
Conformal® Equivalence Checking User
Guide

Conformal L, Conformal XL, and Conformal GXL

Product Version 19.2
November 2019

© 1997– 2019 Cadence Design Systems, Inc. All rights reserved.
Printed in the United States of America.

Cadence Design Systems, Inc., 2655 Seely Avenue, San Jose, CA 95134, USA

Trademarks: Trademarks and service marks of Cadence Design Systems, Inc. (Cadence) contained in this
document are attributed to Cadence with the appropriate symbol. For queries regarding Cadence’s
trademarks, contact the corporate legal department at the address shown above or call 800.862.4522.

Open SystemC, Open SystemC Initiative, OSCI, SystemC, and SystemC Initiative are trademarks or
registered trademarks of Open SystemC Initiative, Inc. in the United States and other countries and are
used with permission.

All other trademarks are the property of their respective holders.

Restricted Print Permission: This publication is protected by copyright and any unauthorized use of this
publication may violate copyright, trademark, and other laws. Except as specified in this permission
statement, this publication may not be copied, reproduced, modified, published, uploaded, posted,
transmitted, or distributed in any way, without prior written permission from Cadence. This statement grants
you permission to print one (1) hard copy of this publication subject to the following conditions:

1. The publication may be used solely for personal, informational, and noncommercial purposes;
2. The publication may not be modified in any way;
3. Any copy of the publication or portion thereof must include all original copyright, trademark, and other

proprietary notices and this permission statement; and
4. Cadence reserves the right to revoke this authorization at any time, and any such use shall be

discontinued immediately upon written notice from Cadence.

Disclaimer: Information in this publication is subject to change without notice and does not represent a
commitment on the part of Cadence. The information contained herein is the proprietary and confidential
information of Cadence or its licensors, and is supplied subject to, and may be used only by Cadence’s
customer in accordance with, a written agreement between Cadence and its customer. Except as may be
explicitly set forth in such agreement, Cadence does not make, and expressly disclaims, any
representations or warranties as to the completeness, accuracy or usefulness of the information contained
in this document. Cadence does not warrant that use of such information will not infringe any third party
rights, nor does Cadence assume any liability for damages or costs of any kind that may result from use of
such information.

Restricted Rights: Use, duplication, or disclosure by the Government is subject to restrictions as set forth
in FAR52.227-14 and DFAR252.227-7013 et seq. or its successor.

Conformal Equivalence Checking User Guide

Contents
About This Manual. 21

Audience . 21
How This Manual Is Organized . 21
Conventions . 22

Syntax Structure . 22
GUI Convention . 23
Additional Learning Resources . 23

1
Introduction to the Conformal Equivalence Checker 25

Overview . 26
Conformal Features . 27
Supported File Formats . 28
Conformal Methodology . 29

Preparing the Designs . 30
Mapping and Comparing . 30
Diagnosing . 30

Conformal Operation . 30
System Modes . 31
Transition . 31
Mapping . 32
Comparison . 32
Diagnosis . 33

Overview of Conformal Tcl . 34
Conventions . 34
Specifying the Command Entry Mode . 35
Using Native Conformal Commands . 36
Duplicate Commands . 36
Tcl Version . 37
November 2019 3 Product Version 19.2

Conformal Equivalence Checking User Guide
2
Getting Started . 39

Product and Installation Information . 40
Start-Up Command Options . 40

Initial Command Files . 42
Dofile Command Files . 43
Saving and Restoring a Session . 47
Save and Restore Commands . 47
Checkpoint and Restart Facility . 47
Transcript Messages . 49
Aliases . 51

Setting Preferences . 52
Font & Size . 52
Hierarchical Browser On . 53
Hierarchical Browser Sync. up . 53
Icon Bar . 54
Show Static Infobox . 54
Simplified Schematic Viewing . 54

Accessing Online Help and Documentation . 54
Launching Cadence Help . 54
Getting Help for Cadence Help . 55
Getting Help on Commands to Run Tools . 55
Getting Help on Commands and Messages . 55
Searching the Help Database for Specified Strings . 55
Using the Help Menu . 56

Platform Integration . 57
Dofile Generation from First Encounter . 57
Dofile Generation from RC Synthesis Tools . 58
Using Conformal With Virtuoso . 64

3
Using the Graphical User Interface. 65

Main Window . 66
Selecting Multiple Items . 66
November 2019 4 Product Version 19.2

Conformal Equivalence Checking User Guide
Drag and Drop . 67
Menu Bar . 67
Window Menu . 67
Icon Bar . 68
Find Hierarchical Module . 69
Hierarchical Browser . 70
Transcript Window . 72
Command Entry Window . 73
Status Bar . 73
Exiting the GUI and Software . 73

File Menu . 75
Setup Menu . 76
Report Menu . 77
Run Menu - Compare . 79
Tools Menu . 80

4
Command Line Features . 81

Command Line Editing . 81
Command Line Completion . 83

Using Command Line Completion . 83
Repeating Actions . 83
Notes . 84

5
Managing Rule Checks . 85

HDL Rule Manager . 86
HDL Rule Manager Fields and Options . 87
Severity Levels . 88
Enabling and Disabling Rule Checks . 89
Running Incremental Rule Checks . 89
Reporting Messages for Rule Checks . 90
Viewing a Specific Message . 90
Viewing Source Code for an Occurrence . 90

Modeling Messages . 92
November 2019 5 Product Version 19.2

Conformal Equivalence Checking User Guide
6
Using the Setup Mode . 93

Overview . 94
Setting Options . 94

Changing the Root Module . 96
Adding Search Paths . 97
Adding Notranslate Modules . 98
Setting Global Options For Mapping and Comparison . 100

Reading in Libraries and Designs . 103
Reading in Library Files . 103
Reading in Design Files . 107
Using Verilog Command Filelists . 112
Comparing Design Hierarchies . 113
Comparing Libraries . 114

Design Constraints . 115
Blackboxes . 115
Net Constraints . 118
Pin Constraints . 119
Pin Equivalences . 122
Primary Inputs . 124
Primary Outputs . 127
Tied Signals . 130
Instance Constraints . 133
Instance Equivalences . 133
Cut Points . 134

Flattening Options . 137
Specifying Key Point Mapping Options . 137
Retaining Gate Pin Information . 137
Converting DLATs to DFFs . 137
Converting DLATs to Buffers . 138
Converting DFF or DLAT to Zero or One Gate . 138
Gated-Clock Learning . 141
Converting DFFs to DLATs . 143
Flatten Model Form . 144

Mapping Settings . 145
November 2019 6 Product Version 19.2

Conformal Equivalence Checking User Guide
Mapping Methods . 146
Renaming Rules . 147

7
Using the LEC Mode . 153

Moving to LEC Mode . 154
Mapping Modifications . 154

Altering Key Point Mapping . 155
Adding Mapped Points . 155
Inverting Mapping Phase . 156
Saving Mapping Results . 156

Compare Options . 156
Adding Compared Points . 157
Setting the Compare Effort . 157
Setting a CPU Limit . 157
Reporting Compare Time . 157

Comparison . 158
Reporting Compare Data . 158
Reporting Statistics . 158
Reporting CPU Use . 158

Report Verification . 158
Running Additional Reports . 159

Black Boxes Report . 160
Cut Points Report . 160
Design Data Report . 161
Environment Report . 161
Floating Signals Report . 161
Instance Constraints Report . 162
Instance Equivalences Report . 162
Messages Report . 162
Modules Report . 163
Notranslate Modules Report . 164
Pin Constraints Report . 164
Pin Equivalences Report . 165
Primary Inputs Report . 165
November 2019 7 Product Version 19.2

Conformal Equivalence Checking User Guide
Primary Outputs Report . 165
Renaming Rules Report . 166
Search Paths Report . 166
Tied Signals Report . 166
Mapped Points Report . 167
Unmapped Points Report . 167
Compared Points Report . 167
Compare Data Report . 167
Statistics Report . 167

8
Debugging . 169

Diagnosing Non-Equivalent Points . 170
Proving Equivalence . 173

Adding Dynamic Constraints . 174
Displaying Error Patterns . 174

Reporting Design Similarities . 174
Gate Manager . 176

Gate Manager Fields and Options . 178
Refreshing the Window . 179
Opening Schematics from the Gate Manager . 179
Using the Preferences Drop-Down Menu . 179
Filtering the Gate List . 180
Finding Gates . 181
Reporting Gate Information . 182
Customizing the Gate List Section with Specified Gates . 182
Proving Equivalency for Two Specified Gates . 182
Removing Gates from the Prove List . 183
Locating an Equivalent Gate . 183
Adding and Deleting Dynamic Constraints . 183
Locating a Gate in the Design Hierarchy . 184
Highlighting a Point in the Hierarchical Browser . 184
Viewing a Gate’s Location in the Source Code . 185
Highlighting a Point in the Source Code Manager . 185
Viewing a Schematic Representation of One Gate . 185
November 2019 8 Product Version 19.2

Conformal Equivalence Checking User Guide
Gate Reporting . 186
Setting the Gate Report . 186
Gate Tracing . 186
Gate Report Structure . 186

Mapping Manager . 188
Mapping Manager Fields and Options . 191
Setting Preferences . 193
Copying Information from the Mapping Manager . 193
Selecting Points . 193
Adding Unmapped Points as Mapped Points . 194
Reporting Information on an Unreachable Gate . 194
Reporting Renaming Rules . 195
Re-Mapping Key Points . 195
Adding All Compared Points . 195
Deleting One or More Mapped Points . 195
Adding One or More Compared Points . 196
Changing the Mapping Phase of a Mapped Point . 196
Highlighting a Mapped Point in the Compared Points Section 196
Comparing Key Points . 197
Deleting One or More Compared Points . 197
Diagnosing a Non-Equivalent Point in the Compared Points Section 197
Sorting Compared Points by Support Size . 198
Sorting Compared Points by Non-Corresponding Support Cones 198
Changing the Mapping Phase of a Compared Point . 198
Highlighting a Compared Point in the Mapped Points Section 198
Displaying the Information Box . 199
Filtering the Display . 199
Finding Key Points . 200
Displaying Specified Classes of Points . 200
Deleting Mapped or Compared Points . 201
Displaying Diagnosis Data . 201
Reporting Gate Information . 201
Displaying Fan-in and Fan-Out Information . 201
Locating a Point in the Source Code . 202
Locating a Point in the Design Hierarchy . 203
Viewing a Schematic of a Point . 203
November 2019 9 Product Version 19.2

Conformal Equivalence Checking User Guide
Diagnosis Manager . 205
Diagnosis Manager Fields and Options . 207
Setting Preferences . 210
Copying Information from the Diagnosis Manager . 212
Refreshing the Window . 212
Displaying the Information Box . 212
Selecting a New Active Diagnosis Point . 212
Changing the Simulation Value . 212
Saving Modified Values as an Error Pattern . 213
Viewing a Schematic . 213
Changing the Mapping Phase of a Mapped Point . 214
Deleting Mapped Points . 214
Reporting Renaming Rules . 215
Adding Unmapped Points as Mapped Points . 215
Viewing a Schematic Representation of Diagnosis Points . 215
Displaying the Fill Fanin Cone . 216
Displaying Gate Information . 216
Showing a Gate’s Location in the Source Code . 217
Showing Where a Gate is Located in the Design Hierarchy 217

Exit Status Codes . 218

9
Resolving Aborts. 221

Overview . 222
Avoiding Aborts . 222

RTL Guidelines . 222
MDP Flow . 225
RTL Compiler Flow . 225

Resolving Aborts . 226
Hierarchical Comparison . 226
Analyzing Abort Points . 226
Multithreading . 227
Partitioning . 227
Isolating Abort Modules . 228

Dofile Template Scripts . 230
November 2019 10 Product Version 19.2

Conformal Equivalence Checking User Guide
Hierarchical Compare with MDP Flow . 230
Hierarchical Compare with MDP and Multithreading . 230

10
Running Hierarchical Comparison. 231

Comparing Designs at the Module Level . 232
Running Dynamic Hierarchical Comparison . 233

Interrupting a Hierarchical Comparison. 234
Hierarchical Comparison Command Flow . 234

Read the Libraries and Designs . 234
Generate a Hierarchical Compare Dofile . 235
No Blackboxing . 237
Constraint Propagation . 238
Renaming Rules . 239
Hierarchical Compare Dofile Execution . 240

Hierarchical Comparison for Abort Resolution . 241
Hierarchical Module Comparison Window . 242

Hierarchical Module Comparison Fields and Options . 243
Setting General Options . 244
Reporting CPU Use . 244
Working with Hierarchical Compare Dofiles . 244
Finding Module Names . 245
Deselecting the Dual Scroll Option . 245
Viewing a Module’s Compare Status . 245
Specifying Blackbox Modules . 245
Deleting Previously Added Blackbox Modules . 245
Ignoring Modules during Comparison . 246
Deleting No-Blackbox Status . 246
Running a Hierarchical Comparison . 246
Comparing Lower-Level Modules . 246
Highlighting Non-Equivalent Modules . 247
Deleting and Resetting Hierarchical Compare Results . 247
Specifying the Root Module . 247
November 2019 11 Product Version 19.2

Conformal Equivalence Checking User Guide
11
Advanced Capabilities . 249

Overview . 251
Supported Datapath Structures and Optimizations . 252

Multipliers . 252
Operator Merging . 253
Resource Sharing . 254
Sequential Merge Optimization . 254

Module-Based Datapath Analysis . 255
Datapath Module Abstraction . 255
Datapath Module Abstraction Reporting and Diagnosis . 256
Handling Aborts in Datapath Module Abstraction . 257
Datapath Operator Learning . 258
DC Synthesis Flow . 260
Sample DC Script . 262
DC Commands . 262
MDP Effort Levels . 263
Dofile Example for Intermediate Netlists . 263
Dofile Example for Intermediate to Final Netlist . 264
Extracting Testcases for Datapath Modules . 264
Recreating Testcases for Datapath Modules . 265
Isolating Aborted Datapath Modules . 265

Word-Level Datapath Analysis . 268
Datapath Learning . 268
Reporting and Diagnosis of Datapath Analysis . 268

Sequential Merge Analysis . 270
Sequential Merge Flow . 270
Synthesis Requirements . 270
Sequential Merge Verification . 271
Setting the Effort Level . 272
Diagnosing Instance/Sequential Merge Nonequivalence . 272

Retiming . 274
Basic Pipeline Retiming . 274
Advanced Pipeline Retiming . 275
Pipeline Retiming on a List of Specified Registers . 276
November 2019 12 Product Version 19.2

Conformal Equivalence Checking User Guide
Pipeline Backward Retiming . 276
Merging Equivalent Registers . 276
Retiming Diagnosis . 277
Flattened Retiming Analysis . 277

Multithreading Process . 277
Multithreading Model . 278
Enabling Multithreaded Processing . 278
Setting Comparison Effort Levels . 279
Setting Comparison Options . 279
Number of Threads Recommendation . 279
Running Jobs on Server Farms . 280
Licensing Requirements . 280
Temporary Files and Directories . 282

Multi-Threaded Functional Partitioning . 284
Adding Partition Points . 284

Adding Partition Points for Comparison . 285
Name-based Physical Partitioning . 286
Comparison with Functional Partitioning . 286

Analyzing Non-Equivalence . 286
Example Report . 287

Analyzing Implication Values . 288
Netlist Analysis . 289

Extracting Half Adder and Full Adder Cells . 289
Identifying and Optimizing Library Cells . 289
Extracting MUX Logic for DFFs . 290

Sample Dofile . 291

12
Layout Versus Schematic . 293

Overview . 294
LVR Functionality . 294

Starting Conformal GXL . 295
LVR Flow . 295

Circuit Library Analysis . 296
Design Logic Function Verification . 297
November 2019 13 Product Version 19.2

Conformal Equivalence Checking User Guide
LVR Implementation . 298
Suggested Uses . 298
Conformal Dofile Examples . 298

13
Conformal Custom. 301

Overview . 302
Custom Licensing . 303
Abstraction Methods . 303

Starting Conformal GXL . 303
Conformal GXL Process Flow . 304

Reading a Transistor Netlist . 305
Defining Constraints . 308
Running Logic Transistor Abstraction . 313
Reporting MOS Direction . 313
Continuing the Verification Flow . 314
Specifying Conditions for Abstracting Logic . 314
Analyzing Switch and Primitive Drive Strength . 316

Custom Menu . 318
General Setup . 319

Tie Off Cell Pins to 0 or 1 . 319
Set Equivalent or Inverted Cell Input Pins . 321
Group Single Pins into Bus . 323
Flatten . 325
Ungroup Module . 326
Group Instances into New Module . 327

Custom Setup . 328
SPICE Netlist Options . 328
MOS Devices Name . 329
Pre-charge Clocks . 330
Module Pin Direction . 331
Circuit to Logic Transformation Settings . 332
MOS Direction . 335
Define Power and Ground Supply . 337

Data Entry Menu . 338
November 2019 14 Product Version 19.2

Conformal Equivalence Checking User Guide
Design . 338
Pattern Match . 339
Cell Remodel . 341

Application Menu . 342
Logic Abstraction . 342
Test View Abstraction . 344
Power View Abstraction . 345
Library Verification . 346

RAM Primitive . 347
RAM Primitive - Standard . 348
RAM Primitive - Specialty . 349
RAM Primitive - SRAM . 350

ROM Primitive . 355

14
Conformal ECO Designer Functionality and Methodology . 357

15
FPGA Capabilities and Process Flow. 359

Overview . 360
FPGA Front-End Verification . 361

Requirements and Licensing . 361
Front-End Verification Flow . 361
Current Capabilities . 365

FPGA Back-End Verification Flow . 367
Generating a Post-PAR Gate Netlist . 368
Comparing the Designs . 369
Continuing the Conformal Verification Flow . 370

Tips for the FPGA Flow . 371
Xilinx Tips . 371
Synplify Pro Tips . 373
General FPGA Tips . 374
Using the Verilog Always Statement with Mixed Register Types 375
November 2019 15 Product Version 19.2

Conformal Equivalence Checking User Guide
A
VHDL Support. 379

Supported and Unsupported IEEE Packages . 380
Vital Package Support . 385

Read Design . 387
Library Mapping . 387

Architectures . 389
Global Signal . 389

Configurations . 390
Component Configuration . 390
Nested Configurations . 391

Declarations . 393
Initial Value . 393
Shared Variable . 393

Names . 394
Sliced Names . 394
Predefined Attributes . 395
User-Defined Attributes . 399

Expressions . 399
Function Calls . 399

Sequential Statements . 400
Wait Statements . 400
Signal Assignment . 402
Procedure Calls . 404
For Loops . 404
While Loops . 406

Concurrent Statements . 406
Signal Assignment . 406

B
Verilog Support . 407

Verilog Configurations . 408
Supported Constructs . 408
Synthesizable UDPs . 409
November 2019 16 Product Version 19.2

Conformal Equivalence Checking User Guide
Unsupported Constructs and Workaround Solutions . 409
Instance Configuration Examples . 410

Verilog 2001 Support Tables . 411
Supported . 411
Limited Support . 412
Ignored . 412
Not Applicable . 413

C
SystemVerilog Support . 415

SystemVerilog Support Tables . 417
Literals . 417
Data Types . 417
Arrays . 420
Data Declarations . 422
Attributes . 423
Operators & Expressions . 423
Procedural Statements . 425
Processes . 426
Tasks and Functions . 426
Classes . 427
Randomization & Constraints . 429
Synchronization . 433
Scheduling Semantics . 433
Clocking Blocks . 433
Program Blocks . 434
Assertions . 434
Coverage . 437
Modules and Hierarchy . 438
Interfaces . 439
Packages . 440
Configuration Libraries . 440
System Tasks and Functions . 441
VCD Data . 441
Macros and Compiler Directives . 442
November 2019 17 Product Version 19.2

Conformal Equivalence Checking User Guide
APIs . 443
Configuring the Contents of a Design . 444
Annexes . 445
Non-std . 445

System Verilog Assertions (SVA) . 446
Supported SVA System Functions . 447
Default Clocking . 447
Property Declaration . 448
Property Binding . 448
Supported SVA Properties . 448
Clocked Boolean Expression . 448
Examples . 450

D
Supported Directives . 453

Supported Vendors . 454
Supported Directives . 454
Conformal Directive Examples . 456

Enabling One Directive . 457
Disabling All Directives for One Vendor . 457
Disabling Specified Directives for One Vendor . 458
Enabling a List of Directives from an RTL File . 458

E
Conformal Sample Test Case. 459

Starting Conformal . 460
Reading the Library . 460
Read the Designs . 460
Changing to the LEC System Mode . 462
Viewing Unmapped and Mapped Points . 462
Running a Comparison . 463
Diagnosing a Non-Equivalent Point . 464

Non-Corresponding Support Section . 465
Error Pattern Section . 466
Error Candidate Section . 467
November 2019 18 Product Version 19.2

Conformal Equivalence Checking User Guide
Opening the Schematic Viewer . 467
Adding Pin Constraints . 470
Rerunning the Comparison . 470
Exiting . 471
Standard Dofile Example . 472

F
Top-level IO Port Modeling . 473

G
Conformal Primitive Gate Types . 475
November 2019 19 Product Version 19.2

Conformal Equivalence Checking User Guide
November 2019 20 Product Version 19.2

Conformal Equivalence Checking User Guide
About This Manual

The Encounter® Conformal® logical equivalence checking tools verify RTL, gate, or
transistor-level designs. As part of the functional verification platform, Conformal gives you
complete equivalence checking (EC) solution available for verifying complex system-on-a-
chip (SoC) designs from RTL to layout.

Conformal includes the following solutions:

■ Conformal L

Conformal L has equivalency checking capabilities with functional checks for ASIC
design flows.

■ Conformal XL

Conformal XL includes Conformal L and extends equivalency checking capabilities to
datapath synthesis and layout.

■ Conformal GXL

Conformal XL includes Conformal XL and extends equivalency checking capabilities to
digital custom logic and custom memories.

■ Conformal LowPower

Conformal LowPower enables low power equivalence and functional checks for isolation
cells, level-shifter cells, and state retention cells.

Audience

This manual is written for experienced designers of digital integrated circuits who must be
familiar with RTL, synthesis, and design verification; as well as having a solid understanding
of UNIX and Tcl/Tk programming.

How This Manual Is Organized

The chapters in this manual are organized to follow the flow of tasks through the design
process. Because of variations in design implementations and methodologies, the order of
the chapters will not correspond to any specific design flow.
November 2019 21 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
About This Manual
Each chapter focuses on the concepts and tasks related to the particular design phase or
topic being discussed.

In addition, the following sections provide prerequisite information for using the Conformal
software:

■ Chapter 1, “Introduction to the Conformal Equivalence Checker”

Describes the process flow and the major components of the Conformal operation.

■ Chapter 2, “Getting Started”

Describes how to install, set up, and run the Conformal Equivalence Checker software,
and use the online Help system.

Conventions

Syntax Structure

Convention Definition

Bold Case Indicates the command name.

UPPERCASE Indicates the required minimum character entry.

< > Indicates required arguments. Do not type the angle brackets.

[] Indicates optional arguments. Do not type the square brackets.

| Indicates a choice among alternatives. Do not type the vertical
bar.

\ The backslash character (\) at the end of a line shows that the
command you are typing continues on the next line.

… Indicates multiple entries of an argument.

* Indicates that Conformal lets the wildcard (*) represent any zero
or more characters.
November 2019 22 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
About This Manual
GUI Convention

Additional Learning Resources

Cadence offers the following training courses on Conformal:

■ Custom Equivalence Checking with Conformal EC

■ Conformal ECO

■ Logic Equivalence Checking with Conformal EC

■ Low-Power Verification with Conformal

Convention Definition

Menu – Command Indicates command sequences under a menu. For example:
Choose File – Read Design.

Left-click Click the left mouse button on the specified item.

Right-click Click the right mouse button on the specified item.

Click Click the left mouse button unless otherwise specified.

Double-Click Click twice on the left mouse button.

Drag Press and hold the left mouse button, and then move the pointer
to the destination and release the button.
November 2019 23 Product Version 19.2
© 1999-2019 All Rights Reserved.

http://www.cadence.com/Training/NA/Pages/coursedetails.aspx?componentID=ES_82121_13.1&title=Custom%20Equivalence%20Checking%20with%20Encounter%20Conformal%20EC
http://www.cadence.com/Training/NA/Pages/coursedetails.aspx?componentID=ES_82123EC_14.1&title=Logic%20Equivalence%20Checking%20with%20Encounter%20Conformal%20EC
http://www.cadence.com/Training/NA/Pages/coursedetails.aspx?componentID=ES_82156EC_12.1&title=Low-Power%20Verification%20with%20Encounter%20Conformal
http://www.cadence.com/Training/NA/Pages/coursedetails.aspx?componentID=ES_82194VC_12.1&title=Encounter%20Conformal%20ECO

Conformal Equivalence Checking User Guide
About This Manual
November 2019 24 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
1
Introduction to the Conformal
Equivalence Checker

■ Overview on page 26

■ Conformal Features on page 27

■ Supported File Formats on page 28

■ Conformal Methodology on page 29

❑ Preparing the Designs on page 30

❑ Mapping and Comparing on page 30

❑ Diagnosing on page 30

■ Conformal Operation on page 30

❑ System Modes on page 31

❑ Transition on page 31

❑ Mapping on page 32

❑ Comparison on page 32

❑ Diagnosis on page 33

■ Overview of Conformal Tcl on page 34

❑ Conventions on page 34

❑ Specifying the Command Entry Mode on page 35

❑ Using Native Conformal Commands on page 36

❑ Duplicate Commands on page 36
November 2019 25 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Introduction to the Conformal Equivalence Checker
Overview

The Conformal Equivalence Checking solutions are logical equivalence checking tools that
verify RTL, gate, or transistor-level designs. As part of the Encounter® Conformal® functional
verification platform, Conformal gives you the only complete equivalence checking (EC)
solution available for verifying complex system-on-a-chip (SoC) designs from RTL to layout.
It verifies the widest variety of circuits, including complex arithmetic logic, datapath,
memories, and custom logic. Conformal has high-performance, high-capacity, and excellent
debugging capabilities. These features are combined in an integrated environment.

Conformal Equivalence Checking solutions consist of three products:

■ Conformal L

EC capability with functional checks for ASIC design flow

■ Conformal XL

Extends EC capability to complex datapath synthesis and layout

■ Conformal GXL

Extends EC capability to digital custom logic and custom memories

Conformal supports standard library and design interface formats and integrates readily into
existing design environments. The flexibility of these tools lets you efficiently impose
constraints and apply guidance. Conformal is self-contained and is not tied to any particular
synthesis environment. Thus, it gives you a higher degree of confidence than equivalence
checkers integrated with a particular logic synthesis tool.

Conformal employs proprietary key point mapping and formal functional comparison
algorithms that incorporate many innovative techniques for solving a wide range of problems.
The comparison engine has superior performance and successfully completes verification of
designs with differences.

Conformal also has excellent debugging capabilities. It automatically diagnoses design
mis-matches and accurately pinpoints the source of the differences.
November 2019 26 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Introduction to the Conformal Equivalence Checker
Conformal Features

Conformal incorporates many features that streamline and authenticate the design process,
while giving you flexibility.

■ Supports Full-Chip Verification

Conformal has excellent processing speed that significantly reduces verification time for
high-capacity, high-complexity, full-chip designs.

■ Supports Multiple Design Formats

Conformal supports Verilog®, VHDL, SPICE, EDIF, and NDL design formats.

■ Supports Standard Library Formats
Conformal supports Verilog simulation libraries and the Synopsys® LibertyTM Format
Libraries.

■ Employs Verilog/VHDL-RTL and Transistor Function Abstraction

Conformal has a built-in Verilog/VHDL-RTL and transistor function abstraction engine
that lets you verify Verilog/VHDL-RTL, gate, or transistor level designs.

■ Employs Advanced, Automatic Mapping

Conformal contains advanced and proprietary sequential element mapping algorithms
that identify corresponding sequential elements automatically with minimal user
resources. This feature relieves you of the tedious job of specifying corresponding
flip-flops and latches.

■ Employs an Efficient and Effective Comparison Engine

Conformal has a superior formal comparison engine to ensure successful verification of
non-similar designs with different hierarchical structures. Conformal contains a unique
correlation learning technology that effectively explores both structural and functional
relationships of the logic in two designs and dramatically reduces the verification run
time. This technology does not require high memory use and is very effective for both
similar and dissimilar designs.

■ Includes Automatic Diagnosis

When a logic mismatch is found, designers find that it is absolutely essential to be able
to quickly locate the source of functional differences. Conformal automatically diagnoses
functional differences, narrowing them to a small number of possible locations in the
design. This feature helps you identify and effectively correct problems and reduce
debugging time.
November 2019 27 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Introduction to the Conformal Equivalence Checker
■ Includes Integrated Debugging

Conformal has extensive gate reporting integrated with the schematic viewer. This
feature gives you flexibility and immediate feedback for debugging and diagnosis.

Supported File Formats

The following table lists the file formats and versions that the Conformal software supports,
and the related commands that parse these files.

VHDL IEEE Std 1076-1993 (default)
IEEE Std 1076-1987

READ DESIGN -vhdl
READ LIBRARY -vhdl

Verilog IEEE 1364-1995 (default)
IEEE 1364-2001

READ DESIGN -verilog
READ LIBRARY -verilog

SystemVerilog IEEE 1800-2009 READ DESIGN -systemverilog
READ LIBRARY -systemverilog

Liberty 2007.3 READ DESIGN -liberty
READ LIBRARY -liberty

CPF 1.0, 1.0e, 1.1 and 2.0 READ POWER INTENT
November 2019 28 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Introduction to the Conformal Equivalence Checker
Conformal Methodology

The following flowchart illustrates the Conformal process flow.

Specify Constraints
and Design Modeling

Miscompare?

No

Yes

Revised
Design

Standard
Library

Golden
Design

Specify Compare
Parameters

Compare
Designs

Equivalence
Checking Complete

Diagnose

Setup Mode

LEC Mode
November 2019 29 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Introduction to the Conformal Equivalence Checker
Preparing the Designs

During the first phase of equivalence checking, Conformal reads in the Golden and Revised
designs and their associated libraries. The designs can be any of the following formats:

■ Verilog

■ VHDL

■ EDIF

■ NDL

■ SPICE

Conformal supports Verilog simulation libraries and Synopsys Liberty libraries.

After reading in designs and libraries, you can tailor the session to your particular needs by
specifying constraints and parameters. When all of these Setup mode tasks are complete,
you can change to LEC mode and the next session phase.

Mapping and Comparing

During the second and third phases of equivalence checking, Conformal automatically maps
key points and compares them. When the comparison is complete, Conformal pinpoints the
differences.

Diagnosing

During the final phase of the Conformal process flow, you can employ a combination of the
integrated diagnosis tools to examine differences. These tools include the Schematic Viewer
and Source Code Manager. After you have remedied the differences, a new verification
session begins.

Conformal Operation

This section details the Conformal integrated debugging environment, describing each of the
major components of the Conformal operation.
November 2019 30 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Introduction to the Conformal Equivalence Checker
System Modes

Conformal operates in two system modes: Setup and LEC. In the Setup mode, Conformal
reads two designs. You designate the design types, which are Golden and Revised.
(Generally, the Revised design is a modified or post-processed design that Conformal
compares to the Golden design.) Additionally, you apply constraints and design settings in the
Setup mode. Finally, you can specify Conformal compare options and mapping methods.
When you have set all design conditions, you can move to the LEC system mode.

Transition

The following two sections relate to events that occur as Conformal transitions from the Setup
to the LEC mode.

Rule Checking

Conformal checks various rules during parsing. You can specify how Conformal will respond
to rule violations before you read in the designs and libraries. Additionally, you can choose to
view a report displaying all of the library and design rule violations that occurred during
parsing.

For additional information about rule checking, see the Conformal HDL Rule Check
Reference.

Key Points

In the transition from the Setup to the LEC system mode, Conformal flattens and models the
Golden and Revised designs and automatically maps the key points. Key points are defined
as:

■ Primary Inputs

■ Primary Outputs

■ D Flip-Flops

■ D Latches

■ TIE-E Gates (error gate, created when x-assignment exists in Revised design)

■ TIE-Z Gates (high impedance or floating signals)

■ Blackboxes
November 2019 31 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Introduction to the Conformal Equivalence Checker
■ Cut Gates (artificial gates that break combinational loops)

Mapping

Conformal employs three name-based methods to map key points and one no-name method.
Name-based mapping is useful for gate-to-gate comparisons when small changes have been
made to the logic. Conversely, the no-name-mapping method is useful when Conformal must
map designs with completely different names. By default, Conformal automatically maps key
points with the name-first mapping method when it exits the Setup mode. Any key points that
Conformal does not map are classified as unmapped points.

Unmapped Points

After Conformal maps key points, the remaining unmapped points are classified into one of
three categories: extra, unreachable, or not-mapped.

■ Extra unmapped points are key points that are present in only one of the designs,
Golden or Revised.

■ Unreachable unmapped points are key points that do not have an observable point,
such as a primary output.

■ Not-mapped unmapped key points are key points that are reachable but do not have a
corresponding point in the logic fan-in cone of the corresponding design.

Comparison

After Conformal maps the key points, the next step of the verification is comparison.

Compare Points

You can designate mapped points for comparison. Comparison examines these compare
points to determine if they are equivalent or non-equivalent.

Run Time and Performance

The comparison determines if the compared points are:

■ Equivalent

■ Non-equivalent
November 2019 32 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Introduction to the Conformal Equivalence Checker
■ Inverted-equivalent

■ Aborted

In the case of aborted compare points, you can change the compare effort to a higher setting.
Thus, Conformal can continue the comparison on only the aborted compare points.
Conformal can also display the complete run time and total memory use for the comparison.

Reports

When Conformal completes the comparison, you can get summary reports showing which
key points are equivalent and which are non-equivalent. Then, you can diagnose
non-equivalent points to determine the cause of the difference.

Diagnosis

Diagnosis is the process of examining non-equivalent points and identifying the most likely
error candidates. In this phase of verification, examine non-equivalent points using the
integrated tools as described below.

Error Patterns and Candidates

The Conformal diagnosis feature precisely locates the cause of a non-equivalent point.
During this process, Conformal displays the error patterns that caused the difference and lists
the possible candidates. Included in this list is the percent of probability, which is shown in
decimal form. The most likely candidate is 1.00.

Gate Reporting

With the above diagnosis information gathered, you are ready to employ gate reporting to
trace the fan-in or fan-out cone of the non equivalent point. Additionally, you can view a
schematic representation of the non-equivalent point.

Schematic Viewing

When you view the schematic representation of the non-equivalent point, the viewer displays
the fan-in cone with the corresponding and non-corresponding supporting key points and
their simulation values. The non-equivalent compared point, diagnosis input point, supporting
key points, and error candidates are all color-coded for visual accessibility. The schematic
November 2019 33 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Introduction to the Conformal Equivalence Checker
viewer displays the Golden and Revised schematic representations side-by-side in separate
windows, for quick comparison.

Source Code Viewing

To further diagnose non-equivalent points, you can access the Source Code Browser. This
tool lets you specify a gate in the Revised or Golden design and view its relative location in
the source code.

Overview of Conformal Tcl

Conformal supports two types of Tool Command Language (Tcl) commands: native Tcl
commands and Conformal Tcl commands that have been tailored for use with Conformal to
query the design database. Information retrieved from the design database is referenced by
pointers (which are also called object handles in Tcl).

For a complete description of the Tcl design access commands and the Tcl Utility commands,
see the Tcl Command Entry Mode Support chapter of the Conformal Equivalence
Checking Reference Manual. Each section includes the syntax for individual commands,
definitions for the applicable arguments, command examples, and what Conformal returns.

The focus of the chapter is Conformal Tcl commands. Therefore, if you want to learn more
about native Tcl commands, refer to the public Tcl manual widely available online. To see a
list of supported Tcl commands, enter a question mark (?) at the Tcl prompt.

Note: This has no effect when Conformal is in the default command entry mode.

As you work with the Tcl commands, you will find that some of the commands invalidate the
object handles you saved in Tcl variables. For example, when you change the design with set
root module, every object handle is invalidated. When an object handle is invalidated, yet
still referred to by a Tcl variable, the memory is not free until you reassign the Tcl variable to
another value.

By its very nature, the Tcl command interface is not as efficient as internal C functions.
Therefore, you will encounter some performance penalties when you access large amounts
of information using Tcl commands. For example, most of the get commands return a TCL
LIST, thus costing memory and speed.

Conventions

Conventions used in the Conformal Tcl command documentation differ somewhat from those
used in the remainder of the manual. For example, Conformal Tcl commands are case-
November 2019 34 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Tcl.html#firstpage

Conformal Equivalence Checking User Guide
Introduction to the Conformal Equivalence Checker
sensitive (you must type them in lowercase). Therefore, as a reminder, they appear in
lowercase.

■ commands
Tcl commands appear in the text and in examples in lowercase with a Courier font. And
since Conformal Tcl commands are case-sensitive, you must type them in lowercase.
(However, options are not case-sensitive.) Default options are noted.

■ Hierarchical context (/)
If a name begins with a slash (/), Conformal considers the name in a hierarchical context.
For example: /U02/U199

■ Module context
Module context operations always work on the current module. For example, find -net
zero refers to a net named zero that is in the current module.

■ Pin object_type
Pin object_types appear in the format instance_name/pin_name. For example:

❑ Pin object_type in module context:
A pin named data on instance U01 of the current module is specified as U01/data.

❑ Pin object_type in hierarchical context:
In hierarchical context, the string is preceded by a slash. Thus, the pin is specified
as /U01/data.

■ Wildcards: (*) and (?)
Conformal supports the wildcard * or ? in an object_name, but only at the bottom
hierarchical level:

find -net /d*

Return examples are:
/d1 and /d0

Specifying the Command Entry Mode

In Conformal, there are two modes: the default Conformal command entry mode
(VPXMODE) and the Tcl command entry mode (TCLMODE). Use the TCLMODE command to
switch Conformal to the Tcl command entry mode.

To change to Tcl command entry mode, run the following command:

tclmode

To return to the default Conformal command entry mode, run the following command:
November 2019 35 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Introduction to the Conformal Equivalence Checker
vpxmode

Using Native Conformal Commands

When Conformal is in Tcl command entry mode, typically you will run native Tcl and
Conformal Tcl commands. However, you can also run native Conformal commands as shown
in the examples below.

To run native Conformal commands:

■ Example one: Preface the native Conformal command with the vpx keyword.
vpx read design counter.v

Partial entry matching is allowed:
vpx rea de counter.v

■ Example two: Use an underscore for spaces in commands. With this feature, type the
entire command; Conformal does not permit partial entry matching for native Conformal
commands in Tcl command entry mode unless you preface the command with the vpx
keyword (as shown in Example one, above).
read_design counter.v

To get quick help for native Conformal command names:

To Get Quick Help for Native Conformal Command Names

If you type a native Conformal command incorrectly using the underscore method in Example
two (above), Conformal echos commands with common prefixes. For example, type:

add_in

Conformal returns:

ambiguous command name “add_in”: add_instance_attribute add_instance_constraints
add_instance_equivalences

Duplicate Commands

The following native Tcl commands are also defined as native Conformal commands:

break
continue
exit
November 2019 36 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Introduction to the Conformal Equivalence Checker
Important

The behaviors of these commands are not the same in Tcl command entry mode as
they are in Conformal command entry mode. Use these commands with caution.

Refer to the Conformal Equivalence Checking Reference Manual for detailed
descriptions of the native Conformal commands.

Tcl Version

To determine the current version of Tcl used by Conformal:

SETUP> tclmode
TCL_SETUP> puts $tcl_version
8.5
or
TCL_SETUP> info tclversion
8.5

To get more detailed patch level information, one can use

TCL_SETUP> info patchlevel
8.5.2

To know from where the tcl script is being used from, one can do:

TCL_SETUP> info library
<cadence lec installation>/share/cfm/lec/tcl8.5
November 2019 37 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Introduction to the Conformal Equivalence Checker
November 2019 38 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
2
Getting Started

■ Product and Installation Information on page 40

■ Start-Up Command Options on page 40

■ Initial Command Files on page 42

■ Dofile Command Files on page 43

■ Saving and Restoring a Session on page 47

■ Checkpoint and Restart Facility on page 47

■ Setting Preferences on page 52

■ Accessing Online Help and Documentation on page 54

■ Platform Integration on page 57
November 2019 39 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Getting Started
Product and Installation Information

For product, release, and installation information, see the README file at any of the following
locations:

■ downloads.cadence.com, where you can review the README before you download the
Conformal software.

■ In the software installation, where it is also available when you are using or running the
Encounter® Conformal® software.

■ At the top level of your installation hierarchy.

Start-Up Command Options

The following lists the licensing options for the lec command when starting the Encounter®
Conformal® software. For example, if you have an XL or GXL license, you must specify this
at startup with the -xl or -gxl option. For example, to start the Conformal software with the
XL license in GUI mode, you would enter the following at the UNIX prompt:

UNIX% lec -xl

Without the -xl or -gxl option, the Conformal software starts with the default L license.

Once you start your session, you can use the LICENSE command to display the current
license status in the transcript output.

-L Launches the Encounter® Conformal® Equivalence Checker

Note: This is the default when running the lec command with no
options.

