
use the following syntax:

For local_min: 

v(tn) < min_value

The bias corresponds any one of the following two conditions:
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■ v(tn-1) < v(tn) && v(tn-1) <= v(tn-2)

■ v(tn-1) <= v(tn) && v(tn-1) < v(tn-2)

During a transient analysis, all local_min values are listed as BIASCHK 
warnings. During other analyses, warnings are issued when the value you want 
to check is smaller than min_value you specify.

Region Method
This method is only for MOSFET models. Three regions exist: 
■ cutoff
■ linear
■ saturation

When the specified transistor enters and exits during transient analysis, the 
specified region is reported.

The biaschk.sp demo example is a netlist that uses the .BIASCHK 
command for a transient simulation. You can find the sample netlist for this 
example in: $installdir/demo/hspice/apps/biaschk.sp

Using BIASCHK with HPP
The .BIASCHK command is available for use with HSPICE Precision Parallel 
(HPP) in the following applications: as an expression monitor and as an 
element and model monitor.

HPP plus .BIASCHK netlist syntax for the expression monitoring function is:

.BIASCHK 'expression' [limit=lim] [noise=ns]
+ [max=max] [min=min]
+ [simulation=op|dc|tr|all] [monitor=v|i|w|l]
+ [tstart=time1] [tstop=time2] [autostop]
+ [interval=time]

HPP plus .BIASCHK netlist syntax for an element and model monitoring 
function is:

.BIASCHK type terminal1=t1 [terminal2=t2]
+ [limit=lim] [noise=ns] [max=max] [min=min]
+ [simulation=op|dc|tr|all] [monitor=v|i]
+ [name=name1,name2,...]
+ [mname=modname_1,modname_2,...]
+ [tstart=time1] [tstop=time2] [autostop]
+ [except=name_1,name_2,...]
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+ [interval=time] [sname=subckt_name1,subckt_name2,...]

See the .BIASCHK command in the HSPICE Reference Manual: Commands 
and Control Options. See also HSPICE Precision Parallel.

Storing and Restoring Checkpoint Files

Store/restore is a feature that creates checkpoint files describing a running 
process during transient analysis; the operating system can later reconstruct 
the process from the contents of this file. This feature is not supported HSPICE 
advanced analog analyses.

Note: The -restore operation should be submitted on a machine that 
has the same kernel version as the machine used to store, 
otherwise, a failure may occur.

The following sections discuss these topics:
■ Store by Using the .STORE Command
■ Store by Interrupting the Simulation Process
■ Restore Operation
■ Usage Requirements

Store by Using the .STORE Command
You can trigger the store function either by issuing a .STORE command in the 
netlist or by interrupting the running simulation process.

Use the following syntax in a netlist:

.STORE [TYPE=IC/MEMDUMP]
+      [FILE=save_file_prefix]
+      [TIME=time1][TIME=time2]...[TIME=timeN]
+      [REPEAT=period]

Table 62 Supported Platforms

Linux RHEL Linux SUSE Sun/Solaris Windows

Yes Yes No No
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+      [TRANTIME=0/1]
+      [SAVE_ON_KILL=0/1] 

For more information of using the .STORE command, see HSPICE Reference 
Manual: Commands and Control Options User Guide.

Store by Interrupting the Simulation Process
The following system command can interrupt HSPICE transient analysis 
simulation and create checkpoint files: kill -USR2 process_id. This 
command allows users to trigger a checkpoint without exiting; the simulation 
continues after the checkpoint is done.

Note: Interrupting a transient analysis simulation while checkpoint files 
are being written may cause HSPICE to crash.

After the checkpoint files are generated, use kill -9 process_id to stop 
the simulation, if needed.

Argument Description

TYPE=IC/MEMDUMP Stores checkpoint data to either an IC type or a memory dump file.If 
unspecified, the default checkpoint file is of the TYPE=IC and the name 
prefix is same as the HSPICE output file.

FILE=save_file_prefix Changes the prefix of the output file names.

TIME=time1,time2,...timeN Collects checkpoint data beginning at time1 after the start of transient 
analysis. It then updates the checkpoint data every 21,600 wall-clock 
seconds if no checkpoint period is specified.

REPEAT=period If you specify a nonzero period, new checkpoint data is collected at every 
period, starting at transient time=0 and overwriting previous interval 
checkpoint data. If a nonzero time1 is specified, checkpoint data is 
collected at time1 + period * n, where n is an integer. Period is always 
calculated based on time1. If repeat=0, the store operation is disabled. If 
you set both time=0 and repeat=0, checkpoint data is saved at transient 
time=0 only.

TRANTIME=0/1 ■ If set to 0, time1 and period are taken as wall-clock time.
■ If set to 1, time1 and period are transient times or times is smaller than 

TSTOP.
Note: If TYPE=MEMDUMP, TRANTIME is ignored.

SAVE_ON_KILL=0/1 If set to 1, the checkpoint data is saved on kill and halts the simulation.
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Example
If system command kill -USR2 process_id is submitted, HSPICE 
generates checkpoint files, then continues the current simulation. If the 
simulation is terminated later on, the checkpoint files can be used to continue 
the simulation when you enter the command-line restore command.

Restore Operation
The restore operation takes place at the command line:

hspice -restore checkpoint_file

The checkpoint_file specifies from which simulation the checkpoint data is 
to be restored. 

Any output files generated by the previous simulation should not be removed. 
After the restore simulation is done, the output files will be updated.

Example
In this example, HSPICE output file will be tagged with “1e-7”, like test.1e-7.tr0:

HSPICE -i test.sp  -restore test.1e-7.ic0 -o test

In this example, HSPICE output file will have “save” tagged, like test.save.tr0:

HSPICE -i test.sp -restore test.save.ic0 -o test

Usage Requirements
■ Store and restore can be performed on 64-bit Linux operating systems.
■ Store and restore can be performed on 32-bit Linux operating systems with 

exec_shield_randomize turned off. Check with your system 
administrator for details.

■ Restore must be performed on the same platform that the store operation 
used.

■ The restore-machine must have at least as much (available) RAM as the 
process was using when the checkpoint data was saved.

■ Store/restore is not available if you are using Cadence® PSF output.
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Specifying Monte Carlo or Temperature Sweeps

Using the .TRAN statement you can either specify a Monte Carlo sweep or a 
temperature sweep. A .temp statement with more than one value can be used 
to sweep the temperatures of interest. 

In the following example, HSPICE performs a transient Monte Carlo analysis at 
each temperature value specified in the .temp statement— -30C, 40C, and 
125C, respectively:

.temp -30 40 125

.tran 1n 20n sweep monte=10

Example netlist: Simulating the netlist below results in three waveform files, 
netlist.tr0, netlist.tr1, and netlist.tr2 with each displaying the 
results of the Monte Carlo sweep at each temperature value.

.options post

.temp -30 40 125

.tran 1n 5n sweep monte=10

.param resval=aunif(1000,400)
vsrc_one 1 0 5v
r_one 1 2 resval tc1=0.02 tc2=0.01
c_one 2 0 1u
.end

Golden Reference for Control Options

When trying to determine the acceptable trade-off between HSPICE accuracy 
and transient analysis simulation performance, it is important to first establish a 
reference value for the measurements you are using to evaluate the 
performance (speed and accuracy) of a given HSPICE configuration. There are 
multiple ways to configure HSPICE for higher accuracy. The following is a good 
starting point that you might want to modify for your specific application:

.OPTION RUNLVL=6 ACCURATE KCLTEST DELMAX=a_small_value

The options are described as follows:

Options Description

.OPTION RUNLVL Invokes the RUNLVL algorithm and sets tolerances to their tightest values.
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Troubleshooting: Internal Time Step, Measurement 
Errors

■ Troubleshooting ‘Time step too small’ Errors
■ Stepsize Increases During a Simulation
■ How TSTEP Affects a Transient Simulation
■ Troubleshooting .MEASUREMENT Issues

Troubleshooting ‘Time step too small’ Errors
These are the usual steps to follow when you get an “internal time step too 
small” in transient analysis errors. The best approach is to incrementally 
change the values of these options, one at a time. Note the time immediately 
following the time step error in the list file. If your simulation gets further into the 
run, then the option is beneficial and you may wish to try higher or lower values 
as appropriate.

1. Be sure you are using the latest version of HSPICE if you can. 
Improvements are continuously made to convergence algorithms.

2. Comment out all time step and convergence options you already have and 
try increasing the value of .OPTION RUNLVL as a first step.

The RUNLVL option is turned on by default to level=3. It implements 
improved convergence techniques. If a higher RUNLVL such as 5 or 6 is set, 
try a lower RUNLVL to get convergence.

.OPTION ACCURATE Sets even more HSPICE OPTIONs to tighter tolerances.

.OPTION KCLTEST Activates Kirchhoff's Current Law testing for every circuit node.

.OPTION DELMAX Sets the largest time step that HSPICE is allowed to take. It should be set to 
the smallest value (1ps, for example) that still allows the simulation to finish in 
a reasonable amount of time. Typically, it should be set approximately 
1/(20*highest-frequency-activity-in-the-circuit)
Warning: This option can create very large tr0 files. Be careful to only probe 
the needed nodes (use .OPTION PROBE combined with .PROBE). 

Options Description
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Note: Remove any other convergence options when you use 
RUNLVL.

3. Use GSHUNT and CSHUNT to add small amounts of conductance and or 
capacitance from each node to ground. Together or alone, these options can 
help solve time step too small problems caused by either high-frequency 
oscillations or numerical noise.

.option gshunt=1e-13 cshunt=1e-17

.option gshunt=1e-12 cshunt=1e-16

.option gshunt=1e-11 cshunt=5e-15

.option gshunt=1e-10 cshunt=1e-15

.option gshunt=1e-9 cshunt=1e-14

4. Increase the time step value, to step over possible model discontinuities.

From original time step settings, change the .TRAN statement to 
incrementally increase TSTEP:
.tran (2)*tstep tstop
.tran (2.5)*tstep tstop
.tran (3)*tstep tstop

5. Using .OPTION METHOD=GEAR may help certain high gain analog (such as 
op-amps) and/or oscillatory circuits (such as a ring oscillators) during 
transient analysis by changing integration methods.
.option method=gear

6. Investigate the device models used. Be sure the version of the models was 
developed for or qualified with the version of HSPICE you are using. For 
CMOS devices, make sure you have finite terminal capacitances and 
resistances. For level 49, be sure you have the model parameters as 
specified in the following example: (these are samples, not defaults)

.model mname nmos level=49 version=3.2
 + cj=5e-4 cjsw=1e-10 cgd0=1e-10 cgs0=1e-10 rs=1e-9 rd=1e-9

In the case of BJT device, be sure to have the following model parameters 
set (again, examples, not defaults).

.model mname npn rb=50 r c=.4 re=1e-3

Stepsize Increases During a Simulation
If you are using .option POST=2 and creating an ASCII output file, due to 
limitations when formatting ASCII output files, HSPICE must increase the 
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spacing between points after writing 100k time points. This allows HSPICE to 
output data from 0 to TSTOP.

Note: NOTE: The simulation accuracy is not affected, only the ASCII 
*.tr0 file will show this issue.

This can be fixed in either of the following ways.

1. Add .option POST_VERSION=2001 to the netlist. The time points are 
now output as double-precision and no digits are lost.

2. Use .option POST=1 in the netlist. This will create a binary output file. 

How TSTEP Affects a Transient Simulation
With the introduction of the RUNLVL algorithm, the impact of TSTEP has been 
greatly reduced to the point that it can be ignored except for niche applications 
like INTERP that causes transient data points to be saved at the interval 
defined by the TSTEP parameter.

TSTEP is specified in the transient analysis netlist command.

.TRAN TSTEP1 TSTOP1 TSTEP2 TSTOP2 ... TSTEPN TSTOPN

The most common usage is a single TSTEP/TSTOP pair. For example:

.TRAN 0.1ps 100ns

TSTEP has a variety of effects on the operation of HSPICE.

1. When the RUNLVL algorithm is in use, the minimum time step is determined 
by the RUNLVL algorithm:

• RUNLVL=3 is the default.

• The RMIN and RMAX options are ignored.

• The maximum time step has a “soft” limit of (Tstop - Tstart) / 20. The 
RUNLVL algorithm allows the time step to exceed RMAX*TSTEP.

• The DELMAX option can be used to override the RUNLVL algorithm's 
choice of maximum time step. When DELMAX is used, TSTEP has no 
impact on simulation accuracy (except when used in conjunction 
with .OPTION INTERP (see # 2 below).

2. When OPTION INTERP is used (off by default):
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• INTERP forces the probed expressions to be printed to the output file 
every multiple of TSTEP. Probed expression will *only* be printed to the 
output at multiples of TSTEP.

• INTERP has no impact on the simulator's internal timesteps.

• The probed values printed to the output are linearly interpolated 
between the simulator solved timesteps preceding and following the 
N*TSTEP time to print at.

Note: Only use INTERP when specifically needed. For 
example, FFT post-processing.

Troubleshooting .MEASUREMENT Issues
If .MEASURE results are incorrect compared to the waveforms, the differences 
you see may be due to one or more of the following issues.
■ You are not comparing the same point. Make sure that the proper nodes and 

sweep points are being used for each comparison. 
■ If .option INTERP is in your netlist, remove it. HSPICE only saves data 

points at the interval defined by the tstep parameter in the .TRAN statement. 
For example, for the .TRAN statement:

.tran 1n 100n

HSPICE saves 100 points at 1ns intervals to the .tr0 file. The lack of 
precision can cause issues with your measurements.

■ In your .TRAN statement, use of the START keyword to delay output 
generation should be removed as it interferes with .measure calculations.

■ If a .measure statement uses the result of previous .meas statement, then 
the calculation starts when the previous result is found. Until the previous 
result is found, it outputs zero.
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16Spectrum Analysis

Describes HSPICE implementation of spectrum analysis based on the Fourier 
transforms.

Spectrum analysis represents a time-domain signal within the frequency 
domain. It most commonly uses the Fourier transform. A Discrete Fourier 
Transform (DFT) uses sequences of time values to determine the frequency 
content of analog signals in circuit simulation. 

HSPICE ships numerous examples for your use; see Listing of Demonstration 
Input Files for paths to demo files and Fourier Analysis Examples.

The following sections discuss these topics:
■ Spectrum Analysis (Fourier Transform)
■ .FFT Analysis
■ Examining the FFT Output
■ AM Modulation
■ Balanced Modulator and Demodulator
■ Signal Detection Test Circuit

Spectrum Analysis (Fourier Transform)

This section describes the Fourier and FFT Analysis flow for HSPICE.
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Figure 62 Fourier and FFT Analysis

HSPICE provides two different Fourier analyses.
■ .FOUR is the same as is available in SPICE 2G6: a standard, fixed-window 

analysis tool. The .FOUR statement performs a Fourier analysis, as part of 
the transient analysis.

■ .FFT is a much more flexible Fourier analysis tool. Use it for analysis tasks 
that require more detail and precision.

.FFT Statement

Time-sweep

Output Variable

.FOUR .FFT

Transient

Display Option

simulation

V I P Other Window Format

.FOUR Statement

Time-sweep

Output Variables

.FOUR .FFT

Transient

Display Options

simulation
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Using the Fourier-Related Statements and Options
For syntax and examples, see the following commands and control options in 
the HSPICE Reference Manual: Commands and Control Options:
■ .FFT 
■ .FOUR
■ .MEASURE FFT
■ .OPTION FFT_ACCURATE
■ .OPTION ACCURATE
■ .OPTION FFTOUT

Fourier Accuracy
Fourier Accuracy is dependent on transient simulation accuracy. For best 
accuracy, set small values for .OPTION RMAX or .OPTION DELMAX. For 
maximum accuracy, set .OPTION DELMAX to 1/(500*frequency). For 
circuits with very high resonance factors (high-Q circuits, such as crystal 
oscillators, tank circuits, and active filters), set DELMAX to less than 
1/(500*frequency)
where, frequency refers to fundamental frequency.

Fourier Equation
The total harmonic distortion is the square root of the sum of the squares, of 
the second through ninth normalized harmonic, times 100, expressed as a 
percent:

Equation 47

The following equation calculates the Fourier coefficients:

THD
1

R1
------- Rm

2

m 2=

9


 
 
 
  1 2/

100% =
HSPICE® User Guide: Basic Simulation and Analysis 585
K-2015.06



Chapter 16: Spectrum Analysis
Spectrum Analysis (Fourier Transform)
Equation 48

The following equations calculate values for the preceding equation:

Equation 49

Equation 50

Equation 51

The following equations approximate the C and D values:

Equation 52

Equation 53

The following equations calculate the magnitude and phase:

Equation 54

g t  Cm mt cos

m 0=

9

 Dm mt sin

m 0=

9

+=

Cm
1

--- g t  mt cos td 

–



=

Dm
1

--- g t  mt sin td 

–



=

g t  Cm m t cos

m 0=

9

 Dm m t sin
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9

+=

Cm g n t  2  m n  
501

--------------------------- 
 cos

n 0=

500

=

Dm g n t  2  m n  
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--------------------------- 
 sin

n 0=

500

=

Rm Cm
2 Dm
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Equation 55

Example 1
The following is input-content for an .OP, .TRAN, or .FOUR analysis. This 
example uses demonstration netlist four.sp, which is available in the 
directory $installdir/demo/hspice/apps.

CMOS INVERTER
*
M1 2 1 0 0 NMOS W=20U L=5U
M2 2 1 3 3 PMOS W=40U L=5U
VDD 3 0 5
VIN 1 0 SIN 2.5 2.5 20MEG
*
.MODEL NMOS NMOS LEVEL=3 CGDO=0.2N CGSO=0.2N CGB0=2N
.MODEL PMOS PMOS LEVEL=3 CGDO=0.2N CGSO=0.2N CGB0=2N
.OP
.TRAN 1N 500N
.FOUR 20MEG V(2)
.PRINT TRAN V(2) V(1)
.END

Example 2
******
cmos inverter
**** fourier analysis tnom = 25.000 temp = 25.000 ****
fourier components of transient response v(2)
dc component=2.430D+00
harmonic   frequency fourier    normalized phase     normalized

no         (hz)    component component   (deg)     phase (deg)
1       20.0000x    3.0462     1.0000   176.5386     0. 
2       40.0000x 115.7006m   37.9817m -106.2672 -282.8057
3       60.0000x 753.0446m 247.2061m 170.7288 -5.8098
4       80.0000x   77.8910m   25.5697m -125.9511 -302.4897
5      100.0000x 296.5549m   97.3517m 164.5430 -11.9956
6      120.0000x   50.0994m   16.4464m -148.1115 -324.6501
7      140.0000x 125.2127m   41.1043m 157.7399   -18.7987
8      160.0000x   25.6916m    8.4339m 172.9579    -3.5807
9      180.0000x   47.7347m   15.6701m 154.1858   -22.3528

    total harmonic distortion=   27.3791   percent

m arctan
Cm

Dm
------- 
 =
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.FFT Analysis

The .FFT statement uses the internal time point values. By default, .FFT uses 
a second-order interpolation to obtain waveform samples, based on the 
number of points that you specify.

You can use windowing functions to reduce the effects of waveform truncation 
on the spectral content. You can also use the .FFT command to specify:
■ Output format
■ Output frequency range
■ Start and stop time point
■ Fundamental frequency
■ Window type
■ Number of sampling time points

Using Windows in FFT Analysis
One problem with spectrum analysis in circuit simulators is that the duration of 
the signals is finite, although adjustable. Applying the FFT method to finite-
duration sequences can produce inadequate results. This occurs because DFT 
assumes periodic extensions and causes spectral leakage. 

The effect occurs when the finite duration of the signal does not result in a 
sequence that contains a whole number of periods. This is especially true when 
you use FFT to detect or estimate signals – that is, to detect weak signals in the 
presence of strong signals, or to resolve a cluster of equal-strength 
frequencies. 

In FFT analysis, windows are frequency-weighting functions that HSPICE 
applies to the time-domain data, to reduce the spectral leakage associated with 
finite-duration time signals. Windows are smoothing functions, which peak in 
the middle frequencies, and decrease to zero at the edges. Windows reduce 
the effects of discontinuities, as a result of finite duration. Figure 63 shows the 
windows available in HSPICE. Table 63 on page 589 lists the common 
performance parameters, for FFT windows.
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Figure 63 FFT Windows

The most important parameters in Table 63 are:
■ Highest side-lobe level (to reduce bias, the lower the better).
■ Worst-case processing loss (to increase detectability, the lower the better).

Table 63  Window Weighting Characteristics in FFT Analysis

Window Equation

Highest
Side-
Lobe
(dB)

Side-
Lobe
Roll-Off
(dB/
octave)

3.0-dB 
Bandwidth
(1.0/T)

Worst- 
Case
Process
Loss (dB)

Rectangular W(n)=1,
0  n < NP1

-13 -6 0.89 3.92

Bartlett W(n)=2n/(NP-1),
0 n  (NP/2)-1
W(n)=2-2n/(NP-1),
NP/2 n < NP

-27 -12 1.28 3.07

Hanning W(n)=0.5-0.5[cos(2n/(NP-1))],
0  n < NP

-32 -18 1.44 3.18

Hamming W(n)=0.54-0.46[cos(2n/(NP-1))],
0   < NP

-43 -6 1.30 3.10

Blackman W(n)=0.42323
-0.49755[cos(2n/(NP-1))]
+0.07922cos[cos(4n/(NP-1))],
0  n < NP

-58 -18 1.68 3.47
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Some compromise usually is necessary, to find a suitable window-filtering for 
each application. As a rule, window performance improves with functions of 
higher complexity (those listed lower in the table). 
■ The Kaiser window has an ALFA parameter, which adjusts the compromise 

between different figures of merit for the window.
■ The simple rectangular window produces a simple bandpass truncation, but 

results in the classical Gibbs phenomenon. 
■ The Bartlett or triangular window has good processing loss, and good side-

lobe roll-off, but lacks sufficient bias reduction. 
■ The Hanning, Hamming, Blackman, and Blackman-Harris windows use 

progressively more complicated cosine functions. These functions provide 
smooth truncation, and a wide range of side-lobe level and processing loss. 

■ The last two windows in the table, Kaiser-Besser, are parameterized-
windows. Use these windows to adjust the side-lobe level, the 3 dB 
bandwidth, and the processing loss.

Blackman-
Harris

W(n)=0.35875
-0.48829[cos(2n/(NP-1))]
+0.14128[cos(4n/(NP-1))]
-0.01168[cos(6n/(NP-1))],
0  n < NP

-92 -6 1.90 3.85

Gaussian
a=2.5
a=3.0
a=3.5

W(n)=exp[-0.5a2(NP/2-1-n)2/(NP)2],
0  n  (NP/2)-1
W(n)=exp[-0.5a2(n-NP/2)2/(NP)2],
NP/2  n < NP

-42
-55
-69

-6
-6
-6

1.33
1.55
1.79

3.14
3.40
3.73

Kaiser-
Bessel
a=2.0
a=2.5
a=3.0
a=3.5

W(n)=I0(x2)/I0(x1)
x1=pa
x2=x1*sqrt[1-(2(NP/2-1-n)/NP)2],
0  n  (NP/2)-1
x2=x1*sqrt[1-(2(n-NP/2)/NP)2],
NP/2  n < NP
I0 is the zero-order modified 
Bessel function

-46
-57
-69
-82

-6
-6
-6
-6

1.43
1.57
1.71
0.89

3.20
3.38
3.56
3.74

1. NP is the number of points used for the FFT analysis.

Table 63  Window Weighting Characteristics in FFT Analysis (Continued)

Window Equation

Highest
Side-
Lobe
(dB)

Side-
Lobe
Roll-Off
(dB/
octave)

3.0-dB 
Bandwidth
(1.0/T)

Worst- 
Case
Process
Loss (dB)
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Figure 64 and Figure 65 show the characteristics of two typical windows.

Figure 64 Bartlett Window Characteristics

Figure 65 Kaiser-Bessel Window Characteristics, ALFA=3.0
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Examining the FFT Output

HSPICE prints FFT analysis results in tabular format, in the .lis file. These 
results use parameters in the .FFT statement. HSPICE prints normalized 
magnitude values, unless you specify FORMAT=UNORM, in which case it prints 
unnormalized magnitude values. The number of printed frequencies is half the 
number of points (NP) specified in the .FFT statement.
■ If you use FMIN to specify a minimum frequency, or FMAX to specify a 

maximum frequency, HSPICE prints only the specified frequency range. 
■ If you use FREQ to specify a frequency, HSPICE outputs harmonics of this 

frequency.

HSPICE generates a .ft# file and the listing file for each FFT output variable 
that contains data to display in FFT analysis waveforms (such as in Custom 
WaveView). You can view the magnitude in dB, and the phase in degrees.

In the following sample FFT analysis .lis file output, the header defines 
parameters in the FFT analysis.

****** Sample FFT output extracted from the .lis file
fft test ... sine
****** fft analysis tnom= 25.000 temp= 25.000
****** fft components of transient response v(1)
Window: Rectangular
First Harmonic: 1.0000k
Start Freq: 1.0000k
Stop Freq: 10.0000k
dc component: mag(db)= -1.132D+02 mag= 2.191D-06 phase= 1.800D+02

frequency frequency fft_mag fft_mag fft_phase
index (hz) (db) (deg)
2 1.0000k 0. 1.0000 -3.8093m
4 2.0000k -125.5914 525.3264n -5.2406
6 3.0000k -106.3740 4.8007u -98.5448
8 4.0000k -113.5753 2.0952u -5.5966
10 5.0000k -112.6689 2.3257u -103.4041
12 6.0000k -118.3365 1.2111u 167.2651
14 7.0000k -109.8888 3.2030u -100.7151
16 8.0000k -117.4413 1.3426u 161.1255
18 9.0000k -97.5293 13.2903u 70.0515
20 10.0000k -114.3693 1.9122u -12.5492

The preceding example specifies a frequency of 1 kHz, and a THD up to 
10 kHz, which corresponds to the first ten harmonics.
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The highest FFT output frequency might not match the specified FMAX, due to 
adjustments that HSPICE makes. 

Table 64 describes the output of the FFT analysis.

Notes:
■ Use the following formula as a guideline to specify a frequency range for 

FFT output:

frequency increment = 1.0/(STOP - START)

Each frequency index is a multiple of this increment. To obtain a finer 
frequency resolution, maximize the duration of the time window or specify 
more time points (larger NP).

■ FMIN and FMAX have no effect on the .ft0, .ft1, ..., .ftn files.
■ If you specify FFTOUT in an .OPTION statement, HSPICE can print results 

of THD, SNR, SFDR, SNDR, and ENOB and then sort the harmonics of 
fundamental by magnitude size. 

Assume that freq=f0 is the fundamental frequency.

• THD is total harmonic distortion, which Equation 56 computes as:

Equation 56

• SNR is the ratio of signal to noise, which following formula computes as:

Table 64 .FFT Output Description

Column Heading Description

Frequency Index Runs from 1 to NP/2, or the corresponding index for FMIN and FMAX. The DC 
component, corresponding to the 0 index, displays independently.

Frequency The actual frequency, associated with the index.

fft_mag (dB),
fft_mag

The first FFT magnitude column is in dB. The second FFT magnitude column 
is in units of the output variable. HSPICE normalizes the magnitude, unless you 
specify UNORM format.

fft_phase Associated phase, in degrees.

THD
sum mag n f  mag n f   

mag f0 
--------------------------------------------------------------------------------=

SNR 10
mag f0  mag f0  

sum mag f  mag f ( )
------------------------------------------------------log=
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The f loop over the whole spectrum except f0 and its harmonics. If you 
specify FMIN/FMAX, f loops over the spectrum between FMIN and 
FMAX except fo and its harmonics, as well as all the frequency 
components above FMAX.

• SFDR is the spurious-free dynamic range and is the distance from the 
fundamental input signal to the highest spur (in dB). SFDR involves both 
magnitude distance and frequency separation. 

• SNDR is the signal to noise and distortion ratio, which is the level of the 
fundamental divided by the square root of the sum of squares of all 
frequency components other than the fundamental frequency. The 
following formula computes SNDR:

Equation 57

• ENOB is the effective number of bits; the following formula computes 
ENOB:

The f loops over the whole spectrum except f0. If you specify FMIN/FMAX, f 
loops over the spectrum between FMIN and FMAX except fo; f also loops all 
the frequency components above FMAX.

Measuring FFT Output Information
You can measure all of the FFT output information in the previous section by 
using the following syntax:

Measuring frequency component at certain frequency point:

.MEASURE FFT result 
+ Find [vm|vp|vr|vi|vdb|im|ip|ir|ii|idb](signal) AT=freq

Measuring THD of a signal spectrum up to a certain harmonic:

.MEASURE FFT result THD signal_name [NBHARM=num]

Default: NBHARM=maximum harmonic in FFT result.

SNDR 10
mag f0  mag f0 

sum mag f  mag f ( )
------------------------------------------------------log=

ENOB
SNDR 1.76db– 

6.02
-------------------------------------------=
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Measuring SNR/SNDR/ENOB of a signal up to a certain frequency point:

.MEASURE FFT result [SNR|SNDR|ENOB] signal_name 
+ [NBHARM=num|MAXFREQ=val][BINSIZ=num]

Default: NBHARM=maximum harmonic in FFT result. HSPICE considers all the 
frequency components above NBHARM to be noise.

MAXFREQ=maximum frequency in FFT result. HSPICE considers all the 
frequency components above MAXFREQ to be noise. BINSIZ=num filters out 
noise components. HSPICE calculates the noise component above index 
“fundamental_freq_idx+BINSIZ+1”. HSPICE filters out the noise components 
within the bin.

The default value of BINSIZ is 0 in HSPICE.

When you set the window function in FFT analysis, you can use BINSIZ to 
filter out the noise component caused by window function.

Measuring SFDR of a signal from minfreq to maxfreq:

.MEASURE FFT result SFDR signal_name [MAXFREQ=val][MINFREQ=val]

Default: MINFREQ=0.

MAXFREQ=Maximum frequency in FFT result.

Syntax to perform FFT measurements from previous simulation results:

hspice -i *.tr0 -meas measure_file

For more information, see .MEASURE FFT in the HSPICE Reference Manual: 
Commands and Control Options.

AM Modulation

This example uses demonstration netlist exam1.sp, which is available in 
directory $installdir/demo/hspice/fft. The example shows a 1 kHz 
carrier (FC), which a 100 Hz signal (FM) modulates. 
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AM Modulation

.OPTION post 

.PARAM sa=10 offset=1 fm=100 fc=1k td=1m
VX 1 0 AM(sa offset fm fc td)
Rx 1 0 1

.TRAN 2u 50m

.FFT V(1) START=10m STOP=40m FMIN=833 FMAX=1.16K

.END

The following equation describes the voltage at node 1, which is an AM signal:

Equation 58

You can expand the preceding equation, as follows.

Equation 59

Equation 60

where

Equation 61

The preceding equations indicate that v(1) is a summation of three signals, with 
the following frequency:

, , and

This is the carrier frequency and the two sidebands.

See also Behavioral Amplitude Modulator in the HSPICE User Guide: 
Advanced Analog Simulation and Analysis.

v 1  sa offset m Time td–  sin+  c Time td–  sin =

v 1  sa offset c Time td–   0.5 sa c m–  Time td–  cos +sin  =

0.5– sa c m+  Time td–  cos 

c 2fc=

f 2fm=

fc fc fm–  fc fm+ 
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Graphical Output
Figure 66 and Figure 67 on page 598 display the results.
■ Figure 66 shows the time-domain curve for node 1.
■ Figure 67 shows the frequency-domain components, for the magnitude of 

node 1. 

The carrier frequency is 1 kHz, with two sideband frequencies 100 Hz apart. 

The third, fifth, and seventh harmonics are more than 100 dB below the 
fundamental, indicating excellent numerical accuracy. The time-domain data 
contains an integer multiple of the period, so you do not need to use 
windowing.

Figure 66 AM Modulation
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Figure 67 AM Modulation Spectrum

Balanced Modulator and Demodulator 

Demodulation, or detection, recovers a modulating signal from the modulated 
output voltage. The netlist, in the Input and Output Listing section that follows, 
shows this process. This example uses HSPICE behavioral models, and FFT 
analysis, to confirm the validity of the process, in the frequency domain.

The low-pass filter uses the Laplace element. This filter introduces delay in the 
output signal, which causes spectral leakage if you do not use FFT windowing. 
However, if you use window-weighting to perform FFT, you eliminate most of 
the spectral leakage. The THD of the two outputs, shown in “Input and Output 
Listing,” verifies this. HSPICE expects a 1 kHz output signal, so specify a 1 kHz 
frequency in the .FFT command. Also specify FMAX, to provide the first few 
harmonics in the output listing, for THD calculations.

Input and Output Listing
The sample input and output listing files are in the following directory:
$installdir/demo/hspice/fft/balance.sp

Figure 68 through Figure 76 show the signals, and their spectral content. The 
modulated signal contains only the sum, and the difference of the carrier 
frequency and the modulating signal (1 kHz and 10 kHz). At the receiver end, 
this example recovers the carrier frequency, in the demodulated signal. This 
example also shows a 10 kHz frequency shift, in the above signals (to 19 kHz 
and 21 kHz).
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A low-pass filter uses a second-order Butterworth filter, to extract the carrier 
frequency. A Harris window significantly improves the noise floor in the filtered 
output spectrum, and reduces THD in the output listing (from 9.23 percent to 
0.047 percent). However, this example needs a filter with a steeper transition 
region, and better delay characteristics, to suppress modulating frequencies 
below -60 dB. Figure 71 is a normalized filtered output signal waveform.

Figure 68 Modulating and Modulated Signals

Figure 69 Modulated Signal
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Figure 70 Demodulated Signal

Figure 71 Filtered Output Signal
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Figure 72 Modulating and Modulated Signal Spectrum

Figure 73 Modulated Signal Spectrum

exam2.ft0
vdb(mod1

Hertz [Lin]

V
ol

t [
Li

n]
0

-50.0

-150.0

-200.0

0 10.0k 20.0k 30.0k 40.0k

-100.0

50.0k

exam2.ft1
vdb(mod2

exam2.ft2
vdb(modout

Hertz [Lin]

V
ol

t [
Li

n]

0

-50.0

-150.0

-187.82
0 10.0k 20.0k 30.0k 40.0k

-100.0

50.0k
HSPICE® User Guide: Basic Simulation and Analysis 601
K-2015.06



Chapter 16: Spectrum Analysis
Balanced Modulator and Demodulator
Figure 74 Demodulated Signal Spectrum

Figure 75 Filtered Output Signal (no window)
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Figure 76 Filtered Output Signal (Blackman-Harris window)

Signal Detection Test Circuit

This example is a high-frequency mixer test circuit. It illustrates the effect of 
using a window to detect a weak signal, in the presence of a strong signal that 
is at a nearby frequency. This example adds two high-frequency signals, with a 
40 dB separation (amplitudes are 1.0 and 0.01).

 Input Listing
The sample input listing file is in the following directory:
$installdir/demo/hspice/fft/exam3.sp

Output
Figure 77 shows the rectangular window. Compare this with the spectra of the 
output for all FFT window types, as shown in Figure 78 through Figure 84. 
Without windowing, HSPICE does not detect the weak signal because of 
spectral leakage.
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Figure 77 Mixer Output Spectrum, Rectangular Window

■ In the Bartlett window (Figure 78), the noise floor increases dramatically, 
compared to the rectangular window (from -55, to more than -90 dB). 

■ The cosine windows (Hanning, Hamming, Blackman, and Blackman-Harris) 
all produce better results than the Bartlett window. However, the Blackman-
Harris window provides the highest degree of separation for the two tones, 
and the lowest noise floor. 

■ The final two windows (Figure 83 and Figure 84) use the ALFA=3.0 
parameter, which is the default value in HSPICE. These two windows also 
produce acceptable results, especially the Kaiser-Bessel window, which 
sharply separates the two tones, and has a noise floor of almost -100-dB.

HSPICE processes high frequencies, and this example demonstrates the 
numerical stability and accuracy of the FFT spectrum analysis algorithms.
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Figure 78 Mixer Output Spectrum, Bartlett Window

Figure 79 Mixer Output Spectrum, Hanning Window
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Figure 80 Mixer Output Spectrum, Hamming Window

Figure 81 Mixer Output Spectrum, Blackman Window
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Figure 82 Mixer Output Spectrum, Blackman-Harris Window

Figure 83 Mixer Output Spectrum, Gaussian Window
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Figure 84 Mixer Output Spectrum, Kaiser-Bessel Window
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17Pole-Zero Analysis

Describes how to use pole/zero analysis in HSPICE. 

HSPICE ships numerous examples for your use; see Listing of Demonstration 
Input Files for paths to demo files and Filters Examples.

You can use pole/zero analysis in HSPICE to study the behavior of linear, time-
invariant networks. You can apply the results to the design of analog circuits, 
such as amplifiers and filters. Use pole/zero analysis to determine the stability 
of a design, or to calculate the poles and zeroes to specify in a POLE function 
(see Using Pole-Zero Analysis on page 610).

Pole/zero analysis uses the .PZ (Pole/Zero) statement, instead of pole/zero 
(POLE function) and Laplace (LAPLACE function) transfer function modeling. 
See Using Pole-Zero Analysis on page 610 for discussion of this technology.

Overview of Pole-Zero Analysis

In pole/zero analysis, a network transfer function describes a network. For any 
linear time-invariant network, you can use this general form to write the 
function:

Equation 62

In the factorized form, the general function is:

H s  N s 
D s 
-----------

a0sm a1 s m 1–   am+ + +

b0sn b1 s n 1–   bn+ + +
---------------------------------------------------------------------= =
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Equation 63

■ The roots of the numerator N(s) (that is, zi) are the zeros of the network 
function.

■ The roots of the denominator D(s) (that is, pj) are the poles of the network 
function. 

■ S is a complex frequency.

The dynamic behavior of the network depends on the location of the poles and 
zeros, on the network function curve (complex plane). The (real) poles are the 
natural frequencies of the network. You can graphically deduce the magnitude 
and phase curve of most network functions from the location of its poles and 
zeros (reference 2).

References on page 628 lists a variety of source materials that address:
■ Transfer functions of physical systems.
■ Design of systems and physical modeling.
■ Interconnect transfer function modeling.

Using Pole-Zero Analysis

HSPICE advanced analog analyses uses the exact matrix approach and the 
Muller method, while HSPICE uses only the Muller method to calculate the 
roots of the N(s) and D(s) polynomials. 

Matrix Approach
The matrix approach uses the singular-value matrix decomposition algorithm. It 
applies primarily to a network that has no frequency-dependent elements. In 
this case, HSPICE advanced analog analyses writes the D(s) function as the 
determinant of the network matrices, D(s) = det(G + sC), where G is the 
frequency-independent conductance matrix and C is the capacitance matrix. 
The poles can be the eigen values of the matrix equation (G + sC) X = 0, 
where X is the eigen vector.

H s 
a0

b0
-----

s z1+  s z2+  s zi+  s zm+ 
s p1+  s p2+  s pj+  s pm+ 

------------------------------------------------------------------------------------------=
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Similarly, following Cramer’s rule, the roots of the N(s) function can also be the 
eigen values of a matrix.

Muller Method
You can apply the Muller method if the network contains frequency-dependent 
elements (such as S- or W-elements).

The Muller method approximates the polynomial, using a quadratic equation 
that fits through three points in the vicinity of a root. To obtain successive 
iterations toward a particular root, HSPICE finds the nearer root of a quadratic, 
whose curve passes through the last three points.

Selection of the three initial points affects both the convergence of the process, 
and the accuracy of the roots obtained: 

1. If the poles or zeros occupy a wide frequency range, then choose (X0R, X0I) 
close to the origin, to find poles or zeros at the zero frequency first. 

2. Find the remaining poles or zeros, in increasing order. 

The (X1R, X1I) and (X2R, X2I) values can be orders of magnitude larger 
than (X0R, X0I). If any poles or zeros occur at high frequencies, adjust X1I 
and X2I accordingly.

Pole/zero analysis results use the circuit’s DC operating point, so the operating 
point solution must be accurate. Use the .NODESET statement (not .IC) for 
initialization, to avoid DC convergence problems.

For the syntax, see .PZ in the HSPICE Reference Manual: Commands and 
Control Options.

How HSPICE Calculates Poles and Zeros
HSPICE calculates poles and zeros independently from the denominator and 
numerator polynomials of the transfer function respectively. It is possible that 
there exist common multipliers, such as the pole and zero appearing at exactly 
the same location. In this case, the pole and zero factor out. HSPICE only 
presents the roots of the two polynomials without doing the factorization.
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For example, if you use the netlist fkerwin.sp from the demo folder, from the 
transfer function there should be two poles and zeros:

*      = (s**2 + 2) / (s**2 + 0.1*s + 1)
*    poles --- (-0.05004,+0.9987) , (-0.05004,-0.9987)
*    zeros --- ( 0.0    ,+1.4142) , ( 0.0    ,-1.4142)

But HSPICE reports three poles and zeros:

poles (rad/sec)                 poles (hertz)
***************************************************************
 real            imag     real            imag
zeros (rad/sec)        zeros (hertz)
-50.0394m       998.7214m        -7.9640m       158.9515m
-50.0394m      -998.7214m        -7.9640m      -158.9515m
***************************************************************
 real            imag            real            imag
0.             -1.4142          0.           -225.0812m
0.              1.4142 0.            225.0812m

-1.4142          0.           -225.0812m 0.
-1.4142          0.           -225.0812m         0.

The transfer function cancels the common pole and zero at -1.4142 0. Since 
HSPICE solves the denominator and numerator separately, the results reports 
these separately.

Pole/Zero Analysis Examples

The following are examples of different types of pole/zero analysis.
■ Example 1 – Low-Pass Filter
■ Example 2 – Kerwin’s Circuit
■ Example 3 – High-Pass Butterworth Filter
■ Example 4 – CMOS Differential Amplifier
■ Example 5 – Simple Amplifier
■ Example 6— Active Low-Pass Filter

Example 1 – Low-Pass Filter
This example uses HSPICE demonstration netlist flp5th.sp, which is 
available in directory $installdir/demo/hspice/filters:
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file:flp5th.sp lowpass 5th order filter
*****
* reference: gabor c. temes and sanjit k. mitra, "modern fiter 
theory
* and design", j. wiley, 1973, page 74.
* t = v(3) / iin
* =0.113*(s**2 + 1.6543)*(s**2 + 0.2632) /
* (s**5 + 0.9206*s**4 + 1.26123*s**3 + 0.74556*s**2
* + 0.2705*s + 0.09836)
*****
* pole zero, ac(.001hz-10hz) analysis
*
.options post
.pz v(3) iin
.ac dec 100 .001hz 10hz
.probe ac vdb(3) vp(3)
*
iin 1 0 1.00 ac 1
r1 1 0 1.0
c3 1 0 1.52
c4 2 0 1.50
c5 3 0 0.83
c1 1 2 0.93
l1 1 2 0.65
c2 2 3 3.80
l2 2 3 1.00
r2 3 0 1.0
.end

The following is an equivalent example in HSPICE advanced analog analyses:

* HSPICE advanced analog analysis example:
5TH-ORDER LOW_PASS FILTER
* 
.OPTION POST
.PZ I(R2) IN
.AC DEC 100 .001HZ 10HZ
IN 0 1 1.00 AC 1
R1 1 0 1.0
C3 1 0 1.52
C4 2 0 1.50
C5 3 0 0.83
C1 1 2 0.93
L1 1 2 0.65
C2 2 3 3.80
L2 2 3 1.00
R2 3 0 1.00
.END
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Figure 85 Low-Pass Prototype Filter

Table 65 shows the magnitude and phase variation of the current output, 
resulting from AC analysis. These results are consistent with pole/zero 
analysis. The pole/zero unit is radians per second, or hertz. The X-axis unit, in 
the plot, is in hertz.

Table 65  Pole/Zero Analysis Results for Low-Pass Filter

Poles (rad/sec) Poles (Hertz)

Real Imaginary Real Imaginary

-6.948473e-02 -4.671778e-01 -1.105884e-02 -7.435365e-02

-6.948473e-02 4.671778e-01 -1.105884e-02 7.435365e-02

-1.182742e-01 -8.914907e-01 -1.882392e-02 -1.418852e-01

-1.182742e-01 8.914907e-01 -1.882392e-02 1.418852e-01

-5.450890e-01 0.000000e+00 -8.675361e-02 0.000000e+00

0.000000e+00 -1.286180e+00 0.000000e+00 -2.047019e-01

0.000000e+00 -5.129892e-01 0.000000e+00 -8.164476e-02

0.000000e+00 5.129892e-01 0.000000e+00 8.164476e-02

0.000000e+00 1.286180e+00 0.000000e+00 2.047019e-01

Constant Factor = 1.129524e-01

C1=0.93 C2=3.8

L1=0.65 L2=1
C5=0.83 R2=1C4=1.5C3=1.52R1=1
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Figure 86 Fifth-Order Low-Pass Filter Response

Example 2 – Kerwin’s Circuit
This example is an HSPICE input file for pole/zero analysis of Kerwin’s circuit, 
which is in the following directory: $installdir/demo/hspice/filters/
fkerwin.sp.

Figure 87 Design Example for Kerwin’s Circuit

 Table 66 on page 616 lists analysis results.

+

Vs

R3=1/2

C2=0.7071C1=0.7071

C3=1.4142 C4=0.3536
-

+

Vin

-

R1=1 R2=1R1=1

2.4293
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Example 3 – High-Pass Butterworth Filter
This example is a HSPICE input file, for pole/zero analysis of a fourth-order 
high-pass Butterworth filter. This file can be found at $installdir/demo/
hspice/filters/fhp4th.sp. Table 67 on page 617 shows the analysis 
results.

Table 66 Pole/Zero Analysis Results for Kerwin’s Circuit

Poles (rad/sec) Poles (Hz)

Real Imaginary Real Imaginary

-5.003939e-02 9.987214e-01 -7.964016e-03 1.589515e-01

-5.003939e-02 -9.987214e-01 -7.964016e-03 -1.589515e-01

-1.414227e+00 0.000000e+00 -2.250812e-01 0.000000e+00

0.000000e+00 -1.414227e+00 0.000000e+00 -2.250812e-01

0.000000e+00 1.414227e+00 0.000000e+00 2.250812e-01

-1.414227e+00 0.000000e+00 -2.250812e-01 0.000000e+00

Constant Factor = 1.214564e+00
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Figure 88 Fourth-Order High-Pass Butterworth Filter

Example 4 – CMOS Differential Amplifier
This example uses HSPICE demonstration netlist mcdiff.sp, which is 
available in directory $installdir/demo/hspice/apps. Table 68 on 
page 619 shows the analysis results.

Table 67 Pole/Zero Analysis Results for High-Pass Butterworth Filter

Poles (rad/sec) Poles (Hz)

Real Imaginary Real Imaginary

-3.827019e-01 -9.240160e-01 -6.090889e-02 1.470617e-01

-3.827019e-01 9.240160e-01 -6.090890e-02 -1.470617e-01

-9.237875e-01 3.828878e-01 -1.470254e-01 6.093849e-02

-9.237875e-01 -3.828878e-01 -1.470254e-01 -6.093849e-02

0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

Constant Factor = 1.000000e+00

Vin

C4C3C2C

RL
V(10)

R1=2.613 R3=1.0825

R2=0.3826 R4=0.9238

+
-

+
-
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*file: mcdiff.sp cmos differential amplifier
* analysis : ac(20khz-500mhz), pole-zero
* mos level=5
*
.options scale=1e-6 scalm=1e-6 wl opts post
.pz v(5) vin
vin 7 0 0 ac 1
.ac dec 10 20k 500meg
.probe ac vdb(5) vp(5)
m1 4 0 6 6 mn 100 10 2 2
m2 5 7 6 6 mn 100 10 2 2
m3 4 4 1 1 mp 60 10 1.5 1.5
m4 5 4 1 1 mp 60 10 1.5 1.5
m5 6 3 2 2 mn 50 10 1.0 1.0
vdd 1 0 5
vss 2 0 -5
vgg 3 0 -3
rin 7 0 1
.model mn nmos level=5 vt=1 ub=700 frc=0.05 tox=800 dnb=1.6e16
+ xj=1.2 latd=0.7 cj=0.13 phi=1.2 tcv=0.003
.model mp pmos level=5 vt=-1 ub=245 frc=0.25 tox=800 dnb=1.3e15
+ xj=1.2 latd=0.9 cj=0.09 phi=0.5 tcv=0.002
.end

The following is an equivalent example in HSPICE advanced analog analyses:
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* HSPICE advanced analog analysis example
CMOS DIFFERENTIAL AMPLIFIER
.OPTION PIVOT SCALE=1.e-6 SCALM=1.e-6 HQR
.PZ V(5) VIN
VIN 7 0 0 AC 1
.AC DEC 10 20K 500MEG
M1 4 0 6 6 MN 100 10 2 2
M2 5 7 6 6 MN 100 10 2 2
M3 4 4 1 1 MP 60 10 1.5 1.5
M4 5 4 1 1 MP 60 10 1.5 1.5
M5 6 3 2 2 MN 50 10 1.0 1.0
VDD 1 0 5
VSS 2 0 -5
VGG 3 0 -3
RIN 7 0 1
.MODEL MN NMOS LEVEL=5 VT=1 UB=700 FRC=0.05 DNB=1.6E16
+ XJ=1.2 LATD=0.7 CJ=0.13 PHI=1.2 TCV=0.003 TOX=800
.MODEL MP PMOS LEVEL=5 VT=-1 UB=245 FRC=0.25 TOX=800
+ DNB=1.3E15 XJ=1.2 LATD=0.9 CJ=0.09 PHI=0.5 TCV=0.002
.END

Table 68 Pole/Zero Analysis Results for CMOS Differential Amplifier

Poles (rad/sec) Poles (Hz)

Real Imaginary Real Imaginary

-1.798766e+06 0.000000e+00 -2.862825e+05 0.000000e+00

-1.126313e+08 -6.822910e+07 -1.792583e+07 -1.085900e+07

-1.126313e+08 6.822910e+07 -1.792583e+07 1.085900e+07

-1.315386e+08 7.679633e+07 -2.093502e+07 1.222251e+07

-1.315386e+08 -7.679633e+07 -2.093502e+07 -1.222251e+07

7.999613e+08 0.000000e+00 1.273178e+08 0.000000e+00

Constant Factor = 3.103553e-01
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Figure 89 CMOS Differential Amplifier

Example 5 – Simple Amplifier
This example is a HSPICE input file for pole/zero analysis of an equivalent 
circuit for a simple amplifier with:
■ RS¼=RPI=RL=1000 ohms
■ gm=0.04 mho
■ CMU=1.0e-11 farad
■ CPI¼=1.0e-9 farad

The file is in $installdir/demo/hspice/apps/ampg.sp. Table 69shows 
the analysis results.

+5v

V(5)

Vin

Rin

M4M3

M2M

M5

-5v
2

3

6

7

54

1
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Figure 90 Simple Amplifier

Example 6— Active Low-Pass Filter
This example is uses demonstration netlist flp9th.sp, which is available in 
directory $installdir/demo/hspice/filters. It is for a pole/zero 
analysis of an active ninth-order low-pass filter by using the ideal operational 
amplifier element. This example performs an AC analysis. Table 70 on 
page 625 shows the analysis results.

Table 69  Pole/Zero Analysis Results for Amplifier

Poles (rad/sec) Poles (Hz)

Real Imaginary Real Imaginary

-1.412555+06 0.000000e+00 -2.248151e+05 0.000000e+00

-1.415874+08 0.000000e+00 -2.253434e+07 0.000000e+00

4.000000e+09 0.000000e+00 6.366198e+08 0.000000e+00

Constant Factor = 1.000000e+06

Rn V3

+

-
Vin RLV

+

-
Cn

g V

Rs C
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* file flp9th.sp----9th order low-pass filter
*
* reference: jiri vlach and kishore singhal, 'computer
* methods for circuit analysis and design',
* van nostrand reinhold co., 1983, pages 142
* and 494 to 496.
*
* pole/zero analysis and using vcvs as an ideal op-amp.
* for just pole/zero analysis .ac statement is not required.
vin in 0 ac 1
.ac dec 100 1 100k
.print vm(out) vm(in) vp(out)
.probe ac vdb(out,in) par('db(vm(out)/vm(in))')
.pz v(out) vin
.options post dcstep=1e3
+ x0r=-1.23456e+3 x1r=-1.23456e+2 x2r=1.23456e+3
+ fscal=1e-6 gscal=1e3 cscal=1e9 lscal=1e3
.subckt fdnr 1 r1=2k c1=12n r4=4.5k
r1 1 2 r1
c1 2 3 c1
r2 3 4 3.3k
r3 4 5 3.3k
r4 5 6 r4
c2 6 0 10n
eop1 5 0 2 4 level=1
eop2 3 0 6 4 level=1
.ends
*
rs in 1 5.4779k
r12 1 2 4.44k
r23 2 3 3.2201k
r34 3 4 3.63678k
r45 4 out 1.2201k
c5 out 0 10n
x1 1 fdnr r1=2.0076k c1=12n r4=4.5898k
x2 2 fdnr r1=5.9999k c1=6.8n r4=4.25725k
x3 3 fdnr r1=5.88327k c1=4.7n r4=5.62599k
x4 4 fdnr r1=1.0301k c1=6.8n r4=5.808498k
.end

The following is an equivalent example in HSPICE advanced analog analyses:
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* HSPICE advanced anallog analysis example
VIN IN 0 AC 1

.PZ V(OUT) VIN

.AC DEC 50 .1K 100K

.OPTION PLST DCSTEP=1E3 XOR=-1.23456E+3 X1R=-1.23456E+2
+ X2R=1.23456E+3 FSCAL=1E-6 GSCAL=1E3 CSCAL=1E9 LSCAL=1E3
.PRINT AC VDB(OUT)

.SUBCKT OPAMP IN+ IN- OUT GM1=1 RI=1K CI=26.6U GM2=1.33333 RL=75
RII IN+ IN- 2MEG
RI1 IN+ 0 500MEG
RI2 IN- 0 500MEG
G1 1 0 IN+ IN- GM1
C1 1 0 CI
R1 1 0 RI
G2 OUT 0 1 0 GM2
RLD OUT 0 RL
.ENDS
.SUBCKT FDNR 1 R1=2K C1=12N R4=4.5K RLX=75
R1 1 2 R1
C1 2 3 C1
R2 3 4 3.3K
R3 4 5 3.3K
R4 5 6 R4
C2 6 0 10N
XOP1 2 4 5 OPAMP
XOP2 6 4 3 OPAMP
.ENDS
$
$
RS IN 1 5.4779K
R12 1 2 4.44K
R23 2 3 3.2201K
R34 3 4 3.63678K
R45 4 OUT 1.2201K
C5 OUT 0 10N

X1 1 FDNR R1=2.0076K C1=12N R4=4.5898K
X2 2 FDNR R1=5.9999K C1=6.8N R4=4.25725K
X3 3 FDNR R1=5.88327K C1=4.7N R4=5.62599K
X4 4 FDNR R1=1.0301K C1=6.8N R4=5.808498K
.END
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Figure 91 Linear Model of the 741C Operational Amplifier

Figure 92 FDNR Subcircuit
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Figure 93 Active Realization of the Low-Pass Filter

Table 70 Pole/Zero Analysis Results for the Active Low-Pass Filter

Poles (rad/sec) Poles (Hz)

Real Imaginary Real Imaginary

-4.505616e+02 -2.210451e+04 -7.170911e+01 -3.518042e+03

-4.505616e+02 2.210451e+04 -7.170911e+01 3.518042e+03

-1.835284e+03 2.148369e+04 -2.920944e+02 3.419236e+03

-1.835284e+03 -2.148369e+04 -2.920944e+02 -3.419236e+03

-4.580172e+03 1.944579e+04 -7.289571e+02 3.094894e+03

-4.580172e+03 -1.944579e+04 -7.289571e+02 -3.094894e+03

-9.701962e+03 1.304893e+04 -1.544115e+03 2.076802e+03

-9.701962e+03 -1.304893e+04 -1.544115e+03 -2.076802e+03

-1.353908e+04 0.000000e+00 -2.154811e+03 0.000000e+00

-3.668995e+06 -3.669793e+06 -5.839386e+05 -5.840657e+05

-3.668995e+06 3.669793e+06 -5.839386e+05 5.840657e+05

-3.676439e+06 -3.676184e+06 -5.851234e+05 -5.850828e+05

-3.676439e+06 3.676184e+06 -5.851234e+05 5.850828e+05

-3.687870e+06 3.687391e+06 -5.869428e+05 5.868665e+05

C5

OutIn

RS R12 R23 R34 R45
1 2 3 4

X1 X2 X3 X4
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-3.687870e+06 -3.687391e+06 -5.869428e+05 -5.868665e+05

-3.695817e+06 -3.695434e+06 -5.882075e+05 -5.881466e+05

-3.695817e+06 +3.695434e+06 -5.882075e+05 5.881466e+05

-3.220467e-02 -2.516970e+04 -5.125532e-03 -4.005882e+03

-3.220467e-02 2.516970e+04 -5.125533e-03 4.005882e+03

2.524420e-01 -2.383956e+04 4.017739e-02 -3.794184e+03

2.524420e-01 2.383956e+04 4.017739e-02 3.794184e+03

1.637164e+00 2.981593e+04 2.605627e-01 4.745353e+03

1.637164e+00 -2.981593e+04 2.605627e-01 -4.745353e+03

4.888484e+00 4.852376e+04 7.780265e-01 7.722796e+03

4.888484e+00 -4.852376e+04 7.780265e-01 -7.722796e+03

-3.641366e+06 -3.642634e+06 -5.795413e+05 -5.797432e+05

-3.641366e+06 3.642634e+06 -5.795413e+05 5.797432e+05

-3.649508e+06 -3.649610e+06 -5.808372e+05 -5.808535e+05

-3.649508e+06 3.649610e+06 -5.808372e+05 5.808535e+05

-3.683700e+06 3.683412e+06 -5.862790e+05 5.862333e+05

-3.683700e+06 -3.683412e+06 -5.862790e+05 -5.862333e+05

-3.693882e+06 3.693739e+06 5.878995e+05 5.878768e+05

-3.693882e+06 -3.693739e+06 -5.878995e+05 -5.878768e+05

Constant Factor = 4.451586e+02

Table 70 Pole/Zero Analysis Results for the Active Low-Pass Filter (Continued)

Poles (rad/sec) Poles (Hz)

Real Imaginary Real Imaginary
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Figure 94 9th Order Low-Pass Filter Response

The graph in Figure 94 shows overall response of the low-pass filter.
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18MOSFET Model Reliability Analysis (MOSRA)

Describes the procedures for HSPICE MOSFET reliability analysis (MOSRA).

The following sections cover the these topics:
■ MOSRA Overview
■ Level 1 MOSRA BTI and HCI Model Parameters

MOSRA Overview

As the industry scales down CMOS technology, reliability requirements to 
maintain the long-term device become both more challenging and more 
important. Two of the most critical reliability issues, the hot carrier injection 
(HCI) and the bias temperature instability (BTI) can change the characteristics 
of MOS devices. HSPICE reliability analysis allows circuit designers to predict 
the reliability of their design to allow enough margin for their circuits to function 
correctly over their lifetime.

A unified custom reliability-modeling API is available or custom reliability model 
development. Contact your Synopsys technical support team for more 
information about the MOSRA API.

HSPICE MOSRA analysis currently supports Level 49, Level 53, Level 54, 
Level 57, Level 62, Level66, Level 69,Level 70, Level 71, Level 72, Level 73, 
Level 76 and external CMI MOSFET models. 

For more information on using .MOSRA commands and control options, see 
HSPICE Reference Manual: Command and Control Options.
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MOSRA Overview
The following sections discuss these topics:
■ Reliability Analysis Use Model
■ Example Setup

Reliability Analysis Use Model
HSPICE reliability analysis (or HCI and BTI analysis), is a two-phase 
simulation: the fresh simulation phase and the post-stress simulation phase. 
The two-phase simulation can run separately or together.
■ Fresh simulation phase: HSPICE computes the electron age/stress of 

selected MOS transistors in the circuit based on circuit behavior and on the 
HSPICE built-in stress model including HCI and/or BTI effect.

■ Post-stress simulation phase: HSPICE simulates the degradation effect on 
circuit performance, based on the stress information that the fresh 
simulation phase produces.

Figure 95 presents the HSPICE reliability analysis process.
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Figure 95 HSPICE Reliability Simulation Flow

Example Setup
The following example file demonstrates how to set up a HSPICE reliability 
analysis.

Pre-stress  
(fresh_device)

Simulation 
Phase 

 

Pre-stress 
Simulation results 

Stress 
Integration 

Netlist 

 
Post-Stress 

(aged_device)  
Simulation 

Phase 

 
Post-stress  

Simulation results 

 

MOSRA 
Model  
Card 

Original 
Model 
Card 

Conversion of stress 
into device 
parameter 

degradation 

and
Projection
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* MOSRA TEST
vdd 1 0 2
mp1 3 2 1 1 p1 l=0.1u w=10u ad=5p pd=6u as=5p ps=6u
mn1 3 2 0 0 n1 l=0.1u w=5u ad=5p pd=6u as=5p ps=6u
mp2 4 3 1 1 p1 l=0.1u w=10u ad=5p pd=6u as=5p ps=6u
mn2 4 3 0 0 n1 l=0.1u w=5u ad=5p pd=6u as=5p ps=6u
mp3 2 4 1 1 p1 l=0.1u w=10u ad=5p pd=6u as=5p ps=6u
mn3 2 4 0 0 n1 l=0.1u w=5u ad=5p pd=6u as=5p ps=6u
c1 2 0 .1p

.model p1 pmos level=54 version=4.5

.model n1 nmos level=54 version=4.5

.model p1_ra mosra level=1
+tit0 = 5e-8  titfd = 7.5e-10  tittd = 1.45e-20
+tn = 0.25

.appendmodel p1_ra mosra p1 pmos

.mosra reltotaltime=1e8

.ic v(2)=2

.tran .1ps 5ns

.options post

.end

Level 1 MOSRA BTI and HCI Model Parameters

The following tables list parameters and their descriptions for hot carrier 
injection (HCI) and the bias temperature instability (BTI). 

The parameter listing tables are:
■ NBTI/PBTI for Vth degradation (Table 71)
■ NBTI/PBTI for Mobility degradation (Table 72 on page 635)
■ HCI for NMOS and PMOS (Table 73 on page 636)

For details on the Synopsys LEVEL 1 MOSRA model, contact your Synopsys 
technical support team.
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Level 1 MOSRA BTI and HCI Model Parameters
Synopsys LEVEL1 mosra model, BTI Vth degradation

Table 71 Vth Degradation BTI Parameters

Name Default L term 
available

Description Notes

TIT0 0 Yes First parameter for interface-trap-inducing threshold 
voltage degradation

TITCE 0 Yes Inversion charge exponent for interface-trap-inducing 
threshold voltage degradation

TITGA 0 Yes Vgs dependence offset

TITFD 0 Yes Oxide electric field dependence for interface trap 
inducing threshold voltage degradation

TITTD 0 Temperature dependent component of interface-trap-
inducing threshold voltage degradation

TITWC 0 Channel width coefficient for interface-trap-inducing 
threshold voltage degradation

TITWE 0 Channel width exponent for interface trap inducing 
threshold voltage degradation

TITLC 0 Channel length coefficient for oxide trap inducing 
threshold voltage degradation

TITLE 0 Channel length exponent for oxide-trap-inducing 
threshold voltage degradation

TN 0.25 Stress time exponent for interface-trap-inducing 
threshold voltage degradation

TOT0 0 First parameter for oxide-trap-inducing threshold voltage

TOTFD 0 Oxide electric field dependent component for oxide-trap-
inducing threshold voltage degradation

TOTTD 0 Temperature dependent component for oxide-trap-
inducing threshold voltage degradation

TOTDD 0 Yes Drain voltage dependent coefficient for oxide electric field 
in threshold voltage degradation

TOTWC 0 Channel width coefficient of oxide-trap-inducing 
threshold voltage degradation

TOTWE 0 Channel width exponent of oxide-trap-inducing threshold 
voltage degradation
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TOTLC 0 Channel length coefficient of oxide-trap-inducing 
threshold voltage degradation

TOTLE 0 Channel length component of oxide-trap-inducing 
threshold voltage degradation

TK 0.5 Stress time exponent for oxide-trap-inducing threshold 
voltage degradation

TTD0 1 First parameter for transient degradation of threshold 
voltage

TTD0=0
disables the 
Vth recovery 
effect

TDCD 0 Duty cycle dependent exponent for transient degradation 
of threshold voltage

TDCD is 
expected 
to be 0 or 
negative

TFC 0 Frequency dependence coefficient for BTI recovery of 
threshold voltage

TFE 0 Frequency dependence exponent for BTI recovery of 
threshold voltage.

TOTDE 1 Yes Drain voltage exponent for oxide electric field in threshold 
voltage degradation

EOXMOD 0 (disabled) Enables separate electric field equations for mobility, 
DIBL, and VSAT degradations

DLBTI 0 Length dependence offset for BTI model

DWBTI 0 Width dependence offset for BTI model

LNOMRA 0 Nominal length for NBTI length dependence limiting

Table 71 Vth Degradation BTI Parameters (Continued)

Name Default L term 
available

Description Notes
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Mobility Degradation BTI Parameters

Table 72 Mobility Degradation BTI Parameters

Name Default L term 
available

Description Notes

UIT0 0 Yes First parameter for interface-trap-inducing mobility 
degradation

UITCE 0 Yes Inversion charge exponent for interface-trap-inducing 
mobility degradation

UITGA 0 Yes Vgs dependence offset

UITFD 0 Yes Oxide electric field dependence for interface-trap-inducing 
mobility degradation

UITTD 0 Temperature dependent coefficient of interface-trap-
inducing mobility degradation

UITWC 0 Channel width dependent coefficient for interface-trap-
inducing mobility degradation

UITWE 0 Channel width exponent for interface-trap-inducing mobility 
degradation

UITLC 0 Channel length dependent coefficient for interface-trap-
inducing mobility degradation

UITLE 0 Channel length exponent for interface-trap-inducing 
mobility degradation

UN 0.25 Stress time exponent for interface-trap-inducing mobility 
degradation

UOT0 0 First parameter for oxide-trap-inducing mobility 
degradation

UOTFD 0 Oxide electric field dependence for oxide-trap-inducing 
mobility degradation

UOTTD 0 Temperature dependence for oxide-trap-inducing mobility 
degradation

UOTWC 0 Channel width coefficient for oxide-trap-inducing mobility 
degradation

UOTWE 0 Channel width exponent for oxide-trap-inducing mobility 
degradation
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Synopsys LEVEL1 mosra model, HCI for NMOS and PMOS

UOTLC 0 Channel length coefficient for oxide-trap-inducing mobility 
degradation

UOTLE 0 Channel length exponent for oxide-trap-inducing mobility 
degradation

UK 0.5 Stress time exponent for oxide-trap-inducing mobility 
degradation

UTD0 1 First parameter transient mobility degradation UTD0=0 disables 
the mobility 
recovery effect

UDCD 0 Duty cycle dependent coefficient for transient mobility 
degradation 

UDCD is 
expected to be 0 
or negative

UFC 0 Frequency dependence coefficient for BTI recovery of 
mobility.

UFE 0 Frequency dependence exponent for BTI recovery of 
mobility.

UOTDD TOTDD Yes Drain voltage dependent coefficient for oxide electric field 
in mobility degradation

Used if 
EOXMOD=1

UOTDE TOTDE Yes Drain voltage exponent for oxide electric field in mobility 
degradation

Used if 
EOXMOD=1

Table 73 Threshold Voltage and Mobility Degradation HCI Parameters

Name Default L term 
available

Description Notes

THCI0 0 Yes First parameter for threshold voltage degradation 
induced by HCI

THCI1 0 Coefficient for Isub-dependent term of mobility HCI 
degradation

UHCI0 0 Yes First parameter for mobility degradation induced by 
HCI

Table 72 Mobility Degradation BTI Parameters (Continued)

Name Default L term 
available

Description Notes
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UHCI1 0 Coefficient for Isub-dependent term of mobility HCI 
degradation

TDII 0 Yes Impact ionization current exponent for threshold 
voltage degradation induced by HCI

TDLE 1 Channel length exponent for threshold voltage 
degradation induced by HCI

TDCE 0 Yes Channel current exponent for threshold voltage 
degradation induced by HCI

TEA 0 Equivalent activation energy of Vth HCI degradation

TDLT 0 Channel length dependence term of Vth HCI 
degradation 

THCVD 0 Yes Coefficient for Vds-dependent term of Vth HCI 
degradation

TDVD 0 Yes Vds term exponent of Vth HCI degradation

TDID 1 Yes Channel current exponent for Vds-dependent term of 
Vth HCI degradation

THCVB 0 Coefficient for Vbs dependence of Vth HCI 
degradation

TDVB 1 Exponent for Vbs dependence of Vth HCI 
degradation

HN 0.5 Yes Time exponent for threshold voltage degradation 
induced by HCI

UDCE 0 Yes Channel current exponent for mobility degradation 
induced by HCI

UDII 0 Yes Impact ionization current exponent for mobility 
degradation induced by HCI

UDLE 1 Channel length exponent for mobility degradation 
induced by HCI 

UEA 0 Equivalent activation energy of mobility HCI 
degradation

Table 73 Threshold Voltage and Mobility Degradation HCI Parameters (Continued)

Name Default L term 
available

Description Notes
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UDLT 0 Channel length dependence term of mobility HCI 
degradation 

UHCVD 0 Yes Coefficient for Vds-dependent term of mobility HCI 
degradation

UDVD 0 Yes Vds term exponent of mobility HCI degradation

UDID 1 Yes Channel 
current 
exponent for 
Vds-
dependent 
term of 
mobility HCI 
degradation

UHCVB 0 Coefficient for Vbs dependence of mobility HCI 
degradation

UDVB 1 Exponent for Vbs dependence of mobility HCI 
degradation

0.5 HK Yes Time exponent for mobility degradation induced by 
HCI

HIII 0 First parameter for impact ionization

HIIVD0 0 First vds dependent parameter of the impact 
ionization current

HIIVD1 0 Second vds dependent parameter of the impact 
ionization current

HIIVD2 0 Third vds dependent parameter of the impact 
ionization current

VDSAT0 0 Nominal drain saturation voltage of the impact 
ionization current

HIIT 0 Temperature dependent parameter for the impact 
ionization current 

HIIL 0 Channel length dependent parameter for the impact 
ionization current

Table 73 Threshold Voltage and Mobility Degradation HCI Parameters (Continued)

Name Default L term 
available

Description Notes
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HIIE 0 Saturation channel electric field for the impact 
ionization current

HIIVG0 0 First vgs dependent parameter for the impact 
ionization current 

HIIVG1 0 Second vgs dependent parameter for the impact 
ionization current 

HIIVG2 0 Third vgs dependent parameter for the impact 
ionization current 

HIIVGD 0 vds dependent parameter for the impact ionization 
current

HIIVOFF -1000 
disabled

Offset voltage for Vgstep limiting

ISUBMODE 1 Iii vs. Isub model flag

DLHCI 0 Length dependence offset for HCI model

DWHCI 0 Width dependence offset for HCI model

VBSMAX 1e6 Positive VBS limiting value for HCI model

Table 73 Threshold Voltage and Mobility Degradation HCI Parameters (Continued)

Name Default L term 
available

Description Notes
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19 Post-Layout Simulation: RC Network Reduction
and Back-Annotation

Describes post layout simulation including RC network reduction, simulations 
that contain a large number of parasitic elements, and back-annotation in 
HSPICE.

HSPICE back annotation supports Full Back-Annotation and Selective Net 
Back-Annotation for the DSPF and SPEF formats.

In HSPICE, the post-layout simulation is similar to pre-layout simulation. You 
can do the post-layout simulation with DSPF only if it is a fully extracted netlist 
with instances. You can include the DSPF file in the pre-layout netlist. You need 
to replace the ideal .SUBCKT blocks from your original netlist with .SUBCKT 
blocks containing the extracted parasitics. Remember to verify that the port 
order in the extracted .SUBCKT blocks match the port order in the ideal netlist. 
RC reduction ignores nodes with initial conditions set. If your circuit contains 
many initial condition statements, it is possible to see little or no change in 
resistor and/or capacitor counts after reduction.

If your extracted netlist is not too large (approximately 100,000 elements or 
fewer), then HSPICE can give you very good results. Otherwise, you can also 
employ an RC reduction. 

HSPICE ships numerous of examples for your use; see Listing of 
Demonstration Input Files for paths to demo files.

The following section cover these topics:
■ Linear Acceleration
■ Linear Acceleration Control Options Summary
■ Supporting Parasitic L- and K-elements
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■ Pruning Parasitics from a Post-Layout Flat Netlist
■ Post-Layout Back-Annotation

Linear Acceleration

By use of the SIM_LA option, you can accelerate the simulation of circuits that 
include large linear RC networks. To achieve this acceleration, HSPICE linearly 
reduces all matrices that represent RC networks. The result is a smaller matrix 
that maintains the original port behavior, yet achieves significant savings in 
memory and computation. Thus, the SIM_LA option is ideal for circuits with 
large numbers of resistors and capacitors, such as clock trees, power lines, or 
substrate networks.

In general, the RC elements separate into their own network. The shared 
nodes of both main circuit elements (including .PRINT, .PROBE, and 
.MEASURE statements) and RC elements are the port nodes of the RC 
network. All other RC nodes are internal nodes. The currents that flow into the 
port nodes are a frequency-dependent function of the voltages at those nodes. 
The multi-port admittance of a network represents this relationship.
■ The SIM_LA option formulates matrices to represent multi-port admittance. 
■ Then, to eliminate as many internal nodes as possible, it reduces the size of 

these matrices, while preserving the admittance, otherwise known as port 
node behavior. 

■ The amount of reduction depends on the f0 upper frequency, the threshold 
frequency where SIM_LA preserves the admittance (Figure 96).
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Figure 96 Multiport Admittance vs. Frequency

The SIM_LA option is very effective for post-layout simulation because of the 
volume of parasitics. For frequencies below f0, the approx signal matches that 
of the original admittance. Above f0, the two waveforms diverge, but the higher 
frequencies are not of interest. The lower the f0 frequency, the greater the 
amount of reduction.

For the syntax and description of this control option, see .OPTION SIM_LA in 
the HSPICE Reference Manual: Commands and Control Options.

You can also choose one of three algorithms, explained in the following 
sections:
■ PACT Algorithm
■ PI Algorithm
■ LNE Algorithm

PACT Algorithm
The PACT (Pole Analysis via Congruence Transforms) algorithm reduces the 
RC networks in a well-conditioned manner, while preserving network stability. 
■ The transform preserves the first two moments of admittance at DC (slope 

and offset), so that DC behavior is correct (see Figure 97).
■ The algorithm preserves enough low-frequency poles from the original 

network to maintain the circuit behavior up to a specified maximum 
frequency f0, within the specified tolerance. 
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This approach is more accurate between these two algorithms, and is the 
default. 

Figure 97 PACT Algorithm

PI Algorithm
This algorithm creates a pi model of the RC network. 
■ For a two-port, the pi model reduced network consists of:

• a resistor that connects the two ports, and 

• a capacitor that connects each port to ground

The result resembles the Greek letter pi. 
■ For a general multi-port, SIM_LA preserves the DC admittance between the 

ports, and the total capacitance that connects the ports to ground. All 
floating capacitances lump to ground.

LNE Algorithm
The Linear Node Elimination (LNE) algorithm first checks the order of the 
nodes for low-to-high R-degree. If the R-degree is less than MAXDEG and the 
time constant (=sum(C)/sum(G)) of this node is small enough, the removal of 
the node takes place. Currently, the MAXDEG value is 7. 
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644 HSPICE® User Guide: Basic Simulation and Analysis
K-2015.06



Chapter 19: Post-Layout Simulation: RC Network Reduction and Back-Annotation
Linear Acceleration Control Options Summary
Linear Acceleration Control Options Summary

The following table provides a summary of these control options. See the 
HSPICE Reference Manual: Command and Control Options for details on each 
of these options.

Example
In this example, the circuit has a typical risetime of 1ns. Set the maximum 
frequency to 1 GHz, or set the minimum switching time to 1ns.

.OPTION LA_FREQ = 1GHz
-or-
.OPTION LA_TIME = 1ns

However, if spikes occur in 0.1ns, HSPICE does not accurately simulate them. 
To capture the behavior of the spikes, use:

.OPTION LA_FREQ = 10GHz
-or-
.OPTION LA_TIME = 0.1ns

Note: Higher frequencies (smaller times) increase accuracy, but only 
up to the minimum time step used in HSPICE.

.OPTION SIM_LA=PACT | PI | LNE Activates linear matrix reduction and selects the 
reduction method.

.OPTION LA_FREQ=value Upper frequency where you need accuracy 
preserved.

.OPTION LA_MAXR=VALUE Maximum resistance for linear matrix reduction.

.OPTION LA_MINC=value Minimum capacitance for linear matrix 
reduction.

.OPTION LA_TIME=value Minimum time for preservation of accuracy.

.OPTION LA_TOL=value Error tolerance for the PACT and LNE 
algorithms.
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Supporting Parasitic L- and K-elements

HSPICE supports simulation with parasitic L- and K-elements. You need to set 
the minimum value of mutual inductance by using the KLIM option. The default 
value of KLIM is 10mH. HSPICE does not calculate the second-order mutual 
inductance for values less than KLIM, but parasitic mutual inductance values 
can be many orders smaller than the default value.

Also, note that RC reduction is not very effective with respect to L- and K-
elements. If you increase the simulation speed of your netlist having a huge 
number of parasitic elements, you need to properly understand the accuracy 
versus speed trade-off. For more information about the KLIM option, 
see .OPTION KLIM in the HSPICE Reference Manual: Commands and Control 
Options.

Pruning Parasitics from a Post-Layout Flat Netlist

To prune parasitics from a post-layout flat netlist, you can use the .PRUNE 
command to create an active-file netlist from a flat (*.DSPF file only) post-layout 
file. Use the following syntax to remove resistors and capacitors from a post-
layout *.spf file by creating an active-net file to help speed cell 
characterization when simulating, for example, large macro blocks. Using the 
.PRUNE command helps you avoid back annotation steps.

.PRUNE "post-layout flat file" "active-net file"

Figure 98 Simplifying cell characterization by pruning R/C parasitics 
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The process is as follows:

1. Obtain an active net file from a pre-layout netlist. 

2. Use this active net file to create a pruned netlist on the flat post-layout netlist.

3. Re-use this pruned netlist in subsequent characterization runs.

Note: This flow is similar to the HSPICE selective net Back-Annotation 
flow. However, HSPICE performs the R/C de-coupling on the flat 
netlist instead of during back-annotation. See Selective Net 
Back-Annotation on page 651.

Example
The following illustrates pruning capacitor and resistor parasitics from a flat 
post-processed *.spf netlist to create an active net input file in *.rcxt 
format.
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Figure 99 Converting a flat post-layout *.spf file to an active-net *.rcxt file.

Limitation
The active net name cannot contain a wildcard (*) character. For example, 
‘net*33’ is illegal.

input.spf
Two nodes

IN

OUT

Subnode

Active

C9 connected
 to active net IN,
is kept, and

 is connected
 to INV1:OUT

node OUT

Input.rcxt
Active net: IN
Inactive net: OUT
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Post-Layout Back-Annotation

The traditional and straightforward way for post-layout analysis by HSPICE is to 
include the parasitic netlist containing parasitic RCs and devices as an ordinary 
netlist for simulation. 

The problem with this approach is that the parasitic netlist is flat; hence you do 
not gain many advantages of hierarchical netlist, such as answers to these 
questions:
■ How can different options apply to different blocks for better trade-off 

between accuracy and performance?
■ How do you perform power analysis on a flat netlist to check the power 

consumption?
■ The traditional flow flattens all nodes after extraction so it is more difficult to 

compare the delay before and after extraction.
■ The traditional flow can also stress the limits of an extraction tool so 

reliability also becomes an issue.

To address these problems, HSPICE
■ Needs a hierarchical (or flat) Layout Versus Schematic (LVS) ideal netlist for 

use by tools such as Star-RC or Star-RCXT, and a flat parasitic netlist in 
DSPF or SPEF format.

■ Runs these two netlists to with back-annotation analysis. HSPICE can 
annotate the parasitic RCs (and devices in the instance section of DSPF file) 
to the ideal netlist and use the annotated ideal netlist for post-layout-like 
simulation.

This hybrid flat-hierarchical approach provides full control and advantages of 
simulating a hierarchical netlist. For example:
■ You can back-annotate a part of a design for better accuracy and 

performance trade-off.
■ You can perform power analysis based on the hierarchical ideal netlist to 

determine the power consumption of each block. Besides, you can reuse all 
post-processing statements for the pre-layout simulation for post-layout 
back-annotation simulation.

HSPICE enables parsing and annotating of two types of parasitic netlist 
formats:
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■ Standard Parasitic Format (SPF)
■ Standard Parasitic Exchange Format (SPEF)

The parasitic netlist describes the interconnect delay and load due to parasitic 
resistance and capacitance. You can represent parasitics on a net-by-net basis 
from a simple lumped capacitance to a fully distributed resistance capacitance 
tree.

For a useful application note see 

The following sections cover these topics:
■ Full Back-Annotation
■ Selective Net Back-Annotation
■ Warnings/Error Messages
■ Listing of Back-Annotation Commands and Options
■ Application Note: Back-Annotation
■ DSPF and SPEF File Structures

Full Back-Annotation
The Full Back-Annotation flow annotates all nets from the parasitic netlist, and 
thus can produce the most accurate simulation result. For a large case with 
enormous number of parasitic RCs the full back-annotation flow could take 
much time and memory for the simulation, in which case Selective Net Back-
Annotation might be a better choice. To invoke full back-annotation, you must 
supply two types of input files: an ideal netlist and a parasitic netlist in the 
format of DSPF/SPEF.

Flow for Full Back-Annotation
The option for invoking full back-annotation flow is .OPTION BA_FILE. For 
several examples of usage, see the demo cases and files shipped with 
HSPICE. Go to Back-Annotation Demo Cases, and follow the path to
 $installdir/demo/hspice/back_annotation/.... 

