
Test Pattern Validation
User Guide
Version K-2015.06-SP4, December 2015

Test Pattern Validation User Guide K-2015.06-SP4

Copyright Notice and Proprietary Information
Copyright © 2015 Synopsys, Inc. All rights reserved. This software and documentation contain confidential and
proprietary information that is the property of Synopsys, Inc. The software and documentation are furnished
under a license agreement and may be used or copied only in accordance with the terms of the license
agreement. No part of the software and documentation may be reproduced, transmitted, or translated, in any
form or by any means, electronic, mechanical, manual, optical, or otherwise, without prior written permission of
Synopsys, Inc., or as expressly provided by the license agreement.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of
America. Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader’s
responsibility to determine the applicable regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NOWARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Trademarks
Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth at
http://www.synopsys.com/Company/Pages/Trademarks.aspx. All other product or company names may be
trademarks of their respective owners. Inc.

Third-Party Links

Any links to third-party websites included in this document are for your convenience only. Synopsys does not
endorse and is not responsible for such websites and their practices, including privacy practices, availability,
and content.

Synopsys, Inc.
700 E. Middlefield Road
Mountain View, CA 94043
www.synopsys.com

ii

http://www.synopsys.com/Company/Pages/Trademarks.aspx
http://www.synopsys.com/

Test Pattern Validation User Guide K-2015.06-SP4

Contents
About This User Guide xvi

Audience xvi

Related Publications xvi

Release Notes xvii

Conventions xviii

Customer Support xviii

Accessing SolvNet xviii

Contacting the Synopsys Technical Support Center xix

1 Introduction 1-1

TetraMAX Pattern Format Overview 1-2

Writing STIL Patterns 1-2

Design to Test Validation Flow 1-4

Installation 1-5

Specifying the Location for TetraMAX Installation 1-5

2 Using MAX Testbench 2-1

Overview 2-2

Licenses 2-2

Installation 2-2

Obtaining Help 2-2

See Also 2-3

RunningMAX Testbench 2-3

iii

Test Pattern Validation User Guide K-2015.06-SP4

See Also 2-4

Using the write_testbench Command 2-5

Using the stil2Verilog Command 2-6

Setting the RunMode 2-11

See Also 2-11

ConfiguringMAX Testbench 2-12

Example of the Configuration Template 2-16

See Also 2-18

Setting the Verbose Level 2-18

See Also 2-18

Understanding the Failures File 2-19

MAX Testbench and Legacy Scan Failures 2-19

MAX Testbench and Adaptive Scan Failures 2-20

MAX Testbench and Serializer Scan Failures 2-21

Using the Failures File 2-23

See Also 2-26

Displaying the Instance Names of Failing Cells 2-27

See Also 2-29

Using Split STIL Pattern Files 2-29

Execution Flow for -split_in Option 2-29

See Also 2-30

Splitting Large STIL Files 2-30

WhySplit Large STIL Files? 2-30

Executing the Partition Process 2-31

Example Test 2-31

Force Release and Strobe Timing in Parallel Load Simulation 2-33

See Also 2-33

iv

Test Pattern Validation User Guide K-2015.06-SP4

MAX Testbench Runtime Programmability 2-34

See Also 2-34

Basic Runtime Programmability Simulation Flow 2-34

Runtime Programmability for Patterns 2-35

Using the -generic_testbenchOption 2-36

Using the -patterns_onlyOption 2-36

Executing the Flow 2-36

Using Split Patterns 2-37

Example: Using Runtime Predefined VCS Options 2-38

Runtime Programmability Limitations 2-39

MAX Testbench Support for IDDQTesting 2-40

See Also 2-40

Compile-TimeOptions for IDDQ 2-40

See Also 2-40

IDDQConfiguration File Settings 2-41

See Also 2-41

Generating a VCS Simulation Script 2-42

UnderstandingMAX Testbench Parallel Miscompares 2-42

How MAX TestbenchWorks 2-43

See Also 2-45

Predefined Verilog Options 2-45

See Also 2-47

MAX Testbench Limitations 2-48

See Also 2-48

3 MAX Testbench Error Messages and Warnings 3-1

Error Message Descriptions 3-2

WarningMessage Descriptions 3-9

v

Test Pattern Validation User Guide K-2015.06-SP4

Informational Message Descriptions 3-21

4 Debugging Parallel Simulation Failures Using Combined Pattern Validation 4-1

See Also 4-1

Overview 4-2

See Also 4-3

Understanding the PSD File 4-4

Creating a PSD File 4-6

Using the run_atpg Command to Create a PSD File 4-7

Using the run_simulation Command to Create a PSD File 4-8

Displaying Instance Names 4-10

Flow Configuration Options 4-11

Example SimulationMiscompareMessages 4-11

Example 1 4-12

Example 2 4-13

Example 3 4-14

Verbosity Setting Examples 4-14

DebugModes for SimulationMiscompareMessages 4-16

Pattern Splitting 4-17

Splitting PatternsUsing TetraMAX 4-18

ExamplesUsing TetraMAX For Pattern Splitting 4-20

Set Up Example 4-20

Example Using Pattern File Fromwrite_patternsCommand 4-20

Example Using Split USF STIL Pattern Files 4-21

Splitting PatternsUsingMAX Testbench 4-22

Specifying a Range of Split PatternsUsingMAX Testbench 4-24

MAX Testbench and ConsistencyChecking 4-26

See Also 4-26

vi

Test Pattern Validation User Guide K-2015.06-SP4

Limitations 4-26

5 Troubleshooting MAX Testbench 5-1

Introduction 5-2

Troubleshooting Compilation Errors 5-2

FILELENGTH Parameter 5-2

NAMELENGTH Parameter 5-3

Memory Allocation 5-3

TroubleshootingMiscompares 5-4

HandlingMiscompareMessages 5-4

MiscompareMessage 1 5-5

MiscompareMessage 2 5-5

MiscompareMessage 3 5-6

MiscompareMessage 4 5-6

Localizing a Failure Location 5-7

Resolving the First Failure 5-7

Miscompare Fingerprints 5-7

Expected versus Actual States 5-8

CurrentWaveform Table 5-8

Labels and Calling Stack 5-8

Additional Troubleshooting Help 5-8

AddingMore Fingerprints 5-9

Debugging SimulationMismatchesUsing the write_simtrace Command 5-9

Overview 5-10

Debugging Flow 5-10

Input Requirements 5-11

Using the write_simtrace Command 5-12

Understanding the Simtrace File 5-12

vii

Test Pattern Validation User Guide K-2015.06-SP4

Error Conditions andMessages 5-13

Example Debug Flow 5-14

Restrictions and Limitations 5-16

6 PowerFault Simulation 6-1

PowerFault Simulation Technology 6-2

IDDQTesting Flows 6-3

IDDQTest Pattern Generation 6-4

IDDQStrobe Selection From an Existing Pattern Set 6-5

Licensing 6-5

7 Verilog Simulation with PowerFault 7-1

Preparing Simulators for PowerFault IDDQ 7-2

Using PowerFault IDDQWith Synopsys VCS 7-2

Using PowerFault IDDQWith Cadence NC-Verilog 7-3

Setup 7-3

32-bit Setup 7-4

64-bit Setup 7-4

Creating the Static Executable 7-4

Running Simulation 7-4

Creating a Dynamic Library 7-5

Running Simulation 7-6

Using PowerFault IDDQWith Cadence Verilog-XL 7-6

Setup 7-6

Running Simulation 7-8

Running Verilogxl 7-8

Using PowerFault IDDQWithModel TechnologyModelSim 7-8

PowerFault PLI Tasks 7-10

Getting Started 7-10

viii

Test Pattern Validation User Guide K-2015.06-SP4

PLI TaskCommand Summary Table 7-11

PLI TaskCommandReference 7-13

Conventions 7-13

Special-Purpose Characters 7-13

Module Instances and EntityModels 7-14

Cell Instances 7-14

Port and Terminal References 7-14

Simulation Setup Commands 7-14

dut 7-15

output 7-15

ignore 7-15

io 7-16

statedep_float 7-16

measure 7-17

verb 7-17

Leaky State Commands 7-17

allow 7-17

disable SepRail 7-19

disallow 7-20

Fault Seeding Commands 7-21

seed SA 7-22

seed B 7-22

scope 7-22

read_bridges 7-23

read_tmax 7-23

read_verifault 7-23

read_zycad 7-24

ix

Test Pattern Validation User Guide K-2015.06-SP4

exclude 7-24

Fault Model Commands 7-24

model SA 7-25

model B 7-26

Strobe Commands 7-27

strobe_try 7-27

strobe_force 7-27

strobe_limit 7-28

cycle 7-28

Circuit Examination Commands 7-28

status 7-28

summary 7-30

Disallowed/Disallow Value Property 7-32

Can Float Property 7-32

See Also 7-32

8 Faults and Fault Seeding 8-1

Fault Models 8-2

Fault Models in TetraMAX 8-2

Fault Models in PowerFault 8-2

Stuck-At Faults 8-2

Bridging Faults 8-3

Fault Seeding 8-3

Seeding From a TetraMAX Fault List 8-3

Seeding From an External Fault List 8-4

PowerFault-Generated Seeding 8-5

Options for PowerFault-Generated Seeding 8-5

Stuck-At Fault Model Options 8-5

x

Test Pattern Validation User Guide K-2015.06-SP4

Default Stuck-At Fault Seeding 8-7

all_mods 8-8

cell_mods 8-9

leaf_mods 8-10

prims 8-11

seed_inside_cells 8-13

Bridging Faults 8-13

cell_ports 8-14

fet_terms 8-15

gate_IN2IN 8-15

gate_IN2OUT 8-15

vector 8-15

seed_inside_cells 8-15

9 PowerFault Strobe Selection 9-1

Overview of IDDQPro 9-2

Invoking IDDQPro 9-2

ipro Command Syntax 9-3

Strobe Selection Options 9-3

-strb_lim 9-4

-cov_lim 9-4

-strb_set 9-4

-strb_unset 9-5

-strb_all 9-5

Report Configuration Options 9-5

-prnt_fmt 9-5

-prnt_nofrpt 9-6

-prnt_full, -prnt_times, and -path_sep 9-6

xi

Test Pattern Validation User Guide K-2015.06-SP4

-ign_uncov 9-7

Log File and Interactive Options 9-7

Interactive Strobe Selection 9-7

cd 9-9

desel 9-9

exec 9-10

help 9-10

ls 9-10

prc 9-10

prf 9-10

prs 9-11

quit 9-11

reset 9-11

sela 9-11

selm 9-11

selall 9-12

Understanding the Strobe Report 9-12

Example Strobe Report 9-12

Fault Coverage Calculation 9-13

Faults Detected by PreviousRuns 9-13

Undetected Faults Excluded FromSimulation 9-13

Faults Detected at Uninitialized Nodes 9-14

AddingMore Strobes 9-14

Deleting Low-Coverage Strobes 9-14

Fault Report Formats 9-15

TetraMAX Fault Report Format 9-15

Verifault Fault Report Format 9-16

xii

Test Pattern Validation User Guide K-2015.06-SP4

Zycad Fault Report Format 9-16

Listing Seeded Faults 9-17

10 Using PowerFault Technology 10-1

PowerFault Verification and Strobe Selection 10-2

Verifying TetraMAX IDDQPatterns for Quiescence 10-2

Selecting Strobes in TetraMAX Stuck-At Patterns 10-3

Selecting Strobe Points in Externally Generated Patterns 10-4

Testbenches for IDDQTestability 10-5

Separate the Testbench From the Device Under Test 10-5

Drive All Input Pins to 0 or 1 10-5

Try Strobes After Scan Chain Loading 10-5

Include a CMOSGate in the Testbench for Bidirectional Pins 10-5

Model the Load Board 10-6

Mark the I/OPins 10-6

Minimize High-Current States 10-6

Maximize Circuit Activity 10-6

CombiningMultiple Verilog Simulations 10-6

Improving Fault Coverage 10-8

DetermineWhy the Chip Is Leaky 10-8

Evaluate Solutions 10-9

Use the allow Command 10-9

Configure the Verilog Testbench 10-9

Drive All Input Pins to 0 or 1 10-9

Use PassGates 10-10

Model the Load Board 10-11

Mark the I/OPins 10-11

Configure the VerilogModels 10-11

xiii

Test Pattern Validation User Guide K-2015.06-SP4

Drive All Buses Possible 10-11

Gate Buses That Cannot Be Driven 10-11

Use Keeper Latches 10-12

Enable OnlyOneDriver 10-12

Avoid Active Pullups and Pulldowns 10-12

Avoid Bidirectional Switch Primitives 10-13

Floating Nodes and Drive Contention 10-13

Floating Node Recognition 10-13

Leaky Floating Nodes 10-13

Floating Nodes Ignored by PowerFault 10-14

State-Dependent Floating Nodes 10-15

Configuring Floating Node Checks 10-15

Floating Node Reports 10-15

Nonfloating Nodes 10-15

Drive Contention Recognition 10-16

StatusCommandOutput 10-17

StatusCommandOverview 10-17

LeakyReasons 10-17

NonleakyReasons 10-19

Driver Information 10-21

Driver Information 10-21

Behavioral and External Models 10-22

Disallowing Specific States 10-22

DisallowingGlobal States 10-22

Multiple Power Rails 10-23

Testing I/O and Core Logic Separately 10-26

11 Strobe Selection Tutorial 11-1

xiv

Test Pattern Validation User Guide K-2015.06-SP4

Simulation and Strobe Selection 11-2

Examine the Verilog File 11-2

Run the doit Script 11-3

Examine theOutput Files 11-4

Interactive Strobe Selection 11-5

Select Strobes Automatically 11-5

Select All Strobes 11-6

Select StrobesManually 11-7

Cumulative Fault Selection 11-8

12 Interfaces to Fault Simulators 12-1

Verifault Interface 12-2

Zycad Interface 12-3

13 Iterative Simulation 13-1

A Simulation Debug Using MAX Testbench and Verdi A-1

Setting the Environment A-2

PreparingMAX Testbench A-2

Linking NovasObject Files to the Simulation Executable A-3

Running VCS andDumping an FSDB File A-3

Running Verdi A-3

DebuggingMAX Testbench and VCS A-4

Changing Radix to ASCII A-5

Displaying the Current Pattern Number A-6

Displaying the Vector Count A-7

Using Search in the Signal List A-8

xv

Preface
This preface is comprised of the following sections:

l About ThisManual
l Customer Support

About This User Guide
The Test Pattern Validation User Guide describesMAX Testbench and PowerFault. You use
these tools to validate generated test patterns. Thismanual assumes you understand how to
use TetraMAX® ATPG to generate test patterns as described in the TetraMAX ATPGUser
Guide.
You can obtain more information on TetraMAX ATPG features and commands by accessing
TetraMAX ATPGOnline Help.

Audience
Thismanual is intended for design engineers who have ASIC design experience and some
exposure to testability cone timepts and strategies.
Thismanual is also useful for test engineers who incorporate the test vectors produced by
TetraMAX ATPG into test programs for a particular tester or who work with DFT netlists.

Related Publications
For additional information about TetraMAX ATPG, see Documentation on theWeb, which is
available through SolvNet® at the following address:
https://solvnet.synopsys.com/DocsOnWeb
Youmight also want to read the documentation for the following related Synopsys products:
DFTMAX™ andDesign Compiler®.

xvi

https://solvnet.synopsys.com/DocsOnWeb

Test Pattern Validation User Guide K-2015.06-SP4

Release Notes
Information about new features, enhancements, changes, known limitations, and resolved
Synopsys Technical Action Requests (STARs) is available in the TetraMAX ATPGRelease
Notes on the SolvNet site.

To see the TetraMAX ATPGRelease Notes:

1. Go to the SolvNet Download Center located at the following address:

https://solvnet.synopsys.com/DownloadCenter

2. Select TetraMAX ATPG, and then select a release in the list that appears.

About This User Guide xvii

https://solvnet.synopsys.com/DownloadCenter

Test Pattern Validation User Guide K-2015.06-SP4

Conventions
The following conventions are used in Synopsys documentation.

Convention Description

Courier Indicates command syntax.

Courier italic Indicates a user-defined value in Synopsys syntax, such as
object_name. (A user-defined value that is not Synopsys
syntax, such as a user-defined value in a Verilog or VHDL
statement, is indicated by regular text font italic.)

Courier bold Indicates user input—text you type verbatim—in Synopsys
syntax and examples. (User input that is not Synopsys
syntax, such as a user name or password you enter in a GUI,
is indicated by regular text font bold.)

[] Denotes optional parameters, such as pin1 [pin2 ... pinN]

| Indicates a choice among alternatives, such as low | medium |
high. (This example indicates that you can enter one of three
possible values for an option: low, medium, or high.)

_ Connects terms that are read as a single term by the
system, such as set_environment_viewer

Control-c Indicates a keyboard combination, such as holding down the
Control key and pressing c.

\ Indicates a continuation of a command line.

/ Indicates levels of directory structure.

Edit > Copy Indicates a path to a menu command, such as opening the
Edit menu and choosing Copy.

Customer Support
Customer support is available through SolvNet online customer support and through contacting
the Synopsys Technical Support Center.

Accessing SolvNet
The SolvNet site includes an electronic knowledge base of technical articles and answers to
frequently asked questions about Synopsys tools. The SolvNet site also gives you access to a

Customer Support xviii

Test Pattern Validation User Guide K-2015.06-SP4

wide range of Synopsys online services including software downloads, documentation on the
Web, and technical support.
To access the SolvNet site, go to the following address:
https://solvnet.synopsys.com
If prompted, enter your user name and password. If you do not have a Synopsys user name and
password, follow the instructions to register with SolvNet.
If you need help using the SolvNet site, click HELP in the top-right menu bar.

Contacting the Synopsys Technical Support Center
If you have problems, questions, or suggestions, you can contact the Synopsys Technical
Support Center in the following ways:

l Open a support case to your local support center online by signing in to the SolvNet site at
http://solvnet.synopsys.com, clicking Support, and then clicking “Open a Support Case.”

l Send an e-mail message to your local support center.
l E-mail support_center@synopsys.com fromwithin North America.
l Find other local support center e-mail addresses at
http://www.synopsys.com/Support/GlobalSupportCenters/Pages

l Telephone your local support center.
l Call (800) 245-8005 fromwithin the continental United States.
l Call (650) 584-4200 fromCanada.
l Find other local support center telephone numbers at:
http://www.synopsys.com/Support/GlobalSupportCenter/Pages

Customer Support xix

https://solvnet.synopsys.com/
http://solvnet.synopsys.com/
http://www.synopsys.com/Support/GlobalSupportCenters/Pages
http://www.synopsys.com/Support/GlobalSupportCenters/Pages

1
Introduction
The Test Pattern Validation User Guide describes the Synopsys tools you can use to validate
generated test patterns. This includesMAX Testbench, which validates STIL patterns created
from TetraMAX ATPG, and PowerFault, which validates IDDQpatterns created from TetraMAX
ATPG.
The following sections provide an introduction to this user guide:

l TetraMAX Pattern Format Overview
l Writing STIL
l Design to Test Validation Flow
l Installation

1-1

Test Pattern Validation User Guide K-2015.06-SP4

TetraMAX Pattern Format Overview
Figure 1 shows an overview of the TetraMAX pattern formats.

Figure 1 TetraMAX ATPGPattern Formats

Writing STIL Patterns
TetraMAX ATPG creates unified STIL patterns by default. This simplifies the validation flow
considerably because only a single STIL file is required to support all simulationmodes (you do
not need to write both serial and a parallel formats).
You can use unified STIL patterns in MAX Testbench. This avoidsmany of the issues presented
by the dual STIL flow, and is based only on the actual STIL file targeted for the tester.

TetraMAX Pattern Format Overview 1-2

Test Pattern Validation User Guide K-2015.06-SP4

You can use a single unified STIL pattern file to perform all types of simulation, including parallel
andmixed serial and parallel.

Figure 2 Comparing Combined Pattern Validation Flows

The write_patterns command includes several options that enable TetraMAX ATPG to
produce a variety of pattern formats.
The -format stil option of the write_patterns commandwrites patterns in the
proposed IEEE-1450.1 Standard Test Interface Language (STIL) for Digital Test Vectors
format. For more information on the proposed IEEE-1450.1 STIL for Digital Test Vectors format
(extension to the 1450.0-1999 standard), see Appendix E STIL Language Format in the
TetraMAX ATPGUser Guide. This format can be both written and read. However, only a subset
of the language written by TetraMAX ATPG is supported for reading back in.
The -format stil99 option of the write_patterns commandwrites patterns in the
official IEEE-1450.0 Standard Test Interface Language (STIL) for Digital Test Vectors format.
This format may be both written and read, but only the subset of the language written by
TetraMAX ATPG is supported for reading back in.
Note: Youmust use a 1450.0-compliant DRC procedure as input when to write output in stil99
format.
The syntax generated when using the -format stil option is part of the proposed IEEE
1450.1 extensions to STIL 1450-1999.
If you use the -format stil or stil99 options, TetraMAX ATPGgenerates a STIL file
with a name in the filename <pfile>.<ext> in which you specified write_patterns
pfile>.<ext>.

When you use the -format stil or -format stil99 options, you can also use the -
serial or -parallel options to specify TetraMAX ATPG to write patterns in serial

Writing STIL Patterns 1-3

Test Pattern Validation User Guide K-2015.06-SP4

(expanded) or parallel form. See the description of the write_patterns command in TetraMAX
Help for detailed information on using these options.

Design to Test Validation Flow
Figure 3 shows the validation flow usingMAX Testbench. In this flow, test simulation and
manufactured-device testing use the same STIL-format test data files.

Figure 3 Design-to-Test Validation Flow

When you run the Verilog simulation, MAX Testbench applies STIL-formatted test data as
stimulus to the design and validates the design’s response against the STIL-specified expected
data. The simulation results ensure both the logical operation and timing sensitivity of the final
STIL test patterns generated by TetraMAX ATPG.
MAX Testbench validates the simulated device response against the timed output response
defined by STIL. For windowed data, it confirms that the output response is stable within the
windowed time region.

Design to Test Validation Flow 1-4

Test Pattern Validation User Guide K-2015.06-SP4

Installation
The tools described in thismanual can be installed as standalone products or over an existing
Synopsys product installation (an “overlay” installation). An overlay installation shares certain
support and licensing files with other Synopsys tools, whereas a standalone installation has its
own independent set of support files. You specify the type of installation you want when you
install the product.
You can obtain installation files by downloading them fromSynopsys using electronic software
transfer (EST) or File Transfer Protocol (FTP).
An environment variable called SYNOPSYS specifies the location for the TetraMAX ATPG
installation. You need to set this environment variable explicitly.
Complete installation instructions are provided in the Installation Guide that comeswith each
product release.

Specifying the Location for TetraMAX Installation
TetraMAX ATPG requires the SYNOPSYS environment variable, a variable typically used with all
Synopsys products. For backward compatibility, SYNOPSYS_TMAX can be used instead of the
SYNOPSYS variable. However, TetraMAX ATPG looks for SYNOPSYS and if not found, then
looks for SYNOPSYS_TMAX. If SYNOPSYS_TMAX is found, then it overrides SYNOPSYS and
issues a warning that there are differences between them.
The conditions and rules are as follows:

l SYNOPSYS is set and SYNOPSYS_TMAX is not set. This is the preferred and
recommended condition.

l SYNOPSYS_TMAX is set and SYNOPSYS is not set. The tool will set SYNOPSYS using the
value of SYNOPSYS_TMAX and continue.

l Both SYNOPSYS and SYNOPSYS_TMAX are set. SYNOPSYS_TMAX will take precedence
and SYNOPSYS is set to match before invoking the kernel.

l Both SYNOPSYS and SYNOPSYS_TMAX are set, and are of different values, then a
warningmessage is generated similar to the following:
WARNING: $SYNOPSYS and $SYNOPSYS_TMAX are set differently,
using $SYNOPSYS_TMAX
WARNING: SYNOPSYS_TMAX = /mount/groucho/joeuser/tmax
WARNING: SYNOPSYS = /mount/harpo/production/synopsys
WARNING: Use of SYNOPSYS_TMAX is outdated and support for this
is removed in a future release. Use SYNOPSYS instead.

Installation 1-5

2
Using MAX Testbench
MAX Testbench is a pattern validation tool that converts TetraMAX STIL test vectors for physical
device testers into Verilog simulation vectors.
The following sections describe how to useMAX Testbench:

l Overview
l RunningMAX Testbench
l Using the write_testbench Command
l Using the stil2Verilog Command
l ConfiguringMAX Testbench
l Understanding the Failures File
l Using the Failures File
l Displaying the Instance Names of Failing Cells
l Using Split STIL Patterns
l Splitting Large STIL Files
l Force Release and Strobe Timing in Parallel Load Simulation
l MAX Testbench Runtime Programmability
l MAX Testbench Support for IDDQTesting
l UnderstandingMAX Testbench Parallel Miscompares
l How MAX TestbenchWorks
l UnderstandingMAX Testbench Parallel Miscompares
l Predefined Verilog Options
l MAX Testbench Limitations

2-1

Test Pattern Validation User Guide K-2015.06-SP4

Overview
MAX Testbench simulates and validates STIL test patterns used in an ATE environment. These
patterns are used in an ATE environment.
MAX Testbench reads a STIL file generated from TetraMAX ATPG, interprets its protocol,
applies its test stimulus to the DUT, and checks the responses against the expected data
specified in the STIL file. MAX Testbench is considered a genuine pattern validator because it
uses the actual TetraMAX ATPGSTIL file used by the ATE as an input to test the DU.
MAX Testbench supports all STIL data generated by TetraMAX ATPG, including:

l All simulationmechanisms (serial, parallel andmixed serial/parallel)
l All type of faults (SAF, TF, DFs, IDDQand bridging)
l All types of ATPG (Basic ATPG, Fast and Full Sequential)
l STIL fromBSDC
l All existing DFT structures (e.g., normal scan, adaptive scan, PLL including on-chip
clocking, shadow registers, differential pads, lockup latches, shared scan-in…)

MAX Testbench does not support DBIST/XDBIST or core integration.
Adaptive scan designs run in parallel mode only when translating from a parallel STIL format
written from TetraMAX ATPG. Likewise, for serial mode, adaptive scan designs run only when
translating from a serial STIL format written from TetraMAX ATPG.

Licenses
MAX Testbench requires the "Test-Validate" production key. The SYNOPSYS environment
variable is used to recover the license system paths (this variable is also used to point to the
stil.err file path).

Installation
The command setup and usage for MAX Testbench is as follows:
alias stil2Verilog 'setenv SYNOPSYS /install_area/latest;
$SYNOPSYS/
platform/syn/bin/stil2Verilog'

Then execute the following:
stil2Verilog -help

Obtaining Help
To access help information, specify the -help option on the tool command line. This command
will print the description of all options.
There is no specificman page for each error or warning. Themessages that are printed if errors
occur are clear enough to enable you to adjust the command line to continue.

Overview 2-2

Test Pattern Validation User Guide K-2015.06-SP4

See Also
Writing ATPG Patterns in TetraMAX Help

Running MAX Testbench
You can run theMAX Testbench using either the write_testbench command or the
stil2Verilog command. The write_testbench command enables you to run
MAX Testbench without leaving the TetraMAX environment, and the stil2Verilog
command is a standalone executable.
TheMAX Testbench flow consists of the following basic steps:

1. Use TetraMAX ATPG to write a STIL pattern file.
TEST-T> write_patterns STIL_pat_file -format STIL

For details on using the write_patterns command, see "Writing ATPG Patterns in
the TetraMAX User Guide."

2. Specify the write_testbench or stil2Verilog command using the STIL pattern
file generated from the write_patterns command.
Examples:
% write_testbench –input stil_pattern_file.stil \
 –output Verilog_testbench.v

% stil2Verilog stil_pattern_file.stil Verilog_testbench.v

Two files are generated:
l The first file is the Verilog principal file, which uses the following convention:
Verilog_Testbench_filename.v.

l The second generated file is a data file named Verilog_Testbench_
filename.dat.

An example of the output printed after running the stil2Verilog command is as
follows:
###
#
STIL2VERILOG
#
Copyright (c) 2007-2014 SYNOPSYS INC. ALL RIGHTS RESERVED
#
##
maxtb> Parsing command line...
maxtb> Checking for feature license...
maxtb> Parsing STIL file "comp_usf.stil" ...
... STIL version 1.0 (Design 2005) ...

Running MAX Testbench 2-3

Test Pattern Validation User Guide K-2015.06-SP4

... Building test model ...

... Signals ...

... SignalGroups ...

... Timing ...

... ScanStructures : "1" "2" "3" "4" "5" "6" "7" "8" "9" "10"
"sccompin0" "sccompin1" "sccompout0" "sccompout1" "sccompout2"
"sccompout3" "sccompin2" "sccompin3" ...
... PatternBurst "ScanCompression_mode" ...
... PatternExec "ScanCompression_mode" ...
... ClockStructures "ScanCompression_mode": pll_controller ...
... CompressorStructures : "test_U_decompressor_
ScanCompression_mode" "test_U_compressor_ScanCompression_mode"
...
... Procedures "ScanCompression_mode": "multiclock_capture"
"allclock_capture" "allclock_launch" "allclock_launch_capture"
"load_unload" ...
... MacroDefs "ScanCompression_mode": "test_setup" ...
... Pattern block "_pattern_" ...
... Pattern block "_pattern_ref_clk0" ...

maxtb> Info: Event ForceOff (Z) interpreted as CompareUnknown
(X) in the event waves of WFT "_multiclock_capture_WFT_"
containing both compare and force types (I-007)
maxtb> STIL file successfully interpreted (PatternExec:
""ScanCompression_mode"").
maxtb> Total test patterns to process 21
maxtb> Detected a Scan Compression mode.
maxtb> Test data file "comp_usf.dat" generated successfully.
maxtb> Test bench file "comp_usf.v" generated successfully.
maxtb> Info (I-007) occurred 2 times, use -verbose to see all
occurrences.
maxtb> Memory usage: 6.9 Mbytes. CPU usage: 0.079 seconds.
maxtb> End.

3. Run the simulation.
Invoke the VCS simulator using the following command line:
% vcs Verilog_testbench_file design_netlist \
 -v design_library

Note the following:
l When running zero-delay simulations, youmust use the +delay_mode_zero and
+tetramax arguments.

See Also
Configuring MAX Testbench
Predefined Verilog Options

Running MAX Testbench 2-4

Test Pattern Validation User Guide K-2015.06-SP4

Using the write_testbench Command
The syntax for the write_testbench command is as follows:
write_testbench
-input [stil_filename | {-split_in \

{list_of_stil_files_for_split_in\}}]
-output testbench_name
[-generic_testbench]
[-patterns_only]
[-replace]
[-config_file config_filename]
[-parameters {list_of_parameters}]

The options are described as follows:
-input [stil_filename | {-split_in \

{list_of_stil_files_for_split_in\}}]
The stil_filename argument specifies the path name of the previous
TetraMAX ATPG-generated STIL file requested by the equivalent Verilog
testbench. You can use a previously generated STIL file as input. This file can
originate from either the current session or from an older session using the
write_patterns command.
The following syntax is used for specifying split STIL pattern files as input (note
that backslashes are required to escape the extra set of curly braces):
{-split_in \{list_of_stil_files_for_split_in\}}

The following example shows how to specify a set of split STIL pattern files:
write_testbench -input {-split_in
 \{patterns_0.stil patterns_1.stil\}} -output pat_mxtb

-output testbench_name
Specifies the names used for the generated Verilog testbench output files. Files are created
using the naming convention <testbench_name>.v and <testbench_name>.dat.

-generic_testbench
Provides special memory allocation for runtime programmability. Used in the
first pass of the runtime programmability flow, this option is required because
the Verilog 95 and 2001 formats use static memory allocation to enable buffers
and arrays to store and manipulate .dat file information. For more information
on using this command, see "Runtime Programmability."

-patterns_only
Used in the second pass, or later, run of the runtime programmability flow, this
option initiates a light processing task that merges the new test data in the
test data file. This option also enables additional internal instructions to be
generated for the special test data file. For more information on using this
command, see "Runtime Programmability."

Running MAX Testbench 2-5

Test Pattern Validation User Guide K-2015.06-SP4

-replace
Forces the new output files to replace any existing output files. The default is to
not allow a replacement.

-config_file config_filename
Specifies the name of a configuration file that contains a list of customized
options to the MAX Testbench command line. See "Customized MAX Testbench
Parameters Used in a Configuration File with the write_testbench Command"
for a complete list of options that can be used in the configuration file. You can
use a configuration file template located at $SYNOPSYS/auxx/syn/ltran.

-parameters {list_of_parameters}
Enables you to specify additional options to the MAX Testbench command line.
See "MAX Testbench Command-Line Parameters Used with the write_
testbench Command" for a complete list of parameters you can use with the -
parameters option.
If you use the -parameters option, make sure it is the last specified argument
in the command line, otherwise you might encounter some Tcl UI conversion
limitations.
A usage example for this option is as follows:
write_testbench -parameters { -v_file \”design_file_names\” –v_
lib \”library_file_names\” –tb_module module_name –config_file
config1}

Note the following:
l All the parametersmust be specified using the Tcl syntax required in the TMAX shell. For
example: -parameters {param1 param2 –param3 \”param4\”}

l quotationmarksmust have a backslash, as required by Tcl syntax, to be interpreted
correctly and passed directly to theMAX Testbench command line.

l Parameters specified within a -parameters {} list are order-dependent. They are
parsed in the order in which they are specified, and are transmitted directly to theMAX
Testbench command line. These parametersmust follow the order and syntax required for
theMAX Testbench command line.

Using the stil2Verilog Command
The syntax for the stil2Verilog command is as follows:
stil2Verilog [pattern_file] [tbench_file] [options]

The syntax descriptions are as follows:
pattern_file

Specifies the ATPG-generated STIL pattern file used as input. This file must be
specified, except when the -split_in option is used.

tbench_file
Specifies the name of the testbench file to generate. When the tb_file_name
is specified, a .v extension is added when generated the protocol file, and a
.dat extension is used when generating the test data file. You should use only

Running MAX Testbench 2-6

Test Pattern Validation User Guide K-2015.06-SP4

the root name with the command line, for example, stil2erilogpat.stil
tbench, that generates tbench.v and tbench.dat files in the current working
directory. This argument is optional when the -generate_config or -report
options are specified.

Other optional arguments can be specified, as shown in the following syntax. The defaults are
shown in bold enclosed between parentheses.
-config_file TB_config_file
-first d
-force_enhanced_debug
-generate_config config_file_template
-generic_testbench
-help [msg_code]
-last d
-log log_file
-parallel
-patterns_only
-replace
-report
-run_mode (go-nogo) | diagnosis
-sdf_file sdf_file_name
-serial
-ser_only
-sim_script <= [[vcs] | [mti] | [nc] | [xl]]
-split_in { 1.stil, 2.stil… } | { dir1 /*.stil } testbench_name
-split_out pat_intervstil_filetestbench_name
-tb_format <= (v95) | v01 | sv
-tb_module module_name
-verbose
-version
-v_file { design_file_names }
-v_lib { library_file_names }

The descriptions for the optional syntax items are as follows:

-config_file TB_config_file

MAX Testbench can be configured at several levels. At the top of theMAX Testbench
configuration file, you can edit the set cfg_* variables to define the various testbench
defaults, such as the progressmessage interval time and the simulation time unit. The
second half of the configuration file contains a set of editable setup parameters for the
VCS/MIT/Cadence simulation script file. The TB_config_file parameter specifies the
name of the configuration file used to set up the testbench at generation time. See
“Example of the Configuration Template”.

-first d

Specifies the first pattern number that TetraMAX ATPGwrites. The default is to begin
with pattern 0.Note: For Full-Sequential patterns, this optionmight cause simulation

Running MAX Testbench 2-7

Test Pattern Validation User Guide K-2015.06-SP4

mismatches.
-force_enhanced_debug

ForcesMAX Testbench to halt if any errors are encountered when processing the parallel
strobe data (PSD) file. The default is to not forceMAX Testbench to stop. For more
information on the PSD file, see "Understanding the PSD File."

-generate_config config_file_template

MAX Testbench can generate a configuration file template that you can edit andmodify.
The config_file_template parameter specifies the path where the configuration
file template is written.

-generic_testbench (or -streaming_patterns)
Generates a generic testbench that can load future test patterns (.dat files) without
recompiling. For more information on using this command, see "Runtime
Programmability."

-help [msg_code]

Shows all possible options, and the complete stil2Verilog syntax and exits. If msg_
code is specified, then prints the help page corresponding to that code msg_code
syntax: '1-letter'-'3-digit code' where letter can be 'E', 'W' or 'I' and the 3-digit codemust
correspond to a valid code in the range [000-999] For example: E-001, W-010

-last d

Specifies the last pattern number for the patterns to be written. The default is to end with
the last available pattern.

-log

Generates a log file.
-parallel

Specifies the parallel loadmode for simulation, which is the default.
-patterns_only

Generates test patterns only (.dat file) to be used with an existing equivalent testbench (.v
file). For more information on using this command, see "Runtime Programmability."

-replace

ForcesMAX Testbench to overwrite the testbench files, the configuration file template,
and simulation script.

-report

Displays the configuration setting and test pattern information. It has the following
parameters (note that multiple parameters can be specified if separated by commas):
all—displays all the information (default in verbosemode)
config—displays the configuration setting
dft—displaysDFT structure information
drc—displaysDRC warnings
flow—displays STIL pattern flow
macro—displaysmacro information
nb_patterns—displays the total number of patterns to be executed

Running MAX Testbench 2-8

Test Pattern Validation User Guide K-2015.06-SP4

proc—displays procedure information
sigs—displays all the signal information
sig_groups—displays all the signal groups information
wft—displaysWaveformTable information

-run_mode go-nogo | diagnosis

Allows the targeting of either Go-nogomode (the default) or diagnosismode. For details,
see “Setting the RunMode.”

-sdf_file sdf_file_name

Specifies the SDF file name used for back annotation.
-serial

Specifies the serial loadmode simulation. The default simulation scan load is parallel. The
same behavior can be obtained by using the +define+tmax_serial compiler
directive to force the simulation of all patterns to be serial. If +tmax_serial=N is used,
MAX Testbench forces serial simulation of the first N patterns, and then starts parallel
simulation of the remaining patterns

-ser_only

Generates the testbench file for serial loadmode only. This allows a reduction in the size
of the testbench and speeds up the simulation.

-shell

Runs the tool in shell mode.
-sim_script vcs | mti | nc | xl

The sim_script <simulator> option specifies a simulation script to be generated
together with the testbench file. You alsomust provide the v_file and v_lib options.
Note that only VCS scripts are supported; the other simulator scripts that are generated
conform to the simulator script generated by TMAX (write_patterns command). The
argument specifies the target simulator:

l vcs—VCS simulator command shell script
l mti—ModelSim simulator command shell script
l xl—Cadence XL simulator command shell script
l nc—Cadence NCVerilog simulator command shell script

Note the specification of several arguments at the same time to target all of the simulators
is supported as repetitive entries "-sim_script vcs -sim_script mti -sim_
script xl "
The output name of the generated script file is:
<name_of_testbench_file>_<simulator>.sh.

-split_in { 1.stil, 2.stil… } | { dir1 /*.stil }

SpecifiesMAX Testbench to use split STIL files based on either a detailed list of STIL files
or a generic list description using the wildcard (*) symbol. In the generic list format, the
files are recognized in alphabetical order. Multiple file namesmust be enclosed in curly
brackets with spaces on both sides of each bracket, as shown in the following example:

Running MAX Testbench 2-9

Test Pattern Validation User Guide K-2015.06-SP4

stil2Verilog -split_in { bill.patt.stil.ts_and_chain
bill.patt_0.stil bill.patt_1.stil bill.patt_2.stil bill.patt_
3.stil bill.patt_4.stil bill.patt_5.stil bill.patt_6.stil
bill.patt_7.stil bill.patt_8.stil bill.patt_9.stil bill.patt_
10.stil } bill.pat_stil.v –replace

Note that you can also specifymultiple files in the configuration file. For more information
on this option, see “Using Split STIL Pattern Files”.

-split_out pat_intervalstil_file

SpecifiesMAX Testbench to split STIL files, The pat_interval argument specifies the
maximumnumber of patterns that a given .dat file will contain. For more information on
this option, see “Splitting Large STIL Files”.

-tb_format v95 | v01 | sv

Specifies the testbench format applied to the tbench_file specification. The default is
v95, and is currently the only supported option. Formats:
v95—Verilog 1995
v01—Verilog 2001
sv—SystemVerilog

-tb_module module_name

Specifies themodule name for the top-level module of the Verilog testbench.
-verbose

Activates verbosemode.
-version

Prints the stil2Verilog banner, including the version.
-v_file { design_file_names }

Specifies design netilist source files (the DUT description) required to run the simulation. It
is required when using the sim_script option. Wild characters are supported. Note
that design_file_name1 and design_file_nameNmust be separated with
spaces. Multiple file namesmust be enclosed in curly brackets with spaces on both sides
of each bracket (you can also specifymultiple files in the configuration file).

-v_lib { library_file_names }

Specifies the library file (the DUT related technology library) required to run the
simulation. This option is required when using sim_script option. Note that library_
file_name1 and library_file_nameNmust be separated with spaces. Multiple file
namesmust be enclosed in curly brackets with spaces on both sides of each bracket, as
shown in the following example:
stil2Verilog pats.stil maxtb -replace -v_lib { lib1.v lib2.v }

Note that you can also specifymultiple files in the configuration file. Wildcard characters
are supported for simulation script generation.

Running MAX Testbench 2-10

Test Pattern Validation User Guide K-2015.06-SP4

Setting the Run Mode
There are two basic runmodes you can set when startingMAX Testbench using the
stil2Verilog command: Go-nogo and Diagnosis.
TheGo-nogomode is set using the -run_mode go-nogo option. In thismode,
MAX Testbench does the following:

l Sets the verbosity level to 0 (equivalent to using +define+tmax_msg=0 at VCS
compilation time)

l Makes the testbench reporting the beginning of each 5 patterns (equivalent to using
+define+tmax_rpt=5 at VCS compilation time)

l Initializes the file name for the collection of diagnostics failures to <testbench_
name>.diag.

The Diagnosismode is set using the -run_mode diagnosis option. In thismode,
MAX Testbench saves themismatches in the <testbench_name>.diag file in a pattern-
based format compatible with the TetraMAX run_diagnosis command.
For example, themismatches are recorded in the followingmanner:
30 test_so2 10 (exp=0, got=1) // chain , V=313, T=31240.00 ns
30 test_so3 10 (exp=0, got=1) // chain , V=313, T=31240.00 ns
30 test_so4 10 (exp=0, got=1) // chain , V=313, T=31240.00 ns

These failures can be used by the TetraMAX diagnostics to identify the failing scan chain. You
can print a report using the command run_diagnosis -only_report_failures.
The failures log file name default can be changed at the time the simulation is executed by using
the following compiler directive:
% vcs ... +define+tmax_diag_file=\"<file_name>\"

The default can also be changed at the time the testbench is generated using the configuration
file parameter cfg_diag_file.

See Also
Understanding the Failures File
Using the Failures File

Running MAX Testbench 2-11

Test Pattern Validation User Guide K-2015.06-SP4

Configuring MAX Testbench
Table 1 shows the possible configurations for MAX Testbench.

Config. Type Config. File Option Sim. Predefine Option

Pre-defined Verilog code that
affects the simulator script
generation.
Initial N serial (flattened scan)
vectors.
+tmax_serial=N

set define_<user_
def1> 0

Example:
set define_tmax_
serial 0

+tmax_serial or tmax_
serial=N

Example:
+define+tmax_serial

Pre-defined Verilog code that
affects the simulator script
generation.
Parallel scan accesswith N
serial vectors.
+tmax_parallel=N

set define_<user_
def1> 0

Example:
set define_tmax_
parallel 0

+tmax_parallel=N

Example:
+define+tmax_parallel

Pre-defined Verilog code that
affects the simulator script
generation.
Number of patterns to
simulate.

set define_<user_
def1> 0

Example:
set define_ tmax_n_
pattern_sim 10

tmax_n_pattern_sim=N

Example
+define+tmax_n_
pattern_sim=10

Pre-defined Verilog code that
affects the simulator script
generation.
Generates a delay (a "dead
period") for parallel scan
access to align parallel load
timing with serial load timing

set define_tmax_
serial_timing

See Also:
cfg_serial_timing

+define+tmax_serial_
timing

Top-level module #set tb_module_name
<"new_name">

Table 1 MAX Testbench Behaviors

Configuring MAX Testbench 2-12

Test Pattern Validation User Guide K-2015.06-SP4

Config. Type Config. File Option Sim. Predefine Option

Sets the severity level.
NOTE: The command drcw_
severity requires two
mandatory parameters:
<rule_name>: TetraMAX
rule name (wild-card
character '*' is supported)
<severity>: severity level
("ignore"| "warning"|"error")
Example: set drcw_
severity C11 warning

set drcw_severity
<rule_name>
<severity>

Overcomes the size
optimization and generates
an extended testbench.
Setting of 1 creates a
compact testbench.

set cfg_tb_format_
extended 0

Maximumnumber of patterns
loaded simultaneously in the
simulation process

cfg_patterns_read_
interval

Specifies the interval of the
progressmessage (0 is
disabled, N is every Nth
pattern is reported) .

cfg_patterns_
report_interval

tmax_rpt=N

Defines the verbose level.
(See the Verbose Level
section below.)

cfg_message_
verbosity_level

tmax_msg=N (could be 0, 1,
2, 3 and 4)

Generates an extended-VCD
of the simulation run

cfg_evcd_file
"evcd_file"

Table 1 MAX Testbench Behaviors (Continued)

Configuring MAX Testbench 2-13

Test Pattern Validation User Guide K-2015.06-SP4

Config. Type Config. File Option Sim. Predefine Option

Changes the failure log file’s
default name at the time the
simulation is executed.

cfg_diag_file
"diag_file"

Causes the testbench to
override the name in the
testbench file.

tmax_diag_
file=\"<file>\"

Affects the simulation runtime.

Configures the
miscompare in pattern-
based (N=1)format or
cycle-based (N=2)
format format

+tmax_diag=N (N could
be 1 or 2)

Generates a delay for parallel
scan access to align parallel
load timing with serial load
timing

cfg_serial_timing

Affects the testbench only.

tmax_serial_timing

Affects the simulation runtime.