-RCV Launches Encounter® Conformal® XL with an RTL-Compiler
verification license

-XL Launches Encounter® Conformal® L with Datapath and advanced
equivalence checking capabilities

-GXL Launches Encounter® Conformal® XL with digital custom logic and
memory verification capabilities

-ECO Launches Encounter® Conformal® XL with ECO

-ECOGXL Launches Encounter® Conformal® XL with ECO GXL capabilities
(physical design awareness)

-LP/-LPXL Launches Encounter® Conformal® XL with Low Power Verification
November 2019 40 Product Version 19.2
© 1999-2019 All Rights Reserved.

http://downloads.cadence.com

Conformal Equivalence Checking User Guide
Getting Started
The lec command has the following additional options. This list is also available using the
lec -help command before you start your session.

-CCD Launches Encounter® Conformal® L with a Conformal Constraint
Designer L license

-CCDXL Launches Encounter® Conformal® XL with a Conformal Constraint
Designer XL license

-LPGXL Launches Encounter® Conformal® XL with digital custom logic,
memory verification, and low power verification capabilities.

-VERIFY Encounter® Conformal® Extended Checks

-Dofile <filename> Runs the script <filename> after starting LEC.
See “Dofile Command Files” on page 43 for more
information.

-LOGfile <filename> Sets up a log filed called <filename>.

-RESTART_checkpoint <filename> [-protect <password>]

Restarts a session that was saved using the
CHECKPOINT command.

-INFO_CHECKpoint <filename>

Information of the checkpoint <filename>

-Gui | -NOGui Starts the session in GUI or non-GUI mode.

-TclMode After the session starts, the tool enters Tcl mode.

-NOColor | -Color Controls color-coded messaging when in non-GUI
mode. By default, color-coding is off.

-DEFault [init_filename] | -NODEFault]

Specifies whether to process the initial command file
(init_filename or .conformal_lec) by default
during startup. For more information, see “Initial
Command Files” on page 42.

-Banner | -NOBanner Specifies whether to display the LEC banner during
startup.

-RESETrc Reset GUI default settings.

-NOLIcwait If all licenses are checked out, exit immediately.
November 2019 41 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Getting Started
Initial Command Files

When you start the Conformal software, it searches for and executes initial command files
(.conformal_lec). The software checks for the CONFORMAL_RC environment variable. If
this variable is set, Conformal uses the file this variable refers to and does not search for other
files.

If the CONFORMAL_RC variable is not set, the software continues the search as follows:

1. The installation directory

2. The home directory

3. The current working directory

Note: The software does not include .conformal_lec in the release.

If one or more of these files exist, the software runs them in the order noted above. This
search order gives you flexibility in using the initial command file. You can set up initial
command files for any or all of the following purposes:

■ Global initial command file for all users

■ Global initial command file for an individual user

■ Initial command file for a test case

The file contents vary according to your needs; for example, they can include commands,
aliases, and dofiles. You can use this file for any purpose at the system, user, and local levels.

Important

Do not use an initialization file to run a complete batch file. Use dofiles, as explained
in the following section, for this purpose.

-Info Display the product information and exit.

-Version Displays the product version. Once you have started
your session, you can also use the VERSION
command to display the Conformal software version
number. This is useful when starting a transcript log
file to ensure that the file contains a reference to the
Conformal version that created the results.
November 2019 42 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Getting Started
Dofile Command Files

The Conformal Equivalence Checker command files (other than initial command files) are
called dofiles. As you execute commands in GUI mode using the drop-down menus and
windows, the Conformal software displays the text for the corresponding commands in the
Transcript window, which is located in the lower portion of the main window.

Execute dofiles during startup or with the DOFILE command. When you create a dofile, follow
these guidelines:

■ Each new command must begin on a new line.

■ Two or three slashes (// or ///) precede comments.

For more information, see Comments in Dofiles on page 46.

■ Dofiles can execute additional dofiles.

You can use the DOFILE command (or the -dofile command option at startup) to read in
and execute a command file that includes any set of commands.

Using a Dofile at Startup

In GUI mode, the -dofile option is useful for running a set of commands that set up your
environment and advance to a specific point in the verification session. The following example
command substitutes your dofile name for my_dofile:

UNIX% lec -dofile my_dofile

In non-GUI mode, you can use the -dofile option for running batched sets of commands.
The following example command substitutes your dofile name for my_dofile:

UNIX% lec -nogui -dofile my_dofile

Saving a Dofile

To save the commands entered during a current session that you can use later as a batch file
to repeat the session, use the SAVE DOFILE command, or the Save Dofile form in GUI mode
(File – Do Dofile).

When running a session from a dofile, this command does not save individual commands that
might have been included in a separate dofile (that is, it saves the manually entered
commands, which might include a dofile <filename> command).
November 2019 43 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Getting Started
Use the Save Dofile form to save commands to a dofile to be used later as a batch file to
repeat the Conformal Equivalence Checker session.

Save Dofile Fields and Options

Executing Commands in a File

At any time during a session, execute commands in a batch mode using the DOFILE
command or the Do Dofile form in GUI mode (File – Do Dofile). By default, the dofile aborts
at any command that generates an error message.

Filename Specifies the name of the dofile. You can enter the path
of the dofile or click Browse and select a location from
the Save Dofile browser window.

Open Mode Overwrites or appends to the dofile. Replace overwrites
the contents of an existing dofile, and Append appends
to the contents of an existing dofile.
November 2019 44 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Getting Started
Use the Do Dofile form to execute a batch file of commands, or run a set of commands from
a previous session.

Do Dofile Fields and Options

Interrupting a Dofile

Within a dofile, use the BREAK command to interrupt a dofile and return to the current system
mode.

Resuming Running a Dofile

When a dofile executes the BREAK command, the Conformal software issues a warning and
prompts you to use the CONTINUE command to resume running the dofile:

//Warning: Break dofile ‘my_dofile’ at line 32. Use ‘continue’ command to continue.

Directories Double-click the file folders to expand the directories and
view the dofile names in the Files list.

Files Shows the available files. Use the List Files of Type
pull-down menu at the bottom of the form to filter file
display. You choose All files, Dofiles, or Command
files.
November 2019 45 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Getting Started
Specifying Error Handling

Use the SET DOFILE ABORT command in a dofile to specify how the Conformal software
responds to errors it encounters:

■ set dofile abort on

Aborts the dofile and generate a message.

■ set dofile abort off

Continues with the dofile and generate a message.

■ set dofile abort exit

Exits the session.

Comments in Dofiles

The Conformal software provides two types of comments in a dofile:

1. Two slashes (//) comments out the rest of command. // must have space before it if
you add it to the middle of the text.

In this example, the following command lines are commented out:
//read library ../library/lib_01.lib ../library/lib_02.lib \

../library/lib_03.lib ../library/lib_04.lib \

../library/lib_05.lib ../library/lib_06.lib \
-liberty -both

In this example, the read library command is run for lib01.lib through lib_03.lib,
commenting out lib04.lib through lib_06.lib, and not specifying the -liberty
and -both options:
read library ../library/lib_01.lib ../library/lib_02.lib \

../library/lib_03.lib // ../library/lib_04.lib \

../library/lib_03.lib

../library/lib_05.lib ../library/lib_06.lib \
-liberty -both

2. Three slashes (///) comments out the rest of the line. /// must have a space before it
if you add it to the middle of the text.

In this example, the first line only runs the read library command, commenting out
lib_01.lib and lib_02.lib, and including lib03.lib through lib_06.lib, and
specifying the -liberty and -both options:
read library ///../library/lib_01.lib ../library/lib_02.lib \

../library/lib_03.lib ../library/lib_04.lib \

../library/lib_05.lib ../library/lib_06.lib \
-liberty -both
November 2019 46 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Getting Started
Saving and Restoring a Session

In the current release, there are two ways to save a session:

■ Save and Restore Commands on page 47

■ Checkpoint and Restart Facility on page 47

Save and Restore Commands

Use the SAVE SESSION command, or the Save Session form (File – Save Session), to save
session up to a current point in binary format, which can be restored later. You can use this if
priorities demand that another session preempt your session

Use the RESTORE SESSION command, or the Restore Session form (File – Restore
Session), to restore a session you previously initiated and saved. Before using this
procedure, Conformal must be in its initial state. Therefore, you must either reset the system
to the initial state with the RESET command or Reset Design menu option (File – Reset
Design), or exit and restart the Conformal software.

Limitation: When you use the Restore Session menu option, you must restore the session
on the same platform and with the same Conformal version.

Checkpoint and Restart Facility

The checkpoint and restart facility saves all the data from a session (CHECKPOINT
command) as a checkpoint such that it can be restarted at a later time
(<start_up_command> -restart_checkpoint <checkpoint_file_name>
[-protect <password>]).

Note: The GUI mode will be disabled when you restart the checkpoint process.

Applicable
commands

CHECKPOINT

INFO CHECKPOINT

<start_up_command> -restart_checkpoint <checkpoint_file_name>
[-protect <password>]
November 2019 47 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Getting Started
Limitations:

This feature has the following limitations:

■ If you are creating a checkpoint file that you plan to restart using a different license
server, add the restart license server to the LM_LICENSE_FILE variable before invoking
Conformal and before creating the checkpoint file; otherwise, you will not be able to
restart the checkpoint file with the new server. For example:
setenv LM_LICENSE_FILE "$LM_LICENSE_FILE":5280@mylic01

■ Do not enter the GUI mode if you plan to create a checkpoint file that you will want to run
later in the GUI mode. If a checkpoint file is created after having entered GUI mode, when
the checkpoint file is restarted, it will restart and run in non-GUI mode and the GUI mode
is disabled. If a checkpoint file is created before entering the GUI mode, the checkpoint
file can enter the GUI mode when it is restarted.

■ Checkpoint and restarts works on only the following Linux platforms:
32/64-bit Linux kernel versions 2.6.9-34, 2.6.9-42, 2.6.9-67, 2.6.9-78, 2.6.9-89, 2.6.10,
2.6.14, 2.6.16, 2.6.18, 2.6.25, 2.6.26 and 2.6.27

■ You cannot specify the stack limit in a restarted tool process. You can, however, specify
the stack limit when you save the checkpoint:

CHECKPOINT -stack <multiplier>

Default multiplier is 1 (in other words, 64MB).

Data preserved When you save your session as a checkpoint, the tool preserves the:

■ Hierarchical and flattened databases

■ Environment settings

■ Constraints

■ Verification results

■ User-defined variables

■ User-defined procedures

Supported
Platform

Linux
November 2019 48 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Getting Started
Transcript Messages

In both the GUI and non-GUI modes, you can choose to turn the transcript output on or off.
This is especially useful for batch processing in the non-GUI mode. With the transcript output
turned off, none of the regular transcript output is displayed to the screen. Rather, the
Conformal Equivalence Checker retains the transcript in a file. To save the transcript output
in a log file, see Recording Transcript Log Files on page 50.

To turn the transcript output on or off, use the SET SCREEN DISPLAY command.

Creating a Transcript File

To create or append to an existing transcript file, use the Log File form in GUI mode (Setup
– Log File).

Tip

Recording in this file begins after you click OK; therefore, you might want to create
a log file at the beginning of your session. However, if you begin a session and
decide to save the transcript at a later point, see Saving a Transcript File on page 50
to capture a transcript of the beginning of the session.

Log File Form Fields and Options

Filename Specifies a transcript name. Type a path, or click Browse
to choose an existing file from the Log File browser
window.

Open Mode Replace replaces the existing contents with the new
contents. This is the default. Append adds the contents
to an existing file.
November 2019 49 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Getting Started
Saving a Transcript File

You can save a transcript to a file at any point during a session, use the Save Transcript form
in GUI mode (File – Save Transcript). It contains all of the information from the beginning
of the session up to the point when you save the file.

Save Transcript Form Fields and Options

Recording Transcript Log Files

You can start or stop a transcript log file at any time during a session using the SET LOG
FILE command. Furthermore, you can save multiple log files during a session. However, only
one log file is active at a time. If you create a new log file without stopping a previous log file,
Conformal ends the previous log file and starts recording in the new file.

The SET LOG FILE command options allow you to overwrite (replace) or append existing
files. There is no default; therefore, if you enter an existing filename without specifying the
replace or append option, the Conformal software responds with an error message.

Filename Type the path of the transcript file, or click Browse to
choose a location from the Save Transcript browser
window.

Open Mode Replace (the default) overwrites the contents of an
existing file. Append appends the contents to an existing
file.
November 2019 50 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Getting Started
Aliases

To reduce typing, you can use an alias (single word) in a session. For example, if you
frequently use the REPORT ENVIRONMENT command in a session, define an alias for that
command with the ADD ALIAS command, or use the Alias form in GUI mode (Setup – Alias).

In the following example, the ADD ALIAS command adds renv as the alias for the REPORT
ENVIRONMENT command:

Example command:
add alias env report environment

If you re-use an existing alias name, the Conformal software accepts (overwrites) the former
alias.

Alias Form

You can use the the Alias form in GUI mode (Setup – Alias) to add, delete, or view alias
names.

Important

If you type a command name incorrectly, the Conformal software accepts your entry,
but returns an “Unknown command” error message when you attempt to use the
alias. In this case, delete or overwrite the faulty alias with the correct command.
November 2019 51 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Getting Started
Alias Form Fields and Options

Setting Preferences

You can use the Preferences pull-down menu from the main window.

Font & Size

Click on the Preferences drop-down menu to access the Font & Size window. You can use
the Font & Size form to change the font style and font size for various Conformal windows.
This also displays an example of the selected font style and size.

➤ Choose Preferences – Fonts.

The Font & Size form has five tabs (pages) for the following:

Alias Name Specifies the alias name.

Command Specifies the name of the command that will be
represented by the alias.

Alias List Box Lists the aliases. To delete an alias, right-click to open the
pop-up menu and select Delete Alias.
November 2019 52 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Getting Started
■ Hierarchical – Hierarchical Module window

■ Message – Transcript window

■ Command – Command Entry window

■ Source – Source Code Manager

■ Manager – Manager windows

Changing Font Style

To change the font style, click the Font down-arrow to display a list of font styles, select the
font style, and click Apply.

To change the font size, click the Size down-arrow to display a list of font sizes, select the font
size, and click Apply.

Hierarchical Browser On

Displays or hides the Module Browser in the main window.

Hierarchical Browser Sync. up

Synchronizes the hierarchical schematic between the Golden and Revised designs. Paired
HRC sync-up schematic will sync-up the following events between paired schematics:

■ Selected object, which includes instance, net, pin)

■ Load/Drive

■ Coloring object which include instance, net and pin.

■ Move schematic hierarchy up/down.

The Conformal software will open a paired HRC sync-up schematic when selecting
Schematics from the the following areas:

■ Selecting Schematics from the Hierarchical Browser popup menu.

■ Selecting Show Hierarchical View from the Flattened Schematic window.

■ Selecting Show Hierarchical HLite View from the Flattened Schematic window.
November 2019 53 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Getting Started
Icon Bar

Displays or hides the Icon Bar in the main window.

Show Static Infobox

Enables or disables the information box that displays when moving your mouse pointer over
the object. When this is on, the information box will remain after moving your pointer away
from the object. When off, the information box will disappear when moving the mouse pointer
from the object.

Simplified Schematic Viewing

With simplified schematic viewing, you can control how many netlists are displayed in the
Schematics Viewer.

Without simplified viewing, the tool determines the number of netlists to display. Very large
schematic displays can take a long time to load, and it can be difficult to pinpoint/trace logic.

With simplified viewing, you can drag/drop any module/instance you want to view and then
trace corresponding loads/drivers.

Simplified schematic viewing is enabled by default. To disable simplified schematics, use the
Preferences - Simplified Schematics Viewing Options menu item from the main
Conformal window.

Accessing Online Help and Documentation

Launching Cadence Help

The online documentation system is called Cadence Help.

From the main GUI, click on the Help menu item and navigate to the HTML version of the
document that you wish to view. This will bring up Cadence Help.

Some GUI windows also have a Help button that will launch Cadence Help.
November 2019 54 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Getting Started
Getting Help for Cadence Help

After launching Cadence Help, press F1 or choose Help - Contents to display the help page
for Cadence Help.

Getting Help on Commands to Run Tools

You can display a list of options for any of the tools and utilities by typing the tool or utility name
followed by the -help option as follows:

% tool_name -help

Example:

% ccd -help

Getting Help on Commands and Messages

Use the MAN command without any options to list all of the available commands. However, to
view specific help information, use the following commands:

■ command_name—To view command usage for a specific command, enter the MAN
command followed by the command name. For example:
man read design

■ -verbose—To view expanded information about a specific command, enter the MAN
command, followed by the command name, and the -verbose option. For example:
man read design -verbose

■ message_name—To view help for a particular rule check message, enter the MAN
command followed by the message name. For example:
man f10

■ -message—To view a list of all the rule check messages, use the MAN command with
the -message option. For example:
man -message

For more information on the MAN command, use the following command from within the tool:

%man man

Searching the Help Database for Specified Strings

The SEARCH command searches the Help database of commands and options for matches
to strings you specify. Include the -usage option to display the command and its options.
November 2019 55 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Getting Started
Using the Help Menu

You can use the Help menu to get more information on commands, licenses, documentation,
and Cadence support.

Accessing Help from Command Windows

A Help button is available in many command windows. Unlike the Help button on the main
window, when you left-click the Help button in command windows, the Conformal software
automatically executes Help – Commands and displays the information for the related
command in the Command Help window.

Accessing User Documentation

Use the following procedure to view the user guides and reference manuals.

1. Click the Help pull-down menu located at the far right end of the menu bar.

2. Click <Book Name> (pdf) or <Book Name> (html).

The PDF reader launches and displays the PDF version of the book. Or, Cadence Help
launches the HTML version. If you choose the HTML version, you will have access to all
the other books in the documentation set through Cadence Help.

Note: You must have a PDF reader to access the documentation. To download the
current version of Adobe Acrobat Reader, visit the following web page:

http://www.adobe.com/support/downloads/main.html

Accessing Product Information

Use the following procedure to display the Cadence company logo, the product version
number and date, mailing address, phone and fax numbers, and web page and E-mail
addresses.

1. Click the Help drop-down menu located at the far right end of the menu bar.

2. Click About.
November 2019 56 Product Version 19.2
© 1999-2019 All Rights Reserved.

http://www.adobe.com/support/downloads/main.html

Conformal Equivalence Checking User Guide
Getting Started
Accessing License Information

From the Help drop-down menu in the main window, click License to view information
regarding all the installed Conformal software licenses. The report appears in the Transcript
window and includes information such as the current user, feature, and expiration date.

You can also use the LICENSE command to review the current license status. The current
status of the license appears in the transcript output.

Platform Integration

Dofile Generation from First Encounter

You can use the First Encounter graphical user-interface (forms) to generate dofiles for
Conformal equivalence checking verification. You can create and save dofiles using two
Encounter forms: Preferences and Conformal Equivalence Checker.

Preferences

In the Encounter main window, select Design – Preferences to open the Preferences form,
and click on the Design tab.
November 2019 57 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Getting Started
Click Write Conformal/LEC dofile When Design is Saved to specify that when saving a
netlist, this automatically saves a dofile for the Conformal Equivalence Checking capabilities.

Conformal Equivalence Checker

In the Encounter main window, select Tools – Conformal – Verify Design Equivalence to
open the Conformal Equivalence Checker form.

Click Dofile to specify the dofile creation. You can enter the name of the dofile, use the
dofile.lec default, or click Browser icon select a dofile from the Open Dofile browser
window.

Dofile Generation from RC Synthesis Tools

This section describes how to translate RTL Compiler settings to Conformal LEC settings in
order to compare an RTL design against a RTL Compiler synthesized netlist. This translation
is automatically done by the write_do_lec command.

Design Hierarchy in a Conformal LEC Comparison

There are two ways Conformal LEC performs the comparison between the Golden design
and the revised design: a hierarchical comparison and a flattened comparison. A flattened
comparison is sufficient when comparing two gate-level designs.

However, when at least one of the two designs is a complex RTL design, a hierarchical
Conformal LEC comparison might be necessary. By default write_do_lec always
prescribes a hierarchical comparison if the Golden design is at the RTL level.
November 2019 58 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Getting Started
write_do_lec assumes:

■ The design loaded into RTL Compiler is an RTL design

■ The design specified with the -Golden_design option is a gate-level netlist. A flat
compare will be performed with this option.

■ The design specified by the -revised_design option is a gate-level netlist

If the -Golden_design switch is not specified, and a single-shot do file was created, the
RTL design loaded with the read_hdl command will be considered the Golden design and
a hierarchical comparison will ensue. If the -Golden_design switch is not specified and an
incremental comparison was performed, then the Golden netlist is described in the last
checkpoint file, and a flat comparison will ensue.

Combining Liberty Files

RTL Compiler and Conformal LEC handle the combination of Liberty files in the same way.
Both can combine multiple Liberty files that are syntactically incomplete into a single Liberty
file. For example, in the following RTL Compiler example, file1.lib and file3.lib
Liberty files are complete, and file2.lib and file4.lib Liberty files are missing the
library keyword and the corresponding opening and closing braces (“{}”):

set_attribute library { { file1.lib file2.lib } { file3.lib file4.lib } }

The file1.lib and file2.lib libraries will nonetheless be combined and treated as a
single Liberty file. The file3.lib and file4.lib files will also be combined and treated
as a single Liberty file.

If all the Liberty files were syntactically correct, in this case with their library keywords and
braces, then the above example will look like this in Conformal LEC:

SETUP> read library -liberty file1.lib file2.lib file3.lib file4.lib

■ If an incomplete Liberty file only contains elements that Conformal LEC does not need,
like wire-load models, simply remove them from the dofile.

■ If an incomplete Liberty file contains elements that Conformal LEC needs, like extra cells,
you must manually combine the main library and the partial library and then load the new
single library in Conformal LEC. To do this:

a. Take the main library and delete the final “}” (brace) character

b. Concatenate all partial libraries into the main library

c. Add the previously deleted “}” character at the end of the main library.
November 2019 59 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Getting Started
Liberty and Simulation Libraries

All library files are loaded into Conformal LEC through a single read library command that
is specified in the generated dofile. The command will always be specified with its -both
option. The following example loads all the Liberty libraries:

rc:/> read library -both -liberty $lib_files

An alternative to using the Liberty libraries is to use simulation libraries with the
write_do_lec command.

Currently, the simulation libraries are only supported in Verilog-1995 format. Multiple
simulation libraries can be specified as a Tcl list.

State Table in the Libraries

Every read library Conformal LEC command in the RTL Compiler generated dofiles is
always accompanied by the -statetable option.

RTL Code

■ Each read_hdl -verilog RTL Compiler command translates to a
read design -verilog Conformal LEC command.

■ All the read_hdl -vhdl commands (if there are more than one) are combined into one
read design -vhdl command.

■ The read design -vhdl command will be placed after the last
read design -verilog commands.

Each parameter that was explicitly specified with the elaborate -parameters RTL
Compiler command will become an argument to the -parameter option of the
read design command in the generated dofile. For example:

rc:/> elaborate -parameters {{p1 16} {p2 10}}

will translate to:

read design -parameter p1 16 -parameter p2 10

Blackboxes

The write_do_lec command will always insert the following Conformal LEC command in
the dofiles:

set undefined cell -noascend black_box -both
November 2019 60 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Getting Started
Although write_do_lec will always use this command, do not use
set undefined cell black_box when you are creating dofiles manually: it can mask a
user-error in which not all the HDL files are loaded into Conformal LEC but Conformal LEC
declares an EQ after matching the black boxes.

Undriven Signals

RTL Compiler has three undriven-related attributes:

set_attribute hdl_undriven_signal_value <0|1|X|none> /
set_attribute hdl_undriven_output_port_value <0|1|X|none> /
set_attribute hdl_unconnected_input_port_value <0|1|X|none> /

Conformal LEC has one undriven-related command:

set undriven signal <Z|0|1|X> [-both | -Golden | -revised]

In Conformal LEC, the default undriven setting is Z. In RTL Compiler, the default undriven
setting is none for all three scenarios.

■ The 0 setting in RTL Compiler is the same as the 0 setting in Conformal LEC.

■ The 1setting in RTL Compiler is the same as the 1 setting in Conformal LEC

■ The X setting in RTL Compiler is the same as the X setting in Conformal LEC.

■ The none setting in RTL Compiler is the same as the Z setting in Conformal LEC.

Conformal LEC uses one undriven setting to control all three undriven scenarios. RTL
Compiler has one undriven setting for each scenario. To translate from RTL Compiler
undriven settings to Conformal LEC undriven setting, the following two RTL Compiler
attributes are ignored:

hdl_undriven_output_port_value
hdl_unconnected_input_port_value

Translating the undriven setting is only needed for RTL designs. Therefore, translation of the
undriven attributes is done only for the Golden design when it is the RTL loaded into RTL
Compiler. In this case, the following actions are taken:

■ If get_attribute hdl_undriven_signal_value / returns 0, then the dofile has
set undriven signal 0 -Golden

■ If get_attribute hdl_undriven_signal_value / returns 1, then the dofile has
set undriven signal 1 -Golden

■ If get_attribute hdl_undriven_signal_value / returns X, then the dofile has
set undriven signal x -Golden
November 2019 61 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Getting Started
■ If get_attribute hdl_undriven_signal_value / returns none, then the dofile
has
set undriven signal z -Golden

Only RTL designs require the translation of undriven settings. Therefore, undriven attributes
only need to be translated when the Golden design is the RTL that is loaded into RTL
Compiler.

Unreachable Key Points

If the hdl_preserve_unused_registers attribute is true on RTL designs, every
Conformal LEC read design command will be specified with its -keep_unreach switch.

If both the delete_unloaded_seqs and delete_unloaded_insts attributes are false
on RTL designs, the following command will be written to the dofiles:

set mapping method -unreach

Tip

Adding an instance constraint on a DFF removes it from the compare list. As a
result, it becomes unreachable because it is no longer needed. However, if you still
want to compare it, use the SET MAPPING METHOD -unreach command.

Constant Flop and Latch Optimizations

If you specify any of the following attributes (regardless of their values):

■ optimize_constant_0_flops

■ optimize_constant_1_flops

■ optimize_constant_latches

The following Conformal LEC command will be written to the dofiles:

set flatten model -seq_constant -seq_constant_x_to 0

Latches and Muxes with Feedback

If hdl_latch_keep_feedback attribute is false, then the following Conformal LEC
command will be written into the dofiles:

set flatten model -loop_as_dlat
November 2019 62 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Getting Started
Clock Gating Features

Among the Low Power transformations and optimizations performed by RTL Compiler,
write_do_lec supports MSV and clock-gating insertion.

It ignores the Conformal LEC impact (if any) of the SRPG and operand isolation Low Power
features

write_do_lec supports the ff and none styles of clock-gating insertion, and ignores the
Conformal LEC impact (if any) of the latch style.

DFT Scan Flops

Conformal LEC performs functional verification of the core logic of a design and not the scan-
insertion logic. Therefore, the RTL Compiler generated dofile may carry the following types of
design constraints:

■ For every scan-data-out port added by RTL Compiler, there is a Conformal LEC
add ignored outputs command to exclude it from the Conformal LEC comparison.

■ For every test signal that is declared by the RTL Compiler define_dft command, there
is a Conformal LEC add pin constraints command to tie it to the inactive state.

■ For every primary input port serving as a test control signal of an IEEE 1500 core
wrapper, there is a Conformal LEC add pin constraints command to tie it to the
inactive Conformal state.

For LSSD designs, provide Conformal LEC with a simulation model for every LSSD cell used
in the design.

The write_do_lec command ignores the unmap_scan_flops and dft_mapped
attributes in its translation process.

Instantiated DesignWare or ChipWare Models

If the RTL code instantiates a ChipWare or DesignWare model, the generated dofile loads its
simulation model using the read design command. However, currently this process will not
work for the pipelined models (like CW_mult_2_stage), or non-bit-accurate models (like
CW_multp).
November 2019 63 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Getting Started
Exiting Conformal LEC

By default, the last line in a generated dofile is an exit command, telling Conformal LEC to
quit its session after finishing the dofile.

You can suppress the exit command in the generated dofile by specifying the -no_exit
switch of the write_do_lec command. Doing so will not terminate the Conformal LEC
session after the last command is executed.

Using Conformal With Virtuoso

For information on how to use the Virtuoso to Conformal interface, refer to the README file
and demo located at:

<install_dir>/share/cfm/lec/demo/virtuoso
November 2019 64 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
3
Using the Graphical User Interface

■ Main Window on page 66

❑ Selecting Multiple Items on page 66

❑ Drag and Drop on page 67

❑ Menu Bar on page 67

❑ Window Menu on page 67

❑ Icon Bar on page 68

❑ Find Hierarchical Module on page 69

❑ Hierarchical Browser on page 70

❑ Hierarchical Browser on page 70

❑ Transcript Window on page 72

❑ Command Entry Window on page 73

❑ Status Bar on page 73

❑ Exiting the GUI and Software on page 73

■ File Menu on page 75

■ Setup Menu on page 76

■ Report Menu on page 77

■ Run Menu - Compare on page 79

■ Tools Menu on page 80

■ Custom Menu on page 318
November 2019 65 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Using the Graphical User Interface
Main Window

This section describes some of the basic features of the main window.

Selecting Multiple Items

From the various windows, you can select multiple items using any of the following methods:

■ Click and drag, highlighting each item as you drag the mouse.

Menu Bar

Icon Bar

Hierarchical
Browser

Transcript
Window

Status Bar

Command
Entry
November 2019 66 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Using the Graphical User Interface
■ Hold down the Shift key and click on two items; this selects every item on the list
between the two.

■ Hold down the Control key and click on items that you want to select. With the
Control key depressed, you can jump around the item list.

Drag and Drop

You can use the drag-and-drop functionality to provide shortcut methods for performing
particular tasks. To perform drag and drop:

1. Select or highlight the item you want to drag and drop. To select an item, point and click
on it.

2. Press and hold the middle mouse button while you drag the item to its destination.

3. Release the mouse button to drop the item in place.

Note: When you click with the middle button, the name of the selected object is displayed in
an ivory text box. As you move the box to another window, the background of the text box
changes to black if you have reached a window where you can drop the object.

Menu Bar

The menu bar represents categories of commands. Each of the headings supports a
pull-down menu of related commands. Click a menu bar category to display the group of
represented commands. The menu names are enabled or disabled (grayed) according to the
current operating mode (Setup or LEC). With the drop-down menu visible, click on an enabled
command to run it.

The drop-down menus support meta-key invocation for menu commands using mnemonics.
The mnemonic for each command name is shown with an underscore. For example, run the
File – Read Design command by typing meta-f, then d. The meta key is usually the
diamond key on Sun keyboards, or the Alt key on other keyboards.

Window Menu

Note: The following information also applies to the Manager windows.

The Window drop-down menu is a dynamic menu that changes as you open and close
windows. All active windows are listed in the Window drop-down menu. Clicking on a window
name brings it to the front of your screen.
November 2019 67 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Using the Graphical User Interface
Use the Window – Cascade menu command to refresh your desktop and display the main
window on top with all other open windows in a cascading view to the left of the main window.

Icon Bar

The Icon Bar, which is located in the main window, contains icon buttons that run specific
commands. Click an icon to run the related command or access the related tool. If an icon is
not highlighted, it is not available in your current system mode. For example, when the system
is in Setup mode, the Mapping Manager and Diagnosis Manager icons are not
highlighted, since they are available in the LEC operating mode only. The following tables
defines the icons.

To display or hide the Icon Bar in the main window, choose the Preferences – Icon Bar
check box.

Icon Icon Name Description

Read Library Specifies library filenames.

Read Design Specifies design filenames.

Hierarchical Compare Compares two hierarchical designs. See
Hierarchical Module Comparison
Window on page 242.

 Source Code Manager Displays the design’s source code.

HDL Rule Manager Displays library and design rule checks.

Gate Manager Helps to diagnose and debug designs.

Mapping Manager Helps to manage unmapped, mapped,
and compared points.

Diagnosis Manager Displays the error patterns and error
candidates for non-equivalent points.

Find Opens the Find Hierarchical Module
form to locate an instance in the
Hierarchical Browser.
November 2019 68 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Debugger_LEC/source.html#SourceCodeMgr

Conformal Equivalence Checking User Guide
Using the Graphical User Interface
Find Hierarchical Module

Use the Find Hierarchical Module form to locate an instance in the Hierarchical Browser. You
can open this form by clicking the Find icon located on the menu bar, or pressing Ctrl-f in
the Hierarchical Browser.

The following lists the fields and options for the Find Hierarchical Modules form.

Refresh Refreshes the main window display and
compresses all modules.

Stop Interrupts mapping and comparison.

Setup Setup Mode button Changes the system mode to Setup.

Verify Verify Mode button Changes the system mode to Verify.

About Opens the Company and Product
Information window.

Instance Name Specifies the instance or module name to search.

Object List Lists all matching instance or module names.
Double-clicking on the object name highlights the
selected object in the Hierarchical Browser.
November 2019 69 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Using the Graphical User Interface
Hierarchical Browser

The Hierarchical Browser, located in the main window, displays the hierarchical modules of
the Golden and Revised designs. The root module is displayed along with its hierarchical
contents. Clicking the + and - icons expand and compress the hierarchical display. Click the
Refresh icon, located on the icon bar near the top of the main window, compresses all
hierarchical modules back to the root module. The module name is displayed first, and
instance names are enclosed in parentheses ().

To display or hide the Hierarchical Browser in the main window, choose the Preferences –
Hierarchical Browser On check box.

Running Commands on Selected Modules

Run certain commands when you select a module or instance in the hierarchical display. You
cannot run commands on library cells.

1. Click a module or instance in the Golden or Revised design to select it.

2. Right-click to display the pop-up menu.

3. Drag the cursor to choose a command.

The following tables list the executable commands.

Running Commands on Selected Modules

Run certain commands when you select a module or instance in the hierarchical display. You
cannot run commands on library cells.

1. Click a module or instance in the Golden or Revised design to select it.

2. Right-click and drag the cursor to choose a command from the pop-up menu.

Find Specifies either an Instance or Module object for the
search.

Type Specifies either a Golden or Revised object type for the
search.

Case Sensitivity Turns on the case-sensitivity for the search.

Include Library/Primitive Cell Extends the search.
November 2019 70 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Using the Graphical User Interface
The following tables list the executable commands.

Running Commands on the Root Module

In the Setup system mode, you can run certain commands from within the Hierarchical
Browser window. The following commands relate to the root module.

Running Commands on a Module or Instance Other Than Root

Run the following commands from within the Hierarchical Browser window for a hierarchical
module or instance that is not a root module.

Pop-Up Menu Command Description

Pin Constraints Opens the Pin Constraints form. See Pin Constraints on
page 119.

Pin Equivalences Opens the Pin Equivalences form. See Pin Equivalences on
page 122.

Add Primary Input Opens the Add Primary Inputs form. See Adding Primary
Inputs on page 125.

Add Primary Output Opens the Add Primary Outputs form. See Adding Primary
Outputs on page 127.

Add Cut Point Opens the Add Cut Point form. See Adding Cut Points on
page 134.

Tied Signals Opens the Tied Signals form. See Tied Signals on
page 130.

Source Code Manager Opens the Source Code viewer for the module.

Schematics Opens the schematic of the root module.

Pop-Up Menu Command Description

Root Module Opens the Root Module form. See Changing the Root
Module on page 96.
November 2019 71 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Using the Graphical User Interface
Transcript Window

The Transcript window is located in the main Conformal Equivalence Checker window. It
displays information regarding the current session, including warnings and error messages.
Additionally, when you enter a report command, the report information is displayed in the
Transcript window. The text is color-coded for greater visual accessibility. For example, error
messages appear in red text.

Clearing the Contents of the Transcript Window

Right-click in the Transcript window to open the pop-up menu and choose Clear.

Add Blackbox Instance defines the selected instance as a blackbox.

Module defines the selected module as a blackbox.

Conformal inserts a blackbox symbol next to the module or
instance name. See Transcript Window on page 72.

Add Primary Input Opens the Add Primary Inputs form. See Adding Primary
Inputs on page 125.

Add Primary Output Opens the Add Primary Outputs form. See Adding Primary
Outputs on page 127.

Add Cut Point Opens the Add Cut Point form. See Adding Cut Points on
page 134.

Tied Signals Opens the Tied Signals window. See Tied Signals on
page 130.

Report Gate Opens the Gate Manager. See Gate Manager on page 176.

Source Code Instance opens the Source Code viewer and highlights the
selected instance.

Module opens the Source Code viewer and highlights the
selected module.

Schematics Opens the schematic of the selected module.

Flat Schematics Opens the schematic for the highlighted instance.

Parent Module Highlights the parent module of the selected instance.

Pop-Up Menu Command Description
November 2019 72 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Using the Graphical User Interface
Command Entry Window

The Command Entry window is located near the bottom of the main window. Use it to execute
commands from the keyboard as an alternative to using the menus and icons.

Commands you execute using the menus or icons are transcribed to the Command Entry
window. If you use the Save Dofile feature, Conformal writes all of the commands that are
listed in the Command Entry window to the file.

Clearing the Command Entry Window

Right-click in the Command Entry window to open the pop-up menu, and choose Clear.

Status Bar

The Status Bar is located at the bottom of the main window. It shows the status of certain
processing commands. The progress meter at the right end of the status bar changes
incrementally and a corresponding percentage number shows the level of completeness.

Exiting the GUI and Software

Use the following procedures to exit from the GUI mode and Conformal software, and save
and restore GUI settings.

Exiting the GUI

To switch GUI mode to the non-GUI command line mode, choose File – Exit GUI from the
main window.

To return to GUI mode, use the SET GUI ON command.
November 2019 73 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Using the Graphical User Interface
Exiting the Conformal Software

To exit completely, use the EXIT command, or choose File - Exit from the main window.

Note: All design and diagnosis information is lost when you terminate the session.

Saving GUI Settings

Choosing File - Exit opens a confirmation window. By default, the Conformal software does
not automatically save GUI settings for future sessions. To save your preferred settings, click
the Save GUI settings check box. Included in the list of supported settings are:

Using Default Settings in Future Sessions

If you exit from the Exit window and save preferences, you can later reverse this choice and
use default settings in future sessions. Remove the .conformal_gui.rc file from your
home directory or reset the default settings with the -resetrc options when you begin a
session:

rm ~/.conformal_gui.rc
conformal -resetrc

Exit Status Codes

If you have done some debugging, the Conformal software returns a status code. The exit
status code consists of flags that represent different conditions.

For more information, including a table that lists of flags, their descriptions, and examples, see
Exit Status Codes on page 218.

■ Window size and location (excluding schematics and source code windows)

■ Fonts

■ Schematic colors

■ Mapping Manager sorting option

■ Mapping Manager display object class selection (for example, show only non-equivalent
points)

■ Mapping Manager region display option
November 2019 74 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Using the Graphical User Interface
File Menu

The following menu options are accessible from the File menu:

■ Read Library—Specify library filenames you will include with a design.

See Read Library Form on page 105.

■ Read Design—Specify the design filenames the Conformal software reads in as the
Golden and Revised designs.

See Read Design Form on page 109.

■ Save Dofile—Save commands to a dofile to be used later as a batch file to repeat the
Conformal Equivalence Checker session.

See Saving a Dofile on page 43.

■ Do Dofile—Execute a batch file of commands, or a Dofile set of commands from a
previous session.

See Executing Commands in a File on page 44.

■ Save Transcript—Save a transcript to a file at any point during a session. It contains all
of the information from the beginning of the session up to the point when you save the
file.

See Saving a Transcript File on page 50.

■ Reset Design—Reset the system to its initial state. This deletes all existing designs and
libraries and cancels all previously issued commands.

■ Save Session—Saves your session up to a current point and outputs the session file in
a binary format. You can then restore the session later using the Restore Session
command. You can use this command if priorities demand that another session preempt
your session.

■ Restore Session—Restores a session you previously initiated and saved using the
Save Session command. When invoked, Conformal will go back to its initial state then
restores the state from the saved session.

See Saving and Restoring a Session on page 47.

■ Exit GUI—Switch Conformal from the GUI mode to the non-GUI command line mode.

■ Exit—Exit the Conformal software completely.

See Exiting the GUI and Software on page 73.
November 2019 75 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Using the Graphical User Interface
Setup Menu

The following menu options are accessible from the Setup menu:

■ Log File—Create or append to an existing transcript file.

See Creating a Transcript File on page 49.

■ Alias—Add, delete, or view alias names in a session.

See Alias Form on page 51.

■ Search Path—Create, modify, or delete directory search paths.

See Adding Search Paths on page 97.

■ Environment—Set global options for the Golden and Revised designs and for mapping
and comparison operations.

See Setting Global Options For Mapping and Comparison on page 100.

■ Pin Constraints—Add and delete pin constraints to primary input pins.

See Pin Constraints on page 119.

■ Pin Equivalences—Add and delete pin equivalences.

See Pin Equivalences on page 122.

■ Primary Input—Add and delete primary inputs.

See Primary Inputs on page 124.

■ Primary Output—Add and delete primary outputs.

See Primary Outputs on page 127.

■ Cut Point—Add and delete cut points.

See Cut Points on page 134.

■ Tied Signals—Add and delete tied signals to floating nets and pins.

See Tied Signals on page 130.

■ Root Module—Change the Conformal automatic root module assignment and to
specify the name of the new root module in the Golden and Revised designs.