The following cases illustrate the flow for full back-annotation:

./option_ba_file/dspf/multiba Demonstrates use of the .OPTION BA_FILE command 
to launch multiple DSPF files for parasitic back-annotation.
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You need not specify which format (DSPF/SPEF) the parasitic netlist uses. 
HSPICE determines it automatically by analyzing the header of the parasitic 
netlist, so the file header must be clean to avoid adding confusing comments.

You can specify multiple parasitic netlists, each delimited by a semicolon. 
These parasitic netlists must be independent and cannot cross-reference each 
other.

Note: HSPICE back annotation supports encryption of .DSPF and 
.SPF files.

For descriptions and usage examples, see .OPTION BA_FILE in the HSPICE 
Reference Manual: Commands and Control Options.

Example

Sample case for Full Back-Annotation Flow

*$ Full Back Annotation example for Inverter Circuit for DSPF 
post layout netlist $*
Vsupply  Vdd33 0 3.3
Vground Vss33 0 0.0 
.temp 25
*******HSPICE BA implementation********
.option ba_file='rc.spi' $$ DSPF post layout netlist
***************************************
.inc 'sch.spi' $$ schematic netlist
vin in 0 pulse (0 3.3 0 100p 100p 2n 4n)
.lib 'model.l' TT_3V
.option nomod post
.tran 1p 300n 
.probe tran v(out)
**measurement to check period of the clock 
.measure tran t_PERIOD TRIG v(out) val=0.5 RISE=15 TARG v(out)
+ val=0.5 RISE=16
.end

Selective Net Back-Annotation
Enable selective net back-annotation to improve the performance in post-layout 
simulations that contain a large number of parasitic RCs and focus on the 

./option_ba_file/dspf Demonstrates use of the .OPTION BA_FILE command 
for single DSPF file.

 /.option_ba_file/spef Demonstrates use of the .OPTION BA_FILE command 
for single SPEF file.
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sensitive blocks. A selective net back-annotation only annotates the nets that 
are active during an initial simulation run. This reduces both back-annotation 
and simulation time and improves the overall performance with the cost of 
some loss of accuracy.

Selective BA supports the HSIMBA format.

You need three types of input files to invoke selective net back-annotation. 
■ An ideal netlist
■ A parasitic netlist as used by full back-annotation
■ An active net file, which can be in either of two formats: StarRC or HSIMBA.

Examples, Active Net Files
The content of active net file is case-insensitive for HSPICE.

Example 6 Active Net File sample in format of StarRC

NETS: A0
NETS: B0
NETS: A1
NETS: B1
NETS: X1/N6

Example 7  Active Net File sample in HSIMBA format 

NETS = {
A0
B0
A1
B1
X1/N6

}

Flow for Selective Net Back-Annotation 
To invoke selective net back-annotation, specify both .OPTION BA_FILE and 
BA_ACTIVE. 

The option for invoking the selective net back-annotation flow is .OPTION 
BA_ACTIVE. For examples of usage, see the demo cases and files shipped 
with HSPICE. Go to Back-Annotation Demo Cases, and follow the path to 
$installdir/demo/hspice/back_annotation/.... 
The following case illustrates the flow for selective net back-annotation:
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You do not need to specify the format of the active net file. HSPICE determines 
it automatically by analyzing its header. You can specify multiple active net files, 
each delimited by a semicolon.

Note: For net names such as module.xi1/xi2/net_name, by 
default, HSPICE truncates this name from the last period and 
identifies the net name as xi1/xi2/net_name. To use the full 
net name, i.e., module.xi1/xi2/net_name, use the HSPICE 
control option .OPTION BA_ACTIVEHIER.

Example 
The following case illustrates a Selective Net Back-Annotation Flow.

*$ Selective Net Back Annotation example for Inverter Circuit for 
DSPF post layout netlist $*
Vsupply  Vdd33 0 3.3
Vground Vss33 0 0.0 
.temp 25
*******HSPICE BA implementation********
.option ba_file='rc.spi' $$ DSPF post layout netlist
.option BA_ACTIVE='selective.rcxt' $$active net file
***************************************
.inc 'sch.spi' $$ schematic netlist
.lib 'model.l' TT_3V
cload out 0 10f
.option nomod converge=100
.tran 1p 300n 
.probe tran v(out)
**measurement to check period of the clock 
.measure tran t_PERIOD TRIG v(out) val=0.5 RISE=15
+ TARG v(out) val=0.5 RISE=16
.end

Active Net Generation
An active net file is needed to run Selective Net Back-Annotation. This active 
net file used to be generated by other tools, such as Synopsys HSIM. Now, 
HSPICE can generate active net files.

 selective_ba/option_ba_active Demonstrates use of .OPTION BA_ACTIVE to specify 
the active net file name(s) for selective net back-
annotation.
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Flow for Active Net Generation
Use the .BA_ACHECK command to invoke Active Net Generation. The demo 
case below shows how to use this command. Go to Appendix 33, Back-
Annotation Demo Cases, and follow the path $installdir/demo/hspice/
back_annotation/…

The following case illustrates the flow for active net back-annotation:

The default format for the active net file is HSIM format; the file name is 
design.hsimba0. Another available format available is the StarRC format; 
the file name is design.rcxt0. To generate the StarRC format, use the 
HSPICE control option .OPTION BA_NETFMT=1.

For descriptions and usage examples, see .BA_ACHECK and .OPTION 
BA_NETFMT in the HSPICE Reference Manual: Commands and Control 
Options.

Example

The following case illustrates an Active Net Generation Flow:

*$ Selective Back Annotation example for TG BASED XOR Circuit for 
DSPF post layout netlist $*

Vsupply  vdd 0 1.2
Vground vss 0 0.0
.option runlvl
.temp 25
*******HSPICE BA Active Net implimentation********
.ba_acheck dv=1 tstart=1u tstop=20u exclude='x*'
.option ba_netfmt=1  $ 0: HSIM  1: StarRC
**************************************************
.inc 'sch.spi' $$ schematic netlist
*xadder sum vss carry vdd in2 in1 adder
vin1 a 0 pulse (0 1.2 100p 100p 100p 2u 4u)
vin2 b 0 pulse (0 1.2 100p 100p 100p 3.5u 7u)
vclk clk 0 pwl (0 1.2 23u 1.2 23.1u 0)
vclkb clkb 0 pwl (0 0 23u 0 23.1u 1.2)
.option ba_activehier=1
.lib 'model.l' TT
.option nomod post
.tran 1p 30u
.probe tran v(out) v(a) v(b) v(clk) v(clkb)
.end

selective_ba/ba_acheck/ Demonstrates the use of the .BA_ACHECK command to specify 
the rule for detecting node activity.
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Warnings/Error Messages
HSPICE may issue warnings when doing back-annotation. The following are 
workarounds and solutions for common warning messages:
■ Warnings for cutoff coupling capacitors—Coupling capacitors across two 

nets are very common in parasitic netlists. For example, assume one 
coupling capacitor (CC) with terminals connected to two nodes on nets A 
and B, respectively. When HSPICE launches selective net back-annotation 
and net A is active while net B is inactive, it cuts off CC from the node under 
net B and the terminal becomes a dangling node. HSPICE issues a low-level 
warning message as such as “undefined node; might be defined 
in inactive net.” By default, HSPICE gives such a warning and 
processes the cutoff terminal of CC as an ordinary dangling node. Additional 
modes are available in HSPICE to change the default behavior 
(see .OPTION BA_COUPLING). When you apply .OPTION 
BA_COUPLING, the warning changes to undefined node; reset to 
GROUND_NET or undefined node; reset to pre_layout node: N1 
according to the option setting.

■ Warnings for terminal name mismatch—Cases where the terminal name 
used in the parasitic netlist is not consistent with the one used in the ideal 
netlist might generate a warning. For example: The terminal name for 
MOSFET in parasitic netlist is M1:UDRN, while the default terminal name for 
MOSFET recognized by HSPICE is D[R][A][I][N]. Another case is the 
terminal name in parasitic netlist XM1:D, while in the ideal netlist the 
corresponding subckt definition has a node list of N1, N2, N3, N4. Generally, 
HSPICE is able to correct this kind of mismatch automatically. If HSPICE 
cannot achieve this auto-correction, the tool gives a warning message such 
as: cannot find the node pin. To eliminate such warning messages, 
specify .OPTION BA_TERMINAL to explicitly map these terminals from the 
parasitic netlist to the ideal netlist.

■ Warning for undefined PIN node—You must declare all pin nodes in a 
parasitic netlist. If you violate this rule, HSPICE warns undefined node, 
and all cuts off all connected element terminals to that node.
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■ Warning for missing instance—When the element instance referenced in 
the parasitic netlist cannot be found in the ideal netlist, HSPICE gives the 
warning message: cannot find the instance.

■ Warning for invalid connectivity—If the node connectivity in the parasitic 
netlist conflicts with the connectivity in the ideal netlist, HSPICE corrects this 
error automatically and then gives the warning message invalid 
connectivity; corrected now.

Listing of Back-Annotation Commands and Options
The following is an alphabetical listing of all the back annotation command and 
options available in HSPICE. See the HSPICE Reference Manual: Commands 
and Control Options for details on each of these modes. For sample usage of 
these commands see Application Note: Back-Annotation.
■ .BA_ACHECK: Specifies the rule for detecting node activity.
■ .OPTION BA_ACTIVE: Specifies the active net file name(s) for selective net 

back-annotation.
■ .OPTION BA_ACTIVEHIER: Annotates full hierarchical net names for 

BA_ACTIVE files.
■ .OPTION BA_ADDPARAM: Specifies extra parameters for scale by 

.OPTIONS BA_SCALE/BA_GEOSHRINK.
■ .OPTION BA_COUPLING: Controls how to treat cutoff coupling capacitors 

when invoking selective net back-annotation.
■ .OPTION BA_DPFPFX: Prepends an extra prefix when searching the ideal 

netlist for referenced instances in the parasitic file (DSPF/SPEF/DPF).
■ .OPTION BA_ERROR: Handles errors on nets.
■ .OPTION BA_FILE: Launches parasitic back-annotation.
■ .OPTION BA_FINGERDELIM: Explicitly specifies the delimiter character 

used for finger devices and subcircuit instances.
■ .OPTION BA_GEOSHRINK: Acts as element scaling factor for .OPTION 

BA_SCALE.
■ .OPTION BA_HIERDELIM: Specifies the hierarchical separator in the DPF 

file.
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■ .OPTION BA_IDEALPFX: Specifies the extra prefix to prepend when 
searching the ideal netlist for referenced instances in the parasitic file 
(DSPF/SPEF/DPF). For an example, see .OPTION BA_IDEALPFX in the 
HSPICE Reference Manual: Commands and Control Options.

■ .OPTION BA_MERGEPORT: Controls whether to merge net ports into one 
node.

■ .OPTION BA_NETFMT: Specifies the format of the active net file.
■ .OPTION BA_PRINT: Controls whether to output nodes and resistors/

capacitors introduced by back-annotation.
■ .OPTION BA_SCALE: Sets the element scaling factor for instances in the 

DPF file separately.
■ .OPTION BA_TERMINAL: Specifies the terminal name mapping between 

the parasitic netlist and the terminal names that the simulator recognizes.

Application Note: Back-Annotation
HSPICE provides for both full back-annotation and selective back annotation.

The following sections present these topics:
■ Full Back-Annotation
■ Selective Back-Annotation
■ Recommended Settings for STAR-RC-XT Command File

Full Back-Annotation
For back-annotation in HSPICE, you need the following files:
■ Schematic netlist
■ Post-layout netlist

To perform back-annotation in HSPICE:

1. Specify the post-layout netlist file with:

.option ba_file=“full_path_of_post_layout_netlist_file”
2. Include the schematic netlist as follows:

.include “schematic_netlist”
Result: HSPICE returns a back-annotation report in the *.lis file. 
Sample report:
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In the following report, the number within the parentheses is the number parsed 
and the number outside the parentheses is the actual annotated figure.

****** begin BA ******
BA File="postlayout_netlist.spi"
*** BA Statistics ***
BA Nets back annotated (parsed): 6 (6)
BA Resistors back annotated (parsed): 204 (204)
BA Capacitors back annotated (parsed, coupled): 251 (251, 222)
BA Instances back annotated (parsed): 6 (6)
BA Time = 0.01 sec
****** end BA ******

The following sections present the syntaxes to handle these situations:
■ Multi Post-Layout Back-Annotation
■ Back-Annotation for Stem Ports
■ Output Control for Back-Annotation
■ Scaling During Back-Annotation
■ Terminal Mapping in Back-Annotation
■ Prefix Handling for Devices of Post-layout Netlist
■ Prefix Handling for Devices of a Pre-layout Netlist
■ Delimiter Handling for Fingered Devices
■ Handling the Hierarchy Separator

Multi Post-Layout Back-Annotation
HSPICE back-annotation supports multi post-layout netlists at all levels of the 
hierarchy. You can specify multiple file by using .option ba_file, separated 
by a semicolon (;). This syntax is:

.option ba_file = "file1 [; file2; file3; …]"

HSPICE modifies the reporting structure to issue a back-annotation report for 
an individual post-layout netlist, and then issues a separate back-annotation 
report.

****** begin BA ******
BA File="rc1.spi"

*** BA Statistics ***
BA Nets back annotated (parsed): 6 (6)
BA Resistors back annotated (parsed): 204 (204)
BA Capacitors back annotated (parsed, coupled): 251 (251, 222)
BA Instances back annotated (parsed): 6 (6)
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BA File="rc2.spi"

*** BA Statistics ***
BA Nets back annotated (parsed): 4 (4)
BA Resistors back annotated (parsed): 78 (78)
BA Capacitors back annotated (parsed, coupled): 30 (30, 0)
BA Instances back annotated (parsed): 2 (2)

*** Multi-BA Summary ***
BA File="rc1.spi"
BA File="rc2.spi"
BA Nets back annotated (parsed): 10 (10)
BA Resistors back annotated (parsed): 282 (282)
BA Capacitors back annotated (parsed, coupled): 281 (281, 222)
BA Instances back annotated (parsed): 8 (8)
BA Time = 0.01 sec
****** end BA ******

 Back-Annotation for Stem Ports
In a schematic, a pin or net which appears as a single connection between two 
points can actually be multiple parallel connections of metals in the layout.

This extraction is controlled by the SHORT_PINS command of STAR-RCXT. 
When you set this option to NO, the stem connects to a pin in the form of a bus.

Users employ this extraction feature for measuring stem currents. HSPICE 
supports the bus type pin and provides it with an option:

.option ba_mergeport= [1|0]

By default, the value is 1 which shorts the ports. To incorporate stems, set 
.option ba_mergeport=0.

Output Control for Back-Annotation
During back-annotation, HSPICE creates its own node names for parasitics. 
Because of the large number of parasitics, your search for a particular node or 
operating point in the waveform may become tedious. For ease of use, HSPICE 
supports storing only pre-layout nodes names by using:

.option ba_print = ideal

The default value for this option is all which includes parasitic nodes.
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Scaling During Back-Annotation
HSPICE provides scaling for back-annotation using two options for back-
annotated post layout netlists:
■ .option ba_scale

■ .option ba_geoshrink

In back-annotation (for a post layout netlist):

These options, by default, are equal to .option scale and .option 
geoshrink, respectively.

There is a standard practice in PDKs for parameters that scale. However there 
is possibility of different parameter names, for example, instead of 'W' use of 
'Wr', etc. To account for such situations, HSPICE provides:

.option ba_scaleparam="LINEAR: [param11 param12]...;
+ QUAD: [param21 param22] ..."

For example:

The following commands HSPICE to scale WR, LR parameters linearly and 
ASR, AREAR parameters quadratic- ally.

.OPTION BA_SCALEPARAM = "LINEAR: WR LR; QUAD: ASR AREAR"

Terminal Mapping in Back-Annotation
The terminal name is a set of strings found in device parasitic information for 
the RC netlist, following the netlist delimiter. For example:

In this example Here DRN, GATE, SRC, and BULK are terminal names for the 
MOSFET.

Mmn1 mn1#DRN mn1#GATE mn1#SRC mn1#BULK nch3 ad=0.2016p
+ as=0.2016p l=0.35u nrd=0 nrs=0 pd=1.8u ps=1.8u sa=0.48u
+ sb=0.48u sca=8.27147 scb=0.004406 scc=3.6e-05 w=0.42u
…

HSPICE provides terminal names for other elements, as well.

Note: The letters in the square brackets are optional.

Device Terminal 1 Terminal 2 Terminal 3 Terminal 4

M(MOSFET) D [R] [A] [I] [N] G [A] [T] [E] S [O] [U] [R] [C] [E] B [U] [L] [K]

final_dimension original_dimension ba_scale ba_geoshrink =
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When a terminal name may be different from those listed above for elements, 
HSPICE provides an option to map different user terminal names to what the 
simulator recognizes.

.option ba_terminal = "terminal_index1 alias1
+ [; terminal_index2 alias2; terminal_index3 alias3; …]"

The following example maps user-defined terminals (UDRN, UGATE) in the 
parasitic netlist to default terminal characters (D, G).

.OPTION BA_TERMINAL="D UDRN ;G UGATE"

Prefix Handling for Devices of Post-layout Netlist
Sometimes, a post-layout netlist has device names with prefixes. For example, 
for a pre-layout device name such as M1, HSPICE may change it to M_mM1 in 
post-layout netlist. 

The HSPICE back-annotation engine tries to match such devices. However, 
you should explicitly include the prefix by using:

.option ba_dpfpfx = "prefix_string"

For the example above, you need to specify:

ba_dpfpfx = "M_"

Prefix Handling for Devices of a Pre-layout Netlist
Sometimes, a pre-layout netlist has device names with prefixes. For example, a 
pre-layout device name such as xmM1 may change to mM1 in a post-layout 
netlist. 

The HSPICE back annotation engine tries to match such devices. However, 
you should explicitly include the prefix using:

.option ba_idealpfx = "prefix_string"

Q(BJT) C [O] [L] 
[L] [E] [C] [T] [O] [R]

B [A] [S] [E] E [M] [I] [T] 
[T] [E] [R]

S [U] [B] 
[S] [T] [R] [A] [T] [E]

R(Resistor)
A [N] [O] [D] [E C [A] [T] [H] 

[O] [D] [E]
S [U] [B] 
[S] [T] [R] [A] [T] [E]

N/A

C(Capacitor) P [L] [U] [S] M [I] [N] [U] [S] S [U] [B] 
[S] [T] [R] [A] [T] [E]

N/A

D(Diode) P [O] [S] [I] 
[T] [I] [V] [E]

N [E] [G] [A] 
[T] [I] [V] [E]

S [U] [B] 
[S] [T] [R] [A] [T] [E]

N/A

Device Terminal 1 Terminal 2 Terminal 3 Terminal 4
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For the example above, you must specify:

.option ba_idealpfx = "xm"

Delimiter Handling for Fingered Devices

In a post-layout netlist, multi-fingered device names have delimiters followed by 
a number. For a pre-layout netlist device listed as:

MP1 d g s b w=1u l=1u M=3

In the post-layout, it may appear as:

MMP1 d g s b w=1u l=1u ….

MMP1#1 d g s b w=1u l=1u ….

MMP1#2 d g s b w=1u l=1u ….

where: '#' is the finger delimiter.

The HSPICE back annotation engine, by default, recognizes '@'. However, for 
other delimiters, you must explicitly include the same using:

.option ba_fingerdelim = "delimiter_string"

So, for above example, you have to specify:

.option ba_fingerdelim = "#"

Delimiter Handling for Fingered Subcircuit Instances
In a pre-layout netlist, when an instance is instantiated multiple times with M:

XSUB1 ... M=3

And the corresponding SPF file has the following entries:

XSUB1 …
XSUB1@1 …
XSUB1@2 …

 Then, HSPICE can recognize the fingered subcircuit instances and map to the 
pre-layout instance correctly.

Handling the Hierarchy Separator 

Usually, a STARC DSPF file displays Hierarchy divider information as:

*|DIVIDER :
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This notation plays a role in understanding hierarchy. However, in cases when a 
divider is not present, explicitly define the separator by using:

.option ba_hierdelim = "delimiter_string"

For example, for the colon (:) hierarchy separator (DIVIDER), specify:

.option ba_hierdelim = ":"

Selective Back-Annotation
Selective back-annotation allows you to selectively back-annotate the post-
layout netlist per active net criteria. HSPICE uses active net, a set of nets / pins 
specified in *.rcxt or *.rc format for back-annotating an RC netlist. 

For selective back-annotation in HSPICE, you need the following files:
■ Schematic netlist
■ Post-layout netlist
■ Active net file (in .rcxt or .rc format)

To perform selective back-annotation in HSPICE:

1. Specify the post-layout netlist file with 

option ba_file="full_path_of_post_layout_netlist_file"
2. Include the schematic netlist by using: 

.include "schematic_netlist"
3. Specify the path of an active net file by using:

.option ba_active="active_net_file"
Result: HSPICE writes the back-annotation report to the *.lis file as in 
the following sample report:

****** begin BA ******
 Active Nets File="selective.rcxt"
 
 BA File="rc.spi"
 
 *** BA Statistics ***
 BA Nets back annotated (parsed): 11 (11)
 BA Resistors back annotated (parsed): 255 (255)
 BA Capacitors back annotated (parsed, coupled): 100 (100, 0)
 BA Instances back annotated (parsed): 22 (22)
 BA Time =  0.01 sec
 ****** end BA ******

When you define tolerance change in voltage value of nets, you create the 
active net files by using the following syntax:
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.BA_ACHECK [include=node_pattern] [exclude=node_pattern] 
+ [dv=val] [level=val2] [tstart=start_time] [tstop=stop_time]

where:
■ include and exclude are useful options for specifying nets with 

wildcards.
■ dv specifies the threshold of 'change of voltage'. So, if you specify dv=0.1, 

HSPICE considers all nets which vary more than 0.1 V as active nets.
■ level causes the simulator to pick nets from the TOP level to the hierarchy 

level specified. For level=2, HSPICE considers active nets from the TOP 
level and immediate hierarchy level. By default, level=0, which means that 
HISPICE considers the full hierarchy.

■ tstart and tstop define start and stop times, for which you want to 
perform an active net check. By default, these are the same as transient 
start and stop times.

HSPICE displays the report on created active net file as:

****** Active Net Information ******
 Active Net file:hsp.rcxt
 Active net threshold:1.00E+00v
 #Active nets:68(7.83% of total nets)
******

Active net files include embedded subckt instance names. By default, HSPICE 
creates an active net file in .hsimba# format, which is the HSIM active net 
format.

To write the active net file in .rcxt# format, use:

.option ba_netfmt = 1

By default, HSPICE does not recognize module names and results in incorrect 
back-annotation. To correct such a situation, use:

.option ba_activehier = [0|1]

The default is 0; to correct problems due to use of a module instead of a subckt 
instance name, set:

ba_activehier=1

Coupling Capacitance Handling during Selective Back-Annotation 
During selective back-annotation a coupling capacitance between active and 
inactive net may occur. By default, HSPICE does not connect the coupling cap 
664 HSPICE® User Guide: Basic Simulation and Analysis
K-2015.06



Chapter 19: Post-Layout Simulation: RC Network Reduction and Back-Annotation
Post-Layout Back-Annotation
of an active node to an inactive node and so leaves the node dangling.

HSPICE provides flexibility for the user to choose the connection by using:

.option ba_coupling = [0|1|2]

where:
■ .option ba_coupling = 0 (default) - Leaves the active net terminal of 

coupling capacitor under process as an ordinary dangling node.
■ .option ba_coupling = 1 - Connects the active net terminal coupling 

capacitance to the node which STAR-RC defines by *|GROUND_NET in the 
command file.

■ .option ba_coupling = 2 - Connects the active net terminal coupling 
capacitance to the unexpanded inactive node.

To achieve the most accurate results, set:

.option ba_coupling=2

Recommended Settings for STAR-RC-XT Command File
Besides the simulator, back-annotation depends on a STAR-RC-XT command 
file. Recommended settings for this file are as follows:
■ EXTRACTION: RC
■ REDUCTION: NO
■ COUPLE_TO_GROUND: YES
■ XREF: YES
■ POWER_EXTRACT: YES
■ NETLIST_FORMAT: SPF
■ NETLIST_FILE: output_filename
■ NETLIST_INSTANCE_SECTION: YES
■ NETLIST_CONNECT_SECTION: YES
■ SHORT_PINS: NO
■ NETLIST_GROUND_NODE_NAME: 0
■ NETLIST_SUBCKT: YES
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DSPF and SPEF File Structures
DSPF File Structure

Open Verilog International (OVI) publishes the DSPF standard.

DSPF_file ::=
*|DSPF{version}
{*|DESIGN design_name}
{*|DATE date}
{*|VENDOR vendor}
{*|PROGRAM program_name}
{*|VERSION program_version}
{*|DIVIDER divider}
{*|DELIMITER delimiter}
.SUBCKT
*|GROUND_NET
{path divider} net_name
*|NET {path divider} net_name ||
{path divider} instance_name ||
pin_name
net_capacitance
*|P (pin_name pin_type
pinCap
{resistance {unit} {O}
capacitance {unit} {F}}
{x_coordinate y_coordinate})
||
*|I {path divider} instance_name
delimiter pin_name
{path divider} instance_name
pin_name pin_type
pinCap
{resistance {unit} {O}
capacitance {unit}{F}}
{x_coordinate y_coordinate}
*|S ({path divider} net_name ||
{path divider} instance_name
delimiter pin_name ||
pin_name
instance_number
{x_coordinate y_coordinate})
capacitor_statements
resistor_statements
subcircuit_call_statements
.ENDS
{.END}
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SPEF File Structure

The IEEE-1481 specification requires the following file structure in a SPEF file. 
HSPICE only annotates the typical set (triple value SPEF file). Parameters in 
[brackets] are optional:

SPEF_file ::=
*SPEF version
*DESIGN design_name
*DATE date
*VENDOR vendor
*PROGRAM program_name
*VERSION program_version
*DESIGN_FLOW flow_type {flow_type}
*DIVIDER divider
*DELIMITER delimiter
*BUS_DELIMITER bus_prefix bus_suffix
*T_UNIT time_unit NS|PS
*C_UNIT capacitance_unit FF|PF
*R_UNIT resistance_unit OHM|KOHM
*L_UNIT inductance_unit HENRY|MH|UH
[*NAME_MAP name_index 
name_id|bit|path|name|physical_ref]
[*POWER_NETS logical_power_net physical_power_net ...]
[*GROUND_NETS ground_net ...]
[*PORTS logical_port I|B|O
*C coordinate ...
*L par_value
*S rising_slew falling_slew [low_threshold high_threshold]
*D cell_type]
[*PHYSICAL_PORTS [physical_instance delimiter]
physical_port I|B|O
*C coordinate ...
*L par_value
*S rising_slew falling_slew [low_threshold high_threshold]
*D cell_type]
[*DEFINE logical_instance design_name |
*PDEFINE physical_instance design_name]
*D_NET net_path total_capacitance
[*V routing_confidence]
[*CONN
*P [logical_instance delimiter] 
logical_port|physical_port
I|B|O
*C coordinate ...
*L par_value
*S rising_slew falling_slew
[low_threshold high_threshold]
*D cell_type
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|
*I [physical_instance delimiter] 
logical_pin|physical_node
I|B|O
*C coordinate ...
*L par_value
*S rising_slew falling_slew
[low_threshold high_threshold]
*D cell_type
*N net_name delimiter net_number coordinate
[*CAP cap_id node1 [node2] capacitance]
[*RES res_id node1 node2 resistance]
[*INDUC induc_id node1 node2 inductance]
*END
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20Multi-Technology Simulation of 3D Integrated
Circuit

Describes the HSPICE solution to simulate a modularized IC chip inside a 3D 
integrated circuit. 

HSPICE provides multi-die interconnect analysis capability. A three-
dimensional integrated circuit (3D-IC) is a single chip that integrates two or 
more layers of active electronic components both vertically and horizontally into 
a single circuit. All components on the layers communicate using on-chip 
signaling, whether vertically or horizontally.

The following sections discuss these topics:
■ Overview of HSPICE 3D-IC Simulation Netlist
■ 3D-IC Netlist Construct and Usage
■ Transient Analysis and Alters Simulation Features
■ Full Circuit Example
■ 3D-IC Hierarchical IC Module Support

Overview of HSPICE 3D-IC Simulation Netlist

The following are the general rules for analysis statements and simulation 
control statements:
■ You must define all analysis statements and simulation control statements 

with the full 3D-IC instance hierarchy reference.
■ Any analysis and simulation control statements referenced to subcircuit 

names require enhancements to identify the unique IC module with the 
.module construct label.
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See Full Circuit Example on page 688 for an example that references include 
and library files.

The HSPICE simulates a 3D-IC with existing methodology to simulate the 
modularized IC chip inside the full 3D-IC (single die) and uses enhanced 
commands and simulation controls specific to the process.

HSPICE keeps the single IC module netlist intact. It also allows customizing of 
the circuit properties for different instantiations of the same IC module such as 
.TEMP, .OPTION TNOM, .OPTION SCALE, .OPTION GEOSHRINK, and netlist 
parameters. This approach enables netlist interpretation and model 
interpretation controlling statements, such as .IVTH. This methodology 
maintains the instance full hierarchy to match the layout hierarchy for back-
annotation.

The following sections discuss these topics:
■ HSPICE Netlist Definitions
■ IC Module Usage

HSPICE Netlist Definitions
The netlist scope includes:
■ A device model that you can define by either the .MODEL command or 

.SUBCKT (macro-model) constructs.
■ Device model referencing depends on the netlist static scope (the netlist 

definition inside the .SUBCKT construct).
■ You reference netlist parameters based on dynamic scope (the full instance 

hierarchical path).

IC Module Usage
The HSPICE simulation allows you to define unique circuit properties as the 
default for each IC module in the following items:
■ Circuit property definitions using commands and control options such as: 

.OPTION SCALE, .OPTION GEOSHRINK, .TEMP  and so forth.
■ Netlist parameter references using the .PARAM command.
■ Model card definitions for both model card and macro-model forms.
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■ Verilog-A module definitions
■ Subcircuit block definitions

3D-IC Netlist Construct and Usage

The 3D-IC construct employs two commands: .MODULE and .ENDMODULE to 
create a 3D-IC-specific netlist block. These commands enable you to define the 
unique IC module entities without name labels or circuit properties and to avoid 
collision between different IC modules. You can define the model reference 
static scope unique for the given IC module and define the unique IC module 
default entities and circuit properties. For definitions and details about all legal 
commands and options listed in the .MODULE—.ENDMODULE construct, see 
the HSPICE Reference Manual: Commands and Control Options.

Syntax
.MODULE label [BASE=base_module_label]
...
.ENDMODULE [label]

where: label consists of legal netlist commands and constructs, including 
circuit-topology definition statements and circuit-property definition statements 
such as:
■ File inclusion commands .LIB and .INCLUDE.
■ .SUBCKT constructs that contain legal netlist commands.
■ .HDL (Verilog-A) commands.
■ .PARAM commands.
■ .MODEL commands.
■ Scaling control options .OPTION SCALE and .OPTION GEOSHRINK. 

These options define the device scaling factor for each IC module such that 
all instances below the subckt carry these properties. 

■ Temperature controls .TEMP and .OPTION TNOM: These commands define 
the simulation temperature for each IC module such that all instances below 
the subckt carry these properties. 

■ .GLOBAL command: Defines the global node for each IC module. Thus, all 
nodes that reside below the subckts carry this node definition connect to this 
node within the IC module. For example, if .GLOBAL defines a node within 
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the .MODULE construct, only the instances inside the subckts (defined within 
the same .MODULE construct) and subsequent nodes below the subckts 
can connect to the defined node without connecting through subckt ports.

Note: Even though HSPICE defines the .GLOBAL nodes for each 
IC module, the simulator only limits its reference the IC 
module. The nodes can be referenced from top level through 
the following syntax: 
instance_name.global_node_label. 

■ .IVTH: If you declare this command inside the .MODULE block, it applies to 
the model card defined within the same .MODULE construct only.

where: base_module_label argument allows you to define and inherit all of 
the content of the base module in the derived IC module without any IC module 
label. The derived IC module content can overwrite the base IC module 
content.

You can connect the module based global nodes explicitly at the top level such 
that, all instances instantiated with the IC module top subckt could have 
different top level connection.

For more information on accessing the global node inside a module from the 
top level, see .MODULE and .CONNECT commands in the HSPICE® 
Reference Manual: Commands and Control Options.

Illegal Netlist Commands, Controls and Constructs
The following may not be part of the contents of a .MODULE construct.
■ Analysis feature statements.
■ Output probing statements such as .PRINT .PROBE and .MEASURE.
■ Simulation feature statements, such as .ALTER, .TRAN, and Monte Carlo 

constructs.
■ Simulation controlling options other than those explicitly stated in the Syntax 

section above.
■ Conditional/logical statements such as .IF and .ELSE.

The following sections discuss these topics:
■ Scope Reference Rules
■ Using Verilog-A Modules Within the .MODULE Scope
■ Top-Level IC Module Reference
■ Intrinsic Model Card Reference from a Top-Level Instance
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■ IC Module Instance-Specific Properties Scope
■ Over-writing Circuit Properties
■ Parameter Direct Access from Top-Level Netlist

Scope Reference Rules
All entities and circuit properties can be applicable only to the netlist entities 
inside the same .MODULE and .ENDMODULE construct. In other words, the 
entities defined inside the .MODULE construct take higher precedence over 
those with the same name labels that are defined at the top level outside a 
.MODULE construct.

Examples

Example 1: This is a legal netlist in which the simulation nominal temperature 
for the xtop1 block is 40. The nominal temperature for the rest of the circuit is 
25. The device length for the xtop1.m1 is 3.6e-008. The device length for 
the xtop2.m1 is 5.6e-008. 

.temp 25

.param ptop=5.6e-008
xtop1 … top-module::top1   
xtop2 … top2
.module top-module

.temp 40

.param ptop=3.6e-008

.subckt top1 …
m1 … nmod l=”ptop” w=2.7e-006 …

.ends top1
.endmodule top-module

.subckt top2 …
m1 … nmod l=”ptop” w=2.7e-006 …

.ends top2

Example 2: Legal netlist with device references to the models defined within the 
same .module construct. The xtop1.m1 references the model card with 
vth0=0.38 while the xtop2.m1 references the one with the vth0=0.41.

.model nmod nmos level=54 vth0=0.41 …

xtop1 … top::top1
xtop2 … top2
.module top
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.model nmod nmos level=54 vth0=0.38 
…

.subckt top1
m1 … nmod l=3.6e-008 w=2.7e-006 …

.ends top1
.endmodule top
.subckt top2

m1 … nmod l=3.6e-008 w=2.7e-006 …
.ends top2

Example 3: This illegal netlist shows how you must not reference undefined 
model cards, either in the same .module construct or at the top-level, even 
though the referenced model name is uniquely defined inside another 
.module construct.

xtop1 … tmod1::top1
xtop2 … tmod2::top2
.module tmod1

.model nmod1 nmos level=54 vth0=0.45 …

.subckt top1
m1 … nmod2 l=3.6e-008 w=2.7e-006 …
.ends top1

.endmodule tmod1

.module tmod2
.model nmod2 nmos level=54 vth0=0.41 …
.subckt top2
m1 … nmod1 l=3.6e-008 w=2.7e-006 …

.ends top2

.endmodule tmod2

Example 4: This legal netlist shows the device reference to the models defined 
without the .module construct only because there is not a model defined 
inside the .module construct with the same name label. The xtop1.m1 
references the model card with vth0=0.45 at the top level static scope. The 
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xtop1.m2 references the model card with the vth0=0.41.   The xtop2.m1 
references the model card with the vth0=0.45 (same as the xtop1.m1).

.model nmod1 nmos level=54 vth0=0.45 …
xtop1 … top::top1
xtop2 … top2
.module top

.model nmod2 nmos level=54 vth0=0.41
 …
.subckt top1
m1 … nmod1 l=3.6e-008 w=2.7e-006
…

m2 … nmod2 l=3.6e-008 w=2.7e-006
…

.ends top1
.endmodule top

.subckt top2
m1 … nmod1 l=3.6e-008 w=2.7e-006 …

.ends top2

Using Verilog-A Modules Within the .MODULE Scope
You can use a Verilog-A (VA) module to uniquely define each IC module scope 
by using the .HDL statement inside the .MODULE construct. See .HDL in the 
HSPICE Reference Manual: Commands and Control Options. See Chapter 12, 
Using Verilog-A.

The following rules apply for VA module references:
■ Instances inside an IC module can reference the VA modules defined inside 

the same IC module and the VA modules defined without the IC-module 
scope (top level).

■ Instances inside the IC module cannot cross-reference any VA module 
defined in a different IC module scope. 

■ The interposer level (top level) instance can reference the VA modules 
defined without the IC-module scope (top level) and VA modules defined 
inside any IC module with additional IC-module label references.

The VA module reference precedence is as follows:

1. VA module within the same IC module scope.

2. VA module without IC-module scope (top level).
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VA Reference Usage Rules
Use the following HSPICE subcircuit instance syntax when you want to have a 
top level instance reference the VA module inside the IC module:

Xinstance_name interconnect VA_module_name parameters

Use the following Subcircuit Instance Syntax Extension:

Xinstance_name interconnect A_module_name[module_label::] 
VA_module_name

Examples, Reference Usage 

Legal Netlist Example 1: VA module referenced with multiple VA module with 
the same name in different scopes. The xtop1.x1 references the VA module, 
my_inv, defined inside the top IC module while the xtop2.x1 references the 
one defined without IC module (top-level).

.HDL “my_va.va”    * “my_inv” VA module is defined.
xtop1 … top::top1
xtop2 … top2
.module top
.HDL “my_va2.va”    * “my_inv” VA module is defined.
.subckt top1
x1 … my_inv …
.ends top1
.endmodule top
.subckt top2
x1 … my_inv …
.ends top2

Legal Netlist Example 2: VA module defined within the IC module and 
referenced from the top level instance. The xr2 references the VA module, 
resistor, defined inside the “mod1” IC module while the xr3 references to 
the one defined inside the mod2 IC module.

// res.va
`include "discipline.h"
module resistor (a,b);
inout a,b;
electrical a,b;
branch(a,b) res;
parameter real R=1;
analog begin
I(res) <+ V(res)/R;
end
endmodule
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// res_cap.va
`include "discipline.h"
module resistor (a,b);
inout a,b;
electrical a,b;
branch(a,b) res;
parameter real R=1;
parameter real C=1e-15;
analog begin
I(res) <+ V(res)/R + C*ddt(V(res));
end
endmodule

*** Top level netlist
.module mod1
.hdl './res.va'
…
.endmodule

.module mod2

.hdl './res_cap.va'
…
.endmodule

vsource 1 0 pwl 0n 0 10n 3
r1 1 2 10K
xr2 2 3 mod1::resistor R=1OK
xr3 3 0 mod2::resistor R=1OK C=1p
…
c1 2 0 1uF
.tran 1n 1u
.end

Example 3: Illegal Netlist—This example contains a VA module cross-reference 
to the VA module defined in a different IC module scope. It is illegal to have the 
xtop.x1 in the IC module “top1 cross-references the VA module, inv, 
defined inside the top2 IC module.

xtop … top1::top1
.module top1
.subckt top1
x1 … inv …
.ends top1
.endmodule top
.module top2
.HDL “my_va.va”    * “inv” VA module is defined.
.endmodule top
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Top-Level IC Module Reference
Reference Rules for top-level IVC module references:

A top-level instance instantiates the IC module top subcircuit block that is 
defined inside the .MODULE construct and requires a reference to the module 
label. 

HSPICE Subcircuit Instance Syntax:
Xinstance_name interconnect subcircuit_name parameters

HSPICE Subcircuit Instance Syntax Extension:
Xinstance_name interconnect 

[module_label::]subcircuit_name parameters

Examples, Top-Level References

Example 1: A legal netlist in which the “xtop1” instance instantiates the “top” 
subcircuit defined inside the “tmod” module (with the “m1” instance) while the 
“xtop2” instance instantiates the “top” subcircuit defined without the 
“.module” construct (with the “m2” instance).

xtop1 … tmod::top
xtop2 … top
.module tmod
.subckt top
m1 …
.ends top
.endmodule tmod
.subckt top
m2 …
.ends top
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Example 2: An illegal netlist because you may not reference a subcircuit 
definition label with an incorrect “.module” label even though the subcircuit 
definition name is unique throughout the netlist.

xtop1 … tmod1::top2
xtop2 … tmod2:top1
xtop3 … top1
xtop4 … top2
.module tmod1
.subckt top1
m1 …
.ends top1
.endmodule tmod1
.module tmod2
.subckt top2
m2 …
.ends top2
.endmodule tmod2

Intrinsic Model Card Reference from a Top-Level 
Instance
Interpretation rules: When the intrinsic model card is referenced from the top-
level instance, all interpretation references are based on the top-level rules, 
such as parameter passing and scaling. 

HSPICE Transistor Instance Syntax
Minstance_name interconnect model_card_name parameters

HSPICE Transistor Instance Syntax Extension:
Minstance_name interconnect 

[module_label::]model_card_name parameters

Example
m1 ... tmod::nmos ....module tmod
.model nmos nmos ...
.endmodule tmod

IC Module Instance-Specific Properties Scope
The .modulevar and .endmodulevar block enables you to define the 
unique IC module entities for each top-level instance instantiation. 
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The following defines the HSPICE .MODULEVAR and .ENDMODULEVAR 
constructs.

Syntax .MODULEVAR Block
.MODULEVAR label
...
.ENDMODULEVAR [label]

where: label can be any legal netlist statements and constructs, such as:
■ .PARAM

■ .OPTION

■ .TEMP

■ .LIB and .INCLUDE to include files containing legal statements inside the 
.MODULEVAR construct

Illegal netlists statements and constructs include:
■ Any circuit topology constructs and statements, such as .SUBCKT and 

instance statements
■ Other illegal statements and constructs such as the .MODULE construct.

.MODULEVAR Construct Usage 
The circuit entities allowed are parameters and properties such as those which 
these statements contain:
■ Parameters - .PARAM
■ Circuit properties such as: .TEMP, .OPTION SCALE, and .OPTION 

GEOSHRINK.

Note: It is illegal to define any circuit topology construct or 
statements, such as device element statements and the 
.subckt construct.

■ The .modulevar label can only be referenced by the modulevar= 
parameter as part of the Xinstance_name statement.

■ Circuit property precedence rules:

The overall circuit properties reference precedence is as follows:

1. Defined inside the .modulevar construct.

2. Defined inside the .module construct.

3. Defined at the top-level netlist (outside any ".module" construct).
680 HSPICE® User Guide: Basic Simulation and Analysis
K-2015.06



Chapter 20: Multi-Technology Simulation of 3D Integrated Circuit
3D-IC Netlist Construct and Usage
4. Any circuit properties not defined inside the lower precedence scope, 
are treated as additional circuit properties for the referenced IC module.

Over-writing Circuit Properties
The top-level IC module instance can overwrite any circuit properties with 
predefined a .modulevar construct label.

Syntax

HSPICE Subcircuit Instance Syntax:
Xinstance_name interconnect subcircuit_name parameters

HSPICE Subcircuit Instance Syntax Extension:
Xinstance_name interconnect [module_label::] 

subcircuit_name [modulevar=modulevar_label] parameters

Examples: Instance-Specific Properties Reference 
Example 1: Legal Netlist specifying the properties as follows:

xtop1 … tmod::top modulevar="top-inst"
xtop2 … tmod::top
xtop3 … top modulevar="top-inst"
xtop4 … top

.temp 10

.param ptop=1e-008

.module tmod
.temp 40
.param ptop=3e-008

 
.subckt top …
m1 … nmod l="ptop" w=2.7e-006 …
.ends top

Instance Nominal Temperature Device Length

xtop1.m1 25 5e-008

xtop2.m1 40 3e-008

xtop3.m1 25 5e-008

xtop4.m1 10 1e-008
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.endmodule tmod

.modulevar top-inst
.temp 25
.param ptop=5e-008

.endmodulevar top-inst

.subckt top …
m1 … nmod l="ptop" w=3.7e-006 …
.ends top

Example 2: This netlist shows top-down parameter passing of the following 
properties (by way of .option parhier=global):

And the bottom-up parameter passing of the following properties using 
.OPTION PARHIER=local.

Instance Nominal Temperature Device Length

xtop1.m1 25 3e-008

xtop2.m1 25 5e-008

xtop3.m1 40 5e-008

xtop4.m1 40 1e-008

xtop5.m1 25 1e-008

xtop6.m1 25 8e-008

xtop7.m1 10 4e-008

xtop8.m1 10 8e-008

Instance Nominal Temperature Device Length

xtop1.m1 25 8e-008

xtop2.m1 25 4e-008

xtop3.m1 40 8e-008

xtop4.m1 40 6e-008

xtop5.m1 25 7e-008

xtop6.m1 25 2e-008
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xtop1 … tmod::top modulevar="top-inst"
xtop2 … tmod::top modulevar="top-inst"
+ ptop=4e-008
xtop3 … tmod::top
xtop4 … tmod::top ptop=6e-008

xtop5 … top modulevar="top-inst"
xtop6 … top modulevar="top-inst" 
+ ptop=2e-008
xtop7 … top 
xtop8 … top ptop=9e-008

.temp 10

.param ptop=1e-008

.module tmod
.temp 40
.param ptop=3e-008

.subckt top …

.param ptop=8e-008
m1 … nmod l="ptop" w=2.7e-006 …
.ends top

.endmodule tmod

.modulevar top-inst
.temp 25
.param ptop=5e-008

.endmodulevar top-inst

.subckt top …

.param ptop=7e-008
m1 … nmod l="ptop" w=3.7e-006 …
.ends top

xtop7.m1 10 7e-008

xtop8.m1 10 9e-008

Instance Nominal Temperature Device Length
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Example 3: Illegal netlist due to referencing undefined ".modulevar" 
construct label.

xtop1 … tmod::top modulevar="top-inst"
.temp 10
.param ptop=1e-008
.module tmod

.temp 40

.param ptop=3e-008

.subckt top …
m1 … nmod l="ptop" w=2.7e-006 …

.ends top
.endmodule tmod

Parameter Direct Access from Top-Level Netlist
The following syntax extension allows you to access the parameters defined 
inside the .module or the .modulevar construct.

Syntax
.param param_label="module_label::param_label"
.param param_label="modulevar_label::param_label"

Example
.module top
.param top_p=5
.endmodule
.modulevar top_inst
.param top_inst_p=8
.endmodulevar
.param p1="top::top_p" * p1 = 5
.param p2="top_inst::top_inst_p" * p2 = 8

Transient Analysis and Alters Simulation Features

The current 3D-IC solution applies to transient analysis only. 

The following sections cover these topics:
■ Sweeps for Temperature and Parameters
■ .ALTER Features
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Sweeps for Temperature and Parameters
You can simulate 3D-IC modules using temperature and parameter sweeps in a 
transient analysis:
■ Temperature Sweep in a Transient Simulation
■ Parameter Sweep in a Transient Simulation

Temperature Sweep in a Transient Simulation 
This reference extension allows you to reference the .temp command or 
.option tnom for a temperature SWEEP in a transient simulation.

Keyword temp Syntax Extension
module_label::temp
modulevar_label::temp

Example 1: Single IC module temperature SWEEP.

.module top 

.temp 25

.endmodule
* Sweep "top1::temp" from 40 to 100 with each step increase by 10.
* Total simulation: 6
.tran 0ns 10ns SWEEP top::temp 40 100 10

Example 2: Multiple IC module temperature SWEEP with "data."

.module top1

.temp 25

.endmodule

.module top2

.temp 40

.endmodule

.tran 0ns 1ns SWEEP data=tempdata
* Sweep top1::temp from 25 to 35 and top2::temp from 40 to 45
* Total simulation: 6
.data tempdata top1:temp top2::temp
25 40
30 40
35 40
25 45
30 45
35 45
.enddata
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Parameter Sweep in a Transient Simulation
This reference extension allows you to sweep through the given parameters 
defined in either the .module or the .modulevar constructs.

Reference Syntax
module_label::param_label
modulevar_label::param_label

Example1: 1.Single IC module parameter SWEEP

.module top

.param p1= 25

.endmodule
* Sweep "top::p1" from 25 to 35 with each step increase by 5.
* Total simulation: 3
.tran 0ns 10ns SWEEP top::p1 25 35 5

Example 2: Multiple IC module parameter SWEEP with "data."

.module top1

.param p1= 25

.endmodule

.module top2

.param p2= 40

.endmodule

.tran 0ns 1ns SWEEP data=paramdata
* Sweep top1::p1 from 25 to 30 and top2::p2 from 40 to 45
* Total simulation: 4
.data paramdata top1:p1 top2::p2
25 40
30 40
25 45
30 45
.enddata

.ALTER Features
The 3D-IC usage for the HSPICE .ALTER instance-statement replacement 
scheme is the same as the existing replacement scheme for a standard device 
simulation. Two HSPICE commands aid in this process: .DEL MODULE and 
.DEL MODELEVAR.

You modify or add to existing .module or .modulevar constructs by 
redefining the .module or .modulevar constructs with previously-defined 
label names. 
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The following modification rules apply:
■ The content defined with the new constructs for the existing label constructs 

only modifies the content to the same label construct content.
■ If the statements exist in the original construct, the new contents replace the 

contents of the original construct.
■ If the statements are undefined in the original construct, the content is 

added to the label construct.
■ If any reference content becomes unavailable for instance reference, you 

need to modify the instance statements by redefining them as replacements 
to the existing top-level instance statements.

See the following topics:
■ .DEL MODULE Command for .ALTER Blocks
■ .DEL MODULEVAR Command for .ALTER Blocks

.DEL MODULE Command for .ALTER Blocks
The .DEL MODULE command undefines the previously defined .module 
construct and prepares it for redefinition. You can only define the .DEL 
MODULE construct inside .ALTER blocks and all the contents previously defined 
with the specified .MODULE label are no longer referenced.

Syntax
.del module existing_module_label

Example: Redefining the top label.

.module top
.subckt inv
m1…
m2…
.ends inv

.endmodule
xtop … top::inv
.alter s1

.del module top * Undefine the "top" IC module.

.module top * Redefine the "top" IC module
.subckt inv
xm1 … nch
xm2 … pch
.ends inv
.subckt nch
 …
.ends
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.subckt pch
 …

.ends
.endmodule

.end

.DEL MODULEVAR Command for .ALTER Blocks
The .DEL MODULEVAR command undefines the previously defined 
.MODULEVAR construct and prepares it for redefinition.You can only define the 
.DEL MODULEVAR construct inside .ALTER blocks. With the .DEL 
MODULEVAR statement defined, all the contents previously defined with the 
specified .MODULEVAR label can no longer be referenced.

Syntax
.del modulevar existing_modulevar_label

.module top
.subckt inv
m1… w=p l=0.02u
.ends inv

.endmodule

.modulevar ic1
 .param p=0.05u

.endmodulevar

.param p=0.06u
xtop … top::inv modulevar="ic1"

.alter s1
.del modulevar ic1 * "xtop.m1" will have "0.06u" as 

width.

.alter s2
.del modulevar ic1
.modulevar ic1

.param p=0.07u * "xtop.m1" will have "0.07u" as width.
.endmodulevar

.end

Full Circuit Example

The following full circuit example includes these characteristics:
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■ This 3D-IC consists of multiple single dies with the same design and 
technology node.

■ This 3D-IC has die-based simulation corners or circuit properties.

The example shows how you can use a single IC module netlist for a single IC 
set of memory simulation properties from the file memory.lib.

.lib TT
.param … * parameters for the simulation corner TT.
…

.endl TT

.lib FF
.param… * parameters for the simulation corner FF
…

.endl FF

.lib SS
.param… * parameters for the simulation corner SS
…

.endl SS

.lib models
.models … * model cards for the memory IC.
.subckt nch_mac … * macro-models for the memory IC.
…

.ends nch_mac
.endl models

The netlist then draws on single IC memory circuit definitions from the file 
memory.sp:

* Top level circuit from single memory IC module
.subckt 1G_mem_top …

.temp 100
xbank1 … bank
…

.ends 1G_mem_top
* Other subcircuit definitions.
.subckt bank …

…
.ends bank

The 3D-IC Memory netlist draws from the 3D_mem.sp file:

* global control and parameters for 3D IC simulation.
.temp -40
* 1st IC memory module (fast corner)
xmem1 ….. 1GMem::1G_mem_top 
* 2nd IC memory module (slow corner)
xmem2 ….. 1GMem::1G_mem_top
* 3rd IC memory module (typical - default)
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xmem3 ….. 1GMem::1G_mem_top
* 4th IC memory module
xmem4 ….. 1G_mem_top

* top level control logic block.
x5 ….. memory_control
.subckt memory_control

…
.ends memory_control
* Netlist definitions from the original single IC circuit.
.include "memory.sp"

.module 1GMem            
* Default control and parameters
.lib "memory.lib" TT
* Default single IC memory properties
.temp 25
…
* Models for the circuit elaborations in the memory circuit.
.lib "memory.lib" models
* Netlist definitions from the original single IC circuit.
.include "memory.sp"

.endmodule 1GMem 

3D-IC Hierarchical IC Module Support

HSPICE provides the ability of modularized IC chips inside the full 3D-IC. The 
IC module instances can be instantiated hierarchically with reference to IC 
module subcircuit definition.

The following topics discuss the detail rules of hierarchical IC module netlisting 
configuration:
■ Netlist Construct for 3D-IC Hierarchical IC Module Support
■ Scope Reference Rules for 3D-IC Hierarchical IC Module Support
■ Output Syntax for 3D-IC Hierarchical IC Module Support

Netlist Construct for 3D-IC Hierarchical IC Module 
Support
HSPICE supports hierarchical .module instances by defining the .module 
instances within a .subckt definition inside another .module definition. 
690 HSPICE® User Guide: Basic Simulation and Analysis
K-2015.06



Chapter 20: Multi-Technology Simulation of 3D Integrated Circuit
3D-IC Hierarchical IC Module Support
Syntax:

.module modulename1
 .subckt subcktname1
 …
 Xmoduleinstance … [modulename2::]subcktname2
 .ends subcktname1
.endmodule modulename1

Sample netlist:

xtop1 … tmod1::top1 …
.module tmod1
 .subckt top1
 …
 xtop2 … tmod2::top2
 .ends top1
…
.endmodule tmod1
.module tmod2
 .subckt top2 …
 …
 .ends top2
…
.endmodule tmod2

Description: The "xtop1" instance instantiates the "top1" subcircuit defined 
inside the "tmod1" module. The "xtop2" instance inside "top1" subcircuit 
instantiates the "top2" subcircuit defined inside the "tmod2" module. The 
hierarchical path becomes "xtop1" for IC module "tmod1" and "xtop1.xtop2" for 
IC module "tmod2".

Scope Reference Rules for 3D-IC Hierarchical IC 
Module Support
With hierarchical IC module netlisting configuration, the IC module specific 
option only applies inside the IC module netlist interpretation, but does not 
influence the lower or upper IC module netlist interpretation.

The following sections discuss these topics:
■ Parameter-passing Rules for 3D-IC Hierarchical Instantiation
■ Options scale, geoshrink Inside module, and optparhier
■ Module-based .temp and .option tnom
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■ Module-based .ivth and .option ivth
■ Access Model Card and Parameter Inside Module
■ Hierarchical Instantiation With Different IC Modules and Global Node 

Reference
■ .modulevar Usage Under Hierarchical 3D-IC Metlist Configuration

Parameter-passing Rules for 3D-IC Hierarchical Instantiation
With hierarchical IC module netlisting configuration, the parameter passing 
depends on the value of .option parhier. The following rules apply:
■ For .option parhier = global

• Value inside modulevar block

• Value inside module block

• Value in top level

• Value defined in X-element instance line

• Value defined in subckt block
■ For .option parhier = local

• Value defined in X-element instance line

• Value defined in subckt block

• Value inside modulevar block

• Value inside module block

• Value in top level

Options scale, geoshrink Inside module, and optparhier
The scaling option takes effect within the IC module only, even the IC modules 
are instantiated hierarchically. Thus, each IC module retains its independent 
properties.
■ For .option optparhier = global

• Value inside modulevar block

• Value inside module block

• Value in top level
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• Value defined in subckt block
■ For .option optparhier = local

• Value defined in subckt block

• Value inside modulevar block

• Value inside module block

• Value in top level

Module-based .temp and .option tnom
The simulation temperature .temp takes effect within the IC module only, even 
the IC modules are instantiated hierarchically. Thus, each IC module retains its 
independent properties.

Module-based .ivth and .option ivth
If this option is declared inside the .module, it applies to the model card 
defined within the same .module construct only.

Access Model Card and Parameter Inside Module
Model card cross module reference is illegal under the hierarchical 3DIC netlist 
configuration. HSPICE checks for such references and issues an error 
message.

An example of an illegal netlist:

xtop1 … tmod1::top
xtop2 … tmod2::top
.module tmod1
 .subckt top
 m1 … tmod2::nmos1 …
 .ends top
.endmodule tmod1
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* Hierarchical 3DIC netlist configuration
.module tmod2
 .model nmos1 nmos …
 .subckt top
 x2 … tmod3::top
 m1 … tmod3::nmos3 …
 .ends top
.endmodule tmod2
.module tmod3
 .model nmos3 nmos …
 .subckt top
 …
 .ends top
.endmodule tmod3

Description: The "xtop.m1" reference to "nmos1" inside the IC module "tmod2" 
is illegal as a cross module reference. The "xtop2.m1" references to the 
"nmos3" inside the IC module "tmod3" is also illegal under the hierarchical 
3DIC netlisting configuration.

Hierarchical Instantiation With Different IC Modules and Global 
Node Reference
Sample netlist:

xtop1 … tmod1::top1 …
* Cross hierarchical global node reference.
r1 top_net xtop1.xtop2.vdd r=50
.module tmod1
 .global vdd
 .subckt top1 …

 * Single level global node reference
 .connnect vdd xtop2.vdd
 xtop2 … tmod2::top2 …
 …
 .ends top
.endmodule tmod1
.module tmod2
 .global vdd
 .subckt top2 …
 …
 .ends top2
.endmodule tmod2

Description: By default, the "vdd" in "xtop1" is not connected to "vdd" in 
"xtop1.xtop2". It requires explicit definitions to connect the nodes, if it is the 
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intention. In this example, the "vdd" in the IC module "tmod1" for "xtop1" and 
the one in the IC module "tmod2" for "xtop1.xtop2" are connected together.

.modulevar Usage Under  Hierarchical 3D-IC Metlist 
Configuration
It is illegal to reference an undefined modulevar label.

Sample netlist:

xtop1 … tmod1::top1
.module tmod1
 .temp 40
 .param ptop=3e-008
 .subckt top1 …
 xtop2 … tmod2::top2 modulevar="mid"
 m1 … nmod l="ptop" w=2.7e-006 …
 .ends top
 .endmodule tmod1
.module tmod2
 .temp 45
 .param ptop=8e-008
 .subckt top2 …
 xtop3 … tmod3::top3
 m1 … nmod l="ptop" w=2.7e-006 …
 .ends top
.endmodule tmod2

.module tmod3
 .temp 30
 .param ptop=6e-008
 .subckt top3 …
 m1 … nmod l="ptop" w=2.7e-006 …
 .ends top
.endmodule tmod3
.modulevar mid
.temp 55
.param ptop=5e-008
.endmodulevar mid

Instance Nominal Temperature Device Length

xtop1.m1 40 3e-008

xtop1.xtop2.m1 55 5e-008
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Output Syntax for 3D-IC Hierarchical IC Module Support
HSPICE provides IC module label referencing capability for output syntax with 
.print/.probe/.measure statements.

Nodal Voltage Syntax:

.print V([ic_module_label::]node_pattern

Current Syntax:

.print I([ic_module_label::]instance_pattern)

Description:
■ [ic_module_label::] is the optional IC module scope reference.
■ node_pattern is the wildcard pattern for node matching.
■ instance_pattern is the wildcard pattern for instance matching.

Hierarchical 3D-IC Output Examples

Sample netlist:

.module ic1
 .subckt tc1 …
 xchip2 … ic2::tc2
 …
 .ends
.endmodule ic1
.module ic2
 .subckt tc2 …
 xchip3 … ic3::tc3
 …
 .ends
.endmodule ic2
.module ic3
 .subckt tc3 …
 …
 .ends
.endmodule ic3
xchip1 … ic1::tc1
xchip4 … ic2::tc2

xtop1.xtop2.xtop3.m1 30 6e-008

Instance Nominal Temperature Device Length
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Matching Specifications
1. All instances/nodes under the given instance path

Sample syntax:

.print V(xchip1.*)

Description: This specification works the same way as 2D circuit reference. 
It matches match all primary nodes with "xchip1" as the prefix hierarchy.

2. IC module "ic1" instances/nodes only

Sample syntax:

.print V(ic1::*)

OR

.print V(ic1::xchip1.*)

Description: This specification limits the scope matching to the primary 
nodes under the "xchip1" hierarchy, except all the nodes under 
"xchip1.xchip2" domain. Since there is only one "ic1::tc1" instantiated, 
therefore the first specification would work as expected without possible 
ambiguity.

3. IC module "ic2" instances/nodes only

Sample syntax:

.print V(ic2::*)

Description: This specification limited the scope matching to the primary 
nodes under the "xchip1.xchip2" and "xchip4" hierarchy, except the nodes 
under "xchip1.xchip2.xchip3" and "xchip2.xchip3" domains.

4. IC module "ic2" instance/nodes under the "xchip1.xchip2" only

Sample syntax:

.print V(ic2::xchip1.xchip2*)

OR

.print V(ic2::xchip1.*)

Description: This specification limited the scope matching to the primary 
nodes under the "xchip1.xchip2" hierarchy only, except the nodes under 
"xchip1.xchip2.xchip3" domain. The second specification already 
determines the matching scope to be under "xchip1". Thus, the result is the 
same as the first specification.
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5. IC module "ic3" instances/nodes only

Sample syntax:

.print V(ic3::*)

Description: This specification limited the scope matching to the primary 
nodes under the "xchip1.xchip2.chip3" and "xchip4.xchip3" hierarchies.

6. IC module "ic3" instances/nodes under "xchip1.xchip2.xchip3" only

Sample syntax:

.print V(ic3::xchip1.xchip2.xchip3*)

OR

.print V(ic3::xchip1.xchip2 *)

OR

.print V(ic3::xchip1.*)

Description: This specification limits the scope matching to the primary 
nodes under the "xchip1.xchip2.xchip3" hierarchy only. The second and 
third specification already determines the matching scope prefix as 
"xchip1".   Thus, the result is the same as the first specification.
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Part 5:  Variation, Optimization, and
Statistical Analysis

Part 5 presents the following chapters/topics:
■ Chapter 21, Performing Digital Cell Characterization
■ Chapter 22, Timing Analysis Using Bisection
■ Chapter 23, Monte Carlo—Traditional Flow Statistical Analysis
■ Chapter 24, Variability Analysis Using the Variation Block
■ Chapter 25, Monte Carlo Analysis—Variation Block Flow
■ Chapter 26, Mismatch Analyses
■ Chapter 27, Monte Carlo Data Mining
■ Chapter 28, DC Sensitivity Analysis and Variation Block
■ Chapter 29, Exploration Block
■ Chapter 30, Optimization
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21Performing Digital Cell Characterization

Describes how to characterize cells in data-driven analysis and shows some 
typical data sheet parameters.

HSPICE ships numerous examples for your use; see Cell Characterization 
Examples for paths to demo files.

Most ASIC vendors use the basic capabilities of the .MEASURE statement in 
Synopsys HSPICE to characterize standard cell libraries, and to prepare data 
sheets. 

HSPICE stores input sweep parameters and measure output parameter, in 
measure output data files (design.mt0, design.sw0, and design.ac0). 
These files store multiple sweep data. You can use Custom WaveView to plot 
this data; for example, to generate fanout plots of delay versus load. You can 
also use the slope and intercept of the loading curves to calibrate VHDL, 
Verilog, Lsim, and Synopsys models.The following sections discuss these 
topics:
■ Performing Basic Cell Measurements
■ Performing Advanced Cell Characterization
■ Cell Examples

This chapter shows you some typical data sheet parameters. A series of typical 
data sheet examples, demonstrates the flexibility of the .MEASURE statement.

This chapter also shows you how to characterize cells in data-driven analysis. 
Data-driven analysis automates cell characterization, including calculating the 
delay coefficient for the timing-simulator polynomial. You can simultaneously 
vary an unlimited number of parameters, or the number of analyses to perform. 
Cell characterization uses an ASCII file format for automated parameter input 
to HSPICE.
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Performing Basic Cell Measurements

The following sections describe how to perform basic cell measurements.
■ Rise, Fall, and Delay Calculations
■ Delay versus Fanout
■ Pin Capacitance Measurement
■ Op-amp Characterization of LM124

Rise, Fall, and Delay Calculations
The following example does the following:
■ Uses the MAX function to calculate vmax, over the time region of interest.
■ Uses the MIN function to calculate vmin.
■ Uses the measured parameters in subsequent calculations, for accurate 10 

percent and 90 percent points, when determining the rise and fall time.

RISE=1 is relative to the time window that the TDval delay forms. 
■ Uses a fixed value for the measure threshold, to calculate the Tdelay delay.

.MEAS TRAN vmax MAX V(out) FROM=TDval TO=Tstop

.MEAS TRAN vmin MIN V(out) FROM=TDval TO=Tstop

.MEAS TRAN Trise TRIG V(out) val=’vmin+0.1*vmax’ 
+ TD=TDval RISE=1 TARG V(out) val=’0.9*vmax’ RISE=1
.MEAS TRAN Tfall TRIG V(out) val=’0.9*vmax’ TD=TDval
+ FALL=2 TARG V(out) val=’vmin+0.1*vmax’ FALL=2
.MEAS TRAN Tdelay TRIG V(in) val=2.5 TD=TDval FALL=1
+ TARG V(out) val=2.5 FALL=2

Figure 100 Rise, Fall, and Delay Time Demonstration
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Ripple calculation performs the following:
■ Delimits the wave at the 50 percent of VCC points 
■ Finds the Tmid midpoint
■ Defines a bounded region by finding the pedestal voltage (Vmid) and then 

finding the first time that the signal crossed this value, Tfrom
■ Measures the ripple in the defined region using the peak-to-peak (PP) 

measure function from Tfrom to Tmid

The following is an example:

.MEAS TRAN Th1 WHEN V(out)=’0.5*vcc’ CROSS=1 

.MEAS TRAN Th2 WHEN V(out)=’0.5*vcc’ CROSS=2

.MEAS TRAN Tmid PARAM=’(Th1+Th2)/2’

.MEAS TRAN Vmid FIND V(out) AT=’Tmid’

.MEAS TRAN Tfrom WHEN V(out)=’Vmid’ RISE=1

.MEAS TRAN Ripple PP V(out) FROM=’Tfrom’ TO=’Tmid’

Figure 101 Waveform to Demonstrate Ripple Calculation

This file sweeps the sigma of the model parameter distribution, while it 
examines the delay. It shows you the delay derating curve, for the worst cases 
in the model. This example uses demonstration netlist sigma.sp, which is 
available in directory $installdir/demo/hspice/cchar. 
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HSPICE® User Guide: Basic Simulation and Analysis 703
K-2015.06



Chapter 21: Performing Digital Cell Characterization
Performing Basic Cell Measurements
Figure 102 Inverter Pair Transfer Curves and Sigma Sweep vs. Delay
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Delay versus Fanout
The example sweeps the subcircuit multiplier to quickly generate five load 
curves. To obtain more accurate results, buffer the input source with one stage. 

For each second-sweep variable (m_delay and rms_power), the example 
calculates:
■ mean
■ variance
■ sigma
■ average deviance

This example uses the demonstration netlist load1.sp, which is available in 
directory $installdir/demo/hspice/cchar.

This example outputs the following results:

meas_variable = m_delay
mean = 273.8560p varian = 1.968e-20
sigma = 140.2711p avgdev = 106.5685p

meas_variable = rms_power
mean = 5.2544m varian = 8.7044u
sigma = 2.9503m avgdev = 2.2945m

Figure 103 Inverter Delay and Power, versus Fanout
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Pin Capacitance Measurement
This example does the following:
■ Shows the effect of dynamic capacitance, at the switch point. 
■ Sweeps the DC input voltage (pdcin) to the inverter.
■ Performs an AC analysis, at each 0.1 V increment. 
■ Calculates the incap measure parameter from the imaginary current 

through the voltage source at 10 kHz in the AC curve (not shown). 

The peak capacitance (at the switch point) occurs when the voltage at the 
output side changes, in the direction opposite the input side of the Miller 
capacitor. This adds the Miller capacitance, times the inverter gain, to the 
effective capacitance.

mp out in 1 1 mp w=10u l=3u
mn out in 0 0 mn w=5u l=3u
vin in 0 DC= pdcin AC 1 0
.ac lin 2 10k 100k sweep pdcin 0 5 .1
.measure ac incap find par( ’-1 * ii(vin)/
+ (hertz*twopi)’ ) AT=10000hertz

Figure 104 Graph of Pin Capacitance versus Inverter Input Voltage
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Op-amp Characterization of LM124
This example analyzes op-amps. This example uses:
■ .MEASURE statements to present a very complete data sheet. 
■ Four .MEASURE statements, to reference the out0 output node of an op-

amp circuit. These statements use output variable operators for parameters:

• decibels vdb(out0)

• voltage magnitude vm(out0)

• phase vp(out0)

This example uses the demonstration file alm124.sp, in $installdir/
demo/hspice/apps.

This example outputs the following results:

unitfreq = 9.0786E+05 targ= 9.0786E+05 trig= 1.0000E+00
phasemargin = 6.6403E+01

gain(db) = 9.9663E+01 at= 1.0000E+00 from= 1.0000E+00 
+ to= 1.0000E+07

gain(mag)= 9.6192E+04 at= 1.0000E+00 from= 1.0000E+00 
+ to= 1.0000E+07

Figure 105 Magnitude Plot of Op-Amp Gain
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Performing Advanced Cell Characterization

This section provides example input files, which characterize cells for an 
inverter, based on 3-micron MOSFET technology. HSPICE finds the best, 
worst, and typical cases for different fanouts. Use this library data for digital-
based simulators, such as those used to simulate gate arrays and standard 
cells.

The example uses the demonstration file cellchar.sp, in $installdir/
demo/hspice/apps. It demonstrates how to use the following to characterize 
a CMOS inverter:
■ .MEASURE statement
■ .DATA statement
■ AUTOSTOP option
■ SUBCKT definition
■ SUBCKT call
■ Models

Figure 106 Plotting the Simulation Outputs
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Figure 107 Verifying the Measure Statement Results by the Plots

Cell Examples
Figure 108 and Figure 109 are identical, except that their input signals are 
complementary. 
■ The circuit in Figure 108 calculates the rise time and the low-to-high 

propagation delay time. 
■ The circuit in Figure 109 calculates the fall time and the high-to-low 

propagation delay time. 
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If you use only one circuit, CPU time increases because analysis time 
increases when HSPICE calculates both rise and fall times.

The XOUTL or XOUTH subcircuit represents the fanout of the cell (inverter). To 
modify fanout, specify different multipliers (m) in the subcircuit calls.

You can also specify local and global temperatures. This example characterizes 
the cell at a global temperature of 27, but the temperature of the M1 and M2 
devices is (27+DTEMP). The .DATA statement specifies the DTEMP value.

The example uses a transient parameterized sweep, with .DATA 
and .MEASURE statements, to determine the inverter timing, for best, typical, 
and worst cases. 

Figure 108 Cell Characterization Circuit 1
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Figure 109 Cell Characterization Circuit 2

This example varies the following parameters:
■ power supply
■ input rise and fall time
■ fanout
■ MOSFET temperature
■ n-channel and p-channel threshold
■ drawn width and length of the MOSFET

Use the .MEASURE statement to specify a parameter to measure.

Use the AUTOSTOP option, to speed simulation time.The AUTOSTOP option 
terminates the transient sweep, although it has not completely swept the 
specified transient sweep range.

The .MEASURE statement uses quoted string parameter variables to measure 
the rise time, fall time, and propagation delays. 

Note: Do not use character strings as parameter values in HSPICE 
advanced analog analyses.

Rise time starts when the voltage at node 3 (the output of the inverter) is equal 
to 0.1  VDD (that is, V(3) = 0.1VDD).Rise time ends when the voltage at node 
3 is equal to 0.9  VDD (that is, V(3) = 0.9VDD).
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For more accurate results, start the .MEASURE calculation after either:
■ A time delay, or
■ A simulation cycle, specifying delay time in the .MEASURE statement, or
■ An input pulse statement.

The following example features:
■ AUTOSTOP option and .MEASURE statements.
■ Mean, variance, sigma, and avgdev calculations.
■ Circuit and element temperature.
■ Algebraic equation handling.
■ PAR( ) as an output variable, in the .MEASURE statement.
■ Subcircuit parameter-passing, and subcircuit multiplier.

■ .DATA statement.
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22Timing Analysis Using Bisection

Describes how to use the bisection function in timing optimization. 

To analyze circuit timing violations, a typical methodology is to generate a set of 
operational parameters that produce a failure in the required behavior of the 
circuit. When a circuit timing failure occurs, you can identify a timing constraint, 
which can lead to a design guideline. You must perform an iterative analysis to 
define the violation specification.

Typical types of timing constraint violations include:
■ Data setup time, before the clock
■ Data hold time, after the clock
■ Minimum pulse width required for a signal to propagate to the output
■ Maximum toggle frequency of the component(s)

HSPICE ships numerous examples for your use; see Bisection-Timing Analysis 
Examples for paths to demo files.

For more information about optimization, see Chapter 30, Optimization in this 
user guide.

For information on Monte Carlo, see Chapter 23, Monte Carlo—Traditional 
Flow Statistical Analysis and Chapter 25, Monte Carlo Analysis—Variation 
Block Flow.

This chapter discusses the following topics.
■ Overview of Bisection
■ Bisection Methodology
■ Using Bisection
■ Setup Time Analysis
■ Minimum Pulse Width Analysis
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■ Pushout Bisection Methodology
■ Using RELOUT and RELIN to Affect HSPICE Bisection Optimization
■ Using Bisection with Monte Carlo Analysis
■ Bisection Optimization Application Example

Overview of Bisection

Before bisection methods were developed, engineers built external drivers to 
submit multiple parameterized simulations to SPICE-type simulators. Each 
simulation explored a region of the operating envelope for the circuit. To provide 
part of the analysis, the driver also post-processed the simulation results, to 
deduce the limiting conditions.

If you characterize small circuits this way analysis times are relatively small, 
compared with the overall job time. This method is inefficient, due to overhead 
of submitting the job, reading and checking the netlist, and setting up the 
matrix. The newer bisection methods increase efficiency when you analyze 
timing violations, to find the causes of timing failure. Bisection optimization is an 
efficient cell-characterization method, in Synopsys HSPICE.

For a full demo example of finding early, optimal, and late setup times of a DFF, 
follow the path to fig26_4.sp in Bisection-Timing Analysis Examples in this 
user guide.

The bisection methodology saves time in three ways:
■ Reduces multiple jobs to a single characterization job.
■ Removes post-processing requirements.
■ Uses accuracy-driven iterations.

Figure 110 on page 715 shows a typical analysis of setup-time constraints. 
Clock and data input waveforms drive a cell. Two input transitions (rise and fall) 
occur at times T1 and T2. The result is an output transition, when V(out) 
changes from low to high. The following relationship between the T1(data) and 
T2 (clock) times must be true for the V(out) transition to occur: T2>(T1+setup 
time).

Characterization or violation analysis determines the setup time. To do this, 
HSPICE keeps T2 fixed and repeats the simulation with different T1 values. It 
then observes which T1 values produce an output transition and which do not. 
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Before bisection, users had to run tight sweeps of the delay between the data 
setup and clock edge, and look for the value at which no transition occurs. To 
do this, you swept a value that specifies how far the data edge precedes a fixed 
clock edge. This method is time consuming, and is accurate only if the sweep 
step is very small. Linear search methods cannot accurately determine the 
setup time value, unless you use extremely small steps from T1 to T2 to 
simulate the circuit at each point, and monitor the outcome.

For example, even if you know that the desired transition occurs during a 
particular 5 ns period, you might need to run 50 simulations to search for the 
setup time to within 0.1 ns over that 5 ns period. But the error in the result can 
be as large as 0.05 ns.

Figure 110 Determining Setup Time with Bisection Violation Analysis
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The bisection feature greatly reduces the amount of work and computational 
time required to find an accurate solution for this type of problem. The following 
sections show examples of using this feature to identify timing violations for the 
setup, hold, and minimum clock pulse width.

Bisection Methodology

Bisection is an optimization method that uses a binary search method, to find 
the value of an input variable (target value). This variable is associated with a 
goal value of an output variable. 

The type of the input and output variables can be voltage, current, delay time, 
or gain, related by some transfer function. In general, use a binary search to 
locate the goal value of the output variable within a search range of the input 
variable. Then, iteratively halve that range to rapidly converge on the target 
value. At each iteration, HSPICE compares the measured value of the output 
variable with the goal value. Both the PASSFAIL method and the bisection 
method use bisection (see Using Bisection).

The bisection procedure consists of two measurement and optimization steps, 
when solving the timing violation problem:
■ Detecting whether the output transition occurred. 
■ Automatically varying the input parameter (T1 in Figure 110 on page 715) to 

find the value for which the transition barely occurs.

Measurement
Use the MAX measurement function to detect the success or failure of an output 
transition. For a low-to-high output transition, a MAX measurement produces 
zero on failure, or approximately the Vdd supply voltage on success. This 
measurement, using a goal of Vdd (minus a suitable small value to ensure a 
solution), is sufficient to drive the optimization.

Optimization
The bisection method is straightforward if you specify a single measurement 
with a goal, and known upper and lower boundary values for the input 
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parameter. The characterization engineer must specify acceptable upper and 
lower boundary values.

Using Bisection

Before you can use bisection, you must specify the following:
■ A pair of values, for the upper and lower boundaries of the input variables. 

To find a solution, one of these values must result in an output variable 
>|goal value| and the other must result in <|goal value|.

■ A goal value. If there is no goal keyword in the statement, the goal value will 
not be defaulted to zero, and HSPICE considers the measure result as a 
relative error expression.

■ Error tolerance value. The bisection process stops when the difference 
between successive test values is  error tolerance. If the other criteria 
are also met, see the following steps.

■ Related variables. Use a monotonic transfer function to relate variables 
where a steadily progressing time (increase or decrease) results in a single 
occurrence of the goal value at the target input variable value.

HSPICE includes the error tolerance in a relation, used as a process-
termination criterion. 

Figure 111 on page 722 shows an example of the binary search process that 
the bisection algorithm uses. This example is the pass/fail type, and is 
appropriate for a setup-time analysis that tests for the presence of an output 
transition. In the example depicted in Figure 110 on page 715 note that:

1. A long setup time TS (= T2 - T1) results in a VOUT transition (a pass).

2. A too-short setup time (where the latch has not stabilized the input data, 
before the clock transition) results in a fail. 

Explanation: For example, you might define a pass time value as any 
setup time, TS, that produces a VOUT output minimum high logic output level 
of 2.7V, which is the goal value.

3. The target value is a setup time that just produces the VOUT value of 2.7V. 
Finding the exact value is impractical, if not impossible, so you need to 
specify an error tolerance to calculate a solution arbitrarily close to the target 
value. 
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4. The bisection algorithm performs tests for each specified boundary value to 
determine the direction in which to pursue the target value, after the first 
bisection. In this example shown in Figure 110 on page 715, the upper 
boundary has a pass value and the lower boundary has a fail value.

5. To start the binary search you specify the lower and upper boundaries. The 
program tests the point midway between the lower and upper boundaries 
(see Figure 111 on page 722).

• If the initial value passes the test, the target value must be less than the 
tested value (in this example). The bisection algorithm moves the upper 
search limit to the value that it just tested. 

• If the test fails, the target value must be greater than the tested value. 
Bisection moves the lower limit to the value that it just tested.

6. The algorithm tests a value midway between the new limits. 

7. The search continues in this manner, moving one limit or the other to the last 
midpoint, and testing the value midway between the new limits.

8. The process stops when the difference between the latest test values is less 
than or equal to the error tolerance that you specified. To normalize this 
value, multiply by the initial boundary range.

For more information about using the .MODEL statement for bisection, see  
.MODEL in the HSPICE Reference Manual: Commands and Control Options.

For the path to a full demo file example of a DFF bisection search for setup 
time, dff_top.sp, see Bisection-Timing Analysis Examples in this user guide.

Examining the Command Syntax
The following syntax is used for bisection:

.MODEL OptModelName OPT METHOD=BISECTION ...

-or-

.MODEL OptModelName OPT METHOD=PASSFAIL .....

OptModelName is the model to be used. Refer to the Optimization Examples 
for name information on specifying optimization models in HSPICE. The 
METHOD keyword specifies which optimization method to use. The OPT keyword 
indicates that optimization is to be performed.

For bisection, the method can be one of the following:
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■ BISECTION

When the difference between the two latest test input values is within the 
error tolerance and the latest measured value exceeds the goal, bisection 
has succeeded and then ends. This process reports the optimized 
parameter that corresponded to the test value that satisfies this error 
tolerance and this goal (passes). See Bisection Optimization Application 
Example on page 739.

■ PASSFAIL

When the difference between the last two optimization parameter test 
values is < the error tolerance and the associated goal measurement fails 
for one of the values and passes for the other, bisection has succeeded and 
then ends. The process reports the optimization parameter test value 
associated with the last passing measurement. “Pass” is defined as a 
condition in which the associated goal measurement can produce a valid 
result. “Fail” is defined as a condition in which the associated goal 
measurement is unable to produce a valid result. For example, if the 
measurement is of TRIG/TARG form, and the TARG event is not found, then 
this optimization parameter test value is deemed a failure. When using 
PUSHOUT bisection, the definition of a failure is modified to also include 
any goal measurement result that is valid and > the push-out specification.

You can also monitor multiple measurement results and find the parameter 
value at which all measurements begin to succeed. For example:

.tran 1p 100n sweep optimize=opt1 result=delq,delqn model=optmod

The parameters are passed in a normal optimization specification:

.PARAM ParamName=OptParFun (Initial, Lower, Upper)

In the BISECTION method, the measure results for Lower and Upper limits of 
ParamName must be on opposite sides of the goal value in the .MEASURE 
statement. In the PASSFAIL method, the measure must pass for one limit and 
fail for the other limit. The process ignores the value of the Initial field. The 
error tolerance is a parameter in the model which is being optimized. Using the 
BISECTION method, a bisectional search is applied to multiple parameters. 
The logical relationship of these parameters is based on 'AND'. In the 
PASSFAIL method, a bisectional search is applied to only one parameter.