Specifies the simulation time
unit (i.e., time scale)

cfg_time_unit

Example:
set cfg_time_unit
"1ps"

N/A

Specifies the simulation time
precision (i.e., time precision)

cfg_time_precision N/A

Defines the DUTModule
name (use only if tool asks for
this parameter) .

cfg_dut_module_name N/A

Table 1 MAX Testbench Behaviors (Continued)

Configuring MAX Testbench 2-14

Test Pattern Validation User Guide K-2015.06-SP4

Config. Type Config. File Option Sim. Predefine Option

Delays the release of all
forced scan cells in the load_
unload procedure to the next
cycle by the specified time.
The delay starts from the
beginning of next cycle. This
option is supported for the
parallel dual STIL flow, but is
not currently supported for
the unified STIL flow.

cfg_parallel_
release_time

Must add units.

Example:

cfg_parallel_
release_time
50000ps

N/A

Reports the instance
name of the failing cells
during the simulation of a
parallel-formatted STIL
file. To enable the report,
you must set the boolean
variable to '1". The
default, 0, turns off this
reporting. Note that this
feature impacts
simulation memory
consumption.

cfg_parallel_stil_
report_cell_name

Example:
cfg_parallel_stil_
report_cell_name 1

N/A

Table 1 MAX Testbench Behaviors (Continued)

Note the following:
l The “Command LineOption" column contains the stil2Verilog commands.
l The “Configuration File Option" column contains those variables available inside the
configuration file when used in conjunction with the -config_file <file_name>
option during the stil2Verilog execution.

l The “Simulator Predefine Option" column contains those options that can be used in a
simulator script or also defined in the -config_file <file_name> option in the
section titled "variables only affecting the simulator script generation".
For example:
A “Simulator PredefinedOption” can be changed at the time the simulation is executed by
using the following compiler directive:
% vcs ... +define+tmax_serial=1

l In the first two rows of Table 1, the special case of define_<user_def> is used for any
user-defined simulator variable. However, it is also used for variables that are hard-coded
into the testbench, such as tmax_serial and tmax_parallel.

Configuring MAX Testbench 2-15

Test Pattern Validation User Guide K-2015.06-SP4

The default of define_<user_def> can also be changed at the time the testbench is
generated using the -sim_script vcs|mti|xl|nc option along with defining the -
config_file <file_name> option. With the line “set define_<user_def1> 0"
modified as "set define_tmax_serial=1" inside the configuration file.

Example of the Configuration Template
You can generate the template file shown in Example 1 using the following command:
stil2Verilog -generate_config TB_config_file

Example 1 Configuration Template Example
STIL2VERILOG CONFIGURATION FILE TEMPLATE (go-nogo default
values) ##

uncomment out the setting statement to use predefined variables
the “set cfg_*” variables only affect the testbench definition

cfg_patterns_read_interval: specifies the maximum number of
patterns loaded simultaneously in the simulation process
#set cfg_patterns_read_interval 1000

cfg_patterns_report_interval: Specifies the interval of the
progress message
#set cfg_patterns_report_interval 5

cfg_message_verbosity_level: control for a prespecified set of
trace options
#set cfg_message_verbosity_level 0

cfg_evcd_file evcd_file: generates an extended-VCD of the
simulation run
#set cfg_evcd_file "evcd_file"
cfg_diag_file: generates a failures log file compliant with
TetraMAX diagnostics. This overrides the name in the tb file.
#set cfg_diag_file "diag_file"
cfg_serial_timing: generates a delay for parallel scan access to
align parallel
load timing with serial load timing
#set cfg_serial_timing 0
cfg_time_unit: specifies the simulation time unit
#set cfg_time_unit "1ns"
cfg_time_precision: specifies the simulation time precision
#set cfg_time_precision "1ns"
cfg_dut_module_name: specifies the DUT module name to be tested
(variable to be used only when the tool asks for it)
#set cfg_dut_module_name "dut_module_name"

Configuring MAX Testbench 2-16

Test Pattern Validation User Guide K-2015.06-SP4

TB file formatting section
cfg_tb_format_extended: specifies whether an extended TB file is
needed
#set cfg_tb_format_extended 0

set drcw_severity <rule_name> <severity>
The command "drcw_severity" needs two mandatory parameters:
- <rule_name>: TetraMAX rule name (wild-card
character '*' is supported)
- <severity>: severity level
("ignore"|"warning"|"error")
#set drcw_severity C11 warning

variables only affecting the simulator script generation
define_<preprocessor_define>: specifies the preprocessor
definitions for the simulator
#set define_<user_def1> 0
#set define_<user_def2> "TRUE"
#design_files: specifies all source files required to run the
simulation
#set design_files "netlist1.v netlist2.v"
lib_files: specifies all library source files required to run
the simulation
#set lib_files "lib1.v lib2.v"
vcs_options: specifies the user VCS command line options
#set vcs_options "VCSoption1 VCSoption2"
nc_options: specifies the user NCSim command line options
#set nc_options "NCoption1 NCoption2"
mti_options: specifies the user ModelSim command line options
#set mti_options "MTIoption1 MTIoption2"
xl_options: specifies the user Verilog XL command line options
#set xl_options "XLoption1 XLoption2"

An example configuration file is shown in Example 2 below.

Example 2 Example Configuration Rile
STIL2VERILOG CONFIGURATION FILE

Specifies the maximum number of patterns
loaded simultaneously in the simulation process
set cfg_patterns_read_interval 1000

Specifies the interval of the progress message
set cfg_patterns_report_interval 5

Control for a prespecified set of trace options
set cfg_message_verbosity_level 3

Configuring MAX Testbench 2-17

Test Pattern Validation User Guide K-2015.06-SP4

Generates a failures log file compliant with
TetraMAX diagnostics
set cfg_diag_file "diag_file"

Specifies the DUT module name to be tested
#set cfg_dut_module_name "dut_module_name"

Specifies all source files required to run the simulation
#set design_files "netlist1.v netlist2.v"

other configurations…

To assign a value to a configuration parameter, you should use the following syntax:
set <config_parameter_name> <value>

Note: Every comment linemust begin with "#".

See Also
Runtime Programmability
Predefined Verilog Options

Setting the Verbose Level
You can use the [tmax_msg=N]argument to set four different levels of verbosity output for
MAX Testbench. Each level prints a specific set of data to help to follow the simulation execution.
The levels are defined as follows:

l Level 0—The default. It prints the Header + Start + End information + Errors (if any)
l Level 1—Prints information from level 0 and adds the pattern information according to
the value of tmax_rpt compile time option. This information includes the current time and
vector and some basic information regarding the files/settings.

l Level 2—Prints information from level 1 and adds anyMacro/Procedure execution. The
Macro/Procedure information includes time, vector information and Shift statement

l Level 3—Prints information from level 2 and adds all executed statements in the pattern
block (not only procedures andmacros).

l Level 4—Prints information from level 3 and adds vector (a per cycle report).

See Also
Displaying Instance Names

Configuring MAX Testbench 2-18

Test Pattern Validation User Guide K-2015.06-SP4

Understanding the Failures File
When you set the -run_mode diagnosis option of the stil2Verilog command, MAX
Testbench prints all miscomparemessages to a file used with the run_diagnosis command
for diagnostics. The format of this file is dependent of the pattern type (legacy scan, adaptive
scan, or serializer), the simulationmode (serial or parallel), and the STIL type (dual or unified).
The following sections describe the relationship of the failures formats for each pattern type:

l Legacy Scan Failures
l Adaptive Scan Failures
l Serializer Scan Failures

MAX Testbench and Legacy Scan Failures
In legacy scan, given the serial/parallel and dual/unified types, the failure formats are the same.
A failure contains the cycle count of the failure (V=), the expected data (exp=), the data
captured (got=), the chain name (chain), the scan output pin name (pin), and the scan cell
position (scan cell). Figure 1 describes the relationship of the failures for legacy scan.

Figure 1 Relationship of Failures Format for Legacy Scan

Example 1, Example 2, and Example 3 are reports for the same failure printed during the
simulation of the patterns.

Example 1
Error during scan pattern 32 (detected during unload of pattern
31)

At T=49240.00 ns, V=493, exp=0, got=1, chain 4, pin test_so4, scan
cell 10

Understanding the Failures File 2-19

Test Pattern Validation User Guide K-2015.06-SP4

Example 2
Error during scan pattern 32 (detected during parallel unload of
pattern 31)

At T=16240.00 ns, V=163, exp=0, got=1, chain 4, pin test_so4, scan
cell 10

Example 3
Error during scan pattern 32 (detected during parallel unload of
pattern 31)

At T=16240.00 ns, V=163, exp=0, got=1, chain 4, pin test_so4, scan
cell 10

MAX Testbench and Adaptive Scan Failures
In adaptive scan the failure formats are not the same. A failure contains the cycle count of the
failure (V=), the expected data (exp=), the data captured (got=), the chain name (chain) only
for dual STIL flow parallel, the scan output pin name (pin) for dual STIL flow serial mode and
unified STIL flow parallel mode. The pin information for dual STIL flow for parallel mode is the
pin pathname of the failing scan cell output. The report also contains the scan cell position (scan
cell).

Figure 2 Relationship of Failures Format for Adaptive Scan

Example 4, Example 5, and Example 6 are reports for the same failure printed during the
simulation of the patterns.

Example 4
Error during scan pattern 31 (detected during unload of pattern
30)

At T=31240.00 ns, V=313, exp=0, got=1, chain , pin test_so2, scan
cell 10

Understanding the Failures File 2-20

Test Pattern Validation User Guide K-2015.06-SP4

At T=31240.00 ns, V=313, exp=0, got=1, chain , pin test_so3, scan
cell 10

At T=31240.00 ns, V=313, exp=0, got=1, chain , pin test_so4, scan
cell 10

Example 5
Error during scan pattern 31 (detected during parallel unload of
pattern 30)

At T=15740.00 ns, V=158, exp=0, got=1, chain 10, pin

snps_micro.mic0.pc0.prog_counter_q_reg[11] .QN, scan cell 10

Note: In the case of dual STIL flow parallel mode for adaptive scan patterns, MAX Testbench,
reports the failing scan chain and failing scan cell position. But, for performance reasons, the
scan cell instance name for the failing position is not reported. However, it does report the scan
cell instance namewith position 0 for the failing scan chain.

Example 6
Error during scan pattern 31 (detected during parallel unload of
pattern 30)

Error during scan pattern 31 (detected during parallel unload of
pattern 30)

At T=15740.00 ns, V=158, exp=0, got=1, pin test_so3, scan cell 10

Error during scan pattern 31 (detected during parallel unload of
pattern 30)

At T=15740.00 ns, V=158, exp=0, got=1, pin test_so4, scan cell 10

Note: In the case of Unified STIL flow parallel mode for adaptive scan patterns, MAX Testbench
reports the failing scan cell position only. The failing scan chain name and the failing scan cell
instance name are not provided. You can use TetraMAX diagnostics to retrieve the failing scan
chain name.

MAX Testbench and Serializer Scan Failures
Figure 3 describes the relationship of serializer scan failures.

Understanding the Failures File 2-21

Test Pattern Validation User Guide K-2015.06-SP4

Figure 3 Relationship of Failures Format for Serializer

Example 7
Error during scan pattern 5 (detected during unload of pattern 4)

At T=28340.00 ns, V=284, exp=0, got=1, chain , pin test_so1, scan
cell 2, serializer index 1

At T=28440.00 ns, V=285, exp=0, got=1, chain , pin test_so1, scan
cell 2, serializer index 2

At T=28540.00 ns, V=286, exp=1, got=0, chain , pin test_so1, scan
cell 2, serializer index 3

Note: In the case of the dual STIL flow parallel mode for serializer patterns, MAX Testbench
reports the failing scan chain and failing scan cell position. But, for performance reasons, the
scan cell instance name for the failing position is not reported. However, it does report the scan
cell instance name of position 0 for the failing scan chain.

Example 8
Error during scan pattern 5 (detected during parallel unload of
pattern 4)

At T=6640.00 ns, V=67, exp=1, got=0, chain 1, pin

snps_micro.mic0.alu0.accu_q_reg[4] .Q, scan cell 2

Note: In the case of unified STIL flow parallel mode for serializer patterns, MAX Testbench
reports the failing scan cell position only. The failing scan chain and the failing scan cell instance
name are not provided. The failing scan chain name could be retrieved using the diagnostics in
TetraMAX ATPG.

Example 9
Error during scan pattern 5 (detected during unload of pattern 4)

At T=28340.00 ns, V=284, exp=0, got=1, chain , pin test_so1, scan
cell 2, serializer index 1

Understanding the Failures File 2-22

Test Pattern Validation User Guide K-2015.06-SP4

At T=28440.00 ns, V=285, exp=0, got=1, chain , pin test_so1, scan
cell 2, serializer index 2

At T=28540.00 ns, V=286, exp=1, got=0, chain , pin test_so1, scan
cell 2, serializer index 3

Using the Failures File
You can configure and use the failures file printed byMAX Testbench for diagnosis. To use this
file, you need to set the +tmax_diag option.
By default, the diagnosis file name is <tbenchname>.diag. The default names of the
diagnosis file when the -split_out option is used are <tbenchname>_0.diag,
<tbenchname>_1.diag, etc., for the different partitions. You can change the default using
the +tmax_diag_file option.
The setting +tmax_diag=1 reports the pattern-based failure format. The setting +tmax_
diag=2 reports the cycle-based failure format.
Note the following limitations:

l You cannot run the diagnosis directly if all the partitions are simulated sequentially. This is
because the failures are created in separate failure log files. Before running the diagnosis,
youmust manually append the failure log files into a single file.

l You cannot run the diagnosis if the entire partitions are simulated sequentially and the
cycle-based format is used (+tmax_diag=2). This is because the recorded cycles are
reset for each partition simulation.

Both settings offer a way to generate a failure log file that can be used for a diagnostic if a fault is
injected in a circuit and its effect simulated. You can also use these settings to validate the
detection of a fault by TetraMAX diagnostics. In addition, they can be used for per-cycle pattern
masking or for TetraMAX diagnostics to find the failing scan chain and cell for a unified STIL flow
miscompare.
Figure 2 summarizes the formats and applications possible for failures printed using the +tmax_
diag option.

Using the Failures File 2-23

Test Pattern Validation User Guide K-2015.06-SP4

Figure 2 Summary of Uses for Failures File

The format names and their descriptions are as follows:

l Format A = <pat_num> <pin_name> <shift_cycle> (exp=%b, got=%b)

l Format B = <pat_num><chain_name> <cell_index> (exp=%b, got=%b)

l Format C = <pat_num><pin_name> (exp=%b,got=%b)

l Format S = <pat_num>pat_num> <pin_name> <unload_shift_cycle>
<shift_position> (exp=%b, got=%b)

l Format D = C <pin_name> <vect_nbr> (exp=<exp state>, got=<got
state>)

Note the following:
l TheUSF and DSF serial simulationmodes have the same format and capability. Thus,
only the USF parallel is present in the tables. The USF serial is not displayed in the tables.

l The cycle-based format is printed only for serial simulation. This is because the simulation
in parallel has less cycles than serial simulation. Thus, the cycles reported by parallel
simulation are not valid. If +tmax_diag=2 is used for a parallel simulationmode, the
simulation is not stopped, but the testbench automatically changes the +tmax_diag
setting to 1. A warningmessage is also printed in the simulation log. Then, as shown in the
following tables, the following statement is printed for all parallel simulation DSF and USF
modes: "Not Supported."

The following tables describe the failures file format and their usage in detail.

Using the Failures File 2-24

Test Pattern Validation User Guide K-2015.06-SP4

Table 1 Failures Format and Usage for Normal Scan and tmax_diag=1

Table 2 Failures Format and Usage for Normal Scan and tmax_diag=2

Table 3 Failures Format and Usage for DFTMAX Compression and tmax_diag=1

* Failures are usable for TetraMAX diagnostics provided that the command set_diagnosis
–dftmax_chain_format is used

Using the Failures File 2-25

Test Pattern Validation User Guide K-2015.06-SP4

Table 4 Simulation Failures Format and Usage for DFTMAX Compression and tmax_diag=2

Table 5 Failures Format and Usage for Serializer and tmax_diag=1

* If the set_diagnosis -dftmax_chain_format command is specified, failures can be
used for TetraMAX diagnostics.

Table 6 MAX Testbench Simulation Failures Format and Their Usage for Serializer and tmax_
diag=2

See Also
Diagnosing Manufacturing Test Failures in the TetraMAX User Guide

Using the Failures File 2-26

Test Pattern Validation User Guide K-2015.06-SP4

Displaying the Instance Names of Failing Cells
MAX Testbench can display the instance name of the failing cells during the simulation of a
parallel-formatted STIL file. To enable this feature, you need to set the boolean variable cfg_
parallel_stil_report_cell_name in the configuration file. When this variable is set to
'1', it enables the reporting of the failing scan cell instance names ('0' is the default).Note: This
feature impacts simulationmemory consumption.
Note the following examples:
Normal Scan design:
cfg_parallel_stil_report_cell_name=0 (default)

Error during scan pattern 9 (detected during parallel unload of
pattern 8)
At T=4640.00 ns, V=47, exp=0, got=1, chain chain1, pin out[4],
scan cell 2

cfg_parallel_stil_report_cell_name=1 cell name added

Error during scan pattern 9 (detected during parallel unload of
pattern 8)
At T=4640.00 ns, V=47, exp=0, got=1, chain chain1, pin
out[4], scan cell 2, cell name out_reg[2]

Scan Compression design:
cfg_parallel_stil_report_cell_name=1 cell name added

Error during scan pattern 28 (detected during parallel unload of
pattern 27)
At T=33940.00 ns, V=340, exp=0, got=1, chain 35, scan cell 1, cell
name U_CORE.dd_d.o_tval_reg
At T=33940.00 ns, V=340, exp=1, got=0, chain 35, scan cell
7, cell name U_CORE.dd_d.o_data_reg_3_
At T=33940.00 ns, V=340, exp=1, got=0, chain 35, scan cell 9, cell
name U_CORE.dd_d.o_data_reg_1_ cfg_parallel_stil_report_cell_
name=0 (default)

Error during scan pattern 28 (detected during parallel unload of
pattern 27)

At T=33940.00 ns, V=340, exp=0, got=1, chain 35, scan cell 1

At T=33940.00 ns, V=340, exp=1, got=0, chain 35, scan cell 7

At T=33940.00 ns, V=340, exp=1, got=0, chain 35, scan cell 9

Displaying the Instance Names of Failing Cells 2-27

Test Pattern Validation User Guide K-2015.06-SP4

Table 7 Summary of the DFT and STIL support for cfg_parallel_stil_report_cell_name

Displaying the Instance Names of Failing Cells 2-28

Test Pattern Validation User Guide K-2015.06-SP4

See Also
ConfiguringMAX Testbench

Using Split STIL Pattern Files
You can use the -split_in option of the stil2Verilog command to specify the use of split
STIL pattern files. This option has two different formats:

l The -split_in { 1.stil, 2.stil… } format uses split STIL files based on a
detailed list of STIL files.

l The -split_in { dir1/*.stil } format uses split STIL files based on a generic
list description using the wildcard (*) symbol.

Note the following:
l The input STIL files from both the detailed list format and the generic list format are
assumed to belong to the same pattern set (split patterns of the same original patterns).
Multiple filesmust be specified within curly brackets, with a space before and after each
bracket.

l The input STIL files all have the same test protocol (procedures, signals, WFTs, etc). The
only difference between these STIL files is the content of the "Pattern" block, which
contains test data. Max Testbench takes the first STIL file it encounters as a representative
to the other STIL files and extracts and interprets the protocol information from it.

l Youmust ensure that the input STIL files correspond to the same split patterns. Youmust
also avoid any form of mixing with other STIL files in the list (using the detailed list format)
or mixing within the directory (using the generic list format).

Execution Flow for -split_in Option
When the -split_in option is specified, the testbench is generated using a single execution.
One testbench (.v) file is generated for all STIL files. The number of .dat files directly correlates
to the number of input STIL files.
The following example shows aMAX Testbench report:
maxtb> Parsing STL procedure file "pat1.stil" ...
maxtb> Parsing STIL data file "pat1.stil, pat2.stil, pat3.stil…"…
maxtb> STIL file successfully interpreted (PatternExec: "").
maxtb> Detected a Normal Scan mode.
maxtb> Test bench files " xtb_tbench.v", "xtb_tbench1.dat”…
“xtb_tbench3.dat" generated successfully.
maxtb> Test data file mapping :
pat1.stil ?? xtb_tbench1.dat (patterns <X1> to <Y1>)
pat2.stil ?? xtb_tbench2.dat (patterns <X2> to <Y2>)
pat3.stil ?? xtb_tbench3.dat (patterns <X3> to <Y3>)

Using Split STIL Pattern Files 2-29

Test Pattern Validation User Guide K-2015.06-SP4

The header of each .dat file identifies the STIL partition that was used to generate it, as shown in
the following example line:
// Generated from original STIL file : ./pat1.stil

Using this information, you can link various simulations to the original STIL partitions, regardless
of the order of the STIL files specified by the -split_in option. You can also combine the
existing -sim_script option with the -split_in option to generate a validation script that
enables automaticmanagement of the validation step when using different simulationmodes.

See Also
Reading a Split Patterns File in the TetraMAX User Guide

Splitting Large STIL Files
You can use the -split_out option of the stil2Verilog command to specifyMAX
Testbench to split large STIL files. For example, for a STIL file with ten patterns, the following
command generates one testbench file and three .dat files:
stil2Verilog –split_out 4 mypat.stil my_tb

The first .dat file contains four patterns (0 to 3), the second .dat file contains four patterns (#4 to
#7), and the third .dat file contains two patterns (patterns #8 and #9).
The splitting process is based on a user-specified interval. Therefore, you should avoid splitting
between two interdependent patterns.
The following sections describe how to split large STIL files:

l WhySplit Large STIL files?
l Executing the Partition Process
l Example Test

Why Split Large STIL Files?
The ability to split STIL files is useful for two situations:

l When the number of patterns in a .dat file is so large that it cannot be simulated because it
exceeds the systemmemory capacity. For example, to simulate twomillion patterns, the
size of the .dat file contains 24million lines, which corresponds to all instructions for all
patterns. In this case, the simulator (VCS) runs out of memory before completing the
simulation.

l Even if the systemmemory can accommodate the entire simulation, the excessivememory
consumption drastically impacts the performance of the simulation. This can occur when
the use of memory swapping andmemory resources prevent other applications from using
that machine.

When it splits the STIL files, MAX Testbench can resolve a completely blocked simulation, or
optimize thememory and runtime simulation. This capability also allowsMAX Testbench to
serially run a set of patterns as if these patternswere split from TetraMAX ATPG in different
STIL files.

Splitting Large STIL Files 2-30

Test Pattern Validation User Guide K-2015.06-SP4

Executing the Partition Process
You use the -split_out option to define themaximumnumber of patterns to include in each
partition. Based on your specification, MAX Testbench generates a testbench (.v) file and a set
of partitioned data (.dat) files from a single STIL file.
When splitting large STIL files, MAX Testbench uses the following equation to determine the
number of partitions (or .dat files) to create:

The partitioning process is as follows:

1. The first partition (partition 0) starts as normal and stops at the execution of the last
pattern of the partition.

2. The second partition (partition 1) starts by reproducing the test_setupmacro and the
Condition statement to restore the context of the last pattern of the first partition
(partition 0).
The second partition contains a duplication of the last pattern of the previous partition,
except that all unload states aremasked. The strobe of the states corresponds to the
second-to-last pattern of the previous partition. This strobe is ensured by the first partition,
so you do not need to replicate it. All subsequent partitions follow the architecture of the
second partition.

3. Use VCS to create a simulation executable for MAX Testbench, then use the simulation
executable and the +tmax_part=partition_number option to simulate each
partition, as shown in the following example:
simv +tmax_part=0
simv +tmax_part=1
simv +tmax_part=2

Example Test
Note the following example test:

./simv +tmax_part=0 | tee run_vcs_par_usf_split_simv0.log

./simv +tmax_part=1 | tee run_vcs_par_usf_split_simv1.log

./simv +tmax_part=0 | tee run_vcs_par_usf_split_simv0.log
Chronologic VCS simulator copyright 1991-2013
Contains Synopsys proprietary information.
##
MAX TB
Test Protocol File generated from original file "pattn/pattn_comp_
USF_par.stil"
STIL file version: 1.0

Splitting Large STIL Files 2-31

Test Pattern Validation User Guide K-2015.06-SP4

Enhanced Runtime Version: use <sim_exec> +tmax_help for available
runtime options
##

XTB: Reading partition 0 (test data file /TEST_split/pattn/pattn_
comp_USF_par_split_0.dat)
XTB: Enabling Enhanced Debug Mode. Using mode 1 (conditional
parallel strobe).
XTB: Starting parallel simulation of 6 patterns
XTB: Using 0 serial shifts
XTB: Begin parallel scan load for pattern 0 (T=200.00 ns, V=3)
XTB: Begin parallel scan load for pattern 10 (T=1700.00 ns, V=18)
XTB: Begin parallel scan load for pattern 10, unload 2 (T=2000.00
ns, V=21)
XTB: Begin parallel scan load for pattern 5 (T=1700.00 ns, V=18)
XTB: Simulation of 6 patterns completed with 0 mismatches (0
internal mismatches) (time: 2000.00 ns, cycles: 20)

V C S S i m u l a t i o n R e p o r t
Time: 2000000 ps

./simv +tmax_part=1 | tee run_vcs_par_usf_split_simv1.log
Chronologic VCS simulator copyright 1991-2013
Contains Synopsys proprietary information.
##
MAX TB
Test Protocol File generated from original file "pattn/pattn_comp_
USF_par.stil"
STIL file version: 1.0
Enhanced Runtime Version: use <sim_exec> +tmax_help for available
runtime options
###

XTB: Reading partition 1 (test data file /TEST_split/pattn/pattn_
comp_USF_par_split_1.dat)
XTB: Enabling Enhanced Debug Mode. Using mode 1 (conditional
parallel strobe).
XTB: Starting parallel simulation of 6 patterns
XTB: Using 0 serial shifts
XTB: Begin parallel scan load for pattern 5 (T=200.00 ns, V=3)
XTB: Begin parallel scan load for pattern 10 (T=1700.00 ns, V=18)
XTB: Simulation of 6 patterns completed with 0 mismatches (0
internal mismatches) (time: 2200.00 ns, cycles: 22)

V C S S i m u l a t i o n R e p o r t
Time: 2200000 ps

Splitting Large STIL Files 2-32

Test Pattern Validation User Guide K-2015.06-SP4

Force Release and Strobe Timing in Parallel Load
Simulation
The timing for parallel load simulation differs from a serial load simulation when the data is driven
directly on the flip-flops. Figure 1 shows how the parallel loadMAX Testbench works in terms of
force, release, and strobe times.

Figure 1 Timing For Parallel LoadMAX Testbench

See Also
Defining the load_unload Procedure in the TetraMAX User Guide

Force Release and Strobe Timing in Parallel Load Simulation 2-33

Test Pattern Validation User Guide K-2015.06-SP4

MAX Testbench Runtime Programmability
MAX Testbench supports a runtime programmability flow that enables you to specify a series of
runtime simulation options that use the same compiled executable in different modes.

For example, you can compile a single executable using one or more runtime options, such as
+tmax_msg, +tmax_rpt, +tmax_serial, +tmax_parallel, +tmax_n_pattern_sim,
and +tmax_test_data_file. You can then specify any of these options at runtime using the
same executable.

You can also use a set of options to change test patterns. For example, if you want to write out
patternswith different chain tests.Note: The flow for using split patterns is different than the flow
for regular patterns. For details, see "Runtime Programmability for Patterns."

The following sections describe how to configure and execute runtime programmability in
MAX Testbench:

l Basic Runtime Programmability Simulation Flow
l Runtime Programmability for Patterns
l Example: Using Runtime Predefined VCS Options
l Limitations

See Also
Configuring MAX Testbench
Predefined Verilog Options

Basic Runtime Programmability Simulation Flow
The basic simulation flow for runtime programmability is as follows:

1. Generate a STIL-based testbench. For details, see "RunningMAX Testbench."
2. Configure the compile-time options, as needed.
3. Compile the testbench, design, and libraries, and produce a single default simulation

executable. You only need to compile the executable one time, usingminimal
configuration.

4. Run the simulation, for example:
<sim_exec> +<runtime_option>

Note that you can use any of the following runtime options:

n tmax_msg

n tmax_rpt

MAX Testbench Runtime Programmability 2-34

Test Pattern Validation User Guide K-2015.06-SP4

n tmax_serial

n tmax_parallel

n tmax_n_pattern_sim

n tmax_test_data_file

For details on these options, see the "MAX Testbench Configuration" section.

5. If you encounter a new behavior, or need a new report or test patterns, specify the
appropriate runtime option and rerun the simulation without recompiling the executable.
For example:
<simv_exec> <+tmax_test_data_file="myfile.dat">

In the previous example, myfile.dat is the newly generated data (.dat) file to be used
with the existing testbench file.

Note the following:

l If you specify the tmax_serial option at compile time and the +parallel option at
runtime, the resulting simulation is a parallel simulation.

l The msg and rpt options affect the simulation report by providing different verbosity
levels. Their defaults are 0 and 5, respectively. Setting up values different than these
values, either at compile-time or runtime, is automatically reported by the testbench at
simulation time 0. The runtime options override their compilation-time counterparts.

l The n_pattern_sim option overrides the equivalent tmax_n_pattern_sim option, if
the latter option is specified. Otherwise, it overrides the default initial set of patterns (the
entire set in the STIL file, or the set generated byMax Testbench using the -first and -
last options).

Runtime Programmability for Patterns
You can use the -generic_testbench and -patterns_only optionswith the
write_testbench or stil2Verilog commands to configure runtime programmability for
patterns.

Note:Do not confuse the use of regular patterns and the use of split patterns for runtime
programmability. You cannot simultaneously use the -generic_testbench and
-patterns_only options for split patterns. See "Using Split Patterns" for details

The following sections describe how to use runtime programmability for patterns:

l Using the -generic_testbenchOption
l Using the -patterns_onlyOption
l Executing the Flow
l Using Split Patterns

MAX Testbench Runtime Programmability 2-35

Test Pattern Validation User Guide K-2015.06-SP4

Using the -generic_testbench Option
The -generic_testbench option, used in the first pass of the flow, provides special memory
allocation for runtime programmability. This is required because the Verilog 95 and 2001 formats
use staticmemory allocation to enable buffers and arrays to store andmanipulate .dat
information. This type of data storage cannot be handled by a standard .dat file. Also, it is
expected that .dat files will continue to expand as they store an increasing number of vectors and
atomic instructions.

The -generic_testbench option runs a task that detects the loading of the .dat file, and then
allocates an additional memorymargin. If, at some point, the data exceeds this allocated
capacity, an error message, such as the following, will appear.

XTB Error: size of test data file <file_name>.dat exceeding
testbench memory allocation. Exiting...
(recompile using -pvalue+design1_test.tb_part.MDEPTH=<###>).

As indicated in themessage, you will need to recompile the testbench using the suggested
Verilog parameter to adjust thememory allocation.

Using the -patterns_only Option
The -patterns_only option is used for a second pass, or later, run. It initiates a light
processing task that merges the new test data. This option also enables additional internal
instructions to be generated for the special .dat file. For example, it includes a computation of the
capacity for later usage by the testbench for memorymanagement.

If you are running an updated pattern file, and have specified the –pattern_only option, you
will see the followingmessage:

XTB: Setting test data file to "<file_name>.dat" (at runtime).
Running simulation with new database...

Executing the Flow
The flow for runtime programmability for patterns is as follows:

1. Generate the tesbench in genericmode using the first available STIL file. For example:
write_testbench -input pats.stil -output runtime_1 \
 -replace -parameter {-generic_testbench \
 -log mxtb.log -verbose}
Executing 'stil2Verilog'...

2. Compile and simulate this testbench (along with other required source and library files).
3. When a new pattern set is required, generate a new STIL file, while keeping the same

STIL procedure file for the DRC (same test protocol).

MAX Testbench Runtime Programmability 2-36

Test Pattern Validation User Guide K-2015.06-SP4

4. RerunMAX TestBench against the newly generated STIL file to generate only new the
test data file, as shown in the following example:
write_testbench -input pats_new.stil -output runtime_2 \
 -replace -parameter { -patterns_only -log mxtb_2.log \
 -verbose}

5. Attach the newly generated .dat file to the simulation executable and rerun the simulation
(without recompilation), as shown in the following example:
simv +tmax_test_data_file=”<new_pattern_filename>.dat”
Command: ./simv +tmax_test_data_file=runtime_2.dat
###
MAX TB Version H-2013.03
Test Protocol File generated from original file " pats_
new.stil"
STIL file version: 1.0
##
XTB: Setting test data file to "runtime_2.dat" (at runtime).
Running simulation with new database...
XTB: Starting parallel simulation of 5 patterns
XTB: Using 0 serial shifts
XTB: Begin parallel scan load for pattern 0 (T=200.00 ns, V=3)
XTB: Simulation of 5 patterns completed with 0 errors (time:
2700.00 ns, cycles: 27)
V C S S i m u l a t i o n R e p o r t

6. Repeat steps 3 to 5, as needed, to include a new STIL file.

Using Split Patterns
The following examples show how to split patterns for runtime programmability.

This example uses the stil2Verilog command:
stil2Verilog input_stil_file_name output_testbench_name \
 -tb_module < > -split_out 32 –generic -replace \
 -log translation.log

The next example uses the write_testbench command:

write_testbench -input input_stil_file_name -out output_testbench_
name \
 -parameters {-split_out 32 -tb_module < > –generic \
 –log mxtb.log}

The next set of examples show the process of splitting pattern files using the write_
patterns command and a series of write_testbench commands. Note that you do not
need to use the -patterns_only option to create the first split file. In this case, the first split
file is created using the -generic option in the first write_testbench command of the
command sequence.

MAX Testbench Runtime Programmability 2-37

Test Pattern Validation User Guide K-2015.06-SP4

write_patterns ./pattern/top_scan.stil -format stil -replace \
 -split 5

write_testbench -input ./pattern/top_scan_0.stil
 -output ./pattern/top_scan_maxtb -replace \
 -parameter {-generic -log mxtb_generic_split_0.log \
 -verbose }

write_testbench -input ./pattern/top_scan_1.stil \
 -output ./pattern/top_scan_maxtb_1 -replace \
 -parameter {-patterns_only -log mxtb_split_1.log \
 -verbose }

write_testbench -input ./pattern/top_scan_2.stil \
 -output ./pattern/top_scan_maxtb_2 -replace \
 -parameter {-patterns_only -log mxtb_split_2.log \
 -verbose }

write_testbench -input ./pattern/top_scan_3.stil \
 -output ./pattern/top_scan_maxtb_3 -replace \
 -parameter {-patterns_only -log mxtb_split_3.log \
 -verbose }

write_testbench -input ./pattern/top_scan_4.stil \
 -output ./pattern/top_scan_maxtb_4 -replace \
 -parameter {-patterns_only -log mxtb_split_4.log \
 -verbose }

write_testbench -input ./pattern/top_scan_5.stil \
 -output ./pattern/top_scan_maxtb_5 -replace \
 -parameter {-patterns_only -log mxtb_split_5.log \
 -verbose }

Example: Using Runtime Predefined VCS Options
The following example shows how to use runtime predefined VCS options:

%> ./simv_usf +tmax_msg=3 +tmax_n_pattern_sim=1 +tmax_rpt=3
##
MAX TB Version H-2013.03
Test Protocol File generated from original file "runtime.stil"
STIL file version: 1.0
##
XTB: Setting runtime option "tmax_n_pattern_sim" to 1.
XTB: User requesting simulating patterns 0 to 1
XTB: Setting runtime option "tmax_msg" to 3.
XTB: Setting runtime option "tmax_rpt" to 3.
XTB: Starting parallel simulation of 2 patterns

Example: Using Runtime Predefined VCS Options 2-38

Test Pattern Validation User Guide K-2015.06-SP4

XTB: Using 0 serial shifts
XTB: Processed statement: WFTStmt
XTB: Processed statement: ConditionStmt
XTB: Starting macro test_setup..., T=0.00 ns, V=1
XTB: Processed statement: test_setupStmt
XTB: Processed statement: SetPat
XTB: Starting proc load_unload..., T=200.00 ns, V=3
XTB: Begin parallel scan load for pattern 0 (T=200.00 ns, V=3)
XTB: (parallel) shift, at 300.00 ns
XTB: Processed statement: load_unloadStmt
XTB: Starting proc capture..., T=400.00 ns, V=5
XTB: Processed statement: captureStmt
XTB: Processed statement: IncPat
XTB: Starting proc load_unload..., T=500.00 ns, V=6
XTB: (parallel) shift, at 600.00 ns
XTB: Processed statement: load_unloadStmt
XTB: Starting proc capture_clk..., T=700.00 ns, V=8
XTB: Processed statement: capture_clkStmt
XTB: Processed statement: IncPat
XTB: Simulation of 2 patterns completed with 0 error (time:
1000.00 ns, cycles: 10)
V C S S i m u l a t i o n R e p o r t

Runtime Programmability Limitations
The following limitations apply to runtime programmability:

l The following runtime options are not supported: tmax_vcde, tmax_serial_timing,
tmax_diag_file, tmax_diag.

l You cannot change between the +delay_mode_zero, +typdelays, +mindelays,
and +maxdelays options.

l You cannot use a different test_setup procedure at runtime.
l You cannot change the width of a variable.
l You cannot make changes to the STIL procedure file before generating second-pass
patterns.

l You cannot change compile-time switches.
l You cannot add $dumpvars statements
l You cannot use different versions of VCS.

Runtime Programmability Limitations 2-39

Test Pattern Validation User Guide K-2015.06-SP4

MAX Testbench Support for IDDQ Testing
IDDQ testing detects circuit faults bymeasuring the amount of current drawn by a CMOS device
in the quiescent state (a value commonly called “IddQ”). If the circuit is designed correctly, this
amount of current is extremely small. A significant amount of current indicates the presence of
one or more defects in the device.
You can use the followingmethods inMAX Testbench to configure the IDDQ testing:

l Compile-TimeOptions
l Configuration File Settings
l Generating a VCS Simulation Script

See Also
Generating IDDQTest Patterns in the TetraMAX User Guide

Compile-Time Options for IDDQ
MAX Testbench has two compile-time options that support IDDQ testing and are specified at the
command line when starting a simulation. Note that these compile-time options cannot be
specified in the configuration file:

l tmax_iddq

This option enables IDDQ testing during PowerFault simulation. The default behavior is
not to use the IDDQ test mode. The following example enables IDDQ testing from the VCS
command line:
% vcs ... +define+tmax_iddq

l tmax_iddq_seed_mode=<0|1|2>

This option changes the fault seeding for IDDQ testing to one of threemodes:
n 0 for automatic seeding (default)
n 1 for seeding from a fault file only
n 2 for both automatic seeding and file seeding

When the seedingmode is set to 1 or 2, the testbench assumes the existence of a fault list
file (or its symbolic link) in the current directory named tb_module_name.faults. If
this file is not found, the simulation stops and an error is issued.
Note: You can override the default fault list name in the configuration file (see the next
section).

See Also
Predefined Verilog Options

MAX Testbench Support for IDDQ Testing 2-40

Test Pattern Validation User Guide K-2015.06-SP4

IDDQ Configuration File Settings
You canmake several IDDQ test-related specifications in a dedicated subsection of the
configuration file. Note that there are no command-line equivalences to these settings since they
are testbench file-specific commands.
cfg_iddq_seed_file fault_list_file

This parameter overrides the default tb_module_name.faults file when faults
are seeded from an external fault list file. The default tb_module_namefile in
Max Testbench is DUT_name_test.
The following example specifies faults seeded from a file called my_dut_test:
set cfg_iddq_seed_file my_dut_test

cfg_iddq_verbose 0 | 1
This parameter enables or disables the PowerFault verbose report. The default
is 1, which enables the verbose report. Specify a value of 0 to disable the
verbose report.
The following example disables the PowerFault verbose report:
set cfg_iddq_verbose 0

Note: You can use the +define+tmax_msg=4 simulation option to report file
names that are used during the simulation process.

cfg_iddq_leaky_status 0 | 1
This parameter enables or disables the PowerFault leaky nodes report printed
in the tb_name.leaky file. The default is 1, which enables the leaky nodes
report. Specify a value of 0 to disable this report.
The following example disables the PowerFault leaky nodes report:
set cfg_iddq_leaky_status 0

cfg_iddq_seed_faul_model 0 | 1
This parameter specifies the PowerFault fault model used for external fault
seeding. The default is 0, which specifies SA faults. Specify a value of 1 for
bridging faults.
The following example specifies bridging faults for automatic seeding:
set cfg_iddq_seed_faul_model 1

cfg_iddq_cycle value
Use this parameter to set the initial counter value for IDDQ strobes. The
default is 0.
The following example sets the initial counter value to 1:
set cfg_iddq_cycle 1

See Also
ConfiguringMAX Testbench

MAX Testbench Support for IDDQ Testing 2-41

Test Pattern Validation User Guide K-2015.06-SP4

Generating a VCS Simulation Script
You can useMAX Testbench to generate a script that sets up required information for IDDQ test
simulation. This information is required to enable the PLI access option functions (+acc), the
path to the archive PowerFault PLI library (libiddq_vcs.a), and the path to the PLI function
interface (iddq_vcs.tab).
Note that automatic simulation script generation for IDDQ testing is limited to the VCS simulator
only.
The following example is a basic script generated byMAX Testbench using the -sim_script
option (without using any available parameters from the configuration file) when IDDQ test
mode is enabled:
#!/bin/sh
LIB_FILES="my_lib.v ${IDDQ_HOME}/lib/libiddq_vcs.a –P${IDDQ_HOME}
/lib/iddq_vcs.tab"
DEFINES=""
OPTIONS="+tetramax +acc+2"
NETLIST_FILES="my_netlist.v"
TBENCH_FILE="new_i021_s1_s.v"
SIMULATOR="vcs"
${SIMULATOR} -R ${DEFINES} ${OPTIONS} ${TBENCH_FILE} ${NETLIST_
FILES} ${LIB_FILES}
SIMSTATUS=$?
if [${SIMSTATUS} -ne 0]
then echo "WARNING: simulation command returned error status
${SIMSTATUS}"; exit ${SIMSTATUS};
fi

Note the following:
l When generating the script, MAX Testbench assumes that the IDDQ_HOME environment
variable points to the location of an existing PowerFault PLI.

l Youmust have a valid Test-IDDQ license to run the PowerFault PLI.

Understanding MAX Testbench Parallel
Miscompares
The following example shows the VCS script used for parallel simulation for MAX Testbench:
vcs -full64 -R \
 -l parallel_stil.log \
 +delay_mode_zero +tetramax

 par.v \
 -v ../lib/class.v \
 ../1_dftc/result/lt_timer_flat.v \

Understanding MAX Testbench Parallel Miscompares 2-42

Test Pattern Validation User Guide K-2015.06-SP4

 +define+tmax_rpt=1 \
 +define+tmax_msg=10

How MAX Testbench Works
The Verilog writer for MAX Testbench is essentially an algorithm that browses the data structure
and retrieves the appropriate information according to the order and the form determined by the
Verilog testbench template.
MAX Testbench does not parse the netlist file. It retrieves the DUT interface (its hierarchical
name and its primary I/O) from the STIL file. Therefore, it is the responsibility of the STIL
provider (TetraMAX ATPG) tomake sure that this interface corresponds effectively to the one
described in the netlist. The testbench file (test protocol) contains all the details of the STIL file,
whereas the test data file translates the execution part (Pattern blocks). See Figure 4 and Figure
5.

How MAX Testbench Works 2-43

Test Pattern Validation User Guide K-2015.06-SP4

Figure 4 Relationship of Files in MAX Testbench Flow

How MAX Testbench Works 2-44

Test Pattern Validation User Guide K-2015.06-SP4

Figure 5 MAX Testbench Flow

See Also
Editing the STIL Procedure File

Predefined Verilog Options
Table 1 describes a set of predefined Verilog options.When specified on the VCS compile line,
these optionsmust be preceded by the '+define' statement

Predefined Verilog Options 2-45

Test Pattern Validation User Guide K-2015.06-SP4

Verilog Option Description

+tmax_help Usedwith the simv executable, this option reports the
available runtime options, which are:

+tmax_n_pattern_sim

+tmax_serial

+tmax_parallel

+tmax_msg

+tmax_rpt

+tmax_test_setup_only_one time

+tmax_test_data_file

+tmax_serial=N Initial N serial (flattened scan) vectors

+tmax_parallel=N Parallel scan accesswith N serial vectors

+tmax_rpt=N Specifies the interval of the progressmessage

+tmax_msg=N Control for a prespecified set of trace options

+tmax_vcde Generates an extended VCD of the simulation run

+tmax_serial_
timing

Generates a delay (a "dead period") for parallel scan
access.

+tmax_test_setup_
only_one time

Simulates the test_setup macro only one time
when using split patterns with MAX Testbench. This
option is useful when you are using multiple STIL
pattern files and want to avoid multiple simulations
of the test_setup macro. It can be used for both
compile time and runtime during a simulation.

Table 1 Predefined Verilog options

The +tmax_rpt option controls the generation of a statement on entry to every TetraMAX
ATPGpattern unit during the simulation. This statement is printed during the simulation run, and
provides an indication of progress during the simulation run. This progress statement has two
forms, depending on whether the next scan operation is executed in serial or parallel fashion:
Starting Serial Execution of TetraMAX ATPG pattern N, time NNN, V

Predefined Verilog Options 2-46

Test Pattern Validation User Guide K-2015.06-SP4

#NN

Starting Parallel Execution of TetraMAX ATPG pattern N, time NNN,
V #NN

Starting Serial Execution of TetraMAX pattern N (load N), time
NNN, V #NN
Starting Parallel Execution of TetraMAX pattern N (load N), time
NNN, V #NN

By default, the pattern reporting interval is set to every 5 patterns. This value can be changed by
specifying the interval value to the +tmax_rpt option. For instance, +define+tmax_
rpt=1 on the VCS compile line generates amessage for each TetraMAX ATPGpattern
executed. All pattern reportingmessages can be disabled by setting +define+tmax_rpt=0.

