Test Pattern Validation
User Guide

Version K-2015.06-SP4, December 2015

SYNOPSYS

Test Pattern Validation User Guide K-2015.06-SP4

Copyright Notice and Proprietary Information

Copyright © 2015 Synopsys, Inc. All rights reserved. This software and documentation contain confidential and
proprietary information that is the property of Synopsys, Inc. The software and documentation are furnished
under a license agreement and may be used or copied only in accordance with the terms of the license
agreement. No part of the software and documentation may be reproduced, transmitted, or translated, in any
form or by any means, electronic, mechanical, manual, optical, or otherwise, without prior written permission of
Synopsys, Inc., or as expressly provided by the license agreement.

Destination Control Statement

All technical data contained in this publication is subject to the export control laws of the United States of
America. Disclosure to nationals of other countries contrary to United States law is prohibited. Itis the reader’s
responsibility to determine the applicable regulations and to comply with them.

Disclaimer

SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Trademarks

Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth at
http://www.synopsys.com/Company/Pages/Trademarks.aspx. All other product or company names may be
trademarks of their respective owners. Inc.

Third-Party Links

Any links to third-party websites included in this document are for your convenience only. Synopsys does not
endorse and is not responsible for such websites and their practices, including privacy practices, availability,
and content.

Synopsys, Inc.

700 E. Middlefield Road
Mountain View, CA 94043
WWW.SYynopsys.com

http://www.synopsys.com/Company/Pages/Trademarks.aspx
http://www.synopsys.com/

Test Pattern Validation User Guide K-2015.06-SP4

Contents
About ThisUser Guide Xvi
AUdIBNCE L Xvi
Related Publications Xvi
Release Notes Xvii
CONVENtIONS il Xviii
CuStOmMEr SUPPOIT Xviii
Accessing SOIVN et .l XViii
Contacting the Synopsys Technical SupportCenter XiX
T Introduction ... L 11
TetraMAX Pattern Format Overview 1-2
WHtING STIL Patterns o L 1-2
Designto Test Validation FIOW 1-4
Installation .. L. 1-5
Specifying the Location for TetraMAX Installation_............ 1-5
2 Using MAX Testbench .. 21
OV VIBW 2-2
LiCENSES . 2-2
Installation 2-2
ObtaiNINg Help . 2-2
SeE AlSO . 2-3

Test Pattern Validation User Guide K-2015.06-SP4

SEE AlSO . 2-4
Using the write_testbench Command 2-5
Using the stil2Verilog Command 2-6
Settingthe RUNMOAe ... o L 2-11

S AlSO il 2-11

Configuring MAX Testbench . 2-12
Example of the Configuration Template 2-16

SeE AlSO . 2-18
Settingthe Verbose Level 2-18

SeE AlSO . 2-18

Understanding the Failures File 2-19
MAX Testbench and Legacy Scan Failures 2-19
MAX Testbench and Adaptive ScanFailures 2-20
MAX Testbench and Serializer Scan Failures 2-21

Usingthe Failures File ... L 2-23

SeE AlSO . 2-26

Displaying the Instance Names of FailingCells 2-27

SeE AlSO .o 2-29

Using Split STIL Pattern Files o . 2-29
Execution Flow for -split_in Option L 2-29

SeE AlSO . 2-30

SplittingLarge STIL Fileso e 2-30
Why SplitLarge STIL Files? .. . 2-30
Executing the Partition Process 2-31
EXample TSt 2-31

Force Release and Strobe Timing in Parallel Load Simulation 2-33

SeE AlSO . 2-33

Test Pattern Validation User Guide K-2015.06-SP4

MAX Testbench Runtime Programmability 2-34
SeE AlSO . 2-34
Basic Runtime Programmability Simulation Flow 2-34
Runtime Programmability for Patterns 2-35
Using the -generic_testbench Option 2-36
Using the -patterns_only Option L 2-36
Executing the FlOW .. o 2-36
Using Split Patterns .. 2-37
Example: Using Runtime Predefined VCS Options .. 2-38
Runtime Programmability Limitations 2-39
MAX Testbench Support for IDDQ Testing ... ool 2-40
SeE AlSO . 2-40
Compile-Time Options for IDDQ o i 2-40
SE AlSO . 2-40
IDDQ Configuration File Settings 2-41
S AlSO il 2-41
Generatinga VCS Simulation Script 2-42
Understanding MAX Testbench Parallel Miscompares 2-42
How MAX Testbench Works 2-43
SeE AlSO . 2-45
Predefined Verilog Opltions ... 2-45
S AlSO il 2-47
MAX Testbench Limitations 2-48
SEE AlSO ..o 2-48

3 MAX Testbench Error Messages and Warnings ... 31
Error Message DesCriptioNso o 3-2
Warning Message DesCriptions 3-9

Test Pattern Validation User Guide K-2015.06-SP4

Informational Message Descriptions

4 Debugging Parallel Simulation Failures Using Combined Pattern Validation4-1

SEE AlSO . 4-1

OV VI BW 4-2
SeE AlSO . 4-3
Understandingthe PSD File o e 4-4
Creating a P S D File ..o 4-6
Using the run_atpg Commandto CreateaPSD File 4-7
Using the run_simulation Commandto CreateaPSD File 4-8
Displaying Instance Names 4-10
Flow Configuration Options 4-11
Example Simulation Miscompare Messages ... 4-11
EXaMIPIE 1 4-12
EXamMDIE 2 4-13
EXamMPIe 3 4-14
Verbosity Setting EXamples .. 4-14
Debug Modes for Simulation Miscompare Messages 4-16
Pattern SpPlitting ... 4-17
Splitting Patterns Using TetraMAX el 4-18
Examples Using TetraMAX For Pattern Splitting 4-20
SetUp EXample ..o 4-20
Example Using Pattern File From write_patterns Command 4-20
Example Using Split USF STIL PatternFiles 4-21
Splitting Patterns Using MAX Testbench 4-22
Specifying a Range of Split Patterns Using MAX Testbench 4-24
MAX Testbench and Consistency Checking 4-26
SeE AlSO . 4-26

Vi

Test Pattern Validation User Guide K-2015.06-SP4

LimitatioNS ... 4-26
5 Troubleshooting MAX Testbench 5-1
INtrOdUCHION . 5-2
Troubleshooting Compilation Errors o el 5-2
FILELENGTH Parameter 5-2
NAMELENGTH Parameter ... L. 5-3
Memory AlOCatioN 5-3
Troubleshooting MiSCOMPAres 5-4
Handling Miscompare Messages 5-4
Miscompare MesSage 1 ... o o 5-5
Miscompare MeSSagEe 2 5-5
Miscompare MesSage 3 o 5-6
Miscompare MeSSage 4 o 5-6
Localizing a Failure Location 5-7
Resolving the First Failure 5-7
Miscompare FINgerprints ..o L 5-7
Expected versus Actual States 5-8
CurrentWaveform Table 5-8
Labelsand Calling Stack il 5-8
Additional Troubleshooting Help 5-8
Adding More FINgerprints ..o L 5-9
Debugging Simulation Mismatches Using the write_simtrace Command 5-9
OV IV W il 5-10
Debugging FIOW il 5-10
INPUt ReqUIremMeNntS o 5-11
Using the write_simtrace Command 5-12
Understanding the Simtrace File 5-12

Vii

Test Pattern Validation User Guide K-2015.06-SP4

Error Conditions and Messages 5-13
Example Debug FIOW .. o 5-14
Restrictions and Limitations 5-16

6 PowerFault Simulation 6-1
PowerFault Simulation Technology ... i 6-2
IDDQ Testing FIOWS ..o 6-3
IDDQ Test Pattern Generation 6-4
IDDQ Strobe Selection From an Existing Pattern Set 6-5

LI BN SING . 6-5
7 Verilog Simulation with PowerFault 71
Preparing Simulators for PowerFault IDDQ 7-2
Using PowerFault IDDQ With Synopsys VCS 7-2
Using PowerFault IDDQ With Cadence NC-Verilog 7-3
SO L 7-3
B2-bit SetUP o 7-4

B4-bit SO UD 7-4
Creating the StaticExecutable 7-4
Running Simulation 7-4
Creatinga Dynamic Library o 7-5
Running SimuUIation ... 7-6
Using PowerFault IDDQ With Cadence Verilog-XL 7-6
SO Lo 7-6
Running SimuUIatioNn ... 7-8
Running VerilogXl 7-8
Using PowerFault IDDQ With Model Technology ModelSim _.._........................... 7-8
PowerFault PLI Tasks 7-10
Getling Started ... 7-10

viii

Test Pattern Validation User Guide K-2015.06-SP4

PLI Task Command Summary Table 7-11
PLI Task Command Reference 7-13
CoNVeNtiONS ... L 7-13
Special-Purpose Characterso 7-13
Module Instances and Entity Models 7-14
Cell INStanCes ... 7-14
Portand Terminal References 7-14
Simulation Setup Commands ... 7-14
AUt 7-15
OUR DU 7-15
OO L 7-15
IO 7-16
statedep float ... o 7-16
MICASUNE . 7-17
VeI . 7-17
Leaky State Commands 7-17
AlOW 7-17
disable SepRall 7-19
diSallowW .. L 7-20
Fault Seeding Commandso 7-21
SEEA S A 7-22
seed B . 7-22
SCOPE . 7-22
read_bridges ..l 7-23
read IMaX 7-23
read _Verifault 7-23
read ZYCad .. 7-24

Test Pattern Validation User Guide K-2015.06-SP4

eXCIUAe . 7-24
FaultModel Commands L 7-24
MOdel SA 7-25
mModel B . L 7-26
Strobe Commands 7-27
SHODE ATy 7-27
StrObE fOrCe 7-27
strobe Mt 7-28

YOl 7-28
Circuit Examination Commands ... 7-28

S AtUS 7-28
SUMIMATY e 7-30
Disallowed/Disallow Value Property i 7-32
Can Float Property oL 7-32
SeE AlSO . 7-32

8 Faults and Fault Seeding 8-1
FaultModels 8-2
Fault Models in TetraMAX ... 8-2
Fault Modelsin PowerFault 8-2
Stuck-At Faults 8-2
Bridging Faulls .. 8-3
Fault Seeding ..o L 8-3
Seeding Froma TetraMAX Fault List 8-3
Seeding From an External Fault List 8-4
PowerFault-Generated Seeding 8-5
Options for PowerFault-Generated Seeding 8-5
Stuck-At Fault Model Options oo 8-5

Test Pattern Validation User Guide K-2015.06-SP4

Default Stuck-At Fault Seeding 8-7

Al MO . 8-8

Cell MOAS . 8-9
leaf OO 8-10

P IS 8-11
seed iNside Cells ... 8-13
Bridging Faulls ... 8-13
Cell POMS 8-14

TO OIS 8-15
gate_IN2IN 8-15
gate_IN2OUT 8-15
VOO 8-15
seed INSIdE _CellS 8-15

9 PowerFault Strobe Selection 9-1
Overview Of IDD QPO .. 9-2
INVOKING IDDQIPTO . .l 9-2
ipro Command Syntax ...l 9-3
Strobe Selection OptioNs o L 9-3
SSUTD MY 9-4
SO0V I 9-4

LS SOt L 9-4
SSUID UNSEY L 9-5
SSUD Al . 9-5
Report Configuration Options 9-5
11 0100 11] R 9-5
ST MO P L 9-6
-prnt_full, -prnt_times, and -path_sep 9-6

Xi

Test Pattern Validation User Guide K-2015.06-SP4

SN _UNCOV 9-7
Log File and Interactive Options i 9-7
Interactive Strobe Selection 9-7
CO 9-9
desel . 9-9
EXEC .o 9-10
NI 9-10
S 9-10

P C oo 9-10
0] 9-10

P S o 9-11
U 9-11
PO 9-11
Sela 9-11
S M 9-11
SCIAIl L 9-12
Understanding the Strobe Report 9-12
Example Strobe Reporto L 9-12
Fault Coverage Calculation 9-13
Faults Detected by Previous RUNS L 9-13
Undetected Faults Excluded From Simulation ... 9-13
Faults Detected at UninitializedNodes 9-14
Adding More Strobes . 9-14
Deleting Low-Coverage Strobes 9-14
Fault Report Formatso L 9-15
TetraMAX Fault Report Format L 9-15
Verifault Fault Report Format 9-16

Xii

Test Pattern Validation User Guide K-2015.06-SP4

Zycad Fault Report Format 9-16
Listing Seeded Faulls 9-17
10 Using PowerFault Technology 101
PowerFault Verification and Strobe Selection 10-2
Verifying TetraMAX IDDQ Patterns for Quiescence ..., 10-2
Selecting Strobes in TetraMAX Stuck-AtPatterns 10-3
Selecting Strobe Points in Externally Generated Patterns 10-4
Testbenches for IDDQ Testability oo 10-5
Separate the Testbench From the Device Under Test ... 10-5
Drive All Input Pinst0 0 Or 1 .. 10-5
Try Strobes After Scan ChainLoading 10-5
Include a CMOS Gate in the Testbench for Bidirectional Pins 10-5
Modelthe Load Board 10-6
Mark the 11O PiNs L. 10-6
Minimize High-Current States 10-6
Maximize Circuit ACtVItY .. 10-6
Combining Multiple Verilog Simulations 10-6
Improving Fault COVErage o 10-8
Determine Whythe Chip Is Leaky 10-8
Evaluate Solutions 10-9
Usetheallow Command 10-9
Configure the Verilog Testbench 10-9
Drive All Input Pins to 0 or 1 10-9
UsePassGates 10-10
Modelthe Load Board 10-11
Markthe /O PiNs ... 10-11
Configure the VerilogModels 10-11

xiii

Test Pattern Validation User Guide K-2015.06-SP4

Drive AllBuses Possible 10-11

Gate Buses That CannotBe Driven ... 10-11

Use Keeper LatChes 10-12
Enable Only One Driver ... 10-12

Avoid Active Pullups and Pulldowns L 10-12

Avoid Bidirectional Switch Primitives 10-13
Floating Nodes and Drive Contention i, 10-13
Floating Node Recognition L 10-13
Leaky Floating Nodes 10-13
Floating Nodes Ignored by PowerFault 10-14
State-Dependent Floating Nodes 10-15
Configuring Floating Node Checks o . 10-15
Floating Node RepOrS ..o o e 10-15
Nonfloating NOdes 10-15
Drive Contention Recognition ... L 10-16
Status Command OUtpUL ... 10-17
Status Command Overview 10-17
Leaky ReasS0NS 10-17
NonleaKy ReasONS L 10-19
Driver Information 10-21
Driver Information 10-21
Behavioral and External Models 10-22
Disallowing Specific States 10-22
Disallowing Global States 10-22
Multiple Power Rails 10-23
Testing I/Oand Core Logic Separatelyo il 10-26
11 Strobe Selection Tutorial 11-1

Xiv

Test Pattern Validation User Guide K-2015.06-SP4

Simulation and Strobe Selection 11-2
Examine the Verilog File ... L 11-2
Runthe doit SCript .. 11-3
Examine the Output Files ... o e 11-4

Interactive Strobe Selection 11-5
Select Strobes Automaticallyl 11-5
Select All Strobes ... 11-6
Select Strobes Manually .. 11-7
Cumulative Fault Selection 11-8

12 Interfaces to Fault Simulators 12-1
Verifault Interface 12-2
ZyCad INtEI aCe .. 12-3

13 Iterative Simulation 131

A Simulation Debug Using MAX Testbenchand Verdi A-1

Setting the ENVIrONmMeNnt A-2

Preparing MAX TestbenCh . oL A-2

Linking Novas Object Files to the Simulation Executable A-3

Running VCS and Dumpingan FSDB File A-3

RUNNING Verdi .o A-3
Debugging MAX Testbench and VS A-4
Changing Radixto AS CIl . L A-5
Displaying the Current Pattern Number A-6
Displaying the Vector Count ... A-7
Using Search inthe Signal List A-8

XV

Preface

This preface is comprised of the following sections:
o About This Manual
« Customer Support

About This User Guide

The Test Pattern Validation User Guide describes MAX Testbench and PowerFault. You use
these tools to validate generated test patterns. This manual assumes you understand how to
use TetraMAX® ATPG to generate test patterns as described in the TetraMAX ATPG User
Guide.

You can obtain more information on TetraMAX ATPG features and commands by accessing
TetraMAX ATPG Online Help.

Audience
This manual is intended for design engineers who have ASIC design experience and some
exposure to testability cone timepts and strategies.

This manual is also useful for test engineers who incorporate the test vectors produced by
TetraMAX ATPG into test programs for a particular tester or who work with DFT netlists.

Related Publications

For additional information about TetraMAX ATPG, see Documentation on the Web, which is
available through SolvNet® at the following address:
https://solvnet.synopsys.com/DocsOnWeb

You might also want to read the documentation for the following related Synopsys products:
DFTMAX™ and Design Compiler®.

XVi

https://solvnet.synopsys.com/DocsOnWeb

Test Pattern Validation User Guide K-2015.06-SP4

Release Notes

Information about new features, enhancements, changes, known limitations, and resolved
Synopsys Technical Action Requests (STARSs) is available in the TetraMAX ATPG Release
Notes on the SolvNet site.

To see the TetraMAX ATPG Release Notes:
1. Gotothe SolvNet Download Center located at the following address:

https://solvnet.synopsys.com/DownloadCenter

2. Select TetraMAX ATPG, and then select a release in the list that appears.

About This User Guide XVii

https://solvnet.synopsys.com/DownloadCenter

Test Pattern Validation User Guide K-2015.06-SP4

Conventions

The following conventions are used in Synopsys documentation.

Convention

Description

Courier

Courier italic

Courier bold

[]

Indicates command syntax.

Indicates a user-defined value in Synopsys syntax, such as
object name. (A user-defined value that is not Synopsys
syntax, such as a user-defined value in a Verilog or VHDL
statement, is indicated by regular text font italic.)

Indicates user input—text you type verbatim—in Synopsys
syntax and examples. (User input that is not Synopsys
syntax, such as a user name or password you enter in a GUI,
is indicated by regular text font bold.)

Denotes optional parameters, such as pini [pin2 ... pinN]

Indicates a choice among alternatives, such as low | medium |
high. (This example indicates that you can enter one of three
possible values for an option: low, medium, or high.)

Connects terms that are read as a single term by the
system, such as set _environment viewer

Control-c Indicates a keyboard combination, such as holding down the
Control key and pressing c.

\ Indicates a continuation of a command line.

/ Indicates levels of directory structure.

Edit > Copy Indicates a path to a menu command, such as opening the
Edit menu and choosing Copy.

Customer Support

Customer support is available through SolvNet online customer support and through contacting
the Synopsys Technical Support Center.

Accessing SolvNet

The SolvNet site includes an electronic knowledge base of technical articles and answers to
frequently asked questions about Synopsys tools. The SolvNet site also gives you access to a

Customer Support

XViii

Test Pattern Validation User Guide K-2015.06-SP4

wide range of Synopsys online services including software downloads, documentation on the
Web, and technical support.

To access the SolvNet site, go to the following address:
https://solvnet.synopsys.com

If prompted, enter your user name and password. If you do not have a Synopsys user name and
password, follow the instructions to register with SolvNet.

If you need help using the SolvNet site, click HELP in the top-right menu bar.

Contacting the Synopsys Technical Support Center

If you have problems, questions, or suggestions, you can contact the Synopsys Technical
Support Center in the following ways:

« Open a support case to your local support center online by signing in to the SolvNet site at
http://solvnet.synopsys.com, clicking Support, and then clicking “Open a Support Case.”

« Send an e-mail message to your local support center.
« E-mail support_center@synopsys.com from within North America.
« Find other local support center e-mail addresses at
http://www.synopsys.com/Support/GlobalSupportCenters/Pages
« Telephone your local support center.
« Call (800) 245-8005 from within the continental United States.
« Call (650) 584-4200 from Canada.
« Find other local support center telephone numbers at:
http://www.synopsys.com/Support/GlobalSupportCenter/Pages

Customer Support Xix

https://solvnet.synopsys.com/
http://solvnet.synopsys.com/
http://www.synopsys.com/Support/GlobalSupportCenters/Pages
http://www.synopsys.com/Support/GlobalSupportCenters/Pages

Introduction

The Test Pattern Validation User Guide describes the Synopsys tools you can use to validate
generated test patterns. This includes MAX Testbench, which validates STIL patterns created
from TetraMAX ATPG, and PowerFault, which validates IDDQ patterns created from TetraMAX

ATPG.
The following sections provide an introduction to this user guide:

o TetraMAX Pattern Format Overview

« Writing STIL
« Design to Test Validation Flow

« Installation

1-1

Test Pattern Validation User Guide K-2015.06-SP4

TetraMAX Pattern Format Overview

Figure 1 shows an overview of the TetraMAX pattern formats.

Figure 1 TetraMAX ATPG Pattern Formats

TetraMAX ATPG

Primary Foundry [Other]
Format Format Formats

Testbench & ATE

WGL, binary,
WGLflat

Texas Instruments — tdI91
Toshiba—tstl2
Fujitsu - ftdl

ATE

MAX Testbench

* _tab, *.v

Writing STIL Patterns

TetraMAX ATPG creates unified STIL patterns by default. This simplifies the validation flow
considerably because only a single STIL file is required to support all simulation modes (you do
not need to write both serial and a parallel formats).

You can use unified STIL patterns in MAX Testbench. This avoids many of the issues presented
by the dual STIL flow, and is based only on the actual STIL file targeted for the tester.

TetraMAX Pattern Format Overview 1-2

Test Pattern Validation User Guide K-2015.06-SP4

You can use a single unified STIL pattern file to perform all types of simulation, including parallel
and mixed serial and parallel.

Figure 2 Comparing Combined Pattern Validation Flows

Dual STIL Pattern Flow Unified STIL Pattern Flow
{ Gansiste 15T)
TMAX [zerial)or 2,
Different STIL i e consider runtime, One STIL file,
constructs for PP s TMAX no decision to make,
compressed scan F les=filesto
L 1 \L manage...
=
Par STIL Ser STIL
Directly

supported on

All =simulation STiL-compliant

modes :

JSErlaISTILIlmltE:I ta
serial sim

m“ MA}{TB I MAIR |

limited to PR

\Bemiielain, / | ParTB SerTB

VC5 ATE VC5 ATE

-serial
-parallel

- Be sure to zend
d-l the right 5TIL
p AR T S S R RS S

Thewrite patternscommand includes several options that enable TetraMAX ATPG to
produce a variety of pattern formats.

The -format stil optionofthewrite patternscommand writes patternsin the
proposed IEEE-1450.1 Standard Test Interface Language (STIL) for Digital Test Vectors
format. For more information on the proposed IEEE-1450.1 STIL for Digital Test Vectors format
(extension to the 1450.0-1999 standard), see Appendix E STIL Language Format in the
TetraMAX ATPG User Guide. This format can be both written and read. However, only a subset
of the language written by TetraMAX ATPG is supported for reading back in.

The -format stil99 optionofthewrite patternscommand writes patternsinthe
official IEEE-1450.0 Standard Test Interface Language (STIL) for Digital Test Vectors format.
This format may be both written and read, but only the subset of the language written by
TetraMAX ATPG is supported for reading back in.

Note: You must use a 1450.0-compliant DRC procedure as input when to write output in stil99
format.

The syntax generated when usingthe —-format stil optionis part of the proposed IEEE
1450.1 extensions to STIL 1450-1999.

Ifyouusethe -format stilor stil99 options, TetraMAX ATPG generates a STIL file

with a name in the filename <pfile>.<ext>inwhichyouspecifiedwrite patterns
pfile>.<ext>.

When you use the -format stilor-format stil99 options,you can also use the -
serialor-parallel options to specify TetraMAX ATPG to write patterns in serial

Writing STIL Patterns 1-3

Test Pattern Validation User Guide K-2015.06-SP4

(expanded) or parallel form. See the description of the write_patterns command in TetraMAX
Help for detailed information on using these options.

Design to Test Validation Flow

Figure 3 shows the validation flow using MAX Testbench. In this flow, test simulation and
manufactured-device testing use the same STIL-format test data files.

Figure 3 Design-to-Test Validation Flow

BSD

Compiler

i

Testbench
— _J MAX

i

Testbench

Netlist

STIL Test

\ Data)

\ 4

Automated
Test :

Equipment Verilog
(ATE) Simulator

> Synthesis >

Device Fabrication Device Testing

[
»

Test Validation

When you run the Verilog simulation, MAX Testbench applies STIL-formatted test data as
stimulus to the design and validates the design’s response against the STIL-specified expected
data. The simulation results ensure both the logical operation and timing sensitivity of the final
STIL test patterns generated by TetraMAX ATPG.

MAX Testbench validates the simulated device response against the timed output response
defined by STIL. For windowed data, it confirms that the output response is stable within the
windowed time region.

Design to Test Validation Flow 1-4

Test Pattern Validation User Guide K-2015.06-SP4

Installation

The tools described in this manual can be installed as standalone products or over an existing
Synopsys product installation (an “overlay” installation). An overlay installation shares certain
support and licensing files with other Synopsys tools, whereas a standalone installation has its
own independent set of support files. You specify the type of installation you want when you
install the product.

You can obtain installation files by downloading them from Synopsys using electronic software
transfer (EST) or File Transfer Protocol (FTP).

An environment variable called SYNOPSYS specifies the location for the TetraMAX ATPG
installation. You need to set this environment variable explicitly.

Complete installation instructions are provided in the Installation Guide that comes with each
product release.

Specifying the Location for TetraMAX Installation

TetraMAX ATPG requires the SYNOPSYS environment variable, a variable typically used with all
Synopsys products. For backward compatibility, SYNOPSYS TMAX can be used instead of the
SYNOPSYS variable. However, TetraMAX ATPG looks for SYNOPSYS and if not found, then
looks for sYNOPSYS TMAX. If SYNOPSYS_TMAX s found, then it overrides SYNOPSYS and
issues a warning that there are differences between them.

The conditions and rules are as follows:

e SYNOPSYSissetand SYNOPSYS TMAX is notset. Thisis the preferred and
recommended condition.

e SYNOPSYS TMAXissetand SYNOPSYS is notset. The tool will set SYNOPSYS using the
value of SYNOPSYS TMAX and continue.

o Both SYNOPSYS and SYNOPSYS TMAX are set. SYNOPSYS TMAX will take precedence
and SYNOPSYS is set to match before invoking the kernel.

« Both SYNOPSYS and SYNOPSYS TMAX are set, and are of different values, then a
warning message is generated similar to the following:
WARNING: SSYNOPSYS and $SSYNOPSYS TMAX are set differently,
using $SYNOPSYS_TMAX
WARNING: SYNOPSYS TMAX = /mount/groucho/joeuser/tmax
WARNING: SYNOPSYS = /mount/harpo/production/synopsys
WARNING: Use of SYNOPSYS TMAX is outdated and support for this
is removed in a future release. Use SYNOPSYS instead.

Installation 1-5

Using MAX Testbench

MAX Testbench is a pattern validation tool that converts TetraMAX STIL test vectors for physical
device testers into Verilog simulation vectors.

The following sections describe how to use MAX Testbench:

o Overview

o Running MAX Testbench

« Using the write testbench Command

« Using the stil2Verilog Command

« Configuring MAX Testbench

o Understanding the Failures File

o Using the Failures File

« Displaying the Instance Names of Failing Cells

« Using Split STIL Patterns

« Splitting Large STIL Files

o Force Release and Strobe Timing in Parallel Load Simulation
o MAX Testbench Runtime Programmability

« MAX Testbench Support for IDDQ Testing

o Understanding MAX Testbench Parallel Miscompares
« How MAX Testbench Works

« Understanding MAX Testbench Parallel Miscompares

« Predefined Verilog Options
« MAX Testbench Limitations

2-1

Test Pattern Validation User Guide K-2015.06-SP4

Overview

MAX Testbench simulates and validates STIL test patterns used in an ATE environment. These
patterns are used in an ATE environment.

MAX Testbench reads a STIL file generated from TetraMAX ATPG, interprets its protocol,
applies its test stimulus to the DUT, and checks the responses against the expected data
specified in the STIL file. MAX Testbench is considered a genuine pattern validator because it
uses the actual TetraMAX ATPG STIL file used by the ATE as an input to test the DU.

MAX Testbench supports all STIL data generated by TetraMAX ATPG, including:
« All simulation mechanisms (serial, parallel and mixed serial/parallel)
. Alltype of faults (SAF, TF, DFs, IDDQ and bridging)
«+ Alltypes of ATPG (Basic ATPG, Fast and Full Sequential)
« STILfromBSDC

All existing DFT structures (e.g., normal scan, adaptive scan, PLL including on-chip
clocking, shadow registers, differential pads, lockup latches, shared scan-in ...)

MAX Testbench does not support DBIST/XDBIST or core integration.
Adaptive scan designs run in parallel mode only when translating from a parallel STIL format

written from TetraMAX ATPG. Likewise, for serial mode, adaptive scan designs run only when
translating from a serial STIL format written from TetraMAX ATPG.

Licenses

MAX Testbench requires the "Test-Validate" production key. The SYNOPSYS environment
variable is used to recover the license system paths (this variable is also used to point to the
stil.err file path).

Installation

The command setup and usage for MAX Testbench is as follows:

alias stil2Verilog 'setenv SYNOPSYS /install area/latest;
$SYNOPSYS/

platform/syn/bin/stil2Verilog’

Then execute the following:
stil2Verilog -help

Obtaining Help

To access help information, specify the —he 1p option on the tool command line. This command
will print the description of all options.

There is no specific man page for each error or warning. The messages that are printed if errors
occur are clear enough to enable you to adjust the command line to continue.

Overview 2-2

Test Pattern Validation User Guide K-2015.06-SP4

See Also
Writing ATPG Patterns in TetraMAX Help

Running MAX Testbench

You can run the MAX Testbench using eitherthe write testbench command orthe
stil2Verilogcommand. Thewrite testbench command enables you torun
MAX Testbench without leaving the TetraMAX environment, and the sti12verilog
command is a standalone executable.

The MAX Testbench flow consists of the following basic steps:

1. Use TetraMAX ATPG to write a STIL pattern file.
TEST-T> write patterns STIL pat file -format STIL

For detailsonusingthe write patternscommand, see "Writing ATPG Patternsin
the TetraMAX User Guide."

2. Specifythewrite testbenchor stil2Verilogcommand using the STIL patte
file generated fromthe write patterns command.

Examples:

% write testbench —-input stil pattern file.stil \
—output Verilog testbench.v

% stil2Verilog stil pattern file.stil Verilog testbench.v

Two files are generated:

« Thefirstfile is the Verilog principal file, which uses the following convention:
Verilog Testbench filename.v.

« The second generated file is a data file named Verilog Testbench
filename.dat.

An example of the output printed after runningthe stil2Verilogcommand isas
follows:

iZdsssasz AR AR R AR AR R EEREEEEEEEEEEEE
#
STIL2VERILOG
#
Copyright (c) 2007-2014 SYNOPSYS INC. ALL RIGHTS RESERVED
#
dgssssssda st s AR R AR EEARERAREEREEEEEEE
maxtb> Parsing command line...
maxtb> Checking for feature license...
maxtb> Parsing STIL file "comp usf.stil"
STIL version 1.0 (Design 2005)

Running MAX Testbench

m

#

2-3

Test Pattern Validation User Guide K-2015.06-SP4

Building test model

Signals

SignalGroups

Timing
... ScanStructures : "1" "2" "3M mw4m o nmHnm mwgnw o wywowgw o wgm o nwjQgn
"sccompinO" "sccompinl" "sccompoutO" "sccompoutl" "sccompout2"
"sccompout3" "sccompin2" "sccompin3" .

PatternBurst "ScanCompression mode"
PatternExec "ScanCompression mode"

ClockStructures "ScanCompression mode": pll controller

CompressorStructures : "test U decompressor
ScanCompression mode" "test U compressor ScanCompression mode"

Procedures "ScanCompression mode": "multiclock capture"
"allclock capture" "allclock launch"™ "allclock launch capture”
"load unload"

MacroDefs "ScanCompression mode": "test setup"

Pattern block " pattern " .
Pattern block " pattern ref clkO"

maxtb> Info: Event ForceOff (Z) interpreted as CompareUnknown
(X) in the event waves of WFT " multiclock capture WEFT "
containing both compare and force types (I-007)

maxtb> STIL file successfully interpreted (PatternExec:
""ScanCompression_mode"").

maxtb> Total test patterns to process 21

maxtb> Detected a Scan Compression mode.

maxtb> Test data file "comp usf.dat" generated successfully.
maxtb> Test bench file "comp usf.v" generated successfully.
maxtb> Info (I-007) occurred 2 times, use -verbose to see all
occurrences.

maxtb> Memory usage: 6.9 Mbytes. CPU usage: 0.079 seconds.
maxtb> End.

3. Run the simulation.
Invoke the VCS simulator using the following command line:

o)

% vcs Verilog testbench file design netlist \
-v design library

Note the following:

« When running zero-delay simulations, you must use the +delay mode zeroand
+tetramax arguments.

See Also

Configuring MAX Testbench
Predefined Verilog Options

Running MAX Testbench 2-4

Test Pattern Validation User Guide K-2015.06-SP4

Using the write_testbench Command

The syntaxforthe write testbench command is as follows:

write testbench

-input [stil filename | {-split in \
{list of stil files for split in\}}]

-output testbench name

-generic testbench]

-patterns only]

replace]

config file config filename]

-parameters {list of parameters}]

[
[
[
(
(

The options are described as follows:
—input [stil filename | {-split in \
{list of stil files for split in\}}]

The stil filename argument specifies the path name of the previous
TetraMAX ATPG-generated STIL file requested by the equivalent Verilog
testbench. You can use a previously generated STIL file as input. This file can
originate from either the current session or from an older session using the
write patterns command.

The following syntax is used for specifying split STIL pattern files as input (note

that backslashes are required to escape the extra set of curly braces):

{-split in \{list of stil files for split in\}}

The following example shows how to specify a set of split STIL pattern files:

write testbench -input {-split in

\{patterns 0O.stil patterns 1.stil\}} -output pat mxtb

-output testbench name

Specifies the names used for the generated Verilog testbench output files. Files are created

using the naming convention <testbench name>.vand<testbench name>.dat.
-generic testbench

Provides special memory allocation for runtime programmability. Used in the
first pass of the runtime programmability flow, this option is required because
the Verilog 95 and 2001 formats use static memory allocation to enable buffers
and arrays to store and manipulate .dat file information. For more information
on using this command, see "Runtime Programmability."

-patterns only

Used in the second pass, or later, run of the runtime programmability flow, this
option initiates a light processing task that merges the new test data in the
test data file. This option also enables additional internal instructions to be
generated for the special test data file. For more information on using this
command, see "Runtime Programmability."

Running MAX Testbench 2-5

Test Pattern Validation User Guide K-2015.06-SP4

-replace
Forces the new output files to replace any existing output files. The default is to
not allow a replacement.

-config file config filename
Specifies the name of a configuration file that contains a list of customized
options to the MAX Testbench command line. See "Customized MAX Testbench
Parameters Used in a Configuration File with the write_testbench Command"
for a complete list of options that can be used in the configuration file. You can
use a configuration file template located at $SYNOPSYS/auxx/syn/ltran.

-parameters {list of parameters}
Enables you to specify additional options to the MAX Testbench command line.
See "MAX Testbench Command-Line Parameters Used with the write_
testbench Command" for a complete list of parameters you can use with the -
parameters option.

If you use the -parameters option, make sure it is the last specified argument
in the command line, otherwise you might encounter some Tcl UI conversion
limitations.

A usage example for this option is as follows:

write testbench -parameters { -v _file \”design file names\” -v_

lib \”library file names\” -tb module module name -config file

configl}

Note the following:

« Allthe parameters must be specified using the Tcl syntax required in the TMAX shell. For
example: -parameters {paraml param2 -param3 \”paramé4\”}

« quotation marks must have a backslash, as required by Tcl syntax, to be interpreted
correctly and passed directly to the MAX Testbench command line.

« Parameters specified withina -parameters {} listare order-dependent. They are
parsed in the order in which they are specified, and are transmitted directly to the MAX
Testbench command line. These parameters must follow the order and syntax required for
the MAX Testbench command line.

Using the stil2Verilog Command

The syntax forthe sti12verilog command is as follows:

stil2Verilog [pattern file] [tbench file] [options]

The syntax descriptions are as follows:

pattern file
Specifies the ATPG-generated STIL pattern file used as input. This file must be
specified, except when the -split in option is used.

tbench file
Specifies the name of the testbench file to generate. When the tb file name
is specified, a .v extension is added when generated the protocol file, and a

.dat extension is used when generating the test data file. You should use only

Running MAX Testbench 2-6

Test Pattern Validation User Guide K-2015.06-SP4

the root name with the command line, for example, stil2erilogpat.stil
tbench, that generates tbench.v and tbench.dat files in the current working
directory. This argument is optional when the -generate configor -report
options are specified.

Other optional arguments can be specified, as shown in the following syntax. The defaults are

shown in bold enclosed between parentheses.

-config file TB config file

-first d

-force enhanced debug

-generate config config file template

-generic testbench

-help [msg code]

-last d

-log log file

-parallel

-patterns only

-replace

—-report

-run_mode (go-nogo) | diagnosis

-sdf file sdf file name

-serial

-ser _only

-sim script <= [[vecs] | [mti] | [nc] | [x1]]
-split in { 1l.stil, 2.stil.. } | { dirl /*.stil } testbench name
-split out pat intervstil filetestbench name
-tb format <= (v95) | v01l | sv

-tb module module name

-verbose

-version

-v_file { design file names }
-v_1ib { library file names }

The descriptions for the optional syntax items are as follows:

-config file TB config file

MAX Testbench can be configured at several levels. At the top of the MAX Testbench
configuration file, you can editthe set cfg_ * variables to define the various testbench
defaults, such as the progress message interval time and the simulation time unit. The
second half of the configuration file contains a set of editable setup parameters for the
VCS/MIT/Cadence simulation script file. The TB_ config file parameter specifies the
name of the configuration file used to set up the testbench at generation time. See
“Example of the Configuration Template”.

-first d

Specifies the first pattern number that TetraMAX ATPG writes. The default is to begin
with pattern 0. Note: For Full-Sequential patterns, this option might cause simulation

Running MAX Testbench 2-7

Test Pattern Validation User Guide K-2015.06-SP4

mismatches.
-force enhanced debug
Forces MAX Testbench to halt if any errors are encountered when processing the parallel

strobe data (PSD) file. The default is to not force MAX Testbench to stop. For more
information on the PSD file, see "Understanding the PSD File."

-generate config config file template
MAX Testbench can generate a configuration file template that you can edit and modify.
The config file template parameter specifies the path where the configuration
file template is written.

-generic testbench (or-streaming patterns)
Generates a generic testbench that can load future test patterns (.dat files) without

recompiling. For more information on using this command, see "Runtime
Programmability."

-help [msg code]

Shows all possible options, and the complete st i12vVerilog syntaxand exits. If msg
code is specified, then prints the help page corresponding to that code msg code
syntax: '1-letter’-'3-digit code' where letter can be 'E', 'W' or '1' and the 3-digit code must
correspond to a valid code in the range [000-999] For example: E-001,W-010

-last d

Specifies the last pattern number for the patterns to be written. The default is to end with
the last available pattern.

-log

Generates a log file.
-parallel

Specifies the parallel load mode for simulation, which is the default.
-patterns only

Generates test patterns only (.dat file) to be used with an existing equivalent testbench (.v
file). For more information on using this command, see "Runtime Programmability."

-replace

Forces MAX Testbench to overwrite the testbench files, the configuration file template,
and simulation script.

—-report

Displays the configuration setting and test pattern information. It has the following
parameters (note that multiple parameters can be specified if separated by commas):

all — displays all the information (default in verbose mode)
config— displays the configuration setting

dft —displays DFT structure information

drc — displays DRC warnings

flow — displays STIL pattern flow

macro — displays macro information

nb_ patterns — displays the total number of patterns to be executed

Running MAX Testbench 2-8

Test Pattern Validation User Guide K-2015.06-SP4

proc — displays procedure information
sigs — displays all the signal information
sig groups — displays all the signal groups information
wft — displays WaveformTable information
-run_mode go-nogo | diagnosis
Allows the targeting of either Go-nogo mode (the default) or diagnosis mode. For details,
see “Setting the Run Mode.”
-sdf file sdf file name

Specifies the SDF file name used for back annotation.

-serial
Specifies the serial load mode simulation. The default simulation scan load is parallel. The
same behavior can be obtained by using the +define+tmax serial compiler
directive to force the simulation of all patterns to be serial. If +tmax serial=Nisused,

MAX Testbench forces serial simulation of the first N patterns, and then starts parallel
simulation of the remaining patterns

-ser only
Generates the testbench file for serial load mode only. This allows a reduction in the size
of the testbench and speeds up the simulation.

-shell
Runs the tool in shell mode.

-sim script vcs | mti | nc | x1
The sim script <simulator> option specifies a simulation script to be generated
together with the testbench file. You also must providethe v fileand v 1ib options.
Note that only VCS scripts are supported; the other simulator scripts that are generated

conform to the simulator script generated by TMAX (write patternscommand). The
argument specifies the target simulator:

. vcs — VCS simulator command shell script

« mti— ModelSim simulator command shell script

« x1 — Cadence XL simulator command shell script

« nc — Cadence NCVerilog simulator command shell script

Note the specification of several arguments at the same time to target all of the simulators
is supported as repetitive entries "~sim script vcs -sim script mti -sim
script x1"

The output name of the generated script file is:
<name of testbench file> <simulator>.sh.

-split in { 1.stil, 2.stil.. } | { dirl /*.stil }

Specifies MAX Testbench to use split STIL files based on either a detailed list of STIL files
or a generic list description using the wildcard (*) symbol. In the generic list format, the
files are recognized in alphabetical order. Multiple file names must be enclosed in curly
brackets with spaces on both sides of each bracket, as shown in the following example:

Running MAX Testbench 2-9

Test Pattern Validation User Guide K-2015.06-SP4

stil2Verilog -split in { bill.patt.stil.ts and chain
bill.patt O0.stil bill.patt 1.stil bill.patt 2.stil bill.patt
3.stil bill.patt 4.stil bill.patt 5.stil bill.patt 6.stil
bill.patt 7.stil bill.patt 8.stil bill.patt 9.stil bill.patt
10.stil } bill.pat stil.v -replace

Note that you can also specify multiple files in the configuration file. For more information
on this option, see “Using Split STIL Pattern Files”.

-split out pat intervalstil file

Specifies MAX Testbench to split STIL files, The pat interval argument specifies the
maximum number of patterns that a given .dat file will contain. For more information on
this option, see “Splitting Large STIL Files”.

-tb_ format v95 | v0l | sv

Specifies the testbench format applied to the tbench £1i1e specification. The default is
v 95, and is currently the only supported option. Formats:

v95 — Verilog 1995
v01 — Verilog 2001
sv — SystemVerilog
-tb module module name
Specifies the module name for the top-level module of the Verilog testbench.
-verbose
Activates verbose mode.
-version
Prints the stil2Verilog banner, including the version.
-v_file { design file names}
Specifies design netilist source files (the DUT description) required to run the simulation. It
is required when using the sim script option. Wild characters are supported. Note
thatdesign file namelanddesign file nameNmustbe separated with

spaces. Multiple file names must be enclosed in curly brackets with spaces on both sides
of each bracket (you can also specify multiple files in the configuration file).

-v_1ib { library file names }
Specifies the library file (the DUT related technology library) required to run the
simulation. This option is required when using sim script option. Notethat Iibrary
file nameland library file nameNmustbe separated with spaces. Multiple file
names must be enclosed in curly brackets with spaces on both sides of each bracket, as
shown in the following example:

stil2Verilog pats.stil maxtb -replace -v_1lib { libl.v lib2.v }

Note that you can also specify multiple files in the configuration file. Wildcard characters
are supported for simulation script generation.

Running MAX Testbench 2-10

Test Pattern Validation User Guide K-2015.06-SP4

Setting the Run Mode

There are two basic run modes you can set when starting MAX Testbench using the
stil2verilogcommand: Go-nogo and Diagnosis.

The Go-nogo mode is set using the ~-run mode go-nogo option. In this mode,
MAX Testbench does the following:

. Sets the verbosity level to 0 (equivalent to using +define+tmax msg=0atVCS
compilation time)
« Makes the testbench reporting the beginning of each 5 patterns (equivalent to using
+define+tmax_rpt=5 atVCS compilation time)
. Initializes the file name for the collection of diagnostics failures to <testbench
name>.diag.
The Diagnosis mode is set using the ~-run mode diagnosis option. In this mode,
MAX Testbench saves the mismatches inthe <testbench name>.diag file ina pattern-
based format compatible with the TetraMAX run diagnosis command.
For example, the mismatches are recorded in the following manner:
30 test so2 10 (exp=0, got=1l) // chain , V=313, T=31240.00 ns
30 test so3 10 (exp=0, got=1) // chain , V=313, T=31240.00 ns
30 test so4 10 (exp=0, got=1l) // chain , V=313, T=31240.00 ns
These failures can be used by the TetraMAX diagnostics to identify the failing scan chain. You
can print a report using the command run diagnosis -only report failures.
The failures log file name default can be changed at the time the simulation is executed by using
the following compiler directive:
$ vcs ... tdefine+tmax diag file=\"<file name>\"
The default can also be changed at the time the testbench is generated using the configuration
file parameter cfg diag file.

See Also

Understanding the Failures File
Using the Failures File

Running MAX Testbench 2-11

Test Pattern Validation User Guide K-2015.06-SP4

Configuring MAX Testbench

Table 1 shows the possible configurations for MAX Testbench.

Table 1 MAX Testbench Behaviors

Config. Type Config. File Option Sim. Predefine Option
Pre-defined Verilog codethat set define <user +tmax serial oOrtmax
affects the simulator script defl> 0 serial=N
generation. Example:

" . Example:
Initial N serial (flattened scan) . +define+tmax serial
vectors. set define tmax —

, serial O
+tmax serial=N
Pre-defined Verilog code that set define <user +tmax_parallel=N
affects the simulator script defl> 0
generation. c I Example:
. xample: ;
Parallel scan access with N amp'e tdefine+tmax parallel
serial vectors. set define tmax_
1llel
+tmax parallel=N parallel 0
Pre-defined Verilog code that set define <user tmax n pattern sim=N
affects the simulator script defl> 0
generation. - I Example
xample: ;
Number of patterns to P tdefine+tmax n_
simulate. set define tmax n pattern sim=10
pattern sim 10
Pre-defined Verilog code that set define_ tmax_ +define+tmax serial
affects the simulator script serial timing timing
generation. See Al
ee Also:

Generates a delay (a "dead . o
period") for parallel scan cfg_serial timing
access to align parallel load
timing with serial load timing
Top-level module #set tb module name

<"new name">

Configuring MAX Testbench 2-12

Test Pattern Validation User Guide K-2015.06-SP4

Table 1 MAX Testbench Behaviors (Continued)

Config. Type Config. File Option Sim. Predefine Option
Sets the severity level. set drcw severity

NOTE: The command drcw <Tule_name>

severity requires two <severity>

mandatory parameters:

<rule name>:TetraMAX
rule name (wild-card
character ™' is supported)

<severity>:severity level
("ignore"| "warning"|"error")

Example: set drcw
severity Cll warning

Overcomes the size set cfg tb format
optimization and generates extended 0

an extended testbench.

Setting of 1 creates a

compact testbench.

Maximum number of patterns cfg_patterns_read_
loaded simultaneouslyinthe interval
simulation process

Specifies the interval of the cfg patterns tmax rpt=N

progress message (0 is report interval
disabled, N is every Nth
pattern is reported) .

Defines the verbose level. cfg message tmax msg=N (could be 0, 1,
(See the Verbose Level verbosity level 2,3and4)
section below.)

Generates an extended-VCD cfg evcd file
of the simulation run "eved file"

Configuring MAX Testbench 2-13

Test Pattern Validation User Guide K-2015.06-SP4

Table 1 MAX Testbench Behaviors (Continued)

Config. Type Config. File Option Sim. Predefine Option
Changesthefailure logfile’'s cfg diag file tmax diag
default name atthetimethe "diag file" file=\"<file>\"

simulation is executed.
Causes the testbench to Affects the simulation runtime.

override the name in the
testbench file.

Configures the +tmax diag=N (N could
miscompare in pattern- be 1 or 2)

based (N=1)format or

cycle-based (N=2)

format format

Generates adelay for parallel cfg serial timing tmax serial timing
scan access to align parallel) _ _
load timing with serial load Affects the testbenchonly. Affects the simulation runtime.
timing
Specifies the simulationtime cfg time unit N/A
unit (i.e., time scale)

Example:

set cfg time unit

" 1p s "
Specifies the simulationtime cfg time precision N/A
precision (i.e., time precision)
Defines the DUT Module cfg dut module name N/A

name (use only if tool asks for
this parameter) .

Configuring MAX Testbench 2-14

Test Pattern Validation User Guide

K-2015.06-SP4

Table 1 MAX Testbench Behaviors (Continued)

Config. Type

Config. File Option Sim. Predefine Option

Delays the release of all
forced scan cells in the load_
unload procedure to the next
cycle by the specified time.
The delay starts from the
beginning of next cycle. This
option is supported for the
parallel dual STIL flow, but is
not currently supported for
the unified STIL flow.

Reports the instance
name of the failing cells
during the simulation of a
parallel-formatted STIL
file. To enable the report,
you must set the boolean

cfg parallel N/A
release time

Must add units.
Example:

cfg parallel
release time
50000ps

cfg parallel stil N/A
report cell name

Example:

cfg parallel stil
report cell name 1

variable to '1". The
default, 0, turns off this
reporting. Note that this
feature impacts
simulation memory
consumption.

Note the following:

« The “Command Line Option" column contains the sti12Verilog commands.

« The “Configuration File Option" column contains those variables available inside the
configuration file when used in conjunction withthe ~config file <file name>

option during the sti12verilog execution.

« The “Simulator Predefine Option" column contains those options that can be usedin a
simulator script or also defined inthe ~config file <file name> optioninthe
section titled "variables only affecting the simulator script generation”.

