HDL Compiler™ for SystemVerilog
User Guide

Version U-2022.12-SP3, April 2023

SYNOPSYS

Copyright and Proprietary Information Notice

© 2023 Synopsys, Inc. This Synopsys software and all associated documentation are proprietary to Synopsys, Inc.
and may only be used pursuant to the terms and conditions of a written license agreement with Synopsys, Inc. All
other use, reproduction, modification, or distribution of the Synopsys software or the associated documentation is
strictly prohibited.

Destination Control Statement

All technical data contained in this publication is subject to the export control laws of the United States of America.
Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader’s responsibility to
determine the applicable regulations and to comply with them.

Disclaimer

SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Trademarks

Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth at
https://www.synopsys.com/company/legal/trademarks-brands.html.

All other product or company names may be trademarks of their respective owners.

Free and Open-Source Licensing Notices
If applicable, Free and Open-Source Software (FOSS) licensing notices are available in the product installation.

Third-Party Links
Any links to third-party websites included in this document are for your convenience only. Synopsys does not endorse
and is not responsible for such websites and their practices, including privacy practices, availability, and content.

WWW.Synopsys.com

HDL Compiler™ for SystemVerilog User Guide 2
U-2022.12-SP3

https://www.synopsys.com/company/legal/trademarks-brands.html
https://www.synopsys.com/

Feedback

Contents

New in This Release e e 12
Related Products, Publications, and Trademarks 12
CoNVENtIONSo 13
Customer SuppOrt 14
Statement on Inclusivity and Diversity 14
1. SystemVerilog for Synthesis 15
Supported Constructs 16
Coding for QOR 19
Reading SystemVerilog Designs 19
Specifying the SystemVerilog Version 20
Automated Process of Reading Designs With Dependencies 21
The -autoread Option 22
File Dependencies 23
Setting Library Search Order i i 23
Ignoring Modules During the Read Process 25
Elaboration Command Based Interface-Only Method (Recommended) . . . 25
Analyze Command Based Interface-Only Method 26
Ignoring Modules During the Read Process (Legacy) 27
File Format Inference Based on File Extensions 28
Reading Designs Using the VCS Command-Line Options 29
Bottom-Up Hierarchical Elaboration 29
Parameterized Interface Ports 30

Preventing Port Name Mismatches During Linking in Bottom-Up Hierarchical
FlOW . 31
Shortening Long Module Names inthe Netlist. 31
Reading Designs With Assertion Checker Libraries 32
Netlist Wrapper for Testbenches 33
Creating a Testbench Witha Wrapper 35
Customizing Elaboration Reports 37
Reporting Elaboration Errors in the Hierarchy 38
Example of Reporting Elaboration Errors 39

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Querying Information about RTL Preprocessing 42
Reporting HDL Compiler Settings e 44
Parameterized Designs 44
Defining Macros i e 47
Predefined Macros i e 48
Global Macro Reset: ‘undefineall 49
Persistent Macros e 49
Using $display During RTL Elaboration 49
System Functions and Tasks i 50
Elaboration System Tasks 51
Inputs and OUutpuULSo 53
Input Descriptions e 53
Design Hierarchy 55
Component Inference and Instantiation 55
Naming Considerations e 56
Generic Netlists e 56
Error Messagesot 59
Global Name Space ($unit) 60
About the Global Name Space i i e 60
Reading Designs With Sunit 62
Defining Objects Before Use i 63
Specifying Global Files First 63
Specifying Global Files for Each analyze Command 65
Synthesis Restrictions for $unit. 66
Declarations e 66
Instantiations 67
Static Variables 67
Static Tasks and Functions 67
Packages 68
About Packages e 68
Using Packages e 69
Referencing Declarations in Packages i i, 69
Wildcard Imports From Packages Into Modules 70

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Contents

Specific Imports From Packages IntoModules 71
Wildcard Imports From Packages Into $unit 73
Package Searching 73
4. Combinational Logic 75
Synthetic Operators 75
Logic and Arithmetic Expressions 77
Basic Operators e 77
Addition Overflow 78
Sign CONVErSIONS . . . oot 80
Language Constructs for Combinational Logic Inference 84
The always_comb and always Constructs 84
Latches in Combinational Logic............ 85
The priority if and priority case Constructs 87
PriOritY if . . 87

PriOMitY CaSet 87

The unique if and unique case Constructs 88
unique if . .o e 88

UNMIQUE CaSE . o i ittt et ettt e e e e e et 88
Selection and Multiplexing LogiC e 89
The SELECT_OP Cell e 90
The MUX_OP Cell e 92
Default SELECT_OP and MUX_OP Inference Behavior 94
Controlling Selection Statement Inference 94
Controlling Selection Statement Inference Locally 95
Controlling Selection Statement Inference Globally 97
MUX_OP Inference and Resource Sharing 97
Controlling Array Read Inference 98
Controlling Array Read Inference Globally 98
Controlling Array Read Inference Locally 99
Inferring One-Hot Multiplexer Logic 99
Bit-Truncation Coding for DC Ultra Datapath Extraction 101
5. Sequential Logic 104
Generic Sequential Cell SEQGEN 104
Inference Reports for Registers 108

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Contents

Register Inference Guidelines 109
Multiple Events in an always Block 109
Minimizing Registers 110
Keeping Unloaded Registers i 111
Preventing Unwanted Latches 114
Reset Logic Inference 115
Register Inference Limitations 117

Register Inference Examples 118
Inferring Latches e 118

Basic D Latch 118
D Latch With Asynchronous Set: Use async_set reset............... 119
D Latch With Asynchronous Reset: Use async_set_reset............. 119

D Latch With Asynchronous Set and Reset: Use
hdlin_latch_always async set reset............................. 120
Unintended Logic Inferred Using always_latch 121
Inferring Flip-Flops 121
Basic D FIlip-Flop e 123
D Flip-Flop With Asynchronous Reset Using ?: Construct. 123
D Flip-Flop With Asynchronous Reset 124
D Flip-Flop With Asynchronous Setand Reset..................... 124
D Flip-Flop With Synchronous Set: Use sync_set reset.............. 125
D Flip-Flop With Synchronous Reset: Use sync_set reset............ 126
D Flip-Flop With Synchronous and Asynchronous Load 126
D Flip-Flops With Complex Set and Reset Signals 127
Multiple Flip-Flops With Asynchronous and Synchronous Controls 128
Unintended Logic Inferred Using always_ff........................ 129
6. Interfaces 130

Elements of Interfaces L 130
WVIrES . 131
Modports 131
Modport EXpression e 131
Function and Tasks 132

always BIOCKS 132
Example: Interface With Wires 132
Example: Interface With Modports 135
Example: Interface With Modport Expressions 139
Example: Interface With Functions 140
Example: Interface With Functionsand Tasks 143

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Example: Interface With always Blocks 148
Inputs to Interfaces 148
Ports in Interfaces Example 149
Parameterized Interfaces Example 152
Arrays of Inferfaces 153
Coding Styles for Interface Arrays 154
Interface Array Coding Style Recommendations 157
Coding Style Restrictions on Array Interfaces 158
Renaming Conventions e 158
Renamed Modules Example 1. 159
Renamed Modules Example 2. 161
Renamed Modules Example 3 163
Using Interfaces in HDL Compiler e 164
Synthesis Restrictions 165
Modeling Three-State Buffers 166
Using z Values 166
Three-State Driver Inference Report 167
Assigning a Single Three-State Driver to a Single Variable 167
Assigning Multiple Three-State Drivers to a Single Variable 168
Registering Three-State DriverData 169
Instantiating Three-State Drivers 170
Errors and Warnings e 171
Other SystemVerilog Features 173
Variables 174
The foreach LoOp o 175
Functions and Tasks 176
Function Before or Withina Module 176
The [0giC TYPe . . .ot e e e e e 177
The longint Type e 178
User-Defined Structure 178
Output Argumentand aReturn Value 178
SystemVerilog for LOOp e 179

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Sensitivity List Withina Function 180
Memory Elements Outside a Function 180
Real Math Functions e 181
Restrictions 182

Binding Function and Task Arguments by Name 182
Parameterized Functions and Tasks Using Virtual Classes 183
Parameterized Data Types 184
Parameterized Standard Data Types i, 184
Parameterized User-Defined Data Types 185
Parameterized Data TypesinInterfaces 186
Bit-Level Support for Compiler Directives 187
SHTUCHUIES . . . 187
UNIONS & e e 190
Multidimensional Arrays e 190
Multidimensional Arrays as Function Arguments 191
Multidimensional Arrays as Unpacked Arrays 191
Multidimensional Arrays as Unpacked Arrays Using $low and $high 192
Multidimensional Arrays as Unpacked Arrays Using $left and $right. 192
Multidimensional Array Slicing 193
Multidimensional Arrays Using Part-Select Addressing 193
Configurations 194
Configuration Examples e 195
Default Statement 196
Instance Bindings 197
Multiple Top-Level Designsot 198

Implicit Port Connections 199
Casting . . o 202
Assignment Patterns 202
Macro Expansion and Parameter Substitution 204
‘begin_keywords and ‘end_keywords 205
Predefined SYSTEMVERILOG Macrot 205
Matching Block Names 205
Matching Block Names for State Machines 206
Matching Block Names Interfaces and Modules 207
Port Renaming o e 207
StrUCIUIES . . o e 207

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

UNIONS . . 208
Multidimensional Arrays 209
Generic Wire Typeo 209
General Verilog Coding Guidelines 210
Persistent Variable Values Across Functionsand Tasks 210
defparam 210
Guidelines for Interacting With Other Flows 211
Synthesis FIOWS 211
Low-Power FIOWS 211
Verification Flows 214
HDL Synthesis Directives 217
RTL Pragmas 217
async_set reset 218
async_set reset_local 218
async_set reset_local_all 219
dc_tcl_script_begin and dc_tcl script. end L. 219
BNUM et e e e e e e 221
full_case 222
infer_multibit and dont_infer multibit 225
Using the infer_multibit Directive 225

Using the dont_infer_multibit Directive 227
Reporting Multibit Components L. 228

INfer MUX . . 229
infer_mux_override 229
infer_onehot_ mux 230
keep_signal_name 230
one_Cold e 230
ONE_NOt . . . 231
parallel_case 231
preserve_sequential 232
SYNC_Set reset 232
sync_set_reset _local 233
sync_set reset local_all 234
template 234
Directive Support by Pragma Prefix L 235
SystemVerilog Attributes L 236

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Using SystemVerilog Attributes in Synthesis 237
Supported Attributes 237
Supported RTL Constructs e 238
Designs (Modules) 238

POt . . 239

Cells (Instantiations) i 239

PINS . e 240
Inferred Register Cells (Sequential Processes) 240

10. Troubleshooting Guidelines 241
Code Expansion for Macros and Conditional Directives 241
Code Expansion Guidelines 242
Code Expansion Example 1...... 243
Code Expansion Example 2. 244
Minimizing Mismatches Between Simulation and Synthesis 245
Preventing case Mismatches L. 246
Using unique Instead of full_case and parallel case................. 246

Using priority Instead of full case 248

Using Void Functions Instead of Tasks Inside always comb.............. 249
Conversion Between Two-State and Four-State Variables 251
Data Type Declarations 253
Synthesizable do...while Loops e 253
Troubleshooting generate LOOpS i 254
Assertions in Synthesis e 254
Other Troubleshooting Guidelines 255
A. SystemVerilog Design Examples 257
FIFO Example 257
Bus Fabric Design 259
Coding for Late-Arriving Signals 272
Duplicating Datapaths 273
Moving Late-Arriving Signals Close to Output 275
OVEIVIEW . . .o 276
Late-Arriving Data Signal Example 1. 277
Late-Arriving Data Signal Example 2. 278
Late-Arriving Data Signal Example 3 280
Late-Arriving Control Signal Example 1. 282

10

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Late-Arriving Control Signal Example 2. 283
Master-Slave Latch Inferences i 285
Overview for Inferring Master-Slave Latches 285
Master-Slave Latch With One Master-Slave Clock Pair. 286
Master-Slave Latch With Multiple Master-Slave Clock Pairs 286
Master-Slave Latch With Discrete Components 287

JK Flip-Flop With Synchronous Set and Reset Using sync_set reset....... 288
Unsupported Constructs 290
Unsupported SystemVerilog Constructs 290
GloSSarY 294

11

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

About This Manual

The HDL Compiler tool translates a SystemVerilog hardware language description into a
GTECH netlist that is used by the Synopsys synthesis tools to create an optimized netlist.

Audience

The HDL Compiler for SystemVerilog User Guide is written for logic designers and
electronic engineers who are familiar with the HDL Compiler tool. Knowledge of the Verilog
language is required, and knowledge of a high-level programming language is helpful. This
document is not a standalone document but must be used in conjunction with the IEEE
Std 1800-2017.

This preface includes the following sections:

* New in This Release

« Related Products, Publications, and Trademarks
« Conventions

« Customer Support

« Statement on Inclusivity and Diversity

New in This Release

Information about new features, enhancements, and changes, known limitations, and
resolved Synopsys Technical Action Requests (STARS) is available in the HDL Compiler
Release Notes on the SolvNetPlus site.

Related Products, Publications, and Trademarks

For additional information about the HDL Compiler tool, see the documentation on the
Synopsys SolvNetPlus support site at the following address:

https://solvnetplus.synopsys.com

You might also want to see the documentation for the following related Synopsys products:
- DC Explorer

+ Design Compiler®

« Fusion Compiler™

HDL Compiler™ for SystemVerilog User Guide 12
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnetplus.synopsys.com

Feedback

About This Manual
Conventions

. DesignWare® components

« Library Compiler™

Conventions

The following conventions are used in Synopsys documentation.

Convention Description
Courier Indicates syntax, such as write file.
Courier italic Indicates a user-defined value in syntax, such as

write file design list

Courier bold Indicates user input—text you type verbatim—in examples, such
as

prompt> write file top

Purple « Within an example, indicates information of special interest.
+ Within a command-syntax section, indicates a default, such as
include enclosing = true | false
[Denotes optional arguments in syntax, such as
write file [-format fmt]

Indicates that arguments can be repeated as many times as
needed, such as

pinl pin2 ... pinN.

| Indicates a choice among alternatives, such as

low | medium | high

\ Indicates a continuation of a command line.
/ Indicates levels of directory structure.
Bold Indicates a graphical user interface (GUI) element that has an

action associated with it.

Edit > Copy Indicates a path to a menu command, such as opening the Edit
menu and choosing Copy.

CtrI+C Indicates a keyboard combination, such as holding down the Ctrl
key and pressing C.

HDL Compiler™ for SystemVerilog User Guide 13
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback
About This Manual

Customer Support

Customer Support

Customer support is available through SolvNetPlus.

Accessing SolvNetPlus

The SolvNetPlus site includes a knowledge base of technical articles and answers to
frequently asked questions about Synopsys tools. The SolvNetPlus site also gives you
access to a wide range of Synopsys online services including software downloads,
documentation, and technical support.

To access the SolvNetPlus site, go to the following address:
https://solvnetplus.synopsys.com

If prompted, enter your user name and password. If you do not have a Synopsys user
name and password, follow the instructions to sign up for an account.

If you need help using the SolvNetPlus site, click REGISTRATION HELP in the top-right
menu bar.

Contacting Customer Support

To contact Customer Support, go to https://solvnetplus.synopsys.com.

Statement on Inclusivity and Diversity

Synopsys is committed to creating an inclusive environment where every employee,
customer, and partner feels welcomed. We are reviewing and removing exclusionary
language from our products and supporting customer-facing collateral. Our effort also
includes internal initiatives to remove biased language from our engineering and working
environment, including terms that are embedded in our software and IPs. At the same
time, we are working to ensure that our web content and software applications are usable
to people of varying abilities. You may still find examples of non-inclusive language in our
software or documentation as our IPs implement industry-standard specifications that are
currently under review to remove exclusionary language.

HDL Compiler™ for SystemVerilog User Guide 14
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnetplus.synopsys.com
https://solvnetplus.synopsys.com

1

Feedback

SystemVerilog for Synthesis

These topics describe the SystemVerilog constructs supported by the Synopsys synthesis
tools:

Supported Constructs

Coding for QoR

Reading SystemVerilog Designs

Reading Designs Using the VCS Command-Line Options
Bottom-Up Hierarchical Elaboration

Shortening Long Module Names in the Netlist
Reading Designs With Assertion Checker Libraries
Netlist Wrapper for Testbenches

Customizing Elaboration Reports

Reporting Elaboration Errors in the Hierarchy
Querying Information about RTL Preprocessing
Reporting HDL Compiler Settings

Parameterized Designs

Defining Macros

Using $display During RTL Elaboration

System Functions and Tasks

Elaboration System Tasks

Inputs and Outputs

For information about troubleshooting guidelines and the tool limitations, see

Troubleshooting Guidelines

Unsupported Constructs

HDL Compiler™ for SystemVerilog User Guide 15
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
unique_30_Connect_42_i1072921

Chapter 1: SystemVerilog for Synthesis
Supported Constructs

Feedback

Supported Constructs

This table lists the supported SystemVerilog features and provides the usage information
for each feature. For information about the syntax, see the IEEE Std 1800-2017. To

download a copy, go to the following address:

https://en.wikipedia.org/wiki/IEEE_Xplore

Table 1 Supported Constructs

Category Feature Usage reference

Literals Structure literals Structures
Unsized literal ('0, "1, 'x, 'z) Structures

Data types Logic (4-value) data type
Integer data types (int, bit)

User-defined types (typedef)

Structures (packed and unpacked)
Enumerations

Enumeration methods

Range of enum labels
Unions (packed)
Casting

Void data types
Generic wire type

Arrays Packed arrays

Packed array of enumerations
Unpacked arrays
Array querying ($size, $left, $right,

$low, Shigh, $increment, $dimensions,
$unpacked dimensions)

HDL Compiler™ for SystemVerilog User Guide
U-2022.12-SP3

Used in most examples

Other SystemVerilog Features

Functions and Tasks
Data Type Declarations

Structures

IEEE Std 1800-2017
For restrictions, see .

Unions

Casting

IEEE Std 1800-2017
Generic Wire Type

Multidimensional Arrays
Casting

IEEE Std 1800-2017
Multidimensional Arrays

Multidimensional Arrays

16

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://en.wikipedia.org/wiki/IEEE_Xplore

Chapter 1: SystemVerilog for Synthesis
Supported Constructs

Table 1 Supported Constructs (Continued)

Feedback

Category Feature

Usage reference

Data declaration Scoping
Constraints
Variables

Operators "." operator

+=1 -=, ++1) &=1 =, A=

Wildcard equality and inequality operators (==7?
and !=7)

Left-to-right streaming operator {>>{}}1
<<=z, >>=, <<=, >>>=
inside and case-inside

Procedural unique if and priority if
statements

unique case, priority case, casex, and
casez

Matching end block names

Processes always comb

always latch
always ff

Functions and tasks Void functions

« All types as legal task or function argument
types

All types as legal function return types
Return statement in functions

Logic default task or function argument type

Input default task or function argument
direction

Binding by name

IEEE Std 1800-2017
IEEE Std 1800-2017
Used in many examples
Structures

Synthetic Operators
IEEE Std 1800-2017

IEEE Std 1800-2017
Synthetic Operators
IEEE Std 1800-2017

unique if
priority if

unique case
priority case

Matching Block Names

The always_comb and always
Constructs

Inferring Latches
Inferring Flip-Flops

Synthesis Restrictions for $unit
Functions and Tasks

Functions and Tasks

Binding Function and Task
Arguments by Name

1. The destination must hold at least as many bits as the source (see the IEEE Std 1800-2017, section 11.4.14.3).

Related tool messages are VER-553 and VER-554.

HDL Compiler™ for SystemVerilog User Guide
U-2022.12-SP3

17

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: SystemVerilog for Synthesis
Supported Constructs

Table 1 Supported Constructs (Continued)

Feedback

Category Feature

Usage reference

Automatic variable initialization

Argument binding using the .name syntax

Assertions Assertions
Hierarchy All types as legal module ports
Sunit

Implicit . name and .* port connections

Interfaces Interface as a signal container and module port
replacement

Interface modports
Interface ports
Parameterized interfaces

Interface functions and tasks

Generic interface
Array of interfaces
Parameters Default 10gic type

Data type parameter

System tasks and Size system function ($bits)
functions
System tasks $fatal, $error, Swarning, $info

Compiler directives begin keywords and end keywords

Flow control for (int i=0; ...)
break and continue

do...while

HDL Compiler™ for SystemVerilog User Guide
U-2022.12-SP3

Variables
IEEE Std 1800-2017

Unsupported Constructs

Reading Designs With Assertion
Checker Libraries

Multidimensional Arrays
Functions and Tasks

About the Global Name Space
Implicit Port Connections

Example: Interface With Wires

Example: Interface With Modports
Ports in Interfaces Example
Parameterized Interfaces Example

Example: Interface With Functions
and Tasks

IEEE Std 1800-2017
Arrays of Interfaces

IEEE Std 1800-2017
Parameterized Data Types

Casting

Elaboration System Tasks

‘begin_keywords and
‘end_keywords

Functions and Tasks
IEEE Std 1800-2017

Synthesizable do...while Loops

18

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 1: SystemVerilog for Synthesis

Coding for QoR

Table 1 Supported Constructs (Continued)

Category Feature Usage reference
Packages Scope extraction using :: Packages

+ Wildcard imports inside modules
« Wildcard imports inside $unit
« Specific imports

Coding for QoR

The HDL Compiler tool optimizes a design to provide the best quality of results (QoR)
independent of the coding style; however, the optimization of the design is limited by the
design context information available. You can use the following techniques to provide the
information for the tool to produce optimal results:

« The tool cannot determine whether an input of a module is a constant even if the
upper-level module connects the input to a constant. Therefore, use a parameter
instead of an input port to express an input as a constant.

« During compilation, constant propagation is the evaluation of expressions that contain
constants. The tool uses constant propagation to reduce the hardware required to
implement complex operators.

If you know that a variable is a constant, specify it as a constant. For example, a “+”
operator with a constant high as an argument causes an increment operator rather
than an adder. If both arguments of an operator are constants, no hardware is inferred
because the tool can calculate the expression and insert the result into the circuit.

The same technique applies to designing comparators and shifters. When you shift a
vector by a constant, the implementation requires only reordering (rewiring) the bits
without hardware implementation.

Reading SystemVerilog Designs

You can use either of these methods to read SystemVerilog designs into the HDL Compiler
tool.

* read sverilogOr read file -format sverilog

For designs containing interfaces or parameterized designs, set the
hdlin auto save templates variable to true.

HDL Compiler™ for SystemVerilog User Guide 19
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 1: SystemVerilog for Synthesis
Reading SystemVerilog Designs

For example,

set app var hdlin auto save templates true
read sverilog parameterized interface.sv
current design top
link
compile
write -format verilog -hierarchy \

-output gates.parameterized interface rd.v

* analyze -format sverilog {files}
elaborate topdesign

For example,

analyze -format sverilog parameterized interface.sv
elaborate top
compile
write -format verilog -hierarchy \
-output gates.parameterized interface an elab.v

This method is recommended because of the following reasons:

o Recursive elaboration is performed on the entire design, so you do not need an
explicit 1ink command. The elaborate command includes the functions of the
1ink command.

o For designs containing interfaces or parameterized designs, you do not need to set
the hdlin auto save templates variable to true.

Note:

The tool automatically supports designs that are encrypted according to the
IEEE 1735 standard.

For designs containing black boxes, use the hd1in sv _blackbox modules variable to
specify the black boxes. For designs containing global declarations, you must read the
global files and then the specific design files.

For more information about designs containing black boxes or global declarations, see
» Ignoring Modules During the Read Process

« Reading Designs With $unit

Specifying the SystemVerilog Version

To specify which SystemVerilog language version to use during the read process, set
the hdlin sverilog std variable. The valid values for this variable are 2005, 2009,
and 2012, corresponding to the 2005, 2009, and 2012 SystemVerilog LRM releases

HDL Compiler™ for SystemVerilog User Guide 20
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 1: SystemVerilog for Synthesis
Reading SystemVerilog Designs

respectively. When you set the hd1in sverilog std variable to a valid version, the
SystemVerilog LRM features of this version are enabled when you read SystemVerilog
RTL into the tool. The default version is 2012.

Note:

The hdlin vrlg std variable sets the language version for the analyze
-format verilogand read verilog commands. The defaultis 2005.

Automated Process of Reading Designs With Dependencies

You can enable the tool to automatically read designs with dependencies in correct order
by using the -autoread option of the read file or analyze command.

* read file -autoread

This command reads files with dependencies automatically, analyzes the files, and
elaborates the files starting at a specified top- level design. For example,

dc _shell> read file -autoread file list -top design name

You must specify the file_list argument to list the files, directories, or both to be
analyzed. The -autoread option locates the source files by expanding each file or
directory in the file_list argument. You must specify the top design by using the -top
option.

* analyze -autoread

This command reads files with dependencies automatically and analyzes the files
without elaboration. For example,

dc_shell> analyze -autoread file list -top design name

You must specify the file_list argument to list the files, directories, or both to be
analyzed. The -autoread option locates the source files by expanding each file or
directory in the file_list argument. If you use the -top option, the tool analyzes only the
source files needed to elaborate the top-level design. If you do not specify the -top
option, the tool analyzes all the files in the file_list argument, grouping them in the order
according to the dependencies that the -autoread option infers.

Example

The following example specifies the current directory as the source directory. The
command reads the source files, analyzes them, and then elaborates the design starting
at the top- level design.

dc_shell> analyze {.} -autoread -recursive -top El

HDL Compiler™ for SystemVerilog User Guide 21
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 1: SystemVerilog for Synthesis
Reading SystemVerilog Designs

The following example specifies the file extensions for SystemVerilog files other than the
default (.sv and .sverilog) and sets file source lists that exclude some directories.

dc_shell> set_app var hdlin autoread sverilog extensions {.sve .SVE}

dc_shell> set my_ sources {modl/src mod2/src}

dc_shell> set my excludes {modl/src/incl_dir/ mod2/src/incl _dir/}

dc_shell> analyze $my_sources -recursive -exclude $my excludes \
-autoread -format sverilog -top TOP

Excluding directories is useful when you do not want the tool to use those files that have
the same file extensions as the source files in the directories.

See Also
« The -autoread Option

» File Dependencies

The -autoread Option

When you use the -autoread file 1ist option with the read file or analyze
command, the resulting GTECH representation is retained in memory. Dependencies
are determined by the files or directories specified in the file_list argument. If the file_list
argument changes between consecutive calls of the -autoread option, the tool uses the
latest set of files to determine the dependencies. You can use the -autoread option on
designs written in any VHDL, Verilog, or SystemVerilog language version. If you do not
specify this option, only the files specified in the file_list argument are processed and the
file list cannot include directories.

When you specify a directory as an argument, the command reads files from the directory.
If you specify both the -autoread and -recursive options, the command also reads files
in the subdirectories.

When the -autoread option is set, the command infers RTL source files based on the
file extensions set by the variables listed in the following table. If you specify the -format
option, only files with the specified file extensions are read.

Variable Description Default

hdlin autoread exclude extensions Specifies the file extension to exclude files
from the analyze process.

hdlin autoread verilog extensions Specifies the file extension to analyze files .v
as Verilog files.

hdlin autoread vhdl extensions Specifies the file extension to analyze files .vhd .vhdl
as VHDL files.

HDL Compiler™ for SystemVerilog User Guide 22
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 1: SystemVerilog for Synthesis
Reading SystemVerilog Designs

Variable Description Default

hdlin autoread sverilog extensions Specifies the file extension to analyze files .sv .sveri
as SystemVerilog files. log

File Dependencies

A file dependency occurs when a file requires language constructs that are defined in
another file. When you specify the -autoread command, the tool analyzes the files (and
elaborates the files if you use the read file command) with the following dependencies
in the correct order:

* Analyze dependency

If file B defines entity E in SystemVerilog and file A defines the architecture of entity
E, file A depends on file B and must be analyzed after file B. Language constructs
that can cause analyze dependencies include VHDL package declarations, entity
declarations, direct instantiations, and SystemVerilog package definitions and import.

» Link dependency

If module X instantiates module Y in Verilog, you must analyze both of them before
elaboration and linking to prevent the tool from inferring a black box for the missing
module. Language constructs that can cause link dependencies include VHDL
component instantiations and SystemVerilog interface instantiations.

* Include dependency

When file X includes file Y using the ' include directive, this is known as an include
dependency. The -autoread option analyzes the file that contains the “include
directive statement when any of the included files are changed between consecutive
calls of the -autoread option.

« Verilog and SystemVerilog compilation-unit dependency

The dependency occurs when the tool detects files that must be analyzed together

in one compilation unit. For example, Verilog or SystemVerilog macro usage and
definition are located in different files but not linked by the *inc1lude directive, such

as a macro defined several times in different files. The -autoread option cannot
determine which file to use. Language constructs that can cause compilation-unit
dependencies include SystemVerilog function types, local parameters, and enumerated
values defined by the sunit scope.

Setting Library Search Order

When multiple design libraries are available during elaboration, the tool searches for a
particular design in the libraries that are defined by the define design 1ib command.

HDL Compiler™ for SystemVerilog User Guide 23
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 1: SystemVerilog for Synthesis
Reading SystemVerilog Designs

The library defined last is searched first. This library search order is the default and applies
to the entire design, including the subdesigns. By default, the tool searches the library

of the parent design first for a subdesign. If the subdesign is not found, it searches other
libraries in this search order.

For example, the library search order is defined as lib3, lib2, and lib1in the following
define design lib command sequence:

dc_shell> define design_1lib libl ...
dc_shell> define design_1lib 1lib2 ...
dc shell> define_design_1lib 1ib3 ...

To change the library search order, list the libraries by using the -uses option with the
analyze command. When a design is analyzed with the analyze -uses design libs
command, the tool searches for the subdesigns of this design in the library order specified
by the -uses option.

When you use the -uses option,

« The parent design library is searched first, followed by libraries in the order specified by
the —uses option.

« The specified library search order applies only to the specified design and its
subdesigns. Other designs use the default.

« The search is restricted to the libraries specified by the -uses option. Other libraries
are not searched even if no library is found.

« An empty list for the —-uses option limits the search to the library of the parent design.

For example, in the following design, three different versions of the submod design are
analyzed in the lib1, lib2, and lib3 libraries respectively:

top.v

module top (...);
éé.submod (o.o.)7
éﬁamodule
submod1.v

submod (...);
<implementation 1>
endmodule

submod2.v

submod (...);
<implementation 2>
endmodule

HDL Compiler™ for SystemVerilog User Guide 24
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 1: SystemVerilog for Synthesis
Reading SystemVerilog Designs

submod3.v

submod (...);
<implementation 3>
endmodule

When you use the following command to analyze the top-level top.v design, the module
analyzed using the lib2 library is chosen during elaboration and the modules using the lib1
and lib3 libraries are ignored.

dc_shell> analyze ... -uses "1lib2 1libl 1ib3" top.v

Ignoring Modules During the Read Process

During early design stages, you can include incomplete or non-synthesizable designs

by using the SystemVerilog interface-only feature. This feature allows modules that
communicate with or instantiate an unfinished module to connect port signals correctly
even for an unfinished design. The unfinished module design can be empty or incomplete,
or it can contain unsupported constructs. The module body is eventually replaced by
synthesizable RTL.

To enable this feature, the following two methods are available:

« Elaboration Command Based Interface-Only Method (Recommended)
« Analyze Command Based Interface-Only Method

Elaboration Command Based Interface-Only Method
(Recommended)

During elaboration, the HDL Compiler tool creates a black box for the module body without
netlisting the subblocks and other logic blocks inside the interface-only blocks. To enable
this feature, set the following variables:

* hdlin elaborate black box: Set the variable to ignore the module body listed
during elaboration.

* hdlin elaborate black box all except: Setthe variable to ignore the body of all
the modules except the modules that are listed during elaboration.

Note:

Use these options only if there are no syntax errors and non-synthesizable
designs constructs in the RTL.

For example,

dc_shell> set_app _var \
-name hdlin_elaborate_black_box \

HDL Compiler™ for SystemVerilog User Guide 25
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 1: SystemVerilog for Synthesis
Reading SystemVerilog Designs

-value {my modulel my module2}
dc_shell> analyze -format sverilog top.sv

dc_shell> set_app _var \
-name hdlin_elaborate_black _box all except \
-value {my modl my mod2}
dc_shell> analyze -format sverilog top.sv

For more information about a specific variable, see the hdlin elaborate black box and
hdlin elaborate black box all except man pages.
Analyze Command Based Interface-Only Method

For interface-only, use the hd1in sv interface only modules variable to list the design
modules. The HDL Compiler tool parses only the module interfaces of the listed designs,
skips the module content, and creates a black box for each module. During elaboration,
the tool issues a warning message that says the module content is discarded and ignored,
as shown in the following example:

dc_shell> set_app var hdlin_sv_interface_only modules \
{my_modulel my module2}

dc_shell> analyze -format sverilog top.sv

Warning: ./rtl/top.sv:21: The body of module 'my modulel' is being
discarded, because the module name is in hdlin sv_interface only modules.
(VER-747)

After elaboration of the top-level design, you can use the is_interface only attribute to
list all the designs that were read as interface only. For example,

dc _shell> get_designs -filter "is_ interface_ only"
{my modulel P2}

Limitations
The IEEE Std 1800-2017 (section 23.2.1) defines two module definition styles:

« ANSI header style: All port information within the module header

module name #(parameter port list)
(port direction and type list);

...design content...
« Non-ANSI header style: Non-name port information follows the module header
module name #(port name list) ;
parameter declaration list

port direction and size declarations
port direction and type list

HDL Compiler™ for SystemVerilog User Guide 26
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 1: SystemVerilog for Synthesis
Reading SystemVerilog Designs

...design content...

All modules with ANSI style module headers can be read in as interface-only.

For modules with non-ANSI style module headers, the tool skips the module content after
the first occurrence of the design content that is not one of the following:

+ Port declarations

- Data type definitions

« Parameter declarations

» Net or variable declarations
» Package imports

When using non-ANSI style module headers, keep all port-related declarations together at
the beginning of the module to prevent the tool from skipping interface information. Avoid
breaking up the port declarations with other statements that are not port declarations.

Ignoring Modules During the Read Process (Legacy)
Caution:

This topic documents the legacy module black-boxing functionality. You should
use the improved functionality described in Ignoring Modules During the Read
Process on page 25.

For information on the difference between these methods, see
SolvNetPlus article 000020764, “What is the Difference Between the
hdlin_sv_interface_only_modules and hdlin_sv_blackbox_modules Variables?”

Note:
You must be logged in to SolvNetPlus for the link to connect directly to the
article. If you are prompted to log in to SolvNetPlus upon clicking the link to the
article, log in, then click the link again to reach the article.

You can direct the HDL Compiler tool to ignore modules, such as analog blocks and
register files, during the read process.

To enable this capability, specify a list of modules to be ignored as black boxes by setting
the hdlin sv blackbox modules variable. The tool ignores the specified modules when
reading the design with the read sverilogoOr analyze -format sverilog command
and treats them as black boxes during the link process. When reading the design, the tool
issues VER-746 warning messages indicating which modules are ignored; however, it
does not issue any messages if you specify invalid modules names. Valid module names
are those coded in the RTL.

HDL Compiler™ for SystemVerilog User Guide 27
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnetplus.synopsys.com/s/article/What-Is-the-Difference-Between-the-hdlin-sv-interface-only-modules-and-hdlin-sv-blackbox-modules-Variables-1576092667621
https://solvnetplus.synopsys.com/s/article/What-Is-the-Difference-Between-the-hdlin-sv-interface-only-modules-and-hdlin-sv-blackbox-modules-Variables-1576092667621

Feedback

Chapter 1: SystemVerilog for Synthesis
Reading SystemVerilog Designs

For example, the following command specifies the two modules named mod1 and mod2 in
the RTL to be ignored:

dc_shell> set_app var hdlin sv_blackbox modules "modl mod2"

When reading the design, the tool issues warning messages similar to the following:

Warning: modl.v:2: The declaration of module 'modl' is being ignored,
because the module name is in hdlin sv _blackbox modules. (VER-746)

During the link process performed by the elaborate or 1ink command, the tool issues
warning messages similar to the following:

Warning: All references to module 'modl' are ignored and treated as
black boxes. (LINK-35)

The following restrictions apply:

« Support for black-box modules is available only in SystemVerilog, but not in Verilog or
VHDL.

* You should not modify the setting of the hd1in sv blackbox modules variable
between the read sverilogand 1ink commands or between the analyze -format
sverilog and elaborate commands.

+ You should not use design names reported by the 1ist designs command as module
names because they might change during the read process and no longer match the
original RTL names. Use the original RTL names to set the variable.

File Format Inference Based on File Extensions

You can specify a file format by using the -format option with the read file command.
If you do not specify a format, the read file command infers the format based on the file
extensions. If the file extension is unknown, the tool assumes the .ddc format.

The file extensions in this table are supported for automatic inference:

Format File extensions

ddc .ddc

db .db, .sldb, .sdb, .db.gz, .sldb.gz, .sdb.gz
SystemVerilog .sv, .sverilog, .sv.gz, .sverilog.gz

The supported extensions are not case-sensitive. All formats except the .ddc format can
be compressed in gzip (.gz) format.

HDL Compiler™ for SystemVerilog User Guide 28
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 1: SystemVerilog for Synthesis
Reading Designs Using the VCS Command-Line Options

If you use a file extension that is not supported and you omit the -format option, the
synthesis tool generates an error message. For example, if you specify read file
test.vlog, the tool issues the following DDC-2 error message:

Error: Unable to open file 'test.vlog' for reading. (DDC-2)

Reading Designs Using the VCS Command-Line Options

The analyze command with the VCS command-line options provides better compatibility
and makes reading large designs easier. When you use the VCS command-line options,
the tool automatically resolves references for instantiated designs by searching the
referenced designs in user-specified libraries and then loading these referenced designs.

Reading Large Designs

To read designs containing many HDL source files and libraries, specify the -vcs option
with the analyze command. You must enclose the VCS command-line options in double
quotation marks. For example,

dc_shell> analyze -vcs "-verilog -y mylibdirl +libext+.v -v myfilel \
+incdir+myincludedirl -f mycmdfile2" top.v

Reading Designs With Mixed Formats

To read SystemVerilog files with a specified file extension and Verilog files in one analyze
command, use the -vcs "+systemverilogext+ext" option. When you do so, the files
must not contain any Verilog 2001 styles.

For example, the following command analyzes SystemVerilog files with the .sv file
extension and Verilog files:

dc_shell> analyze -format verilog -vcs "-f F +systemverilogext+.sv"

Bottom-Up Hierarchical Elaboration

In SystemVerilog designs, information about how to build a module is often supplied by
an external source. These types of designs are called design templates. When you build
a design using a top-down approach, all the information (design context) is available to
accurately customize the template based on the way this information is used in the larger
design. Additional information are required for

* Module parameters
» Interface parameters
« Interface modports

« Generic interface ports

HDL Compiler™ for SystemVerilog User Guide 29
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 1: SystemVerilog for Synthesis
Bottom-Up Hierarchical Elaboration

To build a standalone design template without the design context, you need to specify the
required information to accurately customize the design template. For example, to specify
the information for module parameters, use the -parameters option with the elaborate
command.

Parameterized Interface Ports

In the HDL Compiler tool, the interface parameter values for interface ports can be
specified using the elaborate command. This removes the need for creating a separate
wrapper module. The parameters of interface ports can be specified using the following
syntax:

elaborate <design> -parameters "Portnamel.paraml=>paraml.valuel
[Port m.param p=>param p.value s]"

For example, you can specify the value of wipTH for the two interface ports p1 and p2 to
be 8 and 16 using the following command:

dc_shell> elaborate block \
-parameters "P1l.WIDTH=>8,P2.WIDTH=>16"

You can also specify module parameters and interface parameters together in a single
elaborate command. For example, you can specify the width of the two interface ports p1
and p2 to be 8 and 16 and also set the module parameter length to 5 using the following
command:

dc_shell> elaborate block \
-parameters "P1l.WIDTH=>8,P2.WIDTH=>16,Length=>5"

Specifying name-based parameters in any order generates the same netlist.

Any positional module parameters must be specified before any name-based parameters
and position-based specification is applicable only for module parameters and not for
interface parameters. For example, you can use the following command to specify the
values of 2, 30, and 4 for the first 3 module parameters, set the module parameter length
to 5, and set the wipTH value of interface ports p1 and p2 to be 8 and 16.

dc_shell> elaborate block \
-parameters "2, 30, 4, P1.WIDTH=>8,P2.WIDTH=>16,Length=>5"

Arrays of interface ports must have the same parameter values. For interface arrays,
specification of a parameter on the array name sets the value for the entire array. For
example, set the wIpTH parameter for an array A[] using the following command:

dc_shell> elaborate block -parameters "A.WIDTH=10"

HDL Compiler™ for SystemVerilog User Guide 30
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 1: SystemVerilog for Synthesis
Shortening Long Module Names in the Netlist

Preventing Port Name Mismatches During Linking in Bottom-Up
Hierarchical Flow

In a bottom-up synthesis flow, the change names command can change the port names
of lower-level, synthesized designs by replacing a period (.) or square bracket ([or])
with an underscore (_). However, the top-level design is unsynthesized and still contains
the original port names and this can cause mismatches during linking. Use the following
settings to avoid port name mismatch linking errors:

default is false
set app var link portname allow period to match underscore true

default is false
(use only for matching modport arrays)
set app var link portname allow square bracket to match underscore true

In the following example, the linker cannot resolve the B.X port name of the mid1 instance
because the port name was changed to B_X in the mid module. When you set the
link portname allow period to match underscore variable to true, the design

links.

module top (input A, B, output Y);
wire Y;

mid midl (.\B.X (B), .A(A), .Y(Y));
endmodule

module mid (input B_X, A, output Y);
assign ¥ = B X & A;
endmodule

Shortening Long Module Names in the Netlist

If your design contains many interfaces and parameters, the tool creates long module
names in the netlist because of inlining. These long names cannot be read by some
back-end tools. To shorten the names, set the hd1in shorten long module name
variable to true and set the hdlin module name limit variable to a maximum number
of characters allowed in the names. During a compile, when a module name is longer than
the specified number, the tool renames the module to the original name plus a hash of the
full name and issues a warning about the renamed module.

HDL Compiler™ for SystemVerilog User Guide 31
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: SystemVerilog for Synthesis

Feedback

Reading Designs With Assertion Checker Libraries

The following example shows a module name in the RTL, in the original gate-level netlist,
and after renaming:

Script to shorten module names

Enables shortening of names

set app var hdlin shorten long module name true

Specify minimum number of characters. Default: 256
set app var hdlin module name limit 100

Module name in the RTL

module sender

Original module name in the gate-level netlist

module
sender I i sl i sendmode I i s2 i sendmode I i s3 i sendmode I i s4 i

sendmode I i s5 i sendmode I i s6 i sendmode I i s7 1 sendmode I i 58

i sendmode I i s9 i sendmode I i s10 i sendmode

Shortened module name in the gate-level netlist

module sender h 948 242 781

Warning message

Warning:
Design'sender I i sl i sendmode I i s2 i sendmode I i s3 i sendmode I

1 s4 1 sendmode I i s5 i _sendmode I i s6 i sendmode I i s7 i sendmode

I i s8 i Sendmodeililis9 i sendmode I i s10 i sendmode '

was renamed to 'sender h 948 242 781" to resolve a long name which is
nor supported by some down stream tools. (LINK-26)

Reading Designs With Assertion Checker Libraries

When reading designs containing assertion checker libraries, the tool infers extra logic in
the gate-level netlist. To prevent the tool from inferring the extra logic, follow these steps to
ignore the assertion checker libraries:

1.

Include the checker library files in your search path.

The following command includes the $VCS_ROOT/packages/sva checker library
directory in the search path:

dc_shell> set search path \
[concat $search path $[VCS_ROOT]/packages/sva]

2. Create the sva.inc file to include all checker libraries in your design directory.
For example, the following sva.inc file includes the assert_one_hot checker library.
HDL Compiler™ for SystemVerilog User Guide 32

U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 1: SystemVerilog for Synthesis
Netlist Wrapper for Testbenches

// sva.inc file includes all the assertions that you are using
"include "assert one hot.sv"
"include "assert proposition.sv"

For a complete list of assertions, see the VCS MAX documentation.

3. Analyze the checker libraries using the predefined SVA_CHECKER_INTERFACE
macro.

dc_shell> analyze -define SVA CHECKER INTERFACE \
-format sverilog {sva.inc child.sv}

Note:

You must analyze the check libraries before the files that use the check
libraries.

4. Elaborate the top design.

The following command elaborates the child.sv module, which uses the
assert_one_hot check library:

dc_shell> elaborate child

The child.sv module

// child.sv

module child(reset n, clk);
input reset n, clk;
reg [7:0] count;

initial S$monitor ("count = %b \n", count);
begin

if (reset n == 0) count <= 8'b00000001;

else count <= ((count << 1) | {7'b0000000, count([7]1});
end

// the width is 8 bits

// Coverage level 1 is enabled by default.

assert one hot #(0, 8, 0, "ERROR: count is not one-hot") \
invalid one hot (clk, reset n, count);

endmodule

For more information, see the VCS MAX User Guide.

Netlist Wrapper for Testbenches

You cannot use a testbench that is developed for a SystemVerilog design for the gate-
level netlist because the port number, port types, and port names are not preserved in

HDL Compiler™ for SystemVerilog User Guide 33
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 1: SystemVerilog for Synthesis
Netlist Wrapper for Testbenches

the Verilog implementation. For example, Verilog designs have no interface modports,
parameter types, unpacked arrays or structs, or enumerations. In addition, each element
in a SystemVerilog interface modport is implemented as a separate port by the synthesis
tool. Back-end tools can read-only netlists in Verilog format. To use a SystemVerilog
testbench for a gate-level Verilog simulation, you must modify the testbench to convert
the interface ports to the implementation ports. The write -format svsim command
can automate this process and write out a SystemVerilog netlist wrapper, which is a
SystemVerilog module declaration. The testbench must instantiate the wrapper exactly as
the original SystemVerilog module. This creates a SystemVerilog design under test (DUT),
provides correct port mapping, and generates a SystemVerilog design instance that can
be driven by the testbench, as shown in the following figure:

Figure 1 Single DUT Test Environment

SystemVerilog wrapper

Testbench)y
Verilog DUT

The SystemVerilog simulation wrapper only supports module headers that are completely
self-contained. If the module header requires definitions that are outside the header, follow
these guidelines:

« Module header requiring definitions from the sunit global name space

When building your testbench, ensure that the SystemVerilog netlist wrapper has the
same design context as the RTL. You might need to add simulation tool settings or edit
the wrapper to include the $unit definitions.

« Module header requiring definitions from a package

In the RTL, import the package as part of the module header. For example,

module xyz
import myPack::*;

endmodule;

+ Module header containing forward references to elements that are defined inside the
module

This is not supported.

HDL Compiler™ for SystemVerilog User Guide 34
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: SystemVerilog for Synthesis

Feedback

Netlist Wrapper for Testbenches

The following limitations apply:

You cannot use the -hierarchy option with the -format svsim option of the write
command.

You cannot use one write command to create netlist wrappers for multiple designs.

Only a subset of synthesizable SystemVerilog designs is supported, that is, the design
whose root modules use ANSI-style port declarations.

Only one DUT is allowed in each wrapper.

The synthesis tool cannot read the netlist wrapper.

Creating a Testbench With a Wrapper

In the following test case, the IFC interface (interface.sv) uses the byte type as the
default, and the TOP module (top.sv) uses a generic interface with the i modport. You
must use the ANSI-style port declarations.

Follow these steps to create a wrapper and the gate-level netlist for a DUT that uses an
interface module with overridden parameter types.

1.

Create the dummy_top module (dummy_top.sv) to instantiate the TOP module where
the IFC interface is overridden by the MY _T type.

. Usethe get design from inst procedure to retrieve the cell instance.

proc get design from inst { inst } {
return [get attribute [get cells $inst] ref name]

}

In SystemVerilog, module names change based on the interface types, modports,
parameter types, parameters, and so on. Because you know the instance name,
top_inst, in the dummy_top module, you can retrieve the instance from the reference
name (design declaration) by using the get design from inst procedure.

Analyze the test case and elaborate the dummy_top module.

dc _shell> analyze -format sverilog "interface.sv top.sv dummy top.sv"
dc_shell> elaborate dummy top

Compile the test case.

dc_shell> compile

Set the dut variable to the top-level instance by using the get design from inst
procedure.

dc_shell> set_app var dut [get design from_ inst top_inst]

HDL Compiler™ for SystemVerilog User Guide 35
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 1: SystemVerilog for Synthesis
Netlist Wrapper for Testbenches

6. Write out the gate-level DUT.

dc_shell> write -format verilog -hierarchy \
-output compiled gates.v $dut

7. Write out the wrapper file.

dc_shell> write -format svsim -output netlist wrapper.sv $dut

Test case

* interface.sv

typedef logic MY T[0:2];

interface IFC # (parameter type T = byte);
T x, yi

modport mp (input x, output y);
endinterface

* top.sv

module TOP # (parameter type T = shortint) (interface.mp 1i);
T temp;

assign temp = i.x;

assign i.y = temp;

endmodule

¢ dummy_top.sv

module dummy top # (parameter type T = MY T) (
input T in,
output T out

) ;

IFC# (.T(T)) ifc();
assign ifc.x = in;
assign out = ifc.y;

TOP #(.T(T)) top inst(ifc.mp);
endmodule

Tcl Script

The following script creates the gate-level netlist and a wrapper:

proc get design from inst { inst } {
return [get attribute [get cells $inst] ref name]
}
analyze -format sverilog "interface.sv top.sv dummy top.sv"
elaborate dummy top
compile
set app var dut [get design from inst top inst]
write -format verilog -hierarchy -output compiled gates.v $dut
write -format svsim -output netlist wrapper.sv $dut

HDL Compiler™ for SystemVerilog User Guide 36
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 1: SystemVerilog for Synthesis
Customizing Elaboration Reports

Wrapper file

The wrapper (netlist_wrapper.sv) contains the module declaration of
TOP_svsim. It provides mapping between the original SystemVerilog ports
and the Verilog implementation ports using the SystemVerilog streaming
operator (>>). It instantiates the gate-level netlist created for the DUT,
TOP_| i IFC_mp_T array_1 0 _2 logic DQLcWqa_.

// For simulation only. Do not modify.

module TOP svsim # (parameter type T = shortint) (interface.mp 1i);

TOP I i IFC mp T array 1 0 2 logic DQLcWga TOP I i IFC mp T array 1 0 2
logic DQLcWga ({>>{ i.x }}, {>>{ i.y }})

endmodule

Gate-level netlist

The port mapping is expressed as a port connection to the top_inst instance in positional
notation. The top.sv module uses the shortint type that is overridden but the MY_T type
in the top_inst instance.

module TOP I i IFC mp T array 1 0 2 logic DQLcWga (\i.x , \i.y);
input [0:2] \i.x ;
output [0:2] \i.y ;

assign \i.y [0] = \i.x [0];

assign \i.y [1] = \i.x [1];

assign \i.y [2] = \i.x [2];

endmodule

Customizing Elaboration Reports

By default, the tool displays inferred sequential elements, MUX_OPs, and inferred three-
state elements in elaboration reports using the basic setting, as shown in Table 2.

You can customize the report by setting the hdlin reporting level variable to

none, comprehensive, Of verbose. A true, false, or verbose setting indicates that the
corresponding information is included, excluded, or detailed respectively in the report.

Table 2 Basic Reporting Level Variable Settings

Information displayed (information keyword) basic none comprehensive verbose
(default)

Floating net to ground connections false false true true

(floating net to ground)

Inferred state variables false false true true
(fsm)

HDL Compiler™ for SystemVerilog User Guide 37
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 1: SystemVerilog for Synthesis
Reporting Elaboration Errors in the Hierarchy

Table 2 Basic Reporting Level Variable Settings (Continued)

Information displayed (information keyword) basic none comprehensive verbose
(default)
Inferred sequential elements true false true true

inferred modules)

MUX_OPs true false true true
(mux_op)

Synthetic cells false false true true
(syn_cell)

Inferred three-state elements true false true true

(tri state)

In addition to the four settings, you can customize the report by specifying the add (+) or
subtract (-) option. For example, to report floating-net-to-ground connections, synthetic
cells, inferred state variables, and verbose information for inferred sequential elements,
but not MUX_OPs or inferred three-state elements, enter

dc_shell> set_app var hdlin reporting level {verbose-mux op-tri_ state}

Setting the reporting level as follows is equivalent to setting a level of comprehensive.

dc_shell> set_app var hdlin_reporting level \
{basic+floating_net_to_ground+syn cell+fsm}

Reporting Elaboration Errors in the Hierarchy

The tool elaborates designs in a top-down order, and elaboration errors of a top-level
module prohibit the elaboration of all associated submodules. To continue the elaboration
regardless of the top-level errors, use the hdlin elab errors deep variable.