When the OPTLST option is set (.OPTION OPTLST=1), the process outputs 
the following information for the BISECTION method:

bisec-opt iter = num_iterations xlo = low_val xhi = high_val 
x = result_low_val xnew = result_high_val err = error_tolerance
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The x is the old parameter value and xnew is the new parameter value.

When .OPTION OPTLST=1, the process outputs the following information for 
the PASSFAIL method:

bisec-opt iter = num_iterations xlo = low_val xhi = high_val x = 
result_low_val xnew = result_high_val measfail = 1

In this syntax, measfail=0 for a test failure for the x value.

Performing Transient Analyses with Bisections
When performing transient analysis bisection with the .TRAN statement, use 
the following syntax:

.TRAN TranStep TranTime SWEEP OPTIMIZE=OptParFun

+ RESULTS=MeasureNames MODEL=OptModelName

When performing a transient analysis bisection with the .MEASURE statement, 
use the following syntax:

.MEASURE TRAN MeasureName MeasureClause
+ [[GOAL=val]|GOALMAX|GOALMIN]

Setup Time Analysis

This example uses a bisectional search to find the minimum setup time for a D 
flip-flop. The circuit for this example is dff_top.sp, which is located in 
directory $installdir/demo/hspice/bisec. 

Figure 111 on page 722 and Figure 112 on page 723 show the results of this 
demo. HSPICE does not directly optimize the setup time, but extracts it from its 
relationship with the DelayTime parameter (the time before the data signal), 
which is the parameter to optimize.

Input Listing
The following portion of the input listing shows how .TRAN analysis, the 
DelayTime parameter, and .MEASURE statements are used in bisection:

* DFF_top Bisection Search for Setup Time
* PWL Stimulus
v28 data gnd PWL
+ 0s 5v
+ 1n 5v
+ 2n 0v
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+ Td = "DelayTime" $ Offsets Data from time by DelayTime
v27 clock gnd PWL
+ 0s 0v
+ 3n 0v
+ 4n 5v
* Specify DelayTime as the search parameter and provide
* the lower and upper limits.
.PARAM DelayTime= Opt1 ( 0.0n, 0.0n, 5.0n )
* Transient simulation with Bisection Optimization
.TRAN 0.1n 8n Sweep Optimize = Opt1
+ Result = MaxVout$ Look at measure
+ Model = OptMod
* This measure finds the transition if it exists
.MEASURE Tran MaxVout Max v(D_Output) Goal = ‘v(Vdd)’
* This measure calculates the setup time value
.MEASURE Tran SetupTimeTrig v(Data)Val = ‘v(Vdd)/2’
+ Fall = 1
+ Targ v(Clock)Val = ‘v(Vdd)/2’
+ Rise = 1
* Optimization Model
.MODEL OptMod Opt
+ Method = Bisection
.OPTION Post NoMod
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Figure 111 Bisection Example for Three Iterations

Results
The upper plot in Figure 112 on page 723 shows the relationship between the 
clock and the data pulses that determine the setup time. The bottom plot is the 
output transition.

Continue halving the test region until the interval between
successive test values meets the criterion:

then report the value X, (associated with the measured value
the passed). If you select the bisection method, the reported
value must correspond with the condition:

measured value - goal > 0

Third test
value - passes

Second test
value - fails

First test
value - passes

Target
value

First bisection value is
mid-way between

specified boundaries.
First test value passes

value > goal value
(2.7 V in this case).

because measured

First test value becomes
new upper test limit.
Second test value is

mid-way between new
upper limit and
lower boundary.

Second test value fails.

Second test value
becomes new lower
limit. Third test value
is mid-way between
new lower limit and
current upper limit.

Measured value Y
- volts in this case

Lower boundary XL
- test fails

Upper boundary XU
- test passes

Input variable X
- Setup time Ts

in this case

Target

Output signal
present for all
TS target value

X1 =
(XU + XL)/2

X2 =
(X1 + XL)/2

X2 =
(X1 + X2)/2

Goal = 2.7V

~5V

XL X1 XU X

XL X1 XU XX2

v

v
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Figure 112 Transition at Minimum Setup Time

Find the actual value for the setup time in the “Optimization Results” section of 
the output listing file:

optimization completed, the condition
relin = 1.0000E-03 is satisfied
**** optimized parameters opt1
.PARAM DelayTime = 1.7822n
...
maxvout = 5.0001E+00 at= 4.8984E-09
from     = .0000E+00    to= 8.0000E-09
setuptime= 2.1777E-10 targ= 3.5000E-09 trig= 3.2822E-09

This listing file excerpt shows that the optimal value for the setup time is 
0.21777 ns.

The upper plot in Figure 113 shows examples of early and late data transitions, 
and the transition at the minimum setup time. The bottom plot shows how the 
timing of the data transition affects the output transition. The following analysis 
statement produces these results:

* Sweep 3 values for DelayTime Early Optim Late
.TRAN 0.1n 8n Sweep DelayTime Poi 3 0.0n 1.7822 5.0n
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Figure 113 Early, Minimum, and Late Setup and Hold Times

This analysis produces the following results:

*** parameter DelayTime = .000E+00 *** $ Early
setuptime= 2.0000E-09 targ= 3.5000E-09   trig= 1.5000E-09
*** parameter DelayTime = 1.7822E-09 *** $ Optimal
setuptime= 2.1780E-10 targ= 3.5000E-09   trig= 3.2822E-09
*** parameter DelayTime = 5.000E-09 *** $ Late
setuptime= -3.0000E-09 targ= 3.5000E-09   trig= 6.5000E-09

Minimum Pulse Width Analysis

This example uses a pass/fail bisectional search to find a minimum pulse width 
required so the input pulse can propagate to the output of an inverter. It is 
based on demonstration netlist iva_a.sp, which is available in directory 
$installdir/demo/hspice/bisect. Figure 114 shows the results of this 
demo. 

Input Listing Directory
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This input listing file is located in: $installdir/demo/hspice/bisect/
inv_a.sp.

Results
Figure 114 shows results of pass/fail search, for two different capacitive loads.

Figure 114 Results of Bisectional Pass/Fail Search

Pushout Bisection Methodology

For setup- or hold-time optimization analysis, a normal bisection method varies 
the input timing to find the point just before failure. At this point, delaying the 
input longer results in failure, and the output does not transition. In pushout 
analysis, instead of finding the last point just before failure, the first successful 
output transition is used as the golden target. You can then apply a maximum 
allowed pushout time to decide if the subsequent results are classified as 
passes or failures. Finding the optimized pushout result is similar to a normal 
bisection because both use a binary search to approach the desired solution. 
The main difference is the goal or the optimization criteria.
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You can add measure options to support selective pushout, using these 
keywords:
■ POSITIVE: pushout constraints only take effect when the measuring results 

are larger than the golden measure. For example:

.MEASURE TRAN result MeasureClause pushout=time 
+ pushout_perpercentage POSITIVE

■ NEGATIVE: pushout constraints only take effect when the measuring results 
are smaller than the golden measure. For example:

.MEASURE TRAN result MeasureClause pushout=time 
+ pushout_perpercentage NEGATIVE

To limit the range you can add both absolute and relative pushout together. 
(Note the comma-separated parameters.)

For example:

.Measure Tran pushout When v(D_Output)='vih/2'
+ rise=1 pushout=20p,50p pushout_per=0.1

The final measure result for the preceding example should be in the range of:

| measresult-goldmeas | < Min (pushout_max, pushout_per*goldmeas)

Or the final measure result should satisfy,

Max(pushout_per*goldmeas, pushout_min)

See .MEASURE (Pushout Bisection) for more information. If neither of the 
keywords above is set, the pushout flow follows the standard described above 
and shown in the next example.

The following example (Figure 115 on page 727) shows a transition of Vin with 
a varying delay during a Vclk transition. When the “lower” input transitions, it 
indicates that the device being tested is functioning. The “upper” input does not 
transition, which indicates that the device is not functioning.
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Figure 115 Pushout Bisection Example

Consider the pushout bisection example located in the following 
directory:$installdir/demo/hspice/bisect/dff_push.sp. (See the 
path to this example, which is a DFF pushout bisection search for setup time, in 
Bisection-Timing Analysis Examples in this user guide.)

The transition of Vin is delayed by varying amounts with respect to a Vclk 
transition. For the Lower input transition, the output transitions and indicates 
that the device under test is functioning. For the Upper input transition, the 
output does not transition and indicates that the device is not functioning.

Normal bisection varies the input timing to find the point just before failure 
(called Norm here). At this point, a failure occurs when the device is delayed 
longer and the output does not transition. The circuit works at points between 
Lower and Norm, but the output transition is delayed from the lower conditions 
by setting Delta. This is called the Pushout. The pushout can also lie between 
Norm and Upper, which depends on your use of the lower or upper option.

Lower Pushout Norm Upper

Lower Pushout Norm Upper

Delta

Vin

Vclk

Vout

Ts

Tp
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In you use normal bisection in this example, the resulting gain is 
delaytime=7.374e-10 pushout=-1.672e-09. Instead, when setting 
pushout=0.01, the result is delaytime=3.918e-11 pushout=3.970e-09.

Using RELOUT and RELIN to Affect HSPICE Bisection 
Optimization

You can use the .MODEL command parameters RELOUT and RELIN to 
influence the HSPICE Bisection optimization convergence process. The 
optimization statement has many parameters. The default values of these 
parameters are suitable for most applications. However, if the optimization does 
not converge, you might need to adjust the error tolerance of the RELOUT and 
RELIN command-line parameters on the .MODEL card.

.MODEL Optimization Syntax

.MODEL mname OPT [METHOD=BISECTION|PASSFAIL] [close=num]
+ [max] [cut=val] [difsiz=val] [grad=val] [parmin=val]
+ [relin=val] [relout=val] [absout=val)
+ [itrop=val] [absin=val]
+ [DYNACC=0|1] [cendif=num]

RELOUT Parameter
Use the RELOUT parameter to set the output error tolerance. For example, if 
you specified the GOAL value as 5v and RELOUT=0.1, when the bisection 
output is smaller than 0.5v(5v * 0.1), RELOUT is satisfied.

RELIN Parameter
Use the RELIN parameter to set the input error tolerance. For example, if the 
bisection initial input window is 5ns, and RELIN is set to 1E-3 (default), when 
the difference between the latest bisection input and the previous one is 
smaller than 5ps(5ns * 1E-3), RELIN is satisfied.

The following lines are from the *.lis file of a successful optimization run that 
appear only if you use the OPTLST=3 option in the netlist.

*START OF *.lis FILE
.
.
.
 parm names init guess, lower, upper bounds

 delaytime               0.            0.        5.0000E-09        0.   
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 bisec-opt.  iter =   1 xlo =        0.      xhi =   5.00000E-09
                          x =        0.     xnew =   5.00000E-09
                        err =  -1.91761E-02

.

.

.
bisec-opt.  iter =   7 xlo =   1.87500E-09  xhi =   2.03125E-09
                          x =   2.03125E-09 xnew =   1.95313E-09
                        err =   0.99949    
bisec-opt.  iter =   8 xlo =   1.95313E-09  xhi =   2.03125E-09
                          x =   1.95313E-09 xnew =   1.99219E-09
                        err =  -0.11111    
.
.
.
bisec-opt.  iter =  10 xlo =   1.21094E-09  xhi =   1.23047E-09
                          x =   1.23047E-09 xnew =   1.22070E-09
                        err =   0.46334    
bisec-opt.  iter =  11 xlo =   1.22070E-09  xhi =   1.23047E-09
                          x =   1.22070E-09 xnew =   1.22559E-09
                        err =  -1.89848E-02
          optimization completed, the condition
          relin =  1.0000E-03 is satisfied
          optimization completed, the condition
          relout =  0.4000     is satisfied
 

* END OF *.lis FILE 

In each iteration, err is calculated as ( GOAL - RESULT ) / GOAL 

where: GOAL is the target value and RESULT is the value calculated for each 
iteration.

RELOUT is satisfied when | err | < RELOUT 

RELIN is satisfied when| X(new) -X(new-1) | <  RELIN * | 
X(upper) - X(lower) |

where: X(new) is the xnew value of the nth iteration and X(new-1) is the 
xnew value of the (n-1)th iteration.

Both RELIN and RELOUT must be satisfied before the optimization can 
converge.

Note that in iter = 8, the condition for RELOUT is satisfied but the condition 
for RELIN is not. (Substitute 5n for X(upper) and 0n for X(lower) in the 
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formula for RELIN). In iter = 11, check that both RELIN and RELOUT are 
satisfied.

Note: If you use .OPTION RELIN  its value overrides any value you 
enter on the .MODEL statement for the parameter RELIN. (There 
is no ".OPTION RELOUT" in HSPICE).

For more information about using RELOUT and RELIN in the .MODEL command 
for bisection, see .MODEL in the HSPICE Reference Manual: Commands and 
Control Options.

Using Bisection with Monte Carlo Analysis

Bisection method integrated with Monte Carlo analysis enable both analyses to 
run in a single simulation. Bisection with Monte Carlo analysis can be run either 
with traditional HSPICE Monte Carlo (see Chapter 23, Monte Carlo—
Traditional Flow Statistical Analysis) or Monte Carlo using the Variation Block 
flow (see Chapter 25, Monte Carlo Analysis—Variation Block Flow). 

Monte Carlo analysis is the generic tool for simulating the effects of process 
variation on circuit performance. Bisection uses a binary search to find the 
value of an input variable (target value), which satisfies a goal value of an 
output variable. It is used extensively in analyzing circuit timing violations, 
performing timing optimization, and in sequential cell characterization.

More than one sweep loop can run in transient simulations. Bisection is 
enabled as the inner loop, working with a Monte Carlo sweep as the outer loop, 
during transient analysis. This 2-sweep loop support is exclusive to a bisection 
with Monte Carlo sweep.

If you add additional independent random variables to a Monte Carlo run you 
might see that none of these variables has any impact on the simulation run. 
You might see differences in statistical results between simulations with and 
without these additional independent random variables. The difference is due 
the way random values are assigned to them, not to varying the number 
independent random variables. In the two Monte Carlo modes discussed in the 
following section, the only difference is the number of independent random 
variables.
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Setting Up Monte Carlo Analysis with Bisection
Running a bisection/Monte Carlo simulation combines both existing procedures 
and uses enhanced syntax.

Bisection with a Monte Carlo sweep retains the setup requirements for 
bisection and Monte Carlo. To set up a Monte Carlo analysis, you use one of 
the two following HSPICE representation styles:
■ .Variation statement—Specify distributions on model parameters in a 

Variation Block see Monte Carlo-Specific Variation Block Options
■ .PARAM statements—Set a model or element parameter to a Gaussian, 

Uniform, or Limit function distribution; this statistical process description is 
used with analysis commands that typically include .MEASURE statements 
to calculate the response mean, variance, sigma, and standard deviation. 
.DC, .AC, or .TRAN analysis statements enable MONTE.

To set up a bisection run, you use the following statements.
■ .PARAM ParamName= OptParFun (Initial, Lower, Upper—

Defines a normal optimization specification of the parameter to be 
optimized.

■ .MEASURE Tran .... GOAL=GoalValue—Sets a GOAL value
■ .MODEL optmodel OPT—Specifies bisection method and relative input/

output tolerance.
■ .TRAN ... SWEEP OPTIMIZE—Performs transient analysis bisection.

Performing Bisection with Monte Carlo Sweep
When performing bisection with a Monte Carlo sweep, use one or more 
.Variation blocks or parameter statements and one or more .MEASURE 
statements for Monte Carlo and another set of .MEASURE, .PARAM and 
.MODEL Opt statements for bisection setup. However, only a single common 
.TRAN analysis statement is used for both analyses, plus an enhanced syntax.

.TRAN Syntax for Bisection with Monte Carlo Sweep

.TRAN tstep tstop [START=val]
+ SWEEP
+ OPTIMIZE=opt_par_fun|OPTxxx
+ RESULTS=measnames MODEL=optmod
+ MONTE=MCcommand
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All arguments have the same meanings as those of the current bisection and 
Monte Carlo .TRANsyntax. For argument names and their descriptions, refer 
to .TRAN in the HSPICE Reference Manual: Commands and Control Options. 

Note: Monte Carlo random data generation procedure is independent 
of the bisection analysis results.

Example

In the following example, HSPICE runs 30 bisection analyses, using the 10th to 
39th Monte Carlo iterations.

.Tran 1n 8n
+ SWEEP $$ keyword to enable both functions
+ Optimize = Opt1 $$ Bisection setup
+ Result = MaxVout $$ Bisection setup
+ Model = OptMod $$ Bisection setup
+ MONTE = 30 firstrun=10 $$ Monte Carlo setup

Ordinary Output Files
Ordinary Monte Carlo output depends on how you set the output commands. 
Transient Monte Carlo results are saved in measurement report files (*.mct#, 
*.mt#), the output list *.lis file, and/or the waveform output file (*.tr#) 
which superimposes all iterations as a single plot.

Ordinary bisection analysis output is typically reported in the *.lis file and the 
measurement report file, *mt# file. A waveform output file displays the results 
of simulation using the value of the optimized parameter. 

Note: The .mt# format consists of 72 characters in a line and fields 
that contain 16 characters each. 

Bisection with Monte Carlo Sweep Output

The output list file,*.lis reports results and/or iteration information from both 
the Bisection analysis and the Monte Carlo sweep. Bisection results and any 
additional information depend on the setting of the option OPTLST, which is 
embedded in every Monte Carlo run. 

See the following sample *.lis file, where the types of information are defined 
on the right side as:
■ Monte Carlo output/information 
■ Bisection output/information
■ Common output/information
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List File Content Info type

Combination of output *.lis report for bisection with monte 
carlo.sweep

Opening plot unit= 15

file=./results/inv.pa0

****** HSPICE C-2009.03 32-BIT 11:21:02 01/16/2009 linux

****** operating point information tnom= 25.000 temp=25.000

****** operating point status is voltage simulation time is 0.

node =voltage node =voltage node =voltage

+0:1 = 5.0000 0:2 = 5.0000 0:3 = 3.6493n

+0:4 = 3.6493n 0:in = 0. 0:out = 5.0000

1 ****** HSPICE C-2009.03 32-BIT 11:21:02 01/16/2009 linux

******

****** transient analysis tnom= 25.000 temp= 25.000

Common 
output/
information

*** monte carlo index = 1 ***

MONTE CARLO PARAMETER DEFINITIONS

par1 = 2.7518E-08

par2 = -3.1778E-07

par3 = -4.1848E-08

Monte Carlo 
output/
information
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entering lmopt

parm names init guess, lower, upper bounds

delaytime 0.000 0.000 5.0000E-09 0.000

bisec-opt. iter = 1 xlo = 0.0000 xhi = 5.00000E-09

x = 0.0000 xnew = 5.00000E-09

err = -4.97943E-05

bisec-opt. iter = 2 xlo = 0.0000 xhi = 5.00000E-09

x = 5.00000E-09 xnew = 2.50000E-09

err = 0.99997

bisec-opt. iter = 11 xlo = 1.80664E-09 xhi = 1.81641E-09

x = 1.80664E-09 xnew = 1.81152E-09

err = -1.91099E-05

optimization completed, the condition

relin = 1.0000E-03 is satisfied

optimization completed, the condition

relout = 1.0000E-03 is satisfied

**** optimized parameters opt1

.param delaytime = 1.8066n

Bisection 
output/
information

s_delay= 2.5204E-10 targ= 4.3714E-10 trig= 1.8510E-10

s_power= 6.6497E-03 from= 0.0000E+00 to= 1.0000E-09

m_delay= 2.5204E-10 targ= 4.3714E-10 trig= 1.8510E-10

Common 
output/
information

List File Content Info type
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***** job concluded

*** monte carlo index = 2 ***

par1 = 2.3518E-08

par2 = -3.3778E-07

par3 = -4.3848E-08

Monte Carlo 
output/
information

entering lmopt

parm names init guess, lower, upper bounds

delaytime 0.000 0.000 5.0000E-09 0.000

bisec-opt. iter = 1 xlo = 0.0000 xhi = 5.00000E-09

x = 0.0000 xnew = 5.00000E-09

err = -4.97943E-05

bisec-opt. iter = 2 xlo = 0.0000 xhi = 5.00000E-09

x = 5.00000E-09 xnew = 2.50000E-09

err = 0.99997

....

bisec-opt. iter = 11 xlo = 1.80664E-09 xhi = 1.81641E-09

x = 1.80664E-09 xnew = 1.81152E-09

err = -1.91099E-05

optimization completed, the condition

relin = 1.0000E-03 is satisfied

**** optimized parameters opt1

.param delaytime = 1.8066n

Bisection 
output/
information

List File Content Info type
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s_delay= 2.5204E-10 targ= 4.3714E-10 trig= 1.8510E-10

s_power= 6.6497E-03 from= 0.0000E+00 to= 1.0000E-09

m_delay= 2.5204E-10 targ= 4.3714E-10 trig= 1.8510E-10

Common 
output/
information

List File Content Info type
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***** job concluded

*** monte carlo index = 3 ***

par1 = 2.3518E-08

par2 = -3.3778E-07

par3 = -4.3848E-08

...

meas_variable = s_delay

mean = 251.0688p varian = 4.397e-22

sigma = 20.9695p avgdev = 14.2926p

max = 271.5352p min = 229.6299p

1-sigma = 20.9695p median = 271.5352p

meas_variable = s_power

mean = 6.6620m varian = 971.5124p

sigma = 31.1691u avgdev = 23.6264u

max = 6.6974m min = 6.6388m

1-sigma = 31.1691u median = 6.6974m

meas_variable = m_delay

mean = 251.0688p varian = 4.397e-22

sigma = 20.9695p avgdev = 14.2926p

max = 271.5352p min = 229.6299p

1-sigma = 20.9695p median = 271.5352p

….

Monte Carlo 
output/
information

List File Content Info type
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Output Measurement File
The output measurement file has the same information recorded based on 
the .MEAS statements for either bisection analysis or the Monte Carlo sweep. 
The measure file is one set of results per Monte Carlo sample; and the results 
are for the optimized value from the bisection analysis. The bisection measure 
results include the optimized parameter and the measure results.

***** job concluded

****** HSPICE C-2009.03 32-BIT (Jan 16 2009) 11:21:02 01/16/2009 linux

******

****** job statistics summary tnom= 25.000 temp= 25.000 

****** total memory used 167 kbytes

# nodes = 23 # elements= 10

# diodes= 0 # bjts = 0 # jfets = 0 # mosfets = 8

# va device = 0

analysis time # points tot. iter conv.iter

op point 0.02 1 24

transient 0.00 153 219 76 rev=1

readin 0.00

errchk 0.01

setup 0.00

output 0.00

total cpu time 0.02 seconds

job started at 11:21:02 01/16/2009

job ended at 11:21:04 01/16/2009

Common 
output/
information

List File Content Info type
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In the following example, delaytime is the parameter optimized, setuptime 
is the measurement result with this delaytime.

.TITLE '*******************************************'
index rb1@rb1x delaytime setuptime
temper alter#
1.0000 2.100e+04 5.982e-10 4.018e-10
25.0000 1.0000
2.0000 1.900e+04 3.448e-10 6.552e-10
25.0000 1.0000
…

Output Waveform
The output waveform file superimposes all iterations of the Monte Carlo sweep 
as a single plot, while each iteration simulation of Monte Carlo uses the 
optimized parameter from Bisection.

Note: If a particular Monte Carlo run fails, either due to Bisection failure 
or any other reason, HSPICE outputs a ‘failed’ flag in the 
*.mt# file, and continues with the next Monte Carlo run. The 
failed point is not included in the summary statistical 
computations.

If a Monte Carlo simulation terminates when one sample is failed, 
you can use .option MONTECON=1 (the default) to force the 
simulation to continue under this condition.

Bisection Optimization Application Example

.model optMod1  OPT  METHOD=BISECTION

.param VDx = optFunc1(1.0,1.0,1.4)

.option OPTLST = 1

.measure optMeasure TRIG v(clk) VAL='0.5*VDx' RISE=2 TARG v(q)
+ VAL='0.5*VDx' RISE=1  GOAL=60p
.tran 0.01n 10n  SWEEP  OPTIMIZE=optFunc1  RESULTS=optMeasure
+ MODEL=optMod1

Caution: 
■ A simple .param VDx = 1.1 statement defined after 

.param VDx = optFunc1(...) will overwrite the 
optimization function optFunc1.
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■ A voltage source with the name VDx must not coexist 
with the parameter VDx. Otherwise, the DC value of the 
voltage source VDx will be varied while the parameter 
VDx is left unchanged.
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23Monte Carlo—Traditional Flow Statistical
Analysis

Describes the traditional statistical analysis features supported by HSPICE.

The advanced sampling capabilities are described in this chapter. For more 
information, see Using Traditional Variation Format with Advanced Sampling 
Methods in Monte Carlo on page 871. The features described in this chapter 
differ from, and are generally a subset of, the enhanced statistical analysis 
features described in Chapter 24, Variability Analysis Using the Variation Block, 
and Chapter 25, Monte Carlo Analysis—Variation Block Flow.

HSPICE ships hundreds of examples for your use. For paths to demo files, see 
Listing of Demonstration Input Files. To find traditional Monte Carlo 
demonstration files, see Variability Examples.

For information on bisection in conjunction with Monte Carlo, see Chapter 22, 
Timing Analysis Using Bisection.

This chapter discusses the following topics:
■ Application of Statistical Analysis
■ Analytical Model Types
■ Circuit and Model Temperature Simulation
■ Worst-case Analysis
■ Traditional Monte Carlo Simulations
■ Traditional Monte Carlo Analysis Characteristics
■ Dual Monte Carlo Flows
■ Worst-case and Monte Carlo Sweep Example
■ Global and Local Variations with Monte Carlo
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Application of Statistical Analysis

When you design an electrical circuit, it must meet tolerances for the specific 
manufacturing process. The electrical yield is the number of parts that meet the 
electrical test specifications. Overall process efficiency requires maximum 
yield. To analyze and optimize the yield, HSPICE supports statistical 
techniques and observes the effects of variations in element and model 
parameters. 

The basic functionality of Monte Carlo analysis is to simulate the effects of 
variations on circuit performance. When measurements are executed, the 
results from all the samples form a distribution. This distribution has 
characteristics that can be described in statistical terms: mean, standard 
deviation, and so on. The statistical terms are calculated by the simulator and 
reported at the end of the run listing.

The main reason to run Monte Carlo analysis is to find out whether the circuit 
will still have acceptable yield if it is subject to variations. Comparing the 
statistical results reported by the simulator can answer this question. However, 
in many cases the shape of the distribution and how it relates to the 
specification are of interest. For visual inspection, it is useful to create a 
histogram. The histogram helps to determine whether the variations in the 
performance look normal by considering, not only the bell shape of the Normal 
distribution, but also unexpected behavior like outliers and gaps.

The next question typically is whether the distribution is well centered with 
respect to the specification, and what is the predicted yield. Another question in 
this context is whether the circuit is over-designed—meaning that the margins 
are too big for the particular characteristic. This might be at the expense of 
secondary properties, like power and area, which affect cost.

These are the more traditional ways of looking at the results from Monte Carlo 
analysis. However, more information can be accessed with more sophisticated 
tools. (See Chapter 24, Variability Analysis Using the Variation Block, Chapter 
25, Monte Carlo Analysis—Variation Block Flow, and Chapter 27, Monte Carlo 
Data Mining.)

Analytical Model Types

To model parametric and statistical variation in circuit behavior, use:
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■ .PARAM statement to investigate the performance of a circuit as you change 
circuit parameters. See the .PARAM statement in the HSPICE Reference 
Manual: Commands and Control Options for details on this command.

■ Temperature variation analysis to vary the circuit and component 
temperatures and compare the circuit responses. You can study the 
temperature-dependent effects of the circuit in detail.

■ Monte Carlo analysis when you know the statistical standard deviations of 
component values to center a design. This provides maximum process yield 
and determines component tolerances. 

■ Worst-case corner analysis when you know the component value limit to 
automate quality assurance for:

• Basic circuit function

• Process extremes

• Quick estimation of speed and power tradeoffs

• Best-case and worst-case model selection

• Parameter corners

• Library files
■ Data-driven analysis for cell characterization, response surface, or Taguchi 

analysis (see Performing Digital Cell Characterization), which automates 
characterization of cells and calculates the coefficient of polynomial delay 
for timing simulation. You can simultaneously vary any number of 
parameters and perform an unlimited number of analyses. This analysis 
uses an ASCII file format so that HSPICE can automatically generate 
parameter values. This analysis can replace hundreds or thousands of 
HSPICE simulation runs.

■ Use yield analyses to modify:

• DC operating points

• DC sweeps

• AC sweeps

• Transient analysis
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■ Use Custom WaveView to generate scatter plots from the operating point 
analysis or a family of curve plots for DC, AC, and transient analysis.

■ Use .MEASURE statements to save results for delay times, power, or any 
other characteristic extracted in a .MEASURE statement. HSPICE generates 
a table of results in an .mt# file in ASCII format. You can analyze the 
numbers directly or read this file into WaveView to view the distributions. 
Also, if you use .MEASURE statements in a Monte Carlo or data-driven 
analysis, then the HSPICE output file includes the following statistical 
results in the listing:

• Mean

• Variance

• Sigma

• Average Deviation

Circuit and Model Temperature Simulation

Temperature affects all electrical circuits. Figure 116 shows the key 
temperature parameters associated with circuit simulation:
■ Model reference temperature – You can model different models at different 

temperatures. Each model has a TREF (temperature reference) parameter.
■ Element junction temperature – Each resistor, transistor, or other element 

generates heat so that an element is hotter than the ambient temperature.
■ Part temperature – At the system level each part has its own temperature.
■ System temperature – A collection of parts form a system, which has a local 

temperature.
■ Ambient temperature – The ambient temperature is the air temperature of 

the system.

x1 x2  xn+ + +

N
----------------------------------------

x1 Mean– 2  xn Mean– 2+ +

N 1–
-------------------------------------------------------------------------------------

Variance

x1 Mean–  xn Mean–+ +

N 1–
----------------------------------------------------------------------------
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Figure 116 Part Junction Temperature Sets System Performance

HSPICE calculates temperatures as differences from the ambient temperature:

Every element includes a DTEMP keyword, which defines the difference 
between junction and ambient temperature.

Example
The following example uses DTEMP in a MOSFET element statement:

M1 drain gate source bulk Model_name W=10u L=1u DTEMP=+20

Temperature Analysis
You can specify three temperatures:

Ambient Temperature

System Temperature Part Temperature

source drain

gate

Part Junction Temperature

source drain

gate

Model Junction Temperature

Tambient system part junction+ + + Tjunction=

Ids f Tjunction Tmodel =
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■ Model reference temperature specified in a .MODEL statement. The 
temperature parameter is usually TREF, but can be TEMP or TNOM in some 
models. This parameter specifies the temperature, in C, at which HSPICE 
measures and extracts the model parameters. Set the value of TNOM in an 
.OPTION statement. Its default value is 25C.

■ Circuit temperature that you specify using a .TEMP statement or the TEMP 
parameter. This is the temperature, in C, at which HSPICE simulates all 
elements. To modify the temperature for a particular element, use the 
DTEMP parameter. The default circuit temperature is the value of TNOM.

■ Individual element temperature, which is the circuit temperature, plus an 
optional amount that you specify in the DTEMP parameter.

To specify the temperature of a circuit in a simulation run, use either the .TEMP 
statement or the TEMP parameter in the .DC, .AC, or .TRAN statements. 
HSPICE compares the circuit simulation temperature that one of these 
statements sets against the reference temperature that the TNOM option 
sets. .TNOM defaults to 25C, unless you use the SPICE option, which defaults 
to 27C. To calculate the derating of component values and model parameters, 
HSPICE uses the difference between the circuit simulation temperature and the 
TNOM reference temperature.

Elements and models within a circuit can operate at different temperatures. For 
example, a high-speed input/output buffer that switches at 50 MHz is much 
hotter than a low-drive NAND gate that switches at 1 MHz. To simulate this 
temperature difference, specify both an element temperature parameter 
(DTEMP), and a model reference parameter (TREF). If you specify DTEMP in an 
element statement, the element temperature for the simulation is:

element temperature=circuit temperature + DTEMP

Specify the DTEMP value in the element statement (resistor, capacitor, inductor, 
diode, BJT, JFET, or MOSFET statement) or in a subcircuit element. Assign a 
parameter to DTEMP; then use the .DC statement to sweep the parameter. The 
DTEMP value defaults to zero.

If you specify TREF in the model statement, the model reference temperature 
changes (TREF overrides TNOM). Derating the model parameters is based on 
the difference between circuit simulator temperature and TREF (instead of 
TNOM).

.TEMP Statement
To specify the temperature of a circuit for a simulation, use the .TEMP 
statement.
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Worst-case Analysis

Circuit designers often use worst-case analysis when designing and analyzing 
MOS and BJT IC circuits. To simulate the worst case, set all variables to their 2- 
or 3-sigma worst-case values. Because several independent variables rarely 
attain their worst-case values simultaneously, this technique can lead to over-
designing the circuit. However, this analysis is useful as a fast check.

Model Skew Parameters
The HSPICE device models include physically measurable model parameters. 
The circuit simulator uses parameter variations to predict how an actual circuit 
responds to extremes in the manufacturing process. Physically measurable 
model parameters are called skew parameters because they skew from a 
statistical mean to obtain predicted performance variations.

Examples of skew parameters are the difference between the drawn and 
physical dimension of metal, postillion, or active layers on an integrated circuit.

Generally, you specify skew parameters independently of each other, so you 
can use combinations of skew parameters to represent worst cases. Typical 
skew parameters for CMOS technology include:
■ XL – Polysilicon CD (critical dimension of the poly layer, representing the 

difference between drawn and actual size).
■ XWn, XWp – Active CD (critical dimension of the active layer, representing the 

difference between drawn and actual size).
■ TOX – Thickness of the gate oxide.
■ RSHn, RSHp – Resistivity of the active layer.

■ DELVTOn, DELVTOp– Variation in threshold voltage.

You can use these parameters in any level of MOS model within the HSPICE 
device models. The DELVTO parameter shifts the threshold value. HSPICE 
adds this value to VTO for the Level 3 model and adds or subtracts it from VFB0 
for the BSIM model. Table 74 shows whether HSPICE adds or subtracts 
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deviations from the average.

HSPICE selects skew parameters based on the available historical data that it 
collects either during fabrication or electrical test. For example, HSPICE 
collects the XL skew parameter for poly CD during fabrication. This parameter n 
is usually the most important skew parameter for a MOS process. 

Figure 117 on page 749 is an example of data that historical records produce.

Table 74 Sigma Deviations

Type Parameter Slow Fast

NMOS XL + -

RSH + -

DELVTO + -

TOX + -

XW - +

PMOS XL + -

RSH + -

DELVTO - +

TOX + -

XW - +
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Figure 117 Historical Records for Skew Parameters in a MOS Process

Using Skew Parameters
Figure 118 shows how to create a worst-case corners library file for a CMOS 
process model. Specify the physically measured parameter variations so that 
their proper minimum and maximum values are consistent with measured 
current (IDS) variations. For example, HSPICE can generate a 3-sigma 
variation in IDS from a 2-sigma variation in physically measured parameters.

Figure 118 Worst-Case Corners Library File for a CMOS Process Model

Fab Database

Run# PolyCD

101 +0.04u

102 -0.06u

103 +0.03u

...

pop.#

XL value

Mean

2 sigma

3 sigma

1 sigma

Slow Corner Skew Parameters

pop.

IDS

SS

Fast Corner Skew ParametersFF

Typical Corner Skew Parameters + GaussianTT

EE Extracted Skew Parameters
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The .LIB (library) statement and the .INCLUDE or .INC (include file) 
statement access the models and skew. The library contains parameters that 
modify .MODEL statements. The following example of .LIB features both 
worst-case and statistical-distribution data by using model skew parameters. In 
statistical distribution, the median value is the default for all non-Monte Carlo 
analysis.

Example
.LIB TT 
$TYPICAL P-CHANNEL AND N-CHANNEL CMOS LIBRARY DATE:3/4/91
$ PROCESS: 1.0U CMOS, FAB22, STATISTICS COLLECTED 3/90-2/91
$ following distributions are 3 sigma ABSOLUTE GAUSSIAN

.PARAM
$ polysilicon Critical Dimensions
+ polycd=AGAUSS(0,0.06u,1) xl=’polycd-sigma*0.06u’
$ Active layer Critical Dimensions
+ nactcd=AGAUSS(0,0.3u,1) xwn=’nactcd+sigma*0.3u’
+ pactcd=AGAUSS(0,0.3u,1) xwp=’pactcd+sigma*0.3u’
$ Gate Oxide Critical Dimensions (200 angstrom +/- 10a at 1
$ sigma)
+ toxcd=AGAUSS(200,10,1) tox=’toxcd-sigma*10’

$ Threshold voltage variation
+ vtoncd=AGAUSS(0,0.05v,1) delvton=’vtoncd-sigma*0.05’
+ vtopcd=AGAUSS(0,0.05v,1) delvtop=’vtopcd+sigma*0.05’

.INC ‘/usr/meta/lib/cmos1_mod.dat’ $ model include file

.ENDL TT

.LIB FF
$HIGH GAIN P-CH AND N-CH CMOS LIBRARY 3SIGMA VALUES

.PARAM TOX=230 XL=-0.18u DELVTON=-.15V DELVTOP= 0.15V

.INC ‘/usr/meta/lib/cmos1_mod.dat’ $ model include file

.ENDL FF

The /usr/meta/lib/cmos1_mod.dat include file contains the model.

.MODEL NCH NMOS LEVEL=2 XL=XL TOX=TOX DELVTO=DELVTON . .

.MODEL PCH PMOS LEVEL=2 XL=XL TOX=TOX DELVTO=DELVTOP . .

Note: The model keyname (left) equals the skew parameter (right). 
Model keys and skew parameters can use the same names.
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Skew File Interface to Device Models
Skew parameters are model parameters for transistor models or passive 
components. A typical device model set includes:
■ MOSFET models for all device sizes by using an automatic model selector.
■ RC wire models for polysilicon, metal1, and metal2 layers in the drawn 

dimension. Models include temperature coefficients and fringe capacitance.
■ Single-diode and distributed-diode models for N+, P+, and well (includes 

temperature, leakage, and capacitance based on the drawn dimension).
■ BJT models for parasitic bipolar transistors. You also can use these for any 

special BJTs, such as a BiCMOS for ECL BJT process (includes current and 
capacitance as a function of temperature).

■ Metal1 and metal2 transmission line models for long metal lines.
■ Models must accept elements. Sizes are based on a drawn dimension. If 

you draw a cell at 2 dimension and shrink it to 1, the physical size is 
0.9 . The effective electrical size is 0.8. Model scale factors account for 
the four dimension levels:

• Drawn size

• Shrunken size

• Physical size

• Electrical size

Most simulator models scale directly from drawn to electrical size. HSPICE 
MOS models support all four size levels (Figure 119).
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Figure 119 Device Model from Drawn to Electrical Size

Traditional Monte Carlo Simulations

A high-level overview of HSPICE traditional Monte Carlo analysis follows. Later 
sections provide in-depth information. 

The basic premise of a Monte Carlo analysis is that you are going to 
parameterize one or more circuit variables, vary those values by a randomized 
amount from the norm, and run HSPICE a predetermined number of times. 
Each run is called a sweep and will generate tabular or plot data as specified by 
the user. Measurements are also typically used to look at circuit operating 
conditions from run to run. 

You can randomize anything that can be set with a parameter or variable. 
Examples include things as diverse as a simple resistor value, a model 
parameter for a MOSFET, or the length of a transmission line. 

Values can be varied using three basic statistical variations: uniform, limit, and 
Gaussian. Using those methods, you choose the nominal value and the 
absolute or relative variation. You can optionally supply the standard deviation 
and a multiplier.

Note that HSPICE does not run a nominal simulation with traditional Monte 
Carlo. For traditional Monte Carlo, the first sample is index 1; it is not the 
nominal value. For example: monte=10, you get 10 samples (1-10).

Drawn Size Shrunken Size

source drain

gate

source drain

gate

Physical SizeElectrical Size

LMLT
WMLT

XL
XW

LD
WD

2 m 1m

0.9 m
0.8 m
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However, you can run Monte Carlo using the Variation Block features (where 
the first run is the nominal case) with AGAUSS (traditional) style definitions. 
See Chapter 25, Monte Carlo Analysis—Variation Block Flow.

The following sections discuss these topics:
■ Basic Syntax
■ Local and Global Parameter Variation
■ Exception for Model Parameters
■ Starting Values and Seeds
■ Other Monte Carlo Control Options
■ Monte Carlo Analysis in HPP

Basic Syntax 
The basic syntax of a Monte Carlo analysis includes three elements: 

1. Defining a parameter with one of the distribution keywords 

2. Using the parameter in your netlist as the value for an element or model 
parameter

3. Including the SWEEP and MONTE keywords in the analysis statement 

Syntax used for a Monte Carlo analysis
.MODEL mname ModelType ([level=val]
+ [keyword1=val1][keyword2=val2]
+ [keyword3=val3][LOT distribution value]
+ [DEV distribution value]...)

Consider the following example. In this simple RC charging circuit, the value of 
r_one has a nominal value of 1K and is varied by 400 ohms for 10 iterations. 
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RC charging circuit:

.option post probe
*define a parameter called "resval" with an absolute, uniform 
distribution
.param resval=aunif(1000,400) 
 vsrc_one 1 0 5v
 r_one 1 2 resval
 c_one 2 0 1u
.ic 2=0
*specify 10 Monte Carlo iterations
.tran 1e-5 5e-3 sweep monte=10 
*measure to find when 1 time constant (.632*vdd) occurs
.meas tran tc when v(2)='.632*5'
*create plots of  the charging curve and resistor values
.probe v(2) par(resval)
.end

The resulting waveforms are called multi-member. Plotting one signal displays 
the curves from all the runs. 

Local and Global Parameter Variation 
A common source of confusion is local and global parameter variation. The key 
is that each time you use a parameter, it is assigned a new random value. In 
this case, the resistors are said to be under local variation. The following 
examples clarify this: 

.param resval=aunif(1000,400) 
r_one 1 2 resval
r_two 2 3 resval
r_three 3 4 resval

In this case, all three resistors are given unique, random values. (However, as 
discussed in the next section, there is an exception to this rule.) If you want to 
set a group of components to the same random value, first assign an 
intermediate parameter: 

.param resval=aunif(1000,400) 

.param my_resval=resval
r_one 1 2 my_resval
r_two 2 3 my_resval
r_three 3 4 my_resval

In the second example, the assignment of a random value is only done once, 
then used three times. In this case, the resistors are said to be under global 
variation.
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Exception for Model Parameters 
Because a model definition is only done once, the behavior described in the 
previous section would assign the same parameter value to all devices 
referencing that model. To overcome this, .OPTION MODMONTE lets you decide 
if all instances of a device should get the same or unique model parameters.

Starting Values and Seeds 
Another source of confusion is the starting value. If you run the same Monte 
Carlo simulation twice, the results will be identical because HSPICE always 
uses the same “seed” value for the first run. If it randomized the seed by 
default, it would be difficult to determine whether changes you made to the 
circuit and topology were the result of your changes or the new random values. 
If desired, you can specify a seed or have HSPICE select a random seed with  
.OPTION SEED. 

Other Monte Carlo Control Options 
■ .OPTION MONTECON – Some random parameter assignments can cause 

HSPICE not to converge. This parameter is used to decide whether to 
terminate a simulation or move to the next run if convergence fails.

■ .OPTION RANDGEN –Use this option to specify the type of random number 
generator used.

■ .OPTION MCBRIEF – This option controls how HSPICE outputs Monte 
Carlo parameters and generates or suppresses output files. 

See HSPICE Netlist Simulation Control Options in the HSPICE Reference 
Manual: Commands and Control Options.

Monte Carlo Analysis in HPP
HSPICE Precision Parallel (HPP) supports enhanced SRS and not the 
traditional SRS. Hence, while comparing the results between HSPICE without 
HPP and HSPICE with HPP Monte Carlo analysis, you need to remember the 
differences explained in this chapter. See Differences between Traditional SRS 
and VB SRS on page 770. (For details on HPP, see HSPICE Precision Parallel 
on page 70.) 

Traditional Monte Carlo Analysis Characteristics

Monte Carlo analysis uses a random number generator to create the following 
types of functions:
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■ Gaussian parameter distribution

• Relative variation – Variation is a ratio of the average.

• Absolute variation – Adds variation to the average.

• Bimodal – Multiplies distribution to statistically reduce nominal 
parameters.

■ Uniform parameter distribution

• Relative variation – Variation is a ratio of the average.

• Absolute variation – Adds variation to the average.

• Bimodal – Multiplies distribution to statistically reduce nominal 
parameters.

■ Random limit parameter distribution

• Absolute variation – Adds variation to the average.

• Monte Carlo analysis randomly selects the min or max variation.

The value of the MONTE analysis keyword determines how many times to 
perform operating point, DC sweep, AC sweep, or transient analysis.

Figure 120 Monte Carlo Distribution

The following sections discuss these topics:
■ Monte Carlo Setup
■ Monte Carlo Output

Abs
variation

3 Sigma

Population

Nom_value

Gaussian Distribution

Nom_value

Abs
variation

Uniform Distribution

Population

Rel_variation=Abs_variation/Nom_value
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■ .PARAM Distribution Function
■ Monte Carlo Parameter Distribution
■ Non-Gaussian Probability Distribution Functions
■ Monte Carlo Examples

Monte Carlo Setup
To set up a Monte Carlo analysis, use the following HSPICE statements:
■ .PARAM statement – Sets a model or element parameter to a Gaussian, 

Uniform, or Limit function distribution.
■ .DC, .AC, or .TRAN analysis – Enables MONTE.
■ .MEASURE statement – Calculates the output mean, variance, sigma, and 

standard deviation.
■ .MODEL statement – Sets model parameters to a Gaussian, Uniform, or 

Limit function distribution.

Select the type of analysis to run, such as operating point, DC sweep, AC 
sweep, or TRAN sweep.

Operating Point

.PARAM dummy=1

.DC dummy 1 1 1 MONTE=[[num] firstrun=[num]]

or:

.DC MONTE=list[(] [num1:num2] [num3] [num5:num6] [num7] [)]

DC Sweep

.DC vin 1 5 0.25 sweep MONTE=val[firstrun=num1]

or:

.DC vin 1 5 0.25 sweep MONTE=list[(] [num1:num2] [num3]
+ [num5:num6] [num7] [)]

AC Sweep

.AC dec 10 100 1meg sweep MONTE=val [firstrun=num1]

or:

.AC vin 1 5 0.25 sweep MONTE=list[(] [num1:num2] [num3]
+ [num5:num6] [num7] [)]
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TRAN Sweep

.TRAN 1n 10n sweep MONTE=val [firstrun=num1]

or:

.TRAN vin 1 5 0.25 sweep MONTE=list[(] [num1:num2] [num3]
+ [num5:num6] [num7] [)]

The val value specifies the number of Monte Carlo iterations to perform. A 
reasonable number is 30. The statistical significance of 30 iterations is high. If 
the circuit operates correctly for all 30 iterations, there is a 99 percent 
probability that over 80 percent of all possible component values operate 
correctly. The relative error of a quantity, determined through Monte Carlo 
analysis, is proportional to val-1/2.

The firstrun values specify the desired number of iterations. HSPICE runs 
from num1 to num1+val-1. The number after firstrun can be a parameter. 
You can write only one number after list. The colon represents “from ... to ...". 
Specifying only one number makes HSPICE run only at the one specified point.

Examples

Example 1: HSPICE runs from the 90th to 99th Monte Carlo iteration:

.tran 1n 10 sweep monte=10 firstrun=90

You can write more than one number after list. The colon represents “from ... 
to ...". Specifying only one number makes HSPICE run only at that single point.

Example 2: HSPICE begins running at the 10th iteration, then continues from 
the 20th to the 30th, then jumps to the 40th, and finally, runs from the 46th to 
72nd Monte Carlo iteration. 

.tran 1n 10n sweep monte=list(10 20:30 40 46:72)

Example 3: Firstrun option, where the number of samples is 1000.

.tran  … sweep monte =1000, firstrun = 10

Example 4: List option, where the number of samples is 100.

.tran … sweep monte = list(10:100) 

Monte Carlo Output
The following probing commands provide these benefits:
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■ .MEASURE statements are the most convenient way to summarize the 
results.

■ .PRINT statements generate tabular results and print the values of all 
Monte Carlo parameters. 

■ .OPTION MCBRIEF determines the output types of the random parameters 
during Monte Carlo analysis to improve output performance; select from 
several values for different results. See .OPTION MCBRIEF in the HSPICE 
Reference Manual: Commands and Control Options.

■ If one iteration is out of specification, you can obtain the component values 
from the tabular listing. A detailed re-simulation of that iteration might help 
identify the problem.

■ Custom WaveView superimposes all iterations as a single plot so you can 
analyze each iteration individually.

.PARAM Distribution Function 
This section describes how to assign a .PARAM parameter in Monte Carlo 
analysis. For a general description of the .PARAM statement, see the .PARAM 
command in the HSPICE Reference Manual: Commands and Control Options.

You can assign a .PARAM parameter to the keywords of elements and models 
and assign a distribution function to each .PARAM parameter. HSPICE 
recalculates the distribution function each time an element or model keyword 
uses a parameter. When you use this feature, Monte Carlo analysis can use a 
parameterized schematic netlist without additional modifications.

Syntax
.PARAM xx=UNIF(nominal_val, rel_variation 
+ [, multiplier])
.PARAM xx=AUNIF(nominal_val, abs_variation 
+ [, multiplier])
.PARAM xx=GAUSS(nominal_val, rel_variation, num_sigmas 
+ [, multiplier])
.PARAM xx=AGAUSS(nominal_val, abs_variation, num_sigmas 
+ [, multiplier])
.PARAM xx=LIMIT(nominal_val, abs_variation)

Argument Description

xx Distribution function calculates the value of this parameter.
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UNIF Uniform distribution function by using relative variation.

AUNIF Uniform distribution function by using absolute variation.

GAUSS Gaussian distribution function by using relative variation.

AGAUSS Gaussian distribution function by using absolute variation

LIMIT Random-limit distribution function by using absolute variation. Adds +/- abs_variation 
to nominal_val based on whether the random outcome of a –1 to 1 distribution is 
greater than or less than 0.

nominal_val The nominal (mean, average, or center) value of the distribution function. Non-Monte 
Carlo analyses use this value as the default. 

abs_variation Specifies the absolute variation about the nominal value for the distribution function. 
■ AUNIF distributions will vary about nominal_val by +/- abs_variation. 
■ AGAUSS distributions will vary about the nominal_val according to the number of 

standard deviations (num_sigmas) this absolute variation represents.

rel_variation Specifies the relative variation about the nominal value for the UNIF and GAUSS 
distribution functions. 
■ UNIF distributions will vary about the nominal value by

+/-(nominal_val*rel_variation.
■ GAUSS distributions will vary about the nominal value with 

nominal_val*rel_variation being equal to the number of standard 
deviations given by num_sigmas.

num_sigmas Describes Gaussian distributions by a mean value (nominal_val) and a standard 
deviation (sigma) value.

Therefore the specified abs_variation or rel_variation must be converted into a 
standard deviation value. The num_sigmas parameter allows you to specify how 
many standard deviations (sigmas) are represented by the abs_variation or 
rel_variation value. With num_sigmas=1, the variation specified corresponds to one 
standard deviation (one sigma).
■ For GAUSS, the standard deviation of the Gaussian distribution function is given 

by: Sigma = nominal_val*rel_variation/num_sigmas
■ For AGAUSS, the standard deviation of the Gaussian distribution function is given 

by: Sigma = abs_variation/num_sigmas
Set num_sigmas=1 if you wish to specify variations in terms of root mean square 
(rms) values. Set num_sigmas to larger values to specify variations in terms of peak 
or peak-to-peak values with a certain error tolerance.

For example, with num_sigmas=6.180, your input variation value will represent a 
peak-to-peak variation with 99.9 percent probability. 

With num_sigmas=9.507, your input variation value will represent a peak-to-peak 
variation with 99.9999 percent probability. 

Argument Description
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Example 1
In this example, each resistor has a unique variation:

.param mc_var=AGAUSS(0,1,3)   $ +/-1 absolute swing or
  $ +/-100% relative swing
.param val='1000*(1+mc_var)'
v_vin vin 0 dc=1 ac=.1
r1 vin 0  '1000*(1+mc_var)'
r2 vin 0  '1000*(1+mc_var)'

Example 2
In this example, each resistor has an identical variation:

.param mc_var=AGAUSS(0,1,3)   $ +/- 20% swing

.param val='1+mc_var'
v_vin vin 0 dc=1 ac=.1
r1 vin 0  '1000*val'
r2 vin 0  '1000*val'

Example 3
In this example, local variations are applied to an instance parameter by 
assigning randomly generated variations directly to each instance parameter. 
Each resistor r1 through r3 receives randomly different resistance values 
during each Monte Carlo run.

.param r_local=AGAUSS(...)
r1 1 2 r=r_local
r2 3 4 r=r_local
r3 5 6 r=r_local

Example 4
In this example, global variations are applied to an instance parameter by 
assigning the variation to an intermediate parameter before assigning it to each 
instance parameter. Each resistor r1 through r3 receives the same random 
resistance value during each Monte Carlo run.

.param r_random=AGAUSS(...)

.param r_global=r_random
r1 1 2 r=r_global
r2 3 4 r=r_global
r3 5 6 r=r_global

multiplier If you do not specify a multiplier, the default is 1. HSPICE recalculates many times 
and saves the largest deviation. The resulting parameter value might be greater than 
or less than nominal_val. The resulting distribution is bimodal.

Argument Description
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Monte Carlo Parameter Distribution
Each time you use a parameter, Monte Carlo analysis calculates a new random 
variable.
■ If you do not specify a Monte Carlo distribution, HSPICE assumes the 

nominal value.
■ If you specify a Monte Carlo distribution for only one analysis, HSPICE uses 

the nominal value for all other analyses.

You can assign a Monte Carlo distribution to all elements that share a common 
model. The actual element value varies according to the element distribution. If 
you assign a Monte Carlo distribution to a model keyword, then all elements 
that share the model use the same keyword value. You can use this feature to 
create double element and model distributions.

For example, the MOSFET channel length varies from transistor to transistor by 
a small amount that corresponds to the die distribution. The die distribution is 
responsible for offset voltages in operational amplifiers and for the tendency of 
flip-flops to settle into random states. However, all transistors on a die site vary 
according to the wafer or fabrication run distribution. This value is much larger 
than the die distribution, but affects all transistors the same way. You can 
specify the wafer distribution in the MOSFET model to set the speed and power 
dissipation characteristics.

Non-Gaussian Probability Distribution Functions
In traditional Monte Carlo analysis, there are only five different distributions:
■ Uniform distribution, absolute
■ Uniform distribution, relative
■ Gaussian distribution, absolute
■ Gaussian distribution, relative
■ Limit distribution

While no user-defined distributions are available, you can describe functions 
such as those shown in Figure 121 on page 763 using the methodologies 
described in this section.

In HSPICE, samples from the distributions given in Figure 121 can be created 
exactly for the Case 1 (top) function using the CDF()—Cumulative Distribution 
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Function construct in Variation Block. The other two cases can be 
approximated using a PWL function for F(x), which are the illustrations on the 
right-hand side.

The distributions also can be sampled exactly in both Variation Block (VB) and 
in the traditional Monte Carlo format by using the “probability inverse” and 
defining the relationship in an expression. Let u be a sample from the uniform 
random number generator over the range [0, 1]. This is the default behavior 
with the traditional Monte Carlo style. You would add 0.5 with the VB uniform 
generator, U( ), because the variables are sampled in –0.5, 0.5] to have zero 
mean.

Figure 121 Non-Gaussian functions

Map u to the y-axis on the right side of the figures in Figure 121. Project the 
value onto the curve horizontally, and then down. This gives a value, for 
example x. Then x is a random sample from the desired distribution. 
Mathematically, it works as x = F-1(u). For instance:

Case 1:

Case 2:

Case 3:

c d
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Case 1:  

Case 2:

Case 3:

Here, c and d are the locations of the two additional coordinates between a and 
b that define the gap in the distribution.

Monte Carlo Examples

Gaussian, Uniform, and Limit Functions
You can find the sample netlist for this example in the following directory: 
$installdir/demo/hspice/apps/mont1.sp. 

Figure 122 Uniform Functions

x a b a–  u+=

x a b a–  u +=

x a b a–  u += if u 0.5

x d b d–  u + if u 0.5=
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Figure 123 Gaussian Functions

Figure 124 Limit Functions

Major and Minor Distribution
In MOS IC processes, manufacturing tolerance parameters have both a major 
and a minor statistical distribution.
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■ The major distribution is the wafer-to-wafer and run-to-run variation that 
determines electrical yield.

■ The minor distribution is the transistor-to-transistor process variation that is 
responsible for critical second-order effects, such as amplifier offset voltage 
and flip-flop preference.

Figure 125 Major and Minor Distribution of Manufacturing Variations

The following example is a Monte Carlo analysis of a DC sweep in HSPICE. 
Monte Carlo sweeps the VDD supply voltage from 4.5 to 5.5 volts. 

You can find the sample netlist for this example in the following directory:
$installdir/demo/hspice/apps/mondc_a.sp

■ The M1 through M4 transistors form two inverters.
■ The nominal value of the LENGTH parameter sets the channel lengths for the 

MOSFETs, which are set to 1  in this example. 

■ All transistors are on the same integrated circuit die. The LEFF parameter 
specifies the distribution—for example, a ±5-percent distribution in channel 
length variation at the ±3-sigma level. 

■ Each MOSFET has an independent random Gaussian value.

The PHOTO parameter controls the difference between the physical gate length 
and the drawn gate length. Because both n-channel and p-channel transistors 
use the same layer for the gates, Monte Carlo analysis sets XPHOTO 
distribution to the PHOTO local parameter. XPHOTO controls photolithography for 
both NMOS and PMOS devices, consistent with manufacturing physics.

pop.#

(polysilicon linewidth variation)

major distribution

minor distribution

XL
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RC Time Constant
This simple example shows uniform distribution for resistance and capacitance. 
It also shows the resulting transient waveforms for ten different random values.

Figure 126 Monte Carlo Analysis of RC Time Constant

You can find the sample netlist for this example in the following directory:
$installdir/demo/hspice/apps/rc_monte.sp

Switched-Capacitor Filter Design
Capacitors used in switched-capacitor filters consist of parallel connections of a 
basic cell. Use Monte Carlo techniques in HSPICE to estimate the variation in 
total capacitance. The capacitance calculation uses two distributions:
■ Minor (element) distribution of cell capacitance from cell-to-cell on a single 

die.
■ Major (model) distribution of the capacitance from wafer-to-wafer or from 

manufacturing run-to-run.
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Figure 127 Monte Carlo Distribution

You can approach this problem from physical or electrical levels.
■ The physical level relies on physical distributions, such as oxide thickness 

and polysilicon line width control. 
■ The electrical level relies on actual capacitor measurements.

Physical Approach:
Use the following steps for the physical approach:

1. Use a local variation in polysilicon to control the variation in capacitance for 
adjacent cells because oxide thickness control is excellent for small areas 
on a single wafer.

2. Define a local polysilicon line-width variation and a global (model-level) poly 
line-width variation. In this example:

• The local polysilicon line width control for a line 10-m wide, 
manufactured with process A, is ±0.02 m for a 1-sigma distribution. 

• The global (model-level) polysilicon line-width control is much wider; 
use 0.1 m for this example.

• The global oxide thickness is 200 angstroms with a ±5-angstrom 
variation at 1 sigma.

• The cap element is square with local poly variation in both directions. 

• The cap model has two distributions:

 — Poly line-width distribution

C1a C1b

C1c C1d
C1a C1b

C1c C1d

cap-to-cap

run-to-run
 (model)

 (element)
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 — Oxide thickness distribution

• The model poly distribution is half the physical per-side values.

The effective length is:

Leff=Ldrawn - 2 
C1a 1 0 CMOD W=ELPOLY L=ELPOLY
C1b 1 0 CMOD W=ELPOLY L=ELPOLY
C1C 1 0 CMOD W=ELPOLY L=ELPOLY
C1D 1 0 CMOD W=ELPOLY L=ELPOLY
$ 10U POLYWIDTH,0.05U=1SIGMA
$ CAP MODEL USES 2*MODPOLY .05u= 1 sigma
$ 5angstrom oxide thickness AT 1SIGMA
.PARAM ELPOLY=AGAUSS(10U,0.02U,1)
+ MODPOLY=AGAUSS(0,.05U,1)
+ POLYCAP=AGAUSS(200e-10,5e-10,1)
.MODEL CMOD C THICK=POLYCAP DEL=MODPOLY

Electrical Approach:
The electrical approach assumes no physical interpretation, but requires a local 
(element) distribution and a global (model) distribution. In this example:
■ You can match the capacitors to ±1 percent for the 2-sigma population. 
■ The process can maintain a ±10-percent variation from run to run for a 

2-sigma distribution. 

C1a 1 0 CMOD SCALE=ELCAP
C1b 1 0 CMOD SCALE=ELCAP
C1C 1 0 CMOD SCALE=ELCAP
C1D 1 0 CMOD SCALE=ELCAP
.PARAM ELCAP=Gauss(1,.01,2) $ 1% at 2 sigma
+ MODCAP=Gauss(.25p,.1,2) $10% at 2 sigma
.MODEL CMOD C CAP=MODCAP

Dual Monte Carlo Flows 

Background: Adding Enhanced SRS to Traditional Monte Carlo
HSPICE developed a new type of variation definition format called VB to 
address issues that the traditional style or the AGAUSS style was neither 
intuitive nor flexible to code. For more information, see Chapter 24, Variability 
Analysis Using the Variation Block. The VB format enables different types of 
sampling methods, such as LHS, Sobol, Niederreiter, OFAT, Factorial, and 
External, along with Simple Random Sampling (SRS). The output of Monte 
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Carlo analysis with VB-style definitions is more comprehensive than with the 
AGAUSS-style Monte Carlo. Later, it was decided to support the features 
associated with the VB-style within the AGAUSS style. As a result, the 
AGAUSS style is supported both in the traditional Monte Carlo flow and the VB 
flow. You must invoke the latter by entering the following: option 
sampling_method=SRS. The other sampling algorithms also are supported 
with the AGAUSS style.

HSPICE supports statistical modeling of variability parameters for Gaussian, 
Uniform, and Limit distribution. The keywords GAUSS, AGAUSS, UNIF, AUNIF, 
and LIMIT can be used in a SPICE netlist to represent these distributions. By 
using these keywords and following certain rules, you can code Global and 
Local variations, which together constitute parametric variations. This method 
is commonly known as AGAUSS-style variation definition. Until recently, 
HSPICE supported only the Simple Random Sampling (SRS) algorithm for 
Monte Carlo simulation with this type of variation definition.

Differences between Traditional SRS and VB SRS
If you do not specify .option sampling_method=SRS in the netlist, 
HSPICE invokes the traditional SRS algorithm along with the AGAUSS-style 
statistical models. Before making any comparison, you should note that a few 
differences exist between traditional SRS and the SRS invoked with the 
option sampling_method (hereafter called enhanced SRS). (Note that 
HPP requires enhanced SRS.) These differences are explained in the following 
sections:
■ Random Number Generators
■ Pseudo-Random Number Generators
■ Data Mining

Random Number Generators
The Random Number Generators (RNGs) used in the case of traditional SRS 
are different from those used for enhanced SRS. Therefore, a one-to-one 
match is not possible unless you set .option RANDGEN=1 in the traditional 
SRS flow to match the RNGs.

In the traditional AGAUSS flow, there is no nominal simulation (that is, 
simulation without any variation on model parameters). The Monte Carlo flow 
with the option sampling_method executes nominal simulation for the first 
Monte index. Thus, when you compare the traditional SRS values for each 
sample with that of enhanced SRS, start the comparison from the first index of 
the traditional SRS to the second index of enhanced SRS, and so on.
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The results may vary slightly because of normal limit, controlled by the option 
Normal_Limit, when using enhanced SRS. (See Chapter 25, Monte Carlo 
Analysis—Variation Block Flow.) In some cases the order of value assignment 
to independent random variables may differ because of slight differences in 
traditional and enhanced front-end flows.

Pseudo-Random Number Generators 
Pseudo-Random Number Generators (PRNGs) consist of two kinds of Monte 
Carlo analyses in HSPICE: Traditional AGAUSS-style Monte Carlo and VB-
based Monte Carlo.

Traditional AGAUSS-style Monte Carlo does not support advanced sampling 
methods. You set the PRNG using the HSPICE global .option RANDGEN. 

The usage is:

.option RANDGEN=[3LC|MOA|UVS|MCG|WH]

Here, the default is 3LC.

You should use either MCG or WH for large scale or distributed processing Monte 
Carlo. Because the two generators have a long circle and support the skip-
ahead function, the 3LC is a short circle generator and its randomness is not 
sufficient. Because of this limitation, you should use the MOA PRNG instead of 
the 3LC PRNG. 

All PRNGs can accept a seed, which is used to initialize the generator state. 
Using the HSPICE global option seed, you can set the value of the seed 
between 1 and 259200. In addition, you can set .option SEED=random to 
set a random number of seed between 1 and 259200. When the seed is set to 
random, HSPICE uses a different seed value when rerunning the same Monte 
Carlo case. 

In the VB-based Monte Carlo or AGAUSS-style Monte Carlo, you can use a 
global option or a VB-based option to designate a sampling method. 

Set the PRNG:

.variation 
Option Random_Generator=[MOA|MSG|UVS|MCG|WH]
.end_variation

Here, the default is MOA.

You should use either MCG or WH for large scale or distributed processing Monte 
Carlo. If the option large_scale_mc=yes, then the default random generator 
will be MCG.
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Data Mining
The traditional SRS flow generates a limited statistical summary (mean, 
median, sigma, and so on) in the output listing file.

 The enhanced SRS flow generates the following:
■ Enhanced statistical summary and variable screening report in the *.mpp0 

file.
■ Independent random variable values for each sample in the *.mc0 file.
■ Element variation contribution information to back-annotate in Synopsys' 

Custom Designer in the *.annotate file.
■  Partial *.mpp0 file for traditional SRS (without variable screening report).

 For more information, see Chapter 27, Monte Carlo Data Mining.

Invoking Advanced Sampling Methods
To invoke sampling methods such as Latin Hypercube, Factorial, OFAT, or low-
discrepancy sequences in a Monte Carlo netlist, enter:

.OPTION SAMPLING_METHOD=name_of_method

The syntax is as follows:

.OPTIONSAMPLING_METHOD= 
SRS|LHS|Factorial|OFAT|Sobol|Niederreiter|External

The methods and their brief descriptions are listed below. For detailed 
discussion of these methods, see Sampling Options and Comparison of 
Sampling Methods in Chapter 25, Monte Carlo Analysis—Variation Block Flow.

Method Brief Description

SRS (Default) Simple random sampling performed in traditional HSPICE Monte Carlo 
method.

LHS Latin Hypercube sampling; efficient for large number of variable parameters (used 
with .OPTION REPLICATES).

Factorial Factorial sampling: 
■ Evaluates the circuit response at the extremes of variable ranges to get an idea 

of the worst- and best-case behavior.
■ Creates polynomial response surface approximations.
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Use .OPTION REPLICATES after selecting .OPTION 
SAMPLING_METHOD=LHS. The REPLICATES option runs replicates of the Latin 
Hypercube samples. For more information, see Latin Hypercube Sampling 
(LHS) on page 855.

Worst-case and Monte Carlo Sweep Example

The following example measures the delay and the power consumption of two 
inverters. Additional inverters buffer the input and load the output.

This netlist contains commands for two sets of transient analysis: parameter 
sweep from -3 to +3-sigma, and a Monte Carlo analysis. This netlist creates 
one set of output files (.mt0 and .tr0) for the sigma sweep, and one set (mt1 
and tr1) for Monte Carlo.

$ inv.sp sweep mosfet -3 sigma to +3 sigma, use measure output
.param vref=2.5 sigma=0
.global 1
vcc  1 0  5.0
vin  in 0 pwl 0,0 0.2n,5
x1 in 2 inv
x2 2 3 inv
x3 3 out inv
x4 out 4 inv
.macro inv in out
  mn out in 0 0 nch w=10u l=1u
  mp out in 1 1 pch w=10u l=1u
.eom
.param mult1=1

OFAT One-Factor-at-a-Time sampling; is useful for sensitivity studies and for constructing 
low-order response surface approximations.

Sobol Sobol sampling uses low-discrepancy sequences (LDS). LDS sample points are 
more frequently distributed compared to LHS and the sampling error is lower. Sobol 
is used with a sampling dimension of 40 or less.

Niederreiter LDS sampling sequence is useful as a method for cases of a sampling dissension 
up to 318. If that number is exceeded, HSPICE switches to the default SRS sampling 
method.

External Executes a data set of externally created perturbations. External sampling allows 
design and process exploration tools to run statistical experiments with the variables 
for each sample under their full control.

Method Brief Description
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+ polycd=AGAUSS(0,0.06u,1)   xl='polycd-sigma*0.06u'
+ nactcd=AGAUSS(0,0.3u,1)  xwn='nactcd+sigma*0.3u'
+ pactcd=AGAUSS(0,0.3u,1)  xwp='pactcd+sigma*0.3u'
+ toxcd=AGAUSS(200,10,1)   tox='toxcd-sigma*10'
+ vtoncd=AGAUSS(0,0.05v,1) delvton='vtoncd-sigma*0.05'
+ vtopcd=AGAUSS(0,0.05v,1) delvtop='vtoncd+sigma*0.05'
+ rshncd=AGAUSS(50,8,1)   rshn='rshncd-sigma*8'
+ rshpcd=AGAUSS(150,20,1)   rshp='rshpcd-sigma*20'
* level=28 example model 
.model nch nmos
+ level=28 lmlt=mult1 wmlt=mult1 wref=22u lref=4.4u
+ xl=xl  xw=xwn tox=tox delvto=delvton rsh=rshn
...
.model pch pmos
+ level=28 lmlt=mult1 wmlt=mult1 wref=22u lref=4.4u
+ xl=xl  xw=xwp tox=tox delvto=delvtop rsh=rshp
+ ld=0.08u wd=0.2u acm=2 ldif=0 hdif=2.5u
+ rs=0 rd=0 rdc=0 rsc=0 rsh=rshp js=3e-04 jsw=9e-10
...
* transient with sweep
.tran 20p 1.0n   sweep sigma -3 3 .5
.meas s_delay trig v(2) val=vref fall=1
+           targ v(out) val=vref fall=1
.meas s_power rms power
* transient with Monte Carlo
.tran 20p 1.0n   sweep monte=100
.meas m_delay trig v(2) val=vref fall=1
+           targ v(out) val=vref fall=1
.meas m_power rms power
.probe tran v(in) v(1) v(2) v(3) v(4)
.end

Transient Sigma Sweep Results
The plot in Figure 128 shows the family of transient analysis curves for the 
transient sweep of the sigma parameter from –3 to +3 from the file inv.tr0. In the 
sweep, HSPICE uses the values of sigma to update the skew parameters, 
which in turn modify the actual NMOS and PMOS models.

Operating-Point Results in Transient Analysis
If you want to get OP results after every Monte Carlo simulation in transient 
analysis, you can add the option opfile to the netlist. OP results output to the 
file *.dp0.
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Figure 128 Sweep of Skew Parameters from –3 Sigma to +3 Sigma

To view the measured results, plot the inv.mt0 output file. The plot in 
Figure 129 on page 775 shows the measured pair delay and the total 
dissipative power as a function of the parameter sigma. To get the specific 
operating point information of each Monte Carlo run, use opfile=1.

Figure 129 Sweep MOS Inverter, Pair Delay, and Power: • 3 Sigma to 3 Sigma
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Monte Carlo Results
This section describes the output of the Monte Carlo analysis in HSPICE. The 
plot in Figure 130 on page 776 shows that the relationship between TOX 
against XL (polysilicon width=transistor length) is completely random, as set up 
in the input file. 

To generate this plot, for example:

1. Read in the file inv.mt1.

2. Open the Calculator, select TOX (left mouse button), transfer to calculator 
(middle mouse button), and then select and transfer XL.

3. On the WAVE pulldown in the calculator, select f(x), and then click the plot 
icon. 

4. Using the right mouse button on the plotted waveform, select Attributes to 
change from the line plot to symbols.

Figure 130 Scatter Plot of XL vs. TOX

Figure 131 is a standard scatter plot showing the measured delay for the 
inverter pair against the Monte Carlo index number.
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Figure 131 Scatter Plot of Inverter Pair Delay

If a particular result looks interesting; for example, if the simulation 68 (monte 
carlo index=68) produces the smallest delay, then you can obtain the Monte 
Carlo parameters for that simulation.

*** monte carlo  index =    68 ***
   MONTE CARLO PARAMETER DEFINITIONS
 polycd  xl              = -1.6245E-07
 nactcd  xwn             =  3.4997E-08
 pactcd  xwp             =  3.6255E-08
 toxcd   tox             =   191.0    
 vtoncd  delvton         = -2.2821E-02  
         delvtop         =  4.1776E-02
 vtopcd          
 rshncd  rshn            =   45.16    
 rshpcd  rshp            =   166.2    
 m_delay=  1.7929E-10  targ=  3.4539E-10   trig=  1.6610E-10
 m_power=  6.6384E-03  from=  0.0000E+00     to=  1.0000E-09

In the preceding listing, the m_delay value of 1.79e-10 seconds is the fastest 
pair delay. You also can examine the Monte Carlo parameters that produced 
this result.

The information on shortest delay and so forth is also available from the 
statistics section at the end of the output listing. While this information is useful 
to determine whether the circuit meets specification, it is often desirable to 
understand the relationship of the parameters to circuit performance. Plotting 
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the results against the Monte Carlo index number does not help this purpose. 
You need to generate plots that display a Monte Carlo result as a function of a 
parameter. For example, Figure 132 on page 778 shows the inverter pair delay 
to channel as a function of poly width, which relates directly to device length. 

Figure 132 Delay as a function of Poly width (XL)

Figure 133 shows the pair delay against the TOX parameter. The scatter plot 
shows no obvious dependence, which means that the effect of TOX is much 
smaller than XL. To explore this in more detail, set the XL skew parameter to a 
constant and run a simulation. 
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Figure 133 Sensitivity of Delay with TOX

The plot in Figure 134 overlays the skew result with the ones from Monte Carlo. 
The skew simulation traverses the design space with all parameters changing 
in parallel and then produces a relationship between power and delay, which 
appears as a single line. Monte Carlo exercises a variety of independent 
parameter combinations and shows that there is no simple relationship 
between the two results. Because the distributions were defined as Gaussian in 
the netlist, parameter values close to the nominal are more often exercised 
than the ones far away. With the relatively small number of samples, the chance 
of hitting a combination at the extremes is very small. In other words, designing 
for 3-sigma extreme for every parameter is probably not a good solution 
economically. 
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Figure 134 Superimposing Sigma Sweep Over Monte Carlo

Figure 135 on page 780 superimposes the required part grades for product 
sales onto the Monte Carlo plot. This example uses a 250-ps delay and 
6.5-mW power dissipation to determine the four binning grades. 

Figure 135 Speed/Power Yield Estimation
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Sorting the results from inv.mt1 yields:
■ Bin1 – 9 percent
■ Bin2 – 38 percent
■ Bin3 – 29 percent
■ Bin4 – 24 percent

If this circuit is representative of the entire chip, then the present yield should 
be 9 percent for the premium Bin 1 parts, assuming variations in process 
parameters as specified in the netlist. This example only shows the principle on 
how to analyze the Monte Carlo results.

Global and Local Variations with Monte Carlo

Monte Carlo analysis is dependent on a method to describe variability. Four 
different approaches are available in HSPICE:

1. Specify distributions on parameters and apply these to instance parameters.

2. Specify distributions on parameters and apply these to model parameters.

3. Specify distributions on model parameters using DEV/LOT construct.

4. Specify distributions on model parameters in a Variation Block.

In the following sections, the first three methods are described. The description 
relies on test cases, which can be found in the tar file monte_test.tar in 
directory $installdir/demo/hspice/variability. 

The VB is described in Chapter 24, Variability Analysis Using the Variation 
Block, and Monte Carlo analysis controlled by the VB is described in Chapter 
25, Monte Carlo Analysis—Variation Block Flow.

Key to Demonstration Examples for Monte Carlo
The following sections discuss sample files delivered with HSPICE. See 
Variability Examples. monte_test.tar is a suite of DC test files named 
test1.sp through test20.sp to test combinations of resistors, subckts, 
model/instance parameters, and so on. 
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The following sections discuss these demonstration files:
■ Variations Specified on Geometrical Instance Parameters
■ Variations Specified in the Context of Subcircuits
■ Variations on a Model Parameter Using a Local Model in Subcircuit
■ Indirect Variations on a Model Parameter
■ Variations Specified on Model Parameters
■ Local Variations for Transistor Fingers
■ Variations Specified Using DEV and LOT
■ Combinations of Variation Specifications

Variations Specified on Geometrical Instance Parameters
This method consists of defining parameters with variation using the 
distribution functions UNIF, AUINF, GAUSS, AGAUSS, and LIMIT. These 
parameters are then used to generate dependent parameters or to replace 
instance parameters. In a Monte Carlo simulation, at the beginning of each 
sample, new random values are calculated for these parameters. For each 
reference, a new random value is generated; however, no new value is 
generated for a derived parameter. Therefore, it is possible to apply 
independent variations to parameters of different devices, as well as the same 
variation to parameters of a group of devices. Parameters that describe 
distributions can be used in expressions, thus it is possible to create 
combinations of variations (correlations). 

These concepts are best explained with circuit examples. In the following three 
examples, variation is defined on the width of a physical resistor, which has a 
model. If this device was a polysilicon resistor for example, then the variations 
describe essentially the effects of photoresist exposure and etching on the 
width of the poly layer.
■ test1.sp has a distribution parameter defined called globw. A parameter 

called globwidth is assigned the value of globw. The parameter 
globwidth is assigned a different random value for each Monte Carlo 
sample. The parameter globwidth is used to define the width of the 
physical resistors r1, r2, r3, and r4, with model “resistor.” Because parameter 
globwidth does not have its own distribution defined, but rather gets its 
value from the parameter globw, the value for globwidth is the same 
wherever it is used. The resistors have the same width for each Monte Carlo 
sample, and, therefore, the same resistance. When plotting the simulation 
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results v1, v2, v3, and v4 from the .meas file, the waveforms overlay 
perfectly. This type of setup is typically used to model global variations that 
affect all devices the same way.

■ test2.sp has a distribution parameter defined called locwidth. This 
parameter is used to define the width of the physical resistors r1, r2, r3, and 
r4, with model “resistor.” Because the parameter has its own distribution 
defined, its value is different for each reference, and for each Monte Carlo 
sample. Therefore, the resistors always have different values, and the 
voltages are different. This type of setup is typically used to model local 
variations, which means variations that affect devices in a different way.

■ test3.sp has two kinds of distributions defined: globw/globwidth as in 
the first example, and locwidth as in the second example. The sum of the 
two is used to define the width of the resistors. Therefore, the resistors will 
always have different widths: a common variation due to globwidth and a 
separate variation due to locwidth. In the example, the distribution for 
locwidth was chosen as narrower than for globwidth. When overlaying the 
measurement results, the large common variation can easily be seen; 
however, all voltages are different.

In summary, each reference to a parameter with a specified distribution causes 
a new random variable to be generated for each Monte Carlo sample. When 
referencing the parameter on an instance, the effect of a local variation is 
created. When referencing the parameter on an expression for a second 
parameter and using the second parameter on an instance, the effect of a 
global variation is created. 

Variations Specified in the Context of Subcircuits
The concept explained in the previous section applies to subcircuits as 
instances, and instances within subcircuits. Here again the example of a 
physical resistor is discussed, with variation of its width.
■ In test6.sp, the resistor width is assigned inside the subcircuit. The 

variations are chosen from the top level. Because each subcircuit is a 
separate entity, the parameter w is treated as a separate reference. Thus 
each resistor will have its own value, partly defined through the common 
value of globwidth and partly through the separate value of locwidth.

■ test7.sp has two resistors in the subcircuit. Each device in each subcircuit 
has a separate reference to the variation. Therefore each device gets its 
own value.
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■ In test8.sp, the variation definition for locwidth has been moved from 
the top level into the subcircuit. Each resistor has a common global variation 
and its own local variation.

■ test9.sp assigns the top level variation to a local parameter, which in turn 
is applied to the width definition of the resistor. Because this happens 
independently within each subcircuit, the values are the same for the 
resistor pair in each subcircuit, but different values for the different pairs. 
This technique can be applied to long resistors when a middle terminal is 
required for connecting capacitance to the substrate. The resulting two 
resistor pieces will have the same resistance, but it will be different from 
other resistor pairs.

In summary, each subcircuit has its own parameter space. Therefore, it is 
possible to put groups of identical components into a subcircuit. Furthermore, 
within each group all devices have the same parameter values, but between the 
groups, parameters are different. When specifying variations on these 
parameters, the effects of local variations between the groups are created. 

Variations on a Model Parameter Using a Local Model in 
Subcircuit
If a model is specified within a subcircuit, then the specified parameter values 
apply only to the devices in the same subcircuit. Therefore, it is possible to 
calculate the value of a model parameter within the subcircuit; for example, as 
a function of geometry information.

When specifying variations on these parameters, the effects of local variations 
between subcircuits are created. If this method is used at the extreme with one 
device per subcircuit, then each device has its own model. This approach is not 
recommended because it leads to a substantial overhead in the simulator. 

Indirect Variations on a Model Parameter
Variations on geometrical parameters are presented in Variations Specified on 
Geometrical Instance Parameters and Variations Specified in the Context of 
Subcircuits. To specify variations on a model parameter, for example, the 
threshold of a MOS device, you can use the approach explained in the previous 
section with one model per device in a subcircuit. However, this is impractical 
because the netlist needs to be created to call each device as a subcircuit, and 
because of the overhead. Since variations are of interest only on a few model 
parameters, an indirect method of varying model parameters can be used. 
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Some special instance parameters are available for this purpose. For example, 
for MOS devices, the parameter delvt0 defines a shift in threshold. 