The +tmax_msg option controls a pre-defined set of trace options, using the values 1
through 4 to specify tracing, where '1' provides the least amount of trace information and '4'
traces everything. These values activate the trace options as follows:
0—disables all tracing (except progress reports with +tmax_rpt)
1— traces entry to each Procedure andMacro call
2—adds tracing ofWaveformTable changes
3—adds tracing of Labels
4—adds tracing of Vectors

The +tmax_msg option is set to 0 by default.
These two options +tmax_rpt and +tmax_msg provide a single control of tracing
information, established as the simulation environment is started. By editing the testbench file,
additional options can be specified during the simulation run.
The option +tmax_evcd supports generation of an extended VCD file for the instance of the
design under test (dut). The name of this file is "sim_vcde.out". The option +tmax_serial_
timing causes an interval of no events to be generated for each parallel scan access
operation. This period aligns the overall simulation time of parallel scan accesswith the same
time required for a normal serial shift operation. This "dead period" is described in "Parallel Scan
Access". By default, this dead period is not present and the parallel scan access simulation
occupies a single cycle period for the entire scan operation. For designs that can accept this
dead period, this option facilitates coordinating times between parallel and serial simulations,
and facilitates identifying the physical runtime of a pattern set with parallel scan access operation
present. Some designsmight not support this dead period, for instance certain styles of PLL
modelsmight lose synchronization for intervals without clock events present. These designs
should not use this option.
The +tmax_diag option controls the generation of miscomparemessages formatted for
TetraMAX ATPGdiagnostics during the simulation.

See Also
ConfiguringMAX Testbench

Predefined Verilog Options 2-47

Test Pattern Validation User Guide K-2015.06-SP4

MAX Testbench Limitations
The following limitations appliy when usingMAX Testbench:

l MAX Testbench does not support DBIST/XDBIST, or core integration. XDBIST and
CoreTest are EOL (End-Of-Life) tools.

l For script generation, predefined options are supported only for a VCS script.

See Also
Runtime Programmability Limitations

MAX Testbench Limitations 2-48

3
MAX Testbench Error Messages and
Warnings
The following sections list and describe the various error messages and warnings associated
with MAX Testbench:

l Error Message Descriptions
l WarningMessage Descriptions
l Informational Message Descriptions

Note: You can access a detailed description for a particular message by specifying either of the
following commands:

stil2Verilog -help [message_code]

or
write_testbench -help [message_code]

3-1

Test Pattern Validation User Guide K-2015.06-SP4

Error Message Descriptions
Table 1 lists all MAX Testbench error messages and their descriptions.

Error Message Description What Next

E-001- No license
found for this site

The license file specified in
the SYNOPSYS installation
does not contain a valid
license for this site.

Check the SYNOPSYS
environment variable
or contact SYNOPSYS
to get a valid license.

E-002- No threads
associated with the
first PatternExec

The tool automatically
searches for the first
PatternExec statement in
the specified STIL file. Its
name is displayed in the
verbose mode execution.
This message occurs when
the STIL interpretation
process failed to retrieve
any execution threads
corresponding to the
detected PatternExec
statement.

Check the validity of
the STIL file and its
first PatternExec
statement.

E-003 - Multiple
PatList found, not
fully supported yet
(only one at a time
or in parallel but
with PLL like
patterns)

The PatList statement is
not yet fully supported.
The tool only supports for
now only simple PatList
representations, like the
PLL like patterns.

Generate a STIL that
uses the supported
PatList syntax and
patterns .

E-006- Cannot
recover signal
<name> from the STIL
structures, last

label <name>

Respective signal cannot
be found in the Signals list
of the STIL file.

Check the STIL file
syntax

Table 1 Error Message Descriptions

Error Message Descriptions 3-2

Test Pattern Validation User Guide K-2015.06-SP4

Error Message Description What Next

E-007- Unsupported
event %s in wave of
cluster "%c" of
signal %s in WFT
"%s"

The tool currently does not
support the following event
types:WeakDown,
WeakUp,
CompareLowWindow,
CompareHighWindow,
CompareOffWindow,
CompareValidWindow,
LogicLow, LogicHigh,
LogicZ, Marker, ForcePrior

Generate a STIL that
uses only the
supported event types

E-008- The event
waves of cluster
<name> of signal
<name> in WFT <name>
have incompatible
types (force and
compare
simultaneously, not
yet supported)

The cluster of reported
signal contains both force
and compare event waves
simultaneously. The tool
does not support this yet .

Generate a STIL that
does not use this type
of event waves in the

WaveForm description

E-010- Can't find
definition for
<name> in the STIL
structures

The specified Procedure or
Macro cannot be found in
the STIL structures. That
can be caused by an
incomplete STIL file.

Check the syntax of
the STIL file

E-011- Too many
signal references in
the Equivalent
statement %s, not
yet supported

The tool only supports one
to one equivalences for
now and the input STIL file
contains Equivalent
statements with multiple
signal specifications.

Generate a STIL that
contains only one to
one equivalences

E-013- Invalid
Equivalent statement
<location>

The tool only supports one
to one equivalences for
now and the specified.
Equivalent statement does
not respect this rule.

Generate a STIL that
contains correct
Equivalent statements

Error Message Descriptions 3-3

Test Pattern Validation User Guide K-2015.06-SP4

Error Message Description What Next

E-014- Loop Data
statement in <name>
not yet supported

Only the simple Loop
statement is currently
supported. The Loop Data
is not yet supported.

Generate a STIL that
does not contain Loop
Data

E-015 - The
requested help page
does not exist

A message code was
specified that does not
correspond to an existing
help page.

Check the correctness
of the message code

E-017- Duplicate
definition for
<name>

There is more than one
definition for a specified
Procedure/Macro in the
input STIL file. This
represents a bad STIL
syntax and should be
corrected.

Check the syntax of
the input STIL file

E-018- Multiple
specification of -
log option

The command line -log
option has been specified
more than one time. Only
one specification is allowed
to avoid confusion.

Check and edit the
command line to have
a single -log
specification

E-019- Missing "log"
option value

The command line -log
option has an mandatory
argument that specifies
the name of the file which
is used to write the
transcription of the tool
execution. This argument
is absent.

Check and edit the
command line to add a
file name as argument
for -log

E-021- Error during
the consistency
checking of the
command line
parameters and
options

The error message
indicates which
parameter/option is cone
timerned.

Modify the command
line according to the
error message. Check
the user
documentation for
more details

Error Message Descriptions 3-4

Test Pattern Validation User Guide K-2015.06-SP4

Error Message Description What Next

E-023- cannot write
file <file_name> as
it already exists,
specify -replace if
you want to
overwrite it

When the tool is about to
generate a file it checks if
the respective file name
already exists on disk. In
this case, to avoid
accidental lost of user
important data the tool
asks the user for a
confirmation, more specific
the user has to provide the
-replace option in the
command line to confirm
that this is the desired
behavior.

If the overwriting of
the respective file is
desired then add the -
replace option in the
command line

E-024- Ambiguous
option <name>, can
match multiple
options like <enum>

The specified command
line option match more
than one command line
option. The command line
processing allows for
incomplete option name
specifications, but a
minimal specification is
required to avoid
ambiguity.

Edit the command line
and clearly specify
your options to avoid
ambiguity

E-025-
<file/directory_
name> No such file
or directory

The specified file(s) or
folder(s) cannot be found
on disk. This usually is
caused by a wrong
specification of the
design/library files
generated from the
command line or from the
config file.

Specify correct
file/folder names

Error Message Descriptions 3-5

Test Pattern Validation User Guide K-2015.06-SP4

Error Message Description What Next

E-028- <value> is
not a valid cfg_
time_unit or cfg_
time_precision value
(Valid integer are
1, 10 and 100. Units
of measurement are
s, ms, us, ns, ps
and fs)

Specified value for cfg_
time_unit or cfg_time_
precision is invalid. This
usually occurs in the config
file consistency checking
process.

Edit the invalid values
with correct ones

E-029- It is illegal
to set the time
precision larger
than the time unit

Value specified for time
precision is too big.

Specify a lower value
for time precision,
lower or equal with the
time unit

E-030- Cannot
generate Verilog
testbench neither
for serial nor for
parallel load
mode...

Specified testbench
generation mode is not
possible with the given
STIL file. This might
happen when you specify
the parallel_only or serial_
only configuration.

Specify a different
simulation mode

E-031- Cannot open
<file_name> file.

Specified file name is not
accessible. It may be a
config file name, a log file
name, design file name,
library file name, test data
file, protocol file, etc.

Check the existence,
the location, or the
permission of the
specified file

E-032- Error during
the consistency
checking of config_
file data

The error message
indicates which config file
field is affected.

Modify the config file
according to the error
message

E-033- Error reading
Tcl file <file_name>
at line <#>. Only
comments and
variable settings
allowed

The config file only
supports a limited Tcl
syntax, such as variable
settings, comments and
empty lines.

Modify the config file
by removing the
unsupported syntax.

Error Message Descriptions 3-6

Test Pattern Validation User Guide K-2015.06-SP4

Error Message Description What Next

E-035- Cannot
retrieve DUT module
name in STIL file.
Set the "cfg_dut_
module_name" in the
config file to avoid
the problem

The tool automatically
extracts the DUT module
name from the specified
STIL file.

Use a config file to
specify it by setting
the cfg_dut_module_
name parameter. A
template config file
can be generated
using the -generate_
config option

E-036- Detected an
unsupported multi-
vector Shift
construct.

The tool detected a STIL
Shift block that includes
multiple Vector statements
– some of which are not
consuming data without a
pound (#) sign .

Make sure the vectors
are not intended to be
post-amble (or
preamble) vectors
that need to defined
after (or before) the
Shift block. If so,
correct the STIL file
accordingly. If not,
contact Synopsys
support.

E-037- Detected an
unsupported multi-
vector Loop
construct.

The tool detected a STIL
Loop block that includes
multiple Vector
statements.

USF Parallel simulation
is not supported for
STIL files using these
type of constructs.

E-038- Cannot
process MISR
outputs. Theratio
between the number
of compressors and
the number of SERDES
MISR outputs is not
supported. Parallel
simulation may fail

The tool detected a
situation in which it can't
determine the assignment
between the compressor
outputs and the SERDES
MISR output

If possible, use a
number of
compressors that can
divide with the number
of SERDES MISR
outputs. The
simulation may fail
otherwise.

E-039- Shift
statement can only
be called from
Procedures

Shift statements are only
supported when they are
called inside a Procedure.

Generate a STIL file
that respects this
syntax

Error Message Descriptions 3-7

Test Pattern Validation User Guide K-2015.06-SP4

Error Message Description What Next

E-040 - Wrong values
for -first and/or -
last options

The first and last options
need to be positive
integers and in increasing
order (last > first). First
and last must both be less
than max_patterns.

Set the appropriate
values.

E-041 - Parallel
simulation mode for
loop block within
procedure "proc"

Parallel simulation for a
STIL file with a loop block
consuming scan data
within a load_unload
procedure is not
supported.

Regenerate a "serial_
only" STIL version
from TetraMAX ATPG
or use the -ser_only
MAXTestbench option
(in case of USF STIL)
to generate the
appropriate testbench
and run the simulation
in serial mode.

E-042 - Error during
the consistency
checking of the
input STIL file

Identifies a missing
structure or field in the
STIL file.

Add the missing
structure or field in the
input STIL file.

E-043 - Enhanced
Debug Mode for
Combined Pattern
Validation (EDCPV)

Due to some consistency
checks, EDCPVmode cannot
be activated. As a result, the
generated testbench cannot
pinpoint the exact failing scan
cell in parallel simulationmode.

Refer to the
requirements
described in
"Debugging Parallel
Simulation Failures
Using Combined
Pattern Validation."

E-044 -Detected an
invalid multibit
scan cell.
Simulation cannot be
performed in
parallel mode

MAX Testbench detected
multibit scan cells that are
incorrectly described. In this
case, parallel mode simulation
is not possible, since the
respective scan cell cannot be
correctly identified in the
design.

Check the input STIL
file and the TetraMAX
parameters for errors.

Error Message Descriptions 3-8

Test Pattern Validation User Guide K-2015.06-SP4

Warning Message Descriptions
Table 2 lists all MAX Testbench warningmessages and their descriptions.

Warning Message Description What Next

W-000 - Failed to
initialize error
file <file_name>, no
STIL syntax error
messages are
available

This message occurs
when the reported error
filename is invalid, does
not exists or the user
does not have access
rights to it. This does not
affect the tool execution,
but the eventual STIL
syntax error messages
will not be displayed.

If this is not the
expected behavior, then
check the file path and
the SYNOPSYS
environment variable

W-001 - Multiple
assignments for
signal <name> (old
value <value>),
proceeding with
<value>, last label
<name>

This message occurs
when a signal is assigned
multiple values inside a
statement. The signal
may be part of a
SignalGroup or all the
assignments may be
SignalGroups. If possible,
the tool will report the
location where this
happens, the parent
Macro/Procedure name
(if any), if there was
needed a WFCMap
specification, and the
name of the last Label
observed during
processing. This
message is displayed
only in verbose mode.

If this is not the
expected behavior, then
check the STIL file

Table 2 WarningMessage Description

Warning Message Descriptions 3-9

Test Pattern Validation User Guide K-2015.06-SP4

Warning Message Description What Next

W-002 - Multiple
assignments for
signal <name> in
signal group <name>,
proceeding with
<value>, last label
<name>

This message occurs
when a signal is assigned
multiple values inside a
statement. The signal
may be part of a
SignalGroup or all the
assignments may be
SignalGroups. If possible,
the tool will report the
locationwhere this
happens, the parent
Macro/Procedure name
(if any), if there was
needed a WFCMap
specification, and the
name of the last Label
observed during
processing. This
message is displayed
only in verbose mode.

If this is not the
expected behavior, then
check the STIL file

W-003 - Multiple
assignments for
inout signal <name>
in signal group
<name> without a
WFCMap specified
(<values>), last
label <name>

This message occurs
when a signal is assigned
multiple values inside a
statement. The signal
may be part of a
SignalGroup or all the
assignments may be
SignalGroups. If possible,
the tool will report the
locationwhere this
happens, the parent
Macro/Procedure name
(if any), if there was
needed a WFCMap
specification, and the
nameof the last Label
observed during
processing.

If this is not the
expected behavior, then
check the STIL file

Warning Message Descriptions 3-10

Test Pattern Validation User Guide K-2015.06-SP4

Warning Message Description What Next

W-004 - Insufficient
data for signal
group <name>,
ignoring signal
<name>

This message occurs for
signal groups when the
length of the data
assigned to it is less then
the length of the signal
group itself. In this case
the signals for which
there is no data to be
assigned are ignored.
This is usually caused by
an incorrect STIL.

If this is not the
expected behavior, then
check the STIL file

W-005 - Multiple
assignments for sig
<name>, proceeding
with <value>

This message occurs
when a signal is assigned
multiple values inside a
statement. The signal
may be part of a
SignalGroup or all the
assignments may be
SignalGroups. If possible,
the tool will report the
locationwhere this
happens, the parent
Macro/Procedure name
(if any), if there was
needed a WFCMap
specification, and the
nameof the last Label
observed during
processing. This
message is displayed
only in verbose mode.

If this is not the
expected behavior, then
check the STIL file

W-006 - Cannot build
testbench in
parallel load mode
(no scan chains
found)

This message occurs
when the tool did not
detect any scan chains in
the input STIL file.
Without the full
description of the scan
chains a parallel load
mode testbench cannot
be generated.

Check the STIL file
syntax or regenerate it
using the latest
versions of DFT

Compiler and Tetra MAX

Warning Message Descriptions 3-11

Test Pattern Validation User Guide K-2015.06-SP4

Warning Message Description What Next

W-007 - SYNOPSYS and
SYNOPSYS_TMAX
environment
variables have
different values,
SYNOPSYS_TMAX is
considered in this
case

This message occurs
then both SYNOPSYS and
SYNOPSYS_TMAX
environment variables
are specified but with
different values. In this
case the values specified
by the SYNOPSYS_TMAX
environment variable is
considered.

If this is not the desired
behavior, re-specify
correctly the
environment variables

W-008 - Failed to
retrieve WFC <wfc>
of signal <name>
from WFT <name>,
processing its
string value, last
label <name>

This message occurs
when a signal is assigned
a WFC that is not
described in the current
WFT In this case the tool
will try to interpret the
WFC behavior using its
string value instead of
the WFT. This message is
displayed only in verbose
mode.

If this is not the
expected behavior, then
check the STIL file

W-009 - Failed to
retrieve WFC <wfc>
for signal <name> of
group <name> in WFT
<name>, processing
its string value,
last label <name>

This message occurs
when a signal inside a
signal group is assigned a
WFC that is not described
in the current WFT. In
this case the tool will try
to interpret the WFC
behavior using its string
value insteadof the WFT.
This message this
displayed only in verbose
mode when the cone
timerned signal is of type
Pseudo.

If this is not the
expected behavior, then
check the STIL file

Warning Message Descriptions 3-12

Test Pattern Validation User Guide K-2015.06-SP4

Warning Message Description What Next

W-010 - Cannot build
testbench in
parallel load mode
(no cells specified
in <name> scan
chain)

This message occurs
when the tool did not
detect any scan cells in
the respective scan
chain. Without the full
description of the scan
chains a parallel load
mode testbench cannot
be generated.

Check the STIL file
syntax or regenerate it
using the latest
versions of DFT

Compiler and Tetra MAX

W-011 - Multiple
assignments for
signal <name> in
Vector stmt,
proceeding with
<value>, last label
<name>

This message occurs
when a signal is assigned
multiple values inside a
statement. The signal
may be part of a
SignalGroup or all the
assignments may be
SignalGroups. If possible,
the tool will report the
locationwhere this
happens, the parent
Macro/Procedure name
(if any), and the name of
the last Label observed
during processing.

If this is not the
expected behavior, then
check the STIL file

W-012 - Cannot
generate simulation
script file (DUT
module name missing)

This message occurs
when the tool was not
able to automatically
detect the name of the
DUT module and a
simulation script is
requested. In this case
the script file will not be
generated.

Specify the DUT module
name using the
command line or the
configuration file

Warning Message Descriptions 3-13

Test Pattern Validation User Guide K-2015.06-SP4

Warning Message Description What Next

W-013 - NETLIST_
FILES variable in
the simulation
script file is empty
(design files
missing)

This message occurs as a
simulation script have
been requested but no
design files have been
specified, neither using
the command line -v_file
option nor the design_
files variable in the
configuration file. In this
case the script file is not
completed.

Specify the design files
by editing the
generated simulation
script file

W-014 - LIB_FILES
variable in the
simulation script
file is empty
(library files
missing)

This message occurs as a
simulation script have
been requested but no
library files have been
specified, neither using
the command line -v_file
option nor the lib_files
variable in the
configuration file. In this
case the script file is not
completed.

Specify the library files
by editing the
generated simulation
script file

W-015 - Parallel
option ignored as -
serial_only
testbench requested

When a serial_only
testbench is requested
then, as expected, all the
parallel options are
ignored. The user is
warned to avoid any
confusion.

If this is not the
expected behavior, then
change the testbench
generation mode

W-018 - Specified
time precision
<value> too large.
This can cause
errors during
simulation

The value specified for
cfg_time_precision in the
config file may be too
large.

If this is the case, then
edit the config file and
change the value
accordingly

Warning Message Descriptions 3-14

Test Pattern Validation User Guide K-2015.06-SP4

Warning Message Description What Next

W-019 - Parallel
nshift parameter not
supported for scan
compression designs.
Ignored.

In the case of scan
compression designs, the
tool can generate a
testbench for parallel
load mode simulation
with nshift only when the
input STIL file supports
the Unified STIL flow.

Regenerate the STIL file
using the default mode
of the write_patterns
command.

W-020 - <name>
parameter not yet
supported (ignored)

Certain parameters
enumerated in the config
file example are not yet
supported.

A full list of the
supported ones may be
found in the user guide.
If specified, these
parameters are ignored

W-021 - Test bench
module name already
defined in command
line. "cfg_tb_
module_name"
variable in the
configuration file
ignored

The testbench module
name can be specified
both in command line and
in the configuration file. If
both specified, then the
command line
specification has priority
and so the configuration
file specification is
ignored.

If this is not the
expected behavior, then
remove the command
line specification

W-022 - Design files
already defined in
command line.
"design_files"
variable in the
configuration file
ignored

The design file name can
be specified both in
command line and in the
configuration file. If both
specified, then the
command line
specification has priority
and so the configuration
file specification is
ignored.

If this is not the
expected behavior, then
remove the command
line specification

Warning Message Descriptions 3-15

Test Pattern Validation User Guide K-2015.06-SP4

Warning Message Description What Next

W-023 - Library
files already
defined in command
line. "lib_files"
variable in the
configuration file
ignored

The library file name can
be specified both in
command line and in the
configuration file. If both
specified, then the
command line
specification has priority
and so the configuration
file specification is
ignored.

If this is not the
expected behavior, then
remove the command
line specification

W-024 - Unknown
<name> variable
(ignored)

The reported variable
name is not part of the
configuration file syntax.

To find the correct
syntax of this file you
can generate a config
file template using the -
generate_config option
or consult the user
manual

W-025 -
Configuration file
<file_name> does not
contain any variable
setting

The specified input
configuration file does
not contain any variable
settings.

Check the configuration
file content or path if
that is not the expected
behavior

W-026 - Invalid
load/unload chains
or groups of
ctlCompressor <name>

The ctlCompressor block
is not valid because the
load/unload chains or
groups are not correct
(i.e.: some scan chains
are specified in the
groups but are undefined
or empty). Since the
ctlCompressor block is
wrong, it is not possible
to run a parallel
simulation from a serial
formatted STIL file.

Check the STIL file and
rerun DFT Compiler
and/or TetraMAX ATPG
if necessary.

Warning Message Descriptions 3-16

Test Pattern Validation User Guide K-2015.06-SP4

Warning Message Description What Next

W-030 - Detected
Serial Only test
patterns, the
generated testbench
can only be run in
serial simulation
mode

This occurs either when
the user intentionally
requested a serial only
testbench or when the
provided STIL file does
not contain enough
information to allow a
parallel load mode
simulation also.

Check the STIL file,
TMAX script and the
options of the write_
patterns command
and the DFT script used
with DFT compiler and
make sure that this is
the desired behavior.

W-031 - Detected
Parallel Only test
patterns, the
generated testbench
can only be run in
parallel simulation
mode

This message occurs
when the provided STIL
file contains pure parallel
patterns, specially
formatted for a parallel
simulation. These
patterns can't be
simulated serially.

Check the STIL file,
TMAX script and the
options of the write_
pattern command and
the DFT script used with
DFT compiler and make
sure that this is the
desired behavior.

W-032 - Parallel
nshift parameter too
small (minimum
<value> serial shift
required)

This message occurs
when the user specifies a
parallel nshift parameter
too small. A wrong nshift
parameter value might
cause the simulation to
fail.

Change the parallel
nshift parameter using
the -parallel command
line option of
MaxTestBench or the -
parallel option of the
write_patterns
command of TetraMAX
ATPG.

W-033 - Unified STIL
Flow for Serializer
is not yet
supported. Mode
forced to serial
only simulation

The current version of
MAX Testbench does not
support Unified STIL Flow
mode for Serializer
architecture.

Contact Synopsys for
the next available
release supporting
Unified STIL Flow mode
for Serializer.

Warning Message Descriptions 3-17

Test Pattern Validation User Guide K-2015.06-SP4

Warning Message Description What Next

W-034 - Unified STIL
Flow for multiple
shifts load/unload
protocol not yet
supported. Mode
forced to serial
only simulation

The current version of
MAX Testbench does not
support Unified STIL Flow
mode for multiple shifts
load/unload protocol.

Contact Synopsys for
the next available
release supporting
Unified STIL Flow mode
for multiple shifts
load/unload protocol.

W-035 - Parallel
load mode simulation
of multi bit cells
not yet supported.
Mode forced to
serial only
simulation

The current version of
MAX Testbench does not
support parallel load
mode simulation of multi
bit cells.

Contact Synopsys for
the next available
release supporting
parallel load mode
simulation of multibit
cells.

W-036 - Scan cell
with multiple input
ports not yet
supported: parallel
load mode simulation
might fail

The current version of
MAX Testbench does not
support scan cell with
multiple input ports.
Since the tool cannot
force all the specified
input ports, parallel load
mode simulation might
fail.

Contact Synopsys for
the next available
release supporting
parallel load mode
simulation of multiple
inputs.

W-037 - Unified STIL
Flow for Sequential
Compression is not
yet supported. Mode
forced to serial
only simulation

The current version of
MAX Testbench does not
support the Unified STIL
Flow mode for Sequential
Compression
architecture.

Contact Synopsys for
the next available
release supporting
Unified STIL Flow mode
for Sequential
Compression.

Warning Message Descriptions 3-18

Test Pattern Validation User Guide K-2015.06-SP4

Warning Message Description What Next

W-038 - Testbench
data file requiring
very large memory,
automatically
using/updating -
split_out to <value>

MAX Testbench has
detected that the
testbench data file size
required a memory buffer
larger than the one
supported currently by
Verilog 1995 (the default
testbench output). To
avoid a Verilog
simulation failure, the
pattern data has been
written out in multiple
.dat files; each file will
contain a maximum
number of patterns
specified by the -split_
out value. A mapping
with all the created
partitions is reported at
the end of Max Testbench
execution. Use this map
to simulate the desired
partition. For example,
simv +tmax_part=0

W-039- Delayed
release time (cfg_
parallel_release_
time) set in
configuration file
<> ignored (valid
only for DSF
parallel STILs).

The configuration option
cfg_parallel_release_
time is not supported for
a USF STIL, nor for a
serial-only STIL file

No action required. This
message is just a
notification that the set
value is not considered
by MAX Testbench.

W-040- Unified STIL
Flow for Scalable
Adaptive Scan is not
yet supported. Mode
forced to serial
only simulation.

The current version of
MAX Testbench does not
support the Unified STIL
Flow mode for Scalable
Adaptive Scan
architecture.

Contact Synopsys for
the next available
release supporting
Unified STIL Flow mode
for Scalable Adaptive
Scan

Warning Message Descriptions 3-19

Test Pattern Validation User Guide K-2015.06-SP4

Warning Message Description What Next

W-041 - Disabling
the Enhanced Debug
Mode for Unified
STIL Flow (EDUSF)

Due to some consistency
checks, EDUSF mode
cannot be activated. The
generated testbench will
not be able to pinpoint
the exact failing scan cell
in parallel simulation
mode.

W-042 - Pattern-
based failure data
format in serial
load mode simulation
is not compliant
with the TetraMAX
diagnosis tool.

The pattern-based failure
data format of DFTMAX
Ultra Chain Test in serial
load mode simulation is
not compliant with the
TetraMAX diagnosis tool.

Use a cycle-based
failure data format in
serial load mode
simulation for DFTMAX
Ultra Chain Test in serial
load mode simulation.
Contact Synopsys for
the next available
release with the full
support of pattern-
based failure data
format.

W-044 - Detected
invalid multibit
scan cell,
simulation cannot be
performed in
parallel mode.

MaxTestbench detected
multibit scan cells that
were incorrectly
described. In this case, a
parallel mode simulation
is not possible since the
respective scan cell can't
be correctly identified in
the design.

Check the input STIL file
and the TetraMAX
parameters for errors.

Warning Message Descriptions 3-20

Test Pattern Validation User Guide K-2015.06-SP4

Informational Message Descriptions
Table 3 lists all MAX Testbench informational messages and their descriptions.

Info Message Description What Next

I-001 - nshift
parameter is greater
or equal than the
maximum scan chain
length (%d in the
current design)

This message indicates
that the value specified
for the nshift parameter is
greater or equal than the
maximum scan chain
length. In this situation,
as expected, the
simulation becomes a
serial one.

This is an expected
behavior.

I-002- Time unit sets
to <value>

This is a message to
inform the user that he is
about to overwrite the
automatic setting for this
parameter with a
specified value using the
cfg_time_unit parameter
from the configuration
file.

This is an expected
behavior

I-003- Time precision
sets to <value>

This is a message to
inform the user that he is
about to overwrite the
automatic setting for this
parameter with a
specified value using the
cfg_time_precision
parameter from the
configuration file.

This is an expected
behavior

Table 3 Informational Message Descriptions

Informational Message Descriptions 3-21

Test Pattern Validation User Guide K-2015.06-SP4

Info Message Description What Next

I-004- Multiple
assignments for
signal <name> in
signal group <name>,
using WFCMap and
proceeding with
<value>, last label
<name>

This message occurs
when a signal is assigned
multiple values inside a
statement. The signal
may be part of a
SignalGroup or all the
assignments may be
SignalGroups. If possible,
the tool will report the
location where this
happens, the parent
Macro/Procedure name (if
any), the WFCMap
resulting value, and the
name of the last Label
observed during
processing. This message
is displayed only in
verbose mode.

This is an expected
behavior

I-005- Event ForceOff
(Z) interpreted as
CompareUnknown (X) in
the event waves of
cluster "X" of Signal
"%s" in WFT "%s"

This message describes
how the tool interprets
certain 'unusual'
constructs found in the
waveform table. These
constructs are usually
encountered when
processing older versions
of STIL.

This is an expected
behavior

Table 3 Informational Message Descriptions (Continued)

Informational Message Descriptions 3-22

Test Pattern Validation User Guide K-2015.06-SP4

Info Message Description What Next

I-006- Multiple
assignments for sig
<name>, using WFCmap
and proceeding with
<value>

This message occurs
when a signal is assigned
multiple values inside a
statement. The signal
may be part of a
SignalGroup or all the
assignments may be
SignalGroups. If possible,
the tool will report the
location where this
happens, the parent
Macro/Procedure name (if
any), the WFCMap
resulting value, and the
name of the last Label
observed during
processing. This message
is displayed only in
verbose mode.

This is an expected
behavior

I-007- Event ForceOff
(Z) interpreted as
CompareUnknown (X) in
the event waves of
WFT "%s" containing
both compare and
force types

This message informs the
user about how the tool
interprets certain
'unusual' constructs found
in the waveform table.
Usually encountered
when processing older
versions of STIL.

This is an expected
behavior

I-008- Requesting
<name> EVCD file
generation (use
"tmax_vcde" simulator
compiler definition
to enable file
generation)

User specified a EVCD file
in the configuration file.
The tool will update the
testbench but the
simulation will not
generate the EVCD file by
default.

Specify the "tmax_
vcde" simulator
compiler definition to
enable file generation

Table 3 Informational Message Descriptions (Continued)

Informational Message Descriptions 3-23

Test Pattern Validation User Guide K-2015.06-SP4

Info Message Description What Next

I-009- Updated
Serializer Tail
Pipeline internally
to zero due to
shorter Serializer
data length

In the case of DFTMAX
Serializer with slow
pipelines (core pipelines),
for some configurations
TetraMAX does not
consider the Serializer
Tail pipeline stages as
expected by MAX
Testbench. When this
occurs, MAXTestbench
attempts to compensate
for this behavior.

This situation rarely
occurs.

I-011- The following
clocks will not be
pulsed during the
parallel Shift: list_
of_clocks

Lists the clocks that will
not be used during the
parallel shift simulation.

See the I-011
manpage for additional
details.

Table 3 Informational Message Descriptions (Continued)

Informational Message Descriptions 3-24

4
Debugging Parallel Simulation
Failures Using Combined Pattern
Validation
This section describes how to debug parallel simulation failures using the combined pattern
Validation (CPV) flow. Using this flow, you can precisely debug patterns by reporting the exact
failing scan cell for scan compression architectures.
This debug capability is an enhancement to the existing unified STIL flow (USF) and includes
interoperability between TetraMAX ATPG, MAX Testbench, and VCS.
The following sections describe how to debug parallel simulation:

l Overview
l Understanding the PSD File
l Creating a PSD File
l Displaying Instance Names
l Flow Configuration Options
l DebugModes for SimulationMiscompareMessages
l Pattern Splitting
l MAX Testbench and ConsistencyChecking
l Limitations

See Also
Writing STIL Patterns

4-1

Test Pattern Validation User Guide K-2015.06-SP4

Overview
TheCPV parallel simulation failure debug flow is similar to the debug flow used by the unified
STIL flow (USF). However, the USF has limited support for debugging parallel simulation
failures. For more information on both the DSF and USF, see "Writing STIL Patterns."

The USF simulation report lists the pattern number, scan output pin, and the shift index for each
failure, but it not does not include the particular scan cell that failed. For diagnosing
manufacturing defects, this information is sufficient, since you usually only need to pinpoint the
exact fault site (the location of the faulty gate or pin). However, for parallel simulation pattern
debugging, you usually need to identify the exact failing scan cell and instance name.

Using the CPV parallel simulation failure debug flow, you can conveniently debug failures
without using TetraMAX ATPG to identify the chains and cell instance nameswith issues. This
flow also provides the flexibility to use your own debug tools. Figure 1 shows the basic CPV
parallel simulation failure debug flow.

Overview 4-2

Test Pattern Validation User Guide K-2015.06-SP4

Figure 1 CPV Parallel Simulation Failure Debug Flow

As shown in Figure 1, TetraMAX ATPGsaves the parallel test data to the parallel strobe data
(PSD) file in the working directory. You then write the STIL pattern files, andMAX Testbench
uses the USF file and the PSD file to generate a testbench and test data file.

MAX Testbench also generates another test data file that holds only the parallel strobe data
used during the simulationmiscompare activity of the simulator. This additional MAX Testbench
output file (*.dat.psd) is used during the load_unload procedure as golden (expected) data,
which provides comparison data at the scan chain level and failure information at the scan cell
resolution level.

See Also
Using MAX Testbench
Setting the Run Mode

Overview 4-3

Test Pattern Validation User Guide K-2015.06-SP4

Understanding the PSD File
The PSD file is a binary format file that contains additional parallel strobe data required for
debugging parallel simulation failures. You can create a separate PSD file for each pattern
unload.Without compression, this file can be four to ten times larger than the original DSF
parallel STIL file. You can compress the PSD file as needed using the gzip utility.

The data in the PSD file corresponds to the expected strobe (unload scan chain) data. It is coded
using two bits to model states 0, 1 and X, as shown in the following example:

Pattern 1 (fast_sequential)
Time 0: load c1 = 0111
Time 1: force_all_pis = 0000000000 00000ZZZZ
Time 2: pulse clocks ck2 (1)
Time 3: force_all_pis = 0000100100 00000ZZZZ
Time 4: measure_all_pos = 00ZZZZ
Time 5: pulse clocks ck1 (0)
Time 6: unload c1 = 0000

TheHistory section of the USF file contains attributes that link the PSD file and USF pattern file.
This information uses STIL annotation, as shown in the following example:
Ann {* PSDF = last_100 *}
Ann {* PSDS = 1328742765 *}
Ann {* PSDA = #0#0/0 *}

Note the following:
l PSDF— Identifies the PSD file name and location.
l PSDS— Identifies the unique signature (composed of a date and specific ID number) of
the PSD file corresponding to the USF file.

l PSDA— Identifies the number of partitionswhenmore than one PSD file is used.

TetraMAX ATPGdoes not use the STIL Include statement to establish the USF to PSD file
link. Thismeans the additional parallel strobe data does not need to use the STIL syntax, which
could overload the USF file with large amounts of test information.
Figure 2 shows examples of the attributes in the USF file and the corresponding hex data in the
PSD file.

Understanding the PSD File 4-4

Test Pattern Validation User Guide K-2015.06-SP4

Figure 2 USF File and PSD File Example

Understanding the PSD File 4-5

Test Pattern Validation User Guide K-2015.06-SP4

Creating a PSD File
There are two ways to create a PSD file:

l Using the ATPG flow
Specify the -parallel_strobe_data_file option of the set_atpg command and
the run_atpg command. This process is described in "Using the run_atpg Command to
Create a PSD File."

l Using the Run Simulation flow
Specify the -parallel_strobe_file option of the run_simulation command
to create a PSD file and support the backward compatibility of an existing STIL file. This
process is described in "Using the run_simulation Command to Create a PSD File."

Figure 3 shows these options in a flow.

Creating a PSD File 4-6

Test Pattern Validation User Guide K-2015.06-SP4

Figure 3 Options for Creating a PSD File

Using the run_atpg Command to Create a PSD File
To generate a PSD file during the ATPG flow, you need to specify the
-parallel_strobe_data_file option of the set_atpg command and the run_atpg
command.

You can also specify the report_settings atpg command to print the settings in the PSD
file.

The following example shows how to generate a PSD file using the run_atpg command:

TEST-T> set_atpg -parallel_strobe_data_file psd_file \
 -replace_parallel_strobe_data_file

Creating a PSD File 4-7

Test Pattern Validation User Guide K-2015.06-SP4

TEST-T> report_settings atpg
atpg = parallel_strobe_data_file=psd_file,
timing_exceptions_au_analysis=no, num_processes=0;
TEST-T> run_atpg
TEST-T> write_patterns out.stil -format stil
TEST-T> write_testbench -input usf.1040.stil \

-output usf.1040 -replace -parameter \
{ -first 10 -last 40 -config config.file -verbose \
-log mxtb.log}

Executing 'stil2Verilog'...
maxtb> Starting from test pattern 10
maxtb> Last test pattern to process 40
maxtb> Total test patterns to process 31
maxtb> Detected a Scan Compression mode.
maxtb> Generating Verilog testbench for both serial and parallel
load mode...

Note the following:
l When you invokeMAX Testbench, the PSD file specified in the set_atpg command is
automatically used. If you do not want to include the PSD file, specify the following option
during simulation compilation:
tmax_usf_debug_strobe_mode=0

l The write_testbench command in the previous example references a configuration
file calledmy_config. This file contains the following command:
set cfg_parallel_stil_report_cell_name 1

This command is described in detail in "Displaying Instance Names."

Using the run_simulation Command to Create a PSD File
You use the -parallel_strobe_file option of the run_simulation command to
create a PSD file that supports the backward compatibility of an existing STIL file.

The following example shows how to use the run_simulation command to create a PSD
file:

set_atpg -noparallel_strobe_data_file

set_patterns -external usf.stil -delete
Warning: Internal pattern set is now deleted. (M133)
End parsing STIL file usf.stil with 0 errors.
End reading 22 patterns, CPU_time = 23.00 sec, Memory = 0MB

report_patterns -summary
 Pattern Summary Report

#internal patterns 0
#external patterns (usf.stil) 22
#fast_sequential patterns 22

Creating a PSD File 4-8

Test Pattern Validation User Guide K-2015.06-SP4

run_simulation -parallel_strobe_data_file \
test_tr_resim.psd -replace

Created parallel strobe data file 'test_tr_resim.psd'
Begin good simulation of 22 external patterns.
Simulation completed: #patterns=22, #fail_pats=0(0), #failing_
meas=0(0), CPU time=11.00
Total parallel strobe data patterns: 22, external patterns: 22

write_patterns usf_resim.stil -format stil -replace -external
Warning: STIL patterns defaulted to parallel simulation mode.
(M474)
Patterns written reference 158 V statements, generating 802 test
cycles
End writing file 'usf_resim.stil' with 22 patterns, File_size =
1531782, CPU_time = 23.0 sec.

report_patterns -summary
 Pattern Summary Report

#internal patterns 0
#external patterns (usf.stil) 22
#fast_sequential patterns 22

write_testbench -input usf_resim.stil -output usf_resim \
-replace -parameter { -log mxtb_resim.log -verbose \
-config my_config }

Note the following:

l For TetraMAX-generated ATPGpatterns, you should use the run_simulation
commandwithout any additional options. In this case, TetraMAX automatically uses the
appropriate simulation algorithm based on the type of pattern input. TetraMAX recognizes
patterns produced using Basic Scan or Fast-Sequential mode, but Full-Sequential mode
patterns are not supported in this flow.

l Using the run_simulation command results in longer runtimes. Therefore, whenever
possible, you should use the flow with the set_atpg -parallel_strobe_data_
file command.

l You can also improve the performance using the -num_processes option of the set_
simulation command. This option specifies the use of multiple CPU cores. For
example, the set_simulation -num_processes 4 command specifies the use of 4
cores. You can then generate the parallel patterns using the write_patternsfile_
name -parallel command.

l The write_testbench command in the previous example references a configuration
file calledmy_config. This file contains the following command:

set cfg_parallel_stil_report_cell_name 1

Creating a PSD File 4-9

Test Pattern Validation User Guide K-2015.06-SP4

This command is described in detail in the next section, "Displaying Instance Names."

l When you invokeMAX Testbench, the PSD file specified in the run_simulation
command is automatically used. If you don't want to include the PSD file, specify the
following option during simulation compilation:
tmax_usf_debug_strobe_mode=0

Displaying Instance Names
You can configureMAX Testbench to print the instance names of failing cells during the
simulation of a parallel-formatted STIL file. To do this, specify the following command in the
MAX Testbench configuration file:

set cfg_parallel_stil_report_cell_name 1

This configuration file command impacts simulationmemory consumption. If you do not want to
display instance names, specify the following command:

set cfg_parallel_stil_report_cell_name 0

You alsomust enable the use of the configuration file by specifying "1" in the User Control
Section of the header of the *.dat file generated byMAX Testbench. In this case, you do not
need to regenerate the testbench files. The following example shows the User Control Section:

// MAX TB Test Data File, generated by MAX TB
// Module under test: snps_micro
// Generated from original STIL file : ./patterns_
config/pats.usf.stil
// STIL file version: "1.0"

/////////////// User Control Section ///////////////
// Total pattern count to simulate (48), set the new value in
binary radix
110000
// Enhanced Debug for CPV. Set to 0 to disable
1

The following example shows themessage that prints when the parallel simulation failure debug
mode is enabled:

XTB: Enabling Enhanced Debug Mode.
XTB: Starting parallel simulation of 48 patterns
XTB: Using 0 serial shifts

Displaying Instance Names 4-10

Test Pattern Validation User Guide K-2015.06-SP4

Flow Configuration Options
In the example flow shown in Figure 3, MAX Testbench uses as input a PSD file created from
TetraMAX ATPGand a configuration file that specifies the reporting of instance names.
Depending on your debugging needs and simulation resources, you can use different
combinations of this input to MAX Testbench.

For example, if you do not want to reference the instance names in the simulationmiscompare
messages, you can exclude this information from the configuration file as described in
"Displaying Instance Names." Or, if you do not want to reference the strobe data provided in the
PSD file (see "Understanding the PSD File"), you can exclude this file.

Table 1 shows a summary of MAX Testbenchmismatch debug support.

Table 1 MAX Testbench SimulationMismatch Support

The following section, "Example Simulation CompareMessages," shows examples of these
reporting options.

Example Simulation Miscompare Messages
You can use different configuration combinations of input to report various simulation
miscomparemessages.

The following sections show examples of the variousmiscomparemessages:

l Example 1 showsmessages that appear when neither a PSD file or a configuration file is
used as input to MAX Testbench.

l Example 2 showsmessages that appear when a PSD file is used, but not a configuration
file.

l Example 3 showsmessages that appear when you use both a PSD file and a configuration
file as input.

l Verbosity Setting Examples showsmessageswith the trace reporting verbosity level set to
0 (the default) using the +tmax_msg runtime option.

Flow Configuration Options 4-11

Test Pattern Validation User Guide K-2015.06-SP4

Example 1

Example 1 Messages That Appear With No PSD File and NoConfiguration File

Flow Configuration Options 4-12

Test Pattern Validation User Guide K-2015.06-SP4

Example 2

Example 2 Messages That Appear With a PSD File and NoConfiguration File

Flow Configuration Options 4-13

Test Pattern Validation User Guide K-2015.06-SP4

Example 3

Example 3 Messages That Appear With a PSD File and a Configuration File

Verbosity Setting Examples
You can further control the reporting of simulationmiscomparemessages by specifying the
+tmax_msg runtime option, or by setting the cfg_message_verbosity_level
command in theMAX Testbench configuration file. For details on the +tmax_msg option, see
"Setting the Verbose Level."
The following examples show how themessages appear when you set the verbosity level to 0
(the default) using the +tmax_msg runtime option.

Example 4 Using a PSD File and NoConfiguration FileWith Verbosity Level 0
###
MAX TB
Test Protocol File generated from original file "pats.usf.stil"
STIL file version: 1.0
NO CONFIGURATION FILE
##
XTB: Begin parallel scan load for pattern 5 (T=2600.00 ns, V=27)
>>> Error during scan pattern 5 (detected from parallel unload of
pattern 4)
>>> At T=2740.00 ns, V=28, exp=1, got=0, pin test_so1, scan cell 2

Flow Configuration Options 4-14

Test Pattern Validation User Guide K-2015.06-SP4

>>> Error during scan pattern 5 (detected from parallel unload of
pattern 4)
>>> At T=2740.00 ns, V=28, exp=1, got=0, pin test_so3, scan cell 2
>>> Error during scan pattern 5 (detected from parallel unload of
pattern 4)
>>> At T=2740.00 ns, V=28, exp=1, got=0, pin test_so4, scan cell 2
XTB: searching corresponding parallel strobe failures...
>>> At T=2740.00 ns, V=28, exp=1, got=0, chain 2, scan cell 2
>>> At T=2740.00 ns, V=28, exp=0, got=1, chain 4, scan cell 2
>>> At T=2740.00 ns, V=28, exp=0, got=1, chain 9, scan cell 2

Example 5 Using a PSD File and Configuration File with Verbosity Level 0
###
MAX TB
Test Protocol File generated from original file "pats.usf.stil"
STIL file version: 1.0
USING THE CONFIGURATION FILE
##
XTB: Begin parallel scan load for pattern 5 (T=2600.00 ns, V=27)
>>> Error during scan pattern 5 (detected from parallel unload of
pattern 4)
>>> At T=2740.00 ns, V=28, exp=1, got=0, pin test_so1, scan cell 2
>>> Error during scan pattern 5 (detected from parallel unload of
pattern 4)
>>> At T=2740.00 ns, V=28, exp=1, got=0, pin test_so3, scan cell 2
>>> Error during scan pattern 5 (detected from parallel unload of
pattern 4)
>>> At T=2740.00 ns, V=28, exp=1, got=0, pin test_so4, scan cell 2
XTB: searching corresponding parallel strobe failures...
>>> At T=2740.00 ns, V=28, exp=1, got=0, chain 2, scan cell 2,
cell name mic0.alu0.accu_q_reg[7]
>>> At T=2740.00 ns, V=28, exp=0, got=1, chain 4, scan cell 2,
cell name mic0.ctrl0.s_state_reg[1]
>>> At T=2740.00 ns, V=28, exp=0, got=1, chain 9, scan cell 2,
cell name mic0.pc0.prog_counter_q_reg[5]

Example 6 Using a Configuration File and No PSD file with Verbosity Level 0:
XTB: Begin parallel scan load for pattern 5 (T=2600.00 ns, V=27)
>>> Error during scan pattern 5 (detected from parallel unload of
pattern 4)
>>> At T=2740.00 ns, V=28, exp=1, got=0, pin test_so1, scan cell 2
>>> Error during scan pattern 5 (detected from parallel unload of
pattern 4)
>>> At T=2740.00 ns, V=28, exp=1, got=0, pin test_so3, scan cell 2
>>> Error during scan pattern 5 (detected from parallel unload of
pattern 4)
>>> At T=2740.00 ns, V=28, exp=1, got=0, pin test_so4, scan cell 2
>>> Error during scan pattern 7 (detected from parallel unload of
pattern 6)

Flow Configuration Options 4-15

Test Pattern Validation User Guide K-2015.06-SP4

Debug Modes for Simulation Miscompare Messages
You can specifymodes for reporting various levels of details of simulation runtimemiscompare
messages for scan compression technology. To do this, use the +tmax_usf_debug_
strobe_mode predefined simulation command option. The syntax for this option is as follows:
+tmax_usf_debug_strobe_mode=<0, 1, 2, 3>

Eachmode is described as follows:

0 - Disables parallel simulation failure debug and generates normal error messages related only
to the scan output. Thismode is useful for increasing simulation performance when you only
want to quickly determine the pass/fail status of very large designs.