By default, the tool reports only the top-level errors during elaboration. To report all errors
in the hierarchy, you must fix the top-level errors and then repeat the elaboration step.
However, if you set the hdlin elab errors deep variable to true, the tool reports all
elaboration errors in the hierarchy in one elaboration step.

To report all elaboration errors in the hierarchy, follow these steps:
1. ldentify and fix all syntax errors in the design.

2. Setthe hdlin elab errors deep variable to true.

HDL Compiler™ for SystemVerilog User Guide 38
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

)) Feedback
Chapter 1: SystemVerilog for Synthesis
Reporting Elaboration Errors in the Hierarchy

The tool runs in the RTL debug mode.

Elaborate your design using the elaborate command.
Fix all errors, and fix warnings as needed.

Setthe hdlin elab errors deep variable to false.

Elaborate the design that contains no errors.

N o g &~ »

Proceed with the synthesis flow.

Example of Reporting Elaboration Errors

This SystemVerilog example uses the top design, as shown in Figure 2, to report all
elaboration errors in the hierarchy.

Figure 2 Hierarchical Design
top
middle_1 .
ELAB-638 ERLEL 2
bottom_2
bottom_1 ELAB-366
end_1
ELAB-366 end_2

Example 1 SystemVerilog RTL of the top Design
module top (input a, b, output ol, o2);
middle 1 M1 (a, b, ol);
middle 2 M2 (a, b, 02);
endmodule

module middle 1 (input a, b, output o);
logic w;

bottom 1 Bl (a, b, w);

logic bad;

assign bad a&b&w;

assign bad 1'bl;

assign o = bad; // ELAB-368 error
endmodule

HDL Compiler™ for SystemVerilog User Guide 39
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 1: SystemVerilog for Synthesis
Reporting Elaboration Errors in the Hierarchy

module bottom 1 (input a, b, output c);
end 1 Bl (a, b, c);
endmodule

module end 1 (input a, b, output c);
logic bad;

assign bad = a;

assign bad = alb;

assign ¢ = bad; // ELAB-366 error
endmodule

module middle 2 (input a, b, output o);
bottom 2 B2 (a, b, o0);

endmodule

module bottom 2 (input a, input b, output c);
logic w;

end 2 B2 (a, b, w);

logic bad;

assign bad = wla;

assign bad = w&b; // ELAB-366 error
assign c = bad;

endmodule // sub3

module end 2 (input a, b, output c);
assign ¢ = a’b;
endmodule

Example 2 Elaboration Results of hdlin_elab_errors_deep Set to false

dc_shell> set_app var hdlin elab errors_deep false

false

dc_shell> analyze -f sverilog rtl/test.sv

Running PRESTO HDLC

Searching for ./rtl/test.sv

Compiling source file ./rtl/test.sv

Presto compilation completed successfully.

1

dc_shell> elaborate top

Running PRESTO HDLC

Presto compilation completed successfully.

Elaborated 1 design.

Current design is now 'top'.

Information: Building the design 'middle 1'. (HDL-193)

Error: ./rtl/test.sv:12: Net 'bad', or a directly connected net, is
driven by more than one source, and at least one source is a constant
net. (ELAB-368)

***% Presto compilation terminated with 1 errors. ***

Information: Building the design 'middle 2'. (HDL-193)

Presto compilation completed successfully.

Information: Building the design 'bottom 2'. (HDL-193)

Error: ./rtl/test.sv:36: Net 'bad' or a directly connected net is driven

by more than one source, and not all drivers are three-state. (ELAB-366)

HDL Compiler™ for SystemVerilog User Guide 40
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 1: SystemVerilog for Synthesis
Reporting Elaboration Errors in the Hierarchy

*** Presto compilation terminated with 1 errors. ***

Warning: Design 'top' has '2' unresolved references. For more detailed
information, use the "link" command. (UID-341)

1

dc_shell> list designs

middle 2 top (*)

Example 3 Elaboration Results of hdlin_elab_errors _deep Set to true

dc_shell> set hdlin elab errors_deep true
true

dc_shell> analyze -f sverilog rtl/test.sv
Running PRESTO HDLC

Searching for ./rtl/test.sv

Compiling source file ./rtl/test.sv
Presto compilation completed successfully.
1

dc_shell> elaborate top

Running PRESTO HDLC

*** Presto compilation run in rtl debug mode. ***
Presto compilation completed successfully.
Elaborated 1 design.

Current design is now 'top'.

Information: Building the design 'middle 1'. (HDL-193)
***% Presto compilation run in rtl debug mode. ***
Error: ./rtl/test.sv:12: Net 'bad', or a directly connected net, is

driven by more than one source, and at least one source is a constant
net. (ELAB-368)

Presto compilation completed successfully.

Information: Building the design 'middle 2'. (HDL-193)

*** Presto compilation run in rtl debug mode. ***

Presto compilation completed successfully.

Information: Building the design 'bottom 1'. (HDL-193)

*** Presto compilation run in rtl debug mode. ***

Presto compilation completed successfully.

Information: Building the design 'bottom 2'. (HDL-193)
***% Presto compilation run in rtl debug mode. ***
Error: ./rtl/test.sv:36: Net 'bad' or a directly connected net is driven

by more than one source, and not all drivers are three-state. (ELAB-366)
Presto compilation completed successfully.

Information: Building the design 'end 1'. (HDL-193)
***% Presto compilation run in rtl debug mode. ***
Error: ./rtl/test.sv:23: Net 'bad' or a directly connected net is driven

by more than one source, and not all drivers are three-state. (ELAB-366)
Presto compilation completed successfully.

Information: Building the design 'end 2'. (HDL-193)

*** Presto compilation run in rtl debug mode. ***

Presto compilation completed successfully.

1

dc_shell> list designs

Warning: No designs to list. (UID-275)

0

HDL Compiler™ for SystemVerilog User Guide 41
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

. , Feedback
Chapter 1: SystemVerilog for Synthesis
Querying Information about RTL Preprocessing

As shown in Example 2, the tool reports the following two errors at the top level by default:
« ELAB-368 error from the middle_1 module
« ELAB-366 error from the bottom_2 module

To find the ELAB-366 error in the end1 submodule as shown in Example 3, you must fix
the error in the middle_1 module. When you set the hdlin elab errors deep variable to
true, the tool reports all errors in the hierarchy in one elaboration step:

« ELAB-368 error from the middle_1 module
« ELAB-366 error from the bottom_2 module
« ELAB-366 error from the end_1 module

The following restrictions apply when the hdlin elab errors deep variable is set to
true:

* No designs are saved because the designs could be erroneous.

The tool does not create designs when this variable is set to true. If you run the
list designs command, the tool reports the following warning:

Warning: No designs to list (UID-275)

* You should use the analyze command rather than the read file command to read
the design because the read file command has no linking functionality and does not
accept command-line parameter specifications.

« All syntax errors are reported when you run the analyze command. The HDL Compiler
tool is not a linting tool, so you should use the check design command in the HDL
Compiler tool for linting.

« The elaboration runtime might increase slightly.

Querying Information about RTL Preprocessing

You can query information about preprocessing of the RTL, including macro definitions,
macro expansions, and evaluations of the conditional statements. You use this information
to debug design issues, especially for designs with a large number of macros. To query
the preprocessing information, set the hdlin analyze verbose mode variable to one

of the values listed in the following table for the type of information to be reported. The

default is 0.
Setting Information reported
0 No preprocessing information.
HDL Compiler™ for SystemVerilog User Guide 42

U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 1: SystemVerilog for Synthesis
Querying Information about RTL Preprocessing

Setting Information reported

1 Macro definitions (described by the “define directive in the RTL and
specified by the -define option on the command line) and evaluations of
the conditional statements.

2 Macro expansions and the information reported when the variable is set to
1.

The following example shows how to report preprocessing information by using the
hdlin analyze verbose mode variable :

« example.v file

“define MYMACRO 1'bO

module m (
input inl,
output outl
) ;

"ifdef MYRTL

assign outl = "MYMACRO;
“else

assign outl = inl;
endif
endmodule

« Excerpt from the log file

dc_shell> set hdlin_analyze verbose mode 1

1

Generates messages that “ifdef being skipped and “else analyzed
dc_shell> analyze -format sverilog example.v

Information: ./example.v:6: Skipping “ifdef then clause because MYRTL
is not defined. (VER-7)
Information: ./example.v:8: Analyzing ‘else clause. (VER-7)

Generates messages that “ifdef is analyzed and “else skipped
dc_shell> analyze -format sverilog -define MYRTL example.v

Information: ./example.v:6: Analyzing “ifdef then clause because MYRTL
is defined. (VER-7)
Information: ./example.v:8: Skipping ‘else clause. (VER-7)

HDL Compiler™ for SystemVerilog User Guide 43

U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 1: SystemVerilog for Synthesis
Reporting HDL Compiler Settings

dc_shell> set hdlin_analyze verbose mode 2

2

Generates messages about evaluation of macro "MUMACRO to 1'bO
dc_shell> analyze -f sverilog -define MYRTL example.v

Information: ./example.v:6: Analyzing “ifdef then clause because MYRTL
is defined. (VER-7)

Information: ./example.v:7: Macro | MYMACRO| expanded to |1'bO].
(VER-T7)

Information: ./example.v:8: Skipping “else clause. (VER-7)

Reporting HDL Compiler Settings
To get a list of variables that affect RTL reading, use the following command:

dc_shell> report_app var hdlin¥*

Other variables that affect RTL reading include the ones prefixed with template and
bus*style. Use the following commands to report these variables:

dc_shell> report app var template*
dc_shell> report_app_ var bus*style

For more information about a specific variable, see the man page. For example,

dc_shell> man hdlin _analyze verbose mode

Parameterized Designs
Declaring Parameters Without a Default

Port list parameters can be declared with or without a default. If you declare a parameter
without a default, you must specify an override value in every instantiation to prevent a
compile error.

As per the IEEE Std 1800-2017, parameters without a default are only supported in a
parameter port list.

HDL Compiler™ for SystemVerilog User Guide 44
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 1: SystemVerilog for Synthesis
Parameterized Designs

The following design declares the SIZE parameter with no default, and the INSIZE
parameter with a default of eight:

Example 4 Port List Parameter Without a Default

module sub # (parameter SIZE) (
output [SIZE-1:0] out,
input [SIZE-1:0] in

) ;

assign out = ~in;
endmodule

module top (
output [7:0] b,
input [7:0] a
)

sub #(.SIZE(8)) Ul (b,a); // override value (required)
endmodule

The following design declares the SIZE parameter with no default, and the INSIZE
parameter with a default of eight:

Example 5 Declaring a Parameterized Design

module sub # (parameter SIZE, INSIZE=8) (
output [SIZE-1:0] out,
input [INSIZE-1:0] in

)7

assign out = ~in;
endmodule

Instantiating a Parameterized Design

You must specify an override value for the SIZE parameter in every instantiation of
the design. The INSIZE parameter can be overridden, or the default can be used. The
following examples illustrate the different ways to instantiate a parameterized design.

Example 6 overrides both parameters and instantiates U1, a 4-bit wide inverter block.

Example 6 Instantiating a Parameterized Design With Override Values
module top (
output[3:0] b,
input [3:0] a

)7
sub #(.SIZE(4), .INSIZE(4)) Ul(.out(b), .in(a));

endmodule

In Example 7 U2 instantiation, the SIZE parameter is overridden to 8, and the default is
used for INSIZE (also 8), creating an 8-bit wide inverter block.

HDL Compiler™ for SystemVerilog User Guide
U-2022.12-SP3

45

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 1: SystemVerilog for Synthesis
Parameterized Designs

Example 7 Instantiating a Parameterized Design With Defaults

module top (
output[7:0] b,
input [7:0] a
)
sub #(.SIZE(8)) U2(.out(b),.in(a));
endmodule

Example 8 does not override either parameter. Parameter SIZE is undefined (no default or
override value) causing a compile error.

Example 8 Incorrect instantiation: No Override Value or Default for Parameter SIZE

module top (
output[7:0] b,
input [7:0] a
) ;
sub U3 (.out(b),.in(a));
endmodule

Specifying Parameter Values With the Elaborate Command

Another method to build a parameterized design is with the elaborate command. The
syntax of the command is:

elaborate template name -parameters parameter 1ist

The syntax of the parameter specifications includes strings, integers, and constants using
the following formats ‘b, h, b, and h.

You can store parameterized designs in user-specified design libraries. For example,

analyze -format sverilog n-register.v -library mylib

This command stores the analyzed results of the design contained in file n-register.v in a
user-specified design library, mylib.

To verify that a design is stored in memory, use the report design lib work command.
The report design_ lib command lists designs that reside in the indicated design library.

When a design is built from a template, only the parameters you indicate when you
instantiate the parameterized design are used in the template name. For example,
suppose the template ADD has parameters N, M, and Z. You can build a design where N
=8, M =6, and Z is left at its default. The name assigned to this design is ADD N8 Mé. If
no parameters are listed, the template is built with the default, and the name of the created
design is the same as the name of the template.

Designs which declare parameters without a default must have an override value at
instantiation or a compile error occurs. In the preceding ADD example, parameter Z must
have a default, but N and M do not.

HDL Compiler™ for SystemVerilog User Guide 46
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 1: SystemVerilog for Synthesis
Defining Macros

The model in Example 9 uses a parameter to determine the register bit-width; the default
width is declared as 8.

Example 9 Register Model

module DFF (inl, clk, outl);
parameter SIZE = 8;
input [SIZE-1:0] inl;
input clk;
output [SIZE-1:0] outl;
reg [SIZE-1:0] outl;
reg [SIZE-1:0] tmp;
always @ (clk)
if (clk == 0)
tmp = inl;
else //(clk == 1)
outl <= tmp;
endmodule

If you want an instance of the register model to have a bit-width of 16, use the elaborate
command to specify this as follows:

elaborate DFF -param SIZE=16

The 1ist designs command shows the design, as follows:

DFF_SIZE16 (%)

Using the read sverilog command to build a design with parameters is not
recommended because you can build a design only with the default of the parameters.

You also need to either set the hdlin auto save templates variable to true orinsert
the template directive in the module, as follows:

module DFF (inl, clk, outl);
parameter SIZE = 8;
input [SIZE-1:0] inl;
input clk;
output [SIZE-1:0] outl;
// synopsys template

The hdlin template naming style, hdlin template parameter style, and
hdlin template separator style variables control the naming convention for
templates.

Defining Macros

You can use analyze -define to define macros on the command line.

HDL Compiler™ for SystemVerilog User Guide 47
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 1: SystemVerilog for Synthesis
Defining Macros

Note:

When using the -define option with multiple analyze commands, you must
remove any designs in memory before analyzing the design again. To remove
the designs, use the remove design -all command. Because elaborated
designs in memory have no timestamps, the tool cannot determine whether
the analyzed file has been updated. The tool might assume that the previously
elaborated design is up-to-date and reuse it.

Predefined Macros
You can also use the following predefined macros:

« sYNTHESIS—Used to specify simulation-only code, as shown in Example 10.

Example 10 Using SYNTHESIS and “ifndef ... “endif Constructs
module dff async (RESET, SET, DATA, Q, CLK);
input CLK;
input RESET, SET, DATA;
output Q;
reg Q;
// synopsys one hot "RESET, SET"

always @ (posedge CLK or posedge RESET or posedge SET)

if (RESET)
Q <= 1'b0;
else if (SET)
Q <= 1'bl;

else Q <= DATA;
"ifndef SYNTHESIS
always @ (RESET or SET)
if (RESET + SET > 1)
Swrite ("ONE-HOT violation for RESET and SET.");
“endif
endmodule

In this example, the sYNTHESTIS macro and the “ifndef ... “endif constructs
determine whether or not to execute the simulation-only code that checks if the
RESET and SET signals are asserted at the same time. The main always block is both
simulated and synthesized; the block wrapped in the *ifndef ... “endi f construct is
executed only during simulation.

* VERILOG 1995, VERILOG 2001, VERILOG 2005—Used for conditional inclusion of
Verilog 1995, Verilog 2001, or Verilog 2005 features respectively. When you set
the hdlin vrlg std variable to 1995, 2001, or 2005, the corresponding macro
VERILOG 1995, VERILOG 2001, Or VERILOG 2005 is predefined. By default, the
hdlin vrlg std variable is setto 2005.

HDL Compiler™ for SystemVerilog User Guide 48
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 1: SystemVerilog for Synthesis
Using $display During RTL Elaboration

Global Macro Reset: ‘undefineall

The “undefineall directive is a global reset for all macros that causes all the macros
defined earlier in the source file to be reset to undefined.

Persistent Macros

To save the SystemVerilog text macros (* -define) definitions persistently across different
analyze commands, set the hdlin enable persistent macros variable to true. The
default is false.

To change the default macro file name, use the hdlin persistent macros filename
variable. The default macro file name is syn_auto generated macro file.sv.

Note:

The generated persistent macro file is encrypted with the synenc encryption.

As shown in the following example, the tool saves the text macros defined in different
analyze commands:

dc_shell> set_app var hdlin_enable_persistent macros true

dc_shell> set_app var hdlin persistent macros_filename my macros.tmp

dc_shell> analyze -format sverilog package.sv

// The my macros.tmp text definitions are saved in the first analyze
command package.sv file.

// The following analyze command gets translated to include
the my macros.tmp automatically as follows:
dc shell> analyze -format sverilog "my macros.tmp file2.sv"

For more information about a specific variable, see the
hdlin enable persistent macros and hdlin persistent macros_filename man
pages.

Using $display During RTL Elaboration

The $display system task is usually used to report simulation progress. In synthesis,

the HDL Compiler tool executes $display calls as it sees them and executes all the
display statements on all the paths through the program as it elaborates the design. It
usually cannot tell the value of variables, except compile-time constants like loop iteration
counters.

Note that because the tool executes all $display calls, error messages from the Verilog
source can be executed and can look like unexpected messages.

HDL Compiler™ for SystemVerilog User Guide 49
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 1: SystemVerilog for Synthesis
System Functions and Tasks

Using $display is useful for printing out any compile-time computations on parameters or
the number of times a loop executes, as shown in Example 11.

Example 11 $display Example

module F (in, out, clk);
parameter SIZE = 1;
input [SIZE-1: 0] in;
output [SIZE-1: 0] out;
reg [SIZE-1: 0] out;
input clk;
//
“ifdef SYNTHESIS

always $display("Instantiating F, SIZE=%d", SIZE);

‘endif

endmodule

module TOP (in, out, clk);
input [33:0] ing;
output [33:0] out;
input clk;

F #(2) F2 (in[1:0] ,out[1:0], cl
F #(32) F32 (in[33:2], out[33:2]1, cl
endmodule

) ;
) ;

k
k

The tool produces output such as the following during elaboration:

dc_shell> elaborate TOP

Presto compilation completed successfully.

Elaborated 1 design.

Current design is now 'TOP'.

Information: Building the design 'F' instantiated from design 'TOP' with
the parameters "2". (HDL-193)

Sdisplay output: Instantiating F, SIZE=2

Presto compilation completed successfully.

Information: Building the design 'F' instantiated from design 'TOP' with
the parameters "32". (HDL-193)

Sdisplay output: Instantiating F, SIZE=32

Presto compilation completed successfully.

System Functions and Tasks

System functions and tasks are special functions and tasks with names that start with a
dollar sign ($). The IEEE Std 1800-2012 defines a variety of built-in system functions and
tasks. Users can also define their own system functions and tasks.

The HDL Compiler tool supports the following built-in system functions and tasks.

HDL Compiler™ for SystemVerilog User Guide 50
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: SystemVerilog for Synthesis
Elaboration System Tasks

Table 3

Supported SystemVerilog System Functions and Tasks

Feedback

Context or usage

Supported system functions and tasks

General system tasks evaluated during
elaboration

See Using $display During RTL Elaboration on
page 49 for more information.

Elaboration system tasks

See Elaboration System Tasks on page 51
for more information.

Functions supported in constant context

Functions synthesizable to hardware

$display ()

Sinfo ()
Swarning ()
Serror ()
$fatal ()

Sbits ()
$clog2()2
$dimensions ()
$high ()
Sincrement ()
Sleft ()
$low ()
Sright ()
$size ()

$unpacked dimensions ()

Scountones ()

Other system functions and tasks are ignored or result in errors.

Elaboration System Tasks

SystemVerilog elaboration system tasks provide the ability to check parameter values

used in module instantiations and report status, warnings, or errors during elaboration.
Four elaboration system tasks are supported.

SystemVerilog syntax Tool output format Message
number
$fatal (finish num, Error: file name: line number: ELAB-2050
user message) ; $fatal (finish num) output: user message
Serror (user message) ; Error: file name: line number: S$error ELAB-2051

output: user message

2. clog2() is supported in constant expressions, but not in always blocks or continuous assignments.

HDL Compiler™ for SystemVerilog User Guide 51

U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 1: SystemVerilog for Synthesis
Elaboration System Tasks

SystemVerilog syntax Tool output format Message
number
Swarning (user message); Warning: file name: line number: ELAB-2052

Swarning output: user message

$info (user message) ; Information: file name: line number: ELAB-2053
$info output: user message

SystemVerilog elaboration system tasks have the following details:

« These elaboration system tasks are called outside procedural code in a generate or
conditional generate construct.

« The user message argument contains a formatting string and constant expressions,
including constant function calls.

« The $fatal and serror tasks terminate HDL Compiler compilation with an error.

« The finish num argument only applies to the $fatal task. It has a value of O, 1, or 2.
It is printed in the output message, but the value has no meaning to the tool.

+ The swarning and $info tasks output a message, but continue compilation without an
error.

Note:

The elaboration system tasks use the same names as the SystemVerilog
Severity Tasks. The tasks are differentiated by the context of the system
task call. The Severity Tasks are called within procedural code (for example
inside an always block) while the elaboration system tasks must be called
from outside procedural code. HDL Compiler continues to parse and ignore
SystemVerilog Severity Tasks.

For more information, see the IEEE Std 1800-2017 (Sections 20.10 and 20.11).

Example 12 Checking a Parameter Value With a SystemVerilog Elaboration System Task
module sub # (parameter SIZE) (
output [SIZE-1:0] out,
input [SIZE-1:0] in);

if ((SIZE < 1) || (SIZE > 8)) // conditional generate construct
$fatal(l, "Parameter SIZE has an invalid value of %d", SIZE);

assign out = ~in;

endmodule

module top (
output [15:0] out,
input [15:0] in);

HDL Compiler™ for SystemVerilog User Guide 52
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 1: SystemVerilog for Synthesis
Inputs and Outputs

sub #(.SIZE(16)) Ul (.out(out), .in(in));
endmodule

Example 13 Error Messages When Elaborating a Design With an Invalid Parameter Value
dc_shell> elaborate top
Error: ./parameter.sv:9: $fatal(l) output: Parameter SIZE has an invalid
value of 16 (ELAB-2050)
*** Presto compilation terminated with 1 error. ***

Inputs and Outputs
This section contains the following topics:
+ Input Descriptions
» Design Hierarchy
« Component Inference and Instantiation
* Naming Considerations
« Generic Netlists

» Error Messages

Input Descriptions

SystemVerilog code input to the HDL Compiler tool can contain both structural and
functional (RTL) descriptions. A SystemVerilog structural description can define a range of
hierarchical and gate-level constructs, including module definitions, module instantiations,
and netlist connections.

The functional elements of a SystemVerilog description for synthesis include
« always statements
+ Tasks and functions
+ Assignments
o Continuous—are outside always blocks
o Procedural—are inside always blocks and can be either blocking or nonblocking
« Sequential blocks (statements between a begin and an end)
« Control statements

* Loops—for, while, forever

HDL Compiler™ for SystemVerilog User Guide 53
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 1: SystemVerilog for Synthesis
Inputs and Outputs

The forever loop is only supported if it has an associated disable condition, making the
exit condition deterministic.

« case and if statements

Functional and structural descriptions can be used in the same module, as shown in
Example 14.

In this example, the detect logic function determines whether the input bitisa 0 or a 1.
After making this determination, detect logic sets ns to the next state of the machine.
An always block infers flip-flops to hold the state information between clock cycles. These
statements use a functional description style. A structural description style is used to
instantiate the three-state buffer t1.

Example 14 Mixed Structural and Functional Descriptions

// This finite state machine (Mealy type) reads one

// bit per clock cycle and detects three or more

// consecutive 1s.

module three ones(signal, clock, detect, output enable);
input signal, clock, output enable;

output detect;

// Declare current state and next state variables.

reg [1:0] cs;

reg [1:0] ns;

wire ungated detect;

// Declare the symbolic names for states.
parameter NO ONES = 0, ONE ONE = 1,

TWO ONES = 2, AT LEAST THREE ONES = 3;
// Kk k ok ok kkx ok kx kK STRUCTURAI DESC?IPTIOﬁ K,k hkkkhkkxhkkxkkxkk
// Instance of a three-state gate that enables output
three state tl (ungated detect, output enable, detect);

// khkkkAk Ak Khkhkxk k%K FUNCTIONAL DESCRIPTION R b I I b b b b b ab b i e 2 4
// always block infers flip-flops to hold the state of

// the FSM.

always @ (posedge clock) begin
cs = ns;

end

// Combinational function
function detect logic;
input [1:0] cs;

input signal;

begin
detect logic = 0; //default
if (signal ==) //bit is zero
ns = NO_ONES;
else //bit is one, increment state
case (cs)
NO ONES: ns = ONE ONE;
ONE ONE: ns = TWO ONES;

TWO ONES, AT LEAST THREE ONES:
begin
ns = AT LEAST THREE ONES;
detect logic = 1;

HDL Compiler™ for SystemVerilog User Guide 54
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 1: SystemVerilog for Synthesis
Inputs and Outputs

end
endcase
end
endfunction
assign ungated detect = detect logic(cs, signal);
endmodule

Design Hierarchy

The HDL Compiler tool maintains the hierarchical boundaries you define when you use
structural Verilog. These boundaries have two major effects:

« Each module in HDL descriptions is synthesized separately and maintained as a
distinct design. The constraints for the design are maintained, and each module can be
optimized separately in the HDL Compiler tool.

* Module instantiations within HDL descriptions are maintained during input. The
instance names that you assign to user-defined components are propagated through
the gate-level implementation.

Note:

The HDL Compiler tool does not automatically create the hierarchy for
nonstructural Verilog constructs, such as blocks, loops, functions, and tasks.
These elements of HDL descriptions are translated in the context of their
designs. To group the gates in a block, function, or task, you can use the group
-hdl blockgroup cells -hdl block command after reading in a Verilog
design. The tool supports only the top-level a1ways blocks. Due to optimization,
small blocks might not be available for grouping. To report blocks available for
grouping, use the 1ist hdl blocksget groups -hdl of module command.
For information about how to use the group command with Verilog designs, see
the man page.

Component Inference and Instantiation

There are two ways to define components in your Verilog description:

* You can directly instantiate registers into a Verilog description, selecting from any
element in your ASIC library, but the code is technology dependent and the description
is difficult to write.

« You can use Verilog constructs to direct the tool to infer registers from the description.
The advantages are these:

o The Verilog description is easier to write and the code is technology independent.

o This method allows the HDL Compiler tool to select the type of component inferred,
based on constraints.

HDL Compiler™ for SystemVerilog User Guide 55
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 1: SystemVerilog for Synthesis
Inputs and Outputs

If a specific component is necessary, use instantiation.

Naming Considerations

The bus output instance names are controlled by the following variables:

bus naming style (controls names of elements of Verilog arrays) and
bus_inference style (controls bus inference style). To reduce naming conflicts, use
caution when applying nondefault naming styles. For details, see the man pages.

Generic Netlists

After the HDL Compiler tool reads a design, it creates a generic netlist consisting of
generic components, such as SEQGENSs.

For example, after the tool reads the my_fsm design in Example 15, it creates the generic
netlist shown in Example 16.

Example 15 my_fsm Design

module my fsm (clk, rst, y);
input clk, rst;

output y;
reg y;
reg [2:0] current state;
parameter
red = 3'b001,
green = 3'b010,
yellow = 3'b100;
always @ (posedge clk or posedge rst)
if (rst)
current state = red;
else
case (current state)
red:
current state = green;
green:
current state = yellow;
yellow:
current state = red;
default:
current state = red;
endcase
always @ (current state)
if (current state == yellow)
y = 1'bl;
else
y = 1'b0;
endmodule
HDL Compiler™ for SystemVerilog User Guide 56

U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 1: SystemVerilog for Synthesis
Inputs and Outputs

Example 16 Generic Netlist

module my fsm (clk, rst, y);
input clk, rst;

output y;

wire NO, N1, N2, N3, N4, N5, N6, N7, N8, N9, N10, N11, N12, N13, N14,
N15,

N16, N17, N18;

wire [2:0] current state;

GTECH OR2 C10 (.A(current state[2]), .B(current state[l]), .Z(N1l));

GTECH OR2 C11 (.A(N1l), .B(NO), .Z(N2));

GTECH_OR2 Cl4 (.A(current state[Z]), (N4), (N5))

GTECH_OR2 C15 (.A(N5), B(current_state[O]), (No))

GTECH_OR2 C18 (.A(N1l5), .B(current state[l]), .Z(N8));

GTECH OR2 C19 (.A(N8), .B(current state[0]), (N9))

SEQGEN \current state reg[2] (.clear(rst), .preset(1'b0),

.next state(N7), .clocked on(clk), .data in(1'b0), .enable(1'b0),
.0
current state[2]), .synch clear(1'b0), .synch preset(1'bO),
.synch toggle(1'b0), .synch enable(1l'bl));
SEQGEN \current state reg[l] (.clear(rst), .preset(1'b0),
.next state(N3), .clocked on(clk), .data in(1'b0), .enable(1'b0),
.Q(
current state[l]), .synch clear(1'b0O), .synch preset(1'bO),
.synch _toggle(1'b0), .synch enable(l'bl));
SEQGEN \current state reg[0] (.clear(1'b0), .preset(rst),
.next state(N14), .clocked on(clk), .data in(1'bO),
.enable (1'b0), .0
current state[0]), .synch clear(1'b0), .synch preset(1'bO),
.synch toggle(1'b0), .synch enable(l'bl));
GTECH NOT I O (.A(current state[2]), Z (N15));
GTECH OR2 C47 current state[1l]), .B(N15), .Z(Nle6));
(

(.A(

GTECH OR2 C48 (.A(current state[0]), .B(N1lé6), .Z(N17));
GTECH NOT I 1 (.A(N17), .Z(N18));
GTECH OR2 C51 (.A(N10O), .B(N13), .Z(N14));
GTECH _NOT I 2 (A(current state[0]), .Z(NO));
GTECH NOT I 3 (.A(N2), .Z(N3));
GTECH NOT I 4 (.A(current_state[l]), .Z(N4)),
GTECH NOT I 5 (.A(N6), .Z(N7));
GTECH NOT I 6 (.A(N9), .Z(N10O));
GTECH OR2 C68 (.A(N7), .B(N3), .Z(N11l));
GTECH _OR2 C69 (A(NlO), B(Nll) .Z(N12)) ;
GTECH NOT I 7 (.A(N12), .Z(N13));
GTECH BUF B 0 (.A(N18), .Z(y))i

endmodule

The report cell command lists the cells in a design. Example 17 shows the
report cell output for my_fsm design.

HDL Compiler™ for SystemVerilog User Guide 57
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: SystemVerilog for Synthesis

Inputs and Outputs

Example 17 report_cell Output

dc_shell> report cell
Information:

R R e b e dh b e ah dh S b S b I S SR S S SR S S SR S S SR S I R S S R S A b 4

Report
Design

Version:

Date

cell
my fsm

B-2008.09

Updating design information...

Tue Jul 15 07:11:02 2008

R R e A b A b I S 2 I S b I S b I S b S S R S S R S b S S S S R S 2 4

Attributes:
b - black box (unknown)

(UID-85)

Library

Feedback

c - control logic

h - hierarchical

n - noncombinational

r - removable

u - contains unmapped logic
Cell Reference
Attributes
B 0 GTECH BUF
C10 GTECH_ORZ
c11 GTECH OR2
c14 GTECH_OR2
C15 GTECH_OR2
Cc18 GTECH_ORZ
C1l9 GTECH_OR2
c47 GTECH_ORZ
c48 GTECH_OR2
c51 GTECH_OR2
c68 GTECH_OR2
Cc69 GTECH_ORZ
I0 GTECH NOT
I1 GTECH NOT
I2 GTECH_NOT
I3 GTECH NOT
I 4 GTECH NOT
I5 GTECH NOT
I6 GTECH NOT
I7 GTECH NOT
current state reg[0] **SEQGEN**
current state regf[l] ** SEQGEN* *
current state reg[2] ** SEQGEN* *

.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000

~ ~ ~

cococgocgocCcNQNecCccQeQeQccC

Total 23 cells
1

HDL Compiler™ for SystemVerilog User Guide
U-2022.12-SP3

.000000

58

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 1: SystemVerilog for Synthesis
Inputs and Outputs

Error Messages

If the design contains syntax errors, these are typically reported as ver-type errors;
mapping errors, which occur when the design is translated to the target technology, are
reported as elab-type errors. An error causes the script you are currently running to
terminate; an error terminates your HDL Compiler session. Warnings are errors that do not
stop the read from completing, but the results might not be as expected.

You can use the suppress message command to suppress particular warning messages
when reading SystemVerilog source files. By default, the tool does not suppress any
warnings. This command has no effect on error messages that stop the reading process.

To use it, specify the list of warning message ID codes that you want to suppress. For
example, to suppress the following message:

Warning: Assertion statements are not supported. They are
ignored near symbol "assert" on line 24 (HDL-193).

then issue the following command:

dc shell> suppress message {HDL-193}

HDL Compiler™ for SystemVerilog User Guide 59
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

2

Global Name Space ($unit)

The following topics describe how the Synopsys synthesis tools support SystemVerilog
global declarations:

« About the Global Name Space
« Reading Designs With $unit

« Synthesis Restrictions for $unit

About the Global Name Space

The Synopsys synthesis tools support SystemVerilog global declarations through the
global name space ($unit). This is a top-level name space, which is outside any modules
and is visible to all modules at all hierarchical levels. While the global name space allows
you to share common function and variable declarations among several modules, various
tools treat the declarations in $unit differently. As a result, you should use packages
instead of $unit for this purpose.

You can specify the following objects in $unit:
« Type definitions
« Enumerated types
« Local parameter (1ocalparam) declarations
The parameter keyword can also be used to declare local parameters.
+ Automatic tasks and automatic functions
« Constant declarations
« Simulation-related constructs, such as timeunit, timeprecision, and timescale
+ Directives

» Verilog 2001 compiler directives, such as “include and ‘define

HDL Compiler™ for SystemVerilog User Guide 60
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 2: Global Name Space ($unit)
About the Global Name Space

Example 18 shows how to use $unit. This example combines objects that include enums,
typedefs, parameter declarations, tasks, functions, and structure variables in $unit; these
objects are used by the test module.

Example 18 $unit Usage

typedef enum logic {FALSE, TRUE} my reg;
localparam a = '1;
typedef struct {
my reg [a:0] orig;
my reg [a:0] orig inverted;
} my struct;

function automatic my reg [a:0] invert (my reg [a:0] value);
return (~value);

endfunction

task automatic check invert (my struct struct in);

begin
if(struct _in.orig == struct in.orig inverted)
Sdisplay ("\n ERROR: Value not inverted\n");
else
Sdisplay ("\n CORRECT: Value is inverted\n");
end
endtask

module test (
input my reg [a:0] din,
output my struct dout
)
assign dout.orig = din;
assign dout.orig inverted = invert (din);

always comb check invert (dout);
endmodule

See Also
+ Packages

« Specifying Global Files for Each analyze Command

HDL Compiler™ for SystemVerilog User Guide 61
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 2: Global Name Space ($unit)
Reading Designs With $unit

Reading Designs With $unit

The following topics describe the guidelines on how to read designs that use the $unit
name space:

» Defining Objects Before Use
« Specifying Global Files First
« Specifying Global Files for Each analyze Command

The examples provided in each topic use the analyze command, but the guidelines apply
to both the analyze and read commands, such as read file and read sverilog.

The following four files are used in the examples:

« global.sv—contains a global declaration of the structure data type that is used by other

modules.

typedef struct {
logic a, b;

} data;

« and_struct.sv—assigns the structure data type in $unit to the din input.

module and struct(
input data din,
output a and b
);
assign a _and b = din.a & din.b;
endmodule

« or_struct.sv—assigns the structure data type in $unit to the din input.

module or struct (
input data din,
output a or b
) i
assign a or b = din.a | din.b;
endmodule

- top.sv—assigns the structure data type in $unit to the din input and instantiates the
and_struct module with the name u1 and the or_struct module with the name u2.

module top(

input data din,

output or result, and result
)7

and_struct ul(.din, .a_and b(and result));
or struct u2(.din, .a or b (or result));
endmodule
HDL Compiler™ for SystemVerilog User Guide 62

U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 2: Global Name Space ($unit)
Reading Designs With $unit

Defining Objects Before Use

You must define an object before you use it. In Example 19, one analyze command
reads all the specified files. The first file is global.sv, which is followed by three files,
and_struct.sv, or_struct.sv, and top.sv. These three files all use the global declaration
in the global.sv file. Because the global.sv file is read first, the tool generates the netlist
without errors.

Example 19

dc_shell> analyze -format sverilog \
{global.sv and_struct.sv or_struct.sv top.sv}
dc_shell> elaborate top
dc_shell> write -format verilog -hierarchy -output gtech.samplel.v

However, if the global.sv file is read after the other files, as shown in Example 20, the tool
issues a VER-518 error message.

Example 20

dc_shell> analyze -format sverilog \
{and_struct.sv or_struct.sv top.sv global.sv}
Running HDLC
Searching for ./and struct.sv
Searching for ./or struct.sv
Searching for ./top.sv
Searching for ./global.sv
Compiling source file ./and struct.sv
Error: ./and_struct.sv:1l: Syntax error at or near token 'din'. (VER-294)
Compiling source file ./or struct.sv
Error: Cannot recover from previous errors. (VER-518)
*** Presto compilation terminated with 2 errors. ***
0

Specifying Global Files First

When using read commands to read files individually, you must include all applicable
global files for each read command by using either one of the following two methods. The
tool issues an error message if you mix both methods.

« The $unit method

In Example 21, a separate analyze command reads each of the files, and_struct.sy,
or_struct.sv, and top.sv, individually. Because a separate $unit name space is created
for each analyze command, you must specify the global file first for each analyze
command.

HDL Compiler™ for SystemVerilog User Guide 63
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Global Name Space ($unit)
Reading Designs With $unit

Example 21

Feedback

dc _shell> analyze -format sverilog {global.sv and struct.sv}
dc_shell> analyze -format sverilog {global.sv or_struct.sv}
dc_shell> analyze -format sverilog {global.sv top.sv}

dc shell> elaborate top

dc_shell> write -format verilog -hierarchy -output gtech.sample3.v

Because all required global declarations are available in $unit when the modules are
read, the tool reads the designwithout errors.

However, if the global file is not read before each design file, as shown in Example 22,
the tool issues an error message. The error occurs because the structure data type is
applied to the din input before the data type is defined.

Example 22

dc shell> analyze -format sverilog {global.sv and struct.sv}
Running HDLC

dc_shell> analyze -format sverilog {or_struct.sv}
Running HDLC

Searching for ./or struct.sv

Compiling source file ./or struct.sv

Error: ./or struct.sv:1l: Syntax error at or near token 'din'.
(VER-294)

*** Presto compilation terminated with 1 error. **x*

0

The *include construct

You can use this method to fix the problem described in Example 22. Example 23
shows how to include the global file.

Example 23

'include "global.sv"

module or struct(
input data din,
output a or b
)i
assign a or b = din.a | din.b;
endmodule

Example 24 shows the script for the *include method. The tool reads all the files and
generates the netlist without errors.

Example 24

HDL Compiler™ for SystemVerilog User Guide

dc_shell> analyze -format sverilog {global.sv and struct.sv}
dc_shell> analyze -format sverilog {or_struct modified.sv}

U-2022.12-SP3

64

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

, Feedback
Chapter 2: Global Name Space ($unit)
Reading Designs With $unit

dc_shell> analyze -format sverilog {global.sv top.sv}
dc_shell> elaborate top
dc_shell> write -format verilog -hierarchy -output gtech.sampled.v

Specifying Global Files for Each analyze Command

For each analyze command, a separate $unit name space is created for the files read.
Multiple analyze commands do not share the name spaces. Therefore, you must specify
all the global files that are used by the files analyzed for each analyze command.
Example 25, which shows how to apply this guideline, uses the following five files:

« global.sv—contains the global declaration of the structure data type that is used by
other modules.

typedef struct {
logic a, b;
} data;

« global2.sv—contains the global function parity that uses the structure data type from
the global.sv file.

function automatic parity (input data din);
return(*{din.a, din.b}):
endfunction

« and_struct_exor.sv—assigns the structure data type to the din input. The design
computes the parity of the din input using the parity function from the global2.sv file.

module and struct exor (

input data din,

output a and b, a exor b
)
assign a _and b = din.a & din.b;
assign a_exor b = parity(din);
endmodule

« or_struct.sv—assigns the structure data type to the din input.

module or struct (
input data din,
output a or b
);
assign a or b = din.a | din.b;
endmodule

« top_modified.sv—assigns the structure data type to the din input and instantiates the
and_struct_exor module with the name u1 and the or_struct module with the name u2.

module top(
input data din,
output or result, and result, parity result

HDL Compiler™ for SystemVerilog User Guide 65
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 2: Global Name Space ($unit)
Synthesis Restrictions for $unit

);

and struct exor ul(.din, .a and b(and result),
.a_exor b(parity result));

or struct u2(.din, .a or b(or result));
endmodule

In Example 25, the first analyze command reads the global.sv and global2.sv global
files before the and_struct_exor file so that the data structure and the parity function are
available to the and_struct_exor module. Because the tool creates a separate $unit for
each analyze command, the global.sv file must be read individually for the or_struct and
top_modified.sv files.

Example 25
dc_shell> analyze -format sverilog \
{global.sv global2.sv and_struct_exor.sv}
dc_shell> analyze -format sverilog {global.sv or_ struct.sv}
dc_shell> analyze -format sverilog {global.sv top modified.sv}
dc_shell> elaborate top
dc_shell> write -format verilog -hierarchy -output gtech.sample6.v

The tool generates the netlist without any errors because all required global declarations
are available in $unit when the modules are read.

Synthesis Restrictions for $unit
The following objects are not allowed in $unit because of synthesis restrictions:
» Declarations
+ Instantiations
 Static Variables

» Static Tasks and Functions

Declarations

Declarations of nets and variables are not allowed in $unit. For example, the tool cannot
synthesize the following declarations:

logic a, c;
wire Db;

HDL Compiler™ for SystemVerilog User Guide
U-2022.12-SP3

66

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 2: Global Name Space ($unit)
Synthesis Restrictions for $unit

Instantiations

Module, interface, and gate instantiations are not allowed in $unit. For example, the tool
cannot synthesize the following code:

and and gate(out, inl, in2);
half adder Ul (sum, ain, bin); // where half adder is module
nameiface ifl(); // where iface is the interface name

Static Variables

Static variables inside automatic functions or automatic tasks are not allowed in $unit. For
example, the tool cannot synthesize the following code:

function automatic [31:0] incr by value (logic [31:0] wval);
static logic [31:0] sum = 0; //static variable here
sum += val;
return (sum);

endfunction

Static Tasks and Functions

Static tasks or static functions are not allowed in $unit. For example, the tool cannot
synthesize the following code:

function static logic non _zero int is true (logic [31:0] wval);
if (val == 0) return ('0);

else return('l);

endfunction

If you use the previous code in $unit, the tool issues an error message similar to the
following:

Error: ...: Static function 'adder' is not synthesizable
in Sunit, expecting "automatic" keyword (VER-523)

Verilog functions are static by default. For example, if you do not use the automatic
keyword in the following code, the tool assumes it is a static function and issues a
VER-523 error message.

function void adder (
input c¢in, [7:0] inl, [7:0] inZ2,
output [8:0] result

)

begin
assign result[0] = cin;
end
endfunction
HDL Compiler™ for SystemVerilog User Guide 67

U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

3

Feedback

Packages

You can use packages to share parameters, types, tasks, and functions among multiple
modules and interfaces in SystemVerilog. Packages are explicitly named scopes
appearing at the same level as the top-level modules. The following topics describe
various ways to reference such declarations in modules, interfaces, and other packages:

» About Packages

« Referencing Declarations in Packages

« Wildcard Imports From Packages Into Modules
» Specific Imports From Packages Into Modules
« Wildcard Imports From Packages Into $unit

« Package Searching

About Packages

In any SystemVerilog design projects, it is common for a design team to reuse types,
functions, and tasks. When you put these common constructs in packages, they can
be shared among the team. This allows developers to use existing code based on their
requirements without any ambiguity. After specifying all types, functions, and tasks in a
package, you analyze the package. Modules that use the package declarations can be
analyzed separately without the need to reanalyze the package. This can save runtime
when large packages are used.

The following restrictions apply when you use packages:
« Wire and variable declarations in packages are not allowed.
The tool issues an error message.
» Functions and tasks that are declared inside packages need to be automatic.
« Sequence, property, and program blocks are ignored.

The tool issues a warning. For more information about ignored assertions, see
Assertions in Synthesis.

HDL Compiler™ for SystemVerilog User Guide
U-2022.12-SP3

68

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Packages

Feedback

Referencing Declarations in Packages

Using Packages

To use a package in SystemVerilog,

1.

Analyze the package by using the analyze command.

The command creates a temporary package name.pvk file. If you modify this analyzed
package by adding or removing functions, tasks, types, and so on, the tool overwrites
this temporary file and issues a VER-26 warning message similar to the following:

Warning: ./test.sv:1: The package p has already been analyzed. It is
being replaced. (VER-26)

. Analyze and elaborate the modules that use the package created in step 1 by using the

analyze and elaborate commands respectively.

If your modules were analyzed using a previous version of the package, repeat step 2
so that the tool uses the latest declarations from the package.

Referencing Declarations in Packages

Example 26 uses the following three files. To access the declarations in the pkg1
package, the test1.sv and test2.sv files use the scope resolution operator (: :) to
reference the type and function declarations with the package _name::type_name and
package_name::function_name syntax.

package.sv—contains two types, my_struct and my_T, and two functions, subtract and
complex_add.

package pkgl;
typedef struct {int a;logic b;} my struct;
typedef logic [127:0] my T;

function automatic my T subtract(my T one, two);
return (one - two);
endfunction

function automatic my struct complex add(my struct one, two);
complex add.a one.a + two.a;

complex add.b one.b + two.b;

endfunction

endpackage : pkgl

test1.sv—uses the my_T type and the subtract function to compute the result and
equal values.

module testl (
input pkgl::my T inl, in2,
input [127:0]test vector,

HDL Compiler™ for SystemVerilog User Guide 69
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 3: Packages
Wildcard Imports From Packages Into Modules

output pkgl::my T result,

output equal
)
assign result = pkgl::subtract(inl, in2);
assign equal = (inl == test vector);
endmodule

« test2.sv—uses the my_struct type and complex_add function to compute the result2
values.

module test2 (
input pkgl::my struct inl, in2,
output pkgl::my struct result2
)
assign result2 = pkgl::complex add(inl, in2);
endmodule

In Example 26, you analyze the package.sv file first to create the temporary pkg1.pvk file.
Then, you can analyze and elaborate the test1 and test2 files individually because the
pkg1.pvk file already exists.

Example 26 Script
Analyze the package file the first time, it creates pkgl.pvk file
analyze -format sverilog package.sv

Analyze/elaborate the first module, testl, that uses the package
analyze —-format sverilog testl.sv
elaborate testl

Analyze/elaborate the second module, test2, that uses the package
analyze -format sverilog test2.sv

elaborate test2

Alternatively, you can analyze all the package and module files at the same time.

Wildcard Imports From Packages Into Modules

Example 27 uses wildcard imports to import all declarations, the enum identifier color and
its literal values, into the module scope. Both imported items are used in the finite state
machine.

Example 27 Wildcard Imports
package p;
typedef enum logic [1:0] {red, blue, yellow, green} color;
endpackage

module fsm controller (
output logic [2:0] result,
input [1:0] read value,

HDL Compiler™ for SystemVerilog User Guide 70
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 3: Packages
Specific Imports From Packages Into Modules

input clock, reset

)7
/*

Using wildcard imports, both the enum identifier and literals become
available and are kept because they are used inside the module.

*/

import p::*;

color State;

always ff @ (posedge clock, negedge reset)
begin
if (!reset)
begin
State <= red;
end
else
begin
State <= color' (read value);
end
end

always comb

begin
case (State)
red : result = 3'bl101;
yellow: result = 3'b001;
blue : result = 3'b000;
green : result = 3'b010;
endcase
end
endmodule

Specific Imports From Packages Into Modules

Packages can hold many declarations, but not all the decorations are needed by all the
modules. For example, if the entire design uses one global package for all declarations,
you can import specific type or function declarations for your modules from the global
package. In Example 28, the p package contains the color, SWITCH_VALUES, packet t,
and sw_lIgt_pair types. Because the fsm_controller module uses only the color type, you
import the color type and its literal values from the package.

Example 28 Package p
package p;

typedef enum logic [1:0] {red, blue, yellow, green} color;
typedef enum logic {OFF, ON} SWITCH VALUES;

typedef struct {

HDL Compiler™ for SystemVerilog User Guide 71
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Packages
Specific Imports From Packages Into Modules

logic [7:0] src;

logic [7:0] dst;

logic [31:0] data;
} packet t;

typedef struct packed {
SWITCH VALUES switch; // 1 bit

color light; // 2 bits
logic test bit; // 1 bit
sw_lgt pair; // 4 bits
}
endpackage

module fsm controller (
output logic [2:0] result,
input [1:0] read value,
input clock, reset

) ;

Feedback

import p::color; //use specific imports to import the identifier color
import p::red; //use specific imports to import the enum literal values
import p::blue;

import p::yellow;

import p::green;

color State;

always ff @ (posedge clock, negedge reset) begin

begin
if (!'reset)
begin
State <= red;
end
else
begin
State <= color' (read value);
end
end

always comb

begin
case (State)
red : result = 3'bl101;
yellow: result = 3'b001;
blue : result = 3'b000;
green : result = 3'b010;
endcase
end
endmodule

HDL Compiler™ for SystemVerilog User Guide
U-2022.12-SP3

72

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 3: Packages
Wildcard Imports From Packages Into $unit

Note:

Even if you use wildcard imports (import p::*;)in the fsm_controller module,
the module uses only the required types. When creating large designs with
packages, use specific imports so that you know what types are imported into
the designs. If you use wildcard imports, debugging might be difficult because
you have to step through your entire module to find what types are actually
used.

Wildcard Imports From Packages Into $unit

The tool supports wildcard imports into the $unit name space from packages without
requiring access by using the scope resolution operator (::). Example 29 shows the code
compaction benefit of using wildcard imports.

Example 29
package pkg;
typedef struct {byte a, b;} packet;
typedef enum logic[1:0] {ONE,TWO,THREE} state t;
endpackage

import pkg::*; //wildcard import into $unit
module test (

output packet packetl,

input clk, rst,

input state t datal, data2
)

/* Using scope resolution without imports in $unit syntax:
module test (
output pkg::packet packetl,
input clk, rst,
input pkg::state t datal, data2z
)
*/

endmodule

Package Searching

The HDL Compiler tool can search for a previously analyzed package (.pvk file) in different
directories when analyzing modules that contain imports from this package.

When searching for a package, the tool first looks at the current working directory
regardless of whether the working directory is specified in the search path variable. If
the tool cannot find the package, it looks at other directories, starting from the left most

HDL Compiler™ for SystemVerilog User Guide 73
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 3: Packages
Package Searching

directory path specified in the search path variable, and uses the first matching package
it finds. You should specify directory paths in correct order for the search path variable.