Referencing a parameter with a distribution as value for delvt0 creates the 
effect of local threshold variations. A significant number of parameters of this 
type are available in HSPICE for BSIM3 and BSIM4 models. The variations can 
be tailored for each device depending, for example, on its size. A disadvantage 
of this method is that the netlist needs to be parameterized properly to get the 
correct variations. The process of preparing a basic netlist for Monte Carlo 
simulations with this approach is tedious and error-prone; therefore, it is best 
handled with scripts. 

For a listing of supported BSIM3 and BSIM4 instance parameters, see the 
HSPICE Reference Manual: MOSFET Models, Supported Instance 
Parameters, BSIM3, BSIM4, BSIM3SOI and BSIM4SOI.

Variations Specified on Model Parameters
This section discusses the method of specifying distributions on parameters 
and using these parameters to define values of model parameters. With this 
approach, the netlist does not have to be parameterized. The modmonte option 
can be used to distinguish between global variations (all devices of a particular 
model have the same parameter set) or local variations (every device has a 
unique random value for the specified parameters).
■ test10.sp shows a simple case where the model parameter for sheet 

resistivity is assigned a distribution defined on the parameter rsheet. The 
results show that all resistors have the same value for each Monte Carlo 
sample, but a different one for different samples. This setup is useful for 
studying global variations.

■ test11.sp has .option modmonte=1 added. Now every resistor has a 
different value.

Note that .option modmonte has no effect on any other approach presented 
here.

In summary, assigning parameters with specified distributions to model 
parameters allows for investigating the effects of global or local variations, but 
not both. The possibility of selecting one or the other with a simple option is 
misleading in the sense that the underlying definitions for global and local 
variations are not the same for a realistic semiconductor technology.
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Local Variations for Transistor Fingers
You can run an MC simulation where each of the transistors’ fingers of the gate 
are simulated to have a different process variation. Set option MODMONTE=1 
and get local variations for an instance. View MOSFET parameter variations 
while printing the alias LX, LV, and so on for different MOSFET parameters. For 
example:

*MOS L53 DC sweep test for monte carlo analysis
*    
* MODMONTE option can be set to 1 or 0, 
* MODMONTE=1: measured ids will be different for the 3 element
* MODMONTE=0: measured ids will be identical for the 3 element
*
.options ACCT OPTS LIST NOPAGE INGOLD=2 ALT999 PROBE POST=1 TNOM=25
.options MODMONTE=1 numdgt=10
.model nch  nmos LEVEL=53 TOX=4E-9 wint=wint_nch VERSION=3.2
.param wint_nch = AGAUSS ( 3e-7 , 1e-7   , 3.0 )
 m11  2 11  0  0  nch  W=1E-6   L=0.15E-6
 m12  2 11  0  0  nch  W=1E-6   L=0.15E-6
 m13  2 11  0  0  nch  W=1E-6   L=0.15E-6
 v01   2    0    1.5
 v02  11    0    0.0
.dc  v02  0   2.0   0.1   sweep monte=3
.meas dc ids_11  find par('i(m11)*1E3') when v(11)=1.5
.meas dc ids_12  find par('i(m12)*1E3') when v(11)=1.5
.meas dc ids_13  find par('i(m13)*1E3') when v(11)=1.5
.end

Variations Specified Using DEV and LOT
The two limitations of the approach described in Variations Specified on Model 
Parameters are resolved in this method by specifying global and local 
variations directly on a model parameter with the syntax:

parameterName=parameterValue LOT/distribution LotDist 
+ DEV/distribution DevDist

where:
■ LOT is the keyword for global distribution
■ DEV is the keyword for local distribution
■ distribution is as explained in Variations Specified on Geometrical 

Instance Parameters
■ LotDist and DevDist are the characteristic numbers for the distribution: 

3-sigma is the fixed value for Gaussian distributions.
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test12.sp has large global and small local variation, similar to the setup in 
the file test3.sp. The result shows four different curves with a large common 
part and small separate parts. The amount of variation defined in the two files 
is the same. The curves look different from the test3.sp results because 
different random sequences are used. However, the statistical results (sigma) 
converge for a large number of samples. 

There is no option available to select only local or only global variations. This 
can be an obstacle if the file is read-only or encrypted.

Combinations of Variation Specifications
Specifying distributions on parameters and applying them to model parameters 
can be used on some models. The DEV/LOT approach can be used on others in 
the same simulation.
■ test13.sp has DEV/LOT specified for model res1, and the parameter 

width for model res2. The values for the resistors with model res1 are 
different, and the values for resistors with model res2 are the same.

■ test14.sp is similar to test7.sp and has modmonte=1 specified. All 
four resistors have different values. However, note that in reality, the sigma 
for width would be different when simulating local or global variations.

■ test15.sp has instance parameter variations specified on two resistors 
and DEV/LOT on two others. From the waveforms, v3 and v4 form a first pair, 
and v1 and v2 form a second pair.

It also is possible to mix variations on instance parameters and model 
parameters in the same setup. 
■ test16.sp has small instance parameter variations specified on width and 

relatively large model parameter variations on the sheet resistivity, rsh. The 
results show four different waveforms with a common behavior.

■ test17.sp shows instance and model parameter variations as in the 
previous test case, but .option modmonte is set to 1. Thus, the model 
variations affect every device in a different way. The results show completely 
independent behavior of all four resistors.

If an instance parameter or instance parameter variations and model parameter 
variations are specified on the same parameter, then the instance parameter 
always overrides the model parameter. Because only few parameters can be 
used in both domains, this case is rather seldom; however, it must be 
considered to avoid unexpected results.
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■ test18.sp has model variation specified on width with a parameter. Two 
resistors have width also defined on instance. The resistors with instance 
parameter do not vary at all. The other two resistors vary independently as 
expected because .option modmonte is set to 1.

■ test19.sp is similar to test18.sp with .option modmonte set to 0. 
The two resistors that do not have width defined on the instance line vary 
together.

■ test20.sp has DEV/LOT specified. Instance parameters override 
variations on selected resistors. 

Variation on Model Parameters as a Function of Device 
Geometry
For local variations (see Chapter 26, Mismatch Analyses), it is a common 
requirement to specify variation on a model parameter as a function of device 
geometry. For example, the MOS device threshold was observed to vary with 
the total device area.

The approach explained in Indirect Variations on a Model Parameter can be 
used. While this allows for specifying local variations on each device, it does 
not include the capability of using expressions based on element parameters. 
Thus, variation cannot be described with an expression that includes the 
device’s geometry. Conceptually, a netlist processor could be written that 
inserts the appropriate values for the parameters as a function of device size. 
(Synopsys does not provide such a tool). 

The DEV/LOT approach has no mechanism to describe variation as a function 
of an element parameter.

Troubleshooting Monte Carlo Issues

Perturbation Information Missing from Output Listing in Monte 
Carlo and Subcircuit Local Variables
A limitation in traditional Monte Carlo is that no perturbation information is 
printed in the output listing file in the case where a subcircuit has local variation 
parameters defined. 
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This limitation in the traditional Monte Carlo can be seen in cases similar to the 
following:

.param
 + my_global_lt_x=AGAUSS(0,1.1n,1)
+ temp_global_lt_x=my_global_lt_x
+ subc_global_lt_n=temp_global_lt_x
+ subc_global_lt_p=temp_global_lt_x

+ local_lt_n=AGAUSS(0,0.88n,1)
+ local_lt_p=AGAUSS(0,0.88n,1)
+ local_wt_n=AGAUSS(0,5.3n,1)
+ local_wt_p=AGAUSS(0,5.3n,1)
x1 in 2   inv   
.subckt inv in out  subc_global_lt_n=0
 subc_global_lt_p=0 local_lt_n=0
+ local_lt_p=0 local_wt_n=0 local_wt_p=0
mn out in 0 0 nch W='3e-07+subc_global_lt_n+local_wt_n' 
+                 L='4e-08+subc_global_lt_n+local_lt_n'
mp out in 1 1 pch W='3e-07+subc_global_lt_p+local_wt_p' 
+                 L='4e-08+subc_global_lt_p+local_lt_p'
.ends
-----------------------------------
*.lis file output
 my_global_lt_x   
             
     temp_global_lt_x= -7.1777E-10
 local_lt_n         
              
     1:mn            =  3.9274E-08  2:mn            =  3.9461E-08
     3:mn            =  3.8590E-08  4:mn            =  3.9071E-08
------------------

In the above case, HSPICE prints out variation in global variation parameter 
temp_global_lt_x directly. However, the local variation parameter 
local_lt_n is actually the expression value:
L='4e-08+subc_global_lt_n+local_lt_n'. 
Therefore, you have to find the local_lt_n value from[3.9574E-08 -
(4e-8 + subc_global_lt_n)]. 

This can be overcome by a small modification in the subckt definition by 
reassigning the local parameters inside the subcircuit as shown next:
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.subckt inv in out  subc_global_lt_n=0 subc_global_lt_p=0 
local_lt_n=0
+ local_lt_p=0 local_wt_n=0 local_wt_p=0
*Assign the local parameters inside the subckt again
.param subc_local_lt_n=local_lt_n
 subc_local_lt_p=local_lt_p
+ subc_local_wt_n=local_wt_n 
+ subc_local_wt_p=local_wt_p
mn out in 0 0 nch W='3e-07+subc_global_lt_n+subc_local_wt_n' 
+                 L='4e-08+subc_global_lt_n+subc_local_lt_n'
mp out in 1 1 pch W='3e-07+subc_global_lt_p+subc_local_wt_p' 
+                 L='4e-08+subc_global_lt_p+subc_local_lt_p'
.ends

This directly gives the subc_local_lt_n value as follows:

my_global_lt_x 
     temp_global_lt_x=  1.7577E-10
 local_lt_n     
 1:subc_local_lt_n=  9.2081E-10  2:subc_local_lt_n=  1.4300E-10

3:subc_local_lt_n= -2.6043E-10  4:subc_local_lt_n= -2.6994E-09 
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24Variability Analysis Using the Variation Block

Introduces variability, describes how it can be defined in HSPICE, and 
introduces the Variation Block.

HSPICE ships numerous examples for your use. See Variability Examples for 
path to demo files.

These topics are covered in the following sections:
■ Overview of Variation on Silicon
■ Variability in HSPICE
■ Overview of the Variation Block
■ Variation Block Structure
■ Variation Block Examples
■ Group Operator {...} and Subexpressions
■ Interconnect Variation in StarRC with the HSPICE Flow
■ Control Options and Syntax

Overview of Variation on Silicon

As semiconductor technologies migrate to ever-smaller geometries, larger 
relative variations in device characteristics are being observed. These 
fluctuations in device characteristics have been analyzed and classified for the 
purpose of dealing with the variations in manufacturing during the design 
phase. The following types of variations can be identified at the wafer level: 
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■ Global variations from foundry, lot, or due to wafer processing.
■ Across-wafer variations due to materials, gas flow, thermal, optical, and spin 

processes. 
■ Linear variations across the area of a chip.
■ Local variations are observed between closely spaced identically designed 

devices as a result of microscopic random processes. Microscopic 
variations include line edge roughness, finite number of dopant atoms in the 
channel, and atomic level oxide thickness changes.

In analog design, certain circuit characteristics can be made insensitive to 
global variations and across-chip variations by applying the concept of matched 
devices; however, these characteristics are still affected by the local variations. 
In digital designs for nanometer technologies, large local variations can cause 
unacceptable variations in path delays and signal slopes.

Large circuits suffer from spatial or position-dependent variations, which create 
problems with clock skew for devices that are far apart. Finally, device 
characteristics are affected by features in proximity (metal coverage, fill 
patterns, mechanical strain, shape variation due to lithography, and so on) and 
orientation. Most of these variations are systematic and can be reduced 
through layout restrictions or accounted for in post-layout verification. 

Historically, only the effects of variation on device characteristics (transistors, 
resistors, and capacitors) have been considered. In nanometer technologies, 
variations in the interconnect should also be taken into account because the 
relative variation in the resistance and capacitance has increased due to 
smaller wire width and inter-conductor spacing. 

These variations combined, summarized as parametric variability, dominate 
yield loss in nanometer technologies. The circuits function in terms of 
connectivity, but do not meet specifications on metrics such as speed, leakage, 
or offset. For example, while the threshold of MOS devices gets smaller, 
approaching 200 mV, the variation in threshold gets larger, with standard 
deviation up to 30 mV for short devices. Due to the low supply voltages, in 
combination with requirements for high speed, the circuits stop working with 
these large spreads in device characteristics. 

Therefore, simulating (or predicting) the effects of these variations on circuit 
response is increasingly important, in particular when considering the high 
mask costs and time-to-market constraints for the majority of today's products. 

To simulate the effects of the variations in device characteristics due to 
materials and manufacturing, they need to be described in a way that the 
simulator can handle in an efficient manner. Traditionally, global variations were 
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specified through process corner files, and the other types of variations 
mentioned above were either guessed or ignored. In recent years, statistics 
blocks were added to the model files. They describe variations in terms of 
distributions on device model parameters. An even newer approach for defining 
variations is the Variation Block, described later in this chapter. 

The following analyses are available in HSPICE to simulate the effects of 
variations on circuit response:
■ Monte Carlo analysis is the traditional method for finding the variation in 

circuit response resulting from parameter variations.
■ DC and AC mismatch analyses are efficient methods for simulating the 

effects of variations on a circuit's DC or AC response. 

To get satisfactory answers from these analyses, the variation definitions 
must have been generated for the target technology of the design, similar to 
device models.

 Variability in HSPICE

Three approaches are available for defining variability in HSPICE:
■ Defining a Variation Block; for example:

.Variation
global and local variation definitions

.End_Variation

■ Defining variations on parameters; for example:

.param var=AGAUSS(20,1.2,3)

For a discussion of this topic, see Chapter 23, Monte Carlo—Traditional 
Flow Statistical Analysis.

■ Defining variations on models using lot and dev parameters in the model 
file; for example: 

vth0=0.6 lot/0.1 dev/0.02

For a discussion of this topic, see Chapter 23, Monte Carlo—Traditional 
Flow Statistical Analysis.
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The Variation Block approach replaces the older methods of defining variations 
on parameters and models in HSPICE because it best fulfills the requirements 
for simulating nanometer technology devices. 

The advantages of the Variation Block over previous solutions are:
■ The Variation Block consolidates variation definitions in single records.
■ A clear distinction exists between Global, Local, and Spatial Variations.
■ A subset of variation types can be selected in a dependent simulation.
■ The syntax allows for defining Local and Global Variation as a function of 

device geometry, and Spatial Variation as a function of device location.
■ Monte Carlo results derived from the Variation Block are consistent with 

those from DCMatch or ACMatch analyses.
■ Additional files, suitable for data mining, are generated.

Figure 136 Variation Block Example

In this example, the following global variations are defined:
■ On NMOS devices with model snps20n

• Absolute variation on threshold vth0, Normal distribution with sigma=70 
mV
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• Relative variation on mobility u0, Normal distribution with sigma=10%
■  On PMOS devices with model snps20p: the global variations are defined 

similarly

The following local variations are defined:
■ On NMOS devices with model snps20n and PMOS devices with model 

snps20p, respectively

• Absolute variation on threshold vth0, Normal distribution with 
sigma=2.5e-8/sqrt(total_device_area)

• Relative variation on mobility u0, Normal distribution with sigma=6.1e-
5/sqrt(total_device_area)

■ On resistors which do not have a model: relative variation of 10 percent on 
the implicit value parameter

The following sections present these topics:
■ Overview of the Variation Block
■ Variation Block Structure
■ Variation Block Examples
■ Interconnect Variation in StarRC with the HSPICE Flow
■ Control Options and Syntax

Overview of the Variation Block

The characteristics of circuits produced in semiconductor processing are 
subject to variability, as is the case for any manufactured product. For a given 
target technology, the nominal device characteristics are described with a set of 
parameters, which applies to a certain device model (for example, BSIM4). In 
HSPICE, the variability of the model parameters is described through a 
Variation Block. A Variation Block is a container for specifying variations 
introduced by the effects in manufacturing on geometry and model parameters. 

Variations in HSPICE are modeled as Global, Local, and Spatial variations. 
■ Global Variations are variations in device characteristics from lot to lot, wafer 

to wafer, and chip to chip; they are caused by variations in starting material 
and differences between equipment and manufacturing procedures. Global 
Variations affect all devices with the same model name in the same way.
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■ Local Variations are defined as variations between devices in proximity, or 
with common centroid layout on the same chip; they are caused by 
microscopic variations in materials and geometry, and affect different 
devices differently.

■ Spatial Variations are defined as variations due to the physical arrangement 
of the devices on the layout; they are caused by gradients from material 
properties, imperfections of lenses, and spin processes. The dependence 
on distance means that large designs are more affected by Spatial 
Variations.

All three classes can be described in the Variation Block in a flexible way by 
user-defined expressions. Because there are currently no industry-wide 
standards for specifying process variability, this feature allows each company to 
implement their own proprietary model for variability. The Variation Block is 
generally provided by a modeling group, very similar to device models (for 
example, BSIM) because it must be created specifically for each technology 
from test circuits. 

Like a model, the Variation Block can be part of a library which is encrypted; 
therefore, the content is not accessible to the designers. They can introduce 
additional Variation Blocks in their netlist to define options and variations on 
generic elements. See Control Options and Syntax and Variations of Element 
Parameters.

The structure of the Variation Block allows for building expressions to model 
interdependence and hierarchy of the variations. For example, one random 
variable can control the variation in oxide thickness of both PMOS and NMOS 
devices, as it is generally the same for both types of devices. 

Note that the earlier methods for specifying variation are not compatible with 
the Variation Block. For controlling the behavior of Variation Blocks, see Control 
Options and Syntax. The Variation Block is currently used for Monte Carlo, and 
DC/AC mismatch analyses; for a description of these analyses, see Chapter 
25, Monte Carlo Analysis—Variation Block Flow and Chapter 26, Mismatch 
Analyses, respectively. 

For the functions available to build expressions as presented in the next 
sections, see Using Algebraic Expressions.
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Variation Block Structure

A Variation Block is divided into four sections: 
■ General section
■ Subblock for Global Variations
■ Subblock for Local Variations
■ Subblock for Spatial Variations

This section presents the syntax of a Variation Block, followed by a discussion 
of the contents of the four sections.

.Variation
   Define options
   Define common parameters that apply to all subblocks
   .Global_Variation
      Define the univariate independent random variables
      Define additional random variables through tranformations
      Define variations of model parameters

.Element_Variation
Define variations of element parameters

.End_Element_Variation
   .End_Global_Variation

.Local_Variation
      Define the univariate independent random variables
 Define additional random variables through transformations
      Define variations of model parameters
 .Element_Variation
 Define variations of element parameters

.End_Element_Variation
.End_Local_Variation
.Spatial_Variation

Define the univariate independent random variables
Define additional random variables through tranformations
Define variation of model parameters

.End_Spatial_Variation
.End_Variation

General Section
In the general section, options can be defined that control the variability 
analyses that use the content of the Variation Block. Options can be specified, 
one per logical record.
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Note: “.OPTION” (with a leading period) does not work for options 
specified in the Variation Block.

The correct Variation Block syntax is:

Option OptionName = value

See Control Options and Syntax, for a listing and description of Variation Block 
control options. 

Parameters, also, can be defined that apply to all subblocks in which variations 
are specified; however, these cannot contain any distribution-related functions. 
Parameters defined within a Variation Block have local name scope and are 
completely independent of parameters defined outside it. 

For example: parameter PI=3.1416

Subblocks for Global, Local, and Spatial Variations
Within the variation subblocks, univariate independent random variables can be 
defined. These are random variables with specific distributions over a certain 
sample space. Additional random variables can be generated through 
transformations. These random variables form the basis for correlations and 
complicated distributions. 

A basic rule of the Variation Block approach is to place the model definition on 
the top level, instead of inside a subcircuit, as necessary in the old approach. In 
all three subblocks, variations on model parameters can be defined. This is 
where Global or Local Variations on the parameters of semiconductor devices 
are specified.

Note: The .MALIAS command is supported for diode, BJT, JFET, and 
MOSFET models in .Global_Variation and 
.Local_Variation blocks.

A special section within the subblock for Local Variations allows for defining 
Local Variations on elements. Use this section either for specifying local 
temperature variations or variations on generic elements that do not have a 
model, as used early in the pre-layout design phase, or for off-chip 
components; for example, resistors and capacitors. Local and Global variation 
support the block operator brackets described in Group Operator {...} and 
Subexpressions on page 818.
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The following sections discuss these topics:
■ Independent Random Variables
■ Dependent Random Variables
■ Absolute Versus Relative Variation
■ Variations on Model Parameters
■ Variations on Subcircuit Parameters
■ Variations on Top-Level Parameters
■ Variations on Temperature
■ Access Functions, Get_E(), Get_P(), Get_M(), Get_O()
■ Spatial Variation

Independent Random Variables
When describing variations, a standard normal (Gaussian) distribution is 
assumed, unless otherwise specified explicitly. This default behavior is 
explained in later sections. Other types of distributions or correlations are 
modeled by applying transformations to the independent random variables. 
These independent random variables are derived from three basic 
distributions:
■ Uniform distribution: defined over the range from -0.5 to 0.5:  U()
■ Normal distribution: with mean=0 and variance=1, default range +/-4: N()
■ Use the LIMIT distribution to create discrete “corners” for a variable. 

Specify it as: 

Parameter xx=LIMIT(nominal_val, abs_variation)

These distributions cannot be defined within expressions; variables must be 
assigned and then the variables can be used within expressions. See 
examples of this operation in Non-Gaussian Probability Distribution 
Functions on page 762.

The LIMIT keyword provides a random-limit distribution function by using 
absolute variation. The syntax adds +/- abs_variation to nominal_val 
based on whether the random outcome of an underlying uniform distribution 
is over the range of -1 to 2.
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For example, in the following Variation Block aa=Limit(-2,2) means the 
nominal_value is -2, and the abs_variation is 2.

.Variation

.Local_Variation
  Parameter aa = Limit(-2,2)
  R Rmodel res= Perturb('aa') 
 .End_Local_Variation
.End_Variation

The sampling values in an *.mc file are:

index r1:@:rmodel:@:aa:@:ILL  r2:@:rmodel:@:@aa:@:ILL  
r3:@:rmodel:@:aa:@:ILL 
1    0.    0.    0. 
2   -4.0000   -4.0000   -4.0000 
3    0.    0.    0. 
4    0.    0.   -4.0000 
5    0.   -4.0000   -4.0000 
6    0.   -4.0000   -4.0000 
7   -4.0000    0.    0.

In a Monte Carlo sampling, +/- abs_variation is added to 
nominal_val. So the sampling values are either -4 or 0; these values 
appear in a random order.

■ User-defined cumulative distribution function: CDF (xyPairs)

If f(x) is the probability density of a random variable x, then the cumulative 
distribution function is the integral of f(x). A cumulative distribution function 
can be approximated by a piecewise linear function, which can be described 
as a sequence of pairs of points [xi, yi]. The following rules apply:

• At least two pairs are required

• White space or a comma is required between each number

• The CDF starts at zero: y1=0

• The CDF ends at one: yn=1

• xi values must be monotonically increasing xi+1 > xi

• yi values must be monotonically non-decreasing yi+1 yi

•  



x f x  dx 0= 
–





800 HSPICE® User Guide: Basic Simulation and Analysis
K-2015.06



Chapter 24: Variability Analysis Using the Variation Block
Variation Block Structure
where, the probability density function, , is the derivative of the cumulative 
density. 

Example

The probability density function is shown in Figure 137 (1). Figure 137 (2) gives 
the corresponding cumulative distribution function. This is coded in the 
Variation Block as:

Parameter var=CDF(-0.1 0 -0.05 0.5 0.05 0.5 0.1 1.0)

The histogram generated by taking 1000 samples is shown in Figure 137 (3).

Figure 137 Probability, cumulative density and 1000-sample histogram

The distributions N() and U() do not accept any arguments.

The syntax for defining independent random variables is: 

Parameter a=U() b=N()   c=CDF(x1,y1,...,xn,yn)

These distributions cannot be defined within expressions; variables must be 
assigned and then the variables can be used within expressions. See examples 
of this operation in Non-Gaussian Probability Distribution Functions on 
page 762.

The LIMIT keyword provides a random-limit distribution function by using 
absolute variation. The syntax adds +/- abs_variation to nominal_val 

f x 
HSPICE® User Guide: Basic Simulation and Analysis 801
K-2015.06



Chapter 24: Variability Analysis Using the Variation Block
Variation Block Structure
based on whether the random outcome of a -1 to 1 distribution is greater than 
or less than 0.

Dependent Random Variables
To model distributions which are more complicated than the ones which are 
available through the predefined independent random variables, 
transformations can be applied by using expressions on independent random 
variables. A dependent variable can also be created as a function of more than 
one independent random variable to express correlation.

Example 1
This example creates a random variable with normal distribution, with mean A 
and standard deviation B.

Parameter var=N()  Y='A + B * var' 

Example 2
This example creates a random variable with a uniform distribution from D to E, 
where D and E are arbitrary constants.

Parameter var=U()  Y='0.5*(D+E) + (E-D) * var' 

Example 3
A variable x has a log-normal distribution if log(x) is normally distributed. The 
probability density function for the log-normal distribution is: 

where  is the mean and  the standard deviation of associated normal 
distribution. Samples from such a distribution can be generated as 

Parameter var=N()
Parameter nor=’mu+sigma*var’
Parameter lognor=’exp(nor)’

Example 4

If the components of the random vector  are all independently 

distributed as standard normal and the vector 

f x  1

 x 2
----------------- ln x  – 2

22
-----------------------------–

 
 
 

exp=

 

x x1,x2...,xn =
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 is defined as 

then  is distributed as multivariate normal with mean  and covariance matrix 

where the prime indicates transpose.

Now consider the inverse problem of generating samples from a multivariate 
normal distribution with given mean vector  and covariance matrix .

The covariance matrix has the following properties:
■ The matrix is symmetric.
■ The diagonal elements are non-negative.
■ The matrix is positive semi-definite where all eigenvalues are real and non-

negative. 

Now consider the Cholesky decomposition . Then samples from 

the distribution of  are generated as with  being samples from 

the standard normal distribution.

Consider a numerical example with  and

An observed covariance matrix from a million samples gives

The correlation matrix is closely related to  through diagonal scaling and has 
these properties:

y y1,x2...,yn = y a Bx+=

y a

BB

 

L of  LL=

y y  L x+= x

 0= 


1   0.5   0.5

0.5   2   0.3

0.5   0.3   1.5

=

L
1   0   0

.5   1.323   0

.5   0.0378   1.1174

=

1.0003   0.4990   0.5005

0.4990   1.9977   0.2994
0.5005   0.2994   1.4990



HSPICE® User Guide: Basic Simulation and Analysis 803
K-2015.06



Chapter 24: Variability Analysis Using the Variation Block
Variation Block Structure
■ The matrix is symmetric.
■ All diagonal elements are unity.
■ All off-diagonal elements are bounded by unity in magnitude.
■ The matrix is positive semi-definite.

Note that the first three properties are not sufficient when describing 
multivariate normal distributions. For example, in the matrix:

All pair-wise correlations seem correct, but the eigenvalues of the matrix are 
(2.06, 1, -0.06) and the matrix is indefinite.

Absolute Versus Relative Variation
By default, the specified variation is absolute, which means additive to the 
original model or element parameter; however, sometimes it is more 
appropriate to specify relative variations that are defined by appending a space 
and a “%” sign to the expression. The simulator divides the result of the 
expression by 100, and multiplies the result by the original parameter value and 
the random number from the appropriate generator to calculate the change. 

Example
In the following example, the variation on the threshold parameter vth0 is 
specified as normal with absolute sigma of 80 or 70 mV, and the variation on 
the mobility u0 is specified as relative 15 or 13 percent.

.Global_Variation
   Nmos snps20N vth0=0.08 u0=15 %
   Pmos snps20P vth0=0.07 u0=13 %
.End_Global_Variation

Variations on Model Parameters
Variations on model parameters can be defined in subblocks for Global, Local, 
and Spatial Variation. In the course of the simulation, these variations are then 
applied to the specified device model parameters. Model parameter variations 
are described with the following syntax:

Model_Type Model_Name Model_Parameter=Expression for Sigma

1   0.7   0.0

0.7   1   0.8

0.0   0.8   1.0
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The syntax Model_Parameter=Expression for Sigma is a shorthand 
notation for Variation_in_Model_Parameter=’Expression for 
Sigma’.

If the expression references only constants and parameters that evaluate to 
constants, then a Gaussian variation with zero mean and a sigma equal to the 
expression is automatically implied. To describe variation as a function of 
previously defined independent random variables, use the construct 
'Perturb()', with the following syntax:

Model_Type Model_Name Model_Parameter=Perturb(’Expression’)

The expression for sigma should be enclosed in quotes, see the general 
HSPICE rules for Using Algebraic Expressions.

The following lines define a global Variation, with implicit normal distribution, 
with zero mean and sigma of 10, on the parameter rsh of resistors with model 
Rpoly.

.Global_Variation
R Rpoly rsh=10

.End_Global_Variation

In the next example, the independent variable Toxvar is used to model global 
Variations on oxide thickness. Toxvar is an independent random variable with 
a normal distribution, with mean=0 and sigma=1. In the device models nch and 
pch, Toxvar is applied to the parameters tox with a different multiplier. The 
oxide thicknesses in the two models vary in parallel; they are correlated.

.Global_Variation
Parameter Toxvar=N()
Nmos nch tox=Perturb('7e-10*Toxvar')
Pmos pch tox=Perturb('8e-10*Toxvar')

.End_Global_Variation

HSPICE supports the following model types: NMOS, PMOS, R, Q, D, and C.

Variations can only be defined on parameters that are explicitly specified in the 
associated device model.

For binned models, variations can be defined separately by specifying the 
model name with the bin extension; for example, devices from bins 1 and 2 
receive different variation on the parameter lint, which models length 
variation:

Nmos snps20N.1 lint=10n
Nmos snps20N.2 lint=12n
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Variations on Subcircuit Parameters
The Variation Block allows for defining variation on parameters, which are 
specified in the subcircuit definition record with a default value. Default values 
can be overwritten by specifying them at subcircuit instantiation.

The syntax is:

Subckt SubcktName Parameter='expression for sigma'

The following rules apply for these types of definitions:
■ Only parameters that are defined as formal numeric arguments on the 

subcircuit definition record can be subject to variation. (This is the line which 
starts with .SUBCKT and possibly has continuation lines.)

■ The subcircuit must not be defined within another subcircuit.
■ If the subcircuit contains a model, then variations on the model parameters, 

as described in section, Variations on Model Parameters, are not supported. 
Instead, variations need to be defined on a subcircuit parameter and the 
parameter used inside the model.

The subckt parameters variation feature addresses the following three needs:
■ A component is defined with an expression, not available in a model:

r1 1 0 'Rsh*l/w*(1+b1*(tanh(b2*abs(v(1,0)/l))))'

This expression models a voltage-dependent resistor, with non-linear 
dependence not available in a traditional model. If this resistor is called 
within a subcircuit, and parameters are specified on the subcircuit definition 
record, then variation can be modeled, for example, on Rsh, l, and w.

i1 0 1 1m
x1 1 0 rtanh
.subckt rtanh a b rsh=1k w=1u l=1u
.param b1 = -0.4   b2 = 8u
r1 a b 'Rsh*l/w*(1+b1*(tanh(b2*abs(v(a,b)/l))))'
.ends
.Variation

.Global_Variation
subckt rtanh rsh=10 %

.End_Global_Variation

.Local_Variation
subckt rtanh rsh=3 %

.End_Local_Variation
.End_Variation
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■ A component is represented by a network and the subcomponents must 
have the same value when local variations are specified:

r1 end1 middle rmodel w='w+dw' l='l/2+dl'
r2 end2 middle rmodel w='w+dw' l='l/2+dl'
c1 middle sub cmodel w=w l=l

In this example, the resistor has a center tap, where a capacitor is 
connected. If these three components are defined within a subcircuit and 
parameters dw, dl, and rsh are defined on the subcircuit definition record, 
then the two resistors of the same network always have the same value; 
local variations only cause different instantiations of the subcircuit to have 
different equivalent resistance between the network terminals.

■ You need to calculate the value of a device model parameter through an 
equation because the built-in equations are not adequate. For example:

.subckt nch n1 n2 n3 n4 dvth0_glob=0 dvth0_loc=0 du0_glob=0 
+ du0_loc=0
+ dtox=0  dlint=0  dwint=0 l=60n w=120n as='w*90n' ad='w*90n' ...
.param vth0_base=0.345 u0_base=0.015
.param vth0_geo=function1(w,l,temper,vth0_base)
.param u0_geo=function2(w,l,temper,u0_base)
.param dvth0_geo=function3(w,l,dvth0_loc)
.param du0_geo=function4(w,l,temper,du0_loc)
M1 n1 n2 n3 n4 nch25 w=w l=l as=as ad=ad ...
.MODEL nch25 NMOS LEVEL = 54 
+ vth0='vth0_geo+dvth0_glob+dvth0_geo' 
u0='u0_geo*(1+du0_glob)*(1+du0_geo)' 
+ tox='2.6n+dtox'   lint='2.1n+dlint'   wint='5.3n+dwint' ...
.ends
X1 d1 g1 s1 b1 nch l=60n w=150n
X2 d2 g2 s2 b2 nch l=80n w=120n
.Variation
   .Global_Variation
       subckt nch dvth0_glob=0.03 dtox=0.12n du0_glob=0.2 dlint=2n

+ dwint=3n
   .End_Global_Variation
   .Local_Variation
       subckt nch dvth0_loc=2.0m dtox=0.03n du0_loc=0.03 dlint=21p

+ dwint=47p
.End_Local_Variation

.End_Variation

The values of model parameters vth0 and u0 are defined through user-
defined equations (function1 and function2), with dependency on device 
size and temperature. This necessitates a local model (nch25). The 
parameters with variations are declared on the subcircuit definition line. In this 
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example, global and local variations are processed differently through the 
subcircuit, therefore the respective variations have to be specified on separate 
parameters. Global variations (dvth0_glob and du0_glob) are applied to the 
model parameters vth0 and u0 directly. Local variation definitions 
(dvth0_loc and du0_loc) are adjusted for device size using function3 
and function4, and result then in the variations dvth0_geo and du0_geo 
applied to the model parameters vth0 and u0.

While this use model is supported, it is not desirable because it leads to one 
model per device, which is inefficient in terms of memory and performance.

Variations on Top-Level Parameters
Variations on top-level parameters can be defined for Global Variation. The 
keyword Top is available to specify top-level parameter variation.

Top top_level_parameter='expression'
Top top_level_parameter=Perturb('expression')

The following example defines the +/-10% global variation on parameter VDD 
with uniform distribution.

.param vdd=2.5
 .Variation
        .Global_Variation
   Parameter uniV=U()
      Top vdd=perturb('20*uniV') %
        .End_Global_Variation
 .End_Variation

Note: The top-level parameter variation can only be specified in Global 
variation. 

Variations on Temperature
You can define Variation on temperature for global variations to support the 
whole space of Process-Voltage-Temperature. The temperature variations 
affect all devices in the netlist.

The keyword Temp (or Temper) specifies temperature variation.

Temp temp='expression'
Temp temp=Perturb('expression')
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The following example defines the global variation on temperature.

.Variation
 .Global_Variation
    Temp temp='10'
 .End_Global_Variation
.End_Variation

Note: You can only specify temperature variation in global variation.

Access Functions, Get_E(), Get_P(), Get_M(), Get_O()

Important: An error results if any of the arguments to these functions 
is invalid or undefined. This strong action is due to the need 
for the technology library to be bug free.

Get_E()
Certain variations depend on element geometry, as defined with parameters at 
instantiation. The Get_E()access function (only supported by the Variation 
Block) allows accessing these parameters in expressions by using the following 
syntax: 

Get_E(Element_Parameter)

where Element_Parameter is the name of an element parameter, which you 
must define on the instantiation line (except for the DTEMP parameter and the 
multiplier M which have implicit values). Use this access function for specifying 
variations as a function of device geometry. The Get_E() access function 
reports the effective device geometry, after resolving parameters, scales and 
adjustments by process parameters, such as, xw, xl, wint, lint. Refer to the 
HSPICE Reference Manual: MOSFET Models for equations which depend on 
the model LEVEL and Geometric Scaling for Diode Models in the HSPICE 
Reference Manual: Elements and Device Models for scaling equations.

For example, you often specify that the local variation on the threshold is as 
inversely proportional to the square root of the total area of the device, as 
calculated from the product of the element parameters W, L, and M.

Nmos nch vth0='1.234e-9/sqrt(Get_E(W)*Get_E(L)*Get_E(M))'

In addition, Variation Block can handle cases of calling NF and M for elemental 
variation with the Get_E() function. For example:

.Variation
.Global_Variation

parameter var = N()
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.Element_Variation
M(model_name ~= 'NCH') W = Perturb('var*100n*Get_E(NF)')

.End_Element_Variation

.End_Global_Variation
.End_Variation

Get_E() Function for Obtaining Channel L/W for MOSFETs
Beginning with G-2012.06-SP1, you can also use the get_E() function to 
obtain channel length and width with MOSFET models as follows:
■ get_e(L)|get_e(W)— Returns channel length/width for all MOSFET 

models.
■ get_e(LDRAWN)|get_e(WDRAWN)— Returns user-defined L/W for 

MOSFET models.
■ get_e(Leff)|get_e(Weff)— Returns effective channel length/width for 

MOSFET models.

The following is an example of the get_e() function with different input:

.option scale = 0.9
mn1 net031 inn net044 nmosbulk snps20N L=1u W=7u m=4 nf=2
get_e(wdrawn) = 7u
get_e(w) = (wdrawn/nf)*scale = 3.15u
get_e(weff) = 3.14u

Get_P()
Another function allows for accessing the values of global parameters by using 
the following syntax: 

Get_P(Global_Parameter)

The circuit context provides the parameter value, for example, from the 
subcircuit, if defined inside, otherwise from the top level. In the following 
example, sweep parameter “tol” determines the resistor variation:

.param tol=1
ra1 1 0 1k
i1 0 1 1m
.Variation
   .Local_Variation
   .Element_Variation

 R R='Get_P(tol)' %
   .End_Element_Variation
   .End_Local_Variation
.End_Variation
.dc tol 1 5 1 monte=100
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Get_M()
The Variation Block format also allows the access of model parameters. 
HSPICE provides the function Get_M() for this purpose.

Get_M(Model_Parameter_Name)

The Get_M() function normally has a single argument.

.Variation
  .Global_Variation
    nmos snps20N  u0 ='2.345e-6*GET_M(u0)'
  .End_Global_Variation
.End_Variation

Get_O() to Return the Value of HSPICE Options
If a variation must be expressed as a function of a simulator option (specified 
as .option=optionval outside the Variation Block), the access function 
Get_O() is available, using the construct Get_O(option_name). For 
example, if you use the element parameter nf (number of fingers) with some 
advanced models, the device width reported by the Get_E function depends on 
the value of .OPTION WNFLAG. For variation as a function of total device area, 
the following definition produces the expected results, independent of the 
settings of WNFLAG:

vth0 = `6.0621e-9/sqrt(Get_E(W)*Get_E(L)*Get_E(M)*\\
(1-Get_O(WNFLAG)+Get_O(WNFLAG)*Get_E(NF)))'

Variations of Element Parameters

Variations affect devices not only in the underlying model parameters, but also 
through variations of properties specified at instantiation of an element, or 
variations on implied properties, such as local temperature. Also, early in the 
design phase, passive devices sometimes have only a nominal value, but no 
model as yet because designers have made no decision on a specific 
implementation. For these elements, you can specify variations on the implicit 
value parameter; for example: R1 1 0 1k.

You define variations on element parameters for Local Variations in a section 
within the Local Variation subblock.

You describe element parameter variations with the following syntax:

Element_Type Element_Parameter = ’Expression for Sigma’

The syntax Element_Parameter = ’Expression for Sigma’ is 
shorthand notation for:

Variation_in_Element_Parameter = Expression for Sigma 
HSPICE® User Guide: Basic Simulation and Analysis 811
K-2015.06



Chapter 24: Variability Analysis Using the Variation Block
Variation Block Structure
If the expression references only constants and parameters that evaluate to 
constants, then it automatically implies that a Gaussian variation with zero 
mean and a sigma are equal to the expression. To describe variation as a 
function of previously defined independent random variables, use the construct 
Perturb(), with the following syntax:
Element_Type Element_Parameter = Perturb(’Expression’)

Enclose the expressions in quotes (see the general HSPICE rules for Using 
Algebraic Expressions). See also, Parameters and Expressions for limitations. 

The following lines define a normal distribution with sigma of 10 on the resistors 
without model:

.Element_Variation
R R=10

.End_Element_Variation

In the following example, the specified temperature variation affects only 
resistor ra2 with a uniform distribution from 0 to 10 degrees (the resistor 
resides next to a power device).

ra1 1 0 1k
rb1 2 0 1k
ra2 3 0 rpoly l=10u w=1u
rb2 4 0 rpoly l=10u w=1u
.model rpoly r rsh=100 tc1=0.01
.Variation

.Local_Variation
.Element_Variation

Parameter tempvar=U()
R(Element_Name~='ra*' && Model_Name~='rpoly')

 + dtemp=Perturb('10*tempvar+5')
.End_Element_Variation

.End_Local_Variation
.End_Variation

Because different classes of devices might be affected differently, use of a 
condition clause provides a selection mechanism based on element name and 
model name:

Element_Type(condition_clause) Element_Parameter= 'Expression 
for Sigma'

The condition clause allows for specifying variations on selected elements, 
according to their name or associated model. You can indicate wildcard 
substitutions as “?” for single character and “*” for multiple characters. 

Examples for condition clause syntax are:
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Element_Type(model_name~='modelNameA')  
Element_Type(element_name~='elNameB')
Element_Type(model_name~='modelNameC' OPERATOR 

element_name~='elNameD') par='expression'
Element_Type(model_name~='modelNameE' OPERATOR 

model_name~='modelNameF') par='expression'
Element_Type(element_name~='elNameG' OPERATOR 

element_name~='elNameH')  par='expression'

where OPERATOR can be  && (AND), || (OR). The operator “~=” stands for 
“matches”.

All pattern matching operations are case-insensitive. HSPICE ignores a leading 
subcircuit prefix when matching the element name. 

Example
In this example, only resistor ra1 varies.

ra1 1 0 1k
rb1 2 0 1k
.Variation
   .Local_Variation
   .Element_Variation
   R(element_name~='ra*') R=20
   .End_Element_Variation
   .End_Local_Variation
.End_Variation

Supported element types and their parameters are:

Table 75 Supported elements and parameters

Element Parameters

M DTEMP, L, W, AD, AS, PD, PS, NRD, NRS, RDC, RSC, VDS, VGS, VBS, DELVTO

R Rval* DTEMP, L, W, TC1, TC2, C, AC, SCALE

C Cval* DTEMP, L, W

Q AREA DTEMP, AREA, AREAB, AREAC, TEMP

J L, W, DTEMP

D DTEMP, L, W

L Lval* DTEMP, TC1, TC2

I DCval* mag phase

V DCval* mag phase

The asterisk “*” denotes implicit value parameter. The DTEMP parameter is implicit; it needs specification 
on the element instantiation line.
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Example for Voltage Source

You define variations on element parameters for Global Variations in a section 
within the Global Variation subblock with almost the same syntax as within the 
Local Variation. But there is a limitation to when you can use a condition 
clause: If there is a condition clause in the variation definition line of a Global 
Element Variation, then use the Variation Block keyword Parameter to 
designate at least one independent random variable. The Perturb function 
uses an independent random variable element parameter perturbation. Other 
forms of perturbation are illegal. For example:

Parameter var1=N() var2=U()
Element_Type (condition_clause) Element_Parameter = 
Perturb(’Expression’)

Example

In this example, ra1 and rb1 varies with global variation. So in each Monte 
Carlo trial, ra1 and rb1 are of the same resistor value.

ra1 1 0 1k
rb1 2 0 1k
.Variation

.Global_Variation
.Element_Variation

Parameter a=N()
R(element_name~='r*') R=Perturb('20*a')

.End_Element_Variation
.End_Global_Variation

.End_Variation

Note: If there are only two resistors of ra1 and rb1 in netlist, then an 
equivalent definition of Global Element Variation is:

.Variation
.Global_Variation
.Element_Variation

R R=20
.End_Element_Variation

.End_Global_Variation
.End_Variation

Netlist element: V1 1 0 0.1 AC

Variation definition: ■ V DC=5% (5% of 0.1)
■ V MAG=5% (5% of 1)
■ V PHASE=5 (5 degrees)
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But the next definition is illegal because the condition clause 
matches all resistors in the netlist:

.Variation
.Global_Variation
.Element_Variation

R(element_name~='r*') R=20 
.End_Element_Variation

.End_Global_Variation
.End_Variation

Spatial Variation
To make the Spatial Variation useful, HSPICE needs the coordinate of a 
particular device. The element instantiation must extend to include placement 
information. For example, for a MOS device:

Mid Dn Gn Sn Bn ModelName w=width l=length x=xcoor y=ycoor

In the Spatial Variation definition, you access the element coordinates by using 
the Get_E() function.

HSPICE supports only netlists with a single subcircuit, with devices on the top 
level or in the subcircuit. All devices of the model that has Spatial Variation 
defined, must have coordinates. These coordinates are numbers specified by 
you (no parameters allowed). 

Special Rules Regarding Variation Block Usage
Generally, a foundry creates the contents of the Variation Block. To safeguard 
against unintentional overwriting of these variation definitions:
■ The name-space of the Variation Block is separate from the netlist contents.
■ Once you specify a variation on a parameter, you cannot redefine it later, 

even in .ALTER statements. For example, if you want to change the corners 
defined in a model library file with a .ALTER statement, then you must 
specify the Variation Block in a separate *.lib section. 
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Variation Block Examples

You can review the following simple Variation Block in the example netlists 
opampdcm.sp and opampmc.sp . These netlists are available in the HSPICE 
demo directory: $installdir/demo/hspice/variability

The example defines the following variations:
■ Global Variations on vth0 (absolute)
■ Global Variations on u0 (relative)
■ Local Variations on vth0 (absolute), as a function of device area
■ Local Variations on u0 (relative), as a function of device area
■ Local Variation on the implicit value of resistors (relative)

.Variation
  .Global_Variation
 Nmos snps20N vth0=0.07 u0=10 %

 Pmos snps20P vth0=0.08 u0=8 %
  .End_Global_Variation
  .Local_Variation

Nmos snps20N vth0='1.234e-9/
sqrt(Get_E(W)*Get_E(L)*Get_E(M))' 

     + u0='2.345e-6/sqrt(Get_E(W)*Get_E(L)*Get_E(M))' %
Pmos snps20P vth0='1.234e-9/

sqrt(Get_E(W)*Get_E(L)*Get_E(M))'
     + u0='2.345e-6/sqrt(Get_E(W)*Get_E(L)*Get_E(M))' %
  .Element_Variation
      R r=10 %
  .End_Element_Variation
  .End_Local_Variation
.End_Variation

Principal Component-based Global Variation Modeling
In this example, the independent random variables A1, A2, and A3 are the 
principal components on which all variations (nmos and pmos) are modeled. 
See [1] for details.
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.Global_Variation
 Parameter A1=N() A2=N() A3=N() 

   Nmos nch 
+  tox =Perturb('-6.2E-12*A1-8.1E-12*A2-2.7E-12*A3')
+  vth0=Perturb('-3.6E-03*A1+8.9E-03*A2-1.5E-03*A3')
+  cjn =Perturb('-3.2E-06*A1+6.7E-06*A2-4.3E-06*A3')
+  u0  =Perturb(' 5.6E-04*A1-9.7E-04*A2+7.6E-04*A3')
+  ....
   Pmos pch 
+  tox =Perturb('-7.5E-12*A1-6.9E-12*A2-8.8E-12*A3')
+  vth0=Perturb('-7.4E-03*A1+3.3E-03*A2-7.2E-03*A3')
+  cjn =Perturb('-5.0E-06*A1+8.9E-06*A2-3.2E-06*A3')
+  u0  =Perturb(' 7.6E-04*A1-4.3E-04*A2+4.8E-04*A3')
+  ....
.End_Global_Variation

Local Variation Example for Submicron Technology
This Local Variation data was created using the methodology outlined in [2]. 
Note the different dependencies on w and l for the different parameters.

.Local_Variation
 Nmos nch
+  tox ='3.1e-07/sqrt(Get_E(L)*Get_E(W)*Get_E(M))' %
+  wint ='6.2e-12/sqrt(Get_E(L)*Get_E(M))'
+  lint ='2.0e-12/sqrt(Get_E(W)*Get_E(M))'
+  nch ='1.9e-06/sqrt(Get_E(L)*Get_E(W)*Get_E(M))' %
.End_Local_Variation

Spatial Variation Example
.Variation

.Spatial_Variation
Parameter a = N( )
Parameter b = U( )
Parameter Pi = 3.14159265
Parameter Angle = 'Pi*2*b'
NMOS snps20n

+ vth0 = Perturb('20*a*sqrt(Get_E(x)* Get_E(x)+ Get_E(y)* 
Get_E(y)) \\
 *cos(Angle-atan(Get_E(y)/Get_E(x))-Get_E(x)<0?Pi:0))')
 .End_Spatial_Variation
.End_Variation

The Spatial Variation is specified as a plane with a slope sigma of 20 mV/mm, 
and arbitrary rotation on the chip surface.
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Group Operator {...} and Subexpressions

To improve readability of complex variation specifications, a group operator {...} 
and subexpressions are available. Used within a defined group, 
subexpressions can reference element and global parameters. 

Syntax
ModelType ModelName {Parameter ...ModelParameter= ...}

The group operator {...} separates variation definitions group by group. Each 
group uses one model, which means all parameters defined inside a group 
operator are specific to this model. A group definition starts after the Model 
Name, and must end after the last model parameter specification of the same 
Model Name.Parameter definitions support expressions with Get_E(), 
Get_P(), and Get_M(). 
ModelParameter definitions have no leading Parameter key.

Syntax Extension with Bins
ModelType ModelName {
Parameter ...
ModelParameter= ...
ModelName.1 ModelParameter= ...
........
ModelName.m ModelParameter= ...
}

Model parameter definitions within a group before the first bin name 
(ModelName.1 in the example) apply to all bins; whereas the following 
definition is bin specific:ModelName.1 ModelParameter= ... 

Example
In this example, note that the expressions before NMOS apply to all bins, 
whereas those for mn.12 are bin specific.

.Global_Variation
Parameter PG1=N() PG2=N() PG3=N() 

+ dxl=' 4.3e-9 * PG1 '
+ dvth0='0.02 * (-0.29 * PG1 + 0.95 * PG2)' 
+ dtoxe='1.3e-10 * (0.39 * PG1 -0.87 * PG2 + 0.28 * PG3)'
+ F1='1.0/(2*SQRT(dvth0*dvth0))'
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+ F_FF='(-dvth0+SQRT(dvth0*dvth0))*F1'
+ F_SS='(dvth0+SQRT(dvth0*dvth0))*F1'
NMOS mn.12 {

Parameter u0varg='-dvth0*(F_FF*2.1+F_SS*0.6)'
 xl=Perturb(dxl)
 vth0=Perturb(’dvth0’)

 lvth0=Perturb(’dvth0*(F_FF*0.097+F_SS*0.054)’)
 u0=Perturb('u0varg') % 

wu0=Perturb('u0varg')%
 lu0=Perturb('u0varg')%

pu0=Perturb('u0varg')%
 toxe=Perturb(’dtoxe’) toxp=Perturb(’dtoxe’)

}
.End_Global_Variation
.Local_Variation
NMOS mn.12 {

Parameter sqrtarea='SQRT(Get_E(W)*Get_E(L)*Get_E(M)'
vth0='1.2e-9/sqrtarea'   
u0='2.3e-6/sqrtarea'

}
.End_Local_Variation

Rules for Using the Group Operator
The following rules apply when using the group operator:
■ You cannot define independent random variables inside a group.
■ Group operators do not support condition clauses inside a group.
■ Any specifications that appear at the same line and after the opening '{' are 

ignored; a parameter definition should begin at a new line after the bracket.
■ Group operators only support model parameter, not subcircuit parameter 

definitions.
■ You can define the same ModelType and ModelName only once in a group; 

HSPICE aborts the simulation if it finds duplicate group definitions.

Parameter Scope
Parameters defined inside and outside a group have the following scope: 
parameters defined inside a group cannot conflict with those defined outside it. 
However, the same parameter can be redefined inside another group, and 
these are invisible to each other.
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The parameter scopes are as follows:

.Param a=2

.Variation

  Parameter a=3

.Global_Variation   

 Parameter b='a*Get_P(a)'   

NMOS nch {

    Parameter c=0.4*b  

 ....

}

   PMOS pch {

 Parameter c='-0.3*b' 

  ....
}

.End_Global_Variation

.Local_Variation

Parameter b='2*a*Get_P(a)'

.Element_Variation

 R r='0.1*b' %

.End_Element_Variation
.End_Local_Variation

.End_Variation

Defined outside a Variation Block; can be referenced 
using get_P() syntax

Global parameter within Variation Block; can be used 
in all subblocks

b = 6; valid in global variation subblock

c = 2.4; only visible in this group;

 

Can be redefined in other groups

c = -1.8; c is only visible in this group;

Can be redefined in other groups

b=12; valid in local variation subblock

Relative sigma of r is 0.1*2*2*3*0.01=0.012
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Interconnect Variation in StarRC with the HSPICE Flow

The Synopsys layout extraction tool, StarRC, established a Sensitivity-Based 
Extraction Flow, which can generate a variation-aware netlist to interpret and 
produce simulation results based on the probability distribution of interconnect 
variations. The currently available methodology of running worst-case corners 
produces pessimistic results, as opposed to the new method, which calculates 
the actual distribution, and which then allows for selecting design limits based 
on yield.

The Sensitivity-Based Extraction Flow, StarRC, extracts resistors and 
capacitors associated with the interconnect. HSPICE then works as a post-
processor to do statistical analysis with the output file from StarRC. This file 
contains sensitivity information that HSPICE requires to support Variation 
Block-based ACMatch, DCMatch, and Monte Carlo analyses. Figure 138 
shows a typical cross-section of the wires on levels 3 and 4. The metal and 
interlayer dielectric thicknesses, the conductor widths and the material 
properties of the conductors and dielectrics can be subject to variation.

Figure 138 Interconnect structure
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In addition to random variation, the wires also have height variation due to 
CMP, as shown in Figure 139. This variation is mostly systematic and depends 
on wire widths and local metal density. StarRC accounts for the corresponding 
change in resistance and capacitance.

Figure 139 Systematic Variation Due to CMP

Refer to the StarRC User Guide, Chapter 11: Variation-Aware Extraction for 
more information.

Variation Block and Statistical Sensitivity Coefficients
Consider the idealized interconnect representation shown in Figure 140 on 
page 823. The horizontal and vertical dimensions as well as the material 
properties are subject to random variations.

A Pade style approximation that relates electrical values to these variations 
gives results that closely match simulations from field solvers. We call the 
coefficients in the Pade approximation statistical sensitivities.

StarRC generates and provides statistical sensitivity coefficients that 
correspond to each parasitic value. These coefficients measure the expected 
change in the capacitance/resistance due to the variation of an interconnect 
process parameter. By definition, the fractional change of capacitance/
resistance value due to a unit variation in a specific parameter is the statistical 
sensitivity of the capacitance/resistance in question with respect to that 
parameter. 
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Figure 140 Random Variation in Interconnect

The combination of the nominal capacitance/resistance tables, and the 
corresponding statistical sensitivity coefficients, provides the necessary and 
sufficient coverage for all possible effects of parameter variations on 
capacitance/resistance. This eliminates the need for using extensive sets of 
capacitance tables, and provides a realistic coverage of all possible ranges of 
random variation. 

Application of statistical sensitivity coefficients requires that the parameter 
variations be small. This restriction is acceptable for nanometer semiconductor 
processes since a large part of the process variation tends to be systematic 
and is considered and modeled under the scope of deterministic process 
variation.

Given the distribution of parameter variations, based on statistical sensitivity 
information, you can get the statistical effects on capacitance and resistance 
values in Monte Carlo, DCMatch, and ACMatch analyses. The 
Interconnect_Variation subblock defines interconnect variability. 
Currently, the variation is restricted to the global level. StarRC creates the 
Interconnect_Variation subblock and includes it as part of the post-
layout netlist.

Metal(n+1)

Metal(n)

Metal(n-1)

sh2

h1

w

t

Interconnect Process Variables:

• t — Metal thickness
• h1, h2 — Dielectric thickness
• w, s  — Line width and spacing
•   — Dielectric constant

•   — Resistivity
Typical 16-layer process has over 150 
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Usage Example and Input Syntax
The following sections illustrate the parts of an interconnect Variation Block:
■ 1: Interconnect Variation Block
■ 2: Model Card in the Header Section
■ 3: Parasitic Section

1: Interconnect Variation Block
The information in the Variation Parameters section is re-coded as follows:

.Variation
.Interconnect_Variation

.Global_Variation
ID= param_id Name = param_name [R_Sensitivity_Type =
+ param_type] [C_Sensitivity_Type = param_type]
[L_Sensitivity_Type = param_type] [K_Sensitivity_Type =
+ param_type] [CV= coeff_of_var]

...
.End_Global_Variation

.End_Interconnect_Variation
.End_Variation

Variation blocks have global scope and the above definition should appear 
outside any subcircuit definitions. R_Sensitivity_Type, 
L_Sensitivity_Type, and K_Sensitivity_Type help to define the form 
of the sensitivity expression. This is a generalization of the Taylor series-based 

Argument Description

param_id Is a non-negative integer to uniquely identify the parameter. In this way, every 
parameter is associated with a different integer. These unique identifiers are used in the 
parasitic section to represent the sensitivity information.

param_name Are alphanumeric characters without any spaces or meta characters.

param_type Valid values are N, D, or X. These refer to the form of the sensitivity expression and 
indicate if the particular parameter variation appears in the numerator, the denominator, 
or does not influence the element value. If not specified, the default is X.

coeff_of_var This argument is numeric and optional. The default value is 1.
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variation form, , to the more general Pade  

approximation: .

The index sets I and J are disjoint, for example, a parameter can influence 
either the numerator or the denominator, but not both.

Only resistors have the more general Pade  form, capacitors have the Taylor 
series form, and inductors (normal and K-Matrix style) have no variation.

Example of the extended NETNAME-style information
.Variation

.Interconnect_Variation
.Global_Variation
ID=0  Name=ME1_T   R_Sensitvity_Type=D C_Sensitvity_Type=N 

CV=0.06
ID=1  Name=ME1_W   R_Sensitvity_Type=D C_Sensitvity_Type=N 

CV=0.04
ID=2  Name=ME1_R   R_Sensitvity_Type=N C_Sensitvity_Type=X 

CV=0.05
ID=3  Name=ME12_T  R_Sensitvity_Type=D C_Sensitvity_Type=N 

CV=0.06
ID=4  Name=ME12_ER R_Sensitvity_Type=X C_Sensitvity_Type=N 

CV=0.02
ID=5  Name=ME2_T   R_Sensitvity_Type=D C_Sensitvity_Type=N 

CV=0.08
ID=6  Name=ME2_W   R_Sensitvity_Type=D C_Sensitvity_Type=N 

CV=0.07
ID=7  Name=ME2_R   R_Sensitvity_Type=N C_Sensitvity_Type=X 

CV=0.04
ID=8 Name=ME23_T R_Sensitvity_Type=D C_Sensitvity_Type=N 

CV=0.054
ID=9  Name=ME23_ER R_Sensitvity_Type=X C_Sensitvity_Type=N 

CV=0.02
ID=10 Name=ME3_T   R_Sensitvity_Type=D C_Sensitvity_Type=N 

CV=0.08
ID=11 Name=ME3_W   R_Sensitvity_Type=D C_Sensitvity_Type=N 

CV=0.07
ID=12 Name=ME3_R   R_Sensitvity_Type=N C_Sensitvity_Type=X 

CV=0.04
.End_Global_Variation

 .End_Interconnect_Variation
.End_Variation

1 sipi

iI
+ 

1 sipi

iI
+

1 sjpj

jJ
+

-----------------------------
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In the previous example,
■ The ID field must be a non-negative integer. HSPICE uses the ID field to link 

variation information to the sensitivity in the C and R records.
■ The Name field is alphanumeric and should not contain any white space or 

meta characters. Use the Name field only for output annotation.
■ The CV field is numeric and the CV field is interpreted as the standard 

deviation for a (default) normal distribution.

2: Model Card in the Header Section
The purpose of the model card in the header section is to communicate to 
HSPICE the model name used in the parasitic section for the resistors as well 
as the reference temperature. The reference temperature is equal to the 
GLOBAL_TEMPERATURE in ITF with units in degree Celsius. 

Syntax
.model model_name R Tref=global_temperature

Example
.model resStar R Tref=25

3: Parasitic Section 
The resistance and capacitance records take the form:

Cxxx node1 node2 val SENS [param_id, param_id, …]=
[sens_coeff, sens_coeff, …]

 Rxxx node1 node2 model_name R=val TC1=val TC2=val 
SENS [param_id, param_id, …] = [sens_coeff, sens_coeff, …] 
........

Examples

A C record in NETNAME format is as follows:

C1 G2[21]:F12 Y2:897 0.699 Sens [0,1,5,6] = 
[0.009,0.001,0.006,0.010]

C2 X3:962 RX[12]:F74 0.324 Sens [0,1,5,8] = 
[0.010,0.006,0.017,-0.003]

An R record in NETNAME format is as follows: 

R1 G2[21]:F12 G2[21]:8 resStar R=0.699 TC1=0.0023 TC2=4e-7 
Sens [5,6,7] = [0.51,0.64,0.86]
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The Sens keyword defines the start of sensitivity information and the two 
vectors are the sparse sensitivity indices and the corresponding values. The 
first vector may contain only ordered non-negative integers that map to the 
Interconnect_Variation section, while the second vector of real numbers 
is interpreted as the sensitivities. The lengths of the two vectors must match. 
There must be one blank space between the Sens keyword and the sensitivity 
indices.

Note: For interconnect output, see Interconnect Output Formats in 
Chapter 25, Monte Carlo Analysis—Variation Block Flow.

Control Options and Syntax

You can specify options, one per logical record in a Variation Block. Several of 
the listed options are useful if a Variation Block is part of a model file that a 
designer cannot edit. However, you can add a Variation Block with options to 
control how the contents of all Variation Blocks are used in the analysis. For 
Monte Carlo-specific options: see Chapter 25, Monte Carlo Analysis—Variation 
Block Flow

Note: No period is required before the word Option in the Variation 
Block, and is, in fact, illegal.

The following options can be specified within the Variation Block:
■ Option Ignore_Variation_Block=Yes Ignores the Variation Block 

and executes earlier style variations (traditional Monte Carlo analysis). By 
default, the contents of the Variation Block are executed and other 
definitions (AGAUSS, GAUSS, AUNIF, UNIF, LOT, and DEV) are ignored. 
Previous methods of specifying variations on parameters and models are 
not compatible with the Variation Block. Thus no changes are required in 
existing netlists other than adding the Variation Block.

■ Option Ignore_Local_Variation=Yes Excludes effects of local 
variations in simulation. Default is No.

■ Option Ignore_Global_Variation=Yes Excludes effects of global 
variations in simulation. Default is No.

■ Option Ignore_Spatial_Variation=Yes - Excludes effects of spatial 
variations in simulation. Default is No.
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■ Option Ignore_Interconnect_Variation=Yes - Excludes effects of 
interconnect variations in simulation. Default is No. (See Interconnect 
Variation in StarRC with the HSPICE Flow.)

■ Option Vary_Only Subckts=SubcktList - Use either this option tor 
the following option, but not both, to limit variation to the specified 
subcircuits. Actual subcircuit names are specified here (not the hierarchical 
names).

■ Option Do_Not_Vary Subckts=SubcktList - Excludes variation on 
the specified subcircuits. Use either this option to limit variation to the 
specified subcircuits or the one above, but not both. Actual subcircuit names 
are specified here (not the hierarchical names). 

■ Option Other_Percentile=data_block_name

Or Option Other_Percentile=list(val1, val2,..,valn), 
where the value range for val1 to valn is between 0 and 1.

Or Option Other_Percentile=list_sigma(val1, 
val2,..,valn), where the value range for val1 to valn is between -6 
and 6.

Use this option to specify quantiles lower than 1 percent when data mining 
(.mpp0 file) in conjunction with .DATA=percentile in a netlist to get 
results for user-provided percentiles. This option allows you to help to see 
how much impact there is from trailing data points, or to count samples near 
the absolute minimum for a sample set.

Use the first or the second syntax to specify the information in terms of a 
cumulative distribution. Or use the third syntax to specify the information in 
terms of sigma values of a normal distribution.

See Using the Other_Percentile Option on page 916. 
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25Monte Carlo Analysis—Variation Block Flow

Describes enhanced Monte Carlo analysis in HSPICE using Variation Block.

For information on bisection in conjunction with Monte Carlo, see Chapter 22, 
Timing Analysis Using Bisection.

HSPICE ships numerous examples for your use. See Variability Examples for 
paths to demo files.

The following sections discuss these topics:
■ Overview: Monte Carlo Using the Variation Block Flow
■ Monte Carlo Analysis in HSPICE
■ Sampling Options
■ Comparison of Sampling Methods
■ Using Traditional Variation Format with Advanced Sampling Methods in 

Monte Carlo
■ Application Considerations
■ Troubleshooting Monte Carlo-VB Issues
■ References

Overview: Monte Carlo Using the Variation Block Flow

Monte Carlo analysis is the generic tool for simulating the effects of variations 
in device characteristics on circuit performance. HSPICE expresses the 
variations in device characteristics as distributions on the underlying model 
parameters. For each sample of the Monte Carlo analysis, HSPICE assigns 
random values to these parameters and executes a complete simulation, to 
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produce one or more measurement results. The series of results from a 
particular measurement represents a distribution in statistical terms; for 
example, mean value and standard deviation (). With an increasing number of 
samples, the shape of the distribution gets a better definition with the effect that 
the two quantities converge to their final values.

You can analyze the results by arranging them in bins. Each bin represents how 
many results fall into a certain range (slice) of the overall distribution. A plot of 
these bins is a histogram that shows the shape of the distribution as the 
number of results versus slice. As the number of samples increases, the shape 
of the histogram gets smoother. 

The ultimate interest of Monte Carlo simulation is to find out how the 
distribution in circuit response relates to the specification. Such a simulation 
considers these aspects of yield here: 
■ What is the percentage of devices which meet the specification? 
■ Is the design centered with respect to the specification? 

The aspect of over-design is closely related. This is when the circuit 
characteristics are within specification with a wide margin, which could be at 
the expense of area or power and ultimately cost.

A typical design process is iterative, first for finding a solution which meets the 
nominal specification, and then moving on to a solution that meets yield and 
economic constraints, including the effects of variations in device 
characteristics. In this optimization process, it helps to understand the 
relationship of the design parameters to the circuit response, and the 
relationships of the different types of circuit response. This information is 
available after running Monte Carlo analysis and you can best present this data 
by Pairs Plots. This is a matrix of two-dimensional plots for investigating pair-
wise relationships and exploring the data interactively. HSPICE does not 
produce such plots, but makes the necessary data available from Monte Carlo 
simulation. Figure 141 shows an example of a Pairs Plot from a simple resistive 
divider.
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Figure 141 Pairs Plot example

An application note, “Pairs Plots from HSPICE Monte Carlo,” describes the 
basic ideas and includes a MATLAB script to create such a plot. Contact the 
Synopsys Support Center for a copy of the application note. 

Monte Carlo analysis is computationally expensive, so other types of analysis 
may produce certain results more efficiently. For cases where only the effects 
of variations on the DC or AC response of a circuit is of interest, you can use 
DCMatch/ACMatch analyses (see Chapter 26, Mismatch Analyses). 

Monte Carlo Analysis in HSPICE

Monte Carlo analysis has long been available in HSPICE and it uses two 
approaches:
■ Define distributions on global parameters (using AGAUSS, GAUSS, UNIF, 

and AUNIF) in a netlist. For example: 

.param var=AGAUSS(20,1.2,3)

■ Define distributions on model parameters with DEV and LOT constructs in a 
model file. For example: 

vth0=0.6 lot/0.1 dev/0.02
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Chapter 23, Monte Carlo—Traditional Flow Statistical Analysis documents the 
previous two methods.

Chapter 24, Variability Analysis Using the Variation Block describes the 
Variation Block approach that satisfies some key requirements for modern 
semiconductor technologies. This new approach is not always compatible with 
the earlier ones; see the first option in Monte Carlo-Specific Variation Block 
Options on page 837 for ways to select one or the other method.

Figure 142 on page 835 shows the Monte Carlo simulation flow when you 
specify global and local variations. 
■ Sample number 1 of a Monte Carlo analysis always executes with nominal 

values and no variation. 
■ For subsequent samples, HSPICE updates the parameters specified for 

variation in the Variation Block with random values.
■ For global variations, the same random value for all elements that share a 

common model changes a specified parameter. 
■ For local variation, a different random value for each element changes the 

specified parameter.
■ The changes due to global and local variations are additive and saved in a 

file for post-processing.
■ After an update of the elements, HSPICE executes the simulation and saves 

the measurement results. When HSPICE simulates all the requested 
samples, it calculates the statistics of the measurement results and includes 
them in the run listing.
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Figure 142 Monte Carlo analysis flow in HSPICE

See the following sections for these topics:
■ Input Syntax
■ Monte Carlo-Specific Variation Block Options
■ Output for Variation Block Monte Carlo

Start

Index 1:
Simulate with nominal parameters

Index n:
Simulate with variations applied

Done

More

Calculate statistics

End

Global variation: 
Add some random value to particular 
parameter for all devices

Local variation:
Add different random value to 
specified parameters for each device
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Input Syntax
You always execute Monte Carlo analysis in conjunction with another analysis 
(see Traditional Monte Carlo Analysis Characteristics for full discussion):

.DC sweepVar start stop step [SWEEP MONTE=MCCommand]

.AC type step start stop [SWEEP MONTE=MCcommand]

.TRAN step start stop [SWEEP MONTE=MCCommand] 

Syntax for MCcommand:

MONTE=val|list(num)|val Firstrun=num|
+ list(num1:num2 [num3][num4:num5])

The parameter values and results are always the same for a particular sample, 
whether generated in one pass or using Firstrun or the list syntax (see 
Monte Carlo Setup on page 757). Therefore, you can split Monte Carlo 
analyses or distribute them across multiple machines. See Running Distributed 
Processing on a Network Grid in Chapter 4, Distributed Processing, 
Multithreading, and HSPICE Precision Parallel. 

DC Sweep Examples
These examples apply a DC sweep to a parameter k. The first case produces 
10 samples. The second case produces five samples, starting with sample 
number 6. The last two examples simulate samples 5, 6, 7, and 10.

.dc k start=2 stop=4 step=0.5 monte=10

.dc k start=2 stop=4 step=0.5 monte=5 firstrun=6

.dc k start=2 stop=4 step=0.5 monte=list (5:7 10)

Parameter Description

val Specifies the number of random samples to produce.

Firstrun=num Specifies the sample number on which the simulation starts.

list (num) Specifies the sample number to execute.

list (num1:num2 num3
num4:num5)

Executes samples from num1 to num2, sample num3, and samples 
from num4 to num5.
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Monte Carlo-Specific Variation Block Options
When you execute simulations by using the Variation Block, HSPICE ignores 
control options for the traditional Monte Carlo style (see Control Options and 
Syntax).

However, you can specify the following Monte Carlo-specific options in the first 
section of the Variation Block:
■ Option Use_AGAUSS_Format=Yes|No 

Enables you to combine traditional Monte Carlo Gaussian trials (with the 
exclusion Lot/Dev) with Variation Block advanced sampling methods (see 
Using Traditional Variation Format with Advanced Sampling Methods in 
Monte Carlo).

■ Option Random_Generator=[Default|MOA|MSG|UVS|MCG|WH]

Specifies the random number generator used in Variation Block-based 
Monte Carlo analysis.

For the generators of MCG and WH, there is almost no time cost to skip 
random number, no matter how large the number is following the keyword 
firstrun.

■ Option Stream =[x | Random | Default] 

Specifies an integer stream number for random number generator (only for 
Variation Block). The minimum value of x is 1, the maximum value of x is 20; 
If Stream=Random, HSPICE creates a random stream number between 1 
and 20 according to the system clock, and prints it in the *.lis file for later 
use. Stream=Default is equivalent to Stream=1.

Random_Generator Description

Default or MOA Uses a multiply-with-carry type random number generator with longer cycle.

MSG Invokes the original HSPICE random number generator.

UVS Uses a 64-bit universal random number generator with longer cycle.

MCG Uses a multiplicative congruential generator with longer cycle.

WH Uses another longer cycle.
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■ Option Seed=x | random 
Where x is a positive integer from 1to 259200. Setting Random allows 
HSPICE to select an integer from the range. This option also works for 
AGAUSS-style Monte Carlo when you use advanced sampling methods.

Note: Option Seed is only valid for the random number generator 
of MOA and overrides the setting of Option Stream. Use 
Stream only when Seed is not set.

■ Option Normal_Limit=Value

Limits the range for the numbers generated by the random number 
generator for standard normal distributions. The default value is 20 for 
sampling methods SRS, LHS, SOBOL, and NIED. The default value is 4 for 
the OFAT and FACTORIAL sampling methods. For example, numbers in the 
range –/+4 are created. The allowed range for the option is 0.1 to 20. 
Negative values are automatically reset to the default.

■ Option Output_Sigma_Value=Value

This option helps in reporting results in terms of sigma values which are 
typically 1, 3, or 6 sigma-based on the standards used in different 
companies. Default is 1, range is 1 to 10. This does not affect the input 
sigma.

■ Option Print_Only Subckts=SubcktList 
Use either this option or the earlier to limit output in the *.mc# file to the 
specified subcircuits or the following one. Do not use both. Specify actual 
subcircuit names here (not the hierarchical names). See Parameter File.

■ Option Do_Not_Print Subckts=SubcktList 

Use either this option or the next to exclude output from the specified 
subcircuits to the *.mc# file. Do not use both. Specify actual subcircuit 
names here (not the hierarchical names). See Parameter File.

■ Option MC_File_Only=yes|no

Use this option to generate a random number sample file (*.mc0) without 
invoking any analysis (applicable to AGAUSS style also). The feature is 
useful for an external block sampling simulation when you want to modify the 
samples before running the Monte Carlo simulation. If the netlist has a 
Monte Carlo command, then the MC command provides the number of 
samples; if the netlist has no MC command, then the number of samples is 
zero.

■ Option External_File=filename
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Use this command to enable read-in of an external block line-by-line-during 
the simulation stage. This command distributes memory consumption and 
avoids overtaxing the front end with a data block containing large samples. 
This option is also available for DP + DC Monte Carlo.

■ Option Add_Variation=yes
Use this option to amplify local variation of the model parameters, especially 
when variation is provided by a foundry. Usually, the base variation is set by 
the foundry, but with this option you can add variation on model parameters 
based on a multiplier you supply when using a combined Variation Block 
and AGAUSS-style simulation. For example:

In this example, the first four lines are variations provided by the foundry. 
Option Add_Variation=yes and .Option Sampling_Method are user-
supplied required options and nmos nch_mac.nch toxe= 10% is the VB 
global variation where nch_mac is the subckt name and nch is the binned 
model name. 

.lib ’mismatch_totalflag_b.l’ stat

.lib ’mismatch_totalflag_b.l’ global

.lib ’mismatch_totalflag_b.l’ total

.lib ’mismatch_totalflag_b.l’ tt

.Variation
Option_Add_Variation=yes

.Global_Variation
nmos nch_mac.nch= 10%

 .End_Global_Variation
 .Local_Variation

nmos nch_mac.nch toxe= 10%
 .End_Local_Variation
.End_Variation

■ Option Other_Percentile=data_block_name

Or Option Other_Percentile=list(val1, val2,..,valn), 
where the value range for val1 to valn is between 0 and 1.

Or Option Other_Percentile=list_sigma(val1, 
val2,..,valn), where the value range for val1 to valn is between -6 
and 6.

Use this option to specify quantiles lower than 1 percent. This option allows 
you to help to see how much impact there is from trailing data points, or to 
count samples near the absolute minimum for a sample set.
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Use the first or the second syntax to specify the information in terms of a 
cumulative distribution. Or use the third syntax to specify the information in 
terms of sigma values of a normal distribution.

Refer to Using the Other_Percentile Option in Chapter 27, Monte Carlo Data 
Mining for more information.

■ Option Mirror_Components = instanceList Use this option to 
specify the list of instances. The instance list uses the same set of random 
values in Monte Carlo simulation. This option does not support external 
sampling, the sampling values in external data block always has higher 
priority. This option supports SRS, LHS, Factorial, OFAT, Sobel, Niederreiter 
sampling methods. This option also supports wildcard instance name 
matching.

Note: This option is supported in:
■ VB local/element and AGAUSS local type variation only.
■ User needs to set .OPTION SAMPLING_METHOD=SRS 

(or other supported sampling methods) in the netlist with 
traditional or AGAUSS type variation definitions.

■ Option large_scale_mc=no|yes (default) no, if sample size<1m; yes, 
if sample size>=1m. When sample size is larger than 1M, HSPICE will evoke 
streaming algorithm for Monte Carlo automatically and the following warning 
message is issued:

**warning** The Monte Carlo sample size >=, one million 
and HSPICE is switching to the large sample mode, (option 
Large_Scale_MC = Yes) for efficient computations and 
lower disk space requirements. If you do not want this 
feature, please set Large_Scale_MC = No in variation  
block.

■ Option measure_file=no|yes Essential for validation of the results 
and for initial deployment. You can get all the simulations done in one pass 
with large_sacle_mc=Yes and measure_file=Yes. Default is no.

■ Option tail_samples=100|# Controls the tail samples to be retained. 
Default is 100.

■ Option histogram_bins=800|# Controls the resolution of histograms. 
Default is 800.

■ Option sensitivity_analysis=yes|no Controls output of the 
sensitivity report section in the .mpp file.
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Example for Ignore_Global and Normal_Limit Options
In the following example, global variations are not simulated, and the normal 
distributions are exercised to 6. For information regarding Local and Global 
Variations, see Subblocks for Global, Local, and Spatial Variations in Variability 
Analysis Using the Variation Block.

Note: HSPICE supports Ignore_global and Ignore_Local with the 
AGAUSS or traditional-style variation definitions.

.Variation
   Option Ignore_Global_Variation=Yes
   Option Normal_Limit=6
  .Global_Variation

Definitions for global variations
   .End_Global_Variation
  .Local_Variation

Definitions for local variations
   .End_Local_Variation
.End_Variation

Summary of Variation Block (VB) Options and Their Working 
Scopes
In the K-2015.06 release, most VB options that support Gaussian-type 
variations are enhanced as global options. Also, if HSPICE detects these 
options, it automatically sets the option use_agauss_format = yes, 
irrespective of whether these options are set inside the VB or set as global 
options. For such circumstances, the list file prints a warning message to 
indicate that HSPICE is using the advanced sampling method for Gaussian-
type variations.

The following table lists the VB options that are now implemented as global 
options:

VB Option Comments

ignore_global_variation Global options.

ignore_local_variation

ignore_variation
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sampling_method Global options.

normal_limit

replicates (when sampling_method = lhs)

block_name (when sampling_method = 
external)

set_missing_value

seed

stream Global options, affect both Gaussian-type 
variations and VB-type variations. HSPICE 
automatically transfers Gaussian-type variations 
to the advanced sampling method, after issuing a 
warning message.

output_sigma_value

intervals

vary_only|do_not_vary

use_agauss_format

add_variation

mc_file_only

external_file

mirror_component

other_percentile

large_scale_mc

tail_samples Global options independent of LSMC.

histogram_bins

measure_file Global option, but a side option to be combined 
with large_scale_mc.

random_generator The alias of randgen.

VB Option Comments
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Option other_percentile
Advanced users now have an option to add their own percentiles using the 
option other_percentile.

You can provide the percentile information as either a cumulative distribution or 
sigma values for the standard normal distribution.

Examples:

1. Option other_Percentile = list(0.0013, 0.0228, 0.1587, 
0.8413, 0.9772, 0.9987) or

2. Option other_Percentile = list_sigma(-3, -2, -1, 1, 2, 3)

The list_sigma keyword indicates that the additional user-specified 
percentiles are provided in terms of the standard normal distribution.

HSPICE ignores any user-specified percentile that are the same as those from 
it.

HSPICE now generates the *.mpp0 file as the statistical summary, if running 
MC simulation. The heading row of the percentile section of the *.mpp0 file will 
show both percentile values (without any change) and sigma values.

Output Files for MC Simulations
HSPICE generates different output files for different MC simulations. See the 
following table.

output_sigma_value

MC Output Single + 
Gaussian-type 
Variation

Single + VB-
type Variation

DP + 
Gaussian-type 
Variation

DP + VB-type 
Variation

LSMC + DP

*.ms0 (*.ma0, 
*.mt0)

yes yes yes yes no

*.mc0 no yes no yes no

*.mpp0 yes yes yes yes yes

*.annotate no yes no yes yes

VB Option Comments
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*.montelist no no no no yes

*.hmt0.csv yes yes yes yes yes

*.tail0 yes yes yes yes yes

*.qqt0.csv yes yes yes yes yes

*.ic0 yes yes yes yes no

Waveform 
files (*.tr0, 
*.fsdb, *.wdf, 
and so on)

yes yes yes yes no

MC Output Single + 
Gaussian-type 
Variation

Single + VB-
type Variation

DP + 
Gaussian-type 
Variation

DP + VB-type 
Variation

LSMC + DP
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Content in *.mpp0 File

MC Output Single + 
Gaussian-type 
Variation

Single + VB-
type Variation

DP + 
Gaussian-type 
Variation

DP + VB-type 
Variation

LSMC + DP

Output all 
MC-related 
option values

yes yes yes yes yes

Global/local 
variable 
numbers

no yes no yes yes

Sample 
moments 
table

yes yes yes yes yes

Quantile table yes yes yes yes yes

User-
specified 
quantile table

yes yes yes yes yes

Extremes and 
corners

yes yes yes yes yes

Response 
correlation 
matrix

yes yes yes yes yes

Selective 
simulation

yes yes yes yes yes

Variables 
screened by 
importance

no yes no yes yes

Important 
elements or 
models

no yes no yes yes
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In the *.mpp0 file, all sections have a start and end marker '##'. There are no 
'$' signs at the beginning of options. 