1 - Specifies the default mode, referred to as the "Conditional parallel strobemode." Thismode
generatesmiscompare simulationmessages using parallel strobe data that is applied only to
USF failures.

2 - Thismode, referred to as the "Unconditional parallel strobemode," concurrently activates the
USF and the CPV parallel strobe data for generatingmiscomparemessages for each pattern.

3 - Generatesmiscomparemessages only for internal errors using parallel strobe data applied
to each pattern. Themessages generated from thismode do not indicate if a parallel strobe
failure is propagated to the primary scan output (after the compressor).

Note: You can also specify this option as a command in the Runtime field of the testbench (*.v)
file produced byMAX Testbench. However, the simulation command line always overrides the
default specification of the testbench file.

Table 2 summarizes the errors reported for eachmode. An "Error" is actually a reported
mismatchmessage generated during scan-unload processing."Normal IOErrors" refer to error
messages generated during scan that report errors relative to the scan output. "Internal Errors"
refer to error messages generated during scan that report the error relative to an internal scan
cell.

Mode Normal IO Errors Internal Errors

Mode=0 Yes No

Mode=1 Yes Yes

Mode=2 Yes Yes

Mode=3 No Yes

Table 2 Debug Modes and Reported Errors

Debug Modes for Simulation Miscompare Messages 4-16

Test Pattern Validation User Guide K-2015.06-SP4

Note that in serial simulation, the Internal error field is not available. Only the normal I/O errors
are recorded, as if you received tester failures at the I/O of the device.

The following examples show how messages for the variousmodes appear in the log file:

MODE 0 Log File Example

jv_comp_parallel_mode0.log:XTB: Enhanced Debug Mode disabled (user
request).
jv_comp_parallel_mode0.log:XTB: Simulation of 7 patterns completed
with 6 mismatches (time: 2700.00 ns, cycles: 27)

MODE 1 Log File Example

jv_comp_parallel_mode1.log:XTB: Enabling Enhanced Debug Mode.
Using mode 1 (conditional parallel strobe).
jv_comp_parallel_mode1.log:XTB: Simulation of 7 patterns completed
with 6 mismatches (1672 internal mismatches) (time: 2700.00 ns,
cycles: 27)

MODE 2 Log File Example

jv_comp_parallel_mode2.log:XTB: Enabling Enhanced Debug Mode.
Using mode 2 (unconditional parallel strobe).
jv_comp_parallel_mode2.log:XTB: Simulation of 7 patterns completed
with 6 mismatches (10569 internal mismatches) (time: 2700.00 ns,
cycles: 27)
--

MODE 3 Log File Example
jv_comp_parallel_mode3.log:XTB: Enabling Enhanced Debug Mode.
Using mode 3 (only parallel strobe).
jv_comp_parallel_mode3.log:XTB: Simulation of 7 patterns completed
with (10569 internal mismatches) (time: 2700.00 ns, cycles: 27)

Pattern Splitting
MAX Testbench stores key simulationmiscompare activity for the parallel strobe data in a
*psd.dat file. This data is used during the load_unload procedure as golden (expected) data. By
default, the *psd.dat file contains amaximumof 1000 patterns. Whenmore than 1000 patterns
are used, MAX Testbench automatically splits the contents of the PSD file and generates a set
of corresponding set of *_psd.dat files.

You canmanually specify pattern splitting in TetraMAX ATPGor MAX Testbench using any of
the following flow options:

Pattern Splitting 4-17

Test Pattern Validation User Guide K-2015.06-SP4

l Split the patterns using the write_patterns command in TetraMAX ATPGbefore they
are used byMAX Testbench. This process is described in "Splitting PatternsUsing
TetraMAX."

l Use the -split_out option of the write_testbench or stil2Verilog commands
to split the patterns in MAX Testbench. This flow is described in "Splitting PatternsUsing
MAX Testbench."

l Use the run_simulation command flow and the -first and -last options of the
write_testbench or stil2Verilog commands to address only the failing VCS
pattern sets in MAX Testbench. This flow is described in "Specifying a Range of Split
PatternsUsingMAX Testbench."

Splitting Patterns Using TetraMAX
You can split patterns using the write_patterns command in TetraMAX ATPGbefore using
the patterns in MAX Testbench. For example, youmight want TetraMAX ATPG to write out 500
patterns per file. To do this, read each split STIL pattern file into TetraMAX ATPGand then
specify the run_simulation -parallel_strobe_data_file command for each
pattern file.

Figure 5 shows the flow for using the write_patterns command to split patterns before
usingMAX Testbench. For examples of this flow, see "ExamplesUsing TetraMAX for Pattern
Splitting."

Pattern Splitting 4-18

Test Pattern Validation User Guide K-2015.06-SP4

Figure 5 Debugging Flow Using Split Patterns in Binary Format

Pattern Splitting 4-19

Test Pattern Validation User Guide K-2015.06-SP4

Examples Using TetraMAX For Pattern Splitting
The following examples show pattern splitting using the write_patterns command in
TetraMAX ATPG:

l Set Up Example
l Example Using Pattern File Fromwrite_patternsCommand
l Example Using Split USF STIL Pattern Files

Set Up Example
The following example writes out split binary patterns from the same ATPG run:

run_atpg -auto
write_patterns pats.bin -format binary -replace -split 3

Example Using Pattern File From write_patterns Command
This example uses split binary pattern files from the write_patterns commands in the
previous example, then writes out USF STIL patterns:

set_atpg -noparallel_strobe_data_file
set_patterns -ext pats_0.bin -delete
report_patterns -summary
run_sim -parallel_strobe_data_file pat.bin.0.psd -replace
write_patterns pat.0.psd.bin.stil -format stil -replace -external
report_patterns -summary

set_atpg -noparallel_strobe_data_file
set_patterns -ext pats_1.bin -delete
report_patterns -summary
run_sim -parallel_strobe_data_file pat.bin.1.psd -replace
write_patterns pat.1.psd.bin.stil -format stil -replace -external
report_patterns -summary
set_atpg -noparallel_strobe_data_file
set_patterns -ext pats_2.bin -delete
report_patterns -summary

run_sim -parallel_strobe_data_file pat.bin.2.psd -replace
write_patterns pat.2.psd.bin.stil -format stil -replace -external
report_patterns -summary

write_testbench -input pat.0.psd.bin.stil -output \
 pat.0.bin..psd.mxtb -replace -parameters \

{-log mxtb_bin.0.log -verbose -config my_config}
write_testbench -input pat.1.psd.bin.stil -output
pat.1.bin..psd.mxtb \
 -replace -parameters {-log mxtb_bin.1.log -verbose \
 -config my_config}

Pattern Splitting 4-20

Test Pattern Validation User Guide K-2015.06-SP4

write_testbench -input pat.2.psd.bin.stil -output \
 pat.2.bin..psd.mxtb -replace -parameters \

{-log mxtb_bin.2.log -verbose -config my_config}

Example Output Files:
pat.bin.2.psd
pat.bin.1.psd
pat.bin.0.psd
pat.2.psd.bin.stil
pat.1.psd.bin.stil
pat.0.psd.bin.stil
mxtb_bin.2.log
pat.2.bin..psd.mxtb.v
pat.2.bin..psd.mxtb.dat
pat.2.bin..psd.mxtb_psd.dat
mxtb_bin.1.log
pat.1.bin..psd.mxtb.v
pat.1.bin..psd.mxtb.dat
pat.1.bin..psd.mxtb_psd.dat
mxtb_bin.0.log
pat.0.bin..psd.mxtb.v
pat.0.bin..psd.mxtb.dat
pat.0.bin..psd.mxtb_psd.dat

Example Using Split USF STIL Pattern Files
The following example uses split USF STIL pattern files:
set_atpg -noparallel_strobe_data_file
set_patterns -ext pats.usf_0.stil -delete
report_patterns -summary
run_sim -parallel_strobe_data_file pat.usf.0.psd -replace
write_patterns pat.usf.0.psd.stil -format stil -replace -external
report_patterns -summary

set_atpg -noparallel_strobe_data_file
set_patterns -ext pats.usf_1.stil -delete
report_patterns -summary

run_sim -parallel_strobe_data_file pat.usf.1.psd -replace
write_patterns pat.usf.1.psd.stil -format stil -replace -external
report_patterns -summary

set_atpg -noparallel_strobe_data_file
set_patterns -ext pats.usf_2.stil -delete
report_patterns -summary
run_sim -parallel_strobe_data_file pat.usf.2.psd -replace
write_patterns pat.usf.2.psd.stil -format stil -replace -external
report_patterns -summary

write_testbench -input pat.usf.0.psd.stil -output \

Pattern Splitting 4-21

Test Pattern Validation User Guide K-2015.06-SP4

 pat.usf.0.psd.mxtb -replace -parameters \
{-log mxtb_usf.0.log -verbose -config my_config}

write_testbench -input pat.usf.1.psd.stil -output \
 pat.usf.1.psd.mxtb -replace -parameters \

{-log mxtb_usf.1.log -verbose -config my_config}
write_testbench -input pat.usf.2.psd.stil -output \
 pat.usf.2.psd.mxtb -replace -parameters {-log \
 mxtb_usf.2.log -verbose -config my_config}

Example Output Files:

pat.usf.2.psd
pat.usf.1.psd
pat.usf.0.psd
pat.usf.2.psd.stil
pat.usf.1.psd.stil
pat.usf.0.psd.stil
mxtb_usf.2.log
pat.usf.2.psd.mxtb.v
pat.usf.2.psd.mxtb.dat
pat.usf.2.psd.mxtb_psd.dat
mxtb_usf.1.log
pat.usf.1.psd.mxtb.v
pat.usf.1.psd.mxtb.dat
pat.usf.1.psd.mxtb_psd.dat
mxtb_usf.0.log
pat.usf.0.psd.mxtb.v
pat.usf.0.psd.mxtb.dat
pat.usf.0.psd.mxtb_psd.dat

Splitting Patterns Using MAX Testbench
You canmanually specify pattern splitting in MAX Testbench using the -split_out option of
the write_testbench or stil2Verilog commands.

Figure 6 shows the flow for splitting patterns usingMAX Testbench.

Pattern Splitting 4-22

Test Pattern Validation User Guide K-2015.06-SP4

Figure 6 Flow for UsingMAX Testbench to Split Patterns

You can also split patterns in both TetraMAX ATPGandMAX Testbench. This flow is described
in Figure 7.

Pattern Splitting 4-23

Test Pattern Validation User Guide K-2015.06-SP4

Figure 7 Flow For Using Both TetraMAX andMAX Testbench to Split Patterns

Specifying a Range of Split Patterns Using MAX Testbench
You can split a specified range of split patterns in MAX Testbench so you can better focus your
debugging efforts. To do this, use the standard run_simulation command flow and read
back only the set of binary or STIL patterns that failed in simulation, then produce the PSD file
(for details, see “Using the run_simulation Command to Create a PSD File”).

Pattern Splitting 4-24

Test Pattern Validation User Guide K-2015.06-SP4

Next, use the -first and -last options of the stil2Verilog or write_testbench
commands to produce a selected set of pattern files, then resimulate these files in VCS . This
flow is described in Figure 8.

Figure 8 Flow for Splitting a Selected Range of Patterns

Pattern Splitting 4-25

Test Pattern Validation User Guide K-2015.06-SP4

MAX Testbench and Consistency Checking
When you runMAX Testbench, it automatically detects and processes the PSD file, and issues
the followingmessage:

maxtb> Detected STIL file with Enhanced Debug for CPV (EDCPV)
Capability (PSD file: psdata). Processing...

MAX Testbench performs a series of consistency checks between the contents of the USF file
and PSD file. If any issues are detected, it generates a testbench file without the parallel strobe
data, and issues the following warningmessage:

Warning: Disabling the Enhanced Debug Mode for Combined Pattern
Validation (EDCPV) corrupted PSD file due to bad file signature
(1329175245). Make sure the PSD file corresponds to the generated
STIL file (W-041)

The followingmessage is specific to the debugging parallel simulation failures using the
Combined Pattern Validation (CPV) flow:

W-041: Disabling the Enhanced Debug Mode for Unified STIL Flow
(EDUSF)

Thismessage is issued when the debugmode for parallel simulation failures cannot be activated
because of consistency checking failures. As a result, the generated testbench is not be able to
pinpoint the exact failing scan cell in parallel simulationmode. MAX Testbench continues to
generate the testbench files without the parallel strobe data file.

See Also
MAX Testbench Error Warnings and Messages

Limitations
Note the following limitations related to debugging simulation failures using CPV:

l The Full-Sequential mode is not supported.
l The set_patterns and run_simulation commands are not supported for multiple
contiguous runs (see “Creating a PSD File”). Also, update andmasking flows are not
supported, including pattern restore from binary and new pattern write flows, multiple
pattern read back, and singlemerged pattern write.

l The -first, -last, -sorted, -reorder, and -type options of the write_
patterns command are not supported.

l The -sorted, -reorder, and -type options of the write_testbench and
stil2Verilog commands are not supported.

MAX Testbench and Consistency Checking 4-26

Test Pattern Validation User Guide K-2015.06-SP4

l A PSD file cannot be generated by the write_patterns command.
l Multicore simulation is not supported in the run_simulation flow.
l The -last option of the run_simulation command is not supported.

Limitations 4-27

5
Troubleshooting MAX Testbench
The following sections describe how to resolveMAX Testbench-generated errors:

l Introduction
l Troubleshooting Compilation Errors
l TroubleshootingMiscompares
l Debugging SimulationMismatchesUsing the write_simtrace Command

5-1

Test Pattern Validation User Guide K-2015.06-SP4

Introduction
You can run a design against a set of predefined stimulus and check (validate) the design
response against an expected response. This processmimics the behavior of the tester against
a device under test.
Problemsmight occur with

l incorrect or incomplete STIL data
l incorrect connections of the device to this stimulus in the testbench
l incorrect device response due to structural errors or timing problems inside the design

Ultimately, the goal of using a testbench is to validate that the device response, often with
accurate internal timing, doesmatch the response expected in the STIL data.
There are alternative and additional troubleshooting strategies to what is presented in this
section. Themost important aspects when testing are knowledge of the design and
remembering the fundamental characteristics of the test you’re troubleshooting.

Troubleshooting Compilation Errors
This section describes some of the typical error messages you encounter during compilation
when using VCS or Ncsim. These error messages are related to the following parameters or
issues:

l FILELENGTH Parameter
l NAMELENGTH Parameter
l Memory Allocation

FILELENGTH Parameter
The following error message appears if you exceed themaximum file length:

XTB Error: cannot open /disk/path.to.a.large.file.name.maxtb_
psd.dat PSD file. Disabling Enhanced Debug USF mode...

By default, the FILELENGTH parameter in MAX Testbench is set to 1024 characters, which
corresponds to the 1024 character limit imposed byNCSIM. In some cases, you can set this
parameter to a higher limit at the compilation stage either in the testbench file or at the simulation
command line.

You can use the followingMAX Testbench parameter to change themaximum file length:

parameter FILELENGTH = 1024; // max length for file names

If you are using a set of long paths, you can set the Verilog FILELENGTH parameter in the
testbench, using the following syntax:

Introduction 5-2

Test Pattern Validation User Guide K-2015.06-SP4

-pvalue+tb_name. FILELENGTH=your_value

You alsomight encounter the following error:
Warning-[STASKW_CO] Cannot open file
/disk/some.path.name.to.a.very.large.file.name.maxtb.Verilog.gz,
8535
The file
/disk/some.path.name.to.a.very.large.file.name.maxtb.maxtb_
psd.dat'
could not be opened. No such file or directory.
Ensure that the file exists with proper permissions.
XTB Error: cannot open
/disk/some.path.name.to.a.very.large.file.name.maxtb_psd.dat PSD
file. Disabling Enhanced Debug USF mode...

For exceptionally long paths, you can override the Verilog parameter in the testbench and
specify an extended file length at the simulation recompile command line using the following
syntax:
vcs -pvalue+tb_name. FILELENGTH=your_value

NAMELENGTH Parameter
For parallel strobe data (PSD) files, the default filename length is 800 characters. If you exceed
this length, the followingmessage appears:

Warning-[STASKW_CO] Cannot open file
./LongName.p.maxtb.v, 1278
The file 'ReallyLongName.p.maxtb_psd.dat' could not be opened. No
such file or directory.
Ensure that the file exists with proper permissions.
XTB Error: cannot open ReallyLongName.p.maxtb_psd.dat PSD file.
Disabling Enhanced Debug USF mode...

To correct this error, you can set the NAMELENGTH parameter in the testbench or at the
simulation recompile line using the following syntax:
vcs -pvalue+tb_name.NAMELENGTH=800

Memory Allocation
The following error message identifies amemory allocation error:

XTB Error: size of test data file filename.dat exceeding testbench
memory allocation. Exiting...

(recompile using -pvalue+design1_test.tb_part.MDEPTH=<###>).

In this case, you need to recompile the testbench using the following Verilog parameter to adjust
thememory allocation:
-pvalue+design1_test.tb_part.MDEPTH=depth)

Troubleshooting Compilation Errors 5-3

Test Pattern Validation User Guide K-2015.06-SP4

For more information, see "MAX Testbench Runtime Programmability."

Troubleshooting Miscompares
The following sections describe the process of debugging failures (miscompares) detected
when simulating a design usingMAX Testbench and a set of generated STIL pattern data:

l HandlingMiscompareMessages
l Localizing a Failure Location
l AddingMore Fingerprints

These sections also present some techniques for usingMAX Testbench to assist in the analysis
of simulationmismatchmessageswhen they occur during a simulation run. These techniques
start with the direct approach:

l Understanding the simulationmismatchmessage completely
l Proceeding to some advanced options to assist in debugging the overall simulation
behavior

l Miscompares aremost commonly themisapplication of STIL data and caused by either
incorrect design constructs for this data

l STIL constructs for the design or the context of the application

Handling Miscompare Messages
Test data is sampled at distinct points in the test pattern, which are called test strobes. Test
strobes indicate whether the device is operating properly or not in response to the stimulus
provided by the test data.
In general, miscompares happen only on outputs (or bidirectional signals in the output mode).
This limits the visibility into both the device operation and the test data expectations, which can
make analyzing these failuresmore complicated. Furthermore, these output measurements are
placed to occur at locations of a stable device response to assure repeatable test operation. And
finally, output strobemiscompares often identify an internal failure that might have happened
some time in the past. All of these issues complicate the analysis process.
In Figure 1, the limited visibility into the design behavior is shown by output strobe data on signal
“out” that indicates this signal remains high between two test Vectors, although the actual device
operation has a period of a low state between these twomeasurements. This is not incorrect, in
fact it is probably expected design operation.

Troubleshooting Miscompares 5-4

https://solvnet.synopsys.com/dow_retrieve/D-2010.06/tpvug/tpvug_4.html#CIHBJGAI

Test Pattern Validation User Guide K-2015.06-SP4

Figure 1 Measurement Points on “OUT”

This section details the four forms of miscomparemessages generated by Verilog DPV and the
information that eachmessage contains.

Miscompare Message 1
STILDPV: Signal SOT expected to be 1 was X

At time 1240000, V# 5
With WaveformTable "_default_WFT_"
At Label: "pulse"
Current Call Stack: "capture_CLK"

Thismiscomparemessage is generated from a STIL Vector when an output response does not
match the expected data present in the test data. Themessage contains a fingerprint of
information to consider when analyzing this failure. It reports the nature of the error and where it
happened, but does not indicate why.

l The expected state in the STIL test data, and the actual state seen in the simulation during
this test strobe.

l Both the simulation time index and the STIL vector number, to cross-reference this failure
in simulation time with the test data.

l The currentWaveformTable name active in this vector, to help correlate this failure with
the STIL data and identify what timing was active at this failure.

l The last STIL vector label seen during execution of the STIL test data. Again, this helps to
correlate the failure with the STIL data. Be aware that the label might be the last one seen
if there is no label on this vector (themessage reports “Last Label Seen:” if the label is not
on this vector itself).

l The procedure andmacro call stack, if this failure happens from inside a procedure or
macro call (or series of calls).

Both the labels and the call stack informationmight be lists of multiple entries. Verilog DPV
separatesmultiple entries with a backslash (\) character.

Miscompare Message 2
STILDPV: Signal SOT expected to be 1 was X

At time 9640000, V# 97
With WaveformTable "_default_WFT_"
Last Previous Label (6 cycles prior): pulse"

Troubleshooting Miscompares 5-5

Test Pattern Validation User Guide K-2015.06-SP4

Current Call Stack: load_unload”
TetraMAX pattern 7, Index 5 of chain c1 (scancell A1)

If the failure occurs during an identified unload of scan data during the simulation with the
simulation executing serial scan simulation, then the failuremessage will contain an additional
line of information that identifies:

l The failing pattern number from the TetraMAX ATPG information.
l The index into the Shift operation that reported the failure.
l The name of the failing scan chain.
l The name of the scan cell that alignswith this index.

The index specified in thismessage is relative to the scan cell order identified in the
ScanStructures section of the STIL data; index 1 = the first scan cell in the ScanStructures
section and so on.

Miscompare Message 3
STILDPV: Parallel Mode Scancell A1 expected to be 1 was X

At time 9040100, V# 91
With WaveformTable "_default_WFT_"
TetraMAX pattern 7, Index 5 of chain c1

If the failure occurs during an identified unload of scan data during the simulation with the
simulation executing parallel scan simulation, then the failuremessage is formatted differently. It
identifies:

l The failing scan cell, and the expected and actual states of that cell.
l The time that this failure was detected (beware: in parallel mode this is the time that the
parallel-measure operation was performed. This is inside the Shift operation being
performed, but it might not correlate with a strobe time inside a Vector, because the scan
datamust be sampled before input events occur).

l TheWaveformTable active for this Shift.
l The failing pattern number from the TetraMAX information.
l The index into the Shift operation that reported the failure.
l The name of the failing scan chain.

Likemiscomparemessage 2, the index specified in thismessage is relative the scan cell order
identified in the ScanStructures section of the STIL data; index 1 = the first scan cell in the
ScanStructures section and so on.

Miscompare Message 4
STILDPV: Signal SOT changed to 1 in a windowed strobe at time
940000

Output strobes can be defined to be instantaneous samples in time, or “window strobes” that
validate an output remains at the specified state for a region of time.
Whenwindow strobes are used, an additional error might be generated if an output transitions
inside the region of that strobe. This error message identifies the signal, the state it transitioned
to, and the simulation time that this occurred.
For an example of the scenario that generates thismessage, see Figure 5.

Troubleshooting Miscompares 5-6

https://solvnet.synopsys.com/dow_retrieve/D-2010.06/tpvug/tpvug_2.html#CDEGAFGE

Test Pattern Validation User Guide K-2015.06-SP4

Localizing a Failure Location
When a failure occurs, your first debugging step is to localize the failure in the STIL data file. The
following sections describe how to localize a failure by interpreting the fingerprint information:

l Resolving the First Failure
l Miscompare Fingerprints
l Additional Troubleshooting Help

When the failure is localized, you need to determine if it's reasonable to test this output signal at
this location.
With STIL constructs, an output remains in the last specified operation (the last
WaveformCharacter asserted) until that operation (WaveformCharacter) is changed on that
signal.
In the example that follows, a signal called “tdo” is being tested in a Vector after a Shift operation.
But in the two Vectors, “tdo” is not included, because it is expected that this signal should remain
in the last tested state, or should this signal have been set to an untested value (generally an “X”
WaveformCharacter for TetraMAX tests). Notice that the “tck=P” signal is repeated in the last
two vectors, because it does not remain in the last tested state.
load_unload {

W _default_WFT_;
...
Shift { V { tdi=#; tdo=#; tck=P; }}
V { tdi=#; tdo=#; tck=P; tms=1; }
V { tck=P; tms=1; }
V { tck=P; tms=0; }

}

Resolving the First Failure
Subsequent failures can be caused by cascading effects; the very first error is the best error to
start examining. Because basic scan patterns, starting with a scan load and ending with a scan
unload, are self-contained units, failures in one scan pattern do not typically propagate—unless
the failure is indicative of a design or timing fault that persists throughout the patterns (or the
patterns have sequential behavior).
Don’t take “first” literally as the first printedmismatch, all mismatches that happen at the same
time step (or even at different times, but in the same STIL vector), are all a consequence of a
problem that was functionally detected at this point. Any error generated in the first failing vector
is a good starting point.

Miscompare Fingerprints
The following sections explain how to interpret the information contained in themiscompare
messages and how to troubleshoot various situations:

l Expected versus Actual States
l CurrentWaveform Table
l Labels and Calling Stack

Troubleshooting Miscompares 5-7

Test Pattern Validation User Guide K-2015.06-SP4

Expected versus Actual States
The first piece of data to analyze is the expected state (specified in the test data), and the actual
state present from the simulation run.
Are all the actual states an “X” value? This can indicate initialization issues, or the loss of the
internal design state during operation caused by glitches or transient events. If an “X” is found in
the simulation, start tracing it backward in both the design and in simulation time—where did that
X come from?
Are themismatches hard errors? For example is a “1” expected, but it is actually a “0”? This
could be caused by one of the following:

l Timing problems in the design
l Strobe positioning
l Extra or missing clocks
l Glitches, or transients

Current Waveform Table
The next piece of data in themismatchmessage to analyze is theWaveformTable reference.
What are the event times specified for this strobe?What are the event times on the other inputs?
Are the event relationships proper—was the test developed with the strobe events after (or
before) the input events and is that timing relationshipmaintained in thisWaveformTable?
Is there enough time between the input events and the output strobes? Does the design have
time to settle before the strobemeasurement?
TetraMAX ATPGhas distinct event ordering requirements, and the timing specified in the
WaveformTable needs to be compatible with the test generation. In particular, the strobe times
must be placed before the clock pulse (pre-clockmeasure) or after the clock pulse (post-clock
measure).
The name of theWaveformTable can sometimes help locate the failure aswell. In particular for
path delay environments, the name of theWaveformTable can identify the launch, capture, or
combined events and isolate the failing Vector that uses that namedWaveformTable.

Labels and Calling Stack
The final piece of information to analyze in themismatchmessage is the referenced label and
the current call stack at the failing location. This can often isolate the location of amismatch by
the presence of the label or the name of the procedure currently active when thismismatch
occurred.
What activity is happening here? Is it a capture or scan operation? Is an output strobe expected
here?

Additional Troubleshooting Help
Sometimes the information contained in themismatchmessage is not sufficient to localize the
failure in the STIL data. When this happens, the first thing to do is to activate the tracing options
to get more information about what was being simulated when the failure occurred. The next
section describes how to activate theMAX Testbench trace options.

Troubleshooting Miscompares 5-8

Test Pattern Validation User Guide K-2015.06-SP4

Sometimes tracingmight not get clearly to the failing location either. The last recourse is to edit
the STIL data itself and addmore information.

Adding More Fingerprints
If you cannot identify the location of a failure, youmight need to edit the STIL data and add
additional information. Themost helpful construct to add is the Label statements to a Vector that
did not have distinct labels (see following example). Because the previous label is always printed
in themiscomparemessage, adding labels directly can eliminate ambiguity in identifying that
failing location.
load_unload {

W _default_WFT_;
...
Shift { V { tdi=#; tdo=#; tck=P; }}
V { tdi=#; tdo=#; tck=P; tms=1; }

1_u_post_2: V { tck=P; tms=1; }
1_u_post_3: V { tck=P; tms=0; }
}

Labelsmight be added in STIL data files generated by TetraMAX ATPGor might be added to
the procedure definitions (if the label is added to a procedure) defined in the STL procedure file
data sent to TetraMAX ATPGaswell, if TetraMAX ATPG is used to regenerate the STIL data
test.

Debugging Simulation Mismatches Using the
write_simtrace Command
This section describes the process for using the write_simtrace command to assist in
debugging ATPGpatternmiscompares found during a Verilog simulation. You can use this
command in conjunction with sinmulationmiscompare information to create a new Verilog
module tomonitor additional nodes. A typical flow using TetraMAX ATPGand VCS is also
provided.
The following topics are covered in this section:

l Overview
l Debugging Flow
l Input Requirements
l Using the write_simtrace Command
l Understanding the Simtrace File
l Error Conditions andMessages
l Example Debug Flow
l Restrictions and Limitations

Debugging Simulation Mismatches Using the write_simtrace Command 5-9

Test Pattern Validation User Guide K-2015.06-SP4

Overview
Analyzing simulation-identifiedmismatches of expected behavior during the pattern validation
process is a complex task. There aremany reasons for amismatch, including:

l Response differences due to internal design delays
l Differences due to effects of the “actual” timing specified
l Formatting errors in the stimulus
l Fundamental errors in selecting options during ATPG

Each situationmight contribute to the causes for amismatch. The only evidence of a failure is a
statement generated during the simulation run that indicates that the expected state of an output
generated by ATPGdiffers from the state indicated by the simulation. Unfortunately, there is
minimal feedback to help you identify the cause of the situation.
To understand the specific cause of themismatch, you need to compare two sets of simulation
data: the ATPGsimulation that produced the expected state and the behavior of the Verilog
simulation that produced a different state.
After you identify the first difference in behavior, there are still several more steps in the analysis
process. You will need to trace back this first difference through the design elements (and often
back through time) to identify the cause of the difference. The process of tracing back through
time involves re-running the simulation data to produce additional data; as a result, the analysis
of this issue is an iterative process,
The key to identifying the discrepancies between the environments is to correlate the information
between the Verilog simulation and the TetraMAX ATPGsimulation. TetraMAX ATPG includes
a graphical schematic viewer (GSV) with simulation annotation capability. Verilog also has
several mechanisms to provide access to internal simulation results that are common to all
Verilog simulators.
The write_simtrace command facilitates the creation of a Verilogmodule by adding
simulation data to be used for comparison with TetraMAX ATPG.

Debugging Flow
Figure 1 shows a typical flow for debugging simulationmiscompares using the write_
simtrace command.
Note: This flow assumes that you are familiar with Verilog simulation. It also assumes that you
are using a common netlist for both the Verilog and TetraMAX ATPGenvironments, and that
you have executed the run_simulation command after ATPGwith no failures.

Debugging Simulation Mismatches Using the write_simtrace Command 5-10

Test Pattern Validation User Guide K-2015.06-SP4

Figure 1 Debugging SimulationMiscomparesUsing write_simtrace

Note in Figure 1 that a Verilog testbench is written out after the TetraMAX ATPGprocess, and is
simulated. The simulation log file showsmiscompares on scan cells or primary outputs. For each
miscompare, you will need to analyze the relevant nodes in the TetraMAX GSV to find their
source. The write_simtrace command is used to generate a new Verilogmodule with these
additional signals and read it into the simulator. If youmonitor the changes on the nodes in the
simulation environment at the time themiscompares occur, and correlate that data with the
same pattern in TetraMAX ATPG, you will eventually see some differences between the two
environments that led to the divergent behavior.
The overall process of analyzing simulationmiscompares is iterative. You can use the same
TetraMAX session for ATPGby analyzing with the GSV and running write_simtrace. On
the other hand, the simulation would need to be rerun with the new module tomonitor the
specified signals.
If you do not want to keep the TetraMAX session running (due to license or hardware demands,
for example), it is recommended that you write out an image after DRC and save the patterns in
binary format. This will ensure that you can quickly re-create the TetraMAX state used for
debugging.

Input Requirements
To leverage the functionality of this feature, you need to supply a common or compatible netlist
for both TetraMAX ATPGand the Verilog simulator.

Debugging Simulation Mismatches Using the write_simtrace Command 5-11

Test Pattern Validation User Guide K-2015.06-SP4

You also need to provide aMAX Testbench format pattern. Additional testbench environments
produced by Synopsys tools are supported but might require additions or modifications
depending on the naming constructs used to identify the DUT in the testbench. Usage outside
these flows is unsupported.
A TetraMAX scan cell report, as produced by the following command, is useful for providing the
instance path names of the scan cells:
report_scan_cells –all > chains.rpt

To avoid rerunning TetraMAX ATPG from scratch, it is recommended that you create an image
of the design after running DRC and then save the resulting ATPGpatterns in binary format.
This ensures that the TetraMAX environment can be quickly recovered for debugging simulation
miscompares if the original TetraMAX session cannot bemaintained.
Depending on the context and usage of Verilog, youmight need to edit the output simtrace file to
add a timescale statement. In addition, this file can bemodified to identify an offset time to
start themonitoring process.
You also need tomodify the Verilog scripts or invocation environment to include the debug file as
one of the Verilog source files to incorporate this functionality in the simulation.

Using the write_simtrace Command
The write_simtrace command generates a file in Verilog syntax that defines a standalone
module that contains debug statements to invoke a set of Verilog operations. This debugging
process references nodes specified by the -scan and -gate options. Because this is a
standalonemodule, it references these nets as instantiated in the simulation through the
testbenchmodule; there are dependencies on these references based on the naming
convention of the topmodule in the testbenchmodule.
After running the write_simtrace command, if all nodes specified were found and the file
waswritten as expected, TetraMAX ATPGwill print the followingmessage:
End writing file ‘filename’ referencing integer nets, File_size =

integer

This statement identifies how many nets were placed in the output file to bemonitored. Note that
the file namewill not include the path information.

Understanding the Simtrace File
The format of the output simtrace file is shown below:
// Generated by TetraMAX(TM)
// from command: < simtrace_command_line >
`define TBNAME AAA_tmax)testbench_1_16.dut
// `define TBNAME module_test.dut
module simtrace_1;

initial begin
// #<time_to_start> // uncomment and enter a time to start

$monitor("%t: <scan_data>; <gate_data>", $time(), <list of
net
references>);

end

Debugging Simulation Mismatches Using the write_simtrace Command 5-12

Test Pattern Validation User Guide K-2015.06-SP4

endmodule // simtrace_1

The name of thismodule is the name of the file without an extension. Themodule consists of a
Verilog initial block that contains an annotation (commented-out) that you can uncomment and
edit to identify the time to start this trace operation.
The default trace operation uses the Verilog $monitor statement, which is defined in the
Verilog standard and supported (with equivalent functionality) across all Verilog clones.
Each -scan and -gate option identifies a set of monitored nets in the display. Each of
these sets is configured as identified below. A semicolon is placed between each different set of
nodes in the display to emphasize separate options.
The <scan_data> is explained as follows:
If the scan reference contains a chain name and a cell name, for example, “ c450:23 ”, then
the display will contain this reference name, followed by 3 state bits that represent the state of
the scan element before this reference, the state of this reference, and the state after this
reference. The states before and after are enclosed in parentheses. If there is no element before
(this is the first element of the chain) or no element after (this is the last element of the chain),
then the corresponding state will not be present. Following the 3 states, each non-constant input
to this cell is listed aswell. This allows tracing of scan enable and scan clock behavior during the
simulation. For example, for a cell in themiddle of a chain:
C450:23 (0)1(1), D:0 SI:1 SE:0 CK:0

The <gate_data> is formatted similarly to the <scan_data> with a port name
specified. The name of the signal or net is printed, followed by the resolved state of that net. For
example: Clk1:0 .
If the gate_reference is to amodule, then the information printed looks very similar to the
information for scan_data, with one output state of themodule, followed by a listing of all non-
constant inputs.
All namesmay be long andmight traverse through the design hierarchy. By default, only the last
twenty characters of the name are printed in the output statement. The -length optionmay
be specified tomake these names uniformly longer or shorter.
You need to read the simtrace file into a Verilog simulation by adding this filename to the list of
Verilog source files on the Verilog command line or during invocation.

Error Conditions and Messages
The output file is notgenerated if there are errors on the write_simtrace command line. All
errors are accompanied by error messages of several forms, which are described as follows:

l A standard TetraMAX error message is issued for improper command arguments, missing
arguments, or incomplete command lines (no arguments).

l

In addition, M650messagesmight be generated, with the following forms:
Cannot write to simulation debug file <name>. (M650)

No nodes to monitor in simulation debug file <name>. (M650)

These twomessages indicate a failure to access a writable file, or that there were no nodes to
monitor from the command line. Both of these situationsmean that an output file will not be
generated.

Debugging Simulation Mismatches Using the write_simtrace Command 5-13

Test Pattern Validation User Guide K-2015.06-SP4

Example Debug Flow
The following use case is an example of how to use the debug flow.
After running ATPGandwriting out patterns in legacy Verilog format, the simulation of the
patterns results in the following lines in the Verilog simulation log file:

37945.00 ns; chain7:43 0(0) INs: CP:1 SI:0; dd_
decrypt.U878.ZN:0,
INs: A1:1 A2:1 B1:1 B21 C:1;

37955.00 ns; chain7:43 0(0) INs: CP:0 SI:0; dd_
decrypt.U878.ZN:0,
INs: A1:1 A2:1 B1:1 B21 C:1

// *** ERROR during scan pattern 4 (detected during final pattern
unload)

4 chain7 43 (exp=0, got=1) // pin SO_7, scan cell 43, T=
38040.00 ns
// 40000.00 ns : Simulation of 5 patterns completed with 1

errors

From the TetraMAX scan cells report:
chain7 43 MASTER NN 10199 dd_decrypt/kdin_reg_25_

(SEDFD1)

Themiscompared gates and patterns are displayed in the TetraMAX GSV, as shown in Figure
2.

Debugging Simulation Mismatches Using the write_simtrace Command 5-14

Test Pattern Validation User Guide K-2015.06-SP4

Figure 2 Display of miscompared gates and patterns

To create the debugmodule in TetraMAX ATPG, specify the following write_simtrace
command:
TEST-T> write_simtrace debug.v -re -l 100 -scan chain 7:43 \
-gate { dd_decrypt/U878 test_se }
End writing file 'debug.v' referencing 8 nets, File_size = 788.

After rerunning the simulation with the debug.vmodule, the following information is now
included in the Verilog simulation log file:

37945.00 ns; chain7:43 1(0) INs: CP:1 SI:0; dd_
decrypt.U878.ZN:1,
INs: A1:1 A2:1 B1:1 B2:1 C:0 ; test_se:1;

37955.00 ns; chain7:43 1(0) INs: CP:0 SI:0; dd_
decrypt.U878.ZN:1,
INs: A1:1 A2:1 B1:1 B2:1 C:0 ; test_se:1;

// *** ERROR during scan pattern 4 (detected during final pattern
unload)

Debugging Simulation Mismatches Using the write_simtrace Command 5-15

Test Pattern Validation User Guide K-2015.06-SP4

4 chain7 43 (exp=0, got=1) // pin SO_7, scan cell 43, T=
38040.00 ns

To correlate the information that appears in the TetraMAX GSV for pattern 4, look at the values
in the simulation log file at the time of the capture operation. To do this, search backward from
the time of themiscompare to identify when the scan enable port was enabled:

33255.00 ns; chain7:43 0(0) INs: CP:0 SI:0; dd_
decrypt.U878.ZN:0,
INs: A1:1 A2:1 B1:1 B2:1 C:0 ; test_se:1;

33300.00 ns; chain7:43 0(0) INs: CP:0 SI:0; dd_
decrypt.U878.ZN:0,
INs: A1:1 A2:1 B1:1 B2:1 C:0 ; test_se:0;

33545.00 ns; chain7:43 1(0) INs: CP:1 SI:0; dd_
decrypt.U878.ZN:1,
INs: A1:1 A2:1 B1:1 B2:1 C:1 ; test_se:0;

33555.00 ns; chain7:43 1(0) INs: CP:0 SI:0; dd_
decrypt.U878.ZN:1,
INs: A1:1 A2:1 B1:1 B2:1 C:1 ; test_se:0;

33600.00 ns; chain7:43 1(0) INs: CP:0 SI:0; dd_
decrypt.U878.ZN:1,
INs: A1:1 A2:1 B1:1 B2:1 C:1 ; test_se:1;

This example shows that the D input of the scan cell will capture the output of dd_
decrypt.U878 . Notice that there is a difference between the TetraMAX value and the
simulator value for dd_decrypt.U878.C . If you can identify the cause of this discrepancy,
you will eventually find the root cause of themiscompare. By tracing the logic cone of dd_
decrypt.U878.C in the TetraMAX GSV to primary inputs or sequential elements, the
additional objects to bemonitored in simulation can be easily extracted and their values
compared against TetraMAX ATPG.

Restrictions and Limitations
Note the following usage restrictions and limitations:

l Encrypted netlists for TetraMAX ATPGor the Verilog simulator are not supported because
the names provided by this flow will not match in both tools.

l Non-Verilog simulators are not supported.

Debugging Simulation Mismatches Using the write_simtrace Command 5-16

6
PowerFault Simulation
PowerFault simulation technology enables you to validate the IDDQ test patterns generated by
TetraMAX ATPG.
The following sections describe PowerFault simulation:

l PowerFault Simulation Technology
l IDDQTesting Flows
l Licensing

Note: PowerFault-IDDQmight not work on unsupported operating platforms or simulators. See
the TetraMAX ATPG Release Notes for a list of supported platforms and simulators.

6-1

Test Pattern Validation User Guide K-2015.06-SP4

PowerFault Simulation Technology
PowerFault simulation technology verifies quiescence at strobe points, analyzes and debusg
nonquiescent states, selects the best IDDQstrobe points for maximum fault coverage, and
generates IDDQ fault coverage reports.
Instead of using the IDDQ fault model, you can use the standard stuck-at-0/stuck-at-1 fault
model to generate ordinary stuck-at ATPGpatterns, and then allow PowerFault to select the
best patterns from the resulting test set for IDDQmeasurement. The PowerFault simulation
chooses the strobe times that provide the highest fault coverage.
PowerFault technology uses the same Verilog simulator, netlist, libraries, and testbench used
for product sign-off, helping to ensure accurate results. The netlist and testbench do not need to
bemodified in anyway, and no additional libraries need to be generated.
You run PowerFault after generating IDDQ test patternswith TetraMAX ATPG, as described in
“Quiescence Test Pattern Generation” in the TetraMAX ATPGUser Guide.
You perform IDDQ fault detection and strobe selection in two stages:

1. Run a Verilog simulation with the normal testbench, using the PowerFault tasks to specify
the IDDQconfiguration and fault selection, and to evaluate the potential IDDQstrobes for
quiescence.
The inputs to the simulation are themodel libraries, the description of the device under
test (DUT), the testbench, and the IDDQparameters (fault locations and strobe timing
information).
The simulator produces a quiescence analysis report, which you can use to debug any
leaky nodes found in the design, and an IDDQdatabase, which contains information on
the potential strobe times and corresponding faults that can be detected.

2. Run the IDDQProfiler, IDDQPro, to analyze the IDDQdatabase produced by the
PowerFault tasks. The IDDQProfiler selects the best IDDQstrobe times and generates a
fault coverage report, either in batchmode or interactively.

PowerFault Simulation Technology 6-2

Test Pattern Validation User Guide K-2015.06-SP4

Figure 1 Data Flow for PowerFault Strobe Selection

IDDQ Testing Flows
There are two recommended IDDQ testing flows:

l IDDQTest Pattern Generation— TetraMAX ATPGgenerates an IDDQ test pattern set
targeting the IDDQ fault model rather than the usual stuck-at fault model.

l IDDQStrobe Selection From an Existing Pattern Set— Use an existing stuck-at ATPG
pattern set and let the PowerFault simulation select the best IDDQstrobe times in that
pattern set.

Figure 2 shows the types of data produced by these two IDDQ test flows.

IDDQ Testing Flows 6-3

Test Pattern Validation User Guide K-2015.06-SP4

Figure 2 IDDQ Testing Flows

IDDQ Test Pattern Generation
In the IDDQ testing flow shown in Figure 2, TetraMAX ATPGgenerates a test pattern that
directly targets IDDQ faults. Instead of attempting to propagate the effects of stuck-at faults to
the device outputs, the ATPGalgorithm attempts to sensitize all IDDQ faults and apply IDDQ
strobes to test all such faults. TetraMAX ATPGcompresses andmerges the IDDQ test patterns,
just like ordinary stuck-at patterns.
While generating IDDQ test patterns, TetraMAX ATPGavoids any condition that could cause
excessive current drain, such as strong or weak bus contention or floating buses. You can
override the default behavior and specify whether to allow such conditions by using the set_iddq
command.
In this IDDQ flow, TetraMAX ATPGgenerates an IDDQ test pattern and an IDDQ fault
coverage report. It generates quiescent strobes by using ATPG techniques to avoid all bus
contention and float states in every vector it generates. The resulting test pattern has an IDDQ
strobe for every ATPG test cycle. In other words, the output is an IDDQ-only test pattern.