For example:

A “Simulator Predefined Option” can be changed at the time the simulation is executed by

using the following compiler directive:

o)

% vcs +define+tmax serial=l

« Inthe firsttwo rows of Table 1, the special case of define <user def>isused forany
user-defined simulator variable. However, it is also used for variables that are hard-coded
into the testbench, such as tmax serialand tmax parallel.

Configuring MAX Testbench

2-15

Test Pattern Validation User Guide K-2015.06-SP4

The defaultof define <user def> can also be changed at the time the testbench is
generated usingthe -sim script vecs|mti|x1|nc optionalong with defining the -
config file <file name> option. Withtheline “set define <user defl> 0"
modified as"set define tmax serial=1"inside the configuration file.

Example of the Configuration Template

You can generate the template file shown in Example 1 using the following command:
stil2Verilog -generate config TB config file

Example 1 Configuration Template Example

STIL2VERILOG CONFIGURATION FILE TEMPLATE (go—-nogo default
values) ##

uncomment out the setting statement to use predefined variables
the “set cfg *” variables only affect the testbench definition

cfg patterns read interval: specifies the maximum number of
patterns loaded simultaneously in the simulation process
#set cfg patterns read interval 1000

cfg patterns report interval: Specifies the interval of the
progress message
#set cfg patterns report interval 5

cfg message verbosity level: control for a prespecified set of
trace options
#set cfg message verbosity level 0

cfg evcd file evcd file: generates an extended-VCD of the
simulation run

#set cfg eved file "eved file"

cfg_digg_fiie: generatgs a failures log file compliant with
TetraMAX diagnostics. This overrides the name in the tb file.

#set cfg diag file "diag file"

cfg serial timing: generates a delay for parallel scan access to
align parallel

load timing with serial load timing

#set cfg serial timing 0

cfg time unit: specifies the simulation time unit

#set cfg time unit "lns"

cfg time precision: specifies the simulation time precision

#set cfg time precision "lns"

cfg dut module name: specifies the DUT module name to be tested
(variable to be used only when the tool asks for it)

#set cfg dut module name "dut module name"

Configuring MAX Testbench 2-16

Test Pattern Validation User Guide K-2015.06-SP4

TB file formatting section

cfg tb format extended: specifies whether an extended TB file is
needed

#set cfg tb format extended 0

set drcw _severity <rule name> <severity>
The command "drcw severity" needs two mandatory parameters:

- <rule name>: TetraMAX rule name (wild-card
character '*' is supported)

- <severity>: severity level

("ignore" |"warning" |"error")

#set drcw severity Cll warning

variables only affecting the simulator script generation

define <preprocessor define>: specifies the preprocessor
definitions for the simulator

#set define <user defl> 0

#set define <user def2> "TRUE"

#design files: specifies all source files required to run the
simulation

#set design files "netlistl.v netlist2.v"

lib files: specifies all library source files required to run
the simulation

#set 1lib files "libl.v lib2.v"

vcs options: specifies the user VCS command line options

#set vcs options "VCSoptionl VCSoption2"

nc options: specifies the user NCSim command line options
#set nc_options "NCoptionl NCoption2"

mti options: specifies the user ModelSim command line options
#set mti options "MTIoptionl MTIoption2"

x1 options: specifies the user Verilog XL command line options
#set xl1 options "XLoptionl XLoption2"

An example configuration file is shown in Example 2 below.

Example 2 Example Configuration Rile

STIL2VERILOG CONFIGURATION FILE

Specifies the maximum number of patterns

loaded simultaneously in the simulation process

set cfg patterns read interval 1000

Specifies the interval of the progress message
set cfg patterns report interval 5

Control for a prespecified set of trace options
set cfg message verbosity level 3

Configuring MAX Testbench 2-17

Test Pattern Validation User Guide K-2015.06-SP4

Generates a failures log file compliant with
TetraMAX diagnostics

set

cfg diag file "diag file"

Specifies the DUT module name to be tested
#set cfg dut module name "dut module name"

Specifies all source files required to run the simulation
#set design files "netlistl.v netlist2.v"

other configurations..

To assign a value to a configuration parameter, you should use the following syntax:

set

<config parameter name> <value>

Note: Every comment line must begin with "#".

See Also

Runtime Programmability

Predefined Verilog Options

Setting the Verbose Level

You canuse the [tmax msg=N]argument to set four different levels of verbosity output for
MAX Testbench. Each level prints a specific set of data to help to follow the simulation execution.
The levels are defined as follows:

Level 0 — The default. It prints the Header + Start + End information + Errors (if any)

Level 1 — Prints information from level 0 and adds the pattern information according to
the value of tmax rpt compile time option. This information includes the current time and
vector and some basic information regarding the files/settings.

Level 2 — Prints information from level 1 and adds any Macro/Procedure execution. The
Macro/Procedure information includes time, vector information and Shift statement

Level 3 — Prints information from level 2 and adds all executed statements in the pattern
block (not only procedures and macros).

Level 4 — Prints information from level 3 and adds vector (a per cycle report).

See Also

Displaying Instance Names

Configuring MAX Testbench 2-18

Test Pattern Validation User Guide K-2015.06-SP4

Understanding the Failures File

When you setthe -run mode diagnosis optionofthe stil2verilogcommand, MAX
Testbench prints all miscompare messages to a file used with the run diagnosis command
for diagnostics. The format of this file is dependent of the pattern type (legacy scan, adaptive
scan, or serializer), the simulation mode (serial or parallel), and the STIL type (dual or unified).

The following sections describe the relationship of the failures formats for each pattern type:
« Legacy Scan Failures
« Adaptive Scan Failures
« Serializer Scan Failures

MAX Testbench and Legacy Scan Failures

In legacy scan, given the serial/parallel and dual/unified types, the failure formats are the same.
A failure contains the cycle count of the failure (v=), the expected data (e xp=), the data
captured (got=), the chain name (chain), the scan output pin name (pin), and the scan cell
position (scan cel1l). Figure 1 describes the relationship of the failures for legacy scan.

Figure 1 Relationship of Failures Format for Legacy Scan

 Legacy o T" - -0 (Example)

qp-- —-gp—-{ - | | (Example2)

(Example 3)

f

Example 1, Example 2, and Example 3 are reports for the same failure printed during the
simulation of the patterns.

Example 1

Error during scan pattern 32 (detected during unload of pattern
31)

At T=49240.00 ns, V=493, exp=0, got=1l, chain 4, pin test so4, scan
cell 10

Understanding the Failures File 2-19

Test Pattern Validation User Guide K-2015.06-SP4

Example 2

Error during scan pattern 32 (detected during parallel unload of
pattern 31)

At T=16240.00 ns, V=163, exp=0, got=1l, chain 4, pin test so4, scan
cell 10

Example 3

Error during scan pattern 32 (detected during parallel unload of
pattern 31)

At T=16240.00 ns, V=163, exp=0, got=1l, chain 4, pin test so4, scan
cell 10

MAX Testbench and Adaptive Scan Failures

In adaptive scan the failure formats are not the same. A failure contains the cycle count of the

failure (v=), the expected data (e xp=), the data captured (got=), the chain name (chain) only

for dual STIL flow parallel, the scan output pin name (pin) for dual STIL flow serial mode and

unified STIL flow parallel mode. The pin information for dual STIL flow for parallel mode is the

pin pathname of the failing scan cell output. The report also contains the scan cell position (scan
cell).

Figure 2 Relationship of Failures Format for Adaptive Scan

—-gp--| " | (Example4)

III-- --Ilr_. ;ﬁ;:::iiﬂi HEXarn[Hefﬂ

gr—-| L0 (Example 6)

Example 4, Example 5, and Example 6 are reports for the same failure printed during the
simulation of the patterns.

Example 4

Error during scan pattern 31 (detected during unload of pattern
30)

At T=31240.00 ns, V=313, exp=0, got=1l, chain , pin test so2, scan
cell 10

Understanding the Failures File 2-20

Test Pattern Validation User Guide K-2015.06-SP4

At T=31240.00 ns, V=313, exp=0, got=1l, chain , pin test so3, scan
cell 10

At T=31240.00 ns, V=313, exp=0, got=1l, chain , pin test so4, scan
cell 10

Example 5

Error during scan pattern 31 (detected during parallel unload of
pattern 30)

At T=15740.00 ns, V=158, exp=0, got=1l, chain 10, pin
snps_micro.micO.pcO.prog counter g reg[ll] .QN, scan cell 10

Note: In the case of dual STIL flow parallel mode for adaptive scan patterns, MAX Testbench,
reports the failing scan chain and failing scan cell position. But, for performance reasons, the
scan cell instance name for the failing position is not reported. However, it does report the scan
cell instance name with position 0 for the failing scan chain.

Example 6

Error during scan pattern 31 (detected during parallel unload of
pattern 30)

Error during scan pattern 31 (detected during parallel unload of
pattern 30)

At T=15740.00 ns, V=158, exp=0, got=1l, pin test so3, scan cell 10

Error during scan pattern 31 (detected during parallel unload of
pattern 30)

At T=15740.00 ns, V=158, exp=0, got=1l, pin test so4, scan cell 10

Note: In the case of Unified STIL flow parallel mode for adaptive scan patterns, MAX Testbench
reports the failing scan cell position only. The failing scan chain name and the failing scan cell
instance name are not provided. You can use TetraMAX diagnostics to retrieve the failing scan
chain name.

MAX Testbench and Serializer Scan Failures
Figure 3 describes the relationship of serializer scan failures.

Understanding the Failures File 2-21

Test Pattern Validation User Guide K-2015.06-SP4

Figure 3 Relationship of Failures Format for Serializer

Serializer |=- gp=- -= gp—~ (Example 7)

oe—" - =~ (Example 8)

(Example 9)

Example 7
Error during scan pattern 5 (detected during unload of pattern 4)

At T=28340.00 ns, V=284, exp=0, got=1l, chain , pin test sol, scan
cell 2, serializer index 1

At T=28440.00 ns, V=285, exp=0, got=1l, chain , pin test sol, scan
cell 2, serializer index 2

At T=28540.00 ns, V=286, exp=1, got=0, chain , pin test sol, scan
cell 2, serializer index 3

Note: In the case of the dual STIL flow parallel mode for serializer patterns, MAX Testbench
reports the failing scan chain and failing scan cell position. But, for performance reasons, the
scan cell instance name for the failing position is not reported. However, it does report the scan
cell instance name of position 0 for the failing scan chain.

Example 8

Error during scan pattern 5 (detected during parallel unload of
pattern 4)

At T=6640.00 ns, V=67, exp=1l, got=0, chain 1, pin
snps_micro.micO.alu0.accu g regl4] .Q, scan cell 2

Note: In the case of unified STIL flow parallel mode for serializer patterns, MAX Testbench
reports the failing scan cell position only. The failing scan chain and the failing scan cell instance
name are not provided. The failing scan chain name could be retrieved using the diagnostics in
TetraMAX ATPG.

Example 9

Error during scan pattern 5 (detected during unload of pattern 4)

At T=28340.00 ns, V=284, exp=0, got=1l, chain , pin test sol, scan
cell 2, serializer index 1

Understanding the Failures File 2-22

Test Pattern Validation User Guide K-2015.06-SP4

At T=28440.00 ns, V=285, exp=0, got=1l, chain , pin test sol, scan
cell 2, serializer index 2

At T=28540.00 ns, V=286, exp=1l, got=0, chain , pin test sol, scan
cell 2, serializer index 3

Using the Failures File

You can configure and use the failures file printed by MAX Testbench for diagnosis. To use this
file, you need to setthe +tmax_diag option.

By default, the diagnosis file name is <tbenchname> . diag. The default names of the
diagnosis file whenthe -split out optionisusedare <tbenchname> 0.diag,
<tbenchname> 1.diag, etc., for the different partitions. You can change the default using
the +tmax diag file option.

The setting +tmax _diag=1 reports the pattern-based failure format. The setting +tmax
diag=2 reports the cycle-based failure format.

Note the following limitations:

« You cannot run the diagnosis directly if all the partitions are simulated sequentially. This is
because the failures are created in separate failure log files. Before running the diagnosis,
you must manually append the failure log files into a single file.

« You cannot run the diagnosis if the entire partitions are simulated sequentially and the
cycle-based format is used (+tmax diag=2). Thisis because the recorded cycles are
reset for each partition simulation.

Both settings offer a way to generate a failure log file that can be used for a diagnostic if a fault is
injected in a circuit and its effect simulated. You can also use these settings to validate the
detection of a fault by TetraMAX diagnostics. In addition, they can be used for per-cycle pattern
masking or for TetraMAX diagnostics to find the failing scan chain and cell for a unified STIL flow
miscompare.

Figure 2 summarizes the formats and applications possible for failures printed using the +tmax
diag option.

Using the Failures File 2-23

Test Pattern Validation User Guide K-2015.06-SP4

Figure 2 Summary of Uses for Failures File

+-. -=== tmax diag=1 (Table1)

5P —=== tmax diag=2 (Table2)

op=- —-=== tmax diag=1 (Table3)

gp = === tmax _diag=2 (Table4)

gp—-| Serializer |==== tmax diag=1 (Table53)

+ = === tmax diag=2 (Table6)

The format names and their descriptions are as follows:

)
)

Format A=<pat num> <pin name> <shift cycle> (exp=%b, got=%b
Format B = <pat num><chain name> <cell index> (exp=%b, got=%b
Format C = <pat num><pin name> (exp=%b,got=%b)

Format S = <pat num>pat num> <pin name> <unload shift cycle>
<shift position> (exp=%b, got=%b)

Format D=C <pin name> <vect nbr> (exp=<exp state>, got=<got
state>)

Note the following:

« The USF and DSF serial simulation modes have the same format and capability. Thus,

only the USF parallel is present in the tables. The USF serial is not displayed in the tables.

The cycle-based format is printed only for serial simulation. This is because the simulation
in parallel has less cycles than serial simulation. Thus, the cycles reported by parallel
simulation are not valid. If +tmax diag=2 is used for a parallel simulation mode, the
simulation is not stopped, but the testbench automatically changes the +tmax diag
setting to 1. A warning message is also printed in the simulation log. Then, as shown in the
following tables, the following statement is printed for all parallel simulation DSF and USF
modes: "Not Supported.”

The following tables describe the failures file format and their usage in detail.

Using the Failures File 2-24

Test Pattern Validation User Guide K-2015.06-SP4

Table 1 Failures Format and Usage for Normal Scan and tmax_diag=1

| Mormal Scan |Pattern5 Simulation | Mode

|Dua| STIL Serial | Dual STIL Parallel |Llnified STIL Parallel

|Fai|ure Format far: |Shi1"t |D |N-:|t Supparted |Nn:|t Supported
|Capture |D |N-:|t Supparted |Nn:|t Supported

|Gn:n:u:| for Diagnostics |YE5 |N-:| |Nn:|

|Gn:n:u:| for Masking |YE5 |N-:| |Nn:|

Table 2 Failures Format and Usage for Normal Scan and tmax_diag=2

| Mormal Scan |Pattern5 Simulation | Mode

|Dua| STIL Serial | Dual STIL Parallel |Unified STIL Parallel

Failure Format for: Shift D Mot Supported Mot Supported
| | | | |
Capture |D Mot Supported Mot Supported
G	:n:u:	for Diagnostics	YE5	N	:		N-:
G	:n:u:	for Masking	YE5	N	:		N-:

Table 3 Failures Format and Usage for DFTMAX Compression and tmax_diag=1

| DFTMAX |Pattern5 Simulation | Mode

|Dua| STIL Serial | Dual STIL Parallel |Unified STIL Parallel

|Fai|urE Format for: |Shif‘t |A |B |A
|Capture |C |C |C

|G|:u:u:| for Diagnostics |YE5 |YE5* |YE5

|G|:u:u:| for Masking |YE5 |YE5 |YE5

* Failures are usable for TetraMAX diagnostics provided that the command set diagnosis
-dftmax chain format isused

Using the Failures File 2-25

Test Pattern Validation User Guide K-2015.06-SP4

Table 4 Simulation Failures Format and Usage for DFTMAX Compression and tmax_diag=2

| DFTMAX |Pattern5 Simulation | Mode

|Dua| STIL Serial | Dual STIL Parallel |Unified STIL Parallel

Failure Format for; Shift D Mot Supported Mot Supported
| | | | |
Capture |D Mot Supported Mot Supported
G	:u:n:	for Diagnostics	YE5	N	:		N	:
G	:u:n:	for Masking	YE5	N	:		N	:

Table 5 Failures Format and Usage for Serializer and tmax_diag=1

| Serializer |Pattern5 Simulation | Mode

|Dua| STIL Serial | Dual STIL Parallel |Unified STIL Parallel

|Fai|urE Format for: |Shif‘t |S |B |S
|Capture |C |C |C

|G|:u:n:| for Diagnostics |YE5 |‘r’e5* |YE5

|G|:u:n:| for Masking |YE5 |‘r’e5 |YE5

*Ifthe set diagnosis -dftmax chain format command is specified, failures can be
used for TetraMAX diagnostics.

Table 6 MAX Testbench Simulation Failures Format and Their Usage for Serializer and tmax_
diag=2

| Serializer |Pattern5 Simulation | Mode
|Dua| STIL Serial | Dual STIL Parallel |Unified STIL Parallel
|Fai|urE Format for: |Shi1"t |D |N|:ut Supported |N|:ut Supported
|Capture |D |N|:ut Supported |N|:ut Supported
|G|:u:u:| for Diagnostics |YE5 |N|:| |N|:|
|G|:u:u:| for Masking |YE5 |N|:| |N|:|
See Also

Diagnosing Manufacturing Test Failures in the TetraMAX User Guide

Using the Failures File 2-26

Test Pattern Validation User Guide K-2015.06-SP4

Displaying the Instance Names of Failing Cells

MAX Testbench can display the instance name of the failing cells during the simulation of a
parallel-formatted STIL file. To enable this feature, you need to set the boolean variable cfg
parallel stil report cell name inthe configuration file. When this variable is set to
'1', it enables the reporting of the failing scan cell instance names ('0' is the default). Note: This
feature impacts simulation memory consumption.

Note the following examples:

Normal Scan design:

cfg parallel stil report cell name=0 (default)

Error during scan pattern 9 (detected during parallel unload of

pattern 8)
At T=4640.00 ns, V=47, exp=0, got=1l, chain chainl, pin out[4],
scan cell 2

cfg parallel stil report cell name=1 —M cell name added

Error during scan pattern 9 (detected during parallel unload of

pattern 8)
At T=4640.00 ns, V=47, exp=0, got=1l, chain chainl, pin
out[4], scan cell 2, cell name out reg[2]

Scan Compression design:

cfg parallel stil report cell name=1 —M cell name added

Error during scan pattern 28 (detected during parallel unload of

pattern 27)

At T=33940.00 ns, V=340, exp=0, got=1l, chain 35, scan cell 1, cell
name U CORE.dd d.o tval reg

At T=33940.00 ns, V=340, exp=1, got=0, chain 35, scan cell

7, cell name U CORE.dd d.o data reg 3

At T=33940.00 ns, V=340, exp=1, got=0, chain 35, scan cell 9, cell
name U CORE.dd d.o data reg 1 <cfg parallel stil report cell
name=0 (default)

Error during scan pattern 28 (detected during parallel unload of
pattern 27)

At T=33940.00 ns, V=340, exp=0, got=1, chain 35, scan cell 1
At T=33940.00 ns, V=340, exp=1, got=0, chain 35, scan cell 7

At T=33940.00 ns, V=340, exp=1, got=0, chain 35, scan cell 9

Displaying the Instance Names of Failing Cells 2-27

Test Pattern Validation User Guide

K-2015.06-SP4

Table 7 Summary of the DFT and STIL support for cfg_parallel_stil_report_cell nhame

DFT STIL Testbench (XTB+cfg: MAX Testbench used with :’:L’;;"EE
Architecture |Format |cfg_parallel_stil_report_cell_name wvariable) Name
Legacy DSF DPV Yes
Serial
|XTB | No
|X'I'B+|:.'fg | No
DSF DRV Yes
Parallel
|XTB | No
|X‘I'B+|:.'fg |‘r’es
USF DPY Yes
Parallel
|>¢TB | No
|X'I'El+|:.'fg |*r'es
DFTMAXK DSF DPV Mo
Serial
|xTB | No
| XTB+cfg | No
DSF DPV Yes
Parallel
|xTB | No
|}{‘I'B+|:fg |‘r’es
USF DPV Mo
Farallel
|xTB | No
|X'I'B+|:.'fg | No
Serializer DSF)= Mo
Serial
|xTB | No
|){'I'B+|:.'fg | No
DSF DRV Yes
Parallel
|xTB | Na
|X‘I'B+|:.'fg |‘r’es
USF DPY Mo
Parallel
|xTB | No
| XTB+cfg | No

Displaying the Instance Names of Failing Cells

2-28

Test Pattern Validation User Guide K-2015.06-SP4

See Also
Configuring MAX Testbench

Using Split STIL Pattern Files

Youcanusethe -split inoptionofthe stil2verilogcommand to specify the use of split
STIL pattern files. This option has two different formats:

o« The-split in { 1.stil, 2.stil.. } formatuses split STIL files basedona
detailed list of STIL files.

« The-split in { dirl/*.stil } formatuses split STIL files based on a generic
list description using the wildcard (*) symbol.

Note the following:

« Theinput STIL files from both the detailed list format and the generic list format are
assumed to belong to the same pattern set (split patterns of the same original patterns).
Multiple files must be specified within curly brackets, with a space before and after each
bracket.

« Theinput STIL files all have the same test protocol (procedures, signals, WFTs, etc). The
only difference between these STIL files is the content of the "Pattern" block, which
contains test data. Max Testbench takes the first STIL file it encounters as a representative
to the other STIL files and extracts and interprets the protocol information fromit.

« You must ensure that the input STIL files correspond to the same split patterns. You must
also avoid any form of mixing with other STIL files in the list (using the detailed list format)
or mixing within the directory (using the generic list format).

Execution Flow for -split_in Option

Whenthe -split in option is specified, the testbench is generated using a single execution.
One testbench (.v) file is generated for all STIL files. The number of .dat files directly correlates
to the number of input STIL files.

The following example shows a MAX Testbench report:

maxtb> Parsing STL procedure file "patl.stil"

maxtb> Parsing STIL data file "patl.stil, pat2.stil, pat3.stil.."..
maxtb> STIL file successfully interpreted (PatternExec: "").
maxtb> Detected a Normal Scan mode.

maxtb> Test bench files " xtb tbench.v", "xtb tbenchl.dat”..

“xtb tbench3.dat" generated successfully.

maxtb> Test data file mapping

patl.stil ?? xtb tbenchl.dat (patterns <X1> to <Y1>)

pat2.stil ?? xtb tbench2.dat (patterns <X2> to <Y¥Y2>)

pat3.stil ?? xtb tbench3.dat (patterns <X3> to <Y3>)

Using Split STIL Pattern Files 2-29

Test Pattern Validation User Guide K-2015.06-SP4

The header of each .dat file identifies the STIL partition that was used to generate it, as shown in
the following example line:

// Generated from original STIL file : ./patl.stil

Using this information, you can link various simulations to the original STIL partitions, regardless
of the order of the STIL files specified by the -~split in option. You can also combine the
existing -sim script optionwiththe -split in option to generate a validation script that
enables automatic management of the validation step when using different simulation modes.

See Also
Reading a Split Patterns File in the TetraMAX User Guide

Splitting Large STIL Files

Youcanusethe -split out optionofthe stil2verilogcommand to specify MAX
Testbench to split large STIL files. For example, for a STIL file with ten patterns, the following
command generates one testbench file and three .dat files:

stil2Verilog —-split out 4 mypat.stil my tb

The first .dat file contains four patterns (0 to 3), the second .dat file contains four patterns (#4 to
#7), and the third .dat file contains two patterns (patterns #8 and #9).

The splitting process is based on a user-specified interval. Therefore, you should avoid splitting
between two interdependent patterns.

The following sections describe how to split large STIL files:
o Why Split Large STIL files?
« Executing the Partition Process

« Example Test

Why Split Large STIL Files?

The ability to split STIL files is useful for two situations:

« When the number of patterns in a .dat file is so large that it cannot be simulated because it
exceeds the system memory capacity. For example, to simulate two million patterns, the
size of the .dat file contains 24 million lines, which corresponds to all instructions for all
patterns. In this case, the simulator (VCS) runs out of memory before completing the
simulation.

. Even if the system memory can accommodate the entire simulation, the excessive memory
consumption drastically impacts the performance of the simulation. This can occur when
the use of memory swapping and memory resources prevent other applications from using
that machine.

When it splits the STIL files, MAX Testbench can resolve a completely blocked simulation, or
optimize the memory and runtime simulation. This capability also allows MAX Testbench to
serially run a set of patterns as if these patterns were split from TetraMAX ATPG in different
STIL files.

Splitting Large STIL Files 2-30

Test Pattern Validation User Guide K-2015.06-SP4

Executing the Partition Process

Youusethe -split out option to define the maximum number of patterns to include in each
partition. Based on your specification, MAX Testbench generates a testbench (.v) file and a set
of partitioned data (.dat) files from a single STIL file.

When splitting large STIL files, MAX Testbench uses the following equation to determine the
number of partitions (or .dat files) to create:

Total Number of Patterns
Number of Partitions =

Number of Patterns in a Partition

The partitioning process is as follows:

1. The first partition (partition 0) starts as normal and stops at the execution of the last
pattern of the partition.

2. The second partition (partition 1) starts by reproducing the test_setup macro and the
Condition statementto restore the context of the last pattern of the first partition
(partition 0).

The second partition contains a duplication of the last pattern of the previous partition,
except that all unload states are masked. The strobe of the states corresponds to the
second-to-last pattern of the previous partition. This strobe is ensured by the first partition,
so you do not need to replicate it. All subsequent partitions follow the architecture of the
second partition.

3. Use VCS to create a simulation executable for MAX Testbench, then use the simulation
executable and the +tmax part=partition number optionto simulate each
partition, as shown in the following example:
simv +tmax part=0
simv +tmax_part=l
simv +tmax:part=2

Example Test
Note the following example test:

./simv +tmax part=0 | tee run vcs par usf split simv0.log
./simv +tmax part=1 | tee run vcs par usf split simvl.log

./simv +tmax part=0 | tee run vcs par usf split simv0.log
Chronologic VCS simulator copyright 1991-2013

Contains Synopsys proprietary information.

SR i
MAX TB

Test Protocol File generated from original file "pattn/pattn comp
USF par.stil"

STIL file version: 1.0

Splitting Large STIL Files 2-31

Test Pattern Validation User Guide K-2015.06-SP4

Enhanced Runtime Version: use <sim exec> +tmax help for available
runtime options

igddsdssssssadsasssdaasaatsdsaiadsad it Radaa R nR Rt

XTB: Reading partition 0 (test data file /TEST split/pattn/pattn_
comp USF par split 0.dat)

XTB: Enabling Enhanced Debug Mode. Using mode 1 (conditional
parallel strobe).

XTB: Starting parallel simulation of 6 patterns

XTB: Using 0 serial shifts

XTB: Begin parallel scan load for pattern 0 (T=200.00 ns, V=3)
XTB: Begin parallel scan load for pattern 10 (T=1700.00 ns, V=18)
XTB: Begin parallel scan load for pattern 10, unload 2 (T=2000.00
ns, V=21)

XTB: Begin parallel scan load for pattern 5 (T=1700.00 ns, V=18)
XTB: Simulation of 6 patterns completed with 0 mismatches (0
internal mismatches) (time: 2000.00 ns, cycles: 20)

VCSSimulationReport
Time: 2000000 ps

./simv +tmax part=1 | tee run vcs_par usf split simvl.log
Chronologic VCS simulator copyright 1991-2013

Contains Synopsys proprietary information.

FHHH A

MAX TB

Test Protocol File generated from original file "pattn/pattn comp
USF par.stil"

STIL file version: 1.0

Enhanced Runtime Version: use <sim exec> +tmax help for available
runtime options

G

XTB: Reading partition 1 (test data file /TEST split/pattn/pattn_
comp USF par split 1l.dat)

XTB: Enabling Enhanced Debug Mode. Using mode 1 (conditional
parallel strobe).

XTB: Starting parallel simulation of 6 patterns

XTB: Using 0 serial shifts

XTB: Begin parallel scan load for pattern 5 (T=200.00 ns, V=3)
XTB: Begin parallel scan load for pattern 10 (T=1700.00 ns, V=18)
XTB: Simulation of 6 patterns completed with 0 mismatches (0
internal mismatches) (time: 2200.00 ns, cycles: 22)

VCSSimulationReport
Time: 2200000 ps

Splitting Large STIL Files 2-32

Test Pattern Validation User Guide K-2015.06-SP4

Force Release and Strobe Timing in Parallel Load
Simulation

The timing for parallel load simulation differs from a serial load simulation when the data is driven
directly on the flip-flops. Figure 1 shows how the parallel load MAX Testbench works in terms of
force, release, and strobe times.

Figure 1 Timing For Parallel Load MAX Testbench

load_unload

©

SetPls X)(

Measure POs

Clock

|

scan_enable

''_'__'_'_'_'.'_'.'_'_'_'.T'_'.'_'_'_'_'_'_'(Lj

1 E a
®: Release time
®: | occurs at the
end of the cycle

1
LH cfg_parallel_release_time T ®

ii+tic5!

() The time of the scan-enable to the first output measure performed for scan-outs only

(@) The time of the scan-enable to the first clock of each scan element performed for every scan cell.
The input to the scan cell in scan mode must be stable before the effective edge of the clock
pulse, and if the scan enable affect that stability, it needs to be checked as a critical path.

(3) Parallel placement strobe time check

() Parallel Force Event occurs “+tic” after strobe

(8) Release time can be controlled using the “cfg_parallel_release_time" config file option.

See Also
Defining the load unload Procedure in the TetraMAX User Guide

Force Release and Strobe Timing in Parallel Load Simulation 2-33

Test Pattern Validation User Guide K-2015.06-SP4

MAX Testbench Runtime Programmability

MAX Testbench supports a runtime programmability flow that enables you to specify a series of
runtime simulation options that use the same compiled executable in different modes.

For example, you can compile a single executable using one or more runtime options, such as
+tmax msg, +tmax rpt,+tmax serial,+tmax parallel,+tmax n pattern sim,
and +tmax_test data file.You can then specify any of these options at runtime using the
same executable.

You can also use a set of options to change test patterns. For example, if you want to write out
patterns with different chain tests. Note: The flow for using split patterns is different than the flow
for regular patterns. For details, see "Runtime Programmability for Patterns."

The following sections describe how to configure and execute runtime programmability in
MAX Testbench:

. Basic Runtime Programmability Simulation Flow

Runtime Programmability for Patterns
. Example: Using Runtime Predefined VCS Options
. Limitations

See Also

Configuring MAX Testbench
Predefined Verilog Options

Basic Runtime Programmability Simulation Flow
The basic simulation flow for runtime programmability is as follows:

1. Generate a STIL-based testbench. For details, see "Running MAX Testbench."
2. Configure the compile-time options, as needed.

3. Compile the testbench, design, and libraries, and produce a single default simulation
executable. You only need to compile the executable one time, using minimal
configuration.

4. Run the simulation, for example:
<sim exec> +<runtime option>

Note that you can use any of the following runtime options:

B tmax msg

B tmax rpt

MAX Testbench Runtime Programmability 2-34

Test Pattern Validation User Guide K-2015.06-SP4

B tmax serial

B tmax parallel

B tmax n pattern sim
® tmax test data file

For details on these options, see the "MAX Testbench Configuration" section.

5. If you encounter a new behavior, or need a new report or test patterns, specify the
appropriate runtime option and rerun the simulation without recompiling the executable.
For example:

<simv_exec> <+tmax test data file="myfile.dat">

In the previous example, myfile.dat is the newly generated data (.dat) file to be used
with the existing testbench file.

Note the following:

« Ifyou specify the tmax serial optionatcompile time and the +parallel option at
runtime, the resulting simulation is a parallel simulation.

« Themsg and rpt options affect the simulation report by providing different verbosity
levels. Their defaults are 0 and 5, respectively. Setting up values different than these
values, either at compile-time or runtime, is automatically reported by the testbench at
simulation time 0. The runtime options override their compilation-time counterparts.

o« Then pattern simoptionoverridesthe equivalenttmax n pattern simoption, if
the latter option is specified. Otherwise, it overrides the default initial set of patterns (the
entire set in the STIL file, or the set generated by Max Testbench usingthe -first and -
last options).

Runtime Programmability for Patterns

Youcanusethe -generic testbenchand -patterns only options with the
write testbenchorstil2Verilogcommands to configure runtime programmability for
patterns.

Note: Do not confuse the use of regular patterns and the use of split patterns for runtime
programmability. You cannot simultaneously use the ~-generic testbench and
-patterns only options for split patterns. See "Using Split Patterns" for details

The following sections describe how to use runtime programmability for patterns:

o Using the -generic testbench Option
« Using the -patterns _only Option

« Executing the Flow

« Using Split Patterns

MAX Testbench Runtime Programmability 2-35

Test Pattern Validation User Guide K-2015.06-SP4

Using the -generic_testbench Option

The -generic testbench option, used in the first pass of the flow, provides special memory
allocation for runtime programmability. This is required because the Verilog 95 and 2001 formats
use static memory allocation to enable buffers and arrays to store and manipulate .dat
information. This type of data storage cannot be handled by a standard .dat file. Also, it is
expected that .dat files will continue to expand as they store an increasing number of vectors and
atomic instructions.

The -generic testbench option runs atask that detects the loading of the .dat file, and then
allocates an additional memory margin. If, at some point, the data exceeds this allocated
capacity, an error message, such as the following, will appear.

XTB Error: size of test data file <file name>.dat exceeding
testbench memory allocation. Exiting...
(recompile using -pvalue+designl test.tb part.MDEPTH=<###>) .

As indicated in the message, you will need to recompile the testbench using the suggested
Verilog parameter to adjust the memory allocation.

Using the -patterns_only Option
The -patterns only option is used for a second pass, or later, run. Itinitiates a light
processing task that merges the new test data. This option also enables additional internal

instructions to be generated for the special .dat file. For example, it includes a computation of the
capacity for later usage by the testbench for memory management.

If you are running an updated pattern file, and have specified the -pattern only option, you
will see the following message:

XTB: Setting test data file to "<file name>.dat" (at runtime).
Running simulation with new database...

Executing the Flow
The flow for runtime programmability for patterns is as follows:

1. Generate the tesbench in generic mode using the first available STIL file. For example:

write testbench -input pats.stil -output runtime 1 \
-replace -parameter {-generic testbench \
-log mxtb.log -verbose}

Executing 'stil2Verilog'...

2. Compile and simulate this testbench (along with other required source and library files).

3. When a new pattern set is required, generate a new STIL file, while keeping the same
STIL procedure file for the DRC (same test protocol).

MAX Testbench Runtime Programmability 2-36

Test Pattern Validation User Guide K-2015.06-SP4

4. Rerun MAX TestBench against the newly generated STIL file to generate only new the
test data file, as shown in the following example:

write testbench -input pats new.stil -output runtime 2 \
-replace -parameter { -patterns only -log mxtb 2.log \
-verbose}

5. Attach the newly generated .dat file to the simulation executable and rerun the simulation
(without recompilation), as shown in the following example:
simv +tmax test data file="<new pattern filename>.dat”
Command: ./simv +tmax test data file=runtime 2.dat

FHHH A AR

MAX TB Version H-2013.03

Test Protocol File generated from original file " pats
new.stil"

STIL file version: 1.0

iFaEsaEs sz A LR EEEEEEEEEEE

XTB: Setting test data file to "runtime 2.dat" (at runtime).
Running simulation with new database...

XTB: Starting parallel simulation of 5 patterns

XTB: Using 0 serial shifts

XTB: Begin parallel scan load for pattern 0 (T=200.00 ns, V=3)
XTB: Simulation of 5 patterns completed with 0 errors (time:
2700.00 ns, cycles: 27)
VCSSimulationReport

6. Repeatsteps 3to 5, as needed, to include a new STIL file.

Using Split Patterns

The following examples show how to split patterns for runtime programmability.

This example uses the sti12vVerilog command:

stil2Verilog input stil file name output testbench name \
-tb module < > -split_out 32 -generic -replace \
-log translation.log

The next example usesthe write testbench command:

write testbench -input input stil file name -out output testbench
name \

-parameters {-split out 32 -tb module < > -generic \

-log mxtb.log}

The next set of examples show the process of splitting pattern files using the write
patterns commandand aseriesof write testbench commands. Note thatyou do not
needtousethe -patterns only option to create the first split file. In this case, the first split
file is created using the -generic optioninthefirstwrite testbench command of the
command sequence.

MAX Testbench Runtime Programmability 2-37

Test Pattern Validation User Guide K-2015.06-SP4

write patterns ./pattern/top scan.stil -format stil -replace \
-split 5

write testbench -input ./pattern/top scan 0O.stil
-output ./pattern/top scan maxtb -replace \
-parameter {-generic -log mxtb generic split 0.log \
-verbose }

write testbench -input ./pattern/top scan 1l.stil \
-output ./pattern/top scan maxtb 1 -replace \
-parameter {-patterns_only -log mxtb split 1.log \
-verbose }

write testbench -input ./pattern/top scan 2.stil \
-output ./pattern/top scan maxtb 2 -replace \
-parameter {-patterns_only -log mxtb split 2.log \
-verbose }

write testbench -input ./pattern/top scan 3.stil \
-output ./pattern/top scan maxtb 3 -replace \
-parameter {-patterns_only -log mxtb split 3.log \
-verbose }

write testbench -input ./pattern/top scan 4.stil \
-output ./pattern/top scan maxtb 4 -replace \
-parameter {-patterns_only -log mxtb split 4.log \
-verbose }

write testbench -input ./pattern/top scan 5.stil \
-output ./pattern/top scan maxtb 5 -replace \
-parameter {-patterns_only -log mxtb split 5.log \
-verbose }

Example: Using Runtime Predefined VCS Options

The following example shows how to use runtime predefined VCS options:

$> ./simv_usf +tmax msg=3 +tmax n pattern sim=1 +tmax rpt=3
iddsssassda st s RAR R ERAR SRR EREE LR

MAX TB Version H-2013.03

Test Protocol File generated from original file "runtime.stil"
STIL file version: 1.0

FHEH A H A H AR

XTB: Setting runtime option "tmax n pattern sim" to 1.

XTB: User requesting simulating patterns 0 to 1

XTB: Setting runtime option "tmax msg" to 3.

XTB: Setting runtime option "tmax rpt" to 3.

XTB: Starting parallel simulation of 2 patterns

Example: Using Runtime Predefined VCS Options 2-38

Test Pattern Validation User Guide

XTB:
XTB:
XTB:
XTB:
XTB:
XTB:
XTB:
XTB:
XTB:
XTB:
XTB:
XTB:
XTB:
XTB:
XTB:
XTB:
XTB:
XTB:
XTB:
XTB:

Using 0 serial shifts

Processed statement: WETStmt

Processed statement: ConditionStmt

Starting macro test setup..., T=0.00 ns, V=1
Processed statement: test setupStmt

Processed statement: SetPat

Starting proc load unload..., T=200.00 ns, V=3

Begin parallel scan load for pattern 0 (T=200.00 ns, V=3)
(parallel) shift, at 300.00 ns

Processed statement: load unloadStmt

Starting proc capture..., T=400.00 ns, V=5

Processed statement: captureStmt

Processed statement: IncPat

Starting proc load unload..., T=500.00 ns, V=6
(parallel) shift, at 600.00 ns

Processed statement: load unloadStmt

Starting proc capture clk..., T=700.00 ns, V=8
Processed statement: capture clkStmt

Processed statement: IncPat

Simulation of 2 patterns completed with 0 error (time:

1000.00 ns, cycles: 10)

v C

S SimulationReport

K-2015.06-SP4

Runtime Programmability Limitations

The following limitations apply to runtime programmability:

The following runtime options are not supported: tmax vcde, tmax serial timing,

tmax diag file, tmax diag.

You cannot change betweenthe +delay mode zero,+typdelays,+mindelays,

and +maxdelays options.
You cannot use a different test_setup procedure at runtime.
You cannot change the width of a variable.

You cannot make changes to the STIL procedure file before generating second-pass

patterns.

You cannot change compile-time switches.
You cannot add $dumpvars statements
You cannot use different versions of VCS.

Runtime Programmability Limitations

2-39

Test Pattern Validation User Guide K-2015.06-SP4

MAX Testbench Support for IDDQ Testing

IDDAQ testing detects circuit faults by measuring the amount of current drawn by a CMOS device
in the quiescent state (a value commonly called “IddQ”). If the circuit is designed correctly, this
amount of current is extremely small. A significant amount of current indicates the presence of
one or more defects in the device.

You can use the following methods in MAX Testbench to configure the IDDQ testing:
o Compile-Time Options

o Configuration File Settings
« Generating a VCS Simulation Script

See Also
Generating IDDQ Test Patterns in the TetraMAX User Guide

Compile-Time Options for IDDQ

MAX Testbench has two compile-time options that support IDDQ testing and are specified at the
command line when starting a simulation. Note that these compile-time options cannot be
specified in the configuration file:

e tmax iddg
This option enables IDDQ testing during PowerFault simulation. The default behavior is
not to use the IDDQ test mode. The following example enables IDDQ testing from the VCS
command line:

% vcs ... tdefine+tmax iddg
e tmax iddg seed mode=<0]1]2>
This option changes the fault seeding for IDDQ testing to one of three modes:
m 0 for automatic seeding (default)
m 1 for seeding from a fault file only
= 2 for both automatic seeding and file seeding

When the seeding mode is set to 1 or 2, the testbench assumes the existence of a fault list
file (or its symbolic link) in the current directory named tb_module name.faults.|f
this file is not found, the simulation stops and an error is issued.

Note: You can override the default fault list name in the configuration file (see the next
section).

See Also
Predefined Verilog Options

MAX Testbench Support for IDDQ Testing 2-40

Test Pattern Validation User Guide K-2015.06-SP4

IDDQ Configuration File Settings

You can make several IDDQ test-related specifications in a dedicated subsection of the
configuration file. Note that there are no command-line equivalences to these settings since they
are testbench file-specific commands.

cfg iddg seed file fault list file
This parameter overrides the default tb_module_name .faults file when faults

are seeded from an external fault list file. The default tb_module _namefile in
Max Testbench is DUT_name_test.

The following example specifies faults seeded from a file called my dut test:
set cfg iddg seed file my dut test

cfg iddg verbose 0 | 1
This parameter enables or disables the PowerFault verbose report. The default
is 1, which enables the verbose report. Specify a value of 0 to disable the
verbose report.
The following example disables the PowerFault verbose report:
set cfg iddg verbose 0
Note: You can use the +define+tmax msg=4 simulation option to report file
names that are used during the simulation process.

cfg iddg leaky status 0 | 1
This parameter enables or disables the PowerFault leaky nodes report printed
in the tb_name.leaky file. The default is 1, which enables the leaky nodes
report. Specify a value of 0 to disable this report.
The following example disables the PowerFault leaky nodes report:
set cfg iddg leaky status 0

cfg iddg seed faul model 0 | 1
This parameter specifies the PowerFault fault model used for external fault
seeding. The default is 0, which specifies SA faults. Specify a value of 1 for
bridging faults.
The following example specifies bridging faults for automatic seeding:
set cfg iddg seed faul model 1

cfg iddg cycle value
Use this parameter to set the initial counter value for IDDQ strobes. The
defaultis 0.
The following example sets the initial counter value to 1:
set cfg iddg cycle 1

See Also
Configuring MAX Testbench

MAX Testbench Support for IDDQ Testing 2-41

Test Pattern Validation User Guide K-2015.06-SP4

Generating a VCS Simulation Script

You can use MAX Testbench to generate a script that sets up required information for IDDQ test
simulation. This information is required to enable the PLI access option functions (+acc), the
path to the archive PowerFault PLI library (1ibiddg vcs.a), and the path to the PLI function
interface (1ddg_vcs. tab).

Note that automatic simulation script generation for IDDQ testing is limited to the VCS simulator
only.

The following example is a basic script generated by MAX Testbench usingthe -sim script
option (without using any available parameters from the configuration file) when IDDQ test
mode is enabled:

#!/bin/sh

LIB_FILES="my_lib.V ${IDDQ_HOME}/lib/libiddq_vcs.a —P${IDDQ_HOME}
/1lib/iddg_vcs.tab"

DEFINES=""

OPTIONS="+tetramax +acc+2"

NETLIST FILES="my netlist.v"

TBENCH FILE="new i021 sl s.v"

SIMULATOR="vcs"

S{SIMULATOR} -R S${DEFINES} S$S{OPTIONS} ${TBENCH_FILE} ${NETLIST_
FILES} ${LIB_FILES}

SIMSTATUS=S$?

if [${SIMSTATUS} -ne 0]

then echo "WARNING: simulation command returned error status
S{SIMSTATUS}"; exit ${SIMSTATUS};

fi

Note the following:

« When generating the script, MAX Testbench assumes that the IDDQ_HOME environment
variable points to the location of an existing PowerFault PLI.

« You must have a valid Test-IDDQ license to run the PowerFault PLI.

Understanding MAX Testbench Parallel
Miscompares

The following example shows the VCS script used for parallel simulation for MAX Testbench:

ves —-fulled -R \
-1 parallel stil.log \
+delay mode zero +tetramax

par.v \

-v ../lib/class.v \
../1 dftc/result/lt timer flat.v \

Understanding MAX Testbench Parallel Miscompares 2-42

Test Pattern Validation User Guide K-2015.06-SP4

tdefine+tmax rpt=1 \
+define+tmax msg=10

How MAX Testbench Works

The Verilog writer for MAX Testbench is essentially an algorithm that browses the data structure
and retrieves the appropriate information according to the order and the form determined by the
Verilog testbench template.

MAX Testbench does not parse the netlist file. It retrieves the DUT interface (its hierarchical
name and its primary I/O) from the STIL file. Therefore, it is the responsibility of the STIL
provider (TetraMAX ATPG) to make sure that this interface corresponds effectively to the one
described in the netlist. The testbench file (test protocol) contains all the details of the STIL file,
whereas the test data file translates the execution part (Pattern blocks). See Figure 4 and Figure

5.

How MAX Testbench Works 2-43

Test Pattern Validation User Guide K-2015.06-SP4

Figure 4 Relationship of Files in MAX Testbench Flow

“

-

-yl

pat.stil

testb.v testb patterns.data

How MAX Testbench Works 2-44

Test Pattern Validation User Guide K-2015.06-SP4

Figure 5 MAX Testbench Flow

Configuration STIL 0 STIL 1
File

MAX Testbench

Outputs

Configuration Simulator
Template Scripts

See Also
Editing the STIL Procedure File

Predefined Verilog Options

Table 1 describes a set of predefined Verilog options. When specified on the VCS compile line,
these options must be preceded by the '+de fine' statement

Predefined Verilog Options 2-45

Test Pattern Validation User Guide

Table 1 Predefined Verilog options

Verilog Option

Description

+tmax help

+tmax serial=N

+tmax parallel=N

+tmax rpt=N

+tmax msg=N

+tmax vcde

+tmax serial

timing

+tmax test setup
only one time

Used with the s imv executable, this option reports the
available runtime options, which are:

+tmax n pattern sim

+tmax serial

+tmax parallel

+tmax msg

+tmax rpt

+tmax test setup only one time
+tmax test data file

Initial N serial (flattened scan) vectors

Parallel scan access with N serial vectors

Specifies the interval of the progress message

Control for a prespecified set of trace options

Generates an extended VCD of the simulation run

Generates a delay (a "dead period") for parallel scan
access.

Simulates the test setup macro only one time
when using split patterns with MAX Testbench. This
option is useful when you are using multiple STIL
pattern files and want to avoid multiple simulations
of the test setup macro. It can be used for both
compile time and runtime during a simulation.

K-2015.06-SP4

The +tmax rpt option controls the generation of a statement on entry to every TetraMAX
ATPG pattern unit during the simulation. This statement is printed during the simulation run, and
provides an indication of progress during the simulation run. This progress statement has two
forms, depending on whether the next scan operation is executed in serial or parallel fashion:

Starting Serial Execution of TetraMAX ATPG pattern N,

Predefined Verilog Options

time NNN, V

2-46

Test Pattern Validation User Guide K-2015.06-SP4

#NN

Starting Parallel Execution of TetraMAX ATPG pattern N, time NNN,
V #NN

Starting Serial Execution of TetraMAX pattern N (load N), time
NNN, V #NN

Starting Parallel Execution of TetraMAX pattern N (load N), time
NNN, V #NN

By default, the pattern reporting interval is set to every 5 patterns. This value can be changed by
specifying the interval value tothe +tmax rpt option. Forinstance, +define+tmax
rpt=1 onthe VCS compile line generates a message for each TetraMAX ATPG pattern
executed. All pattern reporting messages can be disabled by setting +define+tmax rpt=0.

The +tmax msg option controls a pre-defined set of trace options, using the values 1
through 4 to specify tracing, where '1' provides the least amount of trace information and '4'
traces everything. These values activate the trace options as follows:

0 — disables all tracing (except progress reports with +tmax_rpt)
1 — traces entry to each Procedure and Macro call
2 — adds tracing of WaveformTable changes
3 — adds tracing of Labels
4 — adds tracing of Vectors
The +tmax msg option is setto 0 by default.

These twooptions +tmax rptand +tmax msg provide a single control of tracing
information, established as the simulation environment is started. By editing the testbench file,
additional options can be specified during the simulation run.

The option +tmax evcd supports generation of an extended VCD file for the instance of the
design under test (dut). The name of this file is "sim_vcde.out". The option +tmax serial
timing causes an interval of no events to be generated for each parallel scan access
operation. This period aligns the overall simulation time of parallel scan access with the same
time required for a normal serial shift operation. This "dead period" is described in "Parallel Scan
Access". By default, this dead period is not present and the parallel scan access simulation
occupies a single cycle period for the entire scan operation. For designs that can accept this
dead period, this option facilitates coordinating times between parallel and serial simulations,
and facilitates identifying the physical runtime of a pattern set with parallel scan access operation
present. Some designs might not support this dead period, for instance certain styles of PLL
models might lose synchronization for intervals without clock events present. These designs
should not use this option.