Output for Variation Block Monte Carlo
The following sections cover these topics:
■ Simulation Listing
■ Measurement Output File
■ Parameter File

Simulation Listing
The output listing file contains a summary of the names of all input parameters 
that are subject to global or local variations. The measured results print for 
each sample. Then HSPICE reports the statistics for the measured data.

Partial printout of an output listing:

Instance 
parameters 
for elements 
in match 
groups

no yes no yes yes

Subcircuit 
encoding

no yes no yes yes

MC Output Single + 
Gaussian-type 
Variation

Single + VB-
type Variation

DP + 
Gaussian-type 
Variation

DP + VB-type 
Variation

LSMC + DP
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MONTE CARLO DEFINITIONS
Random number generator is default, and stream = 1
Global variations:    model               parameter
                      snps20n             vth0            
                      snps20n             u0              

Local variations:     model               parameter
                      snps20n             vth0            
                      snps20n             u0              

Element variations:   element parameter
                       r1 r               

 *** monte carlo  index =     1 ***
 systoffset1=  1.3997E-03
 *** monte carlo  index =     2 ***
 systoffset1= -9.2694E-04

MONTE CARLO STATISTICS
 meas_variable = systoffset      
 mean  =   1.4398m      varian =   1.2391u 

 sigma =   1.1132m      avgdev = 893.3815u 
 max   =   5.3035m      min    =  -1.4532m 
1-sigma =   1.1132m      median =   1.4184m 

More detailed statistics are given in the *.mpp file (see Summary Statistics on 
page 910 and Variable Screening on page 919 in Chapter 27, Monte Carlo 
Data Mining).

Measurement Output File
Measure commands save simulation results for each sample, along with its 
index number. Depending on the analysis type, the name of the result file has 
an extension of .ms#, .ma#, or .mt#, where # denotes the regular sequence 
number for HSPICE output files. 

Parameter File
A file with an extension of *.mc# saves the changes in all parameter values 
subject to variation. The structure of this file is similar to regular measure files. 
The header section presents the names of the parameters and independent 
variables as follows:
■ For independent variables:

Variable_Name:@:ID
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■ For global variation on model parameter:
Model_Name:@:Parameter_Name:@:ID

■ For local variation on element parameter:
Element_Name:@:Parameter_Name:@:ID

■ For local variation on element/model parameter:
Element_Name:@:Parameter_Name:@:Model_Name:@:ID

■ For local variation + AGAUSS function on a subcircuit parameter:
Element_Name.parameter:@:Parameter_Name:@:Subckt_Name:@
:ID

■ For top-level parameters (see Variations on Top-Level Parameters on 
page 808):
top:@:parameter_name:@:GGR or top:@:parameter_name:@:GGA 
for absolute and relative variation, respectively

■ For temperature variation (see Variations on Temperature on page 808):
temp:@:temp:@:IGN for implicit independent variable with normal 
distribution or temp:@:temp:@:GGA for dependent variable absolute 
variation

■ For interconnect variation:
Param_Name:@:ID and Element_Name:@:IDwhere ID is a 3-character 
string for identifying the type of the parameter 

Table 76 lists the independent parameter types, respectively.

Table 77 lists the Independent Random Variable Types and Keywords for 
Variation and AGAUSS in *.mc# files. “N”, “U,” and “C” are normal, unified, and 
custom distributions, respectively.

Table 76 Independent Parameter Type Identifier

First character Second character Third character

I Independent variable G Global N Normal distribution

L Local U Uniform distribution

S Spatial C Custom distribution

G or L Limit L Limit distribution

I Interconnect

Table 77 IRV types/keywords for VB and AGAUSS format sampling in mc0# files

IRV Type Keyword

Variation Block (Three-Letter Keyword String)
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Table 78 lists the dependent parameter type identifiers.

The independent variables include explicitly specified random variables (for 
example: A=N()), and the internally generated random variables for implicit 
definitions in the expressions for sigma (for example: Nmos snps20 vth0=0.07). 

N(), Global IGN

U(), Global IGU

C(), Global IGC

L() Global (limit distribution) IGL

N(), Local ILN

U(), Local ILU

C(), Local ILC

L(), Local (limit distribution) ILL

N(), Spatial ISN

U(), Spatial ISU

C(), Spatial ISC

N(), Interconnect ITN

U(), Interconnect ITU

C(), Interconnect ITC

AGAUSS Format (Four-Letter Keyword String)

GAUSS()/AGAUSS() IGNC

UNIF()/AUNIF() IGUC

GAUSS()/AGAUSS(), Global (Limit Distribution) IGLC 

GAUSS()/AGAUSS(), Local ILNC

GAUSS()/AGAUSS(), Local ILUC

GAUSS()/AGAUSS(), Local (Limit Distribution) ILLC

Table 78 Dependent Parameter Type Identifier

First character Second character Third character

M Model G Global R Relative

E Element L Local A Absolute

S Subcircuit Variables S Spatial

T Interconnect

Table 77 IRV types/keywords for VB and AGAUSS format sampling in mc0# files 

IRV Type Keyword
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HSPICE reports values for parameters that have absolute variation specified in 
the Variation Block as absolute deviation from the nominal value. The output 
reports values for parameters that have relative variation specified as a relative 
deviation in percent. If the netlist, or the model, or both are encrypted, HSPICE 
prints hash codes in the appropriate places, which are meaningful to HSPICE 
for External Sampling.

Generating the *.mc Output File

The Monte Carlo feature generates the random value sample file, *.mc# 
output in an efficient way, by printing only one file in the error check stage. The 
*.mc file eliminates duplication of information that appears in other files, for 
example, “alters” and “status” columns, which appear in measurement file 
outputs. Independent random variable data (IRV) are only printed to the *.mc 
file.

For variations defined with Variation Block style, related variations such as 
xxx:@:xxx:@:MGA, xxx:@:xxx:@:EGA, and so forth, are omitted because 
such information is not required for data mining and unnecessarily increases 
the file size.

The values in the AGAUSS style *.mc file are the values from the standard 
normal or uniform distribution and not the derived values after accounting for 
mean and sigma. 

The *.mc file incorporates data that had been displayed in *.mcs#, *.mca#, 
and *.mct# files, which HSPICE no longer generates. 

If there are multiple Monte Carlo commands in the netlist, only one *.mc file is 
generated in each .ALTER simulation. 

In an *.mc# file, the sampling number is selected from the largest of all 
simulations. If Monte Carlo commands are specified with complex options, 
such as,

.dc step start stop sweep Monte = list(xx, xxx, xxx)

HSPICE only exports the numbers defined in the list() option.

Character separators in *.mc files are indicated by the :@: (colon-"at"-sign-
colon) combination. This combination avoids confusion with hierarchy 
separators which use a single @ character.
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Monte Carlo Analysis in HSPICE
Example: *.mc# File
index snps20n:@:vth0@IGN           snps20n:@:u0:@:IGN
 snps20n:@:vth0:@:MGA           snps20n:@:u0:@:MGR
 xi82.mn6:@:snps20n:@:vth0:@:MLA  
xi82.mn6:@:snps20n:@:u0:@:MLR

xi82.mn1:@:vth0@ILN          xi82.mn1:@:u0@ILN
xi82.mn1:@:snps20n:@:vth0:@:MLA  

xi82.mn1:@:snps20n:@:u0@MLR 
 xi82.mn2:@:vth0:@:ILN          xi82.mn2:@:u0:@:ILN

xi82.mn2:@:snps20n:@:vth0:@:MLA  
xi82.mn2:@:snps20n:@:u0:@:MLR

xi82.rcomp:@:r:@:ILN           xi82.rcomp:@:r:@:ELR
status           alter# 

1.0000 0.               0.             0. 
0.               0.             0. 
0.               0. 0. 
0.               0. 0.
0.               0.
1.0              1.0000 

2.0000 0.6141           0.6284         4.299e-02 
6.284e-02        2.1837         0.2184 

 1.7554           0.1755         1.6017
0.1602           0.4769         4.769e-02 

-1.0088           0.5350 

In this example, HSPICE first reports the changes due to the global variations 
on parameters vth0 (absolute) and u0 (relative). Then HSPICE reports the 
changes on each device due to local variations on the same parameters. 
Finally, HSPICE reports the local variation on the parameter r of the element 
rcomp. Note that the parameter value applied to the device for a particular 
sample is the nominal value, plus the reported change due to global variations, 
plus the reported change due to local variations, and so on.

The contents of this parameter file are useful for data mining (see Chapter 27, 
Monte Carlo Data Mining). You can investigate the relationship of circuit 
response variation to parameter variation in combination with the measured 
data in the regular output file, by using, for example, a Pairs Plot as shown in 
Figure 141 on page 833.

Note:  The contents of this file are subject to change.

Interconnect Output Formats

An example output for interconnect variation is as follows. The Monte Carlo 
sampling output file *.mc#, uses one identifier keyword for interconnect 
variation parameter. In the following, IGN is the extension for independent 
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variables. TGA is the extension for dependent variables. The T is present for 
interconnect parameters:

$ This file format is subject to change 
.TITLE '* two capacitors for model parameter variation testing'
 index fox_c_t:@:IGN fox_a_t:@:IGN ild_b_t:@:IGN
 imd1c_t:@:IGN imd1d_t:@:IGN      imd2a_t:@:IGN 
  r1:@:TGA           r2:@:TGA           r11:@:TGA 

r22:@:TGA r211:@:TGA         r222:@:TGA 
c1:@:TGA           c2:@:TGA           c11:@:TGA 

c22:@:TGA 
status           alter# 
1.0000 0 0. 0. 

0.  0.  0. 
0. 0. 0. 
0. 0. 0. 
0. 0. 0. 
0. 
1.0 1.0000 

2.0000 0.6141 0.6284  0.8866 
5.198e-02 1.2452 -1.5600 

-1.031e-02 -3.537e-04 -5.191e-02 
6.133e-05 2.464e-03 2.964e-03 
2.464e-04 3.037e-04 5.073e-04 
5.796e-04 

 1.0 1.0000 

3.0000 -0.1087 -0.6694 3.363e-02 
1.6842 -1.0088 0.5350 
3.551e-03 9.223e-05 1.782e-02 

-2.440e-04 -7.813e-04 1.220e-03 
-7.813e-05 -2.212e-04  5.374e-05 
1.055e-04 

Sampling Options

HSPICE provides simple random sampling (SRS) as well as advanced 
sampling schemes for related applications. OFAT and Factorial sampling use 
statistical design-of-experiment techniques while LHS and LDS reduce the 
sampling error in the results. External sampling provides a generic interface 
that permits users to overload the internal random number generators and pass 
HSPICE sample values generated from other statistical tools. See also 
Comparison of Sampling Methods. The sampling options are as follows:
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■ Simple Random Sampling (SRS)
■ One-Factor-at-a-Time (OFAT) Sampling
■ Factorial Sampling
■ Latin Hypercube Sampling (LHS)
■ Sobol and Niederreiter Sampling (LDS)
■ External Sampling

Simple Random Sampling (SRS)
Option Sampling_Method = SRS

Traditional Monte Carlo selects the samples in a random manner from the 
specified distributions. This is the default sampling method. You can select this 
through the option Option Sampling_Method = SRS.

In SRS (or other) samplings, on the first point (which is also a nominal point), 
the limit distribution values use the nominal (no perturbation) values.

One-Factor-at-a-Time (OFAT) Sampling 
Option Sampling_Method=OFAT

This sampling method varies One-Factor-at-a-Time, a Design of Experiments 
feature [1]. It is useful for sensitivity studies and for constructing low-order 
response surface approximations. The number of samples is 2m+1 with m 
independent variables. OFAT ignores the number that the Monte Carlo 
command specifies, and m must be less than 2500. Sampling starts with no 
perturbation (nominal), then negative and positive perturbation only on the first 
parameter, negative and positive perturbation only on the second parameter, 
and so forth. In OFAT sampling, unsampled limit distributions return their 
nominal values, similar to SRS. The amounts of perturbation are the extreme 
values for a uniform distribution, and the Normal_Limit values for a normal 
distribution. Figure 143 illustrates OFAT examples. 
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Figure 143 One-Factor-at-a-Time sampling with one, two, and three independent 
variables

A sub-option, intervals=n, generates 2n+1 equally spaced samples along 
the range of each independent variable. The total number of sample points 
increases to 2mn + 1. The full syntax is:
Option Sampling_Method=OFAT Intervals=2

Figure 144 Suboption intervals

An alternative sub-option is to declare Intervals = +0.05|-0.05 to 
perform one-sided OFAT sampling in instances such as cell characterization. 
The keys 0.5 specify the one-sided samples with the samples being at 0 and 
+ Normal_Limits and key = -0.5 for one sided samples with the points 
being at nominal and –Normal_Limit.

Factorial Sampling
Option Sampling_Method=Factorial

Use this option to:
■ Evaluate the circuit response at the extremes of variable ranges to get an 

idea of the worst and best case behavior.
■ Create polynomial response surface approximations.
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Factorial sampling evaluates the circuit at the center of the hypercube (nominal) 
and at all its corners (see Figure 145). There are 1+2m samples for a circuit 
with m independent variables; this method ignores the number of samples that 
the Monte Carlo command specifies. To prevent large runaway jobs, HSPICE 
restricts the problem dimension to , which results in ~4K simulations. If 
you violate the size constraint, HSPICE ignores the command and generates 
an error message.

Figure 145 Factorial Hypercube Evaluation at Center and Corners for 1, 2, and 3 
independent random variables

Latin Hypercube Sampling (LHS)
Option Sampling_Method=LHS

Latin Hypercube Sampling is an efficient sampling technique for Monte Carlo 
analysis of systems. These systems are modeled by computers and have large 
number of variable parameters [2] [3]. Advantages of LHS are:
■ The estimation error is smaller on most real world problems and you can use 

a smaller sample size to get the same precision in the results.
■ The sample points are evenly spread over the entire range of variation of 

each parameter.

m 12

1 3 2 1

22 33

4545

6 7 

8 
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■ The circuit is exercised over a wide range of parameter values. The circuit 
often detects weak spots in the design.

■ You can replicate the sampling using Option Replicates=Value

This option runs replicates of the Latin Hypercube samples. The sample 
with nominal conditions is simulated once. HSPICE repeats the LHS run the 
number of times specified by Value. For example, if, in a regular run, you 
have 10+1 (including nominal value) iterations, if you set Replicates=2, 
you generate 21 (or 2* Value +1) Latin Hypercube samples.

Figure 146 Example of the distribution of 10 sampling points in two dimensions

Monte Carlo with firstrun and list options:
LHS is a special sampling method. Unlike SRS, its sample values are decided 
by the sample size. LHS sampling with firstrun or list keyword in Monte 
Carlo analysis requires a new keyword lhs_sample_size to be set, which 
indicates the sample size of LHS.

Syntax:
.TRAN/DC/AC… sweep monte=list(num1:num2,…lastnum2, 

lastnum1) lhs_sample_size=num

Or

.TRAN/DC/AC… sweep monte=num1 firstrun=num2 
lhs_sample_size=num

Where the last monte sweep index in list and firstrun syntax lastnum1 
and num2-num1-1 respectively. 
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The keyword lhs_samle_size should be set such that the last monte index 
must be equal to or less than replicates*lhs_sample_size+1. 

Note: With firstrun, the LHS sample size is set using 
lhs_sample_size and not with monte keyword. The monte 
number should be adjusted for the number specified in the 
lhs_sample_size.

If this condition of lhs_sample_size is not satisfied, then the following error 
message is displayed:

**error** (file:line) monte sweep index exceeds 
LHS_SAMPLE_SIZE limit

If the LHS_SAMPLE_SIZE is multi-defined, the maximum one will be used with 
the following warning message:

**warning** multiple definitions of LHS_SAMPLE_SIZE, the 
maximum one will be used.

Examples
For example, assuming replicates=1, if you set monte=10, firstrun=8, 
and lhs_sample_size=15 then the last monte index is 10+8-1=17, which is 
more than 16 (replicates*lhs_sample_size+1). Therefore, HSPICE 
displays the following error message:

**error** (file:line) monte sweep index exceeds 
LHS_SAMPLE_SIZE limit.

Sobol and Niederreiter Sampling (LDS)
Option Sampling_Method=SOBOL

Option Sampling_Method=NIEDERREITER

Two Low-Discrepancy Sequences (LDS) quasi-random number generators—
Sobol and Niederreiter—support Variation Block-based Monte Carlo analysis 
[4] [5] [6]. LDS sample points are even more evenly distributed compared to 
LHS and the sampling error is lower. Dimension limitations exist for both Sobol 
and Niederreiter. For Sobol, the current maximum dimension is 40; for 
Niederreiter, the current maximum dimension is 318. 
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Each of these sampling options has an auto-switch flow:
■ If you use Sobol with a sampling dimension of more than 40, then HSPICE 

switches to use Niederreiter.
■ If you use Niederreiter with a sampling dimension of more than 318, then 

HSPICE switches to the default SRS sampling method.

Figure 147 shows the locations of 1024 samples in two dimensions for 
simple random sampling and the Sobol Sequence. The Sobol points are 
better spaced while those from SRS are “lumpy.” This is the general property 
of LDS.

Figure 147 Comparing low-discrepancy Sequence: Simple Random versus Sobol

External Sampling
You can also execute a data set of externally created perturbations instead of 
relying on one of the built-in sampling methods. External sampling allows 
design and process exploration tools to run statistical experiments with the 
variables for each sample under their full control. In this way, for example, you 
can exclude certain transistors from the analysis (that is, have the parameters 
remain fixed instead of being randomly varied).

Note: External sampling does not support encrypted or protected 
model libraries.
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The following sections provide these details:
■ Usage Model for External Sampling
■ Syntax
■ Controlling the Read-in of an External File
■ Using the MC_File_Only Option
■ Allowing Zero Variations in External Sampling for Missing IRVs

Usage Model for External Sampling
Use the following procedure to add the custom-generated samples to HSPICE 
Monte Carlo flow:

1. Execute HSPICE with a standard simulation command (.AC, .DC, .TRAN) 
and monte=1 to produce an *.mc0 file, which lists all the independent 
variables (see Parameter File on page 847).

2. Create a data block outside HSPICE with the desired perturbations on the 
independent variables for global and local variations.

3. Run an HSPICE simulation with externally generated data block content.

4. Repeat steps 2 and 3, depending on the outcome of the previous 
experiments.

Syntax
The external sampling feature is defined in two parts in the Variation Block, a 
data block and an option.

The data block syntax is the same as for the regular HSPICE data block from 
.Data to.EndData. The first variable is always the index. All identifiers for the 
variables start with “I” because this is the only variable type which can be set 
externally. You invoke the feature itself by specifying the external sampling 
method, with the appropriate block name. For example:
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To run a particular sample from the data block, use the following:

monte = list(num) or 
monte = list(<num1:num2> <num3> <num4:num5>)
monte=list(n1:n2) can exceed a limit in the data block.

If the netlist or the model, or both, are encrypted, the hash codes printed in the 
parameter file are recognized by HSPICE when reading in the external 
sampling data block.

Additional rules:

1. HSPICE does not check the range of values in the supplied data block 
against option value Normal_Limit.

2. Independent random variables which are not specified in the data block are 
assigned new random values generated by a new seed.

Controlling the Read-in of an External File
Use Option External_File=filename to enable read in of an external 
data block line-by-line during the simulation stage. This command distributes 
memory consumption and avoids overtaxing the front end with a data block 
containing large samples. This option is also available for DP+ DC Monte Carlo. 
For example:

Option Sampling_Method=External Block_Name=extern_data 
+ External_File=extern.mc0
.Data extern_data
...
.Enddata
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Using the MC_File_Only Option
The MC_File_Only option enables you to generate a random value sample 
file without running an actual Monte Carlo simulation. Use the Variation Block 
Option MC_File_Only=yes|no to circumvent the need to run a double 
Monte Carlo simulation. The syntax is:

.Variation
Option MC_File_Only=yes|no

.End_Variation

You can use this option in multiple applications during an external sampling 
flow. Consider a scenario where you expect that a few elements under local 
variation simulation must have the same variations on them. In a normal Monte 
Carlo simulation, every element gets a unique random value when local 
variations are defined on them. Thus you need to manually modify the assigned 
sample value to the selected elements before running the Monte Carlo 
simulation. Do this in HSPICE by using the External Sampling method.

The steps are:

1. Run the regular HSPICE simulation with .Option 
Sampling_Method=SRS and MC_File_Only=Yes. (Even though this is a 
Variation Block option, it is applicable to the AGAUSS style too.)

Result: This run generates an MC sampling file (*.mc0). 

2. Manipulate the data in this file such that each random parameter 
corresponding to one element has the same value for each sample 
matching with that of other elements of interest.

Explanation: This step is simplified by printing out the *.mc0 file in *.csv 
format which can be directly read in an Excel sheet. You can manipulate 
columns in the Excel sheet easily. Set .option MEASFORM=3 in the netlist 
to generate the file in CSV format.

3. Convert this sample file into a DATA block by adding .DATA blockname 
.ENDDATA statements.

4. Run the MC simulation again with .Option 
Sampling_Method=External Block_Name=blockname and include 
the modified sample file.

Allowing Zero Variations in External Sampling for Missing IRVs
If you only want to vary a subset of transistor parameters in the netlist and 
avoid HSPICE creating an enormous table for devices that you do not care 
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about, you can declare a sub-option to SAMPLING_METHOD=External — 
OPTION SET_MISSING_VALUES=Zero.

The syntax is: OPTION SET_MISSING_VALUES = Random | Zero

The default value is Random if the option is not specified in a netlist.

Use this option to control missing random values in a .data block for external 
sampling:
■ Set_Missing_Values=Random: HSPICE generates its own random 

values for the missing random variables in a .data block.
■ Set_Missing_Values=Zero: HSPICE generates zero values for those 

missing random variables in .data block in external sampling.

Syntax example:

option Sampling_Method = External Block_Name = XXXX 
+ File_Name = YYYY Set_Missing_Values = Random|Zero

Comparison of Sampling Methods

This section provides illustrations to describe the qualitative behavior of various 
sampling methods.

The sampling methods are described in detail in the following:
■ Pairs Plot for SRS Samples
■ 1024 Points, Latin Hypercube Sample
■ Four-Dimensional Sobol Sequence
■ Space Filling Properties for Sobol Samples
■ Smoothed Density Plots
■ Samples from Multivariate Normal Densities

Pairs Plot for SRS Samples
Figure 148 on page 863 shows a pairs plot for 1024 samples from SRS in four 
dimensions with uniform distributions. 
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Figure 148 Sampling: SRS Distribution: uniform n; 1024 maxCor; 7.2 percent

The diagonal subplots show the sample histogram together with the ideal 
uniform density as a shaded area for each of the random variables. The off-
diagonal subplots give the two-dimensional projections of the sample points. 
Note that the 1-D projections depart from their ideal behavior. The correlation 
coefficients are also computed for the sample and the maximum absolute value 
is found to be 7 percent. As the samples are independent, the ideal value is 
zero. Such qualitative behavior is typical of small samples in traditional Monte 
Carlo.

1024 Points, Latin Hypercube Sample 
Figure 149 shows 1024 LHS points, again in four dimensions and with uniform 
distributions. The 1-D histograms match the ideal shaded density—this is a 
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consequence of the way in which LHS are constructed. The 2-D projections 
have a somewhat better distribution with the maximum correlation being 4.5 
percent for the particular sample. The correlation value changes with the 
random generator seed and small correlations are not currently enforced in 
constructing LHS in HSPICE. The correlation could be more or less than SRS 
in a particular experiment.

Figure 149 Sampling: LHS Distribution: uniform n; 1024 maxCor; 4.5 percent

Four-Dimensional Sobol Sequence
Figure 150 shows the first 1024 sample points from the four-dimensional Sobol 
sequence. Like LHS, the 1-D histograms match the ideal shaded density — this 
is a property of low-discrepancy sequences. The uniformity in two dimensions 
is also better and the largest absolute correlation coefficient is 0.5 percent. 
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Two-dimensional uniformity is one of the criteria used in generating low-
discrepancy sequences. Notice that the Sobol sequence has a well-defined 
pattern that does not look random, for example, between variables one and 
two. The reason is that low-discrepancy points are selected by special 
algorithms that try to fill the space as uniformly as possible. 

Figure 150 Sampling: Sobol Distribution: uniform n; 1024 maxCor; 0.5 percent

Space Filling Properties for Sobol Samples
The space filling property is illustrated in Figure 151 on page 866. It shows the 
2-D projection of samples for variables one and three for sample sizes ranging 
from 64 to 2048. Starting in the lower left, the subplot shows the first 64 Sobol 
points in blue. The subplot with n = 128 shows the first 64 points in red (which 
are the same as the blue points in the first subplot) and the samples from 65 
through 128 shown in blue. Proceeding in a similar manner, other subplots are 
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generated with the red points representing the previous samples and the blue 
points representing the new ones. The Sobol samples are generated in a 
structured manner with the new points filling the “holes” left behind by the prior 
samples.

Figure 151 Space filling property of Sobol sampling

Smoothed Density Plots
While the qualitative behavior of the 1-D projections as histograms in 
Figure 152 on page 867 through Figure 154 on page 869 is clear, the quality of 
the 2-D projections is harder to visualize and the largest absolute correlation 
coefficient is not an intuitive measure. Figure 152 on page 867 shows the 
smoothed density plots for 128 samples. The samples are from a uniform 
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density and the ideal plot is the one shown in the bottom right subplot. The 
traditional Monte Carlo, SRS, is shown in the top left subplot and departs from 
the ideal behavior for small sample sizes. The behavior of the LHS density 
depends on the specific random number generator seeds. The density for the 
Sobol sequence is close to the ideal and the property generally holds true for 
low-discrepancy sequences.

Figure 152 Comparison of smoothed density plots n = 128

Samples from Multivariate Normal Densities
Results from similar experiments are shown for samples from multivariate 
normal densities in four dimensions for SRS, LHS, and Sobol sequences in 
Figure 153 through Figure 155 on page 870. The diagonal subplots show the 
1-D histograms for each variable together with the ideal shaded density. The 
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off-diagonal subplots show two-dimensional densities as topographic plots with 
color scale from deep blue to red with red indicating larger values. Both LHS 
and Sobol samples match the 1-D ideal density and are better than SRS. The 
largest absolute correlation coefficient is smaller for Sobol samples. However, 
the largest absolute correlation coefficient for LHS is more than that for SRS in 
this example.

Figure 153 Sampling: SRS Distribution: normal n; 1024 maxCor; 3.8 percent
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Figure 154 Sampling: LHS Distribution: normal n; 1024 maxCor; 7.2 percent
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Figure 155 Sampling: Sobol Distribution: normal n; 1024 maxCor; 0.9 percent

A better view of the 2-D projections can be seen in the smoothed density plots 
shown in Figure 156 on page 871 for 64 samples. As with uniform densities, we 
see that LHS looks better than SRS and that the Sobol sample is much closer 
to the ideal density.
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Figure 156 Comparing sampling methods, smoothed density plots: n = 64

Using Traditional Variation Format with Advanced 
Sampling Methods in Monte Carlo

You can use the following option in your Variation Block to enable HSPICE to 
run some advanced sampling methods that were designed for the Variation 
Block, including SRS, LHS, OFAT, Factorial, Sobol and Niederreiter with 
traditional Monte Carlo variation definitions (called AGAUSS here). 

For example:
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.Variation
Option Use_AGAUSS_Format = Yes

.End_Variation

By specifying this option, use of both forms of definitions can work 
simultaneously. The default is Yes.

Note: An alternative to using this option inside the Variation Block 
structure, is to set the HSPICE global option .OPTION 
SAMPLING_METHOD, which enables use of the advanced 
sampling methods [SRS|LHS|Factorial|OFAT|SOBOL| 
NIEDERREITER] Default: SRS. 
.OPTION REPLICATES = value is added for LHS sampling.

In addition to the Use_AGAUSS_Format = Yes option, the following Variation 
Block options can be applied for both style definitions:
■ Option Output_Sigma_Value = number

■ Option Sampling_Method = OFAT Intervals = number

■ Option Random_Generator = MOA|MSG|Default

■ Option Normal_Limit = val

The following options work for variations defined inside a Variation Block only:
■ Option Vary_Only|Do_Not_Vary|Print_Only|Do_Not_Print 

+ Subckts = SubCkt1, SubCkt2, …

Supported models for the Option Use_AGAUSS_Format include: resistor, 
capacitor, BJT, diode, JFET, MOSFET, and independent voltage/current 
sources. If a model parameter variation is defined both in the traditional 
(AGAUSS) format style and Variation Block style, then only the variation in the 
Variation Block is active in Monte Carlo; the other one is ignored. 

Messages in *.lis File for Sampling_Method Option
■ If .OPTION SAMPLING_METHOD is not set, but Variation Block is defined, 

then HSPICE writes the following information message to the *.lis file:

Only Variation Block is active, to enable AGAUSS format 
variation, set option sampling_method = SRS.

■ If Option Sampling_Method is set, then HSPICE reports:

Option sampling_method was set, Variation Block and AGAUSS 
format variation are in effect.

■ If both AGAUSS and VB variations are set on the same model parameters, 
HSPICE issues this warning message:
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**warning** model parameter  'Model_Parameter_Name' is already 
defined in Variation Block; the duplicate is ignored.

The following topics are discussed in the next sections:
■ Gaussian Style Random Variable Definition
■ Example 1: Variation Duplicated in Traditional Format and Variation Block
■ Example 2: Subcircuit and Macro Models

Gaussian Style Random Variable Definition
HSPICE permits independent random variables (IRV) to be defined by one of 
four probability distribution functions: GAUSS (relative normal distribution), 
AGAUSS (absolute normal distribution), UNIF (relative uniform distribution), 
AUNIF (absolute uniform distribution) with the following syntax:

.PARAM  randpar1=GAUSS(nominal_val, rel_variation, sigma)

.PARAM  randpar2=AGAUSS(nominal_val, abs_variation, sigma)
 .PARAM  randpar3=UNIF(nominal_val, rel_variation)

.PARAM  randpar4=AUNIF(nominal_val, abs_variation) 

Here, the default for sigma is 3, and the equivalent mathematical description is:

randpar1=N(nominal_val, nominal_val*rel_variation/sigma)
randpar2=N(nominal_val, abs_variation/sigma)
randpar3=U(nominal_val*(1-rel_variation), 

nominal_val*(1+rel_variation))
 randpar4=U(nominal_val-abs_variation, 

nominal_val+abs_variation)

where ; ,  and 
 are the standard, normal, and uniform distributions, respectively.

Before each Monte Carlo trial, each IRV is assigned a different random number 
according to the corresponding probability density. 

Example 1
.param  randpar1=AGAUSS(0, 1, 1) par2='0.1*randpar1' par3=par2
.model SYNOP_NMOS  nmos  vth0='0.1 + randpar1'
+ M1 d g s b SYNOP_NMOS   w='randpar1'   l='randpar1'
+ M2 d g s b SYNOP_NMOS   w='par2'   l='par3' 

In Example 1, before each Monte Carlo trial, the IRV randpar1 gets four 
different numbers from the random number stream and uses them to create 
par2, vth0, and M1's width and M1's length, respectively. As par3 is equal to 

N a b  a b N 0 1 += U a b  a b a–  U 0 1 += N 0 1 
U 0 1 
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par2, M1's  vth0 is equal to M2's  vth0, M2's  w is equal to M2's  l, but M1's  w 
is different from M1's l. Thus direct use of randpar1 represents a different 
random number while indirect use through par2 and par3 leads to common 
random numbers. This was an early attempt to model local and global 
variations in instance parameters. However, only global variation was possible 
on model parameters.

Example 2
For traditional Monte Carlo, the modmonte=1 option enables local variation on 
model parameters, so that different instances with the same model can get 
different random numbers in a single Monte Carlo trial. In the following 
example, before each Monte Carlo trial, the IRV randpar1 will get five different 
random numbers from the random number stream and allocate them to par2, 
M1's  vth0 and M2's  vth0, M1's  w and M1's  l. The only difference from 
Example 1 is that M1's vth0 is different from M2's vth0. 

.option modmonte=1

.param  randpar1=Gauss(0, 1, 1) par2='0.1*randpar1' par3=par2

.model SYNOP_NMOS nmos   vth0='0.1+ randpar1'
+ M1 d g s b SYNOP_NMOS   w='randpar1'  l='randpar1'
+ M2 d g s b SYNOP_NMOS   w='par2'  l='par3'

Input/Output with New Capability
There is no change to measurement and Monte Carlo commands or to the 
measurement output files and only minimal changes to the listing file with 
additional informational messages in cases of dual variability definitions. For 
example, the *.mc0 files contain additional fields for random variables defined 
in the Gaussian style and new suffix keys IRV are introduced. 

The content in a *.mc0 file is similar to the Variation Block: the option settings 
are reported first, followed by the names of all requested models/devices/
subcircuits, with their respective parameter names. Separators are used as 
follows:
■ A single dot is a hierarchical separator between a subcircuit and an instance 

or device name.
■ The special characters “:@:” separate model/device/subcircuit and 

parameter names.

Syntax
■ For normal parameters that use random variables directly, the syntax is:

RandomVariable:@:SubcircuitName.InstanceName:@:IRV
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For example:

globw:@:globwidth:@:IRV , locwidth:@:x1.width:@:IRV

■ For devices with models, the syntax is:

RandomVariable:@:ModelName:@:SubcircuitName.InstanceName 
:@:IRV

For example:

res_dev:@:x1.res_sub@x1.rab:@:IRV, 
res_dev@resistor:@:r2:@:IRV 

■ For model parameters, the syntax is:

RandomVariable:@:ModelName:@:SubcircuitName:@:IRV

For example:

 parl4@nch_mac.7:@:xmdut4:@:IRV

Example 1: Variation Duplicated in Traditional Format 
and Variation Block
.options ACCT OPTS LIST NOPAGE INGOLD=2 ALT999 PROBE POST=1 TNOM=25
.options MODMONTE=1
.model nch  nmos LEVEL=53 VTH0='-0.4+vth0_nch*0.5'  
+ TOX='4E-9+4e-11*tox_nch' VERSION=3.2
.param vth0_nch = AGAUSS (0 , 1   , 1.0 ) 
.param tox_nch = AGAUSS (0 , 1   , 1.0 )
  m11  2 11  0  0  nch  W=1E-6   L=0.15E-6
  m12  2 11  0  0  nch  W=1E-6   L=0.15E-6
  m13  2 11  0  0  nch  W=1E-6   L=0.15E-6
  v01   2    0    1.5
  v02  11    0    0.0
.Variation

Option Use_AGAUSS_Format=yes
Option Sampling_Method=LHS

.Local_Variation
  nmos nch vth0 = 0.5   //also define vth0 variation in VB
.End_Local_Variation

.End_Variation
 .dc  v02  0   2.0   0.1   sweep monte=2
 .meas dc ids_11  find par('i(m11)*1E3') when v(11)=1.5
 .meas dc ids_12  find par('i(m12)*1E3') when v(11)=1.5
 .meas dc ids_13  find par('i(m13)*1E3') when v(11)=1.5
.end
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Sample output in the *.lis file for this simulation is as follows:

 *** monte carlo  index =     3 ***

      MODEL PARAMETER MONTE CARLO DEFINITIONS
        0:m11     
 tox_nch              
 nch             =  4.0722E-09

0:m12     
 tox_nch        
 nch             =  3.9584E-09

0:m13     
 tox_nch                    
 nch             =  4.0462E-09
 
MONTE CARLO PARAMETER DEFINITIONS
 vth0_nch           
 tox_nch                  
 
   ids_11=  1.6030E+00
   ids_12=  5.8869E-01
   ids_13=  8.1399E-01

The *.mc0 file includes the following characteristics using the $ sign:
■ The header section records lead with a $ sign (which are read by HSPICE 

as comments).
■ Title lines include an extra leading “$”, that is, $$.
■ The external sampling option is recorded with a leading “$”, such as: 

$.Option Sampling_Method = External Block_Name = 
extern_data

■ Block definitions are recorded with a leading “$” such as, $.Data 
Extern_Data

■ Column names, random variable data (if requested), and the enddata record 
are also represented with a leading “$”.

■ The *.mc file is written only in .OPTION MEASFORM = 1|3| format for ease 
in exporting to Microsoft Excel. The default is 1. (See .OPTION 
MEASFORM in the HSPICE Reference Manual: Commands and Control 
Options.)

The *.mc0 file output for Example 1 shows the following results. Note that the 
independent random variable vth0_nch is missing due to the duplicated 
variation definition on vth0.nch.

$$SOURCE='HSPICE' VERSION='F-2011.09-BETA 32-BIT'
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$ This file format is subject to change 
$option ignore_global_variation = no   
$option ignore_local_variation = no   
$option ignore_interconnect_variation = no  
$option ignore_spatial_variation = no   
$option ignore_variation = no 
$option sampling_method  = lhs   
$option normal_limit     = 4.0000     
$option replicates       =   1      
$option random_generator = MOA   
$option stream           =   1    
$option output_sigma_val = 1.00
.TITLE '.options acct opts list nopage ingold=2 alt999 probe 
post=1 tnom=25'
 index         tox_nch:@:nch:@:m11:@:IRV tox_nch:@:nch:@:m12:@:IRV  
                  tox_nch:@:nch:@:@m13:@:IRV m11:@:vth0:@:ILN     
 m11:@:nch:@:vth0:@:MLA   m12:@:vth0:@:ILN     
 m12:@:nch:@:vth0:@:MLA   m13:@:vth0:@:ILN   
 m13:@:nch:@:vth0:@:MLA   
 
               status           alter#     
       
    1.0000           0.               0.               0.    
 0.               0.               0.    
 0.               0. 0.

1.0 1.0000       
  
    2.0000          -1.1333           0.2145          -0.6805   
 1.3500           0.6750          -0.4423   
 -0.2212          -0.5529          -0.2764  

 1.0 1.0000        
 
    3.0000           1.8038          -1.0394           1.1542 
 -1.4199          -0.7100           1.2916  
 0.6458 0.6412  0.3206 

1.0 1.0000 

Example 2: Subcircuit and Macro Models
The following example demonstrates the combined syntax used for subckt and 
macro models:

*four resistors
.param bias=1m
.param globw=AGAUSS(1u,0.1u,3)
.param globwidth=globw
.param locwidth= AGAUSS(0.1u,0.02u,3)
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.param res_dev = AGAUSS(10,10,1)

.option modmonte=1 numdgt=8 ingold=2
i1 0 1 bias
i2 0 2 bias
i3 0 3 bias
i4 0 4 bias
i5 0 4 bias
i6 0 4 bias

X1 1 0 res1 width='globwidth+locwidth'
X2 2 0 res1 width='globwidth+locwidth'
X3 3 0 res1 width='globwidth+locwidth'
X4 4 0 res1 width='globwidth+locwidth'
r1  5 0 resistor w='3u+locwidth'
r2  6 0 resistor w='3u+locwidth'

.subckt res1 a b
rab a b res_sub w=width 
.model res_sub R w=3u l='3u+res_dev*0.1u'
 rsh='100+res_dev'
.ends res1

.model resistor R w=3u l='3u+res_dev*0.1u' rsh='100+res_dev'

.Variation
  Option Use_AGAUSS_Format=yes

.End_Variation

.op

.dc bias 1m 1m 1m monte=4

.print v(1) v(2) v(3) v(4)

.measure dc v1 find v(1) at=1m

.measure dc v2 find v(2) at=1m

.measure dc v3 find v(3) at=1m

.measure dc v4 find v(4) at=1m

.option measdgt=6

.end

The following sample is returned in the *.lis file for this statement:

 *** monte carlo  index =     2 ***
      MODEL PARAMETER MONTE CARLO DEFINITIONS
        0:r1      
 res_dev                         
     resistor        =  3.3475E-06
 res_dev           
 resistor        =   100.5    
 0:r2      
 res_dev                
 resistor        =  3.9904E-06
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 res_dev                  
 resistor        =   133.9    
 1:rab     
 res_dev                 

 1:res_sub =  4.9269E-06
 res_dev               
 1:res_sub =   114.1    
        2:rab     
 res_dev                       
 2:res_sub =  4.2027E-06
 res_dev                   
 2:res_sub =   124.7    

 3:rab
res_dev        
 3:res_sub =  3.4716E-06
 res_dev                 
 3:res_sub =   116.8    
 4:rab     
 res_dev              
 4:res_sub =  3.2135E-06
 res_dev                  
 4:res_sub       =   99.87    
 
       MONTE CARLO PARAMETER DEFINITIONS

 globw                          
 globwidth       =  1.0285E-06
 locwidth                      
  
     r1              =  3.0996E-06  r2              =  3.0984E-06
     1:width         =  1.1251E-06  2:width         =  1.1337E-06
     3:width         =  1.1295E-06  4:width         =  1.1364E-06
 res_dev  
                       
x
        bias      voltage        voltage        voltage        voltage      
                       1              2              3              4      
1.00000000e-03  5.1094738e-01  4.7630593e-01  3.6860296e-01  
8.7529637e-01
y
 v1= 5.109474e-01
 v2= 4.763059e-01
 v3= 3.686030e-01
 v4= 8.752964e-01

The following sample output is returned for the subcircuit/macro file example:

*.ms0 file output
$ This file format is subject to change 
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$option ignore_global_variation = no
$option ignore_local_variation = no  
$option ignore_interconnect_variation = no  
$option ignore_spatial_variation = no   
$option ignore_variation = no 
$option sampling_method  = srs  
$option normal_limit     =     4.0000000e+00  
$option replicates       =   1  
$option random_generator = MOA           
$option stream           =   1      
$option output_sigma_val =      1.00
.TITLE 'four resistors'
 index         res_dev:@:resistor:@:r1:@:IRV
 res_dev:@:resistor:@:r1:@:IRV  
 res_dev:@:resistor:@:r2:@:IRV

 res_dev:@:resistor:@:r2:@:IRV  
                  res_dev:@:x1.res_sub:@:x1.rab:@:IRV  
                  res_dev:@:x1.res_sub:@:x1.rab:@:IRV  
                  res_dev:@:x2.res_sub:@:x2.rab:@:IRV 
                  res_dev:@:x2.res_sub:@:x2.rab:@:IRV  
                  res_dev:@:x3.res_sub:@:x3.rab:@:@IRV  
                  res_dev:@:x3.res_sub:@:x3.rab:@:IRV  
                  res_dev:@:x4.res_sub:@:x4.rab:@:IRV  
                  res_dev:@:x4.res_sub:@:x4.rab:@:IRV

 globw:@:globwidth:@:IRV  
 locwidth:@:r1:@:IRV 
 locwidth:@:r2:@:IRV  
 locwidth:@:x1.width:@:IRV
 locwidth:@:x2.width:@:IRV  
 locwidth:@:x3.width:@:IRV
 locwidth:@:x4.width:@:IRV  

               status           alter#       
     
  1.00000e+00 1.00000e+01      1.00000e+01      1.00000e+01 
 1.00000e+01      1.00000e+01      1.00000e+01 
 1.00000e+01      1.00000e+01      1.00000e+01
 1.00000e+01      1.00000e+01      1.00000e+01  
 1.00000e-06      1.00000e-07      1.00000e-07  
 1.00000e-07      1.00000e-07      1.00000e-07  
 1.00000e-07      
               1.0 1.0000000e+00  
  
  2.00000e+00 3.47526e+00 4.54263e-01      9.90365e+00 
 3.38531e+01 1.92688e+01 1.40765e+01    
 1.20268e+01      2.46670e+01      4.71569e+00  
 1.67953e+01 2.13505e+00     -1.27138e-01    
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 1.02848e-06 9.96426e-08      9.84000e-08    
 9.65996e-08      1.05238e-07      1.01065e-07   
 1.07936e-07      
               1.0 1.0000000e+00   
 
  3.00000e+00 2.04627e+01      1.45870e+01      1.16248e+01   
 8.74212e+00 7.04076e+00      1.77743e+01  
 -2.05886e+01 2.42788e+00      2.22087e+01  
 2.74557e+01 1.93586e+01 1.76029e+01  
 1.03292e-06 1.08333e-07      1.01669e-07   
 1.06247e-07 1.04484e-07      9.72494e-08  
  1.08387e-07      
             1.0               1.0000000e+00    

4.00000e+00 6.12805e+00 1.20906e+01 8.52608e+00      
 4.93741e+00      1.60211e+01      1.09779e+01   
 3.89823e+00      1.69714e+01      4.64658e+00 
 -9.45094e-01      1.06839e+01      1.47630e+01  
 9.93244e-07      1.02410e-07      9.43055e-08 
 1.05275e-07      1.07705e-07      8.09711e-08  
 1.09258e-07      
 1.0               1.0000000e+00

Application Considerations

Due to the combinations of variation specified in the variation block and the 
value of Normal_Limit, variations that are applied may be too large. This can 
make some circuits display abnormal behavior and produce unrealistic results 
for certain samples. This, in turn, can distort the summary statistics reported by 
HSPICE at the end of the Monte Carlo simulation. 
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Troubleshooting Monte Carlo-VB Issues

Troubleshoot this known issues as described in the following section:
■ Independent Random Variable Assignments

Independent Random Variable Assignments
Users may come across differences in the results following multiple Monte 
Carlo simulations without changing the SEED setting if they have made small 
changes to the netlist without actually changing the circuit. The following 
describes the way HSPICE assigns random values to the independent random 
variables to explain how those differences can arise.

Let two random variables be defined in case 1:

.Variation
  .Spatial_Variation
        Parameter a = N( )
        Parameter b = N( )
        Parameter Slope = 'a/50u'
        Parameter Pi = 3.14159265
        Parameter Angle = 'Pi*2*b'
R rmodel rsh=Perturb('Slope*sqrt(Get_E(x)* Get_E(x)+ Get_E(y)* 
Get_E(y)) \\
       *cos(Angle-atan(Get_E(y)/Get_E(x))-(Get_E(x)<0?Pi:0))')
  .End_Spatial_Variation
.End_Variation

Random variables a and b are used to calculate variations in sheet resistivity 
as a function of a resistor's coordinates.

Let case 2 have four random variables defined:

.Variation
  .Spatial_Variation
        Parameter a = N( )
        Parameter b = N( )
        Parameter c = N( )
        Parameter d = N( )
        Parameter Slope = 'a/50u'
        Parameter Pi = 3.14159265
        Parameter Angle = 'Pi*2*b'
R rmodel rsh=Perturb('Slope*sqrt(Get_E(x)* Get_E(x)+ Get_E(y)* 
Get_E(y))\\
       *cos(Angle-atan(Get_E(y)/Get_E(x))-(Get_E(x)<0?Pi:0))')
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  .End_Spatial_Variation
.End_Variation

Random variables a and b are used in the Variation Block; c and d are not 
used.

During the Monte Carlo sweep, a pseudo random number generator creates an 
array of random values (Random1, Random2,...,RandomN) and assigns 
them to each an independent random variable.

    In case 1, the random number assignment is:

 Monte=1 -- a=Random1 b=Random2
  Monte=2 -- a=Random3 b=Random4  
   ...
  Monte=N -- a=Random2N-1 b=Random2N

   In case 2, the random number assignment is:

  Monte=1 -- a=Random1 b=Random2 c=Random3 d=Random4
Monte=2 -- a=Random5 b=Random6 c=Random7 d=Random8

    ...
  Monte=N -- a=Random4N-3 b= Random4N-2 c=Random4N-1 d=Random4N

Here, although Random1 through RandomN are the same in both cases, the 
sequence of assignment to independent random variables differs. Hence, the 
individual samples of a (or b) differ between the two simulations. As a 
consequence, at low sample numbers the difference in the standard deviation 
(sigma) of the distributions of a (or b) might be quite large. For higher sample 
numbers, the differences get smaller, according to the general convergence 

rate of Monte Carlo results of  where  is the number of samples.

Because a pseudo random number generator is used in HSPICE, repeated 
simulations generate the same set of statistical results for a given set of 
independent random variables. The user can change the random number 
sequences at each run by defining in the Variation Block:  
where  is an integer between one and twenty.

In the traditional Monte Carlo style, this is the similar setting to:

.option seed=val

When using Monte Carlo simulation, you should keep in mind that there is 
always uncertainty associated with this method in the relationship of one 
sample to the overall population.

1

n
------- n

Option Stream val=

val
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26Mismatch Analyses

Describes the use of DC and AC mismatch analyses in HSPICE.

DCMatch and ACMatch analyses are efficient techniques for computing the 
effects of variations on a circuit's DC or AC response. The variation definitions 
are taken from the Variation Block or from the traditional format (commonly 
known as “AGAUSS” format). Both methods are small signal analyses, similar 
to noise analysis. Unlike the traditional Monte Carlo analysis, these methods do 
not rely on sampling, and are therefore significantly faster. The Monte Carlo 
results converge to those from DCMatch or ACMatch analysis for a large 
number of samples, provided that the circuit characteristics are close to linear 
in the parameter perturbations. Matching analyses are supported with the 
Variation Block format and the AGAUSS style.

DCMatch and ACMatch analyses are affected by the control options specified 
in the Variation Block (see Control Options and Syntax in Variability Analysis 
Using the Variation Block).

HSPICE ships many examples for your use. See Variability Examples for paths 
to DC and AC mismatch demo files.

These topics are covered in the following sections:
■ Mismatch
■ DCMatch Analysis
■ ACMatch Analysis
■ Application Considerations
■ Mismatch Compared to Monte Carlo Analysis
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Variations in materials and processing steps are the source of differences in 
the characteristics of identically designed devices in close proximity on the 
same integrated circuit. These are random time-independent variations by 
nature and are collectively called mismatch. 

Mismatch is one of the key limiting factors in analog signal processing. It affects 
more and more circuit types as device dimensions and signal swings are 
reduced. Mismatch is a function of the geometry of the devices involved, their 
spatial relationship (distance and orientation), and their environment.

Figure 157 DCMatch and Monte Carlo Comparative Results

This chapter discusses the following mismatch analyses:
■ DCMatch Analysis
■ ACMatch Analysis
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DCMatch Analysis

To observe the effects of variation on the DC response of a circuit, you can use 
a method called DC mismatch (DCMatch) analysis. 

In DCMatch analysis, the combined effects of variations of all devices on a 
specified node voltage or branch current are determined. The primary purpose 
is to consider the effects of Local variations (that is, for devices in close 
proximity). DCMatch analysis also allows for identifying groups of matched 
devices (that is, devices that should be implemented on the layout according to 
special rules). A secondary set of results is calculated from the influences of 
Global and Spatial Variations, which is useful for investigating whether their 
effects on circuit response are much smaller than the effects of Local 
variations, when optimizing a design.

DCMatch analysis is based on the following dependencies and assumptions:
■ Variations in device characteristics are modeled through variations in the 

underlying model parameters.
■ Effects on a circuit’s DC solution are small and can be modeled as a linear 

combination of the variations in the random variables.

In HSPICE, the variations in model parameters are defined in the Variation 
Block (see Chapter 24, Variability Analysis Using the Variation Block). Those 
definitions are used to calculate the variation in DC response. DCMatch 
analysis runs either from a default operating point or for each value of the 
independent variable in a DC sweep. The default output is in the form of tables 
containing the sorted contributions of the relevant devices to the total variation, 
as well as information on matched devices. In the current implementation, a 
heuristic algorithm makes a best guess effort to identify matched devices. This 
means that the results are suggestions only. In addition to the table, the total 
variation and contributions of selected devices can be output using .PROBE 
and .MEASURE commands.
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.DCMatch OUTVAR [THRESHOLD=T] [FILE=string] [INTERVAL=Int] 

Note: If more than one DCMatch analysis is specified per simulation, 
only the last statement is used. 

Example 1
In this example, HSPICE reports DCMatch variations on the voltage of node 9, 
the voltage difference between nodes 4 and 2, on the current through the 
source VCC, and the current through resistor x1.r1.

.DCMatch V(9) V(4,2) I(VCC) I(x1.r1)

Example 2
In this example, the variable XVal is being swept in the DC command from 1k 
to 9k in increments of 1k. DCMatch variations are calculated for the voltage on 
node out. Tables with DCMatch results are generated for the set XVal={1K, 4K, 
7K, 9K}.

.DC XVal Start=1K Stop=9K Step=1K

.DCMatch V(out) Interval=3

Parameter Description

OUTVAR One or more node voltages, voltage differences for a node pair, currents through an 
independent voltage source or a resistor. 

THRESHOLD Report devices with a relative variance contribution above Threshold in the summary 
table. 
■ T=0: reports results for all devices
■ T<0: suppresses table output; however, individual results are still available 

through .PROBE or .MEASURE statements. 
The upper limit for T is 1, but at least 10 devices are reported, or all if there are less than 
10. Default value is 0.01.

FILE Valid file name for the output tables. Default is basename.dm# where “#” is the usual 
sequence number for HSPICE output files. 

INTERVAL Applies only if a DC sweep is specified. Int is a positive integer. A summary is printed at 
the first sweep point, then for each subsequent increment of Int, and then, if not already 
printed, at the final sweep point.
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DCMatch Table Output
For each output variable and sweep point, HSPICE generates a result record 
that includes setup information, total variations, and a table with the sorted 
contributions of the relevant devices. The individual entries are:
■ Sweep or operating points for which the table is generated
■ Name of the output variable
■ DC value of this output variable
■ Values used for DCMatch options 
■ Output sigma due to combined Global, Local, and Spatial variations

■ Results for Global variations (similar to the specifics of Local Variation)
■ Results for Local variations:

• Number of devices that had no local variability specified

• Output sigma due to Local variations

• Number of devices with local variance contributions below the threshold 
value and not included in the table

• Table with sorted device contributions

Contribution sigma (in volts or amperes). Values below 100 nV or 1 pA 
are rounded to zero to avoid reporting numerical noise.

• Contribution variance for th parameter (in percent)

The parameter “Threshold” applies to this column.

• Cumulative variance through th parameter (in percent)
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■ Results for Spatial variations are similar to the previous item, Local 
Variation.

Example: Simple Op-Amp and DCMatch Output Table Described

Figure 158 Simple Op-Amp
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Figure 159 Sample Output Table

The output table in Figure 159 shows the major sections of a table created by 
DCmatch analysis in the following order:
■ The DCmatch results from an operating point, for the node called “out”, 

which has an operating point voltage of 1.25 V.
■ The standard deviation (sigma) of the variation on the specified output, due 

to combined global and local variations.
■ A section with detailed results for the global variations. First is the output 

sigma due to global variations.
■ The contribution of the different variables and device parameters, as 

specified in the Variation Block. 

Note: The sum of squares of the contribution sigmas adds up to the 
square of the total output sigma.

■ The results for the contribution and cumulative variance are reported as 
percent of the total variance (which is the square of the total output sigma). 
In the example shown, the variation in Vth0 for the model snps20p is the 
largest contributor to the variation of the output.

Output sigma due to global and local variations = 619.62uV

DCMATCH GLOBAL VARIATION
Output sigma due to global variations =  289.66uV
---------------------------------------------------------
Contribution  Contribution Cumulative    Independent    
Sigma(V)      Variance (%)   Variance (%)  Variable       
227.94u        61.92          61.92        snps20p:@:u0
139.48u        23.19          85.11        snps20p:@:vth0
109.93u        14.40          99.51        snps20n:@:u0
20.19u       485.62m        100.00        snps20n:@:vth0

DCMATCH LOCAL VARIATION
Output sigma due to local variations =   547.74uV
----------------------------------------------------------
Contribution  Contribution Cumulative    Matched  Device
Sigma(V)      Variance (%)  Variance (%)  pair     Name 
297.91u        29.46         29.46        1        mn1
296.38u        29.16         58.61        1        mn2
252.37u        21.14         79.75        2        mp3
246.91u        20.23         99.99        2        mp4
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■ The detailed results for local variations, starting with the output sigma due 
to local variations.

■ The contribution of the different devices. A column with matched pair 
information indicates that mn1 and mn2 are matched, as well as mp3 and 
mp4. The layout of these devices should be checked for conformity to 
established matching rules.

The table also includes a suggestion on matched devices that should be 
verified independently. Devices with the same number in the column “Matched 
pair” are likely to be matched. Their layout should be reviewed for conformity to 
established matching rules.

Figure 160 DCMatch and Monte Carlo

HSPICE Ignores Limit Distributions in DCMatch 
HSPICE calculates the output sigma using the following equation:

In addition to this equation, DCMatch assumes that the metric is differentiable 
because it is calculus-based. The Limit function is often used to drive 
conditional statements. This makes the metric non-differentiable.
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The current mismatch implementation ignores limit distributions in DCmatch.

The advantages of DCMatch are (a) it is fast, and (b) results are expected to be 
close to what one would get with Monte Carlo. In the case of the limit 
distribution, condition (b) is likely to be violated. To avoid listing improper results 
for DCMatch, HSPICE issues a warning message and ignores DC/ACMatch if 
variations have limit distributions.

Output Using .PROBE and .MEASURE Commands
Depending on the output variable specified on the .DCMatch command, 
results produced by DCMatch analysis can be saved by using .PROBE 
and .MEASURE commands (see syntax and examples that follow). If multiple 
output variables are specified, a result is produced for the last variable only. A 
DC sweep needs to be specified to produce these kinds of outputs; a single 
point sweep is sufficient.

The keywords available for saving specific results from DCMatch analysis are:

Syntax for .PROBE Command for DCMatch
A .PROBE statement in conjunction with .OPTION POST creates a data file 
with waveforms that can be displayed in WaveView.

Table 79 Keyword descriptions from DCMatch Analysis

Keyword Description

DCM_Total Output sigma due to Global and Local variations.

DCM_Global Output sigma due to Global variations.

DCM_Global(par) Contribution of parameter “par” to output sigma due to Global variations. 
Here, 'par' can be an independent variable or a model parameter.

DCM_Local Output sigma due to Local variations.

DCM_Local(dev) Contribution of device “dev” to output sigma due to Local variations.

DCM_Spatial Output sigma due to Spatial Variations.

DCM_Spatial(var) Contribution of independent variable “var” to output sigma due to Spatial 
Variations.
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.PROBE DC DCM_Total      

.PROBE DC DCM_Global

.PROBE DC DCM_Local

.PROBE DC DCM_Global(VariableName)

.PROBE DC DCM_Global(ModelType,ModelName,ParameterName)

.PROBE DC DCM_Local(InstanceName)

.PROBE DC DCM_Spatial

.PROBE DC DCM_Spatial(VariableName)

This type of output is useful for plotting the effects of mismatch as a function of 
bias current, temperature, or a circuit parameter.

Examples
In the first example, the contribution of the variations on vth0 (threshold) of the 
nmos devices with model SNPS20N is saved. In the second example, the 
contribution of device mn1 in subcircuit X8 is saved.

.Probe DCM_Global(nmos,SNPS20N,vth0)

.Probe DCM_Local(X8.mn1)

Syntax for .MEASURE Command
With .MEASURE statements, HSPICE performs measurements on the 
simulation results and saves them in a file with an *.ms# extension.

.MEAS DC res1 max DCM_Total

.MEAS DC res2 max DCM_Global

.MEAS DC res3 max DCM_Local

.MEAS DC res4 max DCM_Global(VariableName)

.MEAS DC res5 max DCM_Global(ModelType,ModelName,ParameterName)

.MEAS DC res6 max DCM_Local(InstanceName)

.MEAS DC res7 find DCM_Local at=SweepValue

.MEAS DC res8 find DCM_Local(InstanceName) at=SweepValue

.MEAS DC res9 max DCM_Spatial

.MEAS DC res10 find DCM_Spatial(VariableName) at=SweepValue

The keywords DCM_total, DCM_global, and DCM_local also support use 
of AGAUSS type macro models. For example:

.MEAS DC dcm_mn2 find DCM_local(xi82.xmn2.main) at=2

Example
In this example, the result systoffset reports the systematic offset of the 
amplifier, the result matchoffset reports the variation due to local mismatch, 
and the result maxoffset reports the maximum (3-sigma) offset of the 
amplifier.
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.MEAS DC systoffset avg V(inp,inn)

.MEAS DC matchoffset avg DCM_Local

.MEAS DC maxoffset param='abs(systoffset)+3.0*matchoffset'

DCMatch Example Netlist
An example netlist for running DCMatch analysis using a classic 8-transistor 
CMOS operational amplifier is available in the HSPICE demo directory as 
$installdir/demo/hspice/variability/opampdcm.sp.

In this netlist, device sizes are set up as a function of a parameter k, which 
allows for investigating the effects of the Global and Local Variations as a 
function of device size. The following lines relate to DCMatch analysis:
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...

.param k=2

...
mn1 net031 inn net044 nmosbulk snps20N L='k*0.5u' W='k*3.5u' M=4
mn2 net18 inp net044 nmosbulk snps20N L='k*0.5u' W='k*3.5u' M=4
mp3 net031 net031 vdda pmosbulk snps20P L='k*0.5u' W='k*4.5u' M=4
mp4 net18 net031 vdda pmosbulk snps20P L='k*0.5u' W='k*4.5u' M=4
...
.Variation
  .Global_Variation
     Nmos snps20N vth0=0.07 u0=10 %
     Pmos snps20P vth0=0.08 u0=8 %
  .End_Global_Variation

.Local_Variation
   Nmos snps20N vth0='1.234e-9/
sqrt(Get_E(W)*Get_E(L)*Get_E(M))' 

+ u0='2.345e-6/sqrt(Get_E(W)*Get_E(L)*Get_E(M))' %
         Pmos snps20P vth0='1.234e-9/
sqrt(Get_E(W)*Get_E(L)*Get_E(M))' 

+ u0='2.345e-6/sqrt(Get_E(W)*Get_E(L)*Get_E(M))' %
.Element_Variation

   R r=10 %
.End_Element_Variation

.End_Local_Variation
.End_Variation
...
.DCMatch v(out)
.dc k start=1 stop=4 step=0.5
...
.meas DC systoffset find V(in_pos,in_neg)  at=2
.meas DC dcmoffset find DCM_Local at=2
.meas DC maxoffset param='abs(systoffset)+3.0*dcmoffset'
.meas DC dcm_mn2 find DCM_Local(xi82.mn2) at=2
.meas DC gloffset find DCM_Global at=2
.option post
...

The DCMatch analysis produces four types of output from this netlist:
■ Table from operating point with k=2 in the output listing
■ Table from DC sweep for k=1 to 4 in file opampdcm.dm0
■ Waveform for output variation as a function of k in file opampdcm.sw0
■ In file opampdcm.sw0 for k=2:

• Values for systematic offset

• Output sigma due to Local Variation
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• 3-sigma amplifier offset

• Contribution of device mn2 to output sigma due to Local Variation

• Output sigma due to Global Variation

ACMatch Analysis

In ACMatch analysis, the combined effects of variations of device 
characteristics on the frequency response of a circuit are determined. The 
variation definitions are taken from the Variation Block. 

The main application for ACMatch analysis is in the simulation of circuits which 
are sensitive to parasitics or require matching of parasitics, for characteristics 
such as delays and power supply rejection.

ACMatch analysis takes the changes in frequency response due to variations in 
DC parameters (which affect operating point and low frequency response, as 
well as bias-dependent capacitors) and due to variations in AC parameters. 
Note that variation on the stimuli (voltage and current sources) can be specified 
on the DC and AC parameters, and both types are considered in the ACMatch 
analysis.

ACMatch analysis is similar to DCMatch analysis in that:
■ It is efficient compared to Monte Carlo analysis because there is no 

sampling involved.
■ Variations in component characteristics are modeled through variations in 

the underlying model parameters.
■ Effects on a circuit's DC solution are small, and can be modeled as a linear 

combination of the variation in independent random variables. This is 
relevant for ACMatch analysis because the changes in the DC solution 
affect the circuit's AC characteristics.

ACMatch analysis is specified with an AC analysis, which defines the 
frequencies for which the circuit is analyzed; this can be at single or multiple 
sweep points. At least one measure or other output statement is required for 
this AC analysis, and subsequently ACMatch analysis, to run. The primary 
output of ACMatch analysis is a table with the sorted parameter and device 
contributions.
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Parasitic Capacitor Sensitivity
ACMatch allows for calculation of virtual parasitic capacitor sensitivities whose 
nominal values are “zero” in the original design and that are not specified in the 
netlist. Such an analysis is useful for high precision (differential) analog circuits 
and switched capacitor filters, because they are quite sensitive to layout 
parasitics, but their values are not known at the pre-layout stage. 

In the following scenario, the parasitic capacity sensitivity feature can be useful. 

The design of a network usually begins with a study in which all the parasitic 
elements are neglected. Later, if needed, the network is re-simulated with the 
parasitic elements and its behavior compared with the original design. Such 
analysis is useful for high precision (differential) analog circuits and switched 
capacitor filters, because they are quite sensitive to layout parasitics, but their 
values are not known at the pre-layout stage. Just as DC and ACMatch are 
useful for identifying critical devices that can then be re-sized or their layout 
constructed carefully, designers can evaluate similar feedback about parasitic 
components.

The Virtual Capacitance table calculates such parasitic capacitor sensitivities 
whose nominal values are 'zero' in the original design.

Input Syntax
.ACMatch OUTVAR [THRESHOLD=T] [FILE=string][INTERVAL=Int]
+ [Virtual_Sensitivity=Yes|No]  [Sens_threshold=x]
+ [Sens_Node=(nodei_name,nodej_name),…,(nodem_name,noden_name)]

Parameter Description

OUTVAR Output Variable can be one or several output voltages, voltage differences,  branch current 
through an independent voltage source, or currents through a resistor, a capacitor, or an 
inductor. An identifier of the AC quantity of interest is followed by the voltage/current specifier:
■ M  magnitude
■ P     phase
■ R     real part
■ I       imaginary part
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If more than one ACMatch analysis is specified per simulation, only the last 
statement is executed.

Examples
.ACMatch VM(out) VP(out) IM(x1.r1) IP(x1.r1) IM(c1) IP(c1) 
.AC dec 10 1k 10Meg interval=10

When using the virtual sensitivity option Sens_Node, multiple name pairs are 
supported with a comma between node names, and between node name pairs.

.ACmatch v(out)  virtual_sens=yes 
+ sens_node= (out, xi82.net044), 
+ (0,out), (xi82.net044,xi82.net031)  sens_threshold=1e-6

ACMatch Table Output
For each output variable and sweep point, HSPICE generates a result record in 
a file with default extension .am#. This file includes setup information, a main 
result with the total variations, and two tables. One table includes the sorted 
contributions of the relevant devices and parameters, and the other table 
includes virtual capacitance data.

THRESHOLD Report devices with a relative variance contribution above Threshold in the summary table.
■ T=0: reports results for all devices
■ T<0: suppresses table output; however, individual results are still available 

through .PROBE or .MEASURE statements. 
The upper limit for T is 1, but at least 10 devices are reported, or all if there are less than 10. 
Default: 0.01.

FILE Valid file name for the output tables. Default is basename.am# where “#” is the usual 
sequence number for HSPICE output files. 

INTERVAL Relates to the associated AC sweep. Int is a positive integer. A summary is printed at the first 
sweep point, then for each subsequent increment of Int, and then, if not already printed, at 
the final sweep point.

Virtual_Sensitivity Invokes ACmatch computation and output of virtual sensitivity. 
Default: Yes

Sens_Threshold=x Only nodes with sensitivity above x are reported. At least 10 sensitivities (or all) are displayed. 
This avoids generation of null output if you specify too large a value for x. Default: 1e-6

Sens_Node Output all sensitivities associated with the requested nodes. The node name should appear 
in pairs. (See examples below.)

Parameter Description
HSPICE® User Guide: Basic Simulation and Analysis 899
K-2015.06



Chapter 26: Mismatch Analyses
ACMatch Analysis
The individual entries for the mismatch table include:
■ Frequency sweep value
■ Name of the output variable
■ AC magnitude of this output variable
■ ACMatch option values
■ Number of devices which had no variability specified
■ Output sigma values due to combined Global and Local Variations
■ Result for Global Variations
■ Contributions of parameters to Global Variations
■ Results for Local Variations
■ Contributions of devices to Local Variations

The entries in the different columns correspond to those described in the 
section on DCMatch Table Output on page 889.

To avoid printing unreliable results due to precision issues, phase output is not 
available in the table if the associated magnitude of the same variation type is 
less than 1 uV for voltage or 1 nA for current output. A warning is printed 
instead.

The entries for the virtual capacitance table include:
■ The output value is printed with Re and Im components regardless of the 

request on the ACMatch command.
■ The section header is a virtual capacitance table (per femto farad).
■ The sensitivities are multiplied by 1e-15. This is the “natural” unit for 

measuring typical parasitic capacitors in nanometer technologies.

Example 1 (Parasitic Capacitance Sensitivity)
1 ****** HSPICE -- B-2008.09-TST 32-BIT (May 23 2008) sunos ******
              
 ******  AC mismatch analysis             tnom=  25.000 temp=  25.000
frequency =  1.00000D+03 
===============================================================
output = v(out) node voltage =      1.82kV threshold = 1.000E-02
perturbation =  2.00     interval = 1 virtual_sensitivity =  yes
sensitivity_threshold = 1.000E-06
Output  1-sigma due to total variations = 148.43 V
ACMATCH LOCAL VARIATION
   15 Devices had no Local Variability specified
Output  1-sigma due to local variations =   148.43 V
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    1 Devices with Local Contribution Variance larger than Threshold
 ---------------------------------------------------
 Contribution       Contribution       Cumulative    Device
         
  1Sigma(V)         Variance (%)       Variance (%)       Name       
    
 148.43           100.00            100.00         xi82.ccomp
 745.32m            2.52m           100.00            c1
   4.82m          105.39n           100.00            c0
----------------------------------------------------
 Virtual capacitance table (per femto farad)
sens(real)      sens(imaginary)     (nodei, nodej)
 196.06u         208.38u            (out, xi82.net058)
 196.04u         208.40u            (out, xi82.net18)
-191.73u        -203.47u            (out, xi82.net031)
   7.29u           8.21u            (xi82.net031, xi82.net18)
   7.31u           8.19u            (xi82.net031, xi82.net058)
   3.63u           4.19u            (in_pos, xi82.net18)
   3.64u           4.18u            (in_pos, xi82.net058)
   3.69u           4.05u            (xi82.net18, xi82.net0148)
   3.70u           4.04u            (xi82.net0148, xi82.net058)
   3.69u           4.05u            (gnda, xi82.net18)
   3.69u           4.05u            (vdda, xi82.net18)
   3.69u           4.05u            (xi82.net18, 0)
   3.69u           4.05u            (in_neg, xi82.net18)
   3.70u           4.04u            (gnda, xi82.net058)
   3.70u           4.04u            (vdda, xi82.net058)
   3.70u           4.04u            (xi82.net058, 0)
   3.70u           4.04u            (in_neg, xi82.net058)
   3.64u           4.06u            (xi82.net044, xi82.net18)
   3.65u           4.06u            (xi82.net044, xi82.net058)
   1.38u           1.52u            (out, xi82.net044)
 171.31n         202.01n            (out, 0)
 -12.88n          17.84n            (xi82.net031, xi82.net044)
***   ACmatch end for this simulation***

Note that the sensitivities of the last two rows are smaller than the threshold. 
However, they are still printed because these nodes are selected with the 
option sens_node = (0,out) (xi82.net044,xi82.net031).

Example 2 (Sensitivity Not Calculated)
frequency =  1.00000D+06
===============================================================
output = v(out) node voltage = 1.87 V threshold = 1.000E-02
 perturbation =  2.00     interval = 1   virtual sensitivity = no

 Output  1-sigma due to Global and local Variations = 48.68mV
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 ACMatch GLOBAL VARIATION
   10 Devices had no Global Variability specified
 Output  1-sigma due to Global Variations =  46.97mV
--------------------------------------------------------------- 
Contribution      Contribution           Cumulative               Independent    
  1Sigma(V)         Variance (%)        Variance (%)       Variable    
  38.89m              68.57                 68.57             snps20n:@:vth0
  15.78m              11.28                 79.85             snps20p:@:vth0
  15.08m            10.31               90.16             snps20n:@:tox
  14.56m            9.61              99.77             snps20n:@:u0
   1.80m          146.80m             99.91             snps20p:@:u0
   1.38m            86.49m             100.00             snps20p:@:tox

 ACMatch LOCAL VARIATION
    6 Devices had no Local Variability specified
 Output  1-sigma due to Local Variations =    12.79mV
    7 Devices with Local Contribution Variance larger than Threshold
 --------------------------------------------------------------
 Contribution       Contribution       Cumulative         Device         
  1Sigma(V)         Variance (%)       Variance (%)       Name           
   7.43m             33.77               33.77     xi82.mn7
   6.26m             23.97               57.73     xi82.mp4
   6.20m             23.53               81.26     xi82.mp3
   4.87m             14.49               95.75     xi82.mn8
   1.53m              1.43               97.18     xi82.mn2
   1.49m              1.36               98.54     xi82.mn1
   1.40m              1.20             99.74         r1
 563.27u            193.90m              99.93     xi82.mp5
 239.10u             34.94m              99.97 xi82.rcomp
 184.24u             20.75m              99.99     xi82.mn6

Output from .PROBE and .MEASURE Commands for ACMatch
The syntax of .MEASURE and .PROBE commands for ACMatch analysis is 
similar to the syntax for DCMatch analysis.

Syntax for .PROBE Command
A .PROBE statement in conjunction with .OPTION POST creates a data file 
with waveforms that can be displayed in WaveView.

.PROBE AC ACM_Total

.PROBE AC ACM_Global

.PROBE AC ACM_Local

.PROBE AC ACM_Global(VariableName)

.PROBE AC ACM_Global(ModelType,ModelName,ParameterName)

.PROBE AC ACM_Local(InstanceName)
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Syntax for .MEASURE Command
With .MEASURE statements, HSPICE performs measurements on the 
simulation results and saves them in a file with a *.ma# extension.

.MEAS AC res1 max ACM_Total

.MEAS AC res2 max ACM_Global

.MEAS AC res3 max ACM_Local

.MEAS AC res5 max ACM_Global(VariableName)

.MEAS AC res6 max ACM_Global(ModelType,ModelName,ParameterName)

.MEAS AC res7 max ACM_Local(InstanceName)

.MEAS AC res8 find ACM_Local at=SweepValue

.MEAS AC res9 find ACM_Local(InstanceName) at=SweepValue

Example
An example netlist for running ACMatch analysis using a classic 7-transistor 
CMOS operational amplifier is available in the HSPICE demo directory as 
$installdir/demo/hspice/variability/opampacm.sp. The following 
lines relate to ACMatch analysis:

.Variation
  .Global_Variation
      Nmos snps20N vth0=0.07 u0=10 %  tox=3 %
      Pmos snps20P vth0=0.08 u0=8 %   tox=3 %
  .End_Global_Variation
  .Local_Variation
      Nmos snps20N vth0='1.234e-9 sqrt(Get_E(W)*Get_E(L)*Get_E(M))' 

+ u0='2.345e-6/sqrt(Get_E(W)*Get_E(L)*Get_E(M))' %
+        tox='3.456e-6/sqrt(Get_E(W)*Get_E(L)*Get_E(M))' %

      Pmos snps20P vth0='1.234e-9/
sqrt(Get_E(W)*Get_E(L)*Get_E(M))' 

+ u0='2.345e-6/sqrt(Get_E(W)*Get_E(L)*Get_E(M))' %
+   tox='3.456e-6/sqrt(Get_E(W)*Get_E(L)*Get_E(M))' %

      .Element_Variation
          R r=10 %
      .End_Element_Variation
  .End_Local_Variation
.End_Variation
.ACMatch v(out)
.ac dec 1 1k 10Meg
.meas ac res1 find acm_local at=1k

In this example, ACMatch analysis runs at 1 kHz, 10 kHz, 100 kHz, 1 MHz, and 
10 MHz. After simulation, the results in opampacm.am0 show the contributions 
of devices and parameters, and their different relative importance for the 
different frequencies. The measurement result is printed in opampacm.ma0.
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Figure 161 Fully Differential Amplifier: Calculate Effect of Variations on Power Supply 
Rejection and Feedthrough
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Figure 162 Power Supply Feedthrough

Application Considerations
ACMatch analysis results match those of a small signal Monte Carlo Analysis. 
Discrepancies arise with certain test setups, if the operating point in Monte 
Carlo analysis varies by a large amount. For example, the output of an amplifier 
might saturate at one of the supply rails for some samples, if it is configured for 
high gain at DC. If such conditions exist, and the amplifier is used with the 
same gain configuration in the real application, then they point to issues which 
need to be investigated with DCMatch analysis and resolved first. Otherwise, 
the DC gain configuration of the amplifier needs to be changed in the test 
setup. 
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Mismatch Compared to Monte Carlo Analysis
DCMatch and ACMatch analyses use calculus of probability instead of 
sampling. The following table shows a comparison of the two types.

Supported Models with DCMatch and ACMatch
The following models are supported with DCMatch and ACMatch:
■ MOSFET: LEVEL 49/53, 54, 66, 69
■ BJT: 1,2, 6 and 8
■ R: LEVEL 1
■ C: LEVEL 1

Feature Mismatch Monte Carlo

Analysis type DC or AC AC, DC, Transient

Device/parameter contribution 
report

Yes Yes, with the HSPICE data mining flow

Relative run time Fast Slow

Accuracy Good Dependent on number of samples

Distributions Normal preferred Any

Variation result report Global, Local, Spatial, and 
Interconnect separate

Global, Local, Spatial, and Interconnect 
combined
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27Monte Carlo Data Mining

Describes the data mining capabilities of Monte Carlo results.

Running Monte Carlo simulations is expensive and the raw outputs may not 
provide sufficient insight into the circuit behavior or guidance on how the circuit 
could be improved. Usually, designers import the data into external tools for 
graphical and analytical analyses. The following describes techniques and files 
that provide post-processing capability within HSPICE itself.

The files described in this chapter are automatically generated with the 
Variation Block style description. Use .Option Sampling_Method=SRS (or 
one of the other choices) with the traditional AGAUSS style. See Using 
Traditional Variation Format with Advanced Sampling Methods in Monte Carlo 
in Chapter 25, Monte Carlo Analysis—Variation Block Flow.

For example cases and related *.mpp0 demo files, see Variability Examples.

The following sections discuss these topics:
■ Post-Processing of Monte Carlo Results
■ Standalone Data Mining in HSPICE
■ Large Scale Monte Carlo Simulation – Traditional and Variation Block

Post-Processing of Monte Carlo Results

The HSPICE data mining report, available in *.mpp# and *.annotate files, 
provides extensive data including statistical summary, correlated contribution of 
IRVs on elements, design corner samples, and design environment back-
annotation information.

HSPICE does post-processing on *.ms0 (*.ma0, *.mt0) and *.mc0 files, 
and generates output tables in a file with the suffix *.mpp#. After echoing the 
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options used for the simulation, the output is displayed in a set of tables which 
are grouped into two sections: a summary statistics section and a variable 
screening section.

The following sections discuss these topics:
■ Summary Statistics
■ Variable Screening
■ Corner Analysis - DC Monte Carlo/Transient Analysis
■ Back-Annotation — *.annotate File

Summary Statistics
The Summary Statistics section of the *.mpp0 file lists the number of sample, 
number of failures and a listing of responses with such a minor variation that 
they are dropped from further analysis. See the top section in Figure 163 on 
page 911. 

The subsections consist of:
■ Sample Moments and Robust Statistics
■ Sample Quantiles and Quartiles
■ Extremes and Corners

Note: The *.mpp0 file is generated with only a statistical summary in 
the case of the traditional flow (Monte Carlo simulation without 
the .OPTION SAMPLING_METHOD).

A sample summary statistics section is shown in Figure 163 on page 911 and 
Figure 164 on page 912.
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Figure 163 Summary statistics section of *.mpp0 file
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Figure 164 Summary statistics section of *.mpp0 file (continued)
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Sample Moments and Robust Statistics
The section called Sample Moments and Robust Statistics includes the sample 
mean, standard deviation, skewness, and kurtosis (Figure 165 on page 913).

The skewness and kurtosis are the third and fourth central moments of the 
data. Skewness is zero for symmetric distributions (like the normal distribution) 
and the normal distribution has a kurtosis of three. Significant departures from 
(0, 3) for the skewness and kurtosis indicate non-symmetry and departure from 
normality for the distribution. 

The median and MAD statistics are also reported in this section. These are the 
robust estimates of the mean and standard deviation, respectively. Unlike the 
mean and standard deviation, the median and mad are insensitive to 
outliers in the data. 

Figure 165 Sample moments section of the *.mpp0 file

Confidence Interval Levels
(F-2011.09-SP1) The Sample Moments section of the *.mpp0 file includes 
the confidence interval (CI) percentage on the top line of the section and as the 
first column in the Summary Statistics portion of the file.

Sample moments etc:                                                     

-------------------

(mad is a robust estimate of stdDev)                                    

mean      median    stdDev mad       skewness kurtosis

leakpwr 2.467e-05 2.443e-05 2.268e-06 2.090e-06   0.5364    3.5106 

systoffset1      1.448e-03 1.433e-03 1.129e-03 1.103e-03 4.546e-02   2.8158 

systoffset2      1.112e-03 1.104e-03 5.483e-04 5.345e-04 5.342e-02   2.8395 

systoffset3      9.241e-04 9.175e-04 3.625e-04 3.566e-04 6.209e-02   2.8618 

systoffset4      7.872e-04 7.818e-04 2.718e-04 2.675e-04 7.349e-02   2.8873
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A confidence interval is an interval in which a measurement or trial falls 
corresponding to a given probability. Bootstrapping is a computer-based 
method for assigning measures of accuracy to sample estimates. The process 
is as follows:

After running Monte Carlo with 20 samples, HSPICE produces a measurement 
output variable 'sysoffset1' with a set of values:

systoffset1 =
1.400e-03  1.254e-03 7.500e-04  4.476e-03  2.584e-03  9.569e-04 
6.650e-04  -1.410e-04 3.142e-03  1.753e-03 -1.695e-04 7.377e-04  
3.634e-03 -6.850e-04 1.632e-03  1.690e-03 6.391e-04-4.123e-04     
2.571e-03 2.506e-03

 The sample moments based on above samples are:

 mean median       stdDev mad skewness     
kurtosis systoffset1 1.449e-03 1.327e-03  1.383e-03 1.384e-03 
4.142e-01 2.397e+00

To calculate the confidence intervals of above moments, HSPICE resamples 
systoffset1's 20 results 500 times.