IDDQ Testing Flows 6-4

Test Pattern Validation User Guide K-2015.06-SP4

After the test pattern has been generated, you can use a Verilog/PowerFault simulation to verify
the test pattern for quiescence at each strobe. The simulation does not need to perform strobe
selection or fault coverage analysis because these tasks are handled by TetraMAX ATPG.
Having TetraMAX ATPGgenerate the IDDQ test patterns is a very efficient method. It works
best when the design usesmodels that are entirely structural. When the designmodels
transistors, capacitive discharge, or behavioral elements in either the netlist or library, the ATPG
might be either optimistic or pessimistic because it does not simulate themixed-level data and
signal information in the sameway as the Verilog simulationmodule. Consider this behavior
when you select your IDDQ test flow.

IDDQ Strobe Selection From an Existing Pattern Set
In the IDDQ testing flow shown in Figure 1, PowerFault selects a near-optimum set of strobe
points from an existing pattern set. The existing pattern can be a conventional stuck-at ATPG
pattern or a functional test pattern. The output of this flow is the original test pattern with IDDQ
strobe points identified at the appropriate times for maximum fault coverage.
In order for valid IDDQstrobe times to exist, the designmust be quiescent enough of the time so
that an adequate number of potential strobe points exist. You need to avoid conditions that could
cause current to flow, such as floating buses or bus contention.
The specification of faults targeted for IDDQ testing is called fault seeding. There are a variety of
ways to perform fault seeding, depending on your IDDQ testing goals. For example, to
complement stuck-at ATPG testing done by TetraMAX ATPG, you can initially target faults that
could not be tested by TetraMAX ATPG, such as those found to be undetectable, ATPG
untestable, not detected, or possibly detected. For general IDDQ fault testing, you can seed
faults automatically from the design description, or you can provide a fault list generated by
TetraMAX ATPGor another tool.
The Verilog/PowerFault simulator determines the quiescent strobe times in the test pattern
(called the qualified strobe times) and determineswhich faults are detected by each strobe.
Then the IDDQProfiler finds a set of strobe points to providemaximum fault coverage for a
given number of strobes.
You can optionally run the IDDQProfiler in interactivemode, which lets you select different
combinations of IDDQstrobes and examine the resulting fault coverage for each combination.
Thismode lets you navigate through the hierarchy of the design and examine the fault coverage
at different levels and in different sections of the design.

Licensing
The Test-IDDQ license is required to performVerilog/PowerFault simulation. This license is
automatically checked out when needed, and is checked back in when the tool stops running.
By default, the lack of an available Test-IDDQ license causes an error when the tool attempts to
check out a license. You can have PowerFault wait until a license becomes available instead,
which lets you queue upmultiple PowerFault simulation processes and have each process
automatically wait until a license becomes available.

Licensing 6-5

Test Pattern Validation User Guide K-2015.06-SP4

PowerFault supports license queuing, which allows the tool to wait for licenses that are
temporarily unavailable. To enable this feature, youmust set the SNPSLMD_QUEUE
environment variable to a non-empty arbitrary value (“1”, “TRUE”, “ON”, “SET”, etc.) before
invoking PowerFault:
unix> setenv SNPSLMD_QUEUE 1

Existing Powerfault behavior with SSI_WAIT_LICENSE will continue to be supported for
backward functionality of existing customer scripts.
% setenv SSI_WAIT_LICENSE

Note: If the license does not exist or was not installed properly, then the Verilog/PowerFault
simulation will hang indefinitely without anywarning or error message.

Licensing 6-6

7
Verilog Simulation with PowerFault
PowerFault simulation technology operates as a standard programmable language interface
(PLI) task that you add to your Verilog simulator. You can use PowerFault to find the best IDDQ
strobe points for maximum fault coverage, to generate IDDQ fault coverage reports, to verify
quiescence at strobe points, and to analyze and debug nonquiescent states.
The following sections describe Verilog simulation with PowerFault:

l Preparing Simulators for PowerFault IDDQ
l PowerFault PLI Tasks

7-1

Test Pattern Validation User Guide K-2015.06-SP4

Preparing Simulators for PowerFault IDDQ
PowerFault includes two primary parts:

l A set of PLI tasks you add to the Verilog simulator
l The IDDQProfiler, a program that reads the IDDQdatabase generated by the
PowerFault’s IDDQ-specific PLI tasks

Before you can use PowerFault, you need to link the PLI tasks into your Verilog simulator. The
procedure for doing this depends on the type of Verilog simulator you are using and the platform
you are running. The following sections provide instructions to support the following Verilog
simulators (platform differences are identified with the simulator):

l Synopsys VCS
l Cadence NC-Verilog®
l Cadence Verilog-XL®
l Model TechnologyModelSim®

These instructions assume basic installation contexts for the simulators. If your installation
differs, you will need tomake changes to the commands presented here. For troubleshooting
problems, refer to the vendor-specific documentation on integrating PLI tasks. Information about
integrating additional PLI tasks is not presented here.
setenv SYNOPSYS root_directory
set path=($SYNOPSYS/bin $path)

For a discussion about the use of the SYNOPSYS_TMAX environment variable, see “Specifying
the Location for TetraMAX Installation.”
Then, to simplify the procedures, set the environment variable $IDDQ_HOME to point to where
you installed Powerfault IDDQ. For example, in a typical Synopsys installation using csh, the
command is:
setenv IDDQ_HOME $SYNOPSYS/iddq/

Note the following:
l sparc64 and hp64 should be used only in specific 64-bit contexts.
l PowerFault features dynamic resolution of its PLI tasks. Thismeans that one time a
simulation executable has been built with the PowerFault constructs present (following the
guidelines here), this executable does not need to be rebuilt if you change to a different
version of PowerFault. Changing the environment variable $IDDQ_HOME to the desired
version will load the runtime behavior of that version of PowerFault dynamically into this
simulation run.

Using PowerFault IDDQ With Synopsys VCS
To generate the VCS simulation executable with PowerFault IDDQ, invoke VCS with the
following arguments:

l Command-line argument +acc+2

l When running zero-delay simulations, youmust use the +delay_mode_zero and

Preparing Simulators for PowerFault IDDQ 7-2

Test Pattern Validation User Guide K-2015.06-SP4

+tetramax arguments.
l Command-line argument -P $IDDQ_HOME/lib/iddq_vcs.tab to specify the PLI
table (or merge this PLI table with other tables youmight already be using), a reference to
$IDDQ_HOME/lib/libiddq_vcs.a. Note: do not used the -P argument with any
non-PLI Verilog testbenches.

In addition, youmust specify:
l Your designmodules
l Any other command-line options necessary to execute your simulation

If your simulation environment uses PLIs frommultiple sources, youmight need to combine the
tab files from each PLI, along with the file $IDDQ_HOME/lib/iddq_vcs.tab for
PowerFault operation, into a single tab file. See the VCS documentation for information about
tab files.
The following commandwill enable the ssi_iddq task to be invoked from the Verilog source
information in model.v:
vcs model.v +acc+2 -P $IDDQ_HOME/lib/iddq_vcs.tab \
$IDDQ_HOME/lib/libiddq_vcs.a

For VCS 64-bit operation, if you specify the -full64 option for VCS 64-bit contexts, youmust
also set $IDDQ_HOME to the appropriate 64-bit build for that platform: either sparc64 for
Solaris environments or hp64 for HP-UX environments. If you do not specify the -full64
option, then sparcOS5 or hp32 should be specified. Since the -comp64 option affects
compilation only, $IDDQ_HOME should reference sparcOS5 or hp32 software versions as
well.
For difficulties that you or your CAD group cannot handle, contact Synopsys at:
Web: https://solvnet.synopsys.comEmail: support_center@synopsys.comPhone: 1-800-245-
8005 (inside the continental United States)
Additional phone numbers and contacts can be found at:
http://www.synopsys.com/Support/GlobalSupportCenters/Pages
For additional VCS support, email vcs_support@synopsys.com.

Using PowerFault IDDQ With Cadence NC-Verilog
The following sections describe how to prepare for and run a PowerFault NC-Verilog simulation:

l Setup
l Creating the Static Executable
l Running Simulation
l Creating a Dynamic Library
l Running Simulation

Setup
You can use the Powerfault library with NC-Verilog in manyways. The following example
describes two such flows. For both flows, set these NC-Verilog-specific environment variables:
setenv CDS_INST_DIR <path_to_Cadence_install_directory>
setenv INSTALL_DIR $CDS_INST_DIR
setenv ARCH <platform> //sun4v for solaris, lnx86 for linux.

Preparing Simulators for PowerFault IDDQ 7-3

Test Pattern Validation User Guide K-2015.06-SP4

setenv LM_LICENSE_FILE <>

32-bit Setup
setenv LD_LIBRARY_PATH $CDS_INST_DIR/tools:${LD_LIBRARY_PATH} //
32-bit
set path=($CDS_INST_DIR/tools/bin $path) // 32-bit

64-bit Setup
Note:Use +nc64 option when invoking
setenv LD_LIBRARY_PATH $CDS_INST_DIR/tools/64bit:${LD_LIBRARY_
PATH} //
64-bit
set path=($CDS_INST_DIR/tools/bin/64bit $path) // 64-bit

Note: For the 64-bit environments use the *cds_pic.a libraries

Creating the Static Executable
The following steps describe how to create the static executable:

1. Create a directory to build the ncelab and ncsim variables and navigate to this directory.
Create an environment variable to this path to access it quickly.
mkdir nc
cd nc
setenv LOCAL_NC "/<this_directory_path>"

If PowerFault is the only PLI being linked into the Verilog run, then go to step 2. If
additional PLIs are being added to your Verilog environment, then go to step 3.

2. Run two build operations using your Makefile.nc
make ncelab $IDDQ_HOME/lib/sample_Makefile.nc
make ncsim $IDDQ_HOME/lib/sample_Makefile.nc

Go to step 6.
3. Copy the PLI task and the samplemakefile into the nc directory. Themakefile contains the

pathname of the PowerFault object file $IDDQ_HOME/lib/libiddq_cds.a.
cp $IDDQ_HOME/lib/veriuser_sample_forNC.c .
cp $IDDQ_HOME/lib/sample_Makefile.nc .

4. Edit the example files to define additional PLI tasks.
5. Run two build operations using your Makefile.nc

make ncelab -f sample_Makefile.nc
make ncsim -f sample_Makefile.nc

6. Ensure the directory you created is located in your path variable before the instances of
these tools under the directory: $CDS_INST_DIR.
set path=($LOCAL_NC $path)

Running Simulation
ncvlog <design data and related switches>
ncelab -access +rwc <related switches>

Preparing Simulators for PowerFault IDDQ 7-4

Test Pattern Validation User Guide K-2015.06-SP4

ncsim <testbench name and related switches>

Make sure that the executables ncelab and ncsim picked up in the previous steps are the
ones created in $LOCAL_NC directory, not the ones in the cadence installation path.
You can also use the single-step ncVerilog command as follows:
ncVerilog +access+rwc +ncelabexe+$LOCAL_NC/ncelab
+ncsimexe+$LOCAL_NC/ncsim <design data and other switches>

Note: If using 64-bit binaries, use the “+nc64” option with the ncVerilog script

Creating a Dynamic Library
This section describes a flow to create a dynamic library libpli.so and update the path, LD_
LIBRARY_PATH to include the path to this library. In this flow, TetraMAX ATPG resolves PLI
functional calls during simulation. There are two ways to build the dynamic library: either use
vconfig, as in the first flow below, or use the sample_Makefile.nc, with the target being libpli.so.

1. Create a directory in which to build the libpli.so library and navigate to this directory. Set
an environment variable to this location to access it quickly.
mkdir nc
cd nc
setenv LIB_DIR "/<this_directory_path>"

2. Copy the PLI task file into the directory.
cp $IDDQ_HOME/lib/veriuser_sample_forNC.c .

3. Edit the sample files to define additional PLI tasks.
4. Use the vconfig utility and generate the script fo create the libpli.so library. You can also

use the cr_vlog template file shown at the end of this step.
l Name the output script cr_vlog.

l Select Dynamic PLI libraries only

l Select build libpli

l Ensure that you include the user template file veriuser.c in the link statement.
This is the $IDDQ_HOME/lib/veriuser_sample_forNC.c file that you
copied to the $LIB_DIR directory.

l

Link the Powerfault object file from the pathname, $IDDQ_HOME/lib/libiddq_cds.a
The vconfig command displays the followingmessage after it completes:
*** SUCCESSFUL COMPLETION OF VCONFIG
****** EXECUTE THE SCRIPT: cr_vlog TO BUILD: Dynamic PLI
library.

l Add another linking path:$IDDQ_HOME/lib to the first compile command in the cr_
vlog script.
The cr_vlog script is as follows:
cc -KPIC -c ./veriuser_sample_forNC.c -I$CDS_INST_
DIR/tools/Verilog/include -I$IDDQ_HOME/lib

Preparing Simulators for PowerFault IDDQ 7-5

Test Pattern Validation User Guide K-2015.06-SP4

ld -G veriuser_sample_forNC.o $IDDQ_HOME/lib/libiddq_cds.a
-o libpli.so

l Change the cr_vlog script to correspond the architecure of themachine on which it
runs.

l To compile on a 64-bit machine, use the -xarch=v9 value with the cc command.
l For Linux, use -fPIC instead of -KPIC. Also, youmight need to replace ld with
gcc or use -lc with ld on Linux.

5. Run the cr_vlog script to create libpli.so library. Ensure the directory $LIB_DIR you create
is in the path, LD_LIBRARY_PATH.
setenv LD_LIBRARY_PATH ${LIB_DIR}:${ LD_LIBRARY_PATH}

Note: Youmust edit the generated cr_vlog script to add a reference to 64-bit environment on the
veriuser.c compile (add -xarch=v9), and the -64 option to the ld command.

Running Simulation
ncvlog <design data and related switches>
ncelab -access +rwc <related switches>
ncsim <testbench name and related switches>
Equivalently, single-step ncVerilog command can also be used
as
follows.
ncVerilog +access+rwc <design data and other switches>

Using PowerFault IDDQ With Cadence Verilog-XL
The following sections describe how to setup and run a PowerFault Cadence Verilog-XL
simulation:

l Setup
l Running Simulation
l Running Verilogxl

Setup
To access user-defined PLI tasks at runtime, create a link between the tasks and a Verilog-XL
executable using the vconfig command. The vconfig command displays a series of prompts and
creates another script called cr_vlog, which builds and links the ssi_iddq task into the Verilog
executable.
This is a standard procedure for many Verilog-XL users. You only need to do it only one time for
a version of Verilog-XL, and it should take about 10minutes. Cadence uses thismethod to
support users that need PLI functionality.
After you create a link between the PowerFault IDDQconstructs and the Verilog-XL executable,
you can use them each time you run the executable. The PowerFault IDDQ functions do not add
overhead to a simulation run if the run does not use these functions. The functions are not
loaded unless you use PowerFault IDDQPLIs in the Verilog source files.

Preparing Simulators for PowerFault IDDQ 7-6

Test Pattern Validation User Guide K-2015.06-SP4

You do not need any additional runtime options for a Verilog-XL simulation to use PowerFault
IDDQafter you create a link to it.
To create a link between the tasks and a Verilog-XL executable, do the following:

1. Set the Verilog-XL specific environment variables:
setenv CDS_INST_DIR <path_to_Cadence_install_directory>
setenv INSTALL_DIR $CDS_INST_DIR
setenv TARGETLIB .
setenv ARCH <platform>
setenv LM_LICENSE_FILE <>
setenv LD_LIBRARY_PATH $CDS_INST_DIR/
tools:${LD_LIBRARY_PATH}
set path=($CDS_INST_DIR/tools/bin $CDS_INST_DIR/tools/
bin $path)

2. Create a directory to hold the Verilog executable and navigate into it. Set an environment
variable to this location to access it quickly.
mkdir vlog
cd vlog
setenv LOCAL_XL "/<this_directory_path>"

3. Copy the sample veriuser.c file into this directory:
cp $IDDQ_HOME/lib/veriuser_sample_forNC.c .

4. Edit the veriuser_sample_forNC.c file to define additional PLI tasks.
5. Run the vconfig command and create the cr_vlog script to link the new Verilog executable.

The vconfig commands displays the following prompts. Respond to each prompt as
appropriate; for example,
Name the output script cr_vlog. Choose a Stand Alone target. Choose a
Static with User PLI Application link. Name the Verilog-XL target
Verilog.
You can answer no to other options.
Create a link between your user routines and Verilog-XL. The cr_vlog script includes a
section to compile your routines and include them in the link statement.
Ensure that you include the user template file veriuser.c in the link statement. This is the
$IDDQ_HOME/lib/veriuser_sample_forNC.c file that you copied to the vlog directory.
Ensure that you include the user template file vpi_user.c in the link statement. The
pathname of this file is $CDS_INST_DIR/Verilog/src/ vpi_user.c. The
vconfig command prompts you to accept the correct path.
Create a link to Powerfault object file aswell. The pathname of this file is $IDDQ_
HOME/lib/libiddq_cds.a
After it completes, the vconfig command completes:
*** SUCCESSFUL COMPLETION OF VCONFIG ***

*** EXECUTE THE SCRIPT: cr_vlog TO BUILD: Stand Alone

Verilog-XL

Preparing Simulators for PowerFault IDDQ 7-7

Test Pattern Validation User Guide K-2015.06-SP4

6. Add to the option -I/$IDDQ_HOME/lib to the first compile command in the cr_vlog
file, which compiles the sample veriuser.c file.

7. Do the following before running the generated cr_vlog script:
Note for HP-UX 9.0 and 10.2 users:
The cr_vlog script must use the -Wl and -E compile options. Change the cc command
from cc -o Verilog to cc -Wl,-E -o Verilog.
If you are using either HPUX 9.0 or Verilog-XL version 2.X, youmust also create a link to
the -ldld library. The last lines of the cr_vlog script must be similat to:
+O3 -lm -lBSD -lcl -N -ldld

If you use a link editor (such as ld) instead of the cc command to create the final link, make
sure you pass the -W1 and -E options as shown previously.
Note for Solaris users:

Youmust create a link between the cr_vlog script and the -lsocket, -lnsl, and -lintl libraries.

Check the last few lines of script and ensure these libraries are included.
8. Run the cr_vlog script. The script creates a link between the ssi_iddq task and the new

Verilog executable (Verilog) in the current directory.
9. Verify that the Verilog directory appears in your path variable before other references to

an executable with the same name, or reference this executable directly when running
Verilog. For example,
set path=(./vlog $path)

Running Simulation
Before running simulation, ensure that the executable Verilog used to run simulation is the
executable that you created in the $LOCAL_XL directory and not the executable in the Cadence
installation path.
To run simulation, use the following command:
Verilog +access+rwc <design data and related switches>

Running Verilogxl
There is no command line example due to the interpreted nature of this simulation. You do not
need any runtime options to enable the PLI tasks after you create a link between them and the
Verilog-XL executable.

Using PowerFault IDDQ With Model Technology ModelSim
User-defined PLI tasksmust be compiled and linked inModelSim to create a shared library that
is dynamically loaded by its Verilog simulator, vsim.

Preparing Simulators for PowerFault IDDQ 7-8

Test Pattern Validation User Guide K-2015.06-SP4

The following steps show you how to compile and link aModelSim shared library:

1. Create a directory where you want to build a shared library and navigate to it; for example,

mkdir MTI
cd MTI

2. Copy the PLI task into this directory as "veriuser.c"; for example,
cp $IDDQ_HOME/lib/veriuser_sample.c veriuser.c

3. Edit veriuser.c to define any additional PLI tasks.
4. Compile and link veriuser.c to create a shared library named "libpli.so"; for example,

cc -O -KPIC -c -o ./veriuser.o \

 -I<install_dir_path>/modeltech/include \

 -I$IDDQ_HOME/lib -DaccVersionLatest ./veriuser.c

ld -G -o libpli.so veriuser.o \

 $IDDQ_HOME/lib/libiddq_cds.a -lc

Note:

For compiling on a 64-bit machine, use -xarch=v9 with cc. For Linux, use
-fPIC instead of -KPIC.

5. Identify the shared library to be loaded by vsim during simulation. You can do this in one of
three ways:

l Set the environment variable PLIOBJS to the path of the shared library; for example,

setenv PLIOBJS <path_to_the_MTI_directory>/libpli.so
vlog ...
vsim ...

l

Pass the shared library to vsim in its -pli argument; for example,
vlog ...

vsim -pli <path_to_the_MTI_directory>/libpli.so ...

l Assign the path to the shared library to the Veriuser variable in the "modelsim.ini"
file, and set the environment variable MODELSIM to the path of themodelsim.ini
file; for example,
In themodelsim.ini file:
Veriuser = <path_to_the_MTI_directory>/libpli.so

On the command line:

Preparing Simulators for PowerFault IDDQ 7-9

Test Pattern Validation User Guide K-2015.06-SP4

setenv MODELSIM <path_to_modelsim.ini_file/modelsim.ini

vlog ...

vsim ...

PowerFault PLI Tasks
The following sections describe the various PowerFault PLI tasks:

l Getting Started
l PLI TaskCommand Summary Table
l PLI TaskCommandReference

Getting Started
The first step in using PowerFault technology is to run a Verilog simulation using your normal
testbench, combined with the PowerFault tasks to seed faults and evaluate potential IDDQ
strobes.
A task called ssi_iddq executes PowerFault commands in the Verilog file that configures
the Verilog simulation for IDDQanalysis. Some of the commands aremandatory and some are
optional. The commandsmust at least specify the device under test, seed the faults, and apply
IDDQstrobes.
For example, preparation for IDDQ testing can be as simple as adding amodule similar to the
following to your Verilog simulation:
module IDDQTEST();
 parameter CLOCK_PERIOD = 10000;
 initial begin
 $ssi_iddq("dut tbench.M88");
 $ssi_iddq("seed SA tbench.M88");
 end
 always begin

fork
CLOCK_PERIOD;
(CLOCK_PERIOD -1) $ssi_iddq("strobe_try");
join

end
endmodule

This example contains three PowerFault commands. The first one specifies the device under
test (DUT) to be tbench.M88. The second one seeds the entire device with stuck-at (SA)
faults. Inside the always block, the third one invokes the strobe_try command to
evaluate the device for IDDQstrobing at one time unit before the end of each cycle.
The order of commands in the Verilog file is important because the PLI tasksmust be performed
in the following order:

PowerFault PLI Tasks 7-10

Test Pattern Validation User Guide K-2015.06-SP4

1. Specify the DUTmodule or modules (mandatory).
2. Specify other simulation setup parameters (optional).
3. Specify disallowed leaky states (optional).
4. Specify allowed leaky states (optional).
5. Specify fault seed exclusions (optional).
6. Specify fault models (optional).
7. Specify fault seeds (mandatory).
8. Run testbench and specify strobe timing (mandatory).

PLI Task Command Summary Table
Table 1 provides a quick summary of the PowerFault commands that you can use in Verilog files
to performPLI tasks. For detailed information on each command, see the next section, “PLI
TaskCommandReference.” If you are viewing this document in online form, you can click the
page number reference in the table to jump to the detailed description of the command.

Table 1 PLI TaskCommand Summary

Simulation Setup Commands

dut Specifies the DUT modules

output Names the IDDQ database

ignore Specifies black box nets and modules

statedep_float Specifies the primitives that can
block floating nodes

io Specifies DUT ports

measure Specifies the rail for IDDQ
measurement

verb Turns verbose mode on or off (off by
default)

Leaky State Commands

allow Allows user-specified leaky states

disable SepRail Forces all top-level pullups and
pulldowns in contention to be
identified as leaky, see

disallow Disallows user-specified leaky states

PowerFault PLI Tasks 7-11

Test Pattern Validation User Guide K-2015.06-SP4

Fault Seeding Commands

seed SA Seeds stuck-at faults automatically

seed B Seeds bridging faults automatically

scope Sets the scope for faults seeded by
read commands

read_bridges Seeds bridging faults from a file

read_tmax Seeds faults from a TetraMAX fault
list

read_verifault Seeds faults from a Verifault fault list

read_zycad Seeds faults from a Zycad fault origin
file

Fault Seed Exclusion Command

exclude Excludes module instances from fault
seeding

Fault Model Commands

model SA Configures operation of the seed SA
command

model B Configures operation of the seed B
command

Strobe Commands

strobe_try Performs an IDDQ strobe evaluation
if the chip is quiet; see

strobe_force Forces an IDDQ strobe evaluation

strobe_limit Limits the number of IDDQ strobe
evaluations

cycle Sets the internal cycle count

Circuit Examination Commands

status Prints a report on leaky nets

summary Prints a nodal analysis summary

PowerFault PLI Tasks 7-12

Test Pattern Validation User Guide K-2015.06-SP4

PLI Task Command Reference
The following sections describe the syntax and functions of the PowerFault commands:

l Conventions
l Simulation Setup Commands
l Leaky State Commands
l Fault Seeding Commands
l Fault Model Commands
l Strobe Commands
l Circuit Examination Commands
l Disallowed/Disallow Value Property
l Can Float Property

Note: Each command description includes the Backus-Naur form (BNF) syntax and a
description of the command behavior.

Conventions
The following conventions apply to the PLI task command descriptions:

l Special-Purpose Characters
l Module Instances and EntityModels
l Cell Instances
l Port and Terminal References

Special-Purpose Characters
Several special-purpose characters are used in the command syntax descriptions, as described
in Table 2.

Table 2 Special Characters in Command Syntax

Character Purpose

+ Plus-sign suffix indicates repetition of one or more

* Asterisk suffix indicates repetition of zero or more

[] Square brackets enclose an optional element

() Parentheses indicate grouping

| Vertical bar separates alternative choices

When you use Verilog escaped identifiers in a command, each escape character must itself be
escaped. For example, to use the name tbench.dut.\IO(23) with the allow command, use the
following syntax:
$ssi_iddq("allow float tbench.dut.\\IO(23)");

PowerFault PLI Tasks 7-13

Test Pattern Validation User Guide K-2015.06-SP4

Module Instances and Entity Models
A number of commands accept eithermodule-instance or entity-model as a parameter. A
module-instance is a full path name of an instantiatedmodule, such as themodule name
tbench.au.ctrl?. An entity-model? is the definition name (not instance name) of amodule.
For example, tbench.au.ctrl might be one instance of the IOCTRL entitymodel. When
you specify an entitymodel in a command, it applies to all instances of that model.

Cell Instances
The commands for fault seeding refer to Verilog cells. A cell instance is amodule instance that
has either of these characteristics:

l Themodule definition appears between the compiler directives ‘celldefine and
‘endcelldefine??.

l Themodule definition is in amodel library, and the +nolibcell option has not been
used. A library is a collection of module definitions contained in a file or directory that are
read by library invocation options (such as the -y option provided bymost Verilog
simulators).

If you use the +nolibcell option when you invoke the Verilog simulator, onlymodules
meeting the first condition above are considered cells.
By default, PowerFault treats cells as fault primitives. It seeds faults only at cell boundaries, not
inside of cells. However, some design environments generate netlists that mark very large
blocks as cells. Tomake PowerFault seed inside those cells, use the model SA seed_
inside_cells command or the model B seed_inside_cells command.

Port and Terminal References
The commands for allowing and disallowing leaky states refer to connection references. A
connection reference describes a port of amodule or a terminal of a primitive. You can refer to a
port by its name. You can also refer to ports and terminals by their index numbers, with 0
indicating the first port or terminal. For example, port.0 refers to the first port of a
module;term.0 refers to the first terminal (the output terminal) of a primitive.

Simulation Setup Commands
The following simulation setup commands set up the general operating parameters for the
PowerFault simulation, such as the name of the device under test (DUT), the name of the
generated IDDQdatabase, and the names of the DUT ports:

l dut
l output
l ignore
l io
l statedep_float
l measure
l verb

PowerFault PLI Tasks 7-14

Test Pattern Validation User Guide K-2015.06-SP4

dut
dut module-instance+

This command is required andmust be the first ssi_iddq-task command executed. It
specifies which instances represent the device under test. The arguments are the full path
names of one or moremodule instances.
Here are some examples of valid dut commands:
$ssi_iddq("dut tbench.core");

$ssi_iddq("dut tbench.slave tbench.master");

output
output [mode] [label] database-name
mode ::= (create|append|replace=testbench-number)
label ::= label=string

This command specifies the name of the generated IDDQdatabase. The database is a directory
that PowerFault uses to store simulation results. During the Verilog simulation, the ssi_
iddq-task commands fill the database with information for the IDDQProfiler. You run the
IDDQProfiler after the Verilog simulation to select strobes and generate IDDQ reports.
The following commandmakes the ssi_iddq task create a database named
/cad/sim/M88/iddq.db1?:
$ssi_iddq("output /cad/sim/M88/iddq.db1");

The defaultmode is create?, which creates the database if it does not already exist. If the
database already exists, its entire contents are cleared before the new simulation results are
stored.
When you use the append mode, the simulation results are appended to the specified
database. The append mode allows the simulation results frommultiple testbenches for a
circuit to be saved into one database, as described in the “CombiningMultiple Verilog
Simulations” section.
The replace mode replaces one specified testbench result in amultiple set of results saved
using the append mode. For the testbench number, specify 1 to overwrite the first results
saved, 2 to overwrite the second results saved, and so on.
The label option assigns a string label to represent the current testbench. This is useful when
the database is used to store results frommultiple testbenches.When the IDDQProfiler selects
strobes, it uses the label to identify the testbench fromwhich the strobe was selected.
The append mode is useful for a circuit that hasmultiple testbenches. It ismuchmore efficient
to append the results frommultiple testbenches to one database, rather than create a separate
database for each testbench. For details, see “CombiningMultiple Verilog Simulations”.
Do not use the append modewith multiple concurrent simulations. For example, you cannot
start four Verilog simulations at the same time and try to have each one append to the same
database. If you havemultiple testbenches for a circuit, you need to run them serially.

ignore
ignore net module-or-prim-instanceconn-ref
ignore net entity-modelconn-ref
ignore (all|core|ports) module-or-prim-instance

PowerFault PLI Tasks 7-15

Test Pattern Validation User Guide K-2015.06-SP4

ignore (all|core|ports) entity-model
conn-ref ::= port-name | port.port-index |

term.term-index
port-name ::= scalar-port-name | vector-port-name

[port-index]

The ignore command describeswhich nodes in your circuit should be ignored for IDDQ
testing. Ignored nodes are excluded from analysis, fault seeding, and status reports. The same
effect can be produced by using the exclude?, allow fight?, and allow float
commands together, but using the ignore command ismore efficient. This command
overrides all built-in checkers and all custom checkers defined with the disallow command.
In the first two forms of the command, conn-ref describeswhich node to ignore. For example,
the following command causes the node connected to the port named INTR in themodule
tbench.core.busarb to be ignored:
$ssi_iddq("ignore net tbench.core.busarb INTR");

The following command causes the node connected to the fifth port of
tbench.core.busarb to be ignored:
$ssi_iddq("ignore net tbench.core.busarb port.5");

The following command causes the nodes connected to the INTR port of all instances of the
ARB module to be ignored:
$ssi_iddq("ignore net ARB INTR");

In the last two forms of the command, the (all|core|ports) option describes how the
command is applied to nodes of a particular module or primitive. For example, the following
command causes all nodes connected to ports of the tbench.core.pll module to be
ignored:
$ssi_iddq("ignore ports tbench.core.pll");

The following command causes all nodes inside tbench.core.pll to be ignored:
$ssi_iddq("ignore core tbench.core.pll");

The following command causes all nodes connected to ports and all nodes inside
tbench.core.pll to be ignored:
$ssi_iddq("ignore all tbench.core.pll");

io
io net-instance+

This command lists any primary inputs and outputs (I/O pads) that are not connected to ports of
the DUTmodules. PowerFault assumes that each port of a DUTmodule is connected to an I/O
pad. If your chip has I/O pads that are not connected to a port of a DUTmodule, you can
optionally specify themwith this command. Doing somight allow PowerFault to find better
strobe points.

statedep_float
statedep_float #-and-ins#-nand-ins#-nor-ins#-or-ins

This command specifies the types of primitives that can block floating nodes. The default setting
is:
$ssi_iddq("statedep_float 3 3 2 0");

PowerFault PLI Tasks 7-16

Test Pattern Validation User Guide K-2015.06-SP4

By default, AND andNAND gateswith up to three inputs and NOR gateswith up to two inputs
can block floating nodes. These primitives are commonly used to “gate” a three-state bus so that
it does not cause a leakage current. For more information on this topic, see “State-Dependent
Floating Nodes”.
If your foundry implements two-input OR gates so that they can block floating nodes, use this
command:
$ssi_iddq("statedep_float 3 3 2 2");measure (0|1)

measure
measure (0|1)

This command specifies which power rail to use for IDDQmeasurement. By default, PowerFault
assumes that IDDQmeasurements aremade on the VDD (power) rail; this is themost common
test method. If your automated test equipment (ATE) is configured tomeasure ISSQ, the current
flowing through the VSS (ground) rail, use the following command:
$ssi_iddq("measure 0");

verb
verb (on|off)

This command turns verbosemode on and off. In verbosemode, the ssi_iddq task echoes
every command before execution, and it also prints the result (qualified or unqualified) of every
strobe_try command. By default, verbosemode is initially off. To turn on verbosemode,
use this command:
$ssi_iddq("verb on");

Leaky State Commands
PowerFault has powerful algorithms for determining quiescence. By default, it recognizes two
types of leaky states: floating inputs (“float”) and drive contention (“fight”). It is also configurable;
the allow, disable SepRail, and disallow commands let youmodify the algorithms for
determining quiescence.
The following sections describe the leaky state commands:

l allow
l disable SepRail
l disallow

allow
The allow command specifies the types of leaky states that are to be ignored. The
disallow command defines new leaky states that would normally be unrecognized, such as
leaky behavioral and external models (for more information, see “Behavioral and External
Models”). The allow command tells PowerFault how to ignore leaky states it normally
recognizes; the disallow command tells PowerFault how to identify leaky states it does not
normally recognize.
There are several different forms of this command. These are the forms that apply to specified
nets, instances, or entitymodels:
allow (float|fight) net-instance
allow (float|fight) module-or-prim-instance [conn-ref]
allow (float|fight) entity-model [conn-ref]

PowerFault PLI Tasks 7-17

Test Pattern Validation User Guide K-2015.06-SP4

conn-ref ::= port-name | port.port-index | term.term-index
port-name ::= scalar-port-name|
vector-port-name[port-index]

These commands specify which leaky states in the design to allow (ignored by PowerFault). You
can use them to have PowerFault ignore leaky states that are not present in the real chip.
Incomplete Verilogmodels can causemisleading leaky states, which PowerFault should ignore.
For example, consider a chip that has an internal three-state buswith a keeper latch like the one
shown in Figure 1.

Figure 1 Three-State BusWith Keeper Latch

When the bus is fabricated on the chip, the keeper latch prevents the bus from floating.
However, the Verilogmodel for the bus does not include the keeper latch. As a result, when the
bus floats (has a Z value) during the Verilog simulation, PowerFault considers it a possible cause
of high current and disqualifies any strobe try at that time.
To tell PowerFault that the bus addr[0] does not cause high current when it floats during the
simulation, use a command like the following:
$ssi_iddq("allow float tbench.iob.addr[0]");

When you use amodule (primitive) instance name, the allow command applies to all nets
declared inside the instance, including those inside of submodules, and to all nets attached to the
instance’s ports (terminals). For example, to allow nets to float inside of and connected to
tbench.au.ctlr?, use this command:
$ssi_iddq("allow float tbench.au.ctlr");

If you use an entity-model name, the command applies to every instance of that entitymodel. For
example, to allow all nets to float inside of and connected to the instances of the IOCTL
module, use the following command:
$ssi_iddq("allow float IOCTL");

By using the optional connection reference, you canmake the command apply to a specific port
or terminal. For example, if IOCTL has a port named out2?, then the following command
allows the nets attached to the out2 port of all IOCTL instances to float:
$ssi_iddq("allow float IOCTL out2");

The following command allows the nets attached to the output terminal of all bufif0
instances to float:
$ssi_iddq("allow float bufif0 term.0");

To globally allow leaky states, use this command:
allow (all|poss) (fight|float)

PowerFault PLI Tasks 7-18

Test Pattern Validation User Guide K-2015.06-SP4

This form of the allow command turns on global options that apply to every net. The all
optionmakes PowerFault ignore all true and all possibly leaky states. The poss optionmakes
PowerFault ignore just the possibly leaky states; true leaky states are still disallowed. For a
description of true and possibly floating nodes, see “Floating Nodes and Drive Contention”.
This form of the allow command ismost useful for verifying strobe timing and debugging test
vectors. For example, if you want to find vectors that definitely have drive contention (so that you
canmeasure it on your ATE), use these commands:
$ssi_iddq("allow poss fight");
$ssi_iddq("allow all float");

In this case, only vectors with true drive contention are disqualified because all floating nodes
and all nodeswith possible drive contention are ignored.
Here is the form of the command for allowing leaky states inside cells:
allow cell (fight|float)

This form of the allow command applies to every net that is internal to a cell. Nets connected to
cell ports and nets outside of cells are not affected. The fight optionmakes PowerFault
ignore all true and possible drive contention on nets inside of cells. The float optionmakes
PowerFault ignore all true and possibly floating nets inside of cells. For a description of true and
possibly floating nodes, see “Floating Nodes and Drive Contention”.
This form of the allow command ismost useful when your cell libraries havemany internal
nets that are erroneously flagged as floating or contending. Thismost commonly happenswhen
cells use dummy local nets (nets not present in the real chip) for the purpose of timing checks. If
you know that all the nets internal to your cells are always quiescent, you can use these
commands:
$ssi_iddq("allow cell fight");
$ssi_iddq("allow cell float");

disable SepRail
Current measurements, performed at test, are subject to the configuration of the test equipment
when considering current contributions. Typically, many test environments use separate power
supplies for the device signals (often referred to as "pin electronics") from the primary power
supply for the device itself.
Because of these separate supplies, some leaky conditionsmight not contribute current that is
measured from the device rails or primary power supply. In particular, out-of-state pullups or
pulldowns on the IO of the devicemight not contribute tomeasured IDDQcurrent. Eliminating
test vectors that do not contribute leaky current can reduce the overall effectiveness of a set of
IDDQ tests. Remember, only pullups and pulldowns that are associated with the top-level
signals of the design are considered here. Internally, all current-generating situations are
considered.
By default, IddQTest will not identify all out-of-state pull conditions on top-level IO signals as
leaky. Certain situations are allowable. In particular, internal pulls (pullups or pulldowns that are
part of the internal device definition) that are pulling to the opposite state of themeasured rail (for
example, internal pulldowns for IddQmeasurements) will not be identified as leaky. External
pulls (pullups or pulldowns that are external to the device referenced with the dut command)
that are pulling to the same state as themeasured rail (for example, external pullups for IddQ
measurements) will also not be identified as leaky.

PowerFault PLI Tasks 7-19

Test Pattern Validation User Guide K-2015.06-SP4

To override this default behavior, and force all out-of-state conditionswith pullups and pulldowns
at the top level of the design to be identified as leaky, the option disable SepRailmust be
specified. This can be specified as:
$ssi_iddq("disable SepRail");

disallow
disallow module-or-prim-instanceleaky-condition
disallow entity-modelleaky-condition
leaky-condition ::= expr
expr ::= (expr) | expr && expr | expr || expr
| conn-ref == value | conn-ref != value
conn-ref ::= port-name | port.port-index | term.term-index
port-name ::= scalar-port-name |
vector-port-name[bit-index]
value ::= 0|1|Z|X

This command describes specific leaky states that would not otherwise be recognized. At every
strobe try, PowerFault examines your entire netlist for leaky states. If your chip has leaky states
that cannot be detected by analyzing the Verilog netlist, youmight need to use the disallow
command.
For example, consider the case where the input pads on your chip have pullups as shown in
Figure 2, but these pullups aremissing from your Verilogmodels.

Figure 2 Input MacroWith Pullup

If IPUP is the entitymodel for your input pad and its input port is named in?, use the following
command to tell PowerFault that the DUT is leakywhen the input is 0:
$ssi_iddq("disallow IPUP in == 0");

You can also refer to a port or terminal by its index number. Index numbers start at zero. For
example, if port in is the second port in the IPUP port list, then the preceding command
example is equivalent to the following command:
$ssi_iddq("disallow IPUP port.1 == 0");

The leaky-condition argument specifies an entitymodel or a particular instance that is
nonquiescent. This condition is a Boolean expression describing the combination of port values
or terminal values that make the chip leaky. If you specify an entitymodel, the condition applies
to all instances of the entitymodel.

PowerFault PLI Tasks 7-20

Test Pattern Validation User Guide K-2015.06-SP4

For example, assume the bidirectional pads on your chip have pulldowns as shown in Figure 3,
but those pulldowns aremissing from your Verilogmodel.

Figure 3 Bidirectional MacroWith Pulldown

To tell PowerFault that BDRV is an entitymodel that is leakywhen port io is high and port
en is high, use this command:
$ssi_iddq("disallow BDRV (io == 1) && (en == 1)");

The == and != operators differ from their Verilog counterparts. The expression (conn-ref
== value) is true only if the valuesmatch exactly. For example, if io is X, then the
expression (io == 1) is not true.
The following form of the disallow command turns on global options, which apply to every
net:
disallow (Xs|Zs|Caps)

Turning on these optionsmakes PowerFault follow pessimistic rules for determining
quiescence. By default, nets at three-state (Z), unknown (?X?), and capacitive (Caps) values
are allowed as long as they do not cause leakage. In other words, a net can be at Z if it does not
have any loads.
Tomake PowerFault compatible with less-sophisticated IDDQ tools that disallow every X or Z,
use these commands:
$ssi_iddq("disallow Xs");
$ssi_iddq("disallow Zs");

Using these disallow commands, no Xs or Zs are allowed because a single X or Z implies
nonquiescence and disqualifies an IDDQstrobe try. Because PowerFault analyzes the netlist in
detail, if your chip ismodeled structurally (the logic is implemented with Verilog user-defined
primitives and ordinary primitives), you probably do not need to use this form of the disallow
command. It is better to describe only the specific leaky states, so that more strobe times are
allowed.

Fault Seeding Commands
At the beginning of the simulation, before using the strobe_try command to evaluate
strobes for IDDQ testing, you need to tell PowerFault where to seed faults. For this purpose, you
can use seed commands to seed faults automatically, or read commands to seed faults
from an existing fault list.

PowerFault PLI Tasks 7-21

Test Pattern Validation User Guide K-2015.06-SP4

The seed and read commands are cumulative. If you want to seed some faults
automatically and seed some faults from a fault list, use both the seed and read
commands.
The following sections describe the various seeding commands:

l seed SA
l seed B
l scope
l read_bridges
l read_tmax
l read_verifault
l read_zycad

seed SA
seed SA module-instance+
seed SA net-instance+

This command seeds both stuck-at-0 and stuck-at-1 faults in each of the specified instances or
nets. For module instances, PowerFault performs automatic hierarchical seeding of each
module and all its lower-level modules. The placement of fault seeds (ports, terminals, and so
on) is determined by the current fault model. For more information, see “Fault Model
Commands”.
Here are some examples of valid seed SA commands:
$ssi_iddq("seed SA tbench.M88.IO tbench.M88.CORE");

$ssi_iddq("seed SA tbench.M88.IO.CO tbench.M88.IO.IRDY");

seed B
seed B module-instance+
seed B net-instancenet-instance

This command automatically seeds bridging faults throughout the specified instances or
between two specified nets. For module instances, PowerFault performs automatic hierarchical
seeding of eachmodule and all its lower-level modules. The placement of fault seeds (between
ports, terminals, and so on) is determined by the current fault model. For more information, see
“Fault Model Commands”.
Here are some examples of valid seed B commands:
$ssi_iddq("seed B tbench.M88.IO");
$ssi_iddq("seed B tbench.M88.IO.SHF0 tbench.M88.IO.SHF1");

scope
scope module-instance

This command sets the scope for the faults seeded by subsequent read_ type commands. By
default, PowerFault expects full path names for all fault entries. Some ATPGenvironments
generate fault entries that have incomplete path names (for example, without the testbench
module name). For those environments, use the scope command to specify a prefix for all path
names.