See Changing the Root Module on page 96.
November 2019 76 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Using the Graphical User Interface
■ Renaming Rule—Add or delete renaming rules to guide mapping, help map modules
for hierarchical comparisons, or rename pin names of blackboxes.

See Renaming Rules on page 147.

■ Notranslate Modules—Add and delete design or library modules that will not be
translated. These modules will be treated as blackboxes.

See Adding Notranslate Modules on page 98.

■ Flatten Model—Set global options for flattening and modeling, which occur when
exiting Setup system mode.

See Flatten Model Form on page 144.

Report Menu

Use the Report form to display extensive design information in the Transcript window of the
main window. For information on saving the reports to a file, see Transcript Messages on
page 49.

Reporting contains the following categories. You can either select these from the Report
menu, or from the form’s Report Type pull-down menu.

■ Black Box—Displays black boxes from the Golden and Revised designs.

■ Cut Points—Displays cut points from the Golden and Revised designs.

■ Design Data—Displays the number of design modules, library cells, inputs, outputs,
primitives, and one-to-one mapped state points on the Golden and Revised designs.

■ Environment—Displays global settings for the Golden and Revised designs and system
settings.

■ Floating Signals—Displays all floating signals in the Golden and Revised designs or in
specified modules of a design.

■ Instance Constraints—Displays the constraints placed on instances in the Golden and
Revised designs.

■ Instance Equivalences—Displays the equivalences placed on instances in the Golden
and Revised designs.

■ Messages—Displays either a summary or complete list of the warning messages that
come from the modeling, mapping, or comparison process.

■ Modules—Displays module information for the Golden and Revised designs.
November 2019 77 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Using the Graphical User Interface
■ Notranslate Modules—Displays all of the library and design modules that Conformal
will not compile when reading in libraries and designs.

■ Pin Constraints—Displays the constraints placed on primary input pins in the Golden
and Revised designs.

■ Pin Equivalences—Displays a list of added pin equivalences and inverted pin
equivalences.

■ Primary Inputs—Displays primary input pins from the Golden and Revised designs.

■ Primary Outputs—Displays primary output pins from the Golden and Revised designs.

■ Renaming Rule—Displays all of the library and design modules that Conformal will not
compile when reading in libraries and designs.

■ Search Path—Displays the paths Conformal searches to locate filenames included in
the Conformal software.

■ Tied Signals—Displays the list of renaming rules for mapping, module, and pin
renaming.

The following options are for the Mapping Manager window. For more information about these
features and related functionality, see Mapping Manager on page 188.

■ Mapped Points—Opens the Mapping Manager and displays the mapped points that
were automatically identified or added with the Conformal software. Each mapped point
from the Golden and Revised design is displayed along with a summary of all Golden
and Revised mapped points.

■ Unmapped Points—Opens the Mapping Manager and displays a list of unmapped
points, along with a summary of all of the unmapped points in the Golden and Revised
designs.

■ Compared Points—Opens the Mapping Manager and displays the compared points
that were added with the Conformal software.

■ Compare Data—Opens the Mapping Manager and displays a list of all or specified
compared points.

■ Statistics—Displays the mapping and comparison statistics for the Golden and Revised
designs.
November 2019 78 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Using the Graphical User Interface
Run Menu - Compare

Use the Compare form to add all of the compare points and run the equivalency checking
comparison between the Golden and Revised designs. You can also stop the comparison
after Conformal encounters a specified number of abort points or mismatches.

When Conformal completes the comparison, it displays a summary table of the number of
equivalent and non-equivalent compared points in the Transcript window.

Tip

You can also run the COMPARE command in the Mapping Manager to compare
specified points or all points (see Comparing Key Points on page 197).

➤ Choose Run – Compare.

Compare Form Fields and Options

Stop After # Mismatch Specifies the number of non-equivalent points where the
comparison stops.

Stop After # Abort Specifies the number of abort points where the
comparison stops.

Display Non-equivalent Points

Displays the non-equivalent points as they are found
during the comparison.

Add All Compare Points Automatically adds all compare points (the default).
November 2019 79 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Using the Graphical User Interface
Tools Menu

The following options are accessible from the Tools menu:

■ HDL Rule Manager—Display all of the library and design rule checks the Conformal
software runs during parsing.

See HDL Rule Manager on page 86.

For more information on the HDL Rule Checks that Conformal performs, see the
Conformal HDL Rule Check Reference.

■ Gate Manager—Helps diagnose and debug your designs.

See Gate Manager on page 176

■ Mapping Manager—Serves as a gateway to the integrated debugging environment.

See Mapping Manager on page 188

■ Diagnosis Manager—Display the error patterns and error candidates for
non-equivalent points.

See Diagnosis Manager on page 205

■ Hierarchical Compare—Run a module-by-module, bottom-up, hierarchical
comparison on two hierarchical designs.

See Hierarchical Module Comparison Window on page 242

■ LowPower Manager—Display unmapped and checked points, check key points, and
report the status of each checked point.

See Low Power Manager in the Conformal Low Power User Guide for more
information.
November 2019 80 Product Version 19.2
© 1999-2019 All Rights Reserved.

../LowPower_User/diagnose_LP.html#lowpowermanager

Conformal Equivalence Checking User Guide
4
Command Line Features

■ Command Line Editing on page 81

■ Command Line Completion on page 83

Command Line Editing

The non-GUI terminal of any Conformal tool supports the following editing functions:

In the following table, ^F indicates pressing the Ctrl key and the F key simultaneously.
Function keys have their names enclosed in angle brackets, for example, <ESC> is the
Escape key.

The key sequences for basic editing functions are summarized in the following table.

Figure 4-1 Basic Editing Functions

Keys Function

^F or <right-arrow> Move the cursor one character to the right

^B or <left-arrow> Move the cursor one character to the left

^A Move the cursor to the beginning of the line

^E Move the cursor to the end of the line

^U Delete the entire line

^K Delete all characters from the cursor position to the
end of the line

<ESC>f Move the cursor forward by one word

<ESC>b Move the cursor backward by one word

^D Delete the character under the cursor
November 2019 81 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Command Line Features
Every command that is successfully entered is saved in a history list. You can recall
commands in the history list to avoid repeated typing. The history list has a size limit of 256k
bytes and the oldest commands in the list will be discarded when this limit is exceeded.

Figure 4-2 Command Line History

The history search capability looks into the history list for one that matches the beginning of
the current line. If the search string contains wildcards (*, ?), then the entire pattern is
matched. This is useful for searching patterns in the middle of a line.

For example:

SETUP> usage
SETUP> echo hello
SETUP> echo bye
SETUP> us<ESC>p
SETUP> usage
SETUP> *hello*<ESC>p
SETUP> echo hello

The command line history can also be saved into a file using the command SAVE DOFILE.

^H or <Backspace> or ^? Delete the character to the left of the cursor

^R Redisplay the current line

^L Clear the screen and show the current line at the top
of the screen

^I or <TAB> Complete word (See section below)

Key Function

^P or <up-arrow> Recall the previous history line

^N or <down-arrow> Recall the next history line

<ESC>p History search backward

<ESC>n history search forward

^Xh List the history

<ESC>< Recall the first history line

<ESC>> Recall the last history line

^D List all possible completions when
cursor is at end of line
November 2019 82 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Command Line Features
Command Line Completion

Command line completion (or tab completion) is when the tool automatically fills in partially
typed commands. The tool supports command line completion in VPX and TCL mode (using
the appropriate commands for each mode).

Using Command Line Completion

Completion mode is activated by the <TAB> key. For example, if you press the <TAB> key
after typing "re", you will get the following possible command completions:

SETUP> re<TAB>
read... remodel* report... reset... restore... reduce... remove* reset*

Partial command completions are listed with the postfix "..."; complete command
completions are listed with the postfix "*". In the example above, the remodel command is
complete, commands like "read" are not. To narrow the choices, type more characters. For
example, press <TAB> after typing "read" will show the commands that begin with "read":

SETUP> read<TAB>
read cpf* read lef... read memory... read rule... read design* read library* read
pattern* read testcase* read fsm... read mapped... read rom...

Valid abbreviated commands are understood during command completions as illustrated
below:

SETUP> ana m<TAB>
ana module* ana multiplier*

When there is only one choice, the command is completed automatically. For example,
pressing <TAB> after typing "read li" will complete the command "read library". Typing
^D (when the cursor is at the end of a line) lists the possible completions without making any
completions. Beware that using ^D on an empty line will terminate the tool.

Command completion understands the VPX and MAN commands, and will complete the
commands that come after. For example,

SETUP> man write l<TAB> SETUP> man write library

After the command is completed, pressing <TAB> will activate filename completion.

Repeating Actions

The effect of pressing a key can be repeated automatically by giving it a repeat count using
the key sequence <ESC>numberX where number is the count in one or more digits, and X
is the key to be repeated. For example, the following example repeats the single character
deletion using the <Backspace> key 20 times.
November 2019 83 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Command Line Features
SETUP> abcdef01234567890123456789<ESC>20<Backspace>
SETUP> abcdef

Notes

■ Command completion completes one word at a time. For example, the partial input
"write ru" needs two completions, one for "rule", and one for "check" to result in
the completed "write rule check" command. However, since there are no other
commands that begin with "write ru", only one completion should be necessary.

■ Options are not completed.
November 2019 84 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
5

Managing Rule Checks

■ HDL Rule Manager on page 86

❑ Severity Levels on page 88

❑ Enabling and Disabling Rule Checks on page 89

❑ Running Incremental Rule Checks on page 89

❑ Reporting Messages for Rule Checks on page 90

❑ Viewing a Specific Message on page 90

❑ Viewing Source Code for an Occurrence on page 90

■ Modeling Messages on page 92
November 2019 85 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Managing Rule Checks
HDL Rule Manager

HDL rules consist of a group of desirable rules that should be observed during design
analysis, elaboration, and RTL construction. For example, the checker notifies you of the
presence of UDPs, directives, and hierarchical coding; and alerts you to code that might lead
to RTL and gate-level simulation mismatches. Thus, when these rules are violated, it is an
indication of either a potential design error, or a possible mismatch between RTL and gate-
level simulations for logically equivalent circuits.

You can view all the HDL rule check messages and their details in the Reference Guide, or
type ‘help <rule>’ at the command line.

You can use the HDL Rule Manager to manipulate the HDL Rule Checks that are done when
reading in libraries and designs. There are two ways to open the HDL Rule Manager from the
Main window:

➤ Choose Tools – HDL Rule.

➤ Click the HDL Rule Manager toolbar widget.
November 2019 86 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Managing Rule Checks
For the HDL Rule Manager, see the following for more information:

■ Changing the Severity of Rule Checks on page 89

■ Enabling and Disabling Rule Checks on page 89

■ Running Incremental Rule Checks on page 89

■ Reporting Messages for Rule Checks on page 90

■ Viewing a Specific Message on page 90

■ Viewing Source Code for an Occurrence on page 90

The HDL Rule Manager includes the following tabs, corresponding to the rule checking
categories, and a display area.

■ RTL—For designs that are written in the register transfer level of abstraction.

■ Verilog—For designs that are written in Verilog.

■ UDP—For designs that contain user-defined primitives.

■ Directive—For designs that include directives or pragmas.

■ Ignored—For designs that include unsupported or redundant constructs, which are
ignored by the checker.

■ Hierarchy—For designs that contain hierarchical components.

■ Spice—For designs that contain SPICE netlists.

HDL Rule Manager Fields and Options

Options Click the View pull-down menu and choose Rule with
messages only (the default), or All to display a
complete list of rules and the messages (violations) for
each page.

Click the Page Size option to open the Page Size form
to specify the page limits to control the number of rules
that are displayed.

Summary For each page, this displays the total number of rules for
the specified category, and the total number of rule
violation occurrences (messages).
November 2019 87 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Managing Rule Checks
Severity Levels

The severity levels are listed below from the most serious to the least serious:

■ Error—The Conformal software might not allow you to begin verification until you resolve
the error.

■ Warning—The Conformal software allows you to begin verification; however, it warns you
of potential errors in the design.

■ Note—The Conformal software allows you to begin verification; however, it flags potential
errors in the design.

■ Ignore—The Conformal software does not report this severity by default.

You can change the level of severity for rule violations with the SET RULE HANDLING
command. You must use this command during Setup before reading in library or design files.
Alternatively, you can use the HDL Rule Manager to change the severity (see Changing the
Severity of Rule Checks on page 89.)

For example, to show the initial default severity level for HRC7, you would run the following
command (in Setup mode):

report rule check hrc7 -help

The output shows the rule name, default severity, and description:

HRC7 WARN Module specified by ‘add notranslate modules’ command cannot be found

To show the current severity of HRC7, which in this example has not been changed from its
default severity level, you would run the following command:

report rule check hrc7 -setting
===
= RTL Rules =
===
HRC7: Module specified by ‘add notranslate modules’ command cannot be found

Type: Golden Severity: Warning
Type: Revised Severity: Warning
Type: Golden library Severity: Warning
Type: Revised library Severity: Warning

To change the default severity level to an error, you would run the following command (in
Setup mode):

set rule handling HRC7 -error

To show the new severity level for HRC7, you would run the following command:
report rule check HRC7 -setting
November 2019 88 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#setrulehandling

Conformal Equivalence Checking User Guide
Managing Rule Checks
===
= RTL Rules =
===
HRC7: Module specified by ‘add notranslate modules’ command cannot be found

Type: Golden Severity: Error
Type: Revised Severity: Error
Type: Golden library Severity: Error
Type: Revised library Severity: Error

Note: However, if after changing HRC7 rule’s severity to an error, you run the report rule
check HRC7 -help command, you will still get the (default) severity of Warning.

Changing the Severity of Rule Checks

To change the severity of the rule handling in the HDL Rule Manager, use the following
procedure in Setup mode and before you read in the library, designs, and SDC files, do the
following:

1. Click to select a rule check number.

2. Right-click and choose Severity and select Warning, Error, Note, or Ignore from the
pop-up menu:

Note: Conformal does not report rules with a severity of Ignore as violations.

Enabling and Disabling Rule Checks

Use the SET RULE HANDLING command to exclude specified entities (for example, a
specified module) from rule checking.

Use the SET RULE FILTER command to filter out rules that occur in modules outside the
root hierarchy.

Use the ADD IGNORE RTLCHECK command to ignore HDL (RTL) rule checking for all or
specified modules. By default, rule checking is enabled. Thus, you will only use the DELETE
IGNORE RTLCHECK command to reverse the effects of the ADD IGNORE RTLCHECK
command.

Running Incremental Rule Checks

Use the WRITE RULE CHECK and READ RULE CHECK commands to run incremental checks.
The first time you run a session, write the rule violations into a rule file using the write rule
check <filename> -Golden (or -revised) command. For subsequent runs, use the
November 2019 89 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#writeRuleCheck
../Conformal_Ref/LEC_Ref_commands.html#readRuleCheck
../Conformal_Ref/LEC_Ref_commands.html#setRuleFilter
../Conformal_Ref/LEC_Ref_commands.html#addIgnRtlCheck

Conformal Equivalence Checking User Guide
Managing Rule Checks
read rule check -exclude <filename> command to exclude the violations already
flagged.

Reporting Messages for Rule Checks

Use the REPORT RULE CHECK command to view a summary or verbose report of messages.
Report information displays in the transcript section of the main window.

Note: Conformal does not report rules with a severity of Ignore except with the REPORT
RULE CHECK command. (Use the rule_name or -ignore option.)

Alternatively, you can use the HDL Rule Manager to report individual rules and violations. To
view a report for a particular rule check message, use the following procedure:

1. Click to select a rule check number.

2. Right-click and choose Report and one of the following from the pop-up menu:

❑ Summary—Displays total number of occurrences for the selected rule check.

❑ Verbose—Displays the rule check message, the total number of occurrences, and
the severity level for the selected rule check.

Viewing a Specific Message

Use the following procedure in the HDL Rule Manager to view the verbose listing of a specific
rule messages.

1. Locate a highlighted rule check number.

2. Click the + symbol preceding a highlighted rule to expand the entry.

3. Click the + preceding the location of the occurrence.

Some messages can be further expanded to show where they are located in the library or
design.

Viewing Source Code for an Occurrence

To investigate HDL source code violations from the HDL Rule Manager, do the following:

1. Click the + symbol preceding a highlighted rule to fully expand the entry.

2. Click an occurrence to select it.
November 2019 90 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#reportrulecheck

Conformal Equivalence Checking User Guide
Managing Rule Checks
3. Right-click and choose Source Code from the pop-up menu.

The Source Code Manager opens and Conformal highlights the relevant line of code.
November 2019 91 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Managing Rule Checks
Modeling Messages

Modeling messages indicate any modeling warnings encountered during the analysis and
modeling of the design. Each modeling message is prefixed by F* because they require a
flattened design.

You can view a summary or expanded report of all rule violations with one of the following
commands:

■ report messages -modeling -verbose

■ report messages -modeling -summary

To view information for a specific message, use the HELP command followed by the message
name.

HELp [message_name]

For example:

help F1

To view all rule check messages, use the HELP command with the -message option:

help -message

You can view all the modeling rule check messages and their details in the Reference
Guide, or type ‘help <rule>’ at the command line.
November 2019 92 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
6

Using the Setup Mode

■ Overview on page 94

■ Setting Options on page 94

■ Reading in Libraries and Designs on page 103

■ Design Constraints on page 115

■ Flattening Options on page 137
November 2019 93 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Using the Setup Mode
Overview

The Conformal software has two operating modes, Setup and LEC. After startup, the
Conformal software begins operation in the Setup mode, as indicated by the SETUP> prompt
in the command entry window. In the Setup mode, you can read in the library and design,
apply constraints, and set up options for verification.

Setting Options

The following sections describe the settings you can apply before reading in the library and
design files.

■ Change the Severity of Rule Checks

See Chapter 5, “Managing Rule Checks” for more information.

■ Specify Case Sensitivity

Use the SET CASE SENSITIVITY command to specify whether any names you use are
case-sensitive. The system default is no case sensitivity.

■ Specify Directives Handling

Use the SET DIRECTIVE command to specify whether to enable or disable the effects
of all or specified vendor directives when reading in Verilog or VHDL files.

To see a list of the supported vendor names and directives, and information on enabling
and disabling these directives, see the SET DIRECTIVE command in the Conformal
Equivalence Checking Reference Manual, or type help set directive
-verbose in the command line.

■ Specify Text Handling Rules

Use the SET NAMING RULE command to specify special text handling rules, such as
hierarchical separators, tristate naming rules, register naming rules, array delimiters,
instance names, or variable names. This command has no effect unless you use it
before reading in Verilog and VHDL design files.

■ Set Undefined Cells

All referenced modules must be either defined or blackboxed. When Conformal finds an
undefined cell, it reports an error. To prevent an error, choose to blackbox undefined cells
using the SET UNDEFINED CELL command.

Note: For information on replacing blackboxed modules with synthesized modules, see
the WRITE BLACKBOX WRAPPER or SUBSTITUTE BLACKBOX WRAPPER commands.
November 2019 94 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#setdirective
../Conformal_Ref/LEC_Ref_commands.html#setnamingrule
../Conformal_Ref/LEC_Ref_commands.html#setundefinedcell
../Conformal_Ref/LEC_Ref_commands.html#writeBBoxWrapper
../Conformal_Ref/LEC_Ref_commands.html#subBBoxWrapper
../Conformal_Ref/LEC_Ref_commands.html#setcasesensitivity

Conformal Equivalence Checking User Guide
Using the Setup Mode
■ Set Undefined Ports

Undefined ports in the design or library cause an error message unless you choose to
ignore them using the SET UNDEFINED PORT command.

■ Specify Undriven Signals

Globally tie all undriven signals in the design to Z, 0, 1, or X using the SET UNDRIVEN
SIGNAL command.

■ Set Wire Resolution

To specify the output behavior of multi-driven nets as either an AND or OR gate, use the
SET WIRE RESOLUTION command. The following illustrates Wired-AND behavior.

■ Set a Design Root Level

Specify a different root module so that when reading in the Golden and Revised designs,
the top module of each is not treated as the root module by default.

For more information, see Changing the Root Module on page 96.

■ Add Search Paths

Specify the location of HDL files or libraries that must be included in the session, but are
not in the current directory.

For more information, see Adding Search Paths on page 97.

■ Add Notranslate Modules

Choose not to compile specific library or design modules so that the specified modules
(for example, non-synthesizable and memory modules) automatically become
blackboxes.

For more information, see Adding Notranslate Modules on page 98.
November 2019 95 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#setundefinedport
../Conformal_Ref/LEC_Ref_commands.html#setundrivensignal
../Conformal_Ref/LEC_Ref_commands.html#setundrivensignal
../Conformal_Ref/LEC_Ref_commands.html#setwireresolution

Conformal Equivalence Checking User Guide
Using the Setup Mode
Changing the Root Module

You can change the Conformal automatic root module assignment and to specify the name
of the new root module in the Golden and Revised designs. Use the SET ROOT MODULE
command or in the Hierarchical Browser, do the following to open the Root Module form:

1. Click a module name in the Golden or Revised column to select the name.

2. Right-click to open the pop-up menu and choose Root Module.

Alternatively, you can open this form from the main window (Setup – Root Module).

The current root module is displayed in the Golden Module and Revised Module fields.

Specifying a New Root Module

To manually specify a new root module, double-click a module name in the Golden Module
or Revised Module list to add the root module in the field above the list and click OK.

Sorting Module Lists

To alphabetically sort the Golden Module and Revised Module list boxes, right-click in the
appropriate column and choose Sort from the pop-up menu.
November 2019 96 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#setrootmodule

Conformal Equivalence Checking User Guide
Using the Setup Mode
Adding Search Paths

Use the ADD SEARCH PATH command, or the Search Path form (Setup – Search Path), to
to create, modify, or delete directory search paths. The Conformal software uses the search
path to locate design and library files saved in directories other than the current working
directory. The Conformal software searches for library and design files in the order of the
paths listed from left to right in the command string.

Note: If you do not add search paths, the software searches for filenames in the current
directory.

To add a design search path, click the Design tab. To add a library search path, click the
Library tab.

Search Path Form Fields and Options

Pathname Specifies the search path. You can type the directory path
or click Browse to locate the path.

Add Adds the directory path to the list in the Pathname list
box. Use the pull-down window to select Both, Golden,
or Revised design type.
November 2019 97 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#addSearchPath

Conformal Equivalence Checking User Guide
Using the Setup Mode
Adding Notranslate Modules

When you choose not to compile specific library or design modules, you must run the ADD
NOTRANSLATE MODULES command. The specified modules (for example, non-synthesizable
and memory modules) automatically become blackboxes.

The ADD NOTRANSLATE MODULES command is applied during initial parsing, so name
matching applies only to original module names. For parameterized or VHDL generic
modules whose names are determined and applied by Conformal after parsing and
preprocessing, you must use the ADD BLACK BOX command.

Alternatively, you can use the Notranslate Module form (Setup – Notranslate Module)
before reading designs or libraries to add and delete design or library modules that will not
be translated.

To delete one or all notranslate modules from designs and libraries, click a module name in
the list box in the Design or Library page, and right click to open the pop-up menu and
choose Delete Notranslate Module to delete a single notranslate module, and Delete All
Notranslate Module to delete all notranslate modules.

Pathname list box Lists the directory search paths.

To delete directory search paths, right-click on a path to
bring up the pull-down menu and select either a Delete
Search Path or Delete All Search Paths.
November 2019 98 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#addNoTransMod
../Conformal_Ref/LEC_Ref_commands.html#addNoTransMod
../Conformal_Ref/LEC_Ref_commands.html#addblackbox

Conformal Equivalence Checking User Guide
Using the Setup Mode
Notranslate Module Form Fields and Options

Add Add the notranslate modules, and adds the notranslate
module names to the list box.

Both Applies the notranslate modules to both the Golden and
Revised designs (the default). You can use this pull-
down menu to select Golden to apply them to Golden
designs, or Revised to apply them to Revised designs

Module name list box To delete notranslate modules, right-click on a path to
bring up the pull-down menu and select Delete
Notranslate Module to delete a single notranslate
module, or Delete All Notranslate Modules.
November 2019 99 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Using the Setup Mode
Setting Global Options For Mapping and Comparison

Use the Environment form (Setup – Environment) to set global options for the Golden and
Revised designs and for mapping and comparison operations.

Environment Form Fields and Options

Undefined Cell Specifies handling for any undefined cell the Conformal
software encounters when reading designs and libraries.
Click the pull-down menu to choose either Error or Black
Box. Based on your selection, Conformal automatically
reports undefined cells as errors, or it blackboxes them.

Undriven Signal Specifies handling for any undriven signal the Conformal
software might encounter when reading designs and
libraries. Click the pull-down menu to choose 0, 1, X, or Z.
November 2019 100 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Using the Setup Mode
Undefined Port Specifies handling for any undefined port the Conformal
software might encounter when reading designs and
libraries. Click the pull-down menu to choose either Error
or Ignore.

Wire Resolution Specifies how the Conformal software treats the output
behavior of multi-driven nets. Click the pull-down menu to
choose either And or Or.

Array Delimiter Specifies the array delimiter rule for reading in a Verilog
RTL or hierarchical design.

Tristate Specifies the tristate rule for reading in a Verilog RTL or
hierarchical design.

Register Specifies the register rule for reading in a Verilog RTL or
hierarchical design.

Hierarchical Separator Specifies the hierarchical separator rule for reading in a
Verilog RTL or hierarchical design.

Cpu Limit Specifies CPU time limit for the Conformal equivalence
checking compare effort. Type a positive integer to
change the CPU time, and click on the pull-down menu to
choose Minutes, Hours, or Days.

Compare Effort Specifies the amount of effort equivalency checking
applies for a particular gate. Click the pull-down menu to
choose Low, Medium, or High.

Mapping Method (name) Specifies the mapping method for names. Choose one of
the following (to a certain degree, the mapping method
operates under the following modes.)

■ Name First—Conformal first maps the key points
with the paths of the gates, then uses the mapping
algorithm to map the rest of the key points.

■ Name Only—only maps the key points based on the
paths of the gates.

■ Name Guide—Conformal first maps key points with
a mapping algorithm, then maps the rest of the key
points based on paths of the gates.

■ Name None— will not map key points based on the
paths of the gates. If the mapping algorithm cannot
map a key point, it remains unmapped.
November 2019 101 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Using the Setup Mode
Mapping Method (phase) In the On position, Conformal maps key points with an
inverted phase. Inverted-phase compared points can
either be Inverted-equivalent or Non-equivalent.

Mapping Method (sensitive) In the On position, Conformal maps key points with
case-sensitive key point names.

Case Sensitive On specifies that names you use are case-sensitive.

Directive On enables the effects of synthesis directives when
reading in a Verilog or VHDL file.

Dofile Abort Specifies how Conformal responds when executing a
dofile that generates an error message. Choose one of
the following:

■ On—The dofile terminates when an error message
occurs.

■ Off—The dofile continues even if an error message
occurs.

■ Exit—Conformal exits the session and returns to the
system prompt if an error message occurs.

Latch Folding In the On position, Conformal converts two latches in a
simple LSSD format into a single DFF gate.

Sequential Merging In the On position, Conformal merges common groups of
sequential elements into one sequential element in the
clock cone of a DFF or D-latch.

Pin Keep In the On position, Conformal retains all of the gate pin
information for gate reporting. Use this option when
reporting gate information at the design level. It increases
the memory use.

Automatic Mapping In the On position, Conformal automatically maps key
points when you change the system mode from Setup to
LEC.
November 2019 102 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Using the Setup Mode
Reading in Libraries and Designs

The procedures described in this section apply to reading and writing library and design files.

Reading in Library Files

When design modules are defined in a library (such as Verilog simulation libraries) you must
use read in the library before reading in the design. You can use the READ LIBRARY
command, or the Read Library form in GUI mode (File – Read Library). See Read Library
Form on page 105 for a description of the fields and options.

If there are duplicate modules, Conformal uses the first module found and ignores all others.
However, you can use READ LIBRARY -lastmod to specify that Conformal use the last
module and ignore the earlier ones. The library can also be in the Synopsys Liberty format.

Note: For RTL to gate formal equivalence checking, use simulation libraries instead of
synthesis libraries because design verification sign-off happens for simulation libraries—not
for synthesis libraries.

Gate Report Specifies the level of detail in the Conformal gate
information display. This applies to the three pull-down
menus that precede it.

■ Primitive—displays the gate report information at
the primitive level.

■ Design—displays the gate report information at the
design level.

■ Dynamic—displays the dynamic constraints in the
gate report information.

■ No Dynamic—does not display the dynamic
constraints in the gate report information.

■ Click the bar on the fan-in cones cyclic field and
choose one of the following to specify the display:

■ Function—does not display the fan-in cone of the
zero/one gates in the gate report information.

■ Structure—displays the fan-in cone of the zero/one
gates in the gate report information.
November 2019 103 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#readlibrary

Conformal Equivalence Checking User Guide
Using the Setup Mode
Reading in Multiple Library Files

Cadence recommends that you use one of the following methods to read in multiple library
files.

Method 1:

List all of the library files after the READ LIBRARY command explicitly or using wildcards, as
shown in the following syntax. Use the backslash character (\) at the end of a line to show that
the command you are typing continues on the next line.

read library file1.v file2.v file3.v... \
-verilog -Golden

Or

read library lib/*.v -verilog -Golden

Method 2:

1. Create a file containing all of the necessary library files. For example, a file called
verilog_all.v might contain the following:
`include "file1.v"
`include "file2.v"
`include "file3.v"

2. Append the name of this newly created file to the READ LIBRARY command:
read library verilog_all.v -verilog -Golden

Method 3:

Read multiple library files of different languages:

read library file1.v -verilog -revised
read library file2.vhd -vhdl -revised -append

Writing Libraries

After you read in a library, Conformal can write it out in Verilog format. This command is useful
for learning how Conformal parses User-Defined Primitive (UDP) library models. To write out
the library, use the WRITE LIBRARY command.
November 2019 104 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#writelibrary

Conformal Equivalence Checking User Guide
Using the Setup Mode
Read Library Form

Use the Read Library form to specify library filenames you will include with a design.

➤ Choose File – Read Library.
November 2019 105 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Using the Setup Mode
Read Library Fields and Options

File List Lists the library files that the Conformal Equivalence
Checker reads in for this session. As you build the list of
files, the Conformal Equivalence Checker adds them to
this display.

You can also delete files from this list by right-clicking
and choosing Delete from the pop-up menu to delete
the selected files. Or, right-click and choose Delete All
to remove all the files from the File list.

File Selection Specifies one or more library files. Double-click file
folders in the Directories display to specify the location
of the library files.

From the Files list box, select the files you want to read
and click Add Selected to add the selected files, or click
Add All to add all the files in the Files list box

List Files of Type Filters the file type display.

Format Specifies the format of the library you intend to read. You
can use the pull-down menu to choose a format.

Type Specifies the library type. You can choose Golden,
Revised, or Both.

Verbose Displays the verbose messages for parsing and
translating each library module.

Case Sensitive Specifies that the Conformal Equivalence Checker
should handle the library as case sensitive.

Note: This option is not available for VHDL.

Extraction Specifies that the Conformal Equivalence Checker is to
abstract transistor models into gate models.

State Table Specifies that the library contains Synopsys Liberty state
tables. Conformal can handle state tables that have
single asynchronous inputs and no overlapping rule
outputs. This option is only available when selecting
Liberty from the Format pull-down menu.

Define Specifies the text macro name you want to define. For
Verilog formats, enter your Verilog `ifdef macro in this
field.
November 2019 106 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Using the Setup Mode
Reading in Design Files

To read in the Golden and Revised design files, you can use the READ DESIGN command,
or the Read Design form in GUI mode (File – Read Design). See Read Design Form on
page 109 for a description of the fields and options.

The supported design formats are Verilog, Verilog2K, SystemVerilog, VHDL, SPICE, EDIF
and NDL (LSI Logic’s netlist format). When you must replace a design, use READ DESIGN
-replace. If Conformal finds multiple modules with the same name, it uses the first module
and ignores later modules with that name. You can use READ DESIGN -lastmod to specify
that Conformal use the last module and ignore the earlier ones.

Reading in Mixed-Language Design Files

If your design contains mixed languages, use READ DESIGN -noelaborate, as shown in
the following example:

read design sub1.vhdl -vhdl -mapfile lib1 lib/pkg1.vhd -Golden -noelaborate
read design sub2.vhdl -vhdl -mapfile lib2 lib/pkg2.vhd -Golden -noelaborate
read design top.v -verilog -Golden

Please refer to “VHDL Support” on page 379 and proper library mapping setup for the READ
DESIGN command. Library in this context refers to the technology library, such as ASIC cell
and memory definitions. See READ DESIGN for information on reading VHDL libraries and
packages

Reading in Multiple Design Files

Cadence recommends that you use one of the following methods to read multiple design files
of the same language.

Method 1:

Explicitly list all of the design files after the READ DESIGN command or use wildcards, as
shown in the following syntax. Use the backslash character (\) at the end of a line to show that
the command you are typing continues on the next line.

read design file1.v file2.v file3.v... \
-verilog -Golden

Or
read design src/*.v -verilog
November 2019 107 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#readdesign
../Conformal_Ref/LEC_Ref_commands.html#readdesign

Conformal Equivalence Checking User Guide
Using the Setup Mode
Method 2:

1. Create a file that contains all of the necessary design files. For example, a file called
Golden.v might contain the following:
`include "file1.v"
`include "file2.v"
`include "file3.v"

2. Append the name of this newly created file to the READ DESIGN command as shown
below.
read design Golden.v -verilog

Writing Designs

Use the WRITE DESIGN command after you read in a design to write it out in Verilog format.
This feature is useful for learning how Conformal parses RTL or transistor-based designs.
November 2019 108 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#writedesign

Conformal Equivalence Checking User Guide
Using the Setup Mode
Read Design Form

Use the Read Design form to specify the design filenames the Conformal software reads in
as the Golden and Revised designs.

➤ Choose File – Read Design.
November 2019 109 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Using the Setup Mode
Read Library Fields and Options

File List Lists the design files that the Conformal Equivalence
Checker reads in for this session. As you build the list of
files, the Conformal Equivalence Checker adds them to
this display.

You can also delete files from this list by right-clicking
and choosing Delete from the pop-up menu to delete
the selected files. Or, right-click and choose Delete All
to remove all the files from the File list.

File Selection Specifies one or more design files. Double-click file
folders in the Directories display to specify the location
of the library files.

From the Files list box, select the files you want to read
and click Add Selected to add the selected files, or click
Add All to add all the files in the Files list box

List Files of Type Filters the file type display.

Format Specifies the format of the library you intend to read. You
can use the pull-down menu to choose a format.

When selecting VHDL, the bottom portion of the form
expands. See Specifying Design Options for VHDL
Designs on page 111 for more information.

When selecting EDIF, the bottom portion of the form
expands. See Specifying Design Options for EDIF
Designs on page 112 for more information.

Type Specifies the design type. You can choose Golden,
Revised, or Both.

Root Module Designates a root module other than the top module.
Click the check box and type the name of the intended
top root module in the field.

Note: If a single top-level module exists, by default,
Conformal uses it. However, if multiple top-level modules
exist, Conformal specifies one. Use this option to change
that specification.

Verbose Displays the verbose messages for parsing and
translating each module in the design.
November 2019 110 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Using the Setup Mode
Specifying Design Options for VHDL Designs

If the design format is VHDL, the bottom portion of the form expands.

Case Sensitive Specifies that the Conformal Equivalence Checker must
handle the design as case sensitive.

Note: This option is not available for VHDL.

No Elaborate Specifies that you intend to read in multiple files of
different languages.

Define Specifies the text macro name you want to define.

Verilog Command File If you are using Verilog command file lists, click this
check box and type the name of the Verilog command
file, or click Browse to open the Verilog Command File
window to choose a file.

Add Map Entry Opens the Add Vhdl Library Mapping window where you
can select the library name and path of the specific
VHDL libraries.

Add Map File Entry Opens the Add Vhdl Library Mapfile window where you
can specify exactly which files belong to a given library.
November 2019 111 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Using the Setup Mode
Specifying Design Options for EDIF Designs

f the design format is EDIF, the bottom portion of the form expands.

Using Verilog Command Filelists

The following describes a time-saving method that lets you create a single Verilog filelist
rather than use the READ LIBRARY and READ DESIGN commands separately. Read in this
filelist using the READ DESIGN command with the -file option.

For example, a directory named /user/library/verilog contains the following library
files:

and.v or.v
dff.v lat.v

VHDL Library Name Displays the VHDL library name.

To delete, replace, or insert another VHDL library name,
right-click in the display and choose Delete, Insert, or
Replace from the pop-up window.

VHDL Library Path Displays the VHDL path.

To delete, replace, or insert another VHDL path, right-
click in the display and choose Delete, Insert, or
Replace from the pop-up window.

VHDL File Name Displays the VHDL filename.

To delete, replace, or insert another VHDL filename,
right-click in the display and choose Delete, Insert, or
Replace from the pop-up window.

EDIF Net Name Type EDIF Net Names in the Supply 1 and Supply 0
fields to assign a value of 1 or 0 to specified variables.
November 2019 112 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Using the Setup Mode
And in the current working directory, there is a Golden and Revised directory with a gate
netlist in each:

$CWD/Golden/Golden.v
$CWD/revised/revised.v

1. Create a Verilog filelist with the above contents.

In this example, the names of the Verilog command filelist are Golden.vc and
revised.vc:

2. Run the READ DESIGN command with the -file option to read in the designs and
libraries without using the READ LIBRARY command. (See the following examples.)
read design -file Golden.vc -verilog -Golden
read design -file revised.vc -verilog -revised

Conformal uses the specified library directory to locate the modules needed in the
design.

Comparing Design Hierarchies

The WRITE HIER_COMPARE DOFILE command lets you write a dofile script that Conformal
can use to compare two hierarchical designs. The dofile script verifies the two hierarchical
designs starting at the lowest-level modules and progressing to the root module. At the end
of the dofile, Conformal displays the total number of equivalent and non-equivalent modules.

The sample dofile below does the following:

■ Reads in the two hierarchical designs

■ Writes out the hierarchical dofile script

■ Compares the design hierarchy
read library Golden.lib -verilog -Golden

Golden.vc:

-y /user/library/verilog

Golden/Golden.v

revised.vc:

-y /user/library/verilog

revised/revised.v
November 2019 113 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#writehiercomparedofile

Conformal Equivalence Checking User Guide
Using the Setup Mode
read design Golden.v -verilog -Golden
read library revised.lib -verilog -revised
read design revised.v -verilog -revised
write hier_compare dofile hier.do -replace
set log file hier.log -replace
dofile hier.do
exit -force

See Chapter 10, “Hierarchical Module Comparison Window” for additional information.

Comparing Libraries

In addition to comparing design hierarchies, the WRITE HIER_COMPARE DOFILE command
compares two libraries, such as Liberty and Verilog libraries. The sample dofile below does
the following:

■ Reads in a synthesis library and simulation library

■ Writes out all of the library models

■ Compares the libraries
read design syn.lib -liberty -Golden
read design simulation.v -verilog -revised

write hier_compare dofile lib_ver.do -all -replace
set log file lib_ver.log -replace
dofile lib_ver.do
exit -force
November 2019 114 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Using the Setup Mode
Design Constraints

After Conformal successfully reads the designs and libraries, you can place constraints on
the designs to exclude sections of a design from verification, specify behavior and
relationships, and constrain internal nets, instances, and feedback.

The following sections show procedures that are commonly used to set constraints.

Blackboxes

When running the Conformal software, there are several ways to blackbox a module in
Conformal:

Note: Although the internal logic within a blackbox is not compared, the connections feeding
in and out of the blackbox is still verified.

■ Use the ADD NOTRANSLATE MODULE command

This command is run before running the READ DESIGN and READ LIBRARY commands.
It instructs Conformal to blackbox the specified module(s).

With this command, the actual code of the module is not parsed; only the directions for
the input and output ports are parsed and used for the blackbox. As a result, it requires
less memory in Conformal to process blackboxes. Typically, RAMs and ROMs are
blackboxed this way because it would require too much memory in Conformal to process
them for comparison. Analog blocks are also blackboxed this way because the code is
not synthesizable.

For more information on this method of adding blackboxes, see Adding Notranslate
Modules on page 98.

■ Use the ADD BLACK BOX command

This command is used to blackbox a module after the module has already been read in,
and is often used in hierarchical comparison.

For more information on adding blackboxes with this command, see Adding a Blackbox
Instance or Module on page 117.

■ Use the SET UNDEFINED CELL -black_box command

With both ADD NOTRANSLATE MODULE and ADD BLACK BOX, the code for the modules,
or a dummy module with port declarations, are required for the commands to work. If a
module does not exist, you can use SET UNDEFINED CELL -black_box to instruct
Conformal to treat any missing references as blackboxes. Like ADD NOTRANSLATE
MODULE, this command must be run before running the READ DESIGN and READ
November 2019 115 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Using the Setup Mode
LIBRARY commands. Conformal, when constructing the blackboxes, will attempt to
automatically determine the port directions of the blackboxes. After completion, you can
use the WRITE DESIGN command to write out the design to check if Conformal correctly
identify all the port directions of the blackboxes. This is important for comparison
because blackbox input pins are considered as compare points while blackbox output
pins are considered fanins to the next logic cones.