The +tmax_diag option controls the generation of miscompare messages formatted for
TetraMAX ATPG diagnostics during the simulation.

See Also
Configuring MAX Testbench

Predefined Verilog Options 2-47

Test Pattern Validation User Guide K-2015.06-SP4

MAX Testbench Limitations

The following limitations appliy when using MAX Testbench:
« MAX Testbench does not support DBIST/XDBIST, or core integration. XDBIST and
CoreTest are EOL (End-Of-Life) tools.
« For script generation, predefined options are supported only for a VCS script.

See Also
Runtime Programmability Limitations

MAX Testbench Limitations 2-48

MAX Testbench Error Messages and
Warnings

The following sections list and describe the various error messages and warnings associated
with MAX Testbench:

o Error Message Descriptions
o Warning Message Descriptions
« Informational Message Descriptions

Note: You can access a detailed description for a particular message by specifying either of the
following commands:

stil2Verilog -help [message code]

or
write testbench -help [message code]

3-1

Test Pattern Validation User Guide

K-2015.06-SP4

Error Message Descriptions

Table 1 lists all MAX Testbench error messages and their descriptions.

Table 1 Error Message Descriptions

Error Message

Description

What Next

E-001- No license
found for this site

E-002- No threads
associated with the

first PatternExec

E-003 - Multiple
PatList found, not
fully supported yet
(only one at a time
or in parallel but
with PLL like

patterns)

E-006- Cannot

recover signal

<name> from the STIL
structures, last

label <name>

Error Message Descriptions

The license file specified in
the SYNOPSYS installation
does not contain a valid
license for this site.

The tool automatically
searches for the first
PatternExec statement in
the specified STIL file. Its
name is displayed in the
verbose mode execution.
This message occurs when
the STIL interpretation
process failed to retrieve
any execution threads
corresponding to the
detected PatternExec
statement.

The PatList statement is
not yet fully supported.
The tool only supports for
now only simple PatList
representations, like the
PLL like patterns.

Respective signal cannot
be found in the Signals list
of the STIL file.

Check the SYNOPSYS
environment variable
or contact SYNOPSYS
to get a valid license.

Check the validity of
the STIL file and its
first PatternExec
statement.

Generate a STIL that
uses the supported
PatList syntax and
patterns .

Check the STIL file
syntax

3-2

Test Pattern Validation User Guide

K-2015.06-SP4

Error Message

Description

What Next

E-007- Unsupported
event %$s in wave of
cluster of
signal %s in WET

nwo ~n
sC

no o n
5SS

E-008- The event
waves of cluster
<name> of signal
<name> in WFT <name>
have incompatible
types (force and
compare

simultaneously, not

yet supported)

E-010- Can't find
definition for
<name> in the STIL

structures

E-011- Too many
signal references in
the Equivalent
statement not

o)
%s,

yet supported

E-013- Invalid
Equivalent statement

<location>

Error Message Descriptions

The tool currently does not
support the following event
types:WeakDown,
WeakUp,
CompareLowWindow,
CompareHighWindow,
CompareOffWindow,
CompareValidWindow,
LogicLow, LogicHigh,
LogicZ, Marker, ForcePrior

The cluster of reported
signal contains both force
and compare event waves
simultaneously. The tool
does not support this yet.

The specified Procedure or
Macro cannot be found in
the STIL structures. That
can be caused by an
incomplete STIL file.

The tool only supports one
to one equivalences for
now and the input STIL file
contains Equivalent
statements with multiple
signal specifications.

The tool only supports one
to one equivalences for
now and the specified.
Equivalent statement does
not respect this rule.

Generate a STIL that
uses only the
supported event types

Generate a STIL that
does not use this type
of event waves in the

WaveForm description

Check the syntax of
the STIL file

Generate a STIL that
contains only one to
one equivalences

Generate a STIL that
contains correct
Equivalent statements

3-3

Test Pattern Validation User Guide

K-2015.06-SP4

Error Message

Description

What Next

E-014- Loop Data
statement in <name>

not yet supported

E-015 - The
requested help page

does not exist

E-017- Duplicate
definition for

<name>

E-018- Multiple
specification of -
log option

E-019- Missing "log"
option value

E-021- Error during
the consistency
checking of the
command line
parameters and

options

Error Message Descriptions

Only the simple Loop
statement is currently
supported. The Loop Data
is not yet supported.

A message code was
specified that does not
correspond to an existing
help page.

There is more than one
definition for a specified
Procedure/Macro in the
input STIL file. This
represents a bad STIL
syntax and should be
corrected.

The command line -log
option has been specified
more than one time. Only

one specification is allowed

to avoid confusion.

The command line -log
option has an mandatory
argument that specifies
the name of the file which
is used to write the
transcription of the tool
execution. This argument
is absent.

The error message
indicates which
parameter/option is cone
timerned.

Generate a STIL that
does not contain Loop
Data

Check the correctness
of the message code

Check the syntax of
the input STIL file

Check and edit the
command line to have
a single -log
specification

Check and edit the
command line to add a
file name as argument
for -log

Modify the command
line according to the
error message. Check
the user
documentation for
more details

3-4

Test Pattern Validation User Guide

K-2015.06-SP4

Error Message

Description

What Next

E-023- cannot write
file <file name> as
it already exists,
specify -replace if
you want to

overwrite it

E-024- Ambiguous
option <name>, can
match multiple

options like <enum>

E-025-
<file/directory
name> No such file
or directory

Error Message Descriptions

When the tool is about to
generate a file it checks if
the respective file name
already exists on disk. In
this case, to avoid
accidental lost of user
important data the tool
asks the user for a
confirmation, more specific
the user has to provide the
-replace option in the
command line to confirm
that this is the desired
behavior.

The specified command
line option match more
than one command line
option. The command line
processing allows for
incomplete option name
specifications, but a
minimal specification is
required to avoid
ambiguity.

The specified file(s) or
folder(s) cannot be found
on disk. This usually is
caused by a wrong
specification of the
design/library files
generated from the
command line or from the
config file.

If the overwriting of
the respective file is
desired then add the -
replace option in the
command line

Edit the command line
and clearly specify
your options to avoid
ambiguity

Specify correct
file/folder names

3-5

Test Pattern Validation User Guide

K-2015.06-SP4

Error Message

Description

What Next

E-028- <value> 1is
not a valid cfg
time unit or cfg
time precision value
(Valid integer are
1, 10 and 100. Units
of measurement are
s, ms,
and fs)

us, ns, ps

E-029- It is illegal
to set the time
precision larger

than the time unit

E-030- Cannot
generate Verilog
testbench neither
for serial nor for
parallel load

mode. ..

E-031- Cannot open
<file name> file.

E-032- Error during
the consistency
checking of config

file data

E-033- Error reading
Tcl file <file name>
at line <#>. Only
comments and
variable settings

allowed

Error Message Descriptions

Specified value for cfg_
time_unit or cfg_time_
precision is invalid. This

usually occurs in the config

file consistency checking
process.

Value specified for time
precision is too big.

Specified testbench
generation mode is not
possible with the given
STIL file. This might
happen when you specify
the parallel_only or serial_
only configuration.

Specified file name is not
accessible. It may be a
config file name, a log file
name, design file name,
library file name, test data
file, protocol file, etc.

The error message
indicates which config file
field is affected.

The config file only
supports a limited Tcl
syntax, such as variable
settings, comments and
empty lines.

Edit the invalid values
with correct ones

Specify a lower value
for time precision,
lower or equal with the
time unit

Specify a different
simulation mode

Check the existence,
the location, or the
permission of the
specified file

Modify the config file
according to the error
message

Modify the config file
by removing the
unsupported syntax.

Test Pattern Validation User Guide

K-2015.06-SP4

Error Message

Description

What Next

E-035- Cannot
retrieve DUT module
name in STIL file.
Set the "cfg dut
module name" in the
config file to avoid

the problem

E-036- Detected an
unsupported multi-
vector Shift

construct.

E-037- Detected an
unsupported multi-
vector Loop

construct.

E-038- Cannot
process MISR
outputs. Theratio
between the number
of compressors and
the number of SERDES
MISR outputs is not
supported. Parallel

simulation may fail

E-039- Shift
statement can only
be called from

Procedures

Error Message Descriptions

The tool automatically
extracts the DUT module
name from the specified
STIL file.

The tool detected a STIL
Shift block that includes
multiple Vector statements
- some of which are not
consuming data without a
pound (#) sign .

The tool detected a STIL
Loop block that includes
multiple Vector
statements.

The tool detected a
situation in which it can't
determine the assignment
between the compressor
outputs and the SERDES
MISR output

Shift statements are only
supported when they are
called inside a Procedure.

Use a config file to
specify it by setting
the cfg_dut_module_
name parameter. A
template config file
can be generated
using the -generate_
config option

Make sure the vectors
are not intended to be
post-amble (or
preamble) vectors
that need to defined
after (or before) the
Shift block. If so,
correct the STIL file
accordingly. If not,
contact Synopsys
support.

USF Parallel simulation
is not supported for
STIL files using these
type of constructs.

If possible, use a
number of
compressors that can
divide with the number
of SERDES MISR
outputs. The
simulation may fail
otherwise.

Generate a STIL file
that respects this
syntax

3-7

Test Pattern Validation User Guide

K-2015.06-SP4

Error Message

Description

What Next

E-040 - Wrong values
for -first and/or -
last options

E-041 - Parallel
simulation mode for
loop block within
procedure "proc"

E-042 - Error during
the consistency
checking of the
input STIL file

E-043 - Enhanced
Debug Mode for
Combined Pattern
Validation (EDCPV)

E-044 -Detected an
invalid multibit
scan cell.
Simulation cannot be
performed in
parallel mode

Error Message Descriptions

The first and last options
need to be positive
integers and in increasing
order (last > first). First
and last must both be less
than max_patterns.

Parallel simulation for a
STIL file with a loop block
consuming scan data
within a load_unload
procedure is not
supported.

Identifies a missing
structure or field in the
STIL file.

Due to some consistency
checks, EDCPV mode cannot
be activated. As a result, the
generated testbench cannot
pinpoint the exact failing scan

cell in parallel simulation mode.

MAX Testbench detected
multibit scan cells that are
incorrectly described. In this
case, parallel mode simulation
is not possible, since the
respective scan cell cannot be
correctly identified in the
design.

Set the appropriate
values.

Regenerate a "serial_
only" STIL version
from TetraMAX ATPG
or use the -ser_only
MAXTestbench option
(in case of USF STIL)
to generate the
appropriate testbench
and run the simulation
in serial mode.

Add the missing
structure or field in the
input STIL file.

Refer to the
requirements
described in
"Debugging Parallel
Simulation Failures
Using Combined
Pattern Validation."

Check the input STIL
file and the TetraMAX
parameters for errors.

3-8

Test Pattern Validation User Guide

K-2015.06-SP4

Warning Message Descriptions

Table 2 lists all MAX Testbench warning messages and their descriptions.

Table 2 Warning Message Description

Warning Message

Description

What Next

W-000 - Failed to
initialize error

file <file name>, no

STIL syntax error
messages are

available

W-001 - Multiple
assignments for
(old
value <value>),
proceeding with
<value>, last label

signal <name>

<name>

Warning Message Descriptions

This message occurs
when the reported error
filename is invalid, does
not exists or the user
does not have access
rights to it. This does not
affect the tool execution,
but the eventual STIL
syntax error messages
will not be displayed.

This message occurs
when a signal is assigned
multiple values inside a
statement. The signal
may be part of a
SignalGroup or all the
assignments may be
SignalGroups. If possible,
the tool will report the
location where this
happens, the parent
Macro/Procedure name
(ifany), if there was
needed a WFCMap
specification, and the
name of the last Label
observed during
processing. This
message is displayed
only in verbose mode.

If this is not the
expected behavior, then
check the file path and
the SYNOPSYS
environment variable

If this is not the
expected behavior, then
check the STIL file

3-9

Test Pattern Validation User Guide

K-2015.06-SP4

Warning Message

Description What Next

W-002 - Multiple
assignments for
signal <name> in
signal group <name>,
proceeding with
<value>, last label

<name>

W-003 - Multiple
assignments for
inout signal <name>
in signal group
<name> without a
WECMap specified
(<values>), last
label <name>

Warning Message Descriptions

If this is not the
expected behavior, then
check the STIL file

This message occurs
when a signal is assigned
multiple values inside a
statement. The signal
may be part of a
SignalGroup or all the
assignments may be
SignalGroups. If possible,
the tool will report the
locationwhere this
happens, the parent
Macro/Procedure name
(if any), if there was
needed a WFCMap
specification, and the
name of the last Label
observed during
processing. This
message is displayed
only in verbose mode.

This message occurs If this is not the
when a signal is assigned expected behavior, then
multiple values inside a check the STIL file
statement. The signal

may be part of a

SignalGroup or all the

assignments may be

SignalGroups. If possible,

the tool will report the

locationwhere this

happens, the parent

Macro/Procedure name

(ifany), if there was

needed a WFCMap

specification, and the

nameof the last Label

observed during

processing.

3-10

Test Pattern Validation User Guide

K-2015.06-SP4

Warning Message

Description

What Next

W-004 - Insufficient
data for signal
group <name>,
ignoring signal

<name>

W-005 - Multiple
assignments for sig
<name>, proceeding
with <value>

W-006 - Cannot build
testbench in
parallel load mode
(no scan chains

found)

Warning Message Descriptions

This message occurs for
signal groups when the
length of the data
assigned to it is less then
the length of the signal
group itself. In this case
the signals for which
there is no data to be
assigned are ignored.
This is usually caused by
an incorrect STIL.

This message occurs
when a signal is assigned
multiple values inside a
statement. The signal
may be part of a
SignalGroup or all the
assignments may be
SignalGroups. If possible,
the tool will report the
locationwhere this
happens, the parent
Macro/Procedure name
(if any), if there was
needed a WFCMap
specification, and the
nameof the last Label
observed during
processing. This
message is displayed
only in verbose mode.

This message occurs
when the tool did not
detect any scan chains in
the input STIL file.
Without the full
description of the scan
chains a parallel load
mode testbench cannot
be generated.

If this is not the
expected behavior, then
check the STIL file

If this is not the
expected behavior, then
check the STIL file

Check the STIL file
syntax or regenerate it
using the latest
versions of DFT

Compiler and Tetra MAX

3-11

Test Pattern Validation User Guide

K-2015.06-SP4

Warning Message

Description

What Next

W-007 - SYNOPSYS and
SYNOPSYS TMAX
environment
variables have
different wvalues,
SYNOPSYS TMAX is
considered in this

case

W-008 - Failed to
retrieve WEC <wfc>
of signal <name>
from WEFT <name>,
processing its
string value,
label <name>

last

W-009 - Failed to
retrieve WFC <wfc>
for signal <name> of
group <name> in WFT
<name>, processing
its string value,

last label <name>

Warning Message Descriptions

This message occurs
then both SYNOPSYS and
SYNOPSYS_TMAX
environment variables
are specified but with
different values. In this
case the values specified
by the SYNOPSYS_TMAX
environment variable is
considered.

This message occurs
when a signal is assigned
a WFC that is not
described in the current
WFT In this case the tool
will try to interpret the
WFC behavior using its
string value instead of
the WFT. This message is
displayed only in verbose
mode.

This message occurs
when a signal inside a
signal group is assigned a
WFC that is not described
in the current WFT. In
this case the tool will try
to interpret the WFC
behavior using its string
value insteadof the WFT.
This message this
displayed only in verbose
mode when the cone
timerned signal is of type
Pseudo.

If this is not the desired
behavior, re-specify
correctly the
environment variables

If this is not the
expected behavior, then
check the STIL file

If this is not the
expected behavior, then
check the STIL file

3-12

Test Pattern Validation User Guide

K-2015.06-SP4

Warning Message

Description

What Next

W-010 - Cannot build
testbench in
parallel load mode
(no cells specified
in <name> scan

chain)

W-011 - Multiple
assignments for
signal <name> in
Vector stmt,
proceeding with
<value>, last label

<name>

W-012 - Cannot
generate simulation
script file (DUT

module name missing)

Warning Message Descriptions

This message occurs
when the tool did not
detect any scan cells in
the respective scan
chain. Without the full
description of the scan
chains a parallel load
mode testbench cannot
be generated.

This message occurs
when a signal is assigned
multiple values inside a
statement. The signal
may be part of a
SignalGroup or all the
assignments may be
SignalGroups. If possible,
the tool will report the
locationwhere this
happens, the parent
Macro/Procedure name
(if any), and the name of
the last Label observed
during processing.

This message occurs
when the tool was not
able to automatically
detect the name of the
DUT module and a
simulation script is
requested. In this case
the script file will not be
generated.

Check the STIL file
syntax or regenerate it
using the latest
versions of DFT

Compiler and Tetra MAX

If this is not the
expected behavior, then
check the STIL file

Specify the DUT module
name using the
command line or the
configuration file

3-13

Test Pattern Validation User Guide

K-2015.06-SP4

Warning Message

Description

What Next

W-013 - NETLIST
FILES variable in
the simulation
script file is empty
(design files

missing)

W-014 - LIB FILES
variable in the
simulation script
file is empty
(library files

missing)

W-015 - Parallel
option ignored as -
serial only

testbench requested

W-018 - Specified
time precision
<value> too large.
This can cause
errors during

simulation

Warning Message Descriptions

This message occurs as a
simulation script have
been requested but no
design files have been
specified, neither using
the command line -v_file
option nor the design_
files variable in the
configuration file. In this
case the script file is not
completed.

This message occurs as a
simulation script have
been requested but no
library files have been
specified, neither using
the command line -v_file
option nor the lib_files
variable in the
configuration file. In this
case the script file is not
completed.

When a serial_only
testbench is requested
then, as expected, all the
parallel options are
ignored. The useris
warned to avoid any
confusion.

The value specified for
cfg_time_precision in the
config file may be too
large.

Specify the design files
by editing the
generated simulation
script file

Specify the library files
by editing the
generated simulation
script file

If this is not the
expected behavior, then
change the testbench
generation mode

If this is the case, then
edit the config file and
change the value
accordingly

3-14

Test Pattern Validation User Guide

K-2015.06-SP4

Warning Message

Description

What Next

W-019 - Parallel
nshift parameter not
supported for scan
compression designs.

Ignored.

W-020 - <name>
parameter not yet

supported (ignored)

W-021 - Test bench
module name already
defined in command
line. "cfg tb
module name"
variable in the
configuration file

ignored

W-022 - Design files
already defined in
command line.
"design files"
variable in the
configuration file

ignored

Warning Message Descriptions

In the case of scan
compression designs, the
tool can generate a
testbench for parallel
load mode simulation
with nshift only when the
input STIL file supports
the Unified STIL flow.

Certain parameters
enumerated in the config
file example are not yet
supported.

The testbench module
name can be specified
both in command line and
in the configuration file. If
both specified, then the
command line
specification has priority
and so the configuration
file specification is
ignored.

The design file name can
be specified both in
command line and in the
configuration file. If both
specified, then the
command line
specification has priority
and so the configuration
file specification is
ignored.

Regenerate the STIL file
using the default mode
ofthe write patterns
command.

A full list of the
supported ones may be
found in the user guide.
If specified, these
parameters are ignored

If this is not the
expected behavior, then
remove the command
line specification

If this is not the
expected behavior, then
remove the command
line specification

3-15

Test Pattern Validation User Guide

K-2015.06-SP4

Warning Message

Description

What Next

W-023 - Library
files already
defined in command
line. "lib files"
variable in the
configuration file

ignored

W-024 - Unknown
<name> variable

(ignored)

W-025 -
Configuration file
<file name> does not
contain any variable

setting

W-026 - Invalid
load/unload chains
or groups of
ctlCompressor <name>

Warning Message Descriptions

The library file name can
be specified both in
command line and in the
configuration file. If both
specified, then the
command line
specification has priority
and so the configuration
file specification is
ignored.

The reported variable
name is not part of the
configuration file syntax.

The specified input
configuration file does
not contain any variable
settings.

The ctliCompressor block
is not valid because the
load/unload chains or
groups are not correct
(i.e.: some scan chains
are specified in the
groups but are undefined
or empty). Since the
ctliCompressor block is
wrong, it is not possible
to run a parallel
simulation from a serial
formatted STIL file.

If this is not the
expected behavior, then
remove the command
line specification

To find the correct
syntax of this file you
can generate a config
file template using the -
generate_config option
or consult the user
manual

Check the configuration
file content or path if
that is not the expected
behavior

Check the STIL file and
rerun DFT Compiler
and/or TetraMAX ATPG
if necessary.

3-16

Test Pattern Validation User Guide

K-2015.06-SP4

Warning Message

Description

What Next

W-030 - Detected
Serial Only test
patterns, the
generated testbench
can only be run in
serial simulation

mode

W-031 - Detected
Parallel Only test
patterns, the
generated testbench
can only be run in
parallel simulation

mode

W-032 - Parallel
nshift parameter too
small (minimum
<value> serial shift

required)

W-033 - Unified STIL
Flow for Serializer
is not yet
supported. Mode
forced to serial

only simulation

Warning Message Descriptions

This occurs either when
the user intentionally
requested a serial only
testbench or when the
provided STIL file does
not contain enough
information to allow a
parallel load mode
simulation also.

This message occurs
when the provided STIL
file contains pure parallel
patterns, specially
formatted for a parallel
simulation. These
patterns can't be
simulated serially.

This message occurs
when the user specifies a
parallel nshift parameter
too small. A wrong nshift
parameter value might
cause the simulation to
fail.

The current version of
MAX Testbench does not
support Unified STIL Flow
mode for Serializer
architecture.

Check the STIL file,
TMAX script and the
options of the write
patterns command
and the DFT script used
with DFT compiler and
make sure that this is
the desired behavior.

Check the STIL file,
TMAX script and the
options of the write_
pattern command and
the DFT script used with
DFT compiler and make
sure that this is the
desired behavior.

Change the parallel
nshift parameter using
the -parallel command
line option of
MaxTestBench or the -
parallel option of the
write patterns
command of TetraMAX
ATPG.

Contact Synopsys for
the next available
release supporting
Unified STIL Flow mode
for Serializer.

3-17

Test Pattern Validation User Guide

K-2015.06-SP4

Warning Message

Description

What Next

W-034 - Unified STIL
Flow for multiple
shifts load/unload
protocol not yet
supported. Mode
forced to serial

only simulation

W-035 - Parallel
load mode simulation
of multi bit cells
not yet supported.
Mode forced to
serial only

simulation

W-036 - Scan cell
with multiple input
ports not yet
supported: parallel
load mode simulation

might fail

W-037 - Unified STIL
Flow for Sequential
Compression is not
yet supported. Mode
forced to serial
only simulation

Warning Message Descriptions

The current version of
MAX Testbench does not
support Unified STIL Flow
mode for multiple shifts
load/unload protocol.

The current version of
MAX Testbench does not
support parallel load
mode simulation of multi
bit cells.

The current version of
MAX Testbench does not
support scan cell with
multiple input ports.
Since the tool cannot
force all the specified
input ports, parallel load
mode simulation might
fail.

The current version of
MAX Testbench does not
support the Unified STIL
Flow mode for Sequential
Compression
architecture.

Contact Synopsys for
the next available
release supporting
Unified STIL Flow mode
for multiple shifts
load/unload protocol.

Contact Synopsys for
the next available
release supporting
parallel load mode
simulation of multibit
cells.

Contact Synopsys for
the next available
release supporting
parallel load mode
simulation of multiple
inputs.

Contact Synopsys for
the next available
release supporting
Unified STIL Flow mode
for Sequential
Compression.

3-18

Test Pattern Validation User Guide

K-2015.06-SP4

Warning Message

Description

What Next

W-038 - Testbench
data file requiring
very large memory,
automatically
using/updating -
split out to <value>

W-039- Delayed
release time (cfg
parallel release
time) set in
configuration file
<> ignored (valid
only for DSF
parallel STILs).

W-040- Unified STIL
Flow for Scalable
Adaptive Scan is not
yet supported. Mode
forced to serial
only simulation.

Warning Message Descriptions

MAX Testbench has
detected that the
testbench data file size

required a memory buffer

larger than the one
supported currently by

Verilog 1995 (the default

testbench output). To
avoid a Verilog
simulation failure, the
pattern data has been
written out in multiple
.dat files; each file will
contain a maximum
number of patterns

specified by the -split

out value. A mapping
with all the created
partitions is reported at

the end of Max Testbench

execution. Use this map
to simulate the desired
partition. For example,
simv +tmax part=0

The configuration option
cfg_parallel_release_
time is not supported for
a USF STIL, nor for a
serial-only STIL file

The current version of
MAX Testbench does not
support the Unified STIL
Flow mode for Scalable
Adaptive Scan
architecture.

No action required. This
message is just a
notification that the set
value is not considered
by MAX Testbench.

Contact Synopsys for
the next available
release supporting
Unified STIL Flow mode
for Scalable Adaptive
Scan

3-19

Test Pattern Validation User Guide

K-2015.06-SP4

Warning Message

Description

What Next

W-041 - Disabling
the Enhanced Debug
Mode for Unified
STIL Flow (EDUSF)

W-042 - Pattern-
based failure data
format in serial
load mode simulation
is not compliant
with the TetraMAX
diagnosis tool.

W-044 - Detected
invalid multibit
scan cell,
simulation cannot be
performed in
parallel mode.

Warning Message Descriptions

Due to some consistency
checks, EDUSF mode
cannot be activated. The
generated testbench will
not be able to pinpoint
the exact failing scan cell
in parallel simulation
mode.

The pattern-based failure
data format of DFTMAX
Ultra Chain Test in serial
load mode simulation is
not compliant with the
TetraMAX diagnosis tool.

MaxTestbench detected
multibit scan cells that
were incorrectly
described. In this case, a
parallel mode simulation
is not possible since the
respective scan cell can't
be correctly identified in
the design.

Use a cycle-based
failure data format in
serial load mode
simulation for DFTMAX
Ultra Chain Test in serial
load mode simulation.
Contact Synopsys for
the next available
release with the full
support of pattern-
based failure data
format.

Check the input STIL file
and the TetraMAX
parameters for errors.

3-20

Test Pattern Validation User Guide

K-2015.06-SP4

Informational Message Descriptions

Table 3 lists all MAX Testbench informational messages and their descriptions.

Table 3 Informational Message Descriptions

Info Message

Description What Next

I-001 - nshift
parameter is greater
or equal than the
maximum scan chain
length (%d in the

current design)

I-002- Time unit sets
to <value>

I-003- Time precision
sets to <value>

Informational Message Descriptions

This message indicates
that the value specified
for the nshift parameteris
greater or equal than the
maximum scan chain
length. In this situation,
as expected, the
simulation becomes a
serial one.

This is an expected
behavior.

This is a message to
inform the user that he is
about to overwrite the
automatic setting for this
parameter with a
specified value using the
cfg_time_unit parameter
from the configuration
file.

This is an expected
behavior

This is a message to
inform the user that he is
about to overwrite the
automatic setting for this
parameter with a
specified value using the
cfg_time_precision
parameter from the
configuration file.

This is an expected
behavior

3-21

Test Pattern Validation User Guide

K-2015.06-SP4

Table 3 Informational Message Descriptions (Continued)

Info Message

Description What Next

I-004- Multiple
assignments for
signal <name> in
signal group <name>,
using WFCMap and
proceeding with
<value>, last label

<name>

I-005- Event ForceOff
(Z) interpreted as
CompareUnknown (X)
the event waves of
cluster "X" of Signal

in WFET

in

nmo o n no o n
5SS S

Informational Message Descriptions

This message occurs
when a signal is assighed
multiple values inside a
statement. The signal
may be part of a
SignalGroup or all the
assignments may be
SignalGroups. If possible,
the tool will report the
location where this
happens, the parent
Macro/Procedure name (if
any), the WFCMap
resulting value, and the
name of the last Label
observed during
processing. This message
is displayed only in
verbose mode.

This is an expected
behavior

This message describes
how the tool interprets
certain 'unusual’
constructs found in the
waveform table. These
constructs are usually
encountered when
processing older versions
of STIL.

This is an expected
behavior

3-22

Test Pattern Validation User Guide

K-2015.06-SP4

Table 3 Informational Message Descriptions (Continued)

Info Message

Description What Next

I-006- Multiple

assignments for sig
<name>, using WFCmap
and proceeding with

<value>

I-007- Event ForceOff
(Z) interpreted as
CompareUnknown (X)
the event waves of
WET containing
both compare and

in
"%S"

force types

I-008- Requesting
<name> EVCD file
generation (use

"tmax vcde" simulator
compiler definition
to enable file

generation)

Informational Message Descriptions

This message occurs
when a signal is assighed
multiple values inside a
statement. The signal
may be part of a
SignalGroup or all the
assignments may be
SignalGroups. If possible,
the tool will report the
location where this
happens, the parent
Macro/Procedure name (if
any), the WFCMap
resulting value, and the
name of the last Label
observed during
processing. This message
is displayed only in
verbose mode.

This is an expected
behavior

This is an expected
behavior

This message informs the
user about how the tool
interprets certain
'unusual' constructs found
in the waveform table.
Usually encountered
when processing older
versions of STIL.

User specified a EVCD file
in the configuration file.
The tool will update the
testbench but the
simulation will not
generate the EVCD file by
default.

Specify the "tmax_
vcde" simulator

compiler definition to
enable file generation

3-23

Test Pattern Validation User Guide

K-2015.06-SP4

Table 3 Informational Message Descriptions (Continued)

Info Message

Description What Next

I-009- Updated
Serializer Tail
Pipeline internally
to zero due to
shorter Serializer

data length

I-011- The following
clocks will not be
pulsed during the
parallel sShift: list

of clocks

Informational Message Descriptions

In the case of DFTMAX
Serializer with slow
pipelines (core pipelines),
for some configurations
TetraMAX does not
consider the Serializer
Tail pipeline stages as
expected by MAX
Testbench. When this
occurs, MAXTestbench
attempts to compensate
for this behavior.

This situation rarely
occurs.

See the I-011
manpage for additional
details.

Lists the clocks that will
not be used during the
parallel shift simulation.

3-24

4

Debugging Parallel Simulation
Failures Using Combined Pattern
Validation

This section describes how to debug parallel simulation failures using the combined pattern
Validation (CPV) flow. Using this flow, you can precisely debug patterns by reporting the exact
failing scan cell for scan compression architectures.

This debug capability is an enhancement to the existing unified STIL flow (USF) and includes
interoperability between TetraMAX ATPG, MAX Testbench, and VCS.

The following sections describe how to debug parallel simulation:

Overview

Understanding the PSD File

Creating a PSD File

Displaying Instance Names

Flow Configuration Options

Debug Modes for Simulation Miscompare Messages
Pattern Splitting

MAX Testbench and Consistency Checking
Limitations

See Also
Writing STIL Patterns

4-1

Test Pattern Validation User Guide K-2015.06-SP4

Overview

The CPV parallel simulation failure debug flow is similar to the debug flow used by the unified
STIL flow (USF). However, the USF has limited support for debugging parallel simulation
failures. For more information on both the DSF and USF, see "Writing STIL Patterns."

The USF simulation report lists the pattern number, scan output pin, and the shift index for each
failure, but it not does not include the particular scan cell that failed. For diagnosing
manufacturing defects, this information is sufficient, since you usually only need to pinpoint the
exact fault site (the location of the faulty gate or pin). However, for parallel simulation pattern
debugging, you usually need to identify the exact failing scan cell and instance name.

Using the CPV parallel simulation failure debug flow, you can conveniently debug failures
without using TetraMAX ATPG to identify the chains and cell instance names with issues. This
flow also provides the flexibility to use your own debug tools. Figure 1 shows the basic CPV
parallel simulation failure debug flow.

Overview 4-2

Test Pattern Validation User Guide K-2015.06-SP4

Figure 1 CPV Parallel Simulation Failure Debug Flow

TetraMAX
ATPG

MAX
Testbench

TB with parallel debug
¥

*.dat

“.psd.dat

As shown in Figure 1, TetraMAX ATPG saves the parallel test data to the parallel strobe data
(PSD) file in the working directory. You then write the STIL pattern files, and MAX Testbench
uses the USF file and the PSD file to generate a testbench and test data file.

MAX Testbench also generates another test data file that holds only the parallel strobe data
used during the simulation miscompare activity of the simulator. This additional MAX Testbench
output file (*.dat.psd) is used during the load_unload procedure as golden (expected) data,
which provides comparison data at the scan chain level and failure information at the scan cell
resolution level.

See Also

Using MAX Testbench
Setting the Run Mode

Overview 4-3

Test Pattern Validation User Guide K-2015.06-SP4

Understanding the PSD File

The PSD file is a binary format file that contains additional parallel strobe data required for
debugging parallel simulation failures. You can create a separate PSD file for each pattern
unload. Without compression, this file can be four to ten times larger than the original DSF
parallel STIL file. You can compress the PSD file as needed using the gzip utility.

The datain the PSD file corresponds to the expected strobe (unload scan chain) data. It is coded
using two bits to model states 0, 1 and X, as shown in the following example:

Pattern 1 (fast sequential)
Time 0: load cl = 0111

Time 1: force all pis = 0000000000 00000zZZZ
Time 2: pulse clocks ck2 (1)

Time 3: force all pis = 0000100100 00000zZzz
Time 4: measure all pos = 00ZZzZ

Time 5: pulse clocks ckl (0)

Time 6: unload cl = 0000

The History section of the USF file contains attributes that link the PSD file and USF pattern file.
This information uses STIL annotation, as shown in the following example:

Ann {* PSDF = last 100 *}

Ann {* PSDS 1328742765 *}

Ann {* PSDA = #0#0/0 *}

Note the following:
o« PSDF — Identifies the PSD file name and location.

« PSDS — Identifies the unique signature (composed of a date and specific ID number) of
the PSD file corresponding to the USF file.

« PSDA — Identifies the number of partitions when more than one PSD file is used.

TetraMAX ATPG does notuse the STIL Include statement to establish the USF to PSD file
link. This means the additional parallel strobe data does not need to use the STIL syntax, which
could overload the USF file with large amounts of test information.

Figure 2 shows examples of the attributes in the USF file and the corresponding hex data in the
PSD file.

Understanding the PSD File 4-4

Test Pattern Validation User Guide K-2015.06-SP4

Figure 2 USF File and PSD File Example

USF File with PSD Fields in Bold PSD File (Hex format)
STIL 1.0 { Design 2005; } < PED File generated by TetraMAX V. O0E
Header { A7 {slgnatures
L < total_pat nb:
Hiztory {
Ann {#¥Wed May 5 03:00:07 2010 =} <pat_id» " PED for pattern 0
Ann {=PS¥ = _/my p=d bin =} ¢nb loads:
Arnn {=P95 = <dater{ses id»=} # PED for load 1
- ¢chain 1 id:»
Signals {}
SignalGroup=s {7} ¢parallel strobs data:
e ¢chain 2 id »
FPattern " _pattern " {

¢parallel_strobe datar

<chain N id >

<parallel =strobe datas
< PED for load 2
¢chain_ 1 id:

(parallel_strobe datar

A PED for load L

¢pat_id» ~» FSD for pattern 1
¢nb_loads:

¢ PED for load 1

Understanding the PSD File 4-5

Test Pattern Validation User Guide K-2015.06-SP4

Creating a PSD File

There are two ways to create a PSD file:

« Usingthe ATPG flow
Specifythe -parallel strobe data file optionofthe set atpgcommandand
the run_atpg command. This process is described in "Using the run_atpg Command to
Create a PSD File."

« Using the Run Simulation flow

Specifythe -parallel strobe fileoptionofthe run simulationcommand
to create a PSD file and support the backward compatibility of an existing STIL file. This
process is described in "Using the run_simulation Command to Create a PSD File."

Figure 3 shows these options in a flow.

Creating a PSD File 4-6

Test Pattern Validation User Guide K-2015.06-SP4

Figure 3 Options for Creating a PSD File

TetraMAX ATPG

Option 1:
set_atpg -parallel_strobe_data_file psd file
run_atpg

Option 2 (Support backward compatibility of existing STIL file):
run_simulation -parallel_strobe data file psd file

all_data.psd

Configuration File
cfg_parallel_stil_report_cell_name

MAX Testbench

Using the run_atpg Command to Create a PSD File

To generate a PSD file during the ATPG flow, you need to specify the
-parallel strobe data fileoptionofthe set atpgcommandandthe run atpg

command.

You can also specify the report settings atpgcommand to print the settings in the PSD
file.

The following example shows how to generate a PSD file using the run_atpg command:

TEST-T> set _atpg -parallel strobe data file psd file \
-replace parallel strobe data file

Creating a PSD File 4-7

Test Pattern Validation User Guide K-2015.06-SP4

TEST-T> report settings atpg
atpg = parallel strobe data file=psd file,
timing exceptions au analysis=no, num processes=0;
TEST-T> run_atpg
TEST-T> write_patterns out.stil -format stil
TEST-T> write_testbench -input usf.1040.stil \
-output usf.1040 -replace -parameter \
{ -first 10 -last 40 -config config.file -verbose \
-log mxtb.log}
Executing 'stil2Verilog'...
maxtb> Starting from test pattern 10
maxtb> Last test pattern to process 40
maxtb> Total test patterns to process 31
maxtb> Detected a Scan Compression mode.
maxtb> Generating Verilog testbench for both serial and parallel
load mode...

Note the following:

« When you invoke MAX Testbench, the PSD file specified inthe set atpg command is
automatically used. If you do not want to include the PSD file, specify the following option
during simulation compilation:

tmax usf debug strobe mode=0

« Thewrite testbenchcommand inthe previous example references a configuration
file called my_config. This file contains the following command:

set cfg parallel stil report cell name 1

This command is described in detail in "Displaying Instance Names."

Using the run_simulation Command to Create a PSD File

Youusethe -parallel strobe fileoptionofthe run simulationcommand to
create a PSD file that supports the backward compatibility of an existing STIL file.

The following example shows how tousethe run simulation command to create a PSD
file:

set atpg -noparallel strobe data file

set patterns -external usf.stil -delete

Warning: Internal pattern set is now deleted. (M133)

End parsing STIL file usf.stil with O errors.

End reading 22 patterns, CPU time = 23.00 sec, Memory = OMB

report patterns -summary

Pattern Summary Report
#internal patterns O
#external patterns (usf.stil) 22
#fast sequential patterns 22

Creating a PSD File 4-8

Test Pattern Validation User Guide K-2015.06-SP4

run_simulation -parallel strobe_data file \
test_tr resim.psd -replace
Created parallel strobe data file 'test tr resim.psd’
Begin good simulation of 22 external patterns.
Simulation completed: #patterns=22, #fail pats=0(0), #failing
meas=0(0), CPU time=11.00
Total parallel strobe data patterns: 22, external patterns: 22

write patterns usf resim.stil -format stil -replace -external
Warning: STIL patterns defaulted to parallel simulation mode.
(M474)

Patterns written reference 158 V statements, generating 802 test
cycles

End writing file 'usf resim.stil' with 22 patterns, File size =
1531782, CPU time = 23.0 sec.

report patterns -summary
Pattern Summary Report

#internal patterns 0
#external patterns (usf.stil) 22
#fast sequential patterns 22

write testbench -input usf resim.stil -output usf resim \
-replace -parameter { -log mxtb resim.log -verbose \
-config my config }

Note the following:

« For TetraMAX-generated ATPG patterns, you should use the run_simulation
command without any additional options. In this case, TetraMAX automatically uses the
appropriate simulation algorithm based on the type of pattern input. TetraMAX recognizes
patterns produced using Basic Scan or Fast-Sequential mode, but Full-Sequential mode
patterns are not supported in this flow.

o Usingthe run simulation command results inlonger runtimes. Therefore, whenever
possible, you should use the flow withthe set _atpg -parallel strobe data
file command.

« You can also improve the performance using the -num processes option ofthe set
simulation command. This option specifies the use of multiple CPU cores. For
example, the set _simulation -num processes 4 command specifies the use of 4
cores. You can then generate the parallel patterns usingthe write patternsfile
name -parallel command.

« Thewrite testbench command inthe previous example references a configuration
file called my_config. This file contains the following command:

set cfg parallel stil report cell name 1

Creating a PSD File 4-9

Test Pattern Validation User Guide K-2015.06-SP4

This command is described in detail in the next section, "Displaying Instance Names."

« When you invoke MAX Testbench, the PSD file specified inthe run simulation
command is automatically used. If you don't want to include the PSD file, specify the
following option during simulation compilation:

tmax usf debug strobe mode=0

Displaying Instance Names

You can configure MAX Testbench to print the instance names of failing cells during the
simulation of a parallel-formatted STIL file. To do this, specify the following command in the
MAX Testbench configuration file:

set cfg parallel stil report cell name 1

This configuration file command impacts simulation memory consumption. If you do not want to
display instance names, specify the following command:

set cfg parallel stil report cell name O

You also must enable the use of the configuration file by specifying "1" in the User Control
Section of the header of the *.dat file generated by MAX Testbench. In this case, you do not
need to regenerate the testbench files. The following example shows the User Control Section:

// MAX TB Test Data File, generated by MAX TB

// Module under test: snps micro

// Generated from original STIL file : ./patterns
config/pats.usf.stil

// STIL file version: "1.0"

/////////////// User Control Section ///////////////

// Total pattern count to simulate (48), set the new value in
binary radix

110000

// Enhanced Debug for CPV. Set to 0 to disable

1

The following example shows the message that prints when the parallel simulation failure debug
mode is enabled:

XTB: Enabling Enhanced Debug Mode.
XTB: Starting parallel simulation of 48 patterns
XTB: Using 0 serial shifts

Displaying Instance Names 4-10

Test Pattern Validation User Guide K-2015.06-SP4

Flow Configuration Options

In the example flow shown in Figure 3, MAX Testbench uses as input a PSD file created from
TetraMAX ATPG and a configuration file that specifies the reporting of instance names.
Depending on your debugging needs and simulation resources, you can use different
combinations of this input to MAX Testbench.

For example, if you do not want to reference the instance names in the simulation miscompare
messages, you can exclude this information from the configuration file as described in
"Displaying Instance Names." Or, if you do not want to reference the strobe data provided in the
PSD file (see "Understanding the PSD File"), you can exclude this file.

Table 1 shows a summary of MAX Testbench mismatch debug support.

Table 1 MAX Testbench Simulation Mismatch Support

~ MAX Testbench
. Instance name
!_egac',r . NA With NA With
CFG File CFG File
Compression & NA With NA With
iali CFG File CFG File &
serializer R

The following section, "Example Simulation Compare Messages," shows examples of these
reporting options.

Example Simulation Miscompare Messages

You can use different configuration combinations of input to report various simulation
miscompare messages.

The following sections show examples of the various miscompare messages:

« Example 1 shows messages that appear when neither a PSD file or a configuration file is
used as input to MAX Testbench.

« Example 2 shows messages that appear when a PSD file is used, but not a configuration
file.

« Example 3 shows messages that appear when you use both a PSD file and a configuration
file as input.

» Verbosity Setting Examples shows messages with the trace reporting verbosity level set to
0 (the default) using the +tmax msg runtime option.

Flow Configuration Options 4-11

Test Pattern Validation User Guide

Example 1

K-2015.06-SP4

Example 1 Messages That Appear With No PSD File and No Configuration File

Contains Suropsus proprietary information,

Comnpi ler varsion G-2012,03-5P1_FullGd: Runtime version G-2012,09-5P1_FullGd:

Apr 24 22:29 2042

o

MAX TE Yersion H-2013, 03-5P1

Test Protocol File gernerated from original fils

STIL File wersiom: 1.0

Y odpatternss/pats_nopsd_H-2013,03-5P1.stil"

Enhanced Rumtime Verzion: use {sim_syzec> *tnax_help For available runtines options
L L L T T

HTEB: Startirg parallel simulation of 42 patterns

HTH: Usirg O serial shifts

®TE: Begin parallel scan load for pattern O (T=200,00 nz, VW=3)

HTE: Begin parallel scan losd for patters 5 (T=2600.00 pns=,. Y=27)

»>» Error during scan pattern 5 (detected from parallel unlosad of pattern 4)
e At T=E2T40, 00 n=, V=28, expel, got=l, pin test_sol, scan cell O

e At T=2740.00 fns. V=28, exp=0, got=1l, pin test_sol, scam cell 1

e At T=2740_ 00 n=. V=28, exp=0,. got=l, pin test_s=ol. scan cell 2

x> Error during scan pattern 5 (detected From parallel unload of patters 4)
e At T=2740,00 n=z. VY=28, exp=0. got=1l. pin test_=o3, scan cell O

s At T=2740,00 n=z,. V=28, exp=0. got=1l. pin test_so3. scan cell 1

n AL T=2740.00 nz. W=28. exp=l, got=0. pin test_sod. scan ocell 2

»»» Error durina scan pattern 5 (detected from parallel unload of pattern 4)
e At T=2740,00 n=,. ¥Y=28. exp=1l., got=0. pin test_sod, scamn cell O

e AL T=2740.00 n=,. V=28, expsl, got=0, pis test_sod, scanm cell 1

e At T=2740_.00 n=, Y=28, exps0, got=l. pin test_sod, scan cell 2

HTB: Begin parallel scan losd forr patterns 10 (TeS5100,00 s, WeSE)

HTE: Begin parallel scan load for pattern 15 (TeFEOO 00 ns. V=F7)

Flow Configuration Options

4-12

Test Pattern Validation User Guide

Example 2

K-2015.06-SP4

Example 2 Messages That Appear With a PSD File and No Configuration File

Contains Synopsus proprietary information,

Compiler version G=2012,08-5P1 FullB4: Buntime version G=2012,09-SP1_FullG4:

Apr 24 21:31 2013

LT o Ll
MAX TB Version H-2013,03-5P1

Test Protocol File generated from original File ", /patterns/pats_H=-2013,03-5P1.stil"”

STIL File wersion: 1.0

Erhanced Runtime VYersion: use <sim_sxec> +tmax_halp For available runtime options
L e e e e P e

|NT!: Enabl ing Enhanced Debug MHode, Using mode O (conditional parallsl strobe), I

KTE: Using O serial zshifts

KTE: Begin parallel scan load for pattern O (T=200,00 pns. W=E)

¥TB: Begin parallel scan load fFor pattern 5 (T=2B00.00 nz, ¥=27)

»2» Error during scan pattern 5 (detected from parallel unlosd of pattern 4)
] At T=2740,00 ns. V=28, exp=0. got=1l, pin test_sol. scan cell O

e At T=2740,00 ns, W=I8., exp=0, got=1. pin test_sol. scan cell 1

] At T=2740.00 n=, Va8, exp=l, got=l, pin test_sol, scan ecall 2

»2x Error during scan pattern 5 (detected from parallel unload of pattern 4)
el At T=2740,00 n=z, V=28, exp=0, got=1, pin test_zo3, scan cell O

> At T=EF40,00 ns, W=328, exp=0, got=l, pin test_sod, scan cell 1

o At T=2740.00 ns. W=28, exp=l. got=0, pin test_so03. scan cell 2

»»» Error during scan pattern 5 (detected from parallel unlosd of pattern 4)
e At T=EF40,00 nz, W=2E. sxp=l, got=0, pin test_sod,. scan call O

e At T=2740,00 nz, W=28,. exp=l. got=0. pin test_sod4. scan cell 1

] At T=2740.00 n=, W=28, expsi, =1 in test_sod, scan cell 2

[ATE: searching corresponding paral 1e] t%aﬁg Eai!m.“

P> At T=2740.00 nz, V=28, exp=l, got=0, chain 1, scan cell 1

g At T=2740,.00 ns, V=28, expel, got=0, chain 1. zcan cell 3

oy At T=2740,00 ns. V=28, exp=0. got=l. chain 2. =can cell 2

rrr At T=2Z740.00 nz,. W=28. exp=l. got=0, chain 2, scan cell 3

] At T=2740,00 n=, V=28, expml, gots0, chain 3. scan cell 1

P At T=2740,00 nz. W=28. exp=l. got=0. chain 2. scan cell 3

Bk At T=2740.00 n=, V=28, exp=0, got=1, chain 3. scan cell 4

e At T=2740,.00 n=, V=28, exp=), got=l, chain 4. scan cell 2

e At T=2740 .00 nz. V=28, exp=0. got=1, chain 4. zcan cell 3

e At T=2740.00 ns, V=28, eaxp=l, got=0, chain 7. scan cell 1

> At T=2740,00 ns, W=28. exp=(, got=l, chain 9. scan cell O

b At T=2740,00 ns. Y=28. exp=l. got=0. chain 9. scan cell 2

2 At T=2740.00 ns, ¥=28. exp=0. got=l, chain 10, scan cell O

- = + R =
KTE: Begin parallel scan losd for pattern 15 (T=7600.00 ns. W=77)

Flow Configuration Options

4-13

Test Pattern Validation User Guide

Example 3

K-2015.06-SP4

Example 3 Messages That Appear With a PSD File and a Configuration File

Contains Synopsys proprietary information,
Coampiler version G-2012,03%-5P1_Fullbd: FRuntime versisn G-2002 03-5P1_Ful 164:
LD NIRRT PR DL DD LD PN PP DT PR DD NPT P R T DT
HAK TE Verszion H-2013,03-5P1

Test Protocol File generated from original File

STIL File version: 1.0

Enharced Runtime VYersion: use <sim_execr +tmax_help for svailable runtime options

LLELULEL R DL LD UL LU L DL DDLU DL L UL L DDLU UL LR LR UL LR DL Ll L]

g

24 21:31 2013

¥ e patternsdpats_H-2013.03-5P1.sti1"

¥TE: Enablina Enhanced Dlebus Mode. Uzing mode O (conditional parallel strobel.

xTBE

Uzing O serial shifts
¥TB: Begin parallel scan load for pattern O (T=200.00 ns, ¥=3)
¥TE: Begin parallel scan load for pattern 5 (T=2800,00 n=. Y=27)
»»» Error during scan pattern 5 {(detected From parallel unload of pattern 4)
> At T=2740,00 n=. V=28, exp=0. got=l, pin test_sol, scan cell O
> At T=2740,00 n3, V=28, exp=0, got=1l. pin test_sol, scan cell 1
ol At T=2740,00 n=z, V=28, axp=0, gotsl, pin test_sol, scan cell 2
22> Error during scan pattern 5 (detected from parallel unload of pattern 4)
ol At T=2740,00 n=z, V=28, axp=0, got=1., pin test_sod, =scan cell O
ol At T=2740,00 n=, V=28, exp=0, got=1l. pin btest_szo3. scan ec=ll 1
e At T=2740,00 nz, ¥=2B, exp=l. got=0, pin test_sol, scan cell 2
»x» Error during scan pattern 5 {(detected from parallel unload of pattern 4)
o At T=2740,00 nz. V=28. exp=l. got=0. pin test_sod. zcan cell O
>k At T=2740,00 n=, V=28, expsl, got=0, pin test_sod, scan cell 1
. L3 . A -lr rl. & u_ i Ll %
#TE: searching corresponding parallel strobe fallures...
o it T=2740,00 n=s, V=28, axp=l, got=0, chain 1. scan cell 1, cell name micd,aluld, sccu_q_regl3)
p At T=2740,00 n3., V=28, exp=l, got=0, chain 1. zcan cell 3. cell name micO.alud.acou g regfl]
xr At T=2740,00 n=z, V2B, axpsh, gotzl, chain 2, scan cell 2, cell name micO.alud. accu_ g regl?)]
b At T=2740.00 ng, V=28, exp=l. got=0, chain 2. =zcan cel]l 3, oell name m:cD.n!uU.nccu_q_rtg[E]
rx it T=2740,00 n=, V=28, expzl, gots(, chain 3, scan cell 1, cell name micO.ctrlf,s_incpc_gq_reg
e Ak T=2740.00 ns. V=28, exp=l, got=0, chain 3. scan cell 5. cxll names micd, otrl0, 5 de_cen_g_reg
o At T=2740,00 nz, V=28, exp=0, got=1, chain 3, scan cell 4, cell name micQ.ctrlO.z_alu_cntrl_q_re
b At T=2740,00 nz, V=28, exp=0, got=1. chain 4. zcan cell 2, cell name micl.ctrlO.s_state_regfl]
S At T=2740,00 ns, V=28, exp=0, got=1, chain 4. scan cell 3. cell name micO.ctrlO.s_state_real0]
¥ e T=2740,00 ns, V=28, axpzl, got=0, chain 7. zcan call 1, eell name micl.ird.ir_gq_reg(11]
e At T=2740,.00 ne, V=28, exp=0, got=1l, chain 9. zcan cal]l O, 2ell name micd.pod.prog_counter_g_reg
e e T=2740,00 n=, V=28, expal, gotsl, chain 9, =can call 2, ceall nams micl,pcl, prog_counter_g_reg
r 3 At T=2740.00 ns,. ¥=28, exp=0, got=l, chain 12, scan cell 0. call name micl, pod, prog_counter_g_re

Verbosity Setting Examples

S T Er T e T e e O R T T T e T T
¥TE: Begin parallel zcan losd for pattern 15 (T=FE00,00 ns, V=77)

You can further control the reporting of simulation miscompare messages by specifying the
+tmax_msg runtime option, or by setting the cfg message verbosity level
command in the MAX Testbench configuration file. For details on the +tmax msg option, see

"Setting the Verbose Level."