PowerFault PLI Tasks 7-22

Test Pattern Validation User Guide K-2015.06-SP4

For example, the following four commands tell PowerFault to do the following: seed faults from
files tbench.core and tbench.io?, consider all names in U55.flist to be relative to
tbench.core?, and consider all names in U24.flist to be relative to tbench.io?:
$ssi_iddq("scope tbench.core");
$ssi_iddq("read_tmax U55.flist");
$ssi_iddq("scope tbench.io");
$ssi_iddq("read_tmax U24.flist");

read_bridges
read_bridges file-name

This command reads the names of net pairs from a file (one pair per line) and seeds a bridging
fault between each listed pair. For example, a file containing the following two lineswould seed
bridging faults in the tbench.M88 module between TA and TB?, and between PA and
PB?:
tbench.M88.TA tbench.M88.TB
tbench.M88.PA tbench.M88.PB

read_tmax
read_tmax [strip] fault-classes* file-name
fault-classes ::=(DS|DI|AP|NP|UU|UO|UT|UB|UR|AN|NC|NO|--)

This command reads fault entries from a TetraMAX fault list. By default, only fault entries in the
AP, NP, NC, and NOclasses are seeded. If you want to seed faults in other classes, use the
fault-classes argument to specify the fault classes. For definitions of these fault classes,
refer to the TetraMAX ATPGUser Guide.
For example, the following command seeds faults in the fa1 file that are in the following
classes: possibly detected (AP, NP), undetectable (UU, UT, UB, UR), ATPGuntestable (AN),
and not detected (NC, NO):
$ssi_iddq("read_tmax AP NP UU UT UB UR AN NC NO fa1");

By default, PowerFault remembers all the comment lines and unseeded faults in the fault list, so
that when it produces the final fault report, you can easily compare the report to the original fault
list. If you do not want to save this information (it requires extra disk space), use the strip
option:
$ssi_iddq("read_tmax strip AP NP UU UT UB UR AN NC NO fa1");

read_verifault
read_verifault [strip] status-types* file-name
status-types ::=(detected|potential|undetected|

drop_task|drop_active|drop_looping|drop_detected |
drop_potential|drop_pli|drop_hyper_active|
drop_hyper_mem|untestable)

This command reads fault seeds from a Verifault-XL fault list. By default, only fault descriptors
without status or with the status undetected or potential are seeded. If you want to
seed faults with other status types, use the status-types argument to specify the status
types.
For example, the following command seeds all faults with status potential, undetected,
or untestable from the file M88.flist?:
$ssi_iddq("read_verifault potential undetected untestable

PowerFault PLI Tasks 7-23

Test Pattern Validation User Guide K-2015.06-SP4

M88.flist");

By default, PowerFault remembers all the comment lines and unseeded faults in the fault list, so
that when it produces the final fault report, you can easily compare the report to the original fault
list. If you do not want to save this information (it requires extra disk space), use the strip
option:
$ssi_iddq("read_verifault strip potential undetected

untestable M88.flist");

read_zycad
read_zycad [strip] fault-types* result-types* file-name
fault-types::= (i|o|n)
result-types::= (C|D|H|I|M|N|O|P|U)

This command reads fault seeds from a Zycad fault origin file. By default, only fault origins with
the node type (n) and the undetected (U) or not run yet (N) or possibly (P) result are seeded. If
you want to seed other fault types or results, use the fault-types and result-types
arguments to specify them.
For example, the following command seeds all input and output faults with the impossible (I)
and possibly (P) result from the file M88.fog?:
$ssi_iddq("read_zycad i o I P M88.fog");

exclude
exclude module-instance+
exclude primitive-instance+
exclude entity-model+

The exclude command excludes specified parts of the design from fault seeding. This
command specifies instances and entities that are to be excluded from the fault seeding
performed by the seed?, read_tmax?, read_verifault?, and read_zycad
commands.
For example, to exclude all instances of the BRAM16 entity from fault seeding, use the
following command:
$ssi_iddq("exclude BRAM16");

To exclude individual instances, specify the full path name of each instance:
$ssi_iddq("exclude tbench.M88.io tbench.M88.mem");

The exclude command excludes only instances from seeding. It does not exclude them from
being checked for leaky states. If you need to ignore a leaky state, use the allow command,
described in “Leaky State Commands”.

Fault Model Commands
The model commands determine where the seed commandswill place faults. Therefore,
if you use a model command, youmust execute it before the seed command.When you
specify amodule instance name in the seed command, the seeding algorithm performs a
hierarchical traversal of the instance, seeding faults on the ports and terminals specified by the
current fault model. By default, this traversal stops at cell boundaries.

PowerFault PLI Tasks 7-24

Test Pattern Validation User Guide K-2015.06-SP4

The settingsmadewith a model command are not cumulative. The current model is based
only on themost recent model command. In other words, each model command
overwrites the settingsmade by the previous model command.
The following sections describe the fault model commands:

l model SA
l model B

model SA
model SA directionsa-placement [seed_inside_cells]
direction ::= (port_IN|port_OUT|term_IN|term_OUT)+
sa-placement ::= (all_mods|leaf_mods|cell_mods|prims)+

This command specifies where the seed SA command seeds stuck-at faults. Table 3
summarizes the command options.

Table 3 Options for Stuck-At Fault Models

Direction Options

port_IN Enables stuck-at faults on input ports of chosen modules

port_OUT Enables stuck-at faults on output ports of chosen
modules

term_IN Enables stuck-at faults on input terminals of primitives

term_OUT Enables stuck-at faults on output terminals of primitives

Stuck-At Placement Options

all_mods Chooses all modules for port stuck-at faults

leaf_mods Chooses leaf modules for port stuck-at faults

cell_mods Chooses cell modules for port stuck-at faults

prims Chooses primitives for terminal stuck-at faults

Seed Inside Cells Option

seed_inside_cells Enables fault seeding inside cells

The default stuck-at fault seeding behavior is equivalent to the following model SA
command:
model SA port_IN port_OUT term_IN term_OUT

leaf_mods cell_mods prims

With the default stuck-at fault model, faults are seeded on input and output ports of cell and leaf
modules, and on input and output terminals of every primitive, but not inside cells. Primitives and

PowerFault PLI Tasks 7-25

Test Pattern Validation User Guide K-2015.06-SP4

modules found inside of cells are ignored. A leaf module is amodule that does not contain any
instances of submodules.
If you want to seed inside cells, include the seed_inside_cells option. For example,
these two lines seed stuck-at faults on output terminals of every primitive, including those inside
cells:
$ssi_iddq("model SA term_OUT prims seed_inside_cells");
$ssi_iddq("seed SA tbench.M88");

For detailed examples showing how the model SA command options affect the placement of
fault seeds, seeOptions for PowerFault-Generated Seeding.

model B
model B bridge-placement [seed_inside_cells]
bridge-placement ::= (cell_ports|fet_terms|

gate_IN2IN|gateIN2OUT|vector)+

This command specifies where the seed B command seeds bridging faults. A bridging fault is
a short circuit between two different functional nodes in the design. A fault of this type is
considered detected by an IDDQstrobe when one node is at logic 1 and the other is at logic 0.
Table 4 summarizes the model B command options.

Table 4 Options for Bridging Fault Models

Bridge Placement Options

cell_ports Enables bridging faults between adjacent
ports of cells and between each input and
output port of cells (if the cell has two or
fewer output ports)

fet_terms Enables bridging faults between all pairs
of terminals of field effect transistor
(FET) switches

gate_IN2IN Enables bridging faults between adjacent
input terminals of non-FET primitives
(including UDPs)

gate_IN2OUT Enables bridging faults between all pairs
of input and output terminals of non-FET
primitives (including UDPs)

vector Enables bridging faults between adjacent
bits of expanded vectors

Seed Inside Cells Option

PowerFault PLI Tasks 7-26

Test Pattern Validation User Guide K-2015.06-SP4

seed_inside_
cells

Enables fault seeding inside cells

The default bridging fault seeding behavior is equivalent to the following model B command:
model B cell_ports fet_terms gate_IN2IN gate_IN2OUT vector

With the default bridging fault model, bridging faults are seeded between the ports of cells, the
terminals of primitives, and the bits of expanded vectors. No seeding is performed inside cells.
To seed other types of bridging faults, specify themwith the model B command. For
example, these two lines seed bridging faults between the ports of all cells inside
tbench.M88?:
$ssi_iddq("model B cell_ports");
$ssi_iddq("seed B tbench.M88");

For detailed examples showing how the model B command options affect the placement of
fault seeds, see “Options for PowerFault-Generated Seeding”.

Strobe Commands
After you specify the DUTmodules and seed the faults, you need to describe the IDDQstrobe
timing.When the testbench is running, it must use either the strobe_try or strobe_
force command to indicate when it is appropriate to apply an IDDQstrobe.
The following sections describe the various strobe commands:

l strobe_try
l strobe_force
l strobe_limit
l cycle

strobe_try
strobe_try

You should have the testbench invoke the strobe_try command at asmany potential
strobe times as possible. The strobe_try command tells PowerFault that the circuit is
stable and can be tested for quiescence.
For example, you can use the following line just before the end of each cycle:
$ssi_iddq("strobe_try")

At each occurrence of this line, PowerFault determineswhether the circuit is quiescent, allowing
an IDDQstrobe to be applied. If the verb on command has been executed, the simulator
reports the result of each strobe_try?, allowing you to identify nonquiescent strobe times.
You should use the strobe_try command one time per tester cycle, and it should be the last
event of the cycle. For example, if you have delay paths that takemultiple clock cycles, do not
use the commandwhen those paths are active.

strobe_force
strobe_force

PowerFault PLI Tasks 7-27

Test Pattern Validation User Guide K-2015.06-SP4

This command turns off quiescence checking and allows PowerFault to consider all strobe
times. Use this command only if you are sure the chip is quiescent. For example, you can use it if
your technology provides an IDDQ_OK signal that forces the chip into quiescence.
If you know the quiescent points in your simulation, you can use the strobe_force command
rather than the strobe_try command to reduce the simulation runtime.With the strobe_
force command, PowerFault does not need to check the entire chip for quiescence at each
strobe try.

strobe_limit
strobe_limit max-strobes

This command terminates the Verilog simulation when max-strobes qualified strobe points
have been found.
For example, the following command stops the simulation after 100 qualified strobe points have
been found:
$ssi_iddq("strobe_limit 100");

cycle
cycle cycle-number

This command sets the initial PowerFault cycle number, an internal counter maintained by
PowerFault. The cycle number has no affect on finding or selecting IDDQstrobes. It is used
during Verilog simulations and during strobe selection to report a cycle number along with the
simulation time of each strobe.
By default, the cycle number begins at 1 and is incremented after every strobe try. If your test
program does not strobe on every cycle, you can use the cycle command to synchronize
PowerFault with the cycle count of your test program. For example, if your cycle count begins at
0 instead of 1, use this command:
$ssi_iddq("cycle 0");

The cycle command can also accept a nonstring argument, allowing you to set the cycle
number to the value of a simulation variable. For example:
always @testbench.CYCLE

$ssi_iddq("cycle", testbench.CYCLE);

Circuit Examination Commands
The circuit examination commands, status and summary?, provide information on the
location and cause of IDDQ testing problems found in the design. The following sections
describe the circuit examination commands:

l status
l summary

status
status [drivers]
(leaky|nonleaky|both|all_leaky)[file-name]

This command determineswhy your circuit is quiescent or nonquiescent at a particular
simulation time. It ismost useful when you are having difficulty producing qualified strobe points.

PowerFault PLI Tasks 7-28

Test Pattern Validation User Guide K-2015.06-SP4

If there is a persistent leaky node in your circuit (for example, caused by an always-active
pulldown), PowerFault will not be able to find quiescent strobe points. Fortunately, the status
leaky command can quickly identify any leaky nodes, allowing you to improve your test
program so that it producesmore quiescent strobe points.
Use the following command to print out all the net conditions that imply that the circuit is not
quiescent:
$ssi_iddq("status leaky");

The command prints out the name of each leaky net and the reason that the net’s value implies
that the circuit is not quiescent. There are two possible causes for a leaky node: a floating input
or drive contention.
Here is an example of a report generated by the status command:
Time 35799
top.dut.ioctl.stba is leaky. Re: float
top.dut.ioctl.addr[0] is leaky. Re: fight
top.dut.ioctl.addr[1] is leaky. Re: possible fight
>
Note: If you use the status command and the strobe_try command in the same
simulation run, and you want the status report to include the first strobe, youmust execute the
first status command before the first strobe_try command.
Use the following command to print out all the net conditions that imply that the circuit is
quiescent:
$ssi_iddq("status nonleaky");

Use the following command to print out all the net conditions that imply that the circuit is or is not
quiescent:
$ssi_iddq("status both");

The output of the status command can be quite long because it can contain up to one line for
every net in the chip. You can direct the output to a file instead of to the screen. For example, to
write the leaky states into a file named bad_nets?, use the following command:
$ssi_iddq("status leaky bad_nets");

The simulator creates the bad_nets file the first time it executes the status command.
When it executes the status command again in the same simulation run, it appends the
output to the bad_nets file, together with the current simulation time. This creates a report of
the leaky states at every disqualified strobe time.
By default, the leaky option reports only the first occurrence of a leaky node. If the same
leaky condition occurs at different strobe times, the report says “All reported” at each such strobe
time after the report of the first occurrence. To get a full report on all leaky nodes, including those
already reported, use the all_leaky option instead of the leaky option, as in the
following example:
$ssi_iddq("status all_leaky bad_nodes");

This can produce a very long report.
The drivers optionmakes the status command print the contribution of each driver.
However, it reports only gate-level driver information. For example, consider the following
command:
$ssi_iddq("status drivers leaky bad_nodes");

The command produces a report like this:
top.dut.mmu.DIO is leaky: Re: fight

PowerFault PLI Tasks 7-29

Test Pattern Validation User Guide K-2015.06-SP4

 St0<- top.dut.mmu.UT344
 St1<- top.dut.mmu.UT366
 StX<- resolved value
top.dut.mmu.TDATA is leaky: Re: float
 HiZ<- top.dut.mmu.UT455
 HiZ<- top.dut.mmu.UT456

In this example, top.dut.mmu.DIO has a drive fight. One driver is at strong 0 (St0) and the
other is at strong 1 (St1). The contributing value of each driver is printed in Verilog
strength/value format (described in section 7.10 of the IEEE 1364 Verilog LRM).
The same status commandwithout the drivers option produces a report like this:
top.dut.mmu.DIO is leaky: Re: fight
top.dut.mmu.TDATA is leaky: Re: float

summary
summary file-name

When you use the summary command, PowerFault prints a summary at the end of the
simulation that describes problem nodes. It lists the nodes reported by the status command
and also lists the nodes that were not reported but might cause problems.
The summary for each node is reported in this format:
net-instance-name: property+

The summary commandmerges simulation information reported by the status command
with static information from the formal analyzer. For example, consider the case where the
status command produces the following output:
Time 3999
tbench.M88.SELM.RESET is leaky: Re: float
tbench.M88.VEE[0] is leaky: Re: float
 HiZ <- tbench.M88.CB.vee0.out
 HiZ <- tbench.M88.LB.vee0.out
Time 12999
tbench.M88.DIO[1] is leaky: Re: possible fight
 St0 <- tbench.M88.dpad1_clr
 StX <- tbench.M88.dpad1_snd
 StX <- resolved value
tbench.M88.BIO is leaky: Re: disallowed X
tbench.M88.U244 is leaky: Re: ARAM (WR_EN == 1 && DATA[0]

== Z)

The corresponding summarymight look like this:
Summary of problem nodes:
tbench.M88.SELM.RESET: did float : unconnected
tbench.M88.VEE[0]: did float : not muxed
tbench.M88.DIO[1]: did fight : can float : not muxed
tbench.M88.BIO: disallowed value
tbench.M88.U244: disallow ARAM (WR_EN == 1 && DATA[0] == Z)
tbench.M88.APP.POW: constant fight

The summary lists nodes that can cause problems for IDDQ testing. It might also identify node
properties that are considered design problems. For example, if floating nodes are illegal in your

PowerFault PLI Tasks 7-30

Test Pattern Validation User Guide K-2015.06-SP4

design environment, you should check to see whether any nodes have the “did float” or “can
float” property.
Themore your circuit ismodeled at the gate level, themore accurate the summary is.
Table 5 lists and describes the node properties reported by the summary command.

Table 5 Node Properties Reported by summaryCommand

Node Property Description

did float The node was reported as
floating (or possibly floating)
during simulation.

did fight The node was reported as
having (or possibly having)
drive contention during the
simulation.

did pull The node was reported as
having (or possibly having)
an active pullup/pulldown
during simulation.

disallowed value The node was reported as
violating a simple disallow
command during the
simulation.

disallow expr The node was reported as
violating a compound
disallow command during
the simulation. expr contains
the text of the disallow
command.

can float The node can float, but was
not reported as floating
during the simulation.

can fight The node can have drive
contention, but was not
reported as having this
condition during the
simulation.

PowerFault PLI Tasks 7-31

Test Pattern Validation User Guide K-2015.06-SP4

Node Property Description

can pull The node has
pullups/pulldowns, but they
were not active during the
simulation.

not muxed The node has multiple drivers
that are not multiplexed. In
other words, the control logic
for the drivers does not
always enable one and only
one driver at a time.

unconnected The node is an unconnected
input.

constant fight The node has a constant
current. In other words, it
has both a pullup and a
pulldown.

Disallowed/Disallow Value Property
A node with the “disallowed value” property violated a simple disallow command at some
time during the simulation. Here are some examples of simple disallow commands:
$ssi_iddq("disallow tbench.M88 (BIO == X)");
$ssi_iddq("disallow BUF3I (out == 0)");

A node with the “disallow expr” property violated a compound disallow command at some
time during the simulation. Here are some examples of compound disallow commands:
$ssi_iddq("disallow ARAM (WR_EN == 1 && DATA[0] == Z)");
$ssi_iddq("disallow PHMX (in == 1 && en != 0)");

Can Float Property
Each node with the “can float” property requires special consideration because it can cause high
current. Each such node was never reported as floating during the simulation because of one or
more of these conditions:

l The node never floated.
l The node floated but was blocked.
l The node floated but did not have a load (it was not connected to a gate-level input).

See Also
Floating Nodes and Drive Contention

PowerFault PLI Tasks 7-32

8
Faults and Fault Seeding
The process of specifying fault locations for IDDQ testing is called fault seeding. You can have
PowerFault seed faults automatically from the design description, or you can use a fault list
generated by TetraMAX ATPGor another tool.
The following sections describe faults and fault seeding:

l Fault Models
l Fault Seeding
l Options for PowerFault-Generated Seeding

8-1

Test Pattern Validation User Guide K-2015.06-SP4

Fault Models
The TetraMAX ATPGand Verilog/PowerFault environments support several different types of
fault models which are described in the following sections:

l Fault Models in TetraMAX
l Fault Models in PowerFault

Fault Models in TetraMAX
In TetraMAX ATPG, the term “fault model” refers to the type of fault used for test pattern
generation.

l For IDDQ testing, there are two choices: stuck-at and IDDQ. The stuck-at fault model is
the standard, default model most often used to generate test patterns.

l The IDDQ fault model is used to generate test patterns specifically for IDDQ testing.
There are two types of IDDQ fault models, the pseudo-stuck-at model and the togglemodel.
The fault model choice in TetraMAX ATPGdetermines how the ATPGalgorithm operates. For
the stuck-at model, TetraMAX ATPGattempts to propagate the effects of faults to the scan
elements and device outputs. For the IDDQmodel, TetraMAX ATPGattempts to control all
nodes to 0 and 1 while avoiding conditions that violate quiescence.
For more information on TetraMAX fault models, see the TetraMAX ATPGUser Guide or
consult the TetraMAX online help.

Fault Models in PowerFault
In the PowerFault environment, the term “fault model”? refers to the algorithm used to seed
faults in the design when you use the seed SA command to seed stuck-at faults or the seed
B command to seed bridging faults.

Stuck-At Faults
A stuck-at-0 fault is considered detected when the node in question is placed in the 1 state, the
circuit is quiescent, and an IDDQstrobe occurs. Similarly, a stuck-at-1 fault is considered
detected when the node is placed in the 0 state, the circuit is quiescent, and an IDDQstrobe
occurs.
To seed stuck-at faults from a TetraMAX fault file, use the read_tmax command. Similar
commands are available to seed faults from a Verifault or Zycad fault list. To seed stuck-at faults
automatically throughout the design based on the locations of themodules, cells, primitives,
ports, and terminals in the design, use the model SA and seed SA commands.
Untestable faults are ignored during fault detection and strobe selection, but they are still listed in
fault reports for reference. Faults untestable by PowerFault include stuck-at-0 faults on supply0
wires and stuck-at-1 faults on supply1 wires.

Fault Models 8-2

Test Pattern Validation User Guide K-2015.06-SP4

Bridging Faults
A bridging fault involves two nodes. The fault is considered detected when one node is placed in
the 1 state, the other is placed in the 0 state, the circuit is quiescent, and an IDDQstrobe occurs.
For an accurate fault model, the two nodes in questionmust be physically adjacent in the
fabricated device, so that actual bridging between the nodes is possible in a defective device.
You can seed bridging faults by reading them from a list (which could be generated by an
external tool) by using the read_bridges command. You can also seed bridging faults
automatically between adjacent cell ports, between terminals of field effect transistor (FET)
switches, between the terminals of gate primitives, and between adjacent vector bits. In this
case, adjacentmeans “right next to each other in the Verilog description.” To seed bridging faults
in thismanner, use the model B and seed B commands.

Fault Seeding
At the beginning of the Verilog/PowerFault simulation, before using the strobe_try
command to evaluate strobes for IDDQ testing, you need to tell PowerFault where to seed
faults. To do this, you can use seed commands to seed faults automatically or the read_
tmax command to seed faults from an existing fault list.
The seed and read_tmax commands are cumulative. If you want to seed some faults
automatically and seed some faults from a fault list, you can use both the seed and read_
tmax commands, and all of the faults seeded by the two commands are used.
The following sections describe fault seeding:

l Seeding From a TetraMAX Fault List
l Seeding From an External Fault List
l PowerFault-Generated Seeding

Seeding From a TetraMAX Fault List
To seed the design with stuck-at faults from a TetraMAX fault list, use the read_tmax
command. In this command, you specify the TetraMAX fault file name, and optionally, the
detectability classes of faults to be seeded.
In TetraMAX ATPG, you create a fault file upon completion of test pattern generation by using
the write_faults command. Typically, you write a complete fault list using a command
similar to the following:
write_faults mylist.faults -replace -all

Before you generate the fault list, you need to set the hierarchical delimiter character in
TetraMAX ATPG. PowerFault expects the delimiter character to be a period. By default,
TetraMAX ATPGuses the forward slash (/) character. To generate the fault list in a compatible
format, use the following set_build command before you build themodel:
set_build -hierarchical_delimiter .

The generated fault file describes each fault in terms of type (stuck-at-0 or stuck-at-1),
detectability class, and location in the design. For example:
sa0 DS .testbench.fadder.co

Fault Seeding 8-3

Test Pattern Validation User Guide K-2015.06-SP4

sa1 DS .testbench.fadder.co
sa0 DS .testbench.fadder.sum
sa1 DS .testbench.fadder.sum
...

Each fault class and each hierarchical group of fault classes has a two-character abbreviation.
For example, DS stands for “detected by simulation.”
The TetraMAX fault classes are defined in the following list:

DT - detected
 DS - detected by simulation
 DI - detected by implication

PT - possibly detected
 AP - ATPG untestable, possibly detected
 NP - not analyzed, possibly detected

UD - undetectable
 UU - undetectable, unused
UO - undetectable, unobservable
 UT - undetectable, tied
 UB - undetectable, blocked
 UR - undetectable, redundant

AU - ATPG untestable
 AN - ATPG untestable, not detected

ND - not detected
NC - not controlled

 NO - not observed

TetraMAX ATPGplaces each fault into one of the bottom-level fault classes. For more
information about fault classes, refer to the TetraMAX ATPGUser Guide.
By default, the PowerFault command read_tmax seeds faults in the AP, NP, NC, and NO
classes. If you want to seed faults belonging to classes other than the default set, you need to
specify the classes in the read_tmax command. For example, the following command seeds
faults in the fa1 file that belong to the following classes: possibly detected (AP, NP),
undetectable (UU, UT, UB, UR), ATPGuntestable (AN), and not detected (NC, NO):
$ssi_iddq("read_tmax AP NP UU UT UB UR AN NC NO fa1");

Oneway to use this command is to target undetectable and possibly detected faults in
TetraMAX ATPG. In this way, PowerFault complements TetraMAX ATPG to obtain the best
possible overall test coverage. If adequate coverage of these faults is obtained with just a few
IDDQstrobes and if your tester time budget allows it, you can then seed faults throughout the
design with the seed SA command and generate additional IDDQstrobes to obtain even
better IDDQ test coverage.

Seeding From an External Fault List
If you use the Verifault-XL fault simulator, you can seed the design with faults from a Verifault
fault list or fault dictionary. Similarly, if you use the Zycad fault simulator, you can seed the design
with faults from the Zycad fault origin file.

Fault Seeding 8-4

Test Pattern Validation User Guide K-2015.06-SP4

To seed faults from these types of files, use the read_verifault command, described in
“read_verifault” or the read_zycad command, described in “read_zycad” in the "PowerFault
PLI Tasks" section.
To seed the design with bridging faults from a file-based list, use the read_bridges
command. For details, see “read_bridges” in the "PowerFault PLI Tasks" section.

PowerFault-Generated Seeding
To have PowerFault automatically seed the design, use the seed SA command to seed
stuck-at faults or the seed B command to seed bridging faults. To specify how these seeding
algorithms operate, use the model SA and model B commands. For details, see “Fault
Model Commands” in the "PowerFault PLI Tasks" section.

Options for PowerFault-Generated Seeding
For PowerFault-generated seeding, use the seed SA and seed B commands. The
model SA and model B commands specify the behavior of the seeding algorithms.
The following sections provide some specific examples showing how you can use the model
SA and model B command options to control the seeding of faults in the design:

l Stuck-At Fault Model Options
l Bridging Faults

For basic information on using the model SA or model B command, see “model SA” or
“model B” in " PowerFault PLI Tasks" section.

Stuck-At Fault Model Options
The model SA command determineswhere the seed SA command seeds stuck-at faults.
Table 1 lists and describes the fault model options available in the model SA command.

Table 1 Options for Stuck-At Fault Models

Direction Options

port_IN Enables stuck-at faults on input ports of chosen modules

port_OUT Enables stuck-at faults on output ports of chosen
modules

term_IN Enables stuck-at faults on input terminals of primitives

term_OUT Enables stuck-at faults on output terminals of primitives

Stuck-At Placement Options

Options for PowerFault-Generated Seeding 8-5

Test Pattern Validation User Guide K-2015.06-SP4

all_mods Chooses all modules for port stuck-at faults

leaf_mods Chooses leaf modules for port stuck-at faults

cell_mods Chooses cell modules for port stuck-at faults

prims Chooses primitives for terminal stuck-at faults

Seed Inside Cells Option

seed_inside_cells Enables fault seeding inside cells

The all_mods?, leaf_mods?, and cell_mods options specify which types of modules
will have port faults. The port_IN and port_OUT options specify which types of ports from
thosemodules are seeded with stuck-at faults.
The prims option specifies that any primitive instance found within a seededmodule will have
terminal faults. The term_IN and term_OUT options specify which types of terminals from
those primitives are seeded with stuck-at faults.
Here is a specific example to help demonstrate how these optionswork. Assume that you have
the following Verilog description of a testbenchmodule called tbench.M88:
module M88();
 hier hmod(hout, hin);
 leaf lmod(lout, lin);
 cell cmod(cout, cin);
 nand(nout, nin1, nin2);
endmodule

module hier(out, in);
output out;
input in;
 leaf lmod(lout, lin);
endmodule

module leaf(out, in);
output out;
input in;
 nand(nout, nin1, nin2);
endmodule

`celldefine
module cell(out, in);
output out;
input in;
 nand(nout, nin1, nin2);
endmodule
`endcelldefine

Options for PowerFault-Generated Seeding 8-6

Test Pattern Validation User Guide K-2015.06-SP4

At the top level of hierarchy, this testbenchmodule contains a hierarchical module (?hmod?), a
leaf-level module (?lmod?), a module that has been defined as a cell (?cmod?), and a primitive
gate (?nand?). Figure 1 shows a circuit diagram corresponding to this Verilog description.

Figure 1 Circuit Example for Stuck-At Fault Seeding

Default Stuck-At Fault Seeding
By default, the seed SA command seeds port faults on leaf and cell modules and seeds
terminal faults on primitives. The default behavior is equivalent to using the following model
SA command:
model SA port_IN port_OUT term_IN term_OUT

leaf_mods cell_mods prims

Suppose that you start stuck-at seeding using the default model:
$ssi_iddq("seed SA tbench.M88");

This command seeds stuck-at faults on the following nets:
tbench.M88.lmod.lin
tbench.M88.lmod.lout
tbench.M88.hmod.lmod.nin1
tbench.M88.hmod.lmod.nin2
tbench.M88.hmod.lmod.nout
tbench.M88.lin
tbench.M88.lout
tbench.M88.lmod.nin1
tbench.M88.lmod.nin2
tbench.M88.lmod.nout
tbench.M88.cin
tbench.M88.cout
tbench.M88.nin1
tbench.M88.nin2
tbench.M88.nout

Options for PowerFault-Generated Seeding 8-7

Test Pattern Validation User Guide K-2015.06-SP4

Figure 2 shows the circuit diagramwith each seeded fault marked with an asterisk (*).

Figure 2 Seed Locations: Default Stuck-At Fault Model

all_mods
The all_mods option chooses all modules for port stuck-at faults. Thus, the following two
lines seed faults on the input and output ports of all modules inside tbench.M88?:
$ssi_iddq("model SA port_IN port_OUT all_mods");
$ssi_iddq("seed SA tbench.M88");

As a result, stuck-at faults are seeded on the following nets:
tbench.M88.hin
tbench.M88.hout
tbench.M88.hmod.lin
tbench.M88.hmod.lout
tbench.M88.lin
tbench.M88.lout
tbench.M88.cin
tbench.M88.cout

Figure 3 shows the resulting locations of seeds using this fault model.

Options for PowerFault-Generated Seeding 8-8

Test Pattern Validation User Guide K-2015.06-SP4

Figure 3 Seed Locations: all_mods Stuck-At Fault Model

cell_mods
The cell_mods option chooses cells for port stuck-at faults. Thus, the following two lines
seed faults on the input and output ports of every cell module inside tbench.M88?:
$ssi_iddq("model SA port_IN port_OUT cell_mods");
$ssi_iddq("seed SA tbench.M88");

As a result, stuck-at faults are seeded on the following nets:
tbench.M88.cin
tbench.M88.cout

Figure 4 shows the resulting locations of seeds using this fault model.

Options for PowerFault-Generated Seeding 8-9

Test Pattern Validation User Guide K-2015.06-SP4

Figure 4 Seed Locations: cell_mods Stuck-At Fault Model

leaf_mods
The leaf_mods option chooses leaf-level modules for port stuck-at faults. Thus, the following
two lines seed faults on the input and output ports of every leaf module inside tbench.M88?:
$ssi_iddq("model SA port_IN port_OUT leaf_mods");
$ssi_iddq("seed SA tbench.M88");

As a result, stuck-at faults are seeded on the following nets:
tbench.M88.hmod.lin
tbench.M88.hmod.lout
tbench.M88.lin
tbench.M88.lout

Figure 5 shows the resulting locations of seeds using this fault model.

Options for PowerFault-Generated Seeding 8-10

Test Pattern Validation User Guide K-2015.06-SP4

Figure 5 Seed Locations: leaf_mods Stuck-At Fault Model

prims
The prims option chooses primitives for terminal stuck-at faults. Thus, the following two lines
seed faults on the input terminal of every primitive inside tbench.M88?:
$ssi_iddq("model SA term_IN prims");
$ssi_iddq("seed SA tbench.M88");

As a result, stuck-at faults are seeded on the following nets:
tbench.M88.hmod.lmod.nin1
tbench.M88.hmod.lmod.nin2
tbench.M88.lmod.nin1
tbench.M88.lmod.nin2
tbench.M88.nin1
tbench.M88.nin2

Figure 6 shows the resulting locations of seeds using this fault model.

Options for PowerFault-Generated Seeding 8-11

Test Pattern Validation User Guide K-2015.06-SP4

Figure 6 Seed Locations: Primitive Input Stuck-At Fault Model

The following two lines seed faults on the output terminal of every primitive inside tbench.M88:
$ssi_iddq("model SA term_OUT prims");
$ssi_iddq("seed SA tbench.M88");

As a result, stuck-at faults are seeded on the following nets:
tbench.M88.hmod.lmod.nout
tbench.M88.lmod.nout
tbench.M88.nout

Figure 7 shows the resulting locations of seeds using this fault model.

Figure 7 Seed Locations: Primitive Output Stuck-At Fault Model

Options for PowerFault-Generated Seeding 8-12

Test Pattern Validation User Guide K-2015.06-SP4

seed_inside_cells
The seed_inside_cells option enables seeding of faults inside cells. Thus, the following
two lines seed faults on the output terminal of every primitive inside tbench.M88?, including
those inside cells:
$ssi_iddq("model SA term_OUT prims seed_inside_cells");
$ssi_iddq("seed SA tbench.M88");

As a result, stuck-at faults are seeded on the following nets:
tbench.M88.hmod.lmod.nout
tbench.M88.lmod.nout
tbench.M88.cmod.nout
tbench.M88.nout

Figure 8 shows the resulting locations of seeds using this fault model.

Figure 8 Primitive Output Seeding for seed_inside_cells

Bridging Faults
The model B command determineswhere the seed B command seeds bridge faults.
Table 2 lists and describes the bridge placement options available for the model B command.

Table 2 Options for Bridging Fault Models

Bridge Placement Options

Options for PowerFault-Generated Seeding 8-13

Test Pattern Validation User Guide K-2015.06-SP4

cell_ports Enables bridging faults between adjacent ports
of cells and between each input and output port
of cells (if the cell has no more than two output
ports)

fet_terms Enables bridging faults between all pairs of
terminals of FET switches

gate_IN2IN Enables bridging faults between adjacent input
terminals of non-FET primitives (including
UDPs)

gate_IN2OUT Enables bridging faults between all pairs of
input and output terminals of non-FET
primitives (including UDPs).

vector Enables bridging faults between adjacent bits
of expanded vectors

Seed Inside Cells Option

seed_inside_
cells

Enables fault seeding inside cells

cell_ports
The cell_ports option seeds bridging faults between adjacent ports of each cell, and also
between the cell inputs and outputs if the cell has nomore than two output ports. Ports are
considered adjacent when they appear next to each other in themodule’s port list definition. For
example, consider the followingmodule definition:
‘celldefine
module bsel(out, in1, in2, in3);
output out;
input in1, in2, in3;
endmodule
‘endcelldefine

The following port pairs are considered adjacent:
out, in1
in1, in2
in2, in3

As a result, the cell_ports option seeds five bridging faults: three between pairs of
adjacent ports and twomore between the inputs and outputs. This is the bridging fault list:
out, in1
in1, in2
in2, in3
out, in2
out, in3

Options for PowerFault-Generated Seeding 8-14

Test Pattern Validation User Guide K-2015.06-SP4

fet_terms
The fet_terms option seeds bridging faults between all pairs of terminals of each FET
switch. This results in four bridging faults for a CMOS switch or three bridging faults for any other
type of switch.
For example, consider this primitive:
nmos UF44(out, data, ctl);

The term_fets option seeds these three bridging faults:
out, data
out, ctl
data, ctl

gate_IN2IN
The gate_IN2IN option seeds bridging faults between adjacent input terminals of gates.
Terminals are considered adjacent when they appear next to each other in the primitive’s
terminal list.
For example, consider the following primitive:
and U2033(out, in1, in2, in3);

The gate_IN2IN option seeds the following two bridging faults:
in1, in2
in2, in3

gate_IN2OUT
The gate_IN2OUT option is like the gate_IN2IN option, except that it seeds bridging
faults between inputs and outputs. For the previous example, the gate_IN2OUT option
seeds the following three bridging faults:
out, in1
out, in2
out, in3

vector
The vector option seeds bridging faults between adjacent bits of a vector. Two bits are
considered adjacent when they have an indexwithin one unit of each other.
For example, consider the following vector:
wire [3:0] dvec;

The vector option seeds the following three bridging faults:
dvec[3], dvec[2]
dvec[2], dvec[1]
dvec[1], dvec[0]

seed_inside_cells
The seed_inside_cells option enables seeding of faults inside cells.

Options for PowerFault-Generated Seeding 8-15

Test Pattern Validation User Guide K-2015.06-SP4

Assume that you have a circuit with amodule tbench.M88 that contains an instance of the
following cell:
‘celldefine
module n2buf(a, b, en, out);
input a, b, en;
output out;
nmos(out, n2out, en);
nand(a2out, a, b);
endmodule
‘endcelldefine

Figure 9 shows a circuit diagram for this cell.

Figure 9 Example Circuit for Bridging Faults

The following two lines seed bridging faults between cell ports and between FET-switch terminal
pairs inside tbench.M88?:
$ssi_iddq("model B cell_ports fet_terms");
$ssi_iddq("seed B tbench.M88");

These commands seed five bridging faults between the ports of n2buf?:
a, b
b, en
a, out
b, out
en, out

By default, no faults are seeded inside of cells. Therefore, the internal net i2n is not
considered for fault seeding. To include this internal node, use the seed_inside_cells
option:
$ssi_iddq("model B cell_ports fet_terms

seed_inside_cells");
$ssi_iddq("seed B tbench.M88");

In this case, the following additional bridging faults are seeded:
i2n, en
i2n, out

Options for PowerFault-Generated Seeding 8-16

9
PowerFault Strobe Selection
After you run a Verilog/PowerFault simulation, you can use the PowerFault strobe selection tool,
IDDQPro, to select a set of strobe times to obtain maximum fault coverage. IDDQPro uses the
information in the IDDQdatabase produced by the Verilog/PowerFault simulation.
The following sections describe PowerFault strobe selection:

l Overview of IDDQPro
l Invoking IDDQPro
l Interactive Strobe Selection
l Strobe Reports
l Fault Reports

9-1

Test Pattern Validation User Guide K-2015.06-SP4

Overview of IDDQPro
IDDQPro is a strobe selection tool that operates on the IDDQdatabase produced by a
Verilog/PowerFault simulation. IDDQPro selects a set of strobe times tomaximize fault
coverage for a given number of strobes.
When you run a Verilog/PowerFault simulation, the output command in the PowerFault
Verilogmodule specifies the name of the IDDQdatabase. The database contains information on
seeded faults and the faults detected at each qualified strobe time.
When you invoke IDDQPro, you specify the database name and the number of strobes you want
to use. IDDQPro analyzes the database and finds a set of strobes that maximizes the number of
faults detected.
You can run IDDQPro in batchmode or interactivemode.

l In batchmode, IDDQPro selects a set of strobes and reports the results.
l In interactivemode, IDDQPro displays a command prompt.

You can interactively enter commands to select strobes, display reports, and traverse the
hierarchy of the design.
IDDQPro produces two report files: a strobe report (iddq.srpt) and a fault report (iddq.frpt).

l The strobe report shows the time value and cumulative fault coverage of each selected
strobe point.

l The fault report lists the status of each seeded fault, either detected or undetected, for the
complete set of selected strobes.

Each report file starts with a header that summarizes the report contents and tells you how to
interpret the information provided.
After you use IDDQPro to select a set of strobes, it is a good idea to copy and save the strobe
report file so that you will not need to generate it again. The strobe report can take a long time to
generate. It is not as important to save the fault report file because you can quickly regenerate it,
as long as you have the strobe report file.

Invoking IDDQPro
You invoke IDDQPro at an operating system prompt. The following sections describe the
process for invoke IDDQPro:

l ipro Command Syntax
l Strobe Selection Options
l Report Configuration Options
l Log File and Interactive Options

Overview of IDDQPro 9-2

Test Pattern Validation User Guide K-2015.06-SP4

ipro Command Syntax
The full Backus-Naur form (BNF) description of the command syntax for IDDQPro is as follows:
ipro options* iddq-database-name+
options ::=
-strb_lim max-strobes |
-cov_lim percent-cov |
-ign_ucov |
-strb_set file-name |
-strb_unset file-name |
-strb_all |
-prnt_fmt (tmax|verifault|zycad) |
-prnt_nofrpt |
-prnt_full |
-prnt_times |
-path_sep (.|/) |
-log file-name |
-inter

The command consists of the keyword ipro?, followed by zero or more options, followed by
one or more IDDQdatabase names. A typical command specifies a limit on the number of
strobeswith the -strb_limoption and specifies a single IDDQdatabase. For example:
ipro -strb_lim 5 iddq

This command invokes IDDQPro, specifies amaximum limit of five strobes, and specifies iddq
as the name of the IDDQdatabase.
Here are somemore examples of IDDQPro invocation commands:
ipro -strb_lim 5 iddqdb1 iddqdb2
ipro -strb_lim 8 /net/simserver/CCD/iddq
ipro -strb_lim 10 iddq
ipro -strb_lim 10 -cov_lim 0.95 iddq
ipro -strb_lim 10 -cov_lim 0.95 -prnt_fmt verifault iddq

Strobe Selection Options
You can control strobe selection by using the following ipro command options:
-strb_lim max-strobes
-cov_lim percent-cov
-strb_set file-name
-strb_unset file-name
-strb_all

If you do not use any options, IDDQPro selects strobes until it either uses up all the possible
strobe points or reaches the absolutemaximum coverage possible.

Invoking IDDQPro 9-3

Test Pattern Validation User Guide K-2015.06-SP4

-strb_lim
The -strb_lim option specifies themaximumnumber of strobe points to select. The
practical maximumnumber depends on the test equipment being used. Typically, only five to ten
IDDQstrobes are allowed per test. IDDQPro attempts to obtain the best possible coverage,
given the specifiedmaximumnumber of strobes.
For example, to limit the number of selected strobes to ten, you would use a command such as
the following:
ipro -strb_lim 10 iddq

-cov_lim
The -cov_lim option specifies the target fault coverage percentage. Strobe selection stops
when fault coverage reaches or exceeds this limit. Coverage is expressed as a decimal fraction
between 0.00 and 1.00. For example, to choose asmany strobes as necessary to reach 80
percent fault coverage, you would use a command such as the following:
ipro -cov_lim 0.80 iddq

-strb_set
The -strb_set option causes IDDQPro to select the strobe times listed in a file. IDDQPro
evaluates the effectiveness of the strobes listed in the file. If you have a set of strobe times you
think are good for IDDQ testing, put them into a file, with one time value per line.
For example, to force the selection of strobes at times 29900 and 39900, put those two times into
a file named stimes like this,
29900
39900

and then use a command such as the following:
ipro -strb_set stimes -strb_lim 8 /cad/sim/M88/iddq

As a result of this command, IDDQPro selects the two specified strobe times, plus six other
strobe times that it selects with its regular coverage-maximizing algorithm. The usual strobe
report, iddq.srpt?, includes all eight strobes. In addition, IDDQPro generates a separate
strobe evaluation report called iddq.seval?, which shows the coverage obtained by just the two
file-specified strobe times.
If you are usingmultiple testbenches, specify the testbench number before each strobe time.
Testbench numbering starts at 1. For example, to select the strobes at times 299 and 1899 in the
first testbench and time 399 in the second testbench, enter the following lines in the strobe time
file:
tb=1 299
tb=1 1899
tb=2 399

To regenerate a fault report from a saved strobe report, use the -strb_set option and specify
the name of the strobe report file. For example:
ipro -strb_set iddq.srpt -strb_lim 5 iddq

Invoking IDDQPro 9-4

Test Pattern Validation User Guide K-2015.06-SP4

-strb_unset
The -strb_unset option prevents IDDQPro from selecting the strobe times listed in a file. If
you have a set of strobe times that you do not want IDDQPro to use, put them into a file, with one
time value per line. For example, if you want to prevent the strobes at times 59900 and 89900
from being selected, put those two times into a file named bad_stimes and then use a
command such as the following:
ipro -strb_unset bad_stimes -strb_lim 8 /cad/sim/M88/iddq

As a result of this command, IDDQPro selects eight strobe times using its regular coverage-
maximizing algorithm, but excluding the strobes at times 59900 and 89900. If you are using
multiple testbenches, specify the testbench number before each strobe time as explained
previously for the -strb_set option.

-strb_all
The -strb_all option causes IDDQPro to select all qualified strobe points, starting with the
first strobe time, instead of using the coverage-maximizing algorithm. The strobe report and fault
report show the coverage obtained bymaking an IDDQmeasurement at every qualified strobe
point.
Although it is usually impractical to make somanymeasurements, the -strb_all option is
useful because it determines themaximumpossible coverage that can be obtained from your
testbench or testbenches. In addition, the resulting fault report identifies nets that never get
toggled; they are reported as undetected.

Report Configuration Options
You can control the generation of the fault report by IDDQPro by using the following ipro
command options:
-prnt_fmt (tmax|verifault|zycad)
-prnt_nofrpt
-prnt_full
-prnt_times
-path_sep
-ign_ucov

-prnt_fmt
The -prnt_fmt option specifies the format of the fault report produced by IDDQPro. The
format choices are tmax?, verifault?, and zycad?. The default format is tmax?.
In the default format, the faults are reported as shown in the following example:
sa0 NO .testbench.fadder.co
sa1 DS .testbench.fadder.co
sa0 DS .testbench.fadder.sum
sa1 NO .testbench.fadder.sum
...

Invoking IDDQPro 9-5

Test Pattern Validation User Guide K-2015.06-SP4

To generate a fault report in Zycad .fog format, use a command similar to the following:
ipro -prnt_fmt zycad -strb_lim 5 iddq

In the Zycad configuration, faults are reported as shown in the following example:
@testbench.fadder
 co 0 n U
 co 1 n D
 sum 0 n D
 sum 1 n U

...

To generate a fault report in Verifault format, use a command similar to the following:
ipro -prnt_fmt verifault -strb_lim 5 iddq

In the Verifault configuration, faults are reported as shown in the following example:
fault net sa0 testbench.fadder.co 'status=undetected';
fault net sa1 testbench.fadder.co 'status=detected';
fault net sa0 testbench.fadder.sum 'status=detected';
fault net sa1 testbench.fadder.sum 'status=undetected';
...

-prnt_nofrpt
Use the -prnt_nofrpt option to suppress generation of the fault report. Otherwise, by
default, IDDQPro generates the iddq.frpt fault report every time the program is run in batch
mode.

-prnt_full, -prnt_times, and -path_sep
The -prnt_full?, -prnt_times?, and -path_sep options control the generation of
Zycad-format fault reports. These options do not affect on Verifault-format fault reports.
The -prnt_full option controls the reporting of hierarchical paths. By default, faults are
divided into groups, with the cell name shown at the beginning of each group. Only the leaf-level
net name is shown in each line.
Here is an example taken from a report in the default Zycad reporting format:
@tbench.M88
sio24 0 n D
sio24 1 n D
sio25 0 n D
sio25 1 n U

If you use the -prnt_full option, the full hierarchical paths are reported in each line, as
shown in the following example:
tbench.M88.sio24 0 n D
tbench.M88.sio24 1 n D
tbench.M88.sio25 0 n D
tbench.M88.sio25 1 n U

Invoking IDDQPro 9-6

Test Pattern Validation User Guide K-2015.06-SP4

The -prnt_times option causes the fault report to include the simulation time at which each
fault was first detected. For example, with the -prnt_times options, the same faults as
described in the preceding example are reported as follows:
tbench.M88.sio24 0 n 129900 D
tbench.M88.sio24 1 n 39900 D
tbench.M88.sio25 0 n 455990 D
tbench.M88.sio25 1 n U

The -path_sep option specifies the character for separating the components of a
hierarchical path. The default character is a period (.) so that path names are compatible with
Verilog. If you want Zycad-style path names, select the forward slash character (/) instead, as in
the following example:
ipro -prnt_fmt zycad -prnt_full -path_sep / -strb_lim 5 iddq

Then the same faults described previously are reported as follows:
/tbench/M88/sio24 0 n D
/tbench/M88/sio24 1 n D
/tbench/M88/sio25 0 n D
/tbench/M88/sio25 1 n U

-ign_uncov
The -ign_uncov option prevents IDDQPro from using the “potential” status in the fault
report. All faults are still listed, but faults that would normally be reported as potential are instead
reported as undetected. This option also prevents IDDQPro from generating coverage statistics
for uninitialized nodes in the strobe report. For information on uninitialized nodes, see “Faults
Detected at Uninitialized Nodes”.