For each resample, HSPICE calculates the sample:
■ Mean
■ Median
■ stdDev
■ MAD
■ Skewness
■ Kurtosis

 Generate a histogram of these 500 moments, then pick out the 2.5th and 
97.5th percentiles. (This is the same as sorting the 500 moments and selecting 
the 12th~13th avg and 488th sorted moments. These percentiles do actually 
estimate the percentiles of the true distribution of moments.)

Take mean value for example: after the bootstrapping resampling method, the 
95% confidence interval of the mean is (9.060e-04, 2.041e-03), which means 
that you can be fairly confident that the true systoffset1 mean value is 
between (9.060e-04, 2.041e-03). 

Current limitations:
■ Resampling size is a fixed value (500 samples).
■ Confidence interval value is a fixed value (95%). 
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See Figure 166 on page 915 for listing of Confidence intervals (CI) in Summary 
Statistics section of the *.mpp0 file.

Figure 166 Confidence intervals recorded in Summary Statistics

Sample Quantiles and Quartiles
The sample quantiles and quartiles are displayed next (Figure 167 on 
page 916). These measures are also robust to outliers and provide better 
visibility into the distributional behavior in the tails. Quantiles are points taken at 
regular intervals from the cumulative distribution function (CDF) of a random 
variable. They are found by counting the number of samples that fall to the left 
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of the particular point in the empirical cumulative distribution function. Thus 25 
percent of the samples fall below the Q25 quartile. 

Figure 167 Quantiles section of the *.mpp0 file

Using the Other_Percentile Option
The Variation Block’s Option Other_Percentile provides you with the ability 
to specify quantiles lower than 1 percent. For example:

Quantiles:                                                              

----------

(Q50 is median, see above)                                              

Q01          Q05       Q25       Q75       Q95       Q99

leakpwr 2.032e-05 2.134e-05 2.311e-05 2.592e-05 2.865e-05 3.060e-05

systoffset1    -1.155e-03-3.790e-04 7.043e-04 2.200e-03 3.345e-03 4.006e-03

systoffset2    -1.263e-04 2.242e-04 7.511e-04 1.480e-03 2.039e-03 2.371e-03

systoffset3     9.488e-05 3.390e-04 6.867e-04 1.161e-03 1.528e-03 1.762e-03

systoffset4     1.603e-04 3.521e-04 6.086e-04 9.656e-04 1.246e-03 1.417e-03
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.Variation
Option Other_Percentile = percentile
.end_variation
.data percentile
       q
      0.001
      0.1
      0.25
      0.75
      0.9
      0.999
.enddata

This option allows you to help to see how much impact there is from trailing 
data points, or to count samples near the absolute minimum for a sample set. 
You can set Q to gauge the true population of values near or around the 
absolute minimum.

In this case, the data value range is (0<x<1.0). HSPICE issues a warning 
message if any values exceed the range and the data mining feature ignores 
these values. Because a data block can have more than one column, only the 
first column is processed when you use Option Other_Percentile.

You can also provide the percentile information as either a cumulative 
distribution or sigma values for the standard normal distribution.

Examples:

1. Option other_Percentile = list(0.0013, 0.0228, 0.1587, 
0.8413, 0.9772, 0.9987) or

2. Option other_Percentile = list_sigma(-3, -2, -1, 1, 2, 3)

The list_sigma keyword indicates that the percentiles are provided in terms 
of the standard normal distribution.

The following rows are added in the *.mpp0 file for user-defined percentiles; 
the confidence intervals are calculated and displayed, as well:
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.................
User Specified Quantiles:
----------
                Q(0.1%)    Q(10.0%)    Q(25.0%)    Q(75.0%)    
Q(90.0%)    Q(99.9%)
                2.5%        1.689e-05  2.177e-05  2.295e-05  
2.578e-05  2.750e-05
3.214e-05
leakpwr                     1.992e-05  2.196e-05  2.311e-05  
2.592e-05  2.780e-05
3.266e-05
                97.5%       2.010e-05  2.211e-05  2.322e-05  
2.609e-05 2.804e-05 
3.266e-05
                2.5%       -1.669e-03 -8.952e-05  5.768e-04  
2.114e-03  2.805e-03
4.402e-03
systoffset1                -1.620e-03  4.004e-05  7.043e-04  
2.200e-03  2.914e-03  
4.643e-03
                97.5%      -1.323e-03  1.139e-04  7.738e-04  
2.286e-03  3.045e-03 
4.643e-03
...............

Extremes and Corners
The minimum and maximum values for the measures, together with the sweep 
indices at which they occur, are given next (Figure 168 on page 918). 

Figure 168 Extremes and corners section of the *.mpp0 file

Extremes and corners:

---------------------

min          max       minIndex maxIndex

leakpwr          1.689e-05 3.409e-05   729       790    

systoffset1     -1.669e-03 5.049e-03   648       969    

systoffset2     -4.006e-04 2.865e-03   648       969    

systoffset3     -7.319e-05 2.075e-03   648       969 

systoffset4      4.285e-05 1.689e-03   648       661 
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Variable Screening
The table in this section is similar to the DC and ACMatch tables shown in 
Chapter 26, Mismatch Analyses. The contribution of each independent variable 
to the response variability is computed. HSPICE uses correlation to measure 
the variability contribution.

See Table 79 on page 893 for a listing and description of the column headings.

Variable Screening: Response and Important Elements/Models
By default, HSPICE uses the Pearson correlation coefficient for screening. See 
http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient. 
The Pearson correlation is a suitable measure when the responses are 
approximately linearly related to the dominant sources of variation. The more 
general Spearman rank correlation coefficient (see http://en.wikipedia.org/wiki/
Spearman%27s_rank_correlation_coefficient), which only requires monotone 
behavior, can also be used by specifying the Variation Block command Option 
Screening_Method=Spearman. The contributions from the independent 
variables are then aggregated to the element level and sorted by 
importance.Where possible, matched groups are identified. Careful layout 
techniques like common centroid can be used to reduce the influence of spatial 
variation and thermal/voltage gradients for matched groups. See Figure 169 on 
page 920.

Note: In cases where all variation contributions are smaller than 0.05%, 
at least 10 element variations are reported. 

HSPICE issues a warning noting that the results are below the 
cutoff point:

**warning** not all element variation contributions are above 
0.05%
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Figure 169 Response subsection of the Variable Screening portion of the *.mpp0 file

Important elements or models
The information in this section helps you focus on corner cases and extracts 
data on subcircuit encoding and selective simulation. 

Figure 170 Information to simulate corners

Response: systoffset1 

--------------------

Global Variation =  0.8%,  Local Variation = 99.2%,  IRV Variation =  0.%

Element Model EquivVar CumVar  W(nm)    L(nm)   MatchGrp Par  ID  Corr  ParVar

1:mn1   snps20n 30.8%   58.4%  1.39e+04 1.95e+03  1

vth0 ILN -0.425 18.0%

u0   ILN  0.360 12.9%

1:mn2   snps20n 27.6%   27.6%  1.39e+04 1.95e+03  1

vth0 ILN  0.428 18.3%
u0   ILN -0.306 9.3%

1:mp3   snps20p 21.7%   80.1%  1.79e+04 1.93e+03  2

vth0 ILN -0.356 12.6%

u0   ILN -0.302 9.1%

1:mp4  snps20p 17.9%   98.0%  1.79e+04 1.93e+03   2

vth0 ILN  0.314 9.8%

u0   ILN  0.284 8.0%

Subcircuit 
number

Identify matched 
groups

Pearson|Spearman
Screening_method = 

Important elements or models                                          

============================                                          

1:r0 snps20n 1:mn2 1:mn1 1:mp3 1:mp4  

subcircuit encoding                                                   

===================                                                   

Key Subckt

1: xi82  

Selective simulation                                                    

====================                                                    

To simulate corners only:                                              

Use: ... Monte = list(648, 729, 790, 969) 

Simulate these “corners” to validate
Robustness after device size changes
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Response Correlation Matrix
HSPICE computes the correlation between responses and removes highly 
correlated responses to lessen output file size.

Figure 171 Response Correlation matrix

Response Correlation matrix (%)                                 

===============================                                 

leakpwr systoffset1 systoffset2 systoffset3 systoffset4    

leakpwr 100.0        99.1        99.2        99.2        99.2     

systoffset1       99.1       100.0       100.0       100.0       100.0     

systoffset2       99.2       100.0       100.0       100.0       100.0     

systoffset3       99.2       100.0       100.0       100.0       100.0     

systoffset4       99.2       100.0       100.0       100.0       100.0     

Delete highly correlated variables                              

==================================                              

Deleting following responses:                                   

systoffset2 systoffset3 systoffset4 Compute correlation between 
responses, delete highly 

correlated responses to avoid 
output clutter
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Variable Screening Table Headings

Column 
Heading

Description

Element Name, if applicable.

Model Name of model.

EquivVar Normalized variance associated with an element or model; it is the sum of all local/global 
variation terms associated; uses normalized values for ease of comprehension. (Elements 
with EquivVar smaller than 0.05 percent are not reported.)

CumVar The elements and models ordered by their contribution and shown as cumulative 
contributions.

W Width of element in nanometers.

L Length of element in nanometers. 

MatchGrp Mainly for analog and SOC designs. The influence of spatial variation, including thermal 
and bias gradients, is reduced if devices with the same MatchGrp index are close together 
and in the same orientation on the layout, preferably common-centroid. The *.mpp0 file 
reports for all instance parameters for matched group MOSFETs for the following models: 
PSP/BSIM/BSIMSOI and instance parameters W and L for all other models. See 
Figure 172 on page 923.

Par Parameters associated with the raw correlations.

ID Form of variation (local, element, global, and so forth.)

ParVar Contents are related to the square of the Corr column and gives the equivalent normalized 
variance associated with the Corr column. The sum of this column is 100 percent if all 
sources of variation are displayed. The values in the Corr column are aggregated to the 
element level for local variation and to the model level for global variation. This drives the 
values in the left half of the table. (Parameters with ParVar smaller than 0.01 percent are 
not reported.) By default, HSPICE uses the Pearson correlation coefficient to calculate the 
ParVar items (you can optionally use the Spearman method, controlled by Variation Block 
Option Screening_Method).

The Pearson equations are:

Pearson correlation coefficient (default)

Spearman correlation coefficient, di = xi - yi 

xy cov X Y 
 x y

-----------------------
E X x–  Y y–  

 x y
-------------------------------------------------= =

 1
6 d

2
i

n n
2

1– 
----------------------–=
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Instance parameters listing for elements in match groups
Figure 172 on page 923 breaks out instance parameters for elements in match 
groups. 

Figure 172 Instance parameters for PSP/BSIM4/BSIMSOI models (top) and all other 
models — W and L instance parameters, only (bottom)

Corner Analysis - DC Monte Carlo/Transient Analysis
The HSPICE corner analysis solution combines a DC Monte Carlo run followed 
by a transient Monte Carlo trial with the corners extracted from the DC analysis. 
Corners are defined as the Monte Carlo samples that lead to extreme values of 
the measures. There are two "corners" for any measure, the min and the max. 

Rather than focus on only the min/max values, HSPICE enables selection of 
outlying values from the tails. These are specified as a fraction of the total 
sample size, for example, 0.1 percent. The more general corner definition is 
preferable to reduce design risk.

Corr The raw correlations are shown in the Corr column. These are associated with parameters 
in the Par column. Note: If the netlist has only one or more than 50 measure statements, no 
response correlation matrix is reported.

Column 
Heading

Description

Instance parameters for elements in match groups
================================================
The following are elements defined with PSP/BSIM4/BSIMSOI models.

1.mn1 l=1E-06 w=7E-06 pd=5.5E-07 ps=4.8E-07 ad=1.89E-14 as=1.4175E-14

1.mn2 l=1E-06 w=7E-06 pd=5.5E-07 ps=5.5E-07 ad=1.89E-14 as=1.89E-14

1.mn6 l=3E-06 w=1.8E-05 pd=7.5E-07 ps=8.5E-07 ad=2.835E-14 as=3.51E-14

1.mn8 l=3E-06 w=1.8E-05 pd=0.39 ps=5.4E-07 ad=9.45E-15 as=1.54E-14

1.mp3 l=1E-06 w=9E-06 pd=4.8E-07 ps=5.5E-07 ad=1.4175E-14 as=1.89E-14

1.mp4 l=1E-06 w=9E-06 pd=5.4E-07 ps=4.7E-07 ad=1.82E-14 as=1.365E-14

Instance parameters for elements in match groups
================================================
Element         W(nm)     L(nm)

1.mn6            1.8e+04  3.0e+03

1.mn8            1.8e+04  3.0e+03

1.mp3            9.0e+03  9.3e+02

1.mp4            9.0e+03  9.3e+02
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The following sections discuss these topics:
■ DC Monte Carlo Syntax
■ Syntax for Transient Monte Carlo
■ Example

DC Monte Carlo Syntax
.DC var1 type np start1 stop1 
+[SWEEP MONTE=MCcommand] [corner_percentile=val]

where: corner_percentile=val specifies the percentiles used to find 
corners. The value is a non-negative number in the range (0.0~0.5). For 
example, if value=0.1, then HSPICE sorts the measure results: the points 
below the 10th percentile and those above the 90th percentile are chosen as 
corners. If the value = 0.0, then HSPICE uses the maximum and minimum 
values as corners. The default is 0.0. The following chart explains the corner 
percentiles for a response variable that has a Gaussian distribution:

Figure 173 Bell-curve to determine corners

■ The dark blue zone at the center represents observations within one 
standard deviation on either side of the mean, which accounts for 68.2 
percent of the population. 

■ Two standard deviations from the mean (dark and medium blue) account for 
95.4 percent, and 3-sigma (dark, medium, and light blue) for about 99.7 
percent.

■ The sample points with 0.1 percent corner_percentile represent 
extreme points which have variations larger than 3.1-sigma.

If multiple DC measures use the corner_percentile option, the union of all 
the corners is used in the next transient simulation.
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When HSPICE finds corners during DC analysis:
■ HSPICE only generates *.ms# files to locate the corners during data 

mining. Other output files (*.sw0, *.pa0, and so forth) are not generated.
■ The *.lis file is simplified and no Monte Carlo-related information is 

printed.
■ Data mining files (*.mpp0 and *.annotate ), which are relatively small, 

are created. Large files such as *.mc0 are suppressed.

During DC Monte Carlo, a *.corner file is also generated with content as 
follows:

*====================
* corner percentile = value
*Selective simulation for extreme corners:
*Monte= list ( corner_number1, corner_number2, …, corner_numbern)
*Number of samples = K

Syntax for Transient Monte Carlo
.TRAN tstep1 tstop1 [tstep2 tstop2 ...tstepN tstopN]
+ [START=val] [UIC] [SWEEP MONTE=dc_corner]

where: dc_corner is a keyword for Monte Carlo simulation only. With this 
option, HSPICE reuses the corners generated in DC Monte Carlo and runs 
transient analysis with these corners as random values.
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Example

The following is a complete netlist to illustrate running a transient simulation 
with DC corners.

* run Tran simulation with DC corners
*.option mcfast 
.options POST OPTS LIST MODMONTE=1 numdgt=10 measdgt=10
.model nch  nmos LEVEL=54 TOXM=4E-9 wint=wint_nch VERSION=4.4
.param wint_nch = agauss ( 3e-7 , 1e-7   , 3.0 )

 m11  2 11  0  0  nch  W=1E-6   L=0.15E-6 dtemp=10
 m12  2 11  0  0  nch  W=1E-6   L=0.15E-6 dtemp=10
 m13  2 11  0  0  nch  W=1E-6   L=0.15E-6 dtemp=10
 v01   2    0    1.5
 v02  11    0    0.0 pulse (0 1 0 1n 1n 10n 20n)

.dc  v02  0   2.0   0.1   sweep monte=500 corner_percentile=0.001

.meas dc ids_1  find par('i(m11)*1E3')  at = 1.5

.meas dc ids_2  find par('i(m12)*1E3') at =1.5

.meas dc ids_3  find par('i(m13)*1E3') at =1.5

.tran 1n 1u sweep monte= dc_corner

.meas tran i1 find i(m11) at=1u

.meas tran i2 find i(m12) at=1u

.meas tran i3 find i(m13) at=1u

.end

Back-Annotation — *.annotate File
HSPICE provides a file that contains the key local variability contributors and 
matched pairs for display on the schematic in CustomDesigner. A simple 
tabular layout is provided for information exchange. For each response, there is 
the full hierarchic element name, the variability it contributes, and the Match 
Group value.

Standalone Data Mining in HSPICE

Sometimes, users create additional “measurements” outside HSPICE and wish 
these to be included in the data mining. This requires the new measurements 
to be formatted in additional files.
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You can enter the following on the command line to have HSPICE skip netlist 
readin, errchk, and simulation, and do standalone data mining:

hspice –datamining  -i  datamining.cfg [-o outname]

The configuration file content includes:
■ *comments/description
■ *Required records
■ .sampleFile input.mc0
■ .measFile input .mt0 input .mt0A input.mt0B …
■ .Option Screening_Method = Pearson | Spearman

■ .Option datamining_method = dp | scalar (the default value is 
scalar).

To perform standalone data mining with Monte Carlo in DP, the configuration 
file only needs to include the following lines:

.option datamining_method = dp

.measfile  output_dp

Incremental Monte Carlo Simulation in Standalone Data 
Mining Mode
HSPICE now provides solution to reuse previous Monte Carlo results and 
perform data mining in an incremental mode. You only need to indicate the 
location of the results after several runs; the standalone data mining merges 
these results to report new data mining results.

HSPICE provides two ways of running Monte Carlo, one in scalar mode and the 
other in DP mode. It stores their measure results in different ways. For 
example, in DP mode, the measure files are usually stored in *_dp/worker*/
. With the enhanced standalone data mining, HSPICE automatically finds these 
measure files and merges them to perform the data mining.

To use the merging mode, use the following syntax:

Scalar mode:

.measfile -merge output1.mt0, output2.mt0,…., outputn.mt0

DP mode:

.option datamining_method = dp
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 .measfile -merge output1_dp/, output2_dp/ … outputn_dp/

The new keyword -merge helps HSPICE to distinguish the merging mode from 
the previous ADE mode. It indicates that all the measure outputs need to be 
merged before data mining.

With the option dp, HSPICE uses the *_dp/ paths to find the measure results. 
The measure results can be stored in either raw data mode (*.mt0 files) or 
compressed mode (*.ecdf.gz). Data mining automatically identifies the raw/
compressed modes and processes the data accordingly.

The following flow diagram illustrates how incremental Monte Carlo works in 
HSPICE.

Note: To run incremental MC, you should set unduplicated samples 
between each runs.
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In scalar mode, the HSPICE data mining algorithm can identify 
duplicated samples and process them correctly. In DP mode, 
HSPICE displays a warning message and stops data mining, 
when duplicated samples are detected.

Large Scale Monte Carlo Simulation – Traditional and 
Variation Block

High replication circuits require small failure probability. The circuits include bit 
cells, sense amps, and digital standard cells (flip-flops and latches). Low 
probability of failure means high sigma simulation. However, collecting data and 
statistical analysis with one billion samples is expensive in disk space, memory, 
and computing time. HSPICE supports Monte Carlo simulation up to one billion 
samples. 

Setup Syntax:

.Variation
Option Large_Scale_MC=Yes

.End_Variation

The statistical results are printed to the *.mpp file only. In addition to the 
regular information, you also can find the tail samples and values for the 
measured variables.

Measuring Output in Histogram Format:
To save disk space while streamlining statistical analysis, by default, there is no 
*.mt# (*.ms#, *.ma#) file generated. One extra *.hmt#.csv 
(*.hms#.csv, *.hma#.csv) file is created to display the distribution shape 
(histogram table) of each measure variable. This means measure results are 
stored and displayed in a compact format.

Plotting the Histogram in an Excel Spreadsheet:
To display the histogram with an Excel sheet, follow these steps:

1. Delete the title lines.

2. Select the whole columns of *_count.

3. Choose Insert > line, then this histogram was drawn; you can select several 
*_count columns and draw the histogram in the same plot.

4. The column of measure variables are response to the x-axis of the 
histogram.
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Limitations and Assumptions:
The following limitations and assumptions apply to large scale Monte Carlo 
(LSMC):
■ Running LSMC with ALTER statements is not recommended because the 

results are not reliable. When ALTER and Monte commands are in the 
netlist, DP will parallelize only the ALTER blocks.

■ To verify LSMC results with the LIST command for specific samples, set the 
following options in the netlist;

• .Variation

• Option Use_Agauss_Format = Yes

• Option Random_Generator = MCG

• .End_Variation

These options ensure the both the sampling method (SRS in this case) and 
the pseudo random number generator (MCG) are matched between LSMC 
and Monte=LIST() runs.
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28DC Sensitivity Analysis and Variation Block

Describes enhanced sensitivity analysis in HSPICE focusing on DC simulation 
using Variation Block.

DC sensitivity analysis allows you to do the following tasks:
■ Compute sensitivity of a model parameter. 
■ Compute parameter sensitivity of many more models than the traditional 

HSPICE .SENS command.
■ Generate sensitivity for .PROBE and .MEASURE output commands.
■ Generate sensitivity for DC sweeps. 

DC sensitivity analysis is supported in conjunction with a single DC sweep, or 
DC sweep and Monte Carlo.

Note: HSPICE ships numerous examples for your use. See Listing of 
Demonstration Input Files for paths to demo files.

This chapter covers the following topics:
■ Sensitivity Block Using the Variation Block Construct
■ Input Syntax

Sensitivity Block Using the Variation Block Construct

The Variation Block serves as the default sensitivity block. In other words, the 
DC sensitivity analysis calculates the sensitivity for model and element 
parameters, which are specified in the Variation block. 
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Sensitivity to Local Variations
Sensitivity is reported by varying one parameter on one device at a time. So it 
is identified by device and parameter: 

where,  is the device and  is the parameter.

Sensitivity to Global Variations
Sensitivity is reported for varying one parameter simultaneously on all devices. 
So it is identified by model type, model, and parameter according to this 
equation:

where  loops over all devices with the same model type  and model .  
is the parameter.

Input Syntax

.DCSENS Output_Variable [File=string] [Perturbation=x]
+ [Interval=SweepValue] [Threshold=x] [GroupByDevice=0|1]

Here, Output_Variable is the response with respect to the parameters 
designated in the Sensitivity Block. It can be a node voltage or branch current 
in the circuit. 

Argument Description

Output_Variable Response with regard to the parameters designated in Sensitivity Block. Similar to 
the .DCMATCH command, the Output_Variable can be a node voltage or a branch 
current in the circuit. 

File=string Valid file name for the output tables. Default=basename.ds# where “#” is a number 
in the style of ds0, ds1, and so on. If multiple dcsweep commands are specified in 
the netlist, then the sensitivity analysis table results for each dcsweep are listed in 
*.ds# files. If .OPTION OPFILE is specified, sensitivity result tables on operating 
points are listed in *.dp# files. Otherwise, these tables are in the *.lis file.

Perturbation=x Perturbations of x standard deviation used in computing the finite difference 
approximations to device derivatives. The valid range for the parameter is 0.0001 to 
1.0; default =0.05.

SENS_Local p1 k 

k p1

SENS_Global T M p1   SUMkSENS_Local p1 k =

k T M p1
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Interval=SweepValue Positive integers for SweepValue. This option only applies to one-dimensional 
sweeps. A summary is printed at the first sweep point, and for each subsequent 
increment of SweepValue. The Interval key is ignored with a warning if a sweep is 
not being carried out. The option only controls the printed summary table. The 
analysis may be carried out at additional sweep values if required by other forms of 
output such as .PROBE and .MEASURE commands.

Threshold=x Minimum value for reporting of absolute sensitivity. Only devices with absolute 
sensitivity value above x are reported. Results for all devices are displayed if 
Threshold=0 is set; default=10u. 

GroupByDevice = 0|1 ■ 0: (Default) Alternate mode of generating sensitivity result tables
■ 1: Table form follows the .SENS command output.

Argument Description
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29Exploration Block

Describes the use of the Exploration Block in HSPICE.

The Exploration Block addresses the need to study the behavior and 
sensitivities of circuits to come up with an optimum design. During this early 
design phase, you may want to explore ranges of device sizes for a given circuit 
topology. The Exploration Block feature allows you to describe a set of 
experiments with different geometries, without changes to the original netlist.

The Exploration Block is closely related to the Variation Block with external 
sampling (see Chapter 24, Variability Analysis Using the Variation Block).

HSPICE ships hundreds of examples for your use; see Chapter 33, Running 
Demonstration Files for paths to demo files.

Topics:
■ Exploration Block Functions
■ Usage Guidelines
■ Flow Using an External Exploration Tool
■ Exploration Block Structure
■ Export File Syntax
■ Execution of Exploration in HSPICE
■ Exploration Data Block Syntax
■ Exploration and Variation Block Interactions
■ Limitations
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Exploration Block Functions

The Exploration Block extracts the parameters suitable for exploration from a 
netlist, and thus it eliminates parsing by the Exploration tool. The parameters 
are presented in a normalized format. This solution eliminates the exploration 
tool’s need to rewrite the netlist with new parameter values. Use of the 
Exploration Block returns only the updated values of the parameters which 
need to be changed in the course of a set of exploration simulations. HSPICE 
finds all the places where they need to be applied. 

The Exploration Block contains a section with options and constraints, and it 
may include a data block with instructions on how to change certain parameters 
on individual devices or device groups. The data block must be created outside 
the simulator, based on information from the simulator and considerations 
specific to the particular design, possibly from an optimization program.

Usage Guidelines

To accommodate time restriction, exploration needs to be applied in an 
organized manner, with the smallest number of unrelated variables. A good 
approach for best results (partial and full matching) is to consider that 
integrated circuits are built with hierarchy, and that known relationships exist 
between devices. In essence, your knowledge about the circuit is encapsulated 
in the way exploration is carried out. Experience with optimization tools has 
shown that exploration methodology is crucial for your success, but is often 
difficult to set up correctly.

Multiple Instantiations of the Same Cell or Subcircuit
In a typical design process, a large circuit is assembled from cells out of 
existing libraries. Each cell has different descriptions, for different applications: 
subcircuit, layout, behavioral model, etc. The circuit netlist describes how the 
cells are connected with other cells, and it contains a description of their 
content. Exploration of HSPICE is currently restricted to the hierarchical mode 
only. 

In the hierarchical mode, exploration is cell-oriented, meaning that all 
instantiations of a particular cell are affected the same way. With this usage 
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 identical 
model, if you wish to explore separate instantiations of the same cell in a 
different manner, then you need to create new cell names with their content 
definitions repeated, before exploration can start. This renaming needs to be 
done anyhow for the final design, if you accept new device sizes coming out of 
the exploration because a basic rule of a circuit description is that multiple cell 
definitions with same name (and possibly different content) are not allowed.

Specifying Relationships between Devices
The following relationships between different devices can be specified in the 
Exploration Block to force matching:

  device1Property1=expression of device2Property1

Such expressions reduce the number of variables for exploration because 
derived properties are processed inside of HSPICE. These relationship rules 
will be applied to all the devices subject to exploration. Therefore even if no 
change is requested from the Exploration tool, HSPICE executes these rules. 
So, if for example the lengths of devices opamp.mn1 and opamp.mn2 are 
different in the netlist, they will be the same in a simulation which contains an 
Exploration Block with the rule that they should be the same.

A simplified syntax expresses relationships of a whole set of device properties. 

Examples:

Specifying Relationships between Device Properties
The following relationships can be specified to cover appropriate scaling of 
secondary properties on the same device:

deviceProperty2=expression of deviceProperty1. 

Example
 ad='120n*W' as='120n*W' ps='240n+W' pd='240n+W'

length(opamp.mn1)=length(opamp.mn2)

opamp.mp4=opamp.mp3 mp4 will be identical to mp3, in all properties

bias.mn5=2*bias.mn6 mn5 consists of 2 devices in parallel, which are
to mn6
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Subcircuits and Elements Supported for Exploration
The exploration feature is primarily designed for design work on integrated 
circuits in CMOS technology. Exploration is supported for the following 
subcircuits and elements: 
■ Independent sources: DC value
■ MOS devices: W, L, M, dtemp
■ Resistors: R or W, L, M, dtemp
■ Capacitors: C or W, L, M, dtemp

When designing circuits, the multiplicity factor M is always a positive integer, but 
the Exploration tool can request arbitrary positive values.

To preserve relationships which have been previously defined through 
expressions, exploration can only be applied to parameters which are defined 
with numerical values. 

Example1
m1  out  in1 vdd vdd pch w=wp  l=100n m=3

Exploration can be applied to element parameters l and m, but not to w directly.

Example 2
subckt nand  in1  in2 out  wp=100n wn=50n len=100n
 m1  out  in1 vdd vdd pch w=wp  l=len
 m2  out  in2 vdd vdd pch w=wp  l=len
 m3  out  in1 mid gnd nch w=wn  l=len
 m4  mid  in2 gnd gnd nch w=wn  l=len
.ends nand

Exploration can be applied to subcircuit parameters wp, wn, and len. The 
application envisioned here is for leaf cells with programmable layout: separate 
width and common length of pmos and nmos devices. 
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Example 3
.subckt onebit  in1  in2  carry-in  out  carry-out
 x1  in1   in2  7  nand
 x2  in1   7     8  nand  wp=100n  wn=100n
 x3  in2   7     9  nand  wp=300n  wn=150n
.ends onebit
subckt nand  in1  in2  out   wp=200n wn=100n
 m1  out  in1 vdd vdd pch w=wp  l=100n
 m2  out  in2 vdd vdd pch w=wp  l=100n
 m3  out  in1 mid gnd nch w=wn  l=100n
 m4  mid  in2 gnd gnd nch w=wn  l=100n
.ends nand

The subcircuit named onebit can be used for exploration because it 
instantiates other subcircuits using parameters with numerical values: wn and 
wp of nand gates x2 and x3. The subcircuit named nand can be used for 
exploration on the default values wn and wp (exploration only affects 
instantiation x1 because x2 and x3 parameters override the default values). 
The devices m1 to m4 can be used for exploration on their length but not on the 
width. This preserves the imposed relationship of equal width for m1 and m2, 
and for m3 and m4. 

Exploration supports variation in temperature, in addition to element and 
subcircuit parameters. Encrypted sections of a netlist are not available for 
exploration.

Flow Using an External Exploration Tool

The design flow consists of:
■ An information extraction and export phase in HSPICE
■ A definition phase for the Exploration Block outside of HSPICE
■ An exploration phase in HSPICE

Information Extraction and Export Phase
HSPICE creates an output file with the Export Block. The file’s first section 
contains the names of the variables suitable for exploration, parameters, 
element and subcircuit parameters, along with appropriate identifiers, which 
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include subcircuit name, device instance names, models and properties. In the 
second section, the corresponding values are listed.

From Example 3 on page 939:
■ Subcircuit onebit with properties wn and wp for instantiations x2 and x3
■ Subcircuit nand with properties wp and wn (only useful if an instantiation 

exists where wp and wn are not defined, as in onebit.x1)
■ Devices m1 to m4 with property l

In the export phase, HSPICE runs a simulation from the originally supplied 
netlist, ignoring any Exploration Block content other than options.

Definition Phase (Outside HSPICE)
You must create or adapt the external utility described in the following items; it 
is not provided by HSPICE. 
■ An external utility reads the files created by HSPICE with the device 

information and any constraints.
■ Supplemental information to the external utility consists of technology and 

details of the experiment.
■ The utility creates a set of experiments and formulates them as a data block, 

with some or all variables contained in the Export Block, and one or more 
sets of exploration data. 

■ The utility submits the netlist with the Exploration Block to HSPICE.
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Exploration Phase
These items are done in the exploration phase:
■ HSPICE applies the content of the data block, calculates the secondary 

parameters and constraints, and runs a set of simulations with the updated 
device geometries as specified in the Exploration Block. HSPICE produces 
measurement results and a file with all the parameter values used for each 
exploration simulation.

■ The external utility analyzes and combines the simulation results.
■ Based on the results, the utility might specify another set of experiments, 

with a new set of simulations, and run through these steps until some 
predefined goal is reached.

Refer to the Figure 174, and notice the flow difference before and after adding 
Exploration Block.

Figure 174 Exploration Block Flow
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Exploration Block Structure

Because the Exploration Block is closely related to the Variation Block, the 
internal structure is similar, in particular when compared with external 
sampling. The major differences include:
■ The Variation Block specifies variation on the model parameters, whereas 

the Exploration Block deals with the values as defined in the netlist.
■ Perturbations specified in the Variation Block are applied in a flat manner, 

whereas those from the Exploration Block apply to subcircuits.
■ The Exploration Block includes: 

• options

• parameters

• relationships between devices

• relationships between properties

• area calculation

• data block characteristics
■ A period is used as separator between a subcircuit name and an element 

name. For example: opamp.rbias refers to the resistor rbias instantiated 
in subcircuit opamp. A period is also used as separator between subcircuit 
names, if one subcircuit is defined within another. For example: 
opamp.bias.rbias refers to the resistor rbias in subcircuit bias, nested 
within subcircuit opamp. 

Syntax
The following syntax shows the parts and sequence of an Exploration Block:

.Design_Exploration
        Options 
          Parameter Parameter_Name = value
          Parameter Parameter_Name = expression
 
           .Data BlockName
             Index    Name   Name, …
            …
            .EndData
.End_Design_Exploration
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Control Options
The options below are described in the tables that follow.
■ Option Explore_only|Do_not_explore

■ Option Export

■ Option Exploration_method 

■ Option Ignore_exploration

■ Option Secondary_param

If you want to explore only certain cells or subcircuits use:

The two modes of exploration are distinguished by setting either: 

If you specify Option Export=yes followed by Option 
Mex_File_Only=yes HSPICE generates a *.mex file without running any 
simulations.

Option Description

Option Explore_only Subckts= 
SubcktList

This command is executed hierarchically — the specified
subcircuits and all instantiated subcircuits and elements
underneath are affected. Thus, if an inverter with name I
placed in a digital control block called DIGITAL and in a
block ANALOG, and Option Explore_only Subckts 
ANALOG, then the perturbations only affect the INV1 in th
block. You must create a new inverter INV1analog, with
device sizes. 

Option Do_not_explore Subckts= 
SubcktList 

Excludes listed subcircuits.

Option Description

Option Export=yes Exports extraction data and runs a simulation with the original ne

Option Export=no (Default) Runs a simulation with Exploration data

Option Description

Option Mex_File_Only=yes Generates a *.mex file without running any simulations.

Option Mex_File_Only=no (Default) No *.mex file is generated.
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The perturbation types are selected by setting either: 

Option Description

Option Exploration_method=
external Block_name=
Block_name

The Block_name is the same as the name specified in the .DA
HSPICE sweeps the row content with the EXCommand (see th
EXCommand Option: Export Data Block Action). 

Option Ignore_exploration= 
yes|no

(Default=no) HSPICE ignores the content in the design_explor
block, when Ignore_exploration=yes.

Option Secondary_param= yes|no (Default = no) If Secondary_param= yes, HSPICE exports t
MOSFET secondary instance parameters to a *.mex file (crea
option export=yes), and also permits the secondary param
be imported as a column header in the .DATA block (option 
export=no). See the example, following this section.
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Example: Option secondary_param=yes
.design_exploration

option secondary_param=yes
parameter asad = '1.5e-7'
option exploration_method=external block_name=dat2
*nmos snps20n design_area='(Get_E(l)+1u)*(Get_E(W)+0.8u)'

 pmos snps20p as = 'asad*Get_E(W)' ad ='2*asad*Get_E(W)'
.data dat2

 index vdd@p k@p 
opamp.rcomp@r@e 
opamp.r0@r@e r1@r@e r0@r@e 

      opamp.ccomp@c@e c0@c@e c1@c@e 
      opamp.mn1@snps20n@m@e
      opamp.mn1@snps20n@ad@e
      opamp.mn2@snps20n@m@e          

opamp.mn2@snps20n@ad@e  
      opamp.mp3@snps20p@m@e      
      opamp.mp4@snps20p@m@e  
      opamp.mp5@snps20p@l@e    opamp.mp5@snps20p@w@e
   opamp.mp5@snps20p@m@e    opamp.mn8@snps20n@l@e         

opamp.mn8@snps20n@w@e  opamp.mn8@snps20n@m@e 
   opamp.mn7@snps20n@l@e    opamp.mn7@snps20n@w@e
 opamp.mn7@snps20n@m@e  opamp.mn6@snps20n@l@e 
   opamp.mn6@snps20n@w@e  opamp.mn6@snps20n@m@e 
  v2@v@e
      1.000   2.5000  2.0000  7.000e+03  1.000e+06  1.000e+06  
      1.000e+07  9.000e-13  1.000e-03 5.000e-12 
  4.0000  1.000e-08  4.0000  1.000e-08  4.0000 
  4.0000  4.000e-07  1.000e-05 3.0000  6.000e-06 
  3.600e-05 10.0000  6.000e-06 3.600e-05  4.0000
  6.000e-06  3.600e-05  6.0000    0. 
   .enddata
.End_Design_Exploration

Notice that column header opamp.mn1@snps20n@ad@e can be recognized by 
HSPICE only if Option Secondary_param=yes. In the netlist for the opamp 
(not shown above), only the devices mn1 and mn2 have secondary element 
parameter AD defined.

The supported MOSFET secondary parameters are: AS, AD, PS, PD, NRD, 
NRS, RDC, RSC.

Parameters Section
Parameters can be defined here, which are used in subsequent definitions 
within the Exploration Block. The name space is separate from the netlist. 
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Parameters specified with numerical values are exported; derived parameters 
are not exported and are not available for exploration.

Secondary Element Parameters

To calculate secondary element parameters on a single device:

   Element subcircuitName.ElementName parameterName=
'expression of parameterName'

The element parameters here include AD, AS, PD, PS, NRS, and NRD on the 
left side and expressions of L and W of the same element on the right hand 
side. For example:

Element opamp.nm1 AD='1e-7*Get_E(W)'

This relationship is enforced on all instantiations of subcircuit opamp (unless 
specifically excluded from exploration). Also, the property AD of opamp.mn1 is 
not exported, and it is not available for exploration.

Secondary Device Parameters

Expressions for calculating the values of secondary device parameters for all 
devices with a certain model can be defined. Default values for AD, AS, PD, PS, 
NRS and NRD are often specific for devices which share the same model, as a 
function of W and L.

ModelType ModelName instanceParameterName='expression of 
parameterName'

For example:

nmos snps65n as='asad*Get_E(W)' ad='asad*Get_E(W)'

This directive means that all nmos devices subject to exploration, with model 
snps65n, and have AS and/or AD specified, have their source and drain areas 
re-calculated by this equation prior to simulation. If the secondary parameter is 
not specified on the device, then it is not added. 

Note that HSPICE simulation results can change when such a definition is 
added to the Exploration Block, if the original values for AS and AD are different 
from the values calculated using the expression. While the secondary 
parameters are not exported, they are available for exploration when defined in 
the data block (expressions are not supported):

Opamp.mn1 AD=1e-12
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Same-Circuit Parameters

To force relationship between parameters of the same subcircuit, use the 
syntax

Subckt subcircuitName parameterName='expression of 
parameterName'

Note that this function supports only relationship within the same subcircuit.

Device Relationships
Relationships between element properties exist, which must be respected 
when changing device size. To reduce the amount of time required by the 
Exploration Tool to calculate these dependencies, such relationships can be 
defined directly in the Exploration Block.

To force a relationship between two different elements, use the syntax:

Element subcircuitName.ElementName parameterName=
'expression of 
Get_E([subcircuitName.]ElementName@parameterName)'

The element parameter names here include W and L for NMOS and PMOS 
devices. The subcircuit name on the right side of the definition is optional, if it is 
the same as the one on the left side.

Element opamp.mn1 l='Get_E(mn2@l)'
Element inv4.mp1 w='2*Get_E(inv2.mp1@w)'

These relationships are enforced on all instantiations of subcircuits opamp and 
inv4 (unless specifically excluded from exploration).

Property Relationships
Properties L of opamp.mn1 and W of inv4.mp1 are not exported, and are not 
available for exploration.

Derived Device Properties

Derived device properties, as defined in the Exploration Block, are not 
exported. While specifying device relationship in a direct way is not supported, 
you can do this through parameter transformations.

Element Relationship: This relationship is enforced on all instantiations of 
subcircuit opamp (unless specifically excluded from exploration). Also, the 
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property AD of opamp.mn1 is not exported, and it is not available for 
exploration. The rules for the element relationship are:

1. If Element relationship equations are defined, then no related element 
parameters be exported in *.mex file, and such parameters do not appear 
in the .DATA block, as well.

2. If such parameters appear in a .DATA block, a warning message such as 
**warning**  unsupported statement c0@c@e will be ignored, but 
will be reported in the list file (HSPICE ignores this column in the .DATA 
block).

3. Considering the implementation complex, netlist-defined subcircuits are not 
supported.

4. Such relationship equations can change element parameters no matter 
such element Parameters are defined through numbers or through 
expressions in the netlist.

Examples

Example 1:

Element opamp.mn1@L = ‘Get_E(opamp.mn2@L)’

Only opamp.mn2@L from the netlist is exported; here, the device property of 
opamp.mn1@l is not exported.

Example 2:

nmos nch ad='120n*Get_E(W)' 
+ as='120n*Get_E(W)' 
+ ps='240n+Get_E(W)' 
+ pd='240n+Get_E(W)'

The properties AD, AS, PS, and PD are not exported. 

Get_E() Function In Exploration Block
The Exploration Block deals strictly with netlist values, not final values. So the 
Get_E() function returns the value that the user specifies in the netlist, and 
BEFORE adding any scale,  xw and wint calculations. This is distinct from the 
Get_E() in Variation Block, which returns the effective values.

Get_E()is used to return a specific instance parameter value supported in the 
Exploration Block. The syntax is:

Get_E(SubcircuitName.InstanceName@ParameterName)
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This function allows you to conveniently specify the relationship between 
instances. For example:

.design_exploration
element op5.mn1 l='Get_E(op5.mn2@l)'
element op5.mn1 w='Get_E(op5.mn2@w)'

.end_design_exploration

Parameters Defined Outside the Exploration Block 

The parameters defined outside the Exploration Block can be referenced using 
the syntax: 

 Get_P(parameterName)

Area Measurement
While an exact area is only available after layout in integrated circuit design, 
following certain rules can provide a good estimate.

The complete measurement consists of three steps:

1. Calculate area of each device, according to model specific expressions

2. Calculate total area of top circuit or specified subcircuit.

3. Make results available to built-in measurement processor for output.

The calculation is performed as part of the operating point for AC and TRAN, 
but executed for each step of a DC transfer characteristics. This allows for 
reporting area at a certain value of a design parameter, which affects circuit 
area. However, area is not recalculated if it changes during an AC or transient 
sweep. 

Syntax for device area calculation:

Modeltype Modelname design_area = expression

Example

nmos nch design_area='(Get_E(L)+1u)*(Get_E(W)+0.8u)'

The measurement syntax allows for reporting the area of the whole circuit or a 
subcircuit, and has the following structure:

.measure analysisType measName Function 
+ DESIGN_AREA(HierarchicalName DeviceName)
HSPICE® User Guide: Basic Simulation and Analysis 949
K-2015.06



Chapter 29: Exploration Block
Exploration Block Structure
Where, analysisType is DC|AC|Tran, Function can be min,  max,  find 
-at. 

For example:

.measure top_area max design_area(x1)

Rules for Area Measurement using design_area Keyword
The following rules apply for area measurement for typical cases.

1. Area computation only supports resistors, capacitors, and MOSFETs, 
currently. There is no geometry parameter for L, so this element is ignored 
in area computation.

2. The design_area keyword only supports those instances in which W/L is 
defined explicitly in netlist.

3. Compute total circuit area:

.measure |dc|ac|tran output_name1 find design_area at=val

Hierarchically based, compute the sum area of subcircuit x1:

.measure |dc|ac|tran output_name2 find design_area(x1) at=val 

Compute area of x1.mn1

.measure |dc|ac|tran output_name3 find design_area(x1.mn1) 
at=val

For the equations defining area inside .design_exploration block, 
only model specific expressions are currently supported: 
Modeltype Modelname design_area = expression

4. The priority of computing one device area is

a. For resistors and capacitors:

(i)   Expressions defined inside exploration_block  

(ii)   W*L*M (W and L is defined as instance parameter)

(iii) Wmodel*Lmodel *M (Wmodel and Lmodel are the model 
geometry values) 

(iv) Otherwise, their area is zero.

b. For MOSFETs:

(i) Expressions defined inside exploration_block

(ii) W*L*M (W and L are defined as instance parameters) 
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(iii) Wdefault*Ldefault *Mdefault (Wdefault and Ldefault 
are the default geometry values for MOSFET) 

(iv)  M is the multiplier parameter.

5. If 'scale' is defined, then design_area = area*scale*scale
Such measurement works with the .DC |.AC |.TRAN command, whether 
.design_exploration block is defined or not.

Specifying Constraints
While working through the device relationships, designers may want to specify 
constraints in the Exploration Block. The IF-ELSE structure can be used to 
constrain the circuit topology in HSPICE only.

Each device subject to exploration is checked to verify whether the condition 
applies, and then the specified action or actions are executed.

Syntax
if (condition1){
statement_block1
}

 The following statement block is optional, and can be repeated multiple times:

 elseif (condition2)
{statement_block2
}

The following statement block is optional, and cannot be repeated:

else{
statement_block3
}

Guidelines for using IF-ELSE Blocks

The following guidelines aid in usage of the .IF, .ELSE-IF, or .ELSE.
■ In an IF, ELSEIF, or ELSE statement block, you can reset certain elements 

geometries or issue a warning, or an error, to cause the simulator to abort. 
This example checks all MOSFETs that use model nch, if the length l is 
larger than 10u, then a warning message is issued and the command resets 
it to 10u.

If(nmos@nch@l>1e-5) {
   Reset_parameter l=10u
   Warning
}
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■ The following functions can be used in specifying constraints:

• <  Relational operator (less than)

• <= Relational operator (less than or equal to)

• > Relational operator (greater than)

• >= Relational operator (greater than or equal to)

• && Logical AND

• || Logical OR
■ Supported CONDITION clauses include:

ModelType@ModelName@ModelParameter
Subckt@SubcktName@SubcktParameter

When logical operators (&& and ||) are used, the ModelType, ModelName, 
Subckt, SubcktName within the condition clauses must be the same. 
Otherwise, an error message is issued and HSPICE aborts. 

For example:

If(nmos@snps20n@w<2e-7 &&nmos@snps20n@l>10e-6){
action1
action2

}
elseif(subckt@opamp@k>3 ||subckt@opamp@n<2){

action
}

■ You can include an unlimited number of ELSE-IF statements within an IF-
ELSE block. If one element is found to satisfy the  IF condition, HSPICE 
executes the action statements in the IF constraint for this element, and 
ignores any later ELSEIF or ELSE blocks.

■ Commands for action statements are: reset_parameter, warning, and 
abort.

• The reset_parameter statement can be specified several times in a 
constraint block. It can be used to limit or round off model or subcircuit 
parameters. For example:

If(nmos@nch@l>1e-5) {
   reset_parameter l=10u
   reset_parameter w=5u
   …
   warning
}
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• An abort keyword would print a message to indicate that the condition 
was satisfied and terminate the simulation. 

• The  warning keyword does not abort the simulation, but generally 
remedies the condition. In the example below, a warning message is 
generated when the condition is met. 

Warning: Condition "nmos@nch@l > 10u" encountered for 
device "DeviceName”. 

■ Since the  ELSE constraint block does not contain any CONDITION clauses, 
its action statements are executed only if no element satisfies the 
CONDTION in 'IF' constraint.

The Processing of Netlist Parameters
As shown in the section “Flow Using an External Exploration Tool,” you can 
have a special case of passing parameter values down one level of hierarchy. In 
a general case, when HSPICE finds a parameter definition with numerical 
value (.param paramName=value), it is exported with its name and value in 
the appropriate section. Parameters which are defined with other parameters 
instead of numerical values, or expressions of other parameters and numerical 
values, are not included in the Export file. This preserves relationships between 
devices, which have been set up by the designer in the original netlist.

Example of diffpair in netlist:

     .subckt diffamp in1 in2 out lpair=2u  wpair=2u  mpair=4
mn1 d1 in1 s b modelName l=lpair w=wpair m=mpair

     mn2 d2 in2 s b modelName l=lpair w=wpair m=mpair
....

     .ends diffamp

The subcircuit diffamp and its parameters lpair, wpair, and mpair will be 
in the Export file along with their local values. The devices mn1 and mn2 are not 
available for exploration. 

Export File Syntax

HSPICE writes the extracted data from the circuit to a file with the 
extension .mex? with syntax similar to the *.mcx? file, which lists the 
perturbations created from the Variation Block content. The option settings are 
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reported first, followed by the names of all requested subcircuits and devices 
with their respective parameter names.

 Separators are used as follows:
■ A single period is used as a hierarchy separator between a subcircuit and 

an instance or device name, and as a separator between one or more 
subcircuit names, if their definitions are nested

■ The @ character is used as a separator between model and parameter 
names. 

■ Additionally, identifiers are appended as follows to identify the proper owner 
if an element and a nested subcircuit have the same name:

• E for element parameters

• P for global parameters, and parameters used in subcircuit definitions 
and instantiations

Syntax Structure
The following constructs are provided:
■ For primitives (R,C, without model):

[SubcircuitName.]InstanceName@ParamName@E

Example:

Opamp.rbias@r@E

■ For devices with model (in NMOS, PMOS)

[SubcircuitName.]InstanceName@ModelType@ModelName@ParamName@
E

Example:

Opamp.mn1@snps65n@L@E

■  For standalone parameters:

[SubcircuitName@]=ParamName@P

Example:

(.param factor) Opamp@factor@P

■ For parameters declared on subcircuit definition line:
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[SubcircuitName@]ParamName@P

Example:

nand@wp@P

■ For parameters appended to subcircuit instantiation:

[SubcircuitName.]InstanceName@ParamName@P

Example:

 onebit.x2@wp@P

Whenever the optional  SubcircuitName is not specified, the top level is 
assumed (implicit definition). For nested subcircuits, several 
SubcircuitName entries separated with a period are used.

Example Export File
onebit.x2@wp@P onebit.x2@wn@P  
onebit.x3@wp@P onebit.x3@wn@P
opamp.mn1@snps65n@L@E opamp.bias.rbias@r@E
diffamp@lpair@P diffamp@wpair@P diffamp@mpair@P
index1 value1 value2 value3 value4 value5 etc

If option export=yes is set, then the output file contains a single data set with 
the original design values from the netlist. If option export=no (or default), 
then one data set is written per exploration step with all the parameters suitable 
for exploration, not only the ones which were changed through an Exploration 
Data Block (see Exploration Block Structure).

Execution of Exploration in HSPICE

Exploration is considered a second sweep. The following syntax of the sweep 
with the data block command is used with EXCommand using the keyword 
explore, otherwise it has the same syntax as MCCommand for Monte Carlo.

.DC|.TRAN|.AC analysisDetail sweep EXCommand

The sample number is optional (and ignored if specified) when data export is 
requested. The following table shows the tasks performed by the simulator with 
the different combinations of EXCommand, option Export, and Data Block 
definition (valid meaning here: defined and having at least one set). Simulation 
with relationships means that the relationships described in the section Device 
Relationships are enforced. 
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EXCommand Option: Export Data Block Action

Exploration Data Block Syntax

The exploration tool output is returned back into HSPICE as a data block, which 
is referenced in the Exploration Block as “Exploration_Data”. Data blocks can 
contain, for example, information such as the variable temper, to enable 
temperature sweeps.

The content is as follows:

variableName1 variableName2 variableName3
index1 value11 value12 value13
index2 value21 value22 value23
......

index is an integer, monotonically increasing. 

It is sufficient here to include only the cumulative set of parameters which 
change for the exploration run. Parameter names and values not specified here 
are left at their original values.

EXCommand Option Export Data Block Action

Ignored Yes ignored Export and run simulation with original netlist

explore No or undefined valid Simulate all sets with relationships in Data 
Block

explore=5 No or undefined valid Simulate sets 1 to 5 from Data Block, with 
relationships

explore list=3 No or undefined valid Simulate set 3 from Data Block, with 
relationships

Ignored No or undefined not defined Simulate with relationships enabled
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Exploration and Variation Block Interactions

When an Exploration Block and Variation Block are both present, HSPICE can 
currently handle sweeps in up to two dimensions, but the following rules apply:
■ There is a monte command only: Exploration Block is ignored
■ There is an explore command only: Variation Block is ignored
■ There is neither monte nor explore command: Variation and Exploration 

blocks ignored
■ When there is both a monte and explore command and there is/are:

• Single Monte Carlo sample specified: execute the Exploration Block 
content, according to the explore command and option settings.

• Several Monte Carlo samples specified, single Exploration request: 
execute the requested Exploration Data set, with specified Monte Carlo 
samples.

• Several Monte Carlo samples and several explore requests: abort, 
with appropriate message.

■ For multiple Exploration Blocks: 

• Options are cumulative, the last definition prevails.

• Only one named data block can be executed.

Limitations

The following feature is not supported:

Netlist Export
At the end of the exploration procedure, a valid netlist needs to be generated 
which reflects the final choices for the device sizes, in order to be able to drive a 
layout tool and run a successful LVS (layout versus schematic) verification.
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Describes optimization in HSPICE for optimizing electrical yield.

HSPICE ships numerous examples for your use; and Device Optimization 
Examples for paths to demo files. See also Cell Characterization Examples for 
.MODEL opt passfail and bisection methods.

These topics are covered in the following sections:
■ Overview
■ Optimization Statements
■ Optimization Examples

Overview

Optimization automatically generates model parameters and component 
values from a set of electrical specifications or measured data. When you 
define an optimization program and a circuit topology, HSPICE automatically 
selects the design components and model parameters to meet your DC, AC, 
and transient electrical specifications.

The circuit-result targets are part of the .MEASURE command structure and you 
use a .MODEL statement to set up the optimization.

Note: HSPICE uses post-processing output to compute the .MEASURE 
statements. If you set INTERP=1 to reduce the post-processing 
output, the measurement results might contain interpolation 
errors. See the HSPICE Reference Manual: Commands and 
Control Options for more information about these options.
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HSPICE employs an incremental optimization technique. This technique solves 
the DC parameters first, then the AC parameters, and finally the transient 
parameters. A set of optimizer measurement functions not only makes 
transistor optimization easy, but significantly improves cell and circuit 
optimization.

To perform optimization, create an input netlist file that specifies:
■ Minimum and maximum parameter and component limits.
■ Variable parameters and components.
■ An initial estimate of the selected parameter and component values.
■ Circuit performance goals or a model-versus-data error function.

If you provide the input netlist file, optimization specifications, component limits, 
and initial guess, then the optimizer reiterates the circuit simulation until it either 
meets the target electrical specification, or finds an optimized solution.

For improved optimization, reduced simulation time, and increased likelihood of 
a convergent solution, the initial estimate of component values should produce 
a circuit whose specifications are near those of the original target. This reduces 
the number of times the optimizer reselects component values and resimulates 
the circuit.

Optimization Control
How much time an optimization requires before it completes depends on:
■ Number of iterations allowed.
■ Relative input tolerance.
■ Output tolerance.
■ Gradient tolerance.

The default values are satisfactory for most applications. Generally, 10 to 30 
iterations are sufficient to obtain accurate optimizations.

Simulation Accuracy
For optimization, set the simulator with tighter convergence options than 
normal. The following are suggested options.

For DC MOS model optimizations:
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absmos=1e-8
relmos=1e-5
relv=1e-4

For DC JFET, BJT, and diode model optimizations:

absi=1e-10
reli=1e-5
relv=1e-4

For transient optimizations:

relv=1e-4
relvar=1e-2

Curve Fit Optimization
Use optimization to curve-fit DC, AC, or transient data: 

1. Use the .DATA statement to store the numeric data for curves in the data 
file as in-line data. 

2. Use the .PARAM xxx=OPTxxx statement to specify the variable circuit 
components and the parameter values for the netlist. The optimization 
analysis statements use the DATA keyword to call the in-line data. 

3. Use the .MEASURE statement to compare the simulation result to the values 
in the data file. In this statement, use the ERR1 keyword to control the 
comparison. 

If the calculated value is not within the error tolerances specified in the 
optimization model, HSPICE selects a new set of component values. HSPICE 
then simulates the circuit again and repeats this process until it obtains the 
closest fit to the curve or until the set of error tolerances is satisfied.

Goal Optimization
Goal optimization differs from curve-fit optimization because it usually 
optimizes only a particular electrical specification, such as rise time or power 
dissipation.

To specify goal optimizations, do the following:

1. Use the GOAL keyword.
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2. In the .MEASURE statement, select a relational operator where GOAL is the 
target electrical specification to measure.

For example, you can choose a relational operator in multiple-constraint 
optimizations when the absolute accuracy of some criteria is less important 
than for others.

Timing Analysis
To analyze circuit timing violation, HSPICE uses a binary search algorithm. 
This algorithm generate a set of operational parameters, which produce a 
failure in the required behavior of the circuit. When a circuit timing failure 
occurs, you can identify a timing constraint, which can lead to a design 
guideline. Typical types of timing constraint violations include:
■ Data setup time before a clock.
■ Data hold time after a clock.
■ Minimum pulse width required to allow a signal to propagate to the output.
■ Maximum toggle frequency of the component(s).

Bisection Optimization finds the value of an input variable (target value) 
associated with a goal value for an output variable. To relate them, you can use 
various types of input and output variables, such as voltage, current, delay 
time, or gain, and a transfer function. 

You can use the bisection feature in either a PASSFAIL mode or a bisection 
mode. In each case, the process is largely the same.

Optimization Statements

Optimization requires several statements:
■ .MODEL modname OPT ...

■ .PARAM parameter=OPTxxx (init, min, max)

Use .PARAM statements to define initial, lower, and upper bounds.
■ A .DC, .AC, or .TRAN analysis statement, with:

MODEL=modname

OPTIMIZE=OPTxxx
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RESULTS=measurename

Use .PRINT and .PROBE output statements, with the.DC, .AC, or .TRAN 
analysis statements.

Only use an analysis statement with the OPTIMIZE keyword for 
optimization. To generate output for the optimized circuit, specify another 
analysis statement (.DC, .AC, or .TRAN), and the output statements. 

■ .MEASURE measurename ... [GOAL=| [ | ] val]

Include a space on either side of the relational operator: = <space> 
<space> <space>

For a description of the types of .MEASURE statements that you can use in 
optimization, see Chapter 11, Simulation Output.

The proper specification order is:

1. Analysis statement with OPTIMIZE.

2. .MEASURE statements specifying optimization goals or error functions.

3. Ordinary analysis statement.

4. Output statements.

Optimizing Analysis (.DC, .TRAN, .AC) 
The following syntax optimizes HSPICE simulation for a DC, AC, and Transient 
analysis.

.DC [DATA=filename] SWEEP OPTIMIZE=OPTxxx 
+ RESULTS=ierr1 ... ierrn MODEL=optmod
.AC [DATA=filename] SWEEP OPTIMIZE=OPTxxx 
+ RESULTS=ierr1 ... ierrn MODEL=optmod
.TRAN [DATA=filename] SWEEP OPTIMIZE=OPTxxx 
+ RESULTS=ierr1 ... ierrn MODEL=optmod 

Argument Description

DATA Specifies an in-line file of parameter data to use in optimization.

MODEL The optimization reference name, which you also specify in the .MODEL optimization 
statement.
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Optimization Examples

This section contains examples of HSPICE optimizations (For information on 
HSPICE advanced analog analyses optimization, see the Optimization section 
in the HSPICE User Guide: Advanced Analog Simulations and Analysis):
■ MOS Level 3 Model DC Optimization
■ MOS Level 13 Model DC Optimization
■ RC Network Optimization
■ Optimizing CMOS Tristate Buffer
■ BJT S-parameters Optimization
■ BJT Model DC Optimization
■ Optimizing GaAsFET Model DC
■ Optimizing MOS Op-amp

MOS Level 3 Model DC Optimization
This example shows an optimization of I-V data to a Level 3 MOS model. The 
data consists of gate curves (ids versus vgs) and drain curves (ids versus vds). 

This example optimizes the Level 3 parameters:
■ VTO

■ GAMMA

■ UO

■ VMAX

OPTIMIZE Indicates that the analysis is for optimization. Specifies the parameter reference name 
used in the .PARAM optimization statement. In a .PARAM optimization statements, if 
OPTIMIZE selects the parameter reference name, then the associated parameters vary 
during an optimization analysis.

RESULTS The measurement reference name. You also specify this name in the .MEASURE 
optimization statement. RESULTS passes the analysis data to the .MEASURE 
optimization statement.

Argument Description
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■ THETA

■ KAPPA

After optimization, HSPICE compares the model to the data for the gate, and 
then to the drain curves. .OPTION POST generates waveform files for 
comparing the model to the data.

Input Netlist File for Level 3 Model DC Optimization
You can find the sample netlist for this example in the following directory:

$installdir/demo/hspice/devopt/ml3opt.sp

The HSPICE input netlist shows:
■ Using .OPTION to tighten tolerances, which increases the accuracy of the 

simulation. Use this method for I-V optimization.
■ .MODEL optmod OPT itropt=30 limits the number of iterations to 30.
■ The circuit is one transistor. The VDS, VGS, and VBS parameter names, 

match names used in the data statements.
■ .PARAM statements specify XL, XW, TOX, and RSH process variation 

parameters, as constants. The device characterizes these measured 
parameters.

■ The model references parameters. In GAMMA= GAMMA, the left side is a 
Level 3 model parameter name; the right side is a .PARAM parameter name.

■ The long .PARAM statement specifies initial, min and max values for the 
optimized parameters. Optimization initializes UO at 480, and maintains it 
within the range 400 to 1000.

■ The first .DC statement indicates that:

• Data is in the in-line .DATA all block, which contains merged gate and 
drain curve data.

• Parameters that you declared as OPT1 (in this example, all optimized 
parameters) are optimized.

• The COMP1 error function matches the name of a .MEASURE statement.

• The OPTMOD model sets the iteration limit.
■ The .MEASURE statement specifies least-squares relative error. HSPICE 

divides the difference between data par(ids) and model i(m1) by the larger 
of:
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• the absolute value of par(ids), or

• minval=10e-6 If you use minval, low current data does not dominate 
the error.

■ Use the remaining .DC and .PRINT statements for print-back after 
optimization. You can place them anywhere in the netlist input file because 
parsing the file correctly assigns them. 

■ The .PARAM VDS=0 VGS=0 VBS=0 IDS=0 statements declare these data 
column names as parameters.

The .DATA statements contain data for IDS versus VDS, VGS and VBS. 
Select data that matches the model parameters to optimize. 

Example
To optimize GAMMA, use data with back bias (VBS= -2 in this case). To 
optimize KAPPA, the saturation region must contain data. In this example, the 
all data set contains:
■ Gate curves: vds=0.1 vbs=0,-2 vgs=1 to 5 in steps of 0.25.
■ Drain curves: vbs=0 vgs=2,3,4,5 vds=0.25 to 5 in steps of 0.25.

Figure 175 on page 967 shows the results.
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Figure 175 Level 3 MOSFET Optimization

MOS Level 13 Model DC Optimization
This example shows I-V data optimization to a Level 13 MOS model. The data 
consists of gate curves (ids versus vgs) and drain curves (ids versus vds). This 
example demonstrates two-stage optimization. 

1. HSPICE optimizes the vfb0, k1, muz, x2m, and u00 Level 13 parameters 
to the gate data. 

2. HSPICE optimizes the MUS, X3MS, and U1 Level 13 parameters, and the 
ALPHA impact ionization parameter to the drain data. 

After optimization, HSPICE compares the model to the data. The POST option 
generates waveform files to compare the model to the data. Figure 176 on 
page 968 shows the results.
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DC Optimization Input Netlist File for Level 13 Model
You can find the sample netlist for this example in the following directory:
$installdir/demo/hspice/mos/ml13opt.sp.

Figure 176 Level 13 MOSFET Optimization

RC Network Optimization
For a full demonstration example of optimizing speed or power for an RC 
circuit, follow the path to rcopt.sp in Circuit Optimization Examples on 
page 1078.

The following example optimizes the power dissipation and time constant for an 
RC network. The circuit is a parallel resistor and capacitor. Design targets are:
■ 1 s time constant.
■ 50 mW rms power dissipation through the resistor.

The HSPICE strategy is:
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■ RC1 .MEASURE calculates the RC time constant, where the GOAL of .3679 
V corresponds to 1 s time constant e-rc.

■ RC2 .MEASURE calculates the rms power, where the GOAL is 50 mW.
■ OPTRC identifies RX and CX as optimization parameters, and sets their 

starting, minimum, and maximum values.

Network optimization uses these HSPICE features:
■ Measure voltages and report times that are subject to a goal.
■ Measure device power dissipation subject to a goal.
■ Measure statements replace the tabular or plot output.
■ Parameters used as element values.
■ Parameter optimizing function.
■ Transient analysis with SWEEP optimizing.

Optimization Results

RESIDUAL SUM OF SQUARES      = 4.291583E-16
NORM OF THE GRADIENT         = 5.083346E-04
MARQUARDT SCALING PARAMETER  = 2.297208E-04
NO. OF FUNCTION EVALUATIONS  =  20
NO. OF ITERATIONS  =  9

Residual Sum of Squares: The residual sum of squares is a measure of the 
total error. The smaller this value, the more accurate the optimization results.

residual sum of squares=

In this equation,  is the error function, and  is the number of error functions.

Norm of the Gradient: The norm of the gradient is another measure of the total 
error. The smaller this value is the more accurate the optimization results are. 
The following equations calculates the G gradient:

Ei
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=
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norm of the gradient=

In this equation, P is the parameter, and np is the number of parameters to 
optimize.

Marquardt Scaling Parameter: The Levenburg-Marquardt algorithm uses this 
parameter to find the actual solution for the optimizing parameters. The search 
direction is a combination of the Steepest Descent method and the Gauss-
Newton method.

The optimizer initially uses the Steepest Descent method as the fastest 
approach to the solution. It then uses the Gauss-Newton method to find the 
solution. During this process, the Marquardt Scaling Parameter becomes very 
small, but starts to increase again if the solution starts to deviate. If this 
happens, the optimizer chooses between the two methods to work toward the 
solution again.

If the optimizer does not attain the optimal solution, it prints both an error 
message, and a large Marquardt Scaling Parameter value.

Number of Function Evaluations: This is the number of analyses (for example, 
finite difference or central difference) needed to find a minimum of the function.

Number of Iterations: This is the number of iterations needed to find the 
optimized or actual solution.

Optimized Parameters OPTRC
.param rx=  7.4823  $   55.6965  5.7945m
.param cx=133.9934m  $   44.3035  5.1872m

2 Gj
2

i 1=

np
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Figure 177 Power Dissipation and Time Constant (VOLT) RCOPT.TR0=Before 
Optimization, RCOPT.TR1=Optimized Result
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Figure 178 Power Dissipation and Time Constant (WATT) RCOPT.TR0=Before 
Optimization, RCOPT.TR1=Optimized Result

Optimizing CMOS Tristate Buffer
The example circuit is an inverting CMOS tristate buffer. The design targets 
are:
■ Rising edge delay of 5 ns (input 50 percent voltage to output 50 percent 

voltage).
■ Falling edge delay of 5 ns (input 50 percent voltage to output 50 percent 

voltage).
■ RMS power dissipation should be as low as possible.
■ Output load consists of:

• pad capacitance

• leadframe inductance

• 50 pF capacitive load
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*FILE: RCOPT.SP OPTIMIZE THE POWER DISSIPATION AND TIME CONTSTANT
APRIL 22, 2004 5:38:12
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The HSPICE strategy is:
■ Simultaneously optimize both the rising and falling delay buffer.
■ Set up the internal power supplies, and the tristate enable as global nodes.
■ Optimize all device widths except:

• Initial inverter (assumed to be standard size).

• Tristate inverter and part of the tristate control (optimizing is not 
sensitive to this path).

■ Perform an initial transient analysis for plotting purposes. Then optimize and 
perform a final transient analysis for plotting.

■ To use a weighted RMS power measure, specify unrealistically low power 
goals. Then use MINVAL to attenuate the error.

Input Netlist File to Optimize a CMOS Tristate Buffer
You can find the sample netlist for this example in the following directory:
$installdir/demo/hspice/apps/trist_buf_opt.sp
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Figure 179 Tristate Buffer Optimization Circuit
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Figure 180 Tristate Input/Output Optimization ACIC2B.TR0 = Before Optimization, 
ACIC2B.TR1=Optimized Result

BJT S-parameters Optimization
The following example optimizes the S-parameters to match those specified for 
a set of measurements. The .DATA measured in-line data statement contains 
these measured S-parameters as a function of frequency. The model 
parameters of the microwave transistor (LBB, LCC, LEE, TF, CBE, CBC, RB, RE, 
RC, and IS) vary. As a result, the measured S-parameters (in the .DATA 
statement) match the calculated S-parameters from the simulation results.

This optimization uses a 2n6604 microwave transistor, and an equivalent circuit 
that consists of a BJT, with parasitic resistances and inductances. The BJT is 
biased at a 10 mA collector current (0.1 mA base current at DC bias and 
bf=100).

TIME [LIN]
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* TRI-STATE I/O OPTIMIZATION
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Key HSPICE Features Used
■ .NET command to simulate network analyzer action.
■ .AC optimization.
■ Optimized element and model parameters.
■ Optimizing, compares measured S-parameters to calculated parameters.
■ S-parameters used in magnitude and phase (real and imaginary available).
■ Weighting of data-driven frequency versus S Parameter table. Used for the 

phase domain.

Input Netlist File for Optimizing BJT S-parameters
BJT Equivalent Circuit Input

Use the bjtopt.sp netlist file located in your $installdir/demo/hspice/devopt 
directory for optimizing BJT S-parameters.

Optimization Results

RESIDUAL SUM OF SQUARES    =5.142639e-02
NORM OF THE GRADIENT       =6.068882e-02
MARQUARDT SCALING PARAMETER=0.340303
CO. OF FUNCTION EVALUATIONS=170
NO. OF ITERATIONS          =35

The maximum number of iterations (25) was exceeded. However, the results 
probably are accurate. Increase ITROPT accordingly.

Optimized Parameters OPT1– Final Values
***OPTIMIZED PARAMETERS OPT1 SENS %NORM-SEN
.PARAM LBB = 1.5834N $ 27.3566X 2.4368
.PARAM LCC = 2.1334N $ 12.5835X 1.5138
.PARAM LEE =723.0995P $254.2312X 12.3262
.PARAM TF  =12.7611P $  7.4344G 10.0532
.PARAM CBE =620.5195F $ 23.0855G 1.5300
.PARAM CBC = 1.0263P $346.0167G 44.5016
.PARAM RB   = 2.0582   $ 12.8257M 2.3084
.PARAM RE   =869.8714M $ 66.8123M 4.5597
.PARAM RC  =54.2262   $  3.1427M 20.7359
.PARAM IS  =99.9900P $  3.6533X 34.4463M
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Figure 181 BJT-S Parameter Optimization

BJT Model DC Optimization
The goal is to match forward and reverse Gummel plots obtained from a 
HP4145 semiconductor analyzer by using the HSPICE LEVEL=1 Gummel-
Poon BJT model. Because Gummel plots are at low base currents, HSPICE 
does not optimize the base resistance. HSPICE also does not optimize forward 
and reverse Early voltages (VAF and VAR) because simulation does not 
measure VCE data.
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The key feature in this optimization is incremental optimization. 

1. HSPICE first optimizes the forward-Gummel data points. 

2. HSPICE updates forward-optimized parameters into the model. After 
updating, you cannot change these parameters. 

3. HSPICE next optimizes the reverse-Gummel data points.

BJT Model DC Optimization Input Netlist File
You can find the sample netlist for this example in the following directory:

$installdir/demo/hspice/devopt/opt_bjt.sp

Figure 182 BJT Optimization Forward Gummel Plots
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*FILE: OPT_BJT.SP BJT OPTIMIZATION T2N9547
APRIL 22, 2004 17:42:41
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Figure 183 BJT Optimization Reverse Gummel Plots

Optimizing GaAsFET Model DC
This example circuit is a high-performance, GaAsFET transistor. The design 
target is to match HP4145 DC measured data to the HSPICE LEVEL=3 JFET 
model.

The HSPICE strategy is:
■ .MEASURE IDSERR is an ERR1 type function. It provides linear attenuation 

of the error results starting at 20 mA. This function ignores all currents below 
1 mA. The high-current fit is the most important for this model.

■ The OPT1 function simultaneously optimizes all DC parameters.
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*FILE: OPT_BJT.SP BJT OPTIMIZATION T2N9547
APRIL 22, 2004 17:42:41
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■ The .DATA statement merges TD1.dat and TD2.dat data files.
■ The graph plot model sets the MONO=1parameter to remove the retrace lines 

from the family of curves.

GaAsFET Model DC Optimization Input Netlist File
You can find the sample netlist for this example in the following directory:
$installdir/demo/hspice/devopt/jopt.sp

Figure 184 JFET Optimization

Optimizing MOS Op-amp
The design goals for the MOS operational amplifier are:
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*FILE: JOPT.SP JFET OPTIMIZATION
APRIL 22, 2004 18:41:12
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■ Minimize the gate area (and therefore the total cell area).
■ Minimize the power dissipation.
■ Open-loop transient step response of 100 ns for rising and falling edges.

The HSPICE strategy is:
■ Simultaneously optimize two amplifier cells for rising and falling edges. 
■ Total power is power for two cells.
■ The optimization transient analysis must be longer to allow for a range of 

values in intermediate results.
■ All transistor widths and lengths are optimized. 
■ Calculate the transistor area algebraically use a voltage value and minimize 

the resulting voltage.
■ The transistor area measure statement uses MINVAL, which assigns less 

weight to the area minimization.
■ Optimizes the bias voltage.

Example: MOS Op-amp Optimization Input Netlist File
You can find the sample netlist for this example in the following directory:
$installdir/demo/hspice/ciropt/ampopt.sp
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Figure 185 CMOS Op-amp
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Figure 186 Operational Amplifier Optimization 
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Part 6:  Encryption, Errors/Warnings,
and Demonstration Files

Part 6 presents the following chapters/topics:
■ Chapter 31, Library and Data Encryption
■ Chapter 32, Warning/Error Messages
■ Chapter 33, Running Demonstration Files

These groups of Example Demo files are available:
■ HSPICE Integration to ADE Demonstration Examples
■ Applications of General Interest Examples
■ Back-Annotation Demo Cases
■ Behavioral Application Examples
■ Benchmark Examples
■ Bisection-Timing Analysis Examples
■ BJT and Diode Examples
■ Cell Characterization Examples
■ Circuit Optimization Examples
■ Device Optimization Examples
■ Encryption Examples
■ Fourier Analysis Examples
■ Filters Examples
■ IBIS Examples
■ Loop Stability Analysis
■ Magnetics Examples
■ MOSFET Device Examples
■ RF Examples
■ Signal Integrity Examples
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■ Sources Examples
■ S-parameter Examples
■ Transmission Lines Examples
■ Transmission (W-element) Line Examples
■ Variability Examples
■ Verilog-A Examples
986 HSPICE® User Guide: Basic Simulation and Analysis
K-2015.06



31

31Library and Data Encryption

Describes the Synopsys library encryption methods and their use to protect your 
intellectual property.

HSPICE ships several suites of examples for your use; see Listing of 
Demonstration Input Files for paths to demo files; for encryption demo files, see 
Encryption Examples.

Organization 

These sections present the HSPICE encryption methods according to the 
following topics:
■ Library Encryption
■ Three Encryption Methods
■ Installing and Running metaencrypt
■ Encryption Guidelines
■ General Example
■ Traditional Library Encryption
■ 8-Byte Key Encryption
■ Triple DES Public and Random Keys
■ Troubleshooting
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Library Encryption

You can encrypt your own proprietary HSPICE custom models, parameters, 
and circuits and distribute to others without revealing your company’s sensitive 
information. Recipients of an encrypted library can run HSPICE simulations 
and your libraries, so that encrypted parameters, encrypted circuit netlists, and 
internal node voltages do not appear in output files. Your library user sees the 
devices and circuits as black boxes that provide terminal functions only. 

The following topic discusses the metaencrypt utility:
■ Encrypting a Model Library Using the metaencrypt Utility

Encrypting a Model Library Using the metaencrypt 
Utility
A typical model library from a foundry has the following structure:

* model library mylib.lib
.lib tt
.param toxn=
...
.inc mymodel.mdl
.endl

If you encrypt both mylib.lib and mymodel.mdl, then you generate the error 
message: Command exited with non-zero status 1 during the 
HSPICE simulation. This is because HSPICE does not support the nesting of 
encrypted files. 

To correctly encrypt the model file, you need to change the library structure. 
The model parameters and the models need encryption separately as shown in 
the following steps:

1. The modified structure should be as follows:

.* model library mylib.lib

.lib tt

.inc myparam.par    $ put parameter definitions into myparam.par

.inc mymodel.mdl $ original model file

.endl

2.  Encrypt the parameter file, model file and netlist as follows:
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metaencrypt -i myparam.par -o myparam.par.enc -t randkey
metaencrypt -i mymodel.mdl -o mymodel.mdl.enc -t randkey
metaencrypt -i mynetlist.sp -o mynetlist.sp.enc -t randkey

3. To simulate the circuit, include the encrypted files and call the library file, 
mylib.lib in the top level netlist:

* top level netlist
.inc mynetlist.sp.enc
.lib mylib.lib tt
...
.end

* modified library mylib.lib
.lib tt
.inc myparam.par.enc
.inc mymodel.mdl.enc
.end

Three Encryption Methods

HSPICE supports three types of encryption through the metaencrypt utility:
■ Traditional Library Encryption (Freelib)
■ 8-Byte Key Encryption
■ Triple DES Public and Random Keys

The metaencrypt utility can encrypt files with lines up to 254 characters or 
shorter. You can include multiple types of encrypted files in a HSPICE 
simulation.

Installing and Running metaencrypt

This section describes how to install and run metaencrypt.

The following sections discuss these topics:
■ Installing metaencrypt
■ Running metaencrypt
■ Encryption Guidelines
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■ General Example
■ Traditional Library Encryption
■ Creating Files Using Traditional Encryption
■ Example: Traditional (freelib) Encryption in an HSPICE Netlist

Installing metaencrypt
The metaencrypt utility is part of the general HSPICE distribution and found in 
the $installdir/bin directory. 

If you have not installed HSPICE on your system, first install HSPICE according 
to the Installation Guide and the HSPICE Release Notes. Verify that the license 
file contains the license token encrypt.

Running metaencrypt
Syntax
metaencrypt -i input_file|-pipe -o encrypted_output_file 

-t encrypt_type [-d encrypt_dir] 
[-r synopsys_tool[:access_control]]
[-r synopsys_tool[:access_control]]...

Argument Description

-i inptfileName Unencrypted input filename.

-pipe Reads in data from a UNIX pipe.

-o outfileName Encrypted output filename.

-t encrypt_type Encryption method:
■ Freelib—weak (low security)

-t [ddl1 | ddl2 | custom | freelib]
■ 8-byte—strong (medium security)

-t 8-byte-string
■ Triple DES—strongest (high security)

-t [privkey [key or file] | randkey]

-d encrypt_dir Valid when using DES or tripleDES to encrypt file. Data between .PROT 
and .UNPROT commands undergoes encryption and outputs to an encrypted output 
file in directory encrypt_dir. 
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Encryption Guidelines
Before encrypting, you must test out any circuits and device parameters, as you 
will not be able to see what is wrong after encryption because HSPICE does 
not let you read the encrypted data.

You can use any legal HSPICE command inside subcircuits that you encrypt. 
Refer to Using Subcircuits in Chapter 7, Input Netlist and Data Entry for more 
information about how to construct subcircuits. The structure of your libraries 
can affect how you encrypt them. If your library requires that you change the 
name of a subcircuit, you must encrypt that circuit again.

To encrypt more than one file in a directory, use the following shell script, which 
encrypts the files as a group. In this example, the script uses the traditional 
encryption method. The script produces a .inc encrypted file, for each .dat 

-r synopsys...tool. synopsys_tool can be: HSPICE, NanoSim, HSIM, CustomSim, FinSim®, AutoChar, 
nanotime, or Synopsys. The default is ON for all simulators. In other words, if you do 
not use –r, or if you specify –r without a value after it, Synopsys tools (NanoSim, 
HSIM. XA, and HSPICE) can read the encrypted file. access_control can be 0 or 
1. The default is 0.
■ 0: The simulators suppress any warning-related information to the encrypted 

block; for example, a warning and error, operating point, waveform result, and so 
forth.

■ 1: Simulators output operating point information related to the encrypted block. 
Currently, it only works in HSPICE. For the other simulators like XA, AutoChar, 
and so forth, they still treat it as 0 even you specify it with 1 in metaencrypt; the 
OP information cannot be output.

Notes:

HSPICE can always read an encrypted file, even if you have not specified -r 
hspice. If there are multiple settings for the same tool, HSPICE uses the last setting. 

Example 1: In this invocation, the access_control for NanoSim is 0, and the 
access_control for HSPICE is 1:

metaencrypt -i test.sp -o test.spe -t randkey 
+ -r hspice:1 –r nanosim:0

Example 2: Limit the parsing of the encrypted files to HSPICE. Other simulators 
cannot parse the encrypted file:

metaencrypt -i test.sp -o test.spe -t randkey 
+ –r hspice

Argument Description
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file in the current directory. The metaencrypt command assumes that 
unencrypted files have a .dat suffix.

#!/bin/sh
for i in *.dat
do
Base=‘basename $i .dat‘
metaencrypt -i $Base.dat -o $Base.inc -t Freelib
done

Use an encrypted file much the same way as you do before encryption. The 
name of the file may be different, however, and so you may need to update the 
.include and .lib commands.