The following examples show how the messages appear when you set the verbosity level to 0
(the default) using the +tmax msg runtime option.

Example 4 Using a PSD File and No Configuration File With Verbosity Level 0

FHH A A R R R R
MAX TB
Test Protocol File generated from original file "pats.usf.stil"
STIL file wversion:
NO CONFIGURATION FILE
gttt tdgsd iR EAA AR AR AR R AR AR SR AR AR A SR AR AR

XTB: Begin parallel scan load for pattern 5
>>> Error during scan pattern 5

pattern 4)

>>> At T=2740.00 ns,

Flow Configuration Options

1.0

V=28,

(T=2600.00 ns,
(detected from parallel unload of

exp=1, got=0, pin test sol,

V=27)

scan cell 2

4-14

Test Pattern Validation User Guide K-2015.06-SP4

>>> Error during scan pattern 5 (detected from parallel unload of
pattern 4)

>>> At T=2740.00 ns, V=28, exp=1l, got=0, pin test so3, scan cell 2
>>> Error during scan pattern 5 (detected from parallel unload of
pattern 4)

>>> At T=2740.00 ns, V=28, exp=1l, got=0, pin test so4, scan cell 2
XTB: searching corresponding parallel strobe failures...

>>> At T=2740.00 ns, V=28, exp=1l, got=0, chain 2, scan cell 2

>>> At T=2740.00 ns, V=28, exp=0, got=1l, chain 4, scan cell 2

>>> At T=2740.00 ns, V=28, exp=0, got=1l, chain 9, scan cell 2

Example 5 Using a PSD File and Configuration File with Verbosity Level 0

FHHf 4 A4 S
MAX TB

Test Protocol File generated from original file "pats.usf.stil"
STIL file version: 1.0

USING THE CONFIGURATION FILE

s AL EEEE AL RS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
XTB: Begin parallel scan load for pattern 5 (T=2600.00 ns, V=27)
>>> Error during scan pattern 5 (detected from parallel unload of
pattern 4)

>>> At T=2740.00 ns, V=28, exp=1l, got=0, pin test sol, scan cell 2
>>> Error during scan pattern 5 (detected from parallel unload of
pattern 4)

>>> At T=2740.00 ns, V=28, exp=1l, got=0, pin test so3, scan cell 2
>>> Error during scan pattern 5 (detected from parallel unload of
pattern 4)

>>> At T=2740.00 ns, V=28, exp=1l, got=0, pin test so4, scan cell 2
XTB: searching corresponding parallel strobe failures...

>>> At T=2740.00 ns, V=28, exp=1l, got=0, chain 2, scan cell 2,
cell name micO.aluO.accu g reg[7]

>>> At T=2740.00 ns, V=28, exp=0, got=1l, chain 4, scan cell 2,
cell name micO.ctrlO.s state regll]

>>> At T=2740.00 ns, V=28, exp=0, got=1l, chain 9, scan cell 2,
cell name micO.pcO.prog counter g reg[5]

Example 6 Using a Configuration File and No PSD file with Verbosity Level O:

XTB: Begin parallel scan load for pattern 5 (T=2600.00 ns, V=27)
>>> Error during scan pattern 5 (detected from parallel unload of
pattern 4)

>>> At T=2740.00 ns, V=28, exp=1l, got=0, pin test sol, scan cell 2
>>> Error during scan pattern 5 (detected from parallel unload of
pattern 4)

>>> At T=2740.00 ns, V=28, exp=1l, got=0, pin test so3, scan cell 2
>>> Error during scan pattern 5 (detected from parallel unload of
pattern 4)

>>> At T=2740.00 ns, V=28, exp=1l, got=0, pin test so4, scan cell 2
>>> Error during scan pattern 7 (detected from parallel unload of
pattern 6)

Flow Configuration Options 4-15

Test Pattern Validation User Guide K-2015.06-SP4

Debug Modes for Simulation Miscompare Messages

Y ou can specify modes for reporting various levels of details of simulation runtime miscompare
messages for scan compression technology. To do this, use the +tmax _usf debug
strobe mode predefined simulation command option. The syntax for this option is as follows:

+tmax usf debug strobe mode=<0, 1, 2, 3>

Each mode is described as follows:

0 - Disables parallel simulation failure debug and generates normal error messages related only
to the scan output. This mode is useful for increasing simulation performance when you only
want to quickly determine the pass/fail status of very large designs.

1 - Specifies the default mode, referred to as the "Conditional parallel strobe mode." This mode
generates miscompare simulation messages using parallel strobe data that is applied only to
USF failures.

2 - This mode, referred to as the "Unconditional parallel strobe mode," concurrently activates the
USF and the CPV parallel strobe data for generating miscompare messages for each pattern.

3 - Generates miscompare messages only for internal errors using parallel strobe data applied
to each pattern. The messages generated from this mode do not indicate if a parallel strobe
failure is propagated to the primary scan output (after the compressor).

Note: You can also specify this option as a command in the Runtime field of the testbench (*.v)
file produced by MAX Testbench. However, the simulation command line always overrides the
default specification of the testbench file.

Table 2 summarizes the errors reported for each mode. An "Error" is actually a reported
mismatch message generated during scan-unload processing."Normal 10 Errors" refer to error
messages generated during scan that report errors relative to the scan output. "Internal Errors"
refer to error messages generated during scan that report the error relative to an internal scan
cell.

Table 2 Debug Modes and Reported Errors

Mode Normal IO Errors Internal Errors
Mode=0 Yes No

Mode=1 Yes Yes

Mode=2 Yes Yes

Mode=3 No Yes

Debug Modes for Simulation Miscompare Messages 4-16

Test Pattern Validation User Guide K-2015.06-SP4

Note that in serial simulation, the Internal error field is not available. Only the normal I/O errors
are recorded, as if you received tester failures at the 1/0 of the device.

The following examples show how messages for the various modes appear in the log file:
MODE 0 Log File Example

jv_comp parallel modeO.log:XTB: Enhanced Debug Mode disabled (user
request) .

jv_comp parallel modeO.log:XTB: Simulation of 7 patterns completed
with 6 mismatches (time: 2700.00 ns, cycles: 27)

MODE 1 Log File Example

jv_comp parallel model.log:XTB: Enabling Enhanced Debug Mode.
Using mode 1 (conditional parallel strobe).

jv_comp parallel model.log:XTB: Simulation of 7 patterns completed
with 6 mismatches (1672 internal mismatches) (time: 2700.00 ns,
cycles: 27)

MODE 2 Log File Example

jv_comp parallel mode2.log:XTB: Enabling Enhanced Debug Mode.
Using mode 2 (unconditional parallel strobe).

jv_comp parallel mode2.log:XTB: Simulation of 7 patterns completed
with 6 mismatches (10569 internal mismatches) (time: 2700.00 ns,
cycles: 27)

MODE 3 Log File Example

jv_comp parallel mode3.log:XTB: Enabling Enhanced Debug Mode.
Using mode 3 (only parallel strobe).

jv_comp parallel mode3.log:XTB: Simulation of 7 patterns completed
with (10569 internal mismatches) (time: 2700.00 ns, cycles: 27)

Pattern Splitting

MAX Testbench stores key simulation miscompare activity for the parallel strobe data in a
*psd.dat file. This data is used during the load_unload procedure as golden (expected) data. By
default, the *psd.dat file contains a maximum of 1000 patterns. When more than 1000 patterns
are used, MAX Testbench automatically splits the contents of the PSD file and generates a set
of corresponding set of *_psd.dat files.

You can manually specify pattern splitting in TetraMAX ATPG or MAX Testbench using any of
the following flow options:

Pattern Splitting 4-17

Test Pattern Validation User Guide K-2015.06-SP4

« Splitthe patternsusingthe write patternscommandin TetraMAX ATPG before they
are used by MAX Testbench. This process is described in "Splitting Patterns Using
TetraMAX."

o Usethe-split outoptionofthewrite testbenchorstil2Verilogcommands
to split the patterns in MAX Testbench. This flow is described in "Splitting Patterns Using
MAX Testbench."

o Usethe run simulation command flow andthe -first and -1last options of the
write testbenchorstil2Verilogcommands toaddress only the failing VCS
pattern sets in MAX Testbench. This flow is described in "Specifying a Range of Split
Patterns Using MAX Testbench."

Splitting Patterns Using TetraMAX

You can split patterns usingthe write patterns command in TetraMAX ATPG before using
the patterns in MAX Testbench. For example, you might want TetraMAX ATPG to write out 500
patterns per file. To do this, read each split STIL pattern file into TetraMAX ATPG and then
specifythe run _simulation -parallel strobe data filecommand foreach
pattern file.

Figure 5 shows the flow for usingthe write patterns command to split patterns before
using MAX Testbench. For examples of this flow, see "Examples Using TetraMAX for Pattern

Splitting."

Pattern Splitting 4-18

Test Pattern Validation User Guide K-2015.06-SP4

Figure 5 Debugging Flow Using Split Patterns in Binary Format

TetraMAX ATPG

set_pat —ext pat_0.bin —delete
run_sim —parallel_strobe_data_file pat.bin.0.psd —replace
write_patterns —pat.0.psd.bin.stil —format stil —replace

set_pat —ext pat_1.bin —delete
run_sim —parallel_strobe_data_file pat.bin.1.psd —replace
write_patterns —pat.1.psd.bin.stil —format stil -replace

N partitions

MAX Testbench

stil2verilog —input pat.0.psd.bin.stil —output pat.0.bin..psd.mxtb
—-replace —config my_config

stil2verilog —input pat.1.psd.bin.stil —output pat.1.bin..psd.mxtb
—replace —config my_config

N partitions

N partitions N partitions

Pattern Splitting 4-19

Test Pattern Validation User Guide K-2015.06-SP4

Examples Using TetraMAX For Pattern Splitting

The following examples show pattern splitting using the write patternscommandin
TetraMAX ATPG:

o SetUp Example

« Example Using Pattern File From write patterns Command
« Example Using Split USF STIL Pattern Files

Set Up Example
The following example writes out split binary patterns from the same ATPG run:

run_atpg -auto
write patterns pats.bin -format binary -replace -split 3

Example Using Pattern File From write_patterns Command

This example uses split binary pattern files fromthe write patterns commandsinthe
previous example, then writes out USF STIL patterns:

set atpg -noparallel strobe data file

set patterns -ext pats 0.bin -delete

report patterns -summary

run_sim -parallel strobe data file pat.bin.O.psd -replace

write patterns pat.O.psd.bin.stil -format stil -replace -external
report patterns -summary

set atpg -noparallel strobe data file

set patterns -ext pats 1l.bin -delete

report patterns -summary

run_sim -parallel strobe data file pat.bin.l.psd -replace

write patterns pat.l.psd.bin.stil -format stil -replace -external
report patterns -summary

set atpg -noparallel strobe data file

set patterns -ext pats 2.bin -delete

report patterns -summary

run_sim -parallel strobe data file pat.bin.2.psd -replace
write patterns pat.2.psd.bin.stil -format stil -replace -external
report patterns -summary

write testbench -input pat.0.psd.bin.stil -output \
pat.0.bin..psd.mxtb -replace -parameters \

{-log mxtb bin.0.log -verbose -config my config}
write testbench -input pat.l.psd.bin.stil -output
pat.l.bin..psd.mxtb \

-replace -parameters {-log mxtb bin.l.log -verbose \

-config my config}

Pattern Splitting 4-20

Test Pattern Validation User Guide K-2015.06-SP4

write testbench -input pat.2.psd.bin.stil -output \
pat.2.bin..psd.mxtb -replace -parameters \
{-log mxtb bin.2.log -verbose -config my config}

Example Output Files:

pat.bin.2.psd
pat.bin.1l.psd
pat.bin.0.psd
pat.2.psd.bin.stil
pat.l.psd.bin.stil
pat.0.psd.bin.stil

mxtb bin.2.log
pat.2.bin..psd.mxtb.v
pat.2.bin..psd.mxtb.dat
pat.2.bin..psd.mxtb psd.dat
mxtb bin.l.log
pat.l.bin..psd.mxtb.v
pat.l.bin..psd.mxtb.dat
pat.l.bin..psd.mxtb psd.dat
mxtb bin.0.log
pat.0.bin..psd.mxtb.v
pat.0.bin..psd.mxtb.dat
pat.0.bin..psd.mxtb psd.dat

Example Using Split USF STIL Pattern Files

The following example uses split USF STIL pattern files:

set atpg -noparallel strobe data file

set patterns -ext pats.usf 0.stil -delete

report patterns -summary

run_sim -parallel strobe data file pat.usf.0.psd -replace

write patterns pat.usf.0.psd.stil -format stil -replace -external
report patterns -summary

set atpg -noparallel strobe data file
set patterns -ext pats.usf 1l.stil -delete
report patterns -summary

run_sim -parallel strobe data file pat.usf.l.psd -replace
write patterns pat.usf.l.psd.stil -format stil -replace -external
report patterns -summary

set atpg -noparallel strobe data file

set patterns -ext pats.usf 2.stil -delete

report patterns -summary

run_sim -parallel strobe data file pat.usf.2.psd -replace

write patterns pat.usf.2.psd.stil -format stil -replace -external
report patterns -summary

write testbench -input pat.usf.0.psd.stil -output \

Pattern Splitting 4-21

Test Pattern Validation User Guide

pat.usf.0.psd.mxtb -replace -parameters \
{-log mxtb usf.0.log -verbose -config my config}
write testbench -input pat.usf.l.psd.stil -output \
pat.usf.l.psd.mxtb -replace -parameters \
{-log mxtb usf.l.log -verbose -config my config}
write testbench -input pat.usf.2.psd.stil -output \
pat.usf.2.psd.mxtb -replace -parameters {-log \
mxtb usf.2.log -verbose -config my config}

Example Output Files:

pat.usf.2.psd
pat.usf.l.psd
pat.usf.0.psd
pat.usf.2.psd.stil
pat.usf.l.psd.stil
pat.usf.0.psd.stil

mxtb usf.2.log
pat.usf.2.psd.mxtb.v
pat.usf.2.psd.mxtb.dat
pat.usf.2.psd.mxtb psd.dat
mxtb usf.l.log
pat.usf.l.psd.mxtb.v
pat.usf.l.psd.mxtb.dat
pat.usf.l.psd.mxtb psd.dat
mxtb usf.0.log
pat.usf.0.psd.mxtb.v
pat.usf.0.psd.mxtb.dat
pat.usf.0.psd.mxtb psd.dat

K-2015.06-SP4

Splitting Patterns Using MAX Testbench

You can manually specify pattern splitting in MAX Testbench using the -split out option of

thewrite testbenchorstil2Verilogcommands.

Figure 6 shows the flow for splitting patterns using MAX Testbench.

Pattern Splitting

4-22

Test Pattern Validation User Guide K-2015.06-SP4

Figure 6 Flow for Using MAX Testbench to Split Patterns

TetraMAX ATPG

set_atpg —parallel_strobe_data_file psd.data
-replace

run_atpg —auto

write_patterns “.stil —-format stil —unified - replace

e —_—

MAX Testbench

stil2verilog —input “_stil —output *.stil \
—replace —split_out N —config config

N partitions N partitions

You can also split patterns in both TetraMAX ATPG and MAX Testbench. This flow is described
in Figure 7.

Pattern Splitting 4-23

Test Pattern Validation User Guide K-2015.06-SP4

Figure 7 Flow For Using Both TetraMAX and MAX Testbench to Split Patterns

TetraMAX ATPG

set_atpg —parallel_strobe_data psd.data
-replace

run_atpg —auto
write_patterns *.stil —format stil —unified —split v

N partitions

MAX Testbench

stil2verilog —input®.stil —output *all —replace \
- split_out § —config my_config

NxM partitions NxM partitions

Specifying a Range of Split Patterns Using MAX Testbench

You can split a specified range of split patterns in MAX Testbench so you can better focus your
debugging efforts. To do this, use the standard run simulation command flow and read
back only the set of binary or STIL patterns that failed in simulation, then produce the PSD file
(for details, see “Using the run_simulation Command to Create a PSD File”).

Pattern Splitting 4-24

Test Pattern Validation User Guide K-2015.06-SP4

Next, usethe -first and -last optionsofthe stil2vVerilogorwrite testbench
commands to produce a selected set of pattern files, then resimulate these files in VCS . This

flow is described in Figure 8.

Figure 8 Flow for Splitting a Selected Range of Patterns

TetraMAX ATPG

write_patterns “.stil —format stil
run_simulation —parallel_strobe_data_file psd.data

MAX Testbench
stil2verilog —input *.stil —replace \
—first N -last N —config config

Fatterns within

Fatterns within :
specified range

specified range

Pattern Splitting 4-25

Test Pattern Validation User Guide K-2015.06-SP4

MAX Testbench and Consistency Checking

When you run MAX Testbench, it automatically detects and processes the PSD file, and issues
the following message:

maxtb> Detected STIL file with Enhanced Debug for CPV (EDCPV)
Capability (PSD file: psdata). Processing...

MAX Testbench performs a series of consistency checks between the contents of the USF file
and PSD file. If any issues are detected, it generates a testbench file without the parallel strobe
data, and issues the following warning message:

Warning: Disabling the Enhanced Debug Mode for Combined Pattern
Validation (EDCPV) corrupted PSD file due to bad file signature
(1329175245) . Make sure the PSD file corresponds to the generated
STIL file (W-041)

The following message is specific to the debugging parallel simulation failures using the
Combined Pattern Validation (CPV) flow:

W-041: Disabling the Enhanced Debug Mode for Unified STIL Flow
(EDUSF)

This message is issued when the debug mode for parallel simulation failures cannot be activated
because of consistency checking failures. As a result, the generated testbench is not be able to
pinpoint the exact failing scan cell in parallel simulation mode. MAX Testbench continues to
generate the testbench files without the parallel strobe data file.

See Also
MAX Testbench Error Warnings and Messages

Limitations

Note the following limitations related to debugging simulation failures using CPV:

« The Full-Sequential mode is not supported.

o Theset patternsandrun simulationcommands are notsupported for multiple
contiguous runs (see “Creating a PSD File”). Also, update and masking flows are not
supported, including pattern restore from binary and new pattern write flows, multiple
pattern read back, and single merged pattern write.

e The-first,-last,-sorted, -reorder,and -type optionsofthewrite
patterns command are not supported.

e The-sorted, -reorder, and -type optionsofthewrite testbenchand
stil2Verilogcommands are not supported.

MAX Testbench and Consistency Checking 4-26

Test Pattern Validation User Guide K-2015.06-SP4

« APSD file cannot be generated by the write patternscommand.
« Multicore simulation is not supported inthe run simulation flow.
o The -last optionofthe run simulation command is not supported.

Limitations 4-27

S

Troubleshooting MAX Testbench

The following sections describe how to resolve MAX Testbench-generated errors:
« Introduction
o Troubleshooting Compilation Errors
o Troubleshooting Miscompares
« Debugging Simulation Mismatches Using the write _simtrace Command

5-1

Test Pattern Validation User Guide K-2015.06-SP4

Introduction

You can run a design against a set of predefined stimulus and check (validate) the design
response against an expected response. This process mimics the behavior of the tester against
a device under test.

Problems might occur with
« incorrect or incomplete STIL data
« incorrect connections of the device to this stimulus in the testbench
. incorrect device response due to structural errors or timing problems inside the design

Ultimately, the goal of using a testbench is to validate that the device response, often with
accurate internal timing, does match the response expected in the STIL data.

There are alternative and additional troubleshooting strategies to what is presented in this
section. The most important aspects when testing are knowledge of the design and
remembering the fundamental characteristics of the test you’re troubleshooting.

Troubleshooting Compilation Errors

This section describes some of the typical error messages you encounter during compilation
when using VCS or Ncsim. These error messages are related to the following parameters or
issues:

o« FILELENGTH Parameter
« NAMELENGTH Parameter
o Memory Allocation

FILELENGTH Parameter

The following error message appears if you exceed the maximum file length:

XTB Error: cannot open /disk/path.to.a.large.file.name.maxtb
psd.dat PSD file. Disabling Enhanced Debug USF mode...

By default, the FILELENGTH parameter in MAX Testbench is set to 1024 characters, which
corresponds to the 1024 character limitimposed by NCSIM. In some cases, you can set this
parameter to a higher limit at the compilation stage either in the testbench file or at the simulation
command line.

You can use the following MAX Testbench parameter to change the maximum file length:
parameter FILELENGTH = 1024; // max length for file names

If you are using a set of long paths, you can set the Verilog FILELENGTH parameter in the
testbench, using the following syntax:

Introduction 5-2

Test Pattern Validation User Guide K-2015.06-SP4

-pvalue+tb name. FILELENGTH=your value

You also might encounter the following error:

Warning- [STASKW CO] Cannot open file
/disk/some.path.name.to.a.very.large.file.name.maxtb.Verilog.qgz,
8535

The file
/disk/some.path.name.to.a.very.large.file.name.maxtb.maxtb
psd.dat'’

could not be opened. No such file or directory.

Ensure that the file exists with proper permissions.

XTB Error: cannot open
/disk/some.path.name.to.a.very.large.file.name.maxtb psd.dat PSD
file. Disabling Enhanced Debug USF mode...

For exceptionally long paths, you can override the Verilog parameter in the testbench and
specify an extended file length at the simulation recompile command line using the following
syntax:

vcs -pvalue+tb name. FILELENGTH=your value

NAMELENGTH Parameter

For parallel strobe data (PSD) files, the default filename length is 800 characters. If you exceed
this length, the following message appears:

Warning- [STASKW CO] Cannot open file

./LongName.p.maxtb.v, 1278

The file 'ReallyLongName.p.maxtb psd.dat' could not be opened. No
such file or directory.

Ensure that the file exists with proper permissions.

XTB Error: cannot open ReallyLongName.p.maxtb psd.dat PSD file.
Disabling Enhanced Debug USF mode...

To correct this error, you can set the NAMELENGTH parameter in the testbench or at the
simulation recompile line using the following syntax:

vcs -pvalue+tb name.NAMELENGTH=800

Memory Allocation

The following error message identifies a memory allocation error:

XTB Error: size of test data file filename.dat exceeding testbench
memory allocation. Exiting...

(recompile using -pvalue+designl test.tb part.MDEPTH=<###>) .

In this case, you need to recompile the testbench using the following Verilog parameter to adjust
the memory allocation:

-pvalue+designl test.tb part.MDEPTH=depth)

Troubleshooting Compilation Errors 5-3

Test Pattern Validation User Guide K-2015.06-SP4

For more information, see "MAX Testbench Runtime Programmability."

Troubleshooting Miscompares

The following sections describe the process of debugging failures (miscompares) detected
when simulating a design using MAX Testbench and a set of generated STIL pattern data:

« Handling Miscompare Messages

o Localizing a Failure Location
« Adding More Fingerprints

These sections also present some techniques for using MAX Testbench to assist in the analysis
of simulation mismatch messages when they occur during a simulation run. These techniques
start with the direct approach:

« Understanding the simulation mismatch message completely

« Proceeding to some advanced options to assist in debugging the overall simulation
behavior

. Miscompares are most commonly the misapplication of STIL data and caused by either
incorrect design constructs for this data

« STIL constructs for the design or the context of the application

Handling Miscompare Messages

Test data is sampled at distinct points in the test pattern, which are called test strobes. Test
strobes indicate whether the device is operating properly or not in response to the stimulus
provided by the test data.

In general, miscompares happen only on outputs (or bidirectional signals in the output mode).
This limits the visibility into both the device operation and the test data expectations, which can
make analyzing these failures more complicated. Furthermore, these output measurements are
placed to occur at locations of a stable device response to assure repeatable test operation. And
finally, output strobe miscompares often identify an internal failure that might have happened
some time in the past. All of these issues complicate the analysis process.

In Figure 1, the limited visibility into the design behavior is shown by output strobe data on signal

“out” that indicates this signal remains high between two test Vectors, although the actual device
operation has a period of a low state between these two measurements. This is not incorrect, in

fact it is probably expected design operation.

Troubleshooting Miscompares 5-4

https://solvnet.synopsys.com/dow_retrieve/D-2010.06/tpvug/tpvug_4.html#CIHBJGAI

Test Pattern Validation User Guide K-2015.06-SP4

Figure 1 Measurement Points on “OUT”

IN I_I

ouT

Test Data

This section details the four forms of miscompare messages generated by Verilog DPV and the
information that each message contains.

Miscompare Message 1

STILDPV: Signal SOT expected to be 1 was X
At time 1240000, V# 5
With WaveformTable " default WFT "
At Label: "pulse"
Current Call Stack: "capture CLK"

This miscompare message is generated from a STIL Vector when an output response does not
match the expected data present in the test data. The message contains a fingerprint of
information to consider when analyzing this failure. It reports the nature of the error and where it
happened, but does not indicate why.

. The expected state in the STIL test data, and the actual state seen in the simulation during
this test strobe.

. Both the simulation time index and the STIL vector number, to cross-reference this failure
in simulation time with the test data.

. The current WaveformTable name active in this vector, to help correlate this failure with
the STIL data and identify what timing was active at this failure.

. Thelast STIL vector label seen during execution of the STIL test data. Again, this helps to
correlate the failure with the STIL data. Be aware that the label might be the last one seen
if there is no label on this vector (the message reports “Last Label Seen:” if the label is not
on this vector itself).

« The procedure and macro call stack, if this failure happens from inside a procedure or
macro call (or series of calls).

Both the labels and the call stack information might be lists of multiple entries. Verilog DPV
separates multiple entries with a backslash (\) character.

Miscompare Message 2

STILDPV: Signal SOT expected to be 1 was X
At time 9640000, V# 97
With WaveformTable " default WFT "
Last Previous Label (6 cycles prior): pulse"

Troubleshooting Miscompares 5-5

Test Pattern Validation User Guide K-2015.06-SP4

Current Call Stack: load unload”
TetraMAX pattern 7, Index 5 of chain cl (scancell Al)

If the failure occurs during an identified unload of scan data during the simulation with the
simulation executing serial scan simulation, then the failure message will contain an additional
line of information that identifies:

. The failing pattern number from the TetraMAX ATPG information.
« The index into the Shift operation that reported the failure.

« The name of the failing scan chain.

« The name of the scan cell that aligns with this index.

The index specified in this message is relative to the scan cell order identified in the
ScanStructures section of the STIL data; index 1 = the first scan cell in the ScanStructures
section and so on.

Miscompare Message 3

STILDPV: Parallel Mode Scancell Al expected to be 1 was X
At time 9040100, V# 91
With WaveformTable " default WFT "
TetraMAX pattern 7, Index 5 of chain cl

If the failure occurs during an identified unload of scan data during the simulation with the
simulation executing parallel scan simulation, then the failure message is formatted differently. It
identifies:

« The failing scan cell, and the expected and actual states of that cell.

. The time that this failure was detected (beware: in parallel mode this is the time that the
parallel-measure operation was performed. This is inside the Shift operation being
performed, but it might not correlate with a strobe time inside a Vector, because the scan
data must be sampled before input events occur).

« The WaveformTable active for this Shift.

« The failing pattern number from the TetraMAX information.
. The index into the Shift operation that reported the failure.
« The name of the failing scan chain.

Like miscompare message 2, the index specified in this message is relative the scan cell order
identified in the ScanStructures section of the STIL data; index 1 = the first scan cell in the
ScanStructures section and soon.

Miscompare Message 4

STILDPV: Signal SOT changed to 1 in a windowed strobe at time
940000

Output strobes can be defined to be instantaneous samples in time, or “window strobes” that
validate an output remains at the specified state for a region of time.

When window strobes are used, an additional error might be generated if an output transitions
inside the region of that strobe. This error message identifies the signal, the state it transitioned
to, and the simulation time that this occurred.

For an example of the scenario that generates this message, see Figure 5.

Troubleshooting Miscompares 5-6

https://solvnet.synopsys.com/dow_retrieve/D-2010.06/tpvug/tpvug_2.html#CDEGAFGE

Test Pattern Validation User Guide K-2015.06-SP4

Localizing a Failure Location
When a failure occurs, your first debugging step is to localize the failure in the STIL data file. The
following sections describe how to localize a failure by interpreting the fingerprint information:

o Resolving the First Failure

o Miscompare Fingerprints

« Additional Troubleshooting Help

When the failure is localized, you need to determine if it's reasonable to test this output signal at
this location.

With STIL constructs, an output remains in the last specified operation (the last
WaveformCharacter asserted) until that operation (WaveformCharacter) is changed on that
signal.

In the example that follows, a signal called “tdo” is being tested in a Vector after a Shift operation.
Butin the two Vectors, “tdo” is not included, because it is expected that this signal should remain
in the last tested state, or should this signal have been set to an untested value (generally an “X”
WaveformCharacter for TetraMAX tests). Notice that the “tck=P” signal is repeated in the last
two vectors, because it does not remain in the last tested state.
load unload {

W default WFT ;

Shift { V { tdi=#; tdo=#; tck=P; }}
V { tdi=#; tdo=#; tck=P; tms=1; }
V { tck=P; tms=1; }

VvV { tck=P; tms=0; }

Resolving the First Failure

Subsequent failures can be caused by cascading effects; the very first error is the best error to
start examining. Because basic scan patterns, starting with a scan load and ending with a scan
unload, are self-contained units, failures in one scan pattern do not typically propagate—unless
the failure is indicative of a design or timing fault that persists throughout the patterns (or the
patterns have sequential behavior).

Don’t take “first” literally as the first printed mismatch, all mismatches that happen at the same
time step (or even at different times, but in the same STIL vector), are all a consequence of a
problem that was functionally detected at this point. Any error generated in the first failing vector
is a good starting point.

Miscompare Fingerprints
The following sections explain how to interpret the information contained in the miscompare
messages and how to troubleshoot various situations:

o Expected versus Actual States

o Current Waveform Table

o Labels and Calling Stack

Troubleshooting Miscompares 5-7

Test Pattern Validation User Guide K-2015.06-SP4

Expected versus Actual States
The first piece of data to analyze is the expected state (specified in the test data), and the actual
state present from the simulation run.

Are all the actual states an “X” value? This can indicate initialization issues, or the loss of the
internal design state during operation caused by glitches or transient events. If an “X” is found in
the simulation, start tracing it backward in both the design and in simulation time—where did that
X come from?

Are the mismatches hard errors? For example is a “1” expected, but it is actually a “0”? This
could be caused by one of the following:

« Timing problems in the design
« Strobe positioning

« Extra or missing clocks

. Glitches, or transients

Current Waveform Table
The next piece of data in the mismatch message to analyze is the WaveformTable reference.

What are the event times specified for this strobe? What are the event times on the other inputs?
Are the event relationships proper—was the test developed with the strobe events after (or
before) the input events and is that timing relationship maintained in this WaveformTable?

Is there enough time between the input events and the output strobes? Does the design have
time to settle before the strobe measurement?

TetraMAX ATPG has distinct event ordering requirements, and the timing specified in the
WaveformTable needs to be compatible with the test generation. In particular, the strobe times
must be placed before the clock pulse (pre-clock measure) or after the clock pulse (post-clock
measure).

The name of the WaveformTable can sometimes help locate the failure as well. In particular for
path delay environments, the name of the WaveformTable can identify the launch, capture, or
combined events and isolate the failing Vector that uses that named WaveformTable.

Labels and Calling Stack

The final piece of information to analyze in the mismatch message is the referenced label and
the current call stack at the failing location. This can often isolate the location of a mismatch by
the presence of the label or the name of the procedure currently active when this mismatch
occurred.

What activity is happening here? Is it a capture or scan operation? Is an output strobe expected
here?

Additional Troubleshooting Help

Sometimes the information contained in the mismatch message is not sufficient to localize the
failure in the STIL data. When this happens, the first thing to do is to activate the tracing options
to get more information about what was being simulated when the failure occurred. The next
section describes how to activate the MAX Testbench trace options.

Troubleshooting Miscompares 5-8

Test Pattern Validation User Guide K-2015.06-SP4

Sometimes tracing might not get clearly to the failing location either. The last recourse is to edit
the STIL data itself and add more information.

Adding More Fingerprints

If you cannot identify the location of a failure, you might need to edit the STIL data and add
additional information. The most helpful construct to add is the Label statements to a Vector that
did not have distinct labels (see following example). Because the previous label is always printed
in the miscompare message, adding labels directly can eliminate ambiguity in identifying that
failing location.
load unload {

W default WET ;

Shift { Vv { tdi=#; tdo=#; tck=P; }}
V { tdi=#; tdo=#; tck=P; tms=1l; }

1 u post 2: V { tck=P; tms=1; }

1 u post 3: V { tck=P; tms=0; }

}

Labels might be added in STIL data files generated by TetraMAX ATPG or might be added to
the procedure definitions (if the label is added to a procedure) defined in the STL procedure file
data sent to TetraMAX ATPG as well, if TetraMAX ATPG is used to regenerate the STIL data
test.

Debugging Simulation Mismatches Using the
write_simtrace Command

This section describes the process for usingthe write simtrace command to assistin
debugging ATPG pattern miscompares found during a Verilog simulation. You can use this
command in conjunction with sinmulation miscompare information to create a new Verilog
module to monitor additional nodes. A typical flow using TetraMAX ATPG and VCS is also
provided.
The following topics are covered in this section:

« Overview

. Debugging Flow

. Input Requirements

« Using the write simtrace Command
. Understanding the Simtrace File
. Error Conditions and Messages

. Example Debug Flow
« Restrictions and Limitations

Debugging Simulation Mismatches Using the write_simtrace Command 5-9

Test Pattern Validation User Guide K-2015.06-SP4

Overview

Analyzing simulation-identified mismatches of expected behavior during the pattern validation
process is a complex task. There are many reasons for a mismatch, including:

« Response differences due to internal design delays

. Differences due to effects of the “actual” timing specified
« Formatting errors in the stimulus

- Fundamental errors in selecting options during ATPG

Each situation might contribute to the causes for a mismatch. The only evidence of a failure is a
statement generated during the simulation run that indicates that the expected state of an output
generated by ATPG differs from the state indicated by the simulation. Unfortunately, there is
minimal feedback to help you identify the cause of the situation.

To understand the specific cause of the mismatch, you need to compare two sets of simulation
data: the ATPG simulation that produced the expected state and the behavior of the Verilog
simulation that produced a different state.

After you identify the first difference in behavior, there are still several more steps in the analysis
process. You will need to trace back this first difference through the design elements (and often
back through time) to identify the cause of the difference. The process of tracing back through
time involves re-running the simulation data to produce additional data; as a result, the analysis
of this issue is an iterative process,

The key to identifying the discrepancies between the environments is to correlate the information
between the Verilog simulation and the TetraMAX ATPG simulation. TetraMAX ATPG includes
a graphical schematic viewer (GSV) with simulation annotation capability. Verilog also has
several mechanisms to provide access to internal simulation results that are common to all
Verilog simulators.

Thewrite simtrace command facilitates the creation of a Verilog module by adding
simulation data to be used for comparison with TetraMAX ATPG.

Debugging Flow

Figure 1 shows a typical flow for debugging simulation miscompares usingthe write
simtrace command.

Note: This flow assumes that you are familiar with Verilog simulation. It also assumes that you
are using a common netlist for both the Verilog and TetraMAX ATPG environments, and that
you have executed the run _simulation command after ATPG with no failures.

Debugging Simulation Mismatches Using the write_simtrace Command 5-10

Test Pattern Validation User Guide K-2015.06-SP4

Figure 1 Debugging Simulation Miscompares Using write_simtrace

Design netlist & libraries

‘/
Verilog
Testbench

write simtrace ——m| New Module

A

Simulation
Miscompares

Verilog
Simulator

Note in Figure 1 that a Verilog testbench is written out after the TetraMAX ATPG process, and is
simulated. The simulation log file shows miscompares on scan cells or primary outputs. For each
miscompare, you will need to analyze the relevant nodes in the TetraMAX GSV to find their
source. Thewrite simtrace command is used to generate a new Verilog module with these
additional signals and read it into the simulator. If you monitor the changes on the nodes in the
simulation environment at the time the miscompares occur, and correlate that data with the
same patternin TetraMAX ATPG, you will eventually see some differences between the two
environments that led to the divergent behavior.

The overall process of analyzing simulation miscompares is iterative. You can use the same
TetraMAX session for ATPG by analyzing with the GSV and runningwrite simtrace.On
the other hand, the simulation would need to be rerun with the new module to monitor the
specified signals.

If you do not want to keep the TetraMAX session running (due to license or hardware demands,
for example), it is recommended that you write out an image after DRC and save the patternsin
binary format. This will ensure that you can quickly re-create the TetraMAX state used for
debugging.

Input Requirements

To leverage the functionality of this feature, you need to supply a common or compatible netlist
for both TetraMAX ATPG and the Verilog simulator.

Debugging Simulation Mismatches Using the write_simtrace Command 5-11

Test Pattern Validation User Guide K-2015.06-SP4

You also need to provide a MAX Testbench format pattern. Additional testbench environments
produced by Synopsys tools are supported but might require additions or modifications
depending on the naming constructs used to identify the DUT in the testbench. Usage outside
these flows is unsupported.

A TetraMAX scan cell report, as produced by the following command, is useful for providing the
instance path names of the scan cells:

report scan cells —all > chains.rpt

To avoid rerunning TetraMAX ATPG from scratch, it is recommended that you create an image
of the design after running DRC and then save the resulting ATPG patterns in binary format.
This ensures that the TetraMAX environment can be quickly recovered for debugging simulation
miscompares if the original TetraMAX session cannot be maintained.

Depending on the context and usage of Verilog, you might need to edit the output simtrace file to
adda timescale statement. Inaddition, this file can be modified to identify an offset time to
start the monitoring process.

You also need to modify the Verilog scripts or invocation environment to include the debug file as
one of the Verilog source files to incorporate this functionality in the simulation.

Using the write_simtrace Command

Thewrite simtrace command generates a file in Verilog syntax that defines a standalone
module that contains debug statements to invoke a set of Verilog operations. This debugging
process references nodes specified bythe -scan and -gate options. Because thisisa
standalone module, it references these nets as instantiated in the simulation through the
testbench module; there are dependencies on these references based on the naming
convention of the top module in the testbench module.

Afterrunningthe write simtrace command, if all nodes specified were found and the file
was written as expected, TetraMAX ATPG will print the following message:

End writing file ‘filename’ referencing integer nets, File size =
integer
This statement identifies how many nets were placed in the output file to be monitored. Note that
the file name will not include the path information.

Understanding the Simtrace File

The format of the output simtrace file is shown below:

// Generated by TetraMAX (TM)
// from command: < simtrace command line >
"define TBNAME AAA tmax)testbench 1 16.dut
// “define TBNAME module test.dut
module simtrace 1;
initial begin
// #<time to start> // uncomment and enter a time to start
$monitor ("%t: <scan data>; <gate data>", Stime(), <list of
net
references>) ;
end

Debugging Simulation Mismatches Using the write_simtrace Command 5-12

Test Pattern Validation User Guide K-2015.06-SP4

endmodule // simtrace 1

The name of this module is the name of the file without an extension. The module consists of a
Verilog initial block that contains an annotation (commented-out) that you can uncomment and
edit to identify the time to start this trace operation.

The default trace operation uses the Verilog $monitor statement, which is defined in the
Verilog standard and supported (with equivalent functionality) across all Verilog clones.

Each -scan and -gate optionidentifies a set of monitored nets in the display. Each of
these sets is configured as identified below. A semicolon is placed between each different set of
nodes in the display to emphasize separate options.

The <scan data> isexplained as follows:

If the scan reference contains a chain name and a cell name, for example, “ ¢450:23 7, then
the display will contain this reference name, followed by 3 state bits that represent the state of
the scan element before this reference, the state of this reference, and the state after this
reference. The states before and after are enclosed in parentheses. If there is no element before
(this is the first element of the chain) or no element after (this is the last element of the chain),
then the corresponding state will not be present. Following the 3 states, each non-constant input
to this cell is listed as well. This allows tracing of scan enable and scan clock behavior during the
simulation. For example, for a cell in the middle of a chain:

C450:23 (0)1(1), D:0 SI:1 SE:0 CK:0

The <gate data> isformatted similarlytothe <scan data> withaportname
specified. The name of the signal or net is printed, followed by the resolved state of that net. For
example: C1k1:0 .

If the gate_reference is to a module, then the information printed looks very similar to the
information for scan_data, with one output state of the module, followed by a listing of all non-
constant inputs.

All names may be long and might traverse through the design hierarchy. By default, only the last
twenty characters of the name are printed in the output statement. The -l1ength option may
be specified to make these names uniformly longer or shorter.

You need to read the simtrace file into a Verilog simulation by adding this filename to the list of
Verilog source files on the Verilog command line or during invocation.

Error Conditions and Messages

The output file is notgenerated if there are errorsonthe write simtrace commandline. All
errors are accompanied by error messages of several forms, which are described as follows:

. A standard TetraMAX error message is issued for improper command arguments, missing
arguments, or incomplete command lines (no arguments).

In addition, M650 messages might be generated, with the following forms:
e Cannot write to simulation debug file <name>. (M650)

No nodes to monitor in simulation debug file <name>. (M650)

These two messages indicate a failure to access a writable file, or that there were no nodes to
monitor from the command line. Both of these situations mean that an output file will not be
generated.

Debugging Simulation Mismatches Using the write_simtrace Command 5-13

Test Pattern Validation User Guide K-2015.06-SP4

Example Debug Flow

The following use case is an example of how to use the debug flow.

After running ATPG and writing out patterns in legacy Verilog format, the simulation of the
patterns results in the following lines in the Verilog simulation log file:

37945.00 ns; chain7:43 0(0) INs: CP:1 SI:0; dd_
decrypt.U878.7ZN:0,
INs: Al:1 A2:1 B1l:1 B21 C:1;
37955.00 ns; chain7:43 0(0) INs: CP:0 SI:0; dd_
decrypt.U878.2ZN:0,
INs: Al:1 A2:1 B1l:1 B21 C:1

// *** ERROR during scan pattern 4
unload)

(detected during final pattern

4 chain7 43 (exp=0, got=1) // pin SO 7, scan cell 43, T=
38040.00 ns
// 40000.00 ns Simulation of 5 patterns completed with 1
errors

From the TetraMAX scan cells report:

chain? 43 MASTER 10199

(SEDFD1)

NN dd decrypt/kdin reg 25

The miscompared gates and patterns are displayed in the TetraMAX GSV, as shown in Figure
2.

Debugging Simulation Mismatches Using the write_simtrace Command 5-14

Test Pattern Validation User Guide K-2015.06-SP4

Figure 2 Display of miscompared gates and patterns

B [t e [ptit At fown Pt Tyt hiens sk (it foge b s gt B0
FHE N v | B 8
O S g Pormet Ceoms | G Gpy | Opneriom

¢ ala 38588

e i Imbesst Dufd Imlol Meiwh Seip Show Hide ey G0V

B

‘I FFEFEE]

5
j, 1A

B8 U
JIJ‘I}IJ\J f...ﬁ’&@!ﬂ&j Mordey

T*FFEEE

atleo

RS E [’y Xdenkiop bt 1)
e

To create the debug module in TetraMAX ATPG, specify the followingwrite simtrace
command:

TEST-T> write simtrace debug.v -re -1 100 -scan chain 7:43 \
-gate { dd decrypt/U878 test se }
End writing file 'debug.v'

referencing 8 nets, = 788.

File size

After rerunning the simulation with the debug.v module, the following information is now
included in the Verilog simulation log file:

37945.00 ns; chain7:43 1(0) INs: CP:1 SI:0; dd_
decrypt.U878.2ZN:1,
INs: Al:1 A2:1 B1:1 B2:1 C:0 ; test se:l;
37955.00 ns; chain7:43 1(0) INs: CP:0 SI:0; dd_
decrypt.U878.7ZN:1,
INs: Al:1 A2:1 Bl:1 B2:1 C:0 ; test se:l;

// *** ERROR during scan pattern 4

unload)

Debugging Simulation Mismatches Using the write_simtrace Command

(detected during final pattern

5-15

Test Pattern Validation User Guide

4 chain7 43
38040.00 ns

(exp=0,

got=1)

// pin SO_T7,

scan cell 43,

K-2015.06-SP4

T=

To correlate the information that appears in the TetraMAX GSV for pattern 4, look at the values
in the simulation log file at the time of the capture operation. To do this, search backward from
the time of the miscompare to identify when the scan enable port was enabled:

33255.00
decrypt.U878.7ZN:
INs: Al:1 A2:1
33300.00
decrypt.U878.7N:
INs: Al:1 A2:1
33545.00
decrypt.U878.7ZN:
INs: Al:1 A2:1
33555.00
decrypt.U878.ZN:
INs: Al:1 A2:1
33600.00

decrypt.U878.7ZN:

INs: Al:1 A2:1

ns;
0,
Bl:1 B2:1 C:0
ns; chain7:43
0,

Bl:1 B2:1 C:0
ns; chain7:43
1,

Bl:1 B2:1 C:1
ns; chain7:43
1,

Bl:1 B2:1 C:1
ns; chain7:43
1,

Bl:1 B2:1 C:1

chain7:43 0(0)

14

0(0)

.
14

1(0)

4

1(0)

1(0)

.
14

INs:
test se:1;
INs:
test se:0;
INs:
test se:0;
INs:
test se:0;
INs:

test se:l;

CP:

CP:

CP:

CP:

SI:

ST

ST

SIc:

CP:0 SI:0;

dd

dd

dd

dd

dd

This example shows that the D input of the scan cell will capture the outputof dd
decrypt.U878 .Notice that there is a difference between the TetraMAX value and the
simulator value for dd decrypt.U878.C .Ifyou can identify the cause of this discrepancy,
you will eventually find the root cause of the miscompare. By tracing the logic cone of dd

decrypt.U878.C

in the TetraMAX GSV to primary inputs or sequential elements, the

additional objects to be monitored in simulation can be easily extracted and their values
compared against TetraMAX ATPG.

Restrictions and Limitations

Note the following usage restrictions and limitations:
« Encrypted netlists for TetraMAX ATPG or the Verilog simulator are not supported because

the names provided by this flow will not match in both tools.

. Non-Verilog simulators are not supported.

Debugging Simulation Mismatches Using the write_simtrace Command

5-16

PowerFault Simulation

PowerFault simulation technology enables you to validate the IDDQ test patterns generated by
TetraMAX ATPG.
The following sections describe PowerFault simulation:

o PowerFault Simulation Technology

« IDDQ Testing Flows

« Licensing

Note: PowerFault-IDDQ might not work on unsupported operating platforms or simulators. See
the TetraMAX ATPG Release Notes for a list of supported platforms and simulators.