For example, the RTL design contains the test1.sv and test2.sv files that need the user-
defined types in the pkg1.sv package. You use the script shown in Example 30 to analyze
the pkg1.sv package and the test1.sv file in the test1 library, but you need to analyze the
test2.sv file in the test2 library. To use this analyzed package, include the directory path
of the analyzed pkg1.pvk package in the search path variable, and then analyze the
test2.sv file without reanalyzing the pkg1.sv package, as shown in Example 31.

Example 30

dc_shell> define_design_lib testl -path ../testl
dc_shell> analyze -format sverilog \

-library testl {list ../rtl/pkgl.sv ../rtl/testl.sv}
dc_shell> elaborate -library testl my testl

Example 31

dc_shell> lappend search path {list ../testl}

dc_shell> define _design_lib test2 -path ../test2

dc_shell> analyze -format sverilog -library test2 {list ../rtl/test2.sv}
dc shell> elaborate -library test2 my test2

The tool issues the following information message, showing which previously analyzed
package is used and where the package resides:

Found package 'pkgl' via search path at ./testl/pkgl.pvk.

When the tool cannot find the package, it issues the following error message:

Error: testl.sv:1: Package 'pkgl' has not been analyzed for import or
content extraction. (VER-224)

HDL Compiler™ for SystemVerilog User Guide 74
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

4

Combinational Logic

These topics describe how to model combinational logic using HDL operators, MUX_OP
cells, and SystemVerilog constructs, such as always comb, unique if, priority if,
priority case, and unique case.

« Synthetic Operators

« Logic and Arithmetic Expressions

« Language Constructs for Combinational Logic Inference
« Selection and Multiplexing Logic

« Bit-Truncation Coding for DC Ultra Datapath Extraction

Synthetic Operators

Synopsys provides the DesignWare Library, which is a collection of intellectual property
(IP), to support the synthesis products. Basic IP provides implementations of common
arithmetic functions that can be referenced by HDL operators in the RTL.

The DesignWare IP solutions are built on a hierarchy of abstractions. HDL operators
(either the built-in operators or HDL functions and procedures) are associated with
synthetic operators, which are bound to synthetic modules. Each synthetic module can
have multiple architectural realizations called implementations. When you use the HDL
addition operator in a design, the HDL Compiler tool infers an abstract representation

of the adder in the netlist. The same inference applies when you use a DesignWare
component. For example, a DW01_add instantiation is mapped to the synthetic operator
associated with it, as shown in Figure 3.

A synthetic library contains definitions for synthetic operators, synthetic modules,

and bindings. It also contains declarations that associate synthetic modules with their
implementations. To display information about the standard synthetic library that is
included with the HDL Compiler license, use the report synlib command.

For example,

report synlib standard.sldb

HDL Compiler™ for SystemVerilog User Guide 75
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 4: Combinational Logic
Synthetic Operators

For more information about the DesignWare synthetic operators, modules, and libraries,
see the DesignWare documentation.

Figure 3 DesignWare Hierarchy

HDL operator HDL operator definition

I — T
_— | Z<=X+Y

map_to_operator directive

Synthetic library Synthetic operator

ADD_UNS_OP

Bindings

v
Synthetic modules

ADD_SUB ADD ALU

Implementation

declarations

v
Design library Implementations
Ripple Carry-lookahead Proprietary
HDL Compiler™ for SystemVerilog User Guide 76

U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Combinational Logic

Feedback

Logic and Arithmetic Expressions

Logic and Arithmetic Expressions

These topics discuss synthesis for logic and arithmetic expressions.
« Basic Operators
« Addition Overflow

« Sign Conversions

Basic Operators

When the HDL Compiler tool elaborates a design, it maps HDL operators to synthetic
(DesignWare) operators in the netlist. When the HDL Compiler tool optimizes the design,
it maps these operators to the DesignWare synthetic modules and chooses the best
implementation based on the constraints, option settings, and wire load models.

The tool maps HDL operators, such as comparison (> or <), addition (+), decrement (-),
and multiplication (*), to synthetic operators from the Synopsys standard synthetic library,
standard.sldb. Table 4 shows the complete list of the standard synthetic operators. For
more information, see the DesignWare Library documentation.

Table 4 HDL Operators Mapped to Standard Synthetic Operators

HDL operator(s) Synthetic operator(s)

+

ADD_UNS_OP, ADD_UNS_CI_OP, ADD_TC_OP, ADD_TC_CI_OP
SUB_UNS_OP, SUB_UNS_CI_OP, SUB_TC_OP, SUB_TC_CI_OP
MULT_UNS_OP, MULT_TC_OP

LT_UNS_OP,LT_TC_OP

GT_UNS_OP, GT_TC_OP

LEQ_UNS_OP, LEQ_TC_OP

GEQ_UNS_OP, GEQ_TC_OP

if, case SELECT_OP

division (/) DIV_UNS_OP, MOD_UNS_OP, REM_UNS_OP, DIVREM_UNS_OP,

DIVMOD_UNS_OP,DIV_TC_OP, MOD_TC_OP, REM_TC_OP, DIVREM_TC_OP,
DIVMOD_TC_OP

EQ_UNS_OP, NE_UNS_OP, EQ_TC_OP, NE_TC_OP

HDL Compiler™ for SystemVerilog User Guide 77
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

o : Feedback
Chapter 4: Combinational Logic
Logic and Arithmetic Expressions

Table 4 HDL Operators Mapped to Standard Synthetic Operators (Continued)

HDL operator(s) Synthetic operator(s)

<<, >> (logic)<<<, ASH_UNS_UNS_OP, ASH_UNS_TC_OP, ASH_TC_UNS_OP,
>>> (arith) ASH_TC_TC_OPASHR_UNS_UNS_OP, ASHR_UNS_TC_OP,
ASHR_TC_UNS_OP, ASHR_TC_TC_OP

Barrel Shiftror, rol BSH_UNS_OP, BSH_TC_OP, BSHL_TC_OPBSHR_UNS_OP, BSHR_TC_OP

Shift and Addsrl, sll, SLA_ UNS OP, SLA TC_OPSRA_UNS OP,SRA TC OP
sra, sla

Note:

Depending on the selected implementation, a DesignWare license might be
needed during optimization. To find out the implementation options and license
requirements, see the DesignWare Datapath and Building Block IP Quick
Reference.

Addition Overflow

When the HDL Compiler tool performs arithmetic optimization, it considers how to handle
addition overflow caused by carry bits. The optimized structure is affected by the bit-widths
that you declare for storing the intermediate results.

4-Bit Temporary Variable

For example, an expression that adds two 4-bit numbers and stores the result in a 4-bit
register can overflow the 4-bit output and truncate the most significant bit. In Example 32,
three variables are added (a + b + c). The temporary variable, t, holds the intermediate
result of a + b. If tis declared as a 4-bit variable, the overflow bits from the addition of a +
b are truncated. Figure 4 shows how the tool determines the default structure.

Example 32 Adding Numbers of Different Bit-Widths

t <= a + b; // a and b are 4-bit numbers
z <=t + c; // c is a 6-bit number

HDL Compiler™ for SystemVerilog User Guide 78
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 4: Combinational Logic
Logic and Arithmetic Expressions

Figure 4 Default Structure for a 4-Bit Temporary Variable
a[4] b[4]

c[6]
t[4]

2[6]

5-Bit Intermediate Result

To perform the previous addition (z = a + b + c¢) without a temporary variable, the HDL
Compiler tool determines that 5 bits are needed to store the intermediate result to avoid
overflow, as shown in Figure 5. This result might be different from the previous case,
where a 4-bit temporary variable truncates the intermediate result. Therefore, these two
structures do not always yield the same result.

Figure 5 Structure for a 5-Bit Intermediate Result
a[4] b[4]
c[6]
a+b[5
z[6]

Optimization for Delay

If the same expression is optimized for the late-arriving signal, a, the tool restructures the

expression so that signals b and ¢ are added first. Because signal c is declared as 6 bits,

the tool determines that the intermediate result must be stored in a 6-bit variable. Figure 6
shows the structure for this example.

HDL Compiler™ for SystemVerilog User Guide 79
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 4: Combinational Logic
Logic and Arithmetic Expressions

Figure 6 Structure for a Late-Arriving Signal
b[4] c[6]
a[4]
b+c[6
z[6]

Sign Conversions

When reading a design that contains signed expressions and assignments, the tool issues
VER-318 warnings for sign assignment mismatches.

No warnings are issued for the following conditions:

« The conversion is necessary only for constants in the expression.

« The width of the constant does not change as a result of the conversion.
« The most significant bit of the constant is zero (not negative).

In the following example, though the tool implicitly converts the signed constant 1 to
unsigned, no warning is issued because the conversion meets the previously mentioned
three conditions. By default, integer constants are treated as signed types with signed
values.

module t (
input [3:0] a, b,
output [5:0] =z
)
assign z = a + b + 1;
endmodule

A VER-318 warning indicates that the tool implicitly performs one of the following
operations:

« Conversion
> An unsigned expression to a signed expression
o A signed expression to an unsigned expression
+ Assignment
> An unsigned right side to a signed left side

o A signed right side to an unsigned left side

HDL Compiler™ for SystemVerilog User Guide 80
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Combinational Logic
Logic and Arithmetic Expressions

Feedback

In the following example, signed logic a is converted to an unsigned value and not sign-
extended, and the tool issues a VER-318 warning. This behavior complies with the
SystemVerilog and Verilog 2001 styles.

module t (/*...*/);
logic signed [3:0] a;
logic [7:0] c;

assign a = 4'sbl010;
assign ¢ = a+7'b0101011;
endmodule

When explicit type casting is used, no VER-318 warning is issued. For example, to force
logic a to be unsigned, assign logic ¢ as follows:

c = unsigned' (a)+7'b0101011;

For Verilog designs, you can use the $signed and sunsigned system tasks to do the sign
conversion. For more information, see the IEEE Std 1364-2005.

In the following example, the left side is unsigned, but the right side is sign-extended;
that is, logic a contains the value of 4'b1010 after the assignment. A VER-318 warning is
issued.

module t (/*...*/)
logic unsigned [3:0] a;
assign a = 4'sbl010;
endmodule

If a line contains more than one implicit conversion, such as the expression that is
assigned to logic c in the following example, the tool issues only one warning. In this
example, logic a and b are converted to unsigned values and the right side is unsigned.
Assigning the right-side value to logic ¢ results in a VER-318 warning.

module t (/*...*/

logic signed [aj
logic signed [3:0] b;
logic signed [7:0] c;

assign ¢ = a+4'b0101+ (b*3'b101);
endmodule

The following examples show sign conversions and the cause of each VER-318 warning:

+ In the m1 module, the signs are consistently applied and no warning is issued.

module ml (
input signed [0:3] a,
output signed [0:4] =z
);

assign z = a;
endmodule
HDL Compiler™ for SystemVerilog User Guide 81

U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 4: Combinational Logic
Logic and Arithmetic Expressions

In the m2 module, input a is signed and added to 3'sb111, which is a signed value of
-1. Output z is not signed, so the signed value of the expression on the right side is
converted to unsigned and assigned to output z.

module m2 (
input signed [0:2] a,
output [0:4] =z
);
assign z = a + 3'sblll;
endmodule

Warning: ./test.sv:5: signed to unsigned assignment occurs. (VER-318)

In the m3 module, input a is unsigned but becomes signed when it is assigned to
signed logic x, and the tool issues a VER-318 warning. In the z = x < 4'sd5 expression,
the comparison result of signed x to a signed 4'sd5 value is put into unsigned logic z.
This appears to be a sign mismatch; however, no VER-318 warning is issued because
comparison results are always considered unsigned for all relational operators.

module m3 (
input [0:3] a,
output logic z
);
logic signed [0:3] x;
always comb

begin
X = a;
z = x < 4'sd5;
end
endmodule
Warning: ./test.sv:8: unsigned to signed assignment occurs. (VER-318)

In the m4 module, the signs are consistently applied and no warning is issued.

module m4d (
input signed [7:0] inl, in2,
output signed [7:0] out
);
assign out = inl * in2;
endmodule

In the m5 module, inputs, a and b, are unsigned but they are assigned to signed
signals x and y respectively. Two VER-318 warnings are issued. In addition, logic y is
subtracted from logic x and assigned to unsigned output z; the expression results in a
VER-318 warning.

module m5 (
input [1:0] a, b,
output [2:0] z

) i

logic signed [1:0] x, vy;

HDL Compiler™ for SystemVerilog User Guide 82
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 4: Combinational Logic
Logic and Arithmetic Expressions

assign x = a;

assign y = b;

assign z = x - y;

endmodule

Warning: ./test.sv:6: unsigned to signed assignment occurs. (VER-318)
Warning: ./test.sv:7: unsigned to signed assignment occurs. (VER-318)
Warning: ./test.sv:8: signed to unsigned assignment occurs. (VER-318)

In the m6 module, input a is unsigned but put into signed register x.

module m6 (
input [3:0] a,
output z
)7
logic signed [3:0] x;
always @(a) x = a;

assign z = x < -4'sd5;
endmodule
Warning: ./test.sv:6: unsigned to signed assignment occurs. (VER-318)

In the m7 module, the tool issues no warning because all signs are properly applied.
Comparing a signed constant results in a signed comparison.

module m7 (
input signed [7:0] inl, in2,
output 1t, inl 1t 64

)7

assign 1t = inl < in2;
assign inl 1t 64 = inl < 8'sdo64;
endmodule

In the m8 module, signed input in1 is compared with unsigned input in2. Because
comparison is unsigned, a VER-318 warning is issued. In addition, the unsigned 8'd64
constant causes an unsigned comparison; a VER-318 warning is issued.

module m8 (
input signed [7:0] inl,
input [7:0] in2,
output 1t
)
wire uns _1t, uns_inl 1t 64;
assign uns_1lt = inl < in2;
assign uns_inl 1t 64 = inl < 8'd64;
assign 1t = uns 1t + uns inl 1t 64;

endmodule

Warning: ./test.sv:7: signed to unsigned conversion occurs. (VER-318)

Warning: ./test.sv:8: signed to unsigned conversion occurs. (VER-318)
HDL Compiler™ for SystemVerilog User Guide 83

U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 4: Combinational Logic
Language Constructs for Combinational Logic Inference

* In the m9 module, even though inputs, in1 and in2, are mismatched in signs, the
casting operator converts input in2 to a signed signal. When a casting operator is used
and a sign conversion occurs, no warning is issued.

module m9 (
input signed [7:0] inl;
input [7:0] in2;
output 1t;
);
assign 1t = inl < signed' ({1'b0, in2});
endmodule

Language Constructs for Combinational Logic Inference

This section describes combinational logic inference for the always, always comb,
priority if, priority case, unique if, and unique case constructs.

« The always_comb and always Constructs
+ Latches in Combinational Logic
* The priority if and priority case Constructs

« The unique if and unique case Constructs

The always_comb and always Constructs

In SystemVerilog, you can use the always comb construct to model combinational logic.
The following example describes an AND operation using the always comb construct:

module test (
input a, b,
output logic y
)
always comb
y = a & b;
endmodule

In Verilog, you use the always @* construct to infer the same logic. For example,

module test (
input a, b,
output reg y
)
//always_comb
always @*
y = a & b;
endmodule

HDL Compiler™ for SystemVerilog User Guide 84
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 4: Combinational Logic
Language Constructs for Combinational Logic Inference

When the always comb construct is used, the tool checks whether the logic described
in the always comb block represents combinational logic. When the tool synthesizes the
always_comb block and infers a latch, it issues an ELAB-974 warning.

In the following example, the tool issues a warning because of the missing e1se condition.

module unintended latch (
input a, b,
output logic c
)
always comb
if (a)
c = b;
endmodule

Warning: ../test.sv:5: Netlist for always comb block contains a latch.
(ELAB-974)

If the tool does not infer combinational logic that is described in the always comb block,
it issues an ELAB-982 warning. As shown in the following example, logic tmp is not an
output and might be removed during synthesis, so the tool issues an ELAB-982 warning:

module test (
input a, b,
output c
) ;
logic tmp;
assign ¢ = a | b;
always comb tmp = a & b;
endmodule

See Also

« Latches in Combinational Logic

Latches in Combinational Logic

When a variable in a combinational logic block (an always block without a posedge
or negedge keyword) is not specified in all the branches, the Verilog code can imply
combinational feedback paths or latches in the synthesized logic. A variable is fully
specified when it is assigned a value under all conditions.

Example 33 shows that variable Q is not assigned when GATE equals 1’b0 and a latch
is inferred to store its previous value. To avoid the latch inference, assign a value to the
variable in all the branches of the always block.

Example 33 Latch Inference

always @ (DATA or GATE) begin
if (GATE) begin

HDL Compiler™ for SystemVerilog User Guide 85
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 4: Combinational Logic
Language Constructs for Combinational Logic Inference

Q = DATA;
end
end

In Example 34 and Example 35, variable Q is assigned the value of 0 when GATE equals
1’b0; it is assigned in all the branches of the always block. Example 34 and Example 35
are not equivalent to Example 33, in which Q holds its previous value when GATE equals
1'bO0.

Example 34 Avoiding Latch Inference—Method 1
always @ (DATA, GATE) begin

Q = 0;

if (GATE)

Q = DATA;
end

Example 35 Avoiding Latch Inference—Method 2
always @ (DATA, GATE) begin

if (GATE)
Q = DATA;
else
Q= 0;
end

Example 36 results in a latch because the variable is not assigned in all the branches of
the always block. To avoid the latch inference, add the following statement before the
endcase Statement:

default: decimal= 10'b0000000000;

Example 36 Latch Inference Using a case Statement
always @(I) begin
case (I)
4'h0: decimal= 10'b0000000001;
4'hl: decimal= 10'b0000000010;
4'h2: decimal= 10'b0000000100;
4'h3: decimal= 10'b0000001000;
4'h4: decimal= 10'b0000010000;
4'h5: decimal= 10'b0000100000;
4'h6: decimal= 10'b0001000000;
4'h7: decimal= 10'b0010000000;
4'h8: decimal= 10'b0100000000;
4'h9: decimal= 10'b1000000000;
endcase
end

When a variable is not assigned in all the branches of a for loop or no initial value before
the loop, latches are also inferred.

HDL Compiler™ for SystemVerilog User Guide 86
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 4: Combinational Logic
Language Constructs for Combinational Logic Inference

The priority if and priority case Constructs

This section describes how to direct the tool to infer multiplexers using the priority if
and priority case constructs.

priority if

Example 37 shows how to direct the tool to infer a multiplexer by using the priority if
construct.

Example 37 Multiplexer Inference Using priority if
module priority if (
input a, b, ¢, d, [3:0] sel,
output logic z

) ;

always comb

begin
priority if (sel[3]) z = d;
else if (sel[2]) z = c;
else if (sel[l]) z = b;
else 1if (sel[0]) z = a;

end

endmodule

priority case

Example 38 shows how to direct the tool to infer a multiplexer by using the priority

case construct. Using the case keyword qualified by the priority keyword without coding a
default case is the same as using the Synopsys full case directive. However, you should
use the priority case construct to prevent simulation and synthesis mismatches, which
can occur when the directive is used.

Example 38 Multiplexer Inference Using priority case

// priority case.sv

module my priority case (
input [1:0] in, a, b, c,
output logic [1:0] out

)

always comb
priority case (in)
0: out a;
1: out b;
2: out c;
endcase
endmodule

HDL Compiler™ for SystemVerilog User Guide 87
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 4: Combinational Logic
Language Constructs for Combinational Logic Inference

See Also

+ Preventing case Mismatches

The unique if and unique case Constructs

This section describes how to direct the tool to infer combinational logic using the unique
if and unique case constructs.

unique if

Example 39 shows how to direct the tool to infer a multiplexer by using the unique if
construct.

Example 39 Multiplexer Inference Using unique if
module unique if (
input a, b, ¢, d, [3:0] sel,
output logic z

)7

always comb

begin
unique if (sel[3]) z = d;
else if (sel[2]) z = c;
else if (selll]) z = b;
else if (sel[0]) z = a;

end

endmodule

unique case

Example 40 describes a state machine and uses the unique case construct for the state
control. Using the case keyword qualified by the unique keyword is the same as using the
Synopsys full case and parallel case directives. However, you should use the unique
case construct to prevent simulation and synthesis mismatches, which can occur when the
directives are used.

Example 40 State Machine Using unique case

// State machine using unique case: unique case.sv
module fsm ccl 3oh (

input inl, a, b, ¢, d, clk,

output logic ol
)

logic [3:0] state, next;

always ff @ (posedge clk)
state <= next;

HDL Compiler™ for SystemVerilog User Guide 88
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 4: Combinational Logic
Selection and Multiplexing Logic

always comb
begin
next = state;
unique case (1'bl)

state[0]: begin
next [0]
ol = a;
end

state[l]: begin
next[1l] = 1'bl;
ol = b;
end

state[2]: begin
next [2]
ol = c;
end

state[3]: begin
next[3] = 1'bl;
ol = d;
end

(inl == 1'bl);

1'bl;

endcase
end
endmodule

See Also

* Preventing case Mismatches

Selection and Multiplexing Logic

The HDL Compiler tool infers SELECT_OP and MUX_OP cells for logic that selects data
signals based on control signals. SELECT_OP cells are mapped to combinational logic,
while MUX_OP cells are mapped to structured trees of multiplexer cells. By default, the
tool infers the cell that generally fits the needs of the RTL logic, but you can also control
the inference yourself.

The following topics describe SELECT_OP and MUX_OP inference:
« The SELECT_OP Cell

« The MUX_ORP Cell

» Default SELECT_OP and MUX_OP Inference Behavior

« Controlling Selection Statement Inference

« Controlling Array Read Inference

+ Inferring One-Hot Multiplexer Logic

HDL Compiler™ for SystemVerilog User Guide 89
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 4: Combinational Logic
Selection and Multiplexing Logic

The SELECT_OP Cell

A SELECT_OP cell is a generic unmapped cell that uses N selection signals to select from
N data signals. Because only one select signal can (and must) be asserted at a time, they
are called one-hot selection signals.

Figure 7 shows a SELECT_OP cell that selects one of four data input bits.

Figure 7 Single-Bit-Wide SELECT_OP Cell With Four Selectable Data Inputs

DATA1_0
DATA2 0
DATA3_0 200
DATA4 0

SELECT OP

CONTROL1_0
CONTROL2_0
CONTROL3_0
CONTROL4_0

A SELECT_OP cell can have single-bit or multiple-bit data paths. The number of data
inputs can be any practical integer number. Figure 8 shows a SELECT_OP cell that can
select one of three two-bit-wide data inputs.

Figure 8 Two-Bit-Wide SELECT _OP Cell With Three Selectable Data Inputs

DATA1 0.2
DATA1_1 ==
DATA2 0-._42
DATA2 1 1=

Rl

DATA3_O -... '2 a
DATA3_1 -~

SELECT_OP

CONTROL1_0
CONTROL2_0
CONTROL3_0

During elaboration, the tool creates GTECH control logic to drive the selection inputs
according to the RTL functionality. (This logic, by construction, meets the one-hot signal
requirement.)

During compile, the tool maps SELECT_OP cells to the logic library using the available
combinational cells: simple Boolean gates, complex multiple-input gates, multiplexer cells,
or any mix of these types.

HDL Compiler™ for SystemVerilog User Guide 90
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

N : Feedback
Chapter 4: Combinational Logic
Selection and Multiplexing Logic

Example SELECT_OP: RTL, Inference, and Synthesis

Example 41 shows an example RTL statement that selects from three data signals using
an if/else statement.

Example 41 RTL Statement That Infers a SELECT_OP Cell

always comb
if (A && !B)

272 = DI1;

else 1f (!A && B)
727 = D2;

else

7272 = D3;

Figure 9 shows the elaborated result. The SELECT_OP selection signals are driven by
GTECH logic gates that implement the if/else conditions.

Figure 9 Elaborated GTECH Logic With Inferred SELECT_OP Cell

D1 >
D2 >
D3 > DATA1_0
DATA2_0 zog—> Z
DATA3_0
A \ SELECT_OP
/ CONTROL1_0
CONTROL2_0
CONTROL3_0
B > /

Figure 10 shows the compiled, mapped logic for the previous example. The control logic
and the SELECT_OP cell are mapped together into an optimal gate structure.

Figure 10 SELECT_OP Cell and Selection Logic Mapped to Target Library
D2 >——]

ol B
2T e

D3 > [

HDL Compiler™ for SystemVerilog User Guide 91
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 4: Combinational Logic
Selection and Multiplexing Logic

The MUX_OP Cell

A MUX_OP cell is a generic unmapped cell that uses log2(N) binary-encoded selection
signals (rounded up) to select from N data signals.

Figure 11 shows a MUX_OP that selects one of four data input bits.

Figure 11 Single-Bit-Wide MUX_OP With Four Selectable Data Inputs

030 MUX_OP

S1

A MUX_OP cell can have single-bit or multiple-bit data paths. For S selection inputs, the
number of data inputs is 23, although the number of selectable data inputs can be less
(with the excess tied to ground). Figure 12 shows a MUX_OP cell that can select one of
three two-bit-wide data inputs.

Figure 12 Two-Bit-Wide MUX_OP With Three Selectable Data Inputs
po- 1=
S
Bttt
05 3et?

MUX_OP

SO
S1

During elaboration, the tool drives the MUX_OP selection inputs with the RTL selection
signals. (These signals, by construction, meet the binary-encoded requirement.)

During compile, the tool maps MUX_OP cells to the logic library, strongly preferring a tree
of multiplexer cells if possible.

HDL Compiler™ for SystemVerilog User Guide 92
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 4: Combinational Logic
Selection and Multiplexing Logic

Example MUX_OP: RTL, Inference, and Synthesis

Example 42 shows an example RTL statement that selects from seven data signals using
an array read operation.

Example 42 RTL Statement That Infers a MUX_OP Cell

wire [6:0] DAT; // 7 bits (not quite 273)
wire [2:0] SEL;
assign Z = DAT[SEL]; // synopsys infer mux override

Figure 13 shows the elaborated result. The MUX_OP selection signals are driven directly
by the array index signals, which are binary-encoded by construction. The eighth data
input of the MUX_OP cell is unused and thus tied to logic 0.

Figure 13 Elaborated Inferred MUX_OP Cell

DAT[6:0] D_W_E

Figure 14 shows the compiled, mapped logic for the previous example. The MUX_OP is
implemented using a compact inverting multiplexer tree structure, along with a logic gate
that results from optimizing the unused MUX_OP input data bit.

zog—{> Z

Figure 14 MUX_OP Cell and Selection Logic Mapped to Target Library
DAT[0]
DAT[1]

L
DAT[2] >——
DATE3} D—:,_@\r o— —~z
DAT[4] > ‘,_B)—'i
DAT[5] >
SEL[0] > g

DAT[6] >

SEL[1] >
SEL[2] >

o>
o

Although MUX_OP cells are faster than SELECT_OP cells, they might increase
congestion because of their pin density.

HDL Compiler™ for SystemVerilog User Guide 93
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 4: Combinational Logic
Selection and Multiplexing Logic

Default SELECT_OP and MUX_OP Inference Behavior

By default, the HDL Compiler tool infers SELECT_OP and MUX_OP cells using heuristics
designed to fit most RTL use cases.

Table 5 shows the default inference behavior (when no RTL pragmas are applied).

Table 5 Default SELECT_OP and MUX_OP Inference Behavior

RTL Operator Default inference behavior
if statement SELECT_OP
case statement SELECT_OP

The conditional operator (?:) SELECT_OP

Array read MUX_OP if hdlin mux for array read sparseness limit is

(such as DAT[ADR]) met,
SELECT_OP if not met

if and case statements and the conditional operator (?:) follow the same inference
rules. Therefore, in this documentation they are collectively referred to as RTL selection
statements.

Controlling Selection Statement Inference

By default, the tool infers SELECT_OP cells to implement selection statements: case and
i f statements and the selection operator (?:). However, you can configure the tool to infer
MUX_ORP cells instead.

There are two methods to control the inference behavior for selection statements:
« Globally, using application variables
« Locally, using RTL pragmas

These methods are interdependent in that either can take precedence over the other,
depending on the settings used.

HDL Compiler™ for SystemVerilog User Guide 94
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Combinational Logic

Feedback

Selection and Multiplexing Logic

Controlling Selection Statement Inference Locally

You can locally infer MUX_OP cells for selection statements—i £ and case statements and
the conditional operator (?:)—by placing the following pragmas in your RTL:

// synopsys infer mux

Infer a MUX_OP for the selection statement, but only if permitted by global variable
settings.

// synopsys infer mux override

Force a MUX_OP for the selection statement—regardless of any global variable
settings—and force the tool to map to a tree of multiplexer cells.

The following sections describe the placement requirements for each RTL statement
type. The requirements apply equally to both the infer mux and infer mux override
pragma. These requirements are for parsing order, with spaces and linefeeds ignored.

RTL Pragma Placement for if Statements

The inference pragma for an i f statement must be placed directly after the closing
parenthesis of the first conditional expression:

always comb

if (SEL1 == 2'b00) // synopsys infer mux override
Zz = D1;

else 1f (SEL1 == 2'b01)
Zz = D2;

else
Z = D3;

The pragma requirements and restrictions for i f statements are:

Each i f expression must be an equality comparison of a simple variable to a constant
value. Implicit single-bit Boolean tests are supported, suchas i £ (var).

The if expressions cannot use any other operators, including negation (~) or array
indexing.

All comparisons must be of the same variable, although the last e1se branch can omit
the if expression.

All assignments must be to the same variable, although the values assigned can be
arbitrarily complex and unique.

HDL Compiler™ for SystemVerilog User Guide 95
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 4: Combinational Logic
Selection and Multiplexing Logic

RTL Pragma Placement for case Statements

The inference pragma for a case statement must be placed directly after the closing
parenthesis of the case selection expression:

always comb

case (SEL1l) // synopsys infer mux

2'b00: PARITY = ~{DAT[7:01};

2'pb01: PARITY = ~{DAT[15:8]1};
2'p10: PARITY = ~{DAT[23:16]};
2'pb1ll: PARITY = ~{DAT[31:24]};

endcase

The pragma requirements and restrictions for case statements are:

« The conditional expression must be a simple variable; it cannot use any operators,
including negation (~).

« All assignments must be to the same variable, although the values assigned can be
arbitrarily complex and unique.

RTL Pragma Placement for the :? Operator

The inference pragma for the conditional operator (?:) must be placed directly after the »
(question mark) character:

assign ZCMP = SEL2 ? /* synopsys infer mux */ (V1 < V2) : (V3 > V4);
The pragma requirements and restrictions for the conditional operator (?:) are:

+ The selection expression before the » (question mark) character must be an equality
comparison of a simple variable to a constant value. Implicit single-bit Boolean tests
are supported, such as (var) -.

« The selection expression cannot use any other operators, including negation (~) or
array indexing.

« Multiple conditional operators in the same parent expression are not supported.
RTL Pragma Placement for Always Blocks

You can apply the infer mux pragma to a named always Or always comb block to apply
to all inferenceable if and case statements inside it. The pragma must be placed before
the block and reference the block by name:

// synopsys infer mux "this block name"

always comb

begin: this block name

end

HDL Compiler™ for SystemVerilog User Guide 96
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 4: Combinational Logic
Selection and Multiplexing Logic

The pragma requirements and restrictions for always and always comb blocks are:

+ The infer mux pragma supports block-based specification; the infer mux override
pragma does not.

« if and case statements in the block are considered; conditional operators (?:) are not.

* if and case statements must each meet their own particular pragma criteria.

Controlling Selection Statement Inference Globally

To globally control the default inference behavior for selection statements, use the
hdlin infer mux application variable.

Table 6 shows the valid values and resulting inference behaviors that apply.

Table 6 hdlin_infer_mux Application Variable Inference Behaviors
hdlin_infer_mux Default cell inference for RTL MUX inference pragmas
variable value selection statement considered
default (default) SELECT_OP infer mux
infer mux override
all MUX_OP
none SELECT_OP infer mux override

For a MUX_OP cell to be inferred, the following global application variable criteria must
also be met (unless the infer mux override pragma is applied):

* hdlin mux size limit (default 32)

This variable sets the upper limit for MUX_OP data input width.
* hdlin mux size min (default 2)

This variable sets the lower limit for MUX_OP data input width.
* hdlin mux oversize ratio (default 100)

This variable sets a limit for how many duplicated data signals are allowed, specified as
the ratio of MUX_OP data inputs to unique data signals.

MUX_OP Inference and Resource Sharing

If you attempt to infer a MUX_OP cell for a selection statement that involves multiple
synthetic operators, resource sharing could be degraded.

HDL Compiler™ for SystemVerilog User Guide 97
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 4: Combinational Logic
Selection and Multiplexing Logic

To prevent this, the tool issues the following warning message and infers a SELECT_OP
cell instead:

Warning: /proj/rtl/case.sv:30: No MUX OP inferred for the case because
it might lose the benefit of resource sharing. (ELAB-370)

In this case, you can still force a MUX_OP cell by adding the infer mux override
pragma to your RTL.

Controlling Array Read Inference

By default, the tool infers a MUX_OP cell when you access an array value (single bit or
word) using a nonconstant index value. For example,

assign % = DATI[SEL];

There are two methods to control the inference behavior for array reads:
« Globally, using application variables

» Locally, using RTL pragmas

These methods are interdependent in that either can take precedence over the other,
depending on the settings used.

Controlling Array Read Inference Globally

To globally control the default inference behavior for selection statements, use the
hdlin infer mux application variable.

Table 7 shows the valid values and resulting inference behaviors that apply.

Table 7 hdlin_infer_mux Application Variable Inference Behaviors
hdlin_infer_mux Default cell inference for array RTL MUX inference pragmas
variable value read considered
default (default) MUX_OP infer mux override
all MUX_OP
(sparseness limit ignored)
none SELECT_OP infer mux override
HDL Compiler™ for SystemVerilog User Guide 98

U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 4: Combinational Logic
Selection and Multiplexing Logic

For a MUX_OP cell to be inferred, the following global application variable criteria must
also be met (unless the hd1in infer mux application variable is setto a11):

* hdlin mux for array read sparseness_limit (default 90)

When the width of the array being indexed is not a power of two, this variable specifies
a percentage requirement for how many MUX_OP data inputs must be connected.
Controlling Array Read Inference Locally

You can unconditionally force a MUX_OP cell for an array read, regardless of the global
inference or sparseness variable settings, by placing the infer mux override pragma in
your RTL.

For example,
assign mask bit = mask[idx]; // synopsys infer mux override

The infer mux override pragma also forces the tool to map to a tree of multiplexer
cells.

Array reads do not use or support the infer mux pragma, as they are already the default
when the hdlin infer mux variable is set to default.

RTL Pragma Placement for Array Reads

To apply the pragma to all array reads of an RTL statement, place it at the end of the line
after the semicolon:

assign selected bit =
meml [addrl] [idx1] ||
mem2 [addr2] [1dx2]; // synopsys infer mux override

To apply the pragma to specific array reads, place it directly before the closing bus bracket
as an inline comment:

assign selected bit =
meml [addrl /*synopsys infer mux override*/] [idx1] ||
mem2 [addr2 /*synopsys infer mux override*/] [idx2];

For nested array reads, an inline pragma applies to all reads nested within that level:

// inference applies to addrl (directly applied) *and* X (nested inside)
assign selected bit =
meml [addrl [X] /*synopsys infer mux override*/] [idx1[Y]];

Inferring One-Hot Multiplexer Logic

Some technology libraries contain fast one-hot multiplexer cells. Logically, these cells are
similar to AND-OR or AND-OR-INVERT cells, but electrically they require the selection

HDL Compiler™ for SystemVerilog User Guide 99
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 4: Combinational Logic
Selection and Multiplexing Logic

inputs to be one-hot. Because of this requirement, synthesis cannot automatically
make use of them. However, you can use the infer onehot mux RTL pragma to take
advantage of them.

To do this, use the unique case SystemVerilog statement, which indicates that the
branches are mutually exclusive. Then, place the infer onehot mux pragma directly after
the closing parenthesis of the case selection expression.

The one-hot selection signals can be used together as the case selection expression
(Example 44) or individually as the case item expressions (Example 43).

Example 43 One-Hot Multiplexer Using One-Hot Case Selection Signals

module onehot 1 (

input inl, in2, in3,
input sell, sel2, sel3,
output logic out

) ;

always comb

begin
unique case ({sel3, sel2, sell}) // synopsys infer onehot mux
3'b001: out = inl;
3'b010: out = in2;
3'b100: out = 1in3;
default: out = 1'bX;
endcase
end
endmodule

Example 44 One-Hot Multiplexer Using One-Hot Case Item Signals

module onehot 2 (
input inl, in2, in3,
input sell, sel2, sel3,
output logic out

)

always comb

begin
unique case (1'bl) // synopsys infer onehot mux
sell: out = inl;
sel?2: out = in2;
sel3: out = in3;
default: out = 1'bX;
endcase
end
endmodule

The infer onehot mux pragma infers a SELECT_OP cell with an internal attribute that
marks it for one-hot MUX cell mapping.

The number of selection signals is important: a one-hot MUX cell must exist in the
technology library that is as least as wide as the number of branches in the case

HDL Compiler™ for SystemVerilog User Guide 100
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 4: Combinational Logic
Bit-Truncation Coding for DC Ultra Datapath Extraction

statement. The tool cannot compose wider one-hot MUX logic from smaller one-hot MUX
cells.

The inferionehotimuxiSindependentOfthe infergﬂun{Gﬂd infer mux override
pragmas and is not affected by any of the MUX inference application variables.

For details on one-hot MUX library requirements and logic synthesis, see the “Mapping to
One-Hot Multiplexers” topic in the Design Compiler User Guide.

Bit-Truncation Coding for DC Ultra Datapath Extraction

Datapaths are commonly used in applications that contain extensive data manipulation,
such as 3-D, multimedia, and digital signal processing (DSP) designs. Datapath extraction
transforms arithmetic operators into datapath blocks to be implemented by a datapath
generator.

The DC Ultra tool enables datapath extraction after timing-driven resource sharing and
explores various datapath and resource-sharing options during compile.

Note:

This feature is not available in DC Expert. For more information about datapath
optimization, see the HDL Compiler documentation.

Datapath optimization supports datapath extraction of expressions containing truncated
operands. To prevent extraction, both of the following conditions must exist:

« The operands have upper bits truncated. For example, if d is 16-bit, d[7:0] truncates the
upper eight bits.

« The width of the resulting expression is greater than the width of the truncated
operand. In the following example, if e is 9-bit, the width of e is greater than the width of
the truncated operand d[7:0]:

assign e = ¢ + d[7:0];

For lower-bit truncations, the datapath is extracted in all cases. As described in the
following table, bit truncation can be either explicit or implicit.

Truncation type Description
Explicit bit truncation An explicit upper-bit truncation occurs when you specify the bit range for
truncation.

The following code indicates explicit upper-bit truncation of operand A because
p is smaller than q:

wire [qg:0] A;
out = A [p:0];

HDL Compiler™ for SystemVerilog User Guide 101
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 4: Combinational Logic
Bit-Truncation Coding for DC Ultra Datapath Extraction

Truncation type Description

Implicit bit truncation An implicit upper-bit truncation occurs through assignment. Unlike explicit
upper-bit truncation, you do not explicitly define the range for truncation.

The following code indicates implicit upper-bit truncation of operand Y:

input [7:0] A, B;

output [14:0] Y;

assign Y = A*B;

Because A and B are 8-bit, their product is 16-bit. However, the 15-bit Y is
assigned to the 16-bit product and the most significant bit (MSB) of the product
is implicitly truncated. In this example, the MSB is the carryout bit.

Example 45 shows how bit truncation affects datapath extraction. When the a*b operation
is assigned to wire d, the upper bits are implicitly truncated and the width of output e is
less than the width of wire d. This code meets the first condition but not the second, so the
code is extracted.

Example 45 Design test1: Truncated Operand Is Extracted

module testl (
input [7:0] a, b, c,
output [7:0] e

)7

wire [14:0] d
assign d = a
assign e = c
endmodule

* b; // Implicit upper-bit truncation
+ d; // Width of e is less than d

Example 46 shows how bit truncation prevents extraction. When the a*b operation is
assigned to wire d, the upper bits are implicitly truncated and the width of output e is
greater than the width of wire d. This code meets both the first and second conditions, so
the code is not extracted.

Example 46 Design test2: Truncated Operand Is Not Extracted
module test2 (
input [7:0] a, b, c,
output [8:0] e
)

wire [7:0] d;

assign d = a * b; // Implicit upper-bit truncation
assign e = ¢ + d; // Width of e is greater than d
endmodule

Example 47 shows how bit truncation prevents extraction. The upper bits of wire d are
explicitly truncated, and the width of output e is greater than the width of wire d. This code
meets both the first and second conditions, so the code is not extracted.

HDL Compiler™ for SystemVerilog User Guide 102
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 4: Combinational Logic
Bit-Truncation Coding for DC Ultra Datapath Extraction

Example 47 Design test3: Truncated Operand Is Not Extracted

module test3 (
input [7:0] a,
output [8:0] e
);

wire [15:0] d;

assign d a * b; // d is not truncated

assign e c + d[7:0]1; // Explicit upper-bit truncation of d
// Width of e is greater than d[7:0]

b, ¢,

endmodule

Example 48 shows how bit truncation does not prevent extraction. The lower bits of wire
d are explicitly truncated. For expressions involving lower-bit truncations, the truncated
operands are extracted regardless of the bit-width of the truncated operands and the
expression result. This code is extracted.

Example 48 Design test4: Truncated Operand Is Extracted

module testd (
input [7:0] a

14 bl CI
output [9:0] e

)7
wire [15:0] d

assign d = a * b; // No implicit upper-bit truncation

assign e = ¢ + d[15:8]; // "explicit lower" bit truncation of d

endmodule

HDL Compiler™ for SystemVerilog User Guide 103

U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

5

Sequential Logic

The term register refers to a 1-bit memory device, either a flip-flop or latch. A flip-flop is
an edge-triggered memory device, while a latch is a level-sensitive memory device. The
following topics describe flip-flop and latch inference:

« Generic Sequential Cell SEQGEN
+ Inference Reports for Registers

« Register Inference Guidelines

» Register Inference Examples

For a complete FIFO design example that uses the always ff construct, see
SystemVerilog Design Examples.

Generic Sequential Cell SEQGEN

When the HDL Compiler tool reads a design, it uses a generic sequential cell SEQGEN
shown in Figure 15 to represent an inferred flip-flop or latch.

HDL Compiler™ for SystemVerilog User Guide 104
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 5: Sequential Logic
Generic Sequential Cell SEQGEN

Figure 15 SEQGEN Cell and Pin Assignments

clear
preset
next_state
clocked_on

data_in

enable Q
——msynch_clear QN I:

synch_preset

synch_toggle
synch_enable

SEQGEN

Example 49 shows how to direct the HDL Compiler tool to use a SEQGEN cell to
implement a D flip-flop with an asynchronous reset.

Example 49 D Flip-Flop With Asynchronous Reset
module dff async set (
input DATA, CLK, RESET,
output logic Q
)
always ff @ (posedge CLK or negedge RESET)
if (~RESET) Q <= 1'bO;

else Q <= DATA;
endmodule
HDL Compiler™ for SystemVerilog User Guide 105

U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 5: Sequential Logic
Generic Sequential Cell SEQGEN

Figure 16 shows the SEQGEN implementation.

Figure 16 SEQGEN Implementation

RESET —{ >o——# clear

preset
DATA next_state
CLK clocked_on
data_in
enable Q Q
Logic 0 synch_clear QN
synch_preset
synch_toggle

Logic1 synch_enable

SEQGEN

Example 50 shows the report cell output, where the inferred Q_reg flip-flop is mapped
to a SEQGEN cell.

Example 50 report_cell Output

LRI S b I S b I Sh b I S b I Sb b S S I S S S db I Sh db S b S b I S b

Report : cell

Design : dff async set

Version: P-2019.03

Date : Tue May 14 14:42:54 2019

LRI R e S b I S b I Sh b I S 2 I Sb b S S S S S S db I Sh db S b S b I S b

Attributes:
b - black box (unknown)
h - hierarchical

n - noncombinational
r - removable
u - contains unmapped logic
Cell Reference Library Area Attributes
I0 GTECH_NOT gtech 0.000000 u
Q reg ** SEQGEN* * 0.000000 n, u
Total 2 cells 0.000000
1
HDL Compiler™ for SystemVerilog User Guide 106

U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 5: Sequential Logic
Generic Sequential Cell SEQGEN

Example 51 shows the GTECH netlist.

Example 51 GTECH Netlist

module dff async set (DATA, CLK, RESET, Q);
input DATA, CLK, RESET;

output Q;

wire NO;

**SEQGEN* * Q reg (.clear(NO), .preset(l'b0), .next state(DATA),
.clocked on(CLK), .data in(1'b0), .enable(1'b0), .Q(Q),
.synch clear(1'b0), .synch preset(l1'b0), .synch toggle(l'b0),
.synch enable (1'bl)
)

GTECH NOT I O (.A(RESET), .Z(NO));

endmodule

After the HDL Compiler tool synthesizes the design, the SEQGEN is mapped to the
appropriate flip-flop in the logic library. Figure 17 shows an example of an implementation

after compile.

Figure 17 Gate-Level Implementation

DATA — D Q—aQ

Q_reg

CLK —]CP D—

RESET 47)

Note:

If the logic library does not contain the inferred flip-flop or latch, the HDL
Compiler tool creates combinational logic for the missing function. For example,
if you describe a D flip-flip with a synchronous set but your target library

does not contain this type of flip-flop, the tool creates combinational logic for
the synchronous set function. The tool cannot create logic to duplicate an
asynchronous preset or reset. Your library must contain the sequential cell with
the asynchronous control pins. For more information, see Register Inference
Limitations.

HDL Compiler™ for SystemVerilog User Guide 107
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 5: Sequential Logic
Inference Reports for Registers

Inference Reports for Registers

The HDL Compiler tool provides inference reports that describe each inferred flip-flop

or latch. You can enable or disable the generation of inference reports by using the
hdlin reporting level variable. By default, the level is set to basic. When the level is
set to basic or comprehensive, the tool generates a report similar to Example 52. This
basic inference report shows only which type of register was inferred.

Example 52 Inference Report for a D Flip-Flop With Asynchronous Reset

| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |

| Q reg | Flip-flop | 1 | N | N | Y | N | N | N |N |

In the report, the columns are abbreviated as follows:
+ MB represents multibit cell

* AR represents asynchronous reset

» AS represents asynchronous set

« SR represents synchronous reset

« SS represents synchronous set

« ST represents synchronous toggle

A “Y” in a column indicates that the respective control pin was inferred for the register; an
“N” indicates that the respective control pin was not inferred for the register. For a D flip-
flop with an asynchronous reset, there should be a “Y” in the AR column. The report also
indicates the type of register inferred, latch or flip-flop, and the name of the inferred cell.

When the hdlin reporting level variable is set to verbose, the report indicates how
each pin of the SEQGEN cell is assigned, along with which type of register was inferred.
Example 53 shows a verbose inference report.

Example 563 Verbose Inference Report for a D Flip-Flop With Asynchronous Reset

| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |

\ Q reg | Flip-flop | 1 \ N | N | Y | N | N | N | N |

Sequential Cell (Q reqg)
Cell Type: Flip-Flop
Multibit Attribute: N
Clock: CLK
Async Clear: RESET
Async Set: O
Async Load: 0
Sync Clear: O

HDL Compiler™ for SystemVerilog User Guide 108
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 5: Sequential Logic
Register Inference Guidelines

Sync Set: 0
Sync Toggle: O
Sync Load: 1

If you do not want the inference report, set the hd1in reporting level variable to none.

See Also

» Reporting Elaboration Errors in the Hierarchy

Register Inference Guidelines

When inferring registers, restrict each always block so that it infers a single type of
memory element and check the inference report to verify that the HDL Compiler tool
inferred the correct device.

Register inference guidelines are described in the following sections:
» Multiple Events in an always Block

* Minimizing Registers

+ Keeping Unloaded Registers

« Preventing Unwanted Latches

* Reset Logic Inference

» Register Inference Limitations

Multiple Events in an always Block

The HDL Compiler tool supports multiple events in a single always block, as shown in
Example 54.

Example 54 Multiple Events in a Single always Block

module test (
input [7:0] din,
input clk,
output logic [7:0] result
)7
always ff
begin
@ (posedge clk) result <= din;
@ (posedge clk) result <= result + din;
@ (posedge clk) result <= result + din;
end
endmodule

HDL Compiler™ for SystemVerilog User Guide 109
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 5: Sequential Logic
Register Inference Guidelines

Minimizing Registers

An always or always ff block that contains a clock edge in the sensitivity list causes
a flip-flop inference for each variable assigned a value in that block. It might not be
necessary to infer as flip-flops all variables in the always block. Make sure your HDL
description builds only as many flip-flops as the design requires.

Example 55 infers six flip-flops: three to hold the values of count and one each to hold
and_bits, or_bits, and xor_bits. However, the output values of the and_bits, or_bits, and
xor_bits depend solely on the value of count. Because count is registered, there is no
reason to register the three outputs.

Example 55 Inefficient Circuit Description With Six Inferred Registers

module count (

input clock, reset,

output logic and bits, or bits, xor bits
)

logic [2:0] count;

// synopsys sync_set reset "reset"
always ff @ (posedge clock)

begin

if (reset) count <= 0;

else count <= count + 1;
and bits <= & count;

or bits <= | count;

xor bits <= ”~ count;

end

endmodule

Example 56 shows the inference report which contains the six inferred flip-flops.

Example 56 Inference Report

|Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |

count reg	Flip-flop
and bits reg	Flip-flop
or bits reg	Flip-flop
xor bits reg	Flip-flop

)
Zz2zZK
smmz
smmz
smmz
sz
smmz
smmz

To avoid inferring extra registers, you can assign the outputs from within an asynchronous
always block. Example 57 shows the same function described with two always blocks,
one synchronous and one combinational, that separate registered or sequential logic from
combinational logic. This technique is useful for describing finite state machines. Signal
assignments in the synchronous always block are registered, but signal assignments in
the asynchronous always block are not. The code in Example 57 creates a more area-
efficient design.

HDL Compiler™ for SystemVerilog User Guide 110
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 5: Sequential Logic
Register Inference Guidelines

Example 57 Circuit With Three Inferred Registers

module count (
input clock, reset,
output logic and bits, or bits, xor bits
)
logic [2:0] count;
// synopsys sync_set reset "reset"
always ff @ (posedge clock)
if (reset) count <= 0;
else count <= count + 1;

always comb

begin
and bits = & count;
or bits = | count;
xor bits = ” count;

end

endmodule

Example 58 shows the inference report, which contains three inferred flip-flops.

Example 58 Inference Report

| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
| count reg | Flip-flop | 3 /| Y | N | N | N | Y| N | N |
See Also

» D Flip-Flop With Synchronous Reset: Use sync_set_reset

Keeping Unloaded Registers

The tool does not keep unloaded or undriven flip-flops and latches in a design during
optimization. You can use the hdlin preserve sequential variable to control which
cells to preserve:

« To preserve unloaded/undriven flip-flops and latches in your GTECH netlist, set it to
all.

« To preserve all unloaded flip-flops only, set it to £r.
» To preserve all unloaded latches only, set it to 1atch.

« To preserve all unloaded sequential cells, including unloaded sequential cells that are
used solely as loop variables, setitto all+loop variables.

HDL Compiler™ for SystemVerilog User Guide 111
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 5: Sequential Logic
Register Inference Guidelines

« To preserve flip-flop cells only, including unloaded sequential cells that are used solely
as loop variables, set itto ff+loop variables.

» To preserve unloaded latch cells only, including unloaded sequential cells that are used
solely as loop variables, set itto 1atch+loop variables.

If you want to preserve specific registers, use the preserve sequential directive as
shown in Example 59 and Example 60.

Caution:

To preserve unloaded cells through compile, you must set the
compile delete unloaded sequential cells variable to false. Otherwise,
the HDL Compiler tool removes them during optimization.

Example 59 uses the preserve sequential directive to save the unloaded cell, sum2,
and the combinational logic preceding it; note that the combinational logic after it is not
saved. If you also want to save the combinational logic after sum2, you need to recode
design mydesign as shown in Example 60.