■ Automatic Blackboxing

Conformal can also blackbox a module during READ DESIGN or READ LIBRARY if it
encounters non-synthesizable code or if it encounters synthesis directives, such as
translate_off or synthesis_off.

Regardless of how blackboxes are created, the number of the blackboxes must match
between the Golden and Revised designs for Conformal to perform the comparison correctly.
Running the REPORT BLACK BOX command shows whether the blackboxes are paired up
properly. The following shows an example of a set of balanced blackboxes:

SETUP> report black box

SYSTEM: (G R) ram8x1024

SYSTEM: (G R) rom8x256

If the blackboxes are not balanced, you might see the following:
SETUP> report black box
SYSTEM: (G R) ram8x1024
SYSTEM: (G) rom_wrapper
SYSTEM: (R) rom8x256

In this case, you can check to see how the blackboxes are constructed by running the REPORT
BLACK BOX command with the -detail option.

in addition to the blackbox modules matching up, the blackbox input and output pins must also
match up for the comparison to work properly. You can run the REPORT MAPPED POINTS
command to check if the blackbox pin names got changed. For example:

report mapped points bbox_u1 -input -output

By default, blackboxes are mapped by their module names. To map by instance names
instead, use the SET MAPPING METHOD -nobbox_name_match command.

If blackbox pins are not paired up correctly because pin names got changed, you can use the
ADD RENAMING RULE command to rename those pins. For example:

add renaming rule ... -pin -bbox ...
November 2019 116 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Using the Setup Mode
Adding a Blackbox Instance or Module

To treat any module or instance as a blackbox, use the ADD BLACK BOX command.

Alternatively, you can use the Hierarchical Browser in the main window.

The Black Box menu option adds or deletes instances or modules as blackboxes in the
Hierarchical Browser window display. The Black Box icon appears or disappears,
accordingly.

SETUP> add black box /U1/U4 -module -Golden
SETUP> add black box /U1/U2/I2 /U1/U3/I1 -Golden

Module U1

Module U2 Module U3
Instance
I2

Module U4

Instance
I1
November 2019 117 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#addblackbox

Conformal Equivalence Checking User Guide
Using the Setup Mode
1. In the Hierarchical Browser window, click an instance or module to select it.

2. Right-click and choose Add Black Box and Instance or Module from the pop-up menu.

A blackbox symbol appears next to the instance or module name.

Deleting a Blackbox Instance or Module

Use the DELETE BLACK BOX command, or use the following procedure in the Hierarchical
Browser window:

1. Click a blackbox instance or module to select it.

2. Right-click and choose Delete Black Box and Instance or Module from the pop-up
menu.

The blackbox icon will disappear.

Net Constraints

To add one-hot or one-cold constraints to specified net paths, use the ADD NET
CONSTRAINTS command. You can delete either the Golden or Revised design net constraints
that are added with this command using the DELETE NET CONSTRAINTS command.

Use the REPORT NET CONSTRAINTS command to display a list of all added net constraints
November 2019 118 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#addNetConst
../Conformal_Ref/LEC_Ref_commands.html#addNetConst
../Conformal_Ref/LEC_Ref_commands.html#deleteblackbox
../Conformal_Ref/LEC_Ref_commands.html#deletenetconstraints
../Conformal_Ref/LEC_Ref_commands.html#reportnetconstraints

Conformal Equivalence Checking User Guide
Using the Setup Mode
Pin Constraints

To add a constraint, such as Logic-0 or Logic-1, to the primary inputs, use the ADD PIN
CONSTRAINTS command.

To delete pin constraints to primary input pins, use the DELETE PIN CONSTRAINTS
Command.

Alternatively, you can use the Pin Constraints form from the main window to add and delete
pin constraints to primary input pins.

➤ Choose Setup – Pin Constraints.

IN2

IN1

SCAN_IN

SCAN_EN

SETUP> add pin constraints 0 SCAN_EN -revised

Module TOP

Module submod1

MUX DFF

0
1

00
November 2019 119 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#addPinConst
../Conformal_Ref/LEC_Ref_commands.html#addPinConst
../Conformal_Ref/LEC_Ref_commands.html#deletepinconstraints

Conformal Equivalence Checking User Guide
Using the Setup Mode
The Pin Constraints window includes two tabs: Golden and Revised. Click on the Golden or
Revised tab to switch between the two lists.

For each list there are four columns with the headings: Pin, 0, 1, and
GROUPING_CONSTRAINT. The primary input list is shown in the Pin column. Each
primary input is either a system class primary input (S: name) or a user-defined class primary
input (U: name).

Selecting Primary Inputs

In the following procedures, you are asked to select primary inputs. Use any of the following
procedures to select primary inputs:

■ Click a primary input to select it.

■ Click and drag the mouse over a group of adjacent primary inputs to select them.

■ Click the first primary input in a group, press and hold the Shift key, and click the final
primary input in a group to select the entire group.

■ Press the Ctrl-key and click a primary input to add it to the selected group.

The following procedures explain how to add and delete pin constraints.
November 2019 120 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Using the Setup Mode
Adding a Pin Constraint to a Primary Input

Use the following procedure to add a constraint to a single primary input using the Pin
Constraints form:

1. In the Pin column, click a primary input to select it.

2. Right-click and choose the Constraint 0 or Constraint 1 constraint from the pop-up
menu.

The selected primary input appears in the appropriate column.

Adding a Constraint to a Group of Primary Inputs

Use the following procedure to add a constraint to a group of primary inputs using the Pin
Constraints form:

1. In the Pin column, select multiple pins with one of the methods described in “Selecting
Primary Inputs” on page 120.

2. Right-click to open the pop-up menu and choose a constraint.

Deleting Pin Constraints

Use the following procedure to delete one or all constraints using the Pin Constraints form:

1. Click a primary input in the 0, 1, or GROUPING_CONSTRAINT column to select it.

2. Right-click and choose one of the following from the pop-up menu:

To delete a constraint from the selected pin, choose Delete Pin Constraint. Conformal
removes the pin constraint. And in the case of GROUPING_CONSTRAINT, Conformal
deletes the entire group.

To delete all constraints, choose Delete All Pin Constraints. Conformal deletes all
constraints from all columns.

Sorting Pin Lists

You can alphabetically sort the primary input lists.

1. Right-click in the Pin, 0, or 1 column.

2. Choose Sort from the pop-up menu.
November 2019 121 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Using the Setup Mode
Pin Equivalences

To create equivalences or inverted equivalences among primary inputs, use the ADD PIN
EQUIVALENCES command.

Note: If you use the -both option, every primary input pin you list must exist in both designs
(Golden and Revised). If they do not, Conformal returns an error message.

To delete the added pin equivalences from the specified primary input pin that were placed
on primary input pins, use the DELETE PIN EQUIVALENCES command.

Alternatively, you can use the Pin Equivalences form from the main window to add and delete
pin equivalences.

SETUP> add pin equivalences CLK CLK1 -revised

Golden Re

U2 DFF
U2

CLK

CLK1

U1 DFF
U1

CLK

Module Module
November 2019 122 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#addPinEquiv
../Conformal_Ref/LEC_Ref_commands.html#addPinEquiv
../Conformal_Ref/LEC_Ref_commands.html#deletepinequivalences

Conformal Equivalence Checking User Guide
Using the Setup Mode
➤ Choose Setup – Pin Equivalences.

The primary input lists for each of the Golden and the Revised designs are displayed in their
respective columns. Conformal displays added pin equivalences below the target primary
input with a connecting line. Inverted pin equivalences are denoted with (-) following the
primary input name.

Adding a Pin Equivalence

1. Click a primary input in either in one of the columns to select it.

2. Right-click and choose Set Target from the pop-up menu.

The font color of the selected primary input changes to red to show that it is the target
primary input.

3. Click the second primary input (in the same column) that must be equivalent to the target
primary input.

4. Right-click and choose Add Pin Equivalence or Add Invert Pin Equivalence from the
pop-up menu.
November 2019 123 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Using the Setup Mode
Deleting Pin Equivalences

Use the following procedure to delete one or all pin equivalences.

1. Choose Setup – Pin Equivalences.

The Pin Equivalences window appears.

2. Click an equivalent primary input under one of the columns to select it.

3. Right-click and choose Delete Pin Equivalence or Delete All Pin Equivalences from
the pop-up menu:

Sorting the Primary Input Lists

To alphabetically sort the primary input lists by column, right-click in the column you want to
sort and choose Sort from the pop-up menu.

Primary Inputs

To add additional primary inputs to corresponding nets, use the ADD PRIMARY INPUT
command.

To delete specified primary inputs that were originally added, use the DELETE PRIMARY
INPUTS command. After you delete the primary input pins from either the Golden or Revised
design, the associated nets become floating nets, unless there are other net drivers.

Alternatively, you can use the Primary Input menu from the main window to add and delete
primary inputs.

SETUP> add primary input net1 -net -revised

DFF DFF

net

Module

net1

IN1

IN2

IN3
November 2019 124 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#addPrimInput
../Conformal_Ref/LEC_Ref_commands.html#deleteprimaryinputs
../Conformal_Ref/LEC_Ref_commands.html#deleteprimaryinputs

Conformal Equivalence Checking User Guide
Using the Setup Mode
Adding Primary Inputs

Choosing Primary Input – Add opens a dialog box instructing you to use the Hierarchical
Browser window to add primary inputs. You must use the Hierarchical Browser window
because primary inputs are added to hierarchical net names and, for a hierarchical design, it
is not possible to list all hierarchical net names from the root module.

To open the Add Primary Input form to add primary inputs to net names from the Hierarchical
Browser window, do the following:

1. Click an object to select it.

2. Right-click to open the pop-up menu and choose Add Primary Input.

3. Click on the Net or Pin tab to view a list of all of the net or pin names in the design.

4. Double-click a net (or pin) name to show the name in the Net (or Pin) field.

5. Click the Cut check box to specify if the other drivers of the net are to be disconnected
so that the new added primary input is the only driver of the net.

The default is Cut.

6. Click Add.

Conformal adds the primary input to the net and appends (added cut) to the name in
the Add Primary Input window. This notation means a primary input that is the only driver
November 2019 125 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Using the Setup Mode
to the net. Otherwise, Conformal appends (added nocut) to the name to mean a
primary input has been added.

Sorting a Net or Pin List in the Add Primary Input Window

To alphabetically sort a Net or Pin list, right-click in the list display area to open the pop-up
menu and choose Sort.

Deleting Primary Inputs

Use the Delete Primary Input form to delete user-defined primary inputs.

➤ Choose Setup – Primary Input – Delete.

Conformal displays the primary input list for each of the Golden and Revised designs in the
left and right columns. Each primary input is either a system class primary input (S: name) or
a user-defined class primary input (U: name).

Important

The class cyclic field adjacent to the Net field automatically displays whether the
selected primary input is a system or user-defined primary input. You can only delete
user-defined primary inputs
November 2019 126 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Using the Setup Mode
Deleting a Primary Input

To delete a single user-defined primary input, double-click a user-defined (U) primary input
and click Delete.

Deleting All Primary Inputs

To delete all user-defined primary inputs, right-click in one of the columns to open the pop-up
menu and choose Delete All – User.

Sorting Primary Input Lists

To alphabetically sort the primary input lists, right-click in either column and choose Sort from
the pop-up menu.

Primary Outputs

To add additional primary outputs to corresponding nets, use the ADD PRIMARY OUTPUT
command.

To delete specified primary outputs that were originally added, use the DELETE PRIMARY
OUTPUTS command. When you delete the primary output pins from the Golden or Revised
design, the nets become floating nets, unless there are other net drivers.

Alternatively, you can use the Primary Output menu from the main window to add and delete
primary outputs.

Adding Primary Outputs

Choosing Primary Output – Add opens a dialog box instructing you to use the Hierarchical
Browser window to add primary outputs. You must use the Hierarchical Browser window

net
2

PO

PO

DFF DFF

net

Modul

SETUP> add primary output net2 -revised
November 2019 127 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#addPrimOutput
../Conformal_Ref/LEC_Ref_commands.html#deleteprimaryoutputs
../Conformal_Ref/LEC_Ref_commands.html#deleteprimaryoutputs

Conformal Equivalence Checking User Guide
Using the Setup Mode
because outputs are added to hierarchical net names and, for a hierarchical design, it is not
possible to list all hierarchical net names from the root module.

To open the Add Primary Output form to add primary inputs to net names from the
Hierarchical Browser window, do the following:

1. Click an object to select it.

2. Right-click to open the pop-up menu and choose Add Primary Output.

3. Click on the Net or Pin tab to view a list of all of the net or pin names in the design.

4. Double-click a net (or pin) name to show the name in the Net (or Pin) field.

5. Click the Add button.

(added) appears following the name.

Sorting a Net or Pin List in the Add Primary Output Window

To alphabetically sort a Net or Pin list, right-click in the list display area to open the pop-up
menu and choose Sort.

Deleting Primary Outputs

Use the Delete Primary Output form to delete user-defined (U) primary outputs.
November 2019 128 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Using the Setup Mode
➤ Choose Setup – Primary Output – Delete.

Conformal displays the primary output list for the Golden and Revised designs in the
respective columns. Each primary output is either a system class primary output (S: name)
or a user-defined class primary output (U: name).

Important

The class button adjacent to the Net field automatically displays whether the
primary output is a system or user-defined primary output. You can only delete a
user-defined primary output.

Deleting a Primary Output

To delete a single user-defined primary output, double-click a user-defined (U) primary input
and click Delete.

Deleting All Primary Outputs

To delete all user-defined primary outputs, right-click in one of the columns to open the pop-
up menu and choose Delete All – User.
November 2019 129 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Using the Setup Mode
Sorting Primary Output Lists

To alphabetically sort the primary output lists, right-click in either column and choose Sort
from the pop-up menu.

Reporting Primary Outputs

Use the REPORT PRIMARY OUTPUTS command, or use the Primary Outputs Report form
(Report – Primary Outputs) to display primary output pins from the Golden and Revised
designs. You can open this form in two ways from the main window.

Tied Signals

To tie any floating nets or pins to Logic-0 or Logic-1, use the ADD TIED SIGNALS command.

To delete specified tied signals from the Golden or Revised design, use the DELETE TIED
SIGNALS command.

Alternatively, you can use the Tied Signals form from the main window to add and delete tied
signals to floating nets and pins.

SETUP> add tied signals 0 vdd -pin -module U1 -revised
SETUP> add tied signals 0 SO -net -module U1 -revised

PO
1

0

0

vd
IN
1

Module
November 2019 130 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#addTiedSignals
../Conformal_Ref/LEC_Ref_commands.html#reportprimaryoutputs
../Conformal_Ref/LEC_Ref_commands.html#deletetiedsignals
../Conformal_Ref/LEC_Ref_commands.html#deletetiedsignals

Conformal Equivalence Checking User Guide
Using the Setup Mode
➤ Choose Setup – Tied Signals.

Click the Golden or Revised tab to switch between the two lists. For each list there is a
Module Name, Net or Pin, 0, and 1 column.

The names of all of the design’s modules are displayed in the Module Name list box. Click
the Net or Pin tab to display all of the selected module’s floating nets or pins.

Adding a Tied Signal

Use the following procedure to add a tied signal to a net or pin.

1. Double-click a module name.

2. Click on the Net or Pin tab.

3. In the Net or Pin column, click a floating net or pin to select it.

4. (Optional) If the floating net or pin must be tied in all of the modules, click All.

5. Right-click to open the pop-up menu and choose Add Tied Signal 0 or Add Tied
Signal 1.

The selected net or pin appears in either the 0 or 1 column. Each tied signal belongs to
one of two classes: system class tied signal (S: name) or user-defined class tied signal
(U: name).
November 2019 131 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Using the Setup Mode
Deleting a Tied Signal

Use the following procedure to delete a tied signal from a net or pin.

1. Double-click a module name.

2. Click on the Net or Pin tab.

3. Click the net or pin name in the 0 or 1 column.

4. Right-click to open the pop-up menu and choose Delete Tied Signal.

Deleting All Tied Signals

Use the following procedure to delete all System or User tied signals from nets or pins.

1. Click on the Golden or Revised tab.

2. Right-click in the 0 or 1 column to open the pop-up menu and choose Delete All – User
or Delete All – System.

Sorting the Module, Net, and Pin Lists

To alphabetically sort the lists in all columns of this window, right-click in any column and
choose Sort from the pop-up menu.
November 2019 132 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Using the Setup Mode
Instance Constraints

To constrain any internal DFF or DLAT output to Logic-0 or Logic-1, use the ADD INSTANCE
CONSTRAINTS command.

Use the DELETE INSTANCE CONSTRAINTS command to delete instance constraints that
were added. Use the REPORT INSTANCE CONSTRAINTS command to display a list of all
added instance constraints.

Instance Equivalences

The ADD INSTANCE EQUIVALENCES command to specify internal equivalence or inverted
equivalence between DFFs or D-Latches.

Note: This command affects comparisons when you use add compared points -all.
In that situation, Conformal merges the instances specified with the ADD INSTANCE
EQUIVALENCES command, and then it verifies them at the end of the comparison.

U4
U3

U2

U1

Module TOP

SETUP> add instance constraints 0 /TOP/U2

0

Golden R

U1

U2

U1
PO

PO

SETUP> add instance equivalence U1 U2 -Golden
November 2019 133 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#addInstConst
../Conformal_Ref/LEC_Ref_commands.html#addInstConst
../Conformal_Ref/LEC_Ref_commands.html#addInstEquiv
../Conformal_Ref/LEC_Ref_commands.html#deleteInstConst
../Conformal_Ref/LEC_Ref_commands.html#reportInstConst

Conformal Equivalence Checking User Guide
Using the Setup Mode
Use the DELETE INSTANCE EQUIVALENCES command to delete instance equivalences that
were added. Use the REPORT INSTANCE EQUIVALENCES command to display a list of all
added instance equivalences.

Cut Points

To specify the cut points for breaking combinational feedback loops, use the ADD CUT POINT
command. If you do not use this command and combinational feedback loops exist,
Conformal automatically cuts the loops when you exit the Setup mode.

Use the DELETE CUT POINT command to delete cut points that were added.

Alternatively, you can use the Cut Point menu from the main window to add and delete cut
points. Cut Point has the following submenus:

■ Adding Cut Points on page 134

■ Deleting Cut Points on page 136

Primary Output is a menu item on the Setup drop-down men. This section explains the
submenu choices for Primary Output.

Adding Cut Points

Choosing Cut Point – Add opens a dialog box instructing you to use the Hierarchical
Browser window to add cut points. You must use the Hierarchical Browser window because
cut points are added to hierarchical net names and, for a hierarchical design, it is not possible
to list all hierarchical net names from the root module.

To open the Add Cut Point form to add user-defined cut points to net and pin names to break
combinational feedback paths, do the following:

Module
net1

SETUP> add cut point /U1/net1 -revised
November 2019 134 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#deleteCutPoint
../Conformal_Ref/LEC_Ref_commands.html#addCutPoint
../Conformal_Ref/LEC_Ref_commands.html#deleteinstanceequivalences
../Conformal_Ref/LEC_Ref_commands.html#reportinstanceequivalences

Conformal Equivalence Checking User Guide
Using the Setup Mode
1. Click an object to select it.

2. Right-click to open the pop-up menu and choose Add Cut Point.

3. Click on the Net or Pin tab to view a list of all of the net or pin names in the modules you
selected from the Hierarchical Browser.

4. Double-click a net or pin name.

The name appears in the Net or Pin field.

5. Click Add.

Conformal affixes added to the net or pin name to show that a cut gate will be added to
break the combinational feedback path.

Sorting a Net or Pin List in the Add Cut Point Window

You can alphabetically sort a net or pin list by doing the following:

1. Click the Net or Pin tab.

2. Right-click in the list display area and choose Sort from the pop-up menu.
November 2019 135 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Using the Setup Mode
Deleting Cut Points

Use the Delete Cut Point form to delete user-defined cut points that were established to cut
combinational feedback paths.

➤ Choose Setup – Cut Point – Delete.

Deleting a Cut Point

To delete a cut point, double-click a user-defined (U) primary input and click Delete.

Deleting All Cut Points

To delete all cut points, right-click in one of the columns to open the pop-up menu and choose
Delete All.

Sorting Cut Point Lists

To alphabetically sort net names, right-click in either column and choose Sort from the pop-
up menu.
November 2019 136 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Using the Setup Mode
Flattening Options

The SET FLATTEN MODEL command allows you to specify certain conditions for flattening
the circuit. This section includes flattening information to help you tailor the command for your
designs.

Alternatively, you can use the Flatten Model form to set some of the options described here.
For a description of the form, see Flatten Model Form on page 144.

Specifying Key Point Mapping Options

To specify whether Conformal automatically maps key points when it exits the Setup system
mode, use the SET FLATTEN MODEL command with the -map option.

Note: You can also specify whether Conformal automatically maps key points during
flattening with the SET SYSTEM MODE command, using the -map or -nomap option.

Retaining Gate Pin Information

To retain the gate pin information to report gate information at the design level (REPORT GATE
command), use the SET FLATTEN MODEL command with the -pin_keep option. This
option increases memory use.

Converting DLATs to DFFs

To convert two master/slave D-latches (DLATs) into a single D flip-flop (DFF) gate, use the
SET FLATTEN MODEL command with the -latch_fold option.

SETUP> set flatten model -latch_fold

DFF

DLAT

DLAT

D
CLK U2

U1
U1

D

CLK
November 2019 137 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#setFlattenModel
../Conformal_Ref/LEC_Ref_commands.html#setsystemmode

Conformal Equivalence Checking User Guide
Using the Setup Mode
Converting DLATs to Buffers

To remodel DLATs (whose clock ports are always enabled) into buffers (transparent latches),
use the SET FLATTEN MODEL command with the -latch_transparent option.

Converting DFF or DLAT to Zero or One Gate

Optimizing a Constant Flop to a Constant Value

To convert a DFF or DLAT to a ZERO/ONE gate if the data port is set to 0/1, use the SET
FLATTEN MODEL command with the -seq_constant option.

SETUP> set flatten model -latch_transparent

DLAT DFFDFF

U1 U1U0

1’b1

Golden Revised

Golden Revised

1’b1
1’b1

in1

in1

out1out1
U1

DFF
CLK

SETUP> set flatten model -seq_constant
November 2019 138 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#setFlattenModel
../Conformal_Ref/LEC_Ref_commands.html#setFlattenModel

Conformal Equivalence Checking User Guide
Using the Setup Mode
Optimizing a Constant Feedback Flop to a Constant Value

To remodels registers that also have feedback to constants, use the SET FLATTEN MODEL
command with the -seq_constant_feedback option. This is also enabled by default when
you select the -seq_constant option. Once the flop is set at ZERO it will remain ZERO.

Optimizing an Uninitialized Flop to a Constant Value

To optimize a flop to a constant value (either zero or one) when the flop is always in a don’t
care (X) state, use the SET FLATTEN MODEL command with the -seq_constant_x_to
option.

Note: Use this in conjunction with the -seq_constant option.

Tip

The -seq_constant_x_to switch can trigger the following modeling messages:

F18: Converted DFF/DLAT(s) to ZERO/ONE
F34: Convert X assignment(s) as don’t care(s)

in0

Res

SETUP> set flatten model -seq_constant_feedback

in1
November 2019 139 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#setFlattenModel
../Conformal_Ref/LEC_Ref_commands.html#setFlattenModel

Conformal Equivalence Checking User Guide
Using the Setup Mode
For example, the following figure illustrates a Golden and Revised version of a circuit when
using this switch. The Golden circuit has a flop where its output Q is feedback to its input D
and its asynchronous set and reset are disabled.

A

out1
D

CLK

SETUP> set flatten model -seq_constant_x_to 0 -seq_constant
November 2019 140 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Using the Setup Mode
Gated-Clock Learning

When clock gating styles are causing problems during a comparison, you can use gated-
clock learning to remodel the gated-clock logic during flattening.

There are two types of clock gating styles:

■ Latch-based clock gating—Latch-based gated clock modeling uses a latch to hold
the enable signal during the active phase of a clock.

■ Latch-free clock gating—This type of modeling is used when enable signals are known
to be stable during the active phase of a clock.

You can use the -gated_clock and -gated_clock_latch_free options of the SET
FLATTEN MODEL to remodel these types of gating during flattening.

Remodeling Latch-Based Clock Gating

To remodel latch-based gated clocks, use:

SETUP> set flatten model -gated_clock

During flattening, Conformal will model the latch-based clock gating structure into a MUX-
DFF feedback type circuit.

For example:

set flatten model -gated_clock
November 2019 141 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Using the Setup Mode
After enabling gated-clock learning, the latch-based gated clock is remodeled as follows:

Latch-Free Clock Gating

To remodel latch-free clock gating, you must specify that the enable signals for the clock
gating circuits are stable with respect to the clocks. This can be done automatically using the
-gated_clock_latch_free option of the SET FLATTEN MODEL command, or manually
using the ADD CLOCK command.

Note: For the latch-free clock gating modeling to be valid, the enable signals must be stable.
You can verify this using external circuits that are outside of the design, but that are also
subject to LEC verification.

Automatically Remodeling Latch-Free Clock Gating

To transform latch-free clock gating into a MUX-DFF-feedback type circuit, use the SET
FLATTEN MODEL’s -gated_clock_latch_free and -gated_clock options (they
must be used together).

Manually Remodeling Latch-Free Clock Gating

You can also transform latch-free clock gating into a MUX-DFF-feedback type circuit by
explicitly specifying the clocks. For example:

SETUP> add clock 0 clk -revised
SETUP> set flatten model -gated_clock
By doing this, the tool assumes that the enable signal is stable with respect to the clock
specified in the ADD CLOCK command.
November 2019 142 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Using the Setup Mode
In this example, the clk value holds the clock signal (low/high) when inactive and allows for
a gated clock transformation into a MUX-feedback type circuit.

Converting DFFs to DLATs

To convert a DFF to a DLAT if the clock signal is zero, use the SET FLATTEN MODEL
command with the -DFF_TO_DLAT_ZERO option.

Golden Revised

SETUP> add clock 0 clk -golden
SETUP> add clock 0 clk -revised

D
D

enable
enable

clk

clk

DFF DFF

U1 U1

SETUP> set flatten model -dff_to_dlat_zero

DFF
DLA

1’b0
1’b0

D
DU U

Golden Revised
November 2019 143 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#setFlattenModel

Conformal Equivalence Checking User Guide
Using the Setup Mode
To convert a DFF to a DLAT when there is a direct feedback loop from the Q port of the DFF
to its D port, use the SET FLATTEN MODEL command with the -DFF_TO_DLAT_FEEDBACK
option.

Using DLATs to Model Combinational Loops

To use a DLAT to model a combinational loop, you can use the SET FLATTEN MODEL
command with the -loop_as_dlat option.

Flatten Model Form

Use the Flatten Model form from the main window to set global options for flattening and
modeling, which occur when exiting Setup system mode.

➤ Choose Setup – Flatten Model.

Golden Revised

SETUP> set flatten model -dff_to_dlat_feedback

DFF DLA

U1 U1

clk 1’b0
November 2019 144 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#setFlattenModel
../Conformal_Ref/LEC_Ref_commands.html#setFlattenModel

Conformal Equivalence Checking User Guide
Using the Setup Mode
Flatten Model Form Fields and Options

Mapping Settings

When you move from the Setup system mode to the LEC system mode, Conformal
automatically maps the key points with the name-first default mapping method. Before you
exit the Setup mode, you can use the SET MAPPING METHOD command to change the
default settings and specify the following:

■ Mapping Method—If the Golden and Revised designs have the same names, change the
mapping method to name-only. This option makes mapping more efficient and less time
consuming.

■ Mapping Phase—You can specify inverted phase mapping.

Map Does automatic key point mapping. When this option is
disabled, this will skip the automatic key point mapping
when the system mode is changed from Setup to LEC.

Pin Keep Keeps all gate pin information for gate reporting. Use this
option when reporting gate information at the design
level.

Latch Fold Folds a master-slave latch into a D flip-flop.

Latch Transparent Converts D-latches (DLATs) into buffers if the clock ports
of the DLATs are always enabled.

All Seq Merge Merges state elements that are functionally equivalent.

Seq Merge Merges common groups of sequential elements into one
sequential element in the clock cone of a DFF or DLATs.

Seq Redundant Removes redundant fan-out gates from DFFs and
DLATs.

Seq Constant Propagates constant data through latches and registers.

Gated Clock Remodels the gated-clock logic of the clock port of a
DFF. If the clock pin cannot be automatically determined,
use the ADD CLOCK command to define the clock pin.

DFF to Dlat Zero Converts a DFF to a DLAT if the clock port is zero.

DFF to Dlat Feedback Converts a DFF to a DLAT if the Q output feeds back to
the D input.
November 2019 145 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#setmappingmethod

Conformal Equivalence Checking User Guide
Using the Setup Mode
Note: When using the SET MAPPING METHOD -phase command, the Conformal
software compares the set logic of the Golden design to the reset logic of the Revised
design (and vice-versa) for inverted-equivalence.

■ Case Sensitivity—The default is no case sensitivity. Conformal considers key point
names case-sensitive, if you prefer.

■ Unreachable Points—If you want Conformal to map unreachable points, use the
-unreach option. If you do not want to report unreachable points, use the
-noreport_unreach option.

■ Name Effort—You can specify the amount of effort you want Conformal to apply to key
point mapping. The system default level is hi, which eliminates the need for simple
renaming rules.

Note: This option applies to DFFs and DLATs.

■ Blackboxes—You can specify mapping for blackboxes based on instance name matches
(by default, Conformal maps blackboxes if both the module names and instance names
match).

Mapping Methods

Conformal employs three name-based methods to map key points and one no-name method.
If most of the key point names in the Golden and Revised designs are the same, choose a
name-based mapping method. This method is useful for gate-to-gate comparisons when
small changes have been made to the logic. Conversely, the no-name-mapping method is
useful when Conformal must map designs with completely different names. By default,
Conformal automatically maps key points with the name-first mapping method when it exits
the Setup mode.

In addition to the name-first method, Conformal includes two other name-based methods:
name-guide and name-only. Use the name-only and name-first methods when the Golden
and Revised designs have the same names. (This approach speeds up mapping.) And create
naming rules to help Conformal during mapping when corresponding key points have
different names. (See “Renaming Rules” on page 147.) Any key points that Conformal does
not map are classified as unmapped points.

Name-First Mapping

For the name-first mapping method, which is the default, the Conformal software maps key
points in two steps.

1. When the names are the same in the Golden and Revised designs.
November 2019 146 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Using the Setup Mode
2. Attempts to map remaining key points with a mapping algorithm.

Any key points that remain unmapped after the second step are identified as unmapped
points.

Name-Guide Mapping

For the name-guide mapping method, the Conformal software also maps key points in two
steps.

1. Maps key points with a mapping algorithm.

2. Attempts to map remaining key points by matching names in the Golden and Revised
designs.

Any key points that remain unmapped after the second step are identified as unmapped
points.

Name-Only Mapping

When using the name-only mapping method, Conformal maps key points only if the names
are the same in the Golden and Revised designs. Any key points that do not have the same
name are identified as unmapped points.

No-Name Mapping

When using the no-name-mapping method, Conformal relies solely on the mapping algorithm
to map key points. Any remaining key points are identified as unmapped points.

Renaming Rules

When the naming conventions in the Golden and Revised designs are not the same, augment
the name-based mapping methods described above by introducing naming rules. These
rules are a way to translate key point names. When you use the ADD RENAMING RULE
command, you identify string patterns and define temporary substitute string patterns, thus
enabling Conformal to automatically map additional key points when names are not the same.

The ADD RENAMING RULE command lets you include or exclude particular types of key
points for renaming. Additionally, you can apply renaming rules to module names when you
use the ADD RENAMING RULE command. Use this command before you use the READ
LIBRARY and READ DESIGN commands.
November 2019 147 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#addrenamingrule
../Conformal_Ref/LEC_Ref_commands.html#readlibrary
../Conformal_Ref/LEC_Ref_commands.html#readlibrary
../Conformal_Ref/LEC_Ref_commands.html#readdesign

Conformal Equivalence Checking User Guide
Using the Setup Mode
Alternatively, you can use the Renaming Rule form (Setup – Renaming Rule), to add or
delete renaming rules to guide mapping, help map modules for hierarchical comparisons, or
rename pin names of blackboxes.

You can also use the TEST RENAMING RULE command (see Testing Renaming Rules on
page 151) or the Renaming Rule form to test renaming rules for mapping performance based
on name mapping.

The Renaming Rule window includes a Renaming Rule and Test Renaming Rule sections
and three pages:

■ Map for renaming rules that apply to key point mapping.

■ Module for renaming rules that apply to module renaming when the library and design
are read in

■ Pin for renaming rules that apply to pin names of blackboxes.
November 2019 148 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#testRenamingRules

Conformal Equivalence Checking User Guide
Using the Setup Mode
Renaming rules are color-coded according to the specified design:

■ Both: blue

■ Golden: green

■ Revised: orange

Renaming Rule Form Fields and Options

Most of the fields and options are the same for the Map, Module, and Pin pages, except
where noted in the following descriptions:

Renaming Rule The options on this row are as follows:

■ Save to File - Opens the Save Renaming Rules
window, where you can click a file in the Files display
or type a name in the Files field.

■ Add/Change - Adds the renaming rule to the list, or
updates a renaming rule change in the list.

■ Delete - Deletes the selected renaming rule.

■ Delete All - Deletes all renaming rules.

Tip

You can also right-click on a rule to open the
pop-up menu where you can delete the selected
or all renaming rules.

■ Both (the default) - Applies the renaming rule to both
the Golden and Revised designs. You can use this
pull-down menu to select Golden to apply the
renaming rule to the Golden designs, or Revised to
apply the renaming rule to the Revised designs.

Black Box (for the Pin page) Applies a renaming rule to a specified blackbox module.

Rule Name Specifies a unique rule name.

From Specifies the renaming pattern.

To Specifies the substitution pattern.
November 2019 149 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Using the Setup Mode
After adding renaming rules, you can use bottom part of the form to check their effectiveness.

See the ADD RENAMING RULE command for the following information:

■ The structure of renaming rules

■ Keywords that require escape characters

■ Sample expression pattern matching and substitution strings

Up Arrow/Down Arrow Changes the sequence of the renaming rules in the
display. Click a rule in the rule list, and click the up- or
down-arrow.

Refresh Refreshes the rule list.

Test Renaming Rule Specifies the renaming rule to be checked.

■ Both (the default) - Applies the renaming rule test to
both the Golden and Revised designs. You can use
this pull-down menu to select Golden to apply the
test to the Golden designs, or Revised to apply the
test to the Revised designs.

■ Noprint (the default) - Does not display mapping
pairs, groups, or single key points. You can use this
pull-up menu to select Single, Pair, or Group.

■ Apply - Updates the new or changed renaming rule
test entries.

All Specifies all renaming rules will be tested.

New Rule Specifies a specific string. Type the first pattern the
Conformal software will search for, and the second
pattern it will substitute.

Filename Specifies the name of the file where the Conformal
software will write the results.
November 2019 150 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#addRenamingRule

Conformal Equivalence Checking User Guide
Using the Setup Mode
Specifying Sets of Naming Rules

You can specify a set of naming rules of each read design or read library session. For
example, if you ran the following command for VHDL as rule 1:

set naming rule "%L.%s" "%L[%d].%s" "%s" -variable
read design -vhdl <all the vhdl design> -noelab

Then ran the following command for Verilog as rule 2:
set naming rule "%L.%s" "%L[%d].%s" "%s" -variable
read design -verilog <all the verilog design> -noelab

When running the commands, rule 1 can apply to the VHDL designs and rule 2 can apply to
the Verilog designs.

Reporting Renaming Rules

Use the REPORT RENAMING RULE command or the Renaming Rule Report form (Report –
Renaming Rule) to display the list of renaming rules for mapping, module, and pin renaming.
The list displays a rule number along with a renaming rule. If you do not enter options, the
Conformal software displays all renaming rules.

Testing Renaming Rules

Use the TEST RENAMING RULE command to test specific or all renaming rules before you
add them. Other uses for this command follow:

■ Use this command to apply a new or existing rule without committing to it.

■ Apply a renaming rule to a sample or the entire design to see how Conformal matches
the key points.

■ Get a summary or complete listing of the design’s key point pairs, groups, and singles.

Analyze Renaming Rules

To enable renaming rule analysis, use
set analyze option -analyze_renaming_rule

This feature is effective only when balanced modeling is enabled, for example, with the setting
SET FLATTEN MODEL -SEQ_CONST.

During the flattening process, LEC reports the renaming rule analysis. For example:

// Command: set system mode lec
// Renaming Rule Analysis (DFF/DLATs)
November 2019 151 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#testRenamingRules
../Conformal_Ref/LEC_Ref_commands.html#reportrenamingrule

Conformal Equivalence Checking User Guide
Using the Setup Mode
==
Rule Matches(G) Matches(R) Mapped %
--

0 0
r1 20 0 20 80
==
// Balanced modeling (auto) mapped 21 out of 25 DFF/DLATs

Understanding this example:

■ The analysis is currently applied to only DFFs and DLATs.

■ The first line shows the number of mapped DFF/DLATs and the percentage that do not
have renaming rules.

■ After that, each renaming rule has a line showing the number of matches in Golden and
Revised, and the number of mapped DFF/DLATs and the percentage after this renaming
rule is applied.

■ The effectiveness of each renaming rule is shown by the number of matches, and the
name mapping results.

❑ An unexpected low number of matches may indicate a bad matching expression

❑ A lack of improvement in the mapping count may indicate a bad substitution
expression

Creating Renaming Rules to Map Array Pins

Use the ADD RENAMING RULE command’s -PIN_MULTIDIM_TO_1DIM option to
automatically create renaming rules to map multi-dimensional array pins to one-dimensional
array pins, where the rules are determined by examining all Golden module ports
independently from the Revised design.

For example, in the following command, y2[1:0][2:0] in module test2 is renamed
y2[5:0]:

add renaming rule -pin_multidim_to_1dim
// Rule created for (test2) y2[1:0][2:0]
// Rule created for (test1) y1[1:0][1:0]
// Rule created for (top) y2[1:0][2:0]
// Rule created for (top) y1[1:0][1:0]
// Rule created for (top) ym[2:3][2:0][1:0]
// 5 rules created. Rules for top module must be manually validated.

You can use the REPORT RENAMING RULE command to view the added rules.
November 2019 152 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
7
Using the LEC Mode

■ Moving to LEC Mode on page 154

■ Mapping Modifications on page 154

■ Compare Options on page 156

■ Comparison on page 158

■ Report Verification on page 158

■ Running Additional Reports on page 159
November 2019 153 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Using the LEC Mode
Moving to LEC Mode

After setup is complete, move to the LEC mode. When you move from the Setup system
mode to the LEC system mode, Conformal automatically maps the key points with the name-
first default mapping method. Review the sections related to “Mapping Settings” on page 145
and “Renaming Rules” on page 147 before leaving the Setup mode.

To switch system modes, use the SET SYSTEM MODE command. When you exit the Setup
system mode, Conformal automatically flattens the designs and maps key points between the
Golden and Revised designs. However, when you use the -nomap option, you prevent
Conformal from automatically mapping key points on entering the LEC mode.

In the LEC mode, you can view warning messages and compare and debug a design. This
chapter describes the commands that allow you to choose verification options and run the
verification.

Mapping Modifications

On entering the LEC system mode, you might find you need to make modifications to improve
mapping results. If the results are not satisfactory (that is, Conformal did not map a high
percentage of key points) you can change the mapping method (see Mapping Settings on
page 145) and introduce renaming rules (see Renaming Rules on page 147). The following
information guides you as you remap key points, manually add mapped points, and save
mapping results for future sessions.
November 2019 154 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#setsystemmode

Conformal Equivalence Checking User Guide
Using the LEC Mode
Altering Key Point Mapping

After altering mapping methods and renaming rules, use the MAP KEY POINTS command to
re-map the key points with your modifications.

Adding Mapped Points

When Conformal completes automatic mapping, you can add mapped points that were not
automatically identified with the ADD MAPPED POINTS command.

Note: Conformal automatically assigns ID numbers. They can differ from one version to
another. Always use the full path in dofiles and when you rerun a design with a different
Conformal version.

IN1

CLK

IN1

SCAN_IN1

SCAN_EN

CLK

PO1

SCAN_OUT1

DFF

DFF

MUX

Golden

Revised

Golden

IN1
CLK
PO1

Revised

IN1
CLK
PO1

Mapped Points

Unmapped Points
Revised
SCAN_IN1 Extra
SCAN_EN Extra

PO1

LEC> map key points
November 2019 155 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#mapkeypoints
../Conformal_Ref/LEC_Ref_commands.html#addmappedpoints

Conformal Equivalence Checking User Guide
Using the LEC Mode
Inverting Mapping Phase

Use the INVERT MAPPED POINTS command to apply inverted mapping phase for specified
points.

Saving Mapping Results

You can write the mapping results to a file and read them back in a future run to speed up
mapping, using the WRITE MAPPED POINTS and READ MAPPED POINTS commands.

Note: By default, Conformal automatically maps key points during the transition from Setup
to LEC mode. And if the key points are already mapped, Conformal ignores any mapped
point information in the file. Thus, to prevent Conformal from automatically mapping key
points during the transition from Setup to LEC mode and enable Conformal to read in
mapped point information completely from the file, do one of the following:

...
set system mode -nomap
read map point <map_file>
...

or

...
set flatten model -nomap
set system mode lec
read map point <map_file>
...