Log File and Interactive Options
The -log option lets you specify the name of the IDDQPro log file. The log file contains a copy
of all messages displayed during the IDDQPro session. By default, the log file name is iddq.log.
By default, IDDQPro runs in batchmode. Thismeans that IDDQPro reads the IDDQdatabase,
selects the strobe times, produces the strobe report and fault report files, and returns you to the
operating system prompt.
The -inter option lets you run IDDQPro in interactivemode. In thismode, IDDQPro displays
a prompt. You interactively select strobesmanually or automatically, request the reports that you
want to see, and optionally browse through the hierarchy of the design.
The IDDQPro interactive commands are described in the next section, “Interactive Strobe
Selection.”

Interactive Strobe Selection
To use IDDQPro in interactivemode, invoke it with the -inter option, as in the following
example:

Interactive Strobe Selection 9-7

Test Pattern Validation User Guide K-2015.06-SP4

% ipro -inter iddq

When IDDQPro is started in interactivemode, it loads the results from the Verilog simulation and
waits for you to enter a command. No strobes are selected and no reports are generated until
you enter the commands to request these actions.
At the interactive command prompt, you can enter commands to select strobes, display reports,
and traverse the hierarchy of the design.When you change to a lower-level module in the design
hierarchy, the reports that you generate apply only to the current scope of the design.
Table 1 lists and briefly describes the interactive commands. The following sections provide
detailed descriptions of these commands.

Table 1 IDDQPro Interactive Commands

Command Description

cd Changes the interactive scope to lower-level
instance

desel Prevents selection of specified strobe times

exec Executes a list of interactive commands in a
file

help Displays a summary description of all
commands or one command

ls Displays a list of lower-level instances at the
current level

prc Prints a fault coverage report

prf Prints a list of all seeded faults and their
detection status

prs Prints a list of all qualified strobes and their
status

quit Terminates IDDQPro

reset Cancels all strobe selections and detected
faults

sela Selects strobes automatically using the
coverage-maximizing algorithm

selall Selects all strobes

selm Selects one or more strobes manually,
specified by time value

Interactive Strobe Selection 9-8

Test Pattern Validation User Guide K-2015.06-SP4

To run an interactive IDDQPro session, you typically use the following steps:

1. Select the strobes automatically or manually, or select all strobes (?sela?, selm?, or
selall?).

2. If you want to analyze just a submodule of the design, change to hierarchical scope for
that module (?ls?, cd?).

3. Print a strobe report, coverage report, and fault report (?prs?, prc?, prf?).
4. Repeat steps 1 through 3 to examine different sets of strobes or different parts of the

design. Use the reset command to select an entirely new set of strobes.
5. Exit from IDDQPro (?quit?).

By default, the output of all interactive commands is sent to the terminal (stdout). The printing
commands, especially prf and prs?, can produce very long reports. If you want to redirect
the output of one of these commands to a file, use the -out option.

cd
cd module-instance

The cd command changes the current scope of the analysis to a specifiedmodule instance.
You can use this command to produce different reports for different parts of the design. For
example, to print separate fault reports for modules top.M88.alu and top.M88.io?,
enter the following commands:
cd top.M88.alu
prf -out alu.frpt
cd top.M88.io
prf -out io.frpt

To get a listing of modules in the current hierarchical scope, use the ls command. Tomove up
to the next higher level of hierarchy, use the following command:
cd ..

desel
desel strobe-times* selm-options*
strobe-times ::= [tb=testbench-number] simulation-time
selm-options ::= -in file-name | -out file-name

The desel (deselect) command prevents IDDQPro from selecting one or more specified
strobe timeswhen you later use the sela or selall command. The strobe times can be
explicitly listed in the command line or read from an input file.
If the desel command specifies strobes that are currently selected, they are first deselected.
The specified strobes are all made unselectable by subsequent invocations of the sela or
selall command. However, they can still be selectedmanually with the selm command.
For example, the following command deselects the two strobes at 59900 and 89900 and
prevents them from being selected automatically by a subsequent sela or selall
command:
desel 59900 89900

Interactive Strobe Selection 9-9

Test Pattern Validation User Guide K-2015.06-SP4

If you are usingmultiple testbenches, you can deselect strobes from different testbenches. For
example, the following commandmanually deselects strobes at time 799 and 1299 from
testbench 1 and a strobe at time 399 from testbench 2:
desel tb=1 799 tb=1 1299 tb=2 399

exec
exec file-name

The exec command executes a list of interactive commands stored in a file.

help
help [command-name]

The help command displays help on a specified interactive command. If you do not specify a
command name, the help command provides help on all interactive commands.

ls
ls

The ls command lists the lower-level instances contained in the current scope of the design.
To change the hierarchical scope, use the cd command.

prc
prc [-out file-name]

The prc (print coverage) command displays a report on the fault coverage of instances in the
current hierarchical scope. This report showswhich blocks in your design have high coverage
and which have low coverage.
This command reports statistics on seeded faults. Faults that were not seeded during the
Verilog/PowerFault simulation (such as faults detected by a previous run) are not included in the
fault coverage statistics.

prf
prf [-fmt (tmax|verifault|zycad)] [-full] [-times]

[-out file-name]

The prf (print faults) command displays a report on the faults in the instances contained in the
current hierarchical scope.
The output of this command is just like the default fault report file produced in batchmode,
iddq.frpt, except that the prf command lists the status of faults beneath the current
hierarchical scope, rather than all faults in the whole design.
The prf command complements the prc command. The prc command showswhich
blocks have low coverage, and the prf command showswhich faults are causing the low
coverage.

Interactive Strobe Selection 9-10

Test Pattern Validation User Guide K-2015.06-SP4

prs
prs [-out file-name]

The prs (print strobe) command displays the time value for every qualified IDDQstrobe. For
each selected strobe, the number of incremental (additional new) faults detected by the strobe is
also reported.

quit
quit

The quit command terminates IDDQPro.

reset
reset

The reset command clears the set of selected strobes and detected faults, allowing you to
start over.

sela
sela sela-options*
sela-options ::=

-cov_lim percent_cov |
-strb_lim max_strobes |
-out file-name

The sela (select automatic) command automatically selects strobes using a coverage-
maximizing algorithm. This is the same selection algorithm IDDQPro uses in batchmode.
The -cov_lim and -strb_lim optionswork exactly like the command-line options
described in “Strobe Selection Options”.
The -out option redirects the output of the command to a specified file.

selm
selm strobe-times* selm-options*
strobe-times ::= [tb=testbench-number] simulation-time
selm-options ::= -in file-name | -out file-name

The selm (select manual) command lets youmanually select strobes by specifying the strobe
times. You can explicitly list the strobe times in the command line or read them from an input file
using the -in option.
After you run this command, IDDQPro analyzes the strobe set and reports the results. To
redirect the output to a file, use the -out option.
The selm and sela commandswork together in an incremental fashion. Each time you use
one of these commands, it adds the newly selected strobes to the list of previously selected
strobes. This continues until themaximumpossible coverage is achieved, after which nomore

Interactive Strobe Selection 9-11

Test Pattern Validation User Guide K-2015.06-SP4

strobes can be selected. If the IDDQPro analysis determines that amanually selected strobe
fails to detect any additional faults, the selection is automatically canceled.
For example, consider the following two commands:
selm 29900 39900
sela -strb_lim 6

The first commandmanually selects the two strobes at 29900 and 39900. The second command
automatically selects sixmore strobes that complement the first two strobes andmaximize the
fault coverage.
To clear all strobe selections and start over, use the reset command.
If you are usingmultiple testbenches, you can select strobes from different testbenches. For
example, the following commandmanually selects strobes at times 799 and 1299 in testbench 1
and the strobe at time 399 in testbench 2:
selm tb=1 799 tb=1 1299 tb=2 399

selall
selall [-out file-name]

The selall (select all) command automatically selects every qualified strobe, starting with
the first strobe time and continuing until themaximumpossible coverage is achieved or all
qualified strobes are selected.
Although it is usually impractical to make somanymeasurements, the -selall command is
useful because it determines themaximumpossible coverage that can be obtained from your
testbench or testbenches. If you use the prf command after the selall command, the
resulting fault report identifies nets that never get toggled; they are reported as undetected.

Understanding the Strobe Report
A strobe report (iddq.srpt file) is generated when you run IDDQPro in batchmode and each time
you select strobes in interactivemode. The following sections describe a strobe report:

l Example Strobe Report
l Fault Coverage Calculation
l AddingMore Strobes
l Deleting Low-Coverage Strobes

Example Strobe Report
A strobe report lists the selected strobes in time order and shows the following information for
each strobe:

l The simulation time
l The simulation cycle number
l The cumulative coverage achieved

Understanding the Strobe Report 9-12

Test Pattern Validation User Guide K-2015.06-SP4

l The cumulative number of faults detected
l The incremental (additional new) faults detected
The report gives you an idea of the effectiveness of each strobe. A large jump in coverage
indicates a valuable strobe. A very small increase in coverage indicates a strobe with little value.
Here is an example of a strobe report:
IDDQ-Test strobe report
Date: day date time
Reached requested fault coverage.
Selected 6 strobes out of 988 qualified.
Fault Coverage (detected/seeded) = 90.3% (23082/25561)
Timeunits 1.0ns
Strobe: Time Cycle Cum-Cov Cum-Detects Inc-Detects

19990 2 48.3% 12346 12346
329990 33 69.0% 17637 5291
2109990 211 74.2% 18966 1329
2129990 213 77.9% 19912 946
2759990 276 85.7% 21906 1994
2809990 281 90.3% 23082 1176

Fault Coverage Calculation
The fault coverage statistics in a strobe report include the following types of faults:

l Faults Detected by PreviousRuns
l Undetected Faults Excluded FromSimulation
l Faults Detected at Uninitialized Nodes

Faults Detected by Previous Runs
For example, the following report indicates that faults were detected by previous runs:
Reached requested fault coverage.
Selected 8 strobes out of 755 qualified.
Fault Coverage (detected/seeded) = 90.0% (90/100)
Faults detected by previous runs = 60

In this example, an existing fault list was read into the Verilog simulation with read_tmax or a
similar command. That fault list had 60 faults that were already detected, either by an external
tool such as Verifault or by a previous IDDQPro run. Therefore, the eight selected strobes only
detected 30more faults than the 60 that were already detected.

Undetected Faults Excluded From Simulation
The following report indicates that undetected faults were excluded from simulation:
Reached requested fault coverage.
Selected 4 strobes out of 2223 qualified.

Understanding the Strobe Report 9-13

Test Pattern Validation User Guide K-2015.06-SP4

Fault Coverage (detected/seeded) = 85.0% (170/200)
Undetected faults excluded from simulation = 20

The fault list read in by read_tmax or a similar command had 20 faults that were undetected
but excluded. Perhaps the fault list covered the entire chip, but 20 faults were excluded from
seeding at the I/O pads. The four selected strobes detected 170 faults and did not detect 30
faults. However, of the 30 undetected faults, only 10 were simulated by IDDQPro.

Faults Detected at Uninitialized Nodes
The following report indicates that faults were detected at uninitialized nodes:
Reached requested fault coverage.
Selected 5 strobes out of 2223 qualified.
Fault Coverage (detected/seeded) = 92.5% (370/400)
Faults detected at un-initialized nodes = 10

If an uninitialized node is driven to X (unknown rather than floating) during every selected vector,
a strobe detects one stuck-at fault, either stuck-at-0 or stuck-at-1, because the node is driven to
either 1 or 0. However, it is not knownwhich type of fault is detected. The report indicates that
370 out of 400 faults were detected. Of the 370 detected faults, 10 have an unknown type,
corresponding to the 10 nodes that were never initialized.

Adding More Strobes
After a Verilog/PowerFault simulation, you can use IDDQPro repeatedly to evaluate the
effectiveness of different strobe combinations. It is not necessary to rerun the
Verilog/PowerFault simulation each time.
You can use the strobes selected from an IDDQPro run as the initial strobe set for subsequent
runs. For example, consider the following sequence of commands:
ipro -strb_lim 6 /cad/sim/M88/iddq
mv iddq.srpt stimes
ipro -strb_set stimes -strb_lim 8 /cad/sim/M88/iddq

The first command runs IDDQPro and selects six strobe points. The second command copies
the strobe report file to a new file. The third command invokes IDDQPro again, using the strobe
report from the first run as the initial strobe set, and selects two additional strobe points. After the
second run, the strobe report file (iddq.srpt) contains eight strobe points, consisting of the six
original strobes plus two new ones.

Deleting Low-Coverage Strobes
If you identify a strobe that provides very little additional coverage, you can delete it from the
strobe report and run IDDQPro again to recalculate the coverage:

1. Run IDDQPro to select an initial set of strobes:
ipro -strb_limit 8 iddq

Understanding the Strobe Report 9-14

Test Pattern Validation User Guide K-2015.06-SP4

2. Save the strobe report to a separate file:
mv iddq.srpt stimes

3. Edit the new file and delete the strobe that provides the fewest incremental fault
detections.

4. Run IDDQPro again, using the edited file for initial strobe selection:
ipro -strb_limit 8 -strb_set stimes iddq

For best results, delete only one strobe at a time and run IDDQPro each time to recalculate the
coverage. Coverage lost by deletingmultiple strobes cannot be calculated by simple addition of
the incremental coverage because of overlapping coverage.

Fault Report Formats
A fault report (iddq.frpt file) is generated when you run IDDQPro in batchmode and each time
you use the prf command in interactivemode. The fault report lists all the seeded faults and
their detection status.
You can choose the fault report format by using the -prnt_fmt option when you invoke
IDDQPro. The format choices are the TetraMAX ATPG, Verifault, and Zycad formats. The
default is TetraMAX ATPG.
The following sections describe the various fault report formats:

l TetraMAX Format
l Verifault Format
l Zycad Format
l Listing Seeded Faults

TetraMAX Fault Report Format
A fault report in TetraMAX format lists one fault descriptor per simulated fault. Each fault
descriptor shows the type of fault, the fault status (DS=detected by simulation, NO=not
observed), and the full net name (or two net names for a bridging fault).
Here is a section of a fault report in TetraMAX format:
sa0 DS tb.fadder.co
sa1 DS tb.fadder.co
sa0 DS tb.fadder.sum
sa1 DS tb.fadder.sum

The fault report shows five faults, all of which are detected by the selected strobes. All five faults
involve nets in the tb.fadder module instance. The first four faults are stuck-at-0 and stuck-
at-1 faults for the co and sum nets. The last fault is a bridge fault between the x and ci
nets.

Fault Report Formats 9-15

Test Pattern Validation User Guide K-2015.06-SP4

Verifault Fault Report Format
A fault report in Verifault format lists one fault descriptor per simulated fault. Each fault descriptor
begins with the keyword fault?, followed by type of the fault, the full name of the net, and the
fault status.
Here is a section of a fault report in Verifault format:
fault net sa0 tb.fadder.co ’status=detected’;
fault net sa1 tb.fadder.co ’status=detected’;
fault net sa0 tb.fadder.sum ’status=detected’;
fault net sa1 tb.fadder.sum ’status=detected’;
fault bridge wire tb.fadder.x tb.fadder.ci
’status=detected’;

The fault report shows five faults, all of which are detected by the selected strobes. All five faults
involve nets in the tb.fadder module instance. The first four faults are stuck-at-0 and stuck-
at-1 faults for the co and sum nets. The last fault is a bridge fault between the x and ci
nets.

Zycad Fault Report Format
In a fault report in Zycad format, there are three types of lines (other than comment lines): cell
locations, stuck-at fault descriptors, and bridging fault descriptors.
A cell location line indicates the hierarchical scope for the following list of net names:
@module-instance

A stuck-at fault descriptor line indicates a net stuck-at 1 or stuck-at 0 fault:
net-namestuck-value n (D|U) [time-of-first-detect]

A bridging fault descriptor line indicates a bridging fault between two nets:
net1-namenet2-name b (D|U) [time-of-first-detect]

Here is a section of a fault report in the default Zycad format:
IDDQ-Test fault report
#
ALL fault origins
Date: day date time
#
path net short type result
name name value (D, U)
#
@tb.fadder
 co 0 n D
 co 1 n D
 sum 0 n D

Fault Report Formats 9-16

Test Pattern Validation User Guide K-2015.06-SP4

 sum 1 n D
 x ci b D

The fault report shows five faults, all of which are detected by the selected strobes. All five faults
involve nets in the tb.fadder module instance. The first four faults are stuck-at-0 and stuck-
at-1 faults for the co and sum nets. The last fault is a bridge fault between the x and ci
nets.
The report will look different from this example if youmodify the default format using the -
prnt_full?, -prnt_times?, or -path_sep option when you invoke IDDQPro. For
details, see the descriptions of the -prnt_full, -prnt_times, and -path_sep options in
"Invoking IDDQPro" .

Listing Seeded Faults
The IDDQdatabase stores the faults seeded by the Verilog/PowerFault simulation in a compact
binary format. Usually, you use IDDQPro to select strobes, calculate the fault coverage, and
print a fault report that lists all the seeded faults along with their detection status. However, there
might be times you want a list of the seeded faults without selecting strobes. For example, if
there are no quiet strobe points to select, IDDQPro cannot generate the fault report.
To generate a list of seeded faults under these circumstances, start IDDQPro in interactive
mode, and then use the prf command to generate a fault report, and redirect the output to a
file:
ipro -inter iddq-database-name
prf -out iddq.frpt
quit

Fault Report Formats 9-17

10
Using PowerFault Technology
The following sections provide information on using PowerFault simulation technology:

l PowerFault Verification and Strobe Selection
l Testbenches for IDDQTestability
l CombiningMultiple Verilog Simulations
l Improving Fault Coverage
l Floating Nodes and Drive Contention
l StatusCommandOutput
l Behavioral and External Models
l Multiple Power Rails
l Testing I/O and Core Logic Separately

10-1

Test Pattern Validation User Guide K-2015.06-SP4

PowerFault Verification and Strobe Selection
You can use PowerFault simulation technology to perform the following IDDQ tasks:

l Verify TetraMAX IDDQPatterns for Quiescence
l Select Strobes in TetraMAX Stuck-At Patterns
l Select Strobe Points in Externally Generated Patterns

Verifying TetraMAX IDDQ Patterns for Quiescence
When you use the TetraMAX IDDQ fault model, TetraMAX ATPGgenerates test patterns that
have an IDDQstrobe in every pattern. When you write the patterns to a Verilog-format file,
TetraMAX ATPGautomatically includes the PowerFault tasks necessary for verifying
quiescence at every strobe.
To verify TetraMAX IDDQ test patterns for quiescence, use the following procedure:

1. In TetraMAX ATPG, use the write_patterns command to write the generated test
patterns in STIL format. For example, to write a pattern file called test.stil, you could use
the following command:
write_patterns test.stil -internal -format stil

2. UsingMAX Testbench, create a Verilog testbench (for details, see “Using the stil2Verilog
Command”). For example, to write a Verilog testbench called test.v you could use the
following command:
stil2Verilog test.stil test

3. If you want to specify the name of the leaky node report file, open the test pattern file in a
text editor and search for all occurrences of the status drivers leaky command,
and change the default file name to the name you want to use. This is the default
command:
// NOTE: Uncomment the following line to activate
// processing of IDDQ events
// define tmax_iddq
‘$ssi_iddq("status drivers leaky top_level_name.leaky");

Substitute your own file name as in the following example:
‘$ssi_iddq("status drivers leaky my_report.leaky");

Save the edited test pattern file.
4. Run a Verilog/PowerFault simulation using the test pattern file.

The simulator produces a quiescence analysis report, which you can use to debug any leaky
nodes found in the design.

PowerFault Verification and Strobe Selection 10-2

Test Pattern Validation User Guide K-2015.06-SP4

Selecting Strobes in TetraMAX Stuck-At Patterns
Instead of generating test patterns specifically for IDDQ testing, you can use TetraMAX ATPG to
generate ordinary stuck-at ATPGpatterns and then use PowerFault simulation technology to
choose the best strobe times from those patterns. To do this, you need tomodify the Verilog
testbench file to enable the simulator’s IDDQ tasks.
This is the general procedure:

1. In TetraMAX ATPG, use the write_patterns command to write the generated test
patterns in STIL format. For example, to write a pattern file called test.stil, you could use
the following command:
write_patterns test.stil -internal -format stil

2. UsingMAX Testbench, create a Verilog testbench(for details, see “Using the stil2Verilog
Command”). For example, to write a Verilog testbench called test.v you could use the
following command:
stil2Verilog test.stil test

3. Open the test pattern file in a text editor.
4. At the beginning of the file, find the following comment line:

// ‘define tmax_iddq

Remove the two forward slash characters to change the comment into a ‘define
tmax_iddq statement. This enables the PowerFault tasks that TetraMAX ATPGhas
embedded in the testbench.
Note:Instead of activating the ‘define tmax_iddq statement in the file, you can
define tmax_iddq when you invoke the Verilog simulator. For example, when you
invoke VCS, use the +define+tmax_iddq=0+ option.

5. If you want to specify the name of the leaky node report file, search for all occurrences of
the status drivers leaky command and change the default file name to the
name you want to use. This is the default command:
‘$ssi_iddq("status drivers leaky top_level_name.leaky");

6. Save the edited test pattern file.
7. Run a Verilog simulation using the edited test pattern file.
8. Run the IDDQProfiler.

When you run the Verilog/PowerFault simulation, the IDDQsystem tasks evaluate each strobe
time for fault coverage.When you run the IDDQProfiler, it selects the best strobe times.

PowerFault Verification and Strobe Selection 10-3

Test Pattern Validation User Guide K-2015.06-SP4

Selecting Strobe Points in Externally Generated Patterns
You can use PowerFault simulation technology to select strobes from testbenches generated by
sources other than TetraMAX ATPG. The procedure depends on the testbench source:

l For test vectors generated by other ATPG tools, edit the testbench to add the PowerFault
tasks.

l For functional (design verification) test vectors, edit the testbench to add the PowerFault
tasks and determine timing for the tester vector. Use t-1, the last increment of time within a
test cycle, for IDDQstrobes.

l For BIST (built-in self-test), control the clockwith tester and determine timing for the tester
vector. Use t-1 for IDDQstrobes.

To see how to edit the testbench to add PowerFault tasks, you can look at some Verilog
testbenches generated by TetraMAX ATPG. For example, after the initial begin
statement, you need to insert $ssi_iddq tasks to invoke the PowerFault commands:
initial begin
//Begin IddQTest initial block
 $ssi_iddq("dut adder_test.dut");
 $ssi_iddq("verb on");
 $ssi_iddq("seed SA adder_test.dut");
 $display("NOTE: Testbench is calling IDDQ PLIs.");
 $ssi_iddq("status drivers leaky LEAKY_FILE");
//End of IddQTest initial block
...
end

You also need to find the capture event and insert the PowerFault commands to evaluate a
strobe at that point. For example:
event capture_CLK;
always @ capture_CLK begin

->forcePI_default_WFT;
#140; ->measurePO_default_WFT;
#110 PI[4]=1;
#130 PI[4]=0;

//IddQTest strobe try
begin

 $ssi_iddq("strobe_try");
 $ssi_iddq("status drivers leaky LEAKY_FILE");

end
//IddQTest strobe try
end

PowerFault Verification and Strobe Selection 10-4

Test Pattern Validation User Guide K-2015.06-SP4

Testbenches for IDDQ Testability
When you create a testbench outside of the TetraMAX ATPGenvironment, the following design
principles can significantly improve IDDQ testability:

l Separate the Testbench From the Device Under Test
l Drive All Input Pins to 0 or 1
l Try Strobes After Scan Chain Loading
l Include a CMOSGate in the Testbench for Bidirectional Pins
l Model the Load Board
l Mark the I/OPins
l Minimize High-Current States
l Maximize Circuit Activity

Separate the Testbench From the Device Under Test
For better IDDQ testability, maintain a clean separation of the testbench from the device under
test (DUT). The Verilog DUTmodule shouldmodel only the structure and behavior of the chip.
Put the chip-external drivers and pullups in the testbench. The testbench should also generate
stimulus for the chip and verify the correctness of the chip’s outputs.

Drive All Input Pins to 0 or 1
Themapping of testbench Xs to automated test equipment (ATE) drive signals is not well
defined. The results depend on how the active load on the ATE is programmed. Because Xs can
bemapped to VDD, VSS, or some intermediate voltage, such as (VDD-VSS)/2, avoid having
your testbench drive Xs into the chip. PowerFault reports input pins driven to X as “possible
float.”

Try Strobes After Scan Chain Loading
Tominimize simulation time and database size when you run a Verilog/PowerFault simulation,
do not perform a strobe_try on every serialized scan load step. Instead, use strobe_
try only after the entire scan chain is loaded.
If your simulation does a parallel scan load or you are using functional vectors, use strobe_
try before the end of each cycle.

Include a CMOS Gate in the Testbench for Bidirectional Pins
If your chip has bidirectional I/O pins, place a CMOS gate inside the testbench to transmit the
signal between the testbench driver and the I/O pad. For details, see “Use PassGates”.

Testbenches for IDDQ Testability 10-5

Test Pattern Validation User Guide K-2015.06-SP4

Model the Load Board
Take into account external connections to the DUT.When a chip is tested by ATE, it resides on a
load board. The load board is a printed circuit board that provides the encapsulating
environment in which the chip is tested. It can contain pullups/pulldowns, latches for three-state
I/O pins, power/ground connections, and so on.
In general, your Verilog testbench shouldmodel the load board as accurately as possible. Any
pullups/pulldowns/latches that would exist on the load board should bemodeled in the
testbench. In general, if a chip requires pullups to operate correctly in a real system, you can
assume they are needed on the load board also.

Mark the I/O Pins
The top-level ports of each DUTmodule are assumed to be primary I/O ports and are given
special treatment by PowerFault. If the testbench drives the DUT through other ports, use the
io command to tell PowerFault about these ports. For information on the io command, see
“io” in the " PowerFault PLI Tasks " section.

Minimize High-Current States
Try tominimize timeswhen analog, RAM, and I/O cells are in current-draining states. Put them
into standbymodewhen possible and write a complete set of test vectors for analog/RAM/IO
standbymode.
Because IDDQ testing can be performedwhen the circuit is in a low-current state, try to
minimize the number of vectors that put the circuit into high-current states. For maximum
coverage, youmight need to repeat the vectors that are normally applied during high-current
states. For example, if your I/O pads have active pullups during some vectors, you can apply
those same vectors again when the pullups are disabled, so that IDDQ testing can be performed
on those vectors.

Maximize Circuit Activity
Try to toggle each node during low-current states. Some easymethods for achieving high circuit
activity include:

l Shift alternating 0/1 patterns into scan registers.
l Apply alternating 0/1 patterns to data and address lines.

Combining Multiple Verilog Simulations
If you use different Verilog simulation runs to test different portions of a device or to drive a
device into different states, you can use PowerFault technology to choose a set of strobe times
for maximum fault coverage over all the resulting testbenches. For example, if there are 30

Combining Multiple Verilog Simulations 10-6

Test Pattern Validation User Guide K-2015.06-SP4

testbenches and your tester time budget allows only five IDDQstrobes, the five selected strobes
ought to provide the best coverage out of all possible strobes in all 30 testbenches.
Note: If you want to improve coverage efficiencywithin a single testbench, see “Deleting Low-
Coverage Strobes."
To combinemultiple simulation results, you canmerge the IDDQ information from each
successive Verilog/PowerFault simulation into a single database. Then you can apply the IDDQ
Profiler to that single database. This process is illustrated in Figure 1.

Figure 1 UsingMultiple Testbenches

The following procedure is an example of a strobe selection session using two testbenches and
a budget of five IDDQstrobes. The PowerFault PLI tasks for testbench1 and
testbench2 are in files named iddq1.v and iddq2.v?, respectively.

1. In iddq1.v and iddq2.v, seed the entire set of faults, using either the seed command or
read commands. For example:
$ssi_iddq("seed SA iddq1.v");

$ssi_iddq("seed SA iddq2.v");

2. In iddq1.v, use the output create command to save the simulation results to an
IDDQdatabase named iddq.db?:

Combining Multiple Verilog Simulations 10-7

Test Pattern Validation User Guide K-2015.06-SP4

$ssi_iddq("output create label=run1 iddq.db");

3. In iddq2.v, use the output append command to append the simulation results to the
database you created in Step 2:
$ssi_iddq("output append label=run2 iddq.db");

4. Run a Verilog/PowerFault simulation using testbench1.v and iddq1.v?.
5. Run a Verilog/PowerFault simulation using testbench2 and iddq2.v?.

6.
Run the IDDQProfiler to select five good strobe points from the iddq.db database:
ipro -strb_lim 5 iddq

A strobe report for multiple testbenches shows both the testbench number and simulation time
within the respective testbench for each selected strobe. Testbench names and labels are listed
in the header of the strobe report. Testbenches are numbered in sequence, starting with 1.
When you usemultiple testbenches, the fault report files show only the comment lines from the
first testbench. PowerFault does not try to merge the comment lines from the fault list in the
second and subsequent testbencheswith those in the first testbench.

Improving Fault Coverage
PowerFault does not require additional design-for-test (DFT) circuitry or modifications to your
testbench, models, or libraries. It does not require configuration files, and it runs on any Verilog
chip design.
If PowerFault is unable to find enough qualified strobes to provide satisfactory fault coverage,
youmight be able to findmore qualified strobes by using the techniques described in the
following sections:

l DetermineWhy the Chip Is Leaky
l Evaluate Solutions

Determine Why the Chip Is Leaky
The first step is to run the Verilog/PowerFault simulation to determine why the chip is leaky at
strobe times. At each strobe try, PowerFault examines your chip for leaky states. If it finds any
leaky states, it disqualifies the strobe point.
To check the leaky states for each strobe point, use the status command after the
strobe_try?, as in the following example:

always begin
fork
CLOCK_PERIOD;
(CLOCK_PERIOD -1)

 begin
 $ssi_iddq("strobe_try");
 $ssi_iddq("status drivers leaky bad_nodes");

end
 join

Improving Fault Coverage 10-8

Test Pattern Validation User Guide K-2015.06-SP4

end

This example creates a file called bad_nodes that describes each leaky state at each strobe
point. For example:
Time 3999
top.dut.vee[0] is leaky: Re: float
 HiZ <- top.dut.veePad0.out
top.dut.DIO[1] is leaky: Re: fight
 St0 <- top.dut.dpad1_cld
 St1 <- top.dut.dpad1_snd
 StX <- resolved value

For each status command, the simulator reports the simulation time and a list of leaky
nodes. In the report, the full path name of each net is followed by a reason (such as Re:
float?) and a list of drivers and their contribution to the net value. For example, in the
preceding example, top.dut.vee[0] is floating because its lone driver
(?top.dut.veePad0?) is in the high-impedance state.
For a complete description of the output of the status command, see “Status Command
Output”. For more information on leaky states, see “Leaky State Commands."

Evaluate Solutions
After you identify and understand the leaky states, you need to decide how to eliminate or ignore
them so that you can change unqualified strobes into qualified ones. Use any of the following
methods:

l Use the allow Command
l Configure the Verilog Testbench
l Configure the VerilogModels

Use the allow Command
The allow command canmake PowerFault ignore leaky states that you know are not
present in the real chip. For example, incomplete Verilogmodels can causemisleading leaky
states that prevent PowerFault from qualifying strobe points. For more information, see “Leaky
State Commands."

Configure the Verilog Testbench
In some cases, you can fix leaky states bymodifying the Verilog testbench, as described in the
following sections:

l Drive All Input Pins to 0 or 1
l Use PassGates
l Model the Load Board
l Mark the I/OPins

Drive All Input Pins to 0 or 1
Make sure the testbench initializes all primary inputs. If your testbench drives Xs into the primary
input pins of the device under test (DUT), PowerFault disqualifies the vector and flags those pins

Improving Fault Coverage 10-9

Test Pattern Validation User Guide K-2015.06-SP4

as “possible float.” PowerFault takes the conservative position that Xs driven by the testbench
might translate to the automated test equipment (ATE) turning off the drive signal and allowing
the input pin to float.
If your ATE replaces Xswith a default drive value (either VDD or VSS), then driving Xs should
be allowed. In that case, use the allow float command on all your input pins, as in the
following example:
$ssi_iddq("allow float testbench.chip.RE");
$ssi_iddq("allow float testbench.chip.ABUS[0]");
$ssi_iddq("allow float testbench.chip.ABUS[1]");

Use Pass Gates
If your chip has bidirectional I/O pins, place a CMOS gate inside the testbench to transmit the
signal between the testbench driver and the I/O pad.
The following code shows how two registers in the testbench are connected to signals that feed
the DUT pins:
reg bio_reg, dtrdy_reg; // registers to hold stimulus
 // drive bidirectional "bio" signal through pass gate
wire bio_tmp = bio_reg;
cmos(bio_sig, bio_tmp,‘b1,‘b0);

 // drive input signal directly
wire dtrdy_sig = dtrdy_reg;

 // hookup signals to dut
dut dut(bio_sig, dtrdy_sig, ...);

Notice how the input signal dtrdy_sig is driven directly by the dtrdy_reg register, but the
bidirectional signal bio_sig is driven through the cmos primitive, as shown in Figure 2.

Figure 2 Pass Transistor Between the Testbench and DUT

Improving Fault Coverage 10-10

Test Pattern Validation User Guide K-2015.06-SP4

Model the Load Board
When a chip is tested by ATE, it resides on a load board. The load board is a printed circuit board
that provides the encapsulating environment in which the chip is tested. It can contain
pullups/pulldowns, latches for three-state I/O pins, power and ground connections, and so on.
In general, your Verilog testbench shouldmodel the load board as accurately as possible. Any
pullups, pulldowns, and latches that would exist on the load board should bemodeled in the
testbench. In general, if a chip needs pullups to operate correctly in a real system, you can
assume they are needed on the load board also.

Mark the I/O Pins
The top-level ports of a DUTmodule are assumed to be primary I/O ports and are given special
treatment by PowerFault. If the testbench drives the DUT through other ports, use the io
command to tell PowerFault about these ports. For information on the io command, see "
PowerFault PLI Tasks ."

Configure the Verilog Models
In general, themore your chip ismodeled at a structural level (using gates, switches, and wires),
the better for IDDQ testing. If your cellsmodel logic behaviorally rather than with built-in Verilog
primitives and user-defined primitives (UDPs), PowerFault might find fewer qualified strobe
points. For details, see the following sections:

l Drive All Buses Possible
l Gate Buses That Cannot Be Driven
l Use Keeper Latches
l Enable OnlyOneDriver
l Avoid Active Pullups and Pulldowns
l Avoid Bidirectional Switch Primitives

Drive All Buses Possible
Because floating buses can disqualify strobe points, try to always drive internal buses. Either
configure the control logic to always enable one driver for the bus, or use keeper latches
(holders).
For example, here is a bus that has two drivers that are fullymultiplexed:
bufif1 (addr0, X[0], sel); // driver 1
bufif1 (addr0, Y[0], sel_bar); // driver 2
not (sel_bar, sel); // inverter

Gate Buses That Cannot Be Driven
If driving the bus is not always possible or desirable, gate the bus so that when it does float, the
effect is blocked. For example, here is a bus that has two drivers and one load:
bufif1 (addr0, X[0], x_en); // driver 1
bufif1 (addr0, Y[0], y_en); // driver 2
or (x_or_y_en, x_en, y_en); // qualifier
and (addr0_qualified, addr0, x_or_y_en); // load

Improving Fault Coverage 10-11

Test Pattern Validation User Guide K-2015.06-SP4

The bus value is blocked at the load (AND gate) when neither driver is active. If you want to use
OR gates to block floating buses, use the statedep_float command. For more
information on this command, see “statedep_float” in the "PowerFault PLI Tasks" section. For
more information on blocking floating buses, see “State-Dependent Floating Nodes”.

Use Keeper Latches
If a bus cannot always be driven or gated, consider using keeper latches (also called “keepers”).
A keeper retains the last value driven onto the bus. It has a weaker drive strength than normal
bus drivers so that it can be overdriven.
Keepers should bemodeled structurally. For example, here is a bus that has two drivers and one
keeper:
bufif1 (addr0, X[0], x_en); // driver 1
bufif1 (addr0, Y[0], y_en); // driver 2
buf (pull0,pull1) (addr0, addr0); // keeper

Avoidmodeling keepers behaviorally or with continuous assignments:
wire (pull0,pull1) addr0 = addr0; // AVOID THIS

Use only strength-restoring gates such as buf for modeling keepers. Avoid using switch
primitives (?nmos?, pmos?, cmos?) for modeling keepers:
rnmos(addr0, addr0, ‘b1); // AVOID THIS

Enable Only One Driver
Because bus contention disqualifies strobe points, initialize all control logic (enabling lines) for
bus drivers. Furthermore, if possible, configure the control logic to enable only one driver for the
bus at a time.

Avoid Active Pullups and Pulldowns
Active pullups and pulldowns can also disqualify strobe points, so use keeper latches on three-
state buses rather than pullups or pulldowns. PowerFault treats each of the following elements
as a pullup or pulldown:

l pullup and pulldown primitives
l tri1 and tri0 nets
l wand and wor nets

Conflicting values on “wired AND” nets are reported as active pullups, and conflicting values on
“wired OR” nets are reported as active pulldowns.
When youmust use pullups or pulldowns, model them structurally like this:
wire n26;
pullup(n26);

OR
tri1 n26;

Avoidmodeling pullups and pulldowns behaviorally or with continuous assignments, as in the
following example:
wire (highz0,pull1) n26 = n26; // AVOID THIS

Improving Fault Coverage 10-12

Test Pattern Validation User Guide K-2015.06-SP4

Avoid Bidirectional Switch Primitives
Avoid using the rtran?, rtranif1?, and rtranif0 primitives. If possible, replace them
with nmos?, pmos?, or cmos primitives.

Floating Nodes and Drive Contention
PowerFault recognizes certain types of floating nodes and drive contention, and reports them
according to their classification. The following sections describe floating nodes and drive
contention:

l Floating Node Recognition
l Drive Contention Recognition

Floating Node Recognition
The following sections describe floating node recognition:

l Leaky Floating Nodes
l Floating Nodes Ignored by PowerFault
l State-Dependent Floating Nodes
l Configuring Floating Node Checks
l Floating Node Reports
l Nonfloating Nodes

Leaky Floating Nodes
PowerFault identifies thefollowing types of floating nodes as leaky:

l True floating node—This is a node at Z, which does not have any active drivers, as
shown in Figure 1.

Figure 1 True Floating Node Example

l Possibly floating node—This is a node at X that might not have an active driver, as
shown in Figure 2, or an undriven capacitive node. A capacitive node is a Verilog net with
small, medium, or large strength.

Floating Nodes and Drive Contention 10-13

Test Pattern Validation User Guide K-2015.06-SP4

Figure 2 Possibly Floating Node Example

Floating Nodes Ignored by PowerFault
PowerFault ignores (does not report) these types of floating nodes:

l Floating node without a load—This is a node that does not drive anything, as shown in
Figure 3.

Figure 3 Floating NodeWithout Load Example

l State-dependent floating node—This is a node that can be allowed to float because its
effects are blocked by the states of other inputs, as shown in Figure 4.

Figure 4 Blocked Floating Node Example

Floating Nodes and Drive Contention 10-14

Test Pattern Validation User Guide K-2015.06-SP4

State-Dependent Floating Nodes
For AND, NAND, and NOR gates, the IDDQeffect of a floating input can be blocked by the
other inputs. For example, if one input to a two-input NAND gate is floating but the other input is
0, the floating input is blocked so that it cannot cause a leakage current.
In Figure 4, the 0 input turns off transistor n2, so there is no conducting path fromVDD to VSS
through transistors p1 and n1. If the 0 input was 1 instead, PowerFault would identify the floating
input as leaky.
By default, all inputs of 2-input and 3-input AND/NAND gates and 2-input NOR gates are
treated as state-dependent floating nodes. By default, gates with more inputs and other types of
gates are not allowed to have floating inputs. You can change the input limit for the AND, NAND,
and NOR gates by using the statedep_float command. For more information, see
“statedep_float” in " PowerFault PLI Tasks ."

Configuring Floating Node Checks
Using the allow and disallow commands, you can configure how floating nodes are
recognized. The allow command lets you do the following:

l Allow a particular node to float
l Allow all nodes to float
l Allow possible floating nodes (true floating nodes are still disallowed)

The disallow command lets you do the following:
l Disallow a Z on a particular node
l Disallow Zs on all nodes

For a complete description of the allow and disallow commands, see “PowerFault PLI
Tasks .”

Floating Node Reports
The status leaky command reports a list of floating nodes and nodeswith drive
contention. In order to save space, it reports only the floating node at the first strobe where the
node is leaky. To get a report on all floating nodes (including those previously reported), use the
all_leaky option with the status command. For example:
$ssi_iddq("status drivers all_leaky bad_nodes");

Nonfloating Nodes
To get a list of leaky nodes, use the following command:
$ssi_iddq("status leaky");

To get a list of nonleaky nodes, use the following command:
$ssi_iddq("status nonleaky");

This command reports a list of nodes that are not floating and do not have drive contention,
together with the reason that each node was found to be nonleaky. This information can be
useful when you think a node should be reported as floating, but it is not.

Floating Nodes and Drive Contention 10-15

Test Pattern Validation User Guide K-2015.06-SP4

Drive Contention Recognition
PowerFault identifies the following types of drive contention:

l Pullups and pulldowns—For example, see the active pullup in Figure 5.
l Contention between multiple bus drivers—For example, see the true drive fight in
Figure 6.

Figure 5 Active Pullup

Figure 6 True Drive Fight

PowerFault makes a distinction between true and possible drive contention. A true fight occurs
when a net has both a 0 (VSS) driver and a 1 (VDD) driver. A possible fight occurs when one or
more drivers are at X on a buswith multiple drivers, as shown in Figure 7.

Figure 7 Possible Drive Fight

Floating Nodes and Drive Contention 10-16

Test Pattern Validation User Guide K-2015.06-SP4

PowerFault also warns about unusual connections that indicate static leakage. The first time you
execute the status command, it writes warningmessages to the simulation log file about the
following conditions:

l A node connected to both VSS (supply0) and VDD (supply1)
l A node connected to both a pullup and a pulldown

Status Command Output
The output of the status command can help you determine the cause of floating nodes and
drive contention. Eliminating or reducing these types of leaky states not onlymakes your design
more IDDQ-testable, it can also reduce the device power consumption.
The following sections describe the status command output:

l Overview
l LeakyReasons
l NonleakyReasons
l Driver Information

Status Command Overview
The status command is executed during the Verilog/PowerFault simulation. It reports the nodes
found to be leaky or nonleaky. For information on the command syntax, see “status” in
"PowerFault PLI Tasks ".
The status of each node is reported in this format:
net-instance-name is (leaky|non-leaky). Re: reason

The instance name of each net is followed by a reason that explains why the node was found to
be leaky or nonleaky. For example:
top.dut.TBIN is leaky: Re: float
top.dut.DIO is leaky: Re: possible float

The status command distinguishes between true and possible leaks. Possible leaks arise when
nodes and drivers have unknown values (X). In the preceding example, top.dut.TBIN is
truly floating (Z), whereas top.dut.DIO is possibly floating.
By default, the status leaky command reports only the first occurrence of a leaky node.
When there are leaky nodes at a strobe, and all these leaky nodes have been reported at
previous strobe times, the command prints themessage “All reported.”

Leaky Reasons
The status command determines that a node is leaky for either a standard or user-defined
reason. A standard reason is reported when the node is leaky due to a built-in quiescence check,

Status Command Output 10-17

Test Pattern Validation User Guide K-2015.06-SP4

such as fight, float, pullup, or pulldown. A user-defined reason is reported when the node
violates a condition specified by the disallow command.
Table 1 lists the standard leaky reasons and Table 2 lists the user-defined leaky reasons.

Table 1 Standard LeakyReasons

Reason Description

Fight A drive fight between two or more drivers of equal
strength. One driver is at 0 and another is at 1.

Pullup An active pullup. A net with a pullup is being driven to 0.
Any time a stronger driver at 0 is overriding a weaker

driver at 1, the net is flagged as having an active pullup.
Pulldown An active pulldown. A net with a pulldown is being

driven to 1. Any time a stronger driver at 1 is overriding
a weaker driver at 0, the net is flagged as having an
active pulldown.

Float A floating input node; an input node that is undriven
(Z).

Possible Fight A possible drive fight. One driver at X might be fighting
with another driver (see Figure 7 in "Floating Nodes and
Drive Contention").

Possible Pullup A possible active pullup. A net with a pullup is being
driven by an X. Any time a stronger driver at X is
overriding a weaker driver at 1, the net is flagged as
having a possible pullup.

Possible
Pulldown

A possible active pulldown. A net with a pulldown is
being driven by an X. Any time a stronger driver at X is
overriding a weaker driver at 0, the net is flagged as
having a possible pulldown.

Possible Float A possible floating input node. The node is at X, but
might have no active drivers (see Figure 2 in "Floating
Nodes and Drive Contention").

Table 2 User-Defined LeakyReasons

Reason Description

Disallowed 0 A disallow command flags the net’s present
state (0) as leaky.

Status Command Output 10-18

Test Pattern Validation User Guide K-2015.06-SP4

Reason Description

Disallowed 1 A disallow command flags the net’s present
state (1) as leaky.

Disallowed X A disallow command flags the net’s present
state (X) as leaky.

Disallowed Z A disallow command flags the net’s present
state (Z) as leaky.

Disallow all Xs A disallow X command flags the net’s state
(X) as leaky.

Disallow all Zs A disallow Z command flags the net’s present
state (Z) as leaky.

Disallow all Caps A disallow Caps command flags the net’s
present capacitive state as leaky.

Disallowed 0 A disallow command flags the net’s present
state (0) as leaky.

Disallowed 1 A disallow command flags the net’s present
state (1) as leaky.