Example 59 Retains an Unloaded Cell (sum2) and Two Adders

module mydesign (
input clk,
input [0:1] inl, in2, in3,
output [0:3] out
)
logic suml, sum2 /* synopsys preserve sequential */;
logic [0:4] save;
always ff @ (posedge clk)
begin
suml <= inl + in2;
// sum2 register is preserve
sum2 <= inl + in2 + in3;

end

assign out = ~suml;

assign save = suml + sum2;
endmodule

Example 60 preserves all combinational logic before reg save.

Example 60 Retains an Unloaded Cell and Three Adders

module adders (
input clk,
input [0:1] inl, in2, in3,
output [0:3] out
)
logic suml, sum2 ;
logic [0:4] save /* synopsys preserve sequential */;

// sum2 register is preserved

HDL Compiler™ for SystemVerilog User Guide 112
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 5: Sequential Logic
Register Inference Guidelines

always ff @ (posedge clk)
begin

suml <= inl + 1in2;

sum2 <= inl + in2 + in3;
end

// save register is preserved
always ff @ (posedge clk)
save <= suml + sum2;

assign out = ~suml;
endmodule

The preserve sequential directive and the hdlin preserve sequential

variable enable you to preserve cells that are inferred but optimized away by

the tool. If a cell is never inferred, the preserve sequential directive and the

hdlin preserve sequential variable have no effect because there is no inferred cell
to act on. In Example 61, sum2 is not inferred, so preserve sequential does not save
sum2.

Example 61 preserve_sequential Has No Effect on Cells Not Inferred

module adders (
input clk,
input [0:1] inl, in2,
output [0:3] out
)
logic suml, sum2 /* synopsys preserve sequential */;
wire [0:4] save;
always ff @ (posedge clk)
begin
suml <= inl + in2;
end

/*
Although the preserve sequential directive is on
sum?2, it is not saved due to sum2 is not inferred

*/

assign out = ~suml;
assign save = sum2;
endmodule

Note:

By default, the hd1in preserve sequential variable does not preserve
variables used in for loops as unloaded registers. To preserve such variables,
you must setitto ff+loop variables.

In addition to preserving sequential cells with the hd1in preserve sequential variable
and the preserve sequential directive, you can also use the hdlin keep signal name

HDL Compiler™ for SystemVerilog User Guide 113
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 5: Sequential Logic
Register Inference Guidelines

variable and the keep _signal name directive. For more information, see Keeping Signal
Names.

Note:

The tool does not distinguish between unloaded cells (those not connected to
any output ports) and feedthroughs. See Example 62 for a feedthrough.

Example 62
module test (
input clk,in,
output logic out

) ;

logic tmpl;
always ff @ (posedge clk)
begin

tmpl <= in;
out <= tmpl;
end
endmodule

With the hdlin preserve sequential variable setto £ £, the tool builds two registers;
one for the feedthrough cell (temp1) and the other for the loaded cell (temp2) as shown in
the following memory inference report:

Example 63 Feedthrough Register temp1

| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
| tmpl reg | Flip-flop | 1 | N | N | N | N | N | N | N |
\ out reg | Flip-flop | 1 | N | N | N | N | N | N | N |

Preventing Unwanted Latches

When you do not specify a signal or variable in all branches of a combinational logic block,
the tool infers latches (see Latches in Combinational Logic).

To avoid unwanted latches, use the SystemVerilog always comb construct to model
combinational logic. For these blocks, the tool issues an ELAB-974 warning if inferred
latches are detected.

In addition, you can set the hd1in check no_ latch variable, which causes ELAB-395
warnings to be issued for latches inferred in always blocks.

Latch inference warnings are not issued for always latch blocks.

As shown in Example 64, one branch of the case statement is commented out, so output
DOUT is not fully specified and the tool infers a latch.

HDL Compiler™ for SystemVerilog User Guide 114
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Sequential Logic

Feedback

Register Inference Guidelines

Example 64

module selector (

)7

input [1:0] SEL,
input [3:0] DIN,
output logic DOUT

always comb

case (SEL)
2'b00: DOUT = DIN[O];
2'b01: DOUT = DIN[1];
2'b10: DOUT = DIN[2];
// 2'bll: DOUT = DIN[3];
endcase
endmodule

Reset Logic Inference

To enable the tool to recognize reset signals and infer proper reset logic, you can use
the sync set reset directive, the hdlin ff always sync set reset variable, or the
hdlin_ff_always_async_set_resetVaﬂame.

The sync set reset directive

When the directive is set on single-bit signals, the tool infers flip-flops with synchronous
set and reset logic using those signals. For more information about this directive, see
sync_set_reset.

For example, the following code enables the tool to recognize the reset and int_reset
signals as the reset logic:

//synopsys sync_set reset "reset, int reset"
The hdlin ff always sync set reset variable

When this variable is set to false (the default), the tool infers synchronous set and
reset logic only for flip-flops that have the sync_set reset directive. When you set
this variable to t rue without specifying the sync _set reset directive, the tool tries to
infer synchronous set and reset logic for flip-flops on which a constant 0 or constant 1
is loaded under the clock event.

The hdlin ff always async set reset variable

When this variable is set to true (the default) and the async_set reset directive is
not set, the tool infers asynchronous set and reset logic for flip-flops by checking for
asynchronous set and reset conditions on the flip-flops. When you set this variable to
false, the tool does not attempt to identify any asynchronous set and reset condition
and it uses the async_set reset directive to identify the asynchronous set and reset
signals for each flip-flop.

HDL Compiler™ for SystemVerilog User Guide 115
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 5: Sequential Logic
Register Inference Guidelines

In an always block, you should always give the synchronous reset the highest priority so
that the tool recognizes the reset signal. For example,

//synopsys sync_set reset "reset"
always ff @ (posedge CLK)
begin
if reset
out _reg <= 1'b0;
else if (signall)
out reg <= inputl;
else
out _reg <= input2;
end

When more than one reset signal is in a block, you should specify the reset in the first and
second if statements. For example,

//synopsys sync_set reset "reset, reset int"
always ff @ (posedge CLK)
begin
if reset
out reg <= 1'b0;
else if reset int
out reg <= 1'b0;
else if (signall)
out reg <= inputl;
else
out reg <= input2;
end

This coding style enables the tool to recognize the reset signals and display them in the
summary report of registers, as shown in the following inference report:

| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |

\ out reg | Flip-flop | 1 \ N | N | N | N | Y | N | N |

When you assign an initial value to a register upon reset, you must set it to a known value.
If reset registers are pipelined, such as a register feeding into another register, the tool
does not recognize the reset signal at the register that is not initialized. For example,

//synopsys sync_set reset "reset"
always ff @ (posedge CLK)
begin
if reset
out reg <= Out reg first;
else if (signall)
out reg <= inputl;
else
out reg <= input2;
end

HDL Compiler™ for SystemVerilog User Guide 116
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 5: Sequential Logic
Register Inference Guidelines

See Also

« D Flip-Flop With Synchronous Reset: Use sync_set_reset

Register Inference Limitations
Note the following limitations when inferring registers in the HDL Compiler tool:

« The tool does not support more than one independent if-block when asynchronous
behavior is modeled within an always block. If the always block is purely synchronous,
multiple independent if-blocks are supported by the tool.

« The tool cannot infer flip-flops and latches with three-state outputs. You must
instantiate these components in your Verilog description.

« The tool cannot infer flip-flops with bidirectional pins. You must instantiate these
components in the RTL.

« The tool cannot infer flip-flops with multiple clock inputs. You must instantiate these
components in the RTL.

« The tool cannot infer multiport latches. You must instantiate these components in the
RTL.

« The tool cannot infer register banks (register files). You must instantiate these
components in the RTL.

« Although you can instantiate flip-flops with bidirectional pins, the tool interprets these
cells as black boxes.

« If you use an ir statement to infer D flip-flops, the i £ statement must occur at the top
level of the always block.

The following example is invalid because the i f statement does not occur at the top
level:

module invalid (
input clk, reset,
input d,
output logic g

) ;

logic temp;
always ff @ (posedge clk or posedge reset)
begin

temp <= reset;
if (reset) g <= 1'b0;

else q <= d;
end
endmodule
HDL Compiler™ for SystemVerilog User Guide 117

U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 5: Sequential Logic
Register Inference Examples

The tool issues the following message when the i £ statement does not occur at the top
level:

Error: .../test.sv:8: The statements in this 'always' block are
outside the scope of the synthesis policy. Only an 'if' statement is
allowed at the top level in this always block. (ELAB-302)

Register Inference Examples
The following sections describe register inference examples:
+ Inferring Latches

+ Inferring Flip-Flops

Inferring Latches

The tool infers latches when variables are conditionally assigned. A variable is
conditionally assigned if there is a path that does not explicitly assign a value to that
variable.

+ Basic D Latch

« D Latch With Asynchronous Set: Use async_set_reset

» D Latch With Asynchronous Reset: Use async_set_reset

« D Latch With Asynchronous Set and Reset: Use hdlin_latch_always_async_set_reset

* Unintended Logic Inferred Using always_latch

Basic D Latch

To direct the tool to infer a D latch, you need to control the gate and data signals

from the top-level ports or through combinational logic, so simulation can initialize the
design. Example 65 shows that a D latch is inferred for the always latch and alwayse@
constructs.

Example 65 D Latch Code

module d latch A (
input GATE, DATA,
output logic Q

)

always latch

if (GATE) Q <= DATA;

endmodule

module d latch B (

HDL Compiler™ for SystemVerilog User Guide 118
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 5: Sequential Logic
Register Inference Examples

input GATE, DATA,
output reg Q
)
always Q@ (GATE or DATA)
if (GATE) Q <= DATA;
endmodule

The tool generates the inference report shown in Example 66.

Example 66 Inference Report

ST

| SR | SS | |

Type | Width | Bus | MB | AR | AS

Register Name

| Q reg | Latch | 1 | N | N | N | N

D Latch With Asynchronous Set: Use async_set_reset

Example 67 shows the recommended coding style for an asynchronously set latch using
the async_set reset directive.

Example 67 D Latch With Asynchronous Set: Uses async_set_reset
module d latch async set (
input GATE, DATA, SET,
output logic Q
)
// synopsys async_set reset "SET"
always latch

if (~SET) Q0 <= 1'bl;
else 1if (GATE) Q <= DATA;
endmodule

The tool generates the inference report shown in Example 68.

Example 68 Inference Report for D Latch With Asynchronous Set

| SR | SS | ST |

Type | Width | Bus | MB | AR | AS

Register Name

\ Q reg | Latch | 1 | N | N | N |Y

D Latch With Asynchronous Reset: Use async_set_reset

Example 69 shows the recommended coding style for an asynchronously reset latch using
the async_set reset directive.

Example 69 D Latch With Asynchronous Reset: Uses async_set reset
module d latch async reset (
input RESET, GATE, DATA,
output logic Q
)

HDL Compiler™ for SystemVerilog User Guide 119

U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 5: Sequential Logic
Register Inference Examples

//synopsys async_set reset "RESET"
always latch

if (~RESET) Q <= 1'b0;
else 1f (GATE) Q <= DATA;
endmodule

The tool generates the inference report shown in Example 70.

Example 70 Inference Report for D Latch With Asynchronous Reset

Register Name | Type | Width | Bus | MB | AR | AS | SR | SS

| ST |

Q reg | Latch | 1 | N | N | Y | N | - | -

D Latch With Asynchronous Set and Reset: Use
hdlin_latch_always_async_set_reset

To infer a D latch with an active-low asynchronous set and reset, set the

hdlin latch always async set reset variable to true and use the coding style shown

in Example 71.

Note:

This example uses the one cold directive to prevent priority encoding of the
set and reset signals. Although this saves area, it might cause a simulation/
synthesis mismatch if both signals are low at the same time.

Example 71 D Latch With Asynchronous Set and Reset: Uses
hdlin_latch_always async_set reset

module d latch async (
input GATE, DATA, RESET, SET,
output logic Q
)
// synopsys one cold "RESET, SET"
always latch

if (!SET) Q0 <= 1'bl;
else 1if (!RESET) Q <= 1'bO;
else 1if (GATE) Q <= DATA;

endmodule

Example 72 shows the inference report.

Example 72 Inference Report D Latch With Asynchronous Set and Reset

Register Name | Type | Width | Bus | MB | AR | AS | SR | SS

| ST |

Q reg | Latch | 1 | N | N |'Y |'Y | - |-

HDL Compiler™ for SystemVerilog User Guide
U-2022.12-SP3

120

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 5: Sequential Logic
Register Inference Examples

See Also

+ Unintended Logic Inferred Using always_latch

Unintended Logic Inferred Using always_latch

Although you use the always latch construct to describe sequential logic, the tool might
not infer the intended logic when synthesizing your code. For example, when one of the
signals driven from an always latch block is needed to compute an output of a module.
As shown in Example 73, the tmp logic is not defined as an output port and might be
removed during synthesis. An unintended empty block might be inferred, and the tool
issues an ELAB-983 warning message.

Example 73 Unintended Empty Block

module empty always latch(
input logic clk, in,
output logic out

)
logic tmp;

always latch
begin
if (clk)
tmp <= in;
end
endmodule

Inferring Flip-Flops

Synthesis of sequential elements, such as various types of flip-flops, often involves signals
that set or reset the sequential device. Synthesis tools can create a sequential cell that
has built-in set and reset functionality. This is referred to as set/reset inference. For an
example using a flip-flop with reset functionality, consider the following RTL code:

module m (
input clk, set, reset, d,
output reg g

)7

always ff @ (posedge clk)

if (reset) g <= 1'b0;

else q <= d;

endmodule

There are two ways to synthesize an electrical circuit with a reset signal based on the
previous code. You can either synthesize the circuit with a simple flip-flop with external
combinational logic to represent the reset functionality, as shown in Figure 18, or you can
synthesize a flip-flop with built-in reset functionality, as shown in Figure 19.

HDL Compiler™ for SystemVerilog User Guide 121
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 5: Sequential Logic
Register Inference Examples

Figure 18 Flip-Flop With External Combinational Logic to Represent Reset

MUX Flip-Flop

D—ry — Q

Reset Clock

Figure 19 Flip-Flop With Built-In Reset Functionality

Flip-Flop

Reset |

Clock

The intended implementation is not apparent from the RTL code. You should specify
HDL Compiler synthesis directives or variables to guide the tool to create the proper
synchronous set and reset signals.

SystemVerilog provides the always ff construct for modeling sequential logic. The tool
checks whether the logic inferred represents sequential logic.

The following sections provide examples of these flip-flops:

» Basic D Flip-Flop

» D Flip-Flop With Asynchronous Reset Using ?: Construct
* D Flip-Flop With Asynchronous Reset

» D Flip-Flop With Asynchronous Set and Reset

* D Flip-Flop With Synchronous Set: Use sync_set_reset

« D Flip-Flop With Synchronous Reset: Use sync_set_reset
* D Flip-Flop With Synchronous and Asynchronous Load

+ D Flip-Flops With Complex Set and Reset Signals

HDL Compiler™ for SystemVerilog User Guide 122
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 5: Sequential Logic
Register Inference Examples

» Multiple Flip-Flops With Asynchronous and Synchronous Controls

« Unintended Logic Inferred Using always_ff

Basic D Flip-Flop

When you infer a D flip-flop, make sure you can control the clock and data signals from the
top-level design ports or through combinational logic. Controllable clock and data signals
ensure that simulation can initialize the design. If you cannot control the clock and data
signals, infer a D flip-flop with an asynchronous reset or set or with a synchronous reset or

set.

Example 74 infers a basic D flip-flop.

Example 74 Basic D Flip-Flop

module dff pos (
input DATA, CLK,
output logic Q

)

always ff @ (posedge CLK)
Q <= DATA;

endmodule

The tool generates the inference report shown in Example 75.

Example 75 Inference Report

\ Register Name \ Type | Width | Bus | MB | AR | AS | SR | SS | ST

| Q reg | Flip-flop | 1 \ N | N | N | N | N | N | N

D Flip-Flop With Asynchronous Reset Using ?: Construct

Example 76 uses the ?: construct to infer a D flip-flop with an asynchronous reset. Note
that the tool does not support more than one ?: operator inside an always block.

Example 76 D Flip-Flop With Asynchronous Reset Using ?: Construct
module dff async reset (
input CLK, RESET, DATA,
output logic Q
)7
always ff @ (posedge CLK or negedge RESET)
Q <= (!RESET) ? 1'b0O : DATA;
endmodule

The tool generates the inference report shown in Example 77.

HDL Compiler™ for SystemVerilog User Guide 123
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 5: Sequential Logic
Register Inference Examples

Example 77 D Flip-Flop With Asynchronous Reset Inference Report

| Width | Bus | MB | AR | AS | SR | SS | ST

\ Register Name \ Type
Q reg | Flip-flop | 1 N N Y N N N N
\
D Flip-Flop With Asynchronous Reset
Example 78 infers a D flip-flop with an asynchronous reset.
Example 78 D Flip-Flop With Asynchronous Reset
module dff async reset (
input DATA, CLK, RESET,
output logic Q
) ;
always ff @ (posedge CLK or posedge RESET)
if (RESET) Q <= 1'b0;
else Q <= DATA;
endmodule
The tool generates the inference report shown in Example 79.
Example 79 D Flip-Flop With Asynchronous Reset Inference Report
Register Name Type | Width | Bus | MB | AR | AS SR | SS ST
\
\ Q reg | Flip-flop | 1 \ N | N | Y | N | N | N | N
\
D Flip-Flop With Asynchronous Set and Reset
Example 80 infers a D flip-flop with asynchronous set and reset pins. The example
uses the one hot directive to prevent priority encoding of the set and reset signals.
If signals SET and RESET are asserted at the same time, the synthesized hardware
is unpredictable. To check for this condition, use the SYNTHESIS macro and the
‘ifndef ... “endif constructs (see Predefined SYSTEMVERILOG Macro).
Example 80 D Flip-Flop With Asynchronous Set and Reset
module dff async (
input CLK, RESET, SET, DATA,
output logic Q
)
// synopsys one hot "RESET, SET"
always ff @ (posedge CLK or posedge RESET or posedge SET)
if (RESET) Q <= 1'b0;
else if (SET) Q <= 1'bl;
124

HDL Compiler™ for SystemVerilog User Guide
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 5: Sequential Logic
Register Inference Examples

else Q <= DATA;

"ifndef SYNTHESIS

always @ (RESET or SET)

if (!$onehot0 ({RESET, SET}))

Swrite ("\nONE-HOT violation for RESET and SET.\n");
‘endif

endmodule

Example 81 shows the inference report.

Example 81 D Flip-Flop With Asynchronous Set and Reset Inference Report

\ Register Name \ Type | Width | Bus | MB | AR | AS | SR | SS | ST
\

\ Q reg | Flip-flop | 1 \ N | N | Y | Y | N | N | N

D Flip-Flop With Synchronous Set: Use sync_set_reset

This example shows a D flip-flop design with a synchronous set.

The sync_set reset directive is applied to the SET signal. If the target library does not
have a D flip-flop with synchronous set, the HDL Compiler tool infers synchronous set
logic as the input to the D pin of the flip-flop. If the set logic is not directly in front of the
D pin of the flip-flop, initialization problems can occur during gate-level simulation of the
design. The sync_set reset directive ensures that this logic is as close to the D pin as
possible.

Design of a D Flip-Flop With Synchronous Set

module dff sync set (
input DATA, CLK, SET,
output logic Q
)
//synopsys sync_set reset "SET"
always ff @ (posedge CLK)
if (SET) Q <= 1'bl;
else <= DATA;
endmodule

Inference Report

| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
| Q reg | Flip-flop | 1 | N | N | N | N | N | Y |N |
HDL Compiler™ for SystemVerilog User Guide 125

U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 5: Sequential Logic
Register Inference Examples

D Flip-Flop With Synchronous Reset: Use sync_set_reset

Example 82 infers a D flip-flop with synchronous reset. The sync set reset directive is
applied to the RESET signal.

Example 82 D Flip-Flop With Synchronous Reset: Use sync_set_reset
module dff sync reset (
input DATA, CLK, RESET,
output logic Q
)
//synopsys sync_set reset "RESET"
always ff @ (posedge CLK)
if (~RESET) Q <= 1'b0;
else Q <= DATA;
endmodule

The tool generates the inference report shown in Example 83.

Example 83 D Flip-Flop With Synchronous Reset Inference Report

| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |

\ Q reg | Flip-flop | 1 | N | N | N | N | Y | N |N |

D Flip-Flop With Synchronous and Asynchronous Load

Use the coding style in Example 84 to infer a D flip-flop with both synchronous and
asynchronous load signals.

Example 84 Synchronous and Asynchronous Loads
module dff a s load (

input ALOAD, ADATA, SLOAD, SDATA, CLK,
output logic Q

) ;

wire asyn rst, asyn set;

assign asyn _rst ALOAD && !'ADATA;

assign asyn_set ALOAD && ADATA;

//synopsys one cold "ALOAD, ADATA"
always ff @ (posedge CLK or posedge asyn rst or posedge asyn set)
begin

if (asyn_set) Q0 <= 1"bl;
else if (asyn rst) Q <= 1'b0;
else if (SLOAD) Q <= SDATA;
end
endmodule

The tool generates the inference report shown in Example 85.

HDL Compiler™ for SystemVerilog User Guide 126
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 5: Sequential Logic
Register Inference Examples

Example 85 D Flip-Flop With Synchronous and Asynchronous Load Inference Report

\ Register Name \ Type | Width | Bus | MB | AR | AS | SR | SS | ST
\

| Q reg | Flip-flop | 1 | N | N | Y | Y | N | N | N
\

Sequential Cell (Q reqg)
Cell Type: Flip-Flop
Multibit Attribute: N
Clock: CLK
Async Clear: ADATA' ALOAD
Async Set: ADATA ALOAD
Async Load: 0
Sync Clear: O
Sync Set: 0
Sync Toggle: O
Sync Load: SLOAD

D Flip-Flops With Complex Set and Reset Signals

While many set and reset signals are simple signals, some include complex logic. To
enable the HDL Compiler tool to generate a clean set/reset (that is, a set/reset signal
attached only to the appropriate set/reset pins), use the following coding guidelines:

« Apply the appropriate set/reset compiler directive (//synopsys sync _set resetor
//synopsys async_set reset) to the set/reset signal.

« Use no more than two operands in the set/reset logic expression conditional.

« Use the set/reset signal as the first operand in the set/reset logic expression
conditional.

This coding style supports usage of the negation operator on the set/reset signal and the
logic expression. The logic expression can be a simple expression or any expression
contained inside parentheses. However, any deviation from these coding guidelines is
not supported. For example, using a more complex expression other than the OR of two
expressions, or using a rst (or ~rst) that does not appear as the first argument in the
expression is not supported.

Examples

//synopsys sync_set reset "rst"
always ff @ (posedge clk)
if (rst | logic_expression)
q <= 0;
else ...
else ...

//synopsys sync_set reset "rst"
assign a = rst | ~(a | b & c);
always ff @ (posedge clk)

HDL Compiler™ for SystemVerilog User Guide 127
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 5: Sequential Logic
Register Inference Examples

//synopsys sync_set reset "rst"
always ff @ (posedge clk)

if (~ rst | ~ (a | b | c))
q <= 0;

else

else

//synopsys sync_set reset "rst"

assign a = ~ rst | ~ logic expression;
always ff @ (posedge clk)
if (a)
q <= 0;
else ...;
else ...;

Multiple Flip-Flops With Asynchronous and Synchronous
Controls

In Example 86, the infer_sync block uses the reset signal as a synchronous reset and the
infer_async block uses the reset signal as an asynchronous reset.

Example 86 Multiple Flip-Flops With Asynchronous and Synchronous Controls

module multi attr (
input DATAl, DATA2, CLK, RESET, SLOAD,
output logic Q1, Q2

)7

//synopsys sync_set reset "RESET"
always ff @ (posedge CLK)
begin: infer sync
if (~RESET) 01 <= 1'b0;
else if (SLOAD) Q1 <= DATALl;
// note: else hold Q1
end: infer sync

always ff @ (posedge CLK or negedge RESET)
begin: infer async
if (~RESET) Q02 <= 1'b0;
else if (SLOAD) Q2 <= DATA2;
// note: else hold Q1
end: infer async
endmodule

HDL Compiler™ for SystemVerilog User Guide 128
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Sequential Logic
Register Inference Examples

Example 87 shows the inference report.

Example 87 Inference Report

Feedback

| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST
\

| 0l reg | Flip-flop | 1 | N | N | N | N |Y | N | N
\

| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST
\

\ Q2 reg | Flip-flop | 1 | N | N |]Y | N | N | N | N

Unintended Logic Inferred Using always_ff

Although you use the always ff construct to describe flip-flops, the tool might not infer
the intended logic when synthesizing your code. For example, when one of the signals
driven from an always ff block is needed to compute an output of a module. As shown
in Example 88, the tmp logic is not defined as an output port and might be removed during
synthesis. An unintended empty block might be inferred, and the tool issues an ELAB-984

warning message.

Example 88

module empty alway ff (
input logic clk, in,
output logic out

) ;

logic tmp;
always ff @ (posedge clk)
begin
tmp <= in;
end
endmodule

HDL Compiler™ for SystemVerilog User Guide
U-2022.12-SP3

129

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

6

Interfaces

A SystemVerilog interface construct is a named bundle of nets, variables, or both.

To simplify bus specification and bus management, use interfaces to encapsulate
communications between modules. In addition to connectivity management, you can
use interfaces as communication protocol handlers by embedding tasks, functions, and
always blocks in the interfaces for other modules to access.

For synthesis, an interface is an inline instantiation, so any wires or logic defined in an
interface are created inside the module that instantiates the interface.

To learn how to use interfaces, see

+ Elements of Interfaces

* Inputs to Interfaces

« Arrays of Interfaces

* Renaming Conventions

» Using Interfaces in HDL Compiler

» Synthesis Restrictions

Elements of Interfaces
Interfaces can contain the following elements:
+ Wires
* Modports
* Modport Expression
» Function and Tasks

» always Blocks

HDL Compiler™ for SystemVerilog User Guide
U-2022.12-SP3

130

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 6: Interfaces
Elements of Interfaces

Wires

Wires or variables that are defined inside an interface are synthesized as nets. These nets
connect to all modules that include the interface in the module port lists by using an inout
port, unless restricted by a modport.

Modports

Modports inside an interface are used by modules to restrict the signals from the interface
to the modules and the directions of these signals. Follow these guidelines when you use
modports:

« For synthesis, you should specify modports in both the module definition and port list
during instantiation, like the sendmode modport in the following examples:

o Module definition: module sender (try i.sendmode try, ...)
o |Instantiation: sender (t.sendmode, ...)

« Module port names should match the interface signal names unless modport
expressions are used.

* The tool supports the input, output, inout, and import keywords inside a modport.

If a signal is used in a design without going through a modport, the tool connects it to an
inout port and issues an information message similar to the following:

Information: ./test.sv:29: Variables crossing hierarchy: interface

Q

content '$s' might become connected to an inout port (VER-735)

Modport Expression

A modport expression is explicitly named with a port identifier that is visible only through
the modport connection. It provides a consistent port naming scheme for blocks that use
the interface while hiding some of the code complexity in the interface.

A modport expression allows the following elements in a modport list:
« Elements of arrays and structures
« Concatenations of elements

+ Assignment pattern expressions

HDL Compiler™ for SystemVerilog User Guide 131
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Interfaces

Feedback

always Blocks

Function and Tasks

You define functions and tasks in interfaces following these guidelines:

For synthesis, you must define all functions and tasks using the automatic keyword.

To be used inside modules, the function or task must be provided through the modport
by using the import keyword.

Functions and tasks inside an interface have access to signals defined in the interface.
You must include these signals in the modport.

Logic created by a function or task call is created at the site of the call, that is, inside
the module that uses the function or task.

always Blocks

Synthesis supports always blocks inside interfaces. The tool creates the logic for an
always block in the module that instantiates the block, often at the top level.

The following examples show how to define these elements in interfaces:

Example: Interface With Wires

Example: Interface With Modports

Example: Interface With Modport Expressions
Example: Interface With Functions

Example: Interface With Functions and Tasks

Example: Interface With always Blocks

Example: Interface With Wires

The feed_A design uses an interface for the send and receive buses as shown in
Figure 20. The interface consists of a bundle of bidirectional wires or nets. In this design,

The sender transmits its input to the receiver through the interface; the receiver
accepts the input through the interface and outputs this data.

The receiver transmits its input to the sender through the interface; the sender accepts
the input through the interface and outputs this data.

HDL Compiler™ for SystemVerilog User Guide 132
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback
Chapter 6: Interfaces

always Blocks

Figure 20 Design feed_A

feed A
T data output T data output
sender receiver
receive
T data input interface T data input
Interface With Wires Only

The following figure shows the feed_A design connects two modules using a basic
interface with wires only. This coding style is not recommended for synthesis.

Figure 21 Interface With Wires Only

Interface try_i

Cmr=)

receive

data_out I data_out

try try receiver

data_in data_in

This example shows the RTL for the interface with wires only.

// interface definition
interface try i;

wire [7:0] send, receive;
endinterface : try i

// sender module definition
module (

try 1 try,

input logic [7:0] data in,

HDL Compiler™ for SystemVerilog User Guide 133
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 6: Interfaces
always Blocks

output logic [7:0] data out
)

assign data out = try.receive;
assign try.send = data in;
endmodule

// receiver module definition
module receiver (

try 1 try,

input logic [7:0] data in,

output logic [7:0] data out
)7

assign data out = try.send;
assign try.receive = data in;
endmodule

// top design definition
module feed A (
input wire [7:0] dil, diZz2,
output wire [7:0] dol, do2
)
try 1 t();
sender s(t, dil, dol);
receiver r(t, di2, do2);
endmodule

Block Diagram of the feed_A Design

The following block diagram shows that the feed_A design contains the t and try instances
of the try_i interface. All signals in the t and try instances are bidirectional. The feed_A
design is called a basic interface because it does not contain modports. For basic
interfaces, the tool assigns the inout port to wires and the ref port to variables by default.

Figure 22 Block Diagram of the feed A Design

feed A

data_out I data_out
interface try_i

sender
S

A A

> receiver
r

try

-
N

e
data_in t I data_in

HDL Compiler™ for SystemVerilog User Guide 134
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 6: Interfaces
always Blocks

Example: Interface With Modports

The following figure shows a design of an interface with modports. The feed_B design
includes the functions of the feed_A design described in Example: Interface With Wires
and modports with directions defined in the interface.

Figure 23 Design feed_B: Interface With Modports

feed B
T data output T data output
sender receiver
< receive]
T data input Interface T data input

The following sections describe the subdesigns and complete RTL of the feed_B design:
* The try_i Interface

+ The sender Module

« The receiver Module

» Block Diagram of the feed B Design

« Complete RTL of the feed_B Design

The try_i Interface

The following code shows the definition of the try_i interface, which contains the
sendmode and receivemode modports. When the interface is instantiated in modules, you
can use these modports to specify the signal directions.

interface try i;

logic [7:0] send;

logic [7:0] receive;

modport sendmode (output send, input receive);
modport receivemode (input send, output receive);
endinterface

HDL Compiler™ for SystemVerilog User Guide 135
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback
Chapter 6: Interfaces

always Blocks

The following figure shows the block diagram of the sendmode modport in the try_i

interface used by a module. The send bus is the output from the module, and the receive
bus is the input to the module.

Figure 24 The try i Interface With the sendmode Modport

module boundary |

Interface try_i
|

< receive |
|

The following figure shows the block diagram of the receivemode modport in the try_i
interface used by a module. The send bus is the input to the module, and the receive bus
is the output from the module.

Figure 25 try_i Interface With the receivemode Modport

mdule boundary
Interface try_i

o send
< receive ' |

The sender Module

The following code shows that the sender module uses the sendmode modport of the try_i

interface as a port named try. In the sendmode modport, the send bus is an output, and
the receive bus is an input.

module sender (
try i.sendmode try,
input logic [7:0] data in,
output logic [7:0] data out
)

HDL Compiler™ for SystemVerilog User Guide 136
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 6: Interfaces
always Blocks

try.receive;
data in;

assign data out
assign try.send
endmodule

This figure shows the block diagram of the sender module, which uses the sendmode
modport as a port.

Figure 26 The sender Module With the sendmode Modport

data_out

try

send
receive

sender

The receiver Module

The following code shows that the receiver module uses the receivemode modport of
the try_i interface as a port named try. In the receivemode modport, the receive bus is an
output, and the send bus is an input.

module receiver (
try i.receivemode try,
input logic [7:0] data in,
output logic [7:0] data out
) 7

assign data out = try.send;
assign try.receive = data in;
endmodule

This figure shows the block diagram of the receiver module, which uses the receivemode
modport as a port.

HDL Compiler™ for SystemVerilog User Guide 137
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 6: Interfaces
always Blocks

Figure 27 The receiver Module With the receivemode Modport

I data_out
try
send .
. receiver
receive
data_in

Block Diagram of the feed_B Design

The following block diagram shows that the top-level feed_B design contains the t instance
of the try_i interface. The receiver module uses the receivemode modport of the interface
as a port named try. The sender module uses the sendmode modport of the interface as a

port named try.
Figure 28 Block Diagram of the feed_B Design

feed B

data_out

I data_out
interface try_i

receiver

' A

try e

t data_in

Complete RTL of the feed_B Design

The following code shows that the top-level feed_B design instantiates the try_i interface,
sender module, and receiver module with the t, s, and r names respectively.

Example 89 Complete RTL of the feed_B Design

interface try i;

logic [7:0] send;

logic [7:0] receive;

modport sendmode (output send, input receive);
modport receivemode (input send, output receive);

endinterface

HDL Compiler™ for SystemVerilog User Guide 138

U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Interfaces
always Blocks

module sender (
try i.sendmode try,
input logic [7:0] data in,
output logic [7:0] data out
)

assign data out = try.receive;
assign try.send = data in;
endmodule

module receiver (
try i.receivemode try,
input logic [7:0] data in,
output logic [7:0] data out
)

assign data out = try.send;
assign try.receive = data in;
endmodule

module feed B (
input wire [7:0] dil, diZz,
output wire [7:0] dol, do2
)
try 1 £();

sender s (t.sendmode, dil, dol);
receiver r (t.receivemode, diZ2,

endmodule

Feedback

Example: Interface With Modport Expressions

In the following example, the mylf interface

« Uses modport expressions to rename the clk1 and clk2 clocks to a consistent port

named clk.

« Distributes the 8-bit a logic to two modports, a[3:0] through modport consumer1 and

a[4:7] through modport consumer2.

« Reassembles the 8-bit b output logic, b[3:0] through modport consumer1 and b[4:7]

through modport consumer2.

Example 90 Interface With Modport Expressions

interface myIf (

input logic clkl, clk2
)
logic [7:0] a, b;

modport consumerl (input .clk(clkl),
modport consumer?2 (input .clk(clk2),

endinterface

module top (

HDL Compiler™ for SystemVerilog User Guide
U-2022.12-SP3

.din(a[7:4]), output .dout(b[7:4]));
.din(a[3:0]), output .dout (b[3:01));

139

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 6: Interfaces
always Blocks

input logic clkl, clk2,

input logic [7:0] din,

output logic [7:0] dout
)

myIf il (.clkl, .clk2);
regBlock rbl (il.consumerl);
regBlock rb2 (il.consumer?);

din;
il.b;

assign il.a
assign dout
endmodule

Including the signal complexity in the mylf interface makes the regBlock specification
simple. As shown in the following code, the regBlock module accesses the elements in the
interface using the renamed ports:

module regBlock (myIf iPort);
always @ (posedge iPort.clk)

iPort.dout <= iPort.din;
endmodule

Example: Interface With Functions

An interface can be a placeholder for functions that are needed by modules. To enable
modules to access the functions in the interface, use modports and the import keyword.
The hardware implementations are created only in the module that calls the functions.

The following figure shows that the feed_C design contains the functions of the feed_B
design described in Example: Interface With Modports and the parity function in the
interface.

HDL Compiler™ for SystemVerilog User Guide 140
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 6: Interfaces
always Blocks

Figure 29 Design feed_C: Interface With Modports and a Function

feed C
data output T T parity bit parity bit T T data output
parity qu
sender ‘ receiver
< receive
data input T interface T data input

Complete RTL of the feed_C Design

As shown in Example 91, both the sender and receiver modules in the feed_C design
need the parity function to calculate the parity values of the send and receive buses.

You place the parity function in the interface and import the parity function from the try_i
interface by using the sendmode and receivemode modports. This function becomes
available to the sender and receiver modules through the sendmode and receivemode
modports respectively. The hardware implementations of the parity function are created in
the sender and receiver modules.

Example 91 Design feed_C: Interface With Modports and a Function

interface try i;
logic [7:0] send;
logic [7:0] receive;
logic internal;

function automatic logic parity (logic [7:0] data);

return (~data) ;

endfunction

modport sendmode (output send, input receive, import parity);
modport receivemode (input send, output receive, import parity);
endinterface

module sender (

try i.sendmode try,

input logic [7:0] data in,

output logic [7:0] data out, logic data out parity
) ;

assign data out = try.receive;

assign data out parity = try.parity(try.receive);

HDL Compiler™ for SystemVerilog User Guide 141
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 6: Interfaces
always Blocks

assign try.send = data in;
endmodule

module receiver (

try i.receivemode try,

input logic [7:0] data in,

output logic [7:0] data out, logic data out parity
)

assign data out = try.send;

assign data out parity = try.parity(try.send);
assign try.receive = data in;

endmodule

module feed C (

input wire [7:0] dil, diZz,

output wire [7:0] dol, do2, logic pl, p2
)
try i t();
sender s (t.sendmode, dil, dol, pl);
receiver r (t.receivemode, di2, do2, p2);
endmodule

Block Diagram of the feed_C Design

The following figure shows the interface block diagram of the feed_C design, which
contains the t instance of the try_i interface. The receiver module uses the receivemode
modport of the interface as the try port. The sender module uses the sendmode modport
of the interface as the try port. Both the sender and receiver modules import the parity
function.

Figure 30 Block Diagram of the feed_C Design

feed C
data_out T Tparity bit parity bit T T data_out
! 1
parity interface try i parity
sender function function receiver
S = > r
. try b, — try
data_in i data_in
HDL Compiler™ for SystemVerilog User Guide 142

U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 6: Interfaces
always Blocks

Example: Interface With Functions and Tasks

An interface can be a placeholder for tasks that are needed by modules. To enable
modules to access the tasks in the interface, use modports and the import keyword. The
hardware implementations are created only in the modules that call the tasks.

The following figure shows that the feed_D design contains the functions of the feed_C
design described in Example: Interface With Modport Expressions and a task to check the

parity.
Figure 31 Design feed_D: Interface With Modports, a Function, and a Task

feed_D

data output 1 parity bit 1 interface parity bit 2 data output 2

tT

parity function

sender . ' receiver
< receive]

data mput 1 \parity bit 1 parity bit 2/ data mput 2

l l

okay 1 «—— protocol checker —» okay 2

Block Diagram of the feed_D Design
As shown in Figure 32, the feed_D design contains the following three modports:

« The sendmode modport imports the parity function and defines the signal directions of
the send and receive buses. The sender module uses this modport.

« The receivemode modport imports the parity function and defines the signal directions
of the send and receive buses. The receiver module uses this modport.

« The protocol_checkermode modport imports the parity_check task. The pc1 and pc2
instantiations of the protocol_checker module use this modport.

HDL Compiler™ for SystemVerilog User Guide 143
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 6: Interfaces
always Blocks

Figure 32 Block Diagram of the feed_D Design

feed D
data_out 1 try i try i Tdata_outZ
| G |
| |
parity parity

sender function function receiver

> > r

I l parity 1 parity 2 l |
data_in 1 data_in 2

l l

protocol_checker task task protocol_checker
pci pc2

parity ZT l okay1 okay?2 l T parity 1

Complete RTL of the feed_D Design

This example uses modports, a function, and a task to create an interface for the send
and receive data buses. In the feed_D design, the protocol_checker module contains the
parity _check task that checks the parity. The hardware implementations of the task are
created only in the pc1 and pc2 modules, which call the task using the modports.

Example 92 Design feed D: An Interface With Modports, a Function, and a Task

interface try i;

logic [7:0] send;

logic [7:0] receive;

function automatic logic parity ([7:0] data);
return (~data) ;

endfunction

task automatic parity check (
input logic [7:0] data sent, logic exp parity,
output logic okay

)

if (exp parity == “data_ sent)
okay = '1;
else
okay = '0;
HDL Compiler™ for SystemVerilog User Guide 144

U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 6: Interfaces
always Blocks

endtask

modport sendmode (output send, input receive, import parity);
modport receivemode (input send, output receive, import parity);
modport protocol checkermode (import parity check);
endinterface

module sender (

try i.sendmode try,

input logic [7:0] data in,

output logic [7:0] data out, logic data out parity
)
assign data out = try.receive;
assign data out parity = try.parity(try.receive);
assign try.send = data in;
endmodule

module receiver (
try i.receivemode try,
input logic [7:0] data in,
output logic [7:0] data out, logic data out parity
)
assign data out = try.send;
assign data out parity = try.parity(try.send);
assign try.receive = data in;
endmodule

module protocol checker (
input logic [7:0] data sent, logic exp parity,
output logic okay,
try i.protocol checkermode try
) ;
always @ (data sent)
try.parity check (data sent, exp parity, okay);
endmodule

module feed D (
input wire [7:0] dil, diZz2,
output wire [7:0] dol, do2, logic pl, p2, okayl, okay2
) ;
try 1 £t();
sender s (t.sendmode, dil, dol, pl);
receiver r (t.receivemode, di2, do2, p2);
protocol checker pcl(dil, p2, okayl, t.protocol checkermode);
protocol checker pc2(di2, pl, okay2, t.protocol checkermode);
endmodule

GTECH Netlist

This GTECH netlist shows that the tool creates the hardware implementations of the task
or function only in the modules that call the task or function.

HDL Compiler™ for SystemVerilog User Guide 145
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Interfaces
always Blocks

Example 93 GTECH Netlist

module sender I try try i sendmode
data out parity);

data out,
[7:0]
[7:0]

\try.send ;
\try.receive
[7:0] data_in;

[7:0] data out;
data out parlty,
NO, Nl N2, N3,
\try.send
\try.send
\try.send
\try.send
\try.send
\try.send
\try.send
\try.send
data out]
data_ out
data out

output
input
input
output
output
wire
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign

N

[—

(7
[
[
[
[
[
[
[

I O N WS 0oy J

data out
data out
data out

7]
(6]
[5]
[4]
[3]
(2]
(1]
(0]

GTECH7XOR2
GTECH_XOR2
GTECH XOR2
GTECH XOR2
GTECH_XORZ
GTECH_XOR2
GTECH7XOR2
endmodule

module receiver I try try i1 receivemode

’

4,

B
.B
B

0

.receive
.receive
.receive
.receive
.receive
.receive

(\try.send

N5;

Ne Ne Ne Ne N

O N W oy
~.

data out
data out
data_ out
(data_ou
(data_ou
(data_ou
ut[71),

([
([
([
.B t
.B t
.B t

PIQRERLESEE S)

data in, data out, data out parity);
input [7:0] \try.send ;
output [7:0] \try.receive ;
input [7:0] data in;
output [7:0] data out;
output data out parity;
wire NO, N1, N2, N3, N4, N5;
assign \try.receive [7] = data in[7];
assign \try.receive [6] = data in[6];
assign \try.receive [5] = data in[5];
assign \try.receive [4] = data in[4];
assign \try.receive [3] = data in[3];
assign \try.receive [2] = data in[2];
assign \try.receive [1] = data in[1];
assign \try.receive [0] = data in[0];
assign data out[7] = \try.send [7];

HDL Compiler™ for SystemVerilog User Guide

U-2022.12-SP3

(\try.

Feedback

\try.receive ,

14

) ;

send ,

data in,

\try.receive ,

146

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 6: Interfaces
always Blocks

assign data out[6] = \try.send [6];
assign data out[5] = \try.send [5];
assign data out[4] = \try.send [4];
assign data out[3] = \try.send [3];
assign data out[2] = \try.send [2];
assign data out[1l] = \try.send [1];
assign data out[0] = \try.send [0];
GTECH _XOR2 C7 (.A(N5), .B(data out[0]), .Z(data out parity));
GTECH _XOR2 C8 (.A(N4), .B(data out[l]), .Z(N5));
GTECH_XOR2 C9 (.A(N3), .B(data out[2]), .Z(N4));
GTECH XOR2 Cl10 (.A(N2), .B(data out[3]), .Z(N3));
GTECH_XOR2 Cl1l (.A(N1), .B(data out[4]), .Z2(N2)) ;
GTECH XOR2 Cl12 (.A(NO), .B(data out[5]), .Z(N1));
GTECH XOR2 Cl13 (.A(data out[7]), .B(data out[6]), .Z(NO));
endmodule
module protocol checker I try try i protocol checkermode (data_ sent,
exp parity, okay);
input [7:0] data sent;
input exp parity;
output okay;
wire NO, N1, N2, N3, N4, N5, N6, N7, N8;
GTECH XOR2 C5 (.A(exp parity), .B(N1), .Z(NO));
GTECH NOT I O (.A(NO), .Z(N2));
GTECH XOR2 Cl14 (.A(N8), .B(data sent[O0]), .Z(N1));
GTECH_XOR2 C15 (.A(N7), .B(data_sent[1l]), .Z(N8));
GTECH_XOR2 Cl6 (.A(No6), .B(data _sent[2]), .Z(N7));
GTECH_XOR2 C17 (.A(N5), .B(data_sent[3]), .Z(N6));
GTECH _XOR2 C18 (.A(N4), .B(data_sent[4]), .Z(N5));
GTECH XOR2 C19 (.A(N3), .B(data sent[5]), .Z(N4));
GTECH XOR2 C20 (.A(data sent[7]), .B(data sent[6]), .Z(N3));
GTECH BUF B 0 (.A(N2), .Z(okay));
endmodule

module feed D (dil, di2, dol, do2, pl, p2, okayl, okay2);
input [7:0] dil;
input [7:0] di2;
output [7:0] dol;
output [7:0] do2;
output pl, p2, okayl, okay2;

wire [7:0] \t.send ;

wire [7:0] \t.receive ;

sender I try try i sendmode s (.\try.send (\t.send), .\try.receive (
\t.receive), .data in(dil), .data out(dol), .data out parity(pl));
receiver I try try i receivemode r (.\try.send (\t.send),
.\try.receive (\t.receive), .data in(di2), .data out (do2),

.data out parity(p2));

protocol checker I try try i protocol checkermode pcl (
.data_sent(dil), .exp parity(p2), .okay(okayl));
protocol checker I try try i protocol checkermode pc2 (

HDL Compiler™ for SystemVerilog User Guide 147
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 6: Interfaces
Inputs to Interfaces

.data_sent(di2), .exp parity(pl), .okay(okay2));
endmodule

Example: Interface With always Blocks
The following example shows that the | interface contains a flip-flop:

interface I (input clk, rst, d, output logic q);
always ff @ (posedge clk, negedge rst)
if (!'rst)

q <= 0;
else

q <= d;
endinterface
module top (

input clock, reset, data in,

output g out
)7
I instl(clock, reset, data in, g out);
endmodule

When the | interface is instantiated in the top module, the tool creates a D flip-flop as
shown in the following inference report:

| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |

Inputs to Interfaces
Interfaces can have ports and parameters as inputs.
* Ports

An interface can have input and output ports. Only the signals declared in the port list
of the interface can connect to modules or be used in the functions, tasks, and always
blocks. To connect external nets or variables to an interface, use the interface ports
that in turn connect the external signals to the lower-level modules.

« Parameters

Elaboration time constants can be passed into interfaces using parameters. The way to
define and use parameters in interfaces is identical to that of modules. If the elaborated
module refers to interfaces with parameters that are not instantiated in the design, the
parameter information needs to come from an external source. For more details, see
Bottom-Up Hierarchical Elaboration.

HDL Compiler™ for SystemVerilog User Guide 148
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 6: Interfaces
Inputs to Interfaces

The following examples show how to provide inputs and parameters for interfaces:
» Ports in Interfaces Example

« Parameterized Interfaces Example

Ports in Interfaces Example

When external signals are declared in interface ports, you can connect these signals to
the modules that instantiate the interface. As shown in Figure 33, the ALU design uses an
interface to connect all the top-level inputs to the subdesigns.

The ALU design contains the following interface ports:

« Input ports: clock, reset, f_sel, opA, and opB

« Output ports: adder_result and subtractor_result

The | interface contains the following elements:

« Modports: adder_mp, subtractor_mp, and controller_mp
» Local signals (not interface ports): do_add and do_sub

The interface ports connect the top-level signals to the interface, whereas the modports
only allow intermodule communications. The do_add and do_sub signals are declared
inside the | interface. The adder, subtractor, and controller modules use the adder_mp,
subtractor_mp, and controller_mp modports of the interface respectively.

HDL Compiler™ for SystemVerilog User Guide 149
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 6: Interfaces
Inputs to Interfaces

Figure 33 Design ALU: Creating Ports in an Interface

ALU inst1_adder

cIoclé
rese
oDA — adder
— ogB - result
do_add

clock —»
resef ——»
f sel ——»
—
——

OpA
opB

inst1 |

(e

adder_mp

inst1_controller
interface ports modport |

clock
reset
f sel

do_add
do_sub

controller_mp

inst1_subtractor
modport

clock
reset

> op é — suthtactor
= O resu

do_sub

subtractor_mp
modport

Complete RTL of the ALU Design

Top-level signals are shared through the interface ports. To create the interface ports,
include the clock, reset, f_sel, opA, and opB signals in the port list of the interface as
follows:

interface I (input logic clock, reset, f sel, logic [7:0] opA, opB);

The adder module uses the clock, reset, opA, and opB global signals and the do_add local
signal, which are specified in the adder_mp modport as follows:

modport adder mp (input clock, reset, do add, opA, opB);

The subtractor module uses the clock, reset, opA, and opB global signals and the do_sub
local signal, which are specified in the subtractor_mp modport as follows:

modport subtractor mp (input clock, reset, do_sub, opA, opB);

HDL Compiler™ for SystemVerilog User Guide 150
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 6: Interfaces
Inputs to Interfaces

The controller module uses the clock, reset, and f_sel global signals and the do_add and
do_sub local signals, which are specified in the controller_mp modport as follows:

modport controller mp (input clock, reset, f sel, output do _add, do_sub);

Example 94 Complete RTL of the ALU Design

interface I (
input logic clock, reset, f sel,
logic [7:0] opA, opB
)i
logic do add;
logic do_sub;
modport adder mp (input clock, reset, do_add, opA, opB);
modport subtractor mp (input clock, reset, do sub, opA, opB);
modport controller mp (input clock, reset, f sel, output do add, do_sub);
endinterface

module adder (
I.adder mp adder signals,
output logic [7:0] sum
);
always ff @ (posedge adder signals.clock, negedge adder signals.reset)
if (!'adder signals.reset)
sum <= '0;
else if (adder signals.do_add)
sum <= adder signals.opA +adder signals.opB;
endmodule

module subtractor (
I.subtractor mp sub signals,
output logic [7:0] difference
);
always ff @ (posedge sub signals.clock, negedge sub signals.reset)
if (!sub signals.reset) o
difference <= '0;
else if (sub signals.do_sub)
difference <= sub_signals.opA + sub signals.opB;
endmodule : subtractor

module controller (I.controller mp controller signals);
always ff @ (posedge controller signals.clock, negedge
controller signals.reset)
begin a
if (!controller signals.reset)
begin
controller signals.do_add <= '0;
controller signals.do sub <= '0;
end o o
else if (~controller signals.f sel) //decode logic
begin
controller signals.do_add <=
controller signals.do sub <=
end o o
else if (controller signals.f sel)
begin a a
controller signals.do_add <= '0;
controller signals.do sub <= '1l;
end a a
end

HDL Compiler™ for SystemVerilog User Guide 151
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 6: Interfaces
Inputs to Interfaces

endmodule

module alu (
input clock, reset, f sel, [7:0] opA, opB,
output [7:0] adder result, subtractor result);
)7
I instl I(.clock, .reset, .f sel, .opA, .0pB);
adder instl adder (instl I.adder mp, adder result);
subtractor instl subtractor (instl I.subtractor mp, subtractor result);
controller instl controller(instl I.controller mp); -
endmodule a a a

Parameterized Interfaces Example

An interface can be parameterized in the same way as a module. The parameters can
be modified on each instantiation of the interface. This figure shows that the Top design
contains a 4-bit stimulus driver and a 16-bit stimulus driver.