Compare Options

Conformal can compare all mapped points or a sub-set of mapped points. The comparison
tells whether key points are equivalent or non-equivalent. Compared points are:

■ Primary Outputs

■ D Flip-Flops (DFFs)

■ D-Latches (DLATs)

■ RAMs

■ Blackboxes

■ Cut Gates that were identified as mapped points
November 2019 156 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#InvMapPoints
../Conformal_Ref/LEC_Ref_commands.html#writemappedpoints
../Conformal_Ref/LEC_Ref_commands.html#readmappedpoints

Conformal Equivalence Checking User Guide
Using the LEC Mode
Adding Compared Points

To specify which mapped points Conformal compares, use the ADD COMPARED POINTS
command.

Setting the Compare Effort

To set the compare effort (the amount of effort the algorithm expends to make a comparison
for a compared point) use the SET COMPARE EFFORT command.

Setting a CPU Limit

To limit the amount of time Conformal spends comparing key points, use the SET CPU LIMIT
command. Conformal stops the comparison and exits the session when it reaches the
specified limit.

Reporting Compare Time

To report the CPU time consumed during a comparison, use the REPORT COMPARE TIME
command.

You must enable this feature before starting a comparison; otherwise, Conformal does not
record any information. For example:

command> compare
command> report compare time -enable
command> compare
command> report compare time

In this example, Conformal records the CPU time for the second comparison only.

Note: Conformal does not record compare time for trivial cones.
November 2019 157 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#addcomparedpoints
../Conformal_Ref/LEC_Ref_commands.html#setcompareeffort
../Conformal_Ref/LEC_Ref_commands.html#setcpulimit
../Conformal_Ref/LEC_Ref_commands.html#reportCompareTime

Conformal Equivalence Checking User Guide
Using the LEC Mode
Comparison

To start the comparison, use the COMPARE command.

Reporting Compare Data

After Conformal completes the comparison, use the REPORT COMPARE DATA command to
view a list of all compared points and their status (equivalent or non-equivalent).

Reporting Statistics

The REPORT STATISTICS command summarizes the mapping and compare statistics.

Reporting CPU Use

The USAGE command displays the total CPU time and the total memory used during the
current Conformal session.

Report Verification

Conformal can report a table of all violated checklist items for the following categories:

1. Non-standard modeling options used

2. Incomplete verification

3. Design modifications

4. Conformal recommended extended checks

5. Design ambiguity

Use the REPORT VERIFICATION command to run the report. You can prints out each
category and the count of violations, or print out all items for each category where the violated
items are marked with an asterisk (*).
November 2019 158 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#compare
../Conformal_Ref/LEC_Ref_commands.html#reportcomparedata
../Conformal_Ref/LEC_Ref_commands.html#reportstatistics
../Conformal_Ref/LEC_Ref_commands.html#usage
../Conformal_Ref/LEC_Ref_commands.html#reportVerification

Conformal Equivalence Checking User Guide
Using the LEC Mode
Running Additional Reports

Use the Report menu to open the Report form to display extensive design information in the
Transcript window of the main Conformal GUI window.

Note: You can run some of these reports in Setup and LEC mode.

The Report menu and Report form contains the following categories:

■ Black Boxes Report on page 160

■ Cut Points Report on page 160

■ Design Data Report on page 161

■ Environment Report on page 161

■ Floating Signals Report on page 161

■ Instance Constraints Report on page 162

■ Instance Equivalences Report on page 162

■ Messages Report on page 162

■ Modules Report on page 163

■ Notranslate Modules Report on page 164

■ Pin Constraints Report on page 164

■ Pin Equivalences Report on page 165

■ Primary Inputs Report on page 165

■ Primary Outputs Report on page 165

■ Renaming Rules Report on page 166

■ Search Paths Report on page 166

■ Tied Signals Report on page 166

■ Mapped Points Report on page 167

■ Unmapped Points Report on page 167

■ Compared Points Report on page 167

■ Compare Data Report on page 167
November 2019 159 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Using the LEC Mode
■ Statistics Report on page 167

Black Boxes Report

Use the REPORT BLACK BOX command or the Black Box Report form (Report – Black Box)
to display black boxes from the Golden and Revised designs.

Black Box Report Form Fields and Options

Cut Points Report

Use the REPORT CUT POINTS command, or use the Cut Point Report form (Report – Cut
Point) to display cut points from the Golden and Revised designs.

Cut Point Report Form Fields and Options

Class Displays the specified class of blackboxes. Use the pull-
down menu to select Full for blackboxes from both the
User and System classes (the default), User for
blackboxes previously added with the Conformal
software, or System for blackboxes included in the
original design.

Type Select Module to report only the blackbox modules (the
default), or Instance to report only the blackbox
instances.

Hier Displays hierarchical compare blackboxes

Hidden Displays blackboxes within other blackboxes

Design Specifies the design to display the cut points. Choose
Revised, Golden, or Both (the default).
November 2019 160 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Using the LEC Mode
Design Data Report

Use the REPORT DESIGN DATA command or the Design Data Report form (Report –
Design Data) to specify and run a report of current design information, including word-level
information.

Design Data Report Form Fields and Options

Environment Report

Use the REPORT ENVIRONMENT command or the Environment Report form (Report –
Environment) to display global settings for the designs and system settings.

There are no customized options for the Environment Report form. Click Apply to view the
report in the Transcript window.

Floating Signals Report

Use the REPORT FLOATING SIGNALS command or the Floating Signals Report form
(Report – Floating Signals) to display all floating signals in the Golden and Revised designs
or in specified modules of a design. The reported floating signals are either nets or pins and
are either undriven or unused.

Golden Module Name Specifies the module name for the Golden design.

Revised Module Name Specifies the module name for the Revised design.

Extra Reports the extra input, output, or I/O pins for pair-able
modules between the Golden and Revised designs.
Choose Input for input pins, Output for output pins, or
Inout for inout pins.

Key Point Reports the total one-to-one mapped state points.

Note: If you use this with Verbose, Conformal reports all
one-to-one mapped state points.

Summary Summarizes the design data.

Verbose Verbose reports a detailed list of the design data.
November 2019 161 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Using the LEC Mode
Floating Signals Report Form Fields and Options

Instance Constraints Report

Use the REPORT INSTANCE CONSTRAINTS command or the Instance Constraints Report
form (Report – Instance Constraints) to display constraints placed on instances in the
Golden and Revised designs.

There are no customized options for the Instance Constraints Report form. Click Apply to
view the report in the Transcript window.

Instance Equivalences Report

Use the REPORT INSTANCE EQUIVALENCES command or the Instance Equivalences
Report form (Report – Instance Equivalences) to display the equivalences placed on
instances in the Golden and Revised designs.

There are no customized options for the Instance Equivalences Report form. Click Apply to
view the report in the Transcript window.

Messages Report

When you exit Setup system mode, there can be summary warning messages related to
modeling the Golden or Revised designs, mapping key points, or comparing. Use the REPORT
MESSAGES command or the Messages Report form (Report – Messages) to report a
detailed, or verbose, listing of the warning messages.

Category Undriven displays only undriven floating signals (the
default). Unused displays only unused floating signals.

Design Specifies the design to display the floating nets. Choose
Revised, Golden, or Both (the default).

Signal Net displays only floating nets, Pin displays only floating
pins, and Full displays both floating nets and floating
pins.

All Display all floating signals in all modules
November 2019 162 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Using the LEC Mode
Messages Report Form Fields and Options

Reporting Feedback Paths

Conformal inserts CUT gates to break combinational feedback paths. Then, it displays a
summary warning message during flattening and modeling to tell how many CUT gates were
inserted. Display the feedback paths of all CUT gates using the REPORT PATH command with
the -feedback option. Also use this command to display the path between two key points.

Modules Report

Use the REPORT MODULES command or the Modules Report form (Report – Modules) to
display the module hierarchy for the design.

Modules Report Form Fields and Options

Type Modeling (the default) displays only warning messages
from the processing and modeling of the Golden and
Revised designs. Mapping displays warning messages
only from the automatic key point mapping process.
Compare displays warning messages only from the
comparison process.

Design Specifies the design to display the messages. Choose
Revised, Golden, or Both (the default).

Summary Displays only a summary message for common warning
messages. By default, the Conformal software displays
all warning messages.

Rule Name Specifies the named rule that should only be displayed.

Golden Module Name Specifies the module name for the Golden design.

Revised Module Name Specifies the module name for the Revised design.

Source Displays the source-code information identifying where
the module is located.

Library Displays all of the library cells that are in the module
hierarchy.
November 2019 163 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Using the LEC Mode
Notranslate Modules Report

Use the REPORT NOTRANSLATE MODULES command or the Notranslate Modules Report
form (Report – Notranslate Modules) to display all library and design modules that were
originally added with the Conformal software.

Note: The software will not compile these modules when reading in libraries and designs.

There are no customized options for the Modules Report form. Click Apply to view the report
in the Transcript window.

Pin Constraints Report

Use the REPORT PIN CONSTRAINTS command or the Pin Constraints Report form (Report
– Pin Constraints) to display constraints placed on primary input pins in the Golden and
Revised designs.

Pin Constraints Report Form Fields and Options

Design Specifies the design to display the modules. Choose
Revised, Golden, or Both (the default).

All Displays all the modules. The top root module is denoted
by (T).

Direction Up (the default) reports on modules and library cells up
the hierarchy of the specified module name. Down
reports on modules and library cells down the hierarchy
of the specified module name.

Golden Module Name Specifies the module name for the Golden design.

Revised Module Name Specifies the module name for the Revised design.

Design Specifies the design to display the pin constraints.
Choose Revised, Golden, or Both (the default).

All Displays pin constraints in all modules (within the given
defaults).

Root Displays the pin constraints from the root module.
November 2019 164 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Using the LEC Mode
Pin Equivalences Report

Use the REPORT PIN EQUIVALENCES command or the Pin Equivalences Report form
(Report – Pin Equivalences) to display all defined pin equivalences and inverted pin
equivalences.

Inverted pin equivalences are distinguished by a “-” next to the primary input pin name.

Pin Equivalences Report Form Fields and Options

Primary Inputs Report

Use the REPORT PRIMARY INPUTS command or the Primary Inputs Report form (Report
– Primary Inputs) to display all defined primary inputs.

There are no customized options for the Primary Inputs Report form. Click Apply to view the
report in the Transcript window.

Primary Outputs Report

Use the REPORT PRIMARY OUTPUTS command or the Primary Outputs Report form
(Report – Primary Outputs) to display all defined primary outputs.

There are no customized options for the Primary Outputs Report form. Click Apply to view
the report in the Transcript window.

Golden Module Name Specifies the module name for the Golden design.

Revised Module Name Specifies the module name for the Revised design.

Design Specifies the design to display the pin equivalences.
Choose Revised, Golden, or Both (the default).

All Displays pin equivalences in all modules (within the
given defaults).

Root Displays the pin equivalences from the root module.
November 2019 165 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Using the LEC Mode
Renaming Rules Report

Use the REPORT RENAMING RULE command or the Renaming Rule Report form (Report –
Renaming Rule) to display the list of renaming rules for mapping, module, and pin renaming.
The list displays a rule number along with a renaming rule. If you do not enter options, the
Conformal software displays all renaming rules.

Renaming Rule Report Form Fields and Options

Search Paths Report

Use the REPORT SEARCH PATH command or the Search Path Report form (Report –
Search Path) to display all paths used to search for library and design files.

There are no customized options for the Search Path Report. Click Apply to view the report
in the Transcript window.

Tied Signals Report

Use the REPORT TIED SIGNALS command or the Tied Signals Report form (Report – Tied
Signals) to display tied signals from the Golden and Revised designs.

Tied Signals Report Form Fields and Options

Map Map (the default) displays only mapping renaming rules.
Module displays only module renaming rules. Pin
displays only pin renaming rules. Full displays all
renaming rules.

Design Specifies the design to display the renaming rules.
Choose Revised, Golden, or Both (the default).

Signal Net displays net names that have tied signals assigned
to them, Pin pin names that have tied signals assigned
to them, and All displays net and instance names that
have tied signals assigned to them (within the given
defaults).
November 2019 166 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Using the LEC Mode
Mapped Points Report

Use the REPORT MAPPED POINTS command or the Mapped Points menu command
(Report – Mapped Points) to display the mapped points that were automatically identified
or added with the Conformal software. Each mapped point from the Golden and Revised
design is displayed along with a summary of all Golden and Revised mapped points.

Unmapped Points Report

Use the REPORT UNMAPPED POINTS command or the Unmapped Points menu command
(Report – Unmapped Points) to display a list of unmapped points, along with a summary of
all of the unmapped points in the Golden and Revised designs.

Compared Points Report

Use the REPORT COMPARED POINTS command or the Compared Points menu command
(Report – Compared Points) to display the compared points that were added with the
Conformal software.

Compare Data Report

Use the REPORT COMPARE DATA command or the Compare Data menu command (Report
– Compare Data) to display a list of all or specified compared points.

Statistics Report

Use the REPORT STATISTICS command or the Statistics Report form (Report – Statistics)
to display the mapping and comparison statistics for the Golden and Revised designs.

There are no customized options for the Statistics Report. Click Apply to display the Statistics
Report in the Transcript window.

Class Full (the default) displays tied signals from both the User
and System classes. System displays tied signals from
the original design. User displays tied signals added
with the Conformal software.

Design Specifies the design to display the tied signals. Choose
Revised, Golden, or Both (the default).
November 2019 167 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Using the LEC Mode
November 2019 168 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
8
Debugging

■ Diagnosing Non-Equivalent Points on page 170

■ Proving Equivalence on page 173

■ Reporting Design Similarities on page 174

■ Gate Manager on page 176

■ Gate Reporting on page 186

■ Mapping Manager on page 188

■ Diagnosis Manager on page 205

■ Exit Status Codes on page 218
November 2019 169 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Debugging
Diagnosing Non-Equivalent Points

Use the DIAGNOSE command to diagnose a non-equivalent compared point (to diagnose
groups of points, see “Diagnosing Multiple Points” on page 170). The DIAGNOSE command
pinpoints areas of difference so you can identify the probable causes of non-equivalent
points. Using this command in conjunction with the schematic viewer can also help you locate
mismatches. The diagnosis displays all of the non-corresponding support key points with a
list of all likely error candidates from the Revised design.

Use the command with the -summary option to display a diagnosis summary table listing all
of the non-equivalent points. The summary table helps you determine which non-equivalent
point has the smallest cone size. You can then use this information to diagnose the non-
equivalent point that has the smallest cone size first and work through non-equivalent points
by degrees of complexity.

Note: Conformal automatically assigns ID numbers. They can differ from one version to
another. Always use the full path in dofiles and when you rerun a design with a different
Conformal version.

Diagnosing Multiple Points

In many cases, multiple non-equivalences are due to the same error. For example, an error
in a clock gating circuit can cause all DFFs driven by the same clock gating circuit to be non-
equivalent. As another example, a wrong keypoint mapping can cause multiple frontier
keypoints of the same wrong mapping to be non-equivalent. In these cases, diagnosing the
entire group of non-equivalences simultaneously can better reveal the single root cause of
the non-equivalences.

Use the -group option of the DIAGNOSE command to group non-equivalences that are likely
caused by the same error. For example:

diagnose -noneq -group

analyzes all the non-equivalences and reports groups with more than one non-equivalence.
Since the non-equivalences in the same group are caused by the same error, you can focus
November 2019 170 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#diagnose

Conformal Equivalence Checking User Guide
Debugging
on the one with the smallest logic cone to diagnose. The following sample report groups the
key points by non-equivalences, common supports, and common test vectors:

The non-equivalences are sorted by support size, in increasing order. By default, non-
equivalences are grouped together if they share a common support or test vector. You can
specify more stricter conditions for grouping. For example, you can require that the non-
equivalences in one group have at least 5 common supports:

diagnose -noneq -group -common_support 5
November 2019 171 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Debugging
The common test vectors are ordered according to the number of non-equivalences they
cause, where the vector that causes the most non-equivalences is shown first.

You can also use -group option on specific keypoint. For example, the following reports the
group that contains the compare point 14:

diagnose 14 -group

Diagnosing Using Test Vector Patterns

In multipoint diagnosis, test vectors are ordered so that you can identify patterns that can help
diagnose the causing issue. The following are examples of the test vector patterns for non-
equivalences.

d: Golden value is 0 and Revised value is 1
D: Golden value is 1 and Revised value is 0

■ Phase mapping

The following illustrates the test vector ordering for a non-equivalence caused by a phase
mapping issue. Specifically, the support a in Golden is correctly mapped to the support
a' in Revised, but the phase should be inverted.

0: 10001111 DDDddddD
1: 10011111 dddDDDDd
2: 10101100 00DddddD
3: 10111100 00dDDDDd
.....

^ (a is the 4th column)
If a vector vec1 is a counter example, inverting the value of a in it is also a counter
example. Note the output values are inverted too.

■ Mapping

The following illustrates the test vector ordering for a non-equivalence caused by a
mapping issue. Specifically, the supports a, b in Golden are incorrectly mapped to the
supports b', a'.

0: 1001100001 dddDd
1: 0101100001 DDDdD
2: 1001010001 ddddD
3: 0101010001 DDDDd
....

^^ (a is the first column, and b is the second column)
Test vectors contain only patterns of a, b non- equivalence. The output values are also
inverted when a, b change from 01 to 10.

■ Sequential constant
November 2019 172 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Debugging
The following illustrates the test vector ordering for a non-equivalence caused by a
sequential constant issue. Specifically, the Golden key points have non-corresponding
DFF supports, and some pattern of these non-corresponding supports is missing in all
test vectors.

0: 11101110 01 Dddd0
1: 11011110 01 Ddd0d
2: 11101110 11 Dddd0
3: 11011110 11 Ddd0d
4: 11101110 10 0ddd0
5: 11011110 10 0dd0d
6: 11001110 01 Ddd00
7: 11001110 11 Ddd00
8: 11001110 10 0dd00

^^ (non corresponding supports that can be sequential
constant 00)

For the above example, pattern 00 is missing, which is the value that these DFFs become
after sequential constant propagation.

■ Sequential merge

The following illustrates the test vector ordering for a non-equivalence caused by a
sequential merge issue. Specifically, both Golden and Revised key points have non-
corresponding DFF supports. The all 0 or all 1 patterns of the non-corresponding DFF
supports are missing from the test vectors.

0: 10000000000000000000000000000000 1 dddddddddddd1ddddddddddddddddddd
1: 01000000000000000000000000000000 1 dddddddddddddddddddddddddddd1ddd
2: 11000000000000000000000000000000 1 dddddddddddd1ddddddddddddddd1ddd
3: 11100000000000000000000000000000 0 0000000000D0D000000000000000D000
4: 11010000000000000000000000000000 0 000000000000D0000000D0000000D000
5: 11001000000000000000000000000000 0 000000000000D000000000000000D0D0
......
In the above example, Golden has 32 DFFs that should be merged, which are shown as
the first 32 supports. These DFFs directly feed to POs, which are proven non-equivalent.
The last support shown is the Revised non-corresponding support. The error happens
when Golden DFFs are taken at different values from the Revised support.

Proving Equivalence

Another command that is useful for debugging is the PROVE command. This command
checks for equivalence and shows whether the specified gates from the Golden or Revised
designs are equivalent or non-equivalent. Use the ADD DYNAMIC CONSTRAINTS command
to specify constraints you want to use during the proof.

Use the following command to check equivalency for one of the following pairs:

■ One gate in each of the Golden and Revised designs
November 2019 173 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#prove
../Conformal_Ref/LEC_Ref_commands.html#addDynConst

Conformal Equivalence Checking User Guide
Debugging
■ Two gates in the Golden design

■ Two gates in the Revised design

Adding Dynamic Constraints

Use the ADD DYNAMIC CONSTRAINTS command, in conjunction with the PROVE and
DIAGNOSE commands, to diagnose a non-equivalent point. This command gives you a
time-efficient method of debugging that does not require you to exit the LEC system mode to
add pin constraints, and then rerun the comparison to see how the constraints affect the
comparison results. However, if you do exit the LEC system mode and rerun comparison,
dynamic constraints no longer have any effect.

Displaying Error Patterns

Use the REPORT TEST VECTOR command to display the Revised design error patterns that
caused non-equivalence at the diagnosis point.

Tip

If you intend to use the schematic viewer to aid diagnosis, you must start it while
Conformal is in GUI mode. If the current session is in non-GUI mode, use the SET
GUI command.

Reporting Design Similarities

The degree of structural similarity between two designs reflects the complexity of
comparison. It usually is easier to compare two designs which have more similar structures.
The dissimilar regions of the designs are possible root causes of aborts when comparing two
designs. The design similarity report can help you understand these aborts and help to guide
the adoption of methodologies to increase the design similarity and resolve aborts.

The dissimilar structures of two designs can be due to the following:

■ usage of different datapath implementations

■ resource sharing

■ synthesis with don't cares

■ low power synthesis
November 2019 174 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#reporttestvector
../Conformal_Ref/LEC_Ref_commands.html#setgui
../Conformal_Ref/LEC_Ref_commands.html#setgui

Conformal Equivalence Checking User Guide
Debugging
The Conformal software can help increase design similarity with features such as datapath
analysis and functional partitioning. Designers can also increase design similarity with RTL
recoding techniques, such as parenthesizing adder trees or avoiding coding with don't cares.
You can also increase design similarity by re-synthesizing the netlist.

Use the REPORT DESIGN SIMILARITY command to report the degree of similarity between
two designs. Design similarity reflects the complexity of comparison and it can be used to
measure the effectiveness of methods used to increase design similarity. The value of
similarity ranges from 0% to 100%, and is obtained by measuring the number of
corresponding points in the two designs.

For example, if aborts occur when comparing two designs, RTL1 and GATE1, you can run the
REPORT DESIGN SIMILARITY command to get a report that shows that the GATE1 netlist
has a structure that is possibly very different from RTL1, which could possibly cause aborts.

===
Similarity Region (Golden)
 30% (root module)
===

Then you can run several commands, such as ANALYZE DATAPATH or the automatic abort
resolution ANALYZE ABORT command.

Run the REPORT DESIGN SIMILARITY command again after these commands to see if the
design similarity has been increased. If the aborts remain, you could consider recoding the
RTL or resynthesize the netlist to increase the similarity between the designs. The design
similarity can be reported any time to track the progress.
November 2019 175 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#rptDesignSim
../Conformal_Ref/LEC_Ref_commands.html#analyzeAbort
../Conformal_Ref/LEC_Ref_commands.html#analyzeDatapath

Conformal Equivalence Checking User Guide
Debugging
Gate Manager

Use the Gate Manager (Tools – Gate Manager) to help you diagnose and debug your
designs. You can also access this form from the Mapping Manager, Diagnosis Manager, and
Schematic Viewer. See the sections on the related integrated debugging tools for more
information.

The Gate Manager includes two columns in each of the major sections. The left column
contains Golden design information and the right column contains Revised design
information.
November 2019 176 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Debugging
For the Gate Manager, see the following for more information:

■ Gate Manager Fields and Options on page 178

■ Refreshing the Window on page 179

■ Opening Schematics from the Gate Manager on page 179

■ Using the Preferences Drop-Down Menu on page 179

■ Filtering the Gate List on page 180

■ Finding Gates on page 181

■ Reporting Gate Information on page 182

■ Customizing the Gate List Section with Specified Gates on page 182

■ Proving Equivalency for Two Specified Gates on page 182

■ Removing Gates from the Prove List on page 183

■ Locating an Equivalent Gate on page 183

■ Adding and Deleting Dynamic Constraints on page 183

■ Locating a Gate in the Design Hierarchy on page 184

■ Highlighting a Point in the Hierarchical Browser on page 184

■ Viewing a Gate’s Location in the Source Code on page 185

■ Highlighting a Point in the Source Code Manager on page 185

■ Viewing a Schematic Representation of One Gate on page 185

■ Gate Reporting on page 186
November 2019 177 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Debugging
Gate Manager Fields and Options

Fanins The Fanins section is a hierarchical gate browser for the
fan-ins of specified gates. Click the (+) or (-) symbols to
expand or compress the hierarchical gate display for a
logic cone.

The number within the parentheses indicates the pin
location:

Fanouts The Fanouts section is a hierarchical gate browser for
the fan-outs of specified gates. Click the (+) or (-)
symbols to expand or compress the hierarchical gate
display for a logic cone.

Gate List Select a gate listed in the Golden or Revised column of
this section to:

■ Display its fan-ins and fan-outs

■ Add it to the Prove List section

■ Show its equivalent gate

Open the Hierarchical Browser, Schematic Viewer, and
Source Code Manager in the context-dependent mode

Prove List When you add any two gates shown in the Fanins,
Fanouts, or Gate List sections to the Prove List,
Conformal displays them in this section. In this section,
you can run the PROVE command for specified gates.
November 2019 178 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Debugging
Refreshing the Window

Click the Refresh button to collapse the fan-ins and fan-outs to either the default level, which
is 1, or a level you specified through the Preferences drop-down menu. (Refer to “Using the
Preferences Drop-Down Menu” on page 179.)

Opening Schematics from the Gate Manager

When you use the procedure described below, two separate schematic windows open to
display the Golden and Revised gates that are specified at the top of the Gate Manager. (You
will have side-by-side viewing.)

1. Double-click a gate listed in the Golden column of the Gate List section of the Gate
Manager.

Conformal displays this gate in the Golden field at the top of the window.

2. Double-click a gate listed in the Revised column of the Gate List section of the Gate
Manager.

Conformal displays this gate in the Revised field at the top of the window.

3. Click on the Schematic icon located on the menu bar and click the Show Inserted
Buffer Gate check box to display all of the buffer gates.

The default is to collapse all buffers and not display them.

4. Click the Schematic icon and choose Open.

Two schematic windows open. They display the fan-in cone of the selected gate and
highlight the gate (unless it is a PI or PO).

Using the Preferences Drop-Down Menu

Use the following procedures to specify viewing preferences.

Equivalent Point After you have run the COMPARE command, Conformal
can display the corresponding equivalent gate of a
specified gate in this section.

Dynamic Constraint When you add a dynamic constraint to any gate in the
Fanins or Fanouts sections of the Gate Manager,
Conformal lists the gates in this section.
November 2019 179 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Debugging
Customizing the Display

This procedure lets you display specified sections of the Gate Manager.

1. Click the Preferences button located on the menu bar.

2. Click the check boxes to display only the sections you specify.

Specifying Gate Display Options

By default, Conformal displays all inverters and buffers in fan-in and fan-out cones at the
primitive level. Use the following steps to change the preferences to exclude inverters and
buffers from the display and change the number of displayed levels in fan-in and fan-out
cones.

1. Click the Preferences button located on the menu bar.

2. Click Options.

The Gate Manager Display Option window appears.

3. Click the Collapse Internal Buffers check box according to your preferences.

4. Click the Collapse Internal Inverters check box according to your preferences.

5. Click in the Fanin/Fanout Expand Level field and type a number, or click the adjacent
up- or down-arrow to specify the number of levels Conformal automatically displays in the
fan-in and fan-out cones.

You can also manually expand and collapse the levels by clicking on the + and - markers.

6. Click Apply.

7. Click Close.

Filtering the Gate List

1. Click the Filter icon.

Use the following procedure to filter the display of gate IDs that match a specified
string.

Note: Conformal supports wildcards. For example, type *35* to display all points
that include 35 in their name or gate ID.
November 2019 180 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Debugging
The section-specific filter window opens, for example, Filter: Gate List (Golden).

2. Type a string in the Filter field.

3. Click Apply.

4. To return to the original display, click Display All.

5. Click Close.

Note: If you click the Refresh button on the menu bar of the Gate Manager, the original
unfiltered display returns.

Finding Gates

1. Click the Find icon button located in the upper right corner of the appropriate section, or
press Ctrl-f. The section-specific Find window opens, for example, Find: Gate List
(Golden).

2. Type any string or partial string of a key point name in the Find field.

3. Click the Find Forward or Find Backward check box to specify the direction of the
search.

4. Click the Case Sensitive check box, if applicable.

5. Click the Find button to search for the name.

6. Repeat step 5 to find the next point that fulfills the search criteria.

Use the following procedure to locate gate IDs based on a search string.
November 2019 181 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Debugging
Reporting Gate Information

The following procedure reports the corresponding gate information in the Fanins and
Fanouts sections of the Gate Manager and in the Transcript window of the main window.

1. Click a gate in Fanins, Fanouts, or Gate List to select it:

2. Do one of the following:

❑ Right-click and choose Show Fanin/Fanout from the pop-up menu.

❑ Double-click on the gate.

Customizing the Gate List Section with Specified Gates

1. Click the Class icon located at the top right corner of the Gate List section of the
window.

2. From the drop-down menu, choose the types of gates you want to view.

For example, All, PI, 0, 1, X, Z, and so forth.

Proving Equivalency for Two Specified Gates

1. Click a gate in the Golden column in Fanins, Fanouts, or Gate List to select it:

2. Right-click and choose Add Prove List from the pop-up menu.

Conformal adds the gate to the Prove List section in the appropriate column.

3. Repeat steps 1 and 2 for a second gate in the Revised column.

4. Click the Prove button located in the upper right corner of the Prove List section.

Use the following procedure to filter out categories of gates from the Gate List
section of the Gate Manager, and then report on gates from the shortened list.

Use the following procedure to prove equivalence for two gates:
November 2019 182 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Debugging
Conformal runs the PROVE command for the specified gates and prints the proof result
in the status field at the top of the Prove List section and in the Transcript window of the
main window.

Removing Gates from the Prove List

To remove a gate from the Prove list, click a gate in the Prove List section to select it, then
right-click to open the pop-up menu and choose Delete Prove List.

Deleting All Gates from the Prove List

Do the following to remove all gates from the Prove List section.

Locating an Equivalent Gate

Use the following procedure to show the equivalent of a gate in the Fanins, Fanouts, or Gate
List section in the Golden or Revised columns of the Gate Manager.

1. Click a gate in the Gate List section to select it.

2. Right-click and choose Show Equivalent from the pop-up menu.

Conformal displays the corresponding equivalent gate, if any, in the Equivalent Point
section. For example: select a gate from the Golden column and Conformal displays its
equivalent in the Revised column of the Equivalent Point section.

Adding and Deleting Dynamic Constraints

Adding a Dynamic Constraint

Use the following procedure to add dynamic constraints.

1. Click a gate in Fanins or Fanouts to select it:

2. Right-click to open the pop-up menu and select Add Dynamic Constraints 0 or Add
Dynamic Constraints 1.

➤ Click the X icon located in the upper right corner of the Prove List section.
November 2019 183 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Debugging
Deleting a Dynamic Constraint

Use the following procedure to delete dynamic constraints.

1. Click a gate in the Dynamic Constraint section to select it.

2. Right-click and choose Delete Dynamic Constraints from the pop-up menu.

This choice removes the gate from the Dynamic Constraints section.

Locating a Gate in the Design Hierarchy

Use the following procedure to open the Hierarchical Browser window of the main window,
scrolled to the appropriate location in the design hierarchy. Conformal applies an aqua
highlight to the specified gate.

Note: This procedure does not apply to primary inputs (PI) or primary outputs (PO).

1. Click a gate in Fanins, Fanouts, or Gate List to select it:

2. Right-click and choose Hierarchical Browser from the pop-up menu.

Highlighting a Point in the Hierarchical Browser

Use the following procedure to select a point in the Gate Manager and find its location in the
Hierarchical Browser.

Tip

Begin this procedure with the main window open on the desktop and the Gate
Manager active.

1. Click to select a point in Gate List, Fanins, or Fanouts:

2. Using the middle mouse button, click and drag the selected point from the Gate Manager
to the main window.

When you click with the middle button, the Gate Manager displays the name of the point
you clicked in an ivory text box. As you move the box to the new window, the background
of the text box changes if the object is in a window where you can drop items.

3. Release the middle button, and the Hierarchical Browser window scrolls to and highlights
the applicable line of code.
November 2019 184 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Debugging
Viewing a Gate’s Location in the Source Code

Use the following procedure to open the Source Code Manager scrolled to the appropriate
line of code. (An aqua square marks the first character of the line in question.) From the
Source Code Manager, you can open an editor.

1. Click a gate in the Fanins, Fanouts, or Gate List section of the Gate Manager.

2. Right-click and choose Source Code from the pop-up menu.

Highlighting a Point in the Source Code Manager

Use the following procedure to select a point and find its location in the source code.

Tip

Begin this procedure with the Source Code Manager open and the Gate Manager
active.

1. Click a point in the Gate List, Fanins, or Fanouts section.

2. Using the middle mouse button, click and drag the selected point from the Gate Manager
to the Source Code Manager.

When you click with the middle button, the Gate Manager displays the name of the point
you clicked in an ivory text box. As you move the box to the new window, the background
of the text box changes if the object is in a window where you can drop items.

3. Release the middle button, and the Source Code Manager scrolls to and highlights the
applicable line of code.

Viewing a Schematic Representation of One Gate

When you use the following procedure, the schematic viewer displays the fan-in cone of the
selected gate and highlights the gate (unless it is a PI or PO).

1. Click a gate in either the Golden or Revised column of the Gate List section.

2. Right-click and choose Schematics.
November 2019 185 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Debugging
Gate Reporting

Use the REPORT GATE command report the gate ID, type, name, and its fanins and fan-outs
at the primitive level. For information the structure of the gate report information at the
primitive level, see Gate Report Structure on page 186.

Setting the Gate Report

Use the SET GATE REPORT command prior to running REPORT GATE to specify the detail
level of gate reports.

■ To report gate information at the design level, run the SET GATE REPORT command with
the -design option.

■ To exclude dynamic constraints in the gate report, run the SET GATE REPORT command
with the -nodynamic option.

■ To include fan-in cone of the zero/one gates in the gate report, run the SET GATE
REPORT command with the -structure option.

Use the REPORT ENVIRONMENT command to display the gate report level settings.

Gate Tracing

The BACKWARD and FORWARD commands allow you to back trace and forward trace a gate.
These commands show the fan-in and fan-out cones of a gate’s inputs and outputs. The
integer further specifies the trace; for example, backward 1 denotes the first fan-in.

Gate Report Structure

The structure of the gate report information at the primitive level is as follows:

Pin-name ID (nnn) Type Tie Gate-name (Library: mmm)

gate_number gate_type (ttt) uuu

---------- Fan-ins ---

###: ppp gate_number gate_type (ttt) uuu

###: ppp gate_number gate_type (ttt) uuu
November 2019 186 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#backward
../Conformal_Ref/LEC_Ref_commands.html#reportgate
../Conformal_Ref/LEC_Ref_commands.html#setgatereport
../Conformal_Ref/LEC_Ref_commands.html#forward

Conformal Equivalence Checking User Guide
Debugging
Where the following assignments are defined as:

The structure of the gate report information at the design level is as follows:

###: ppp gate_number gate_type (ttt) uuu

###: ppp gate_number gate_type (ttt) uuu

---------- Fan-outs ---

###: gate_number gate_type uuu

nnn Reported gate is from the Golden or Revised design

mmm Reported gate has a corresponding library model name

###: Fan-in or fan-out index integers

(This integer is used in conjunction with the BACKWARD and FORWARD
commands.)

ppp Reported gate has corresponding pin names

gate_number Identification number assigned to the gate

gate_type Gate type of the reported gate

ttt Reported gate or fanin pin can be one of the following:

D0 or D1: added dynamic constraint of 1

L0 or L1: learned internally to be 0 or 1

C0 or C1: added pin constraint of 0 or 1

R0 or R1: redundant learned internally to be 0 or 1

F - Z gate created from a floating net or pin

B - Z gate created from a tristate buffer or I/O pin modeling

uuu The fanin or fan-out instance name connected to or from reported gate

Pin-name ID (nnn) Cell-type Pin-name Name

gate_number cell_type ttt

Pin-name ID (nnn) Type Tie Gate-name (Library: mmm)
November 2019 187 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Debugging
Where the following assignments are defined as:

Mapping Manager

Use the Mapping Manager as a gateway to the integrated debugging environment. The
Mapping Manager serves several functions:

■ Displays the unmapped, mapped, sequential merge, and compared points

■ Adds and deletes mapped and compared points accordingly

■ Compares key points

---------- Inputs ---

###: ppp gate_number cell_type ttt uuu

###: ppp gate_number cell_type ttt uuu

###: ppp gate_number cell_type ttt uuu

###: ppp gate_number cell_type ttt uuu

---------- Outputs ---

###: ppp gate_number cell_type ttt uuu

###: ppp gate_number cell_type ttt uuu

nnn Reported gate is from the Golden or Revised design

###: Input or output index integers

(This integer cannot be used in conjunction with the BACKWARD and
FORWARD commands.)

ppp Reported gate has corresponding pin names

gate_number Identification number assigned to the gate

cell_type Library cell name of the reported gate

ttt Reported input or output pin connected to or from the reported gate

uuu Input or output instance name connected to or from the reported gate

Pin-name ID (nnn) Cell-type Pin-name Name
November 2019 188 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Debugging
■ Gives the status of each compared point (equivalent, non-equivalent,
inverted-equivalent, abort, or not-compared)

➤ Choose Tools – Mapping Manager.

The Mapping Manager includes two columns in each of the major sections. The left column
contains Golden design information and the right column contains Revised design
information.
November 2019 189 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Debugging
For the Mapping Manager, see the following for more information:

■ Mapping Manager Fields and Options on page 191

■ Setting Preferences on page 193

■ Copying Information from the Mapping Manager on page 193

■ Selecting Points on page 193

■ Adding Unmapped Points as Mapped Points on page 194

■ Reporting Information on an Unreachable Gate on page 194

■ Reporting Renaming Rules on page 195

■ Re-Mapping Key Points on page 195

■ Adding All Compared Points on page 195

■ Deleting One or More Mapped Points on page 195

■ Adding One or More Compared Points on page 196

■ Changing the Mapping Phase of a Mapped Point on page 196

■ Highlighting a Mapped Point in the Compared Points Section on page 196

■ Comparing Key Points on page 197

■ Deleting One or More Compared Points on page 197

■ Diagnosing a Non-Equivalent Point in the Compared Points Section on page 197

■ Sorting Compared Points by Support Size on page 198

■ Sorting Compared Points by Non-Corresponding Support Cones on page 198

■ Changing the Mapping Phase of a Compared Point on page 198

■ Highlighting a Compared Point in the Mapped Points Section on page 198

■ Displaying the Information Box on page 199

■ Filtering the Display on page 199

■ Finding Key Points on page 200

■ Displaying Specified Classes of Points on page 200

■ Deleting Mapped or Compared Points on page 201

■ Displaying Diagnosis Data on page 201
November 2019 190 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Debugging
■ Reporting Gate Information on page 201

■ Displaying Fan-in and Fan-Out Information on page 201

■ Locating a Point in the Source Code on page 202

■ Locating a Point in the Design Hierarchy on page 203

■ Viewing a Schematic of a Point on page 203

Mapping Manager Fields and Options

Note: You can also hover over a point to view details about it, or click on a point and its
classification will display in the Unmapped Points text field.

■ Unmapped Points— Lists all of the unmapped points in the Golden and Revised
designs. Each unmapped point is classified as one of the following:

■ Mapped Points—Lists all of the mapped points in the Golden and Revised designs.
When you select a mapped point in one of the columns, Conformal highlights its
corresponding mapped point in the adjacent column.

■ Compared Points—Lists all of the compared points from the Golden and Revised
designs. Additionally, when you click a point, Conformal displays the status and support
size in the text fields at the top of the Compared Points section. The status of the
compared points is one of the following:

Extra

Unreachable

Not-mapped

Equivalent

Inverted-Equivalent

Different

Abort
November 2019 191 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Debugging
Split status indicators are for top-level sequential merge instances. The left side shows the
design-level compare result. The right side shows any sequential merge results:

Note: A compared point can have an S to indicate that it is a sequential merge—in that
registers merge to it.

Not-Compared

+/- S Sequential Merge (+/- indicate mapping phase)

Design level: Equivalent
Sequential merge: Abort

Design level: Equivalent
Sequential merge: Equivalent

Design level: Equivalent
Sequential merge: Not compared

Design level: Equivalent
Sequential merge: Not equivalent

Design level: Not equivalent
Sequential merge: Abort

Design level: Not equivalent
Sequential merge: Not compared

Design level: Not equivalent
Sequential merge: Not equivalent

Design level: Not equivalent
Sequential merge: Equivalent

Design level: Not compared
Sequential merge: Abort

Design level: Not compared
Sequential merge: Equivalent

Design level: Not compared
Sequential merge: Not compared

Design level: Not compared
Sequential merge: Not equivalent
November 2019 192 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Debugging
Tip

Conformal displays a red circle or a green circle to show whether points are
equivalent or different.

Setting Preferences

Click the Preferences pull-down menu on the menu bar to specify the following viewing
preferences:

Copying Information from the Mapping Manager

You can copy information from the Mapping Manager using the following key strokes:

■ Ctrl-q copies the infobox contents into a static text window. You can have several
infoboxes displayed at once.

■ Ctrl-m copies the infobox contents into the transcript window where it is added to the
the log file.

Selecting Points

In the following text, when you are directed to select one or more points, you can do any of
the following:

■ Click a point to select it.

■ Click the first point in a group, depress and hold the Shift key, and click the final point in
a group to select the entire group.

Unmapped Points On Customizes the display to show unmapped points.