6-1

Test Pattern Validation User Guide K-2015.06-SP4

PowerFault Simulation Technology

PowerFault simulation technology verifies quiescence at strobe points, analyzes and debusg
nonquiescent states, selects the best IDDQ strobe points for maximum fault coverage, and
generates IDDQ fault coverage reports.

Instead of using the IDDQ fault model, you can use the standard stuck-at-0/stuck-at-1 fault
model to generate ordinary stuck-at ATPG patterns, and then allow PowerFault to select the
best patterns from the resulting test set for IDDQ measurement. The PowerFault simulation
chooses the strobe times that provide the highest fault coverage.

PowerFault technology uses the same Verilog simulator, netlist, libraries, and testbench used
for product sign-off, helping to ensure accurate results. The netlist and testbench do not need to
be modified in any way, and no additional libraries need to be generated.

You run PowerFault after generating IDDQ test patterns with TetraMAX ATPG, as described in
“Quiescence Test Pattern Generation” in the TetraMAX ATPG User Guide.

You perform IDDQ fault detection and strobe selection in two stages:

1. Run a Verilog simulation with the normal testbench, using the PowerFault tasks to specify
the IDDQ configuration and fault selection, and to evaluate the potential IDDQ strobes for
quiescence.

The inputs to the simulation are the model libraries, the description of the device under
test (DUT), the testbench, and the IDDQ parameters (fault locations and strobe timing
information).

The simulator produces a quiescence analysis report, which you can use to debug any
leaky nodes found in the design, and an IDDQ database, which contains information on
the potential strobe times and corresponding faults that can be detected.

2. Runthe IDDQ Profiler, IDDQPTro, to analyze the IDDQ database produced by the
PowerFault tasks. The IDDQ Profiler selects the best IDDQ strobe times and generates a
fault coverage report, either in batch mode or interactively.

PowerFault Simulation Technology 6-2

Test Pattern Validation User Guide K-2015.06-SP4

Figure 1 Data Flow for PowerFault Strobe Selection

T,
e

Libraries -

Verilog Simulator

_h..

ouT with

PowerFault PLI
Tasks

e S
—

Testhench [™ - ':}meso_en e
— Analysis
e

Strobe Timing I

Fault Seeds

PowerFault
Database

¥

PowerFault
DD Profiler

Coverage
Report

IDDQ Testing Flows

There are two recommended IDDQ testing flows:

. |IDDQ Test Pattern Generation — TetraMAX ATPG generates an IDDQ test pattern set
targeting the IDDQ fault model rather than the usual stuck-at fault model.

. IDDQ Strobe Selection From an Existing Pattern Set — Use an existing stuck-at ATPG
pattern set and let the PowerFault simulation select the best IDDQ strobe times in that
pattern set.

Figure 2 shows the types of data produced by these two IDDQ test flows.

IDDQ Testing Flows 6-3

Test Pattern Validation User Guide

Figure 2 IDDQ Testing Flows

K-2015.06-SP4

IDOQ Testing Flow Using IDDOQ
Test-Pattern Generation

TetraMaX ATPG

IDDQ Testing Flow Using a
Stuck-At Pattern Set

TetralaX ATPG

i(Stuck-At Fault Mod el

(IDDQ Fault Model)

IDDC Patterns lrE:'D_O] Stuck-At Fault List
woverage Patterns (O ptional)
Report ' '

—

Strobe Selection and Verification Using
Verification Using Verilog Simulator and Verilog Simulator and PowerFault
PowerFault Technolgy Technology

Verified 1DDO Leaky Node N ‘-kﬁrlil-:ﬁ':i . 000
Patterns r Stuck-At/IDD Coverage
Report Patterns R -’~.|x:-rt_
—— —— — =

IDDQ Test Pattern Generation

In the IDDQ testing flow shown in Figure 2, TetraMAX ATPG generates a test pattern that
directly targets IDDQ faults. Instead of attempting to propagate the effects of stuck-at faults to
the device outputs, the ATPG algorithm attempts to sensitize all IDDQ faults and apply IDDQ
strobes to test all such faults. TetraMAX ATPG compresses and merges the IDDQ test patterns,
just like ordinary stuck-at patterns.

While generating IDDQ test patterns, TetraMAX ATPG avoids any condition that could cause
excessive current drain, such as strong or weak bus contention or floating buses. You can
override the default behavior and specify whether to allow such conditions by using the set_iddq
command.

In this IDDQ flow, TetraMAX ATPG generates an IDDQ test pattern and an IDDQ fault
coverage report. It generates quiescent strobes by using ATPG techniques to avoid all bus
contention and float states in every vector it generates. The resulting test pattern has an IDDQ
strobe for every ATPG test cycle. In other words, the output is an IDDQ-only test pattern.

IDDQ Testing Flows 6-4

Test Pattern Validation User Guide K-2015.06-SP4

After the test pattern has been generated, you can use a Verilog/PowerFault simulation to verify
the test pattern for quiescence at each strobe. The simulation does not need to perform strobe
selection or fault coverage analysis because these tasks are handled by TetraMAX ATPG.

Having TetraMAX ATPG generate the IDDQ test patterns is a very efficient method. It works
best when the design uses models that are entirely structural. When the design models
transistors, capacitive discharge, or behavioral elements in either the netlist or library, the ATPG
might be either optimistic or pessimistic because it does not simulate the mixed-level data and
signal information in the same way as the Verilog simulation module. Consider this behavior
when you select your IDDQ test flow.

IDDQ Strobe Selection From an Existing Pattern Set

In the IDDQ testing flow shown in Figure 1, PowerFault selects a near-optimum set of strobe
points from an existing pattern set. The existing pattern can be a conventional stuck-at ATPG
pattern or a functional test pattern. The output of this flow is the original test pattern with IDDQ
strobe points identified at the appropriate times for maximum fault coverage.

In order for valid IDDQ strobe times to exist, the design must be quiescent enough of the time so
that an adequate number of potential strobe points exist. You need to avoid conditions that could
cause current to flow, such as floating buses or bus contention.

The specification of faults targeted for IDDQ testing is called fault seeding. There are a variety of
ways to perform fault seeding, depending on your IDDQ testing goals. For example, to
complement stuck-at ATPG testing done by TetraMAX ATPG, you can initially target faults that
could not be tested by TetraMAX ATPG, such as those found to be undetectable, ATPG
untestable, not detected, or possibly detected. For general IDDQ fault testing, you can seed
faults automatically from the design description, or you can provide a fault list generated by
TetraMAX ATPG or another tool.

The Verilog/PowerFault simulator determines the quiescent strobe times in the test pattern
(called the qualified strobe times) and determines which faults are detected by each strobe.
Then the IDDQ Profiler finds a set of strobe points to provide maximum fault coverage for a
given number of strobes.

You can optionally run the IDDQ Profiler in interactive mode, which lets you select different
combinations of IDDQ strobes and examine the resulting fault coverage for each combination.
This mode lets you navigate through the hierarchy of the design and examine the fault coverage
at different levels and in different sections of the design.

Licensing

The Test-IDDQ license is required to perform Verilog/PowerFault simulation. This license is
automatically checked out when needed, and is checked back in when the tool stops running.

By default, the lack of an available Test-IDDQ license causes an error when the tool attempts to
check out a license. You can have PowerFault wait until a license becomes available instead,
which lets you queue up multiple PowerFault simulation processes and have each process
automatically wait until a license becomes available.

Licensing 6-5

Test Pattern Validation User Guide K-2015.06-SP4

PowerFault supports license queuing, which allows the tool to wait for licenses that are
temporarily unavailable. To enable this feature, you must set the SNPSLMD QUEUE
environment variable to a non-empty arbitrary value (“1”, “TRUE”, “ON”, “SET”, etc.) before
invoking PowerFault:

unix> setenv SNPSLMD QUEUE 1

Existing Powerfault behavior with SST _WAIT LICENSE will continue to be supported for
backward functionality of existing customer scripts.

% setenv SSI WAIT LICENSE

Note: If the license does not exist or was not installed properly, then the Verilog/PowerFault
simulation will hang indefinitely without any warning or error message.

Licensing

6-6

7

Verilog Simulation with PowerFault

PowerFault simulation technology operates as a standard programmable language interface
(PLI) task that you add to your Verilog simulator. You can use PowerFault to find the best IDDQ
strobe points for maximum fault coverage, to generate IDDQ fault coverage reports, to verify
quiescence at strobe points, and to analyze and debug nonquiescent states.
The following sections describe Verilog simulation with PowerFault:

« Preparing Simulators for PowerFault IDDQ

« PowerFault PLI Tasks

7-1

Test Pattern Validation User Guide K-2015.06-SP4

Preparing Simulators for PowerFault IDDQ

PowerFaultincludes two primary parts:
« A setof PLItasks you add to the Verilog simulator

. The IDDQ Profiler, a program that reads the IDDQ database generated by the
PowerFault’'s IDDQ-specific PLI tasks

Before you can use PowerFault, you need to link the PLI tasks into your Verilog simulator. The
procedure for doing this depends on the type of Verilog simulator you are using and the platform
you are running. The following sections provide instructions to support the following Verilog
simulators (platform differences are identified with the simulator):

« Synopsys VCS

. Cadence NC-Verilog®

. Cadence Verilog-XL®

« Model Technology ModelSim®

These instructions assume basic installation contexts for the simulators. If your installation
differs, you will need to make changes to the commands presented here. For troubleshooting
problems, refer to the vendor-specific documentation on integrating PLI tasks. Information about
integrating additional PLI tasks is not presented here.

setenv SYNOPSYS root directory

set path=($SYNOPSYS/bin $path)

For a discussion about the use of the SYNOPSYS TMAX environment variable, see “Specifying
the Location for TetraMAX Installation.”

Then, to simplify the procedures, set the environment variable $IDDQ HOME to pointto where
you installed Powerfault IDDQ. For example, in a typical Synopsys installation using csh, the
command is:

setenv IDDQ HOME $SYNOPSYS/iddqg/

Note the following:
« sparc64 and hp64 should be used only in specific 64-bit contexts.

« PowerFault features dynamic resolution of its PLI tasks. This means that one time a
simulation executable has been built with the PowerFault constructs present (following the
guidelines here), this executable does not need to be rebuilt if you change to a different
version of PowerFault. Changing the environment variable $IDDQ HOME to the desired
version will load the runtime behavior of that version of PowerFault dynamically into this
simulation run.

Using PowerFault IDDQ With Synopsys VCS

To generate the VCS simulation executable with PowerFault IDDQ, invoke VCS with the
following arguments:

« Command-line argument +acc+2
« When running zero-delay simulations, you mustuse the +delay mode zeroand

Preparing Simulators for PowerFault IDDQ 7-2

Test Pattern Validation User Guide K-2015.06-SP4

+tetramax arguments.

« Command-lineargument -P $IDDQ HOME/lib/iddg vcs.tab to specify the PLI
table (or merge this PLI table with other tables you might already be using), a reference to
$IDDQ HOME/lib/libiddg vcs.a.Note:donotusedthe -Pargumentwithany
non-PLI Verilog testbenches.

In addition, you must specify:
« Your design modules
. Any other command-line options necessary to execute your simulation

If your simulation environment uses PLIs from multiple sources, you might need to combine the
tab files from each PLI, along with the file $IDDQ HOME/1lib/iddq vcs.tab for
PowerFault operation, into a single tab file. See the VCS documentation for information about
tab files.

The following command will enable the ssi_iddq task to be invoked from the Verilog source
information in model.v:

vcs model.v +acc+2 -P $IDDQ HOME/lib/iddg vecs.tab \

$IDDQ HOME/lib/libiddg vcs.a

For VCS 64-bit operation, if you specify the -ful1l64 option for VCS 64-bit contexts, you must
alsoset $IDDQ HOME to the appropriate 64-bit build for that platform: either sparcé4 for
Solaris environmentsor hp64 for HP-UX environments. If you do not specifythe -fulle4
option, then sparc0sS5or hp32 should be specified. Since the -comp 64 option affects
compilationonly, $IDDQ HOME should reference sparcOSS5or hp32 software versions as
well.

For difficulties that you or your CAD group cannot handle, contact Synopsys at:

Web: https://solvnet.synopsys.com Email: support_center@synopsys.com Phone: 1-800-245-
8005 (inside the continental United States)

Additional phone numbers and contacts can be found at:
http://www.synopsys.com/Support/GlobalSupportCenters/Pages

For additional VCS support, email vcs_support@synopsys.com.

Using PowerFault IDDQ With Cadence NC-Verilog

The following sections describe how to prepare for and run a PowerFault NC-Verilog simulation:

« Setup
Creating the Static Executable

Running Simulation

Creating a Dynamic Library
Running Simulation

Setup

You can use the Powerfault library with NC-Verilog in many ways. The following example
describes two such flows. For both flows, set these NC-Verilog-specific environment variables:
setenv CDS INST DIR <path to Cadence install directory>

setenv INSTALL DIR $CDS_INST DIR

setenv ARCH <platform> //sund4v for solaris, 1nx86 for linux.

Preparing Simulators for PowerFault IDDQ 7-3

Test Pattern Validation User Guide K-2015.06-SP4

setenv LM LICENSE FILE <>

32-bit Setup
setenv LD LIBRARY PATH $CDS_INST DIR/tools:${LD LIBRARY PATH} //

32-bit
set path=($CDS INST DIR/tools/bin $path) // 32-bit

64-bit Setup

Note: Use +nc64 option wheninvoking
setenv LD LIBRARY PATH $CDS INST DIR/tools/64bit:${LD LIBRARY

PATH} //

64-bit

set path=($CDS_INST DIR/tools/bin/64bit $path) // 64-bit
Note: For the 64-bit environments use the *cds_pic.a libraries

Creating the Static Executable
The following steps describe how to create the static executable:

1. Create a directory to build the ncelab and ncsim variables and navigate to this directory.
Create an environment variable to this path to access it quickly.

mkdir nc
cd nc
setenv LOCAL NC "/<this directory path>"

If PowerFault is the only PLI being linked into the Verilog run, then go to step 2. If
additional PLIs are being added to your Verilog environment, then go to step 3.

2. Runtwo build operations using your Makefile.nc

make ncelab $IDDQ HOME/lib/sample Makefile.nc
make ncsim $IDDQ HOME/lib/sample Makefile.nc

Goto step 6.

3. Copy the PLItask and the sample makefile into the nc directory. The makefile contains the
pathname of the PowerFault objectfile $IDDQ HOME/lib/libiddg cds.a.

cp $SIDDQ HOME/lib/veriuser sample forNC.c
cp $IDDQ HOME/lib/sample Makefile.nc

4. Editthe example files to define additional PLI tasks.
5. Runtwo build operations using your Makefile.nc
make ncelab -f sample Makefile.nc

make ncsim -f sample Makefile.nc

6. Ensure the directory you created is located in your path variable before the instances of
these tools under the directory: $CDS INST DIR.

set path=(SLOCAL NC Spath)

Running Simulation
ncvlog <design data and related switches>
ncelab -access +rwc <related switches>

Preparing Simulators for PowerFault IDDQ 7-4

Test Pattern Validation User Guide K-2015.06-SP4

ncsim <testbench name and related switches>

Make sure that the executables ncelaband ncsim picked up inthe previous steps are the
ones createdin $LOCAL_NC directory, not the ones in the cadence installation path.

You can also use the single-step ncverilogcommand as follows:

ncVerilog +access+rwc +tncelabexe+$LOCAL NC/ncelab
tncsimexe+SLOCAL NC/ncsim <design data and other switches>

Note: If using 64-bit binaries, use the “+nc64” option with the ncVerilog script

Creating a Dynamic Library

This section describes a flow to create a dynamic library libpli.so and update the path, LD
LIBRARY PATH toinclude the path to this library. In this flow, TetraMAX ATPG resolves PLI
functional calls during simulation. There are two ways to build the dynamic library: either use
veonfig, as in the first flow below, or use the sample_Makefile.nc, with the target being libpli.so.

1. Create a directory in which to build the libpli.so library and navigate to this directory. Set
an environment variable to this location to access it quickly.

mkdir nc
cd nc
setenv LIB DIR "/<this directory path>"

2. Copy the PLI task file into the directory.
cp $IDDQ HOME/lib/veriuser sample forNC.c

3. Editthe sample files to define additional PLI tasks.

4. Use the vconfig utility and generate the script fo create the libpli.so library. You can also
use the cr_vlog template file shown at the end of this step.

« Name the outputscript cr vlog.

. Select Dynamic PLI libraries only

. Select build libpli

« Ensure that you include the user template file veriuser.c in the link statement.
Thisisthe $IDDQ HOME/lib/veriuser sample forNC. c filethatyou
copied to the $LIB_DIR directory.
Link the Powerfault object file from the pathname, $IDDQ_HOME/lib/libiddq_cds.a

The vconfig command displays the following message after it completes:
« *** SUCCESSFUL COMPLETION OF VCONFIG

xxxxokk EXECUTE THE SCRIPT: cr vlog TO BUILD: Dynamic PLI
library.

« Add another linking path:$IDDQ HOME/ 11ib to the first compile command in the cr_
vlog script.
The cr_vlog script is as follows:

cc -KPIC -c ./veriuser sample forNC.c -ISCDS INST
DIR/tools/Verilog/include -IS$IDDQ HOME/lib

Preparing Simulators for PowerFault IDDQ 7-5

Test Pattern Validation User Guide K-2015.06-SP4

1d -G veriuser sample forNC.o $IDDQ HOME/lib/libiddg cds.a
-0 libpli.so
« Change the cr_vlog script to correspond the architecure of the machine on which it
runs.

. To compile on a 64-bit machine, use the -xarch=v9 value with the cc command.

. ForlLinux,use -fpPICinsteadof -KpPIC.Also,you mightneed toreplace ldwith
gccoruse -1lcwith 1donLinux.

5. Runthe cr_vlog script to create libpli.so library. Ensure the directory $LIB_DIR you create
isin the path, LD_LIBRARY_PATH.

setenv LD LIBRARY PATH S${LIB DIR}:${ LD LIBRARY PATH}

Note: You must edit the generated cr_vlog script to add a reference to 64-bit environment on the
veriuser.c compile (add -xarch=v9), and the -64 option to the 1d command.

Running Simulation

ncvlog <design data and related switches>

ncelab -access +rwc <related switches>

ncsim <testbench name and related switches>

Equivalently, single-step ncVerilog command can also be used
as

follows.

ncVerilog +accesstrwc <design data and other switches>

Using PowerFault IDDQ With Cadence Verilog-XL

The following sections describe how to setup and run a PowerFault Cadence Verilog-XL
simulation:

« Setup
« Running Simulation
o Running Verilogxl

Setup

To access user-defined PLI tasks at runtime, create a link between the tasks and a Verilog-XL
executable using the vconfig command. The vconfig command displays a series of prompts and
creates another script called cr_vlog, which builds and links the ssi_iddq task into the Verilog
executable.

This is a standard procedure for many Verilog-XL users. You only need to do it only one time for
a version of Verilog-XL, and it should take about 10 minutes. Cadence uses this method to
support users that need PLI functionality.

After you create a link between the PowerFault IDDQ constructs and the Verilog-XL executable,
you can use them each time you run the executable. The PowerFault IDDQ functions do not add
overhead to a simulation run if the run does not use these functions. The functions are not
loaded unless you use PowerFault IDDQ PLIs in the Verilog source files.

Preparing Simulators for PowerFault IDDQ 7-6

Test Pattern Validation User Guide K-2015.06-SP4

You do not need any additional runtime options for a Verilog-XL simulation to use PowerFault
IDDQ after you create a link to it.

To create a link between the tasks and a Verilog-XL executable, do the following:

1. Set the Verilog-XL specific environment variables:

setenv CDS INST DIR <path to Cadence install directory>
setenv INSTALL DIR $CDS_INST DIR

setenv TARGETLIB

setenv ARCH <platform>

setenv LM LICENSE FILE <>

setenv LD LIBRARY PATH $CDS INST DIR/

tools:${LD LIBRARY PATH}

set path=($CDS_INST DIR/tools/bin $CDS_INST DIR/tools/
bin $path)

2. Create a directory to hold the Verilog executable and navigate into it. Set an environment
variable to this location to access it quickly.

mkdir vlog
cd vlog
setenv LOCAL XL "/<this directory path>"

3. Copy the sample veriuser.cfile into this directory:
cp $IDDQ HOME/lib/veriuser sample forNC.c

4. Editthe veriuser_sample_forNC.cfile to define additional PLI tasks.

5. Run the vconfig command and create the cr_vlog script to link the new Verilog executable.
The vconfig commands displays the following prompts. Respond to each prompt as
appropriate; for example,

Name the output script cr vlog.Choosea Stand Alone target. Choosea
Static with User PLI Application link. Name the Verilog-XL target
Verilog.

You can answer no to other options.

Create alink between your user routines and Verilog-XL. The cr_vlog script includes a
section to compile your routines and include them in the link statement.

Ensure that you include the user template file veriuser.cin the link statement. This is the
$IDDQ_HOME/lib/veriuser_sample_forNC.c file that you copied to the vlog directory.

Ensure that you include the user template file vpi_user.c in the link statement. The
pathname of thisfileis $CDS INST DIR/Verilog/src/ vpi user.c.The
vconfig command prompts you to accept the correct path.

Create a link to Powerfault object file as well. The pathname of this file is $IDDQ_
HOME/lib/libiddg_cds.a

After it completes, the vconfig command completes:
%* SUCCESSFUL COMPLETION OF VCONFIG *

**x* EXECUTE THE SCRIPT: cr vlog TO BUILD: Stand Alone

Verilog-XL

Preparing Simulators for PowerFault IDDQ 7-7

Test Pattern Validation User Guide K-2015.06-SP4

6. Addtotheoption -I/$IDDQ HOME/1ib to the first compile command in the cr_viog
file, which compiles the sample veriuser.cfile.

7. Do the following before running the generated cr_vlog script:
Note for HP-UX 9.0 and 10.2 users:

The cr_vlog script must use the -WI and -E compile options. Change the cc command
from cc -o Verilogto cc -Wl,-E -o Verilog.

If you are using either HPUX 9.0 or Verilog-XL version 2.X, you must also create a link to
the -Idld library. The last lines of the cr_vlog script must be similat to:

+03 -1m -1BSD -1cl -N -1dl1d

If you use a link editor (such as Id) instead of the cc command to create the final link, make
sure you pass the -W1 and -E options as shown previously.

Note for Solaris users:

You must create a link between the cr_vlog script and the -Isocket, -Insl, and -lintl libraries.

Check the last few lines of script and ensure these libraries are included.

8. Runthe cr_vlog script. The script creates a link between the ssi_iddq task and the new
Verilog executable (Verilog) in the current directory.

9. Verify that the Verilog directory appears in your path variable before other references to
an executable with the same name, or reference this executable directly when running
Verilog. For example,

set path=(./vlog $path)

Running Simulation

Before running simulation, ensure that the executable Verilog used to run simulation is the
executable that you created in the SLOCAL_XL directory and not the executable in the Cadence
installation path.

To run simulation, use the following command:

Verilog +accesstrwc <design data and related switches>

Running Verilogx|

There is no command line example due to the interpreted nature of this simulation. You do not
need any runtime options to enable the PLI tasks after you create a link between them and the
Verilog-XL executable.

Using PowerFault IDDQ With Model Technology ModelSim

User-defined PLI tasks must be compiled and linked in ModelSim to create a shared library that
is dynamically loaded by its Verilog simulator, vsim.

Preparing Simulators for PowerFault IDDQ 7-8

Test Pattern Validation User Guide K-2015.06-SP4

The following steps show you how to compile and link a ModelSim shared library:

1.

Create a directory where you want to build a shared library and navigate to it; for example,

mkdir MTI
cd MTI

Copy the PLI task into this directory as "veriuser.c"; for example,

cp $IDDQ HOME/lib/veriuser sample.c veriuser.c

Edit veriuser.c to define any additional PLI tasks.
Compile and link veriuser.c to create a shared library named "libpli.so"; for example,

cc -0 -KPIC -c -o ./veriuser.o \
-I<install dir path>/modeltech/include \
-ISIDDQ HOME/lib -DaccVersionlatest ./veriuser.c
1ld -G -o libpli.so veriuser.o \
$IDDQ HOME/lib/libiddg cds.a -lc
Note:

For compiling on a 64-bit machine, use -xarch=v9 with cc. For Linux, use
-fPICinstead of -KPIC.

Identify the shared library to be loaded by vsim during simulation. You can do this in one of
three ways:
. Setthe environment variable PLIOBJS to the path of the shared library; for example,

setenv PLIOBJS <path to the MTI directory>/libpli.so
vlog
vsim

Pass the shared library to vsim in its -pli argument; for example,
viog

vsim -pli <path to the MTI directory>/libpli.so

. Assign the path to the shared library to the Veriuser variable in the "modelsim.ini"
file, and set the environment variable MODELSIM to the path of the modelsim.ini
file; for example,

In the modelsim.inifile:
Veriuser = <path to the MTI directory>/libpli.so

On the command line:

Preparing Simulators for PowerFault IDDQ 7-9

Test Pattern Validation User Guide K-2015.06-SP4

setenv MODELSIM <path to modelsim.ini file/modelsim.ini
vlog

vsim ...

PowerFault PLI Tasks

The following sections describe the various PowerFault PLI tasks:
« Getting Started
o PLITask Command Summary Table
« PLITask Command Reference

Getting Started

The first step in using PowerFault technology is to run a Verilog simulation using your normal
testbench, combined with the PowerFault tasks to seed faults and evaluate potential IDDQ
strobes.

Ataskcalled ssi iddg executes PowerFaultcommands in the Verilog file that configures
the Verilog simulation for IDDQ analysis. Some of the commands are mandatory and some are
optional. The commands must at least specify the device under test, seed the faults, and apply
IDDQ strobes.

For example, preparation for IDDQ testing can be as simple as adding a module similar to the
following to your Verilog simulation:
module IDDQTEST () ;
parameter CLOCK PERIOD = 10000;
initial begin
$ssi iddg("dut tbench.M88");
$ssi _iddg("seed SA tbench.M88");
end
always begin
fork
CLOCK_ PERIOD;
(CLOCK _PERIOD -1) $ssi iddg("strobe try");
join
end
endmodule
This example contains three PowerFault commands. The first one specifies the device under
test (DUT)tobe tbench.M88. The second one seeds the entire device with stuck-at (SA)
faults. Inside the always block, the third one invokesthe strobe try command to
evaluate the device for IDDQ strobing at one time unit before the end of each cycle.
The order of commands in the Verilog file is important because the PLI tasks must be performed
in the following order:

PowerFault PLI Tasks 7-10

Test Pattern Validation User Guide K-2015.06-SP4

© N Ok wDD -~

Specify the DUT module or modules (mandatory).
Specify other simulation setup parameters (optional).
Specify disallowed leaky states (optional).

Specify allowed leaky states (optional).

Specify fault seed exclusions (optional).

Specify fault models (optional).

Specify fault seeds (mandatory).

Run testbench and specify strobe timing (mandatory).

PLI Task Command Summary Table

Table 1 provides a quick summary of the PowerFault commands that you can use in Verilog files
to perform PLI tasks. For detailed information on each command, see the next section, “PLI
Task Command Reference.” If you are viewing this document in online form, you can click the

page number reference in the table to jump to the detailed description of the command.

Table 1 PLI Task Command Summary

Simulation Setup Commands

dut
output

ignore

statedep float

io

measure

verb

Specifies the DUT modules
Names the IDDQ database

Specifies black box nets and modules

Specifies the primitives that can
block floating nodes

Specifies DUT ports

Specifies the rail for IDDQ
measurement

Turns verbose mode on or off (off by
default)

Leaky State Commands

allow

disable SepRail

disallow

PowerFault PLI Tasks

Allows user-specified leaky states

Forces all top-level pullups and
pulldowns in contention to be
identified as leaky, see

Disallows user-specified leaky states

7-11

Test Pattern Validation User Guide

Fault Seeding Commands

seed SA
seed B

scope

read bridges

read tmax

read verifault

read zycad

Seeds stuck-at faults automatically
Seeds bridging faults automatically

Sets the scope for faults seeded by
read commands

Seeds bridging faults from a file

Seeds faults from a TetraMAX fault
list

Seeds faults from a Verifault fault list

Seeds faults from a Zycad fault origin
file

Fault Seed Exclusion Command

exclude

Excludes module instances from fault
seeding

Fault Model Commands

model SA

model B

Strobe Commands

strobe try

strobe force

strobe limit

cycle

Configures operation of the seed SA
command

Configures operation of the seed B
command

Performs an IDDQ strobe evaluation
if the chip is quiet; see

Forces an IDDQ strobe evaluation

Limits the number of IDDQ strobe
evaluations

Sets the internal cycle count

Circuit Examination Commands

status

summary

PowerFault PLI Tasks

Prints a report on leaky nets

Prints a nodal analysis summary

K-2015.06-SP4

7-12

Test Pattern Validation User Guide K-2015.06-SP4

PLI Task Command Reference

The following sections describe the syntax and functions of the PowerFault commands:
« Conventions
o Simulation Setup Commands

« Leaky State Commands

o Fault Seeding Commands
o Fault Model Commands
o Strobe Commands

¢ Circuit Examination Commands

o Disallowed/Disallow Value Property
« CanFloat Property

Note: Each command description includes the Backus-Naur form (BNF) syntaxand a
description of the command behavior.

Conventions

The following conventions apply to the PLI task command descriptions:
o Special-Purpose Characters

o Module Instances and Entity Models
o Cell Instances

« Port and Terminal References

Special-Purpose Characters

Several special-purpose characters are used in the command syntax descriptions, as described
in Table 2.

Table 2 Special Characters in Command Syntax

Character Purpose

+ Plus-sign suffix indicates repetition of one or more
* Asterisk suffix indicates repetition of zero or more
[] Square brackets enclose an optional element

() Parentheses indicate grouping

| Vertical bar separates alternative choices

When you use Verilog escaped identifiers in a command, each escape character must itself be
escaped. For example, to use the name tbench.dut\IO(23) withthe allow command, use the
following syntax:

$ssi iddg("allow float tbench.dut.\\IO(23)");

PowerFault PLI Tasks 7-13

Test Pattern Validation User Guide K-2015.06-SP4

Module Instances and Entity Models

A number of commands accept either module-instance or entity-model as a parameter. A
module-instance is a full path name of an instantiated module, such as the module name
tbench.au.ctrl?. An entity-model? is the definition name (not instance name) of a module.
Forexample, tbench.au.ctrl mightbe oneinstance ofthe IOCTRL entity model. When
you specify an entity model in a command, it applies to all instances of that model.

Cell Instances
The commands for fault seeding refer to Verilog cells. A cell instance is a module instance that
has either of these characteristics:

« The module definition appears between the compiler directives ‘celldefine and
‘endcelldefine??.

« The module definition is in a model library, andthe +nolibcell option has notbeen
used. A library is a collection of module definitions contained in a file or directory that are
read by library invocation options (such as the -y option provided by most Verilog
simulators).

Ifyouusethe +nolibcell option when you invoke the Verilog simulator, only modules
meeting the first condition above are considered cells.

By default, PowerFault treats cells as fault primitives. It seeds faults only at cell boundaries, not
inside of cells. However, some design environments generate netlists that mark very large
blocks as cells. To make PowerFault seed inside those cells, use the model SA seed
inside cells commandorthe model B seed inside cells command.

Port and Terminal References

The commands for allowing and disallowing leaky states refer to connection references. A
connection reference describes a port of a module or a terminal of a primitive. You can refer to a
port by its name. You can also refer to ports and terminals by their index numbers, with 0
indicating the first port or terminal. For example, port.0 refers to the first port of a
module;term.0 refers to the first terminal (the output terminal) of a primitive.

Simulation Setup Commands

The following simulation setup commands set up the general operating parameters for the
PowerFault simulation, such as the name of the device under test (DUT), the name of the
generated IDDQ database, and the names of the DUT ports:

. dut
. output

« ignore

. io

« statedep float
e Measure

o verb

PowerFault PLI Tasks 7-14

Test Pattern Validation User Guide K-2015.06-SP4

dut

dut module-instance+

This command is required and must be the first ssi iddg-task command executed. It
specifies which instances represent the device under test. The arguments are the full path
names of one or more module instances.

Here are some examples of valid dut commands:
$ssi iddg("dut tbench.core");

$ssi iddg("dut tbench.slave tbench.master");

output

output [mode] [label] database—-name

mode ::= (createl|append|replace=testbench-number)
label ::= label=string

This command specifies the name of the generated IDDQ database. The database is a directory
that PowerFault uses to store simulation results. During the Verilog simulation, the ssi
iddqg-task commands fill the database with information for the IDDQ Profiler. You run the
IDDQ Profiler after the Verilog simulation to select strobes and generate IDDQ reports.

The following command makes the ssi iddqg task create a database named
/cad/sim/M88/iddqg.dbl?:
$ssi _iddg("output /cad/sim/M88/iddg.dbl");

The default modeis create?, which creates the database if it does not already exist. If the
database already exists, its entire contents are cleared before the new simulation results are
stored.

When you use the append mode, the simulation results are appended to the specified
database. The append mode allows the simulation results from multiple testbenches for a
circuit to be saved into one database, as described in the “Combining Multiple Verilog
Simulations” section.

The replace mode replaces one specified testbench result in a multiple set of results saved
usingthe append mode. For the testbench number, specify 1 to overwrite the first results
saved, 2 to overwrite the second results saved, and so on.

The 1abel option assigns a string label to represent the current testbench. This is useful when
the database is used to store results from multiple testbenches. When the IDDQ Profiler selects
strobes, it uses the label to identify the testbench from which the strobe was selected.

The append mode is useful for a circuit that has multiple testbenches. It is much more efficient
to append the results from multiple testbenches to one database, rather than create a separate
database for each testbench. For details, see “Combining Multiple Verilog Simulations”.

Do notuse the append mode with multiple concurrent simulations. For example, you cannot
start four Verilog simulations at the same time and try to have each one append to the same
database. If you have multiple testbenches for a circuit, you need to run them serially.

ignore

ignore net module-or-prim-instanceconn-ref
ignore net entity-modelconn-ref

ignore (all|corel|ports) module-or-prim-instance

PowerFault PLI Tasks 7-15

Test Pattern Validation User Guide K-2015.06-SP4

ignore (all|corel|ports) entity-model

conn-ref ::= port-name | port.port-index |
term. term-index
port—-name ::= scalar-port—-name | vector-port-name

[port-index]

The ignore command describes which nodes in your circuit should be ignored for IDDQ
testing. Ignored nodes are excluded from analysis, fault seeding, and status reports. The same
effect can be produced by usingthe exclude?, allow fight?,and allow float
commands together, butusingthe ignore command is more efficient. This command
overrides all built-in checkers and all custom checkers defined withthe disallow command.

In the first two forms of the command, conn-re f describes which node to ignore. For example,
the following command causes the node connected to the port named INTR inthe module
tbench.core.busarb tobeignored:

$ssi iddg("ignore net tbench.core.busarb INTR");

The following command causes the node connected to the fifth port of
tbench.core.busarb tobeignored:
$ssi iddg("ignore net tbench.core.busarb port.5");

The following command causes the nodes connected tothe INTR port of all instances of the
ARB module to be ignored:
$ssi _iddg("ignore net ARB INTR");

In the last two forms of the command, the (all|core|ports) optiondescribes how the
command is applied to nodes of a particular module or primitive. For example, the following
command causes all nodes connected to ports of the tbench.core.pll module to be
ignored:

$ssi iddg("ignore ports tbench.core.pll"”);

The following command causes all nodes inside tbench.core.pll tobeignored:
$ssi iddg("ignore core tbench.core.pll");

The following command causes all nodes connected to ports and all nodes inside
tbench.core.pll tobeignored:
$ssi _iddg("ignore all tbench.core.pll");

io

io net-instance+

This command lists any primary inputs and outputs (I/O pads) that are not connected to ports of
the DUT modules. PowerFault assumes that each port of a DUT module is connected to an I/O
pad. If your chip has I/O pads that are not connected to a port of a DUT module, you can
optionally specify them with this command. Doing so might allow PowerFault to find better
strobe points.

statedep_float
statedep float #-and-ins#-nand-ins#-nor-ins#-or-ins
This command specifies the types of primitives that can block floating nodes. The default setting

IS:
$ssi iddg("statedep float 3 3 2 0");

PowerFault PLI Tasks 7-16

Test Pattern Validation User Guide K-2015.06-SP4

By default, AND and NAND gates with up to three inputs and NOR gates with up to two inputs
can block floating nodes. These primitives are commonly used to “gate” a three-state bus so that
it does not cause a leakage current. For more information on this topic, see “State-Dependent
Floating Nodes”.

If your foundry implements two-input OR gates so that they can block floating nodes, use this
command:
$ssi iddg("statedep float 3 3 2 2");measure (0]1)

measure
measure (0]1)

This command specifies which power rail to use for IDDQ measurement. By default, PowerFault
assumes that IDDQ measurements are made on the VDD (power) rail; this is the most common
test method. If your automated test equipment (ATE) is configured to measure 1ISSQ, the current
flowing through the VSS (ground) rail, use the following command:

$ssi iddg("measure 0");

verb
verb (on|off)

This command turns verbose mode on and off. In verbose mode, the ssi iddg task echoes
every command before execution, and it also prints the result (qualified or unqualified) of every
strobe try command. By default, verbose mode is initially off. To turn on verbose mode,
use this command:

$ssi _iddg("verb on");

Leaky State Commands

PowerFault has powerful algorithms for determining quiescence. By default, it recognizes two
types of leaky states: floating inputs (“float”) and drive contention (“fight”). It is also configurable;
theallow,disable SepRail,anddisallowcommands let you modify the algorithms for
determining quiescence.

The following sections describe the leaky state commands:
o allow
« disable SepRail

« disallow

allow

The allow command specifies the types of leaky states that are to be ignored. The
disallow command defines new leaky states that would normally be unrecognized, such as
leaky behavioral and external models (for more information, see “Behavioral and External
Models”). The allow command tells PowerFault how to ignore leaky states it normally
recognizes; the disallow command tells PowerFault how to identify leaky states it does not
normally recognize.

There are several different forms of this command. These are the forms that apply to specified
nets, instances, or entity models:

allow (float|fight) net-instance

allow (float|fight) module-or-prim-instance [conn-ref]

allow (float|fight) entity-model [conn-ref]

PowerFault PLI Tasks 7-17

Test Pattern Validation User Guide K-2015.06-SP4

conn-ref ::= port-name | port.port-index | term.term-index
port-name ::= scalar-port—-name|

vector-port—-name|[port-index]

These commands specify which leaky states in the design to allow (ignored by PowerFault). You
can use them to have PowerFault ignore leaky states that are not present in the real chip.

Incomplete Verilog models can cause misleading leaky states, which PowerFault should ignore.
For example, consider a chip that has an internal three-state bus with a keeper latch like the one
shown in Figure 1.

Figure 1 Three-State Bus With Keeper Latch

0 addr[0]

z

keeper latch present in chip but ,:r
not in Yenlog model -----.. ..o

When the bus is fabricated on the chip, the keeper latch prevents the bus from floating.
However, the Verilog model for the bus does not include the keeper latch. As a result, when the
bus floats (has a Z value) during the Verilog simulation, PowerFault considers it a possible cause
of high current and disqualifies any strobe try at that time.

To tell PowerFault that the bus addr[0] does not cause high current when it floats during the
simulation, use a command like the following:
$ssi iddg("allow float tbench.iob.addr[0]");

When you use a module (primitive) instance name, the allow command applies to all nets
declared inside the instance, including those inside of submodules, and to all nets attached to the
instance’s ports (terminals). For example, to allow nets to float inside of and connected to
tbench.au.ctlr?, use thiscommand:

$Ssi_iddq("allow float tbench.au.ctlxr");

If you use an entity-model name, the command applies to every instance of that entity model. For
example, to allow all nets to float inside of and connected to the instances ofthe I0CTL

module, use the following command:

$ssi _iddg("allow float IOCTL");

By using the optional connection reference, you can make the command apply to a specific port
or terminal. For example, if TOCTL hasaportnamed out2?,then the following command
allows the nets attached tothe out2 portofall TOCTL instances to float:

$ssi iddg("allow float IOCTL out2");

The following command allows the nets attached to the output terminal of all bufif0
instances to float:

$ssi _iddg("allow float bufif(0 term.O0");

To globally allow leaky states, use this command:

allow (all|poss) (fight|float)

PowerFault PLI Tasks 7-18

Test Pattern Validation User Guide K-2015.06-SP4

Thisformofthe allow command turns on global options that apply to every net. The all
option makes PowerFault ignore all true and all possibly leaky states. The poss option makes
PowerFaultignore just the possibly leaky states; true leaky states are still disallowed. For a
description of true and possibly floating nodes, see “Floating Nodes and Drive Contention”.

Thisformofthe allow command is most useful for verifying strobe timing and debugging test
vectors. For example, if you want to find vectors that definitely have drive contention (so that you
can measure it on your ATE), use these commands:

$ssi _iddg("allow poss fight");

$ssi iddg("allow all float");

In this case, only vectors with true drive contention are disqualified because all floating nodes
and all nodes with possible drive contention are ignored.

Here is the form of the command for allowing leaky states inside cells:
allow cell (fight|float)

This form of the a1 1 ow command applies to every net that is internal to a cell. Nets connected to
cell ports and nets outside of cells are not affected. The fight option makes PowerFault
ignore all true and possible drive contention on nets inside of cells. The float option makes
PowerFault ignore all true and possibly floating nets inside of cells. For a description of true and
possibly floating nodes, see “Floating Nodes and Drive Contention”.

Thisformofthe allow command is most useful when your cell libraries have many internal
nets that are erroneously flagged as floating or contending. This most commonly happens when
cells use dummy local nets (nets not present in the real chip) for the purpose of timing checks. If
you know that all the nets internal to your cells are always quiescent, you can use these
commands:

$ssi _iddg("allow cell fight");

$ssi iddg("allow cell float");

disable SepRail

Current measurements, performed at test, are subject to the configuration of the test equipment
when considering current contributions. Typically, many test environments use separate power
supplies for the device signals (often referred to as "pin electronics") from the primary power
supply for the device itself.

Because of these separate supplies, some leaky conditions might not contribute current that is
measured from the device rails or primary power supply. In particular, out-of-state pullups or
pulldowns on the IO of the device might not contribute to measured IDDQ current. Eliminating
test vectors that do not contribute leaky current can reduce the overall effectiveness of a set of
IDDQ tests. Remember, only pullups and pulldowns that are associated with the top-level
signals of the design are considered here. Internally, all current-generating situations are
considered.

By default, IddQTest will not identify all out-of-state pull conditions on top-level 10 signals as
leaky. Certain situations are allowable. In particular, internal pulls (pullups or pulldowns that are
part of the internal device definition) that are pulling to the opposite state of the measured rail (for
example, internal pulldowns for IddQ measurements) will not be identified as leaky. External
pulls (pullups or pulldowns that are external to the device referenced with the dut command)
that are pulling to the same state as the measured rail (for example, external pullups for IddQ
measurements) will also not be identified as leaky.

PowerFault PLI Tasks 7-19

Test Pattern Validation User Guide K-2015.06-SP4

To override this default behavior, and force all out-of-state conditions with pullups and pulldowns
at the top level of the design to be identified as leaky, the option disable SepRail mustbe
specified. This can be specified as:

$ssi iddg("disable SepRail");

disallow
disallow module-or-prim-instanceleaky-condition
disallow entity-modelleaky-condition

leaky-condition ::= expr

expr ::= (expr) | expr && expr | expr || expr

| conn-ref == value | conn-ref != value

conn-ref ::= port-name | port.port-index | term.term-index
port—-name ::= scalar-port—-name |
vector-port-name[bit-index]

value ::= 0]1|2|X

This command describes specific leaky states that would not otherwise be recognized. At every
strobe try, PowerFault examines your entire netlist for leaky states. If your chip has leaky states
that cannot be detected by analyzing the Verilog netlist, you might need to usethe disallow

command.

For example, consider the case where the input pads on your chip have pullups as shown in
Figure 2, but these pullups are missing from your Verilog models.

Figure 2 Input Macro With Pullup

pullup missing
IPLP from Yerilog model

woD .-,

extern al —

If TPUP isthe entity model for your input pad and its input portis named 1in?, use the following
command to tell PowerFault that the DUT is leaky when the input is O:
$ssi iddg("disallow IPUP in == 0");

You can also refer to a port or terminal by its index number. Index numbers start at zero. For
example, ifport in isthe second portinthe TPUP portlist, then the preceding command
example is equivalent to the following command:

$ssi iddg("disallow IPUP port.l == 0");

The Ieaky-condi tionargument specifies an entity model or a particular instance that is
nonquiescent. This condition is a Boolean expression describing the combination of port values
or terminal values that make the chip leaky. If you specify an entity model, the condition applies
to all instances of the entity model.

PowerFault PLI Tasks 7-20

Test Pattern Validation User Guide K-2015.06-SP4
For example, assume the bidirectional pads on your chip have pulldowns as shown in Figure 3,
but those pulldowns are missing from your Verilog model.

Figure 3 Bidirectional Macro With Pulldown

BORV

=l

external |i V- T Gore

pulld_cﬂwn Mmissing
rom Werilog modsl

Totell PowerFaultthat BDRV is an entity model that is leaky when port io is high and port
en is high, use this command:
$ssi iddg("disallow BDRV (io ==) && (en == " o) ;

The == and != operators differ from their Verilog counterparts. The expression (conn-ref
== value) istrue only if the values match exactly. For example, if io is X, thenthe
expression (io == 1) isnottrue.

The following form of the disallow command turns on global options, which apply to every
net:
disallow (Xs|Zs|Caps)

Turning on these options makes PowerFault follow pessimistic rules for determining
quiescence. By default, nets at three-state (z), unknown (?x?), and capacitive (Caps) values
are allowed as long as they do not cause leakage. In other words, a net can be at Z if it does not
have any loads.

To make PowerFault compatible with less-sophisticated IDDQ tools that disallow every X or Z,
use these commands:

$ssi iddg("disallow Xs");

$ssi iddg("disallow Zs");

Usingthese disallow commands, no Xs orZs are allowed because a single X or Z implies
nonquiescence and disqualifies an IDDQ strobe try. Because PowerFault analyzes the netlist in
detail, if your chip is modeled structurally (the logic is implemented with Verilog user-defined
primitives and ordinary primitives), you probably do not need to use this formofthe disallow
command. Itis better to describe only the specific leaky states, so that more strobe times are
allowed.

Fault Seeding Commands

At the beginning of the simulation, before usingthe strobe try command to evaluate
strobes for IDDQ testing, you need to tell PowerFault where to seed faults. For this purpose, you
canuse seed commands to seed faults automatically, or read commands to seed faults
from an existing fault list.

PowerFault PLI Tasks 7-21

Test Pattern Validation User Guide K-2015.06-SP4

The seed and read commands are cumulative. If you want to seed some faults
automatically and seed some faults from a fault list, use both the seed and read
commands.

The following sections describe the various seeding commands:

o seed SA
e« seedB

e SCOp€e

« read_bridges
e read tmax

« read verifault
» read_zycad

seed SA
seed SA module-instance+
seed SA net-instance+

This command seeds both stuck-at-0 and stuck-at-1 faults in each of the specified instances or
nets. For module instances, PowerFault performs automatic hierarchical seeding of each
module and all its lower-level modules. The placement of fault seeds (ports, terminals, and so
on) is determined by the current fault model. For more information, see “Fault Model
Commands”.

Here are some examples of valid seed SA commands:
$ssi iddg("seed SA tbench.M88.I0 tbench.M88.CORE");

$ssi iddg("seed SA tbench.M88.I0.CO tbench.M88.I0.IRDY");

seed B
seed B module-instance+
seed B net-instancenet-instance

This command automatically seeds bridging faults throughout the specified instances or
between two specified nets. For module instances, PowerFault performs automatic hierarchical
seeding of each module and all its lower-level modules. The placement of fault seeds (between
ports, terminals, and so on) is determined by the current fault model. For more information, see
“Fault Model Commands”.

Here are some examples of valid seed B commands:
$ssi iddg("seed B tbench.M88.IO0");
$ssi _iddg("seed B tbench.M88.I0.SHFO0 tbench.M88.I0.SHF1");

scope
scope module-instance

This command sets the scope for the faults seeded by subsequent read type commands. By
default, PowerFault expects full path names for all fault entries. Some ATPG environments
generate fault entries that have incomplete path names (for example, without the testbench
module name). For those environments, use the scope command to specify a prefix for all path
names.

PowerFault PLI Tasks 7-22

Test Pattern Validation User Guide K-2015.06-SP4

For example, the following four commands tell PowerFault to do the following: seed faults from
fles tbench.core andtbench.io?, considerallnamesin U55.flist toberelative to
tbench.core?, andconsiderallnamesinuU24.fl1ist toberelativeto tbench.io?:

$ssi iddg("scope tbench.core");
$ssi _iddg("read tmax U55.flist");
$ssi _iddg("scope tbench.io");
$ssi iddg("read tmax U24.flist");

read_bridges
read bridges file-name

This command reads the names of net pairs from a file (one pair per line) and seeds a bridging

fault between each listed pair. For example, a file containing the following two lines would seed
bridging faultsinthe tbench.M88 module between TA and TB?,and between PA and

PBR?:

tbench.M88.TA tbench.M88.TB

tbench.M88.PA tbench.M88.PB

read_tmax
read tmax [strip] fault-classes* file-name
fault-classes ::=(DS|DI|AP|NP|UU|UO|UT|UB|UR|AN|NC|NO|-=-)

This command reads fault entries from a TetraMAX fault list. By default, only fault entries in the
AP, NP, NC, and NO classes are seeded. If you want to seed faults in other classes, use the
fault-classes argument to specify the fault classes. For definitions of these fault classes,
refer to the TetraMAX ATPG User Guide.