Figure 34 Parameterized Interface

Top

_ _ buffer_model
stim_driver

bm1
uses the narrow
stimulus driver

4-bits _{
4-bits {

==pp adder result

Tl

buffer_model
stim_driver |
16-bits { [» oo
uses the wide stimulus =) subtractor result
16-bits {«] driver
l

The following example shows how to create interfaces of different sizes by using
parameters. The top design contains two instances of the stim_driver interface. The
parameter in interface narrow_stimulus_interface is set to 4, and all the buses are 4 bits
wide. The parameter in interface wide_stimulus_interface is set to 16, and all the buses
are 16 bits wide in the top module.

HDL Compiler™ for SystemVerilog User Guide 152
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 6: Interfaces
Arrays of Interfaces

Example 95 Using a Parameterized Interface

interface stim driver;

parameter BUS WIDTH = 8;

logic [BUS WIDTH-1:0] sigl, sig2;

function automatic logic parity gen ([BUS WIDTH-1:0] bus);
return("“bus);

endfunction

modport buffer side (input sigl,output sig2, import parity gen);
endinterface

module buffer model # (parameter DELAY =1) (
stim driver.buffer side a,
output logic par rslt

)

always
begin
a.sig2 = #DELAY ~a.sigl;
par _rslt = a.parity gen(a.sig2);
end
endmodule

module top # (parameter WIDTH1 = 4, WIDTH2 = 16) (output logic prl, pr2);
stim driver # (WIDTHl)narrow stimulus interface();

stim driver # (WIDTH2)wide stimulus interface();

buffer model bml (narrow stimulus interface.buffer side, prl);

buffer model bm2 (wide stimulus interface.buffer side, pr2);

endmodule

Arrays of Interfaces

You can use arrays of interfaces in the bottom or top modules and connect them using the
following methods:

« Full array interface connection

» Array slice connection for interfaces with modports

« Array element connection for interfaces with modports
Follow these guidelines when you design arrays of interfaces:

« To avoid potential renumbering of array of interface ports during linking, define these
arrays with a lower bound of 0 and in ascending order, for example, intfArr[0:n] or C-
style intfArr[n+1].

« You cannot use the array slice operators (+:, &, and -:) with arrays of interfaces. If the
array slice operators are used, the tool issues a VER-721 error message.

The following figure shows that the middle1 and middle2 blocks in the TOP design
communicate with each other using a full array interface connection. In the middle2 block,

HDL Compiler™ for SystemVerilog User Guide 153
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 6: Interfaces
Arrays of Interfaces

the interface array is split into two portions, one slice of the array to communicate with the
bottom1 block and one element of the array to communicate with the bottom2 block. The
bottom1 and bottom2 blocks perform some processing of the signals of the interface array.

Figure 35 Arrays of Interfaces

TOP
middle array slice middle2
interface
full array connection bottom1
—p interface interface array)
connection
top port interface array array element
connections interface
— connection bottom2
interface array)

Coding Styles for Interface Arrays

The following examples show the supported coding styles for the interface arrays shown in
Figure 35:

Full Array Connection in the TOP Design

The TOP module uses the Inf interface array to communicate with the middle1 and
middle2 modules by using a full array interface connection and modport specifications.

module top (
input [0:2] x,
output [0:2] vy
)7
Inf 11 [0:2]1 ();
// Full array interface connection to an interface with modports array
middlel M1 (il.modA, x, Vy);
middle2 M2 (il.modB);
endmodule

// middlel design with interface with modport array port pml
module middlel (

Inf.modA pml[3],

input [0:2] x,

output [0:2] vy
)7

HDL Compiler™ for SystemVerilog User Guide 154
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 6: Interfaces
Arrays of Interfaces

éﬁémodule

)).middlez design with interface with modport array port pm2
module middle2 (Inf.modB pm2[0:2]);

ééamodule

Array Slice Connection to the middle2 Module, B1 Instance

In the middle2 module declaration, the B1 instantiation of the bottom1 module is
connected using the pm2[0:1] syntax, which is a slice of the pm2[0:2] array connection for
interfaces with modports.

module middle2 (Inf.modB pm2[0:2]);

// Interface's array slice connection

bottoml Bl (pm2[0:171);

endmodule

module bottoml (Inf.modB pbl[0:17]);

endmodule

Array Element Connection to the middle2 Module, B2 Instance

In the middle2 module declaration, the B2 instantiation of the bottom2 module is
connected using the pm2[2] syntax, which is one element of the pm2[0:2] array connection
for interfaces with modports.

module middle2 (Inf.modB pm2[0:2]);

// Interface's array element connection

bottom2 B2 (pm2[2]);

endmodule

// bottom2 with non-array interface with modport port pb2
module bottom2 (Inf.modB pb2);

endmodule

Accessing the Modport Signals From Interfaces With Modport Arrays

The middle1 and bottom1 modules access the modport signals from array interfaces.

module bottoml (Inf.modB pbl[0:1]);
assign pbl[l].b = ~pbl[l].a;

endmodule

HDL Compiler™ for SystemVerilog User Guide 155
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 6: Interfaces
Arrays of Interfaces

Complete Implementation of the TOP Design

// Interface declarations

interface Inf ();

logic a, b;

// All signals are used on modports
modport modA (output a, input b);
modport modB (input a, output b);
endinterface

// TOP design declaration
module TOP (

input [0:2] x,

output [0:2] vy
)

// Array of interface instantiation

Inf i1 [0:2] ()

//Full interface array connection to an interface with modports array
middlel M1 (il.modA, x, Vy);

middle2 M2 (il.modB);

endmodule

// middlel design with interface with modport array port pml
module middlel (

Inf.modA pml[3],

input [0:2] x,

output [0:2] vy
)7

assign pml[2].a = ~x[2];
assign y[0] = pml[0].b;
endmodule

// middle2 design with interface with modport array port pm2
module middle2 (Inf.modB pm2[0:2]);

// bottoml instantiation, connecting a slice of pm2

bottoml Bl (pm2[0:17]);

// bottoml instantiation, connecting one element of pm2
bottom2 B2 (pm2([2]);

endmodule

// bottoml with interface with modport array port pbl

module bottoml (Inf.modB pbl[0:17]);

// modport signal manipulation from and array interface with modports
assign pbl[l].b = ~pbl[l].a;

assign pbl[0].b ~pbl[0].a;

endmodule

// bottom2 with non-array interface with modport port pb2
module bottom2 (Inf.modB pb2);

assign pb2.b = ~pb2.a;

endmodule

HDL Compiler™ for SystemVerilog User Guide 156
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 6: Interfaces
Arrays of Interfaces

Interface Array Coding Style Recommendations
When using array interfaces, try to implement the following suggested coding styles:

« Standardize on a convention [N-1:0] or [0:N-1] for arrayed interface ports and use it
consistently throughout the design. The bounds must end or start at zero, respectively.

+ If the standard direction is [N-1:0], then set the following application variable before
reading the RTL:

set app var hdlin interface port downto true

This should eliminate any ELAB-123 messages.

« Mention a modport whenever passing down interface instances, even a slice of an
arrayed instance.

This should eliminate any VER-735 messages.

The following example has comments that explain how the coding style suggestions are
implemented.

module downto (IFC.mp ifc port[3:0]);

// Set hdlin interface port downto to true

// because interface array module ports are declared N-1 down to O;
// 1f you don't, you'll see ELAB-123, and GTECH port names that

// look swapped

endmodule

module test;
IFC ifc _inst[15:0] ()
// Use a modport when you pass down interface instances, even slices
// If you don't, you'll see VER-735 and extra unconnected GTECH ports
downto U3 (ifc_inst[15:12] .mp);
downto U2 (ifc inst[11:8].mp);
downto Ul (ifc_inst[7:4] .mp);
downto UO (ifc_inst[3:0] .mp);
endmodule

interface IFC();

logic x, vy, z, w;

modport mp (input x, output y);
endinterface

HDL Compiler™ for SystemVerilog User Guide 157
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Interfaces

Feedback

Renaming Conventions

Coding Style Restrictions on Array Interfaces

When using array interfaces, you should avoid the following coding styles:

The following example of array slice connections for interfaces with modports,
i1.modA[0:1] and i1[0:1].modB, is not supported.

module top();

Inf 11[0:7];
middlel M1 (il.modA[0:1]); // not supported
endmodule

The following example of array element connection for interfaces with modports,
i1.modA[2], is not supported.

module top();

Inf 11[0:7];
middlel M1 (il.modA[2]); // not supported
endmodule

However, the following example of array element and slice connections for interfaces
with modports, i1[2].modB and i1[0:1].modB, is supported.

module top();

Inf 11[0:7];

middlel M1 (i1[0].modB) ; // supported

middle2 M2 (il[1:2].modB); // supported
endmodule

Access to slice of elements from an interface with modport arrays or full array is not
supported. For example,

// middlel design with interface with modport array port pml

module middlel (Inf.modA pml[3], input [0:2] x, output [0:2] vy);
assign pml[0:1].a = ~x; // not supported
assign y = pml.b; // not supported

endmodule

To implement a bus fabric structure that encapsulates complex interconnection between
modules, see Bus Fabric Design.

Renaming Conventions

Modules can contain parameters, interfaces, and interface modports as ports, and
interfaces can use parameters. These various connecting methods affect the module
names in the GTECH and gate-level netlist. To rename the modules, the tool uses the
following format:

modulename plvl p2vZ2...I portname interfacename modportname vil viZ...

HDL Compiler™ for SystemVerilog User Guide 158
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 6: Interfaces
Renaming Conventions

This table describes the format in details.

Item Description

modulename Name of the module

p1 First parameter name inside the module

v1 Value of the first parameter

p2 Second parameter name inside the module
v2 Value of the second parameter

| Indicates an interface

portname Name of the port inside the module that uses the interface as a port
interfacename Name of the interface used in the module port

modportname Name of the modport used with the interface as a module port

Vi1 Value of the first parameter

vi2 Value of the second parameter

To understand the renaming conventions, see
* Renamed Modules Example 1
* Renamed Modules Example 2

+ Renamed Modules Example 3

Renamed Modules Example 1

In the following example, the feed_A design contains the sender and receiver modules.
The GTECH netlists show the renamed sender and receiver modules.

Example 96 feed A Design

interface try i;
wire [7:0] send, receive;
endinterface : try i

module sender (
try 1 try,

HDL Compiler™ for SystemVerilog User Guide 159
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 6: Interfaces
Renaming Conventions

input logic [7:0] data in,
output logic [
);

7:0] data out

assign data out = try.receive;
assign try.send = data in;
endmodule

module receiver (

try 1 try,
input logic [7:0] data in,
output logic [

)

7:0] data out

assign data out = try.send;
assign try.receive = data in;
endmodule

module feed A (

input wire [7:0] dil, diZz,
output wire [

);

7:0] dol, do2

try 1 t()

7
sender s (
receiver r

t, dil, dol);

(t, diz, do2);

endmodule

The sender Module

The data for renaming the sender module is as follows:

modulename : sender

pl: none

v1:none

I : indicates interface

portname: try
interfacename: try i
modportname : none
pil: none

vil: none

Based on this data, the tool renames the sender module to sender_|_try try i . The

following netlist shows a portion of the GTECH netlist of the renamed module.

module sender I try try i (try send, try receive, data in, data out);
inout [7:0] try send;

inout [7:0] try receive;
input [7:0] data in;

The receiver Module

The data for renaming the receiver module is as follows:

modulename : receiver
pl: none

v1:none

I : indicates interface

portname: try

HDL Compiler™ for SystemVerilog User Guide 160
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 6: Interfaces
Renaming Conventions

interfacename: try i
modportname : none
pil: none

vil: none

Based on this data, the tool renames the receiver module to module receiver_|_try try i .

The following netlist shows a portion of the GTECH netlist of the renamed module.

module receiver I try try i (try send, try receive, data in, data out);
inout [7:0] try send;

inout [7:0] try receive;
input [7:0] data in;

See Also

« Example: Interface With Wires

Renamed Modules Example 2

In the following example, the feed_B design contains the sender and receiver modules.
The GTECH netlist shows the renamed sender and receiver modules.

Example 97 feed B Design

interface try i;

logic [7:0] send;

logic [7:0] receive;

modport sendmode (output send, input receive);
modport receivemode (input send, output receive);
endinterface

module sender (
try i.sendmode try,
input logic [7:0] data in,
output logic [7:0] data out
)

assign data out = try.receive;
assign try.send = data in;
endmodule

module receiver (
try i.receivemode try,
input logic [7:0] data in,
output logic [7:0] data out
)

assign data out = try.send;
assign try.receive = data in;
endmodule

module feed B (

HDL Compiler™ for SystemVerilog User Guide 161
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 6: Interfaces
Renaming Conventions

input [7:0] dil, di2,

output [7:0] dol, do2
)
try i t();
sender s (t.sendmode, dil, dol);
receiver r (t.receivemode, di2, do2);
endmodule

The sender Module

The data for renaming the sender is as follows:

modulename : sender

pl: none

v1:none

I : indicates interface

portname: try
interfacename: try i
modportname : sendmode
pil: none

vil: none

Based on this data, the tool renames the sender module to
sender_|_try try i sendmode_. The following netlist shows a portion of the GTECH netlist
of the renamed module.

module sender I try try i sendmode (try send, try receive, data in,
data out);

output [7:0] try send;

input [7:0] try receive;

input [7:0] data in;

The receiver Module

The data for renaming the receiver is as follows:

modulename : receiver
pl: none

v1:none

I : indicates interface

portname: try
interfacename: try i
modportname : receivemode
pil: none

vil: none

The tool renames the receiver module to receiver_|_try try i receivemode_ based on this
data. The following netlist shows a portion of the GTECH netlist of the renamed module.

module receiver I try try i receivemode (try send, try receive,
data in, data out);
input [7:0] try send;

HDL Compiler™ for SystemVerilog User Guide 162
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 6: Interfaces
Renaming Conventions

output [7:0] try receive;
input [7:0] data in;

See Also

« Example: Interface With Modports

Renamed Modules Example 3

In the following example, the tool renames the bm1 and bm2 modules of the top design.

Example 98 RTL Design

interface stim driver;

parameter BUS WIDTH = 8;

logic [BUS WIDTH-1:0] sigl, sig2;

function automatic logic parity gen ([BUS WIDTH-1:0] bus);
return("“bus);

endfunction

modport buffer side (input sigl,output sig2, import parity gen);
endinterface

module buffer model # (parameter DELAY =1) (
stim driver.buffer side a,
output logic par rslt

)

always
begin
a.sig2 = #DELAY ~a.sigl;
par _rslt = a.parity gen(a.sig2);
end
endmodule

module top # (parameter WIDTH1 = 4, WIDTH2 = 16) (output logic prl, pr2);
stim driver #(WIDTHl)narrow stimulus_ interface();

stim driver #(WIDTH2)wide stimulus_interface();

buffer model bml (narrow_stimulus_interface.buffer side, prl);

buffer model bm2 (wide stimulus_interface.buffer side, pr2);

endmodule

The data for renaming the modules is as follows:

modulename : buffer model

pl: DELAY
vl:1 (default value)
I : indicates interface

portname: a

interfacename: stim driver
modportname : buffer side

pil: BUS WIDTH

vil: 4 (explicit modification)

HDL Compiler™ for SystemVerilog User Guide 163
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 6: Interfaces
Using Interfaces in HDL Compiler

modulename : buffer model

pl: DELAY
vl:1 (default value)
I : indicates interface

portname: a

interfacename: stim driver
modportname : buffer side

pil: BUS WIDTH

vil: 16 (explicit modification)

Based on this data, the tool renames the bm1 and bm2
modules to buffer_model | a_stim_driver_buffer_side 4 and
buffer_model | a_stim_driver_buffer_side 16 respectively.

See Also

« Parameterized Interfaces Example

Using Interfaces in HDL Compiler
Analyzing Interfaces

Interfaces are modular standalone design elements in SystemVerilog and, as such, must
be analyzed before elaborating the design. They are treated like modules in the analyze
command line; there is no order dependency between analyzing the interface definitions
and analyzing the modules that use them:

analyze -format sverilog {block.sv top.sv myIntf.sv}

Using Interfaces at the Top Level of Elaboration

In normal usage, interfaces must be instantiated in the design before they are passed
to the port map of a lower module. To support hierarchical flows, the HDL Compiler tool
allows an exception to that rule and allows interfaces (and interface modports) to be
specified on the top-level ports of a module with no corresponding instantiation. The
interface still must be analyzed before elaboration.

interface myIntf;

logic a,b,c;

modport modA (input a, b, output c);
endinterface

module top (myIntf.modA topPorts);

This allows easy encapsulation of top-level ports that are eventually referenced at a
higher level. This also allows for design reuse or even for a communication channel to the
testbench.

HDL Compiler™ for SystemVerilog User Guide 164
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 6: Interfaces
Synthesis Restrictions

Note:

Generic interfaces and interfaces with parameters without default values are not
allowed at the top level of elaboration because there is not enough information
available to resolve the interface. However, such modules can be elaborated as
described in Parameterized Interface Ports.

Synthesis Restrictions
The following synthesis restrictions apply when you use interfaces:

+ Interfaces must contain only automatic tasks and functions. If you do not use the
automatic keyword, the tool assumes a static function and issues an error message.

The exceptions are as follows:

o The interface variables that are used by the interface method are listed in the
modport.

o The interface instance is in the same module that calls the interface method.

« Exporting tasks and functions from one module into an interface is not supported for
synthesis.

« External fork and join constructs in interfaces are not supported for synthesis.

HDL Compiler™ for SystemVerilog User Guide 165
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

14
Modeling Three-State Buffers

The HDL Compiler tool infers a three-state driver when you assign the value z (high
impedance) to a variable. The tool infers 1 three-state driver per variable per always block.
You can assign high-impedance values to single-bit or bused variables. A three-state
driver is represented as a TSGEN cell in the generic netlist.

Three-state driver inference and instantiation are described in the following sections:
« Using z Values

« Three-State Driver Inference Report

+ Assigning a Single Three-State Driver to a Single Variable

« Assigning Multiple Three-State Drivers to a Single Variable

» Registering Three-State Driver Data

« Instantiating Three-State Drivers

» Errors and Warnings

Using z Values
You can use the z value in the following ways:
« Variable assignment
» Function call argument
* Return value
You can use the z value only in a comparison expression, such as in
if (IN VAL == 1'bz) y=0;

This statement is permissible because IN VAL == 1'bz is a comparison. However, it
always evaluates to false, so it is also a simulation/synthesis mismatch. See Unknowns
and High Impedance in Comparison.

HDL Compiler™ for SystemVerilog User Guide 166
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 7: Modeling Three-State Buffers
Three-State Driver Inference Report

This code,
OUT VAL = (1'bz && IN VAL);

is not a comparison expression. The HDL Compiler tool generates an error for this
expression.

Three-State Driver Inference Report

The hdlin reporting level variable determines whether the HDL Compiler tool
generates a three-state inference report. If you do not want inference reports, set the level
to none. The default is basic, which indicates to generate a report. Example 99 shows a
three-state inference report:

Example 99 Three-State Inference Report

The first column of the report indicates the name of the inferred three-state device. The
second column indicates the type of inferred device. The third column indicates the width
of the inferred device. The tool generates the same report for the default and verbose
reports for three-state inference. For more information about the hd1in reporting level
variable to basic+fsm, see Customizing Elaboration Reports.

Assigning a Single Three-State Driver to a Single Variable

Example 100 infers a single three-state driver and shows the associated inference report.

Example 100 Single Three-State Driver

module three state (ENABLE, IN1, OUT1);
input IN1, ENABLE;
output OUTI1;
reg OUT1;
always Q@ (ENABLE or IN1l) begin
if (ENABLE)
OUT1l = IN1;
else
OUT1 = 1'bz; //assigns high-impedance state
end
endmodule

HDL Compiler™ for SystemVerilog User Guide 167
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

) Feedback
Chapter 7: Modeling Three-State Buffers
Assigning Multiple Three-State Drivers to a Single Variable

Example 101 Inference Report

Example 102 infers a single three-state driver with MUXed inputs and shows the
associated inference report.

Example 102 Single Three-State Driver With MUXed Inputs

module three state (A, B, SELA, SELB, T);
input A, B, SELA, SELB;

output T;
reg T;
always @ (SELA or SELB or A or B) begin
T = 1'bz;
if (SELA)
T = A;
if (SELB)
T = B;
end
endmodule

Inference Report

Assigning Multiple Three-State Drivers to a Single Variable

When assigning multiple three-state drivers to a single variable, as shown in Figure 36,
always use assign statements, as shown in Example 103.

HDL Compiler™ for SystemVerilog User Guide 168
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 7: Modeling Three-State Buffers
Registering Three-State Driver Data

Figure 36 Two Three-State Drivers Assigned to a Single Variable

SELBpb—

Example 103 Correct Method

module three state (A, B, SELA, SELB, T);
input A, B, SELA, SELB;

output T;
assign T = (SELA) ? A 1'bz;
assign T = (SELB) ? B 1'bz;
endmodule

Do not use multiple always blocks (shown in Example 104). Multiple always blocks cause
a simulation/synthesis mismatch because the reg data type is not resolved. Note that the
tool does not display a warning for this mismatch.

Example 104 Incorrect Method

module three state (A, B, SELA, SELB, T);
input A, B, SELA, SELB;
output T;
reg T;
always @ (SELA or A)

if (SELA)
T = A;
else
T = 1'bz;
always @ (SELB or B)
if (SELB)
T = B;
else
T = 1'bz;
endmodule

Registering Three-State Driver Data

When a variable is registered in the same block in which it is defined as a three-state
driver, the HDL Compiler tool also registers the driver’s enable signal, as shown in
Example 105. Figure 37 shows the compiled gates and the associated inference report.

HDL Compiler™ for SystemVerilog User Guide 169
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 7: Modeling Three-State Buffers
Instantiating Three-State Drivers

Example 105 Three-State Driver With Enable and Data Registered

module ff_3state (DATA, CLK, THREE STATE, OUT1) ;
input DATA, CLK, THREE STATE;
output OUT1;
reg OUT1;
always @ (posedge CLK) begin
if (THREE STATE)
OUT1 <= 1'bz;
else
OUT1 <= DATA;
end
endmodule

Example 106 Inference Reports

Register Name	Type	Width	Bus	AR	AS	SR	SS	ST
OUT1 reg	[Flip-flop	1	N	N	N	N	N	N
OUT1 tri enable reg	Flip-flop	1	N	N	N	N	N	N
Register Name	Type	Width						
OUT1 tri	Tri-State Buffer	1						

Figure 37 Three-State Driver With Enable and Data Registered

e

Instantiating Three-State Drivers
The following gate types are supported:
+ bufifO (active-low enable line)

« bufif1 (active-high enable line)

HDL Compiler™ for SystemVerilog User Guide 170
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Modeling Three-State Buffers
Errors and Warnings

Feedback

« notifO (active-low enable line, output inverted)
« notif1 (active-high enable line, output inverted)

Connection lists for bufif and notif gates use positional notation. Specify the order of the
terminals as follows:

« The first terminal connects to the output of the gate.
« The second terminal connects to the input of the gate.
» The third terminal connects to the control line.

Example 107 shows a three-state gate instantiation with an active-high enable and no
inverted output.

Example 107 Three-State Gate Instantiation

module three state (inl,outl,cntrll);
input inl,cntrll;
output outl;

bufifl (outl,inl,cntrll);
endmodule

Errors and Warnings

When you use the coding styles recommended in this chapter, you do not need to

declare variables that drive multiply driven nets as tri data objects. But if you don’t

use these coding styles, or you don’t declare the variable as a tri data object, the

HDL Compiler tool issues an ELAB-366 error message and terminates. To force the

tool to warn for this condition (ELAB-365) but continue to create a netlist, set the

hdlin prohibit nontri multiple drivers variable to false (the defaultis true).
With this variable false, the tool builds the generic netlist for all legal designs. If a design is
illegal, such as when one of the drivers is a constant, the tool issues an error message.

The following code generates an ELAB-366 error message (OUT1 is a reg being driven by
two always@ blocks):

module three state (ENABLE, IN1, RESET, OUTI1);

input IN1, ENABLE, RESET;
output OUTI1;
reg OUT1;

always @ (IN1 or ENARBLE)
if (ENABLE)
OUT1 = IN1;

always@ (RESET)

HDL Compiler™ for SystemVerilog User Guide 171
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 7: Modeling Three-State Buffers
Errors and Warnings

if (RESET)
OUT1l = 1'b0;
endmodule

The ELAB-366 error message is

Error: Net '/...v:14: OUT1l' or a directly connected net is
driven by more than one source, and not all drivers are
three-state. (ELAB-366)

HDL Compiler™ for SystemVerilog User Guide 172
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

8

Other SystemVerilog Features

Feedback

This section provides examples of supported SystemVerilog features.

Variables

The foreach Loop

Functions and Tasks

Binding Function and Task Arguments by Name
Parameterized Functions and Tasks Using Virtual Classes
Parameterized Data Types

Bit-Level Support for Compiler Directives
Structures

Unions

Multidimensional Arrays

Configurations

Implicit Port Connections

Casting

Assignment Patterns

Macro Expansion and Parameter Substitution
"begin_keywords and ‘end_keywords
Predefined SYSTEMVERILOG Macro

Matching Block Names

Port Renaming

Generic Wire Type

HDL Compiler™ for SystemVerilog User Guide
U-2022.12-SP3

173

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 8: Other SystemVerilog Features
Variables

* General Verilog Coding Guidelines

« Guidelines for Interacting With Other Flows

Variables

In Verilog, you need to use different variables for parallel for loops. If loops in two or more
parallel processes use the same control variable, there is a possibility that one loop is
modifying the variable that other loops are still using. However, SystemVerilog allows you
to use the same variable for multiple loops because a block creates a new hierarchical
scope making the variable local to the loop scope.

Verilog for Loop Example

This example uses the j and k variables for the two for loops.

module varloopl (
input clk,
input [3:0] in,
output reg [3:0] out

)

integer 7j;

integer k;

reg [3:0] tmp;

always @ (posedge clk) begin
for (j=0;3<4;j=3+1) begin
tmp[j] = !'in[j];

end

end

always @ (posedge clk) begin
for (k=0;k<4;k=k+1) begin

out[k] <= tmpl[k];

end

end

endmodule

SystemVerilog for Loop Example

This example uses only the j variable for the two for loops.

module varloop (
input clk,
input [7:0] in,
output logic [3:0] out
) :
logic [7:0] tmp;
always ff @ (posedge clk) begin
for (int j=0;73<8;J=j+2) begin

tmp [J] <= lin[j];
tmp[Jj+1] <= in[j+1];
end
HDL Compiler™ for SystemVerilog User Guide 174

U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 8: Other SystemVerilog Features
The foreach Loop

end
always ff @ (posedge clk) begin
for (int j=0;j<4;3j++) begin
out[j] <= tmp[j]l;
end
end
endmodule

Automatic Variable Initialization

By default, the tool initializes automatic variables to zero. This initialization applies to both
two-state and four-state variables.

The foreach Loop

SystemVerilog provides the foreach construct for iterating over the elements of arrays.
The iterators have a local scope and automatically match the type and range of the array
bounds, so you do not need to hard-code the array bounds.

The following examples contrast the two different coding styles between the for loop and
the foreach loop:

* The for loop

module for loop (

input [15:0] h pixel,

input [31:0] v _pixel,

output logic [15:0][31:0] hv_xor pixel
);

always comb

for (int i=15; i>=0; i--) begin
for (int j=31; j>=0; j--) begin
hv _xor pixel[i][]j] = h pixel[i] "~ v_pixel[]J];
end
end
endmodule

* The foreach loop

module foreach loop (

input [15:0] h pixel,

input [31:0] v pixel,

output logic [15:0][31:0] hv_xor pixel
)

always comb
foreach (hv_xor pixel[i,]j]) begin
hv_xor pixel[i][j] = h _pixel[i] * v_pixell[jl];
end
endmodule

HDL Compiler™ for SystemVerilog User Guide 175
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Other SystemVerilog Features

Feedback

Functions and Tasks

Functions and Tasks

This topic contains examples that use various function and task features:

Function Before or Within a Module
The logic Type

The longint Type

User-Defined Structure

Output Argument and a Return Value
SystemVerilog for Loop

Sensitivity List Within a Function
Memory Elements Outside a Function

Real Math Functions

Within a function block,

If the always, always comb, always latch, Or always ff keyword is used, the too
issues an error message.

Delay elements are ignored with a warning message.

Combinational logic is allowed.

Function Before or Within a Module

You can place a function before or within a module, but not after a module. Placing a
function after a module causes an error because the tool cannot see the function during
the analyze step.

Function before a module

typedef logic [3:0] ar4;
function automatic ar4 swap (
input [3:0] value, switch, pack hdr, vlan, status,
) ;
begin: myFunc
unique case(1'bl

)
status[0]: swap = value;
status([l]: swap = switch;
status([2]: swap = pack hdr;
status[3]: swap = vlan;
endcase
end
HDL Compiler™ for SystemVerilog User Guide 176

U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Other SystemVerilog Features
Functions and Tasks

endfunction

module do autol6 sv (

Feedback

input [3:0] value, switch, pack hdr, vlan, status,

output ar4 array
);
always comb

array = swap (value, switch, pack hdr, vlan, status);

endmodule

* Function within a module

typedef logic [7:0] ar8 8 [3:0];

module do autolQ sv (
input integer i,

//supports multidimensional array

input [7:0] value, switch, pack hdr,

output ar8 8 array
)

function ar8 8 swap (

input [7:0] value, switch, pack hdr,

input integer i
)
localparam VLU =
localparam SCH =
localparam HDR =
localparam NUM =
begin: myFunc
swap [VLU]
swap [SCH]
swap [HDR]
swap [NUM]
end
endfunction
always comb

’
’

’

w NP O

’

= value;
switch;
pack hdr;
i;

array = swap(value, switch, pack hdr, i);

endmodule

The logic Type

This example uses the logic type to describe a 33-bit adder.

module add fun new (

input logic [31:0] vall, val2,

output logic [32:0] result
) ;

function logic [32:0] adder33 ([31:0] wvall, val2); // default input logic

return (vall + val2);
endfunction

assign result = adder33(vall, val2);

endmodule

HDL Compiler™ for SystemVerilog User Guide
U-2022.12-SP3

177

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Other SystemVerilog Features

Functions and Tasks

Feedback

The longint Type

This example defines the val1 and val2 inputs with the 1ongint type as the arguments of
the subtractor64 function, which returns a result of the 1ongint type.

module subtractor func longint new (
input longint vall, val2,
output longint result

) ;

function longint subtractor64 (longint vall, val2); // input direction
return(vall - val2);

endfunction

assign result = subtractor64 (vall, val2);

endmodule

User-Defined Structure

This example uses the typedef construct to create user-defined structures in module
ports, task inputs, and output arguments. This code builds an adder and a subtractor.

typedef struct {
reg [32:0] sum;
reg [31:0] diff;
} addsub;

typedef struct {
reg [31:0] val 1;
reg [31:0] val 2;
} in vals;

module struct to and from task (
input in vals wval 1 and val 2,
output addsub result

):):

task calc values (input in vals val 1 and val 2, output addsub result);

addsub tmp;

tmp.sum = val 1 and val 2.val 1 + wval 1 and val 2.val 2;
tmp.diff = val 1 and val 2.val 1 - wval 1 and val 2.val 2;
result = tmp;

endtask

always comb calc values (val 1 and val 2, result);
endmodule

Output Argument and a Return Value

This example shows that the prod_and_diff function returns a value and an output
argument. This design has a subtracter and a multiplier in the function.

HDL Compiler™ for SystemVerilog User Guide 178
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Other SystemVerilog Features
Functions and Tasks

module function with output arguments # (parameter N=8) (

input logic [N-1:0] A, B,

output logic [N:0] DIFF, logic

) ;

function automatic logic [N-1:0]
input logic [N-1:0] Aval, Bval,
output logic [2*N-1:0] prod val

)7

prod val = Aval * Bval;
return (Aval - Bval);
endfunction

always comb

DIFF = prod and diff (A, B, PROD);

endmodule

[2*N-1:0] PROD

prod and diff

(

Feedback

SystemVerilog for Loop

This example counts the number of zeros in the input and outputs the result. The legal
function checks whether the input is legal using a SystemVerilog for loop. The zeros
function, which counts zeros using a SystemVerilog for loop, has an output argument and
returns nothing. It is a pseudo void function.

function automatic logic legal
reg seenzZero, seenTrailing;
begin : legal block
legal = 1; seenZero =
for(int i = 0; i1 <= 7;
if(seenTrailing && (
begin
return 0;
end
else 1f(seenZero && (x[1]
seenTrailing = 1;
else 1if(x[1] == 1'b0)
seenZero = 1;
end
endfunction

function automatic void zeros
input [7:0] data,

output logic [3:0] num zeros

)7

logic [3:0] count;

count = 0;

for(int 1 = 0;

if(datal[i] ==
count++;
num_zeros = count;

endfunction

i <= 7; i++)
1'b0)

HDL Compiler™ for SystemVerilog User Guide
U-2022.12-SP3

(input [7:0] x);

enTrailing = 0;

179

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 8: Other SystemVerilog Features
Functions and Tasks

module count zeros (
input logic [7:0] data,
output logic [3:0] result, logic error

) ;

wire is legal = legal (data);

logic [3:0] temp result;

assign error =! is legal;

always comb zeros(data, temp result);

assign result = is legal ? temp result : 1'bO;
endmodule

Sensitivity List Within a Function

The tool supports a sensitivity list in a function. To avoid synthesis and simulation
mismatch, you must specify a sensitivity list if you use a case statement in the RTL. For
example,

typedef logic [3:0] ar4;
module do_autol2 sv (
input [3:0] value, switch, pack hdr, vlan,
input [1:0] status,
output ar4 array
) ;
function automatic ar4 swap (
input [3:0] value, switch, pack hdr, vlan,
input [1:0] status
)
begin: myFunc
priority case (status)//supports sensitivity list
0: swap = value;
1: swap = switch;
2: swap = pack hdr;
3: swap = vlan;
endcase
end
endfunction

always comb
array = swap(value, switch, pack hdr, vlan, status);
endmodule

Memory Elements Outside a Function
Memory elements, such as registers, should be placed outside a function. For example,

module do_autol9 sv (

input [31:0] stop_now,

input clk,

output logic [31:0] watchdog
)7

HDL Compiler™ for SystemVerilog User Guide 180
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 8: Other SystemVerilog Features
Functions and Tasks

function automatic [31:0] counter (input [31:0] stop now);
automatic logic [31:0] temp = stop now;
localparam [5:0] size = 32;
for (int i = 0; 1 < size; 1i++)
begin
if (1 == 0)
begin
if (!'temp[O0])
counter = 0;
else
counter = 1;
end
else if (temp[il])
counter++;
end
endfunction

always ff @ (posedge clk)
watchdog <= counter (stop now);
endmodule

Real Math Functions

In the declarations of local parameters, the tool supports all the standard unary system
functions that have equivalent C language real math library functions as listed in Table 8.

Table 8 Unary System Functions to C Language Real Math Functions Cross-Listing
Unary System Function Equivalent C Language Description
Function
$in (x) log (x) Natural logarithm
$log10 (x) log10 (x) Decimal logarithm
$Sexp (x) exp (x) Exponential
$sqrt (x) sqrt (x) Square root
$floor (x) floor (x) Floor
$ceil (x) ceil (x) Ceiling
$sin (x) sin (x) Sine
$cos (x) cos (x) Cosine
$tan (x) tan (x) Tangent
$asin (x) asin (x) Arc-sine
HDL Compiler™ for SystemVerilog User Guide 181

U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 8: Other SystemVerilog Features
Binding Function and Task Arguments by Name

Table 8 Unary System Functions to C Language Real Math Functions Cross-Listing
(Continued)
Unary System Function Equivalent C Language Description
Function
$acos (x) acos (x) Arc-cosine
$atan (x) atan (x) Arc-tangent
$sinh (x) sinh (x) Hyperbolic sine
$cosh (x) cosh (x) Hyperbolic cosine
$tanh (x) tanh (x) Hyperbolic tangent
$asinh (x) asinh (x) Arc-hyperbolic sine
$acosh (x) acosh (x) Arc-hyperbolic cosine
$atanh (x) atanh (x) Arc-hyperbolic tangent

Restrictions

HDL Compiler does not support the following binary system functions:

+ $pow
« $atan2
+ S$hypot

Binding Function and Task Arguments by Name

You can pass function and task arguments by name with a port-like name syntax, as
shown in the following example. If both positional and nhamed arguments are specified
in a single subroutine call, all the positional arguments must come before the named
arguments. For more information, see the IEEE Std 1800-2017.

module test (
input integer wvaluel, valueZ2,
output logic [32:0] resultl, result2
)
function logic [32:0] adder (integer a, Db);
return (a + b);

endfunction

// Pass arguments by order

HDL Compiler™ for SystemVerilog User Guide 182
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 8: Other SystemVerilog Features
Parameterized Functions and Tasks Using Virtual Classes

assign resultl = adder (valuel, value2);

// Pass arguments by name
assign result2 = adder(.b(value2), .a(valuel));
endmodule

As shown in the following code, the tool does not allow default argument values for
functions, and it issues a VER-721 error message.

function logic [32:0] adder33 (int a, b = 25);
return (a + b);
endfunction

Parameterized Functions and Tasks Using Virtual Classes

The tool supports parameterized functions and tasks via static methods of parameterized
virtual classes.

Functions or tasks containing static methods that use parameters allow you to easily
redefine the function or task behaviors based on the parameter definitions. You create and
maintain only one parameter definition instead of multiple subroutines with different array
sizes, data types, and variable widths.

The following example shows the declaration of the F1 function inside a virtual class
where the S and T parameters are defined to characterize the behavior of the F1 function.
The top module uses the class scope resolution operator (::) to access the F1 function and
redefines the S and T parameters.

virtual class MyClass # (parameter S=4, parameter type T=bit);
static function T F1 (T [S-1:0] x);

return (&X);

endfunction

endclass

module top (x, Vy);
input logic [7 :0] x;
output logic vy ;

assign y = MyClass#(.S(8), .T(logic))::Fl(x);
endmodule

To use the default parameter values, use an empty #() parameter setting. For example,
assign y = MyClass#()::F1(x);

The following restrictions apply:

« Virtual class declaration is supported only in $unit.

« Only static methods can be declared inside virtual classes.

HDL Compiler™ for SystemVerilog User Guide 183
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 8: Other SystemVerilog Features
Parameterized Data Types

« Only the class scope resolution operator (::) can be used to access virtual class
methods.

« Synthesis supports only virtual classes.

« The parameterized function must be called from within a module.

Parameterized Data Types

To modify parameters in modules or interfaces, set the parameter data types by using the
parameter type keywords. If you do not specify a data type, the default is 1ogic.

To learn how to parameterize data types, see
« Parameterized Standard Data Types
« Parameterized User-Defined Data Types

« Parameterized Data Types in Interfaces

Parameterized Standard Data Types

The following example sets the default data type of comparatortype to int in the
comparator module using the parameter type keywords. The top module parameterizes
comparatortype to int, shortint, and longint for the instantiated comparator

modules comp16, comp32, and comp_fp respectively. Explicit redefinitions are

needed for the comp32 and comp_fp instances (#(.comparatortype(shortint)) and
#(.comparatortype(longint))) because of the nondefault types.

module comparator # (parameter type comparatortype = int) (
input comparatortype a, comparatortype b,
output logic 1lt, logic gt, logic eq

)

always comb

begin
unique if (a < b)
begin
1t = 1'bl;
gt = 1'b0;
eq = 1'b0;
end
else 1f (a > Db)
begin
1t = 1'b0;
gt = 1'bl;
eq = 1'b0;
end
else 1f (a == Db)
begin
HDL Compiler™ for SystemVerilog User Guide 184

U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 8: Other SystemVerilog Features
Parameterized Data Types

eq = 1'bl;
1t = 1'b0;
gt = 1'b0;
end
end
endmodule
module top (

input int al, bl,
input shortint a2, b2,
input longint a3, b3,
output logic [2:0], less than, greater than, equal
) ;
//32-bit comparator
comparator comp32 (al, bl, less than[0], greater than[0], equall0]);

//16-bit comparator
comparator # (.comparatortype (shortint))
compl6 (a2, b2, less than[l], greater than[l], equalll]);

//long comparator

comparator # (.comparatortype (longint))

comp_ fp (a3, b3, less than[2], greater than[2], equal(2]);
endmodule

Parameterized User-Defined Data Types

The following example contains two user-defined data types: data_packet and
big_data_packet. The test module sets the default data type of data_packet_type
to data_packet using the parameter type keywords. The top module
parameterizes data_packet_type to data_type and big_data_type for the u1

and u2 instances respectively. Explicit redefinition is needed for the u2 instance
(#(.data_packet_type(big_data_packet))) because of the nondefault type.

typedef struct {
logic [31:0] src_a;
logic [31:0] dst_a;
logic [3:0] hdr;

} data packet;

typedef struct {
logic [63:0] src_a;
logic [63:0] dst_a;
logic [9:0] hdr;

} big data packet;

module test # (parameter type data packet type = data packet) (
input data packet type a,
output data packet type b

) i

assign b = a;

HDL Compiler™ for SystemVerilog User Guide 185
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Other SystemVerilog Features

Feedback

Parameterized Data Types

endmodule

module top (
input data packet dil,
input big data packet bdil,
output data packet dol,
output big data packet bdol
)
test ul(dil, dol);
test #(.data packet type(big data packet)) u2(bdil, bdol);
endmodule

Parameterized Data Types in Interfaces

The following example sets the default data type of new_type to bit in the | interface
using the parameter type keywords. The two_dff module parameterizes new_type to bit
and logic for the instantiated interfaces inst1 and inst2 respectively. Explicit redefinition is
needed for the inst2 instance (#(.new_type(logic))) because of the nondefault type.

interface I # (parameter type new type = bit) (input new type clk, rst, d);
modport MP (input clk, rst, d);
endinterface : I

module dff (

I.MP a,

output logic g
) ;

always ff @ (posedge a.clk, negedge a.rst)
begin
if(la.rst) g <= '0;
else g <= a.d;
end
endmodule

module two dff (
input clk, rst, d [1:0],
output logic g [1:0]

)

I instl (.clk, .rst, .d(d[1l]))

; //two state
dff ul(.a(instl.MP), .qg(glll)):

I # (.new type(logic)) inst2 (.clk, .rst, .d(d[0])); //four state
dff u2 (.a(inst2.MP), .g(gl0]1));
endmodule
HDL Compiler™ for SystemVerilog User Guide 186

U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Other SystemVerilog Features
Bit-Level Support for Compiler Directives

Feedback

Bit-Level Support for Compiler Directives

You can apply the sync_set reset, async_set reset, one hot, one cold, and
keep signal name compiler directives at the bit level.

Example: sync_set_reset

module dff sync (
input clk, d, st, rst,
output logic g
)
// synopsys sync_set reset rst
always ff @ (posedge clk)
begin
if (rst) g 1
else q <= d;
end
endmodule

Example: async_set_reset

module dff async (
input clk, d, st, rst,
output logic g

)7

// synopsys async_set reset "st, rst"

always ff @ (posedge clk or posedge st or posedge rst)

begin
if (st) q <= 1'bl;
else 1if (rst) g <= 1'b0;
else q <= d;

end

endmodule

Example: one_hot

module dff async (input clk, d, st,
// synopsys one hot "st, rst"
always ff @...

Example: one_cold

module dff async (input clk, d, st,
// synopsys one cold "st, rst"
always ff @...

output logic q);

output logic q);

Structures

The Synopsys synthesis tools support structure data types in SystemVerilog. You can use

the struct type to group a collection of variables.

HDL Compiler™ for SystemVerilog User Guide
U-2022.12-SP3

187

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Other SystemVerilog Features

Feedback

Structures

Structure Data Type

This example uses a typedef declaration to create a structure type for a CPU instruction
that consists of an 8-bit opcode and a 32-bit address.

typedef struct {

byte opcode; // 8 bits
int addr; // 32 bits
} instruction; // named structure type

module m;
instruction IR1, IR2, IR3; // define variable

éﬂamodule
Packed Structure Data Type and the Initialization

The following example uses a packed structure, enums, and $unit to describe a 35-bit
register that consists of asynchronous reset flip-flops.

typedef enum logic [1:0]{OFF = 2'd0, ON = 2'd3} SWITCH VALUES;
// default - integer for enums

// RED = 0, GREEN = 1, BLUE = 2

typedef enum {RED, GREEN, BLUE} LIGHT COLORS;

typedef struct packed {
SWITCH VALUES switch; // 2 bits
LIGHT COLORS light; // 32 bits
logic test bit; // 1 bit
} sw_1lgt pair;
module struct default (
input logic clock, reset,
output sw_1lgt pair slp
)
always ff @ (posedge clock, posedge reset)
begin
if (reset)
// Initialization: clears all 35 bits in the packed structure
slp <= '0;
else
begin
slp.switch <= ONj;
slp.light <= GREEN;
slp.test bit <= 1;
end
end
endmodule

You do not need to initialize each member of the packed structure because all the
members of the packed structure are initialized by the reset statement (if(reset) slp <="'0;).

HDL Compiler™ for SystemVerilog User Guide 188
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 8: Other SystemVerilog Features
Structures

The tool treats the packed structure as a single vector, as shown in the following inference
report:

Unpacked Structure and the Initialization

You must initialize each member of an unpacked structure separately during reset, as
shown in the following example. If you initialize an unpacked structure as a group using
the reset statement (if(reset) slp <='0;), the tool issues an ELAB-930 error message. This
packed structure example contains the correct initialization statement.

typedef enum logic [1:0] {ON = 2'd3, OFF = 2'd0} SWITCH VALUES;

typedef enum {RED, GREEN, BLUE} LIGHT COLORS;//default- integer for enums
typedef struct {

SWITCH VALUES switch; //2 bits

LIGHT COLORS light; //32 bits

logic test bit; // 1 bit

} sw_1lgt pair;

module struct default(
input logic clock, reset,
output sw_1lgt pair slp
)
always ff @ (posedge clock, posedge reset)

begin
if (reset)
// Initialize each member because it is an unpacked struct
slp <= '"{SWITCH VALUES : ON, LIGHT COLORS : RED, logic : 1'bO0};
else
begin
slp.switch <= OFF;
slp.light <= GREEN;
slp.test bit <= 1;
end
end
endmodule

The tool builds a 2-bit register using asynchronous set flip-flops and a 33-bit register using
asynchronous reset flip-flops, as shown in the following inference report:

| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST

| B T T T T e T T T Y T T T T

| slp reg | Flip-flop | 2 | Y | N | N |]Y | N | N |N

| slp reg | Flip-flop | 33 /| Y | N | Y | N | N | N | N
HDL Compiler™ for SystemVerilog User Guide 189

U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 8: Other SystemVerilog Features
Unions

Unions

The synthesis tools support the union construct in SystemVerilog, as shown in the
following example and inference report:

RTL Containing a Union Construct

typedef struct {
union packed{
logic [31:0] data;
int 1i;
HEE;

} my struct;

module union example (
input clk,
input my struct d,
output my struct g
)
my struct loop_ index;
always ff @ (posedge clk)
begin
for (loop index.ff.i = 0; loop index.ff.i <= 31; loop index.ff.i++)
g.ff.data[loop index.ff.i] <= d.ff.datal[loop index.ff.i];
end
endmodule

Inference Report

| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
| g reg | Flip-flop | 32 /| 'Y | N | N | N | N | N | N |
See Also

* Unsupported Constructs

Multidimensional Arrays

You can use multidimensional arrays as function arguments, module ports in packed and
unpacked arrays, array slicing, and part-select operations:

» Multidimensional Arrays as Function Arguments
« Multidimensional Arrays as Unpacked Arrays

« Multidimensional Arrays as Unpacked Arrays Using $low and $high

HDL Compiler™ for SystemVerilog User Guide 190
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 8: Other SystemVerilog Features
Multidimensional Arrays

« Multidimensional Arrays as Unpacked Arrays Using $left and $right
« Multidimensional Array Slicing
« Multidimensional Arrays Using Part-Select Addressing

For synthesis restrictions on multidimensional arrays, see Unsupported Constructs.

Multidimensional Arrays as Function Arguments
This example uses multidimensional arrays as function arguments.

function logic test (
input logic [10:1][2:1] packed mda,
input logic [10:1] unpacked mda [2:1]
) 7

endfunction

Multidimensional Arrays as Unpacked Arrays

This example generates and checks the parity of 10 packets. It uses an unpacked array
of unpacked structures to model the packets and uses multidimensional arrays as module
ports.

// Generates and checks parity of ten packets. Uses unpacked array of
// unpacked structures to model all the bits of all the packets.
typedef struct {

logic [7:0] hdrl;

logic [7:0] hdr2;

logic null flag;

logic [27:0] data_ body;

} network packet;

module packet op array # (parameter NUM PACKETS = 10) (
input network packet packetl [NUM PACKETS -1:0],
input network packet packet2 [NUM PACKETS -1:0],
output logic packet parityl [NUM PACKETS -1:0],
output logic packet parity2 [NUM PACKETS -1:0],
output logic packets are equal [NUM PACKETS -1:0]
) ;

function logic parity gen (network packet packet);
return (*{packet.hdrl, packet.hdr2, packet.null flag, packet.data body});
endfunction

function logic compare packets (network packet packetl, packet2);
if ((packetl.hdrl == packet2.hdrl)

&& (packetl.hdr2 == packet2.hdr2)

&& (packetl.null flag == packet2.null flag)

HDL Compiler™ for SystemVerilog User Guide 191
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
unique_30_Connect_42_i1072921

Feedback

Chapter 8: Other SystemVerilog Features
Multidimensional Arrays

&& (packetl.data body == packet2.data body))
return (1'bl);

else
return (1'b0);

endfunction

always comb
begin
for(int i = 0; i< NUM_PACKETS; i++)
begin
packet parityl[i] = parity gen(packetl[i]);
packet parity2[i] = parity gen(packet2[i]);
packets are equal[i] = compare packets(packetl[i], packet2[i]);
end
end
endmodule

Multidimensional Arrays as Unpacked Arrays Using $low and
$high

This example uses an unpacked array as a module port and the $1ow and shigh array
query functions with SystemVerilog for loops.

module mda array query (
input [7:0] a,
output logic t [0:3][0:7], logic z
)
integer k;
always comb
begin

for (int j = $low(a, 1); Jj <= Shigh(a, 1); j++) begin
t[01[J] = al3jl;
end
for (int i = 1; i < 4; i++) begin
k =1 << (3-1);
for (int j = 0; J < k; Jj++) begin
tlil[J] = tli-111[2*3] ~ tli-1]1[2*J+1];
end
end
end
assign z = t[3][0];
endmodule

Multidimensional Arrays as Unpacked Arrays Using $left and
$right

This example uses unpacked arrays as module ports, the s1eft and $right array query
functions, and an enhanced for loop to describe the matrix_adder module.

HDL Compiler™ for SystemVerilog User Guide 192
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 8: Other SystemVerilog Features
Multidimensional Arrays

function automatic logic signed [32:0] add vall and val2
(logic signed [31:0] wvall, wval2);

return (vall + val2);

endfunction

module matrix adder (
input logic signed [31:0] af[0:2][0:27,
logic signed [31:0] b[0:2][0:2],
output logic signed [32:0] sum[0:2][0:2]
) ;

always comb

begin
for (int i=$left(a, 1); i<=S$right(a, 1); i++)
begin
for (int j=$left(a, 2); j<=Sright(a, 2); Jj++)
begin
sum[i] [J] = add vall and val2(ali][]j], b[i]1[]])~
end
end
end
endmodule

Multidimensional Array Slicing
This example shows that a multidimensional array is referenced in two array slices.

module mda slicing (
input logic([31:0] 3[7:01,
output int k [1:0]

)7

assign k = j[7:6];

endmodule : mda slicing

Multidimensional Arrays Using Part-Select Addressing

This example uses a generate statement and assigns values to the r_val, b_val, and
g_val multidimensional arrays by using part-select addressing.

typedef logic [0:23] three byte;
typedef logic [0:7] one byte;

module mda unpacked psel (

input three byte pixel array[0:3],

output one byte r val[0:3], g val[0:3], b val[0:3]
)i

genvar 1i;

generate
for (i=0; i<4; i++) begin: outer loop
assign r val[i] = pixel array[i] [0+:8]; // select all red
assign g val[i] = pixel array[i] [8+:8]; // select all green
assign b val[i] = pixel array[i][16+:8]; // select all blue
HDL Compiler™ for SystemVerilog User Guide 193

U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 8: Other SystemVerilog Features
Configurations

end
endgenerate
endmodule : mda unpacked psel

Configurations

You can use configurations to specify binding information of module instances down to
the cell level in the design. The configurations can be analyzed and elaborated by the
analyze and elaborate commands respectively. For example,

dc_shell> analyze -format sverilog {submodule.sv ...}
dc_shell> analyze -format sverilog top module.sv
dc_shell> analyze -format sverilog config file.sv
dc_shell> elaborate my config of design

By default, the HDL Compiler tool resolves lower module instances by applying a design
library search order taken from the dc_shell environment and the analyzed parent module.
Alternatively, you can specify design library locations (bindings) for module or interface
instances of a specific design in configurations by using the config element. All bindings
in the design hierarchy are constrained by the configuration rules given in the config_rule
subset in the configuration.