Note: Verilog-A supports module files for encryption only when using 
8byte key and tripleDES private or random key. The Freelib 
(traditional encryption method) does not support Verilog-A due to 
limitations in metaencrypt.

You can probe any specified encrypted nodes using .OPTION PROBE.

General Example
The requirements for encrypted libraries of subcircuits are the same as the 
requirements for regular subcircuit libraries, as described in this guide. To refer 
to an encrypted subcircuit, use its subcircuit name in a subcircuit element line 
of the HSPICE netlist.

Figure 187 Encrypted Library Structure

Design View File System
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ioinv iobuf.inc ioinv.inc
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The following example describes an encrypted I/O buffer library subcircuit. This 
subcircuit consists of several subcircuits and model commands that you need 
to protect with encryption. Figure 187 on page 992 shows the organization of 
subcircuits and models, in the libraries used in this example.

The following input file fragment from the main circuit level selects the Fast 
library. It also creates two instances of the iobuf circuit.

...

.Option Search=’LibraryDir/Fast’ $ Corner Spec
x1 drvin drvout iobuf Cload=2pF $ Driver
u1 drvout 0 recvin 0 PCBModel ... $ Trace
x2 recvin recvout iobuf $ Receiver
...

The LibraryDir/Fast/iobuf.inc file contains:

.Subckt iobuf Pin1 Pin2 Cload=1pF
*
* iobuf.inc - model 2001 improved iobuf
*
cPin1 Pin1 0 1pF $ Users cannot change this!
x1 Pin1 Pin2 ioinv
.Model pMod pmos Level=28 Vto=... $ <FastModels>
.Model nMod nmos Level=28 Vto=... $ <FastModels>
cPin2 Pin2 0 Cload $ gives you some control
.Ends

The LibraryDir/Fast/ioinv.inc file contains:

.Subckt ioinv Pin1 Pin2
mp1 Vcc Pin1 Pin2 Vcc pMod...
mn1 Pin2 Pin1 Gnd Gnd
nMod...
.Ends

The encrypted file looks similar to the following:

.SUBCKT ioinv Pin1 Pin2

.PROT FREELIB $ Encryption starts here ...
X34%43*27@#^3rx*34&%^#1
^(*^!^HJHD(*@H$!:&*$
dFE2341&*&)(@@3 $ ... and stops here

.ENDS
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Note: The .UNPROTECT statement also becomes encrypted during the 
encryption process.

After encryption, the basic layout of the subcircuits is the same. However, you 
cannot read the file. Only HSPICE can read this file.

Encryption also suppresses printouts of encrypted model information from 
HSPICE. Only HSPICE can decrypt the model.

Using the -pipe Option
A command series can be read in, using the input from a UNIX pipe.

FILE *pipe;
char buf[100];
pipe = popen("metaencrypt -o outfile ....", "w");
strcpy(buf, "......");
fprintf(pipe, buf);
strcpy(buf, "......");
fprintf(pipe, buf);
pclose(pipe);

After the pipe closes, HSPICE generates the encrypted file.

Traditional Library Encryption
A 5-rotor Enigma machine is the basis for the traditional library encryption 
algorithm (Freelib). You can specify which portions of subcircuits to encrypt. 
The .PROT/.UNPROT commands designate encrypted portions. HSPICE does 
not encrypt any other netlist entries. Library encryption uses a key value, which 
HSPICE reconstructs for decryption.

Note: If you divide a data line into more than one line, and use the line 
continuation character (+) to link the lines, you cannot 
add .PROT or .UNPROT commands among these lines. The 
following example fails:

.prot

.Model N1 NMOS Level= 57
+TNOM = 27 TOX = 4.5E-09 TSI = .0000001 TBOX = 8E-08
+MOBMOD = 0 CAPMOD = 2 SHMOD =0
.unprot
+PARAMCHK=0 WINT = 0 LINT = -2E-08
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When metaencrypt reads the input file, it looks for .PROT and .UNPROT 
pairs, and encrypts the text between them. You can encrypt only one file at a 
time.

Example

metaencrypt -i newmos.lib -o newmos.inc -t freelib

Note: The netlist needs to be “complete”, i.e,- have an .end statement.

Creating Files Using Traditional Encryption
The following sections describe:
■ Non-Library Encrypted Portions
■ *.lib File Encryption

Non-Library Encrypted Portions
You can encrypt the data between .PROT and .UNPROT commands, in a .sp 
file, so that HSPICE can recognize it.

Note: If you use .sp encryption, the encrypted data must not use .INC, 
.LIB, or .LOAD, to include another file.

The following is an example of an .sp file:

*sample.sp*
......

.lib 'cmos.lib' TT

.prot

.... $ data to be encrypted

.... $ do not include .inc .lib .load in encrypted data

.unpr

.inc sample2.inc

......

.end

*.lib File Encryption
You can place any important information into a .lib file, and encrypt it.

You can place parallel ..lib commands into one library file, and encrypt each 
*.lib separately. However, you must place .PROT and .UNPROT commands 
between each pair of ..lib and .endl commands.
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Note: You must place .PROT and .UNPROT commands between .lib 
and .endl commands. To find the library name, HSPICE 
searches the *.lib file first.

The following is an example of a *.lib file:

*sample.lib*
.lib test1 $ .prot , .unpr should be put between
* .lib and .endl
.prot
...... $ data to be encrypted
.unpr
...... $ data not to be encrypted
.end1 test1

.lib test2 $ .prot , .unpr should be put between
* .lib and .end1
.prot
...... $ data to be encrypted
.unpr
.end1 test2

.lib test3

...... $ data

.end1 test3

You use the above encrypted .lib file as you would any unencrypted one.

.lib ‘./sample.lib’ test1

.lib ‘./sample.lib’ test2

.lib ‘./sample.lib’ test3

......

.end

Example: Traditional (freelib) Encryption in an HSPICE 
Netlist
The following complete example illustrates the metaencrypt encryption 
structure. This example enc.sp netlist has three encrypted files: the mm.spe, 
the xx.ic, and the kk.lib. 

file enc.sp:
*test .inc .lib .load encryption
.inc "mm.spe"
.load "xx.ic"
.lib ’kk.lib’ pch
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.OPTION post list

.tran 2ns 400ns

.end

file mm.spe:
.prot CUSTOM
-hs#ylB]*7[
+t’Y=O$S[t0]ajL
+C :Nx:$.$=<*X:$<#pP=020#ZWP=020x\K:[1:898
y[-x:$-#tRr0($x#4:/[U$<\K:I[U$<J <9 :P#ZQ
6%P2V7D6:]4l/0#+:IXj0#ZWP=020#ZWP/[U$=J++bZ
3[7D6:BxHpg8
/C902P73+26
mh$y#D:bX/$\KwI)U-0R#=-ib+\[
a$o) :P.#$<) :P.#to)V:\7*K-I1M$#’;-[Xz:9qpy
eMDv0%wUoxZ>mzwF*-(3_;W6x.*P!uW.]a+P0.h:n=O>1q+H(J0
o.H#-/B+($;W Me*0x<6#9[UqpH/2h97%;-/B+T35Q
$\m;’_-he[uE$%H) 5a:ZxRW9x=*77w$2]=*P!RW%.ahT3VQ
H0[I:[

file xx.ic:

.prot FREELIB
59yUH\$=’x.3k77*<]8AT]8
<:7-(:9CV+7x15Xj+h’x=5Xj+(2 +4]8
<:7_D:\[2x9Y>/.7q
59y3\#D$ *y2k=u]PIq:97jH=u1w5Xj+x6
92k#<2FW0’k772<xBU677Q
59y3\#s# r21$],29b72[4’/RW72wd#$:O.U 
+ 0sW%5$;[4sv;9=zV7[WFW[(g8#/’]=AH%T5:7Z
[$%C999A2P!8
<:X2o60’$ 06($_#upe1:pX8
<5ax/toC n90;<0dw0]23G%C z9$Dh#Sw5a90
ZM*2!M[0
o729!=PAy73x(/1:6[
+ 0%2UT%8
_:-x*$X+q
$9P2y73x(/1:L
T#;*9A27!j+(/z
$$o#(:/b0
o7ZW-9 -PxJ+y
a9[$0\;n90;<0dw0]23G%C z9$Dh#Sw5a90
Zr ;6

file kk.lib:

.LIB NCH

.prot FREELIB
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HO. T,# %fXz>MZWf*-(3_;w6X.*p!Uw.]A+p0.H:N=o>1Q+h(j0
o.H#-/B+($;W Me*0x<6#9[UqpH/2h97%;-/B+T35Q
$\m;’_-he[uE$%H) 5a:ZxRW9x=*77w$2]=*P!RW%.ahT3VQ
H0[I:[
.ENDL

.LIB PCH

.prot FREELIB
HO. T,#t%fXz>MZWf*-(3_;w6X.*p!Uw.]A+p0.H:N=o>1Q+h(j0
o.H#-/B+($;W Me*0x<6#9[UqpH/2h97%;-/B+T35Q
$\m;’_-he[uE$%H) 5a:ZxRW9x=*77w$2]=*P!RW%.ahT3VQH0[I:[
.ENDL

8-Byte Key Encryption

An 8-byte key encryption feature, based on a 56-bit DES, is available in 
metaencrypt. When using 8-byte encryption you can encrypt files with line 
lengths of 254 characters or shorter. The encrypted data is in binary format.

To encrypt a file, you provide a keyname that can contain alphabetic characters 
and numbers, and which is no longer than 8 bytes. To use the encrypted file, 
you must use the .inc command in the main netlist.

HSPICE supports, include file (.inc) encryption, when you use 8-byte key 
encryption. To use this encryption:

1. Insert the data to encrypt, into an include file.

2. Encrypt this file.

Follow these rules when you use 8-byte key encryption:
■ 8-byte key encryption supports only .inc encryption.
■ 8-byte encryption does NOT support .LIB, .LOAD, or .OPTION SEARCH 

encryption. Choose another form of encryption for these types of files.
■ If keyname is an 8-byte string (combination of characters and numbers), 

then metaencrypt performs the 8-byte key encryption.
■ In a .sp file, you cannot encrypt the first line because it is the title. You also 

cannot encrypt the last line because it marks the end of the file.

The following sections discuss these topics:
■ Creating 8-byte key Encryption
■ Placing an 8-byte key Encrypted File into a HSPICE Netlist
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Creating 8-byte key Encryption
Use the following syntax to create 8-byte key encryption:

metaencrypt -i example.dat -o example.inc -t fGi85H9b

In the following example, example.dat contains the data to encrypt.

* DFF subckt netlist
$notice no .prot or .unprot used for this method
.subckt XGATE  control in n_control out 
m0 in n_control out vdd pmos l=0.90u w=3.4u
m1 in control out gnd nmos l=0.90u w=3.4u .ends
.....
v14 vdd gnd dc=5
Xi3  net25 net31 net27 dff_nq DFF l=1u wn=3.8u wp=10u
Xi2  dff_nq d_output INV wp=26.4u wn=10.6u
.ends XGATE

Placing an 8-byte key Encrypted File into a HSPICE 
Netlist
The following fragment is an example of placing an 8-byte key encrypted file 
into an HSPICE Netlist:

* example.sp file using encrypted example.dat
.Options Post NoMod
.Global vdd gnd 
.lib 'demo.lib' TT
.inc 'example.inc'  $ this is the encrypted file
...
*
.Tran 1n 8n Sweep Optimize = Opt1
+                 Result   = MaxVout    $ Look at measure
+                 Model    = OptMod
.end

Triple DES Public and Random Keys

The HSPICE triple DES encryption uses a 192-bit key to achieve a maximum 
level of security. You can generate the encryption keys for a new algorithm with 
one of the following options: 
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■ 256-bit public key

With this option, HSPICE generates a 256-bit public key during the 
encryption process. You need to distribute this key to the customer in order 
to run a simulation. Every time the 256-bit public key performs he 
encryption, the encrypted file and the generated public key is different, even 
with the same private key and input file. This allows you to generate different 
encrypted file and public key combinations for different customers.

Your customers cannot access the key used for encryption, but they can run 
a simulation on a circuit by putting this public key file in the same run 
directory.

The 256-bit public key supports multiple encrypted files. You have to put all 
relevant public key files in the directory from which the simulation originates. 
You can also generate these encrypted files with the same private key or 
different private keys. The actual “key” needs to be a user-generated 192-bit 
string. For example, the following two files receive encryption with the same 
key:

metaencrypt -i a.dat -o a.inc -t privkey

metaencrypt -i b.dat -o b.inc -t privkey

The encryption creates two public key files: a.inc.key, and b.inc.key. These 
files are different even when the same private key generates the encryption. 
A simulation run with a netlist file containing .include a.inc and 
.include b.inc commands requires that both key files be in the 
simulation directory.

■ 192-bit random key

With this option, HSPICE does not need an additional public key. The 
encrypted file is different every time you run an encryption. 

The following sections discuss these topics:
■ Creating 3DES Encrypted Files
■ Placing 3DES Encryption Files into a HSPICE Netlist
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Creating 3DES Encrypted Files
Observe these rules when creating TripleDES encrypted files:
■ You can use embedded .LIB encryption only if you set it up using .prot 

and .unprot inside of the .lib plus use the -d option. 
■ Do not use .OPTION SEARCH, when you encrypt models and subcircuits. 

(The old metaencryption functionality supported this method.) To directly 
encrypt subcircuits and model libraries, use the traditional .INC and .LIB 
encryption method.

Random Key Example
For files without embedded .lib, .inc, or .load commands:

metaencrypt -i dff.sp -o dff_rand.spe -t randkey

Note: This netlist file has no.prot or .unprot commands in it, 
similar to 8-byte encryption.

For files with embedded .lib commands:

metaencrypt -i  demo.lib -o demo_rand.lib -t randkey 
+ -d ./lib_rand

Note: The demo.lib for this has the same .prot/.unprot setup as 
for traditional freelib.

Public Key Example
For files without embedded .lib, .inc, or .load commands:

metaencrypt -i dff.sp -o dff_priv.spe -t privkey 
0123456789ABCDEF9876543210FEDCBA1357924680ACEBDF

Note: This netlist file has no .prot or .unprot commands in it, 
similar to 8-byte encryption.

For a file that has an embedded .lib command:

metaencrypt -i  demo.lib -o demo_priv.lib -t privkey 
0123456789ABCDEF9876543210FEDCBA1357924680ACEBDF -d ./lib_priv

Note: The demo.lib for this has the same .prot/.unprot setup as 
for traditional freelib.
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Placing 3DES Encryption Files into a HSPICE Netlist
While using a random or private key method for tripleDES may look similar, the 
private one requires that the key resides in the same directory. 

Example 1 Random TripleDES
* Example netlist for including random TripleDES
.Options Post NoMod
.Global vdd gnd 
.lib 'demo_rand.lib' TT   $ bring in the random 3DES lib file, 
*that looks at the ./lib_rand directory for files
.inc 'dff_rand.spe'        $ bring in random 3DES encrypted design 
*file
....
.end

Example 2 Private TripleDES
* Example netlist for including private TripleDES
.Options Post NoMod
.Global vdd gnd 
.lib 'demo_priv.lib' TT   $ bring in private key lib file; the 
*keys are in the ./lib_priv directory along with the files
.inc 'dff_priv.spe'       $ bring in private key encrypted file; 
*key must be in this same directory (dff_priv.spe.key)
.....
.end

Troubleshooting 

The following sections discuss these issues:
■ **warning** parameters... as an expression containing output signals
■ Encrypting S-parameter files
■ Freelib Issue with Equations

**warning** parameters... as an expression containing 
output signals
This warning occurs even when there are no explicit encrypted blocks in the 
netlist. There are two reasons for this warning message.
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■ .protect and .unprotect commands are in the netlist. 
■ The results of parameter expressions which contain output signals are not 

correct. For example: 

.param myfunc (one,two)='abs (one - two)'

.param test=myfunc(v(1),v(2))

.protect

.if ( test <= 1 )

.param k='2*1p'

.elseif ( test <= 4 )

.param k='8*1p'

.else

.param k='1*test*1p'

.endif

.unprotect
c1 2 0 c=k

Note: If you use.prot/.unprot in a library or file that is unencrypted 
you get warnings that the file is an encrypted file and the file or 
library is a “black box.”

Encrypting S-parameter files
While S-parameters do not convey any IP information and encryption you do 
not need to add encryption, you can encrypt S-parameters and use in HSPICE 
simulations if the file is in the SELEM format (*.sc0). 

To encrypt a SELEM-formatted S-parameter file and use it in HSPICE, follow 
this procedure:

1. Generate a *.sc0 file. Use the .LIN command to extract the S-parameters 
from a circuit. The .LIN command creates a .sc0 file. If you already have 
a TouchStone 1.0/2.0 or CITI formatted file, you can use also use the .LIN 
command to convert the file to an *.sc0 formatted file.

2. Edit the .sc0 file so that it is a .lib file. For example,
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.lib s

.protect
*| NPort=2 DATA=1000 COMPLEX_DATAFORMAT=RI NOISE=0 
GROUPDELAY=0
*| NumOfBlock=1 NumOfParam=0
*
.MODEL filter S
+ N=2 FQMODEL=SFQMODEL TYPE=S Zo=   50.0000        50.0000
* + FBASE=  FMAX=
.MODEL SFQMODEL SP N=2 SPACING=POI INTERPOLATION=LINEAR 
MATRIX=NONSYMMETRIC
+ DATA=1000
+ ...
<S-parameter data>
.unprotect
.endl

3. Encrypt the file. Use either 8-bit encryption or Triple DES encryption.

4. To use the encrypted file in the netlist you need to call the S-parameter data 
as a .lib in addition to defining the S-element.

* Encrypted S-parameter Example
...
.lib 'filter.sdt' s $ encrypted S-parameter library file
 $ contains the model 'filter'
S1 in out 0 mname=filter     $ S-element with model name 'filter'
...
.end

Freelib Issue with Equations
When you run encrypted files using the freelib method, you may generate error 
messages such as: 

**error** Left parenthesis improperly placed in column  90
**error** Characters  after end of expression in column 148

The error messages only occur when using freelib encryption because this 
method does not support the mathematical operator caret (^) used for power in 
equations. If you are using freelib encryption, use '**' as an operator for power 
in equations.

HSPICE recommends that you use either 8-byte or Triple DES encryption as 
both the 8-byte and Triple DES encryption are much stronger encryption 
methods than the freelib encryption method.
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32Warning/Error Messages

Provides an overview of the type of warnings and error messages that HSPICE 
prints and troubleshooting measures to take when possible.

Users can exercise control over the number of occurrences of warning or error 
messages and escalate the severity of certain messages by using .OPTIONS 
MESSAGE_LIMIT and STRICT_CHECK. See .OPTION MESSAGE_LIMIT and 
.OPTION STRICT_CHECK in the HSPICE Reference Manual: Commands and 
Control Options.

HSPICE ships hundreds of examples for your use; see Listing of 
Demonstration Input Files for paths to demo files.

This chapter contains the following topics:
■ Warning Messages
■ Error Messages
■ Analysis Options: DIAGNOSTIC
■ Transient Analysis Errors and Solutions
■ Safe Operating Area (SOA) Warnings
■ Verilog-A (pVA) Messages
■ Warning Message Index [00001-11146]
■ Error Message Index [20001-20084]
■ Exit Codes
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The following sections present these topics:
■ Topology Warnings
■ Model Warnings
■ Control Option Warnings
■ Device Warnings
■ Analysis Warnings

Topology Warnings

Note: To suppress the netlist topology checks and cause no topology 
warnings or errors to be reported set .OPTION NOTOP.

Topology Integrity
When HSPICE encounters topology integrity issues, it reports warning 
messages similar to the four types shown:

**warning**  only 1 connection at node 1:net0107 defined in subckt 
bg: called in element 12:mn0 defined in subckt bg at line 161 
within the hspice source, library or include file.

**warning** both nodes of resistor 1:rinp defined in subckt opa350 
are connected. together

**warning** 2:r11 defined in subckt pwdr resistance limited to 
1.000E-05

**warning** the following singular supplies were terminated to 1 
meg resistor
 supply node1            node2
 vdd18 0:dvdd18 defined in subckt 0 0:0 defined in subckt0
 vdd1p8 0:dvdd1p8 defined in subckt 0 0:0 defined in subckt 0 

No DC Path to Ground
The warning for no DC path to ground, effective from 2007.09, is:

**warning**  no dc path to ground from node 13:fl defined in 
subckt d****01 now it is connected with gdcpath.
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Duplicate Initialization
If a node is initialized using a .ic or .nodeset more than once, the following 
warning is issued:

**warning** a duplicate initialization for node=1620:ram***, 
keeping last value 0.900 only.

Model Warnings

Zero or Negative Conductance
The following two examples show sample warning messages for negative or 
zero conductance:

**warning** negative-mos conductance = 0:m1 iter= 2 
vds,vgs,vbs = 4.22          2.12         0.925
gm,gds,gmbs,ids=   1.707E-03    9.366E-05   -1.380E-04   5.040E-04

**warning** conductance of 0. on node 0:net4823 iter= 1

Encryption-Related Warnings
**warning** Data associated with encrypted blocks were suppressed 
due to encrypted content

 **warning** Some parameters in  encrypted block are defined as 
an expression  containing output signals. which may cause incorrect 
result. Suggest to use user defined functions to replace.

The typical causes for these warnings are 
modeling problems in the subthreshold equations 
(if in cutoff) or channel length modulation 
equations (if in saturation). The magnitude 
reported in the warnings indicates the magnitude 
of the conductance (leakage) that must be placed 
across the drain and source to offset the effect of 
the negative conductance. Typically, .option 
GMINDC and GMIN can be used to do this.

V

I

Region of Negative 
Conductance
(Negative slope)

V

I

V

I

Region of Negative 
Conductance
(Negative slope)
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Model Binning Warnings
**warning** (L65***.mdl:2)  model n_10_rvl     device geometries 
will not be checked against the limits set by lmin, lmax, wmin 
and wmax. To enable this check, add a period(.) to the model name 
(i.e. enable model selector).

Key Model Parameter Checking
*** warning ***: area for diode can not be 0.0, reset to 1e-12 
(default value)

Parameter Expression Warning
**warning** parameter pdt is defined as an expression containing 
output signals, which may cause incorrect result. Suggest to use 
user defined functions to replace.

For example:

.Param pdt = “rs*pi*i(node2)+v(out)”

Control Option Warnings

ACCURATE
runlvl smaller than 5, reset to 5 when accurate turned on

GMIN, GMINDC
**warning**  pivtol too large ** reset to half minimum value of 
(gmindc,gmin)

Device Warnings
Device warnings are specific to each model.

Device Geometry Check
Warning: Pd = 1.36e-06 is less than W.
Model:    0:nch
W = 4.444e-06, L = 5.3e-07
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Device Parameter Check
Warning: Moin = 1568.2 is too large.
Warning: Acde = 0.0350921 is too small.

Analysis Warnings

Transient
**warning** the third value 0.00000D+00 and the fourth value 
1.00000D-12 are both smaller than the second value 5.00000D-10, 
so the transient statement is interpreted as'.tran tstep tstop 
tstart delmax'.

Example:

.tran 1n 1u 0 1p

.tran 1n 1u 1p 2u

Bisection
With option OPTCON=1

**warning** endpoints have same sign in bisection
For x               =   0.0000    , y               =   0.0000    .
For x               =   1.0000    , y               =   1.0000    .
Both of these are on the same side of the goal value y           =  
0.30000   .

Multiple Results:

**warning** multiple results used in bisection

Example:

.tran 1.0e-9 8.0e-9 sweep optimize=opt1 results=y,z 
model=opt_model

Pass/Fail

**warning** passfail does not support more than one result, only 
first one is validated

Example:

.model opt_model opt method=passfail relin=0.01 relout=0.01

.tran 1.0e-9 8.0e-9 sweep optimize=opt1 results=y,z 
model=opt_model
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Measure
**warning** measure results may be incorrect since initial start 
time is non-zero.
 vin_pp=  1.4855E-01  from=  1.5000E-05     to=  2.0000E-05

**warning** the Equation Evaluation form of the .MEASURE statement 
must not be a function of node voltages or branch currents. 
Unexpected results may incur.

Example:

.MEAS VARG PARAM=‘(V(2) + V(3))/2’

.DC and .OP Analysis Warnings
When both DC and TRAN source are defined:

**warning** dc voltage reset to initial transient source value 
in source 0:vclk new dc=  0.0000D+00

Example:

vlo2 in gnd dc vhaf sin(0 '(pwr(10,((toin)/20)))*(1e-6)*SQ2' fq 
0 0 180)

Character line limit warning
The HSPICE line limit is 1024 characters.

**warning** node full pathname length in .ic file greater than 
limit, node NOT initialized in the save file   nodeset.ic

Autoconverge overflow message

**warning** Due to a floating point overflow problem, the damped 
pseudo-tran method was used. Also, gmindc was set to 1.0000E-11

Difficult operating point calculation warning message

**warning** This was a difficult operating point. You can speed 
up your simulation by specifying:.OPTION CONVERGE=4

Auto-convergence flow messages

convergence problems in dc sweep curves at 15.894 resimulating 
with dc convergence controls
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**diagnostic** dc convergence failure, resetting dcon option to 
1 and retrying with dcon=1, it converged for gmindc=   5.500E-14

**diagnostic** dc convergence failure,
 resetting dcon option to 2 and retrying.

**diagnostic** although this circuit has failed to converge to 
gmindc= 1.000E-15, it did converge to a gmindc= 7.662E-15 for 
most circuits a value of gmindc 1e-7 or less, is acceptable

Operating point diagnostic failure messages

**diagnostic** number of iteration exceeds min (7000, 
20*itl1)=7000 in pseudo tran process (converge=1 process). Usually 
this happens when the models are discontinuous, or there are 
uninitialized bi-stable cells (flip-flop) in the circuit. By 
setting options dcon=-1 and converge=-1 you can disable auto 
convergence process. Retry the run, non-convergence diagnostics 
will provide useful information about the nodes and devices which 
can be used to work around the non-convergence problems.

Error Messages

The following sections present these topics:
■ Topology Errors
■ Model Errors
■ Analysis Errors

Topology Errors
When constructing the circuit description HSPICE does not allow certain 
topologies. Topology errors will be reported according the following 
circumstances:
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Negative or 0 multiplier is not allowed

**error** Value of multiplier parameter in 1:x1 is less than or 
equal to 0

Model Errors
Undefined Model

**error** model name pch in the element 0:mp is not defined.

Redundant Model Definition

**error**  above line attempts to redefine tnl
**error** (../models/res2:4) difficulty in reading input

Undefined parameter

**error** no definition for 0:rsit was called by      0:rin
**error** no definition for 0:toxn it was called by      0:n

No voltage loops: no voltage 
sources in parallel with no 
other elements No stacked current sources:

no current sources in series

No ideal voltage source in closed 
inductor loop

I

I

I

v v

v

No ideal current source in 
closed capacitor loop
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Analysis Errors

.DC and Operating Convergence Errors
No convergence error

**error** no convergence in operating point

No convergence at a .DC sweep point

**error** no convergence in dc sweep curves at   15.851

Operating Point Debugging Information

*** hspice diagnostic *** nonconvergent voltage failures= 33803 
nonconvergent element current failures= 1

…

Convergence Termination Criteria

/* NC is the # of non-convergent nodes, currents, or MOSFETs

Another Iteration: Iteration_Number = Iteration_Number + 1

NC=0

Do I=1,   # Circuit Nodes

      if (| V(n) - V(n-1) | > RELV * V(n) + ABSV)                     then NC = NC + 1

Do I =1,   # Branch Currents

      if (| I(n) - I(n-1) | > RELI * I(n) + ABSI)                       then NC = NC + 1

Do I=1,   # MOSFETs 

      if (| Ids(n) - Ids(n-1) | > RELMOS * Ids(n) + ABSMOS   then NC = NC + 1

IF NC = 0

      Save Solution

else

      If (Iteration_Number < Iteration_Limit) do Another_Iteration

            else Failed_to_Converge 
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Non-Convergence: Possible Causes

DC/OP Convergence Aids
Aids to Remedy DC Bias Non-Convergence
■ Auto-convergence process
■ .NODESET/.IC Commands (see the following sections)
■ Model-related solutions
■ Others, with less impact

• DCSTEP and GMINDC ramping

• Source stepping/ramping

• GSHUNT/CSHDC

• DV

DC Bias Point Convergence Actions
Take the following actions to resolve issues dealing with DC bias point non-
convergence:
■ Remove all options except node, list, post, and opts
■ Allow the auto converge process to proceed
■ Review the .lis file for convergence hints 
■ Search for “warning” and “error” messages
■ Rerun the simulation

Node Unstable

Circuit
Reason

Model
Problem

Simulator 
Options

Incomplete Netlist

Feedback

Parasitics

Negative Conductance

Model Discontinuity

Tolerances

Algorithms
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DC Bias Point Troubleshooting with .NODESET and .IC
Non-convergence can occur due to poor initial conditions. Set initial conditions 
and/or nodesets. For example:

.IC v(1)=5v v(abc)=0v v(12)=VDD

.NODESET v(x1.87)=5v

Identify the problem nodes by:
■ Reviewing the non-convergent diagnostic table in the listing file
■ Identifying non-convergent nodes with unusually high voltages, branch 

currents, or high error tolerances
■ Initializing these nodes
■ Reviewing the circuit for un-initialized feedback paths (flip-flops, oscillators, 

etc.)

Because it is inefficient to manually add .NODESET and/or .IC for a large 
number of nodes, to set a large number of nodes:

1. Comment out all analysis commands except .TRAN.

2. Add UIC to the end of the .TRAN command.

3. Disable auto-convergence process by setting:

.option DCON=-1 CONVERGE=-1

4. Use .SAVE [TYPE=<nodeset|ic>] [TIME=<x>] to store the 
calculated operating point as a .ic or .nodeset file. 

5. Simulate the circuit.

6. Use .LOAD for loading the file from the .SAVE command.

7. Enable the auto-converge process by removing the DCON and CONVERGE 
options.

8. Remove UIC from the .TRAN command.

9.  Re-simulate the circuit.

Troubleshooting Model-Related DC Bias Point Issues
Inappropriate model parameters are usually the cause having to do with units 
or negative/zero conductance:
■ If the issue is units:

• .OPTION SCALM (global)
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• .MODEL SCALM factor (local value within .MODEL statements)

Is a global .OPTION SCALM needed?

• Look at the listing file and review element values.

• Swap in a known good model.

Convergence/Conductance
This section describes issues and possible solutions when conductance values 
impact on convergence. For example: Using a conductance term to predict the 
next voltage value, can create the problem that if conductance becomes small, 
the 2nd term becomes large:
■ Next voltage value unrealistic
■ Causes extra iterations
■ Worse: Conductance of zero!

■ Since all semiconductor device models contain regions of zero 
conductance:

• Shunt R placed in parallel with every PN junction and drain to source

• Determine smallest parasitic Rp that can be placed across any 2 nodes 
without influencing circuit behavior
— G=1/Rp
— Try setting .OPTION GMINDC=1e-9 GMIN=1e-9

• Default for both GMIN and GMINDC is 1e-12
■ You must ask, “How much leakage is acceptable?”

• Typically, a setting GMIN=1e-10 does not affect CMOS circuit accuracy
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• Larger values of GMIN will affect accuracy and indicate that there may 
be a model problem

Convergence/Diode Resistance
High conductance is troublesome to the algorithm:

Problem: Highly forward-biased diodes (greater than 0.8V)
■ Lead to very small iteration-to-iteration voltage changes
■ Can cause HSPICE to reach iteration limit before reaching the proper 

solution voltage

Solution:
■ Always specify the series-resistance model parameter for all diodes, bipolar 

devices, and MOSFETs in the circuit (Default is ZERO ohms).
■ At high forward bias, the series resistance dominates the conductance of 

the device and helps reduce the occurrence of non-convergence.
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■ Series resistance model parameters for active devices:

• Diode RS

• Bipolar transistor RE and RC

• JFET RD and RS

• MOSFET RD and RS

Analysis Options: DIAGNOSTIC

HSPICE automatically prints out the first occurrence of “negative-mos 
conductance” in the .lis file.

.option DIAGNOSTIC
■ Causes all occurrences of negative model conductances to be printed in 

the .lis file
■ If the magnitude of the negative conductance is  > -1e-8, consult your 

modeling department or foundry
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Transient Analysis Errors and Solutions

The following section discuss these topics:
■ Transient Analysis Error
■ Transient Non-Convergence
■ Transient Convergence Aids

Transient Analysis Error
■ Most frequent error message:

**error**  internal timestep too small in transient analysis

■ Occurs when: Internal timestep < RMIN * TSTEP>
TSTEP is from .TRAN statement. 

Transient Non-Convergence
Rapid Voltage Transitions:
■ Dynamic timestep control automatically reduces the timestep size
■ As the circuit approaches a voltage transition, two potentially conflicting 

events occur:

• Semiconductor devices are switching from one region of operation to 
another.

• Timestep is reduced.
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Model Discontinuities:

■ Separate equations used for the different operating regions of an active 
device 

■ Most common discontinuities are at the intersection of the linear and 
saturation regions

■ Failure Mechanism

• Newton-Raphson can oscillate back and forth across the discontinuity

• Oscillations use up iterations without progressing toward a solution

• A sweep increases likelihood of hitting model discontinuities

Transient Convergence Aids
Corrective actions include:
■ Device model capacitance
■ GEAR integration
■ Use RUNLVL option

Device model capacitance—Transient non-convergence is primarily caused by 
a combination of model discontinuities and a reduced step size brought on by 
voltage transitions within the circuit:
■ All simulation models should have their associated capacitance terms set to 

a non-zero value.
■ Real models have real capacitances.
■ Capacitive Model Parameters:

• Diode CJO

• Bipolar CJE, CJC, CJS

• JFET CGD, CGS

I

V

I

V
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• MOSFET CGDO, CGSO, CGDO, CBD, CBS, CJ, CJSW

GEAR Integration:
■ Numeric integration of time varying currents and voltages are accomplished 

through Trapezoidal and Gear linearization.
■ GEAR integration acts as a filter, removing oscillations that can occur due 

to the trapezoidal algorithm.
■ Circuits that are non-convergent with TRAP will often converge with GEAR.

Why GEAR sometimes converges where TRAP fails:
■ Gear integration uses a “weighted average” of past timesteps to determine 

the next time step.
■ This past history helps to project over model discontinuities that exist.

Use of the RUNLVL option:
■ This option has an enhanced convergence algorithm providing less chance 

of encountering “time step too small” error.
■ RUNLVL=3 (default setting) is similar to default HSPICE setting.
■ RUNLVL=5 is similar to setting ACCURATE option.

Safe Operating Area (SOA) Warnings

You can set .option warn and .option maxwarns to have HSPICE issue 
warnings when terminal voltages of a device (MOSFET, HV, BJT, diode, 
capacitor, resistor, etc.) exceed the SOA (Safe Operating Area). All warning 
message parameters (e.g., Bv_max, Vbe_max, etc.) are positive with default 
value of infinity. 

See the following control options for details:
■ .OPTION WARN
■ .OPTION MAXWARNS

A listing of the checking criteria follows.

MOSFET / JFET:
MOSFET

Must-have: BSIM4, PSP, HiSIM_HV, BSIM3, BSIM6. Other MOSFET models 
are optional.
HSPICE® User Guide: Basic Simulation and Analysis 1021
K-2015.06



Chapter 32: Warning/Error Messages
Safe Operating Area (SOA) Warnings
(HSPICE Level66 and SPECTRE Level101 are must-have).

JFET

Must-have: LEVEL 100. Other JFET models are optional.

Terminal voltages checked: Vgs, Vgd, Vgb, Vds, Vbs, and Vbd.

Model parameters: Vgs_max, Vgd_max, Vds_max, Vbd_max, Vbs_max, 
Vgb_max, Vgsr_max, Vgdr_max, Vgbr_max, Vbsr_max, and Vbdr_max.

Terminal 
Voltages 
Checked

Model 
Params

Check criteria (i.e., the device under checking is called M1) and 
Warning Issued

The device under checking is called M1, for example.

Vgs Vgs_max

Vgsr_max

If Vgsr_max is not given

 if |Vgs| > Vgs_max, issue "Warning: Vgs (=xxx) of M1 has exceeded Vgs_max (=yyy)"

 If Vgb_max is not given

 if |Vgb| > Vgs_max, issue "Warning: Vgb (=xxx) of M1 has exceeded Vgs_max (=yyy)"

 Else

 if |Vgb| > Vgb_max, issue "Warning: Vgb (=xxx) of M1 has exceeded Vgb_max (=yyy)"

Else

NMOS/NJF:

 if Vgs > Vgs_max, issue "Warning: Vgs(=xxx) of M1 has exceeded Vgs_max(=yyy)"

 if -1*Vgs > Vgsr_max, issue "Warning: Vgs(=xxx) of M1 has exceeded Vgsr_max(=yyy)"

PMOS/PJF:

 if Vgs > Vgsr_max, issue "Warning: Vgs(=xxx) of M1 has exceeded Vgsr_max(=yyy)"

 if -1*Vgs > Vgs_max, issue "Warning: Vgs(=xxx) of M1 has exceeded Vgs_max(=yyy)"

Vgb Vgb_max

Vgbr_max                         

If Vgbr_max is not given

 if |Vgb| > Vgb_max, issue "Warning: Vgb(=xxx) of M1 has exceeded Vgb_max(=yyy)"

Else

NMOS/NJF:

 if Vgb > Vgb_max, issue "Warning: Vgb(=xxx) of M1 has exceeded Vgb_max(=yyy)"

 if -1*Vgb > Vgbr_max, issue "Warning: Vgb(=xxx) of M1 has exceeded Vgbr_max(=yyy)"

PMOS/PJF:

 if Vgb > Vgbr_max, issue "Warning: Vgb(=xxx) of M1 has exceeded Vgbr_max(=yyy)"

 if -1*Vgb > Vgb_max, issue "Warning: Vgb(=xxx) of M1 has exceeded Vgb_max(=yyy)"
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Vgd Vgd_max

Vgdr_max

If Vgdr_max is not given

 if |Vgd| > Vgd_max, issue "Warning: Vgd (=xxx) of M1 has exceeded Vgd_max (=yyy)"

Else

NMOS/NJF:

 if Vgd > Vgd_max, issue "Warning: Vgd(=xxx) of M1 has exceeded Vgd_max(=yyy)"

 if -1*Vgd > Vgdr_max, issue "Warning: Vgd(=xxx) of M1 has exceeded Vgdr_max(=yyy)"

PMOS/PJF:

 if Vgd > Vgdr_max, issue "Warning: Vgd(=xxx) of M1 has exceeded Vgdr_max(=yyy)"

 if -1*Vgd > Vgd_max, issue "Warning: Vgd(=xxx) of M1 has exceeded Vgd_max(=yyy)"

 if |Vds| > Vds_max, issue "Warning: Vds (=xxx) of M1 has exceeded Vds_max (=yyy)"

Vbd Vbd_max If Vbdr_max is not given

 if |Vbd| > Vbd_max, issue "Warning: Vbd (=xxx) of M1 has exceeded Vbd_max (=yyy)"

Else

NMOS/NJF:

 if Vbd > Vbd_max, issue "Warning: Vbd (=xxx) of M1 has exceeded Vbd_max (=yyy)"

 if -1*Vbd > Vbdr_max, issue "Warning: Vbd(=xxx) of M1 has exceeded Vbdr_max (=yyy)"

PMOS/PJF:

 if Vbd > Vbdr_max, issue "Warning: Vbd (=xxx) of M1 has exceeded Vbdr_max (=yyy)"

 if -1*Vbd > Vbd_max, issue "Warning: Vbd (=xxx) of M1 has exceeded Vbd_max (=yyy)"

Terminal 
Voltages 
Checked

Model 
Params

Check criteria (i.e., the device under checking is called M1) and 
Warning Issued
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Note: Special considerations:

1. Vgd has different warning parameter for HV device 
considerations.

2. If Vbs_max is not given, Vbs and Vbd share the same model 
warning parameter "Vbd_max".

3. 5T, 6T, 7T models are implemented through macro models. 
The junction breakdown warnings will be issues by the 
diodes in the macro model.

4. If Vgb_max is not given, Vgs and Vgb share the same model 
warning parameter "Vgs_max".

5. If Vgsr_max is not given, Vgsr_max share the same model 
warning parameter "Vgs_max".

Vbs Vbs_max If Vbsr_max is not given

 If Vbs_max is not given

 if |Vbs| > Vbd_max, issue "Warning: Vbs (=xxx) of M1 has exceeded Vbd_max (=yyy)"

 Else

if |Vbs| > Vbs_max, issue "Warning: Vbs (=xxx) of M1 has exceeded Vbs_max (=yyy)"

Else

 If Vbs_max is not given

NMOS/NJF:

 if Vbs > Vbd_max, issue "Warning: Vbs (=xxx) of M1 has exceeded Vbd_max (=yyy)"

 If -1*Vbs > Vbsr_max, issue "Warning: Vbs (=xxx) of M1 has exceeded Vbsr_max (=yyy)"

PMOS/PJF:

 if Vbs > Vbsr_max, issue "Warning: Vbs (=xxx) of M1 has exceeded Vbsr_max (=yyy)"

 if -1*Vbs > Vbd_max, issue "Warning: Vbs (=xxx) of M1 has exceeded Vbd_max (=yyy)"

 Else

NMOS/NJF:

 if Vbs > Vbs_max, issue "Warning: Vbs (=xxx) of M1 has exceeded Vbs_max (=yyy)"

 if -1*Vbs > Vbsr_max, issue "Warning: Vbs (=xxx) of M1 has exceeded Vbsr_max (=yyy)"

PMOS/PJF:

 If Vbs > Vbsr_max, issue "Warning: Vbs (=xxx) of M1 has exceeded Vbsr_max (=yyy)"

 If -1*Vbs > Vbs_max, issue "Warning: Vbs (=xxx) of M1 has exceeded Vbs_max (=yyy)"

Terminal 
Voltages 
Checked

Model 
Params

Check criteria (i.e., the device under checking is called M1) and 
Warning Issued
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6. If Vgdr_max is not given, Vgdr_max share the same model 
warning parameter "Vgd_max".

7. If Vgbr_max is not given, Vgbr_max share the same model 
warning parameter "Vgb_max".

8. If Vbsr_max is not given, Vbsr_max share the same model 
warning parameter "Vbs_max".

9. If Vbdr_max is not given, Vbdr_max share the same model 
warning parameter "Vbd_max".

BJT:
Must-have: GP. Other BJT models may be included.

Terminal voltages checked: Vbe, Vbc, Vce, and Vcs.

Model parameters: Vbe_max, Vbc_max, Vce_max, and Vcs_max.

Diodes (Including Zener and Schottky)
Terminal voltage: Vj (from N to P) and Vf (forward).

Model parameters: Bv_max and Fv_max.

Terminal 
Voltages 
Checked

Model 
Params

Check criteria (i.e., the device under checking is called Q1) and 
Warning Issued

The device under checking is called Q1, for example.

Vbe Vbe_max if |Vbe| > Vbe_max: "Warning: Vbe (=xxx) of Q1 has exceeded Vbe_max (=yyy)"

Vbc Vbc_max if |Vbc| > Vbc_max, "Warning: Vbc (=xxx) of Q1 has exceeded Vbc_max (=yyy)"

Vce Vce_max if |Vce| > Vce_max: "Warning: Vce (=xxx) of Q1 has exceeded Vce_max (=yyy)"

Vcs Vcs_max if |Vcs| > Vcs_max: "Warning: Vcs (=xxx) of Q1 has exceeded Vcs_max (=yyy)"

Terminal Voltages 
Checked

Model 
Params

Check criteria (i.e., the device under checking is called D1) and 
Warning Issued

The device under checking is called D1, for example.

Vj (from N to P) Bv_max if |Vj| > Bv_max: "Warning: Vj (=xxx) of D1 has exceeded Bv_max (=yyy)"

Vf (forward) Fv_max if |Vf| > Fv_max: "Warning: Vf (=xxx) of D1 has exceeded Fv_max (=yyy)"
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Note: Vf means the junction voltage in forward bias and Vj means the 
junction voltage in reverse bias.

Resistor (needed for both model and instance, instance Bv-max overrides 
model)
Terminal voltage: Vr.

Model parameters: Bv_max (a positive number).

Capacitor (needed for both model and instance, instance Bv-max 
overrides model)
Terminal voltage: Vc.

Model parameters: Bv_max (a positive number).

Verilog-A (pVA) Messages 

When compiling a Verilog-A module using the pVA compiler, you may see 
pvaI, pvaW, pvaE, or pvaNIY messages. 

These messages have the following meanings:
■ pvaI: Informational message that has no effect on compilation and 

simulation.
■ pvaW: Warning message that possibly could affect compilation and 

simulation.

Terminal 
Voltages 
Checked

Model 
Params

Check criteria (i.e., the device under checking is called D1) and 
Warning Issued

The device under checking is called R1, for example.

Vr Bv_max if |Vr| > Bv_max: "Warning: Vr (=xxx) of R1 has exceeded Bv_max (=yyy)"

Terminal 
Voltages 
Checked

Model 
Params

Check criteria (i.e., the device under checking is called C1) and 
Warning Issued

The device under checking is called C1, for example.

Vc Bv_max if |Vc| > Bv_max: "Warning: Vc (=xxx) of C1 has exceeded Bv_max (=yyy)"
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■ pvaE: Error detected by pVA. The compilation will be aborted.
■ pvaNIY: A “Not Implemented Yet” message for Verilog-A functions.

These messages provide useful information and help in debugging the Verilog-
A module. For example:

*pvaI* #### Total 131 line-size(s), 29 expr(s), 2 contr(s), 4 
init(s), 4 behav(s), 2 port(s)
*pvaW* macro `P_Q redefined at (constants.vams:34)

Topology Check Warning
In cases where the competing voltage sources have the same value the 
following warning message is written to the *.lis file.

**warning** inductor/voltage loop found
 Instance  from  to
 0:x1  n1  0
 0:v2  n1  0

Warning Message Index [00001-11146]

The following table lists an index of warning messages that can be encountered 
in HSPICE usage. The table is organized according to the index number, netlist 
line, sample warning message, and example of what triggered the warning.

Index **warning** Message and Example

00043 R res_name is recovered to avoid V loop error.

Example:

.option warnlimit=1 message_limit '00043:2'

v 1 0 1

r 1 0 1

r1 1 0 1

.option rm_rmin=10

.op

.end

10001 (10001.sp:4) No independent source value specified. Reset to zero.

Example: v1 1 0

10002 (10002.sp:5) No resistance value specified. Reset to the value of resmin.

Example: R1 1 2
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10003 (10003.sp:11) No capacitance value specified. Reset to zero

Example: C11 1 2

10004 (10004.sp:21) No inductance value specified. Reset to 1e-12.

Example: L1 3 2

10005 (10005.sp:8) Syntax error while using .print/.probe, missing output variable. Line ignored.

Example: .probe $no output variable is specified.

10006 (10006.sp:9) Missing parameters for .ic. Enter parameters for initial condition with their respective values; 
Line ignored.

Example: .ic

10007 (10007.sp:12) Model nch device geometries will not be checked against the limits set by lmin, lmax, wmin 
and wmax. To enable this check, add a period(.) to the model name(i.e. enable model selector).

Example: .model nch nmos level=1 lmin=1n lmax=2n

10008 (10008.sp:32) Fundamental frequency cannot be zero or negative for fourier analysis. Specify a positive 
frequency value; Fourier analysis ignored.

Example: .four 0 v(6)

10009 (10009.sp:32) Number of repeating operation (R) for PAT voltage source v should be integer greater than or 
equal to -1.Reset to default(R=0).

Example:

v 1 0 PAT (5 1 1n 0.5n 0.5n 5n b1011 r=-2 rb=1 b01m1z)

10010 (10010.sp:32) Number to specify the starting bit of repeating operation (RB) for PAT voltage source v cannot 
be less than 1. Please enter a positive number. Reset to default (RB= 1). 

Example:

v 1 0 PAT (5 1 1n 0.5n 0.5n 5n b1011 r=-1 rb=0 b01m1z)

10011 (10011.sp:4) First TAP value must be largest of all TAP values for Pseudo Random Bit Generator source v. 
Assumes a descending order sort. 

Example:

.param a=4 vlow=1 vhigh=5 tdelay=1n trise=0.5n tfall=0.5n
+ rate=0.1g seed=10 rout=10k
v 1 0 vlow LFSR (vlow vhigh tdelay trise tfall rate seed [2,5]
+ rout)

10012 (10012.sp:11) Mutual inductance value has not been specified for mutual inductor. Reset to zero. Enter value 
of mutual inductance coefficient.

Example:

k1 l1 l2 l3 tsat MAG=2 $coefficient is not specified.

Index **warning** Message and Example
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10013 (10013.sp:14) Magnetization (MAG) of mutual inductor can only be -1|0|1, assumes the value is -1. Enter a 
valid number for MAG.

Example:

k1 l1 l2 l3 tsat MAG=2

.model tsat L(ac=1e4 lc=100 hc=.1 tc=1u br=6.4k bs=6.75k hs=.6 

+ hcr=0)

10014 (10014.sp:3) Attempt to reference undefined pin x1.mid1 in isub(); branch output ignored. Specify a valid pin 
name.

Example:

x1 1 0 aa

.subckt aa in out

r1 in mid aa

.probe tran isub(x1.mid1)

.ends

10015 (10015.sp:13) Attempt to reference undefined pin x1.1; biaschk output ignored. Specify a valid pin name.

Example:

x1 1 0 aa

.subckt aa in out

r1 in mid aa

.ends

.biaschk subckt terminal1=1 simulation=tran monitor=i max=1 min=0.1 sname=x1

10016  (10016.sp:3) ISUB() unsupported for top-level node 1; branch output ignored.

Example: .probe tran isub(1)

10017 (10017.sp:12) Unable to find referenced node 100; Output variable ignored. Specify a valid node.

Example: .probe tran v(100)

10018 (10018.sp:8) Inductance for the inductor lout >= 0.1 henry, please verify it.

Example: lout out 0 1

10019 (10019.sp:17) Skin Effect Coefficient parameter (Rs) for the element rout cannot be negative. Parameter has 
been ignored. Enter a valid Rs value.

Example: rout out 0 1K rs=-1

10020 (10020.sp:6) Frequency "FMAX" cannot be negative for frequency dependent resistor r11. Parameter has 
been ignored. Enter positive value of "FMAX".

Example: R11 1 2 1 Rs=1 FMAX=-100 FBASE=10 CONVOLUTION=1

Index **warning** Message and Example
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10021 (10021.sp:6) Frequency "FBASE" cannot be negative for frequency dependent resistor r11. Parameter has 
been ignored.   Enter positive value for "FBASE".

Example: R11 1 2 1 Rs=1 FMAX=100 FBASE=-10 CONVOLUTION=1

10022 (10022.sp:6) "CONVOLUTION" can ONLY have value of 0|1|2 for frequency dependent resistor r11. Reset 
to default(CONVOLUTION=0). Enter valid value of CONVOLUTION.

Example: R11 1 2 1 Rs=1 FMAX=100 FBASE=-10 CONVOLUTION=1

10023 (10023.sp:3) Propagation Delay (TD) cannot be negative for dependent source e11. Reset it to default 
(TD=0). Enter positive value of "TD".

Example: E11 out 0 VCVS DELAY 1 0 td=-1n

10024 (10024.sp:6) "FBASE" cannot be > "FMAX" for element r11. Parameters have been ignored. Enter FBASE 
value < FMAX.

Example: R11 1 2 1 Rs=1 FMAX=1k FBASE=1MEG CONVOLUTION=11

10025 (10025.sp:8) Scaling parameter (SCALE) for the x1.r1 cannot be < or = zero. Parameter has been ignored. 
Enter a valid value of "SCALE".

Example: r1 in mid aa scale=0

10026 (10026.sp:5) Frequency (freq) of sine voltage source v1 cannot be negative. Reset to freq= "1/TSTOP". Enter 
a positive value.

Example: v1 1 0 5 sin (5 1 -1g 0.5n 0.2 60)

10027 (10027.sp:5) Damping factor (theta) for sine voltage source v1 cannot be negative. Please enter a positive 
value for "theta". Reset to default (theta=0).

Example: v1 1 0 5 sin (5 1 1g 0.5n -0.2 60)

10028 (10028.sp:4) Rise delay time for exponential voltage source v cannot be negative. Reset to default (rise delay 
time=0). Enter positive rise delay time value.

Example: v 1 0 v0 exp(4 1 -2n 30n 40n 80n)

10029 (10029.sp:4) Fall delay time for exponential voltage source v cannot be negative. Reset to default (fall delay 
time= Rise delay time +TSTEP). Enter positive fall delay time value.

Example: v 1 0 v0 exp(4 1 2n 30n -40n 80n)

10030 (10030.sp:4) Rise time constant for exponential voltage source v cannot be negative. Reset to default (rise 
time constant=TSTEP). Enter positive rise time constant value.

Example: v 1 0 v0 exp(4 1 2n -30n 40n 80n)

10031 (10031.sp:4) Fall time constant for exponential voltage source v cannot be negative. Reset to default (fall 
time constant=TSTEP). Enter positive fall time constant value.

Example: v 1 0 v0 exp(4 1 2n 30n 40n -80n)

Index **warning** Message and Example
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10032 (10032.sp:4) Frequency cannot be negative for FM voltage source v. Reset to default (freq= "1/TSTOP"). 
Enter a positive frequency value.

Example: v 1 0 4 SFFM (4 1 -1 2 20K)

10033 (10033.sp:4) Carrier frequency cannot be negative for AM voltage source v. Reset to default (freq= 0). Enter 
a positive frequency value.

Example: v 1 0 AM (4 1 1 -2 20K)

10034 (10034.sp:4) Modulation frequency cannot be negative for AM voltage source v. Reset to default (freq= 1/
TSTOP). Enter a positive frequency value.

Example: v 1 0 AM (4 1 -1 2 20K)

10035  (10035.sp:4) Offset coefficient cannot be negative for AM voltage source v. Reset to default (offset 
coefficient= 0). Enter a positive offset coefficient value.

Example: v 1 0 AM (4 -1 1 2 20K)

10036 (10036.sp:4) Propagation delay cannot be negative for AM voltage source v. Reset to default (Propagation 
delay= 0). Enter a positive propagation delay value.

Example: v 1 0 AM (4 1 1 2 -20K)

10037 (10037.sp:3) Rise or fall time cannot be negative for voltage source v. Please enter positive value of rise or 
fall time. Reset time to TSTEP.

Example: v 1 0 0 PULSE (0 5 1p -1p -1p 49p 50p)

10038 (10038.sp:9) Number of turns (NT) for the element x1.l1 cannot be <= zero. Parameter has been ignored. 
Enter a valid value of NT.

Example: l1 mid 0 1n nt=-1

10039 (10039.sp:14) Value of "TD" cannot be negative in .measure of tdly. Reset to absolute value.

Example: .measure tran tdly TRIG v(in) VAL=2.5 td=-1n RISE=1 TARG v(out) VAL=1 
CROSS=1

10040 (10040.sp:13) .MEASURE tdly never reached the trigger value, Measurement failed.

Example: .measure tran tdly TRIG v(in) VAL=9.5 td=1n RISE=1 TARG v(out) VAL=10 
CROSS=1 $the maximum value of v(out) is 2

10041 (10041.sp:13 .MEASURE tdly never reached the target value, Measurement failed.

Example: .measure tran tdly TRIG v(in) VAL=9.5 td=1n RISE=1 TARG v(out) VAL=10 
CROSS=1 $the maximum value of v(out) is 2

10042 (10042.sp:4) Both nodes of element v2 are connected together; Line ignored.

Example: v2 1 1 2

10043 (10043.sp:32) Variable v11 does not exists in the netlist for DC analysis. Please specify the variable which 
is present in the netlist. v11 assumed to be new variable for DC analysis however results may not be desired.

Example: .DC v11 0v 5v 0.1v $v11 does not exist

Index **warning** Message and Example
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10044 (10044.sp:33) FIRSTRUN value -1 cannot be less than 1 for monte-carlo sweep in Transient Analysis. Please 
specify correct value of FIRSTRUN. Parameter has been ignored.

Example: .DC v1 0.5 1 0.5 monte=2 firstrun=-1

10045 (10045.sp:27) The third value 0.00D+00 and the forth value 1.00D-12 both are smaller than the second value 
1.00D-06, so the transient statement is interpreted as: .tran tstep tstop tstart delmax.

Example: .tran 1n 1u 0 1p

10046 (10046.sp:12) Duplicate  .ic declaration for node 1. Taking the last .ic value 1.00

Example: .ic v(1)=0

.ic v(1)=1

10047 (10047.sp:6) Area for diode cannot be 0.0, reset to 1e-12 (default value). Enter valid value for area.

Example: d1 1 0 dm1 area=-100p

10048 (10048.sp:6) Geometry parameter "pj" cannot be negative for diode. Please specify positive value to "pj". 
Reset to zero.

Example: d1 1 0 dm1 area=100p pj=-10n

10049 (10049.sp:8) Noise parameter (noise) for the resistance can ONLY be 1 or 0. Please enter a valid value of 
"noise". Parameter has been ignored.

Example: r1 in mid aa noise=2

10050 (10050.sp:5) Argument of asin can range from -1 to 1. Reset value of asin(5.00) to zero. Enter a valid 
argument for asin.

Example: .param aa=asin(5)

10051 (10051.sp:4) Argument of acos can range from -1 to 1. Reset value of acos(5.00) to zero. Enter a valid 
argument for acos.

Example: .param aa=acos(5)

10052 (10052.sp:5) Argument of log cannot be zero. The value of log(0) is replaced by the value of log(epsmin), set 
by option EPSMIN; Default = 1e-28.

Example: .param a='-log(0)'

10053 (10053.sp:82) Node name tn in .IC or .NODESET cannot be found. Nodal initial condition is ignored. Enter 
a valid node.

Example:  .IC V(TN)=0  $node TN does not exist

10054 (10054.sp:87) Invalid node pathname on output variable or initialized node net0103; this statement is 
ignored.

Example: .probe ac vdb(xeq_filter.net0103) $ pathname xeq_filter does not exist
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10055 (10055.sp:137) Multiple ACmatch/DCmatch commands found, only the last one is used.

Example: .acmatch v(out) threshold=0 perturb=1

.acmatch v(xi82.net18)

10056 (10056.sp:116) Maximum 30 output variables are supported in acmatch/dcmatch analysis. Taking first 30 
variables defined and ignoring the rest.

Example: .acmatch v(out) v(in_neg) v(gnda) v(vdda) v(in_pos)

+ v(out) v(in_neg) v(gnda) v(vdda) v(in_pos) … |more than 30 output variables

10057 (10057.sp:29) DCmatch/ACmatch analysis only supports independent voltage source. i(xmdut0) output 
ignored. Enter a valid output source.

Example: .dcmatch I(xmdut0)

10058 (10058.sp:119) Threshold -10.000 specified in ACmatch/DCmatch analysis is negative. Table has not been 
generated.

Example: .dcmatch v(out) threshold=-10 perturb=1

10059 (10059.sp:119) Perturbation 7.0000 specified in ACmatch/DCmatch analysis exceeds valid range from 0.01 
to 6.0. Reset to default (2.0). Enter a valid value.

Example: .dcmatch v(out) threshold=0 perturb=7

10060 (10060.sp:17) Interval specified in ACmatch/DCmatch analysis cannot be negative. Parameter ignored. 
Enter a valid value.

Example: .acmatch v(12) perturb=3.0 interval=-3 threshold=0.9 matched=0.95

10061 (10061.sp:119) Unrecognized Output variable specified in DCmatch/DCsens. Analysis ignored. Enter a valid 
output variable.

Example: .dcmatch gv(out) threshold=10 perturb=1

10062 (10062.sp:49) Threshold -6.00000E-02 cannot be negative for DCsens analysis. value Reset to zero. Enter 
a valid vale for threshold.

Example: .DCsens v(2) file='2357' pertur=1.0  threshold=-60m interval = 2 _dsdbg=1

10063 (10063.sp:49) Perturbation 7.0000 specified in DCsens analysis exceeds valid range from 0.0001 to 1.0. 
Reset it to default (0.05). Enter a valid value.

Example: .DCsens v(2) file='2357' pertur=7.0  threshold=60m interval = 2 _dsdbg=1

10064 (10064.sp:49) Interval specified in DCsens analysis cannot be negative. Parameter reset to default(1). Enter 
a valid value.

Example: .DCsens v(2) file='2357' pertur=1.0  threshold=60m interval = -2 _dsdbg=1

10065 (10065.sp:49) Groupbydevice (groupbydev) for DCsens analysis can be 0 or 1. Reset to default (0). Enter a 
valid value.

Example: .DCsens v(2) file='2357' pertur=1.0  threshold=60m interval = 2 _dsdbg=1 
groupbydev=2
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10066 (10066.sp:6) LEVEL cannot be used along with keyword LAPLACE for element lowpass. Parameter has 
been ignored.

Example: Glowpass 0 out LAPLACE in 0 1.0 / 1.0 2.0 2.0 1.0 level=0

10067 (10067.sp:116) Measurement time value specified exceeds analysis limit in measure variable vcp. .measure 
has been ignored. Enter a valid value in .measure.

Example:

 .tran `1n` `10n` start=`0`

.measure TRAN vcp FIND v(vcp) AT=780u

10068 (10068.sp:2) noise    is not level= 49 model parameter. Parameter has been ignored.

Example: .model nch  nmos version=3.22 level=49 noise=1 

10069 (10069.sp:96) Multiple analysis statements are not allowed. The latter statement ignored.

Example: 

.op all

.op

10070 (10070.sp:16) Capacitance between second node and BULK node cannot be negative for resistor instance 
r1. Please enter a valid value of "C". Parameter has been ignored.

Example: r1 out 0 5 c=-1p

10071 (10071.sp:21) Capacitance of     1.00     for c0 is too high. Please verify capacitance value.

Example: c0 in_neg 0 1

10072 (10072.sp:5) Value of resistance r1 defined is limited to   1.000E-05 (RESMIN). Please modify RESMIN to 
incorporate resistances.

Example: r1 1 3 1e-10

10073 (10073.sp:336) Measure results may be incorrect since initial start time is non-zero.

Example:

.TRAN 0.001NS 9NS START=2NS

.measure tran inv_delay trig v(01) val=1.25 rise=1 targ v(02) val=1.25
+ fall=1

10074 (10074.sp:24) Parameter weff is defined as an expression containing output signals, which may cause 
incorrect result. Recommend replacing output signals with user-defined functions.

Example:

.param Weff='(w-(dW+pdWb*MAX((V(B,D)),(V(B,S)))+pdWd*ABS(V(D,S))))'
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10075 (10075.sp:0) Parameter(s), within encrypted block, contain output signals in expression which may cause 
incorrect result. Recommended: Replace output signals with user-defined functions.

Example:

.prot

.param Weff='(w-(dW+pdWb*MAX((V(B,D)),(V(B,S)))+pdWd*ABS(V(D,S))))'

.unprot

10076 (10076.sp:32) Number of monte-carlo sweep cannot be negative number for DC analysis. Please enter 
positive value of sweeps. Monte=   -1.00 has been ignored.

Example: .DC v1 0.5 1 0.5 monte=-1

10077 10077 Syntax error for output type xxx the left parenthesis is expected. This output is ignored.

Example: .probe tran v

10078 10078 Invalid monitor type xxx. The .biaschk is ignored.

Example: .biaschk mos monitor=ttt ….

10079 10079 Keyword xxx  not supported for E(VCVS). Keyword is ignored.

Example: Ekomp  fout 0  VOL='A0*v(vmid,load)'  max=2 min=1 dmax=0 dmin=0

10080 10080 Keyword  xxx not supported for G(VCCS). Keyword is ignored.

Example: g1 1 2 cur='v(1,2)*0.001' dmax=0

10081 10081 Unrecognized output type for xxx in .print or .probe; The line is ignored.

Example: .print tran t(v1)

10082 10082 Parameter xxx=xxxx overrides previously declared parameter xxx (filename:line_number).

Example: 

.param a=1 

.param b=2  a='b+1'

10083 10083 Parameter xxx=xxx x overrides previously declared parameter xxx in encrypted file.

Example:

"T1.inc1"

.prot

.param a=1

.unprot

T1.sp

.param b=2  a=3

10084 10084 Unknown model parameter xxx. Parameter is ignored.

Example: .model pnh PNP LEVEL = 4

isrr = 1.000 $ isrr is unknown
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10085 10085 Multiple output options specified, using xxx

Example: .option post

.option wdf

10086 Invalid device name for .option subckt_union_device.

10087 Invalid device name for .option subckt_union_device. The name must start with a character.

10088 unrecognized output variable xxx on above line

Example: .meas tran m1 avg x(m1)

10089 PWLZ source xxx has only one timepoint.

Example: VXD 5 0 pwlz (0 0.3)

10090 No subckt name for .option etmif_noshare_subckt. Set to defualt null.

Example: .option etmif_noshare_subckt

10091 Keyword "TD" in E, F, G or H element only works for DELAY Element. Keyword "TD" is invalid.

Example: g1 1 2 cur='v(1,2)*0.001' td=1n

10092 Invalid keyword xxx in .MEASURE Equation Evaluation. It is ignored.

Example: .meas tran m1 param='m2*2' at=2n

10093 xxx not a valid Monte Carlo, distribution, parameter will default to the nominal value. If not used for Monte 
Carlo, please ignore this warning.

10094 Cannot find string after "str(".

Example: .param a=str(

10095 Invalid encoding method xxx. It is ignored.

Example: v1 1 0 PAT (1 0 0p 1p 1p 1n [b1011 r=1 rb=0 b0110] r=2 rb=0 encode=DW128 
rd_init=1)

10096 Invalid value for keyword PRINT -- Ignored. The value only can be 0 or 1.

Example: .probe tran v(1) print=2

10097 No subckt instance name for .option skip_xinst. Set to defualt null.

Example: .option skip_xinst

11003 In pwl(x) , x cannot be >1 . Please specify x=1.

Example: E1 n1 n2 VCVS PWL(2) in1 in2

11004 Capacitance value for element xxx is Cxxx. Capacitance should be a positive, non-zero value.

Example: C1 n1 n2 -2p
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11005 Unable to find referenced pin xxx. Node reset to ground. Specify a valid pin.

Example: .biaschk subckt terminal1=in max=2 $ in is not a valid subckt pin node

11007 Inductance value for element Lxxx <=0; check for M/Scale<=0 or negative value.

Example: L1 n1 n2 l=-2u

11009 Value of RISE cannot be negative in .measure of xxx . Reset to default.

Example: .meas tran m1 trig v(1) val=0.5 rise=-3 targ v(2) val=2 rise=3 $ rise=-
3 is illegal

11010 Value of FROM cannot be negative in .measure of xxx

Example: .meas tran mavg avg v(2) from=-3n $ -3n is illegal

11011 Value of TO cannot be negative in .measure of xxx. Exchange the value of TO and the value of FROM to let 
the value of TO bigger.

Example: .meas tran mavg avg v(2) to=-2n  $ -2n is illegal

11012 xxx defined in subckt xxx resistance is negative.it may cause instability problem.

Example: r1 1 0 -2

11016 Multiple dcsens commands found, only the last one is used.

Example: 

.DCsens V(vcc) Interval=3

.DCsens V(vin) Interval=2

11022 Only 1 connection at node xxx called in element xxxx.

11023 Parameter name is not defined in .param. Please enter parameter variable with their respective value/
expression.

Example: 

.param $ no parameter name defined

R1 n1 n2 1

.param a=1

11024 Mosfet substrate nodes xxx are connected together but have no DC path to ground.

11025 No matched subckt ignore this ic/nodeset statement.

11027 Model xxx defined in .biaschk cannot be found in netlist.

11028 Subckt xxx defined in .biaschk cannot be found in netlist.

11029 Element xxx defined in .biaschk cannot be found in netlist.

Example: .biaschk nmos terminal1=ng terminal2=ns simulation=tr name=m1  $ m1 is 
not defined in the netlist
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11030 This device xxx cannot be found in VA.

11031 Element name must start with a letter "x" or "m". DELTAGD=0.1 is apply to all elements.

Example: .iVdmargin D3 DELTAGD=0.3 $ D3 is illegal

11057 Trigger event is undefined. Please specify a valid event. Measure failed.

Example: .meas tran m1 trig v(n1) val=0.5 rise=1 targ v(2) val=2 rise=2 $ node n1 
is not defined in the netlist

11058 Target event is undefined. Please specify a valid event. Measure failed.

Example: .meas tran m1 trig v(1) val=0.5 rise=1 targ v(2) val=2 rise=2 $ node 2 
is not defined in the netlist

11059 "FIND" function event is undefined. Please specify a valid event. Measure failed.

Example: .meas tran m1 find v(vdd) at=2n  $ node vdd is not defined in the netlist

11060 "WHEN" function event is undefined. Please specify a valid event. Measure failed.

Example: .meas tran m1 find v(vin) when v(out)=2 $ node out is not defined in the 
netlist

11061 .print/.probe statement contains unused output; the unused output is ignored.

Example: .print tran v(n2) i(r2) $ n2 and r2 are not defined in the netlist

11067 Could not find branch element xxx ;branch output ignored

Example: .print i(r3) $ r3 is not defined in the netlist

11068 Invalid circuit pathname xxx found.

11069 Invalid keyword xxx for Noise Analysis. Parameter ignored.

11070 Incorrect value of LISTCKT for Noise Analysis. It should be LISTCKT=[1|0] . Parameter ignored.

Example: .noise V(5) VIN 10 listckt=2

11071 Incorrect entry for LISTFREQ for Noise Analysis. It should be LISTFREQ=[all|none|freq1,freq2...]. Set as 
default format: LISTFREQ=ALL.

11072 Invalid interval entered. Value of interval for Noise Analysis should be >=0. Interval reset to 0.

11073 Value of LISTCOUNT for Noise Analysis cannot be less than 1. Parameter ignored. Enter a parameter value 
more than or equal to 1.

11074 Invalid value for "sparcalc" of .LIN Analysis. sparcalc can only be 0 or 1. Analysis has been ignored.

11075 Invalid value for "gdcalc" of .LIN Analysis. gdcalc can only be 0 or 1. Resetting it to default value 0.
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11076 Invalid data format xxx entered for .LIN Analysis. Format only can be RI|MA|DB. Format set to xx as per 
output file format default.

11077 Invalid value for "freqdigit" entered for .LIN Analysis. "freqdigit" should be greater than zero. Resetting to 6 
(default).

11078 Invalid value for "spardigit" entered for .LIN Analysis. "spardigit" should be greater than zero. Resetting to 6 
(default).

11079 Invalid  value for "listsources" entered for .LIN Analysis. "listsources" value can be 0|1|yes|no. Resetting value 
of listsources to zero. 

11080 Invalid frequency value for "listfreq" entered for .LIN Analysis. "listfreq" value should be greater than zero. 
Resetting value of listfreq to none.

11081 Invalid entry to Method for Optimization model. Method can be PASSFAIL|BISECTION.

11082 Parameter xxx cannot be negative value xxx for optimization using model xxx. Enter a positive value. The 
parameter reset to xxx.

Example: .model optmod opt relin=-0.2

11083 The start sweep value for dec format should be greater than zero. Enter a non-zero positive value. It has been 
reset to 1e-6*(final sweep value)= xxx.

Example: .DC par1  DEC 10 0 100MEG

11084 The start sweep value for oct format should be greater than zero. Enter a non-zero positive value. It has been 
reset to 1e-3*(final sweep value)= xxx.

Example: .DC par1 Oct 10 0 10

11087 The start frequency value xxx should be greater than zero. Enter a non-zero positive value. It has been reset 
to xxxx.

Example: .AC DEC 10 0 100MEG

11088 Above line is not allowed within subcircuit. The line is ignored. 

Example: 

.subckt sub1 n1 n2

.option post  $ .option is not allowed within .subckt

R1 n1 n2 1

.ends
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11089 Global net name xxx in subckt pin list. The pin will be connected to the local net. Recommend to not use 
global net names in subckt pin lists.

Example:

.global vdd 

.subckt sub1 n1 vdd

R1 n1 vdd 1

.ends

11090 There is no matched node or element to the command "PRINT/.PROBE OP". The .dp# and .ic# will have 
invalid operating point information. Check the variables of the command "PRINT/.PROBE OP".

11091 Instance_name/macromodel_name is required. Correct syntax: .ivdmargin instance_name/
macromodel_name DELTAGD=val; DELTAGD=0.1 is apply to all elements.

11092 Value of DELTAGD is required. Reset DELTAGD to default 0.1. Enter a valid value.

Example: .ivdmargin m1

11093 Illegal value is assigned to option xxx -- Resetting to default value 0.

Example: .option gen_cur_pol=aaa $ aaa is illegal

11094 Unknown option xxx. Check the option name again.

11097 Above line is not allowed within module/modulevar. The line is ignored.

Example:

.module mod1

.tran 1n 100n $ .tran is not allowed in .module block

.subckt sub1 n1 n2

….

.ends

.endmodule

11098 Invalid syntax. Specific MOSFET instance follow the command .MODEL_INFO; the .model_info xxx is 
ignored.

Example: .model_info main $ main is not defined in netlist

11099 Mosfet xxx Instance length or width does not fit the lmin/lmax, wmin/wmax range for the model xxx . The 
instance Length=xxx Width=xxx. The model Lmin=xxx Lmax=xxx Wmin=xxx  Wmax=xxx.

11100 Expected a keyword in LSTB statement.',' Analysis is omitted.

11101 The v-source name in LSTB statement is invalid. Analysis is omitted.

11102 The mode type is missing in LSTB statement. Analysis is omitted.

11103 The mode type in LSTB statement is invalid. Analysis is omitted.
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11104 The v-sources are missing in LSTB statement. Analysis is omitted.

11105 The v-source for single mode is missing in LSTB statement. Analysis is omitted.

11106 The first v-source for diff/comm mode testing is missing in LSTB statement. Analysis is omitted.

11107 Expected a number after method in LSTB statement. Reset to default method.

11108 The number assigned to method in LSTB statement is invalid. Reset to default method.

11109 The second v-source for diff/comm mode in LSTB statement is missing. Analysis is omitted.

11110 The second v-source for diff/comm mode in LSTB statement is invalid. Analysis is omitted.

11111 Found an invalid keyword xxx for LSTB analysis. Ignored it and continued.

11112 The second v-source for diff/comm mode testing is missing in LSTB statement. Analysis is omitted.

11113 AC analysis is missing. LSTB',' analysis is omitted.

11114 The v-source xxx in LSTB statement is invalid. Analysis is omitted.

11115 Invalid subcircuit path xxx in LSTB v-source's definition. Analysis is omitted.

11116 Attempt to reference undefined modulevar xxx.

Example: Xmod1 n1 n2 mod1::sub modulevar=mvar $ mvar is not defined by .modulevar

11117 Since <goalmax/goalmin> specified, switch to bisection method automatically.

Example: .measure tran Tsense when PAR('ABS(V(SA)-V(SAB))') = '0.8*VALVDD'

+ GOALMAX

11118 The equation in .MEASURE cannot be a function of node voltages or branch currents. Unexpected results 
may incur.

Example: .measure tran m1 param='v(2)+2'

11119 Cannot find model xxx at the same level of .appendmodel command. Verify that it is defined or used.

Example: 

.option appendmodel=all

.appendmodel hci_1 mosra b3_nch nmos $ hci_1 is not defined

11120 Cannot find model xxx at any level of .appendmodel command. Verify that it is defined or used.

Example: .appendmodel hci_1 mosra b3_nch nmos $ hci_1 is not defined

11121 Could not find current for verilog-A port or branch xxx; output ignored
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11127 Scaling parameter (SCALE) for the xxx cannot be < or = zero. Reset to default(1.0).

Example: R1 n1 n2 r=2 scale=-2

11131 Unexpected negative parameter in model xxx parameter =xxx value= xxx.

11132 The measured variable for xxx is not defined.

11133 Maximum 2e9 random values are supported for Monte Carlo of LHS sampling method. Here, the number is 
xxx.

11134 Multiplier param M=xxx on subckt instance xxx is less than one. Reset M to one.

Example: X1 n1 n2 inv m=0.2

11135 Multiplier param M=xxx on instance xxx is less than one.

Example: R1 n1 n2 1 m=0.5

11136 Element is ignored in .OPTION MODPRT output because of encrypted block.

11137 Element xxx in .print, .plot, .probe or .measure statements is invalid. Output is ignored.

Example: .probe tran par('v1(x1.m4)*2')   $ m4 is not defined in the netlist

11138 Constant value for xxx is expected. It will be ignored.

Example: .defparam x1.p1='a+1'

11139 The Expression Evaluation of .MEASURE statement contains output variables which may have different 
values for different time points. The value in the last time point is used.

Example: .meas tran m1 param='v(2)+3'

11140 Unsupported keyword xxx found in .measure statement. The statement will be ignored.

Example: .meas tran m1 param='m0+2' at=2  $ at is not supported 

11141 No matched subckt xxx ignore this biaschk statement.

Example: .biaschk subckt mname=x2

expr='abs(v(POS,NEG)*i(POS))/((MX*(W+0.64u)*L)/1.0e-12)'    max=180u

$ x2 is not defined in the netlist

11142 This node xxx cannot be found in VA.

11143 MAX value cannot be < MIN value for element xxx. Ensure MIN<MAX. 

Example: F1 13 5 VSENS MAX=3 MIN= 5

11145 The value of the expression defined in xxx is NaN. Please check this expression.
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The following table lists an index of error messages that can be encountered in 
HSPICE usage. The table is organized according to the index number, netlist 
line, sample warning message, and example of what triggered the warning.

11146 Model xxx device geometries will not be checked against the limits set by lmin, lmax, nfinmin and nfinmax. 
To enable this check, add a period(.) to the model name (that is, enable model selector).

Example: .model nch nmos level=54 lmin=1u lmax=2u

Index **error** Message and Example

20001 (20001.sp:19) Unbalanced parentheses.

Example: .param aa = '5*(1+bb'

20002 (20002.sp:38) Successive time point   5.000E-12, 4.900E-12 must increase for piecewise linear voltage 
source v8.

Example: v8 8 0 0 PWL (0 0 1p 1 5p 1 4.9p 0 10n 0)

20003 (20003.sp:30) Cannot find table of data v11 for DC analysis. Please specify data table which has valid 
definition.

Example: .DC DATA=v11 $ v11 does not exist

20004 (20004.sp:25) TSTOP cannot be zero or negative for Transient Analysis. Please enter a positive value for 
TSTOP.

Example: .tran 0.1ns -50ns

20005 (20005.sp:25) Sweep step cannot be 0 for Transient Analysis. Please enter positive value of sweep.

Example: .tran 0.1ns 50ns sweep v1 0 5 0

20006 (20006.sp:5) Number of Stages (TAP) for Pseudo Random Bit Generator source v1 should lie between 2 and 
30.Please enter a valid value of TAP.

Example: V1 1 0 LFSR (0 1 1u 1n 1n 10meg 1 [-5, 2] rout=10)

20007 (20007.sp:150) For AC analysis STOP frequency cannot be less than START frequency. STOP frequency 
should be greater than START frequency.

Example: .AC lin 1000 10GHz 1GHz

20008 (20008.sp:195) Number of points for AC analysis cannot be less than 1. Please enter number of points more 
than 1.

Example: .AC lin 0 1Hz 1GHz
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20009 (20009.sp:4) Definition not declared for rsh(1+b). Please enter a defined name.

Example:

.param rsh=100 b=10

Rbody 1 0 'rsh(1+b)'

20010 (20010.sp:22) Mutual Inductor declaration contains only one reference inductor. Please enter at least 2 
reference inductors.

Example: K1 L1

20011 (20011.sp:509) Definition of model/subckt "pch_hvt_mac" is not found for the element 
"xcut.xmmu7012345678901234567890". Please specify a defined model/subckt name.

Example:

xMMU7012345678901234567890 net132 MU70_GATE MU70_SRC MI33-M_u3_BULK pch_hvt_mac 
ad=0.0119p as=0.017044p dfm_flag=1  $ pch_hvt_mac does not exist

20012 (20012.sp:15) Number of data points used in Delay (NPDELAY) cannot be negative for element Fd. Enter 
positive NPDELAY value.

Example: Fd in 0 DELAY vcc TD=7ns SCALE=5 NPDELAY=-10

20013 (20013.sp:17) For W element the number of terminals exceeds 6. For the given number of signal conductors, 
N = 2, the number of terminals should be 2(N + 1) = 6. Enter correct number of terminals.

Example:

WTL1_0_0 1 2 7 0 3 4 0 TABLEMODEL=MODEL_5 N=2 L=LEN delayopt=3

20014 (20014.sp:17) The W-element has invalid number of terminals 5 for the given number of signal conductors 
N = 2. The number of terminals should be 2(N + 1). Enter valid number of terminals.

Example:

WTL1_0_0 1 0 3 4 0 TABLEMODEL=MODEL_5 N=2 L=LEN delayopt=3

20015 (20015.sp:12) Physical length defined for U-element u1 cannot be zero or negative. Please define a positive 
value to L.

Example: 
U1 3 10 2 0 5 1 4 0 USTRIP L=-0.178

20016  (20016.sp:17) Number of conductors (N) parameter not found, for W element. Please define value of N.

Example:

 WTL1_0_0 1 2 0 3 4 0 TABLEMODEL=MODEL_5  L=2 delayopt=3 $ N=2

20017 (20017.sp:12) Number of nodes "7" of U-element "u1" does not match with number of nodes "   8" specified 
for U model "ustrip". Number of nodes of instance should match with the model.

Example: 

U1 3 10 2 0 5 1  0 USTRIP L=0.178 $LUMPS=1

.Model USTRIP U LEVEL=3 PLev=1 Elev=1 Dlev=2 Nl=3 Ht=381u

+ Wd=305u Th=25u Sp=102u Ts=838u Kd=4.7 $ LEVEL=3 required 8 nodes
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20018  (20018.sp:32) Unknown setting for ComputeGo. ComputeGo can be YES or NO.

Example: 

.Fsoptions opt1 Printdata=yes Computers=yes Computegd=yes

+ Computego=2

20019 (20019.sp:38) Physical length defined for W-element cannot be zero or negative. Please define a positive 
value.

Example: W4 N=3 1 2 3 0 4 5 6 0 RLGCfile=wel4rs.rlc l=-1.2

20020 (20020.sp:25) TSTEP cannot be zero or negative for Transient Analysis. Please enter a positive value for 
TSTEP.