Checked Points On Customizes the display to show checked points.

Sort by Name Sorts the displayed gates by name.

Sort by ID Sorts the displayed gates by ID.

Library Name On Display the suffixes when viewing mapped points.

Renaming Rule On Displays renamed rule names. This is especially useful for
determining how renaming rules affect a group of keypoints.
November 2019 193 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Debugging
■ Depress the Ctrl-key and click a point to add it to the selected group.

Adding Unmapped Points as Mapped Points

Use the following procedure in the Unmapped Points section to manually map points.

1. Click an unmapped point in either the Golden or Revised column of the Unmapped
Points section to select it.

2. Right-click and choose Set Target Mapping Point from the pop-up menu.

The target mapping point is displayed in the color red.

3. Click the corresponding mapped point in the adjacent column of the Unmapped Points
section.

4. Right-click on Add Mapping Point to open the pop-up menu and choose Non-invert or
Invert.

The two points appear in the Mapped Points section.

Adding Unmapped Points as Mapped Points (Keyboard Shortcut)

To manually map points in the Unmapped Points section, click a point to select it and press
one of the following keys:

Reporting Information on an Unreachable Gate

Use the following procedure to display an unreachable gate’s information in the Transcript
window.

1. Click an unreachable gate in either the Golden or Revised column of the Unmapped
Points section to select it.

Key Function

t Sets the selected Golden or Revised point as the target mapping point.

n Makes a corresponding mapped point in the adjacent column a non-inverted
mapping point.

i Makes a corresponding mapped point in the adjacent column an inverted
mapping point.
November 2019 194 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Debugging
2. Right-click and choose Report Unreachable Info from the pop-up menu.

Reporting Renaming Rules

Use the following procedure to view renaming rules that apply to a specified point. The report
shows the original and renamed paths in the Transcript window of the main window.

1. Click a point in either the Golden or Revised column of the Unmapped Points section.

2. Right-click and choose Show Renamed Rule from the pop-up menu.

3. View the results in the Transcript window of the main window.

Re-Mapping Key Points

Adding All Compared Points

➤ Click the Add icon located in the upper right corner of the Mapped Points section.

Deleting One or More Mapped Points

Use the following procedure to remove selected mapped points from the Mapped Points
section and list them in the Unmapped Points section. See Deleting Mapped or Compared
Points on page 201 to delete all mapped points.

1. Select one or more mapped points.

For more information, see Selecting Points on page 193.)

2. Right-click and choose Delete Mapping Point from the pop-up menu.

➤ Click the Re-map icon located in the upper right corner of the Mapped
Points section to run the MAP KEY POINTS command.

When you add compared points, they appear in the Compared Points section.
A question mark (?) next to these points means that Conformal has not
compared them.
November 2019 195 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#mapkeypoints

Conformal Equivalence Checking User Guide
Debugging
Adding One or More Compared Points

Use the following procedure to add selected mapped points to the Compared Points
section. A question mark (?) appears next to these compared points to show that Conformal
did not compare them.

1. Select one or more mapped points.

For more information, see Selecting Points on page 193.)

2. Right-click and choose Add Compared Point from the pop-up menu.

Conformal adds the individual mapped point as a compared point.

Changing the Mapping Phase of a Mapped Point

Use the following procedure to invert the mapping phase of specified points.

1. Select one or more mapped points.

For more information, see Selecting Points on page 193.)

2. Right-click and choose Change Mapping Phase from the pop-up menu.

The mapped point becomes inverted-mapped. The display changes the + or - in the
Revised column.

Changing Mapping Phase (Keyboard Shortcut)

Use the following shortcut procedure to invert the mapping phase of a specified point.

1. Click a point to select it.

2. Press c on the keyboard.

Highlighting a Mapped Point in the Compared Points Section

Use the following procedure to find a mapped point in the Compared Points section.

Note: This procedure does not apply to primary inputs (PI).

1. Click a point in the Mapped Points section.

2. Using the middle mouse button, click and drag the selected point from the Mapped
Points section to the Compared Points section.
November 2019 196 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Debugging
When you click with the middle button, the selected point is displayed in an ivory text box.
As you move the point to the Compared Points section, the background of the text box
changes if the object is in a window where you can drop items.

3. Release the middle button.

Conformal scrolls the Compared Points section to and highlights the selected point.

Comparing Key Points

Deleting One or More Compared Points

Do the following to remove one or more compared points from the Compared Points section.
See Deleting Mapped or Compared Points on page 201 to delete all compared points.

1. Select one or more compared points.

For more information, see Selecting Points on page 193.)

2. Right-click and choose Delete Compared Point from the pop-up menu.

Diagnosing a Non-Equivalent Point in the Compared Points Section

To open the Diagnosis Manager and display the diagnosis information for a specified non-
equivalent compared point, click a non-equivalent compared point, and right-click to open the
pop-up menu and choose Diagnose.

Tip

See Diagnosis Manager on page 205 for additional information about using this
integrated tool.

➤ Click the Compare icon located in the upper right corner of the
Compared Points section.

When the comparison is complete, the equivalent compared points are marked with
a green circle or a green check, according to your specifications. (See “Pass/Fail
Icon Style” on page 239.) The non-equivalent compared points are marked with a
red circle or red X.
November 2019 197 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Debugging
Sorting Compared Points by Support Size

To sort compared points according to their support size, click a compared point, and right-
click to open the pop-up menu and choose Sort by Support Size.

Sorting Compared Points by Non-Corresponding Support Cones

For debugging, you can sort points in the Compared Points section according to non-
corresponding support. With this sort capability, the Conformal software shows all of the
points with non-corresponding support cones first (from smallest to largest) followed by points
with corresponding support cones (smallest to largest).

1. Position the cursor over the Compared Points section.

2. Right-click and choose Sort by Non-corresponding from the pop-up menu.

Changing the Mapping Phase of a Compared Point

Use the following procedure to change the mapping phase of a pair of points in the
Compared Points section and rerun the comparison.

1. Click a compared point.

The Conformal software highlights the Golden-Revised pair.

2. Right-click and choose Change Mapping Phase from the pop-up menu.

The mapped point becomes inverted-mapped. The display changes the + or - in the
Revised column. And the status indicator changes to not-compared.

3. Click the Compare icon.

Highlighting a Compared Point in the Mapped Points Section

Use the following procedure to find a compared point in the Mapped Points section.

1. Click a point in the Compared Points section.

2. Using the middle mouse button, click and drag the selected point from the Compared
Points section to the Mapped Points section.

When you click with the middle button, the selected point is displayed in an ivory text box.
As you move the point to the Mapped Points section, the background of the text box
changes if the object is in a window where you can drop items.
November 2019 198 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Debugging
3. Release the middle button.

Conformal scrolls the Mapped Points section to and highlights the specified point.

Displaying the Information Box

By default, when you rest the cursor over a point, Conformal displays an information box that
identifies the point by name and lists pertinent details about it.

Filtering the Display

1. Click the Filter icon.

The section-specific filter window opens (for example, Filter: Mapped Points).

2. Type a string in the Filter field.

3. Click Apply.

4. To return to the original display, click Display All.

5. Click Close.

Use the following procedure in the Unmapped Points, Mapped Points, and
Compared Points sections to display points that match a specified string.
Conformal bases the filter on instance names, gate type, and gate IDs.

Note: Conformal supports wildcards. For example, type *17* to display all points
that include 17 in either their name or gate ID.

Tip

To find a single point, refer to Finding Key Points on page 200“.
November 2019 199 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Debugging
Note: If you click the Refresh button on the menu bar of the Mapping Manager, the original
unfiltered display returns.

Finding Key Points

1. Click the Find icon button located in the upper right corner of the appropriate section, or
press Ctrl-f. The section-specific Find window opens (for example, Find: mapped
points).

2. Type any string or partial string of a key point name in the Find field.

3. Click the Find Forward or Find Backward check box to specify the direction of the
search.

4. Click the Case Sensitive check box, if applicable.

5. Click the Find button to search for the name.

6. Repeat step 5 to find the next point that fulfills the search criteria.

Displaying Specified Classes of Points

1. Click the Class icon located in the upper right corner of the Unmapped Points or
Compared Points section.

2. Choose one or more classes for the Unmapped Points or Compared Points section.

Do the following in the Unmapped Points, Mapped Points, and Compared
Points sections to locate points that contain the specified search string.

In the Unmapped Points and Compared Points sections, use the
following procedure to display specified classes of points.
November 2019 200 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Debugging
Deleting Mapped or Compared Points

➤ Click the X icon located in the upper right corner of the Mapped Points section or the
Compared Points section.

Displaying Diagnosis Data

After comparison, begin this procedure with the Diagnosis Manager open and the Mapping
Manager active.

1. Click a point in the Mapped Points or Compared Points section.

2. Using the middle mouse button, click and drag the point from the Mapping Manager to
the Diagnosis Manager (Compared Point field).

When you click with the middle button, the name of the point you clicked is displayed in
an ivory text box. As you move the point to the new window, the background of the text
box changes if the object is in a window where you can drop items.

3. Release the middle button, and the Diagnosis Manager refreshes to show the applicable
diagnosis data.

Reporting Gate Information

Use the following procedure in any of the three Mapping Manager sections to open the Gate
Manager displaying information about the selected gate.

1. Click an unmapped, mapped, or compared point in either the Golden or Revised
column of the Unmapped Points, Mapped Points, or Compared Points section.

2. Right-click and choose Report Gate from the pop-up menu.

The Gate Manager opens. For more information, see Gate Manager on page 176.

Displaying Fan-in and Fan-Out Information

Use the following procedure to see the fan-in and fan-out information of a specified point.

Do the following to clear the Mapped Points or Compared Points display. When
you clear the Compared Points section, Conformal removes the points. However,
when you clear the Mapped Points section, Conformal moves points to the
Unmapped Points section.
November 2019 201 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Debugging
Tip

Begin the following procedure with the Gate Manager open and the Mapping
Manager active.

1. Click a point in the Unmapped Points, Mapped Points, or Compared Points section
of the Mapping Manager:

2. Using the middle mouse button, click and drag the point from the Mapping Manager to
the Gate Manager (Fanins or Fanouts section).

When you click with the middle button, the name of the point you clicked is displayed in
an ivory text box. As you move the point to the new window, the background of the text
box changes if the object is in a window where you can drop items.

3. Release the middle button, and the Gate Manager refreshes the Fanins and Fanouts
sections accordingly.

Locating a Point in the Source Code

Use the following procedure in any of the three Mapping Manager sections to open the
Source Code Manager in the context-dependent mode.

1. Click a point in either the Golden or Revised column of the Unmapped Points,
Mapped Points, or Compared Points section.

2. Right-click and choose Source Code from the pop-up menu.

The Source Code Manager opens and scrolls to the selected point, which is highlighted
aqua.

Tip

From the Source Code Manager, you can open an editor.

Locating a Point in the Source Code Manager (Drag and Drop)

Use the following procedure to find a mapped or compared point in the Source Code
Manager.

Tip

Begin this procedure with the Source Code Manager open and the Mapping
Manager active.
November 2019 202 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Debugging
1. Click a point in the Mapped Points or Compared Points section.

2. Using the middle mouse button, click and drag the point from the Mapping Manager to
the Source Code Manager.

When you click with the middle button, the name of the point you clicked is displayed in
an ivory text box. As you move the point to the new window, the background of the text
box changes if the object is in a window where you can drop items.

3. Release the middle button, and the Source Code Manager scrolls to and highlights the
applicable line of code.

Locating a Point in the Design Hierarchy

Use the following procedure to select a point in the Unmapped Points, Mapped Points, or
Compared Points section of the Mapping Manager and find it in the Hierarchical Browser
window of the main window.

Note: This procedure does not apply to primary inputs (PI) or primary outputs (PO).

1. In the Mapping Manager, click a point in either the Golden or Revised column of the
Unmapped Points, Mapped Points, or Compared Points section.

2. Right-click and choose Hierarchical Browser from the pop-up menu.

Conformal applies an aqua highlight to the specified gate in the Hierarchical Browser
window.

Viewing a Schematic of a Point

Use the following procedure to select a point in the Unmapped Points, Mapped Points, or
Compared Points section of the Mapping Manager and view a schematic of the selected
point.

Note: When you select equivalent compared points, the schematics do not show simulation
values.

1. In the Mapping Manager, click a point in either the Golden or Revised column of the
Unmapped Points, Mapped Points, or Compared Points section.

2. Right-click and choose Schematics from the pop-up menu.

The schematic viewer opens and highlights the selected point.
November 2019 203 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Debugging
Locating a Point in the Schematic (Drag-and-Drop)

Use the following procedure in the Unmapped Points, Mapped Points, or Compared
Points section of the Mapping Manager to locate and highlight a specified point in the
schematic. This feature also works in the reverse drag-and-drop order (drag from the
Flattened Schematics window to a section in the Mapping Manager).

Tip

Begin this procedure with the schematic viewer open and the Mapping Manager
active.

1. In the Mapping Manager, click and hold the middle mouse button over a point in the
Unmapped Points, Mapped Points, or Compared Points section.

2. Drag the point from the Mapping Manager to the Flattened Schematic window.

When you click with the middle button, the Mapping Manager displays the name of the
point you clicked in an ivory text box. As you move the point to the new window, the
background of the text box changes to black if the object is in a window where you can
drop items.

3. Release the middle mouse button, and the point is highlighted in the Flattened
Schematic window.
November 2019 204 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Debugging
Diagnosis Manager

Use the Diagnosis Manager to display the error patterns and error candidates for non-
equivalent points. Additionally, it lists the corresponding and non-corresponding support
points in the logic fan-in cone for both the Golden and Revised designs. Error patterns can
be written as a testbench for simulation on another tester.

To access the Diagnosis Manager for a non-equivalent point, right click on the non-equivalent
point from the Compared Points section of the Mapping Manager and click on Diagnose. Or,
Choose Tools – Diagnosis Manager. See Diagnosing a Non-Equivalent Point in the
Compared Points Section on page 197 for additional details about how to get to the Diagnosis
Manager.
November 2019 205 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Debugging
The Diagnosis Manager includes two columns in each section. The left column contains
Golden design information and the right column contains Revised design information.

You can obtain a quick summary about a compared point by hovering over it.

For the Diagnosis Manager, see the following for more information:

■ Diagnosis Manager Fields and Options on page 207

■ Setting Preferences on page 210

■ Copying Information from the Diagnosis Manager on page 212

■ Refreshing the Window on page 212

■ Displaying the Information Box on page 212

■ Selecting a New Active Diagnosis Point on page 212

■ Changing the Simulation Value on page 212

■ Saving Modified Values as an Error Pattern on page 213

■ Viewing a Schematic on page 213

■ Changing the Mapping Phase of a Mapped Point on page 214

■ Deleting Mapped Points on page 214

■ Reporting Renaming Rules on page 215

■ Adding Unmapped Points as Mapped Points on page 215

■ Viewing a Schematic Representation of Diagnosis Points on page 215
November 2019 206 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Debugging
■ Displaying the Fill Fanin Cone on page 216

■ Displaying Gate Information on page 216

■ Showing a Gate’s Location in the Source Code on page 217

■ Showing Where a Gate is Located in the Design Hierarchy on page 217

Diagnosis Manager Fields and Options

Compare Point Displays the non-equivalent point that was selected for
diagnosis for both the Golden and Revised designs. You
will have selected this point from the Compared Points
section of the Mapping Manager.

Diagnosis Point (active) Displays the point at which the equivalency check failed.
It displays the compare point for both the Golden and
Revised designs. A simulation value is shown in
parentheses (). If there is no simulation value,
Conformal displays a (-).

For inverted-mapped points, (+/-) indicates the mapping
phase.

For DLATs where there is feedback interaction between
the Q outputs and input cone, (X/Y) indicates the current
state and the next state. The first value (X) represents
the current state of the DLAT, the second value (Y)
represents the next state of the DLAT. For example, (0/1)
indicates that the DLAT currently has a value of 0 at its Q
output. After feeding in all of the test vectors from its
support points, the DLAT will have a value of 1 at its Q
output for the next state.

Diagnosis Points (inputs) Lists all of the fan-in diagnosis points for the compare
point.

For inverted-mapped points, (+/-) indicates the mapping
phase.

In cases where there is more than one diagnosis point,
double click on a point to make it the active diagnosis
point.
November 2019 207 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Debugging
Corresponding Support
Non-corresponding Support

Displays the simulation values with all of the mapped
points that are in the fan-in cone of the diagnosis point.
Both the Golden and Revised designs are represented.

To change the simulation value, right-click on the
mapped point and use the pop-up menu.

By default, support points are color coded as. See
Support Points on page 209.

For inverted-mapped points, (+/-) indicates the mapping
phase

For more information on corresponding and non-
corresponding support points, see Figure 8-2 on
page 210.

Error Pattern Displays all of the test vectors that prove the diagnosis
point to be non-equivalent. If the bit is 0 in all error
patterns, the point is highlighted in green. If the bit is 1 in
all error patterns, it is highlighted in red. When you select
a support point, Conformal applies a pink highlight to the
associated column in the test vector set.

You can also select the following options to filter the
column display.

■ All 0s – displays the bit(s) that are 0 in all error
patterns.

Use the p keyboard stroke to move the highlight to
the next column of 0 in all error patterns; or the n key
to move to the previous column of all 0.

■ All 1s – displays the bit(s) that are 1 in all error
patterns.

Use the p keyboard stroke to move the highlight to
the next column of 1 in all error patterns; or the n key
to move to the previous column of all 1.
November 2019 208 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Debugging
Figure 8-1 Support Points

Support points are color coded as follows:

Error Candidate Lists the gates in the Revised design with the highest
probability of causing non-equivalence. The list is
ordered from greatest to least probability, and displays a
weighted percentage number displayed in decimal form.
Thus, (1.00) signifies that the gate in the Revised design
has the highest probability of causing non-equivalence.

For a graphic description of corresponding and non-
corresponding support, see Figure 8-2 on page 210.

(Green) The support point is an equivalent compare point.

(Red) The support point is a non-equivalent compare point.

(Brown) Abort

(Black) The support point either has not been compared yet or cannot be
compared (for example, PI).

(Yellow with an R) The support point is redundant logic associated with a don’t
care gate.

(Yellow with an M) The support point is a mapped point. The point exists for this
logic cone but not its corresponding mapped point.

(Red circle) Support point is an unmapped point
November 2019 209 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Debugging
Figure 8-2 Corresponding and Non-Corresponding Support Points

Setting Preferences

Use the following procedures to specify viewing preferences.

Showing Specified Sections of the Diagnosis Manager

To turn on and off sections of the Diagnosis Manage, click the Preferences button on the
menu bar and click the check boxes to select specific sections for the display.
November 2019 210 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Debugging
Sorting Gates in the Diagnosis Manager

To sort gates alphabetically by name or numerically by ID, click the Preferences button on
the menu bar and choose Sort by Name or Sort by ID.

Setting the Text Color for Points in the Diagnosis Manager

Use the following procedure to set the text color for equivalent, non-equivalent, and abort
points.

1. Click the Preferences button located on the menu bar.

2. Click Set EQ/NEQ/Abort text color to open the Color Selection window.

3. Click to select an Equivalent, Non-equivalent, or Abort point type in the list box.

4. Click a color on the Color Selection wheel.

5. Repeat steps 3 and 4 if necessary.

6. Click Close.
November 2019 211 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Debugging
Copying Information from the Diagnosis Manager

You can copy information from the Diagnosis Manager using the following key strokes:

■ Ctrl-q copies the infobox contents into a static text window. You can have several
infoboxes displayed at once.

■ Ctrl-m copies the infobox contents into the transcript window where it is added to the
the log file.

Refreshing the Window

Click Refresh to return the displayed gates to their original numerical order.

Displaying the Information Box

By default, when you rest the cursor over a point in the Corresponding Support or
Non-Corresponding Support section in the Diagnosis Manager, Conformal displays an
information box that identifies the point by name and lists pertinent details about it.

Selecting a New Active Diagnosis Point

Use the following procedure to select a new diagnosis point for the Diagnosis Manager.
Conformal updates the Diagnosis Manager display with the applicable points in the
Corresponding Support, Non-corresponding Support, Error Pattern, and Error
Candidate sections according to the selected diagnosis point.

1. Click one of the points in the Diagnosis Points (inputs) or Corresponding Support
section.

2. Right-click and choose Diagnose from the pop-up menu.

Changing the Simulation Value

In the Diagnosis Manager, you can change the simulation value for each pair of mapped
support points that appears in the Golden and Revised columns. Refer to Figure 8-2 on
page 210 for a graphic description of corresponding and non-corresponding support points.

1. Click a point in one of the Corresponding Support or Non-corresponding Support
section.

2. Right-click to view the pop-up menu and choose one of the following:
November 2019 212 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Debugging
❑ Set Value 0 to change the simulation value to 0.

❑ Set Value 1 to change the simulation value to 1.

Note: The simulation value of the Diagnosis point (active) can change when you change
the simulation value of a support point.

Saving Modified Values as an Error Pattern

You can save the modified simulation values in the Corresponding Support or
Non-corresponding Support section of the Diagnosis Manager as an error pattern using
the following procedure.

1. Click a point in the Corresponding Support or Non-corresponding Support section.

2. Right-click and choose Save Pattern from the pop-up menu.

Conformal writes the current test vector and appends it to the list of error patterns in the
Error Pattern section.

Viewing a Schematic

In the Diagnosis Manager, use the following procedure to open schematics displaying the
specified points.

1. Click a point in the Diagnosis Points (inputs), Corresponding Support,
Non-corresponding Support, or Error Candidate section.

2. Right-click and choose Schematics from the pop-up menu.

Conformal opens the schematic viewer showing the selected point. In the case of pairs
of points, (Golden and Revised), two schematic viewer windows open for side-by-side
viewing.

You can hover over an object to view more information on it. The information box will also
display information on corresponding points, if applicable.

Error pattern values are not displayed when opening the schematics from these sections. To
view error pattern values, click on the Schematic icon located on the menu bar.
November 2019 213 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Debugging
Flattened Schematics Predefined Color Scheme

The following table shows the color defaults for the flattened schematic viewer when opening
from the Diagnosis Manager:

Changing the Mapping Phase of a Mapped Point

To change the mapping phase of a pair of points in the Corresponding Support section of
the Diagnosis Manager, click a pair of corresponding points, and right-click to open the pop-
up menu and choose Change Mapping Phase.

The mapped point becomes inverted-mapped. Conformal changes the 1 or 0 in the Revised
column.

Deleting Mapped Points

To remove specified mapped points from the Corresponding Support section of the
Diagnosis Manager and list them in the Non-Corresponding Support section, click a pair
of corresponding points, and right-click to open the pop-up menu and choose Delete
Mapping Point.

Color Description

Purple Gates proven to be equivalent between the Golden or Revised designs.

Red Gate or net that is a potential candidate for an error path, or a trace load
object.

Blue Key point (DFF or DLAT) that needs to be compared. This is typically a
flip-flop or latch.

Yellow Non-corresponding support key point (DFF, DLAT, PI, BBOX or cut
gate), or a trace driver object.

Green Key point (DFF or DLAT) that proves to be a constant zero.

Pink Key point (DFF or DLAT) that proves to be a constant one.

Cyan Gate that drives the input of the compare key point (DFF or DLAT)
November 2019 214 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Debugging
Reporting Renaming Rules

Use the following procedure to view renaming rules that apply to a non-corresponding
support point. The report shows the original and renamed paths in the Transcript window of
the main window.

1. Click a point in either the Golden or Revised column of the Non-Corresponding
section to select it.

2. Right-click and choose Show Renamed Rule from the pop-up menu.

3. View the results in the Transcript window of the main window.

Adding Unmapped Points as Mapped Points

Use the following procedure to manually map points in the Non-Corresponding section of
the Diagnosis Manager and move them to the Corresponding Support section.

1. Click a point in either the Golden or Revised column of the Non-Corresponding
section to select it.

2. Right-click and choose Set Target Mapping Point from the pop-up menu.

The target mapping point text color changes to red.

3. Click the corresponding mapped point in the adjacent column of the Non-
Corresponding section.

4. Right-click and choose Add Mapping Point and Non-invert or Invert from the pop-up
menu.

Viewing a Schematic Representation of Diagnosis Points

You can view the schematic representation of the diagnosis point for both the Golden and
Revised designs. When you access the schematic viewer using the procedure that follows,
two separate schematic windows open to give you side-by-side viewing for the Golden and
Revised designs. The schematic viewer displays the fan-in cone of the diagnosis point.

Note: Multiple diagnosis pairs cannot be viewed simultaneously.

1. Click the Schematic icon located on the menu bar.

2. Click the Show Inserted Buffer Gate check box to display all of the buffer gates. (By
default, the schematic viewer collapses all buffers and does not display them.)

3. Click the Schematic icon and choose Open.
November 2019 215 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Debugging
Conformal opens a pair of schematic windows showing the Golden and Revised
diagnosis points.

Locating a Point in the Schematic (Drag-and-Drop Feature)

Use the following procedure in the Diagnosis Points (inputs), Corresponding Support,
Non-corresponding Support, or Error Candidate section as a convenient way to locate
and highlight a specified point in the schematic. This feature also works in the reverse drag-
and-drop order (drag from the Flattened Schematics window to the Diagnosis Manager).

1. With the Flattened Schematics window open, click and hold the middle mouse button
over a point in the Diagnosis Manager.

2. Drag the point from the Diagnosis Manager to the Flattened Schematic window.

When you click with the middle button, the Diagnosis Manager displays the name of the
point you clicked in an ivory text box. As you move the point to the new window, the
background of the text box changes to black if the object is in a window where you can
drop items.

3. Release the middle mouse button, and the object is highlighted in the Flattened
Schematic window.

Displaying the Fill Fanin Cone

To display the initial (flattened) schematics with full fan-in logic cone, as opposed to pruned
cone, click the Show Schematic Full Fanin Cone check box from the Preference pull-
down menu.

Displaying Gate Information

To open the Gate Manager with the selected gate information displayed, click a gate to select
it, and right click to open the pop-up menu and choose Report Gate.

For more information, see Gate Manager on page 176.

Displaying Gate Information (Drag-and-Drop Feature)

With the Gate Manager open and the Diagnosis Manager active, use this drag-and-drop
procedure to display selected gate information.

1. In the Diagnosis Manager, click a gate to select it.
November 2019 216 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Debugging
2. Click and hold the middle mouse button over the selected point.

3. Drag the point from the Diagnosis Manager to the Gate Manager (Fanins or Fanouts
section).

When you click with the middle button, the Diagnosis Manager displays the name of the
selected point in an ivory text box. As you move the point to the new window, the
background of the text box changes to black if the point is in a window where you can
drop items.

4. Release the middle mouse button, and the Gate Manager refreshes the Fanins and
Fanouts sections accordingly.

Showing a Gate’s Location in the Source Code

Use the following procedure to open the Source Code Manager with the selected gate
highlighted. From the Source Code Manager, you can open an editor.

1. Click on a gate to select it.

2. Right-click and choose Source Code from the pop-up menu.

Showing a Gate’s Location in the Source Code (Drag-and-Drop)

With the Source Code Manager open and the Diagnosis Manager active, use this drag-and-
drop procedure to locate a key point or error pattern in the Source Code Manager.

1. In the Diagnosis Manager, click a key point or error candidate.

2. Click and hold the middle mouse button over the selected item in the Diagnosis Manager.

3. Drag the item from the Diagnosis Manager to the Source Code Manager.

When you click with the middle button, the Diagnosis Manager displays the name of the
item you selected in an ivory text box. As you move the item to the new window, the
background of the text box changes to black if it is in a window where you can drop items.

4. Release the middle mouse button, and the Source Code Manager scrolls to and
highlights the applicable location in the code.

Showing Where a Gate is Located in the Design Hierarchy

Do the following to open the main window with a selected gate highlighted in the Hierarchical
Browser window section.
November 2019 217 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Debugging
1. Click a gate to select it.

2. Right-click and choose Hierarchical Browser from the pop-up menu.

Exit Status Codes

Upon exiting (using the EXIT text command or File - Exit menu command), the Conformal
software returns a status code. A nonzero status code shows a potential error; that is, either
no comparison was done or unmapped, abort, or non-equivalent points exist.

The exit status code consists of flags that represent different conditions. Bit 0 is the least
significant bit. Refer to the table below for a list of flags. This table is followed by three case
examples of nonzero exit status codes.

Tip

To view the status codes without exiting Conformal, use the SET EXIT CODE
command or the Tcl get_exit_code command. (See the Tcl Command Entry
Mode Support chapter of the Conformal Equivalence Checking Reference
Manual for additional information about Conformal Tcl commands.

Note: For bits 0, and 2 through 5, once they are set to 1, they will remain at 1.

Note: For bit 1, once it is set to 0, it will remain at 0.

Bit Condition

0 Internal Error

1 Exit status before comparison

2 Command error

3 Unmapped points or extra POs

4 Non-equivalent points during comparison

5 Abort or uncompared points exist during any comparisons.

6 Abort or uncompared points exist during the last comparison or hierarchical
comparison.
November 2019 218 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#exit
../Conformal_Ref/LEC_Tcl.html#firstpage
../Conformal_Ref/LEC_Tcl.html#firstpage

Conformal Equivalence Checking User Guide
Debugging
■ Case 1:

Start Conformal and then exit immediately
Status = 2 (00010 in binary). There are no equivalent points since there was no
comparison. Thus, bit 1 is set.

■ Case 2:

Comparison produced a non-equivalent point, an abort point, and an equivalent point.
Status = 48 (110000 in binary). Bits 4 and 5 are set to flag the abort and non-equivalent
points.

■ Case 3:

Comparison produced all non-equivalent points.
Status = 18 (010010 in binary). Bits 1 and 4 are set to show two conditions: During this
session, Conformal found no equivalent points and the comparison produced non-
equivalent points.
November 2019 219 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Debugging
November 2019 220 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
9
Resolving Aborts

■ Overview on page 222

■ Avoiding Aborts on page 222

❑ RTL Guidelines

❑ MDP Flow

❑ RTL Compiler Flow

■ Resolving Aborts on page 226

❑ Hierarchical Comparison on page 226

❑ Analyzing Abort Points on page 226

❑ Multithreading on page 227

❑ Partitioning on page 227

❑ Isolating Abort Modules on page 228

■ Dofile Template Scripts on page 230

❑ Hierarchical Compare with MDP Flow on page 230

❑ Hierarchical Compare with MDP and Multithreading on page 230
November 2019 221 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Resolving Aborts
Overview

Aborts are compare points that have not been conclusively compared. By the time aborts are
reported, the Conformal software has applied multiple algorithms without a deterministic
result. Aborts can have several causes including don’t cares, large cones, and large numbers
of inputs. Cones with these attributes will result in increased runtime. To deal with extremely
long runtimes, developers have limited the amount of time which the tool can use on a specific
compare point. When the Conformal software exceeds this limit, the compare point will be
reported as an abort. By setting a time limit for each compare point, the Conformal software
avoids the appearance that it is locked up when it is still processing the compare point.

Avoiding Aborts

The best method for handling aborts is to avoid them in the first place. This implies the use
of equivalency checker friendly coding practices and modularization of large cones of logic.
This section offers recommendations on how to avoid aborts.

RTL Guidelines

Coding can have a huge impact on the outcome of a comparison. Don’t cares can add extra
inputs to the cone of logic, doubling the number of vectors for verification with every ’don’t
care’. Resource sharing can merge multiple operators and require the comparison of a huge
cone of logic. Using ungroup in synthesis can create larger blocks to work on. The following
sections identify issues in RTL and synthesis that can cause aborts, with recommendations
on how to handle them.

Hierarchy

Hierarchy creates boundaries for the Conformal software to work with. Creating boundaries
around datapath operators can help simplify the verification task. Placing difficult arithmetic
operators in modules isolates difficult comparisons. By simplifying the verification task,
comparisons will take less time and aborts will be reduced. Do not write too large a Verilog
module or VHDL entity. Attempt to separate the structural code from the behavioral.

Synthesis

Synthesis tools can do special optimizations to achieve timing and area goals. Some of these
optimizations cause problems for equivalency checking. These include ungrouping, inversion
pushing, resource sharing, name changes, and other boundary optimizations.
November 2019 222 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Resolving Aborts
If possible, avoid ungrouping and inversion pushing. These methods complicate the
verification task and most often do not provide much improvement in quality of results (QoR).
If you plan to use advanced optimization methods, set up your flow to utilize the Module-
Based Datapath (MDP) Flow (see MDP Flow on page 225).

Operator Optimization

Designers often cluster groups of mathematical operators into a single line. This is a fast and
easy coding style.; however, this allows the synthesis engine to merge and combine operators
with no distinguishing factors. This results in huge cones of logic and aborts.

Adding parentheses guides the synthesis tool to group the operators so they can be
distinguished. Assign statements also increase the likelihood of equivalency checking
success. For example:

assign pmo = (((x * y) & mask) + offset);

By breaking the original lengthy assign statement into multiple statements, the logic cones
are shorter and operator grouping is more easily identifiable. For example:

assign p = (x * y);
assign pm = (p & mask);
assign pmo = (pm + offset);

Golden Revised

Golden Revised
November 2019 223 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Resolving Aborts
X-Sources and Don’t Cares

Avoid using ’X’ or Don’t care in your RTL code. Setting default values to X creates ’X’ sources
and decrease the chance of success. You will need to find the ’X’ sources in the RTL and
modify the code to eliminate them.

Before writing the RTL code, review rule checks reported by the Conformal software that
indicates potential ‘X’ sources in the code. The following shows examples of how these rule
check messages are reported:

■ x_assignment

In the following example, the design assigns a 1'bx value to output o. See line 6 (in
bold).
module test(o,i);
output o;
reg o;
input i;
always
o = 1'bx;
endmodule
// Warning: (RTL6.1) X created due to the assignment of value X (occurrence:1)
directory: x_assignment/

■ range_overflow

The following example uses an index where its right hand side might be out of range. See
line 10 (in bold):
module test (clk, idx, in0, out0);
input clk;
input [3:0] idx;
input [3:0] in0;
output out0;
reg out0;

always @ (posedge clk)
beginout0 <= in0[idx];
end

endmodule
// Warning: (RTL7.3) Array index in RHS might be out of range (occurrence:2)

The following example uses an index where its left hand side might be out of range. See
line 10 (in bold):
module test (clk, idx, in0, out0);
input clk;
input [3:0] idx;
input in0;
output [3:0] out0;
reg [3:0] out0;

always @ (posedge clk)
begin

out0[idx] <= in0;
end

endmodule
// Warning: (RTL7.4) Array index in LHS might be out of range (occurrence:2)
directory: range_overflow/
November 2019 224 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Resolving Aborts
MDP Flow

Module-Based Datapath (MDP) analysis performs datapath analysis at a module level and
can be used to resolve aborts. MDP analysis is performed in addition to and prior to the
regular operator level analysis. The goal of this analysis is to improve the quality of the
operator-level analysis. For MDP analysis to be successful, the synthetic datapath module
must be preserved in the netlist. Therefore, ungrouping and boundary optimization must be
disabled during synthesis.

MDP analysis generates an intermediate netlist in DC using the mdp.tcl script, included in
the Conformal software. Providing an intermediate netlist reduces the amount of difference
between the compared designs, thus simplifying the effort level for Conformal and handles
most aborts. This automatically creates an intermediate netlist and a resource file for
advanced datapath analysis.

For more information, see Module-Based Datapath Analysis on page 255.

RTL Compiler Flow

The RTL Compiler recommended synthesis flow is detailed in the “Interfacing with Conformal
Logical Equivalence Checker” chapter of the Interfacing between RTL Compiler and
Conformal User Guide (this document is available within the RTL Compiler
document set).

However, the recommended flow in this chapter does not caution against setting the
synthesis effort level to high when running synthesis. In avoiding aborts, Cadence
recommends keeping the effort levels at their default levels. Using high synthesis efforts uses
more aggressive optimizations and architecture selections that might not be supported by
Conformal’s datapath analysis.

The following is the recommended flow modified with this effort level caution:

read_hdl ...
elaborate ...
read_sdc ...
synthesize -to_generic
//Do not set -effort high. Use the default effort level

synthesize -to_mapped
//Do not set -effort high. Use the default effort level

write_hdl -lec > first_mapped.v
write_do_lec -revised first_mapped.v
//ungroup in any way)
//no more datapath architecture change)
synthesize -incremental (as many times as you wish)
November 2019 225 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Resolving Aborts
write_hdl > final.v
write_do_lec -revised first_mapped.v -logfile rtl2firstmap.log > rtl2firstmap.do
write_do_lec -Golden first_mapped.v -revised final.v \

-logfile first2finalmap.log > first2finalmap.do
exit

Resolving Aborts

Assuming all the precautions were taken as detailed in Avoiding Aborts on page 222, if aborts
are reported, you should resolve them quickly. The steps for resolution depend on the cause
of the abort and other factors with the design. This section describes some advanced
techniques on how to resolve aborts.

Hierarchical Comparison

Running hierarchical comparison provides a convenient method for handling aborts. To run
hierarchical comparison, run the WRITE HIER_COMPARE DOFILE command to write out a
dofile that compares the design module by module. This dofile compares modules separately
or in groups, depending on tool settings. After each module or module group comparison,
results are recorded, the module is blackboxed, and the next module is processed. This
process continues until all modules are processed.

For more information, see Chapter 10, “Running Hierarchical Comparison.”

Analyzing Abort Points

After comparison, run the ANALYZE ABORT command to automatically recommend steps to
resolve the abort points in your design. This command can also perform the
recommendations and recompare the design, which might automatically solve the aborts
without any further input.

Automatic Comparison Example

LEC> compare

==
Compared points PO DFF Total
--
Equivalent 196 577 773
--
Abort 0 23 23
November 2019 226 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#analyzeAbort
../Conformal_Ref/LEC_Ref_commands.html#writehiercomparedofile

Conformal Equivalence Checking User Guide
Resolving Aborts
==

LEC> analyze abort -compare

...
==
Compared points PO DFF Total
--
Equivalent 196 600 796
==

Multithreading

Parallel comparison is best suited for large gate-to-gate comparisons, where the comparison
can be distributed to multiple comparison threads. To possibly resolve more abort points and
reduce the time spent on RTL-to-gate comparisons, the parallel analyze abort feature might
be more effective (see Analyzing Abort Points on page 226).

You can only run multithreaded comparison with the COMPARE command’s -abort_stop
option to stop the comparison after finding the specified number of abort points.

For more information on multithreading, see Multithreading Process on page 277.

Partitioning

Partitioning can be used to help break down large cones of logic that can result in aborts. You
can do this with the ADD PARTITION POINTS command (see Adding Partition Points on
page 284 for more information)

If manually adding partition points is too difficult, the Conformal software can add functional
partition points on the abort points based on the number of key points for a partition. In the
following example, the software selects four common key points from the abort logic cones
as a partition, then performs 16 comparisons for each bit combination (2n4=16):

...
add compare point -all
compare
usage
run partition_compare -number 4 -verbose
usage
November 2019 227 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#addPtnPoints

Conformal Equivalence Checking User Guide
Resolving Aborts
Isolating Abort Modules

Comparison may report aborts that may be due to low quality MDP analysis. However, from
the comparison report, it is not easily known if the aborts are coming from a particular DP_OP
module that had low quality analysis results. By using '-isolate_abort_module' option
with the 'analyze datapath -module -resourcefile <file>' command, during
MDP analysis, any low quality DP_OP module analysis that aborts will be isolated. This
means that the DP_OP module is abstracted into the RTL and the synthesis netlist has been
simplified to allow LEC to compare the RTL with the simplified synthesis netlist. If LEC
comparison results are now EQ, then LEC will report the isolated DP_OP module. This
represents that all the initial aborts occurred within this DP_OP module. By isolating this
DP_OP module, LEC will able to compare successfully the rest of the logic.

Further investigation to resolve the isolated DP_OP module is necessary, but at least the root
cause of the initial aborts are known. If there are additional abort points reported along with
the aborted DP_OP module, this means that those aborts occur outside the DP_OP module
boundary. Usually, continuing with multithreaded abort analysis will resolve these remaining
aborts.

When using this option:

■ LEC will automatically identify and isolate the aborted DP_OP modules. It will report the
abort DP_OP module beneath the comparison results.

■ Any isolated aborted DP_OP modules that were reported during a hierarchical module
comparison will all be reported again at the end of the hierarchical comparison, when the
final results are reported.

■ This option is only used during MDP analysis with a resource file.

■ Any reported isolated DP_OP modules must still be investigated. It does not mean the
LEC run is completely EQ.

Note: Alternatively, you can specify the module to be isolated with the SET DATAPATH
OPTION command’s -isolate_abort_module option.

The following shows the results of running ANALYZE DATAPATH without isolating the abort
modules.

// Command: analyze datapath -module -verbose -resourcefile resourcefile.rpt
// Note: add_5822_DP_OP_308_4437_42 : quality evaluated 100% success
// Note: add_5821_DP_OP_306_4437_41 : quality evaluated 100% success
// Note: add_1055_159_DP_OP_311_2879_8 : quality evaluated 99% success
// Note: add_5823_DP_OP_310_4437_43 : quality evaluated 100% success
// Note: add_5820_DP_OP_304_4437_40 : quality evaluated 100% success
// Note: add_9399_S2_DP_OP_314_2331_11 : quality evaluated 38% success
November 2019 228 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Resolving Aborts
...
// Command: compare
==
Compared points PO Total
--
Equivalent 64 64
--
Abort 3 3
===

The following shows the results of running ANALYZE DATAPATH with isolating the abort
modules.