The following configuration syntax is supported for synthesis:
config config id;

design {[Iib_id .]design id};
{config rule}

endconfig [: config id]
where
config rule ::= default liblist {Iib id};
| instance design id {. inst id} liblist 1ib id;
design id ::= module id | interface id

For more information about the syntax, see the IEEE Std 1800-2017.
The following limitations apply when you use configurations:

« Only one library is allowed for instances.

« Only one default rule is allowed.

« Library declarations are not allowed.

To define libraries, use the define design 1ib command. Design library names in
dc_shell are not case-sensitive.

HDL Compiler™ for SystemVerilog User Guide 194
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 8: Other SystemVerilog Features
Configurations

* The read file command and the -autoread option do not support configurations.

« Configuration rules do not affect the bindings of designs that are already elaborated or
loaded in memory.

Configuration Examples

The following topics provide examples on how to use configuration rules and designs:
« Default Statement

» Instance Bindings

« Multiple Top-Level Designs

The examples use these low-level modules:

e subil.v

module subl (
input i1, i2,
output ol
) ;
assign ol = il & 1i2;
endmodule

* sub2.v

module subl (
input i1, i2,
output ol
);
assign ol = il | 1i2;
endmodule

e sub3.v

module subl (
input i1, i2,
output ol
);
assign ol = il ~ 12;
endmodule

Note:

The three low-level files use the same sub1 module name, but they implement
different functions. The sub1.v, sub2.v, and sub3.v files implement AND, OR,
and XOR functions respectively.

HDL Compiler™ for SystemVerilog User Guide 195
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 8: Other SystemVerilog Features
Configurations

Default Statement

The following example uses a configuration to direct the tool to choose the implementation
of the instances in the top-level module. The configuration file specifies the default
statement, but no binding information.

Top-level top.v file

module top (
input i1, i2, i3, 1i4,
output ol, 02, o3

) ;

subl Ul (il, i2, ol);
subl U2 (ol, i3, 02);
subl U3 (02, 1i4, o03);
endmodule

Configuration file

config cfgl;

design rtllLib.top;
default liblist rtlLib;
endconfig

HDL Compiler Tcl script

define design lib 1libl -path ./1libl

define design 1lib 1ib2 -path ./1ib2

define design lib rtlLib -path ./rtlLib

analyze -format sverilog -library libl subl.v
analyze -format sverilog -library 1ib2 sub2.v
analyze -format sverilog -library rtlLib sub3.v
analyze -format sverilog -library rtlLib top.v
elaborate cfgl

Netlist

The output netlist shows that the sub1 module analyzed in the rtiLib library is chosen
for the instantiations in the top module.

module subl (il, i2, ol);

input i1, 12;

output ol;
GTECH_XOR2 C7 (.A(il), .B(i2), .Z(ol));
endmodule

module top (i1, i2, i3, i4, ol, o2, 03);
input i1, i2, i3, i4;
output ol, 02, 03;

subl Ul (.il(il1), .i2(i2), .ol(ol)):
subl U2 (.il(ol), .i2(i3), .ol(o2));
subl U3 (.il(o02), .i2(i4), .ol (o3));
endmodule
HDL Compiler™ for SystemVerilog User Guide 196

U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 8: Other SystemVerilog Features
Configurations

Instance Bindings

The following example shows how to use instance bindings in configurations. The
configuration file specifies the binding of each instance of the sub1 module, but no default
statement.

Top-level top.2 file

module top (
input i1, i2, i3, 1i4,
output ol, 02, o3

) ;

subl Ul (il, i2, ol);
subl U2 (ol, i3, 02);
subl U3 (02, 1i4, o03);
endmodule

Configuration file

config cfgl;

design rtllLib.top;

instance top.Ul liblist 1ibl;
instance top.U2 liblist 1ib2;
instance top.U3 liblist 1ib3;
endconfig

HDL Compiler Tcl script

define design lib libl -path ./libl

define design lib 1ib2 -path ./1ib2

define design lib 1ib3 -path ./1ib3

define design lib rtlLib -path ./rtlLib
analyze -format sverilog -library libl subl.v
analyze -format sverilog -library 1lib2 sub2.v
analyze -format sverilog -library 1ib3 sub3.v
analyze —-format sverilog -library rtlLib top.v
analyze -format sverilog config.v

elaborate cfgl

Netlist

The output netlist shows that each instance of the sub1 module uses a different library
specified in the configuration file. The U1 instance uses the sub1 module from the lib1
library to implement the AND function. The U2 instance uses the sub1 module from the
lib2 library to implement the OR function. The U3 instance uses the sub1 module from
the lib3 library to implement the XOR function.

module subl (il, i2, ol):
input i1, 1i2;
output ol;
GTECH AND2 C7 (.A(il), .B(i2), .Z(ol));
endmodule
HDL Compiler™ for SystemVerilog User Guide 197

U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Other SystemVerilog Features
Configurations

module subl 1 (il, 12, ol);
input i1, 12;
output ol;
GTECH_OR2 C7 (.A(il), .B(iZ2),
endmodule

module subl 2 (il, 12, ol);
input i1, 12;

output ol;
GTECH_XOR2 C7 (.A(il), .B(i2),
endconfig

module top (i1, i2, i3, i4, ol
input i1, i2, i3, i4;
output ol, 02, 03;

subl Ul (.il(il), .i2(i2), .ol
subl 1 U2 (.il(ol), .i2(i3),
subl 2 U3 (.il(o2), .i2(i4),
endmodule

Multiple Top-Level Designs

Feedback

.Z2(ol));

.Z2(ol));

, 02, 03);

(ol))3
.0l (02));
.0l (03));

The following example shows that you can specify multiple top-level designs in
configurations. The configuration file instantiates the top1 and top2 top-level designs.

Top-level top1.v file

module topl (
input i1, i2, i3, i4,
output logic ol, 02, o3
)
subl Ul (i1, i2, ol);
endmodule

Top-level top2.v file

module top2 (
input i1, i2, i3, i4,
output logic ol, 02, o3
);
subl U2 (ol, i3, 02);
endmodule

Configuration file

config cfgl;

design libl.topl lib2.top2;
instance topl.Ul liblist 1ib3;
instance top2.U2 liblist 1ib4;
endconfig

HDL Compiler Tcl script

HDL Compiler™ for SystemVerilog User Guide
U-2022.12-SP3

198

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Other SystemVerilog Features
Implicit Port Connections

Feedback

define design lib 1libl -path ./libl

define design 1lib 1ib2 -path ./1ib2

define design 1lib 1ib3 -path ./1ib3

define design lib 1lib4 -path ./1lib4

define design lib 1ib5 -path ./1ib5

analyze -format sverilog -library 1ib4 sub2.
analyze —-format sverilog -library 1ib5 sub3.
analyze —-format sverilog -library 1ib3 subl.
analyze -format sverilog -library libl topl.
analyze -format sverilog -library 1ib2 top2.
elaborate cfgl

< << <<

Netlist of the top1.v file

The top1netlist shows that the sub1_1 module from the lib3 library is used to implement
the AND function, as specified in the configuration file.

module subl 1 (i1, 12, ol);
input i1, i2;

output ol;
GTECH_ANDZ c7 (.A(il), .B(i2), .Z(ol));
endmodule

module topl (i1, i2, i3, 14, ol, o2, 03);
input i1, i2, i3, i4;
output ol, 02, o03;
subl 1 Ul (.il(il), .i2(i2), .ol(ol)):
endmodule

Netlist of the top2.v file

The top2 netlist shows that the sub1 module from lib4 library is used to implement the
OR function, as specified in the configuration file.

module subl (il, i2, ol);

input i1, 12;

output ol;
GTECH OR2 C7 (.A(il), .B(i2), .Z(ol)):
endmodule

module top2 (i1, i2, i3, i4, ol, 02, o3);
input i1, i2, i3, i4;
output ol, 02, 03;
subl U2 (.il(ol), .i2(i3), .ol (02));
endmodule

Implicit Port Connections

The Synopsys synthesis tools support the SystemVerilog .name and .* implicit port
connections. The implicit port connections apply to both module ports and interface

HDL Compiler™ for SystemVerilog User Guide
U-2022.12-SP3

199

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 8: Other SystemVerilog Features
Implicit Port Connections

ports. Unlike Verilog named port connections (also called explicit port connections), the
implicit port connections list each port name with a leading period for all the ports of the
instantiated module.

Implicit .name Port Connections

In the following example, the dot_name module instantiates the dff module using
the .name syntax (dff Ul (.in, .clk, .rst, .out);), which is equivalentto the explicit
port connections (dff Ul (.in(in), .clk(clk), .rst(rst), .out(out));).

module dot name (
input in, clk, rst,
output logic out
) ;
dff Ul(.in, .clk, .rst, .out);
endmodule

module dff (
input in, clk, rst,
output logic out
)
always ff @ (posedge clk or negedge rst)
if (!'rst) out <= '0;
else out <= in;
endmodule

Mixed Implicit and Explicit Port Connections

You can mix the Verilog explicit port connections and SystemVerilog implicit port
connections, as shown in the following example:

module dot name (
input in, clk, rst,
output logic out
)
dff Ul(.in, .clk, .reset(rst), .out);
endmodule

module dff (
input in, clk, reset,
output logic out

) ;

endmodule

Implicit .* Port Connections

In the previous example, the instance port name and module port name are identical for
each port except the reset port. You can use the .* syntax, which connects the instance

HDL Compiler™ for SystemVerilog User Guide 200
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 8: Other SystemVerilog Features
Implicit Port Connections

port and module port that have the same port name and port size, as shown in the
following example:

module dot star test (
input in, clk, rst,
output logic out

)

dff Ul (.*, .reset(rst));

endmodule

module dff (
input in, clk, reset,
output logic out

)7

endmodule
You can also use the .* syntax to connect interface ports. The design instance contains

the .* port connection must meet either one of the following requirements; otherwise, the
tool issues an ELAB-197 error message.

« The module or interface being instantiated must have already been analyzed.
« The module design must be loaded into the link library.
Implicit .name Interface Port Connections

In the following example, both the M module and dot_name module instantiate the |
interface as i1. You can connect the interface ports using the .name port connection (M m1
(.i1) ;), which is equivalent to the Verilog explicit port connection (M m1 (.11 (i1)) ;).

interface I (

input logic clk, rst, logic [7:0] d,
output logic [7:0] g

)

endinterface

module M(I i1l);
endmodule

module dot name (
input logic clk, rst, logic [7:0] d,
output logic [7:0] g

)

I il(.rst, .clk, .qg, .d); //or I il(.rst(rst), .clk(clk), .g(q), .d(d))
Mml(.i1l); //or M ml(.instl(il)); if module declaration M had I
endmodule

HDL Compiler™ for SystemVerilog User Guide 201

U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 8: Other SystemVerilog Features
Casting

Casting

The following example uses size, sign, and user-defined type casting. To determine the
size of a packed array, the example uses the $bits system task to compute the total
number of bits in the my_struct packed array.

Size, Sign, and User-Defined Type Casting

localparam VEC = 1;
localparam STRUCT ARRAY SIZE = 2;

typedef logic [3:0] nibble;
typedef enum nibble {A=1, B=2, C=4, D=8} one hot variable;

typedef struct packed{

one hot variable [VEC:0] nibble array; // 2 * 4 = 8 bits
logic b; //1 bit

} my_struct; // total 9 bits

module test (
input my struct [STRUCT ARRAY SIZE:0] struct array in, // 9*3=27 bits
output logic [$bits(struct array in)-1:0] packed array, // 27 bits

output my struct single struct, // 9 bits
output logic [19:0] twenty bits of packed array, // 20 bit
output logic one bit of packed array with sign //signed 1 bit

)7

// assign the entire array of packed structures to a packed vector
assign packed array = struct array in;

// casting to the my struct user-defined type
assign single struct = my struct' (packed array);

// size casting, assigning 20 bits of the packed array
assign twenty bits of packed array = 20' (packed array);

// sign casting
assign one bit of packed array with sign =

signed' (twenty bits of packed array);

endmodule

Assignment Patterns

An assignment pattern specifies a correspondence between a collection of expressions,
and structure fields or array elements of a data object or value.

HDL Compiler™ for SystemVerilog User Guide 202
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 8: Other SystemVerilog Features
Assignment Patterns

The Base Assignment Pattern

An assignment pattern is constructed of a single quotation mark () followed by a
collection of expressions enclosed in curly brackets ({}):

varl = '{var2, wvar3};
An assignment pattern has no self-determined data type, but it can be used as one of the
sides in an assignment-like context when the other side has a self-determined data type:

logic [2:0]1[3:0] dout;
dout <= '{3 {2'bll}}; // will get "0011 0011 oo011"

Structures allow sparse assignments to named fields. The default key assigns a value to
all fields not covered by other keys:

typedef struct { int f1l; int f2; int f£3 } threeFields;
localparam threeFields var2 = '{f2 : 2, default : 0}; // f1 and £f3 get O

Assignment patterns can be nested to support assignment to complex data types:

typedef struct {
int fieldl [3];
int field2 [3];

} twoFields [1:0];

localparam twoFields varl = '{ '{fieldl: '{1,2,3}, field2: '{4,5,61}},
'{fieldl: '{7,8,9}, field2: '{10,11,12}}};

Assignment Patterns Versus Concatenation

The syntax difference between concatenation {} and an assignment pattern ' {} is small,
but the behavior can differ significantly in some cases:

« The assignment pattern behavior is based on the destination type and thus supports
much more robust functionality (including implicit type casting, key-based assignment,
default value assignment, assignment to unpacked arrays and structures).

« A concatenation does not change behavior based on the destination type; it simply puts
all of the bits into a single vector and passes that to the assignment.

Note the difference in assignment behavior in the following example:

logic [2:0][3:0] dout;

dout <= '{3 {2'b10}}; // will get "0010_0010_0010"
dout <= {3 {2'bl0}}; // will get "0000 0010 _1010"
HDL Compiler™ for SystemVerilog User Guide 203

U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 8: Other SystemVerilog Features
Macro Expansion and Parameter Substitution

Assignment Pattern Expressions

Another form of assignment pattern is the assignment pattern expression. The syntax is
similar to the base assignment pattern, but a type definition is provided before the single
quotation mark ("):

typedef logic [7:0] twoChar [2];
varl = myChar'{var2, var3};

An assignment pattern expression can be used to construct or deconstruct an array or
structure. Unlike the base assignment pattern, an assignment pattern expression has a
self-determined data type and is not restricted to being used in an assignment-like context:

logic [3:0] doutl, dout2, dout3;
typedef logic [3:0] unpackedLogic [3];

bot bl (.dout (unpackedLogic'{doutl,dout2,dout3}));

Limitations

The following constructs are not supported by the tool:

+ Assignment patterns or assignment pattern expressions on the left side of assignments
» Array pattern keys in assignment patterns

Because each module is analyzed in its own context, expressions that rely on types
from both sides of a module boundary (such as base assignment patterns) are not
supported. Thus, the following constructs are supported only with assignment pattern
expressions:

« Assignment patterns on parameter specification overrides
« Assignment patterns on port connections of module or interface instantiations

However, the tool supports the assignment patterns of constant 0 settings on input
ports by the default keyword. For example,

subl Ul (.il1('{default:'0}), .i2(i2), .ol (ol)):;

Macro Expansion and Parameter Substitution

In SystemVerilog, macro expansion occurs before parameters get substituted. When you
use parameters in macro calls, the parameter names remain the same even after the
macro calls. As shown in the following example, the MAC macro is called by *Mac (N). The
macro is expanded to the PN parameter and then replaced by the value of the parameter,

which is 4. Because the statement (4 == 4) is true, output test_bit is assigned a value of
1.
HDL Compiler™ for SystemVerilog User Guide 204

U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 8: Other SystemVerilog Features
‘begin_keywords and ‘end_keywords

‘define MAC(x) P "x

module test #(parameter N = 2, PN = 4, P2 = 8) (output test bit);
assign test bit = ('MAC(N) == PN);
endmodule

"begin_keywords and ‘end_keywords

To prevent compilation errors due to SystemVerilog keywords in legacy code, encapsulate
the code between the 'begin keywords directive followed by a version specifier and the
'end keywords directive. You can set the version specifier to 1364-1995, 1364-2001,
1364-2001-noconfig, 1364-2005, 1800-2005, Or 1800-2012.

You use the directive pair outside a design element, such as a module, primitive,
configuration, interface, program, or package. The directive pair affects all source code
that is encapsulated, even across source code file boundaries.

For example, the following code assigns the logic name to the output; this coding style
is not permitted in SystemVerilog. When you convert this code to SystemVerilog, you
must encapsulate the code between the directive pair because 1ogic is a keyword in
SystemVerilog; otherwise, the tool reports an error.

"begin keywords "1364-2005"

module test (input a, input b , output logic);
assign logic = a | b;

endmodule

“end_ keywords

Predefined SYSTEMVERILOG Macro

The Synopsys synthesis tools support the predefined SYSTEMVERILOG macro. You can
include SystemVerilog constructs in your existing Verilog code by using this macro. All the
predefined macros for Verilog 2005 are defined in SystemVerilog. For example,

“ifdef SYSTEMVERILOG

module M (input logic i, output int o);
“else

module M (input i, output signed [31:0] o);
‘endif

VA

endmodule

Matching Block Names

You can append a matching block name proceeded by a colon to the block end keyword.
Using matching block names is optional, but this coding style enhances code legibility. You

HDL Compiler™ for SystemVerilog User Guide 205
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Other SystemVerilog Features

Matching Block Names

Feedback

can apply matching block names to endinterface, endmodule, endtask, endfunction,

and named begin-end blocks.

Matching Block Names for State Machines

This example uses a matching block name for each design element:

+ seq_block and count_block for the begin-end blocks in the sequential always ff

block

« comb_block for the begin-end block in the combinational always comb block

* up_block and down_block for the two cases in the case statement

« counter for the endmodule keyword

module counter (

input rst, clk,

output logic [3:0] cnt
)

localparam DOWN=0, UP=1;
logic crt ste, nxt ste;
logic [3:0] int cnt;

always ff @ (posedge clk,
begin : seq block

if (lrst) crt _ste <= UP;
else crt _ste <= nxt ste;

end : seqg block

always ff @ (posedge clk,
begin : count block
if (!'rst) cnt <= '0;

else cnt <= int cnt;

end : count block

always comb
begin : comb_block

nxt ste = 'bx;
int cnt = 0;
case (crt ste)

UP : begin: up block

if (cnt==14) nxt ste =
else nxt ste =
int cnt = ¢cnt + 1;

end : up_block
DOWN: begin: down block

if (cnt==1) nxt ste =
else nxt ste
int cnt = ¢cnt - 1;

HDL Compiler™ for SystemVerilog User Guide

U-2022.12-SP3

negedge rst)

negedge rst)

DOWN;

UpP;

UP;
DOWN ;

206

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 8: Other SystemVerilog Features
Port Renaming

end : down block

endcase
end : comb block
endmodule : counter

Matching Block Names Interfaces and Modules

This example uses the |, loop_iterations, and test matching block names for the interface,
always_comb block, and module respectively.

interface I;

logic [31:0] i;

logic [31:0] o;

modport MP (input i, output o);
endinterface : I

module test (I.MP a) ;

always comb

begin: loop iterations
for(int iter = 0; iter <32; iter++)
a.o[iter] = a.iliter] ;

end : loop iterations

endmodule : test

Port Renaming

When structures, unions, and multidimensional arrays are used as ports in the RTL, the
tool renames the ports in the GTECH netlist, as shown in the following examples:

» Structures
« Unions

* Multidimensional Arrays

Structures

When structures are used as module ports in the RTL, the tool renames the ports in the
GTECH netlist. For example,

* RTL of the structure

typedef struct {

logic [1:0] field; // 2 bits
logic flag; // 1 bit
} packet; // total 3 bits

module test (input packet pl, output packet p2);

HDL Compiler™ for SystemVerilog User Guide 207
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 8: Other SystemVerilog Features
Port Renaming

assign p2 = pl;
endmodule

« GTECH netlist of the structure

module test (.pl({\pl[field][1] , \pl[field][0] , \pl[flag] }),
.p2 ({\p2[field] [1] , \p2[field][0] , \p2[flag] }));

input \pl[field][1] , \pl[field][0] , \pllflag]l ;
output \p2[field][1] , \p2[field][0] , \p2[flag] ;
wire \p2[field][1] , \p2[field][0] , \p2[flag] ;

\pl[field][1] ;
\pl[field] [0] ;

assign \p2[field][1] =
\pl[flag] ;

1
assign \p2[field][0]

assign \p2[flag] =
endmodule

Unions

When packed unions with members of the same size are used in module ports, the tool
renames the ports in the GTECH netlist. As shown in the following RTL and GTECH

netlist, the tool renames the field1 and field2 signals in the RTL to the p1 and p2 vectors in

the netlist.

* RTL of the packed union

typedef union packed {
logic [7:0] fieldl;
byte field2;

} packet;

module test (input packet pl, output packet p2);
assign p2.field2 = pl.fieldl;
endmodule

* GTECH netlist of the packed union

module test (pl, p2):;
input [7:0] pl;
output [7:0] p2;

assign p2[7] = pl[7];
assign p2[6] = pll6];
assign p2[5] = pl[5];
assign p2[4] = pll4];
assign p2[3] = pl[3];
assign p2[2] = pl[2];
assign p2[1l] = pl[1l];
assign p2[0] = pl[0];

endmodule

HDL Compiler™ for SystemVerilog User Guide
U-2022.12-SP3

208

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 8: Other SystemVerilog Features
Generic Wire Type

Multidimensional Arrays

When multidimensional arrays are used in module ports, the tool renames the ports in the
GTECH netlist. For example,

* RTL of the multidimensional arrays

typedef logic [0:2] array;

module test (
input array Al [0:1],
output array A2 [0:1]
);
assign A2[0]
assign A2[1]
endmodule

Al[O];
Al[1l];

=

« GTECH netlist of the multidimensional arrays

module test (A1 ({\A1[O0][0] , NA1[O][1] , N\A1[O0][2] , \A1[1]1[O] ,
\NAL[1]([01] , \AL[1][2] }),
A2 ({\A2[0][0] , \A2[0][1] , \A2[0][2] , \A2[1][O0] ,
\A2[1][1] , \A2[1][2] }));
input \AL1[O0][O0] , \AL[O][1] , \Al[O][2] ,
\AL[1]([0] , N\AL[1][1] , \Al[1l][2] ;
output \A2[0][0] , \A2[0][1] , \A2[0][2] ,
\A2[1]1[0] , NA2[1][1] , \A2[1]I[2] ;
wire \A2[0]1[0] , \A2[O0][1] , \A2[O0][2] ,
\A2[1][0] , \A2[1][1] , \A2[1l]1[2] ;
assign \A2[0][0] = \A1[O0][O] ;
assign \A2[0][1] = \A1[O][1] ;
assign \A2[0][2] = \Al[1l]l([2] ;
assign \A2[1][0] = \Al[1][O] ;
assign \A2[1][1] = \ALl[O][1l] ;
assign \A2[1][2] = \A1[0][2] :
endmodule
Generic Wire Type

The IEEE Std 1800-2017 specifies a generic wire type, interconnect, to model generic
netlists with different types of nets. During synthesis, the HDL Compiler tool maps it to a
wire, port, or pin just like any data type.

If your design contains this wire type, the tool issues a VER-709 warning similar to the
following:

Warning: xxx.sv:2: The interconnect net will be treated as a wire net in
synthesis. (VER-709)

HDL Compiler™ for SystemVerilog User Guide 209
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 8: Other SystemVerilog Features
General Verilog Coding Guidelines

In the following example, both signals clk and din are created as input ports with one and
two bits respectively:

module test (
input interconnect clk,
input interconnect [1:0] din,
output logic [1:0] dout

)7

always @ (posedge clk) dout <= din;
endmodule

General Verilog Coding Guidelines
This topic describes the general Verilog coding guidelines.
+ Persistent Variable Values Across Functions and Tasks

« defparam

Persistent Variable Values Across Functions and Tasks

During Verilog or SystemVerilog simulation, a local variable in a function or task has a
static lifetime by default. The tool allocates memory for the variable only at the beginning
of the simulation, and the recent value of the variable is preserved from one call to
another. During synthesis, the HDL Compiler tool assumes that functions and tasks do not
depend on the previous values and reinitializes all static variables in functions and tasks to
unknowns at the beginning of each call.

The code that does not conform to this synthesis assumption can cause synthesis

and simulation mismatches. You should declare all functions and tasks by using the
automatic keyword, which instructs the simulator to allocate memory for local variables at
the beginning of each function or task call.

Note:

Static variables inside automatic functions or tasks are not allowed in the
$unit name space. For more information about static variables, see Synthesis
Restrictions for $unit.

defparam

You should not use the defparam statements in synthesis because of ambiguity problems.
Because of these problems, the defparam statements are not supported in the generate
blocks. For more information, see the IEEE Std 1800-2017.

HDL Compiler™ for SystemVerilog User Guide 210
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 8: Other SystemVerilog Features
Guidelines for Interacting With Other Flows

Guidelines for Interacting With Other Flows

The design structure created by the HDL Compiler tool can affect commands applied to
the design during the downstream design flows. The following topics provide guidelines for
interacting with these flows during the analyze and elaborate steps:

« Synthesis Flows
* Low-Power Flows

» Verification Flows

Synthesis Flows

The HDL Compiler tool can infer multibit components. If your logic library supports multibit
components, they can offer several benefits, such as reduced area and power or a

more regular structure for place and route. For more information about inferring multibit
components, see infer_multibit and dont_infer_multibit.

Low-Power Flows

This topic provides guidelines to keep signal names in low-power flows:
+ Keeping Signal Names

« Using Same Naming Convention Between Tools

Keeping Signal Names

During optimization, the HDL Compiler tool removes nets defined in the RTL, such as
dead code and unconnected logic. If your downstream flow needs these nets, you can
direct the tool to keep the nets by using the hdlin keep signal name variable and the
keep signal name directive. Table 9 shows the variable settings.

Table 9 Settings for Keeping Signal Names

Setting Description

all The tool preserves a signal if the signal is preserved during optimization. Both
dangling and driving nets are considered.
Note:

This setting might cause the check design command to issue LINT-2 and
LINT-3 warning messages.

all driving The tool preserves a signal if the signal is preserved during optimization and is in
(default) an output path. Only driving nets are considered.
HDL Compiler™ for SystemVerilog User Guide 211

U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Other SystemVerilog Features

Feedback

Guidelines for Interacting With Other Flows

Table 9 Settings for Keeping Signal Names (Continued)

Setting Description

user

The tool preserves a signal if the signal is preserved during optimization and is
marked with the keep signal name directive. Both dangling and driving nets are
considered. This setting works with the keep signal name directive.

user driving The tool preserves a signal if the signal is preserved during optimization, is in an

none

output path, and is marked with the keep signal name directive. Only driving nets
are considered.

The tool does not preserve any signal. This setting overrides the
keep_signal name directive.

Note:

When a signal has no driver, the tool assumes logic 0 (ground) for the driver.

When you set the hdlin keep signal name variable variable to true, the tool preserves
the nets and issues a warning about the preserved nets during compilation. The tool sets
an implicit size only attribute on the logic connected to the nets to be preserved. To mark
a net to preserve, label the net with the keep signal name directive in the RTL and set
the hdlin keep signal name variable to user or user driving. Preserving nets might
cause QoR degradation.

In Example 108, the tool preserves signals test1 and test2 because they are in the output
paths, but it does not preserve signal test3 because it is not in an output path. The tool
removes nets syn1 and syn2 during optimization.

Example 108 Original RTL

module testl2 (
input [3:0] inl,
input [7:0] inZ2,
input in3,
input in4,
output logic [7:0] outl, out2
)
wire testl,test2, test3, synl, syn2;
//synopsys async_set reset "in4"
assign testl = (inl[3] & ~inl[2] & inl[1] & ~inl[0]);
//testl signal is in an input and output path
assign test2 = synl+ syn2;
//test2 signal is in an output path, but not in an input path
assign test3 = inl + in2;
//test3 signal is in an input path, but not in an output path
always @(in3 or in2 or in4 or testl)
out2 = test2 + outl;
always @ (in3 or in2 or in4 or testl)
if (in4) outl = 8'hO;

HDL Compiler™ for SystemVerilog User Guide 212
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Other SystemVerilog Features

Guidelines for Interacting With Other Flows

else

if (in3 & testl)

endmodule

To preserve signal test3,

outl

= in2;

Feedback

1. Enable the tool to preserve nets by setting the enable keep signal variable to true.

2. Setthe hdlin keep signal name variable to user.

3. Place the keep signal name directive on signal test3 after the signal declaration in the
RTL. For example,

wire testl,test2,
//synopsys keep signal name "testl test2 test3"

test3,

synl, syn2;

Table 10 shows how the settings of the variable and directive affect the preservation of
signals test1, test2, and test3. An asterisk (*) indicates that the HDL Compiler tool does
not attempt to preserve the signal.

Table 10

Variable and Directive Matrix for Signals test1, test2, and test3

keep_signal_name

hdlin_keep_signal_name variable setting

set or not set

all

all_driving

user

user_driving

none

not set on test1
set on test1
not set on test2
set on test2
not set on test3

(Example 108)

set on test3

attempts to
keep

attempts to
keep

attempts to
keep

attempts to
keep

attempts to
keep

attempts to
keep

attempts to
keep

attempts to
keep

attempts to
keep

attempts to
keep

*

*

attempts to
keep

*

attempts to
keep

*

attempts to
keep

*

attempts to keep

attempts to keep

*

*

Using Same Naming Convention Between Tools

In some cases, switching activity annotation from a SAIF file might be rejected because
of naming differences across multiple tools. To ensure synthesis object names follow the

HDL Compiler™ for SystemVerilog User Guide

U-2022.12-SP3

213

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 8: Other SystemVerilog Features
Guidelines for Interacting With Other Flows

same naming convention used by simulation tools, use the following setting to improve the
SAIF annotation:

dc_shell> set_app var hdlin enable upf compatible naming true

Verification Flows

To prevent simulation and synthesis mismatches, follow the guidelines described in
this section. Table 11 shows the coding styles that can cause simulation and synthesis
mismatches and how to avoid the mismatches.

Table 11 Coding Styles Causing Synthesis and Simulation Mismatches

Synthesis and simulation mismatch Coding technique

Using the one_hot and one_cold directives in a Verilog or See one_hot and one_cold.
SystemVerilog design that does not meet the requirements of
the directives.

Using the full case and parallel case directives in a Verilog See full_case and parallel_case.
or SystemVerilog design that does not meet the requirements of
the directives.

Inferring D flip-flops with synchronous and asynchronous loads. See D Flip-Flop With Synchronous and
Asynchronous Load.

Masking the set or reset signal with an unknown during See sync_set_reset.

initialization in simulation.

Using asynchronous design techniques. The tool does not issue any warning for
asynchronous designs. You must verify
the design.

Using unknowns and high impedance in comparison. See Unknowns and High Impedance in
Comparison.

Including timing control information in the design. See Timing Specifications.

Using incomplete sensitivity list. See Sensitivity Lists.

Using local reg variables in functions or tasks. See Initial States for Variables.

Unknowns and High Impedance in Comparison

A simulator evaluates an unknown (x) or high impedance (z) as a distinct value different
from O or 1; however, an x or z value becomes a 0 or 1 during synthesis. In the HDL
Compiler tool, these values in comparison are always evaluated to false. This behavior
difference can cause simulation and synthesis mismatches. To prevent such mismatches,
do not use don’t care values in comparison.

HDL Compiler™ for SystemVerilog User Guide 214
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 8: Other SystemVerilog Features
Guidelines for Interacting With Other Flows

In the following example, simulators match 2'b1x to 2’b11 or 2’b10 and 2’b0x to 2’b01
or 2’b00, but both 2'b1x and 2’b0x are evaluated to false in the tool. Because of the
simulation and synthesis mismatches, the tool issues an ELAB-310 warning.

case (A)
2'blx:... // You want 2'blx to match 11 and 10 but
// HDL Compiler always evaluates this comparison to false
2'bOx:... // you want 2'bOx to match 00 and 01 but
// HDL Compiler always evaluates this comparison to false
default: ...
endcase
In the following example, because if (A == 1'bx) is evaluated to false, the tool assigns

1 to reg B and issues an ELAB-310 warning.

module test (
input A,
output logic B
) ;

always
begin
if (A == 1'bx) B = 0;
else B =1;
end
endmodule

SystemVerilog provides additional two constructs, casez and casex, to handle don’t care
conditions:

« The casez construct for z value

« The casex construct for z and x values or for branches that are treated as don’t care
conditions during comparison

Timing Specifications

The HDL Compiler tool ignores all timing controls because these signals cannot be
synthesized. You can include timing control information in the description if it does not
change the value clocked into a flip-flop. In other words, the delay must be less than the
clock period to avoid synthesis and simulation mismatches.

You can assign a delay to a wire or wand declaration, and you can use the scalared
and vectoredVerilog keywords for simulation. The tool supports the syntax of these
constructs, but they are ignored during synthesis.

Sensitivity Lists

When you run the HDL Compiler tool, a module is affected by all the signals in the module
including those not listed in the sensitivity list. However, simulation relies only on the

HDL Compiler™ for SystemVerilog User Guide 215
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 8: Other SystemVerilog Features
Guidelines for Interacting With Other Flows

signals listed in the sensitivity list. To prevent synthesis and simulation mismatches, follow
these guidelines to specify the sensitivity list:

« For sequential logic, include a clock signal and all asynchronous control signals in the
sensitivity list.

» For combinational logic, ensure that all inputs are listed in the sensitivity list. Use the
always comb construct in SystemVerilog and the always @* construct in Verilog.

The tool ignores sensitivity lists that do not contain an edge expression and builds the
logic as if all variables within the always block are listed in the sensitivity list. You cannot
mix edge expressions and ordinary variables in the sensitivity list. If you do so, the tool
issues an error message. When the sensitivity list does not contain an edge expression,
combinational logic is usually generated. Latches might be generated if the variable is not
fully specified; that is, the variable is not assigned to any path in the block. When you use
a SystemVerilog always comb construct that infers a latch, the tool issues an ELAB-974
warning (see The always_comb and always Constructs). When you use a SystemVerilog
always_latch construct that infers no sequential logic, the tool issues an ELAB-983
warning (see Unintended Logic Inferred Using always_latch).

Note:

The statements @ (posedge clock) and @ (negedge clock) are not supported
in functions or tasks.

Initial States for Variables

For functions and tasks, any local variable is initialized to logic 0 and output port values
are not preserved across function and task calls. However, values are typically preserved
during simulation. This behavior difference often causes synthesis and simulation
mismatches. For more information, see Persistent Variable Values Across Functions and
Tasks.

For more information, see IEEE Std 1800-2017.

HDL Compiler™ for SystemVerilog User Guide 216
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

9

HDL Synthesis Directives

The HDL Compiler tool allows you to annotate your SystemVerilog RTL with directives for
synthesis. Pragmas are RTL comments that control how synthesis processes the RTL.
SystemVerilog attributes are named values defined in the RTL that can be accessed by
your synthesis scripts.

These are described in more detail in the following sections:
+ RTL Pragmas
« SystemVerilog Attributes

RTL Pragmas

HDL synthesis directives are special comments that affect the actions of the HDL Compiler
and Design Compiler tools. These comments are ignored by other tools.

These synthesis directives begin as a Verilog comment (// or /*) followed by a pragma
prefix (pragma, synopsys, Of synthesis) and then the directive. The //$s or //$s
prefix can be used as a shortcut for //synopsys. The simulator ignores these directives.
Whitespace is permitted (but not required) before and after the Verilog comment prefix.

Note:

Not all directives support all pragma prefixes; see Directive Support by Pragma
Prefix on page 235 for details.

The following sections describe the HDL synthesis pragmas:
« async_set reset

+ async_set_reset_local

« async_set reset local_all

» dc_tcl_script_begin and dc_tcl_script_end

« enum

« full_case

+ infer_multibit and dont_infer_multibit

HDL Compiler™ for SystemVerilog User Guide 217
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 9: HDL Synthesis Directives
RTL Pragmas

* infer_mux

« infer_mux_override

* infer_onehot_mux

« keep_signal_name

« one_cold

+ one_hot

« parallel_case

* preserve_sequential
* sync_set _reset

» sync_set reset local
« sync_set reset local_all
+ template

» Directive Support by Pragma Prefix

async_set_reset

When you set the async _set reset directive on a single-bit signal, the HDL Compiler
tool searches for a branch that uses the signal as a condition and then checks whether
the branch contains an assignment to a constant value. If the branch does, the signal
becomes an asynchronous reset or set. Use this directive on single-bit signals.

The syntax is

// synopsys async_set reset "signal name list"

See Also

* Inferring Latches

async_set_reset_local

When you set the async_set reset local directive, the HDL Compiler tool treats listed
signals in the specified block as if they have the async set reset directive set. Attach
the async_set reset local directive to a block label using the following syntax:

// synopsys async_set reset local block label "signal name list"

HDL Compiler™ for SystemVerilog User Guide 218
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 9: HDL Synthesis Directives
RTL Pragmas

async_set_reset_local_all

When you set the async_set reset local all directive, the HDL Compiler tool treats
all listed signals in the specified blocks as if they have the async _set reset directive
set. Attach the async_set reset local all directive to a block label using the following
syntax:

// synopsys async_set reset local all "block label 1ist"

To enable the async_set reset local all behavior, you must set
hdlin ff always async set reset to false and use the coding style shown in
Example 109.

Example 109 Coding Style

// To enable the async set reset local all behavior, you must set
// hdlin ff always async_set reset to false in addition to coding per the
following template.

module ml (input rst,set,d,dl,clk,clkl, output reg g,qgl);

// synopsys async_set reset local all "sync rst"
always @ (posedge clk or posedge rst or posedge set) begin :sync_rst
if (rst)
g <= 1'b0;
else 1f (set)
q <= 1'bl;
else g <= d;
end

always @ (posedge clkl or posedge rst or posedge set) Dbegin
default rst
if (rst)
ql <= 1'b0;
else 1f (set)
gl <= 1'bl;

gl <= di1;
end
endmodule

dc_tcl_script_begin and dc_tcl_script_end

You can embed Tcl commands that set design constraints and attributes within the RTL
by using the dc_tcl script beginanddc tcl script end directives, as shown in
Example 110 and Example 111.

HDL Compiler™ for SystemVerilog User Guide 219
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

o Feedback
Chapter 9: HDL Synthesis Directives
RTL Pragmas

Example 110 Embedding Constraints With // Delimiters

// synopsys dc tcl script begin
// set max_area 0.0

// set max delay 0.0 -to port =z
// synopsys dc_tcl script end

Example 111 Embedding Constraints With /* and */ Delimiters
/* synopsys dc_tcl script begin
set max area 10.0
set max delay 5.0 port z
no end needed for this form

*/

The HDL Compiler tool interprets the statements embedded between the
dc_tcl script begin andthe dc tcl script end directives. If you want to comment
out part of your script, use the Tcl # comment character within the RTL comments.

The following items are not supported in embedded Tcl scripts:

+ Hierarchical constraints

+ Wildcards

« List commands

« Multiple line commands

Observe the following guidelines when using embedded Tcl scripts:

« Constraints and attributes declared outside a module apply to all subsequent modules
declared in the file.

« Constraints and attributes declared inside a module apply only to the enclosing
module.

+ Any dc_shell scripts embedded in functions apply to the whole module.

* Include only commands that set constraints and attributes. Do not use action
commands such as compile, gen, and report. The tool ignores these commands and
issues a warning or error message.

« The constraints or attributes set in the embedded script go into effect after the read
command is executed. Therefore, variables that affect the read process itself are not in
effect before the read.

« Error checking is done after the read command completes. Syntactic and semantic
errors in dc_shell strings are reported at this time.

HDL Compiler™ for SystemVerilog User Guide 220
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

o Feedback
Chapter 9: HDL Synthesis Directives
RTL Pragmas

« You can have more than one dc_tcl_script_begin / dc_tcl_script_end pair per file or
module. The compiler does not issue an error or warning when it sees more than one
pair. Each pair is evaluated and set on the applicable code.

+ An embedded dc_shell script does not produce any information or status messages
unless there is an error in the script.

« Usage of built-in Tcl commands is not recommended.

« Usage of output redirection commands is not recommended.

enum

Use the enum directive with the Verilog parameter definition statement to specify state
machine encodings.

The syntax of the enum directive is

// synopsys enum enum_name

Example 112 shows the declaration of an enumeration of type colors that is 3 bits wide
and has the enumeration literals red, green, blue, and cyan with the values shown.

Example 112 Enumeration of Type Colors

parameter [2:0] // synopsys enum colors
red = 3'b000, green = 3'b001, blue = 3'b010, cyan = 3'b011;

The enumeration must include a size (bit-width) specification. Example 113 shows an
invalid enum declaration.

Example 113 Invalid enum Declaration

parameter /* synopsys enum colors */
red = 3'b000, green = 1;
// [2:0] required

Example 114 shows a register, a wire, and an input port with the declared type of colors. In
each of the following declarations, the array bounds must match those of the enumeration
declaration. If you use different bounds, synthesis might not agree with simulation
behavior.

Example 114 enum Type Declarations

reg [2:0] /* synopsys enum colors */ counter;
wire [2:0] /* synopsys enum colors */ peri bus;
input [2:0] /* synopsys enum colors */ input port;
HDL Compiler™ for SystemVerilog User Guide 221

U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 9: HDL Synthesis Directives
RTL Pragmas

Even though you declare a variable to be of type enum, it can still be assigned a bit
value that is not one of the enumeration values in the definition. Example 115 relates to
Example 114 and shows an invalid encoding for colors.

Example 115 Invalid Bit Value Encoding for Colors
counter = 3'bl1l1l;

Because 111 is not in the definition for colors, it is not a valid encoding. The HDL Compiler
tool accepts this encoding, but issues a warning for this assignment.

You can use enumeration literals just like constants, as shown in Example 116.

Example 116 Enumeration Literals Used as Constants
if (input port == blue)
counter = red;

If you declare a port as a reg and as an enumerated type, you must declare the
enumeration when you declare the port. Example 117 shows the declaration of the
enumeration.

Example 117 Enumerated Type Declaration for a Port
module good example (a,b);
parameter [1:0] /* synopsys enum colors */
green = 2'b00, white = 2'bl1l;
input a;
output [1:0] /* synopsys enum colors */ Db;
reg [1:0] b;

ééamodule
Example 118 declares a port as an enumerated type incorrectly because the enumerated
type declaration appears with the reg declaration instead of with the output declaration.

Example 118 Incorrect Enumerated Type Declaration for a Port

module bad example (a,b);
parameter [1:0] /* synopsys enum colors */
green = 2'b00, white = 2'bl1l;
input a;
output [1:0] b;
reg [1:0] /* synopsys enum colors */ Db;

endmodule

full_case

This directive prevents the HDL Compiler tool from generating logic to test for any value
that is not covered by the case branches and creating an implicit default branch. Set the

HDL Compiler™ for SystemVerilog User Guide 222
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: HDL Synthesis Directives
RTL Pragmas

Feedback

full case directive on a case statement when you know that all possible branches of the
case statement are listed within the case statement. When a variable is assigned in a case
statement that is not full, the variable is conditionally assigned and requires a latch.

Caution:

Marking a case statement as full when it actually is not full can cause the
simulation to behave differently from the synthesized logic because the HDL
Compiler tool does not generate a latch to handle the implicit default condition.

The syntax for the full case directive is

// synopsys full case

In Example 119, full case is set on the first case statement and parallel case and
full case directives are set on the second case statement.

Example 119 // synopsys full_case Directives

module test (in, out, current state, next state);
input [1:0] ing;
output reg [1:0] out;
input [3:0] current state;
output reg [3:0] next state;

parameter statel = 4'b0001, state2 = 4'b0010,state3 = 4'b0100, stated =
4'b1000;
always @* begin
case (in) // synopsys full case

0: out = 2;

1: out = 3;

2: out = 0;

endcase

case (1) // synopsys parallel case full case
current state[0] : next state = state2;
current state[1] next state = state3;
current state[2] : next state = state4;
current state[3] next state = statel;
endcase

end

endmodule

In the first case statement, the condition in == 3 is not covered. However, the designer
knows that in == 3 never occur and therefore sets the full case directive on the case
statement.

HDL Compiler™ for SystemVerilog User Guide 223
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: HDL Synthesis Directives
RTL Pragmas

Feedback

In the second case statement, not all 16 possible branch conditions are covered; for

example, current_state == 4’b0101 is not covered. However,

« The designer knows that these states never occur and therefore sets the full case

directive on the case statement.

« The designer also knows that only one branch is true at a time and therefore sets the

parallel case directive on the case statement.

In the following example, at least one branch is taken because all possible values of sel

are covered, that is, 00, 01, 10, and 11:

module mux(a, b,c,d,sel,y);
input a,b,c,d;
input [1:0] sel;

output vy;

reg ys

always @ (a or b or ¢ or d or sel)

begin
case (sel)
2'b00 : y=a;
2'b01 : y=b;
2'bl0 : y=c;
2'pb11l : y=d;
endcase

end

endmodule

In the following example, the case statement is not full:

module mux(a, b,c,d,sel,vy);
input a,b,c,d;
input [1:0] sel;
output y;
reg vy;
always @ (a or b or c or d or sel)
begin
case (sel)
2'b00 : y=a;
2'pb11l : y=d;
endcase
end
endmodule

It is unknown what happens when sel equals 01 and 10. In this case, the tool generates
logic to test for any value that is not covered by the case branches and creates an implicit
“default” branch that contains no actions. When a variable is assigned in a case statement

that is not full, the variable is conditionally assigned and requires a latch.

HDL Compiler™ for SystemVerilog User Guide
U-2022.12-SP3

224

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 9: HDL Synthesis Directives
RTL Pragmas

infer_multibit and dont_infer_multibit

The HDL Compiler tool can infer registers that have identical structures as multibit
components.

The following sections describe how to use the multibit inference directives:
« Using the infer_multibit Directive

« Using the dont_infer_multibit Directive

* Reporting Multibit Components

Multibit sequential mapping does not pull in as many levels of logic as single-bit sequential
mapping. Therefore, the HDL Compiler tool might not infer complex multibit sequential
cells, such as a JK flip-flop.

For more information, see the HDL Compiler documentation.

Note:

The term multibit component refers, for example, to an x-bit register in your
HDL description. The term multibit library cell refers to a library macro cell, such
as a flip-flop cell.

Using the infer_multibit Directive

By default, the hdlin infer multibit variable is set to the default none value and
no multibit cells are inferred unless you set the infer multibit directive on specific
components in the Verilog code. This directive gives you control over individual wire and
register signals. Example 120 shows usage.

Example 120 Inferring a Multibit Flip-Flop With the infer_multibit Directive

module test (40, dl1, d2, rst, clk, g0, gl, g2);
parameter d width = 8;

input [d width-1:0] d0, dil, d2;
input clk, rst;

output [d width-1:0] g0, gl, g2;
reg [d width-1:0] g0, gl, g2;

//synopsys infer multibit "qO"
always @ (posedge clk)begin

if (!'rst) g0 <= 0;

else g0 <= dO;
end

always @ (posedge clk or negedge rst)begin
if (!rst) gl <= 0;
else gl <= dil;

HDL Compiler™ for SystemVerilog User Guide 225
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 9: HDL Synthesis Directives
RTL Pragmas

end

always @ (posedge clk or negedge rst)begin
if ('rst) g2 <= 0;
else g2 <= d2;

end

endmodule

Example 121 shows the inference report.

Example 121 Multibit Inference Report

Inferred memory devices in process
in routine test line 10 in file
/... /test.v".

Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST

| g0 reg | Flip-flop | 8 /| Y | Y | N | N | N | N | N

Inferred memory devices in process
in routine test line 16 in file
'/.../test.v'.

Register Name Type | Width | Bus | MB | AR | AS | SR | SS | ST

\ gl reg | Flip-flop | 8 \ Y | N | Y | N | N | N | N

Inferred memory devices in process
in routine test line 21 in file
'/.../test.v'.

Register Name

Type | Width | Bus | MB | AR | AS | SR | SS | ST

g2 _reg | Flip-flop | 8 \ Y | N | Y | N | N | N | N

Compilation completed successfully.

The MB column of the inference report indicates if a component is inferred as a multibit
component. This report shows the q0_reg register is inferred as a multibit component. The
g1_reg and q2_reg registers are not inferred as multibit components.

HDL Compiler™ for SystemVerilog User Guide 226
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 9: HDL Synthesis Directives
RTL Pragmas

Using the dont_infer_multibit Directive

If you set the hdlin infer multibit variable to the default all value, all bused
registers are inferred as multibit components. Use the dont infer multibit directive to
prevent multibit inference.

Example 122 Using the dont_infer_muiltibit Directive
// the hdlin infer multibit variable is set to the default all value

module test (d0, dI, d2, rst, clk, g0, gl, g2);
parameter d width = 8;

input [d width-1:0] 40, 41, d2;
input clk, rst;

output [d width-1:0] g0, gl, g2;
reg [d width-1:0] g0, gl, g2;

always @ (posedge clk)begin
if (!'rst) g0 <= 0;
else g0 <= dO;

end

//synopsys dont infer multibit "gl"
always @ (posedge clk or negedge rst)begin
if ('rst) gl <= 0;
else gl <= dil;
end

always @ (posedge clk or negedge rst)begin
if ('rst) g2 <= 0;
else g2 <= d2;

end

endmodule

Example 123 shows the multibit inference report.

Example 123 Multibit Inference Report

Inferred memory devices in process
in routine test line 10 in file
'/.../test.v'.

Register Name Type | Width | Bus | MB | AR | AS | SR | SS | ST

| g0 _reg | Flip-flop | 8 /| Y | Y | N | N | N | N | N

Inferred memory devices 1in process
in routine test line 16 in file
/... /test.v'.

HDL Compiler™ for SystemVerilog User Guide 227
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: HDL Synthesis Directives
RTL Pragmas

\ Register Name

Type | width

Feedback

SR | SS | ST

gl reg | Flip-flop | 8

Inferred memory devices in process
in routine test line 21 in file
/... /test.v'.

Register Name

Type | width

SR | SS | ST

\ g2_reg | Flip-flop | 8
\

Presto compilation completed successfully.

Reporting Multibit Components

The report multibit command reports all multibit components in the current design
The report, viewable before and after compile, shows the multibit group name and what

cells implement each bit.

Example 124 shows a multibit component report.

Example 124 Multibit Component Report

KKK KA A IR AA KA A I A A KA A A AR A A XA AR A AR A A XA A XA A XK

Report multibit

Design : test

Version: F-2011.09

Date : Thu Aug 4 21:42:30 2011

KA AKAKAA KA A KA A I A A IR A A I AR I AR A AR A AR A A XA A XA, h K

Library

Attributes:

b - black box (unknown)

h - hierarchical

n - noncombinational

r - removable

u - contains unmapped logic
Multibit Component g0 _reg
Cell Reference
Attributes
g0 regl[7] ** SEQGEN* *
g0 regl[6] ** SEQGEN* *
g0 regl[5] ** SEQGEN* *
g0 reg[4] * * SEQGEN* *
g0 reg[3] **SEQGEN* *
a0 reg([2] ** SEQGEN* *

HDL Compiler™ for SystemVerilog User Guide

U-2022.12-SP3

coccgocgog

228

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: HDL Synthesis Directives

Feedback

RTL Pragmas

g0 _reg([l] ** SEQGEN* * 0.00 1 n, u
g0 _reg[0] ** SEQGEN* * 0.00 1 n, u
Total 8 cells 0.00 8

The multibit group name for registers is set to the name of the bus. In the cell names of the
multibit registers with consecutive bits, a colon separates the outlying bits.