Example: .tran -0.1ns 50ns

20021 (20021.sp:5) Denominator cannot be zero for E-element ehipass. Please enter a non-zero denominator.

Example:

 Ehipass out 0 LAPLACE in 0 0.0,0.0,0.0,1.0 / 0.0,0.0,0.0,0.0

20022 (20022.sp:4) Seed for Pseudo Random Bit Generator source v1 should lie between 0 and 1073741823. 
Please enter a valid value of seed.

Example:

.param a=4 vlow=1 vhigh=5 tdelay=1n trise=0.5n tfall=0.5n rate=0.1g seed=-10 
rout=10k

v1 1 0  LFSR (vlow vhigh tdelay trise tfall rate seed [5,2] rout)

20023 (20023.sp:13) Number of nodes miss match between instance "xres" and subcircuit 
"ress ". Subcircuit definition has    2 node(s) whereas subckt instance was found with    3 node(s). Please 
specify same number of nodes.

Example: 

.subckt ress 7 1

R1 7 1 50

.ends

Xres 7 1 10 ress

20024 (20024.sp:3) Name of rlgcmodel cannot start with a number. Names should start with alphabet. Check/
correct the parameter name.

Example: W1 N=3 1 3 5 0 2 4 6 0 RLGCMODEL=11 l=0.97

20030 xxx  is a reserved parameter name, please change the parameter name and rerun; if this is an initialization 
for a data statement, it can be removed.

Example: .param temper=2  $ 'temper' is a reserved word

20031 No algebraic for function definition.

Example: .param f(x)

Index **error** Message and Example
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20041 Multiplication factor(M) for the element ',a,' cannot be < or = zero. Enter a valid M value.

Example: R1 1 0 1 m=-2

20042 In Transient Analysis TSTEP xxx cannot be greater than TSTOP-TSTART  xxxx- xxxxx . Please enter TSTEP 
< TSTOP-TSTART. This TSTEP STOP pair has been ignored. Syntax: .TRAN tstep1 tstop1 [tstep2 tstop2 
...tstepN tstopN]  [START=val] [UIC] [SWEEP var type np pstart pstop]').

Example: .TRAN 10n 5n

20043 MIN and MAX are not supported for the delay element xxx.

Example: Edelay in_delay 0 DELAY in 0 TD=2n max=2

20044 Parameter has been repeated. Enter parameter only once.

Example: Qopamp1 c1 b3 e2 s Mod1stagepnp AREA=1.5 AREAB=2.5

AREAB=2 

20045 Duplicate parameter is set or the number of element nodes is not within the range of 3-7.

Example: M1 d g s b nch l=1u w=2u l=2u

20046 Undefined parameter or function definition "xxx". Please enter a defined name.

Example: .param a='b+1' $ b is not defined in the netlist

20047 xxx settings have been parsed as',' Start:xxx Stop:xxx  Step:xxxx  Sweep size:xxx.  The number of steps is 
larger than allowed 1E+9.

Example:  .tran 2.98362e-14 6.550567e-10 sweep __out_load 10 0 6e-12

20048 Reference xxx not found, or instance width or length does not fit into the wmax/wmin or lmax/lmin range. It 
was referenced in element xxx. The channel width=xxx and length=xxx. Please enter channel width  and 
length that do not exceed the referenced maximal area Lmax=xxx  Lmin=xxx Wmax=xxx  Wmin=xxxx.

Example: 

M1 g d s b nch l=3u w=6u

.model nch.1 nmos level=54 lmax=2u lmin=0.5u wmax=4u wmin=1u

20049 Invalid output file format xxx entered for .LIN Analysis. Format only can be selem|citi|touchstone. Analysis 
has been ignored.

Example:

.LIN sparcalc=1 modelname=my_custom_model

+ filename=mydesign format=rlgc noisecalc=1

20051 Could not find parameter function "xxx". Enter a defined parameter function.

Example: .tran 1.0e-10 1.0e-9 sweep optimize=opt results=y  model=opt_model  $ opt 
is illegal

20052 Could not find measure variable "xxx" for optimization. Enter a valid measure variable.

Example: .tran 1.0e-10 1.0e-9 sweep optimize=opt1 results=y  model=opt_model   $ 
y is not defined in .measure
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20053 Invalid number of parametric entry for optimization. Syntax is: .PARAM ParamName=OptParFun (Initial, 
Lower, Upper).

Example: .param x=opt1(0,1)

20054 Missing AC analysis type. Enter one type of DEC/OCT/LIN/POI.

Example: .AC 1K 100MEG

20056 Reference  xxx not found, or instance width or length does not fit into the nfinmax/nfinmin or lmax/lmin range. 
It was referenced in element xxx. The channel nfin=xxx and length=xxx .Please enter channel nfin  and 
length that do not exceed the referenced maximal area Lmax=xxx Lmin=xxx Nfinmax=xxx  Nfinmin=xxx.

Example: 

M1 g d s b nfet   NF=5 NFIN=20  …

.model nfet.1 nmos level=72  VERSION = 106.1 … 

20057 Stop time should be larger than start time in the same pair in twindow.

Example: .set_sample_time twindow 10u 5u

20058 Stop time should not be larger than start time in the next pair in twindow.

Example: .set_sample_time twindow 10u 20u 15u 30u

#define hsperror_sample_point_02_index 20058

20059 Reference xxx not found. It was referenced in element xxx. The channel width=xxx and length=xxx.

20060 Missing message content in biaschk.

Example: .biaschk mos terminal1=nd monitor=v max=1 message=

20061 sname of biaschk is not supported in subckt.

Example:

.subckt sub2 d g s b

.biaschk mos terminal1=nd sname=sub1 max=1 monitor=v 

M1   d g s b nch l=1u w=2u 

.ends

20062 Invalid output variable in element xxx.  Enter a valid output.

Example: r1 n1 n2 r='i(v3)*2' $ v3 is not defined in the netlist

20063 Too many arguments in function call.

Example: .param f(x,y)='x+y' a=f(1,2,3)

20064 Too few arguments in function call.

Example: .param f(x,y)='x+y' a=f(1)

20066 Source element, keyword "PWL" cannot be node name. Please specify a valid source node name.

Example: V1 n1 pwl 1

Index **error** Message and Example
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20067 [lower|upper] in .meas statements have to be identical to support multiple goals in pushout bisection.

Example: .Measure Tran pushout_4 When v(D_Output)='vih/4' rise=1 pushout_per=0.03 
upper

20068 Invalid key word ''xxx''' in .TRAN command.

Example: .tran 1n 'simtime'  TSTART=0

20069 No arguments in function call xxx. Please check .param xxx statements.

Example:  .param a=3 a(x,y)='x+y' b=a

20071 Element  xxx does not support LEVEL = xxx. Specify a valid LEVEL.

Example: Qn10 VDD! qp outp npn_level0

.model  npn_level0  NPN  LEVEL = 0   BF=180 IS-1E-13

20073 Invalid model level xxx. Specify a valid model level.

Example: .model nch nmos level=99

20074 Cannot redefine parameter to itself=xxx.

Example: .param a=a

20077 Inductor/voltage source loop found containing xxx defined in subckt xxx.

20078 Inductor/voltage source loop found on signal 0 :xxx  defined in vec source.

20079 Values of a list must sorted from smallest to largest.

Example: .tran 1n 50n sweep monte=list (8:6)

20080 The value of a list must be greater than 0.

Example: .tran 1n 50n sweep monte=list (0:5)

20082 In .param statement, the argument "xxx" of function "xxx" cannot use quotation marks. Please remove the 
quotation marks.

Example: .param f('x')='x+2'

20083 Start Frequency <value> for AC Analysis cannot be negative. Enter START frequency greater than zero.

Example: .AC DEC 10 -4K 400MEG

20084 td is not specified or the value of td <= 0, please check it.

Example: Tin 14 0 10 0 ZO=50 TD=0
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Exit Codes

HSPICE prints these exit codes. The numerals below may be preceded by the 
word SIGTERM  or SIGABRT. The corresponding meanings are as follows:
■ 0: Simulation succeeded.
■ 1: Simulation failed due to errors, e.g., syntax error, non-convergence, etc.
■ 2: HSPICE stopped due to lack of an HSPICE license.
■ 3:  The simulation is terminated by Ctrl+\ (Control key plus backslash) on 

Linux.
■ 6: The simulation is terminated by signal SIGABRT due to abnormal 

operation of the source code, such as: out of memory, invalid memory 
access, etc.

■ 8: Floating-point exception.
■ 11: Segmentation fault (invalid memory address access).
■ 15: HSPICE stopped by a UNIX kill command.
■ 24: CPU limit exceeded.
■ 101: HSPICE stopped by Ctrl+C.
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33Running Demonstration Files

Contains examples of basic file construction techniques, advanced features, 
and simulation hints. Lists and describes over 300 HSPICE demonstration input 
files plus paths to these files in the general distribution. For HSPICE advanced 
analog analyses-specific input files, see HSPICE User Guide: Advanced Analog 
Analysis and Simulation.

HSPICE ships hundreds of examples for your use; see Listing of 
Demonstration Input Files for paths to demo files.

These topics are covered in the following sections:
■ Using the Demo Directory Tree
■ Two-Bit Adder Demo
■ MOS I-V and C-V Plot Example Input File
■ Temperature Coefficients Demo
■ Modeling Wide-Channel MOS Transistors
■ Listing of Demonstration Input Files

Using the Demo Directory Tree

To run demonstration files: go to your HSPICE installed version location e.g.: 
path_to_hspice_version/hspice/demo/hspice. In this directory you 
will find multiple demo files. After a proper hspice path has been set up, you 
can execute Linux/Solaris/HP: 
%> hspice -i your_spice_file -o output_file 

On Windows, execute Start > All > Programs > your_hspice_installed_version 
> HSPICE-installed_version > file > simulate and proceed.
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Using the Demo Directory Tree
The tables in the section Listing of Demonstration Input Files on page 1068 list 
demonstration files, which are designed as training examples. All HSPICE 
distributions include these examples in the demo directory tree, where 
$installdir is the installation directory environment variable:

Table 80 Demo Directories

Directory Path File Directory Description

$installdir/demo/hspice /aa_integ HSPICE integration tutorial, Cadence® 
Virtuoso® Analog Design Environment

/apps General applications

/back_annotation Usage of BA_options

/behave Analog behavioral components

/bench Standard benchmarks

/bjt Bipolar components

/bisect Bisection optimization

/cchar Characteristics of cell prototypes

/ciropt Circuit level optimization

/ddl Discrete Device Library

/devopt Device level optimization

/fft Fourier analysis

/encrypt Traditional, 8-bit, and 3DES encryption

/filters Filters

/ibis IBIS examples

/mag Transformers, magnetic core components

/mos MOS components

/si Signal Integrity applications

/sources Dependent and independent sources

/sparam S-parameter applications

/tline Filters and transmission lines

/twline W-element transmission lines and field solvers

/variability Variation Block, Monte Carlo, and AC/DC 
Mismatch examples

/veriloga Verilog-A examples

$installdir/demo/hspice/ /rf_examples/ RF examples
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Two-Bit Adder Demo

This two-bit adder shows how to improve efficiency, accuracy, and productivity 
in circuit simulation. The adder is in the $installdir/demo/hspice/apps/
mos2bit.sp demonstration file. It consists of two-input NAND gates, defined 
using the NAND subcircuit. CMOS devices include length, width, and output 
loading parameters. Descriptive names enhance the readability of this circuit.

One-Bit Subcircuit
The ONEBIT subcircuit defines the two half adders, with carry in and carry out. 
To create the two-bit adder, HSPICE uses two calls to ONEBIT. Independent 
piecewise linear voltage sources provide the input stimuli. The R repeat 
function creates complex waveforms.

Figure 188 One-bit Adder subcircuit
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Figure 189 Two-bit Adder Circuit

Figure 190 1-bit NAND Gate Binary Adder

MOS Two-Bit Adder Input File
You can find the sample netlist for this example in the following directory:

$installdir/demo/hspice/apps/mos2bit.sp

MOS I-V and C-V Plotting Demo

To diagnose a simulation or modeling problem, you usually need to review the 
basic characteristics of the transistors. You can use this demonstration 
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MOS I-V and C-V Plotting Demo
template file, $installdir/demo/hspice/mos/mosivcv.sp, with any 
MOS model. The example shows how to easily create input files, and how to 
display the complete graphical results. The following features aid model 
evaluations:

Printing Variables
Use this template to print internal variables, such as: 

Table 81 MOS I-V and C-V Plotting Demo

Value Description

SCALE=1u Sets the element units to microns (not meters). Most circuit designs use microns.

DCCAP Forces HSPICE to evaluate the voltage variable capacitors, during a DC sweep.

node names Eases circuit clarity. Symbolic name contains up to 16 characters.

.PRINT .PRINT statements print internal variables.

Table 82 Demo Printing Variables

Variable Description

i(mn1) i1, i2, i3, or i4 specifies true branch currents for each transistor node.

LV18(mn6) Total gate capacitance (C-V plot).

LX7(mn1) GM gate transconductance. (LX8 specifies GDS; LX9 specifies GMB).
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Figure 191 MOS IDS Plot
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Figure 192 MOS VGS Plot
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Figure 193 MOS GM Plot
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Figure 194 MOS C-V Plot

MOS I-V and C-V Plot Example Input File
You can find the sample netlist for this example in the following directory:

$installdir/demo/hspice/mos/mosivcv.sp

CMOS Output Driver Demo

ASIC designers need to integrate high-performance IC parts onto a printed 
circuit board (PCB). The output driver circuit is critical to system performance. 
The $installdir/demo/hspice/apps/asic1.sp demonstration file 
shows models for an output driver, the bond wire and leadframe, and a six-inch 
length of copper transmission line. 

VOLTS [LIN]

LX
 [L

IN
]
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9.0F

11.0F

12.0F

13.0F
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10.0F

*FILE: MOS1VGS.SP IDS, VGS,CV, AND GM PLOTS 
APRIL 24, 2003 14:42:16
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CMOS Output Driver Demo
This simulation demonstrates how to:
■ Define parameters, and measure test outputs.
■ Use the LUMP5 macro to input geometric units, and convert them to 

electrical units.
■ Use .MEASURE statements to calculate the peak local supply current, 

voltage drop, and power.
■ Measure RMS power, delay, rise times, and fall times.
■ Simulate and measure an output driver under load. The load consists of:

• Bondwire and leadframe inductance.

• Bondwire and leadframe resistance.

• Leadframe capacitance.

• Six inches of 6-mil copper, on an FR-4 printed circuit board.

• Capacitive load, at the end of the copper wire.

Strategy
The HSPICE strategy is to:
■ Create a five-lump transmission line model for the copper wire.
■ Create single lumped models for leadframe loads.
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Figure 195 Noise Bounce
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Figure 196 Asic1.sp Demo Local Supply Voltage
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*FILE: MOS1VGS.SP IDS, VGS,CV, AND GM PLOTS 
APRIL 24, 2003 15:24:31
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Figure 197 Asic1.sp Demo Local Supply Current
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*FILE: ASIC1.SP GROUND BOUNCE FOR I/O CMOS DRIVER
APRIL 24, 2003 15:29:24
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Figure 198 Asic1.sp Demo Input and Output Signals

CMOS Output Driver Example Input File
You can find the sample netlist for this example in the following directory:

$installdir/demo/hspice/apps/asic1.sp

Temperature Coefficients Demo

SPICE-type simulators do not always automatically compensate for variations 
in temperature. The simulators make many assumptions that are not valid for 
all technologies. Many of the critical model parameters in HSPICE provide first-
order and second-order temperature coefficients, to ensure accurate 
simulations. 

You can optimize these temperature coefficients in either of two ways.
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200.0M

50.0M

25.0M
1064 HSPICE® User Guide: Basic Simulation and Analysis
K-2015.06



Chapter 33: Running Demonstration Files
Temperature Coefficients Demo
■ The first method uses the TEMP DC sweep variable. 

All analysis sweeps allow two sweep variables. To optimize the temperature 
coefficients, one of these must be the optimize variable. Sweeping TEMP 
limits the component to a linear element, such as a resistor, inductor, or 
capacitor. 

■ The second method uses multiple components at different temperatures. 

Example
The following example, the $installdir/demo/hspice/ciropt/
opttemp.sp demo file, simulates three circuits of a voltage source. It also 
simulates a resistor at -25, 0, and +25C from nominal, using the DTEMP 
parameter for element delta temperatures. The resistors share a common 
model. 

You need three temperatures to solve a second-order equation. You can extend 
this simulation template to a transient simulation of non-linear components 
(such as bipolar transistors, diodes, and FETs).

This example uses some simulation shortcuts. In the internal output templates 
for resistors, LV1 (resistor) is the conductance (reciprocal resistance) at the 
desired temperature. 
■ You can run optimization in the resistance domain. 
■ To optimize more complex elements, use the current or voltage domain, with 

measured sweep data. 

The error function expects a sweep on at least two points, so the data 
statement must include two duplicate points.

Input File for Optimized Temperature Coefficients
You can find the sample netlist for this example in the following directory:

$installdir/demo/hspice/ciropt/opttemp.sp
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Optimization Section
.model optmod opt
.dc data=RES_TEMP optimize=opt1
+           results=r@temp1,r@temp2,r@temp3
+           model=optmod
.param tc1r_opt=opt1(.001,-.1,.1)
.param tc2r_opt=opt1(1u,-1m,1m)
.meas r@temp1 err2 par(R_meas_t1) par('1.0 / lv1(r-25)')
.meas r@temp2 err2 par(R_meas_t2) par('1.0 / lv1(r0) ')
.meas r@temp3 err2 par(R_meas_t3) par('1.0 / lv1(r+25) ')
* * Output section *
.dc data=RES_TEMP
.print 'r1_diff'=par('1.0/lv1(r-25)')
+      'r2_diff'=par('1.0/lv1(r0) ')
+      'r3_diff'=par('1.0/lv1(r+25)')
.data RES_TEMP R_meas_t1 R_meas_t2 R_meas_t3
950 1000 1010
950 1000 1010
.enddata 
.end

Modeling Wide-Channel MOS Transistors

If you select an appropriate model for I/O cell transistors, simulation accuracy 
improves. For wide-channel devices, model the transistor as a group of 
transistors, connected in parallel, with appropriate RC delay networks. If you 
model the device as only one transistor, the polysilicon gate introduces delay. 

When you scale to higher-speed technologies, the area of the polysilicon gate 
decreases, reducing the gate capacitance. However, if you scale the gate oxide 
thickness, the capacitance per unit area increases, which also increases the 
RC product. 

Example

The following example illustrates how scaling affects the delay. For example, for 
a device with:
■ Channel width=100 microns.
■ Channel length=5 microns.
■ Gate oxide thickness=800 Angstroms.

The resulting RC product for the polysilicon gate is:
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, RC=138 ps

For a transistor with:
■ Channel width=100 microns.
■ Channel length=1.2 microns.
■ Gate oxide thickness=250 Angstroms.

The resulting RC product for the polysilicon gate is:

RC=546 ps

You can use a nine-stage ladder model to model the RC delay in CMOS 
devices.

Figure 199 Nine-stage Ladder Model

In this example, the nine-stage ladder model is in data file $installdir/
demo/hspice/apps /asic3.sp. To optimize this model, HSPICE uses 
measured data from a wide channel transistor as the target data\. Optimization 
produces a nine-stage ladder model, which matches the timing characteristics 
of the physical data (HSPICE advanced analog analyses does not support 
optimization). HSPICE compares the simulation results for the nine-stage 
ladder model, and the one-stage model by using the nine-stage ladder model 
as the reference. The one-stage model results are about 10% faster than actual 
physical data indicates.
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Example

You can find the sample Nine-Stage Ladder model netlist for this example in the 
following directory:

$installdir/demo/hspice/apps/asic3.sp

Figure 200 Asic3 Single vs. Lumped Model

Listing of Demonstration Input Files
■ HSPICE Integration to ADE Demonstration Examples
■ Applications of General Interest Examples
■ Back-Annotation Demo Cases
■ Behavioral Application Examples
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■ Benchmark Examples
■ Bisection-Timing Analysis Examples
■ BJT and Diode Examples
■ Cell Characterization Examples
■ Circuit Optimization Examples
■ Device Optimization Examples
■ Encryption Examples
■ Filters Examples
■ Fourier Analysis Examples
■ IBIS Examples
■ Loop Stability Analysis
■ Magnetics Examples
■ MOSFET Device Examples
■ RF Examples
■ Signal Integrity Examples
■ Sources Examples
■ S-parameter Examples
■ Transmission Lines Examples
■ Transmission (W-element) Line Examples
■ Variability Examples
■ Exploration Block Examples
■ Verilog-A Examples

HSPICE Integration to ADE Demonstration Examples

Table 83 HSPICE Integration Tutorial Examples

File Name Location: $installdir/demo/hspice/aa_integ/

Corner_Demo_51 Full example of corner analysis
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Applications of General Interest Examples

Corner_Demo_61

Mosra_Demo_51 Full MOSFET reliability analysis

Mosra_Demo_61

Optimization_Demo_51 Optimization analysis

Optimization_Demo_61

Mixer_Demo_61 Netlisting and running of HSPICE advanced analog analyses (hb, hbac, hbnoise, sn, 
snac, and snnoise); PLL Demo_61 complements this demo

Monte_Demo_51 Monte Carlo analysis

Monte_Demo_61

PLL_Demo_51
PLL_Demo_61

Suites of files for ADE versions 5.1xx and 6.1xx (required to run a guided tutorial in 
the first chapter of the HSPICE Integration to Cadence® Virtuoso® Analog Design 
Environment User Guide, including a Verilog-A example). See Quick-Start Tutorial in 
the HSPICE Integration to Cadence® Virtuoso® Analog Design Environment User 
Guide

Table 84 Applications of General Interest Examples

File Name Location: $installdir/demo/hspice/apps/

alm124.sp AC, noise, and transient op-amp analysis

alm124.inc Macro model

alter2.sp .ALTER examples

ampg.sp Pole/zero analysis of a G source amplifier

asic1.sp Ground bounce for I/O CMOS driver

asic3.sp Ten-stage lumped MOS model

biaschk.sp Apply bias check analysis on D flip flop

Table 83 HSPICE Integration Tutorial Examples (Continued)

File Name Location: $installdir/demo/hspice/aa_integ/
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bjtdiff.sp BJT diff amp with every analysis type

bjtschmt.sp Bipolar Schmidt trigger

bjtsense.sp Bipolar sense amplifier

cellchar.sp Characteristics of ASIC inverter cell

four.sp CMOS inverter applied with Fourier analysis

gaasamp.sp Simple GaAsFET amplifier

gen28.inc Model library file

grouptim.sp Group time-delay example

inv.sp Sweep MOSFET -3 sigma to +3 sigma use .MEASURE output

mcdiff.sp CMOS differential amplifier

mondc_a.sp Monte Carlo of MOS diffusion and photolithographic effects

mondc_b.sp Monte Carlo DC analysis

mont1.sp Monte Carlo Gaussian, uniform, and limit function

mos2bit.sp Two-bit MOS adder

noise_app.sp Uses the .LIN command to do a noise analysis

noise_app_orig.sp Uses the .NOISE command on the same circuit as above

opampdcm.sp DCmatch analysis, opamp

quickAC.sp AC analysis on a RC network

quickINV.sp Transient analysis on a inverter

quickTRAN.sp Tran on a resistor divider

rc_monte.sp Transient Monte Carlo on Resistor

sclopass.sp Switched-capacitor low-pass filter

tlib1 Model library file

Table 84 Applications of General Interest Examples (Continued)

File Name Location: $installdir/demo/hspice/apps/
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Back-Annotation Demo Cases
Directories include: top-level netlists, extracted netlists, selected nets file, 
schematic level netlists, model files, and READMEs.

tlib2 Model library file

tlib3 Model library file

tlib4 Model library file

trist_buf_opt.sp Tri-State buffer optimization

wildchar.sp Wildcard print and probe example

worst.sp worst-case skew models by using .ALTER

xbjt2bit.sp BJT NAND gate two-bit binary adder

Table 85 Back-Annotation Cases

Case Name Location: $installdir/demo/hspice/back_annotation/

option_ba_activehier/ Demonstrates use of .OPTION BA_ACTIVEHIER to annotate full hierarchical 
net names that are specified for BA_ACTIVE files.

option_ba_dpfpfx/ Demonstrates use of .OPTION BA_DPFPFX to prepend an extra prefix when 
searching the ideal netlist for instances referenced by the parasitic file. 

option_ba_file/dspf/multiba/ Demonstrates use of the .OPTION BA_FILE command to launch multiple 
DSPF files for parasitic back-annotation.

option_ba_file/dspf/ Demonstrates use of the .OPTION BA_FILE command for single DSPF file.

option_ba_file/spef/ Demonstrates use of the .OPTION BA_FILE command for single SPEF file.

option_ba_fingerdelim/ Demonstrates use of .OPTION BA_FINGERDELIM to explicitly specify the 
delimiter character used for finger devices.

option_ba_hierdelim/ Demonstrates use of .OPTION BA_HIERDELIM to specify the hierarchical 
separator in the DSPF file.

option_ba_idealpfx/ Demonstrates use of .OPTION BA_IDEALPFX to have the simulator add a 
second prepended prefix when doing a search of the ideal netlist.

Table 84 Applications of General Interest Examples (Continued)

File Name Location: $installdir/demo/hspice/apps/
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option_ba_mergeport/ Demonstrates use of .OPTION BA_MERGEPORT to control whether to merge 
net ports into one node.

option_ba_netfmt Demonstrates use of .OPTION BA_NETFMT to specify the format of the Active 
Net file (*.rcxt or *.hsimba).

option_ba_print/ Demonstrates use of .OPTION BA_PRINT to control whether to output nodes 
and resistors/capacitors introduced by back-annotation.

option_ba_terminal/ Demonstrates use of .OPTION BA_TERMINAL to specify the terminal name 
mapping between the parasitic netlist and the terminal names recognized by 
the simulator.

selective_ba/ba_acheck/ Demonstrates the use of the .BA_ACHECK command to specify the rule for 
detecting node activity in back-annotation.

selective_ba/option_ba_active/ Demonstrates use of .OPTION BA_ACTIVE to create an Active Net file for 
selective back-annotation.

selective_ba/option_ba_coupling/ Demonstrates use of .OPTION BA_COUPLING to control how to treat cutoff 
coupling capacitors when invoking selective net back-annotation.

Table 85 Back-Annotation Cases

Case Name Location: $installdir/demo/hspice/back_annotation/
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Behavioral Application Examples

Table 86 Behavioral Application Examples

File Name Location: $installdir/demo/hspice/behave/

acl.sp Acl gate

amp_mod.sp Amplitude modulator with pulse waveform carrier

behave.sp AND/NAND gates by using G-, E-elements AND/NAND gates by using G, E 
Elements

calg2.sp Voltage variable capacitance

compar.sp Behavioral comparator with hysteresis

det_dff.sp Double edge-triggered flip-flop

diff.sp Differentiator amplifier and opamp signals

diode.sp Behavioral diode by using a PWL VCCS

dlatch.sp CMOS D-latch by using behaviorals

galg1.sp Sampling a sine wave

idealop.sp Ninth-order low-pass filter

integ.sp Integrator circuit

inv_vin_vout.sp DC sweep of a INV

invb_op.sp Optimizes the CMOS macromodel inverter

ivx.sp Characteristics of the PMOS and NMOS as a switch

op_amp.sp Op-amp from Chua and Lin

pdb.sp Phase detector by using behavioral NAND gates

pll.sp PLL build with BJT

pll_bvp.sp PLL build with behavioral source

pwl2.sp PPW-VCCS with a gain of 1 amp/volt

pwl10.sp Operational amplifier used as a voltage follower
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pwl4.sp Eight-input NAND gate

pwl7.sp Modeling inverter by using a PWL VCVS

pwl8.sp Smoothing the triangle waveform by using the PWL CCCS

ring5bm.sp Five-stage ring oscillator – macromodel CMOS inverter

ringb.sp Ring oscillator by using behavioral model

rtest.sp Voltage-controlled resistor, inverter chain

sampling.sp Sampling a sine wave

swcap5.sp Fifth-order elliptic switched capacitor filter

switch.sp Test for PWL switch element

swrc.sp Switched capacitor RC circuit

vcob.sp Voltage-controlled oscillator by using PWL functions

Table 86 Behavioral Application Examples

File Name Location: $installdir/demo/hspice/behave/
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Benchmark Examples

Bisection-Timing Analysis Examples

BJT and Diode Examples

Table 87 Benchmark Examples

File Name Location: $installdir/demo/hspice/bench/

bigmos1.sp Large MOS simulation

demo.sp Quick demo file to test installation

example.sp CMOS amplifier

digstim.vec Vector stimulus file for m2bit_v.sp

m2bit.sp 72-transistor two-bit adder – typical cell simulation

m2bit_v.sp Same as m2bit.sp except uses vector stimulus file

senseamp.sp Bipolar analog test case

Table 88 Bisection-Timing Examples

File Name Location: $installdir/demo/hspice/alge/

dff_push.sp DFF pushout bisection search for setup time

dff_top.sp DFF bisection search for setup time

fig26_4.sp Early, Optimal and Late Setup Times of DFF

inv_a.sp inverter bisection (pass-fail)

tsmc018.m TSMC model file used by dff_push.sp

Table 89 BJT and Diode Device Examples

File Name Location: $installdir/demo/hspice/bjt/

bjtbeta.sp plot BJT beta
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bjtgm.sp plot BJT Gm, Gpi

dpntun.sp junction tunnel diode

hicum.sp HICUM BJT MOS terminal characterization

mextram.sp I-V characteristics of a MEXTRAM BJT

mextram_ac.sp AC analysis of a MEXTRAM BJT

mextram_dc.sp DC analysis of a MEXTRAM BJT

mextram_tran.sp Tran analysis of a MEXTRAM BJT

quasisat.sp quasisat.sp comparison of bjt Level1 and Level2

self-heat.sp VBIC BJT with self heating feature

vbic.sp DC of a VBIC BJT

vbic99_ac.sp NET analysis of a VBIC99 BJT

vbic99_dc.sp DC analysis of a VBIC99 BJT

vbic99_tran.sp TRAN analysis of a VBIC99 BJT 

Table 89 BJT and Diode Device Examples (Continued)
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Cell Characterization Examples

Circuit Optimization Examples

Table 90 Cell Characterization Examples

File Name Location: /$installdir/demo/hspice/cchar/

diff.sp .model opt, hemocytoblastic

gen28.inc level 28 model library used by netlists

inv3.sp inv3.sp characteristics of an inverter, .model opt, method=passfail

inva.sp characteristics of an inverter, .model opt, method=passfail

invb.sp characteristics of an inverter, .model opt, method=bisection

load1.sp inverter sweep, delay versus fanout

setupbsc.sp setup characteristics

setupold.sp setup characteristics, .model opt

setuppas.sp setup characteristics, .model opt, method=passfail

sigma.sp sigma.sp sweep MOSFET -3 sigma to +3 sigma by using measure output

Table 91 Circuit Optimization Examples

File Name Location: $installdir/demo/hspice/ciropt/

ampgain.sp Set unity gain frequency of a BJT diff pair

ampopt.sp Optimize area, power, speed of a MOS amp

asic2.sp Optimize speed, power of a CMOS output buffer

asic6.sp Find best width of a CMOS input buffer

delayopt.sp Optimize group delay of an LCR circuit

lpopt.sp Match lossy filter to ideal filter

opttemp.sp Find first and second temperature coefficients of a resistor
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rcopt.sp Optimize speed or power for an RC circuit

Table 91 Circuit Optimization Examples (Continued)

File Name Location: $installdir/demo/hspice/ciropt/
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Device Optimization Examples 

Encryption Examples

Table 92 Device Optimization

File name Location: $installdir/demo/hspice/devopt/ 

beta.sp LEVEL=2 beta optimization

bjtopt.sp s-parameter optimization of a 2n6604 BJT

bjtopt1.sp 2n2222 DC optimization

bjtopt2.sp 2n2222 Hfe optimization

d.sp diode, multiple temperatures

dcopt1.sp 1n3019 diode, I-V and C-V optimization

jopt.sp 300u/1u GaAs FET, DC optimization

ml13opt.sp MOS LEVEL=2 I-V optimization

ml2opt.sp MOS LEVEL=3 I-V optimization

opt_bjt.sp T2N9547 BJT Optimization

Table 93 Encryption Examples

File name Location: $installdir/demo/hspice/encryption/

8-byte_key.tar Suite of files demonstrating how to set up an 8-byte_key encryption file.

traditional.tar Suite of files demonstrating how to set up a traditional (free_lib) encryption file.

triple_DES.tar Suite of files plus a directory of 2 lib_DES libraries demonstrating how to set up 
a 3DES encryption file. 

README and auxiliary files
1080 HSPICE® User Guide: Basic Simulation and Analysis
K-2015.06



Chapter 33: Running Demonstration Files
Listing of Demonstration Input Files
Filters Examples

Fourier Analysis Examples

Table 94 Filters

File Name Location: $installdir/demo/hspice/filters/

bandstopl.sp band reject filter, AC and transient analysis

fbp_1.sp bandpass LCR filter, measurement

fbp_2.sp bandpass LCR filter, pole/zero

fbpnet.sp bandpass LCR filter, using .LIN

fbprlc.sp LCR AC analysis for resonance

fhp4th.sp high-pass LCR, fourth-order Butterworth filter, pole-zero analysis

fkerwin.sp pole/zero analysis of Kerwin’s circuit

flp5th.sp low-pass, fifth-order filter, pole-zero analysis

flp9th.sp low-pass, ninth-order FNDR, with ideal op-amps, pole-zero analysis

lcline.sp LC line model using Laplace behavioral elements

low_pass.sp behavioral model using E and G elements

low_pass9a.sp active low pass filter using behavioral opamp models

lowloss.sp RL line model using Laplace behavioral elements

ninth.sp active low pass filter using Laplace elements

phaseshift.sp Behavioral model using G table element

rcline.sp RC line model using Laplace elements

Table 95 Fast Fourier Transform Examples

File Name Location: $installdir/demo/hspice/fft/

fft5.sp FFT analysis, data-driven transient analysis
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fft6.sp FFT analysis, sinusoidal source

gauss.sp FFT analysis, Gaussian window

hamm.sp FFT analysis, Hamming window

hann.sp FFT analysis, Hanning window

harris.sp FFT analysis, Blackman-Harris window

intermod.sp FFT analysis, intermodulation distortion

kaiser.sp FFT analysis, Kaiser window

mod.sp FFT analysis, modulated pulse

pulse.sp FFT analysis, pulse source

pwl.sp FFT analysis, piecewise linear source

rect.sp FFT analysis, rectangular window

rectan.sp FFT analysis, rectangular window

sffm.sp FFT analysis, single-frequency FM source

sine.sp FFT analysis, sinusoidal source

swcap5.sp FFT analysis, fifth-order elliptic, switched-capacitor filter

tri.sp FFT analysis, rectangular window

win.sp FFT analysis, window test

window.sp FFT analysis, window test

winreal.sp FFT analysis, window test

Table 95 Fast Fourier Transform Examples (Continued)

File Name Location: $installdir/demo/hspice/fft/
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Table 96 IBIS Modeling Files

File name Location: $installdir/demo/hspice/ibis/

at16245.ibs IBIS model file, used in iob_ex1.sp example file

iob_ex1.sp Using IBIS buffer example

cmpt1.ibs IBIS model file

ebd.ebd IBIS EBD file example

ebd.sp Using EBD files example

pinmap.ebd IBIS EBD file example, uses pin mapping

pinmap.sp Using EBD files example

pinmap.ibs IBIS model file

readme readme file for ICM examples

icm/nodepath_rlgc/bga_1.sp Using ICM with nodepath description example

bga_example.icm ICM example file

s_w_test_GHz_db.s4p TouchStone file for ICM example, called by test1.icm

sect2_s_2.inc S-parameter model call, used by test1.sp

test1.icm ICM example file

test1.sp Using ICM with nodepath description and S-element

sect3_rlgc_4.inc RLGC file used by test1.sp

sect_w_4.inc RLGC file used by test1.sp

icm/nodepath_sele/test1.icm ICM example file

test1.sp Using ICM with treepath and rlgc data example

complex.icm ICM example file

complex.sp Using ICM with swath matrix expansion
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Loop Stability Analysis

Magnetics Examples

MOSFET Device Examples

Table 97 Loop Stability

File Name Location: $installdir/demo/hspice/lstb/

single.sp .LSTB single-ended mode example for ideal inverting amplifier with single pole

Table 98 Magnetics

File Name Location: $installdir/demo/hspice/mag/

aircore.sp Air-core transformer circuit

bhloop.sp Magnetic core model, plot B-H loop characteristics

jiles.sp Effects of core model parameters on B-H loop characteristics

magcore.sp Magnetic-core transformer circuit

tj2b.sp Hysteresis effects in magnetic cores

tj_opt.sp Optimizing magnetic core parameters

Table 99 MOSFET Devices

File Name Location: $installdir/demo/hspice/mos/

calcap.sp Calculate AC gate capacitance

calcap.ic0 Results file from calcap.sp

calcap.ic1 Results file from calcap.sp

calcap.lis Results file from calcap.sp

calcap.results Results file from calcap.sp

calcap.st0 Results file from calcap.sp
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capop0.sp Plot MOS capacitances, LEVEL=2

capop1.sp Plot MOS capacitances, LEVEL=2

capop2.sp Plot MOS capacitances, LEVEL=2

cascode.sp MOS Cascode amplifier example, show effect of level=3 impact ionization 
parameter 

chrgpump.sp Charge-conservation test, charge pump using LEVEL=3 MOS

gatecap.sp DC gate capacitance calculation

mcap2_a.sp MOS charge conservation capacitances

mcap3.sp MOS charge conservation capacitances

ml13iv.sp Plot I-V for LEVEL=13

ml13opt.sp Optimizing MOS LEVEL=13 model parameter

ml27iv.sp Plot I-V for LEVEL=27 SOSFET

ml5iv.sp MOS LEVEL=5 example

mosiv.sp Plot I-V for files that you include

mosivcv.sp Example of plotting I-V and C-V curves, uses LEVEL=3 model

nch0.inc MOS model for mosiv.sp and cap_m.sp

selector.sp Automatic model selector for width and length

ssoi.sp Floating bulk model

t1.sp MOS LEVEL=13 TOX calculation test

tempdep.sp MOS LEVEL=3 temperature dependence

tgam2.sp LEVEL=6, gamma model

Table 99 MOSFET Devices (Continued)

File Name Location: $installdir/demo/hspice/mos/
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RF Examples
The following is a listing of shipped demonstration files for illustrating HSPICE 
advanced analog analyses functionality.

File Name Description $installdir/demo/hspice/rf_examples/

acpr.sp Envelope simulation example

bjt.inc Transistor model library used by osc.sp

cmos49_model.inc Transistor model library used by example circuits

cmos90nmWflicker.lib   Transistor model library used by phasefreqdet.sp

gpsvco.sp Oscillator and Phase Noise analysis example

gsmlna.sp LNA Linear analysis example

gsmlnaIP3_A.sp 3rd order intercept point example

mix_hb.sp Mixer HB analysis example

mix_hbac.sp MIxer HBAC analysis example

mix_snac.sp Mixer Shooting Newton AC example

mix_tran.sp Mixer transient analysis example

osc.sp Oscillator tuning curve and phase noise analysis example

pa.sp Power amplifier HB analysis example

pfdcpGain.sp Shooting Newton analysis example 

phasefreqdet.sp Shooting Newton and noise analysis example

ringoscSN.sp Shooting Newton and Phase Noise analysis example

tsmc018.m Transistor model library used by ringoscSN.sp
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Signal Integrity Examples
See also IBIS Examples, S-parameter Examples, Transmission Lines 
Examples, and Transmission (W-element) Line Examples.

Table 100 Signal Integrity 

File Name Location: $installdir/demo/spice/si/

iotran.sp Signetics I/O buffer with transmission lines example

ipopt.sp TDR Optimization Example

qa8.sp Xilinx I/O buffer with transmission lines example

qabounce.sp Ground bounce example

stateye_ex1.sp STATEYE example

stateyeAMI STATEYE example with AMI

AMI_Demo IBIS-AMI demo example

sputil_demo SPUTIL examples
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Sources Examples

S-parameter Examples

Table 101 Sources

File Name Location: $installdir/demo/hspice/sources/

amsrc.sp Amplitude modulation source example

datadriven_pwl.sp Data driven PWL source example, somewhat complex as it includes a sweep/
tstep/tstop. Both V1 and V2 end up as the separate voltage dc values across 
the transient, rather than the more common PWL looking waveform.

datamanual_pwl.sp Simple data pwl example that does not use any sweep or tran tstep/stop 
syntax. The results are individual voltage waveforms.

eelm.sp E-element AC source example

exp.sp Exponential independent source example

prbs.sp PRBS source example

pulse.sp Pulse source example

pwl.sp Repeated piecewise-linear source example

sffm.sp Single-frequency, FM modulation source example

sin.sp Sinusoidal source, waveform example

uelm.sp Digital U-element source example 

uelm.d2a Part of uelem.sp example

vcr1.sp Switched-capacitor network by using G-switch

Table 102 S-Parameter Examples

File Name Location: $installdir/demo/hspice/sparam/

diffamp_s.sp Mixed mode S-parameter example, differential amplifier; Port element 
declaration. S-element with mixed mode. The format is FQMODEL.

mixed2p.s4p Port element declaration. S-element with mixed mode. The parameter format is 
TOUCHSTONE. 
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mixedmode_s.sp Mixed mode S-parameter example, transmission line

sparam.sp Using S-parameter model in SP model format

spciti.sp S-element example, calling CITI format S-parameter file

spmod.sp S-element example, calling Touchstone format S-parameter file

ss_citi.citi CITI format S-parameter file example

ss_ts.s2p TouchStone format S-parameter file example

Table 102 S-Parameter Examples (Continued)

File Name Location: $installdir/demo/hspice/sparam/
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Listing of Demonstration Input Files
Transmission Lines Examples

Transmission (W-element) Line Examples

Table 103 Transmission Lines (tline) Example Files

File name Location: $installdir/demo/hspice/tline/

rcfilt.inc RC filter macro model

strip1.sp U-element, two microstrips, in series (8 mil and 16 mil wide)

strip2.sp U-element, two microstrips, coupled together

stripline.sp U-element strip line example

uele.sp U-element, three coupled lines

Table 104 Twline Demo Files

File Name Location: $installdir/demo/hspice/twline/

ex1.sp 4 conductor RLGC model W-element example

ex2.sp 4 conductor RLGC file W-element example

ex3.sp 4 conductor W-element using U-element parameters

example.rlc RLGC file used by ex2.sp

fs_ex1.sp Field solver, conductor above ground plane

fs_ex2.sp Field solver, three trace example 

fs_ex3.sp Field solver, coupled line example 

fs_ex4.sp Field solver, Monte Carlo example

petl_ex1.sp Field solver, 1 conductor coax example

petl_ex2.sp Field solver, 2 conductor coax example

rlgc.rlc RLGC file used by rlgc.sp

rlgc.sp W-element using RLGC file
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umodel.sp 4 conductor W-element using U-element parameters

Table 104 Twline Demo Files (Continued)

File Name Location: $installdir/demo/hspice/twline/
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Listing of Demonstration Input Files
Variability Examples

Exploration Block Examples

Verilog-A Examples

Table 105 Variation Block, Monte Carlo, and Mismatch Demo Files

File name Location: $installdir/demo/hspice/variability/

matrix.sp Matrix of 9 resistors for testing spatial variation with Monte Carlo

monte_test.tar Suite of DC test files named test1.sp through test20.sp to test 
combinations of resistors, subckts, model/instance parameters, etc. See Key to 
Demonstration Examples for Monte Carlo for discussion of these files.

opampacm.sp Operational amplifier for ACMAtch testing with Variation Block

opampdcm.sp Operational amplifier for DCMatch testing

opampmc.sp Operational amplifier for Monte Carlo testing with Variation Block

Table 106 HSPICE Exploration Block Demo Files

File name Location: $installdir/demo/hspice/variability/

readme.txt Explains the design exploration phases

EB_definition.txt Testing matrix created from *.mex.csv file

EB_export.sp Case file to generate design exploration variables

EB_explore.sp Case file to run design exploration 

snps_mac.lib Model file

Table 107 HSPICE Verilog-A: Netlist and Verilog-A Files

File name Location: $installdir/demo/hspice/veriloga/

biterrorrate.sp Bit error rate counter

biterrorrate.va
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bjt.sp BJT model

bjt.va

colpitts.sp Colpitts BJT oscillator

colpitts.va 

dac.sp DAC and ADC

dac.va

deadband.sp Deadband amplifier

deadband.va

ecl.sp ECL inverter

opamp.sp Opamp

opamp.va

pll.sp Behavioral model of PLL

pll.va

resistor.sp Very simple Verilog-A resistor model

resistor.va

sample_hold.sp Sample and hold

sample_hold.va

sinev.sp Simple voltage source

sinev.va

Table 107 HSPICE Verilog-A: Netlist and Verilog-A Files (Continued)

File name Location: $installdir/demo/hspice/veriloga/
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Symbols
!GND node 120
$installdir installation directory 140

Numerics
3DES encryption 999
3D-IC 669
8b-10b encoding 241

A
.a2d file 33
ABS element parameter 303
abs(x) function 356
ABSI option 518
ABSMOS option 518
absolute

power function 356
value function 356
value parameter 303

ABSV option 518
AC analysis 374

output 394
RC network 12
resistance 540
small signals 539
sources 219

AC analysis measurement results file 34
AC analysis results file 33
AC choke inductor 165
.AC statement 746, 963
.ac# file 32, 33
access functions

Get_E() 809, 811
Get_P() 810

accuracy
simulation time 519
tolerance 517, 518

ACmatch analysis 897
acos(x) function 356

active component model name keywords, string 
parameters 365

adder
circuit 1054
demo 1053
NAND gate binary 1054
subcircuit 1053

admittance
AC input 399
AC output 399
Y parameters 395

AGAUSS keyword 760
aids for convergence 1014
algebraic

equations, example 712
expressions 355

algorithms
BDF 571
Damped Pseudo Transient algorithm 526
GEAR 569
gear 570
integration 569
Levenberg-Marquardt 970
linear acceleration 643
Muller 610, 611
numerical integration 569
numerical integration controls 569
RUNLVL 566
trapezoidal 570
trapezoidal integration 569

.ALTER
blocks 126
statement 127, 130, 380

AM
modulation frequency 595
source function 238, 238–239

amplifiers, pole/zero analysis 617, 620
analyses

Monte Carlo 831
analysis

AC 374
accuracy 517–519
data driven 743, 744
1095



Index
B

DC 373
element template 374
FFT

AM modulation 595
modulator/demodulator 598
test circuit 603
windows 588

initialization 508
inverter 10, 16
.MEASURE statement 374
Monte Carlo 744, 755, 755–781
optimization 963
parametric 374
pole/zero 609

active low-pass filter 621
CMOS differential amplifier 617
high-pass Butterworth filter 616
Kerwin’s circuit 615
overview 609
simple amplifier 620
using Muller method 610

pulse width 724
RC network 12, 14
setup time 720
spectrum 583
statistical 747–781
Taguchi 743
temperature 743, 745
timing 713
transient 373, 560
worst case 743, 747–781
yield 742

analysis error messages 1013
annotate files 926
application notes 21
arccos(x) function 356
arcsin(x) function 356
arctan(x) function 356
arithmetic operators 356
ASIC libraries 141
asin(x) function 356
atan(x) function 356
ATEM characterization system 140
AUNIF keyword 760
autoconvergence 520
autoconvergence flow, DCoperating point 521
auto-convergence warnings 1010

AUTOSTOP option 709
average deviation 744
average value, measuring 406

B
B# node name in CSOS 122
back-annotation, data mining 926
back-annotation, post-layout 649
Bartlett FFT analysis window 589, 591, 605
behavioral

current source 291
voltage source 269

behavioral capacitors 158
behavioral resistors 152
Biaschk 572
binary search 717
Bipolar Junction Transistors. See BJTs
bisection 719

command syntax 718
function 713
measurement 716
methodology 716
optimization 716
overview 714
pass-fail method 716
pulse width analysis 724
pushout method 725
requirements 717
results plots 722
setup time analysis 720
transient analysis 720
violation analysis 716

bisection analysis warnings 1009
BJTs

current flow 389
element template listings 419
elements, names 198
power dissipation 392
S-parameters, optimization 975

Blackman FFT analysis window 589, 606
Blackman-Harris FFT analysis window 590, 607
block elements 159
bond wire example 1059
branch current

output 386
buffers, IBIS 210, 211
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C

C
calculating 55
calculating new measurements

new measurements 55
capacitance

element parameter 154
manufacturing variations 767
pins 706

capacitor
conductance requirement 525
current flow 388
element 153, 156, 416
frequency-dependent 157
models 154
voltage controlled 294, 297

CCCS element parameter 281
CCVS element parameter 301, 302, 303
CDPL 58
C-element (capacitor) 156
cell characterization 743
cell characterization, advanced 708
cell characterization, examples 709
cell measurements, basic 702
CFL function 5
characterization of models 515
choke elements 159
circuits

adder 1054
description syntax 109
inverter, MOS 10, 16
nonconvergent 529
RC network 12
reusable 132
subcircuit numbers 121
temperature 746
test, FFT analysis 603
See also subcircuits

client/server mode 48
client 49
quitting 50
server 49
simulating 50
starting 49

clock source, random jitter 331
CMI 6
CMOS

differential amplifier, pole/zero analysis 617

output driver demo 1059
tristate buffer, optimization 972

commands
hspice 42, 58
limit descriptors 380
output 372

comment line
netlist 113
VEC files 341

Common Distributed Processing Library 58
Compiled Function Library 5
compressed netlists 108
compute farm 58
condition-controlled netlists

netlist
condition-controlled 130

conductance
for capacitors 525
pn junction 532

conductance, negative 1007
confidence interval levels, data mining 913
continuation of line

netlist 113
control options

algorithm selection 516
convergence 516
DC convergence 517
initialization 516
method 564
printing 379
transient analysis 564

controlled sources 251, 253
CONVERGE option 520, 526
convergence

error causes 1014
problems 526

analyzing 527
autoconverge process 520
causes 529
CONVERGE option 526
DCON setting 520
diagnosing 526–532
diagnostic tables 526
floating point overflow 526
GMINDC ramping 520
pole/zero analysis 611
reducing 523

remedies 1014
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convergence error messages 1013
convergence termination criteria 1013
convergence/conductance error messages 1016
convergence-diode resistance errors/solutions 

1017
cos(x) function 356
cosh(x) function 356
current

branch 387
controlled

current sources 252, 281, 417
voltage sources 252, 301, 418

in HSPICE elements 387
output 385
sources 285

custom CMI 6
C-V plots 1055

D
Damped Pseudo Transient algorithm 526
data

encryption 988
sheet parameters 701

data mining
annotate file 926
back-annotation 926
cannotate file 926
conifdence intervals 913
extremes and corners 918
other_percentile 916
response correlation matrix 921
sample momentse 913
sample quartiles 915
summary statistics 910
variable screening 919

.DATA statement 123, 709
data-driven analysis 123

data-driven analysis 743, 744
PWL source function 234

db(x) function 357
DC

analysis 373, 516–517
capacitor conductances 525
initialization 516

convergence control options 516, 517
errors, reducing 523
matching 886

operating point
analysis 511
initial conditions file 32
See also operating point

operating-point convergence 521
sources 218
sweep 514

DC analysis
inverter 10

DC analysis measurement results file 34
DC analysis results file 34
DC analysisexample 10
DC block elements 159
DC mismatch 886
.DC statement 514, 746, 963
DC/OP analyses warnings 1010
DCCAP option 1055
DCmatch 886
.DCMATCH output tables file 36
DCON option 520
DCSTEP option 525
DDL 140, 141
DDLPATH environment variable 141
decibel function 357
DEFAULT_INCLUDE variable 31
DEFW option 363
.DEL LIB statement 107

in .ALTER blocks 126
with .ALTER 130
with .LIB 130
with multiple .ALTER statements 127

DELAY element parameter 287, 303
delays

element example 298
group 398
plotting 705
simulation example 702, 708
time (TD) 398

DELMAX option 585
DELTA

element parameter 287, 303
DELVTO model parameter 748
demo examples, RF 1086
demo files 21

application examples 1070–1072
behavioral applications 1074
benchmarks 1076
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E

bisection-timing analysis 1076
BJTs and diode devices 1076
Cell Characterization Examples 1078
circuit optimization examples 1078
device optimization 1080
encryption 1080
FFT analysis 1081
filter examples 1081
IBIS examples 1083
input 1068
magnetics 1084
MOSFETs 1084
signal integrity 1087
sources 1088
S-parameters 1088
transmission (W-element) lines 1090
transmission lines 1090
variabilty 1092
Verilog-A 1092

demonstration files, RF 1086
derivative, measuring 405
design

name 30
deviation, average 744
device characterization 140
device warnings 1008, 1009
DFT 583
diagnostic tables 526–528
digital

vector file 334
digital vector file

Waveform Characteristics section 339
DIM2

parameter 400
DIM3

parameter 400
diodes

breakdown example 298
current flow 388
elements 418
equations 298
junction 197
models 197
polysilicon capacitor length 197
power dissipation 391

directories
installation directory 140
TEMP 27, 43

TMP 27, 43
tmp 27, 43

Discrete Fourier Transform 583
distortion 400
distributed processing 58
.dm# file 36
documentation, supplemental 21
.DOUT statement 336
DP 58

master 60
network grids 59
supported features 61
tasks 60
workers 60

.dp# file 33
DTEMP parameter 745, 746, 1065

E
E Elements

applications 252
element multiplier 273
parameters 271
syntax statements 263
temperature coefficients 273
time delay keyword 273

element
active

MESFETs 200
IC parameter 512
identifiers 101
independent source 214
L (inductor) 164
markers, mutual inductors 168
names 120
OFF parameter 509
parameters See element parameters 147
passive

resistors 147
R (resistor) 150
statements 114, 140

current output 386
independent sources 214
Laplace 265
pole/zero 266

temperature 746
templates 400–422

analysis 374
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BJTs 419
capacitor 416
current-controlled 417
function 358
independent 418
inductor 416
JFETs 421
MOSFETs 415
mutual inductor 416
resistor 415
saturable core 422
voltage-controlled 417

transmission line 176, 180
voltage-controlled 251

-element (inductor) 164
element parameter, global variation 814
element parameters

.ALTER blocks 126
BJTs 198–199
capacitors 154–155
DTEMP 745
F Elements 280–283
G Elements 285–288
H Elements 303–304
independent sources 214–215

data driven PWL function 234
PULSE function 225, 228, 232
SFFM function 237

inductors 162–163
JFETs and MESFETs 201
linear inductors 162, 172
MOSFETs 203–204
mutual inductors, Kxxx 168
POLY 253
PWL 232, 234
resistors 148–149
transmission lines

W-element 176
element parameters, transmission lines

U-element 180–181
W-element 176–178

element, active
BJTs 198
JFETs 200
MOSFETs 202

element, passive
capacitors 153
inductor 161
mutual inductor 168

elements, multi-terminal 173
.ELSEIF

.ELSE 130
encoding, 8b-10b 241
encryption

3DES 999
8-byte key 998
-d option 990
data 994
FREELIB keyword 990
guidelines 991
-i option 990
launching 989
library structure 992
-o option 990
permit file changes 990
-r option 990
structure 996
-t option 990
traditional 994
triple DES public-random keys 999

encryption warnings 1007
encryption,Verilog-A 476, 992
.END statement

for multiple HSPICE runs 130
in libraries 124
location 130
missing 92
with .ALTER 127

.ENDL statement 124
environment variables 23, 141

HSPWIN_KEY 27
META_QUEUE 25
TEMP 27, 43
TMP 27, 43
tmpdir 27, 43

equations 406, 409
ERR function 408, 409
ERR1 function 409, 961
ERR2 function 409
ERR3 function 410
error messages 1011
errors

analysis 1013
cannot open

output spool file 380
convergence 1013, 1014
convergence/diode resistance 1017
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F

convergence-conductance 1016
DC 523
DIAGNOSTIC option 1018
file open 43
functions 408–410
internal timestep too small 510, 530, 561
messages 1011
missing .END statement 92
model 1012
no DC path to ground 525
no input data 43
parameter name conflict 403
system resource inaccessible 380
topology 1011
transient analysis 1019

example
AC analysis 12
comment line 113
DC analysis 10
digital vector file 343
experiments 9
Monte Carlo 764, 773
optimization 964
transient analysis 14, 16
worst case 773

EXP source function
fall time 229
initial value 228
pulsed value 228
rise time 228

exp(x) function 357
experiment 9
Exploration block 935
exponential function 228, 357
expressions, algebraic 354
extended MOSFET element support 205
external data files 107
external sampling, Variation Block 858
extremes and corners, data mining 918

F
F Elements

applications 252
multiply parameter 282
syntax statements 280
time delay keyword 283
value multiplier 283

Factorial sampling 854
fall time

example 708
EXP source function 228
simulation example 702

fanout, plotting 705
Fast Fourier Transform

See FFT
FFT

analysis
AM modulation 595
frequency

of interest 592
range 592, 593

harmonic distortion 598
modulator/demodulator 598
results 592–593
spectral leakage 598
test circuit 603

measuring results 594
output 592
output results 594
windows 588–590

Bartlett 589
Blackman 589
Blackman-Harris 590
Gaussian 590
Hamming 589
Hanning 589
Kaiser-Bessel 590
rectangular 589

FFT analysis graph data file 34
.FFT statement 583
file

DC operating point initial conditions 32
initialization 31
input netlist 32
library input 32

file descriptors limit 380
files

.a2d 33
AC analysis measurement results 34
AC analysis results 33
.ac# 32
DC analysis measurement results 34
DC analysis results 34
design.ac0 701
design.mt0 701
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design.sw0 701
external data 107, 123
FFT analysis graph data 34, 36
.ft# 33, 592
.gr# 33
hspice.ini 141
.ic 33, 509
include files 107
including 31
limit on number 380
.lis 33
.ma# 32
.MEASURE output 701
.ms# 33
.mt# 33
multiple simulation runs 130
names 31
operating point node voltages 34
output

listing 35
status 36

.pa# 33
scratch files 27, 43
.st# 33
subcircuit cross-listing 37
.sw# 33
.tr# 33
transient analysis measurement results 34, 37
transient analysis results 37

files, output 32
filters

active low-pass 621
pole/zero analysis

Butterworth 616
high-pass 616
low-pass 612, 621

FIND keyword 405
first character descriptions 99
Foster pole-residue form

E element 268, 319
G element 268, 319

Fourier
coefficients 585
equation 585

Fourier transform
FREELIB keyword 990
FREQ

function 267
frequency

analysis 583
response

table 267, 291
sweep 538
variable 360
weighing functions 588

frequency-dependent
capacitor 157
inductor 164

.ft# file 33, 34, 592
full-factorial method 854
functions

bisection 713
built-in 356–360
DERIVATIVE 408
ERR 408
INTEG 408
LAPLACE 264, 290, 609
NPWL 294
POLE 266, 291, 609
PPWL 295
table 356
See also independent sources

G
G Elements

applications 252
controlling voltages 287, 288
current 287
curve smoothing 288
element value multiplier 288
gate type 287
initial conditions 287
multiply parameter 287
names 287
polynomial 288
resistance 287
syntax statements 285
time delay keyword 288
transconductance 288
voltage to resistance factor 288

GaAsFET model DC optimization 979
GAUSS

FFT analysis 590, 607
functions 765
keyword 760
parameter distribution 756

global parameters 361
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global variation element parameters 814
GMIN option 532
GMINDC option 520, 532
GND node 120
GOAL keyword 962
.gr# file 33
GRAMP

option 523
graphical user interface 81
ground, node name 120
group operator, variation block 818
GUI

using 81–89
Gxxx element parameters 287

H
H Elements

applications 252
controlling voltage 304
data points 303
element multiplier 304
element name 303
gate type 303
initial conditions 303
maximum current 303
minimum current 303
syntax statements 301
time delay keyword 304
transresistance 304

H parameters 556
Hamming FFT analysis window 589, 606
Hanning FFT analysis window 589, 605
HD2 distortion 400
HD3 distortion 400
hertz variable 360
hierarchical designs, flattened 107
hold time 716
HSPICE

installation directory 140
starting 42
training 21

hspice command 42, 58
HSPICE website 21
hspice.ini 31
hspice.ini file 141
HSPUI

configuration 82
configuration options 84
directory structure 81
main window 81
multi-job simulation 85, 88

HSPWIN_KEY environment variable 27
hybrid (H) parameters 395

I
IBIS buffers 210, 211
.ic file 33, 509
IC parameter 287, 303, 512
.IC statement 508, 509, 611
IC, three-dimensional simulation 669
.ic# file 34
ideal

current sources 523
delay elements 252
op-amp 252, 270, 274
transformer 252, 270, 277

ideal transformer 172
IDELAY statement 339
.IF 130
.IFELSE 130
impedance

AC 399
Z parameters 395

include files 31
.INCLUDE statement 107, 126, 141, 143
independent sources

AC 215, 219
AM function 238
current 215, 418
data driven PWL function 234
DC 218
elements 214
EXP function 228
functions 220
mixed types 219
PULSE function 221
PWL function 231
SFFM function 237
SIN function 225
transient 215, 219
voltage 215, 418

individual element temperature 746
inductor
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frequency-dependent 164
inductors

AC choke 165
current flow 388
element 161, 416
node names 162, 172

initial conditions 508
file 32
statement 513

initialization 508, 509
saved operating point 514

initialization file 31
INOISE parameter 400
input

admittance 399
data

adding library data 130
for data driven analysis 123

DC operating point initial conditions file 32
files

character case 94
DC operating point 32
demonstration 1068
library 32
names 31
netlist 32, 91
structure 107
table of components 107

impedance 399
library file 32
netlist 109
netlist file 32, 109–130

input netlist file 32
input stimuli 414
input syntax

Monte Carlo 836
input/output

cell modeling 1066
installation directory $installdir 140
int(x) function 357
integer function 357
integration

algorithms 569
interactive mode

quitting 48
running command files 48

internal
nodes, referencing 121

inverter
analysis, transient 16
circuit, MOS 10, 16

invoking
hspice 42, 58

isomorphic analyses 44
iterations

number 970
I-V and C-V plotting demo 1054

J
JFETs

current flow 388
elements 201, 421
length 201
power dissipation 393
width 201

jitter
random, with clock source 331

jitter, random, clock source 331

K
Kaiser-Bessel FFT analysis window 590, 591, 608
Kerwin’s circuit, pole/zero analysis 615
keywords

analysis statement syntax 963
DTEMP 745
ERR1 961
FREELIB 990
GOAL 962
LAST 405
MONTE 756
optimization syntax 963
PAR 350, 355
power output 391
PP 407
source functions 214

k-string 241

L
Laplace

function 264, 265, 290, 609
transform 264, 290

frequency 267, 291
LAST keyword 405
Latin Hypercube sampling 855, 863
1104
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LDS sampling 857, 864
leadframe example 1059
LENGTH model parameter 766
Levenberg-Marquardt algorithm 970
LHS 855, 863
.LIB

call statement 123
statement 107, 143

in .ALTER blocks 124, 126
with .DEL LIB 130
with multiple .ALTER statements 127

.LIB file encryption 995
libraries

adding with .LIB 130
ASIC cells 141
building 124
configuring 363
creating parameters 361
DDL 140
duplicated parameter names 361
encryption 988
.END statement 124
integrity 361
protecting 988
search 141
selecting 124
subcircuits 142
vendor 141

library input file 32
limit descriptors command 380
LIMIT keyword 760
line continuation

VEC files 341
linear

acceleration 642
capacitor

element
C (capacitor) 156

matrix reduction 642
linear elements

elements, linear 173
linear inductor 164
linear resistor 150
.lis file 33, 35
LMAX model parameter 8
LMIN model parameter 8
.LOAD statement 514
local parameters 361

log(x) function 357
log10(x) function 357
logarithm function 357
Low Discrepency Sequence sampling, LDS 857
Low-Discrepency Sequence sampling, LDS 864
Lsim models, calibrating 701
LV 401
LV18 model parameter 1055
LX 401
LX7 model parameter 1055
LX8 model parameter 1055
LX9 model parameter 1055

M
M element parameter 282, 287
.ma# file 32, 34
machine cluster 58
MACMOD option 205
MACMOD option limitations 208
macros 130
magnitude, AC voltage 394
manufacturing tolerances 765
Marquardt scaling parameter 970
MAX parameter 287, 303, 716
max(x,y) function 357
maximum value, measuring 406
mean, statistical 744
measure data, pass/fail 411
.MEASURE statement 373, 404

expression 406
failure message 403
parameters 354

measure statements, order 402
measurement warnings 1010
measurements 594
measurements, complex, statement order 402
measuring parameter types 403
MESFETs 200
messages, warnings 1006
META_QUEUE environment variable 25
Metaencrypt 989
metaencrypt

launching 989
options when invoking 990

MIN parameter 287, 303
1105
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min(x,y) function 357
minimum

value, measuring 406
mismatch 886
mixed sources 219
model binning warnings 1008
model error messages 1012
MODEL keyword 963
model parameters

.ALTER blocks 126
capacitance distribution 767
DELVTO 748
DTEMP 746
LENGTH 766
manufacturing tolerances 765
PHOTO 766
RSH 748
sigma deviations, worst case analysis 748
skew 747
TEMP 123, 746
temperature analysis 746
TOX 748
TREF 744, 746
XPHOTO 766

model parameters See model parameters diodes
.MODEL statement 746
model warnings 1007
models

characterization 515
DTEMP parameter 1065
LV18 1055
LX7, LX8, LX9 1055
Monte Carlo analysis 755, 762, 773
reference temperature 746
specifying 141
typical set 751

Monte Carlo
analysis 743, 744, 773–781, 831

distribution options 759–761
application considerations 881
factorial sampling 854
input syntax 836
simulation output 846
variation block options 837

Monte Carlo analysis
operating-point results in transient analysis 774
transient sigma sweep results 774

MONTE keyword 756

MOS
inverter circuit 10, 16
op-amp optimization 980

MOSFET
extended element support 205

MOSFETs
current flow 389
drain diffusion area 203
elements 202, 415
initial conditions 204
perimeter 203
power dissipation 393
source 203, 204
temperature differential 204
zero-bias voltage threshold shift 204

mpp0 file 913
confidence interval levels 913
extremes and corners 918
other_percentile 916
response correlation matrix 921
sample quartiles 915
variable screening 919

.ms# file 33, 34

.mt# file 33, 34, 37
Muller algorithm 610, 611
multi-die interconnect analysis 669
multiple .ALTER statements 127
multiply parameter 134, 149, 215
multipoint experiment 9
multi-terminal linear elements 173
multi-terminal network, S-parameter 182
multithreading 68
mutual inductor 168, 416

N
NAND gate adder 1054
natural

log function 357
natural frequency 610
NDIM 253
negative conductance 1007
.NET parameter analysis 554
netlist 107

file example 110
flat 107
input files 91
schematic 107
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structure 110
netlist encryption 988
netlist file

example 110
netlists

compression 108
.gz format 108

network grid, DP 59
network output 399
Niederreiter sampling 857, 864
nodal voltage output 385, 397
node voltages, encrypting 988
nodes

connection requirements 120
floating supply 120
internal 121
MOSFET’s substrate 120
names 116, 120, 122, 1055

automatic generation 122
ground node 120
period in 117
subcircuits 120, 121
zeros in 122

numbers 116, 120
shorted 524
terminators 120

.NODESET statement 508, 611
noise

calculations 541
input 400
output 400, 542

norm of the gradient 969
NPDELAY element parameter 303
NPWL function 294

O
ODELAY statement 339
OFAT 853
OFF parameter 509
on-chip signaling 669
one-dimensional function 253
One-Factor-at-a-Time sampling 853
ONOISE parameter 400
onscreen messages, time progress 383
.OP statement 510, 511
op-amp analysis 707

op-amps
characterization 707
open loops 524
optimization 980

operating point
estimate 510
initial conditions 32
pole/zero analysis 611
saving 122
solution 508, 509

operating point information file 34
operating point node voltages file 34
operators 356
OPT keyword 962
optimization

AC analysis 976
analysis statements 963
bisection method 716
CMOS tristate buffer 972
control 960
convergence options 960
curve-fit 961
data-driven vs. s-parameters 976
DC analysis 965, 967, 977, 979
example 964, 1067
goal 961
incremental 978
lengths and widths 981
MODEL keyword 963
MOS 967, 980
network 968, 976
parameters 976

magnitude and phase 976
measured vs. calculated 976

results
function evaluations 970
iterations 970
Marquadt scaling parameter 970
norm of the gradient 969
residual sum of squares 969

simulation accuracy 960
simultaneous 973, 979, 981
S-parameters 975
statements 962
syntax 962
time

analysis 962
required 960
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OPTIMIZE keyword 963
.OPTION

.ALTER blocks 126
DCSTEP 525
INGOLD, for exponential output 379
POST, to display waveform plots 379
SIM_LA 642

.OPTION MACMOD 205

.OPTION SEARCH
implicit include command 142

OPTxxx parameter 961, 962
other_percentile, data mining 916
output

AC analysis measurement results file 34
AC analysis results file 33
admittance 399
analysis type 374
commands 372
current 386
DC analysis measurement results file 34
DC analysis results file 34
.DCMATCH output tables file 36
driver example 1059
FFT analysis graph data file 34
.FFT results 592
files

AC analysis measurement results 34
AC analysis results 33
DC analysis measurement results 34
DC analysis results 34
.DCMATCH output tables file 36
FFT

analysis graph data 34
names 31
operating point information 34
operating point node voltages 34
output listing 35
output status 36
subcircuit cross-listing 37
transient analysis measurement results 37
transient analysis results 37

impedance 399
network 399
nodal voltage, AC 397
noise 400, 542
operating point information file 34
operating point node voltages file 34
output listing file 35

output status file 36
parameters 383
power 389
printing 380–381
reusing 414
saving 376
statements 372
subcircuit cross-listing file 37
transient analysis measurement results file 37
transient analysis results file 37
variables 373

AC formats 397
function 358

voltage 385
output files 32
output listing file 35
output status file 36
overview of simulation process 19

P
.pa# file 33, 37
PAR keyword 350, 355, 712
.PARAM statement 125, 403, 743

in .ALTER blocks 126
parameter analysis, .NET 554
parameter expression warnings 1008
parameters

admittance (Y) 395
algebraic 354, 356
analysis 354
assignment 349
cell geometry 360
constants 349
data type 349
data-driven analysis 123
defaults 366
defining 347, 361
DIM2 400
DIM3 400
encrypting 988
evaluation order 349
HD2 400
HD3 400
hierarchical 134, 360, 404
hybrid (H) 395
impedance (Z) 395
inheritance 363, 366
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INOISE 400
input netlist file 103
libraries 361–363
M 134
measurement 354
modifying 123
multiply 354
ONOISE 400
optimization 360
OPTxxx 961, 962
output 383
overriding 362, 366
PARHIER option 366
passing 360–369

example 712
passing order 349
repeated 403
scattering (S) 395
scope 360, 369
SIM2 400
simple 349
string 365
subcircuit 134
user-defined 352

parametric analysis 374
PARHIER option 366
pass/fail, measure output 411
passfail 719
passive component model name keywords, string 

parameters 365
path names 121
peak-to-peak value, measuring 406
permit.hsp file, encryption capability 990
PHOTO model parameter 766
PI (linear acceleration) algorithm 644
piecewise linear sources See PWL
pin capacitance, plotting

plotting
pin capacitance 706

.PLOT statement
simulation results 380

plotting
delay vs. fanout 705
op-amp characterization 707

pn junction conductance 532
POLE

function 266, 291, 609
transconductance element statement 266

voltage gain element statement 266
pole/zero

analysis 609
active low-pass filter 621
CMOS differential amplifier 617
high-pass Butterworth filter 616
Kerwin’s circuit 615
Muller algorithm 610
operating point 611
overview 609
simple amplifier 620

conjugate pairs 266
function, Laplace transform 266, 291

POLY parameter 253, 288, 304
polynomial function 253

one-dimensional 253
three-dimensional 255
two-dimensional 254

post-layout back-annotation 649
pow(x,y) function 356
power

dissipation 394
function 356
output 389
stored 390

POWER keyword 391
power keyword

independent sources 258
using 259

power source
independent 258

PP keyword 407
PPWL

element parameter 288
function 295

print
control options 379

.PRINT statement 373, 1055
simulation results 375

.PROBE statement 373, 376, 380
processing, distributed 58
program structure 8
progress messages 383
PULSE source function 225, 228, 232

delay time 221, 332
initial value 221, 332
onset ramp duration 222, 332
plateau value 221, 332
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recovery ramp duration 222, 332
repetition period 222, 332
width 222, 332

pulse width 724
pushout bisection methodology 725
PUTMEAS option 403
PWL

current controlled gates 252
data driven 234
element parameter 283, 304
functions 252, 257
gates 252
output values 232
parameters 231
repeat parameter 232
segment time values 232
sources, data driven 234
voltage-controlled capacitors 252
voltage-controlled gates 252
See also data driven PWL source

pwr(x,y) function 356
.PZ statement 516

Q
quality assurance 743

R
R Element (resistor) 150
RC

analysis 12, 14
circuit 12
optimizing 968

rcells, reusing 361
rectangular FFT window 589
reference temperature 123, 746
RELI option 518
RELMOS option 518
reluctors 166
RELV option 518
repeat function 1053
residual sum of squares 969
resistance 540
resistor

current flow 388
element 148
element template listings 415

length parameter 149
linear 150
model name 148
node to bulk capacitance 149
voltage controlled 293
width parameter 149

response correlation matrix, data mining 921
reusing simulation output 414
RF

demo files 1086
RF demo examples 1086
rise time 702, 708
rms value, measuring 406
RSH model parameter 748
RUNLVL algorithm 566

S
sample moments, data mining 913
sample quartiles, data mining 915
sampling

External 858
factorial, full factorial 854
LDS,Niederreiter, Sobol sampling 857, 864
LHS, Latin Hypercube sampling 855, 863
Niederreiter 857, 864
OFAT, One-Factor-at-a-Time sampling 853
Sobol 857, 864
SRS, simple random sampling 862

saturable core
elements 169, 422
models 169
winding names 422

.SAVE statement 514
scale factors 102
SCALE parameter 149, 273, 283, 288, 304, 1055
scaling, effect on delays 1066
scattering (S) parameters 182, 395
scattering parameter element 182
schematic

netlists 107
scope of parameters 361
scratch files 27, 43
scripting resources 21
SEARCH option 142
search path, setting 124
S-element 182
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syntax 183
.SENS statement 516
setup time 716, 718, 720
SFFM source function

carrier frequency 237
modulation index 237
output amplitude 237
output offset 237
signal frequency 237

sgn(x) function 357
shorted nodes 524
sign function 357
signed power function 356
silicon-on-sapphire devices 122
SIM_LA option 642
SIM2 distortion measure 400
simple random sampling 862
simulation

accuracy 960
tolerances 517, 518

multiple runs 130
process, overview 19
results

printing 380–381
specifying 403–404

reusing output 414
structure 8
title 112

simulation output
Monte Carlo 846

SIN source function 226
sin(x) function 356
single point experiment 9
single-frequency FM source function 237
sinh(x) function 356
sinusoidal source function 225
skew

file 751
parameters 747

SMOOTH element parameter 288
SNUG papers, HSPICE 21
Sobol sampling 857, 864
SolvNet articles 21
source

data driven 234
keywords 214
statements 114

See also independent sources
.sp file encryption 995
S-parameter 182

S-element 182
spectral leakage 588, 598
spectrum analysis 583
sqrt(x) function 356
square root function 356
SRS 862
.st# file 33, 36
Star-RC,Variation block 821
starting

hspice 42, 58
statement

.DOUT 336
statements

.AC 746

.DATA 123, 709

.DC 514, 746, 963
DOUT 373
element 114
.ENDL 124
.GRAPH 380
initial conditions 513
.LIB 124
.LOAD 514
.MEASURE 373, 401
.MODEL 746
.OP 511
.OPTION

CO 379
.PARAM 125
.PLOT 380
.PRINT 373, 375, 380
.PROBE 373, 376, 380
.SAVE 514
source 114
.STIM 373, 414
.SUBCKT 403
.TEMP 123, 746
.TRAN 746

statistical analysis 747–781
statistical sensitivity coefficients 821
statistics

calculations 744
.STIM statement 373, 414
stimuli 414
string parameters 365
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structure simulation 8
subcircuit cross-listing file 37
subcircuits

adder 1053
calling tree 121
changing in .ALTER blocks 126
creating reusable circuits 132
hierarchical parameters 134
library structure 142
multiplying 135
node names 120, 121
output printing 380
parameter 712
path names 121
.PRINT statements 136
search order 137
zero prefix 122

subckt
val() function 136

.SUBCKT statement 403
sub-xpressions, variation block 818
summary statistics, data mining 910
supplemental documentation 21
.sw# file 33, 34
sweep

frequency 538
variables 1065

switch example 296
switch-level MOSFET’s example 297
Synopsys models, calibrating 701
Synopsys User Group tutorials 21
syntax, S-element 183

T
tabular data 335
Taguchi analysis 743
tan(x) function 356
tanh(x) function 356
tasks, distributed processing 60
TC1, TC2 element parameters 273
TD parameter 273, 283, 288, 304, 398, 405
TDELAY statement 339
TEMP

directory 27, 43
environment variable 27, 43
model parameter 123, 746

sweep variable 1065
.TEMP statement 746
temper variable 360
temperature

circuit 744, 746
coefficients 149, 1064
derating 123, 746
element 746
optimizing coefficients 1064
reference 123, 746
sweeping 1065
variable 360

Temperature Variation Analysis 743
termination criteria, convergence 1013
.TF statement 516
three-dimensional function 255
three-dimensional IC

constrtuct usage 671
illegal netlist syntax 672
intrinsic model card, top-level IC instance 679
module usage 670
module, instance-specific properties scope 679
netlist definitions 670
netlist rules 669
parameter direct access, top-level netlist 684
scope reference rules 673
sweeps, temperature and parameters 685
top-level IC module reference 678
.TRAN and .ALTER simulations 684
Verilog-A reference rules 676
Verilog-A usage 675

time
delay 398
variable 359

timing
analysis 713
constraints 713
failures 714
hold time 716
setup time 716
violation analysis 714

title for simulation 112
.TITLE statement 112
TMI flow 6
TMP directory 27, 43
tmp directory 27, 43
TMP environment variable 27, 43
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tmpdir environment variable 27, 43
TNOM option 123, 746
topology error messages 1011
topology integrity warnings 1006
TOX model parameter 748
.tr# file 33, 37
traditional library encryption 994
.TRAN statement 746, 963
transconductance

FREQ function 267
LAPLACE function 265
POLE function 266

transfer function
frequency domain 609
poles 610
roots 610
zeros 610

transfer sign function 357
transformer, ideal 172
transient

analysis 373
initial conditions 561
inverter 16
RC network 14
sources 219

output variables 384
transient analysis

bisection 720
transient analysis error messages/solutions 1019
transient analysis measurement results file 37
transient analysis results file 37
transient analysis warnings 1009
transmission lines

example 1059
U-element 180

TREF model parameter 746
triode tube 299
TSMC models 6
tutorials 21
two-dimensional function 254

U
UIC

analysis parameter 510
UNIF keyword 760
uniform parameter distribution 756

update training 21

V
valp() function 136
variability

defined in HSPICE 793
introduction 791
simulating 791
variation block 794

variable screening, data mining 919
variables

AC formats 397
changing in .ALTER blocks 126
DEFAULT_INCLUDE 31
Hspice-specific 359
output 373

AC 394
DC 384
transient 384

plotting 1055
sweeping 1065
TEMP 27, 43
TMP 27, 43
tmpdir 27, 43

variables, environment 23
variance, statistical 744
Variation Block

element parameters, global variation 814
variation block

absolute vs relative variation 804
access functions 809, 811
advantages 794
dependent random variables 802
element parameter variations 811
example 816
general section 797

options 797
global subblocks 798
group operator 818
independent random variables 799
local subblocks 798
model parameter variations 804
overview 795
structure 797
subexpressions 818

variation block options
Monte Carlo 837

VCCAP 294
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VCCS See voltage controlled current source
VCR See voltage controlled resistor
VCVS See voltage controlled voltage source
vector patterns 334
vector-modualted RF 320
vector-modulated RF

E element 326
F element 326
G element 326
H element 326
I element 322
implementation 321
V element 322

vendor libraries 141
Verilog models, calibrating 701
Verilog-A

encryption 476, 992
test library link 504

VHDL models, calibrating 701
VIH statement 340
VIL statement 340
VMRF, See vector-modulated RF 320
Vnn node name in CSOS 122
VOH statement 340
VOL keyword 277
voltage

failure 527
gain

FREQ function 267
LAPLACE function 264
POLE function 266

logic high 340
logic low 340
nodal output DC 385
sources 263, 301, 385
summer 275

voltage-controlled
capacitor 294, 297
current source 252, 281, 285, 286, 288, 417
oscillator 277
resistor 252, 288, 293
voltage source 252, 263, 417

VREF statement 340
VTH statement 340
Vxxx source element statement 214

W
warning messages 1006
warnings

all nodes connected together 524
auto-convergence 1010
bisection analaysis 1009
DC/OP analyses 1010
device 1008, 1009
encryption 1007
floating power supply nodes 120
measures 1010
model 1007
model binning 1008
parameter expression 1008
topology integrity 1006
transient analysis 1009
zero diagonal value detected 526

waveform
characteristics 339

Waveform Characteristics section 339
webinar sign-up 21
website, HSPICE.com 21
W-elements 176
WHEN keyword 405
white papers 21
wildcard uses 117
WMAX model parameter 8
WMIN model parameter 8
worst case analysis 708, 747, 773
Worst Case Corners Analysis 743
worst-case analysis 781
worst-case, factorial sampling, Monte Carlo 854

X
XL model parameter 748
XPHOTO model parameter 766
XW model parameter 748

Y
yield analysis 742
YIN keyword 399
YOUT keyword 399

Z
zero delay gate 276, 297
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ZIN keyword 399 ZOUT keyword 399
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