For example, the following command seeds faultsinthe fal file thatare in the following
classes: possibly detected (AP, NP), undetectable (UU, UT, UB, UR), ATPG untestable (AN),
and not detected (NC, NO):

$ssi iddg("read tmax AP NP UU UT UB UR AN NC NO fal");

By default, PowerFault remembers all the comment lines and unseeded faults in the fault list, so
that when it produces the final fault report, you can easily compare the report to the original fault
list. If you do not want to save this information (it requires extra disk space), usethe strip
option:

$ssi iddg("read tmax strip AP NP UU UT UB UR AN NC NO fal");

read_verifault
read verifault [strip] status-types* file-name
status-types ::=(detected|potential |undetected|
drop_ task|drop active|drop looping|drop detected |
drop potential|drop plildrop hyper active]
drop hyper mem|untestable)

This command reads fault seeds from a Verifault-XL fault list. By default, only fault descriptors
without status or with the status undetected or potential are seeded. If youwantto
seed faults with other status types, use the status-types argument to specify the status
types.

For example, the following command seeds all faults with status potential, undetected,
or untestable fromthefile M88.flist?:
$ssi iddg("read verifault potential undetected untestable

PowerFault PLI Tasks 7-23

Test Pattern Validation User Guide K-2015.06-SP4

M88.flist");

By default, PowerFault remembers all the comment lines and unseeded faults in the fault list, so
that when it produces the final fault report, you can easily compare the report to the original fault
list. If you do not want to save this information (it requires extra disk space), usethe strip
option:
$ssi _iddg("read verifault strip potential undetected

untestable M88.flist");

read_zycad

read zycad [strip] fault-types* result-types* file-name
fault-types::= (i]o]|n)

result-types::= (C|IDIH|II|MIN|O|P|U)

This command reads fault seeds from a Zycad fault origin file. By default, only fault origins with
the node type (n) and the undetected (U) or not run yet (N) or possibly (P) result are seeded. If
you want to seed other fault types or results, use the rault-typesand result-types
arguments to specify them.

For example, the following command seeds all input and output faults with the impossible (1)
and possibly (P) result from the file M88. fog?:
$ssi iddg("read zycad i o I P M88.fog");

exclude

exclude module-instance+
exclude primitive-instance+
exclude entity-model+

The exclude command excludes specified parts of the design from fault seeding. This
command specifies instances and entities that are to be excluded from the fault seeding
performed by the seed?, read tmax?, read verifault? and read zycad
commands.

For example, to exclude all instances of the BRAM1 6 entity from fault seeding, use the
following command:
$ssi _iddg("exclude BRAM16");

To exclude individual instances, specify the full path name of each instance:
$ssi _iddg("exclude tbench.M88.io tbench.M88.mem");

The exclude command excludes only instances from seeding. It does not exclude them from
being checked for leaky states. If you need to ignore a leaky state, usethe allow command,
described in “Leaky State Commands”.

Fault Model Commands

The model commands determine wherethe seed commands will place faults. Therefore,
ifyouusea model command,you mustexecute it beforethe seed command. When you
specify a module instance nameinthe seed command, the seeding algorithm performs a
hierarchical traversal of the instance, seeding faults on the ports and terminals specified by the
current fault model. By default, this traversal stops at cell boundaries.

PowerFault PLI Tasks 7-24

Test Pattern Validation User Guide K-2015.06-SP4

The settings made witha model command are not cumulative. The current model is based
only on the mostrecent model command. In other words, each model command
overwrites the settings made by the previous model command.

The following sections describe the fault model commands:

« model SA

« model B
model SA
model SA directionsa-placement [seed inside cells]
direction ::= (port IN|port OUT|term IN|term OUT)+
sa-placement ::= (all mods|leaf mods|cell mods|prims)+

This command specifies where the seed SA command seeds stuck-at faults. Table 3
summarizes the command options.

Table 3 Options for Stuck-At Fault Models

Direction Options

port IN Enables stuck-at faults on input ports of chosen modules

port OUT Enables stuck-at faults on output ports of chosen
modules

term IN Enables stuck-at faults on input terminals of primitives

term OUT Enables stuck-at faults on output terminals of primitives

Stuck-At Placement Options

all mods Chooses all modules for port stuck-at faults
leaf mods Chooses leaf modules for port stuck-at faults
cell mods Chooses cell modules for port stuck-at faults
prims Chooses primitives for terminal stuck-at faults

Seed Inside Cells Option

seed inside cells Enables fault seeding inside cells

The default stuck-at fault seeding behavior is equivalent to the following model sa
command:
model SA port IN port OUT term IN term OUT

leaf mods cell mods prims

With the default stuck-at fault model, faults are seeded on input and output ports of cell and leaf
modules, and on input and output terminals of every primitive, but not inside cells. Primitives and

PowerFault PLI Tasks 7-25

Test Pattern Validation User Guide K-2015.06-SP4

modules found inside of cells are ignored. A leaf module is a module that does not contain any
instances of submodules.

If you want to seed inside cells, include the seed inside cells option. Forexample,
these two lines seed stuck-at faults on output terminals of every primitive, including those inside
cells:

$ssi iddg("model SA term OUT prims seed inside cells");

$ssi iddg("seed SA tbench.M88");

For detailed examples showing how the model SaA command options affect the placement of
fault seeds, see Options for PowerFault-Generated Seeding.

model B
model B bridge-placement [seed inside cells]
bridge-placement ::= (cell ports|fet terms|

gate IN2IN|gateIN20UT|vector)+

This command specifies where the seed B command seeds bridging faults. A bridging fault is
a short circuit between two different functional nodes in the design. A fault of this type is
considered detected by an IDDQ strobe when one node is at logic 1 and the other is at logic 0.

Table 4 summarizesthe model B command options.

Table 4 Options for Bridging Fault Models
Bridge Placement Options

cell ports Enables bridging faults between adjacent
ports of cells and between each input and
output port of cells (if the cell has two or
fewer output ports)

fet terms Enables bridging faults between all pairs
of terminals of field effect transistor
(FET) switches

gate IN2IN Enables bridging faults between adjacent
input terminals of non-FET primitives
(including UDPs)

gate IN20UT Enables bridging faults between all pairs
of input and output terminals of non-FET
primitives (including UDPs)

vector Enables bridging faults between adjacent
bits of expanded vectors

Seed Inside Cells Option

PowerFault PLI Tasks 7-26

Test Pattern Validation User Guide K-2015.06-SP4

seed_inside_ Enables fault seeding inside cells
cells

The default bridging fault seeding behavior is equivalent to the following model B command:
model B cell ports fet terms gate INZ2IN gate IN20UT vector

With the default bridging fault model, bridging faults are seeded between the ports of cells, the
terminals of primitives, and the bits of expanded vectors. No seeding is performed inside cells.

To seed other types of bridging faults, specify them with the model B command. For
example, these two lines seed bridging faults between the ports of all cells inside
tbench.M887:

$ssi _iddg("model B cell ports");

$ssi iddg("seed B tbench.M88");

For detailed examples showing how the model B command options affect the placement of
fault seeds, see “Options for PowerFault-Generated Seeding”.

Strobe Commands

After you specify the DUT modules and seed the faults, you need to describe the IDDQ strobe
timing. When the testbench is running, it must use eitherthe strobe try or strobe
force command toindicate when it is appropriate to apply an IDDQ strobe.

The following sections describe the various strobe commands:
o strobe_try
« strobe_force
« strobe_limit

» cycle

strobe_try
strobe try

You should have the testbench invoke the strobe try command atas many potential
strobe times as possible. The strobe try command tells PowerFault that the circuitis
stable and can be tested for quiescence.

For example, you can use the following line just before the end of each cycle:
$ssi _iddg("strobe try")

At each occurrence of this line, PowerFault determines whether the circuit is quiescent, allowing
an IDDQ strobe to be applied. Ifthe verb on command has been executed, the simulator
reports the result of each strobe try?, allowing you to identify nonquiescent strobe times.

Youshouldusethe strobe try command one time per tester cycle, and it should be the last
event of the cycle. For example, if you have delay paths that take multiple clock cycles, do not
use the command when those paths are active.

strobe_force
strobe force

PowerFault PLI Tasks 7-27

Test Pattern Validation User Guide K-2015.06-SP4

This command turns off quiescence checking and allows PowerFault to consider all strobe
times. Use this command only if you are sure the chip is quiescent. For example, you can use it if
your technology providesan IDDQ OK signal that forces the chip into quiescence.

If you know the quiescent points in your simulation, you can use the strobe force command
ratherthanthe strobe try command to reduce the simulation runtime. Withthe strobe
force command, PowerFault does not need to check the entire chip for quiescence at each
strobe try.

strobe_limit
strobe limit max-strobes

This command terminates the Verilog simulation when max-st robes qualified strobe points
have been found.

For example, the following command stops the simulation after 100 qualified strobe points have
been found:
$ssi _iddg("strobe limit 100");

cycle

cycle cycle-number

This command sets the initial PowerFault cycle number, an internal counter maintained by
PowerFault. The cycle number has no affect on finding or selecting IDDQ strobes. It is used
during Verilog simulations and during strobe selection to report a cycle number along with the
simulation time of each strobe.

By default, the cycle number begins at 1 and is incremented after every strobe try. If your test
program does not strobe on every cycle, you can use the cycle command to synchronize
PowerFault with the cycle count of your test program. For example, if your cycle count begins at
0 instead of 1, use this command:
$ssi _iddg("cycle 0");
The cycle command can also accept a nonstring argument, allowing you to set the cycle
number to the value of a simulation variable. For example:
always @testbench.CYCLE

$ssi _iddg("cycle", testbench.CYCLE);

Circuit Examination Commands

The circuit examination commands, status and summary?, provide information on the
location and cause of IDDQ testing problems found in the design. The following sections
describe the circuit examination commands:

o status
e SUmMMary

status
status [drivers]
(leakylnonleaky|both|all leaky) [file-name]

This command determines why your circuit is quiescent or nonquiescent at a particular
simulation time. It is most useful when you are having difficulty producing qualified strobe points.

PowerFault PLI Tasks 7-28

Test Pattern Validation User Guide K-2015.06-SP4

If there is a persistent leaky node in your circuit (for example, caused by an always-active
pulldown), PowerFault will not be able to find quiescent strobe points. Fortunately, the status
leaky command can quickly identify any leaky nodes, allowing you to improve your test
program so that it produces more quiescent strobe points.

Use the following command to print out all the net conditions that imply that the circuit is not
quiescent:
$ssi iddg("status leaky");

The command prints out the name of each leaky net and the reason that the net’s value implies
that the circuit is not quiescent. There are two possible causes for a leaky node: a floating input
or drive contention.

Here is an example of a report generated by the status command:

Time 35799

top.dut.ioctl.stba is leaky. Re: float
top.dut.ioctl.addr[0] is leaky. Re: fight
top.dut.ioctl.addr[1l] is leaky. Re: possible fight
>

Note: Ifyouusethe status commandandthe strobe try command inthe same
simulation run, and you want the status report to include the first strobe, you must execute the
first status command before thefirst strobe try command.

Use the following command to print out all the net conditions that imply that the circuit is
quiescent:
$ssi _iddg("status nonleaky");

Use the following command to print out all the net conditions that imply that the circuit is or is not
quiescent:
$ssi _iddg("status both");

The output ofthe status command can be quite long because it can contain up to one line for
every net in the chip. You can direct the output to a file instead of to the screen. For example, to
write the leaky states into a file named bad nets?, use the following command:

$ssi iddg("status leaky bad nets");

The simulator createsthe bad nets file thefirsttime it executesthe status command.
When it executesthe status command again in the same simulation run, it appends the
outputtothe bad nets file, together with the current simulation time. This creates a report of
the leaky states at every disqualified strobe time.

By default, the 1eaky option reports only the first occurrence of a leaky node. If the same
leaky condition occurs at different strobe times, the report says “All reported” at each such strobe
time after the report of the first occurrence. To get a full report on all leaky nodes, including those
already reported, usethe all leaky optioninsteadofthe leaky option, asinthe
following example:

$ssi iddg("status all leaky bad nodes");

This can produce a very long report.

The drivers optionmakesthe status command printthe contribution of each driver.
However, it reports only gate-level driver information. For example, consider the following
command:

$ssi iddg("status drivers leaky bad nodes"™);

The command produces a report like this:
top.dut.mmu.DIO is leaky: Re: fight

PowerFault PLI Tasks 7-29

Test Pattern Validation User Guide K-2015.06-SP4

St0<- top.dut.mmu.UT344

Stl<- top.dut.mmu.UT366

StX<- resolved value
top.dut.mmu.TDATA is leaky: Re: float

HiZ<- top.dut.mmu.UT455

HiZ<- top.dut.mmu.UT456

In this example, top.dut ..mmu.DIO has adrive fight. One driveris at strong 0 (St 0) and the
other is at strong 1 (st 1). The contributing value of each driver is printed in Verilog
strength/value format (described in section 7.10 of the IEEE 1364 Verilog LRM).

The same status command withoutthe drivers option produces areport like this:
top.dut.mmu.DIO is leaky: Re: fight
top.dut.mmu.TDATA is leaky: Re: float

summary
summary file-name

When you use the summary command, PowerFault prints a summary at the end of the
simulation that describes problem nodes. It lists the nodes reported by the status command
and also lists the nodes that were not reported but might cause problems.

The summary for each node is reported in this format:
net-instance-name: property+

The summary command merges simulation information reported by the status command
with static information from the formal analyzer. For example, consider the case where the
status command produces the following output:
Time 3999
tbench.M88.SELM.RESET is leaky: Re: float
tbench.M88.VEE[0] is leaky: Re: float
HiZ <- tbench.M88.CB.veel.out
HiZ <- tbench.M88.LB.veel.out
Time 12999
tbench.M88.DIO[1] is leaky: Re: possible fight
St0 <- tbench.M88.dpadl clr
StX <- tbench.M88.dpadl snd
StX <- resolved value
tbench.M88.BIO is leaky: Re: disallowed X
tbench.M88.0U244 is leaky: Re: ARAM (WR EN == 1 && DATA[O]
== 7)
The corresponding summary might look like this:
Summary of problem nodes:
tbench.M88.SELM.RESET: did float : unconnected
tbench.M88.VEE[0]: did float : not muxed
tbench.M88.DIO[1]: did fight : can float : not muxed
tbench.M88.BIO: disallowed wvalue
tbench.M88.U244: disallow ARAM (WR EN == 1 && DATA[O] == Z)
tbench.M88.APP.POW: constant fight

The summary lists nodes that can cause problems for IDDQ testing. It might also identify node
properties that are considered design problems. For example, if floating nodes are illegal in your

PowerFault PLI Tasks 7-30

Test Pattern Validation User Guide

design environment, you should check to see whether any nodes have the “did float” or “can

float” property.

The more your circuit is modeled at the gate level, the more accurate the summary is.
Table 5 lists and describes the node properties reported by the summary command.

Table 5 Node Properties Reported by summary Command

Node Property
did float

did fight

did pull

disallowed value

disallow expr

can float

can fight

PowerFault PLI Tasks

Description

The node was reported as
floating (or possibly floating)
during simulation.

The node was reported as
having (or possibly having)
drive contention during the
simulation.

The node was reported as
having (or possibly having)
an active pullup/pulldown
during simulation.

The node was reported as
violating a simple disallow
command during the
simulation.

The node was reported as
violating a compound
disallow command during
the simulation. expr contains
the text of the disallow
command.

The node can float, but was
not reported as floating
during the simulation.

The node can have drive
contention, but was not
reported as having this
condition during the
simulation.

7-31

K-2015.06-SP4

Test Pattern Validation User Guide K-2015.06-SP4

Node Property Description

can pull The node has
pullups/pulldowns, but they
were not active during the
simulation.

not muxed The node has multiple drivers
that are not multiplexed. In
other words, the control logic
for the drivers does not
always enable one and only
one driver at a time.

unconnected The node is an unconnected
input.
constant fight The node has a constant

current. In other words, it
has both a pullup and a
pulldown.

Disallowed/Disallow Value Property

A node with the “disallowed value” property violated a simple disallow command at some
time during the simulation. Here are some examples of simple disallow commands:
$ssi iddg("disallow tbench.M88 (BIO == X)");

$ssi iddg("disallow BUF3I (out == 0)");

A node with the “disallow expr” property violated a compound disallow command at some
time during the simulation. Here are some examples of compound disallow commands:
$ssi_iddg("disallow ARAM (WR EN == 1 && DATA[O0] == 2)");

$ssi iddg("disallow PHMX (in == 1 && en != 0)");

Can Float Property

Each node with the “can float” property requires special consideration because it can cause high
current. Each such node was never reported as floating during the simulation because of one or
more of these conditions:

« The node never floated.
. The node floated but was blocked.
« The node floated but did not have a load (it was not connected to a gate-level input).

See Also
Floating Nodes and Drive Contention

PowerFault PLI Tasks 7-32

Faults and Fault Seeding

The process of specifying fault locations for IDDQ testing is called fault seeding. You can have
PowerFault seed faults automatically from the design description, or you can use a fault list
generated by TetraMAX ATPG or another tool.

The following sections describe faults and fault seeding:
« Fault Models

» Fault Seeding
o Options for PowerFault-Generated Seeding

8-1

Test Pattern Validation User Guide K-2015.06-SP4

Fault Models

The TetraMAX ATPG and Verilog/PowerFault environments support several different types of
fault models which are described in the following sections:

« Fault Models in TetraMAX
« Fault Models in PowerFault

Fault Models in TetraMAX
In TetraMAX ATPG, the term “fault model” refers to the type of fault used for test pattern
generation.

. For IDDQ testing, there are two choices: stuck-at and IDDQ. The stuck-at fault model is

the standard, default model most often used to generate test patterns.

. The IDDQ fault model is used to generate test patterns specifically for IDDQ testing.
There are two types of IDDQ fault models, the pseudo-stuck-at model and the toggle model.
The fault model choice in TetraMAX ATPG determines how the ATPG algorithm operates. For
the stuck-at model, TetraMAX ATPG attempts to propagate the effects of faults to the scan
elements and device outputs. For the IDDQ model, TetraMAX ATPG attempts to control all
nodes to 0 and 1 while avoiding conditions that violate quiescence.

For more information on TetraMAX fault models, see the TetraMAX ATPG User Guide or
consult the TetraMAX online help.

Fault Models in PowerFault

In the PowerFault environment, the term “fault model”? refers to the algorithm used to seed
faults in the design when you use the seed SA command to seed stuck-at faults orthe seed
B command to seed bridging faults.

Stuck-At Faults

A stuck-at-0 fault is considered detected when the node in question is placed in the 1 state, the
circuit is quiescent, and an IDDQ strobe occurs. Similarly, a stuck-at-1 fault is considered
detected when the node is placed in the 0 state, the circuit is quiescent, and an IDDQ strobe
OCCuUrs.

To seed stuck-at faults from a TetraMAX fault file, use the read tmax command. Similar
commands are available to seed faults from a Verifault or Zycad fault list. To seed stuck-at faults
automatically throughout the design based on the locations of the modules, cells, primitives,
ports, and terminals in the design, usethe model SA and seed SA commands.

Untestable faults are ignored during fault detection and strobe selection, but they are still listed in
fault reports for reference. Faults untestable by PowerFault include stuck-at-0 faults on supplyO
wires and stuck-at-1 faults on supply1 wires.

Fault Models 8-2

Test Pattern Validation User Guide K-2015.06-SP4

Bridging Faults

A bridging fault involves two nodes. The fault is considered detected when one node is placed in
the 1 state, the other is placed in the 0 state, the circuit is quiescent, and an IDDQ strobe occurs.
For an accurate fault model, the two nodes in question must be physically adjacent in the
fabricated device, so that actual bridging between the nodes is possible in a defective device.

You can seed bridging faults by reading them from a list (which could be generated by an
external tool) by usingthe read bridges command. You can also seed bridging faults
automatically between adjacent cell ports, between terminals of field effect transistor (FET)
switches, between the terminals of gate primitives, and between adjacent vector bits. In this
case, adjacent means “right next to each other in the Verilog description.” To seed bridging faults
in this manner, usethe model B and seed B commands.

Fault Seeding

At the beginning of the Verilog/PowerFault simulation, before usingthe strobe try
command to evaluate strobes for IDDQ testing, you need to tell PowerFault where to seed
faults. To do this, youcanuse seed commands to seed faults automatically or the read
tmax command to seed faults from an existing fault list.

The seed and read tmax commands are cumulative. If you want to seed some faults
automatically and seed some faults from a fault list, you can use both the seed and read
tmax commands, and all of the faults seeded by the two commands are used.

The following sections describe fault seeding:
o Seeding From a TetraMAX Fault List
« Seeding From an External Fault List
o PowerFault-Generated Seeding

Seeding From a TetraMAX Fault List

To seed the design with stuck-at faults from a TetraMAX fault list, use the read tmax
command. In this command, you specify the TetraMAX fault file name, and optionally, the
detectability classes of faults to be seeded.

In TetraMAX ATPG, you create a fault file upon completion of test pattern generation by using
the write faults command. Typically, you write a complete fault list using a command
similar to the following:

write faults mylist.faults -replace -all

Before you generate the fault list, you need to set the hierarchical delimiter character in
TetraMAX ATPG. PowerFault expects the delimiter character to be a period. By default,
TetraMAX ATPG uses the forward slash (/) character. To generate the fault list in a compatible
format, use the following set build command before you build the model:

set build -hierarchical delimiter

The generated fault file describes each fault in terms of type (stuck-at-0 or stuck-at-1),
detectability class, and location in the design. For example:
sal DS .testbench.fadder.co

Fault Seeding 8-3

Test Pattern Validation User Guide K-2015.06-SP4

sal DS .testbench.fadder.co
sal DS .testbench.fadder.sum
sal DS .testbench.fadder.sum

Each fault class and each hierarchical group of fault classes has a two-character abbreviation.
For example, DS stands for “detected by simulation.”

The TetraMAX fault classes are defined in the following list:
DT - detected
DS - detected by simulation
DI - detected by implication
PT - possibly detected
AP - ATPG untestable, possibly detected
NP - not analyzed, possibly detected
UD - undetectable
UU - undetectable, unused
UO - undetectable, unobservable
UT - undetectable, tied
UB - undetectable, blocked
UR - undetectable, redundant
AU - ATPG untestable
AN - ATPG untestable, not detected
ND - not detected
NC - not controlled
NO - not observed

TetraMAX ATPG places each fault into one of the bottom-level fault classes. For more
information about fault classes, refer to the TetraMAX ATPG User Guide.

By default, the PowerFault command read tmax seeds faults in the AP, NP, NC, and NO
classes. If you want to seed faults belonging to classes other than the default set, you need to
specify the classesinthe read tmax command. For example, the following command seeds
faultsinthe fal file that belong to the following classes: possibly detected (AP, NP),
undetectable (UU, UT, UB, UR), ATPG untestable (AN), and not detected (NC, NO):

$ssi _iddg("read tmax AP NP UU UT UB UR AN NC NO fal");

One way to use this command is to target undetectable and possibly detected faults in
TetraMAX ATPG. In this way, PowerFault complements TetraMAX ATPG to obtain the best
possible overall test coverage. If adequate coverage of these faults is obtained with just a few
IDDQ strobes and if your tester time budget allows it, you can then seed faults throughout the
design withthe seed SA command and generate additional IDDQ strobes to obtain even
better IDDQ test coverage.

Seeding From an External Fault List

If you use the Verifault-XL fault simulator, you can seed the design with faults from a Verifault
fault list or fault dictionary. Similarly, if you use the Zycad fault simulator, you can seed the design
with faults from the Zycad fault origin file.

Fault Seeding 8-4

Test Pattern Validation User Guide K-2015.06-SP4

To seed faults from these types of files, use the read verifault command, describedin
“read_verifault” orthe read zycad command, described in “read_zycad” in the "PowerFault
PLI Tasks" section.

To seed the design with bridging faults from a file-based list, use the read bridges
command. For details, see “read_bridges” in the "PowerFault PLI Tasks" section.

PowerFault-Generated Seeding

To have PowerFault automatically seed the design, use the seed sSA command to seed
stuck-at faults orthe seed B command to seed bridging faults. To specify how these seeding
algorithms operate, use the model SA and model B commands. For details, see “Fault
Model Commands” in the "PowerFault PLI Tasks" section.

Options for PowerFault-Generated Seeding

For PowerFault-generated seeding, usethe seed SA and seed B commands. The
model SA and model B commands specify the behavior of the seeding algorithms.

The following sections provide some specific examples showing how you can use the model
SA and model B command options to control the seeding of faults in the design:

o Stuck-At Fault Model Options
« Bridging Faults

For basicinformation on usingthe model SA ormodel Bcommand,see “model SA” or
“model B” in " PowerFault PLI Tasks" section.

Stuck-At Fault Model Options

The model SA command determines wherethe seed SA command seeds stuck-at faults.
Table 1 lists and describes the fault model options available inthe model sSaA command.

Table 1 Options for Stuck-At Fault Models

Direction Options

port IN Enables stuck-at faults on input ports of chosen modules

port OUT Enables stuck-at faults on output ports of chosen
modules

term IN Enables stuck-at faults on input terminals of primitives

term OUT Enables stuck-at faults on output terminals of primitives

Stuck-At Placement Options

Options for PowerFault-Generated Seeding 8-5

Test Pattern Validation User Guide K-2015.06-SP4

all mods Chooses all modules for port stuck-at faults
leaf mods Chooses leaf modules for port stuck-at faults
cell mods Chooses cell modules for port stuck-at faults
prims Chooses primitives for terminal stuck-at faults

Seed Inside Cells Option

seed inside cells Enables fault seeding inside cells

The all mods?, leaf mods?,and cell mods options specify which types of modules
will have port faults. The port IN andport OUT options specify which types of ports from
those modules are seeded with stuck-at faults.

The prims option specifies that any primitive instance found within a seeded module will have
terminal faults. The term IN and term OUT options specify which types of terminals from
those primitives are seeded with stuck-at faults.

Here is a specific example to help demonstrate how these options work. Assume that you have
the following Verilog description of a testbench module called tbench.M88:
module M88 () ;
hier hmod(hout, hin)
leaf 1lmod(lout, 1lin);
cell cmod(cout, cin);
nand(nout, ninl, nin2
endmodule

’

) ;

module hier(out, in);
output out;
input in;

leaf 1lmod(lout, 1lin);
endmodule

module leaf(out, in);
output out;
input in;

nand(nout, ninl, nin2);
endmodule

“celldefine
module cell(out, in);
output out;
input in;

nand(nout, ninl, nin2);
endmodule
"endcelldefine

Options for PowerFault-Generated Seeding 8-6

Test Pattern Validation User Guide

K-2015.06-SP4

At the top level of hierarchy, this testbench module contains a hierarchical module (?hmod?), a
leaf-level module (?Imod?), a module that has been defined as a cell (?cmod?), and a primitive
gate (?nand?). Figure 1 shows a circuit diagram corresponding to this Verilog description.

Figure 1 Circuit Example for Stuck-At Fault Seeding

MBS
: hm od
' hin — Imod
; lin — L lout
: hin
ninEID’— nouf
: Imod
Colin T 1 L Jout
L cmod
] nim |— cout
r‘lir‘IEZD_HOUt

Default Stuck-At Fault Seeding

By default, the seed SA command seeds port faults on leaf and cell modules and seeds
terminal faults on primitives. The default behavior is equivalent to using the following model

SA command:

model SA port IN port OUT term IN term OUT
leaf mods cell mods prims

Suppose that you start stuck-at seeding using the default model:
$ssi iddg("seed SA tbench.M88");

This command seeds stuck-at faults on the following nets:

tbench
tbench
tbench
tbench
tbench
tbench
tbench
tbench
tbench
tbench
tbench
tbench
tbench
tbench
tbench

.M88.
.M88.
.M88.
.M88.
.M88.
.M88
.M88.
.M88.
.M88.
.M88.
.M88.
.M88.
.M88.
.M88.
.M88.

1mod.
1lmod.
hmod.
hmod.
hmod.
.1lin

lout

1lmod.
1lmod.
1mod.

cin
cout
ninl
nin2
nout

lin
lout

Imod.ninl
Imod.nin?2
Imod.nout

ninl
nin?2
nout

Options for PowerFault-Generated Seeding

8-7

Test Pattern Validation User Guide

K-2015.06-SP4

Figure 2 shows the circuit diagram with each seeded fault marked with an asterisk (*).

Figure 2 Seed Locations: Default Stuck-At Fault Model

all_mods

cin LT CoLt

o
=

2 F |22
=t

The all mods option chooses all modules for port stuck-at faults. Thus, the following two

lines seed faults on the input and output ports of all modules inside tbench.M887:

$ssi iddg("model SA port IN port OUT all mods");
$ssi iddg("seed SA tbench.M88");

As aresult, stuck-at faults are seeded on the following nets:

tbench
tbench
tbench
tbench
tbench
tbench
tbench
tbench

.M88.
.M88.
.M88.
.M88.
.M88.
.M88.
.M88.
.M88.

hin
hout
hmod.1lin
hmod. lout
lin
lout
cin
cout

Figure 3 shows the resulting locations of seeds using this fault model.

Options for PowerFault-Generated Seeding

Test Pattern Validation User Guide K-2015.06-SP4

Figure 3 Seed Locations: all_mods Stuck-At Fault Model

MBS .
bmod
hin Irnod LT hout
lin 2 L | oLt
hin
rlirIEZD_ nout
lmod
lin = 1T [out
rin Aout
ning
Co cmod
Cooin 3 LT GOt
: rin nout
ning

cell_mods

The cell mods option chooses cells for port stuck-at faults. Thus, the following two lines
seed faults on the input and output ports of every cell module inside tbench.M887:

$ssi iddg("model SA port IN port OUT cell mods");

$ssi iddg("seed SA tbench.M88");

As aresult, stuck-at faults are seeded on the following nets:
tbench.M88.cin

tbench.M88.cout
Figure 4 shows the resulting locations of seeds using this fault model.

Options for PowerFault-Generated Seeding 8-9

Test Pattern Validation User Guide K-2015.06-SP4

Figure 4 Seed Locations: cell_mods Stuck-At Fault Model

MBE
: hmaod :
- hin - Imod L hout
- lin — — oLt :
; min :
fin2—|_- oLt
Imod
i 1 — out |

ningg_y-nou ;
_ cmod :
Cocin 2) T 0Lt ;
5 ninz—_y-ou i

leaf_mods

The leaf mods option chooses leaf-level modules for port stuck-at faults. Thus, the following
two lines seed faults on the input and output ports of every leaf module inside tbench.M887?:
$ssi _iddg("model SA port IN port OUT leaf mods");

$ssi iddg("seed SA tbench.M88");

As aresult, stuck-at faults are seeded on the following nets:
tbench.M88.hmod.lin

tbench.M88.hmod. lout

tbench.M88.1lin

tbench.M88.1lout

Figure 5 shows the resulting locations of seeds using this fault model.

Options for PowerFault-Generated Seeding 8-10

Test Pattern Validation User Guide

Figure 5 Seed Locations: leaf_mods Stuck-At Fault Model

prims

RISt

; hmod ;
' hin — Imod hout

lin = - [t
nind

: ninzz[}_ nout !
Imod
colin = - |out -
: allah! :
: ning—_—"out :
. cmnod :
Cocin—) L cout ;
; nin ;
; ninz noLt

K-2015.06-SP4

The prims option chooses primitives for terminal stuck-at faults. Thus, the following two lines
seed faults on the input terminal of every primitive inside tbench.M887?:
$ssi _iddg("model SA term IN prims");

$ssi _iddg("seed SA tbench.M88");

As aresult, stuck-at faults are seeded on the following nets:

tbench
tbench
tbench
tbench
tbench
tbench

.M88.
.M88.
.M88.
.M88.
.M88.
.M88.

hmod.
hmod.
1mod.
lmod.

ninl
nin?2

Imod.ninl
Imod.nin2
ninl
nin2

Figure 6 shows the resulting locations of seeds using this fault model.

Options for PowerFault-Generated Seeding

8-11

Test Pattern Validation User Guide K-2015.06-SP4

Figure 6 Seed Locations: Primitive Input Stuck-At Fault Model

fals
' bmod
Fin —| lmod L hout
lin — [out
min
nngjD»—nout
lmod
lin —— 1 — lout
min
ninEIT:I:}’_mut
L cmod
Coin—] L cout
. nin
nmng_nout

nin
ninzﬁ}_ nout

The following two lines seed faults on the output terminal of every primitive inside tbench.M88:
$ssi _iddg("model SA term OUT prims");
$ssi _iddg("seed SA tbench.M88");

As aresult, stuck-at faults are seeded on the following nets:
tbench.M88.hmod. 1lmod.nout
tbench.M88.1lmod.nout

tbench.M88.nout

Figure 7 shows the resulting locations of seeds using this fault model.

Figure 7 Seed Locations: Primitive Output Stuck-At Fault Model

MBE
bmod
Fin — lmod L hout
lin — — oLt
hin
nmng;nout
lmod
lin — — lout
rin
nine nout
Co cmod
CoGin—] L CoLt
ﬂ'{;z rout

Options for PowerFault-Generated Seeding 8-12

Test Pattern Validation User Guide K-2015.06-SP4

seed_inside_cells

The seed inside cells option enables seeding of faults inside cells. Thus, the following
two lines seed faults on the output terminal of every primitive inside tbench.M887?, including
those inside cells:

$ssi iddg("model SA term OUT prims seed inside cells");

$ssi _iddg("seed SA tbench.M88");

As aresult, stuck-at faults are seeded on the following nets:
tbench.M88.hmod.1lmod.nout
tbench.M88.1lmod.nout

tbench.M88.cmod.nout

tbench.M88.nout

Figure 8 shows the resulting locations of seeds using this fault model.

Figure 8 Primitive Output Seeding for seed_inside_cells

fals
bmod
Fin — lmod L hout
lin — ot
rin
ninzi};mm
lmod
lin — — lout
rin
nine nout
L cmod
Cocin—] L CoLt
. min
nine rout

Bridging Faults

The model B command determines wherethe seed B command seeds bridge faults.
Table 2 lists and describes the bridge placement options available forthe model B command.

Table 2 Options for Bridging Fault Models

Bridge Placement Options

Options for PowerFault-Generated Seeding 8-13

Test Pattern Validation User Guide

cell ports

fet terms

gate INZ2IN

gate IN20UT

vector

Enables bridging faults between adjacent ports
of cells and between each input and output port
of cells (if the cell has no more than two output
ports)

Enables bridging faults between all pairs of
terminals of FET switches

Enables bridging faults between adjacent input
terminals of non-FET primitives (including
UDPs)

Enables bridging faults between all pairs of
input and output terminals of non-FET
primitives (including UDPs).

Enables bridging faults between adjacent bits
of expanded vectors

Seed Inside Cells Option

seed inside

cells

cell_ports

Enables fault seeding inside cells

K-2015.06-SP4

The cell ports optionseeds bridging faults between adjacent ports of each cell, and also
between the cell inputs and outputs if the cell has no more than two output ports. Ports are
considered adjacent when they appear next to each other in the module’s port list definition. For
example, consider the following module definition:

‘celldefine
module bsel (out,
output out;

inl, in2, in3);

input inl, in2, in3;

endmodule
‘endcelldefine

The following port pairs are considered adjacent:

out, inl
inl, in2
in2, in3

Asaresult,the cell ports option seeds five bridging faults: three between pairs of
adjacent ports and two more between the inputs and outputs. This is the bridging fault list:

out, inl
inl, in2
in2, in3
out, in2
out, in3

Options for PowerFault-Generated Seeding

8-14

Test Pattern Validation User Guide K-2015.06-SP4

fet_terms

The fet terms option seeds bridging faults between all pairs of terminals of each FET
switch. This results in four bridging faults for a CMOS switch or three bridging faults for any other
type of switch.

For example, consider this primitive:
nmos UF44(out, data, ctl);

The term fets option seeds these three bridging faults:
out, data

out, ctl

data, ctl

gate_IN2IN

The gate IN2IN option seeds bridging faults between adjacent input terminals of gates.
Terminals are considered adjacent when they appear next to each other in the primitive’s
terminal list.

For example, consider the following primitive:

and U2033(out, inl, in2, in3);

The gate IN2IN option seeds the following two bridging faults:
inl, in2

in2, in3

gate_IN20UT

The gate IN20UT optionislikethe gate IN2IN option, except that it seeds bridging
faults between inputs and outputs. For the previous example, the gate IN20UT option
seeds the following three bridging faults:

out, inl

out, 1in2

out, in3

vector

The vector option seeds bridging faults between adjacent bits of a vector. Two bits are
considered adjacent when they have an index within one unit of each other.

For example, consider the following vector:
wire [3:0] dvec;

The vector option seeds the following three bridging faults:
dvec[3], dvec[2]
dvec[2], dvec[1l]
dvec[l], dvec[0]

seed_inside_cells
The seed inside cells option enables seeding of faults inside cells.

Options for PowerFault-Generated Seeding 8-15

Test Pattern Validation User Guide K-2015.06-SP4

Assume that you have a circuit with a module tbench.M88 that contains an instance of the
following cell:

‘celldefine

module n2buf(a, b, en, out);

input a, b, en;

output out;

nmos (out, n2out, en);

nand(a2out, a, b);

endmodule

‘endcelldefine

Figure 9 shows a circuit diagram for this cell.
Figure 9 Example Circuit for Bridging Faults

nzbut (a verilog cell)

ely ot

The following two lines seed bridging faults between cell ports and between FET-switch terminal
pairs inside tbench.M887:

$ssi _iddg("model B cell ports fet terms");

$ssi iddg("seed B tbench.M88");

These commands seed five bridging faults between the ports of n2buf?:
a, b

b, en

a, out

b, out

en, out

By default, no faults are seeded inside of cells. Therefore, the internalnet i2n is not
considered for fault seeding. To include this internal node, usethe seed inside cells
option:
$ssi iddg("model B cell ports fet terms

seed inside cells"™);
$ssi iddg("seed B tbench.M88");

In this case, the following additional bridging faults are seeded:
i2n, en
i2n, out

Options for PowerFault-Generated Seeding 8-16

PowerFault Strobe Selection

After you run a Verilog/PowerFault simulation, you can use the PowerFault strobe selection tool,
IDDQPro, to select a set of strobe times to obtain maximum fault coverage. IDDQPro uses the
information in the IDDQ database produced by the Verilog/PowerFault simulation.

The following sections describe PowerFault strobe selection:
« Overview of IDDQPro
« Invoking IDDQPro
« Interactive Strobe Selection
« Strobe Reports

« Fault Reports

9-1

Test Pattern Validation User Guide K-2015.06-SP4

Overview of IDDQPro

IDDQPro is a strobe selection tool that operates on the IDDQ database produced by a
Verilog/PowerFault simulation. IDDQPro selects a set of strobe times to maximize fault
coverage for a given number of strobes.

When you run a Verilog/PowerFault simulation, the output command in the PowerFault
Verilog module specifies the name of the IDDQ database. The database contains information on
seeded faults and the faults detected at each qualified strobe time.

When you invoke IDDQPro, you specify the database name and the number of strobes you want
to use. IDDQPro analyzes the database and finds a set of strobes that maximizes the number of
faults detected.

You can run IDDQPro in batch mode or interactive mode.
. Inbatch mode, IDDQPro selects a set of strobes and reports the results.
« Ininteractive mode, IDDQPro displays a command prompt.

You can interactively enter commands to select strobes, display reports, and traverse the
hierarchy of the design.

IDDQPro produces two report files: a strobe report (iddq.srpt) and a fault report (iddq.frpt).

- The strobe report shows the time value and cumulative fault coverage of each selected
strobe point.

« The fault report lists the status of each seeded fault, either detected or undetected, for the
complete set of selected strobes.

Each report file starts with a header that summarizes the report contents and tells you how to
interpret the information provided.

After you use IDDQPro to select a set of strobes, it is a good idea to copy and save the strobe
report file so that you will not need to generate it again. The strobe report can take a long time to
generate. Itis not as important to save the fault report file because you can quickly regenerate it,
as long as you have the strobe report file.

Invoking IDDQPro

You invoke IDDQPro at an operating system prompt. The following sections describe the
process for invoke IDDQPro:

o ipro Command Syntax
« Strobe Selection Options

« Report Configuration Options

o Log File and Interactive Options

Overview of IDDQPro 9-2

Test Pattern Validation User Guide K-2015.06-SP4

ipro Command Syntax

The full Backus-Naur form (BNF) description of the command syntax for IDDQPro is as follows:

ipro options* iddg-database-name+t
options ::=

-strb lim max-strobes |

-cov_1lim percent-cov |

-ign_ucov |

-strb set file-name |

-strb unset file-name |

-strb _all |

-prnt fmt (tmax|verifault|zycad) |
-prnt nofrpt |

-prnt full |

-prnt times |
-path sep (.[/) |
-log file-name |
-inter

The command consists of the keyword ipro?, followed by zero or more options, followed by
one or more IDDQ database names. A typical command specifies a limit on the number of
strobes with the -strb 1imoption and specifies a single IDDQ database. For example:

ipro -strb lim 5 iddg

This command invokes IDDQPro, specifies a maximum limit of five strobes, and specifies iddg
as the name of the IDDQ database.

Here are some more examples of IDDQPro invocation commands:

ipro -strb lim 5 iddgdbl iddgdb2

ipro -strb lim 8 /net/simserver/CCD/iddg

ipro -strb lim 10 iddg

ipro -strb lim 10 -cov lim 0.95 iddg

ipro —strb:lim 10 —cov:lim 0.95 -prnt fmt verifault iddg

Strobe Selection Options
You can control strobe selection by using the following ipro command options:

-strb lim max-strobes
-cov lim percent-cov
-strb set file-name
-strb unset file-name
-strb all

If you do not use any options, IDDQPro selects strobes until it either uses up all the possible
strobe points or reaches the absolute maximum coverage possible.

Invoking IDDQPro 9-3

Test Pattern Validation User Guide K-2015.06-SP4

-strb_lim

The -strb 1im option specifies the maximum number of strobe points to select. The
practical maximum number depends on the test equipment being used. Typically, only five to ten
IDDQ strobes are allowed per test. IDDQPro attempts to obtain the best possible coverage,
given the specified maximum number of strobes.

For example, to limit the number of selected strobes to ten, you would use a command such as
the following:
ipro -strb lim 10 iddg

-cov_lim

The -cov_ 1lim option specifies the target fault coverage percentage. Strobe selection stops
when fault coverage reaches or exceeds this limit. Coverage is expressed as a decimal fraction
between 0.00 and 1.00. For example, to choose as many strobes as necessary to reach 80
percent fault coverage, you would use a command such as the following:

ipro -cov_lim 0.80 iddg

-strb_set

The -strb set option causes IDDQPro to select the strobe times listed in a file. IDDQPro
evaluates the effectiveness of the strobes listed in the file. If you have a set of strobe times you
think are good for IDDQ testing, put them into a file, with one time value per line.

For example, to force the selection of strobes at times 29900 and 39900, put those two times into
afilenamed stimes like this,

29900
39900

and then use a command such as the following:
ipro -strb set stimes -strb lim 8 /cad/sim/M88/iddqg

As a result of this command, IDDQPro selects the two specified strobe times, plus six other
strobe times that it selects with its regular coverage-maximizing algorithm. The usual strobe
report, iddqg.srpt?,includes all eight strobes. In addition, IDDQPro generates a separate
strobe evaluation report called iddg.seval?, which shows the coverage obtained by just the two
file-specified strobe times.

If you are using multiple testbenches, specify the testbench number before each strobe time.
Testbench numbering starts at 1. For example, to select the strobes at times 299 and 1899 in the
first testbench and time 399 in the second testbench, enter the following lines in the strobe time
file:

tb=1 299

tb=1 1899

tb=2 399

To regenerate a fault report from a saved strobe report, use the -strb_set option and specify
the name of the strobe report file. For example:

ipro -strb set iddg.srpt -strb lim 5 iddg

Invoking IDDQPro 9-4

Test Pattern Validation User Guide K-2015.06-SP4

-strb_unset

The -strb unset option prevents IDDQPro from selecting the strobe times listed in afile. If
you have a set of strobe times that you do not want IDDQPro to use, put them into a file, with one
time value per line. For example, if you want to prevent the strobes at times 59900 and 89900
from being selected, put those two times into a file named bad stimes andthenusea
command such as the following:

ipro -strb unset bad stimes -strb lim 8 /cad/sim/M88/iddqg

As a result of this command, IDDQPro selects eight strobe times using its regular coverage-
maximizing algorithm, but excluding the strobes at times 59900 and 89900. If you are using
multiple testbenches, specify the testbench number before each strobe time as explained
previously forthe -strb set option.

-strb_all

The -strb all option causes IDDQPro to select all qualified strobe points, starting with the
first strobe time, instead of using the coverage-maximizing algorithm. The strobe report and fault
report show the coverage obtained by making an IDDQ measurement at every qualified strobe
point.

Although it is usually impractical to make so many measurements, the -strb all optionis
useful because it determines the maximum possible coverage that can be obtained from your
testbench or testbenches. In addition, the resulting fault report identifies nets that never get
toggled; they are reported as undetected.

Report Configuration Options

You can control the generation of the fault report by IDDQPro by using the following ipro
command options:

-prnt fmt (tmax|verifault|zycad)
-prnt nofrpt

—prnt full

-prnt times

-path sep

—-ign ucov

-prnt_fmt

The -prnt fmt option specifies the format of the fault report produced by IDDQPro. The
format choicesare tmax?, verifault?,and zycad?.The defaultformatis tmax?.

In the default format, the faults are reported as shown in the following example:

sa0 NO .testbench.fadder.co
sal DS .testbench.fadder.co
sa0 DS .testbench.fadder.sum
sal NO .testbench.fadder.sum

Invoking IDDQPro 9-5

Test Pattern Validation User Guide K-2015.06-SP4

To generate afault reportin Zycad . fog format, use acommand similar to the following:
ipro -prnt fmt zycad -strb lim 5 iddg

In the Zycad configuration, faults are reported as shown in the following example:

@testbench. fadder
co 0 nU
co 1l nD
sum O n D
sum 1 n U

To generate a fault report in Verifault format, use a command similar to the following:
ipro -prnt fmt verifault -strb lim 5 iddg

In the Verifault configuration, faults are reported as shown in the following example:

fault net sa0 testbench.fadder.co 'status=undetected';
fault net sal testbench.fadder.co 'status=detected';
fault net sa0 testbench.fadder.sum 'status=detected';
fault net sal testbench.fadder.sum 'status=undetected';

-prnt_nofrpt

Usethe -prnt nofrpt optionto suppress generation of the fault report. Otherwise, by
default, IDDQPro generates the iddq.frpt fault report every time the program is run in batch
mode.

-prnt_full, -prnt_times, and -path_sep

The -prnt full?, -prnt times?,and -path sep options control the generation of
Zycad-format fault reports. These options do not affect on Verifault-format fault reports.

The -prnt full option controls the reporting of hierarchical paths. By default, faults are
divided into groups, with the cell name shown at the beginning of each group. Only the leaf-level
net name is shown in each line.

Here is an example taken from a report in the default Zycad reporting format:

@tbench.M88
sio24 0 n D
sio24 1 n D
sio25 0 n D
sio25 1 n U

Ifyouusethe -prnt full option, the full hierarchical paths are reported in each line, as
shown in the following example:

tbench.M88.si024 0 n D
tbench.M88.si024 1 n D
tbench.M88.si025 0 n D
tbench.M88.si025 1 n U

Invoking IDDQPro 9-6

Test Pattern Validation User Guide K-2015.06-SP4

The -prnt times option causes the fault report to include the simulation time at which each
fault was first detected. For example, withthe -prnt times options, the same faults as
described in the preceding example are reported as follows:

tbench.M88.si024 0 n 129900 D

tbench.M88.si024 1 n 39900 D
tbench.M88.si025 0 n 455990 D
tbench.M88.si025 1 n U

The -path sep option specifies the character for separating the components of a
hierarchical path. The default character is a period (.) so that path names are compatible with
Verilog. If you want Zycad-style path names, select the forward slash character (/) instead, asin
the following example:

ipro -prnt fmt zycad -prnt full -path sep / -strb lim 5 iddg

Then the same faults described previously are reported as follows:

/tbench/M88/si024 0 n D
/tbench/M88/sio24 1 n D
/tbench/M88/si025 0 n D
/tbench/M88/sio025 1 n U

-ign_uncov

The -ign uncov option prevents IDDQPro from using the “potential” status in the fault
report. All faults are still listed, but faults that would normally be reported as potential are instead
reported as undetected. This option also prevents IDDQPro from generating coverage statistics
for uninitialized nodes in the strobe report. For information on uninitialized nodes, see “Faults
Detected at Uninitialized Nodes”.

Log File and Interactive Options

The -1og option lets you specify the name of the IDDQPro log file. The log file contains a copy
of all messages displayed during the IDDQPro session. By default, the log file name is iddq.log.

By default, IDDQPro runs in batch mode. This means that IDDQPro reads the IDDQ database,
selects the strobe times, produces the strobe report and fault report files, and returns you to the
operating system prompt.

The -inter option lets you run IDDQPro in interactive mode. In this mode, IDDQPro displays
a prompt. You interactively select strobes manually or automatically, request the reports that you
want to see, and optionally browse through the hierarchy of the design.

The IDDQPro interactive commands are described in the next section, “Interactive Strobe
Selection.”

Interactive Strobe Selection

Touse IDDQPro in interactive mode, invoke it withthe -inter option, as in the following
example:

Interactive Strobe Selection 9-7

Test Pattern Validation User Guide K-2015.06-SP4

o)

% ipro -inter iddg

When IDDQPro is started in interactive mode, it loads the results from the Verilog simulation and
waits for you to enter a command. No strobes are selected and no reports are generated until
you enter the commands to request these actions.

At the interactive command prompt, you can enter commands to select strobes, display reports,
and traverse the hierarchy of the design. When you change to a lower-level module in the design
hierarchy, the reports that you generate apply only to the current scope of the design.

Table 1 lists and briefly describes the interactive commands. The following sections provide
detailed descriptions of these commands.