If the colon conflicts with the naming requirements of your place-and-route tool, you can
change the colon to another delimiter by using the bus range separator style variable.

For multibit library cells with nonconsecutive bits, a comma separates the nonconsecutive
bits. This delimiter is controlled by the bus multiple separator style variable. For
example, a 4-bit banked register that implements bits 0, 1, 2, and 5 of bus data_reg is
named data_reg [0:2,5].

infer_mux

Use the infer mux directive to infer MUX_OP cells for a specific case or if statement, as
shown in the following RTL code:

always@ (SEL) begin

case (SEL) // synopsys infer mux
2'b00: DOUT <= DIN[O
2'b01: DOUT <= DIN[1
2'b10: DOUT <= DIN[2
2'bll: DOUT <= DIN[3

endcase

17
17
I
17

You must use a simple variable as the control expression; for example, you can use
the input "A" but not the negation of input "A". If statements have special coding
considerations. For more information, see Controlling Selection Statement Inference.

infer_mux_override

Use the infer mux override directive to infer MUX_OP cells for a specific case or if
statement regardless of the settings of the following variables:

* hdlin infer mux

* hdlin mux oversize ratio
* hdlin mux size limit

* hdlin mux size min

The tool marks the MUX_OP cells inferred by this directive with the size only attribute to
prevent logic decomposition during optimization. This directive infers MUX_OP cells even
if the cells cause loss of resource sharing.

HDL Compiler™ for SystemVerilog User Guide 229
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 9: HDL Synthesis Directives
RTL Pragmas

For example,

module test (input [1:0] SEL,
input [3:0] DIN,
output logic DOUT) ;
always@ (SEL or DIN) begin
case (SEL) // synopsys infer mux override
2'b00: DOUT <= DIN[O
2'b01: DOUT <= DIN[1
2'b10: DOUT <= DIN[2
2'b11: DOUT <= DIN[3
endcase
end
endmodule

]
]
]
]

’
’
’
’

infer_onehot_mux

Use the infer onehot mux directive to map combinational logic to one-hot multiplexers in
the logic library. For details, see Inferring One-Hot Multiplexer Logic on page 99.

keep_signal_name

Use the keep signal name directive to provide the HDL Compiler tool with guidelines for
preserving signal names.

The syntax is
// synopsys keep signal name "signal name list"

Set the keep signal name directive on a signal before any reference is made to
that signal; for example, one methodology is to put the directive immediately after the
declaration of the signal.

See Also

« Keeping Signal Names

one_cold

A one-cold implementation indicates that all signals in a group are active-low and that only
one signal can be active at a given time. Synthesis implements the one cold directive

by omitting a priority circuit in front of the flip-flop. Simulation ignores the directive. The
one_cold directive prevents the HDL Compiler tool from implementing priority-encoding
logic for the set and reset signals. Attach this directive to set or reset signals on sequential
devices, using the following syntax:

// synopsys one cold signal name list

HDL Compiler™ for SystemVerilog User Guide 230
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 9: HDL Synthesis Directives
RTL Pragmas

See Also

« D Latch With Asynchronous Set and Reset: Use hdlin_latch_always_async_set_reset

one_hot

A one-hot implementation indicates that all signals in a group are active-high and that only
one signal can be active at a given time. Synthesis implements the one hot directive by
omitting a priority circuit in front of a flip-flop. Simulation ignores the directive. The one hot
directive prevents the HDL Compiler tool from implementing priority-encoding logic for the
set and reset signals. Attach this directive to set or reset signals on sequential devices,
using the following syntax:

// synopsys one hot signal name list
See Also

» D Flip-Flop With Asynchronous Set and Reset
« JK Flip-Flop With Synchronous Set and Reset Using sync_set_reset

parallel_case

Setthe parallel case directive on a case statement when you know that only one
branch of the case statement is true at a time. This directive prevents the HDL Compiler
tool from building additional logic to ensure the first occurrence of a true branch is
executed if more than one branch were true at one time.

Caution:

Marking a case statement as parallel when it actually is not parallel can cause
the simulation to behave differently from the synthesized logic because the HDL
Compiler tool does not generate priority encoding logic to make sure that the
branch listed first in the case statement takes effect.

The syntax for the parallel case directive is

// synopsys parallel case

Use the parallel case directive immediately after the case expression. In Example 125,
the states of a state machine are encoded as a one-hot signal; the designer knows

that only one branch is true at a time and therefore sets the synopsys parallel case
directive on the case statement.

Example 125 parallel_case Directives

reg [3:0] current state, next state;
parameter statel = 4'b0001, state2 = 4'b0010,

HDL Compiler™ for SystemVerilog User Guide 231
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

o Feedback
Chapter 9: HDL Synthesis Directives
RTL Pragmas

state3 = 4'b0100, stated = 4'b1000;
case (1) //synopsys parallel case

current state[0] : next state = state2;

current state[l] : next state = state3;

current state[2] : next state = state4;

current state[3] : next state = statel;
endcase

When a case statement is not parallel (more than one branch evaluates to true), priority
encoding is needed to ensure that the branch listed first in the case statement takes effect.

The following table summarizes the types of case statements.

Case statement description Additional logic

Full and parallel No additional logic is generated.

Full but not parallel Priority-encoded logic: Synthesis generates logic to ensure
that the branch listed first in the case statement takes
effect.

Parallel but not full Latches created: Synthesis generates logic to test for

any value that is not covered by the case branches and
creates an implicit “default” branch that requires a latch.

Not parallel and not full Priority-encoded logic: Synthesis generates logic to make
sure that the branch listed first in the case statement takes
effect.Latches created: Synthesis generates logic to test
for any value that is not covered by the case branches and
creates an implicit “default” branch that requires a latch.

preserve_sequential

The preserve sequential directive allows you to preserve specific cells that otherwise
are optimized away by the HDL Compiler tool. See Keeping Unloaded Registers.

sync_set_reset

Use the sync_set reset directive to infer a D flip-flop with a synchronous set/reset.
When you compile your design, the SEQGEN inferred by the HDL Compiler tool is
mapped to a flip-flop in the logic library with a synchronous set/reset pin, or the tool uses

a regular D flip-flop and build synchronous set/reset logic in front of the D pin. The choice
depends on which method provides a better optimization result. It is important to use the
sync_set reset directive to label the set/reset signal because it tells the tool that the
signal should be kept as close to the register as possible during mapping, preventing a
simulation/synthesis mismatch which can occur if the set/reset signal is masked by an X
during initialization in simulation. When a single-bit signal has this directive set to true, the

HDL Compiler™ for SystemVerilog User Guide 232
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 9: HDL Synthesis Directives
RTL Pragmas

HDL Compiler tool checks the signal to determine whether it synchronously sets or resets
a register in the design. Attach this directive to single-bit signals. Use the following syntax:

//synopsys sync_set reset "signal name list"

For an example of a D flip-flop with a synchronous set signal that uses the

sync_set reset directive, see D Flip-Flop With Synchronous Set: Use sync_set_reset.
For an example of a JK flip-flop with synchronous set and reset signals that uses the
sync_set_ reset directive, see JK Flip-Flop With Synchronous Set and Reset Using
sync_set_reset.

For an example of a D flip-flop with a synchronous reset signal that uses the

sync_set reset directive, see D Flip-Flop With Synchronous Reset: Use sync_set_reset.
For an example of multiple flip-flops with asynchronous and synchronous controls, see
Multiple Flip-Flops With Asynchronous and Synchronous Controls.

sync_set_reset_local

The sync_set reset local directive instructs the HDL Compiler tool to treat signals
listed in a specified block as if they have the sync set reset directive set to true. Attach
this directive to a block label, using the following syntax:

//synopsys sync_set reset local block label "signal name list"

Example 126 shows the usage.

Example 126 sync_set reset local Usage
module ml (input dl,d2,clk, setl, set2, rstl, rst2, output reg gl,g2);

// synopsys sync_set reset local sync rst "rstl"
//always@ (posedge clk or negedge rstl)
always@ (posedge clk)
begin: sync rst
if (~rstl)
gl <= 1'b0;
else 1f (setl)
gl <= 1'bl;
else
gl <= dl;
end

always@ (posedge clk)
begin: default rst
if (~rst2)
g2 <= 1'b0;
else 1f (set2)
g2 <= 1'bl;
else
g2 <= dz;

HDL Compiler™ for SystemVerilog User Guide 233
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

o Feedback
Chapter 9: HDL Synthesis Directives
RTL Pragmas

end

endmodule

sync_set_reset_local_all

The sync_set reset local all directive instructs the HDL Compiler tool to treat all
signals listed in the specified blocks as if they have the sync_set reset directive set to
true. Attach this directive to a block label, using the following syntax:

// synopsys sync_set reset local all "block label list"

Example 127 shows usage.

Example 127 sync_set _reset local_all Usage
module m2 (input dl,d2,clk, setl, set2, rstl, rst2, output reg gl,qg2);

// synopsys sync_set reset local all sync_rst
//always@ (posedge clk or negedge rstl)
always@ (posedge clk)
begin: sync rst
if (~rstl)
ql <= 1'b0;
else 1if (setl)
ql <= 1'bl;

gl <= di;

always@ (posedge clk)
begin: default rst
if (~rst2)
g2 <= 1'b0;
else 1f (set2)
g2 <= 1'bl;
else
g2 <= dz2;
end

endmodule

template

The template directive saves an analyzed file and does not elaborate it. Without this
directive, the analyzed file is saved and elaborated. If you use this directive and your
design contains parameters, the design is saved as a template. Example 128 shows

usage.

HDL Compiler™ for SystemVerilog User Guide 234
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

o Feedback
Chapter 9: HDL Synthesis Directives
RTL Pragmas

Example 128 template Directive

module template (a, b, ¢);
input a, b, c;
// synopsys template
parameter width = 8;

endmodule

See Also

« Parameterized Designs

Directive Support by Pragma Prefix
Not all pragma prefixes support all directives:

« The synopsys prefix is intended for directives specific to the HDL Compiler tool. The
tool issues an error message if an unknown directive is encountered.

+ The pragma and synthesis prefixes are intended for industry-standard directives. The
tool ignores any unsupported directives to allow for directives intended for other tools.
Directives specific to the HDL Compiler tool are not supported.

Table 12 shows how each directive is handled by each pragma prefix.

Table 12 Directive Support by Pragma Prefix

Directive Il synopsys, /| I/ pragma Il synthesis
$s

translate off translate on Used Used Used

dc_tcl script begin dc_tcl script end Used Ignored Ignored

dc_script begin dc_script end

async_set reset Used Ignored Ignored
async_set reset local

async_set reset local all
enum Used Ignored Ignored

full case Used Ignored Ignored
parallel case

infer multibit Used Ignored Ignored
dont infer multibit

HDL Compiler™ for SystemVerilog User Guide 235
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

o Feedback
Chapter 9: HDL Synthesis Directives
SystemVerilog Attributes

Table 12 Directive Support by Pragma Prefix (Continued)

Directive Il synopsys, /| I/ pragma Il synthesis
$s
infer mux Used Ignored Ignored

infer mux override

infer onehot mux Used Ignored Ignored
keep signal name Used Ignored Ignored
one cold one hot Used Ignored Ignored
preserve sequential Used Ignored Ignored
sync_set reset Used Ignored Ignored

sync_set reset local

sync_set reset local all
template Used Ignored Ignored

Any unknown directive Error Ignored Ignored

SystemVerilog Attributes

In SystemVerilog, attributes allow properties about objects, statements, and groups of
statements in the RTL to be communicated to tools reading the RTL. The HDL Compiler
tool supports SystemVerilog attributes by reapplying them as synthesis attributes, so they
become accessible as if set by the set _attribute command.

The following sections describe SystemVerilog attribute support in the HDL Compiler tool:
« Using SystemVerilog Attributes in Synthesis

« Supported Attributes

« Supported RTL Constructs

For more information, see IEEE Std 1800-2017 section 5.12 for details on SystemVerilog
attributes.

HDL Compiler™ for SystemVerilog User Guide 236
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 9: HDL Synthesis Directives
SystemVerilog Attributes

Using SystemVerilog Attributes in Synthesis

SystemVerilog attributes are defined in the RTL as prefixes preceding the RTL construct
they are attached to. Their value type is inferred as Boolean, integer, or string, based on
the value provided:

(* attr name *) // no value is an implicit Boolean value of true

(* attr name = integer value ¥*)
(* attr name = "string value" *)

By default, the HDL Compiler tool ignores SystemVerilog attributes. The contents of the
attributes are not parsed or checked for syntax.

To instruct the tool to read and re-apply them as synthesis attributes to the design objects
created during RTL read, use the following setting:

dc_shell> set_app var hdlin sv_enable rtl attributes true
When this feature is enabled, SystemVerilog attributes are parsed by the tool and applied

as synthesis attributes to the corresponding design objects. Attributes with incorrect syntax
are flagged as errors.

Supported Attributes

You can set application (built-in) attributes (such as dont touch or size only)as well as
user-defined attributes:

« If the named attribute is an application attribute, that attribute is set to the specified
value:

(* dont_touch *) // application attribute
core UCORE (.CLK(CLK), ...)

The value type (Boolean, integer, or string) must match that of the application attribute,
and the object class must be supported by that attribute.

« If the named attribute is not an application attribute, the tool applies its specified value
as a user-defined attribute:

(* my interface type = "TX" *) // user-defined attribute
tx UTXBLOCKl (.CLK(CLK), ...)

You do not need to predefine the attributes using the define user attribute
command; the HDL Compiler tool defines them as needed using the object class and
value type derived from the RTL.

The first definition of a user-defined attribute for an object class defines its value type.
Subsequent applications of that attribute for that object class must be of the same type.

HDL Compiler™ for SystemVerilog User Guide 237
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 9: HDL Synthesis Directives
SystemVerilog Attributes

Note that Boolean SystemVerilog attributes always have an implicit value of true. There
is no way to set a Boolean synthesis attribute to a value of false using SystemVerilog
attributes.

Supported RTL Constructs

SystemVerilog attributes can be defined on a variety of language elements. The HDL
Compiler tool supports the following subset described in this section.

When SystemVerilog attribute support is enabled, the tool warns of ignored attributes
applied to unsupported RTL constructs. For example,

Warning: ./rtl/top.sv:17: The construct 'statement attribute' is not
supported in synthesis; it is ignored. (VER-708)

The supported RTL constructs are:

« Designs (Modules)

+ Ports

+ Cells (Instantiations)

+ Pins

+ Inferred Register Cells (Sequential Processes)

Designs (Modules)

A SystemVerilog attribute on a module in the RTL sets that attribute on the corresponding
design in the HDL Compiler database.

RTL:

(* my design_type = "IP", dont touch *)
module IP block (

endmodule
Synthesis:

dc_shell> report_attributes [get designs IP_block]

Design Object Type Attribute Name Value
IP block sub design dont touch true
IP block sub design my design_ type IP
HDL Compiler™ for SystemVerilog User Guide 238

U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 9: HDL Synthesis Directives
SystemVerilog Attributes

Ports

A SystemVerilog attribute on a module port in the RTL sets that attribute on the
corresponding design port in the HDL Compiler database.

RTL:

module top (RXCLK, RXDATA, TXCLK, TXDATA, ...);
(* my port type "RX" *) input RXCLK;
(* my port type "RX" *) input [31:0] RXDATA;

"X %) input TXCLK;
"TX" *) input [31:0] TXDATA;

(* my port type
(* my port_ type

(* my port type "test_data" ¥*)

input [2:0] scanin;
(* my port type = "test data" *)
output [2:0] scanout;
endmodule
Synthesis:
dc_shell> get_ports * -filter {my port type == "test_data"}
{scanin[2] scanin[l] scanin[0] scanout[2] scanout[l] scanout[0]}
dc_shell> get ports *CLK* -filter {my port type == "TX"}
{TXCLK}

Cells (Instantiations)

A SystemVerilog attribute on a cell instantiation in the RTL sets that attribute on the
corresponding port in the HDL Compiler database. All cell types (hierarchical, logic library,
macro, and black-box) are supported.

RTL:

(* dont_touch *)
spare cells USPARE (.CLK);

(* my bank num
(* my bank num
(* my bank num
(* my bank num

*) meml6x32 UMEM16x32 0 (
*) meml6x32 UMEM16x32 1 (..
*) meml6x32 UMEM16x32 2 (...
*) meml6x32 UMEM16x32 3 (

o nn
wMNRO

~e

Synthesis:

dc_shell> get_attribute [get_cells USPARE] dont_touch

true

dc_shell> get cells * -filter {my bank num >= 2 && my bank num <= 3}
{UMEM16x32 2 UMEM16x32 3}

HDL Compiler™ for SystemVerilog User Guide 239
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

o Feedback
Chapter 9: HDL Synthesis Directives
SystemVerilog Attributes

Pins

A SystemVerilog attribute on a pin within a cell instantiation in the RTL sets that attribute
on the corresponding instance pin in the HDL Compiler database.

RTL:

PLL UPLL1 (.REFCLK(CLK1), .FDBCK(CLK1 FDBCK
(* my pll mult = 2 *) .CLKOUT2 (PLLCLKl X2
(* my pll mult = 4 *) .CLKOUT4 (PLLCLKl X4

PLL UPLL2 (.REFCLK(CLK2), .FDBCK(CLK2 FDBCK

(

(

’

(* my pll mult = 2 *) .CLKOUTZ (PLLCLKZ2 X2

)
)
)
)
=)
(* my pll mult = 4 *) .CLKOUT4 (PLLCLK2_ X4)

)
) ;

’

Synthesis:

dc_shell> get pins {*PLL*/*} -filter {my pll mult == 2}
{UPLL1/CLKOUT2 UPLL2/CLKOUT2}
dc_shell> get pins {*PLL*/*} -filter {my pll mult == 4}
{UPLL1/CLKOUT4 UPLL2/CLKOUT4}

Inferred Register Cells (Sequential Processes)

A SystemVerilog attribute on a sequential process in the RTL sets that attribute on the
corresponding GTECH sequential cells inferred by that process in the HDL Compiler
database. Combinational logic associated with the process is not affected.

Note:

During compile, only attributes kept persistent by the tool (such as dont touch
or size only) exists on the resulting mapped sequential cells.

RTL:
(* size_only *)

always @ (posedge clk)
counter <= (counter + write - read);

Synthesis:

dc_shell> report_attributes \
[get_cells * -filter {size_only == true}]

Design Object Type Attribute Name Value
top counter reg[3] cell size only true
top counter reg(2] cell size only true
top counter regf[l] cell size only true
top counter reg[0] cell size only true
HDL Compiler™ for SystemVerilog User Guide 240

U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

10

Troubleshooting Guidelines

To troubleshoot your designs, you can use the basic guidelines described in this section.
« Code Expansion for Macros and Conditional Directives

« Minimizing Mismatches Between Simulation and Synthesis

« Data Type Declarations

« Synthesizable do...while Loops

» Troubleshooting generate Loops

« Assertions in Synthesis

« Other Troubleshooting Guidelines

Code Expansion for Macros and Conditional Directives

You can use macros and conditional compilation directives to automate complex tasks and
reduce coding time. However, using macros and the directives makes the code complex
and difficult to debug. To help debug such SystemVerilog designs, you can generate an
expanded version of the original RTL by using the code expansion feature. When this
feature is enabled, the tool processes all conditional compilation directives and expands
all macro invocations. The following topics describe the guidelines for code expansion and
the RTL examples:

« Code Expansion Guidelines
+ Code Expansion Example 1

« Code Expansion Example 2

See Also

* Querying Information about RTL Preprocessing

HDL Compiler™ for SystemVerilog User Guide 241
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 10: Troubleshooting Guidelines
Code Expansion for Macros and Conditional Directives

Code Expansion Guidelines

To enable code expansion, set the hdlin sv_tokens variable to true. The default is
false. When the feature is enabled, the tool generates expanded files, also called tokens
files, by capturing the exact token stream seen by the parser after preprocessing. The
tokens files are named tokens.1.sv, tokens.2.sv, tokens.3.sv, and so forth in the order
they are written out. All tokens files are written in the current working directory. When
encountering an error during parsing, the tool can create an incomplete or empty tokens
file.

Follow these guidelines when you use code expansion:

« When the tool detects errors, it generates no output but reports the errors by default.
When you set the hdlin sv tokens variable to true, the tool generates an output in
spite of errors.

« In the expanded output file, the " 1ine directive specifies the line number. For more
information about the " 1ine directive, see the IEEE Std 1364-2005.

+ If the tool can read the original RTL, it can read the expanded file.
* You can write out multiple tokens files in one HDL Compiler session.
The following limitations apply:

« The code expansion feature applies to SystemVerilog only; that is, it works with the
analyze -format sverilog, read file -format sverilog, and read sverilog
commands.

« Ifaninput file is encrypted (including an " include file), the tool does not write out the
tokens file.

As shown in the following example, the tool produces a tokens file so that you can see the
stream of tokens that are parsed before an error occurs. This information can help you
debug erroneous RTL code. Because q’ in the first line of the msf_in_lib module causes
an error, the corresponding tokens file is incomplete.

* Erroneous RTL code

‘define MSFF(q,i,clk,rst) \
msf in lib g reg (.o(q), \
.clk(clk),\
.d(i), \
.rst(rst));
module test (output ol, input il,clk,rst);
"MSFF (0l,1il,clk, rst)
endmodule

* Incomplete tokens file

HDL Compiler™ for SystemVerilog User Guide 242
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

. L Feedback
Chapter 10: Troubleshooting Guidelines
Code Expansion for Macros and Conditional Directives

“line 6 "err.v" O
“line 7 "err.v" O

module test (output ol, input il,clk,rst);
“line 8 "err.v" O

msf in lib ol

Code Expansion Example 1

This example shows an RTL design that contains macros, a script that uses the
hdlin sv_tokens variable to generate an expanded output file, and the contents of the
expanded file. This design contains no errors.

+ RTL design

“ifndef SYNTHESIS

module my testbench ();

/* Testbench goes in here. */
endmodule

endif

“ifndef GATES
module TOP_syn (a,clk, ol);
input a, clk;
"ifdef NOT
output ol;
ol=('a);
‘elsif FF
output logic ol;
always ff @ (posedge clk)

ol= a;
“else
output ol;

logic temp;
assign temp = a;
assign ol = temp;
endif
endmodule
‘else
"include "netlist wrap.sv"
“include "compiled gates.v"
endif

‘define DUT (mod) \
‘ifndef GATES \
mod™ " syn \

‘else \
mod™ " svsim \
endif
« Script
HDL Compiler™ for SystemVerilog User Guide 243

U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Troubleshooting Guidelines
Code Expansion for Macros and Conditional Directives

dc_shell> set hdlin_sv_tokens true

dc_shell> analyze -format sverilog exl.v

« Excerpt of the expended file

“line 1 "ex1.
“line 6 "exl.
“line 7 "exl.
“line 8 "exl.
“line 9 "ex1.
“line 12 "exl
“line 17 "exl.
“line 18 "exl.
“line 19 '"exl.
“line 20 "exl
“line 22 "exl.

sv" 0O
sv" 0O
sv" O
sv" 0
sv" 0O
.sv" O
sv" O
sv" 0
sv" 0O
.sv" O
sv" 0

module TOP syn (a,clk,

input a, clk;
output ol;
logic temp;
assign temp = a;
assign ol =

temp;

endmodule

Feedback

ol);

Code Expansion Example 2

In this example, a large macro definition spans multiple lines. Using the code expansion
feature not only enhances code legibility but also simplifies RTL debugging. This design

contains no errors.

+ RTL design

‘define make reg(q,i,clk,en,rst,rstd) \

logic 1 " "g ; \

logic en g ;\
always_comb \
if (rst) 1i_
else i
assign en g =

my lat myreg g

module test (

output logic
input logic
input logic

)7

\
\
\
(.o(q), \
.clk(clk),\
LA g\
.en(en_""q)
outl,
inl,
clk,

en, rst

‘make reg(outl,inl,clk,en,rst, 'b0)

endmodule

HDL Compiler™ for SystemVerilog User Guide

U-2022.12-SP3

244

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 10: Troubleshooting Guidelines
Minimizing Mismatches Between Simulation and Synthesis

» Tokens file

In the tokens file, the descriptions of the always comb block, the assign statement, the
make reg macro, and more design elements are in line 15. When the tool detects an
error in the macro, it points to line 15 rather than the exact code that causes the error.
To simplify RTL debugging, the tool breaks up the single-line macro description into
many lines, as shown in the following tokens file:

“line 12 "ex2.sv" 0

module test (output logic outl,
“line 13 "ex2.sv" O

input logic inl,
“line 14 "ex2.sv" 0

input logic clk, en,rst);
“line 15 "ex2.sv" O

logic i outl ;
“line 15 "ex2.sv" O

logic en outl ;
“line 15 "ex2.sv" 0

always comb
“line 15 "ex2.sv" O

if (rst) i outl = 'bO;
“line 15 "ex2.sv" O

else i outl = inl;
“line 15 "ex2.sv" 0

assign en outl = rst | en ;
“line 15 "ex2.sv" O

my lat myregoutl (.o(outl),
“line 15 "ex2.sv" O

.clk(clk),
“line 15 "ex2.sv" 0

.d(i outl),
“line 15 "ex2.sv" O

.en(en_outl));
“line 16 "ex2.sv" O

endmodule

Minimizing Mismatches Between Simulation and Synthesis

You can use the coding styles described in these topics to minimize mismatches between
synthesis and simulation:

+ Preventing case Mismatches
« Using Void Functions Instead of Tasks Inside always_comb

« Conversion Between Two-State and Four-State Variables

HDL Compiler™ for SystemVerilog User Guide 245
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

) o Feedback
Chapter 10: Troubleshooting Guidelines
Minimizing Mismatches Between Simulation and Synthesis

Preventing case Mismatches

Table 13 shows the SystemVerilog unique and priority constructs and the Verilog
equivalency full case and parallel case compiler directives.

Table 13 SystemVerilog and Verilog Equivalency

SystemVerilog Verilog equivalency

unique case without the default full case and parallel case
priority case without the default full case

unique case with the default parallel case

priority case with the default No compiler directive

To prevent case mismatches between simulation and synthesis, you should follow these
guidelines:

« Using unique Instead of full_case and parallel_case

« Using priority Instead of full_case

Using unique Instead of full_case and parallel_case

In SystemVerilog, a case statement qualified with the unique keyword without the default
is the same as the Synopsys full case and parallel case compiler directives. You
should use the unique keyword instead of the compiler directives to avoid simulation

and synthesis mismatches. If you mix both the compiler directives and the unique case
construct, the tool issues a VER-517 error message.

« Example—SystemVerilog case statement qualified with the unique keyword

typedef struct {
logic a_sel;
logic b _sel;

} priority sel;

module unique case without default struct (
input priority sel one_ hot sel,
output logic a hi, logic b hi

)7

always comb

unique case (1'bl)

one _hot sel.a sel : begin a hi = 'l; b hi = '0; end
one hot sel.b sel : begin a hi = '0; b _ hi = 'l; end
endcase
endmodule
HDL Compiler™ for SystemVerilog User Guide 246

U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Troubleshooting Guidelines
Minimizing Mismatches Between Simulation and Synthesis

Example—SystemVerilog full case and parallel case directives

typedef struct {
logic a sel;
logic b _sel;

} priority sel;

module full case parallel case struct(
input priority sel one hot sel,
output logic a hi, b hi

);

always comb

case (1'bl) // synopsys full case parallel case
one hot sel.a sel : begin a hi = 'l; b hi = '0; end
one hot sel.b sel : begin a hi = '0; b hi = 'l; end
endcase
endmodule

Example—Verilog 2001 full case and parallel case directives

module full case parallel case struct(
input a sel, b_sel,
output reg a hi, b hi

)

always@ (*)
case (1'bl) // synopsys full case parallel case
a sel : begin a hi = 1'bl; b hi = 1'b0; end
b sel : begin a hi = 1'b0; b hi 1'bl; end
endcase
endmodule

Feedback

The preceding examples generate the same netlist and statistics for the case statement:

Netlist

module full case parallel case struct (a sel, b_sel,
input a sel, b sel;
output a hi, b hi;

wire a hi, b hi;
assign a _hi = a_sel;
assign b hi = b_sel;
endmodule
Statistics
\ Line | full/ parallel |
‘ 9 \ user/user \

Presto compilation completed successfully.

HDL Compiler™ for SystemVerilog User Guide
U-2022.12-SP3

a hi, b hi);

247

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Troubleshooting Guidelines
Minimizing Mismatches Between Simulation and Synthesis

Using priority Instead of full_case

Feedback

In SystemVerilog, a case statement qualified with the priority keyword without the
default is the same as the Synopsys full case compiler directive. You should use the
priority keyword instead of the compiler directive to avoid simulation and synthesis
mismatches. If you mix the compiler directive and the priority case construct, the tool
issues an ELAB-909 warning message.

Example—SystemVerilog case statement qualified with the priority keyword

typedef struct {
logic a_sel;
logic b _sel;

} priority sel;

module priority case without default struct(
input priority sel one hot sel,
output logic a hi, b hi

)

always comb
priority case (1'bl)

one hot sel.a sel : begin a hi = 'l; b hi = '0;
one hot sel.b sel : begin a hi = '0; b hi = '1;
endcase
endmodule

Example—SystemVerilog full case directive

typedef struct {
logic a sel;
logic b _sel;

} priority sel;

module full case struct (
input priority sel one hot sel,
output logic a hi, b hi

)

always comb

case (1'bl) // Synopsys full case
one hot sel.a sel : begin a hi = 'l; b hi = '0;
one hot sel.b sel : begin a hi = '0; b hi = '1;
endcase
endmodule

Example—Verilog 2001 full case directive

module full case struct(
input a sel, b sel,
output reg a hi, b hi
);

HDL Compiler™ for SystemVerilog User Guide
U-2022.12-SP3

end
end

end
end

248

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Troubleshooting Guidelines
Minimizing Mismatches Between Simulation and Synthesis

always@ (*)
case (1'bl) // Synopsys full case

a sel : begin a hi = 1'bl; b hi = 1'b0; end
b sel : begin a hi = 1'b0; b hi = 1'bl; end
endcase
endmodule

Feedback

The preceding examples generate the same netlist and statistics for the case statement:

* Netlist

module full case struct (a sel, b sel, a hi, b hi);

input a sel, b sel;
output a hi, b hi;

wire a hi;
assign a _hi = a_sel;
IV U4 (.A(a_hi), .Z(b hi));
endmodule
« Statistics
\ Line | full/ parallel |
10 user/user

Presto compilation completed successfully.

Using Void Functions Instead of Tasks Inside always_comb

The IEEE Std 1800-2017 states that always comb is sensitive to changes within the
contents of a function, whereas always @* is only sensitive to changes to the arguments
of a function. It does not define the behavior of a task inside an always comb block or the
sensitivity list. This can cause a mismatch between simulation and synthesis. To prevent
such mismatches, use void functions instead of tasks inside an always comb block.

The following example shows a design containing a task in an always comb block, the

testbench for the design, the GTECH netlist, and the simulation log:

+ RTL containing a task in the always comb block

module combl (
input logic a, b ,c,
output logic [1:0] y
) ;

always comb orfl(a);

function void orfl (a);
y[0] =a | b | c;

endfunction

HDL Compiler™ for SystemVerilog User Guide
U-2022.12-SP3

249

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Troubleshooting Guidelines
Minimizing Mismatches Between Simulation and Synthesis

always comb ortl (a);
task ortl (a);
y[1l =a | b | c;
endtask
endmodule
» Testbench
module combl tb(
output logic a, b, c¢
) ;
initial
begin
a=20; b=20; c=0;
#10 a = 0; b =0; ¢c = 1;
#10 a = 0; b =1; ¢ = 0;
#10 a = 0; b =1; ¢ = 1;
#10 a = 1; b = 0; ¢ = 0;
#10 a = 1; b = 0; ¢ = 1;
#10 a = 1; b =1; ¢ = 0;
#10 a = 1; b =1; ¢c = 1;
end
endmodule
module top;
wire a w, b w, c w;
wire yl w, y0 w ;
combl ul(a w, b w, c w, {yl w,
combl tb u2(a w, b w, c w);

initial
begin

y0 w});

Sdisplay ("\t\tTime A B C Y1 YO\n");

$monitor (Stime,,,, a Wy, Ib_wl rrrC_Wyyyy yl_W/ rrr yO_W) 7

end
endmodule

« GTECH netlist

module combl
output
input a,
wire NO,
GTECH OR2
GTECH_OR2
GTECH_OR2
GTECH OR2

endmodule

* VCS simulation

(a,

N1;
c7
C8

log

[1:0] vys
b, c;

b,

C, Y)i
.A(NO), .B(c),
.A(a), .B(b),
-A(N1), .B(c),
.A(a), .B(b),

HDL Compiler™ for SystemVerilog User Guide

U-2022.12-SP3

Feedback

250

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 10: Troubleshooting Guidelines
Minimizing Mismatches Between Simulation and Synthesis

B

ORrRrRPRPRRPRRFPROOOOR

Time

10
20
30
40
50
60
70

SHEFRPRPRFPROOOO W
FRPrPRPRPRRPRRPRRPR OO

c
HRPrRrOORRLROOW

o)
P ORFRPRORFRrORF OQ0N

v C S

n
[
-

n Report

As shown in the netlist, y[0] and y[1] are outputs of the C7 and C9 OR gates. The
simulation log shows that

« y[0] changes to logic 1 when any of the inputs changes to logic 1.

» y[1] changes to logic 1 only when the A input changes to logic 1, not sensitive to
changes of the B and C inputs.

Notice that y[0] is the output of the void function and y[1] is the output of the ort1 task
inside the always comb block. A mismatch between simulation and synthesis occurs, and
the synthesis tool issues the following VER-520 warning:

Running HDLC
Compiling source file ../comb.l.sv
Warning: ../comb.l.sv:6: Task enable in always comb block. (VER-520)

To avoid the mismatch, use a void function inside the always comb block, as shown in the
following example:

module combl (
input logic a, b , c,
output logic [1:0] y
)
always comb orfl(a);
function void orfl (a);

y[0] =a | b | c;

y[1l]l = a | b | c;
endfunction
endmodule

Conversion Between Two-State and Four-State Variables

The HDL Compiler tool treats two-state values as four-state values (see Unsupported
Constructs). When a four-state variable is converted to a two-state variable or vice versa,
a mismatch between synthesis and simulation can occur. The simulation tool considers an
x value as an unknown, whereas the synthesis tool considers an x value as a don’t care

HDL Compiler™ for SystemVerilog User Guide 251
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
unique_30_Connect_42_i1072921
unique_30_Connect_42_i1072921

Feedback

Chapter 10: Troubleshooting Guidelines
Minimizing Mismatches Between Simulation and Synthesis

value. To avoid such mismatches, use either two-state or four-state variables and avoid
conversion between them.

In the following RTL, the a four-state input of the 10gic type makes a continuous
assignment to the b two-state output of the bit type. The testbench module feeds the a
signal through the a_driver variable of the 1o0gic type that is uninitialized. Because the
bit type defaults to logic 0 when uninitialized, the assign b = a statement causes a
mismatch at time 0 as shown in the simulation log.

+ RTL

// logic bit test.sv

module logic bit test(
input logic a,
output bit b

)i

assign b = a;

endmodule

module logic _bit testbench (output logic a driver);

initial begin // no initial value
#10 a _driver = '1;
#10 a driver = '0;
#10 $finish;

end

endmodule

module top;
wire a con, b con;
logic bit test ul(a_con, b con);
logic bit testbench u2(a_con);
initial
begin
Sdisplay ("\t\tTime A B\n");
$monitor ($time,,,,a con,,,,b _con);
end
endmodule

* VCS simulation log

Time A B

0 X 0
10 1 1
20 0 0

$finish called from file
"redu.sim.syn.mismatch state.conver.Zstate.4state.sv", line 8.
$finish at simulation time 30

HDL Compiler™ for SystemVerilog User Guide 252
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Troubleshooting Guidelines
Data Type Declarations

Feedback

Data Type Declarations

Before you use a data type, you must first declare the data type by using the typedef
construct. As shown in the following example, the mytype 1ogic type is declared before it
is used in the my_design module. If you use a data type without declaring it first, the tool
issues a syntax error message.

typedef logic mytype;
module my design(

)7

input logic clock,
input mytype in,
output mytype out

always ff @ (posedge clock)

out <= in;

endmodule

Synthesizable do...while Loops

A do...while loop is synthesizable if the tool can determine the exit condition. The tool
does not handle an unknown initial value in the loop when the number of iterations is still
bounded. The VCS tool does not have this restriction. The following examples show that
one do. . .while loop is synthesizable and the other is not. Because the loop that is not

synthesizable has an unknown initial value, the tool issues an error message.

Example—synthesizable do. . .while loop

module do while test2(
input logic [3:0] countl,
output logic [3:0] z
);
logic [3:0] x, count;
always comb
begin
x = 4'd2;
count = countl;
do
begin
count++;
X++;
end
while(x < 4'dl5);
z = count;
end
endmodule

Example—do. . .while loop not synthesizable

HDL Compiler™ for SystemVerilog User Guide
U-2022.12-SP3

253

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Chapter 10: Troubleshooting Guidelines
Troubleshooting generate Loops

module do while test2(
input logic [3:0] countl,
output logic[3:0] z
)i
logic [3:0] count, Xx;
always comb
begin
count = countl;
do
begin
count++;
X++;
end
while(x < 4'dl5);
z = count;
end
endmodule

Troubleshooting generate Loops

To debug generate loops, use the sdisplay () system task. For example,

/* The “ifdef SYNTHESIS is mandatory.
The $display () task does not affect the netlist but causes additional
messages to be written out during elaboration. */

module test # (N=32) (

output [N-1:0] out,

input [N-1:0] in

)

genvar I;

generate

for (I = S$left(out); I >= S$right(out); I--) begin:GEN
‘ifdef SYNTHESIS

always S$Sdisplay("Instantiating: mod GEN[%d].inst (.out (out[%d]),
.in(in[%d]))", I, I, I);

‘endif

mod inst(.out(out[I]), .in(in[I]));

end:GEN

endgenerate

endmodule:test

Assertions in Synthesis

The following SystemVerilog keywords are parsed and ignored during synthesis: assert,
assume, before, bind, bins, binsof, clocking, constraint, cover, coverpoint
covergroup, cross, endclocking, endgroup, endprogram, endproperty, endsequence,
extends, final, first match, intersect, ignore bins, illegal bins, local

HDL Compiler™ for SystemVerilog User Guide 254
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Troubleshooting Guidelines
Other Troubleshooting Guidelines

Feedback

program, property, protected, sequence, super, this, throughout, and within. If an
assertion-related keyword is not parsed and ignored, it is considered unsupported. For
these unsupported keywords, see Unsupported Constructs.

As shown in the following RTL and inference report, the synthesis tool ignores the assert

keyword and correctly infers a flip-flop:

« RTL containing an assert keyword

module dff with imm assert(
input DATA, CLK, RESET,
output logic Q

);

// Synopsys sync set reset "RESET"

always ff @ (posedge CLK)
if (~RESET)
begin

Q <= 1'b0;

assert (Q == 1'b0)

S$display ("%$m PASS:Flip Flop got reset");

else

Sdisplay("$m FAIL:Flip Flop got reset");

end
else

Q <= DATA;
endmodule

» Inference report

| Width | Bus

| MB | AR | AS |

Other Troubleshooting Guidelines

Table 14

Other Troubleshooting Guidelines

For guideline on

See

Designs containing checker libraries
Issues with the global name space ($unit)

Module renaming issues

HDL Compiler™ for SystemVerilog User Guide
U-2022.12-SP3

Reading Designs With Assertion Checker Libraries
Global Name Space ($unit)

Renamed Modules Example 3

255

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
unique_30_Connect_42_i1072921

. o Feedback
Chapter 10: Troubleshooting Guidelines
Other Troubleshooting Guidelines

Table 14 Other Troubleshooting Guidelines (Continued)

For guideline on See

Interfaces Interfaces

Designs containing interfaces Reading SystemVerilog Designs
Note:

You cannot use the elaborate command to
instantiate a parameterized design.

Unsupported SystemVerilog constructs Unsupported Constructs

Casting The tool supports nonvoid function calls as
statements, but it generates a warning.

HDL Compiler™ for SystemVerilog User Guide 256
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
unique_180_Connect_42_i964672

Feedback

A

SystemVerilog Design Examples

This section contains examples that use various SystemVerilog constructs.
« FIFO Example

* Bus Fabric Design

« Coding for Late-Arriving Signals

» Master-Slave Latch Inferences

You can find more examples in the $pc_HOME DIR/doc/syn/examples/verilog directory. The
$DC_HOME DIR variable specifies the location of the HDL Compiler installation.

FIFO Example

Example 129 uses a variety of SystemVerilog features to build a FIFO.

Example 129 FIFO
// Synchronous FIFO. 4 x 16 bit words.
typedef logic [7:0] ubyte;

typedef struct {
ubyte src;

ubyte dst;
ubyte [0:3] data;
} packet t;

// Use interface and modport to declare data in and out
interface port;

logic enable;

logic stall;

packet t packet;

modport sendm(input enable, packet, output stall);
modport recvm(input enable, output packet, stall);
endinterface : port

module fifo # (DEPTH = 2, MAX COUNT = (1<<DEPTH)) (
input clk, rstp,
port.sendm in,
port.recvm out

)7

// Define the FIFO pointers. A FIFO is essentially a circular queue.

HDL Compiler™ for SystemVerilog User Guide 257
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Appendix A: SystemVerilog Design Examples
FIFO Example

reg [(DEPTH-1):0] tail;
reg [(DEPTH-1):0] head;

// Define the FIFO counter. Count the number of entries in the FIFO
// to figure out things like Empty and Full.
reg [(DEPTH) :0] count;

// Define the register bank. Array of structures
packet t fifomem[O0:MAX COUNT];

// Dout 1s registered and gets the value that tail points to RIGHT NOW.
always ff @ (posedge clk)
begin
if (rstp == 1)
out.packet <= '{default:0};
else
out.packet <= fifomem[taill];
end

// Update FIFO memory.
always ff @ (posedge clk)
begin
if (rstp == 1'b0 && in.enable == 1'bl && in.stall == 1'b0)
fifomem[head] <= in.packet;
end

// Update the head register.
always ff @ (posedge clk)

begin
if (rstp == 1'bl)
head <= 0;
else
if (in.enable == 1'bl && in.stall == 1'b0)

head <= head + 1; // WRITE
end

// Update the tail register.
always ff @ (posedge clk)

begin
if (rstp == 1'bl)
tail <= 0;
else
if (out.enable == 1'bl && out.stall == 1'b0)

tail <= tail + 1; // READ
end

// Update the count register.
always ff @ (posedge clk)
begin
if (rstp == 1'bl)
begin
count <= 0;
end
else
begin
case ({out.enable, in.enable})
2'b00: count <= count;
2'b01: // WRITE
if (!in.stall)
count <= count + 1;
2'p10: // READ

HDL Compiler™ for SystemVerilog User Guide 258
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Appendix A: SystemVerilog Design Examples
Bus Fabric Design

if ('out.stall)
count <= count - 1;
2'bll: // Concurrent read and write. No change in count
count <= count;
endcase
end
end

// First, update the empty flag.
always comb
begin
if (count == 0)
out.stall = 1'bl;
else
out.stall = 1'b0;
end

// Update the full flag
always comb
begin
if (count < MAX COUNT)
in.stall = 1"b0;
else
in.stall = 1'bl;
end
endmodule

Bus Fabric Design
This example shows a bus fabric structure that is commonly used in networking designs.

As shown in Figure 38, the client sends a request to the arbiter to get permission to
transfer data. To avoid bus contention, the arbiter handles the request in a weighted
round-robin fashion and issues a unique grant signal to the client. After the client receives
the permission, it sends data and a write enable signal to the FIFO. When the FIFO is
almost full (not shown in the design), the client stops sending data.

HDL Compiler™ for SystemVerilog User Guide 259
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix A: SystemVerilog Design Examples
Bus Fabric Design

Figure 38 Bus Fabric Structure

clientlF
O client0
bit @ client1
aroter o client2
o client3
L
asyncFIFO «
G
G

Feedback

To implement this bus fabric design, the following examples use unpacked arrays, packed
arrays, interface arrays, casting, modport instantiations, and other SystemVerilog features.

You can implement a more complex architecture based on this design.

To encapsulate the complex interconnection between the arbiter and clients, this design
uses the interface construct to create the clientlF module, as shown in Example 130,
and an array of interfaces with modports. Using the interface construct reduces the
design complexity and increases reusability of the clientlF interface between modules.

Furthermore, you can reconfigure this type of bus fabric structure using parameters.

Example 130 clientIF Interface Module

interface clientIF # (parameter lengthOfId = 8,parameter dataWidth =
logic grant;

logic reqg;

logic [lengthOfId-1:0] priorityID;

logic wrEn;

logic [dataWidth-1:0] cDhata;

logic wrFifoFull;

modport clientMod (input grant, wrFifoFull, output req, priorityID,
wrEn, cData);

modport arbiterMod (output grant, input req, priorityID);

modport fifoMod (input grant, cbhata, wrEn, output wrFifoFull);
endinterface

Because this interface is a bundle of wires, it contains no sequential logic. To create

128);

combinational logic in an interface, use the function-endfunction, task-endtask,
Or generate-endgenerate keyword pairs. The logic can be point-to-point connections

or one output net driving multiple nets of the same name, such as the grant signal
in Example 130. The example uses one-dimensional array; you can also use two-
dimensional arrays.

HDL Compiler™ for SystemVerilog User Guide
U-2022.12-SP3

260

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Appendix A: SystemVerilog Design Examples
Bus Fabric Design

As shown Example 131, the arbiterMod module grants bus access in a round-robin
fashion using a state machine. If you choose one-hot state encoding, use the one hot
pragma for better QoR. You should use one coding style for the state machine for easy
debugging. The arbiterMod module

« Contains one always ff block for the sequential logic and one always comb block for
the combinational logic.

« Uses enumerations to describe the state variables and provides defaults for the state
variables to reduce repetitive logic.

« Checks the token value (c1F[j].priorityID) to determine to which client to grant
access.

« Specifies the arbiterMod modport of the clientlF interface in the module port
declarations (clientIF.arbiterMod cIF[4]) to connect to the interface.

« Uses an unpacked array in the interface array to connect all nets, for example,
cIF[k].grant = grant[k].

Example 131 arbiterMod Module

module arbiterMod # (parameter lengthOfId = 8) (
input logic clk,
input logic rst,
clientIF.arbiterMod cIF[4]

) ;

// Using little endian
logic [lengthOfId-1:0] priorityID[4];

logic [S$clog2(4)-1:0] tokenValue;

logic [lengthOfId-1:0] tmpValue;

logic [4:0] tokenRR; // Concatenate idle state in 1lst bit
logic reql4];

logic grant [4];

typedef enum logic [4:0] {IDLE = 5'b00001, GNTOST = 5'b00010,
GNT1ST = 5'b00100, GNT2ST = 5'b01000, GNT3ST = 5'bl10000} tsState;
tState current state, next state;

for (genvar j = 0; J < 4; J++)

begin : signalsFromInterfaceBus

assign reqlj] = cIF[]j].req;

assign priorityID[j] = cIF[]J].priorityID;
end

always @*
begin : tokenGenerate

tmpValue = '0;
tokenValue = '0;
for (int 1 = 0; 1 < 4; 1i++)

if (priorityID[i] > tmpValue)

HDL Compiler™ for SystemVerilog User Guide 261
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix A: SystemVerilog Design Examples

Bus Fabric Design

begin

linearSearchToServeBiggestValue

tokenvalue = i;

tmpVa
end
end

always comb
begin tok
case (to
2'000
2'b01
2'b10
2'b11
endcase
end
always ff @
begin rou
if ('rst
curre
else
curre
end

always comb

lue = priorityID[i];

enRR

kenValue)

: tokenRR = 5'b00010;

: tokenRR = 5'b00100;

: tokenRR = 5'b01000;

: tokenRR = 5'b10000;
(posedge clk, negedge rst)
ndRobinStateMachine

)

nt state <= IDLE;

nt state <= next state;

Feedback

begin roundRobinDecoder
grant[0] = 0;
grant[1l] = 0;
grant[2] = 0;
grant[3] = 0;
next state = current state;
case (current state)
IDLE if (reql3] | reqgl2] | reqll] | reqlO])
/* Using casting method to convert type. You should
ensure correct connection and syntax because the tool does
not check the casting. Alternatively, you can use
localparam and logic. */
next state = tState' (tokenRR);
GNTOST: if (reql0])
grant[0] = 1'bl;
else if (!reql0] & reqgql[3])
next state = GNT3ST;
else 1if (!'req[0] & !req[3] & reqgql2])
next state = GNT2ST;
else 1if (!'req[0] & !reql[3] & !'reql[2] & reqll])
next state = GNTI1ST;
else
next state = IDLE;
GNT1ST: if (reqll])
grant[1l] = 1'bl;
else if (!'reql[l] & reql0])
next state = GNTOST;
else 1if (!reqll] & !'req[0] & reqgl3])
next state = GNT3ST;

HDL Compiler™ for SystemVerilog User Guide

U-2022.12-SP3

262

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix A: SystemVerilog Design Examples
Bus Fabric Design

else 1if (!'reql[l] & !reql0]
next state = GNT2ST;
else
next state = IDLE;
GNT2ST: if (reql2])
grant[2] = 1'bl;
else 1if (!'reql[2] & reqll])
next state = GNTI1ST;
else 1if (!reql2] & !reqll]
next state = GNTOST;
else if (!reql[2] & !req[l]
next state = GNT3ST;
else
next state = IDLE;
GNT3ST: if (reql3])
grant[3] = 1'bl;
else if (!req[3] & reql2])
next state = GNT2ST;
else 1if (!'reql[3] & !reql2]
next state = GNTI1ST;
else 1if (!reql3] & !reql2]
next state = GNTOST;
else
next state = IDLE;
endcase
end
for (genvar k = 0; k < 4; k++)
begin : sendGrandTolInterfaceBus
assign cIF[k].grant = grantl[k];
end
endmodule

Feedback

& 'reql[3] & reql2])
& reql0])

& !'req[0] & req[3])
& reql[l])

& 'regl[l] & reql0])

This bus fabric design shows the client module communicates with two modules, the
arbiter and FIFO, through the interface array. Example 132 shows how to connect the
modules to the interface. The asynchronous FIFO module

+ Uses the default keyword to set the array element values.

+ Instantiates the DesignWare memory cell to save area and speed up the runtime.

« Concatenates packed arrays to prioritize the decoding by using a casex statement.

» Uses functions for common portions of the design to reduce the code size.

+ Uses the genvar keyword to create parallel combinational logic and the assign
statement to assign logic declarations in the begin-end block.

For more information about the Synopsys DesignWare Flip-Flop-Based Asynchronous
Dual-Port RAM used in this example, see the datasheet for the DW_ram_r_w_a_dff block

in the DesignWare Library documentation.