// Command: analyze datapath -module -verbose -resourcefile resourcefile.rpt \
-isolate_abort_module

// Note: add_5822_DP_OP_308_4437_42 : quality evaluated 100% success
// Note: add_5821_DP_OP_306_4437_41 : quality evaluated 100% success
// Note: add_1055_159_DP_OP_311_2879_8 : quality evaluated 99% success
// Note: add_5823_DP_OP_310_4437_43 : quality evaluated 100% success
// Note: add_5820_DP_OP_304_4437_40 : quality evaluated 100% success
// Note: add_9399_S2_DP_OP_314_2331_11 : quality evaluated 38% success
// Warning: add_9399_S2_DP_OP_314_2331_11 is isolated as an aborted instance.

...
// Command: compare
==
Compared points PO Total
--
Equivalent 67 67
==
Compared results of isolated instances in Revised design (top)
==
Status Instance (Module)
--
Abort i5/add_9399_S2_DP_OP_314_2331_11

(NV_GR_PE_STRI_core_add_9399_S2_DP_OP_314_2331_0)
==
November 2019 229 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Resolving Aborts
Dofile Template Scripts

Hierarchical Compare with MDP Flow
/// hier compare
read design -Golden ...
read design -revised ...
usage
report design data
report black box
uniquify -all -nolibrary
<constraints>
write hier dofile <hier.do> -replace -usage -constraint -noexact -run_hier \

-prepend_string "report design data; analyze setup -verbose; usage; \
analyze datapath -module -resourcefile <file> -verbose; usage; \
analyze datapath -verbose; usage"

usage
run hier <hier.do> -analyze_abort
usage

Hierarchical Compare with MDP and Multithreading
/// hier compare
read design -Golden ...
read design -revised ...
usage
report design data
report black box
uniquify -all -nolibrary
<constraints>
write hier dofile <hier.do> -replace -usage -constraint -noexact -run_hier \

-prepend_string "report design data; analyze setup -verbose; usage; \
analyze datapath -module -resourcefile <file> -verbose; usage; \
analyze datapath -verbose; usage"

usage
set parallel option -threads 4
run hier <hier.do> -analyze_abort
usage
November 2019 230 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
10
Running Hierarchical Comparison

■ Comparing Designs at the Module Level on page 232

■ Running Dynamic Hierarchical Comparison on page 233

❑ Interrupting a Hierarchical Comparison. on page 234

■ Hierarchical Comparison Command Flow on page 234

❑ Read the Libraries and Designs on page 234

❑ Generate a Hierarchical Compare Dofile on page 235

❑ No Blackboxing on page 237

❑ Constraint Propagation on page 238

❑ Renaming Rules on page 239

❑ Hierarchical Compare Dofile Execution on page 240

■ Hierarchical Comparison for Abort Resolution on page 241

■ Hierarchical Module Comparison Window on page 242
November 2019 231 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Running Hierarchical Comparison
Comparing Designs at the Module Level

Hierarchical comparison is a method of comparing designs at the module level in a bottom-up
fashion. Comparison begins with the lowest-level modules, proceeds through higher-level
modules, and culminates when the Conformal software reaches the top-level module. The
efficiency of your comparison depends on the hierarchical similarity in the designs that the
the Conformal software is comparing; that is, the more similar the hierarchical structure of the
two designs, the faster the comparison.

The following figure and example demonstrate how a hierarchical comparison proceeds from
the lower-level modules to the top root module. The following figure illustrates the hierarchical
structures of a Golden and Revised design.

The following example lists the events that occur when the Conformal software compares the
two designs. Refer to the figure above as you review this example.

1. Compares U1 Module:

a. Sets root module to U1 (Both designs)

b. Compares U1

c. Blackboxes module U1 (Both designs)

2. Compares U2 Module:

TOP

U3

U2U1

U4

YX

Golden

TOP

U3

U2U1

U4

Z

Revised
November 2019 232 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Running Hierarchical Comparison
a. Sets root module to U2 (Both designs)

b. Compares U2

c. Blackboxes module U2 (Both designs)

3. Compares U3 Module:

a. Sets root module to U3 (Both designs)

b. Compares U3

c. Blackboxes module U3 (Both designs)

Modules X and Y in the Golden design do not have corresponding modules in the Revised
design. Similarly, module Z in the Revised design does not have a corresponding module in
the Golden design.

In this case, the Conformal software finds correspondence one level higher, at module U4.
The submodules of U4 in both the Golden and Revised designs are flattened during the
comparison at the U4 module level.

1. Compares U4 Module:

a. Sets root module to U4 (Both designs)

b. Compares U4

c. Blackboxes module U4 (Both designs)

2. Compares at TOP Module:

a. Sets root module to TOP (Both designs)

b. Compares TOP

Running Dynamic Hierarchical Comparison

Note: This feature requires XL license.

After generating a dofile, you can dynamically run hierarchical comparison. The following are
the major features of dynamic hierarchical comparison:

■ Dynamic Module Comparison

Automatically flattens the selective modules to propagate the design error (if any) to the
top module. The flattened modules are merged to the next level in the hierarchy and
November 2019 233 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Running Hierarchical Comparison
automatically compared at that level. This feature dynamically determines the modules
that must not be blackboxed for successful hierarchical comparisons.

■ Dynamic Module Selection

Gives you the ability to execute multiple hierarchical runs without regenerating the dofile.
You can generate the dofile only once for the top-level module, and the subsequent
hierarchical comparisons for any specific submodules can be carried out using different
flow-control options. In addition, you can specifically target the aborted or retimed
modules without having to modify the hierarchical compare script or dofile.

■ Demand Driven Module Comparison

Gives you the ability to perform demand driven module comparison, such that only the
un-compared modules will be compared in successive hierarchical runs. In addition, you
can interrupt and continue hierarchical comparison any time.

To run dynamic hierarchical comparison, use the RUN HIER_COMPARE <dofile>
command, where <dofile> is the dofile generated with the WRITE HIER_COMPARE
DOFILE command.

Interrupting a Hierarchical Comparison.

To interrupt a hierarchical comparison, type Ctrl-c. To continue the hierarchical
comparison, run the RUN HIER_COMPARE command.

Hierarchical Comparison Command Flow

This command flow applies to both non-graphical and graphical modes. See Hierarchical
Module Comparison Window on page 242 for more information on how to run a hierarchical
comparison using the various command menus and windows.

Read the Libraries and Designs

As with any other comparison, you must first specify the designs and the corresponding
libraries. You will read in designs and libraries in the Setup system mode.
November 2019 234 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#runHierCompare
../Conformal_Ref/LEC_Ref_commands.html#writehiercomparedofile
../Conformal_Ref/LEC_Ref_commands.html#writehiercomparedofile

Conformal Equivalence Checking User Guide
Running Hierarchical Comparison
Generate a Hierarchical Compare Dofile

After successfully reading in the libraries and designs, run the WRITE HIER_COMPARE
DOFILE command. This command generates a dofile script that compares two hierarchical
designs.

For the purposes of a hierarchical comparison, you can use a dofile to read the library and
designs, and write the hierarchical compare dofile script to a file.

The following sample dofile writes the hierarchical compare dofile script into a file named
hier_compare.do:

read library lib.v -both
read design Golden.v -verilog -Golden
read design revised.v -verilog -revised
write hier_compare dofile hier_compare.do

Tip

You can also use the Hierarchical Module Comparison window. See Writing the
Hierarchical Compare Dofile to a File on page 244.

Example hier_compare.do Dofile

Using the procedure outlined above, the Conformal software generates a hierarchical dofile
script named hier_compare.do.

Note: In the following script, the hierarchical comparison first pairs corresponding modules
from the two designs, then compares each of these pairs one at a time in a bottom-up fashion.

set system mode setup
//
// Comparing module ‘U1’
//
set root module U1 -Golden
set root module U1 -revised
report black box -NOHidden
set system mode lec
add compare point -all
compare
save hier_compare result
set system mode setup
add black box U1 -module -Golden
add black box U1 -module -revised
//
// Comparing module ‘U2’
//
set root module U2 -Golden
set root module U2 -revised
report black box -NOHidden
set system mode lec
November 2019 235 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#writehiercomparedofile
../Conformal_Ref/LEC_Ref_commands.html#writehiercomparedofile

Conformal Equivalence Checking User Guide
Running Hierarchical Comparison
add compare point -all
compare
save hier_compare result
set system mode setup
add black box U2 -module -Golden
add black box U2 -module -revised
//
// Comparing module ‘U3’
//
set root module U3 -Golden
set root module U3 -revised
report black box -NOHidden
set system mode lec
add compare point -all
compare
save hier_compare result
set system mode setup
//
// Comparing module ‘U4’
//
set root module U4 -Golden
set root module U4 -revised
report black box -NOHidden
set system mode lec
add compare point -all
compare
save hier_compare result
set system mode setup
add black box U4 -module -Golden
add black box U4 -module -revised
//
// Comparing module ‘TOP’
//
set root module TOP -Golden
set root module TOP -revised
report black box -NOHidden
set system mode lec
add compare point -all
compare
save hier_compare result
set system mode setup
add black box TOP -module -Golden
add black box TOP -module -revised
report hier_compare result
report hier_compare result -nonequivalent
report hier_compare result -Abort
report hier_compare result -Uncompared
November 2019 236 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Running Hierarchical Comparison
No Blackboxing

For some designs, you might want to skip comparison at a certain module hierarchy level,
even though the Conformal software can successfully pair the corresponding modules. The
following diagram illustrates one such situation. An explanation follows.

In this example, a portion of the logic (labeled “A”) of module U2 in the Golden design (shown
on the left) was optimized to produce the Revised design. This optimization occurred across
hierarchical boundaries. As a result, logic block “A” is a part of module U1 in the Revised
design.

If the Conformal software compares at the U2 level, it detects differences. Similarly, if U2 is
blackboxed and the Conformal software compares at the U1 level, it detects differences.
However, if every element under the U1 modules is flattened before comparison, the
Conformal software reports that the U1 modules are equivalent.

In conditions such as the one described above, use the ADD NOBLACK BOX command.

Note: You must use the ADD NOBLACK BOX command before the WRITE HIER_COMPARE
DOFILE command, but after the Conformal software reads the designs.

This section illustrates a hierarchical comparison on a design that requires the ADD NOBLACK
BOX command. Using the information above, your dofile should appear as shown in the
following example. Note the proper placement of the ADD NOBLACK BOX command.
Additionally, with the -replace option, the Conformal software replaces the original
hier_compare.do file.

read library lib.v -both
read design Golden.v -verilog -Golden
read design revised.v -verilog -revised
add noblack box U2 -both
write hier_compare dofile hier_compare.do -replace

Golden Design Revised Design

U1U1

U2 U2

AA
November 2019 237 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#addNoBBox

Conformal Equivalence Checking User Guide
Running Hierarchical Comparison
Constraint Propagation

In a flat comparison, the constraint value on scan_en is automatically propagated throughout
the design. As a result, scan circuitry is correctly isolated from comparison regardless of its
placement in the hierarchy.

Unlike a flat comparison, a hierarchical comparison occurs at the submodule level. Therefore,
you must include all information at the module level.

In the following example, the Conformal software does a hierarchical comparison on two
designs, one without scan and one with scan inserted. The following figure shows a design
with scan inserted:

Because the scan circuitry only exists in the Revised design, the comparison is only relevant
for the functional portion of the designs. To place the scan design (Revised) in functional
mode, you must constrain the scan_en pin to logic-0.

In a hierarchical comparison you must use the ADD PIN CONSTRAINT command to
propagate this constraint. Thus, the constraint is available at lower module levels. The
information needed in this case is:

scan_en_0 = scan_en_1 = 0;

Adding a Pin Constraint

Use the following command:

scan_en

TOP

U1

scan_en_0

scan_en_1
November 2019 238 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Running Hierarchical Comparison
add pin constraints 0 scan_en -revised

Storing Constraint Information

The Conformal software stores constraint information in the hierarchical compare dofile.
Generate the dofile by including the -constraint option in the WRITE HIER_COMPARE
DOFILE command as follows:

write hier_compare dofile hier_compare.do-constraint -replace
The resulting hierarchical compare dofile is similar to the one that was shown in Example
hier_compare.do Dofile on page 235. However, constraint information has been added:

…
//
// Comparing module ‘U1’
//
set root module U1 -Golden
set root module U1 -revised
add pin constraint 0 scan_en_0 -revised
add pin equivalences scan_en_0 scan_en_1 -revised
report black box -NOHidden
set system mode lec
add compare point -all
compare
save hier_compare result
set system mode setup
add black box U1 -module -both
…

In this section you found that the hierarchical comparison required a pin constraint. Using the
information above, your modified dofile should appear as follows:

read library lib.v -both
read design Golden.v -verilog -Golden
read design revised.v -verilog -revised
add pin constraint 0 scan_en -revised
write hier_compare dofile hier_compare.do -constraint -replace

Renaming Rules

When running the WRITE HIER_COMPARE DOFILE command, you might encounter warning
messages related to name mismatches between the Golden and Revised designs. When you
encounter this type of warning message, apply module renaming rules to resolve the
mismatches between the Golden and Revised designs.

In the course of generating a hierarchical compare dofile, the Conformal software attempts to
pair modules from the two designs based on the exact spelling of module names. However,
when synthesis and the backend flow alter module names in the Revised design, the
November 2019 239 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Running Hierarchical Comparison
Conformal software is unable to match some module pairs. For example, a module named
cpu in the Golden design is renamed to cpu_0 and cpu_1 in the Revised design (often, this
renaming is a result of the UNIQUIFY command in synthesis).

To map these modules, define a renaming rule as follows:

add renaming rule hier_rule1 "%s_%d$" "@1" -module -revised

Hierarchical Compare Dofile Execution

This section describes how to perform dynamic and static hierarchical comparison.

Dynamic Comparison

When a hierarchical compare dofile is successfully generated, you can perform dynamic
comparison as follows:

run hier_compare hier_compare.do

If all of the situations presented in this chapter are applied, the final version of the dofile is:

read library lib.v -both
read design Golden.v -verilog -Golden
read design revised.v -verilog -revised
add pin constraint 0 scan_en -revised
add renaming rule hier_rule1 "%s_%d$" "@1" -module -revised
write hier_compare dofile hier_compare.do -constraint -replace
run hier_compare hier_compare.do

Static Comparison

When a hierarchical compare dofile is successfully generated, you can perform static
comparison as follows:

dofile hier_compare.do
If all of the situations presented in this chapter are applied, the final version of the dofile is:

read library lib.v -both
read design Golden.v -verilog -Golden
read design revised.v -verilog -revised
add pin constraint 0 scan_en -revised
add renaming rule hier_rule1 "%s_%d$" "@1" -module -revised
write hier_compare dofile hier_compare.do -constraint -replace
dofile hier_compare.do
November 2019 240 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Running Hierarchical Comparison
Hierarchical Comparison for Abort Resolution

Hierarchical comparison compares submodules in a bottom-up fashion. Each submodule
comparison has lower complexity with respect to the complexity when comparing the entire
design. Thus, this hierarchical comparison methodology is very helpful in resolving aborts. To
minimize the complexity of each submodule comparison, you can maximize the number of
submodules written out in a hierarchical dofile. Using the UNIQUIFY command before
performing hierarchical comparison, you can remedy the incompatible instantiation warnings
during hierarchical script generation and therefore maximize the number of modules included
in the hierarchical dofile.

The following example shows how the UNIQUIFY command works with hierarchical
comparison:

...
uniquify -all
write hier_compare dofile hier.do
run hier_compare hier.do

In the above command example, running the UNIQUIFY -all command makes all the
hierarchical modules unique in the design. Then running the WRITE HIER_COMPARE
DOFILE command creates a hierarchical dofile script named hier.do containing the
compare script for the submodules and the root module. And finally, hierarchical comparison
is executed using the RUN HIER_COMPARE command. Using UNIQUIFY -all allows you
to maximize the number of submodules written out in the hierarchical dofile hier.do.
November 2019 241 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Running Hierarchical Comparison
Hierarchical Module Comparison Window

Use the Hierarchical Module Comparison window to run a module-by-module, bottom-up,
hierarchical comparison on two hierarchical designs.

Before using the Hierarchical Module Comparison window, modules must be paired through
mapping. If modules are not paired, use the ADD RENAMING RULE command with the
-module switch to remedy this situation. See Renaming Rules on page 239 for more
information about renaming. After you have paired all modules, click the Remap button
located on the menu bar in the main window.

✟ Choose Tools – Hierarchical Compare.

The Hierarchical Module Comparison window includes two columns in the Compare Status
Display. The left column is for the Golden design, and the right column is for the Revised
design.
November 2019 242 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Running Hierarchical Comparison
For the Hierarchical Module Comparison window, see the following for more information:

■ Hierarchical Module Comparison Fields and Options on page 243

■ Setting General Options on page 244

■ Reporting CPU Use on page 244

■ Working with Hierarchical Compare Dofiles on page 244

■ Finding Module Names on page 245

■ Deselecting the Dual Scroll Option on page 245

■ Viewing a Module’s Compare Status on page 245

■ Specifying Blackbox Modules on page 245

■ Deleting Previously Added Blackbox Modules on page 245

■ Ignoring Modules during Comparison on page 246

■ Deleting No-Blackbox Status on page 246

■ Running a Hierarchical Comparison on page 246

■ Comparing Lower-Level Modules on page 246

■ Highlighting Non-Equivalent Modules on page 247

■ Deleting and Resetting Hierarchical Compare Results on page 247

■ Specifying the Root Module on page 247

Hierarchical Module Comparison Fields and Options

Compare Options Specifies your general hierarchical module comparison
options. For more information, see Setting General
Options on page 244.

Compare Command File Area where you can write the hierarchical compare
command file (dofile) and edit and execute it from this
section. Also, search the Compare Status section for
module names using the Find icon or press Ctrl-f.

Compare Status (Display) This display area shows the module pairings. Scroll up or
down to see all of the modules. Use the + and - icons to
expand and compress the hierarchical display.
November 2019 243 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Running Hierarchical Comparison
Setting General Options

Before Conformal can begin the hierarchical comparison, you must take several steps to
ensure proper comparison. Follow the procedures for setting general hierarchical compare
options.

1. Click Exact Pin Match to specify whether Conformal must compare modules that have
the same number of pins. The default is to compare only modules that have the same
number of pins.

2. Click Constraint to specify whether Conformal must propagate constraints and
equivalences to lower-level modules for comparison. By default, Conformal does not
propagate the constraints and equivalences.

3. Click Black Box to specify whether Conformal must blackbox the module after
comparison. By default, Conformal blackboxes each module after comparison.

4. Change the number of instances in the Compare module if it has >= field to specify
the minimum number of instances a module must have in order for Conformal to compare
it (threshold). The default is 50 instances in a module.

If a module name in the module display has (Small module) noted next to it, Conformal
does not compare it hierarchically. To compare these small modules, change the
threshold number to a smaller number and left-click Remap located on the toolbar at the
top of the window.

Reporting CPU Use

To display the CPU time and memory use, click Usage. By default, Usage is off.

Working with Hierarchical Compare Dofiles

Writing the Hierarchical Compare Dofile to a File

After you have set the general options, fine-tune your comparison options by typing a dofile
name in the Compare command file field and click the Write button.

Editing the Hierarchical Compare Dofile

To open the LEC File Editing window to edit the Hierarchical Compare Dofile, click Edit in the
Compare command file section.
November 2019 244 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Running Hierarchical Comparison
Running the Hierarchical Compare Dofile

To run a Hierarchical Compare Dofile, click Run in the Compare command file section.

Finding Module Names

1. Click the Find icon located on the right side of the Compare Command File section, or
press Ctrl-f to open the Find: Hierarchical Module window.

2. Type any string or partial string of a module name in the Find field.

3. Click the Find Forward or Find Backward check box to specify the direction you want
to proceed in the list.

4. Click the Case Sensitive check box, if applicable.

5. Click the Find button or press Ctrl-f to search for the name.

Deselecting the Dual Scroll Option

Use the Dual Scroll check box located in the Compare command file section to choose
whether to scroll the windows individually or in tandem (dual). By default, the Dual Scroll
button is selected.

Viewing a Module’s Compare Status

To view a module’s compare status, click a module to display the compare status in the
Compared status field directly above the module lists.

Specifying Blackbox Modules

To specify modules that must be defined as blackboxes, click a module in the Compare
Status Display to select it, then right-click to open the pop-up menu and choose Add Black
Box. A blackbox symbol appears next to the module name.

Deleting Previously Added Blackbox Modules

To delete specified blackboxes from the design, click the module in the Compare Status
Display to select it, then right-click to open the pop-up menu and choose Delete Black Box
from the pop-up menu. Conformal removes the blackbox symbol that was next to the module
name.
November 2019 245 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Running Hierarchical Comparison
Ignoring Modules during Comparison

You can specify modules that will be ignored for hierarchical comparison because of
cross-hierarchy optimization, click the module in the Compare Status Display to select it.,
then right-click to open the pop-up menu and choose Add No-Black Box from the pop-up
menu. A no-blackbox symbol appears next to the module name.

Deleting No-Blackbox Status

To delete the no-blackbox symbols you added in the previous procedure, click the module in
the Compare Status Display to select it, then right-click to open the pop-up menu and
choose Delete No-Black Box. Conformal removes the no-blackbox symbol next to the
module name.

Running a Hierarchical Comparison

After you complete the hierarchical comparison setup, run a hierarchical comparison on the
entire hierarchy with one of the following methods:.

■ Interactive Comparison

When you click Interactive Compare, Conformal incorporates the compare options and
blackbox and no-blackbox settings you specified with the previous procedures.

■ Batch Comparison

When you click Batch Compare, Conformal uses the hierarchical dofile that you can
also write to a file and edit. Click Batch Compare (located on the menu bar at the top
of the screen), or click Run in the Compare command file section.

Comparing Lower-Level Modules

1. Click the module in the module display list to select it.

2. Right-click and choose Compare Sub-hierarchy from the pop-up menu.

After Conformal completes the hierarchical comparison, the module list displays a green
circle preceding each “equivalent” module pair and a red circle preceding each “different”
module pair.
November 2019 246 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Running Hierarchical Comparison
Highlighting Non-Equivalent Modules

To highlight each non-equivalent module in the module list, click any module in the module
list display to select it, then right-click to open the pop-up menu and choose Next Module
with Error. The first non-equivalent module in the list is highlighted.

Deleting and Resetting Hierarchical Compare Results

To delete the hierarchical compare results and restart at any time, click Reset Result
(located on the menu bar near the top of the window).

Specifying the Root Module

To set any lower-level module as the root module for batch comparison, click the module in
the display list to select it, then right-click to open the pop-up menu and choose Set Both
Modules as Root. The specified pair of modules become the root modules for the Golden
and Revised designs.
November 2019 247 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Running Hierarchical Comparison
November 2019 248 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
11
Advanced Capabilities

■ Overview on page 251

■ Supported Datapath Structures and Optimizations on page 252

❑ Multipliers on page 252

❑ Operator Merging on page 253

❑ Resource Sharing on page 254

❑ Sequential Merge Optimization on page 254

■ Module-Based Datapath Analysis on page 255

❑ Datapath Module Abstraction on page 255

❑ Datapath Module Abstraction Reporting and Diagnosis on page 256

❑ Handling Aborts in Datapath Module Abstraction on page 257

❑ DC Synthesis Flow on page 260

❑ Sample DC Script on page 262

❑ MDP Effort Levels on page 263

❑ Dofile Example for Intermediate Netlists on page 263

❑ Dofile Example for Intermediate to Final Netlist on page 264

❑ Extracting Testcases for Datapath Modules on page 264

❑ Recreating Testcases for Datapath Modules on page 265

❑ Isolating Aborted Datapath Modules on page 265

■ Word-Level Datapath Analysis on page 268

❑ Datapath Learning on page 268

❑ Reporting and Diagnosis of Datapath Analysis on page 268
November 2019 249 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Advanced Capabilities
■ Sequential Merge Analysis on page 270

■ Retiming on page 274

❑ Basic Pipeline Retiming on page 274

❑ Advanced Pipeline Retiming on page 275

❑ Pipeline Retiming on a List of Specified Registers on page 276

❑ Pipeline Backward Retiming on page 276

❑ Merging Equivalent Registers on page 276

❑ Retiming Diagnosis on page 277

❑ Flattened Retiming Analysis on page 277

■ Multithreading Process on page 277

❑ Multithreading Model on page 278

❑ Enabling Multithreaded Processing on page 278

❑ Setting Comparison Effort Levels on page 279

❑ Setting Comparison Options on page 279

❑ Number of Threads Recommendation on page 279

❑ Running Jobs on Server Farms on page 280

❑ Licensing Requirements on page 280

❑ Temporary Files and Directories on page 282

■ Multi-Threaded Functional Partitioning on page 284

■ Adding Partition Points on page 284

❑ Adding Partition Points for Comparison on page 285

❑ Name-based Physical Partitioning on page 286

❑ Comparison with Functional Partitioning on page 286

■ Analyzing Non-Equivalence on page 286

■ Analyzing Implication Values on page 288

■ Netlist Analysis on page 289

■ Sample Dofile on page 291
November 2019 250 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Advanced Capabilities
Overview

Many of today's designs for video, graphics, and DSP require complex datapath structures
with high performance. To satisfy those needs, major synthesis companies have developed
tools that aim directly for datapath modules. Using a traditional equivalence checking method
to verify such designs can often lead to abort points and excessive run times.

Conformal XL has features that can help address datapath-oriented designs.
November 2019 251 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Advanced Capabilities
Supported Datapath Structures and Optimizations

This section covers the Conformal XL-supported structures and optimizations.

Multipliers

Both Conformal L and Conformal XL support multipliers with standard architectures.
However, Conformal XL also supports multipliers implemented with dynamic structures.

Standard Architectures

Conformal supports multipliers implemented with known, standard architectures such as
CSA, RCA, NBW, WALL, and BKA.

Requirements

The multiplier module boundary must be kept and the product size must equal the combined
size of the inputs, that is:

Product [N+M-1:0] = In1[N-1:0] * In2[M-1:0]

Procedure

While in LEC mode, analyze the multiplier using the ANALYZE MULTIPLIER command. This
command requires the standard Conformal L licenses. Refer to the Conformal Equivalence
Checking Reference Manual for detailed descriptions of the ANALYZE MULTIPLIER
command and other related commands.

Multipliers with Dynamic Structures

Conformal XL supports multipliers that have been implemented with dynamic structures by
datapath synthesis tools from Synopsys Module Compiler and Cadence RTL Compiler.

Requirements

None
November 2019 252 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#analyzeMultiplier

Conformal Equivalence Checking User Guide
Advanced Capabilities
Procedure

While in LEC mode, analyze the datapath using the ANALYZE DATAPATH command. You
must have a Conformal XL license to use this command. Refer to the Conformal
Equivalence Checking Reference Manual for detailed descriptions of the ANALYZE
DATAPATH command and other related commands.

Operator Merging

Conformal XL supports datapath structures with operator merging, which is a method to
implement a combination of two or more arithmetic operators. In the following figure, for
example, an arithmetic expression Y = A * B + C is implemented with a multiplier and an
adder using a standard synthesis tool.

However, when the intermediate A*B result is not required, the datapath synthesis tool (such
as the partition_dp or transform_csa command from Design Compiler XL) can
implement one merged operator for the entire arithmetic expression, as show the following
figure:
November 2019 253 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#analyzeDatapath

Conformal Equivalence Checking User Guide
Advanced Capabilities
Procedure

While in LEC mode, use the ANALYZE DATAPATH option. You must have a Conformal XL
license to use this command. Refer to the Conformal Equivalence Checking Reference
Manual for detailed descriptions of the ANALYZE DATAPATH command and other related
commands.

Resource Sharing

The Conformal software can automatically solve long compare times or aborts caused by
resource sharing with the ANALYZE DATAPATH and SET DATAPATH OPTION commands’
-SHARE option, which applies the resource sharing technique on all multipliers with low
datapath analysis quality. Datapath analysis is performed on new resources created after
sharing.

Sequential Merge Optimization

Sequential merge handling typically reduces the number of sequential elements in the golden
design such that it matches the number of sequential elements in the revised netlist, which is
synthesized with sequential merge optimizations. With the Conformal XL SET ANALYZE
OPTION -AUTO command, Conformal can automatically perform this analysis.

See “Sequential Merge Analysis” on page 270 for more information.
November 2019 254 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#analyzeDatapath
../Conformal_Ref/LEC_Ref_commands.html#setDatapathOption

Conformal Equivalence Checking User Guide
Advanced Capabilities
Module-Based Datapath Analysis

■ Datapath Module Abstraction on page 255

■ Datapath Module Abstraction Reporting and Diagnosis on page 256

■ Handling Aborts in Datapath Module Abstraction on page 257

■ DC Synthesis Flow on page 260

■ Sample DC Script on page 262

■ MDP Effort Levels on page 263

■ Dofile Example for Intermediate Netlists on page 263

■ Dofile Example for Intermediate to Final Netlist on page 264

■ Extracting Testcases for Datapath Modules on page 264

■ Recreating Testcases for Datapath Modules on page 265

■ Isolating Aborted Datapath Modules on page 265

Module-Based Datapath (MDP) Analysis runs datapath analysis at a module level to help
improve the quality of the operator-level analysis in an effort to reduce the number of potential
abort points. This analysis is run in addition to and prior to the regular operator level analysis,
and only on synthetic modules containing datapath operators in the Revised design netlist.

Note: For MDP analysis to be successful, the synthetic datapath module must be preserved
in the netlist. Therefore, ungrouping and boundary optimization must be disabled during
synthesis.

Datapath Module Abstraction

Datapath analysis has two parts:

1. Datapath Module Abstraction on the revised netlist

2. Datapath Operator Learning on the Golden netlist

They are applied by using the following commands in the dofile:

ANALYZE DATAPATH -MODULE [-RESOURCEFILE <file>] -verbose
ANALYZE DATAPATH [-WORDLEVEL] -verbose

The first command (datapath abstraction on the revised netlist) can help to improve the quality
of second command (Datapath Operator Learning on the Golden netlist).
November 2019 255 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Advanced Capabilities
The second command (without -MODULE option) performs Datapath Operator Learning on
the Golden RTL design to make it structurally similar to the revised netlist. See “Datapath
Operator Learning” on page 258.

Datapath module abstraction on the revised netlist is applied by using the following command
the dofile:

ANALYZE DATAPATH -MODULE [-RESOURCEFILE <file>] -verbose

The first command (with -MODULE option) performs datapath abstraction on the revised
synthesis netlist. During synthesis, synthesis tools usually group several datapath operators
into a module. The first command replaces the module's gate-level netlist with the
corresponding RTL. As a result, the synthesis netlist is abstracted as RTL and it makes it
easier to perform datapath learning on the Golden netlist.

In order for LEC to apply datapath abstraction on the revised netlist, it needs to follow the
recommendations for the synthesis script. The generated netlist keeps the datapath module
boundary for datapath abstraction.

// Synthesis script for RC:
read_hdl
elaborate
synthesize -to_mapped
write_hdl -lec > first_mapped.v
write_do_lec -revised first_mapped.v
synthesize -incremental
write_hdl > final.v
write_do_lec -Golden first_mapped.v -revised final.v
//Synthesis script for DC:
read_hdl
set compile_report_dp true
set compile_ultra_ungroup_dw false
compile_ultra -no_autoungroup -no_boundary_optimization \

-no_seq_output_inversion
report_resource -hierarchy > resource.rpt
write -format verilog -hierarchy -output first_mapped.v
compile -incremental -map_effort high
write -format verilog -hierarchy -output final.v

Datapath Module Abstraction Reporting and Diagnosis

The following is an example of a datapath abstraction report generated by the ANALYZE
DATAPATH -MODULE command. The synthesis netlist is generated by RC and the instance
in the revised netlist has been analyzed in several iterations shown as pass 1 to 3. If the
instance has the high quality evaluated, it will make the datapath learning on the Golden
design easier.

// Command:
analyze datapath -module -verbose
// Analyzing modules in 'filename.v'
// Note: mod_csa_tree_231 : quality evaluated 100% success
November 2019 256 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Advanced Capabilities
// Note: mod_final_adder_234: quality evaluated 100% success
// Analyzing module instances (pass 1)
// Note: csa_tree_231 : quality evaluated 100% success
// Note: final_adder_234 : quality evaluated 100% success
// Analyzing module instances (pass 2)
// Note: final_adder_234 : quality evaluated 100% success
// Analyzing module instances (pass 3)
// Note: csa_tree_231 : quality evaluated 100% success

The following table outlines recommendations for resolving issues during the synthesis and
verification process to ensure datapath abstraction can be applied successfully.

Table 11-1 Resolving Datapath Abstraction Issues

Handling Aborts in Datapath Module Abstraction

If the analysis quality evaluated is between 30% to 39% in the command ANALYZE
DATAPATH -MODULE, it means that there are aborts while datapath abstraction is verifying
the module's gate-level netlist with the RTL modeling. LEC can isolate these aborted
datapath modules in the revised netlist by using the following command option.

ANALYZE DATAPATH -MODULE [-RESOURCEFILE <file>] -ISOLATE_ABORT_MODULE

This command abstracts the datapath modules from gate-level into RTL by assuming that
these two models are functionally equivalent. This feature has several advantages:

■ Accurately identifies the verification bottlenecks

■ Prevents module abort effects from propagating to the top-level modules. As a result, you
can verify remaining logics without being stuck at the aborted module.

■ Once the remaining logic is verified, you can focus on the isolated abort module at any
time by using more computing resources and algorithms with higher effort.

The following is an example of a report for the datapath abstraction with an abort module
isolated. One datapath module has been isolated during datapath abstraction, and the

Scenario Recommendation

Abstraction is not used prior to learning Check dofile

Lack of resource file Check synthesis script

Module cannot be found in the netlist Check synthesis script

Module has no RTL definition Check synthesis script

Module cannot be abstracted due to aborts Isolate abort module
November 2019 257 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Advanced Capabilities
comparison reports that the key points of the design are equivalent with the condition that one
module in the revised netlist has been aborted and isolated.

// Command: analyze datapath -module -isolate_abort_module
// Note: i5/add_3200_DP_OP : quality evaluated 38% success
// Warning: i5/add_3200_DP_OP is isolated as an aborted instance.
// Command: compare
==
Compared points PO Total
--
Equivalent 67 67
==
Compared results of isolated instances in Revised design (top)
==
Status Instance (Module)
--
Abort i5/add_3200_DP_OP

(mod_add_3200_DP_OP_0)
==

When there are aborts in datapath abstraction, you can also use the following command to
generate the test case and report to LEC supports.

REPORT TESTCASE -DATAPATH_MODULE -QUALITY 70 -file <filename>

Datapath Operator Learning

Datapath operator learning on the revised netlist is applied by using the following command
the dofile:

ANALYZE DATAPATH [-WORDLEVEL] -verbose

Datapath analysis in LEC has been enhanced for advanced adder tree clusters, complex
multiplier architectures (such as product-of-sum multipliers), and XOR trees.

Datapath learning, through the ANALYZE DATAPATH command, makes the Golden datapath
operators structurally similar to the revised netlist so that comparing the two designs is easier.

The -WORDLEVEL option applies additional analysis that handles advanced datapath
optimizations in the following areas:

■ Complex adder tree clustering: Supports clustering multiple adder trees that share
common sub-expressions, and whose input operand has least-significant-bit (LSB)
truncation.

■ Product-of-sum optimizations: Supports optimization of merging the cluster adder with
the multiplier.

■ Associative Law on multipliers: Supports reordering of the cascaded multipliers based
on associative law.

■ XOR tree optimizations: Supports optimization of reordering XOR tree.
November 2019 258 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Advanced Capabilities
■ Constant multipliers and adder trees optimizations: Supports adder tree optimizations
with input constraints.

You can use the -WORDLEVEL option with the SET DATAPATH OPTION and ANALYZE
DATAPATH commands.

The following is an example of the datapath learning report generated by the ANALYZE
DATAPATH -WORDLEVEL command:

// Command: analyze datapath -wordlevel -verbose
// Note: mult_12: quality evaluated 85% success
// Note: mult_18(pos): quality evaluated 90% success
// Note: add_602_2(clustered): quality evaluated 85% success

The command analyzes the Golden design's datapath operators and merges the cluster
adders with the product-of-sum operators.

When the quality of datapath learning is low, you can improve the quality of datapath learning
by using

■ Datapath abstraction on the revised netlist. See “Datapath Module Abstraction” on
page 255.

■ Increased datapath learning effort

■ The -WORDLEVEL option

Note: The datapath operators can only be learned once with the -WORDLEVEL option.
Thus, when you switch to this option, you have to relearn the datapath by changing the
dofile and running it from the beginning.

The following table outlines some recommended methods for resolving datapath aborts,
depending on the given scenario.

Table 11-2 Resolving Datapath Aborts

Scenario Recommendation

Datapath abstraction is not applied
in dofile

analyze datapath -module

Resource sharing is applied in
synthesis netlist

Functional partition

Don't care space exists Recode RTL to add CUT points

XOR tree is in RTL analyze datapath -wordlevel
November 2019 259 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Advanced Capabilities
DC Synthesis Flow

In MDP Analysis, there is one intermediate netlist between the RTL code and the final netlist
that divide the flow into two comparisons:

1. RTL to intermediate.

See Dofile Example for Intermediate Netlists on page 263.

2. Intermediate to final

See Dofile Example for Intermediate to Final Netlist on page 264.

This flow is applicable to both Design Compiler (DC) synthesis and RTL Compiler (RC)
synthesis; however, this section is dedicated to the DC synthesis flow.

The RC synthesis flow is more automated than the DC synthesis flow, where the intermediate
netlist and Conformal dofile are generated automatically with the write_hdl -lec and
write_do_lec RC commands. For more information, see the “Interfacing with Conformal
Equivalence Checker” chapter of the Interfacing Between RTL Compiler and Conformal
guide (this document is available within the RTL Compiler document set).

Product-of-sum is in RTL analyze datapath -wordlevel

Complex clustering adders are in
RTL

analyze datapath -wordlevel
November 2019 260 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Advanced Capabilities
The following shows the DC synthesis flow:

The following shows the steps with examples:

1. Source the mdp.tcl script.
source mdp.tcl

where mdp.tcl is located at:
<release_path>/share/cfm/lec/scripts/mdp.tcl

For more information on the DC commands that are included in the mdp.tcl script, see
DC Commands on page 262.

2. Run the compile_ultra_mdp command with the effort level (0, 1, 2, 3, or 4) and the
design module, which is the name of the top module that is synthesized.
compile_ultra_mdp 4 top1

Note: Effort level 0 is a pass-through effort where there are no option changes to the
synthesis script.

For more information on the effort levels, see MDP Effort Levels on page 263.

3. Run the compile_ultra command with the -incremental option to allow
incremental compilation.
compile_ultra -incremental

Note: If this option is not used after compile_ultra_mdp, new mapping or
implementation selection can be done to change original results

Generate Resource Report

Generate Intermediate Netlist

compile_ultra_mdp

RTL

LEC
analyze datapath \

-module -resourcefile

analyze datapath -verbose

Incremental Compile

Generate Final Netlist

LEC Gate-to-Gate Compare
November 2019 261 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Advanced Capabilities
4. Continue running original DC synthesis script commands.

5. Run report_qor to get final QoR results.
report_qor

6. Exit the software to get final results.
quit

Sample DC Script
read_vhdl {../src/address.vhd ../src/cfft1024X12.vhd ../src/cfft.vhd \

../src/mulfactor.vhd ../src/p2r_cordic.vh d ../src/sc_corproc.vhd \

../src/blockdram.vhd ../src/cfft4.vhd ../src/div4limit.vhd \

../src/p2r_CordicPipe.vhd . \

./src/rofactor.vhd}
source ../../script/mdp.tcl
compile_ultra_mdp 4 revised1
compile -incremental -map_effort high
write -format verilog -hierarchy -output revised4.2.v
report_qor
quit

DC Commands

This section describes the DC commands that are included in the mdp.tcl script.

■ set compile_ultra_ungroup_dw false

By default, all DesignWare hierarchies are unconditionally ungrouped in the second pass
of the compile. The default is true.

■ compile_ultra

❑ -no_autoungroup

Turns off automatic ungrouping. By default, the compile_ultra command
performs delay-based auto-ungrouping. It ungroups hierarchies along the critical
path and is used essentially for timing optimization.

❑ -no_boundary_optimization

Turns off boundary optimization. By default, the compile_ultra command
optimizes across hierarchical boundaries. Boundary optimization is a strategy that
can improve a hierarchical design by allowing the compile process to modify the port
interface of lower-level designs.

❑ -no_seq_output_inversion

Does not allow sequential elements to have their output phase inverted.
November 2019 262 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Advanced Capabilities
■ -report_resource hierarchy

Displays information about the resource implementation

MDP Effort Levels

The following describes the options that are included in effort levels 1 through 4.

*Cadence recommends using an effort level of 4 when possible.

Dofile Example for Intermediate Netlists

The following Conformal dofile hierarchically compares the RTL and the intermediate netlist
using the resource report file for MDP analysis.