Table 1 IDDQPro Interactive Commands

Command Description

cd Changes the interactive scope to lower-level
instance

desel Prevents selection of specified strobe times

exec Executes a list of interactive commands in a
file

help Displays a summary description of all
commands or one command

1ls Displays a list of lower-level instances at the
current level

prc Prints a fault coverage report

prf Prints a list of all seeded faults and their
detection status

prs Prints a list of all qualified strobes and their
status

quit Terminates IDDQPro

reset Cancels all strobe selections and detected
faults

sela Selects strobes automatically using the
coverage-maximizing algorithm

selall Selects all strobes

selm Selects one or more strobes manually,

specified by time value

Interactive Strobe Selection 9-8

Test Pattern Validation User Guide K-2015.06-SP4

To run an interactive IDDQPro session, you typically use the following steps:

1. Select the strobes automatically or manually, or select all strobes (?sela?, selm?, or
selall?).

2. If youwant to analyze just a submodule of the design, change to hierarchical scope for
that module (?1s?, cd?).

3. Print astrobe report, coverage report, and fault report (?prs?, prc?, prf?).

4. Repeat steps 1 through 3 to examine different sets of strobes or different parts of the
design. Usethe reset command to select an entirely new set of strobes.

5. Exitfrom IDDQPro (?quit?).

By default, the output of all interactive commands is sent to the terminal (stdout). The printing
commands, especially prf and prs?, can produce very long reports. If you want to redirect
the output of one of these commands to afile, use the -out option.

cd

cd module-instance

The cd command changes the current scope of the analysis to a specified module instance.
You can use this command to produce different reports for different parts of the design. For
example, to print separate fault reports for modules top.M88.alu and top.M88.io?,
enter the following commands:

cd top.M88.alu

prf -out alu.frpt

cd top.M88.io

prf -out io.frpt

To get a listing of modules in the current hierarchical scope, use the 1s command. To move up
to the next higher level of hierarchy, use the following command:

cd ..

desel

desel strobe-times* selm-options*

sStrobe-times ::= [tb=testbench-number] simulation-time
selm-options ::= —-in file-name | -out file-name

The desel (deselect) command prevents IDDQPro from selecting one or more specified
strobe times when you later use the sela or selall command. The strobe times can be
explicitly listed in the command line or read from an input file.

Ifthe desel command specifies strobes that are currently selected, they are first deselected.
The specified strobes are all made unselectable by subsequent invocations of the sela or
selall command. However, they can still be selected manually withthe selm command.

For example, the following command deselects the two strobes at 59900 and 89900 and
prevents them from being selected automatically by a subsequent sela or selall
command:

desel 59900 89900

Interactive Strobe Selection 9-9

Test Pattern Validation User Guide K-2015.06-SP4

If you are using multiple testbenches, you can deselect strobes from different testbenches. For
example, the following command manually deselects strobes at time 799 and 1299 from
testbench 1 and a strobe at time 399 from testbench 2:

desel tb=1 799 tb=1 1299 tb=2 399

exec

exec file-name

The exec command executes a list of interactive commands stored in a file.

help

help [command-name]

The help command displays help on a specified interactive command. If you do not specify a
command name, the help command provides help on all interactive commands.

Is
1s

The 1s command lists the lower-level instances contained in the current scope of the design.
To change the hierarchical scope, use the cd command.

prc

prc [-out file-name]

The prc (printcoverage) command displays a report on the fault coverage of instances in the
current hierarchical scope. This report shows which blocks in your design have high coverage
and which have low coverage.

This command reports statistics on seeded faults. Faults that were not seeded during the
Verilog/PowerFault simulation (such as faults detected by a previous run) are not included in the
fault coverage statistics.

prf
prf [-fmt (tmax|verifault|zycad)] [-full] [-times]

[-out file—-name]
The prf (printfaults) command displays a report on the faults in the instances contained in the
current hierarchical scope.
The output of this command is just like the default fault report file produced in batch mode,
iddq.frpt, exceptthatthe prf command lists the status of faults beneath the current
hierarchical scope, rather than all faults in the whole design.
The prf command complementsthe prc command. The prc command shows which
blocks have low coverage, andthe prf command shows which faults are causing the low
coverage.

Interactive Strobe Selection 9-10

Test Pattern Validation User Guide K-2015.06-SP4

prs
prs [-out file-name]

The prs (printstrobe) command displays the time value for every qualified IDDQ strobe. For
each selected strobe, the number of incremental (additional new) faults detected by the strobe is
also reported.

quit
quit
The guit command terminates IDDQPro.

reset
reset

The reset command clears the set of selected strobes and detected faults, allowing you to
start over.

sela

sela sela-options*

sela-options ::=
-cov_1lim percent cov |
-strb lim max strobes |
-out file-name

The sela (selectautomatic) command automatically selects strobes using a coverage-
maximizing algorithm. This is the same selection algorithm IDDQPro uses in batch mode.

The -cov 1im and -strb 1im options work exactly like the command-line options
described in “Strobe Selection Options”.

The -out option redirects the output of the command to a specified file.

selm

selm strobe-times* selm-options*

strobe-times ::= [tb=testbench-number] simulation-time
selm-options ::= —-in file-name | -out file-name

The selm (select manual) command lets you manually select strobes by specifying the strobe
times. You can explicitly list the strobe times in the command line or read them from an input file
usingthe -in option.

After you run this command, IDDQPro analyzes the strobe set and reports the results. To
redirect the output to a file, usethe -out option.

The selm and sela commands work togetherin anincremental fashion. Each time you use
one of these commands, it adds the newly selected strobes to the list of previously selected
strobes. This continues until the maximum possible coverage is achieved, after which no more

Interactive Strobe Selection 9-11

Test Pattern Validation User Guide K-2015.06-SP4

strobes can be selected. If the IDDQPro analysis determines that a manually selected strobe
fails to detect any additional faults, the selection is automatically canceled.

For example, consider the following two commands:
selm 29900 39900

sela -strb lim 6

The first command manually selects the two strobes at 29900 and 39900. The second command
automatically selects six more strobes that complement the first two strobes and maximize the
fault coverage.

To clear all strobe selections and start over, use the reset command.

If you are using multiple testbenches, you can select strobes from different testbenches. For
example, the following command manually selects strobes at times 799 and 1299 in testbench 1
and the strobe at time 399 in testbench 2:

selm tb=1 799 tb=1 1299 tb=2 399

selall
selall [-out file-name]

The selall (selectall) command automatically selects every qualified strobe, starting with
the first strobe time and continuing until the maximum possible coverage is achieved or all
qualified strobes are selected.

Although it is usually impractical to make so many measurements, the -selall commandis
useful because it determines the maximum possible coverage that can be obtained from your
testbench or testbenches. If you use the prf command afterthe se1all command, the
resulting fault report identifies nets that never get toggled; they are reported as undetected.

Understanding the Strobe Report

A strobe report (iddqg.srpt file) is generated when you run IDDQPro in batch mode and each time
you select strobes in interactive mode. The following sections describe a strobe report:

o Example Strobe Report

o Fault Coverage Calculation
« Adding More Strobes
« Deleting Low-Coverage Strobes

Example Strobe Report

A strobe report lists the selected strobes in time order and shows the following information for
each strobe:

« The simulation time
. The simulation cycle number
. The cumulative coverage achieved

Understanding the Strobe Report 9-12

Test Pattern Validation User Guide K-2015.06-SP4

. The cumulative number of faults detected
« The incremental (additional new) faults detected

The report gives you an idea of the effectiveness of each strobe. A large jump in coverage
indicates a valuable strobe. A very small increase in coverage indicates a strobe with little value.

Here is an example of a strobe report:
IDDQ-Test strobe report
Date: day date time

#
#
Reached requested fault coverage.

Selected 6 strobes out of 988 qualified.
#

#

#

Fault Coverage (detected/seeded) = 90.3% (23082/25561)

Timeunits 1.0ns

Strobe: Time Cycle Cum-Cov Cum-Detects Inc-Detects
19990 2 48.3% 12346 12346
329990 33 69.0% 17637 5291
2109990 211 74.2% 18966 1329
2129990 213 77.9% 19912 946
2759990 276 85.7% 21906 1994
2809990 281 90.3% 23082 1176

Fault Coverage Calculation

The fault coverage statistics in a strobe report include the following types of faults:
. Faults Detected by Previous Runs
« Undetected Faults Excluded From Simulation
. Faults Detected at Uninitialized Nodes

Faults Detected by Previous Runs
For example, the following report indicates that faults were detected by previous runs:

Reached requested fault coverage.

Selected 8 strobes out of 755 qualified.

Fault Coverage (detected/seeded) = 90.0% (90/100)
Faults detected by previous runs = 60

In this example, an existing fault list was read into the Verilog simulation with read tmax ora
similar command. That fault list had 60 faults that were already detected, either by an external
tool such as Verifault or by a previous IDDQPro run. Therefore, the eight selected strobes only
detected 30 more faults than the 60 that were already detected.

Undetected Faults Excluded From Simulation
The following report indicates that undetected faults were excluded from simulation:

Reached requested fault coverage.
Selected 4 strobes out of 2223 qualified.

Understanding the Strobe Report 9-13

Test Pattern Validation User Guide K-2015.06-SP4

Fault Coverage (detected/seeded) = 85.0% (170/200)
Undetected faults excluded from simulation = 20

The faultlistreadinby read tmax ora similar command had 20 faults that were undetected
but excluded. Perhaps the fault list covered the entire chip, but 20 faults were excluded from
seeding at the I/0 pads. The four selected strobes detected 170 faults and did not detect 30
faults. However, of the 30 undetected faults, only 10 were simulated by IDDQPro.

Faults Detected at Uninitialized Nodes
The following report indicates that faults were detected at uninitialized nodes:

Reached requested fault coverage.

Selected 5 strobes out of 2223 qualified.

Fault Coverage (detected/seeded) = 92.5% (370/400)
Faults detected at un-initialized nodes = 10

If an uninitialized node is driven to X (unknown rather than floating) during every selected vector,
a strobe detects one stuck-at fault, either stuck-at-0 or stuck-at-1, because the node is driven to
either 1 or 0. However, it is not known which type of fault is detected. The report indicates that
370 out of 400 faults were detected. Of the 370 detected faults, 10 have an unknown type,
corresponding to the 10 nodes that were never initialized.

Adding More Strobes

After a Verilog/PowerFault simulation, you can use IDDQPro repeatedly to evaluate the
effectiveness of different strobe combinations. It is not necessary to rerun the
Verilog/PowerFault simulation each time.

You can use the strobes selected from an IDDQPro run as the initial strobe set for subsequent
runs. For example, consider the following sequence of commands:

ipro -strb lim 6 /cad/sim/M88/iddg
mv iddg.srpt stimes
ipro -strb set stimes -strb lim 8 /cad/sim/M88/iddg

The first command runs IDDQPro and selects six strobe points. The second command copies
the strobe report file to a new file. The third command invokes IDDQPro again, using the strobe
report from the first run as the initial strobe set, and selects two additional strobe points. After the
second run, the strobe report file (iddq.srpt) contains eight strobe points, consisting of the six
original strobes plus two new ones.

Deleting Low-Coverage Strobes

If you identify a strobe that provides very little additional coverage, you can delete it from the
strobe report and run IDDQPro again to recalculate the coverage:

1. Run IDDQPro to select an initial set of strobes:
ipro -strb limit 8 iddg

Understanding the Strobe Report 9-14

Test Pattern Validation User Guide K-2015.06-SP4

2. Save the strobe report to a separate file:

mv iddg.srpt stimes

3. Editthe new file and delete the strobe that provides the fewest incremental fault
detections.

4. Run IDDQPro again, using the edited file for initial strobe selection:
ipro -strb limit 8 -strb set stimes iddg

For best results, delete only one strobe at a time and run IDDQPro each time to recalculate the
coverage. Coverage lost by deleting multiple strobes cannot be calculated by simple addition of
the incremental coverage because of overlapping coverage.

Fault Report Formats

A fault report (iddq.frpt file) is generated when you run IDDQPro in batch mode and each time
youusethe prf command ininteractive mode. The fault report lists all the seeded faults and
their detection status.

You can choose the fault report format by usingthe -prnt fmt option when you invoke
IDDQPro. The format choices are the TetraMAX ATPG, Verifault, and Zycad formats. The
defaultis TetraMAX ATPG.

The following sections describe the various fault report formats:
o TetraMAX Format
« Verifault Format

o Zycad Format
« Listing Seeded Faults

TetraMAX Fault Report Format

A fault report in TetraMAX format lists one fault descriptor per simulated fault. Each fault
descriptor shows the type of fault, the fault status (DS=detected by simulation, NO=not
observed), and the full net name (or two net names for a bridging fault).

Here is a section of a fault report in TetraMAX format:

sal0 DS tb.fadder.co
sal DS tb.fadder.co
sa0 DS tb.fadder.sum
sal DS tb.fadder.sum

The fault report shows five faults, all of which are detected by the selected strobes. All five faults
involve netsinthe tb.fadder module instance. The first four faults are stuck-at-0 and stuck-
at-1faultsforthe co and sum nets. The last faultis a bridge fault betweenthe x and ci
nets.

Fault Report Formats 9-15

Test Pattern Validation User Guide K-2015.06-SP4

Verifault Fault Report Format

A fault report in Verifault format lists one fault descriptor per simulated fault. Each fault descriptor
begins with the keyword fault?, followed by type of the fault, the full name of the net, and the
fault status.

Here is a section of a fault report in Verifault format:

fault net sa0 tb.fadder.co ’'status=detected’;
fault net sal tb.fadder.co ’'status=detected’;
fault net sal tb.fadder.sum ’status=detected’;
fault net sal tb.fadder.sum ’'status=detected’;
fault bridge wire tb.fadder.x tb.fadder.ci
"status=detected’;

The fault report shows five faults, all of which are detected by the selected strobes. All five faults
involve netsinthe tb.fadder module instance. The first four faults are stuck-at-0 and stuck-
at-1faultsforthe co and sum nets. The last fault is a bridge fault betweenthe x and ci
nets.

Zycad Fault Report Format

In a fault report in Zycad format, there are three types of lines (other than comment lines): cell
locations, stuck-at fault descriptors, and bridging fault descriptors.

A cell location line indicates the hierarchical scope for the following list of net names:

@module-instance

A stuck-at fault descriptor line indicates a net stuck-at 1 or stuck-at 0 fault:

net—-namestuck-value n (D|U) [time-of-first-detect]

A bridging fault descriptor line indicates a bridging fault between two nets:

netl-namenet’Z2-name b (D|U) [time-of-first-detect]

Here is a section of a fault report in the default Zycad format:

IDDQ-Test fault report
#
ALL fault origins
Date: day date time
#
path net short type result
name name value (D, U)
#
@tb.fadder
co 0 nD
co 1 nbD

sum 0 n D

Fault Report Formats 9-16

Test Pattern Validation User Guide K-2015.06-SP4

sum 1 n D
x ci b D

The fault report shows five faults, all of which are detected by the selected strobes. All five faults
involve netsinthe tb.fadder module instance. The first four faults are stuck-at-0 and stuck-
at-1faultsforthe co and sum nets. The last faultis a bridge fault betweenthe x and ci
nets.

The report will look different from this example if you modify the default format using the -
prnt full?, -prnt times?,0r -path sep optionwhen youinvoke IDDQPro. For
details, see the descriptions of the ~-prnt full, -prnt times,and-path sep optionsin
"Invoking IDDQPro" .

Listing Seeded Faults

The IDDQ database stores the faults seeded by the Verilog/PowerFault simulation in a compact
binary format. Usually, you use IDDQPro to select strobes, calculate the fault coverage, and
print a fault report that lists all the seeded faults along with their detection status. However, there
might be times you want a list of the seeded faults without selecting strobes. For example, if
there are no quiet strobe points to select, IDDQPro cannot generate the fault report.

To generate a list of seeded faults under these circumstances, start IDDQPro in interactive
mode, and then usethe prf command to generate a fault report, and redirect the output to a
file:

ipro -inter iddg-database-name

prf -out iddg.frpt

quit

Fault Report Formats 9-17

10

Using PowerFault Technology

The following sections provide information on using PowerFault simulation technology:
« PowerFault Verification and Strobe Selection
« Testbenches for IDDQ Testability
« Combining Multiple Verilog Simulations

« Improving Fault Coverage

« Floating Nodes and Drive Contention
o Status Command Output

« Behavioral and External Models

o Multiple Power Rails

» Testing I/0 and Core Logic Separately

10-1

Test Pattern Validation User Guide K-2015.06-SP4

PowerFault Verification and Strobe Selection

You can use PowerFault simulation technology to perform the following IDDQ tasks:
« Verify TetraMAX IDDQ Patterns for Quiescence
« Select Strobes in TetraMAX Stuck-At Patterns
. Select Strobe Points in Externally Generated Patterns

Verifying TetraMAX IDDQ Patterns for Quiescence

When you use the TetraMAX IDDQ fault model, TetraMAX ATPG generates test patterns that
have an IDDQ strobe in every pattern. When you write the patterns to a Verilog-format file,
TetraMAX ATPG automatically includes the PowerFault tasks necessary for verifying
quiescence at every strobe.

To verify TetraMAX IDDQ test patterns for quiescence, use the following procedure:

1. InTetraMAX ATPG, usethe write patterns command to write the generated test
patternsin STIL format. For example, to write a pattern file called test.stil, you could use
the following command:

write patterns test.stil -internal -format stil

2. Using MAX Testbench, create a Verilog testbench (for details, see “Using the stil2Verilog
Command”). For example, to write a Verilog testbench called test.v you could use the
following command:

stil2Verilog test.stil test

3. If you want to specify the name of the leaky node report file, open the test patternfile in a
text editor and search for all occurrences of the status drivers leaky command,
and change the default file name to the name you want to use. This is the default
command:

// NOTE: Uncomment the following line to activate

// processing of IDDQ events

// define tmax_ iddg

‘Sssi iddg("status drivers leaky top level name.leaky");

Substitute your own file name as in the following example:

‘$ssi iddg("status drivers leaky my report.leaky");

Save the edited test pattern file.
4. Run a Verilog/PowerFault simulation using the test pattern file.

The simulator produces a quiescence analysis report, which you can use to debug any leaky
nodes found in the design.

PowerFault Verification and Strobe Selection 10-2

Test Pattern Validation User Guide K-2015.06-SP4

Selecting Strobes in TetraMAX Stuck-At Patterns

Instead of generating test patterns specifically for IDDQ testing, you can use TetraMAX ATPG to
generate ordinary stuck-at ATPG patterns and then use PowerFault simulation technology to
choose the best strobe times from those patterns. To do this, you need to modify the Verilog
testbench file to enable the simulator’s IDDQ tasks.

This is the general procedure:

1. InTetraMAX ATPG, usethe write patterns command to write the generated test
patternsin STIL format. For example, to write a pattern file called test.stil, you could use
the following command:

write patterns test.stil -internal -format stil

2. Using MAX Testbench, create a Verilog testbench(for details, see “Using the stil2Verilog
Command”). For example, to write a Verilog testbench called test.v you could use the
following command:

stil2Verilog test.stil test

3. Open the test pattern file in a text editor.
4. Atthe beginning of the file, find the following comment line:
// ‘define tmax iddg

Remove the two forward slash characters to change the commentintoa ‘define
tmax_ iddqg statement. This enables the PowerFault tasks that TetraMAX ATPG has
embedded in the testbench.

Note:Instead of activatingthe ‘define tmax iddg statementin the file, you can
define tmax iddg when you invoke the Verilog simulator. For example, when you
invoke VCS, usethe +define+tmax iddg=0+ option.

5. If you want to specify the name of the leaky node report file, search for all occurrences of
the status drivers leaky commandand change the default file name to the
name you want to use. This is the default command:

‘$Sssi _iddg("status drivers leaky top level name.leaky");

6. Save the edited test pattern file.
7. Run a Verilog simulation using the edited test pattern file.
8. Runthe IDDQ Profiler.

When you run the Verilog/PowerFault simulation, the IDDQ system tasks evaluate each strobe
time for fault coverage. When you run the IDDQ Profiler, it selects the best strobe times.

PowerFault Verification and Strobe Selection 10-3

Test Pattern Validation User Guide K-2015.06-SP4

Selecting Strobe Points in Externally Generated Patterns

You can use PowerFault simulation technology to select strobes from testbenches generated by
sources other than TetraMAX ATPG. The procedure depends on the testbench source:

« Fortest vectors generated by other ATPG tools, edit the testbench to add the PowerFault
tasks.

. For functional (design verification) test vectors, edit the testbench to add the PowerFault
tasks and determine timing for the tester vector. Use t-1, the last increment of time within a
test cycle, for IDDQ strobes.

« For BIST (built-in self-test), control the clock with tester and determine timing for the tester
vector. Use t-1 for IDDQ strobes.

To see how to edit the testbench to add PowerFault tasks, you can look at some Verilog
testbenches generated by TetraMAX ATPG. For example, afterthe initial begin
statement, you need to insert $ssi_iddq tasks to invoke the PowerFault commands:
initial begin
//Begin IddQTest initial block

$ssi _iddg("dut adder test.dut");

$ssi _iddg("verb on");

$ssi iddg("seed SA adder test.dut");

Sdisplay ("NOTE: Testbench is calling IDDQ PLIs.");

$ssi _iddg("status drivers leaky LEAKY FILE");
//End of IddQTest initial block

end
You also need to find the capture event and insert the PowerFault commands to evaluate a
strobe at that point. For example:

event capture CLK;
always @ capture CLK begin
->forcePI default WFT;
#140; ->measurePO default WFT;
#110 PI[4]1=1;
#130 PI[4]=0;
//IddQTest strobe try
begin
$ssi iddg("strobe try");
$ssi _iddg("status drivers leaky LEAKY FILE");
end
//1ddQTest strobe try
end

PowerFault Verification and Strobe Selection 10-4

Test Pattern Validation User Guide K-2015.06-SP4

Testbenches for IDDQ Testability

When you create a testbench outside of the TetraMAX ATPG environment, the following design
principles can significantly improve IDDQ testability:

« Separate the Testbench From the Device Under Test
o Drive All Input Pinsto 0 or 1

o Try Strobes After Scan Chain Loading

o Include a CMOS Gate in the Testbench for Bidirectional Pins
« Model the Load Board

o Mark the I/O Pins

o Minimize High-Current States

o Maximize Circuit Activity

Separate the Testbench From the Device Under Test

For better IDDQ testability, maintain a clean separation of the testbench from the device under
test (DUT). The Verilog DUT module should model only the structure and behavior of the chip.
Put the chip-external drivers and pullups in the testbench. The testbench should also generate
stimulus for the chip and verify the correctness of the chip’s outputs.

Drive All Input Pins to 0 or 1

The mapping of testbench Xs to automated test equipment (ATE) drive signals is not well
defined. The results depend on how the active load on the ATE is programmed. Because Xs can
be mapped to VDD, VSS, or some intermediate voltage, such as (VDD-VSS)/2, avoid having
your testbench drive Xs into the chip. PowerFault reports input pins driven to X as “possible
float.”

Try Strobes After Scan Chain Loading

To minimize simulation time and database size when you run a Verilog/PowerFault simulation,
donotperforma strobe try oneveryserialized scan load step. Instead, use strobe
try only after the entire scan chain is loaded.

If your simulation does a parallel scan load or you are using functional vectors, use strobe
try before the end of each cycle.

Include a CMOS Gate in the Testbench for Bidirectional Pins

If your chip has bidirectional I/0 pins, place a CMOS gate inside the testbench to transmit the
signal between the testbench driver and the I/O pad. For details, see “Use Pass Gates”.

Testbenches for IDDQ Testability 10-5

Test Pattern Validation User Guide K-2015.06-SP4

Model the Load Board

Take into account external connections to the DUT. When a chip is tested by ATE, it resideson a
load board. The load board is a printed circuit board that provides the encapsulating
environment in which the chip is tested. It can contain pullups/pulldowns, latches for three-state
I/O pins, power/ground connections, and so on.

In general, your Verilog testbench should model the load board as accurately as possible. Any
pullups/pulldowns/latches that would exist on the load board should be modeled in the
testbench. In general, if a chip requires pullups to operate correctly in a real system, you can
assume they are needed on the load board also.

Mark the 1/0 Pins

The top-level ports of each DUT module are assumed to be primary I/O ports and are given
special treatment by PowerFault. If the testbench drives the DUT through other ports, use the
io command to tell PowerFault about these ports. For information onthe io command, see

w9

io” in the " PowerFault PLI Tasks " section.

Minimize High-Current States

Try to minimize times when analog, RAM, and I/O cells are in current-draining states. Put them
into standby mode when possible and write a complete set of test vectors for analog/RAM/IO
standby mode.

Because IDDQ testing can be performed when the circuit is in a low-current state, try to
minimize the number of vectors that put the circuit into high-current states. For maximum
coverage, you might need to repeat the vectors that are normally applied during high-current
states. For example, if your I/O pads have active pullups during some vectors, you can apply
those same vectors again when the pullups are disabled, so that IDDQ testing can be performed
on those vectors.

Maximize Circuit Activity

Try to toggle each node during low-current states. Some easy methods for achieving high circuit
activity include:

. Shift alternating 0/1 patterns into scan registers.

« Apply alternating 0/1 patterns to data and address lines.

Combining Multiple Verilog Simulations

If you use different Verilog simulation runs to test different portions of a device or to drive a
device into different states, you can use PowerFault technology to choose a set of strobe times
for maximum fault coverage over all the resulting testbenches. For example, if there are 30

Combining Multiple Verilog Simulations 10-6

Test Pattern Validation User Guide K-2015.06-SP4

testbenches and your tester time budget allows only five IDDQ strobes, the five selected strobes
ought to provide the best coverage out of all possible strobes in all 30 testbenches.

Note: If you want to improve coverage efficiency within a single testbench, see “Deleting Low-
Coverage Strobes."

To combine multiple simulation results, you can merge the IDDQ information from each
successive Verilog/PowerFault simulation into a single database. Then you can apply the IDDQ
Profiler to that single database. This process is illustrated in Figure 1.

Figure 1 Using Multiple Testbenches

)

Werilog
Simulator

o e —
e ——- —p

. |DDCP

o db > ro I

&

Yerilog

i

The following procedure is an example of a strobe selection session using two testbenches and
a budget of five IDDQ strobes. The PowerFault PLI tasks for testbenchl and
testbench2 areinfilesnamed iddgl.v and iddqg2.v?,respectively.

1. Iniddg1.vandiddg2.v, seed the entire set of faults, using either the seed command or
read commands. For example:

$ssi iddg("seed SA iddgl.v");

$ssi iddg("seed SA iddg2.v");

2. Iniddg1.v,usethe output create command to save the simulation results to an
IDDQ database named iddq.db?:

Combining Multiple Verilog Simulations 10-7

Test Pattern Validation User Guide K-2015.06-SP4

$ssi iddg("output create label=runl iddg.db");

3. Iniddg2.v,usethe output append command toappend the simulation results to the
database you created in Step 2:

$ssi iddg("output append label=run2 iddg.db");

4. Run a Verilog/PowerFault simulation using testbench1.v and iddg1.v?.
5. Run a Verilog/PowerFault simulation using testbench2 and iddg2.v?.

Run the IDDQ Profiler to select five good strobe points from the iddq.db database:
6. ipro -strb lim 5 iddg

A strobe report for multiple testbenches shows both the testbench number and simulation time
within the respective testbench for each selected strobe. Testbench names and labels are listed
in the header of the strobe report. Testbenches are numbered in sequence, starting with 1.

When you use multiple testbenches, the fault report files show only the comment lines from the
first testbench. PowerFault does not try to merge the comment lines from the fault list in the
second and subsequent testbenches with those in the first testbench.

Improving Fault Coverage

PowerFault does not require additional design-for-test (DFT) circuitry or modifications to your
testbench, models, or libraries. It does not require configuration files, and it runs on any Verilog
chip design.

If PowerFault is unable to find enough qualified strobes to provide satisfactory fault coverage,
you might be able to find more qualified strobes by using the techniques described in the
following sections:

« Determine Why the Chip Is Leaky
« Evaluate Solutions

Determine Why the Chip Is Leaky

The first step is to run the Verilog/PowerFault simulation to determine why the chip is leaky at
strobe times. At each strobe try, PowerFault examines your chip for leaky states. If it finds any
leaky states, it disqualifies the strobe point.

To check the leaky states for each strobe point, use the status command after the
strobe try?, asinthe following example:
always begin
fork
CLOCK PERIOD;
(CLOCK_PERIOD -1)

begin
$ssi _iddg("strobe try");
$ssi _iddg("status drivers leaky bad nodes");
end
join

Improving Fault Coverage 10-8

Test Pattern Validation User Guide K-2015.06-SP4

end

This example creates a file called bad_nodes that describes each leaky state at each strobe
point. For example:
Time 3999
top.dut.vee[0] is leaky: Re: float
HiZ <- top.dut.veePadO.out
top.dut.DIO[1] is leaky: Re: fight
St0 <- top.dut.dpadl cld
Stl <- top.dut.dpadl snd
StX <- resolved value

Foreach status command, the simulator reports the simulation time and a list of leaky
nodes. In the report, the full path name of each net is followed by areason (such as Re:
float?)and allist of drivers and their contribution to the net value. For example, in the
preceding example, top.dut.vee[0] isfloating because its lone driver
(?top.dut.veePad0?)isinthe high-impedance state.

For a complete description of the output of the status command, see “Status Command
Output”. For more information on leaky states, see “Leaky State Commands."

Evaluate Solutions

After you identify and understand the leaky states, you need to decide how to eliminate or ignore
them so that you can change unqualified strobes into qualified ones. Use any of the following
methods:

« Use the allow Command
. Configure the Verilog Testbench
. Configure the Verilog Models

Use the allow Command

The allow command can make PowerFaultignore leaky states that you know are not
presentin the real chip. For example, incomplete Verilog models can cause misleading leaky
states that prevent PowerFault from qualifying strobe points. For more information, see “Leaky
State Commands."

Configure the Verilog Testbench

In some cases, you can fix leaky states by modifying the Verilog testbench, as described in the
following sections:

o Drive All Input Pinsto 0 or 1

« Use Pass Gates
« Model the Load Board
« Markthe I/O Pins

Drive All Input Pins to 0 or 1

Make sure the testbench initializes all primary inputs. If your testbench drives Xs into the primary
input pins of the device under test (DUT), PowerFault disqualifies the vector and flags those pins

Improving Fault Coverage 10-9

Test Pattern Validation User Guide K-2015.06-SP4

as “possible float.” PowerFault takes the conservative position that Xs driven by the testbench
might translate to the automated test equipment (ATE) turning off the drive signal and allowing
the input pin to float.

If your ATE replaces Xs with a default drive value (either VDD or VSS), then driving Xs should
be allowed. Inthat case, usethe allow float command on all yourinputpins, asinthe
following example:

$ssi iddg("allow float testbench.chip.RE");

$ssi _iddg("allow float testbench.chip.ABUS[O0]");

$ssi iddg("allow float testbench.chip.ABUS[1]");

Use Pass Gates
If your chip has bidirectional I/0 pins, place a CMOS gate inside the testbench to transmit the
signal between the testbench driver and the I/O pad.

The following code shows how two registers in the testbench are connected to signals that feed
the DUT pins:
reg bio reg, dtrdy reg; // registers to hold stimulus
// drive bidirectional "bio" signal through pass gate
wire bio tmp = bio reg;
cmos (bio sig, bio tmp, ‘bl, ‘b0);

// drive input signal directly
wire dtrdy sig = dtrdy reg;

// hookup signals to dut
dut dut(bio sig, dtrdy sig, ...);

Notice how the input signal dtrdy sig isdrivendirectly bythe dtrdy reg register, butthe
bidirectional signal bio sig isdriventhroughthe cmos primitive, as shown in Figure 2.

Figure 2 Pass Transistor Between the Testbench and DUT

"I+ 1
. L . .
bio_re bio_si
_r°d D— —SIJ to Gore
T from core

ko L—'outename

dirdy_reg dtrcly_sig [
|

to core

Testbench DuUT

Improving Fault Coverage 10-10

Test Pattern Validation User Guide K-2015.06-SP4

Model the Load Board

When a chip is tested by ATE, it resides on a load board. The load board is a printed circuit board
that provides the encapsulating environment in which the chip is tested. It can contain
pullups/pulldowns, latches for three-state I/O pins, power and ground connections, and so on.

In general, your Verilog testbench should model the load board as accurately as possible. Any
pullups, pulldowns, and latches that would exist on the load board should be modeled in the
testbench. In general, if a chip needs pullups to operate correctly in a real system, you can
assume they are needed on the load board also.

Mark the I/0 Pins

The top-level ports of a DUT module are assumed to be primary I/O ports and are given special
treatment by PowerFault. If the testbench drives the DUT through other ports, use the io
command to tell PowerFault about these ports. For information onthe io command, see"
PowerFault PLI| Tasks ."

Configure the Verilog Models

In general, the more your chip is modeled at a structural level (using gates, switches, and wires),
the better for IDDQ testing. If your cells model logic behaviorally rather than with built-in Verilog
primitives and user-defined primitives (UDPs), PowerFault might find fewer qualified strobe
points. For details, see the following sections:

« Drive All Buses Possible

o Gate Buses That Cannot Be Driven

Use Keeper Latches

« Enable Only One Driver

o Avoid Active Pullups and Pulldowns

« Avoid Bidirectional Switch Primitives

Drive All Buses Possible

Because floating buses can disqualify strobe points, try to always drive internal buses. Either
configure the control logic to always enable one driver for the bus, or use keeper latches
(holders).

For example, here is a bus that has two drivers that are fully multiplexed:

bufifl (addr0, X[0], sel); // driver 1
bufifl (addr0, Y[0], sel bar); // driver 2
not (sel bar, sel); // inverter

Gate Buses That Cannot Be Driven

If driving the bus is not always possible or desirable, gate the bus so that when it does float, the
effect is blocked. For example, here is a bus that has two drivers and one load:

bufifl (addr0O, X[0], x en); // driver 1
bufifl (addr0, Y[0], y en); // driver 2
or (x or y en, X en, y en); // qualifier

and (addr0 qualified, addr0, x or y en); // load

Improving Fault Coverage 10-11

Test Pattern Validation User Guide K-2015.06-SP4

The bus value is blocked at the load (AND gate) when neither driver is active. If you want to use
OR gates to block floating buses, use the statedep float command. For more
information on this command, see “statedep_float” in the "PowerFault PLI Tasks" section. For
more information on blocking floating buses, see “State-Dependent Floating Nodes”.

Use Keeper Latches

If a bus cannot always be driven or gated, consider using keeper latches (also called “keepers”).
A keeper retains the last value driven onto the bus. It has a weaker drive strength than normal
bus drivers so that it can be overdriven.

Keepers should be modeled structurally. For example, here is a bus that has two drivers and one
keeper:

bufifl (addrO, X[0], x en); // driver 1
bufifl (addrO, Y[0], y en); // driver 2
buf (pull0O,pulll) (addr0, addr0); // keeper

Avoid modeling keepers behaviorally or with continuous assignments:
wire (pullO,pulll) addr0 = addr0; // AVOID THIS

Use only strength-restoring gates suchas buf for modeling keepers. Avoid using switch
primitives (?nmos?, pmos?, cmos?) for modeling keepers:
rnmos (addr0, addr0O, ‘bl); // AVOID THIS

Enable Only One Driver

Because bus contention disqualifies strobe points, initialize all control logic (enabling lines) for
bus drivers. Furthermore, if possible, configure the control logic to enable only one driver for the
bus at a time.

Avoid Active Pullups and Pulldowns

Active pullups and pulldowns can also disqualify strobe points, so use keeper latches on three-
state buses rather than pullups or pulldowns. PowerFault treats each of the following elements
as a pullup or pulldown:

« pullup and pulldown primitives
« tril and triO nets
« wand and wor nets

Conflicting values on “wired AND” nets are reported as active pullups, and conflicting values on
“wired OR” nets are reported as active pulldowns.

When you must use pullups or pulldowns, model them structurally like this:
wire n26;
pullup(n26);
OR
tril n26;

Avoid modeling pullups and pulldowns behaviorally or with continuous assignments, as in the
following example:
wire (highz0,pulll) n26 = n26; // AVOID THIS

Improving Fault Coverage 10-12

Test Pattern Validation User Guide K-2015.06-SP4

Avoid Bidirectional Switch Primitives

Avoidusingthe rtran?, rtranifl?,and rtranif0 primitives. If possible, replace them
with nmos?, pmos?,0r cmos primitives.

Floating Nodes and Drive Contention

PowerFault recognizes certain types of floating nodes and drive contention, and reports them
according to their classification. The following sections describe floating nodes and drive
contention:

o Floating Node Recognition
« Drive Contention Recognition

Floating Node Recognition

The following sections describe floating node recognition:
« Leaky Floating Nodes

o Floating Nodes Ignored by PowerFault
State-Dependent Floating Nodes
Configuring Floating Node Checks

Floating Node Reports

Nonfloating Nodes

Leaky Floating Nodes
PowerFault identifies thefollowing types of floating nodes as leaky:

. True floating node — This is a node at Z, which does not have any active drivers, as
shownin Figure 1.

Figure 1 True Floating Node Example

1,:,? Z
o

. Possibly floating node — This is a node at X that might not have an active driver, as
shown in Figure 2, or an undriven capacitive node. A capacitive node is a Verilog net with
small, medium, or large strength.

Floating Nodes and Drive Contention 10-13

Test Pattern Validation User Guide K-2015.06-SP4

Figure 2 Possibly Floating Node Example

Floating Nodes Ignored by PowerFault

PowerFaultignores (does not report) these types of floating nodes:

. Floating node without a load — This is a node that does not drive anything, as shown in
Figure 3.

Figure 3 Floating Node Without Load Example

1?
O
) A
0 }
0 ,]: un'iztonn erted

. State-dependent floating node — This is a node that can be allowed to float because its
effects are blocked by the states of other inputs, as shown in Figure 4.

Figure 4 Blocked Floating Node Example

@? VDD
0
J
[E out
; o *‘ 9 || e

Floating Nodes and Drive Contention 10-14

Test Pattern Validation User Guide K-2015.06-SP4

State-Dependent Floating Nodes

For AND, NAND, and NOR gates, the IDDQ effect of a floating input can be blocked by the
other inputs. For example, if one input to a two-input NAND gate is floating but the other input is
0, the floating input is blocked so that it cannot cause a leakage current.

In Figure 4, the 0 input turns off transistor n2, so there is no conducting path from VDD to VSS
through transistors p1 and n1. If the 0 input was 1 instead, PowerFault would identify the floating
input as leaky.

By default, all inputs of 2-input and 3-input AND/NAND gates and 2-input NOR gates are
treated as state-dependent floating nodes. By default, gates with more inputs and other types of
gates are not allowed to have floating inputs. You can change the input limit for the AND, NAND,
and NOR gates by usingthe statedep float command. For more information, see
“statedep_float” in" PowerFault PLI Tasks ."

Configuring Floating Node Checks

Usingthe allow and disallow commands, you can configure how floating nodes are
recognized. The allow command lets you do the following:

« Allow a particular node to float

« Allow all nodes to float

. Allow possible floating nodes (true floating nodes are still disallowed)
The disallow command lets you do the following:

. Disallow a Z on a particular node

+ Disallow Zs on all nodes

For a complete description ofthe allow and disallow commands, see “PowerFault PLI
Tasks.”

Floating Node Reports

The status leaky command reports a list of floating nodes and nodes with drive
contention. In order to save space, it reports only the floating node at the first strobe where the
node is leaky. To get a report on all floating nodes (including those previously reported), use the
all leaky optionwiththe status command. For example:

$ssi iddg("status drivers all leaky bad nodes");

Nonfloating Nodes

To get alist of leaky nodes, use the following command:
$ssi iddg("status leaky");

To get alist of nonleaky nodes, use the following command:
$ssi iddg("status nonleaky");

This command reports a list of nodes that are not floating and do not have drive contention,
together with the reason that each node was found to be nonleaky. This information can be
useful when you think a node should be reported as floating, but it is not.

Floating Nodes and Drive Contention 10-15

Test Pattern Validation User Guide K-2015.06-SP4

Drive Contention Recognition
PowerFault identifies the following types of drive contention:
« Pullups and pulldowns — For example, see the active pullup in Figure 5.
. Contention between multiple bus drivers — For example, see the true drive fight in
Figure 6.

Figure 5 Active Pullup

VDD

Figure 6 True Drive Fight

PowerFault makes a distinction between true and possible drive contention. A true fight occurs
when a net has both a 0 (VSS) driver and a 1 (VDD) driver. A possible fight occurs when one or
more drivers are at X on a bus with multiple drivers, as shown in Figure 7.

Figure 7 Possible Drive Fight

Floating Nodes and Drive Contention 10-16

Test Pattern Validation User Guide K-2015.06-SP4

PowerFault also warns about unusual connections that indicate static leakage. The first time you
executethe status command, it writes warning messages to the simulation log file about the
following conditions:

« A node connected to both VSS (supply0) and VDD (supply1)
« A node connected to both a pullup and a pulldown

Status Command Output

The output ofthe status command can help you determine the cause of floating nodes and
drive contention. Eliminating or reducing these types of leaky states not only makes your design
more IDDQ-testable, it can also reduce the device power consumption.

The following sections describe the status command output:
o Overview
« Leaky Reasons

« Nonleaky Reasons
« Driver Information

Status Command Overview

The status command is executed during the Verilog/PowerFault simulation. It reports the nodes
found to be leaky or nonleaky. For information on the command syntax, see “status” in
"PowerFault PLI Tasks ".

The status of each node is reported in this format:

net-instance-name is (leaky|non-leaky). Re: reason

The instance name of each net is followed by a reason that explains why the node was found to
be leaky or nonleaky. For example:

top.dut.TBIN is leaky: Re: float
top.dut.DIO is leaky: Re: possible float

The status command distinguishes between true and possible leaks. Possible leaks arise when
nodes and drivers have unknown values (X). In the preceding example, top.dut.TBIN is
truly floating (Z), whereas top.dut.DIO is possibly floating.

By default,the status leaky command reports only the first occurrence of a leaky node.
When there are leaky nodes at a strobe, and all these leaky nodes have been reported at
previous strobe times, the command prints the message “All reported.”

Leaky Reasons

The status command determines that a node is leaky for either a standard or user-defined
reason. A standard reason is reported when the node is leaky due to a built-in quiescence check,

Status Command Output 10-17

Test Pattern Validation User Guide K-2015.06-SP4

such as fight, float, pullup, or pulldown. A user-defined reason is reported when the node
violates a condition specified bythe disallow command.

Table 1 lists the standard leaky reasons and Table 2 lists the user-defined leaky reasons.

Table 1 Standard Leaky Reasons
Reason Description

Fight A drive fight between two or more drivers of equal
strength. One driveris at 0 and anotheris at 1.

Pullup An active pullup. A net with a pullup is being driven to 0.
Any time a stronger driver at 0 is overriding a weaker

grniver at1l tng net is fla%%\el_d as haﬁguoc_:{Nan_a tive pullup.

Pulldown active pulldown. A net"with a pu nis being
driven to 1. Any time a stronger driver at 1 is overriding
a weaker driver at 0, the net is flagged as having an
active pulldown.

Float A floating input node; an input node that is undriven

(2).

Possible Fight A possible drive fight. One driver at X might be fighting
with another driver (see Figure 7 in "Floating Nodes and
Drive Contention").

Possible Pullup A possible active pullup. A net with a pullup is being
driven by an X. Any time a stronger driver at X is
overriding a weaker driver at 1, the net is flagged as
having a possible pullup.

Possible A possible active pulldown. A net with a pulldown is

Pulldown being driven by an X. Any time a stronger driver at X is
overriding a weaker driver at O, the net is flagged as
having a possible pulldown.

Possible Float A possible floating input node. The node is at X, but
might have no active drivers (see Figure 2 in "Floating
Nodes and Drive Contention").

Table 2 User-Defined Leaky Reasons

Reason Description

Disallowed 0 A disallow command flags the net’s present
state (0) as leaky.

Status Command Output 10-18

Test Pattern Validation User Guide K-2015.06-SP4

Reason Description

Disallowed 1 A disallow command flags the net’s present
state (1) as leaky.

Disallowed X A disallow command flags the net’s present
state (X) as leaky.

Disallowed Z A disallow command flags the net’s present
state (Z) as leaky.

Disallow all Xs A disallow x command flags the net’s state
(X) as leaky.

Disallow all Zs A disallow z command flags the net’s present

state (Z) as leaky.

Disallow all Caps A disallow Caps command flags the net’s
present capacitive state as leaky.

Disallowed 0 A disallow command flags the net’s present
state (0) as leaky.

Disallowed 1 A disallow command flags the net’s present
state (1) as leaky.

A user-defined leaky reason appears when a node has a state specifically disallowed by a
disallow command. For example:

$ssi iddg("disallow top.dut.SDD == 0");

$ssi _iddg("disallow 2");

Thesetwo disallow commands produce a report like the following:
top.dut.SDD is leaky: Re: disallowed 0
top.dut.BIO is leaky: Re: disallow all Zs

In this example, top.dut.sSDD is0, whichis disallowed by the first disallow command;
and top.dut.BIO isZ,whichisdisallowed bythe second disallow command.

Nonleaky Reasons

Table 3 lists the standard nonleaky reasons and Table 4 lists the user-defined nonleaky reasons.

Table 3 Standard Nonleaky Reasons

Reason Description

Ooril The node is a quiet 0 or 1.

Status Command Output 10-19

Test Pattern Validation User Guide

Reason

Z no loads

Z blocked

X no contention

Possible float no
loads

Possible float
blocked

Description

The node is floating, but not connected
to any inputs.

The node is floating, but is blocked
(see Figure 4 in "Floating Nodes and
Drive Contention").

The node is driven to X (it is not
floating) and has no contention; it is
probably uninitialized.

The node is X and might be floating,
but is not connected to any inputs.

The node is X and might be floating,
but is blocked.

Table 4 User-Defined Nonleaky Reasons

Reason

Allowable float

Allowable fight

Allow all fights

Allow poss fights

Allow all floats

Allow poss floats

Description

The node is (or possibly is) floating, but an
allow command permits it.

The node has (or possibly has) drive
contention, but an allow command allows
it.

The node has (or possibly has) drive
contention, butan allow command allows
all contention.

The node possibly has drive contention, but
an allow command allows possible
contention.

The node is (or possibly is) floating, but an
allow command allows all floats.

The node is possibly floating, butan allow
command allows all possible floats.

K-2015.06-SP4

A user-defined nonleaky reason appears when a node has a state specifically allowed by an
allow command. For example:

$ssi iddg("allow fight top.dut.PL");
$ssi _iddg("allow all float");

Status Command Output

10-20

Test Pattern Validation User Guide K-2015.06-SP4

Thesetwo allow commands can produce a report like the following:
top.dut.PL is non-leaky: Re: allowable fight
top.dut.BIO is non-leaky: Re: allow all floats

Driver Information

To determine why a net is floating or has drive contention, its drivers must be examined.
Simulation debuggers and even some system tasks (such asthe $Sshowvar taskinthe
Verilog simulator) can perform this examination. You can also use the drivers option of the
status command, but this option generates only gate-level driver information.

The drivers option causes the status command to print the contribution of each driver. For
example:
$ssi _iddg("status drivers leaky bad nodes");
can produce output like:
top.dut.mmu.DIO is leaky: Re: fight

St0 <- top.dut.mmu.UT344

Stl <- top.dut.mmu.UT366

StX <- resolved value
top.dut.mmu.TDATA is leaky: Re: float

HiZ <- top.dut.mmu.UT455

HiZ <- top.dut.mmu.UT456

In this example, top.dut.mmu.DIO has adrive fight. One driver is at strong 0 (?st07?) and
the other at strong 1 (?st17?). The contributing value of each driver is printed in Verilog
strength/value format, as described in section 7.10 of the IEEE 1364 Verilog LRM.

The same status command withoutthe drivers option produces a report like this:
top.dut.mmu.DIO is leaky: Re: fight

top.dut.mmu.TDATA is leaky: Re: float

Driver Information

To determine why a net is floating or has drive contention, its drivers must be examined.
Simulation debuggers and even some system tasks (such asthe $Sshowvar taskinthe
Verilog simulator) can perform this examination. You can also use the drivers option of the
status command, but this option generates only gate-level driver information.

The drivers option causes the status command to print the contribution of each driver. For
example:
$ssi _iddg("status drivers leaky bad nodes");
can produce output like:
top.dut.mmu.DIO is leaky: Re: fight

St0 <- top.dut.mmu.UT344

Stl <- top.dut.mmu.UT366

StX <- resolved value
top.dut.mmu.TDATA is leaky: Re: float

HiZ <- top.dut.mmu.UT455

HiZ <- top.dut.mmu.UT456

Status Command Output 10-21

Test Pattern Validation User Guide K-2015.06-SP4

In this example, top.dut.mmu.DIO has adrive fight. One driver is at strong 0 (?st07?) and
the other at strong 1 (7St 17?). The contributing value of each driver is printed in Verilog
strength/value format, as described in section 7.10 of the IEEE 1364 Verilog LRM.

The same status command withoutthe drivers option produces a report like this:
top.dut.mmu.DIO is leaky: Re: fight
top.dut.mmu.TDATA is leaky: Re: float

Behavioral and External Models

PowerFault examines the structure of your Verilog HDL model to determine whether the chip is
quiescent. PowerFault looks for bus contention, floating inputs, active pullups, and other current-
drawing states.

If you use behavioral models or external models (like LMC, LAI, or VHDL cosimulated models)
to simulate subblocks of the chip, PowerFault cannot to determine when those subblocks are
quiescent. As aresult, it might select strobe points that are inappropriate for IDDQ testing. To
prevent this from happening, use the disallow command.

The following sections describe the disallow command in more detail:
« Disallowing Specific States

« Disallowing Global States

Disallowing Specific States

Thedisallow command is a flexible command that lets you describe the leaky states for all
instances of a behavioral or external model. One or more commands can describe which input,
output, or internal states correspond to nonquiescence.