HDL Compiler™ for SystemVerilog User Guide
U-2022.12-SP3

263

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix A: SystemVerilog Design Examples

Bus Fabric Design

Example 132 Asynchronous FIFO Module

module fifoMod # (
parameter dataWidth
parameter addrWidth
parameter ramDepth
parameter dwRstMode

input logic
input logic
input logic
input logic
input logic
input logic

/* DesignWare RAM c
When dwTestMode is
If dwTestMode is 1

input logic dwTes

input logic

output logic
output logic
output logic

clientIF.fifoMod
) ;

typedef logic [addrWid

syncT rdPtrBb2gSyncl;
syncT rdPtrBb2gSync;
syncT wrPtrAb2gSyncl;
syncT wrPtrAb2gSync;
logic [dataWidth-1:0]
logic [3:0] clientwr
logic [3:0] clientwr
logic [3:0] tmpClien
logic [3:0] clientGr
logic [dataWidth-1:0]
logic [dataWidth-1:0]
logic wrEnA;

// First bit used as f
logic [addrWidth:0] w
logic [addrWidth:0] w
logic wrFifoFullA;
logic wrFifoFullASync;
logic wrFifoFullGray;
logic rdFifoEmptyGray;
logic [addrWidth:0] r
logic [addrWidth:0] r
logic [addrWidth:0] «r
logic fifoCs;

128,

4, //exclude status bit
= (1 << addrwWidth),

= 0 //0: ram reset active

clkA,
clkB,
rst,
wrCsA,
rdCsB,
rdEnB,

low

Feedback

ontrol signal using scan chain from test mode

high, the test clk will capture data.
ow, 1t is in normal mode */

tClk,
dwTestMode, //1:

rdFifoEmptyB,
fifoDataVldB, //make data
[dataWidth-1:0] datalOut,

cIF [4]

th:0] syncT;

clientToFifoDataTmp [4];
En;

EnD;

twrEn;

ant;

fifoRam [ramDepth];
dataln;

ifo status bit, so it does not minus

rPtrA;
rPtrAb2g;

dPtrB;
dPtrBb2g;
dPtrBb2gSame;

HDL Compiler™ for SystemVerilog User Guide

U-2022.12-SP3

enable test clk to be testMode

valid from fifo data

264

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Appendix A: SystemVerilog Design Examples
Bus Fabric Design

logic wrRamA;
logic [dataWidth-1:0] dataOutP;

// clock A domain
for (genvar j = 0; J < 4; j++)

begin : combineIndividulad4chennelIntoTwoDementionalArray
assign clientToFifoDataTmp[j] = cIF[Jj].cData;
assign clientwrEn[7] = cIF[]j].wrEn;
assign clientGrant[j] = cIF[j].grant;

end

always ff @(posedge clkA, negedge rst)

begin : fromClientInterfacePorts
if (!'rst)
dataIn <= '0;
else

begin : decodeClientChannelDataWithWriteEnable
for (int k = 0; k < 4; k++)
if (clientGrant([k])
datalIn <= clientToFifoDataTmp[k];
end
end

always ff @(posedge clkA, negedge rst)

if ('rst)
clientwrEnD <= '{default:0};
else
clientwrEnD <= clientwrEn;
for (genvar m = 0; m < 4; mt+)
begin
assign tmpClientwrEn[m] = clientwrEn[m] & !clientwrEnD[m];
end

always ff @ (posedge clkA, negedge rst)
begin: fromClientInterfacePortsEn

if ('rst)
wrEnA <= '0;
else
begin
casex ({clientGrant[0], clientGrant[l], clientGrant[2],

clientGrant[3]})
// This RTL style can get priority decoding in some designs.
4'blxxx: WrEnA <= tmpClientwrEn[O0];
4'b01lxx: wrEnA <= tmpClientwrEn[l];
4'pb001x: wrEnA <= tmpClientwrEn[2];
4'p0001: wrEnA <= tmpClientwrEn[3]
default: wrEnA <= '0;

endcase

end
end

’

always ff @ (posedge clkA, negedge rst)
if ('rst)

HDL Compiler™ for SystemVerilog User Guide 265
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix A: SystemVerilog Design Examples
Bus Fabric Design

wrPtrA <= '0;
else
wrPtrA <= wrPtrA + (wrCsA & wrEnA & !wrFifoFullAd);

always ff @ (posedge clkA, negedge rst)
if (!'rst)

wrPtrAb2g <= '0;
else

wrPtrAb2g <= binaryToGray (wrPtrA);

always ff @ (posedge clkA, negedge rst)
if ('rst)

{rdPtrBb2gSyncl, rdPtrBb2gSync} <= '0;
else

Feedback

{rdPtrBb2gSyncl, rdPtrBb2gSync} <= {rdPtrBb2gSync, rdPtrBb2g};

always ff @ (posedge clkA, negedge rst)

if ('rst)
wrFifoFullGray <= '0;

else
wrFifoFullGray <= (wrPtrAb2gladdrWidth-3:0] ==
rdPtrBb2gSyncl [addrWidth-3:0]) &

! (wrPtrAb2g[addrWidth-2] ~ rdPtrBb2gSyncl[addrWidth-2]1) &
(wrPtrAb2g[addrWidth-1] »~ rdPtrBb2gSyncl[addrWidth-1]);

always ff @ (posedge clkA, negedge rst)
if (!rst)
begin
wrFifoFullA <= '0;
wrFifoFullASync <= '0;
end
else
begin
wrFifoFullASync <= wrFifoFullGray;
wrFifoFullA <= wrFifoFullASync;
end

(wrCsA & wrEnA);
(wrCsA & wrEnA & !wrFifoFullA);

assign fifoCs

|
assign wrRamA !

// Instantiate DesignWare dual port async RAM

DW ram r w a dff #(.data_width(dataWidth), .depth (ramDepth) ,
.rst mode (dwRstMode))

dual ram ul (.rst n(rst), .cs n(fifoCs), .wr n(wrRamhd),
.test mode (dwTestMode), .test clk(dwTestClk),

.rd_addr (rdPtrB[addrWidth-1:01),

.wr_addr (wrPtrA[addrWidth-1:0]), .data in(dataln), .data out(dataOutP));

// gray code

function automatic logic [addrWidth:0] binaryToGray (input [addrWidth:0]

binaryIn);
return (binaryIn >> 1) ~ binaryIn;
endfunction

HDL Compiler™ for SystemVerilog User Guide
U-2022.12-SP3

266

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix A: SystemVerilog Design Examples
Bus Fabric Design

// clock B domain
always ff @ (posedge clkB, negedge rst)
if (!rst)
fifobDataVldB <= 1'b0;
else
fifoDataVldB <= rdCsB & rdEnB;

always ff @ (posedge clkB, negedge rst)
if (!rst)

dataOut <= '0;
else

dataOut <= dataOutP;

always ff @ (posedge clkB, negedge rst)
if (!rst)

rdFifoEmptyB <= '1;
else

rdFifoEmptyB <= rdFifoEmptyGray;

always ff @ (posedge clkB, negedge rst)
if (!rst)

{wrPtrAb2gSyncl, wrPtrAb2gSync} <= '0;

else

{wrPtrAb2gSyncl, wrPtrAb2gSync} <= {wrPtrAb2gSync,

always comb
begin

rdFifoEmptyGray = (wrPtrAb2gSyncl ==

end

assign rdPtrBb2gSame = binaryToGray (rdPtrB);

always ff @ (posedge clkB, negedge rst)
if ('rst)

rdPtrB <= '0;
else

rdPtrB <= rdPtrB + (rdCsB & rdEnB & ! (rdFifoEmptyB

always ff @ (posedge clkB, negedge rst)
if ('rst)

rdPtrBb2g <= '0;
else

rdPtrBb2g <= binaryToGray (rdPtrB);

for (genvar i = 0; 1 < 4; 1i++)
begin
assign cIF[i].wrFifoFull = wrFifoFullGray;
end
endmodule

HDL Compiler™ for SystemVerilog User Guide
U-2022.12-SP3

Feedback

wrPtrAb2g};

rdPtrBb2gSame) ;

| rdFifoEmptyGray));

267

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix A: SystemVerilog Design Examples
Bus Fabric Design

Feedback

Each client module can have its own functions using the same generic interface from the
interface module or have the same functions from the interface module. Example 133
shows that an interface modport connects to one of the four client modules through

a module port without using an interface array. You should use explicit interface
declarations (c1ientIF.clientMod) in the module port list, but not generic declarations
(interface.clientMod), so the tool can check the connections. For the arbiter and FIFO,
interface arrays are used because of the four interfaces with one modport. The code for
the input from the interface is “assign tmpClientGrant = cIF.grant”, whereas the
code for the output to the interface is “assign cIF.req = req’. The example also uses
unsized constants, ‘0 and ‘1, to assign all Os or 1s to any bus width to implement the reset

or set circuitry respectively.

Example 133 clientMod Module

module clientMod # (parameter lengthOfId

input logic clk,
input logic rst,
input logic wvalidIn,

= 8, parameter dataWidth = 128) (

input logic [dataWidth-1:0] clientData,
input logic [lengthOfId-1:0] priorityIDPgam,

output logic done,

/* interface.clientMod cIF, generic declaration.

Use explicit declaration. */
clientIF.clientMod cIF
) ;

logic clientGrant;

logic tmpClientGrant;

logic clientGrantD;

logic clientGrantDl;

logic clientGrantD2;

logic wrFifoFull;

logic [lengthOfId-1:0] tmpPriorityID;
logic wrEnable;

logic [dataWidth-1:0] tmpBuffer;
logic valid;

logic req;

assign tmpClientGrant = cIF.grant;
assign wrFifoFull = cIF.wrFifoFull;

always ff @ (posedge clk, negedge rst)
if ('rst)
begin
clientGrantD <= '0;
clientGrantDl <= '0;
clientGrantD2 <= '0;
end
else
begin
clientGrantD <= tmpClientGrant;

HDL Compiler™ for SystemVerilog User Guide
U-2022.12-SP3

268

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Appendix A: SystemVerilog Design Examples
Bus Fabric Design

clientGrantDl <= clientGrantD;
clientGrantD2 <= clientGrant;
end

assign clientGrant = !clientGrantDl & tmpClientGrant;

always ff @(posedge clk, negedge rst)
if (!'rst)

tmpPriorityID <= '0;
else 1f (validIn)

tmpPriorityID <= priorityIDPgam;

always ff @(posedge clk, negedge rst)
if ('rst)
tmpBuffer <= '0;
else 1f (validIn)
tmpBuffer <= clientData;
else 1if (wrEnable)
tmpBuffer <= '0;

assign done = clientGrant & valid & !'wrFifoFull;

always ff @ (posedge clk, negedge rst)
if ('rst)
valid <= '0;
else if (validIn)
valid <= '1;
else 1f (clientGrantD?2)
valid <= '0;

always ff @(posedge clk, negedge rst)
if ('rst)
wrEnable <= 1'b0;
else 1f (clientGrant & wvalid)
wrEnable <= 1'bl;
else
wrEnable <= 1'Db0;

always ff @ (posedge clk, negedge rst)
if (!rst)
req <= 1'b0;
else if (validIn)
req <= 1'bl;
else if (wrEnable)
req <= 1'b0;

assign cIF.priorityID = tmpPriorityID;
assign cIF.req = req;

assign cIF.wrEn = wrEnable;

assign cIF.cData = tmpBuffer;
endmodule

HDL Compiler™ for SystemVerilog User Guide 269
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix A: SystemVerilog Design Examples
Bus Fabric Design

Feedback

For complex and large designs, Example 134 shows a quick way to configure the client
channels using port parameters during the top-level module instantiations. To avoid
mismatches and reduce errors during design changes, you should specify modports of a
hierarchically referenced interface (cIFArray[0].clientMod) instead of just an interface

(c1FArray[0]) during module instantiation, so the tool can match the RTL.

Example 134 topMod Module

module topMod (
// DesignWare test control signal
input logic dwTestClk,
input logic dwTestMode,
// System signal
input logic clkA, clkB,
input logic rst,
// clock A domain
input logic wrCsA,
input logic wvalidInO,
input logic [127:0]clientData0,
input logic [7:0]priorityIDPgamO, //from register map
input logic wvalidInl,
input logic [127:0]clientDatal,
input logic [7:0]priorityIDPgaml,
input logic wvalidIn2,
input logic [127:0]clientDataZz,
input logic [7:0]priorityIDPgam?2,
input logic validIn3,
input logic [127:0]clientData3,
input logic [7:0]priorityIDPgam3,

output logic doneO,
output logic donel,
output logic done2,
output logic done3,

// clock B domain
input logic rdEnB,
input logic rdCsB,

output logic rdFifoEmptyB,

output logic fifoDataV1ldB,

output logic [127:0]dataOut
)

localparam lengthOfId = 8;
localparam dataWidth = 128;

localparam addrWidth = 4; //exclude status bit

localparam ramDepth = (1 << addrWidth) ;

localparam dwRstMode = 0; //0: ram reset active low

clientIF #(.lengthOfId(lengthOfId), .dataWidth (dataWidth)) cIFArray[4]();

HDL Compiler™ for SystemVerilog User Guide
U-2022.12-SP3

270

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Appendix A: SystemVerilog Design Examples
Bus Fabric Design

arbiterMod # (

.lengthOfId (lengthOfId)

) arbiterModUO0 (
.clk(clka),

.rst(rst),

.CcIF (cIFArray.arbiterMod)
) ;

fifoMod # (

.dataWidth (dataWidth),
.addrWidth (addrWidth),
.ramDepth (ramDepth),
.dwRstMode (dwRstMode)

) fifoModUO (

.clkA (clkAp),

.clkB(clkB),

.rst(rst),

.wrCsA (wrCsA),

.rdCsB (rdCsB),

.rdEnB (rdEnB) ,

.dwTestClk (dwTestClk),
.dwTestMode (dwTestMode) ,
.rdFifoEmptyB (rdFifoEmptyB),
.fifoDataVldB (fifoDataV1ldRB),
.datalOut (dataOut),

.cIF (cIFArray.fifoMod)

)

clientMod # (

.lengthOfId (lengthOfId),

.dataWidth (datawidth)

) clientModUO0 (

.clk(clka),

.rst(rst),

.validIn(validInO),

.clientData(clientDatal),
.priorityIDPgam(priorityIDPgam0),

.done (done0) ,

//.cIF(cIFArray([0]) // pass the interface
.CIF(cIFArray[0].clientMod) // Passing the modport is recommended

)i

clientMod # (

.lengthOfId (lengthOfId),
.dataWidth (datawWidth)

) clientModUl (

.clk(clkn),

.rst(rst),
.validIn(validInl),
.clientData(clientDatal),
.priorityIDPgam(priorityIDPgaml),
.done (donel),
.CIF(cIFArray[l].clientMod)

HDL Compiler™ for SystemVerilog User Guide 271
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Appendix A: SystemVerilog Design Examples
Coding for Late-Arriving Signals

) ;

clientMod # (

.lengthOfId (lengthOfId),
.dataWidth (dataWidth)

) clientModU2 (

.clk(clka),

.rst(rst),

.validIn(validIn2),

.clientData (clientData?2),
.priorityIDPgam (priorityIDPgam?2),
.done (done?2),
.CIF(cIFArray[2].clientMod)

)7

clientMod # (

.lengthOfId (lengthOfId),
.dataWidth (dataWidth)

) clientModU3 (

.clk(clkpn),

.rst(rst),
.validIn(validIn3),
.clientData(clientData3),
.priorityIDPgam(priorityIDPgam3),
.done (done3),
.CIF(cIFArray[3].clientMod)
) ;

endmodule

See Also

» Interfaces

Coding for Late-Arriving Signals
The following topics describe coding techniques for late-arriving signals:
* Duplicating Datapaths
« Moving Late-Arriving Signals Close to Output

Note:

These techniques apply to synthesizes performed by the HDL Compiler tool.
When this output is constrained and optimized, the structure might be changed
depending on the design constraints and option settings. For more information,
see the HDL Compiler documentation.

HDL Compiler™ for SystemVerilog User Guide
U-2022.12-SP3

272

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Appendix A: SystemVerilog Design Examples
Coding for Late-Arriving Signals

Duplicating Datapaths

To improve the timing of late-arriving signals, you can duplicate datapaths, but at the
expense of more area and increased input loads.

Original RTL

In Example 135, the late-arriving CONTROL signal selects either the PTR1 or PTR2
input, and then the selected input drives a chain of arithmetic operations ending at
output COUNT. As shown in Figure 39, a SELECT_OP is next to a subtractor. When
you see a SELECT_OP next to an operator, you should duplicate the conditional logic
of the SELECT_OP and move the SELECT_OP to the end of the operation, as shown in

Example 136.

Example 135 Original RTL

module BEFORE # (parameter [7:0] BASE = 8'b10000000) (
input [7:0] PTR1,PTR2,
input [15:0] ADDRESS, B,
input CONTROL, //CONTROL is late arriving
output [15:0] COUNT

)7
wire [7:0] PTR, OFFSET;
wire [15:0] ADDR;

assign PTR = (CONTROL == 1'bl) ? PTR1 : PTR2;

assign OFFSET = BASE - PTR; // Could be any function of f (BASE,PTR)
assign ADDR = ADDRESS - {8'h00, OFFSET};

assign COUNT = ADDR + B;

endmodule

Figure 39 Schematic of the Original RTL

SUBTRACTOR
SUBTRACTOR - ADDER
SELECT Oop BASE | ADDRESS \ _ A
00000000 16
PTR1—/— S T— + ———COUNT
I A—
8 B76 |
PTR2—/—
CONTROL ———
HDL Compiler™ for SystemVerilog User Guide 273

U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix A: SystemVerilog Design Examples
Coding for Late-Arriving Signals

Feedback

Modified RTL With the Duplicate Datapath

In the modified RTL, the entire datapath is duplicated because signal CONTROL arrives
late. The resulting output COUNT becomes a conditional selection between two parallel
datapaths based on input PTR1 or PTR2 and controlled by signal CONTROL. The

path from signal CONTROL to output COUNT is no longer a critical path. The timing is
improved, but at the expense of more area and more loads on the input pins. In general,
the amount of datapath duplication is proportional to the number of conditional statements
of the SELECT_OP. For example, if you have four input signals to the SELECT_OP, you
duplicate three datapaths. To minimize the area of duplicate logic, you can design signal

CONTROL to arrive early.
Example 136 Modified RTL With the Duplicate Datapath
module PRECOMPUTED # (parameter [7:0] BASE = 8'b10000000) (
input [7:0] PTR1l, PTRZ,
input [15:0] ADDRESS, B,
input CONTROL,
output [15:0] COUNT
) 7
wire [7:0] OFFSET1,OFFSET2;
wire [15:0] ADDR1,ADDR2,COUNT1,COUNT2;
assign OFFSET1 = BASE - PTR1; // Could be f (BASE,PTR)
assign OFFSET2 = BASE - PTR2; // Could be f (BASE,PTR)
assign ADDR1 = ADDRESS - {8'h00 , OFFSET1};
assign ADDR2 = ADDRESS - {8'h00 , OFFSET2};
assign COUNT1 = ADDR1 + B;
assign COUNT2 = ADDR2 + B;
assign COUNT = (CONTROL == 1'bl) ? COUNT1 : COUNTZ2;
endmodule

HDL Compiler™ for SystemVerilog User Guide
U-2022.12-SP3

274

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix A: SystemVerilog Design Examples
Coding for Late-Arriving Signals

Figure 40 Schematic of the Modified RTL

Feedback

SUBTRACTOR SUBTRACTOR
ADDRESS——
ADDER Duplicate datapath
BASE —— >—
00000000 16
16 >+ |
SELECT OP
PTR1 ﬁsu B #‘
- COUNT
ADDRESS——
BASE — A
00000000 16
16 T
PTR2 —/— B —4g1 ~ CONTROL75

SUBTRACTOR SUBTRACTOR

See Also

Selection and Multiplexing Logic

ADDER

Moving Late-Arriving Signals Close to Output

If you know which signals in your design are late-arriving, you can structure the code so
that the late-arriving signals are close to the output.

The following examples show the coding techniques of using the i £ and case statements
for late-arriving signals:

Overview

Late-Arriving Data Signal Example 1
Late-Arriving Data Signal Example 2
Late-Arriving Data Signal Example 3
Late-Arriving Control Signal Example 1

Late-Arriving Control Signal Example 2

HDL Compiler™ for SystemVerilog User Guide
U-2022.12-SP3

275

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Appendix A: SystemVerilog Design Examples
Coding for Late-Arriving Signals

Overview

To better handle late-arriving signals, use sequential i f statements to create a priority-
encoded implementation. You assign priority in descending order; that is, the last i £
statement corresponds to the data signal of the last SELECT_OP cell in the chain.

RTL With Sequential if Statements

The a and sel[0] signals have the longest delays to the z output, while the d and sel[3]
signals have the shortest delays to the z output.

Example 137 RTL With Sequential if Statements

module mult if (
input a, b, ¢, d,
input [3:0] sel,
output logic z

)

always comb

begin

a;

([|
Q QO

~e

N N N N

end
endmodule

Figure 41 Schematic of the RTL

SELECT_OP
SELECT_OP
d
SELECT_OP c z
SELECT_OP ____ |
b
a
sel[3]
sel[2
0 [2]
sel[1]
sel[0] ———

Modified RTL With Named begin-end Blocks

If you use the if-else construct with the begin-end blocks to build a priority encoded
MUX, you must use the named begin-end blocks.

HDL Compiler™ for SystemVerilog User Guide 276
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix A: SystemVerilog Design Examples
Coding for Late-Arriving Signals

Feedback

Example 138 Modified RTL With Named begin-end Blocks

module ml (
input p, q, r, s,
input [0:4] a,
output logic x
)
always comb
if (p)
x = al[0];
else begin :bl
if (q)
x = al[l]l;
else begin :b2
if (r)
x = al2];
else begin :b3
if (s)
x = al3];
else
x = al4d];
end :b3
end :b2
end :bl
endmodule

Figure 42 Schematic of the Modified RTL

SELECT _OP

SELECT_OP

a[0:4]

‘>

SELECT_OP

SELECT_OP

™S
l/

™S
I/

T O = »n

™S
L

Late-Arriving Data Signal Example 1

This example shows how to place the late-arriving b_late signal close to the z output.

HDL Compiler™ for SystemVerilog User Guide
U-2022.12-SP3

277

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Appendix A: SystemVerilog Design Examples
Coding for Late-Arriving Signals

Example 139 RTL Containing a Late-Arriving Data Signal

module mult if improved (
input a, b late, ¢, d,
input [3:0] sel,
output logic z

)

logic z1;

always comb

begin
z1
if
if

(a;
(
if |
(
e

= d;
& ~(self2]|sel[3])) z = b_late;
z = z1;

if

end
endmodule

Figure 43 Schematic of the RTL

SELECT_OP
SELECT OP
b late
SELECT OP T z
SELECT_OP
C
a
0 sel[3] 2
sel2] 2 sel[1]—
sel[0] —4— sel[2]— Cl%ntirco' /!
sel[3]— 9

Late-Arriving Data Signal Example 2

This example contains operators in the conditional expression of an if statement. The A
signal in the conditional expression is a late-arriving signal, so you should move the signal
close to the output.

Original RTL Containing the Late-Arriving Input A

The original RTL contains input A that is late arriving.

HDL Compiler™ for SystemVerilog User Guide 278
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Appendix A: SystemVerilog Design Examples
Coding for Late-Arriving Signals

Example 140 Original RTL

module cond oper #(parameter N = 8) (
input [N-1:0] A, B, C, D, // A is late arriving
output logic [N-1:0] Z

)

always comb

begin
if (A + B < 24) 7 = C;
else Zz = D;
end
endmodule

Figure 44 Schematic of the Original RTL

SELECT OP
C |
ADDER .
A COMPARATOR D
+
r 2
B JE—

24

Modified RTL

The following RTL restructures the code to move signal A closer to the output.

Example 141 Modified RTL
module cond oper improved # (parameter N = 8) (
input [N-1:0] A, B, C, D, // A is late arriving
output logic [N-1:0] Z
)

always comb

begin
if (B < 24 && A < 24 - B) z = C;
else Z = D;
end
HDL Compiler™ for SystemVerilog User Guide 279

U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix A: SystemVerilog D

esign Examples

Coding for Late-Arriving Signals

Figure 45

Schematic of the Modified RTL

SUBTRACTOR

24

COMPARATOR

A—|

L
o

AND

Late-Arriving Data Signal Example 3

SELECT_OP

Feedback

This example shows a case statement nested in an i f statement. The Data_late data

signal is late-arriving.

Original RTL Containing a Late-Arriving Input Data_late

The original RTL contains input Data_late that is late arriving.

Example 142 Original RTL

module case in if 01 (

input [8:1] A,
input Data lat
input [2:0] se
input [5:1] C,
output logic Z
)7
always comb
begin
if (C[1])
Z = Af
else 1if (
Z = Al
else 1f (
Z = Al
else 1if (
case (sel)
3'b010:
3'b011:
3'b101:
3'b110:
default:
endcase
else 1f (C[5] =

N NNDNIDN
L S [|

—
o
o

e,
1,

A[8];

Data late;
A[7];
Afl6];
Al2];

A}

)

HDL Compiler™ for SystemVerilog User Guide

U-2022.12-SP3

280

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix A: SystemVerilog Design Examples
Coding for Late-Arriving Signals

Zz = A[2];
else
Zz = A[3];
end
endmodule
Figure 46 Schematic of the Original RTL
SELECT OP SELECT_OP
Al2] — A[3] ——
A[6] — Al2] —
Al7]
Data_late All]—
Al8] —— A[4] ——
A[5] —
Control Control
sel logic 7? c logic 76L

Modified RTL for the Late-Arriving Signal

Feedback

The late-arriving signal, Data_late, is an input to the first SELECT_OP in the path. You
can improve the startpoint for synthesis by moving signal Data_late close to output Z. To
do this, move the Data_late assignment from the nested case statement to a separate if
statement. As a result, signal Data_late is an input to the SELECT_OP that is closer to

output Z.

Example 143 Modified RTL

module case in if 01 improved (

input [8:1] A,
input Data late,
input [2:0] sel,
input [5:1] C,
output logic Z
)i
logic 71, FIRST IF;

always comb
begin

3'b010: Z1
//3'b011:

l '

z1

b0)

A[8];
= Data late;

HDL Compiler™ for SystemVerilog User Guide

U-2022.12-SP3

281

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Appendix A: SystemVerilog Design Examples
Coding for Late-Arriving Signals

3'b101: Z1 = A[7];
3'b110: Z1 = A[6];
default: Z1 = A[2];
endcase
else if (C[5] == 1'Db0)
7zl = A[2];
else
z1l = A[3];
FIRST IF = (C[1] == 1'bl) || (C[2] == 1'b0O) || (C[3] == 1'bl);
if (!FIRST IF && C[4] && (sel == 3'b011))
Z = Data late;
else o
Z = 71;
end
endmodule
Figure 47 Schematic of the Modified RTL
SELECT_OP
SELECT_OP SELECT_OP 5 I
t t
. A3 ata_late
[2] A[2] — —Z
A[6] —
A Al1] ——|
Al8] Al]—|
A[5] —
sel[2:0]— Control a c_| Control i sel[2:0]— Control]
) logic |/4 logic |6 C[4:1]—{ logic |72

Late-Arriving Control Signal Example 1

If you have a late-arriving control signal in the design, you should place it close to the
output.

In this example, input Ctrl_late is a late-arriving control signal and is placed close to output

Z

Example 144 RTL With a Late-Arriving Control Signal
module single if improved (
input [6:1] A,
input [5:1] C,
input Ctrl late,
output logic Z
)7
logic 7Z1;
wire 72, prev_cond;
always comb

HDL Compiler™ for SystemVerilog User Guide
U-2022.12-SP3

282

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix A: SystemVerilog Design Examples

Coding for Late-Arriving Signals

Feedback

begin
// remove the branch with the late-arriving control signal
if (C[1] == 1'bl) Z1 = A[1l];
else if (C[2] == 1'b0) 21 = A[2];
else if (C[3] == 1'bl) z1 = A[3];
else if (C[5] == 1'b0) Zz1 = A[5];
else Zz1 = A[6];
end
assign Z2 = A[4];
assign prev_cond = (C[1l] == 1'bl) || (C[2] == 1'b0) || (C[3] == 1'bl);
always comb
begin
if (C[4] == 1'bl && Ctrl late == 1'b0)
if (prev_cond) Z = Z1;
else Z = 72;
else
Z = 71;
end
endmodule
Figure 48 Schematic of the RTL
SELECT _OP
AlB] —
AlB] —
Al3] SELECT _OP SELECT OP
Al2] — - -
All] —
Z
. Control
Cl1:3.51 — Yogic 75 Al4]
2
Cl4]—
.1 | Control |_| Control
cli=3] logic Ctrl_late— logic 72L

Late-Arriving Control Signal Example 2

If you know your design has a late-arriving control signal, you should place the signal

close to the output.

Original RTL

This example shows an i f statement nested in a case statement and contains a late-

arriving control signal, sel[1].

HDL Compiler™ for SystemVerilog User Guide
U-2022.12-SP3

283

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Appendix A: SystemVerilog Design Examples
Coding for Late-Arriving Signals

Example 145 Original RTL
module if in case (
input [2:0] sel, // sel[l] is late arriving
input X, A, B, C, D,
output logic Z
)

always comb

begin
case (sel)
3'b000: Z = A;
3'b001l: 7 = B;
3'b010: if (X) Z2 = C;
else Zz = D;
3'b100: Z = A ~ B;
3'bl101: Z = ! (A && B);
3'bl1ll: 7z = !A;
default: Z = !B;
endcase
end
endmodule
Modified RTL

Because signal sel[1] is a late-arriving input, you should restructure the code to get the
best startpoint for synthesis. As shown in the modified RTL, the nested i f statement is
placed outside the case statement so that signal sel[1] is closer to output Z. Output Z
takes either value Z1 or Z2 depending on whether signal sel[1] is 0 or 1. When signal
sel[1] is late arriving, placing it closer to output Z improves the timing.

Example 146 Modified RTL

module if in case improved (
input [2:0] sel, // sel[l] is late arriving
input X, A, B, C, D,
output logic Z

)

logic z1, Z2;

logic [1:0] i sel;

always comb

begin
i sel = {sel[2],sel[0]};
case (i_sel) // For sel[l]=0

2'b00: z1l = A;

2'b01: Zz1l = B;

2'b10: zl = A "~ B;

2'bll: z1l = (A && B);

default: Z1 = !B;
endcase

case (i_sel) // For sel[l]l=1
2'b00: if (X) z2 = C;

HDL Compiler™ for SystemVerilog User Guide 284
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Appendix A: SystemVerilog Design Examples
Master-Slave Latch Inferences

2'bll: z2 = 'A;
default: z2 = !B;
endcase
if (sel[l]) Zz = Z2;
else 72 = 71;
end
endmodule

Master-Slave Latch Inferences

These topics provide information about how to direct the tool to infer various types of
master-slave latches.

« Overview for Inferring Master-Slave Latches

« Master-Slave Latch With One Master-Slave Clock Pair

+ Master-Slave Latch With Multiple Master-Slave Clock Pairs
« Master-Slave Latch With Discrete Components

« JK Flip-Flop With Synchronous Set and Reset Using sync_set_reset

Overview for Inferring Master-Slave Latches

The HDL Compiler tool infers master-slave latches through the clocked on also
attribute. You attach this signal-type attribute to the clocks using an embedded dc_shell
script.

Follow these coding guidelines to describe a master-slave latch:

« Specify the master-slave latch as a flip-flop by using only the slave clock.
« Specify the master clock as an input port, but do not connect it.

+ Attach the clocked on also attribute to the master clock port.

This coding style requires that cells in the target library contain slave clocks marked with
the clocked on also attribute. The clocked on also attribute defines the slave clocks
in the cell state declaration. For more information about defining slave clocks in the target
library, see the Library Compiler User Guide.

The HDL Compiler tool does not use D flip-flops to implement the equivalent functionality
of a master-slave latch.

HDL Compiler™ for SystemVerilog User Guide 285
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Appendix A: SystemVerilog Design Examples
Master-Slave Latch Inferences

Note:

Although the vendor’s component behaves as a master-slave latch, the Library
Compiler tool supports only the description of a master-slave flip-flop.

Master-Slave Latch With One Master-Slave Clock Pair

This example shows a basic master-slave latch with one master-slave clock pair using the
dc_tcl script beginand dc_tcl script end compiler directives.

Example 147 Master-Slave Latch

module mslatch (
input SCK, MCK, DATA,
output logic Q

// synopsys dc_tcl script begin

// set _attribute -type string MCK signal type clocked on also
// set_attribute -type boolean MCK level sensitive true

// synopsys dc_tcl script end

always ff Q <= DATA;
endmodule

Example 148 Inference Report

| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
| Q reg | Flip-flop | 1 | N | N | N | N | N | N | N |
See Also

« dc_tcl_script_begin and dc_tcl_script_end

Master-Slave Latch With Multiple Master-Slave Clock Pairs

If the design requires more than one master-slave clock pair, you must specify the
associated slave clock in addition to the clocked on also attribute. This example shows
how to use the clocked on also attribute with the associated clock option.

Example 149 RTL for Inferring Master-Slave Latches With Two Pairs of Clocks
module mslatch2?2 (
input SCK1, SCK2, MCK1l, MCK2, D1, D2,
output logic Q1, Q2,
)
// synopsys dc_tcl script begin
// set attribute -type string MCKl signal type clocked on also

HDL Compiler™ for SystemVerilog User Guide 286
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Appendix A: SystemVerilog Design Examples
Master-Slave Latch Inferences

// set attribute -type boolean MCK1 level sensitive true

// set attribute -type string MCK1l associated clock SCK1

// set attribute -type string MCK2 signal type clocked on also
// set _attribute -type boolean MCK2 level sensitive true

// set attribute -type string MCK2 associated clock SCK2

// synopsys dc_tcl script end

always ff Q1 <= DI1;

always ff Q2 <= D2;

endmodule

Example 150 Inference reports

Register Name	Type	Width	Bus	MB	AR	AS	SR	SS	ST
Ql reg	Flip-flop	1	N	N	N	N	N	N	N
Register Name	Type	Width	Bus	MB	AR	AS	SR	SS	ST
Q2 reg	Flip-flop	1	N	N	N	N	N	N	N

Master-Slave Latch With Discrete Components

If your target library does not contain master-slave latch components, you can direct the
tool to infer two-phase systems by using D latches.

This example shows a simple two-phase system with clocks MCK and SCK.

Example 151 RTL for Two-Phase Clocks
module latch verilog (
input DATA, MCK, SCK,
output logic Q
)
logic TEMP;
always latch
if (MCK) TEMP <= DATA;
always latch
if (SCK) Q <= TEMP;

endmodule

Example 152 Inference Reports

| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
| TEMP reg | Latch | 1 /| N | N | N | N | = | = | = |
HDL Compiler™ for SystemVerilog User Guide 287

U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Appendix A: SystemVerilog Design Examples
Master-Slave Latch Inferences

| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |

JK Flip-Flop With Synchronous Set and Reset Using
sync_set_reset

For the tool to infer JK flip-flops properly, you should code the J, K, and clock signals at the
top-level design ports so that simulation can initialize the design.

The following Verilog design infers the JK flip-flop described in Table 15. The design uses
the sync set reset directive to specify the J and K signals as the synchronous set and
reset signals (the JK function) and the one hot directive to prevent priority encoding of the
J and K signals.

Table 15 Truth Table for JK Flip-Flop

J K CLK Qn+1
0 0 Rising Qn

0 1 Rising 0

1 0 Rising 1

1 1 Rising QnB
X X Falling Qn

JK Flip-Flop Design

module JK (
input J, K,
input CLK,
output logic Q
)
// synopsys sync set reset "J, K"
// synopsys one hot "J, K"

always ff @ (posedge CLK)

case ({J, K})
2'b01 : Q <= 0;
2'bl0 : Q <= 1;
2'b1ll : Q <= ~Q;
HDL Compiler™ for SystemVerilog User Guide 288

U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Appendix A: SystemVerilog Design Examples
Master-Slave Latch Inferences

endcase
endmodule

Inference Report

| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
\ Q reg | Flip-flop | 1 \ N | N | N | N | Y | Y | N |
See Also

» Unintended Logic Inferred Using always_ff

HDL Compiler™ for SystemVerilog User Guide 289
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

B

Unsupported Constructs

The Synopsys SystemVerilog tool does not support all the synthesis features described in
the IEEE Std 1800-2017. Generally, all the restrictions for the HDL Compiler tool apply to
the SystemVerilog tool.

The following topic shows the unsupported constructs:

+ Unsupported SystemVerilog Constructs

Unsupported SystemVerilog Constructs
The following constructs are not supported:
For more information, see
* The $onehot, $onehot0, and $isunknown system functions are not supported.

« Clocking blocks, defined by a clocking-endclocking keyword pair, are not supported
in synthesis; they are parsed and ignored.

« Global clocking blocks, which are defined by the global clocking and endclocking
keyword pair, are not supported in synthesis.

If you use this unsupported keyword pair, the tool issues an error message. To prevent
this error, wrap the keyword pair as follows:

“ifndef SYNTHESIS
\enaif
« The following SystemVerilog keywords are parsed and ignored:

assert, assume, before, bind, bins, binsof, clocking, constraint, cover,
coverpoint, covergroup, cross, endclocking, endgroup, endprogram,
endproperty, endsequence, extends, final, first match, intersect,

ignore bins, illegal bins, local, program, property, protected, sequence,
super, this, throughout, and within.

Note:

The var keyword is supported; however, the use of the var keyword with a
type reference is not supported.

HDL Compiler™ for SystemVerilog User Guide 290
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Appendix B: Unsupported Constructs
Unsupported SystemVerilog Constructs

« The following SystemVerilog keywords are not supported: alias, chandle, context,
dist (allowed only in testbenches), expect, export, extern, new, null, pure
shortreal,solve,string,tagged,waitiorder,and with.

If you use an unsupported keyword, the tool terminates with an error message. To
prevent this error, wrap the keywords as follows:

‘ifndef SYNTHESIS
‘endif
« The following keywords are not supported: forkjoin, join any, join none, rand,
randc, ref, randcase, randsequence.
» Casting on types, $cast, is not supported.
« Compiler directives, such as operator label, in interfaces are not supported.
The following code is not supported:
a =b + /* synopsys label my adder */ c;
« Attributes are not fully supported; they are treated as comments.
You can specify comments in the following two ways:
o (* comment *)
/I comment
« Two-state values are not supported; they are treated as four-state values.

This conversion can cause simulation and synthesis mismatches. According to the
SystemVerilog LRM, the int, bit, shortint, byte, and longint types are two-state
data types with legal values of zero and one. Static variables of two-state data types
without explicit declaration initialization are initialized to zero instead of x. The HDL
Compiler tool initializes all static variables to x (including those with explicit declaration
initialization) even if they are two-state data types.

+ Automatic assignments as expressions are not supported.

The following code is not supported:

mask & (in << i++)

For example,
module m (input a, output b);
int 1i;
assign b = a + i++;
endmodule
HDL Compiler™ for SystemVerilog User Guide 291

U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Appendix B: Unsupported Constructs
Unsupported SystemVerilog Constructs

When the tool reads the module m, it issues the following error message:

Error: 1il.v:3: The construct "assignment expression" is
not supported. (VER-721)

« Generic interfaces are not supported.

For example, a module with a generic interface port cannot be the top module for
elaboration.

« Automatic variables in static tasks and functions are not supported.
« Static variable initialization is ignored in synthesis.

« Variables referred to an interface port type can be accessed like a ref port of a
module. In computer memory, this is similar to a call by reference, where the last write
wins. In hardware, this can only be modeled by semantics of wires. Therefore, the ref
ports are not achievable in silicon hardware and not synthesizable. They are used only
in simulation.

« Ports of the real and time types in the connection list of modules, interfaces, tasks,
and functions are not supported. The real and time type declarations are not
supported.

+ Default port values for input ports in module declarations are not supported.
» Unpacked unions are not supported.

The following code is not supported:

union {
logic my logic;
logic [63:0] my logic;
logic [63:0] my logic;
longint my longint;

}oai

« Forward declarations of the typedef construct are not supported.

The following code is not allowed because you must specify with what typedef
declaration you define mydesign.

typedef mydesign;
mydesign p;
typedef int;

« Nested module declarations and nested interface declarations are not supported.
« The let construct declaration is not supported.

« Using the array slice operators (+:, &, and -:) with arrays of interfaces is not supported.

HDL Compiler™ for SystemVerilog User Guide 292
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Appendix B: Unsupported Constructs
Unsupported SystemVerilog Constructs

If the array slice operators are used, the tool issues error messages similar to the
following:

Error: ./example.v:16: The construct 'Interface Array Slice Indexing'
is not supported. (VER-721)

* The uwire net type is not supported.
» |EEE Std 1800-2017

» Conversion Between Two-State and Four-State Variables

HDL Compiler™ for SystemVerilog User Guide 293
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Glossary

anonymous type
A predefined or underlying type with no name, such as universal integers.

ASIC
Application-specific integrated circuit.

behavioral view
The set of Verilog statements that describe the behavior of a design by using
sequential statements. These statements are similar in expressive capability to those
found in many other programming languages. See also the data flow view, sequential
statement, and structural view definitions.

bit-width
The width of a variable, signal, or expression in bits. For example, the bit-width of the
constant 5 is 3 bits.

character literal
Any value of type CHARACTER, in single quotation marks.

computable
Any expression whose (constant) value HDL Compiler can determine during
translation.

constraints
The designer’s specification of design performance goals. HDL Compiler uses
constraints to direct the optimization of a design to meet area and timing goals.

convert
To change one type to another. Only integer types and subtypes are convertible, along
with same-size arrays of convertible element types.

data flow view
The set of Verilog statements that describe the behavior of a design by using
concurrent statements. These descriptions are usually at the level of Boolean
equations combined with other operators and function calls. See also the behavioral
view and structural view.

design constraints
See constraints.

flip-flop
An edge-sensitive memory device.

HDL Compiler™ for SystemVerilog User Guide 294
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Glossary

HDL
Hardware Description Language.

identifier
A sequence of letters, underscores, and numbers. An identifier cannot be a Verilog
reserved word, such as type or loop. An identifier must begin with a letter or an
underscore.

latch
A level-sensitive memory device.

netlist
A network of connected components that together define a design.
optimization
The modification of a design in an attempt to improve some performance aspect. HDL
Compiler optimizes designs and tries to meet specified design constraints for area and
speed.
port
A signal declared in the interface list of an entity.
reduction operator
An operator that takes an array of bits and produces a single-bit result, namely the
result of the operator applied to each successive pair of array elements.
register
A memory device containing one or more flip-flops or latches used to hold a value.
resource sharing
The assignment of a similar Verilog operation (for example, +) to a common netlist cell.
Netlist cells are the resources—they are equivalent to built hardware.
RTL
Register transfer level, a set of structural and data flow statements.

sequential statement
A set of Verilog statements that execute in sequence.

signal
An electrical quantity that can be used to transmit information. A signal is declared with
a type and receives its value from one or more drivers. Signals are created in Verilog
through either wire or reg declarations.

signed value
A value that can be positive, zero, or negative.

structural view
The set of Verilog statements used to instantiate primitive and hierarchical components
in a design. A Verilog design at the structural level is also called a netlist. See also
behavioral view and data flow view.

HDL Compiler™ for SystemVerilog User Guide 295
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Glossary

subtype
A type declared as a constrained version of another type.

synthesis
The creation of optimized circuits from a high-level description. When Verilog is used,
synthesis is a two-step process: translation from Verilog to gates by HDL Compiler and
optimization of those gates for a specific ASIC library with HDL Compiler.

translation

The mapping of high-level language constructs onto a lower-level form. HDL Compiler
translates RTL Verilog descriptions to gates.

type
In Verilog, the mechanism by which objects are restricted in the values they are
assigned and the operations that can be applied to them.

unsigned
A value that can be only positive or zero.

HDL Compiler™ for SystemVerilog User Guide 296
U-2022.12-SP3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20HDL%20Compiler%E2%84%A2%20for%20SystemVerilog%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

	Contents
	About This Manual
	New in This Release
	Related Products, Publications, and Trademarks
	Conventions
	Customer Support
	Accessing SolvNetPlus
	Contacting Customer Support

	Statement on Inclusivity and Diversity

	1 SystemVerilog for Synthesis
	Supported Constructs
	Coding for QoR
	Reading SystemVerilog Designs
	Specifying the SystemVerilog Version
	Automated Process of Reading Designs With Dependencies
	The -autoread Option
	File Dependencies

	Setting Library Search Order
	Ignoring Modules During the Read Process
	Elaboration Command Based Interface-Only Method (Recommended)
	Analyze Command Based Interface-Only Method

	Ignoring Modules During the Read Process (Legacy)
	File Format Inference Based on File Extensions

	Reading Designs Using the VCS Command-Line Options
	Bottom-Up Hierarchical Elaboration
	Parameterized Interface Ports
	Preventing Port Name Mismatches During Linking in Bottom-Up Hierarchical Flow

	Shortening Long Module Names in the Netlist
	Reading Designs With Assertion Checker Libraries
	Netlist Wrapper for Testbenches
	Creating a Testbench With a Wrapper

	Customizing Elaboration Reports
	Reporting Elaboration Errors in the Hierarchy
	Example of Reporting Elaboration Errors

	Querying Information about RTL Preprocessing
	Reporting HDL Compiler Settings
	Parameterized Designs
	Defining Macros
	Predefined Macros
	Global Macro Reset: `undefineall
	Persistent Macros

	Using $display During RTL Elaboration
	System Functions and Tasks
	Elaboration System Tasks
	Inputs and Outputs
	Input Descriptions
	Design Hierarchy
	Component Inference and Instantiation
	Naming Considerations
	Generic Netlists
	Error Messages

	2 Global Name Space ($unit)
	About the Global Name Space
	Reading Designs With $unit
	Defining Objects Before Use
	Specifying Global Files First
	Specifying Global Files for Each analyze Command

	Synthesis Restrictions for $unit
	Declarations
	Instantiations
	Static Variables
	Static Tasks and Functions

	3 Packages
	About Packages
	Using Packages

	Referencing Declarations in Packages
	Wildcard Imports From Packages Into Modules
	Specific Imports From Packages Into Modules
	Wildcard Imports From Packages Into $unit
	Package Searching

	4 Combinational Logic
	Synthetic Operators
	Logic and Arithmetic Expressions
	Basic Operators
	Addition Overflow
	Sign Conversions

	Language Constructs for Combinational Logic Inference
	The always_comb and always Constructs
	Latches in Combinational Logic
	The priority if and priority case Constructs
	priority if
	priority case

	The unique if and unique case Constructs
	unique if
	unique case

	Selection and Multiplexing Logic
	The SELECT_OP Cell
	The MUX_OP Cell
	Default SELECT_OP and MUX_OP Inference Behavior
	Controlling Selection Statement Inference
	Controlling Selection Statement Inference Locally
	Controlling Selection Statement Inference Globally
	MUX_OP Inference and Resource Sharing

	Controlling Array Read Inference
	Controlling Array Read Inference Globally
	Controlling Array Read Inference Locally

	Inferring One-Hot Multiplexer Logic

	Bit-Truncation Coding for DC Ultra Datapath Extraction

	5 Sequential Logic
	Generic Sequential Cell SEQGEN
	Inference Reports for Registers
	Register Inference Guidelines
	Multiple Events in an always Block
	Minimizing Registers
	Keeping Unloaded Registers
	Preventing Unwanted Latches
	Reset Logic Inference
	Register Inference Limitations

	Register Inference Examples
	Inferring Latches
	Basic D Latch
	D Latch With Asynchronous Set: Use async_set_reset
	D Latch With Asynchronous Reset: Use async_set_reset
	D Latch With Asynchronous Set and Reset: Use hdlin_latch_always_async_set_reset
	Unintended Logic Inferred Using always_latch

	Inferring Flip-Flops
	Basic D Flip-Flop
	D Flip-Flop With Asynchronous Reset Using ?: Construct
	D Flip-Flop With Asynchronous Reset
	D Flip-Flop With Asynchronous Set and Reset
	D Flip-Flop With Synchronous Set: Use sync_set_reset
	D Flip-Flop With Synchronous Reset: Use sync_set_reset
	D Flip-Flop With Synchronous and Asynchronous Load
	D Flip-Flops With Complex Set and Reset Signals
	Multiple Flip-Flops With Asynchronous and Synchronous Controls
	Unintended Logic Inferred Using always_ff

	6 Interfaces
	Elements of Interfaces
	Wires
	Modports
	Modport Expression
	Function and Tasks

	always Blocks
	Example: Interface With Wires
	Example: Interface With Modports
	Example: Interface With Modport Expressions
	Example: Interface With Functions
	Example: Interface With Functions and Tasks
	Example: Interface With always Blocks

	Inputs to Interfaces
	Ports in Interfaces Example
	Parameterized Interfaces Example

	Arrays of Interfaces
	Coding Styles for Interface Arrays
	Interface Array Coding Style Recommendations
	Coding Style Restrictions on Array Interfaces

	Renaming Conventions
	Renamed Modules Example 1
	Renamed Modules Example 2
	Renamed Modules Example 3

	Using Interfaces in HDL Compiler
	Synthesis Restrictions

	7 Modeling Three-State Buffers
	Using z Values
	Three-State Driver Inference Report
	Assigning a Single Three-State Driver to a Single Variable
	Assigning Multiple Three-State Drivers to a Single Variable
	Registering Three-State Driver Data
	Instantiating Three-State Drivers
	Errors and Warnings

	8 Other SystemVerilog Features
	Variables
	The foreach Loop
	Functions and Tasks
	Function Before or Within a Module
	The logic Type
	The longint Type
	User-Defined Structure
	Output Argument and a Return Value
	SystemVerilog for Loop
	Sensitivity List Within a Function
	Memory Elements Outside a Function
	Real Math Functions
	Restrictions

	Binding Function and Task Arguments by Name
	Parameterized Functions and Tasks Using Virtual Classes
	Parameterized Data Types
	Parameterized Standard Data Types
	Parameterized User-Defined Data Types
	Parameterized Data Types in Interfaces

	Bit-Level Support for Compiler Directives
	Structures
	Unions
	Multidimensional Arrays
	Multidimensional Arrays as Function Arguments
	Multidimensional Arrays as Unpacked Arrays
	Multidimensional Arrays as Unpacked Arrays Using $low and $high
	Multidimensional Arrays as Unpacked Arrays Using $left and $right
	Multidimensional Array Slicing
	Multidimensional Arrays Using Part-Select Addressing

	Configurations
	Configuration Examples
	Default Statement
	Instance Bindings
	Multiple Top-Level Designs

	Implicit Port Connections
	Casting
	Assignment Patterns
	Macro Expansion and Parameter Substitution
	`begin_keywords and `end_keywords
	Predefined SYSTEMVERILOG Macro
	Matching Block Names
	Matching Block Names for State Machines
	Matching Block Names Interfaces and Modules

	Port Renaming
	Structures
	Unions
	Multidimensional Arrays

	Generic Wire Type
	General Verilog Coding Guidelines
	Persistent Variable Values Across Functions and Tasks
	defparam

	Guidelines for Interacting With Other Flows
	Synthesis Flows
	Low-Power Flows
	Verification Flows

	9 HDL Synthesis Directives
	RTL Pragmas
	async_set_reset
	async_set_reset_local
	async_set_reset_local_all
	dc_tcl_script_begin and dc_tcl_script_end
	enum
	full_case
	infer_multibit and dont_infer_multibit
	Using the infer_multibit Directive
	Using the dont_infer_multibit Directive
	Reporting Multibit Components

	infer_mux
	infer_mux_override
	infer_onehot_mux
	keep_signal_name
	one_cold
	one_hot
	parallel_case
	preserve_sequential
	sync_set_reset
	sync_set_reset_local
	sync_set_reset_local_all
	template
	Directive Support by Pragma Prefix

	SystemVerilog Attributes
	Using SystemVerilog Attributes in Synthesis
	Supported Attributes
	Supported RTL Constructs
	Designs (Modules)
	Ports
	Cells (Instantiations)
	Pins
	Inferred Register Cells (Sequential Processes)

	10 Troubleshooting Guidelines
	Code Expansion for Macros and Conditional Directives
	Code Expansion Guidelines
	Code Expansion Example 1
	Code Expansion Example 2

	Minimizing Mismatches Between Simulation and Synthesis
	Preventing case Mismatches
	Using unique Instead of full_case and parallel_case
	Using priority Instead of full_case

	Using Void Functions Instead of Tasks Inside always_comb
	Conversion Between Two-State and Four-State Variables

	Data Type Declarations
	Synthesizable do...while Loops
	Troubleshooting generate Loops
	Assertions in Synthesis
	Other Troubleshooting Guidelines

	A SystemVerilog Design Examples
	FIFO Example
	Bus Fabric Design
	Coding for Late-Arriving Signals
	Duplicating Datapaths
	Moving Late-Arriving Signals Close to Output
	Overview
	Late-Arriving Data Signal Example 1
	Late-Arriving Data Signal Example 2
	Late-Arriving Data Signal Example 3
	Late-Arriving Control Signal Example 1
	Late-Arriving Control Signal Example 2

	Master-Slave Latch Inferences
	Overview for Inferring Master-Slave Latches
	Master-Slave Latch With One Master-Slave Clock Pair
	Master-Slave Latch With Multiple Master-Slave Clock Pairs
	Master-Slave Latch With Discrete Components
	JK Flip-Flop With Synchronous Set and Reset Using sync_set_reset

	B Unsupported Constructs
	Unsupported SystemVerilog Constructs

	Glossary