A user-defined leaky reason appears when a node has a state specifically disallowed by a
disallow command. For example:
$ssi_iddq("disallow top.dut.SDD == 0");
$ssi_iddq("disallow Z");

These two disallow commands produce a report like the following:
top.dut.SDD is leaky: Re: disallowed 0
top.dut.BIO is leaky: Re: disallow all Zs

In this example, top.dut.SDD is 0, which is disallowed by the first disallow command;
and top.dut.BIO is Z, which is disallowed by the second disallow command.

Nonleaky Reasons
Table 3 lists the standard nonleaky reasons and Table 4 lists the user-defined nonleaky reasons.

Table 3 Standard NonleakyReasons

Reason Description

0 or 1 The node is a quiet 0 or 1.

Status Command Output 10-19

Test Pattern Validation User Guide K-2015.06-SP4

Reason Description

Z no loads The node is floating, but not connected
to any inputs.

Z blocked The node is floating, but is blocked
(see Figure 4 in "Floating Nodes and
Drive Contention").

X no contention The node is driven to X (it is not
floating) and has no contention; it is
probably uninitialized.

Possible float no
loads

The node is X and might be floating,
but is not connected to any inputs.

Possible float
blocked

The node is X and might be floating,
but is blocked.

Table 4 User-Defined NonleakyReasons

Reason Description

Allowable float The node is (or possibly is) floating, but an
allow command permits it.

Allowable fight The node has (or possibly has) drive
contention, but an allow command allows
it.

Allow all fights The node has (or possibly has) drive
contention, but an allow command allows
all contention.

Allow poss fights The node possibly has drive contention, but
an allow command allows possible
contention.

Allow all floats The node is (or possibly is) floating, but an
allow command allows all floats.

Allow poss floats The node is possibly floating, but an allow
command allows all possible floats.

A user-defined nonleaky reason appears when a node has a state specifically allowed by an
allow command. For example:
$ssi_iddq("allow fight top.dut.PL");
$ssi_iddq("allow all float");

Status Command Output 10-20

Test Pattern Validation User Guide K-2015.06-SP4

These two allow commands can produce a report like the following:
top.dut.PL is non-leaky: Re: allowable fight
top.dut.BIO is non-leaky: Re: allow all floats

Driver Information
To determine why a net is floating or has drive contention, its driversmust be examined.
Simulation debuggers and even some system tasks (such as the $showvar task in the
Verilog simulator) can perform this examination. You can also use the drivers option of the
status command, but this option generates only gate-level driver information.
The drivers option causes the status command to print the contribution of each driver. For
example:
$ssi_iddq("status drivers leaky bad_nodes");
can produce output like:
top.dut.mmu.DIO is leaky: Re: fight
 St0 <- top.dut.mmu.UT344
 St1 <- top.dut.mmu.UT366
 StX <- resolved value
top.dut.mmu.TDATA is leaky: Re: float
 HiZ <- top.dut.mmu.UT455
 HiZ <- top.dut.mmu.UT456

In this example, top.dut.mmu.DIO has a drive fight. One driver is at strong 0 (?St0?) and
the other at strong 1 (?St1?). The contributing value of each driver is printed in Verilog
strength/value format, as described in section 7.10 of the IEEE 1364 Verilog LRM.
The same status commandwithout the drivers option produces a report like this:
top.dut.mmu.DIO is leaky: Re: fight
top.dut.mmu.TDATA is leaky: Re: float

Driver Information
To determine why a net is floating or has drive contention, its driversmust be examined.
Simulation debuggers and even some system tasks (such as the $showvar task in the
Verilog simulator) can perform this examination. You can also use the drivers option of the
status command, but this option generates only gate-level driver information.
The drivers option causes the status command to print the contribution of each driver. For
example:
$ssi_iddq("status drivers leaky bad_nodes");
can produce output like:
top.dut.mmu.DIO is leaky: Re: fight
 St0 <- top.dut.mmu.UT344
 St1 <- top.dut.mmu.UT366
 StX <- resolved value
top.dut.mmu.TDATA is leaky: Re: float
 HiZ <- top.dut.mmu.UT455
 HiZ <- top.dut.mmu.UT456

Status Command Output 10-21

Test Pattern Validation User Guide K-2015.06-SP4

In this example, top.dut.mmu.DIO has a drive fight. One driver is at strong 0 (?St0?) and
the other at strong 1 (?St1?). The contributing value of each driver is printed in Verilog
strength/value format, as described in section 7.10 of the IEEE 1364 Verilog LRM.
The same status commandwithout the drivers option produces a report like this:
top.dut.mmu.DIO is leaky: Re: fight
top.dut.mmu.TDATA is leaky: Re: float

Behavioral and External Models
PowerFault examines the structure of your Verilog HDLmodel to determine whether the chip is
quiescent. PowerFault looks for bus contention, floating inputs, active pullups, and other current-
drawing states.
If you use behavioral models or external models (like LMC, LAI, or VHDL cosimulatedmodels)
to simulate subblocks of the chip, PowerFault cannot to determine when those subblocks are
quiescent. As a result, it might select strobe points that are inappropriate for IDDQ testing. To
prevent this from happening, use the disallow command.
The following sections describe the disallow command inmore detail:

l Disallowing Specific States
l DisallowingGlobal States

Disallowing Specific States
Thedisallow command is a flexible command that lets you describe the leaky states for all
instances of a behavioral or external model. One or more commands can describe which input,
output, or internal states correspond to nonquiescence.
For example, the three following disallow commands describe when instances of the
BRAMandDAC entities are leaky:
$ssi_iddq("disallow BRAM (REFRESH == 1 && ENABLE == 0)");
$ssi_iddq("disallow BRAM (WRITE_EN == 1 || READ_EN == 1)");
$ssi_iddq("disallow DAC (port.0 != 0 && port.1 != 0)");

Disallowing Global States
You can use the disallow command to disallow all nets in the Verilog simulation from having
a particular value. This is useful if the libraries contain behavioral gatemodels. For example, if
the three-state buffers are not modeled with Verilog primitives or UDPs, then PowerFault might
not be able to detect bus contention.
Here is an example of a three-state buffer modeled behaviorally:
module BUF0 (out, data, control);
output out;
input data, control;
wire out = (control == 0) ? data : ‘bZ;
endmodule

Behavioral and External Models 10-22

Test Pattern Validation User Guide K-2015.06-SP4

To prevent bus contention during an IDDQstrobe, you can disallow all Xswith this command:
$ssi_iddq("disallow X");

If disallowing all Xs is too pessimistic, you can use a specific disallow command for each
three-state buffer entity. For example, if you have two types of three-state buffers, BUF0 and
BUF1, use the following commands:
$ssi_iddq("disallow BUF0 (out == X)");
$ssi_iddq("disallow BUF1 (out == X)");

If the libraries contain behavioral gatemodels, PowerFault might not be able to detect floating
buses (buseswith all drivers turned off). To prevent floating buses during an IDDQstrobe, you
can disallow all Zs with this command:
$ssi_iddq("disallow Z");

If disallowing all Zs is too pessimistic, you can use a disallow command for each three-state
buffer entity. For example, you could use the following commands:
$ssi_iddq("disallow BUF0 (out == Z)");
$ssi_iddq("disallow BUF1 (out == Z)");

For more information on the disallow command, see “Leaky State Commands."

Multiple Power Rails
This section describes how to apply PowerFault to a chip with multiple power rails, where each
power rail feeds a separate logic block on the chip. The overall strategy is as follows:

1. Determine the number of IDDQ test points for each block.
2. For one block, run a Verilog/PowerFault simulation, seeding only the faults in that block;

and use IDDQPro to select strobes for the block.
3. Repeat step 2 for each block in the design. Exclude any strobes that have already been

selected for previous blocks.
4. To determine the fault coverage for each block using the full set of strobes, run IDDQPro

separately on each database, manually selecting all strobes selected in steps 2 and 3.

Here is an example. Suppose you have a chip with three power rails, as shown in Figure 1.

Multiple Power Rails 10-23

Test Pattern Validation User Guide K-2015.06-SP4

Figure 1 ChipWith Three Power Rails

Step 1
Select two IDDQstrobes for each block.
Step 2
Run a Verilog simulation, seeding faults only in block1. The Verilog simulation produces a
database named db1 (see Figure 2). You then use IDDQPro to automatically select two strobes
from the database and save the strobe report in accum.strobes (see Figure 3):
ipro -strb_lim 2 -prnt_nofrpt db1
mv iddq.srpt accum.strobes

Figure 2 Create a Database for Block 1

Multiple Power Rails 10-24

Test Pattern Validation User Guide K-2015.06-SP4

Figure 3 Select Two Strobes for Block 1

Step 3
Run the next Verilog simulation, this one seeding faults only in block2. The Verilog simulation
produces a database named db2?. You then use IDDQPro to automatically select two strobes
from db2 and append the two strobes to accum.strobes (see Figure 4 and Figure 5):
ipro -strb_lim 2 -strb_unset accum.strobes -prnt_nofrpt db2

cat iddq.srpt >> accum.strobes

Figure 4 Create a Database for Block 2

Figure 5 Select Two Strobes for Block 2

Multiple Power Rails 10-25

Test Pattern Validation User Guide K-2015.06-SP4

To complete step 3, you run the last Verilog simulation, this one seeding faults only in block3.
The Verilog simulation produces a database named db3. You then use IDDQPro to
automatically select two strobes from db3 and append the two strobes to accum.strobes?:
ipro -strb_lim 2 -strb_unset accum.strobes -prnt_nofrpt db3
cat iddq.srpt >> accum.strobes

The accum.strobes file now has six strobes (two for each block). The strobes you selected for
any one blockmight be qualified for the other two blocks, so in step 4 you will try to select all six
strobes.
Step 4
To begin step 4, you run IDDQPro tomanually select six strobes from db1?. You select the
strobes stored in accum.strobes and save the resulting strobe and fault reports:
ipro -strb_lim 6 -strb_set accum.strobes db1
mv iddq.srpt iddq.srpt1
mv iddq.frpt iddq.frpt1

Continuing step 4, you run IDDQPro tomanually select six strobes from db2?. You select the
strobes stored in accum.strobes and save the resulting strobe and fault reports:
ipro -strb_lim 6 -strb_set accum.strobes db2
mv iddq.srpt iddq.srpt2
mv iddq.frpt iddq.frpt2

To finish step 4, you repeat the same procedure using db3?:
ipro -strb_lim 6 -strb_set accum.strobes db3
mv iddq.srpt iddq.srpt3
mv iddq.frpt iddq.frpt3

Conclusion

After step 4 is complete, you have selected a total of six strobes (two for each block). The three
individual strobe reports describe the fault coverage of the six strobes for each of the three
blocks. The three individual fault reports describe the detected faults for each of the three blocks.

Testing I/O and Core Logic Separately
PowerFault looks at the chip as a whole. By default, everything in the DUTmodule, including I/O
pads, must be quiescent to qualify a strobe point for IDDQ testing.
If the I/O pads and core logic have separate power rails, you can probably increase fault
coverage by testing the core logic separately. This is because you can test the core at times
when the I/O pads are leaky, assuming that you are able tomeasure IDDQ just for the core logic
(ignoring the current drawn by the I/O pads).
To qualify strobes just for the core logic, use the allow command to ignore floating I/O pins
and drive contention at I/O pins. This commandmakes PowerFault ignore all leaky states at the
I/O pads. Also use the exclude command to prevent faults from being seeded inside the I/O
pads.
Here is an example:
$ssi_iddq("allow float top.dut.clk33_pad");
$ssi_iddq("allow fight top.dut.clk33_pad");

Testing I/O and Core Logic Separately 10-26

Test Pattern Validation User Guide K-2015.06-SP4

$ssi_iddq("exclude top.dut.clk33_pad");
$ssi_iddq("allow float top.dut.dto_pad");
$ssi_iddq("allow fight top.dut.dto_pad");
$ssi_iddq("exclude top.dut.dto_pad");

Testing I/O and Core Logic Separately 10-27

11
Strobe Selection Tutorial
After you install the Synopsys IDDQoption to TetraMAX ATPG, you can do the Strobe Selection
Tutorial to test the installation and to get an introduction to PowerFault strobe selection.
Note:This tutorial is intended to be a brief demonstration, not a comprehensive training session.
The following sections guide you through the Strobe Selection Tutorial:

l Simulation and Strobe Selection
l Interactive Strobe Selection

11-1

Test Pattern Validation User Guide K-2015.06-SP4

Simulation and Strobe Selection
The $IDDQ_HOME/samples directory contains some examples of designs and scripts to
demonstrate PowerFault capabilities. One example is a simple one-bit full adder. In the following
set of tutorial procedures, you will run a script that simulates the testbench and selects a set of
IDDQstrobe times in the testbench:

l Examine the Verilog File
l Run the doit Script
l Examine theOutput Files

Examine the Verilog File
The following steps show you how to examine the Verilog design file.

1. Change to the directory $IDDQ_HOME/samples/fadder?.
2. Look for two files in the directory: the doit script and the fadder.v Verilog file.
3. Using any text editor, view the contents of the fadder.v file.

The fadder.v Verilog file contains threemodules: testbench?, iddqtest?, and
fadder?.
The testbench module is the testbench for the full adder. It tests every possible input
pattern, from b000 through b111, and prints out the port values at one time unit before the end of
each cycle.
The iddqtest module invokes the PLI tasks for IDDQanalysis. It contains the following
$ssi_iddq commands:
$ssi_iddq("dut testbench.fadder");
$ssi_iddq("seed SA testbench.fadder");
// strobe 1 time unit before end of cycle
forever begin
 # (testbench.CYCLE - 1)
 $ssi_iddq("strobe_try");
 # 1;
end

The first command defines the device under test to be testbench.fadder?. The second
one seeds stuck-at faults throughout the entire device. The third one performs IDDQstrobe
evaluation one time unit before the end of each cycle.
The fadder module is a gate-level description of the device under test, a single-bit full adder
implemented with NOR gates. Each gate has a unit delay. Given two input bits (x and y) and a
carry-in bit (ci), the full adder computes the sum bit and the carry-out (co) bit. Themodel
implements the following Boolean equations:
co = (x & y) | (x & ci) | (y & ci)
sum = x ^ y ^ ci
Figure 1 shows the stimulus, response, and IDDQstrobe points for the full adder simulation.

Simulation and Strobe Selection 11-2

Test Pattern Validation User Guide K-2015.06-SP4

Figure 1 Full Adder Simulation Strobe Points

Run the doit Script
The following steps show you how to run the doit script, which runs the Verilog/Powerfault
simulation and IDDQProfiler.

1. Using any text editor, view the contents of the doit (do it) file. This is a script that
creates a directory for the simulator output, invokes the Verilog simulator (with IDDQPLI
tasks), and runs the IDDQProfiler to select the strobe times.

2. If necessary, edit the file to work with your system configuration. For example, if your
simulator is invoked by a command other than vcs or Verilog?, modify the line that
invokes the simulator.

3. Run the script.

The script runs the Verilog simulation, which produces the following results:
 time co sum {x,y,ci}

9 0 0 000
 19 0 1 001
 29 0 1 010
 39 1 0 011
 49 0 1 100
 59 1 0 101
 69 1 0 110
 79 1 1 111

The $ssi_iddq tasks produce the following summary report:
IDDQ-Test
Strobes (qualified/tested) = 8/8
Faults seeded (stuck-ats/bridges) = 32/0
Created IDDQ database: iddq

Simulation and Strobe Selection 11-3

Test Pattern Validation User Guide K-2015.06-SP4

This report tells you that eight strobeswere tested, and all eight were found to be quiescent.
The script then invokes the IDDQProfiler, which selects some of the eight quiescent strobes. It
generates two files: a strobe report named iddq.srpt and a fault report named
iddq.frpt?. The script then tells you the path to the output files.
Loading seeds
Beginning strobe selection
...
Strobe selection complete
Strobe report is printed to iddq.srpt
Fault report is printed to iddq.frpt

Examine the Output Files
The following steps show you how to examine the report files.

1. Go to the directory containing the fadder output files. Find the subdirectory called
iddq?, which contains the IDDQdatabase generated by the $ssi_iddq PLI tasks,
and the two IDDQProfiler output files, iddq.srpt and iddq.frpt?.

2. Examine the contents of the strobe report file, iddq.srpt?. You should see the
following report:
Date: day/date/time
Reached requested fault coverage.
Selected 3 strobes out of 8 qualified.
Fault Coverage (detected/seeded) = 100.0% (32/32)
Timeunits: 1.0ns
#
Strobe: Time Cycle Cum-Cov Cum-Detects Inc-Detects

9 1 50.0% 16 16
 39 4 84.4% 27 11
 49 5 100.0% 32 5

The report shows the requested level of fault coverage, 100 percent, was achieved by
three strobes. A table shows the time values and cycle numbers of the selected strobes,
the cumulative fault coverage achieved by each successive strobe, the cumulative
number of faults detected with each successive strobe, and the incremental (additional)
faults detected with each successive strobe.

3. Examine the contents of the fault report file, iddq.frpt?. The report shows the list of
faults and the test result for each fault:
sa0 DS .testbench.fadder.co
sa1 DS .testbench.fadder.co
sa0 DS .testbench.fadder.sum
sa1 DS .testbench.fadder.sum
sa0 DS .testbench.fadder.x
sa1 DS .testbench.fadder.x
sa0 DS .testbench.fadder.y
sa1 DS .testbench.fadder.y
sa0 DS .testbench.fadder.ci

Simulation and Strobe Selection 11-4

Test Pattern Validation User Guide K-2015.06-SP4

sa1 DS .testbench.fadder.ci
sa0 DS .testbench.fadder.u12_out
sa1 DS .testbench.fadder.u12_out
sa0 DS .testbench.fadder.u10_out
sa1 DS .testbench.fadder.u10_out

...

sa0 DS .testbench.fadder._x
sa1 DS .testbench.fadder._x
sa0 DS .testbench.fadder._y
sa1 DS .testbench.fadder._y

The test result for each fault is either DS (detected by simulation) or NO (not observed). In
this case, all faults were detected. Each fault is identified by fault type (sa0 = stuck-at-0,
sa1 = stuck-at-1) and the hierarchical net name.

Interactive Strobe Selection
In the previous steps of this tutorial, you used the IDDQProfiler in batchmode, which is the
default operatingmode. In thismode, the IDDQProfiler selects a set of strobes and attempts to
obtain the requested fault coverage with the fewest possible strobes.
You can also use the IDDQProfiler in interactivemode to perform strobe and fault coverage
analysis. In a typical interactive session, you select a set of strobes, print a strobe report and a
fault coverage report for that set of strobes, and then repeat this process for different sets of
strobes. You can examine the status of all faults or just the faults within a specified hierarchical
scope.
The following sections guide you through the interactive strobe selection portion of this tutorial:

l Select Strobes Automatically
l Select All Strobes
l Select StrobesManually
l Cumulative Fault Selection

Select Strobes Automatically
The following steps show you how to use the IDDQProfiler to automatically select the strobes in
a single step:

1. In the directory containing the fadder output files, execute the following command:
% ipro -inter iddq

The ipro -inter command invokes the IDDQProfiler in interactivemode, and the
iddq argument specifies the name of the IDDQdatabase to use for the interactive
session.

Interactive Strobe Selection 11-5

Test Pattern Validation User Guide K-2015.06-SP4

2. At the IDDQProfiler prompt (>), enter the “select automatic” command:
> sela

This command invokes the same strobe selection algorithm used in batchmode. The
IDDQProfiler responds as follows:
...
Reached requested fault coverage.
Selected 3 strobes out of 8 qualified.
Fault Coverage (detected/seeded) = 100.0% (32/32)
Timeunits: 1.0ns
#
Strobe: Time Cycle Cum-Cov Cum-Detects Inc-Detects

9 1 50.0% 16 16
 39 4 84.4% 27 11
 49 5 100.0% 32 5

The list of selected strobes is the same as in batchmode.
3. Enter the “print coverage” command:

> prc

The IDDQProfiler responds as follows:
Fault coverage for top modules

Instance NumDet NumFaults %Coverage (stuck-at bridge)

testbench 32 32 100.0% (32/32 0/0)

For the current set of selected strobes, 32 out of 32 faults are detected, and coverage is
100 percent.

4. Enter the “print faults” command:
> prf

The IDDQProfiler produces the same fault report that you saw earlier in the
iddq.frpt file:
sa0 DS .testbench.fadder.co
sa1 DS .testbench.fadder.co
...
sa0 DS .testbench.fadder._y
sa1 DS .testbench.fadder._y

5. Enter the “reset” command:
> reset

This command clears the set of selected strobes and detected faults.

Select All Strobes
The following steps show you how tomanually select all possible strobes.

Interactive Strobe Selection 11-6

Test Pattern Validation User Guide K-2015.06-SP4

1. Enter the “select all” command:
> selall

The IDDQProfiler responds as follows:
Selected all qualified strobes.
Selected 5 strobes out of 8 qualified.
Fault Coverage (detected/seeded) = 100.0% (32/32)
Timeunits: 1.0ns
#
Strobe: Time Cycle Cum-Cov Cum-Detects Inc-Detects

9 1 50.0% 16 16
 19 2 62.5% 20 4
 29 3 84.4% 27 7
 39 4 90.6% 29 2
 49 5 100.0% 32 3

All qualified strobeswere selected in sequence, starting with the first strobe at time=9,
until the target coverage of 100 percent was achieved. Five strobeswere required, rather
than the three selected by the sela (select automatic) command.

2. Reset the strobe selection and detected faults:
> reset

Select Strobes Manually
The following steps show you how to select strobesmanually.

1. Enter the following “select manual” command tomanually select a single strobe at
time=39:
> selm 39

The IDDQProfiler responds as follows:
Selected 1 strobes out of 8 qualified.
Fault Coverage (detected/seeded) = 50.0% (16/32)
Timeunits: 1.0ns
#
Strobe: Time Cycle Cum-Cov Cum-Detects Inc-Detects
 39 4 50.0% 16 16

This single strobe detected 16 faults, providing coverage of 50 percent.
2. To find out which faults have not yet been detected, enter the “print faults” command:

> prf

You should see the following response:
sa0 DS .testbench.fadder.co
sa1 NO .testbench.fadder.co
sa0 NO .testbench.fadder.sum
sa1 DS .testbench.fadder.sum

Interactive Strobe Selection 11-7

Test Pattern Validation User Guide K-2015.06-SP4

...
sa0 DS .testbench.fadder._x
sa1 NO .testbench.fadder._x
sa0 NO .testbench.fadder._y vsa1 DS .testbench.fadder._y

The second column shows DS for “detected by simulation” or NO for “not observed.”
3. Enter the following command to see a list of modules:

> ls

The IDDQProfiler responds as follows:
ls
testbench

This simplemodel has only one level of hierarchy. In amultilevel hierarchical model, you
can change the scope of the design view by using the ls?, cd module_name?, and
cd .. commands.When you use the prf command, only the faults residing within
the current scope (in the current module and below) are reported. Similarly, a coverage
report generated by the prc command applies only to the current scope.

4. Enter the following command tomanually select another strobe at time=49:
> selm 49

The IDDQProfiler responds as follows:
Selected 2 strobes out of 8 qualified.
Fault Coverage (detected/seeded) = 87.5% (28/32)
Timeunits: 1.0ns
#
Strobe: Time Cycle Cum-Cov Cum-Detects Inc-Detects
 39 4 50.0% 16 16
 49 5 87.5% 28 12

The IDDQProfiler adds each successive strobe selection to the previous selection set.
The report shows the cumulative coverage and cumulative defects detected by each
successive strobe.

5. Look at the fault list:
> prf

6. Reset the strobe selection and detected faults:
> reset

Cumulative Fault Selection
The following steps show you how to combinemanual and automatic selection techniques:

1. Manually select the two strobes at time=19 and time=29:
> selm 19 29

The IDDQProfiler responds as follows:
Selected 2 strobes out of 8 qualified.

Interactive Strobe Selection 11-8

Test Pattern Validation User Guide K-2015.06-SP4

Fault Coverage (detected/seeded) = 78.1% (25/32)
Timeunits: 1.0ns
#
Strobe: Time Cycle Cum-Cov Cum-Detects Inc-Detects
 19 2 50.0% 16 16
 29 3 78.1% 25 9

2. Enter the “select automatic” command:
> sela

The IDDQProfiler responds as follows:
Reached requested fault coverage.
Selected 4 strobes out of 8 qualified.
Fault Coverage (detected/seeded) = 100.0% (32/32)
Timeunits: 1.0ns
v# Strobe: Time Cycle Cum-Cov Cum-Detects Inc-Detects
v 19 2 50.0% 16 16
 29 3 78.1% 25 9
 59 6 96.9% 31 6
 69 7 100.0% 32 1

The sela command keeps the existing selected strobes and applies the automatic
selection algorithm to the remaining undetected faults. In this case, four strobeswere
required to achieve 100 percent coverage.

3. Reset the strobe selection and detected faults:
> reset

4. Continue to experiment with the commands you have learned. For help on command
syntax, use the help command:
> help

 or

> help command_name

5. When you are done, exit with the quit command:
> quit

Interactive Strobe Selection 11-9

12
Interfaces to Fault Simulators
PowerFault is compatible with the Verifault and Zycad fault simulators. You can read the fault
lists generated by these tools into PowerFault.
The following sections describe the interfaces to these fault simulators:

l Verifault Interface
l Zycad Interface

12-1

Test Pattern Validation User Guide K-2015.06-SP4

Verifault Interface
You can seed a design with faults taken from a Verifault fault list. Figure 1 shows the data flow
for this type of fault seeding.

Figure 1 Data Flow for Verifault Interface

To seed faults fromVerifault fault dictionaries and fault lists, use the read_verifault
command in the Verilog/PowerFault simulation, as described in “read_verifault” in the "
PowerFault PLI Tasks" section. By default, PowerFault remembers all the comment lines and
unseeded faults in the Verifault file, so that when it produces the final fault report, you can easily
compare the report to the original file.
When you use the read_verifault command to seed fault descriptors generated by
Verifault, and your simulator is Verilog-XL, use the -x and +autonaming optionswhen
you start the simulation:
Verilog -x +autonaming iddq.v ...

Otherwise, the read_verifault commandmight not be able to find the nets and terminals
referenced by your fault descriptors.

Verifault Interface 12-2

Test Pattern Validation User Guide K-2015.06-SP4

By default, the read_verifault command seeds both prime and nonprime faults. When
you run IDDQPro after the Verilog simulation to select strobes and print fault reports, all fault
coverage statistics produced by IDDQPro include nonprime faults. If you want to see statistics
for only prime faults, seed only those faults. For example, you can create a fault list with just
prime faults and use that list with the read_verifault command.
By default, IDDQPro generates fault reports in TetraMAX format. To print a fault report in
Verifault format, use the -prnt_fmt verifault option:
ipro -prnt_fmt verifault -strb_lim 5 iddq-database-name

When you usemultiple testbenches, the fault report files show only the comment lines from the
first testbench. PowerFault does not try to merge the comment lines from the fault list in the
second and subsequent testbencheswith those in the first testbench.
If youmix fault seeds from other formats, like using the read_zycad command to seed faults
from a Zycad .fog file, the Zycad faults detected in previous iterations are counted in the
coverage statistics but are not printed in the fault report.

Zycad Interface
To seed faults from Zycad .fog files, use the read_zycad command in the
Verilog/PowerFault simulation, as described in “read_zycad” in the "PowerFault PLI Tasks "
section. By default, PowerFault does the following:

l Remembers all the comment lines and unseeded faults in the .fog file, so that when it
produces the final report, you can easily compare the report to the original file.

l Generates fault reports in TetraMAX format, which are not easily compared with Zycad
files. To print a fault report in Zycad format, use the -prnt_fmt zycad option:
ipro -prnt_fmt zycad -strb_lim 5 iddq-database-name

l Prints out the fault report using a period (.) as the path separator for hierarchical names.
Youmight want to print the fault report with a forward slash character as the path
separator so that the report can bemore easily compared to the original .fog file. To do so,
use the -path_sep / option:
ipro -prnt_fmt zycad -path_sep / -strb_lim 5

iddq-database-name

When you usemultiple testbenches, the fault report files show only the comment lines from the
first testbench. PowerFault does not try to merge the comment lines from the fault list in the
second and subsequent testbencheswith those in the first testbench.
If youmix fault seeds from other formats, like using the read_verifault command to seed
faults from a Verifault file, the Verifault faults detected in previous iterations are counted in the
coverage statistics but are not printed in the fault report.

Zycad Interface 12-3

13
Iterative Simulation
You can run PowerFault iteratively, using each successive testbench to reduce the number of
undetected faults. This feature is supplied only for backward compatibility with earlier versions of
PowerFault. In general, you get better results by using themultiple testbenchmethodology
explained in CombiningMultiple Verilog Simulations.
In the following example, you have two testbenches and you want to choose five strobes from
each testbench. All of the PowerFault tasks have been put into one file named ssi.v?.
This is the procedure to perform simulations iteratively:

1. In ssi.v?, seed the entire set of faults, using either the seed command or the read
commands.

2. Run the Verilog simulation with the first testbench:
vcs +acc+2 -R -P $IDDQ_HOME/lib/iddq_vcs.tab

testbench1.v ssi.v ... $IDDQ_HOME/lib/libiddq_vcs.a
or
Verilog testbench1.v ssi.v ...

3. Run IDDQPro to select five strobe points:
ipro -strb_lim 5 ...

4. Save the fault report and strobe report:
mv iddq.srpt run1.srpt
mv iddq.frpt run1.frpt

5. Edit and change ssi.v so that it seeds only the undetected faults in run1.frpt?:

13-1

Test Pattern Validation User Guide K-2015.06-SP4

...
$ssi_iddq("read_tmax run1.frpt");
...

6. Run the Verilog simulation again, using the second testbench:
vcs +acc+2 -R -P $IDDQ_HOME/lib/iddq_vcs.tab

testbench2.v ssi.v ... $IDDQ_HOME/lib/libiddq_vcs.a
or
Verilog testbench2.v ssi.v ...

7. Run IDDQPro again to select five strobe points from the second testbench:
ipro -strb_lim 5 ...

8. Save the fault report and strobe report:
mv iddq.srpt run2.srpt
mv iddq.frpt run2.frpt

After completion of these steps, run1.srpt contains five strobe points for the first testbench and
run2.srpt contains five strobe points for the second testbench.
If you havemore than two testbenches, repeat steps 5 through 8 for each testbench, substituting
the appropriate file names each time.

13-2

A
Simulation Debug Using MAX Testbench
and Verdi
Verdi is an advanced automated open platform for debugging designs. It offers a full-featured
waveform viewer and enables you to quickly process and debug simulation data.
When you use combineMAX Testbench, VCS, and Verdi for simulation debug, you can perform
a variety of tasks, including displaying the current pattern number, the cycle count, and the active
STIL statement, and adding input and output signals.
The following topics describe the process for setting up and running Verdi with MAX Testbench
and VCS:

l Setting the Environment
l PreparingMAX Testbench
l Linking NovasObject Files to the Simulation Executable
l Running VCS andDumping an FSDB File
l Running the VerdiWaveformViewer

A-1

Test Pattern Validation User Guide K-2015.06-SP4

Setting the Environment
To set up the install path for Verdi, specify the following settings:
setenv NOVAS_HOME path_to_verdi_installation
set path = ($NOVAS_HOME/bin $path)

To set up the license file for Verdi, use one of the following environment variables:

setenv NOVAS_LICENSE_FILE license_file:$NOVAS_LICENSE_FILE
setenv SPS_LICENSE_FILE license_file:$SPS_LICENSE_FILE
setenv LM_LICENSE_FILE license_file:$LM_LICENSE_FILE

The license search priority is as follows:

1. SPS_LICENSE_FILE
2. NOVAS_LICENSE_FILE
3. LM_LICENSE_FILE

To set up the install path and license file for VCS, specify the following:
setenv VCS_HOME path_to_vcs_installation
set path=($VCS_HOME/bin $path)
setenv SNPSLMD_LICENSE_FILE license_file:$SNPSLMD_LICENSE_FILE

Preparing MAX Testbench
To prepareMAX Testbench to run with VCS and Verdi, you need to add a series of FSDB dump
tasks to the testbench file. Some of the common FSDB dump tasks include:

l $fsdbDumpfile – Specifies the filename for the FSDB database.
l $fsdbDumpvars – Dumps signal value changes of specified instances and depth. To use
this command, specify the FSDB file name. The default file name is novas.fsdb. You can
specify several different FSDB file names in each fsdbDumpvars command

l $fsdbDumpvarsByFile - Uses a text file to select which scopes and signals to dump to
the FSDB file. The contents of the file can bemodified for each simulation without
recompiling the simulation database.

The following example sets the $fsdbDumpfile and $fsdbDumpvarsByFile tasks in the
MAX Testbench file (make sure you insert the 'ifdef WAVES statement just before the
'ifdef tmax_vcde statement):

`ifdef WAVES
 $fsdbDumpfile("../patterns/(YourPatternFileName).fsdb");
 $fsdbDumpvars(0);
`endif

For complete information on all FSDBdump tasks, refer to the following document:

Setting the Environment A-2

Test Pattern Validation User Guide K-2015.06-SP4

$NOVAS_HOME/doc/linking_dumping.pdf

Linking Novas Object Files to the Simulation
Executable
When you compile the VCS executable, you need to add a pointer to the Novas object files. You
can do this using either of the followingmethods:

l Use the -fsdb option to automatically point to the novas.tab and pli.a files
% vcs [design_files] [other_desired_vcs_options] -fsdb

l Use the -P option to point to the novas.tab and pli.a files provided by Verdi, as shown in
the following example:
% vcs -debug_pp \
–P $NOVAS_HOME/share/PLI/VCS/$PLATFORM/novas.tab \
$NOVAS_HOME/share/PLI/VCS/$PLATFORM/pli.a \
+vcsd +vpi +memcbk [design_files] [other_desired_vcs_options]

For interactivemode, you need to add the -debug_all option. If you need to includemodel-
driven architecture signals (MDAs) or SystemVerilog assertions (SVAs), use the -debug_pp
option or the +vcsd+vpi+memcbk option.

Running VCS and Dumping an FSDB File
The following example shows how to use VCS to compile a simulation executable with links to
Novas object files, run the simulation, and dump an FSDB file:

LIB_FILES=" -v ../design/class.v" DEFINES="+define+WAVES" DEBUG_
OPTIONS="-debug_pp -P $NOVAS_HOME/share/PLI/VCS/LINUX64/novas.tab
$NOVAS_HOME/share/PLI/VCS/LINUX64/pli.a“

OPTIONS="-full64 +tetramax +delay_mode_zero +notimingcheck
+nospecify ${DEBUG_OPTIONS}" NETLIST_FILES="../design/snps_micro_
dftmax_net.v.sa1" TBENCH_FILE="../patterns/pats.v" SIMULATOR="vcs“

${SIMULATOR} -R ${DEFINES} ${OPTIONS} ${TBENCH_FILE} ${NETLIST_
FILES} ${LIB_FILES} -l parallel_sim_verdiwv.log

Running Verdi
The following example shows how to set up and run Verdi:

LIB_FILES=" -v ../design/class.v"
DEFINES=""

Linking Novas Object Files to the Simulation Executable A-3

Test Pattern Validation User Guide K-2015.06-SP4

ANALYZE_OPTIONS="“
GUI_OPTIONS="-top snps_micro_test -ssf ../patterns/pats.fsdb“
NETLIST_FILES="../design/snps_micro_dftmax_net.v.sa1" TBENCH_
FILE="../patterns/pats.v"
ANALYZER="vericom“
GUI="verdi"
${ANALYZER} ${DEFINES} ${ANALYZE_OPTIONS} ${TBENCH_FILE}
${NETLIST_FILES} ${LIB_FILES}

The following topics describe several scenarios for using Verdi for debugging:

l DebuggingMAX Testbench and VCS
l Changing Radix to ASCII
l Displaying the Current Pattern Number
l Displaying the Vector Count
l Using Search in the Signal List

Debugging MAX Testbench and VCS
The following figure shows an example of how to use Verdi to debugMAX Testbench and VCS.

Running Verdi A-4

Test Pattern Validation User Guide K-2015.06-SP4

Changing Radix to ASCII
The following example shows how to change Radix-formatted signal values to an ASCII format:

Running Verdi A-5

Test Pattern Validation User Guide K-2015.06-SP4

Displaying the Current Pattern Number
The following example shows how to display the current pattern number.

Running Verdi A-6

Test Pattern Validation User Guide K-2015.06-SP4

Displaying the Vector Count
The following example shows how to display the vector count.

Running Verdi A-7

Test Pattern Validation User Guide K-2015.06-SP4

Using Search in the Signal List
The following example shows how to add input and output signals by searching the signal list.

Running Verdi A-8

	About This User Guide
	Audience
	Related Publications
	Release Notes
	Conventions

	Customer Support
	Accessing SolvNet
	Contacting the Synopsys Technical Support Center

	1				Introduction
	TetraMAX Pattern Format Overview
	Writing STIL Patterns
	Design to Test Validation Flow
	Installation
	Specifying the Location for TetraMAX Installation

	2				Using MAX Testbench
	Overview
	Licenses
	Installation
	Obtaining Help
	See Also

	Running MAX Testbench
	See Also
	Using the write_testbench Command
	Using the stil2Verilog Command
	Setting the Run Mode
	CACGEHII

	Configuring MAX Testbench
	Example of the Configuration Template
	See Also

	Setting the Verbose Level
	See Also

	Understanding the Failures File
	MAX Testbench and Legacy Scan Failures
	MAX Testbench and Adaptive Scan Failures
	MAX Testbench and Serializer Scan Failures

	Using the Failures File
	See Also

	Displaying the Instance Names of Failing Cells
	See Also

	Using Split STIL Pattern Files
	Execution Flow for -split_in Option
	See Also

	Splitting Large STIL Files
	Why Split Large STIL Files?
	Executing the Partition Process
	Example Test

	Force Release and Strobe Timing in Parallel Load Simulation
	See Also

	MAX Testbench Runtime Programmability
	See Also
	Basic Runtime Programmability Simulation Flow
	Runtime Programmability for Patterns
	Using the -generic_testbench Option
	Using the -patterns_only Option
	Executing the Flow
	Using Split Patterns

	Example: Using Runtime Predefined VCS Options
	Runtime Programmability Limitations
	MAX Testbench Support for IDDQ Testing
	See Also
	Compile-Time Options for IDDQ
	See Also

	IDDQ Configuration File Settings
	See Also

	Generating a VCS Simulation Script

	Understanding MAX Testbench Parallel Miscompares
	How MAX Testbench Works
	See Also

	Predefined Verilog Options
	See Also

	MAX Testbench Limitations
	See Also

	3				MAX Testbench Error Messages and Warnings
	Error Message Descriptions
	Warning Message Descriptions
	Informational Message Descriptions

	4				Debugging Parallel Simulation Failures Using Combined Pattern Validation
	See Also
	Overview
	See Also

	Understanding the PSD File
	Creating a PSD File
	Using the run_atpg Command to Create a PSD File
	Using the run_simulation Command to Create a PSD File

	Displaying Instance Names
	Flow Configuration Options
	Example Simulation Miscompare Messages
	Example 1
	Example 2
	Example 3
	Verbosity Setting Examples

	Debug Modes for Simulation Miscompare Messages
	Pattern Splitting
	Splitting Patterns Using TetraMAX
	Examples Using TetraMAX For Pattern Splitting
	Set Up Example
	Example Using Pattern File From write_patterns Command
	Example Using Split USF STIL Pattern Files

	Splitting Patterns Using MAX Testbench
	Specifying a Range of Split Patterns Using MAX Testbench

	MAX Testbench and Consistency Checking
	See Also

	Limitations

	5				Troubleshooting MAX Testbench
	Introduction
	Troubleshooting Compilation Errors
	FILELENGTH Parameter
	NAMELENGTH Parameter
	Memory Allocation

	Troubleshooting Miscompares
	Handling Miscompare Messages
	Miscompare Message 1
	Miscompare Message 2
	Miscompare Message 3
	Miscompare Message 4

	Localizing a Failure Location
	Resolving the First Failure
	Miscompare Fingerprints
	Expected versus Actual States
	Current Waveform Table
	Labels and Calling Stack

	Additional Troubleshooting Help

	Adding More Fingerprints

	Debugging Simulation Mismatches Using the write_simtrace Command
	Overview
	Debugging Flow
	Input Requirements
	Using the write_simtrace Command
	Understanding the Simtrace File
	Error Conditions and Messages
	Example Debug Flow
	Restrictions and Limitations

	6				PowerFault Simulation
	PowerFault Simulation Technology
	IDDQ Testing Flows
	IDDQ Test Pattern Generation
	IDDQ Strobe Selection From an Existing Pattern Set

	Licensing

	7				Verilog Simulation with PowerFault
	Preparing Simulators for PowerFault IDDQ
	Using PowerFault IDDQ With Synopsys VCS
	Using PowerFault IDDQ With Cadence NC-Verilog
	Setup
	32-bit Setup
	64-bit Setup

	Creating the Static Executable
	Running Simulation
	Creating a Dynamic Library
	Running Simulation

	Using PowerFault IDDQ With Cadence Verilog-XL
	Setup
	Running Simulation
	Running Verilogxl

	Using PowerFault IDDQ With Model Technology ModelSim

	PowerFault PLI Tasks
	Getting Started
	PLI Task Command Summary Table

	PLI Task Command Reference
	Conventions
	Special-Purpose Characters
	Module Instances and Entity Models
	Cell Instances
	Port and Terminal References

	Simulation Setup Commands
	dut
	output
	ignore
	io
	statedep_float
	measure
	verb

	Leaky State Commands
	allow
	disable SepRail
	disallow

	Fault Seeding Commands
	seed SA
	seed B
	scope
	read_bridges
	read_tmax
	read_verifault
	read_zycad
	exclude

	Fault Model Commands
	model SA
	model B

	Strobe Commands
	strobe_try
	strobe_force
	strobe_limit
	cycle

	Circuit Examination Commands
	status
	summary

	Disallowed/Disallow Value Property
	Can Float Property
	See Also

	8				Faults and Fault Seeding
	Fault Models
	Fault Models in TetraMAX
	Fault Models in PowerFault
	Stuck-At Faults
	Bridging Faults

	Fault Seeding
	Seeding From a TetraMAX Fault List
	Seeding From an External Fault List
	PowerFault-Generated Seeding

	Options for PowerFault-Generated Seeding
	Stuck-At Fault Model Options
	Default Stuck-At Fault Seeding
	all_mods
	cell_mods
	leaf_mods
	prims
	seed_inside_cells

	Bridging Faults
	cell_ports
	fet_terms
	gate_IN2IN
	gate_IN2OUT
	vector
	seed_inside_cells

	9				PowerFault Strobe Selection
	Overview of IDDQPro
	Invoking IDDQPro
	ipro Command Syntax
	Strobe Selection Options
	-strb_lim
	-cov_lim
	-strb_set
	-strb_unset
	-strb_all

	Report Configuration Options
	-prnt_fmt
	-prnt_nofrpt
	-prnt_full, -prnt_times, and -path_sep
	-ign_uncov

	Log File and Interactive Options

	Interactive Strobe Selection
	cd
	desel
	exec
	help
	ls
	prc
	prf
	prs
	quit
	reset
	sela
	selm
	selall

	Understanding the Strobe Report
	Example Strobe Report
	Fault Coverage Calculation
	Faults Detected by Previous Runs
	Undetected Faults Excluded From Simulation
	Faults Detected at Uninitialized Nodes

	Adding More Strobes
	Deleting Low-Coverage Strobes

	Fault Report Formats
	TetraMAX Fault Report Format
	Verifault Fault Report Format
	Zycad Fault Report Format
	Listing Seeded Faults

	10				Using PowerFault Technology
	PowerFault Verification and Strobe Selection
	Verifying TetraMAX IDDQ Patterns for Quiescence
	Selecting Strobes in TetraMAX Stuck-At Patterns
	Selecting Strobe Points in Externally Generated Patterns

	Testbenches for IDDQ Testability
	Separate the Testbench From the Device Under Test
	Drive All Input Pins to 0 or 1
	Try Strobes After Scan Chain Loading
	Include a CMOS Gate in the Testbench for Bidirectional Pins
	Model the Load Board
	Mark the I/O Pins
	Minimize High-Current States
	Maximize Circuit Activity

	Combining Multiple Verilog Simulations
	Improving Fault Coverage
	Determine Why the Chip Is Leaky
	Evaluate Solutions
	Use the allow Command
	Configure the Verilog Testbench
	Drive All Input Pins to 0 or 1
	Use Pass Gates
	Model the Load Board
	Mark the I/O Pins

	Configure the Verilog Models
	Drive All Buses Possible
	Gate Buses That Cannot Be Driven
	Use Keeper Latches
	Enable Only One Driver
	Avoid Active Pullups and Pulldowns
	Avoid Bidirectional Switch Primitives

	Floating Nodes and Drive Contention
	Floating Node Recognition
	Leaky Floating Nodes
	Floating Nodes Ignored by PowerFault
	State-Dependent Floating Nodes
	Configuring Floating Node Checks
	Floating Node Reports
	Nonfloating Nodes

	Drive Contention Recognition

	Status Command Output
	Status Command Overview
	Leaky Reasons
	Nonleaky Reasons
	Driver Information
	Driver Information

	Behavioral and External Models
	Disallowing Specific States
	Disallowing Global States

	Multiple Power Rails
	Testing I/O and Core Logic Separately

	11				Strobe Selection Tutorial
	Simulation and Strobe Selection
	Examine the Verilog File
	Run the doit Script
	Examine the Output Files

	Interactive Strobe Selection
	Select Strobes Automatically
	Select All Strobes
	Select Strobes Manually
	Cumulative Fault Selection

	12				Interfaces to Fault Simulators
	Verifault Interface
	Zycad Interface

	13				Iterative Simulation
	A Simulation Debug Using MAX Testbench and Verdi
	Setting the Environment
	Preparing MAX Testbench
	Linking Novas Object Files to the Simulation Executable
	Running VCS and Dumping an FSDB File
	Running Verdi
	Debugging MAX Testbench and VCS
	Changing Radix to ASCII
	Displaying the Current Pattern Number
	Displaying the Vector Count
	Using Search in the Signal List