For example, the three following disallow commands describe when instances of the
BRAM and DAC entities are leaky:

$SSi_iddq("disallow BRAM (REFRESH == 1 && ENABLE == y" o),
$ssi_iddg("disallow BRAM (WRITE EN == 1 || READ EN == 1)");
$ssi iddg("disallow DAC (port.0 != 0 && port.l != 0)");

Disallowing Global States

Youcanusethe disallow command to disallow all nets in the Verilog simulation from having
a particular value. This is useful if the libraries contain behavioral gate models. For example, if
the three-state buffers are not modeled with Verilog primitives or UDPs, then PowerFault might
not be able to detect bus contention.

Here is an example of a three-state buffer modeled behaviorally:
module BUFO (out, data, control);

output out;

input data, control;

wire out = (control == 0) ? data : ‘bZ;
endmodule

Behavioral and External Models 10-22

Test Pattern Validation User Guide K-2015.06-SP4

To prevent bus contention during an IDDQ strobe, you can disallow all Xs with this command:
$ssi _iddg("disallow X");

If disallowing all Xs is too pessimistic, you can use a specific disallow command for each
three-state buffer entity. For example, if you have two types of three-state buffers, BUF0 and
BUF1, use the following commands:

$ssi iddg("disallow BUFO (out == "),

$ssi iddg("disallow BUF1l (out ==)")

If the libraries contain behavioral gate models, PowerFault might not be able to detect floating
buses (buses with all drivers turned off). To prevent floating buses during an IDDQ strobe, you
can disallow all Zs with this command:

$ssi iddg("disallow 2");

If disallowing all Zs is too pessimistic, you canusea disallow command for each three-state
buffer entity. For example, you could use the following commands:

$ssi iddg("disallow BUFO (out == y" o) ;

$ssi iddg("disallow BUF1l (out ==)")

For more informationonthe disallow command, see “Leaky State Commands."

Multiple Power Rails

This section describes how to apply PowerFault to a chip with multiple power rails, where each
power rail feeds a separate logic block on the chip. The overall strategy is as follows:

1. Determine the number of IDDQ test points for each block.

2. Forone block, run a Verilog/PowerFault simulation, seeding only the faults in that block;
and use IDDQPro to select strobes for the block.

3. Repeat step 2 for each block in the design. Exclude any strobes that have already been
selected for previous blocks.

4. To determine the fault coverage for each block using the full set of strobes, run IDDQPro
separately on each database, manually selecting all strobes selected in steps 2 and 3.

Here is an example. Suppose you have a chip with three power rails, as shown in Figure 1.

Multiple Power Rails 10-23

Test Pattern Validation User Guide K-2015.06-SP4

Figure 1 Chip With Three Power Rails

TE
top
kil Goks block3
Step 1
Select two IDDQ strobes for each block.
Step 2

Run a Verilog simulation, seeding faults only in block1. The Verilog simulation produces a
database named db1 (see Figure 2). You then use IDDQPro to automatically select two strobes
from the database and save the strobe report in accum.strobes (see Figure 3):

ipro -strb lim 2 -prnt nofrpt dbl

mv iddq.srgt accum.strobes

Figure 2 Create a Database for Block 1

DD commands:
cutput dkl
s=ad 5k TE.top.klockl

st roke_try

Multiple Power Rails 10-24

Test Pattern Validation User Guide K-2015.06-SP4

Figure 3 Select Two Strobes for Block 1

— IDDGPr
—| commend cpticns: ickcly.2rpt
-strk_lim 2 EI T L rename

-prnt_nofrpt .

accum.atrobes

—

Step 3

Run the next Verilog simulation, this one seeding faults only in block2. The Verilog simulation
produces a database named db2?. You then use IDDQPro to automatically select two strobes
from db2 and append the two strobes to accum.strobes (see Figure 4 and Figure 5):

ipro -strb lim 2 -strb unset accum.strobes -prnt nofrpt db2

cat iddg.srpt >> accum.strobes

Figure 4 Create a Database for Block 2

|_ YWerileg Sirmulater
rmodels - g

Se=i_iddg e aa—
kL J
| DO commands: E
cutput db2

smmd Sk TE.top.khlock2

st roke_try

Figure 5 Select Two Strobes for Block 2

IDDGPro
command opticna: | | icilcrzrpt
-strk lim 2 E

-strk unset acocum.strokes

—-prnt_nofrit
aocum.atrobes

——

accum. strobes

append.

[

Multiple Power Rails 10-25

Test Pattern Validation User Guide K-2015.06-SP4

To complete step 3, you run the last Verilog simulation, this one seeding faults only in block3.
The Verilog simulation produces a database named db3. You then use IDDQPro to
automatically select two strobes from db3 and append the two strobes to accum.strobes?:
ipro -strb lim 2 -strb unset accum.strobes -prnt nofrpt db3

cat iddg.srpt >> accum.strobes

The accum.strobes file now has six strobes (two for each block). The strobes you selected for
any one block might be qualified for the other two blocks, so in step 4 you will try to select all six
strobes.

Step 4

To begin step 4, you run IDDQPro to manually select six strobes from db1?. You select the
strobes stored in accum.strobes and save the resulting strobe and fault reports:

ipro -strb lim 6 -strb set accum.strobes dbl

mv iddg.srpt iddg.srptl

mv iddqg.frpt iddg.frptl

Continuing step 4, you run IDDQPro to manually select six strobes from db2?. You select the
strobes stored in accum.strobes and save the resulting strobe and fault reports:

ipro -strb lim 6 -strb set accum.strobes db2

mv iddg.srpt iddg.srpt2

mv iddg.frpt iddg.frpt2

To finish step 4, you repeat the same procedure using db37?:

ipro -strb lim 6 -strb set accum.strobes db3

mv iddg.srpt iddg.srpt3

mv iddg.frpt iddg.frpt3

Conclusion
After step 4 is complete, you have selected a total of six strobes (two for each block). The three

individual strobe reports describe the fault coverage of the six strobes for each of the three
blocks. The three individual fault reports describe the detected faults for each of the three blocks.

Testing I/O and Core Logic Separately

PowerFault looks at the chip as a whole. By default, everything in the DUT module, including 1/O
pads, must be quiescent to qualify a strobe point for IDDQ testing.

If the I/O pads and core logic have separate power rails, you can probably increase fault
coverage by testing the core logic separately. This is because you can test the core at times
when the I/O pads are leaky, assuming that you are able to measure IDDQ just for the core logic
(ignoring the current drawn by the 1/0 pads).

To qualify strobes just for the core logic, use the allow command to ignore floating I/O pins
and drive contention at I/O pins. This command makes PowerFault ignore all leaky states at the
I/O pads. Also use the exclude command to prevent faults from being seeded inside the I/O
pads.

Here is an example:
$ssi iddg("allow float top.dut.clk33 pad");
$ssi iddg("allow fight top.dut.clk33 pad");

Testing I/O and Core Logic Separately 10-26

Test Pattern Validation User Guide K-2015.06-SP4

$ssi iddg("exclude top.dut.clk33 pad");
$ssi iddg("allow float top.dut.dto pad");
$ssi iddg("allow fight top.dut.dto pad");
$ssi _iddg("exclude top.dut.dto pad");

Testing I/O and Core Logic Separately 10-27

11

Strobe Selection Tutorial

After you install the Synopsys IDDQ option to TetraMAX ATPG, you can do the Strobe Selection
Tutorial to test the installation and to get an introduction to PowerFault strobe selection.

Note:This tutorial is intended to be a brief demonstration, not a comprehensive training session.
The following sections guide you through the Strobe Selection Tutorial:

« Simulation and Strobe Selection

« Interactive Strobe Selection

11-1

Test Pattern Validation User Guide K-2015.06-SP4

Simulation and Strobe Selection

The $IDDQ HOME/samples directory contains some examples of designs and scripts to
demonstrate PowerFault capabilities. One example is a simple one-bit full adder. In the following
set of tutorial procedures, you will run a script that simulates the testbench and selects a set of
IDDQ strobe times in the testbench:

o Examine the Verilog File
o Run the doit Script
« Examine the Output Files

Examine the Verilog File
The following steps show you how to examine the Verilog design file.

1. Changeto the directory $IDDQ HOME/samples/fadder?.
2. Look for two files in the directory: the doit scriptandthe fadder.v Verilog file.
3. Using any text editor, view the contents of the fadder.v file.

The fadder.v Verilogfile contains three modules: testbench?, iddgtest?,and
fadder?.

The testbench module is the testbench for the full adder. It tests every possible input
pattern, from b000 through b111, and prints out the port values at one time unit before the end of
each cycle.

The iddgtest module invokes the PLItasks for IDDQ analysis. It contains the following
$ssi_iddg commands:
$ssi iddg("dut testbench.fadder");
$ssi _iddg("seed SA testbench.fadder");
// strobe 1 time unit before end of cycle
forever begin

(testbench.CYCLE - 1)

$ssi _iddg("strobe try");

1;
end
The first command defines the device under testtobe testbench.fadder?. The second
one seeds stuck-at faults throughout the entire device. The third one performs IDDQ strobe
evaluation one time unit before the end of each cycle.

The fadder module is a gate-level description of the device under test, a single-bit full adder
implemented with NOR gates. Each gate has a unit delay. Given two input bits (xand y) and a
carry-in bit (ci), the full adder computes the sum bit and the carry-out (co) bit. The model
implements the following Boolean equations:

co=(x&y)|(x&ci)|(y&ci)
sum=x"y*ci
Figure 1 shows the stimulus, response, and IDDQ strobe points for the full adder simulation.

Simulation and Strobe Selection 11-2

Test Pattern Validation User Guide K-2015.06-SP4

Figure 1 Full Adder Simulation Strobe Points

- & L & & & & &

et LT
o TULT LT

ewele 1) ovde 2| cydle 3 evole 4| ovde & cvde & eyvde 7| ovle &

g 19 2o 30 40 53 &9 70
possible IDDG strobe points

Run the doit Script

The following steps show you how torunthe doit script, which runs the Verilog/Powerfault
simulation and IDDQ Profiler.

1. Using any text editor, view the contents of the doit (doit)file. Thisis a script that
creates a directory for the simulator output, invokes the Verilog simulator (with IDDQ PLI
tasks), and runs the IDDQ Profiler to select the strobe times.

2. If necessary, edit the file to work with your system configuration. For example, if your
simulator is invoked by a command other than vcs or verilog?, modify the line that
invokes the simulator.

3. Run the script.

The script runs the Verilog simulation, which produces the following results:
time co sum {x,y,ci}
9 0 O 000

19 0 1 001
29 0 1 010
39 1 O 011
49 0 1 100
59 1 O 101
69 1 0 110

79 1 1 111

The $ssi iddqg tasks produce the following summary report:
IDDQ-Test

Strobes (qualified/tested) = 8/8

Faults seeded (stuck-ats/bridges) = 32/0
Created IDDQ database: iddg

Simulation and Strobe Selection 11-3

Test Pattern Validation User Guide K-2015.06-SP4

This report tells you that eight strobes were tested, and all eight were found to be quiescent.

The script then invokes the IDDQ Profiler, which selects some of the eight quiescent strobes. It
generates two files: a strobe reportnamed iddg.srpt and afault report named

iddqg. frpt?. The script then tells you the path to the output files.

Loading seeds

Beginning strobe selection

Strobe selection complete
Strobe report is printed to iddg.srpt
Fault report is printed to iddg.frpt

Examine the Output Files
The following steps show you how to examine the report files.

1. Gotothe directory containingthe fadder outputfiles. Find the subdirectory called
iddg?, which contains the IDDQ database generated by the $ssi iddg PLItasks,
and the two IDDQ Profiler outputfiles, iddg.srpt and iddqg.frpt?.

2. Examine the contents of the strobe report file, iddqg.srpt?. You should see the
following report:

Date: day/date/time

Reached requested fault coverage.

Selected 3 strobes out of 8 qualified.

Fault Coverage (detected/seeded) = 100.0% (32/32)
Timeunits: 1.0ns

#

#

Strobe: Time Cycle Cum-Cov Cum-Detects Inc-Detects

9 1 50.0% 16 16
39 4 84.4% 27 11
49 5 100.0% 32 5

The report shows the requested level of fault coverage, 100 percent, was achieved by
three strobes. A table shows the time values and cycle numbers of the selected strobes,
the cumulative fault coverage achieved by each successive strobe, the cumulative
number of faults detected with each successive strobe, and the incremental (additional)
faults detected with each successive strobe.

3. Examine the contents of the fault report file, iddqg. frpt?. The report shows the list of
faults and the test result for each fault:

sa0 DS .testbench.fadder.co
sal DS .testbench.fadder.co
sa0 DS .testbench.fadder.sum
sal DS .testbench.fadder.sum
sa0 DS .testbench.fadder.x
sal DS .testbench.fadder.x
sa0 DS .testbench.fadder.y
sal DS .testbench.fadder.y
sa0 DS .testbench.fadder.ci

Simulation and Strobe Selection 11-4

Test Pattern Validation User Guide K-2015.06-SP4

sal DS .testbench.fadder.ci

sa0 DS .testbench.fadder.ul2 out
sal DS .testbench.fadder.ul2 out
sa0 DS .testbench.fadder.ull out
sal DS .testbench.fadder.ul0 out

sa0 DS .testbench.fadder.

sal DS .testbench.fadder.

sa0 DS .testbench.fadder.

sal DS .testbench.fadder. y

XX

The test result for each fault is either DS (detected by simulation) or NO (not observed). In
this case, all faults were detected. Each fault is identified by fault type (sa0 = stuck-at-0,
sa1l = stuck-at-1) and the hierarchical net name.

Interactive Strobe Selection

In the previous steps of this tutorial, you used the IDDQ Profiler in batch mode, which is the
default operating mode. In this mode, the IDDQ Profiler selects a set of strobes and attempts to
obtain the requested fault coverage with the fewest possible strobes.

You can also use the IDDQ Profiler in interactive mode to perform strobe and fault coverage
analysis. In a typical interactive session, you select a set of strobes, print a strobe report and a
fault coverage report for that set of strobes, and then repeat this process for different sets of
strobes. You can examine the status of all faults or just the faults within a specified hierarchical
scope.

The following sections guide you through the interactive strobe selection portion of this tutorial:
« Select Strobes Automatically
« Select All Strobes
o Select Strobes Manually

« Cumulative Fault Selection

Select Strobes Automatically
The following steps show you how to use the IDDQ Profiler to automatically select the strobes in
a single step:

1. Inthe directory containing the fadder output files, execute the following command:

o)

% ipro -inter iddg

The ipro -inter command invokes the IDDQ Profiler in interactive mode, and the
iddg argument specifies the name of the IDDQ database to use for the interactive
session.

Interactive Strobe Selection 11-5

Test Pattern Validation User Guide K-2015.06-SP4

2. Atthe IDDQ Profiler prompt (>), enter the “select automatic” command:

> sela

This command invokes the same strobe selection algorithm used in batch mode. The
IDDQ Profiler responds as follows:

Reached requested fault coverage.

#
Selected 3 strobes out of 8 qualified.
Fault Coverage (detected/seeded) = 100.0% (32/32)
Timeunits: 1.0ns
#
Strobe: Time Cycle Cum-Cov Cum-Detects Inc-Detects
9 1 50.0% 16 16
39 4 84.4% 27 11
49 5 100.0% 32 5

The list of selected strobes is the same as in batch mode.
3. Enter the “print coverage” command:

> prc

The IDDQ Profiler responds as follows:

Fault coverage for top modules
Instance NumDet NumFaults %Coverage (stuck-at bridge)
testbench 32 32 100.0% (32/32 0/0)
For the current set of selected strobes, 32 out of 32 faults are detected, and coverage is
100 percent.
4. Enter the “print faults” command:
> prf
The IDDQ Profiler produces the same fault report that you saw earlier in the
iddqg. frpt file:

sa0 DS .testbench.fadder.co
sal DS .testbench.fadder.co

sa0 DS .testbench.fadder. y
sal DS .testbench.fadder. y

5. Enter the “reset” command:
> reset

This command clears the set of selected strobes and detected faults.

Select All Strobes

The following steps show you how to manually select all possible strobes.

Interactive Strobe Selection 11-6

Test Pattern Validation User Guide K-2015.06-SP4

1.

Enter the “select all’ command:
> selall

The IDDQ Profiler responds as follows:

Selected all qualified strobes.
Selected 5 strobes out of 8 qualified.
Fault Coverage (detected/seeded) = 100.0% (32/32)
Timeunits: 1.0ns
#
Strobe: Time Cycle Cum-Cov Cum-Detects Inc-Detects
9 1 50.0% 16 16
19 2 62.5% 20 4
29 3 84.4% 27 7
39 4 90.6% 29 2
49 5 100.0% 32 3

All qualified strobes were selected in sequence, starting with the first strobe at time=9,
until the target coverage of 100 percent was achieved. Five strobes were required, rather
than the three selected by the sela (selectautomatic) command.

Reset the strobe selection and detected faults:

> reset

Select Strobes Manually

The following steps show you how to select strobes manually.

1.

Enter the following “select manual’” command to manually select a single strobe at
time=39:
> selm 39

The IDDQ Profiler responds as follows:

Selected 1 strobes out of 8 qualified.

Fault Coverage (detected/seeded) = 50.0% (16/32)
Timeunits: 1.0ns
#
#

Strobe: Time Cycle Cum-Cov Cum-Detects Inc-Detects
39 4 50.0% 16 16

This single strobe detected 16 faults, providing coverage of 50 percent.
To find out which faults have not yet been detected, enter the “print faults” command:
> prf

You should see the following response:

sa0 DS .testbench.fadder.co
sal NO .testbench.fadder.co
sa0 NO .testbench.fadder.sum
sal DS .testbench.fadder.sum

Interactive Strobe Selection 11-7

Test Pattern Validation User Guide K-2015.06-SP4

sal DS .testbench.fadder. x
sal NO .testbench.fadder. x
sa0 NO .testbench.fadder. y vsal DS .testbench.fadder. y

The second column shows Ds for “detected by simulation” or NO for “not observed.”
3. Enter the following command to see a list of modules:
> 1ls

The IDDQ Profiler responds as follows:

1s
testbench

This simple model has only one level of hierarchy. In a multilevel hierarchical model, you
can change the scope of the design view by usingthe 1s?, cd module name?,and
cd .. commands. Whenyouusethe prf command, only the faults residing within
the current scope (in the current module and below) are reported. Similarly, a coverage
report generated by the prc command applies only to the current scope.

4. Enter the following command to manually select another strobe at time=49:

> selm 49

The IDDQ Profiler responds as follows:

Selected 2 strobes out of 8 qualified.

Fault Coverage (detected/seeded) = 87.5% (28/32)
Timeunits: 1.0ns
#
#

Strobe: Time Cycle Cum-Cov Cum-Detects Inc-Detects
39 4 50.0% 16 16
49 5 87.5% 28 12

The IDDQ Profiler adds each successive strobe selection to the previous selection set.
The report shows the cumulative coverage and cumulative defects detected by each
successive strobe.

5. Look at the fault list:
> prf

6. Reset the strobe selection and detected faults:
> reset

Cumulative Fault Selection
The following steps show you how to combine manual and automatic selection techniques:

1. Manually select the two strobes at time=19 and time=29:
> selm 19 29

The IDDQ Profiler responds as follows:
Selected 2 strobes out of 8 qualified.

Interactive Strobe Selection 11-8

Test Pattern Validation User Guide K-2015.06-SP4

Fault Coverage (detected/seeded) = 78.1% (25/32)
Timeunits: 1.0ns
#
Strobe: Time Cycle Cum-Cov Cum-Detects Inc-Detects
19 2 50.0% 16 16
29 3 78.1% 25 9

2. Enter the “select automatic” command:

> sela

The IDDQ Profiler responds as follows:

Reached requested fault coverage.

Selected 4 strobes out of 8 qualified.

Fault Coverage (detected/seeded) = 100.0% (32/32)

Timeunits: 1.0ns

v# Strobe: Time Cycle Cum-Cov Cum-Detects Inc-Detects
v

19 2 50.0% 16 16
29 3 78.1% 25 9
59 6 96.9% 31 6
69 7 100.0% 32 1

The sela command keeps the existing selected strobes and applies the automatic
selection algorithm to the remaining undetected faults. In this case, four strobes were
required to achieve 100 percent coverage.

3. Reset the strobe selection and detected faults:
> reset

4. Continue to experiment with the commands you have learned. For help on command
syntax, usethe help command:

> help
or
> help command name

5. When you are done, exitwiththe quit command:
> quit

Interactive Strobe Selection 11-9

12

Interfaces to Fault Simulators

PowerFault is compatible with the Verifault and Zycad fault simulators. You can read the fault
lists generated by these tools into PowerFault.

The following sections describe the interfaces to these fault simulators:
« Verifault Interface

o Zycad Interface

12-1

Test Pattern Validation User Guide K-2015.06-SP4

Verifault Interface

You can seed a design with faults taken from a Verifault fault list. Figure 1 shows the data flow
for this type of fault seeding.

Figure 1 Data Flow for Verifault Interface

e — af .
Werilo Smu%ator
B GOMTAAD GEtIGns:
_— ¥ -2 +autonandrc
_______________ e
iddg
Ty —*| database

$ssi_iddg

D03 tasks
strobe timing
read_werifault

Werifault
e ——-

fault dictionary
of

fault list

Hs_dictionany
Fs_list —

id ol IDDGPre _ —h
database |l —* command option:

q
-prut_fot verifault F

To seed faults from Verifault fault dictionaries and fault lists, use the read verifault
command in the Verilog/PowerFault simulation, as described in “read_verifault” in the "
PowerFault PLI Tasks" section. By default, PowerFault remembers all the comment lines and
unseeded faults in the Verifault file, so that when it produces the final fault report, you can easily
compare the report to the original file.

Whenyouusethe read verifault command to seed fault descriptors generated by
Verifault, and your simulator is Verilog-XL, use the -x and +autonaming options when
you start the simulation:

Verilog -x tautonaming iddg.v

Otherwise, the read verifault command mightnotbe able to find the nets and terminals
referenced by your fault descriptors.

Verifault Interface 12-2

Test Pattern Validation User Guide K-2015.06-SP4

By default, the read verifault command seeds both prime and nonprime faults. When
you run IDDQPro after the Verilog simulation to select strobes and print fault reports, all fault
coverage statistics produced by IDDQPro include nonprime faults. If you want to see statistics
for only prime faults, seed only those faults. For example, you can create a fault list with just
prime faults and use that list withthe read verifault command.

By default, IDDQPro generates fault reports in TetraMAX format. To print a fault reportin
Verifault format, usethe -prnt fmt verifault option:
ipro -prnt fmt verifault -strb lim 5 iddg-database-name

When you use multiple testbenches, the fault report files show only the comment lines from the
first testbench. PowerFault does not try to merge the comment lines from the fault list in the
second and subsequent testbenches with those in the first testbench.

If you mix fault seeds from other formats, like usingthe read zycad command to seed faults
from a Zycad .fog file, the Zycad faults detected in previous iterations are counted in the
coverage statistics but are not printed in the fault report.

Zycad Interface

To seed faults from Zycad .fog files, usethe read zycad command inthe
Verilog/PowerFault simulation, as described in “read_zycad” in the "PowerFault PLI Tasks "
section. By default, PowerFault does the following:

« Remembers all the comment lines and unseeded faults in the .fog file, so that when it
produces the final report, you can easily compare the report to the original file.

« Generates fault reports in TetraMAX format, which are not easily compared with Zycad
files. To print a fault report in Zycad format, use the -prnt fmt zycad option:

ipro -prnt fmt zycad -strb lim 5 iddg-database-name

« Prints out the fault report using a period (.) as the path separator for hierarchical names.
You might want to print the fault report with a forward slash character as the path
separator so that the report can be more easily compared to the original .fog file. To do so,
usethe -path sep / option:
ipro -prnt fmt zycad -path sep / -strb 1lim 5

iddg-database-name
When you use multiple testbenches, the fault report files show only the comment lines from the
first testbench. PowerFault does not try to merge the comment lines from the fault list in the
second and subsequent testbenches with those in the first testbench.

If you mix fault seeds from other formats, like usingthe read verifault command toseed
faults from a Verifault file, the Verifault faults detected in previous iterations are counted in the
coverage statistics but are not printed in the fault report.

Zycad Interface 12-3

13

Iterative Simulation

You can run PowerFault iteratively, using each successive testbench to reduce the number of
undetected faults. This feature is supplied only for backward compatibility with earlier versions of
PowerFault. In general, you get better results by using the multiple testbench methodology
explained in Combining Multiple Verilog Simulations.

In the following example, you have two testbenches and you want to choose five strobes from
each testbench. All of the PowerFault tasks have been put into one file named ssi.v?.

This is the procedure to perform simulations iteratively:

1.

In ssi.v?, seed the entire set of faults, using either the seed commandorthe read
commands.

Run the Verilog simulation with the first testbench:

vcs tacc+2 -R -P $IDDQ HOME/lib/iddg vcs.tab
testbenchl.v ssi.v ... $IDDQ HOME/lib/libiddg vcs.a

or
Verilog testbenchl.v ssi.v ..

Run IDDQPro to select five strobe points:

ipro -strb lim 5

Save the fault report and strobe report:

mv iddg.srpt runl.srpt
mv iddqg.frpt runl.frpt

Edit and change ssi.v so that it seeds only the undetected faults in run1.frpt?:

13-1

Test Pattern Validation User Guide K-2015.06-SP4

$ssi _iddg("read tmax runl.frpt");

6. Run the Verilog simulation again, using the second testbench:

vcs t+acc+2 -R -P $IDDQ HOME/lib/iddg vcs.tab
testbench2.v ssi.v ... $IDDQ HOME/lib/libiddg vcs.a

or

Verilog testbench2.v ssi.v ...

7. Run IDDQPro again to select five strobe points from the second testbench:

ipro -strb lim 5

8. Save the fault report and strobe report:

mv iddg.srpt run2.srpt
mv iddg.frpt run2.frpt

After completion of these steps, run1.srpt contains five strobe points for the first testbench and
run2.srpt contains five strobe points for the second testbench.

If you have more than two testbenches, repeat steps 5 through 8 for each testbench, substituting
the appropriate file names each time.

13-2

A

Simulation Debug Using MAX Testbench
and Verdi

Verdiis an advanced automated open platform for debugging designs. It offers a full-featured
waveform viewer and enables you to quickly process and debug simulation data.

When you use combine MAX Testbench, VCS, and Verdi for simulation debug, you can perform
a variety of tasks, including displaying the current pattern number, the cycle count, and the active
STIL statement, and adding input and output signals.

The following topics describe the process for setting up and running Verdi with MAX Testbench
and VCS:

Setting the Environment

Preparing MAX Testbench

Linking Novas Obiject Files to the Simulation Executable

Running VCS and Dumping an FSDB File

Running the Verdi Waveform Viewer

A-1

Test Pattern Validation User Guide K-2015.06-SP4

Setting the Environment

To set up the install path for Verdi, specify the following settings:
setenv NOVAS HOME path to verdi installation
set path = (SNOVAS HOME/bin $path)

To set up the license file for Verdi, use one of the following environment variables:

setenv NOVAS LICENSE FILE license file:$NOVAS LICENSE FILE
setenv SPS LICENSE FILE license file:$SPS LICENSE FILE
setenv LM _LICENSE FILE license file:$LM LICENSE FILE

The license search priority is as follows:

1. SPS_LICENSE_FILE
2. NOVAS_LICENSE_FILE
3. LM_LICENSE_FILE

To set up the install path and license file for VCS, specify the following:

setenv VCS HOME path to vcs installation

set path=($VCS HOME/bin S$path)

setenv SNPSLMD LICENSE FILE license file:$SNPSLMD LICENSE FILE

Preparing MAX Testbench

To prepare MAX Testbench to run with VCS and Verdi, you need to add a series of FSDB dump
tasks to the testbench file. Some of the common FSDB dump tasks include:

« SfsdbbDumpfile — Specifies the filename for the FSDB database.

« $fsdbbDumpvars —Dumps signal value changes of specified instances and depth. To use
this command, specify the FSDB file name. The default file name is novas.fsdb. You can
specify several different FSDB file names in each fsdbDumpvars command

» SfsdbDumpvarsByFile - Uses a textfile to select which scopes and signals to dump to
the FSDB file. The contents of the file can be modified for each simulation without
recompiling the simulation database.

The following example setsthe $fsdbDumpfile and $fsdbDumpvarsByFile tasksinthe
MAX Testbench file (make sure you insertthe ' i fdef WAVES statement just before the
'"ifdef tmax_ vcde statement):

“ifdef WAVES
$fsdbDumpfile ("../patterns/ (YourPatternFileName) .fsdb") ;
$fsdbDumpvars (0) ;

“endif

For complete information on all FSDBdump tasks, refer to the following document:

Setting the Environment A-2

Test Pattern Validation User Guide K-2015.06-SP4

SNOVAS HOME/doc/linking dumping.pdf

Linking Novas Object Files to the Simulation
Executable

When you compile the VCS executable, you need to add a pointer to the Novas object files. You
can do this using either of the following methods:

« Use the - £ sdb option to automatically point to the novas.tab and pli.a files
% vcs [design files] [other desired vcs options] -fsdb

. Use the - P option to point to the novas.tab and pli.a files provided by Verdi, as shown in
the following example:
% vcs —-debug pp \

-P $NOVAS_HOME/share/PLI/VCS/$PLATFORM/novaS.tab \

$NOVAS HOME/share/PLI/VCS/SPLATFORM/pli.a \

+vcsd +vpi +memcbk [design files] [other desired vcs options]

For interactive mode, you need to add the ~debug all option. If you need to include model-
driven architecture signals (MDAs) or SystemVerilog assertions (SVAs), use the ~debug pp
option or the +vcsd+vpi+memcbk option.

Running VCS and Dumping an FSDB File

The following example shows how to use VCS to compile a simulation executable with links to
Novas object files, run the simulation, and dump an FSDB file:

LIB FILES=" -v ../design/class.v" DEFINES="+define+WAVES" DEBUG
OPTIONS="-debug pp -P $NOVAS HOME/share/PLI/VCS/LINUX64/novas.tab
SNOVAS_HOME/Share/PLI/VCS/LINUX64/pli.a“

OPTIONS="-full64 +tetramax +delay mode zero +notimingcheck
tnospecify ${DEBUG OPTIONS}" NETLIST FILES="../design/snps micro_
dftmax net.v.sal" TBENCH FILE="../patterns/pats.v" SIMULATOR="vcs"

S{SIMULATOR} -R ${DEFINES} S${OPTIONS} ${TBENCH_FILE} ${NETLIST_
FILES} ${LIB FILES} -1 parallel sim verdiwv.log

Running Verdi

The following example shows how to set up and run Verdi:

LIB_FILES=" -v ../design/class.v"
DEFINES=""

Linking Novas Object Files to the Simulation Executable A-3

Test Pattern Validation User Guide K-2015.06-SP4

ANALYZE OPTIONS=""

GUI OPTIONS="-top snps micro test -ssf ../patterns/pats.fsdb™
NETLIST FILES="../design/snps micro dftmax net.v.sal" TBENCH
FILE="../patterns/pats.v"

ANALYZER="vericom"

GUI="verdi"

S{ANALYZER} S${DEFINES} ${ANALYZE_OPTIONS} ${TBENCH_FILE}
${NETLIST_FILES} ${LIB_FILES}

The following topics describe several scenarios for using Verdi for debugging:

Debugging MAX Testbench and VCS
Changing Radix to ASCII
Displaying the Current Pattern Number

Displaying the Vector Count

Using Search in the Signal List

Debugging MAX Testbench and VCS

The following figure shows an example of how to use Verdi to debug MAX Testbench and VCS.

Fe Eil Zom Display Mew Window Hep

EJ4¢ 2:Hn/() CEEEEE € Ecupn) % s

leur - 50,800 (1 ns)
(s ¥ 6,855 {1 ns) | |
Call "capture clx" | Delta -43.945 (1 ns) | HERAL 7,200 7,400 7,600
" pi"=0100000; " po"=HriHril ck St) W | SN | I | SO | S—| — —
T1 e matl 3101 4
"pattern 4": EEerrTT0ad Unloa R F

Il v_comt]31:0] (M9 | 7
"accu[7] "=LHHHLIHHHLL; "tesi[3] EEmTm-

"test so4"SHLHLLLHHLIH; "te

"test_si3"=01111100110; "te
Call(lcapture_clk") C_r - = :

| 11: xit_testbench_srps_micro.cor_StmitNamesD:199] load wrioad Stmt
"_p:i_"=DlDDDDD; " po"=LLLHELLHLHG; |

"pattern 5": Call "load unload" {
"accu[7] "=HHLLLHHHHLH; "test_so2"=.;
"test so4"=LHLLIHLLHHH; "test_sil"=...;

"test si3"=00110110011; "test_si4"=00110000111; }

Running Verdi A-4

Test Pattern Validation User Guide

K-2015.06-SP4

Changing Radix to ASCII

The following example shows how to change Radix-formatted signal values to an ASCII format:

IS}
Eile View Souice JIrace Debug Tooly Window Help
B ME-L N B 7
Instance

B&] :np:_l:u:ru_te:t'

25 _burat__pattern_ init_unit
_burst pattern proc unit
force_sigs_p
measurs sigs_p
apply__default WFT_WFT
3 apply_wit

B assign ival
% assign_stat
5 mssign wal

T
= capture
| S

ﬂﬂdm Sigral_List
= cur_Stmthlame

=

o

Ene Signal View

==

e M X
capture_clk
capture rat

p check_sid_args

complete cycle

® display_help
display ops
display stat

3 get_sth_sig

Ninit rteps
3 Load_unload

=
%heawﬂ_c}aaiﬂ_wt
S

gl)

measure_out sig
REAIUCE_3CAN_oUL
p_shife 0
[:par%sr_atrobc_data

L F

|

—
(4

Instance | Declaration

Message

4

General | Compile | Trace | Seasch | Interconnection |

=Verdi:nTraceMain:1> snps_micro_test snps_micro_test (../patterns/pats.v) - /home/.../LAB3/patterns/pats.fsdb

u T ﬂﬂ# . E]["]\. O%"h 8

.
= 0O X
Ir_StmiName | 2

18R 60 B &~ W~
| - |0 -srcrzsnps_micro_t..pattemsipas.y) 9| 28] - | O]

141 4]
142
143
144
145
146

réag test aid con ;
reg teat_ae_con ;
ey test mods con ;
wire ‘Zaccu[T]

wirs “accul6)

wire ‘soculS)

*<nWave:2> /home/studentl/LAB3/patterns/pats.fsdb
Tools Window Help

-l -
(A}

Analog

Spacing
Hixight
ColorPaltem. .

LEIRTET Binary
Slgnal Value Motation k¢ oot
Analog Wavefonm Hexadecimal
Digital 'Waveform Decimal
Invert Waveform « ASCH

Eroperty .
Clagsic Transaction Y

R ATETD M mdd Aliss from Eile.

Go To » Add Allas from Erogram..
Set Search Yalue Bemove Alias

Set Search Constraint Edit Alias...

Sngp CursonMarker (o Transitions 5

Fi T "
Failed to import the “tamc773 u® libracy becaw e
--=AIY STTOC OT VACKING message, plaass refer to Eeep Cursor at Cenfer ¥
Total O srror(s). 0 warning(a) Wavefom Thne i
File /home/studentl /dfeans 1ahd/patterns/pats. fadbh is loaded Marker. ShifheM
File /home/studentl/LABI /patterna/pats, fadb is loaded —
[i
=)
olmle e
Running Verdi A-5

Test Pattern Validation User Guide K-2015.06-SP4

Displaying the Current Pattern Number

The following example shows how to display the current pattern number.

5] abardtaTradaMaircl > wnga_mlirg el snga_micr o Lawk [psitarnuipatn.v] - (hamael., JLAR Lpasttarmn pats. fodb = 0 X

Lie e Soupte Tence Detoq Toog Fedow Hep w_iammipnd G W
ERSLN DY E-ID«+BC00LT B R QO o B

ol _"'_:-"'_I;r_ll S | e w1 mmwlilg-:.‘-..'i':j-_l_ﬂ’

:;5‘]9\;1I-.-|.Iri-- | v P“! LRLBGE il T _ebt A pww -.r-.'"r'
. i _pafibaps imkL_weit — == k! Eataday pep pat, S CE

B ::'.-\.-ili_pl.l';irn_i-ld-c_h\:t
B Dadin_miga_p
A DL L
| sl delwals WFT_SFT
- Wiy vt
- R .
sesign_uvel
Bawigh_slal
" ari e wel
| LA
nptuga_a Lk
Saplade_asl
el _nid_mige
ytls
g Ly _halp
dunploy_sgy
funploy_ whiat
g el Wi
BART T
Tewd_edend
e L L ST
[L]
5 el LW e A
E _

ST & |
e

- BALESR T W B

wrdeimy Salmrg

Lis Zopal e

Nrvviomm Araieg [0l Wiedos Help

4

L EL e r

i

n

L BT -

LR Crompaliy | Troiw Jmarch [rlies oree e
Fuiled B0 ingead § tha "Canar FOR w" Lidbndy Teed mees ll.+|
sachiny mived of wainihg mevanje, jlesss fefed e P |
¥}
[i==]
TLal D adie (i) @ kiG] - T wrn "1‘!. - -
Fils e Svbodand] AW e DS T A aatiarna Apsts fnlh op J Froms FEE_BEOR TNV

Running Verdi A-6

Test Pattern Validation User Guide K-2015.06-SP4

Displaying the Vector Count

The following example shows how to display the vector count.

'H] =VerdinTraceMain:l> snps_micro_test snps_micro_test [./pakierns/pats.v} - fhome/. JLABY patterns/pats. fadb - B W
Ede Virw Soufce Tiace [Dedey Toolj WesSs Hilp i _Smmlisd 0 v
MD-L ® B - BR¢»>0C00%L @ 8B 00 b & MW |
AR of |.G| = |I:| Simmnl_Lisl ,,_!;-'J = |EIJ & | g _macrn_ L paiismafpatsw) O |+]& - J =] |-
B} anps_nicce_teat B enr o 157] wire |0:MCEAINS=1] de st gi
i _bugek_ pattern_ inik wndt] = ¥ 150 geq [0 NCEAINS-1] com 5 lI
A= burst_ pattarn_proo_onat Eagral - 155 wire |0 ESOUTS-1] met_sa |
e Force_iigsp B mps_micro_tast 16D |
i-.-uwu_ng-_p alld 0 Lk_coon reg 161 wice [0 (B*RAMELEWOTH-0} | sus_Stansions il |

spply__delsult VIFT_VIT
spply win

BRSLOn Cur_StetNsms = StatEssss|[our_st

B L T A | © [AL P wine g a | ey L (2] 2] @ Gew G1=|

S
L5
[=
&
L5
=
| =
5
=
| S
[S
=
=
|5
=
=
=
=
=
=

8 4]
1
'l -
1 .
at =M
| = .
| =m
1-I
=N
rreTren
= @
Total
Fils /i
File /8 ']
railed | b
I el 3 EEN__ 1 I ——
= | Setecied FERpE_mbCi_Hilieil_mase_con
E] - -

Running Verdi A-7

Test Pattern Validation User Guide K-2015.06-SP4

Using Search in the Signal List

The following example shows how to add input and output signals by searching the signal list.

'H] =VerdinTraceMain:l> snps_micro_test snps_micro_test [./pakierns/pats.v} - fhome/. JLABY patterns/pats. fadb - B W
Ede Virw Soufce Tiace [Dedey Toolj WesSs Hilp i _Smmlisd 0 v
T —— —T] . T -
i w2 il 1 e R B+=+0ROO% @& “EE GO B G M |
i =] - o] sipaw i ,,_!;-'J =] EIJ * S g _micrn_R. Wpatismatpatsw) O | o 8] - J all
B} anps_nicce_teat B enr o 157] wire (0-MCEATHE=1] dec_dsur; gi
i _bugek_ pattern_ inik wndt] = ¥ 150 geq [0 NCEAINS-1] com N lI
AR _burst__patiern_proo_tanit Eagral - 155 wire |0 ESOUTS-1] met_sa |
% Giee_sigs_p B mps_micro_tast 16D

E mearuce_sign_p alld 0 Lk_coon reg 161 wice ([0 (§*EAOELENOTH-1}] cus_StatNams
spply_defsult VFT_WFT Basign cur_StatName = StatWsmss [cur_st

spply win

~ [L P e @& [ey] @ sow G =]

i
1
1
L]
q
1
1
L]
-
1

14 4 g

il =¥
i
1 = @ -
] T
& N = E t
i -
E | =]
| S1-E
]]
e ag
=8
General =
== ehiiff | -
Totsl
Fils /i
Fils /h{l8
Failed |
I
)

Running Verdi A-8

	About This User Guide
	Audience
	Related Publications
	Release Notes
	Conventions

	Customer Support
	Accessing SolvNet
	Contacting the Synopsys Technical Support Center

	1				Introduction
	TetraMAX Pattern Format Overview
	Writing STIL Patterns
	Design to Test Validation Flow
	Installation
	Specifying the Location for TetraMAX Installation

	2				Using MAX Testbench
	Overview
	Licenses
	Installation
	Obtaining Help
	See Also

	Running MAX Testbench
	See Also
	Using the write_testbench Command
	Using the stil2Verilog Command
	Setting the Run Mode
	CACGEHII

	Configuring MAX Testbench
	Example of the Configuration Template
	See Also

	Setting the Verbose Level
	See Also

	Understanding the Failures File
	MAX Testbench and Legacy Scan Failures
	MAX Testbench and Adaptive Scan Failures
	MAX Testbench and Serializer Scan Failures

	Using the Failures File
	See Also

	Displaying the Instance Names of Failing Cells
	See Also

	Using Split STIL Pattern Files
	Execution Flow for -split_in Option
	See Also

	Splitting Large STIL Files
	Why Split Large STIL Files?
	Executing the Partition Process
	Example Test

	Force Release and Strobe Timing in Parallel Load Simulation
	See Also

	MAX Testbench Runtime Programmability
	See Also
	Basic Runtime Programmability Simulation Flow
	Runtime Programmability for Patterns
	Using the -generic_testbench Option
	Using the -patterns_only Option
	Executing the Flow
	Using Split Patterns

	Example: Using Runtime Predefined VCS Options
	Runtime Programmability Limitations
	MAX Testbench Support for IDDQ Testing
	See Also
	Compile-Time Options for IDDQ
	See Also

	IDDQ Configuration File Settings
	See Also

	Generating a VCS Simulation Script

	Understanding MAX Testbench Parallel Miscompares
	How MAX Testbench Works
	See Also

	Predefined Verilog Options
	See Also

	MAX Testbench Limitations
	See Also

	3				MAX Testbench Error Messages and Warnings
	Error Message Descriptions
	Warning Message Descriptions
	Informational Message Descriptions

	4				Debugging Parallel Simulation Failures Using Combined Pattern Validation
	See Also
	Overview
	See Also

	Understanding the PSD File
	Creating a PSD File
	Using the run_atpg Command to Create a PSD File
	Using the run_simulation Command to Create a PSD File

	Displaying Instance Names
	Flow Configuration Options
	Example Simulation Miscompare Messages
	Example 1
	Example 2
	Example 3
	Verbosity Setting Examples

	Debug Modes for Simulation Miscompare Messages
	Pattern Splitting
	Splitting Patterns Using TetraMAX
	Examples Using TetraMAX For Pattern Splitting
	Set Up Example
	Example Using Pattern File From write_patterns Command
	Example Using Split USF STIL Pattern Files

	Splitting Patterns Using MAX Testbench
	Specifying a Range of Split Patterns Using MAX Testbench

	MAX Testbench and Consistency Checking
	See Also

	Limitations

	5				Troubleshooting MAX Testbench
	Introduction
	Troubleshooting Compilation Errors
	FILELENGTH Parameter
	NAMELENGTH Parameter
	Memory Allocation

	Troubleshooting Miscompares
	Handling Miscompare Messages
	Miscompare Message 1
	Miscompare Message 2
	Miscompare Message 3
	Miscompare Message 4

	Localizing a Failure Location
	Resolving the First Failure
	Miscompare Fingerprints
	Expected versus Actual States
	Current Waveform Table
	Labels and Calling Stack

	Additional Troubleshooting Help

	Adding More Fingerprints

	Debugging Simulation Mismatches Using the write_simtrace Command
	Overview
	Debugging Flow
	Input Requirements
	Using the write_simtrace Command
	Understanding the Simtrace File
	Error Conditions and Messages
	Example Debug Flow
	Restrictions and Limitations

	6				PowerFault Simulation
	PowerFault Simulation Technology
	IDDQ Testing Flows
	IDDQ Test Pattern Generation
	IDDQ Strobe Selection From an Existing Pattern Set

	Licensing

	7				Verilog Simulation with PowerFault
	Preparing Simulators for PowerFault IDDQ
	Using PowerFault IDDQ With Synopsys VCS
	Using PowerFault IDDQ With Cadence NC-Verilog
	Setup
	32-bit Setup
	64-bit Setup

	Creating the Static Executable
	Running Simulation
	Creating a Dynamic Library
	Running Simulation

	Using PowerFault IDDQ With Cadence Verilog-XL
	Setup
	Running Simulation
	Running Verilogxl

	Using PowerFault IDDQ With Model Technology ModelSim

	PowerFault PLI Tasks
	Getting Started
	PLI Task Command Summary Table

	PLI Task Command Reference
	Conventions
	Special-Purpose Characters
	Module Instances and Entity Models
	Cell Instances
	Port and Terminal References

	Simulation Setup Commands
	dut
	output
	ignore
	io
	statedep_float
	measure
	verb

	Leaky State Commands
	allow
	disable SepRail
	disallow

	Fault Seeding Commands
	seed SA
	seed B
	scope
	read_bridges
	read_tmax
	read_verifault
	read_zycad
	exclude

	Fault Model Commands
	model SA
	model B

	Strobe Commands
	strobe_try
	strobe_force
	strobe_limit
	cycle

	Circuit Examination Commands
	status
	summary

	Disallowed/Disallow Value Property
	Can Float Property
	See Also

	8				Faults and Fault Seeding
	Fault Models
	Fault Models in TetraMAX
	Fault Models in PowerFault
	Stuck-At Faults
	Bridging Faults

	Fault Seeding
	Seeding From a TetraMAX Fault List
	Seeding From an External Fault List
	PowerFault-Generated Seeding

	Options for PowerFault-Generated Seeding
	Stuck-At Fault Model Options
	Default Stuck-At Fault Seeding
	all_mods
	cell_mods
	leaf_mods
	prims
	seed_inside_cells

	Bridging Faults
	cell_ports
	fet_terms
	gate_IN2IN
	gate_IN2OUT
	vector
	seed_inside_cells

	9				PowerFault Strobe Selection
	Overview of IDDQPro
	Invoking IDDQPro
	ipro Command Syntax
	Strobe Selection Options
	-strb_lim
	-cov_lim
	-strb_set
	-strb_unset
	-strb_all

	Report Configuration Options
	-prnt_fmt
	-prnt_nofrpt
	-prnt_full, -prnt_times, and -path_sep
	-ign_uncov

	Log File and Interactive Options

	Interactive Strobe Selection
	cd
	desel
	exec
	help
	ls
	prc
	prf
	prs
	quit
	reset
	sela
	selm
	selall

	Understanding the Strobe Report
	Example Strobe Report
	Fault Coverage Calculation
	Faults Detected by Previous Runs
	Undetected Faults Excluded From Simulation
	Faults Detected at Uninitialized Nodes

	Adding More Strobes
	Deleting Low-Coverage Strobes

	Fault Report Formats
	TetraMAX Fault Report Format
	Verifault Fault Report Format
	Zycad Fault Report Format
	Listing Seeded Faults

	10				Using PowerFault Technology
	PowerFault Verification and Strobe Selection
	Verifying TetraMAX IDDQ Patterns for Quiescence
	Selecting Strobes in TetraMAX Stuck-At Patterns
	Selecting Strobe Points in Externally Generated Patterns

	Testbenches for IDDQ Testability
	Separate the Testbench From the Device Under Test
	Drive All Input Pins to 0 or 1
	Try Strobes After Scan Chain Loading
	Include a CMOS Gate in the Testbench for Bidirectional Pins
	Model the Load Board
	Mark the I/O Pins
	Minimize High-Current States
	Maximize Circuit Activity

	Combining Multiple Verilog Simulations
	Improving Fault Coverage
	Determine Why the Chip Is Leaky
	Evaluate Solutions
	Use the allow Command
	Configure the Verilog Testbench
	Drive All Input Pins to 0 or 1
	Use Pass Gates
	Model the Load Board
	Mark the I/O Pins

	Configure the Verilog Models
	Drive All Buses Possible
	Gate Buses That Cannot Be Driven
	Use Keeper Latches
	Enable Only One Driver
	Avoid Active Pullups and Pulldowns
	Avoid Bidirectional Switch Primitives

	Floating Nodes and Drive Contention
	Floating Node Recognition
	Leaky Floating Nodes
	Floating Nodes Ignored by PowerFault
	State-Dependent Floating Nodes
	Configuring Floating Node Checks
	Floating Node Reports
	Nonfloating Nodes

	Drive Contention Recognition

	Status Command Output
	Status Command Overview
	Leaky Reasons
	Nonleaky Reasons
	Driver Information
	Driver Information

	Behavioral and External Models
	Disallowing Specific States
	Disallowing Global States

	Multiple Power Rails
	Testing I/O and Core Logic Separately

	11				Strobe Selection Tutorial
	Simulation and Strobe Selection
	Examine the Verilog File
	Run the doit Script
	Examine the Output Files

	Interactive Strobe Selection
	Select Strobes Automatically
	Select All Strobes
	Select Strobes Manually
	Cumulative Fault Selection

	12				Interfaces to Fault Simulators
	Verifault Interface
	Zycad Interface

	13				Iterative Simulation
	A Simulation Debug Using MAX Testbench and Verdi
	Setting the Environment
	Preparing MAX Testbench
	Linking Novas Object Files to the Simulation Executable
	Running VCS and Dumping an FSDB File
	Running Verdi
	Debugging MAX Testbench and VCS
	Changing Radix to ASCII
	Displaying the Current Pattern Number
	Displaying the Vector Count
	Using Search in the Signal List