The SET ANALYZE OPTION -auto command invokes both ANALYZE SETUP and ANALYZE
ABORT -compare commands. The first ANALYZE DATAPATH -module command starts
MDP analysis. The second ANALYZE DATAPATH is required to complete the datapath
analysis.

read design <rtl_files> -Golden
read design intermediate_gate.v -revised
report design data
report black box
..
set analyze option -auto
write hier_compare dofile hier.do -replace -usage -constraint -noexact \

-prepend_string “report design data; analyze datapath -module -resourcefile \
resource.rpt -verbose; analyze datapath -verbose”

run hier_compare hier.do
usage

The following shows the output, where the synthetic modules add_* have been analyzed:

LEC> analyze datapath -resourcefile resource.rpt -module -verbose

Options 1 2 3 4*

Preserves DesignWare Hierarchy YES YES YES YES

Boundary Optimization YES NO NO NO

Sequential Output Inversion YES YES NO NO

Preserves Design Module Hierarchy NO NO NO YES
November 2019 263 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Advanced Capabilities
// Note: add_16_DP_OP_6: quality evaluated 100% success
// Note: add_14_DP_OP_7: quality evaluated 100% success
// Note: add_19_DP_OP_8: quality evaluated 100% success

In this output, each synthetic module contains several individual datapath operators. If this
had high evaluation quality, the operator-level datapath analysis would have higher quality
results, while low evaluation quality has no impact on the operator-level datapath analysis.

Dofile Example for Intermediate to Final Netlist

The following Conformal dofile compares the intermediate netlist and the final netlist:

read design intermediate_gate.v -Golden
read design find_gate.v gate.v -revised
...
set system mode lec
add compare point -all
compare
...

Extracting Testcases for Datapath Modules

Note: This feature is only applicable to Design Compiler (DC) synthesis.

MDP analysis results sometimes have low evaluation quality when the datapath module is too
complex. You can automatically extract a testcase with only the information of the failed
modules into a single compact testcase file. The testcase file, in XML format, contains a
netlist of the datapath module, a netlist of the gate-level implementation (from the Revised
design’s netlist), and other attributes associated with the datapath module, such as resource
information. The extracted netlists consist of primitive gates and do not contain direct
information on the library.

There are two ways to extract the testcase:

1. Specify the instance name of the datapath modules.

For example, the following will report testcases on datapath modules whose instance
name starts with “add“ into the file add.xml under the directory LEC_testcase:
report testcase -datapath_module -inst_name add* -file add.xml

-dir_name LEC_testcase -replace
// Note: datapath module "add_16_DP_OP_6" reported.
// Note: datapath module "add_14_DP_OP_7" reported.
// Note: datapath module "add_19_DP_OP_8" reported.
// Note: add.xml generated into directory LEC_testcase.
// Note: Testcase is extracted into directory LEC_testcase.
November 2019 264 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Advanced Capabilities
2. Specify a number that those datapath modules whose evaluated quality less than or
equal to the specified number will be reported.

For example, the following will report testcase on datapath modules whose evaluated
quality are less than or equal to 38% into the file low_quality.xml under the directory
LEC_testcase.
LEC > report testcase -datapath_module -quality 38 -file low_quality.xml

-dir_name LEC_testcase -replace
// Note: datapath module "add_9399_S2_DP_OP_314_2331_11" reported.
// Note: low_quality.xml generated into directory LEC_testcase.
// Note: Testcase is extracted into directory LEC_testcase.

To enable testcase extraction of datapath modules in the hierarchical flow, you can use
the following command:
write hier_compare dofile -prepend_string
report testcase -datapath_module -quality 38 -file low_quality.xml -dir LEC_testcase -append

Note: Use the REPORT TESTCASE command’s -append option instead of -replace
to avoid overwriting the same file. The -append option will prepend the current root
module name to the low_quality.xml file

Recreating Testcases for Datapath Modules

Note: This feature is only applicable to Design Compiler (DC) synthesis.

The extracted testcase file contains the information of reported datapath modules. You can
reproduce the problem of failed modules in original design. The embedded information in the
testcase file is separated into files under the specified directory, along with one generated
dofile. Running the generated dofile can reproduce the problem of failed modules in original
design.

The following example reproduces the problem with the files:

■ testcase.rpt: resource information of the failed modules.

■ testcase.v: netlist of the failed modules. Note that the constraints associated with the
datapath modules will be annotated into the netlist.

■ testcase.do: the generated dofile. You can run this dofile to reproduce the problem.

Isolating Aborted Datapath Modules

Note: This feature is applicable to both Design Compiler (DC) or RTL Compiler (RC)
synthesis and requires a Conformal XL license.
November 2019 265 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Advanced Capabilities
The Conformal software sometimes has abort points when comparing designs with
complicated datapaths. In such circumstances, you might choose to accept those abort
points as the final result. While you can accept a certain level of risks associated with
datapaths not being formally compared, you should make sure the rest of the designs are fully
compared.

You can isolate the aborted datapath modules and allow the comparison to proceed without
the aborted datapath modules. The aborted datapath module will be reported along with the
final comparison results.

For example, without isolating aborted datapath modules, the report might look like the
following:

// Command: analyze datapath -module -verbose -resourcefile resourcefile.rpt
// Note: add_5822_DP_OP_308_4437_42 : quality evaluated 100% success
// Note: add_5821_DP_OP_306_4437_41 : quality evaluated 100% success
// Note: add_1055_159_DP_OP_311_2879_8 : quality evaluated 99% success
// Note: add_5823_DP_OP_310_4437_43 : quality evaluated 100% success
// Note: add_5820_DP_OP_304_4437_40 : quality evaluated 100% success
// Note: add_9399_S2_DP_OP_314_2331_11 : quality evaluated 38% success
...
===
Compared points PO Total

Equivalent 64 64

Abort 3 3
===

When isolating the aborted datapath modules, the report looks like the following:

// Command: analyze datapath -module -verbose -resourcefile resourcefile.rpt \
-isolate_abort_module

// Note: add_5822_DP_OP_308_4437_42 : quality evaluated 100% success
// Note: add_5821_DP_OP_306_4437_41 : quality evaluated 100% success
// Note: add_1055_159_DP_OP_311_2879_8 : quality evaluated 99% success
// Note: add_5823_DP_OP_310_4437_43 : quality evaluated 100% success
// Note: add_5820_DP_OP_304_4437_40 : quality evaluated 100% success
// Note: add_9399_S2_DP_OP_314_2331_11 : quality evaluated 38% success
// Warning: add_9399_S2_DP_OP_314_2331_11 is isolated as an aborted instance.
...
===
Compared points PO Total

Equivalent 67 67
===
Compared results of isolated instances in Revised design (top)
===
November 2019 266 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Advanced Capabilities
Status Instance (Module)

Abort i5/add_9399_S2_DP_OP_314_2331_11

(NV_GR_PE_STRI_core_add_9399_S2_DP_OP_314_2331_0)
===
Note: This feature does not help resolve aborts. It reduces the report to make it easier to
show where the abort points lie. Instead of showing several abort key points, it shows all EQ
key points and shows only the abort DP_OP module. This type of reporting allows you to make
a more informed decision about the risks associated with reported abort modules

You can specify the module to be isolated using either of the following commands:

analyze datapath -module -isolate_abort_module
set datapath option -module -isolate_abort_module

During MDP analysis, the aborted modules are extracted into RTL. The software reports all
isolated modules as part of the final comparison results.

To enable isolation of aborted modules in the hierarchical flow, you can use the following
commands:

write hier_compare dofile -prepend_string \
"analyze datapath -module -isolate_abort_module"

analyze datapath -module -isolate_abort_module

Or set the following option before running the RUN HIER_COMPARE command:

set datapath option -module -isolate_abort_module

During hierarchical comparison, the software automatically isolates the aborted datapath
module for each root in the synthesis netlist. Run the REPORT HIER_COMPARE RESULTS
command to report the isolated module.
November 2019 267 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Advanced Capabilities
Word-Level Datapath Analysis

Datapath analysis in LEC has been enhanced for advanced adder tree clusters, complex
multiplier architectures (such as product-of-sum multipliers), and XOR trees.

Datapath learning, through the ANALYZE DATAPATH command, makes the Golden datapath
operators structurally similar to the revised netlist so that comparing the two designs is easier.

Datapath Learning

The -WORDLEVEL option applies additional analysis that handles advanced datapath
optimizations in the following areas:

■ Complex adder tree clustering: Supports clustering multiple adder trees that share
common sub-expressions, and whose input operand has least-significant-bit (LSB)
truncation.

■ Product-of-sum optimizations: Supports optimization of merging the cluster adder with
the multiplier.

■ Associative Law on multipliers: Supports reordering of the cascaded multipliers based
on associative law.

■ XOR tree optimizations: Supports optimization of reordering XOR tree.

■ Constant multipliers and adder trees optimizations: Supports adder tree optimizations
with input constraints.

You can use the -WORDLEVEL option with the SET DATAPATH OPTION or ANALYZE
DATAPATH commands.

Reporting and Diagnosis of Datapath Analysis

The following is an example of the datapath learning report generated by the ANALYZE
DATAPATH -WORDLEVEL command:

// Command: analyze datapath -wordlevel -verbose
// Note: mult_12: quality evaluated 85% success
// Note: mult_18(pos): quality evaluated 90% success
// Note: add_602_2(clustered): quality evaluated 85% success

The command analyzes the Golden design's datapath operators and merges the cluster
adders with the product-of-sum operators.
November 2019 268 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Advanced Capabilities
When the quality of datapath learning is low, you can improve the quality of datapath learning
by using

■ Datapath abstraction on the revised netlist.
analyze datapath -module -reseourcefile <filename>

■ Increased datapath learning effort
analyze datapath -effort high

■ The -WORDLEVEL option
analyze datapath -wordlevel

Note: The datapath operators can only be learned once with the -WORDLEVEL option.
Thus, when you switch to this option, you have to relearn the datapath by changing the
dofile and running it from the beginning.

The following table outlines some recommended methods for resolving datapath aborts,
depending on the given scenario.

Table 11-3 Resolving Datapath Aborts

Scenario Recommendation

Datapath abstraction is not applied
in dofile

For a DC netlist:

analyze datapath -module -resourcefile \
resource.f

For an RC netlist:

analyze datapath -module
Resource sharing is applied in
synthesis netlist

Functional partition:

add partition points
(For more information and the complete syntax, use
the MAN ADD PARTITION POINTS mmand)

Don't care space exists Recode RTL to add CUT points

XOR tree is in RTL analyze datapath -wordlevel

Product-of-sum is in RTL analyze datapath -wordlevel

Complex clustering adders are in
RTL

analyze datapath -wordlevel
November 2019 269 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Advanced Capabilities
Sequential Merge Analysis

Sequential merge handling typically reduces the number of sequential elements in the golden
design such that it matches the number of sequential elements in the revised netlist, which is
synthesized with sequential merge optimizations.

Conformal includes automatic sequential merge analysis and diagnostic capabilities for
sequential merge.

Sequential Merge Flow

Use the following commands to enable sequential merge analysis:

SET ANALYZE OPTION -AUTO
ANALYZE SETUP

For more information on these commands, refer to the Conformal Equivalence Checking
Reference or use the MAN command.

Synthesis Requirements

DC Synthesis Flow

In the DC synthesis flow, you must turn off inverted sequential merging so that Conformal can
correctly verify the design. Or, you must specify the phase information using the ADD
INSTANCE EQUIVALENCE -INVERT command.

RC Synthesis Flow

In RC synthesis flow, you must use the -lec option when writing out the netlist:

write_hdl -lec

This enables sequential merge annotation, where merges are specified as comments in the
netlist. For example:

// synthesis_merge
// merged rep i1/q1_reg
// merge + i1/q2_reg
// merged rep i2/q1_reg
// merge + i2/q2_reg

Conformal uses this information during sequential merge analysis. For example, when a
netlist with such annotations is set as the revised design, LEC automatically reads in the list
November 2019 270 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Advanced Capabilities
of sequential elements, applies the appropriate sequential merges, and displays the following
modeling message:

// (F21) Merged 123 DFF/DLAT(s) due to added instance equivalences

Sequential Merge Verification

To verify the correctness of sequential merges, use the ADD COMPARED POINTS -ALL
command. The following is an example of the proof results displayed during the compare
process.

For example, when a group of four DFFs is merged into a single DFF, this is called a
representative or a merge group, LEC will first perform a single design mergeability proof and
validate whether all four DFFs can be merged together without causing conflict.

When the functions of merged registers contain don't-care (DC) conditions, the mergeability
relationship is no longer transitive. When this happens, LEC will perform a sufficient number
of proofs for the merge group. As a result, the number of reported "Compared points" may
exceed the actual number of merged DFFs. The proof result is reported as follows:

Compare results of instance/output/pin equivalences and/or seq_merge
==
Compared points DFF Total
--
Equivalent 4 4
==

When the merge representative contains a don't-care condition, the sequential merge could
enlarge the permissible functional space, thereby masking any synthesis errors. In this case,
LEC creates additional compare points, one for each merged DFF. These special compare
points, called merged compare points, are compared against the representative's mapped
point in the revised design.

A new comparison result section called "Compare results of merged compare points" for
these merged compare points is reported after a comparison, as follows:

Compare results of merged compare points
==
Compared points DFF Total
--
Equivalent 4 4
==

Notice that the comparison result of the representative will be reported in the regular
comparison data.
November 2019 271 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Advanced Capabilities
Setting the Effort Level

With automatic sequential analysis, registers must be proven equivalent before they can be
merged. During the modeling process, the proof effort is limited and can overlook some
sequential merges, causing mismatches. If the COMPARE command reports mismatches, try
ANALYZE SETUP with a higher effort (like high or ultra) after the COMPARE command:

ANALYZE SETUP -EFFORT HIGH
ANALYZE SETUP -EFFORT ULTRA

Diagnosing Instance/Sequential Merge Nonequivalence

Use the DIAGNOSE -MERge command to debug instance/sequentially merged compare
points.

Note: The following options are not supported when diagnosing instance/sequential merge
nonequivalence:

-SUMmary integer
-SOrt
-SUPport

For example, the compare result contains 3 sections:

==
Compared points PO DFF Total
--
Equivalent 1 3 4
==
Compare results of merged compare points
==
Compared points DFF Total
--
Non-equivalent 1 1
==
Compare results of instance/output/pin equivalences and/or sequential merge
==
Compared points DFF Total
--
Non-equivalent 1 1
==

The second and third sections are comparison results for sequential merge and the
ADD INSTANCE and ADD PIN EQUIVALENCE commands.

To diagnose nonequivalence shown in section Compare results of merged compare
points, you must specify two compare points (the first in golden design and the second in
revised design):

diagnose -merge 6 10
November 2019 272 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Advanced Capabilities
To diagnose nonequivalence shown in section Compare results of instance/
output/pin equivalences and/or sequential merge, you must specify two
compare points in the same design:

diagnose -revised 9 10
Note: You can use the -golden and -revised options to specify the design type.

To view the compare points information, use the REPORT COMPARE DATA command.
November 2019 273 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Advanced Capabilities
Retiming

Basic Pipeline Retiming

The Conformal software supports basic pipeline retiming, which is a method that retimes
pipeline stages in an otherwise purely combinational design. Many times, the RTL models the
pipeline by putting all of the registers at the output of the module, while the gate netlist is
implemented with real pipeline, as shown in the following figure:

Guidelines

For basic pipeline retiming:

■ All data must move from register stage to register stage

■ All paths must have the same number of stages

■ All pipeline registers must have the same clock

■ Sequential loops or latches are prohibited

■ Asynchronous set and reset should be disabled

■ Stalls should be disabled

Procedure

To use basic pipeline retiming, use the ADD MODULE ATTRIBUTE -pipeline_retime
command while in Setup mode (as shown in the following transcript):

.

.

.
add module attribute ocd_cs_r4c -pipeline_retime -Golden
.
.

November 2019 274 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#addModAttr

Conformal Equivalence Checking User Guide
Advanced Capabilities
.
// Modeling Golden…
// Pipeline-retimed 50 DFF(s) as 51 DFF(s) in 3 stage
// Modeling Revised…
// Pipeline-retimed 59 DFF(s) as 51 DFF(s) in 3 stage

Advanced Pipeline Retiming

Conformal XL can handle advanced pipeline retiming circuits, where each part of the
module can have different number of stages, as shown in the following figure.

Note: All of the vertical bars represent flip-flops or registers, and clouds represent
combinational logic.

Unlike basic pipeline retiming, described in Basic Pipeline Retiming on page 274, advanced
pipeline retiming supports:

■ Some forms of set and reset

■ Sequential feedback

■ MUX enable, but not MUX stall

■ Latches that are not retimed

Procedure

To use advanced pipeline retiming in Conformal XL, use the ANALYZE RETIMING command
in LEC mode (as shown in the following transcript):

.

.

.
SETUP> set system mode lec -nomap
// Command: set system mode lec -nomap
LEC> analyze retiming
// Command: analyze retiming
LEC> map key points
// Command: map key points
// Mapping key points ...
==
November 2019 275 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#analyzeRetiming

Conformal Equivalence Checking User Guide
Advanced Capabilities
Mapped points: SYSTEM class
--
Mapped points PI PO DFF Z Total
--
Golden 5 4 4 1 14
--
Revised 5 4 4 1 14
==
LEC> add compare points -all
// Command: add compare points -all
// 8 compared points added to compare list
LEC> compare
// Command: compare
==
Compared points PO DFF Total
--
Equivalent 4 4 8
==

Pipeline Retiming on a List of Specified Registers

By default, pipeline retiming moves all registers forward to the primary output side of the
design as much as possible. If a list of registers is specified after the pipeline retiming option,
retiming will only be performed on specified registers. Any register not in the list will not be
pipeline retimed.

Run the ANALYZE RETIMING -pipeline <identifier* ...> command to specify a
selected set of registers for pipeline retiming.

Pipeline Backward Retiming

Run the ANALYZE RETIMING -pipeline -backward command on the retimed design to
move registers backward to the primary input side of the design as much as possible. As with
pipeline forward retiming (the default), you can run pipeline backward retiming on either all
registers or a selected set of registers.

Forward and backward pipeline retiming together provide the mechanism and the flexibility to
debug retimed designs by selectively moving only a subset of the registers in the desired
directions. You can run this multiple times with different set of registers and options, thus
allowing the manual refinement of retiming steps.

Merging Equivalent Registers

Run the ANALYZE RETIMING -merge command on the retimed design to combine
equivalent registers after registers are moved. This includes inverted-equivalent registers.
November 2019 276 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Advanced Capabilities
This can help to reduce unmapped register key points and the resulting false non-
equivalences.

Note: This is on by default when running the ANALYZE RETIMING command.

Retiming Diagnosis

Run the ANALYZE RETIMING -diagnosis <identifier> command to check if the
specified register can be retimed a step forward, or step backward to its fanout or fan-in gates,
respectively. If the retime movement cannot succeed, the reason for the failure is reported.
This option will not change the netlist—it only provides information about the specified
retiming step.

Flattened Retiming Analysis

When comparing flattened designs with retiming modules, register moves are delimited by
the retiming module boundaries. Specifically, for registers within the retiming modules, the
movement of the registers by pipeline retiming is confined to the original retiming modules.

Registers that are outside the retiming modules will not be moved to the part of the design
that has been subject to retiming. You can specify retiming modules by running the ADD
MODULE ATTRIBUTE -pipeline_retime command.

Multithreading Process

Multithreaded comparison is best suited for large gate-to-gate comparisons, where the
comparison can be distributed to multiple comparison threads. To possibly resolve more abort
points and reduce the time spent on RTL-to-gate comparisons, the parallel analyze abort
feature might be more effective.

The easiest method to invoke multithreaded comparisons is to use the COMPARE command’s
-threads option to specify the number of threads. For example, the following command
starts the comparison using four parallel threads:

compare -threads 4

When a comparison is multithreaded, the number of executing threads are updated along
with the comparison results. For example,

// 26% Comparing 4 out of 15 points, 0 Non-equivalent, 4 Threads
November 2019 277 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Advanced Capabilities
Multithreading Model

The multithreading model differs from other models in that the additional threads of
processing are always run on the current machine instead of being launched through a server
farm. This eliminates the complexity of setting up the multithreaded environment and instead
uses multi-core, multi-CPU machines in a computing farm.

During a program’s execution, the elapsed time, or wall-time, is the time measured using a
wall clock (real time), whereas the CPU time is the amount of time that a processor used to
work on the process. The goal of multithreading is to reduce the elapsed time, which does not
necessarily reduce the total CPU time. Therefore, you can collect runtime statistics for
multithreading features using the following command:

usage -elapse

The software spawns additional processes during multithreaded comparison. You can use
the ps or top shell commands to show how many comparisons are running. The Conformal
software also imposes a version match check between main software program and spawned
software processes to maintain consistency.

Enabling Multithreaded Processing

Multithreaded processing is enabled when the -threads option is set to a value greater than
0, and it is disabled when the value is set to 0 (the default setting). Although it is valid to set
the number of threads to 1, it might not yield any advantage over a non multithreaded run.

You can specify the number of threads in three different ways as follows, with decreasing
order of precedence:

Note: You can only specify a maximum of 16 threads.

1. At the command. For example:
compare -threads 4

2. As a global option to the command. For example:
set compare options -threads 4

3. As a global option for all multithreaded comparison features. For example
set parallel option -threads 4

For example, with either of the following commands, all subsequent COMPARE commands run
with two computing threads:

set parallel option -threads 2
set compare option -threads 2
November 2019 278 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Advanced Capabilities
However, you can override this by running the following command to compare without
multithreading:

compare -threads 0

Or you can compare with more computing threads using the following command:
compare -threads 4

Similarly, if you use the following sequence, all subsequent COMPARE commands will use two
computing threads because the second command setting supersedes the first command
setting:

set parallel option -threads 3
set compare options -threads 2

Setting Comparison Effort Levels

Use the SET COMPARE EFFORT command to set the effort level before running the COMPARE
-threads command. For example, to applies greater effort to equivalency checking for each
gate prior to running the multithreaded processing:

set compare effort medium
compare -threads 4

Setting Comparison Options

You can only run multithreaded comparison with the COMPARE command’s -noneq_stop,
-abort_stop, and -gate_to_gate options. Other COMPARE options will be ignored.

Number of Threads Recommendation

The wall-time can be estimated using the following equation:

where MIN() returns the minimum of the number of threads and the number of available
processors, and overhead is a constant factor incurred for each thread, respectively. The
SET PARALLEL OPTION -info command shows you two types of overheads: spawned
process latency and parallel compare overhead. The values displayed are the sum up
overheads for all the threads, so you can roughly use the sum of these two values as ’#-of-
threads x overhead’ as in the previous wall-time equation.

Example:

wall-time =
 (CPU-time + #-of-threads x overhead)

MIN (#-of-threads, #-of-available-processors)
November 2019 279 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Advanced Capabilities
// Command: set parallel option -info
==
Parallel processing information:
--
...
Spawned processes latency : 10.47 sec
Parallel compare overhead : 24.33 sec
...
==

Because the wall-time speedup is bounded by the number of available processors, Cadence
recommends that the number of threads be the same as the number of available processors
(cores).

Running Jobs on Server Farms

Because wall-time speed up can be run only when there are multiple processors available,
multiple cores must be reserved when submitting a parallel comparison job to a server farm.
For example:

bsub -n 4 -R ’span[hosts=1]’ lec
Note: Specifying too large an number (-n) could delay or prevent the job from being
executed on the server farm depending on the resources and setup of the server farm.

You can configure the limit of the number of processes for the whole job with option -p. The
default is no limit. Exceeding the limit causes the job to terminate. For example, the following
sets the process limit to be 1:

bsub -p 1 lec

Tip

Make sure this option is not set or the number is set to be greater than the number
of computing threads of parallel comparison.

Licensing Requirements

Each additional computing thread requires one additional license. These additional licenses
are released when the multithreaded comparison is completed.

The multithreaded processing program supports one computing thread with no additional
licensing requirement. If the software starts with a GXL license and comparison is performed
with three threads (compare -threads 3), the licenses used are one GXL when the
November 2019 280 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Advanced Capabilities
software starts and two additional XL when the parallel comparison starts, equaling three
threads.

Note: Make sure to have enough licenses for multithreaded comparison. If you specify three
threads (compare -threads 3), and only one license is available at that time, the software
errors out and falls back to serial mode.

By default, the software attempts to check out additional XL licenses. If this fails, it attempts
to check out the licenses with which the software started. For example, if the software starts
with LP licenses, and comparison is performed with three threads, the software first attempts
to check out two additional XL licenses. If this fails, it attempts to check out two additional LP
licenses. After that, the tool will attempt to check out the license that is next on the default
license list listed in the following table:

Table 11-4 Default License List

Use the SET PARALLEL OPTION -license <license_list> command to explicitly
specify and order the list of licenses to use for multithreaded processing. For example, if you
have one LP and two ECO licenses, you can run multithreaded processing for up to four
threads by using the following command:

set parallel option -license "lp eco"

Starting License Default License List

L XL LP LPGXL ECO ECOGXL RCV

XL XL LP LPGXL ECO ECOGXL RCV

GXL XL LP LPGXL ECO ECOGXL RCV

LP XL LP LPGXL ECO ECOGXL RCV

LPGXL XL LPGXL LP ECO ECOGXL RCV

ECO XL ECO LP LPGXL ECOGXL RCV

ECOGXL XL ECOGXL LP LPGXL ECO RCV

RCV XL RCV LP LPGXL ECO ECOGXL
November 2019 281 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Advanced Capabilities
The following shows a graphical example of the software flow as it attempts to check out
licenses for multithreaded processing. For this run, the available additional licenses (to the
one startup license) are one XL, one LP and one ECO.

In the above example, if there were three XL licenses available, the software would have
checked out the three XL licenses and run multithreaded comparison and disregarded the LP
and ECO licenses.

Temporary Files and Directories

During its execution, the multithreading process feature creates and reads temporary files. By
default, the software creates these files in a temporary directory in the current working
directory. This directory is deleted automatically when the software exits normally. However,

3 XL?

No, only 1 available

Yes
Runs Multithreaded Comparison

2 LP?

No, only 1 available

Yes

1 ECO?

No

Yes

Error Out

set parallel option -license “XL LP ECO”

compare -threads 4

Runs Multithreaded Comparison

Runs Multithreaded Comparison
November 2019 282 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Advanced Capabilities
you can preserve this temporary directory after exiting with the SET PARALLEL OPTION
-keep_dir command. The disk space requirement is approximately the same as the
required amount when writing out the flattened Golden and Revised designs when running
the WRITE DESIGN command.

Tip

Use the /tmp directory if your file system is slow. You can redefine the location of
the temporary directory with the following environmental variable:
setenv RUN_REMOTE_TMPDIR_PREFIX /tmp
November 2019 283 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Advanced Capabilities
Multi-Threaded Functional Partitioning

The RUN PARTITION_COMPARE command offers multi-thread capability, which provides
linear speed up due to the number of provided processor cores.

Multi-threaded functional partitioning offers the following features:

■ Low multi-threading overhead

■ Scalable with increased number of processor cores

■ Automatic load balancing across all processor cores

■ Easy to use command option, minimum change of existing dofiles

■ Explicit progress report showing the percentage of completed tasks

There are two ways to set the number of threads for multi-threaded functional partitioning.
Either call the following command:

run partition_compare -threads 2

Or, set the parallel option:

set parallel option -threads 2

followed by the following command:

run partition_compare

Either method executes multi-threaded functional partitioning with two active threads.

Note: The first method has higher priority than the second (in other words, if both methods
are used, the number of threads specified in the first method takes priority).

Adding Partition Points

You can add partition points in LEC mode at specific pins, nets, gates, or at the boundaries
of module instances and datapath operators. The partition points are added as physical CUT
gates in the flattened netlists. The CUT gates, which serve as key points in the design, allow
you to structurally partition the design. If the partition points are specified in only one design,
November 2019 284 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Advanced Capabilities
the command will automatically deduce the corresponding partition points in the other design.
Each of the partition pairs are first validated before adding them as physical CUT gates.

Adding Partition Points for Comparison

Using the ADD PARTITION POINTS command, you can specify any gate in the netlist to be
a partition point according to the application. For example, the boundary gates of module
instances or datapath operators are usually feasible places to add partition points for
comparison.

The following command example and illustration shows how the partition (CUT) points are
specified for the datapath operators in the Golden design, where the corresponding partition
points (if any) are automatically deduced and added in the revised design:

add partition points -datapath

You can display these added partition points with the REPORT PARTITION POINTS
command. You can delete the added partition points with the DELETE PARTITION POINTS
command.

The following command example shows how the CUT points are specified for the module
instance in the Golden design, where the corresponding partition points (if any) are
automatically deduced and added in the Revised design:

add partition points -instance instance_name

You can also use ADD PARTITITON POINTS command for correspondence reporting only,
instead of physically adding CUT gates. The following command example shows how you can
specify a list of gate identifiers in the Revised design, and use the -verbose option to report
the corresponding gates, if any, in the Golden design:

add partition points identifier1 identifier2 -revised -verbose -nocut

The -nocut option in the example ensures that the CUT gates are not physically added in
the two designs.

a b c d e

Golden

a b c d e

Revised

a b c d e

Golden

a b c d e

Revised
Cut Points
November 2019 285 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#addPtnPoints
../Conformal_Ref/LEC_Ref_commands.html#rptPtnPoints
../Conformal_Ref/LEC_Ref_commands.html#delPtnPoints

Conformal Equivalence Checking User Guide
Advanced Capabilities
After adding the CUT points, you can add all the compare points (including partition points)
and run compare. If all the compare points (including the partition points) are equivalent, the
designs are proved to be equivalent. However, if one of the compare point is non-equivalent,
you will need to diagnose the non-equivalent points. If the partition points are the cause of
non-equivalence, you can delete these at any time in LEC mode using the DELETE
PARTITION POINTS command. You can add and delete partition points multiple times until
you generate feasible partition points for comparison abort resolution.

Name-based Physical Partitioning

Use the ADD PARTITION POINTS command’s -name option to add partition points around
instances using a name-based algorithm. This is faster than the default algorithm, which
adds partition points based on function.

To perform a flat run with hierarchical partitioning, add partition points to all module instances
using the following command:

add partition points -instance * -name -input -output

To get better datapath quality, add partition points to all module instances containing datapath
operators using the following command:

add partition points -datapath -name -input -output

Comparison with Functional Partitioning

You can use the RUN PARTITION_COMPARE command to run comparisons with functional
partitioning. You can specify partition key points, or they can be selected automatically by the
command.

For example, when abort points are encountered in comparison, you can run this command
to do functional partitioning for the abort points.

Analyzing Non-Equivalence
Use the ANALYZE NONEQUIVALENT command to help identify the possible causes of non-
equivalent compared points. The following schematics show examples of non-equivalent
analysis:
November 2019 286 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#addPtnPoints

Conformal Equivalence Checking User Guide
Advanced Capabilities
Example Report

The following shows an example of a report when running the ANALYZE NONEQUIVALENT
command. The lines in bold indicate the cause of the problems:

LEC> analyze noneq 213
//Command analyze noneq 213
Analyzing non-equivalent compared points:

(G) + 213 DFF /wbs/hvlen_reg[28]
(R) + 6277 DFF /wbs/hvlen_reg[28]/U$1
The clock of DFF in Golden is not gated.

The clock of DFF in Revised is gated.

Analysis of non-equivalent compared points:
Gated clock of of DFF or DLAT. (Occurrence: 1)
Unknown reason. (Occurrence: 1)

LEC> analyze noneq 170 -revised
//Command analyze noneq 170 -revised
Analyzing non-equivalent compared points:

(G) + 167 PO /wbm_sel_o[0]
(R) + 170 PO /wbm_sel_o[0]
Following constraints may be necessary:

Constant 1: (G) 1026 DFF /wbm/sel_o_reg[0]

Analysis of non-equivalent compared points:
Sequential constant. (Occurrence: 1)
Unknown reason. (Occurrence: 1)

Clock Gating

You can fix the first problem in the report:

The clock of DFF in Golden is not gated.

The clock of DFF in Revised is gated.

by running the following command in Setup mode:
set analyze option -auto

or the following command in LEC mode:
analyze setup
November 2019 287 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Advanced Capabilities
Sequential Constant

You can fix the second problem in the report:

Following constraints may be necessary:

Constant 1: (G) 1026 DFF /wbm/sel_o_reg[0]

by running auto analysis in Setup mode with the following commands:
set analyze option -auto
set flatten model -seq_constant

or the following command in LEC mode:
remodel -seq_constant

Analyzing Implication Values

You can analyze implication values on the design with the ANALYZE IMPLICATION
command. If you assign value(s) on certain gate(s), this command shows what the necessary
values are on other gates to satisfy the assignment. It can also show if a gate has redundant
fan-in and if a gate is a constant gate.

The results are displayed in the Schematic Viewer with the following colors:

■ Blue: initial assignments

■ Green: current implication values

■ Red: gates on the conflict path

■ Purple: location where conflict occurred

In the schematic view, you can also right click the gate and set a value. Holding the mouse
pointer on a gate, an information box will show if this gate has redundant fan-in and if it is a
constant gate.
November 2019 288 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Advanced Capabilities
Netlist Analysis

This feature provides another view of the flattened netlist, which could help datapath analysis,
comparison, and diagnosis.

Currently, netlist analysis enables the following operations on a flattened netlist:

■ Half adder and full adder cell extraction

■ Library cell identification and optimization

■ MUX logic extraction for DFFs

Extracting Half Adder and Full Adder Cells

Half and full adder cells are basic logic units widely used in synthesized datapath designs.
For a datapath design with constant signals and/or equivalent signals, synthesis tools tend to
optimize the adder cells based on these signals. These optimizations could make high quality
datapath analysis difficult.

Extracting half and full adders from the synthesized netlist helps reduce the complications
caused by optimizations, and improves datapath analysis and learning quality. To invoke the
extraction, use the following command in LEC mode:

analyze netlist -abstract hfa

When using LEC, the synthesized netlist will most likely be taken as the revised netlist;
therefore, use the command to invoke extractions on the synthesized netlist:

analyze netlist -abstract hfa -revised

This command modifies the specified netlist; these modifications cannot be revoked and can
sometimes have an adverse effect for datapath analysis and comparison. Thus, the
command is not invoked automatically and is recommended only for abort resolution. For
datapath designs with aborts, if the datapath analysis quality is low, try this command before
the ANALYZE DATAPTH command without -MODULE option.

Identifying and Optimizing Library Cells

In some designs, such as FPGA designs, library cells are not optimized for verification.
Library cell optimization is provided to address this issue, and it can be invoked by the
following command in LEC mode:

analyze netlist -abstract libcell
November 2019 289 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Advanced Capabilities
Extracting MUX Logic for DFFs

To invoke MUX logic extraction for DFFs, use the following command in LEC mode:

analyze netlist -abstract muxdff

This command has been integrated in the ANALYZE RETIMING command to facilitate
retiming analysis, and can be helpful for diagnosing of retimed designs. For example, using
this command, you can check if the input of a DFF can be implemented as in the following
graph:

D0

D1

S O D

DFF
Q

November 2019 290 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Advanced Capabilities
Sample Dofile

The following is an example of a Conformal dofile that includes the Conformal XL flow.

Note: Retiming can have impact on datapath learning. As a result, if the design has retiming,
you should run the ANALYZE RETIMING command before running ANALYZE DATAPATH.
Likewise, mapping will impact datapath learning and should be performed first.

// To read in the RTL design and the synthesized gate
// netlist
read design rtl.v -Golden
read design netlist.v -revised
// To define all of the design constraints, specify pipeline
// retimed module and so forth
add pin constraint 0 SE -revised
add module attribute ocd_cs_r4c -pipeline_retime -Golden
// To automate modeling and mapping processes
set system mode lec
// To specify pipeline retiming, requires Conformal XL
// license
analyze retiming
// Map key points
map key points
// To specify datapath analysis, requires Conformal XL
// license
analyze datapath -merge

//To run key point comparison
add compare point -all
compare
November 2019 291 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#analyzeRetiming
../Conformal_Ref/LEC_Ref_commands.html#analyzeDatapath

Conformal Equivalence Checking User Guide
Advanced Capabilities
November 2019 292 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
12
Layout Versus Schematic

■ Overview on page 294

❑ LVR Functionality on page 294

❑ LVR Functionality on page 294

■ Starting Conformal GXL on page 295

■ LVR Flow on page 295

❑ Circuit Library Analysis on page 296

❑ Design Logic Function Verification on page 297

■ LVR Implementation on page 298

❑ Suggested Uses on page 298

❑ Conformal Dofile Examples on page 298
November 2019 293 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Layout Versus Schematic
Overview

Designers use Conformal L to run logic function verification between an RTL model and a
gate netlist , or between a gate netlist and another gate netlist. Subsequently, a SPICE netlist
representing the circuit and a GDSII netlist representing the physical geometry of the design
are created. Designers use Layout Versus Schematic (LVS), which is a physical verification
tool to verify equivalence between the SPICE netlist and the GDSII netlist. LVS checks
whether the connectivity of the circuit and the layout are equivalent. However, during this flow,
neither the logic function of the SPICE netlist nor GDSII data is verified.

Conformal GXL operates within Conformal L to enable logic verification of the final design
step: circuit implementation. After final place and route, the circuit design is implemented for
tapeout. At this point, Conformal GXL enables functional verification on the final circuit design
represented by the SPICE netlist used as reference to LVS verification. The following figure
illustrates the Conformal GXL LVR process flow.

LVR Functionality

Conformal GXL LVR furnishes designers with two interdependent functions that allow
complete verification from RTL or gate to GDSII: Circuit Library Analysis and Design Logic
Function Verification.
November 2019 294 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Layout Versus Schematic
Circuit Library Analysis

The first phase in the verification process is to isolate design and library problems. Conformal
GXL LVR runs three different checks for circuit library analysis:

■ Automatic Functional Analysis—LVR compares logic function of two libraries on a
cell-by-cell basis. Every cell is automatically compared in this process.

■ Cell Error Repairs—After the analysis, LVR generates error reports. LVR reports those
cells that have errors that can prevent design logic comparisons and replaces those
library cells with the reference logic to allow design verification.

■ Phase Inversion Correction—LVR aligns state element phases between Golden and
Revised library sequential elements to avoid phase inversion problems during the design
level verification phase.

Design Logic Function Verification

After the Circuit Library Analysis phase completes, it initiates the Design Logic Function
Verification phase. In this phase, Conformal GXL verifies full equivalence between two
designs.

Starting Conformal GXL

To start the Conformal GXL software in graphical mode, run the following command:

lec –gxl

To start the ConformalGXL software in non-graphical mode, run the following command:

lec –gxl -nogui

LVR Flow

This section details the Conformal GXL LVR flow. As mentioned above, the LVR flow consists
of two phases: Circuit Library Analysis and Design Logic Function Verification. Summaries of
the objectives of these two phases of the flow are as follows:

■ Circuit Library Analysis

a. Read Golden library (formats include: Verilog, VHDL, and Liberty)

b. Read Revised library (formats include: Verilog, VHDL, Liberty, and SPICE)

c. Run the VALIDATE CIRCUIT command to do the analysis
November 2019 295 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#validateCircuit

Conformal Equivalence Checking User Guide
Layout Versus Schematic
d. Review warnings and errors

■ Design Logic Function Verification

a. Read the reference design model or netlist into the Golden design

b. Define design constraints and run verification

Circuit Library Analysis

Conformal GXL LVR includes two phases; that is, two interdependent functions. In this first
phase, complete the steps described below.

1. Read the Golden library.

Read in the reference library view. Read the library into the design space using the
following command:
>read design <library view1> -Golden [-verilog | -liberty | -vhdl]

Use the options noted above as follows.

2. Read the library to be analyzed.

Read in the circuit library to be analyzed.

Note: The -spice option is described below. All other applicable options are described
above.
>read design <library view2> -revised [-verilog|-liberty|-vhdl|-spice]

-verilog To specify that the reference library format is Verilog, use the
-verilog switch. This option is the default.

-liberty To specify that the reference library format is Liberty, use the
-liberty option.

–vhdl To specify that the reference library format is VHDL, use the
-vhdl option.

–spice To specify that the reference library format is SPICE, use the
-spice switch.
November 2019 296 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Layout Versus Schematic
3. Validate the circuit.

With both library views read into Conformal, run the circuit library analysis using the
VALIDATE CIRCUIT command. LVR verifies all corresponding cells between the
Golden and Revised databases during this step to isolate design and library problems,
and then reports any errors or non-equivalent cells.
>validate circuit [-revised |–Golden]

4. Check for library analysis problems.

Check for any error or warning messages to determine if there are any library analysis
problems.

Design Logic Function Verification

After LVR analyzes the circuit library logic in Phase I, it continues with Phase II, which is the
Design Logic Function Verification. During this phase, LVR verifies the design netlist using the
additional steps as follows.

Note: Ensure that Phase I completes before every Phase II design logic verification.

1. Read in the reference RTL model.

For an RTL Model, use the following command. Use the -replace option when you do
Phase I and Phase II in the same LVR session. This option ensures that the library data
in the design space is replaced with design data.
>read design <rtl model> -Golden –replace [-verilog | -vhdl]

2. Read in the gate netlist.

For a Gate Netlist, use the following two commands.

❑ First, run the READ LIBRARY command below.

Note: The file library view1 is the simulation model library previously used as
the reference for the validate circuit function above. See Read in the reference RTL
model. on page 297
>read library <library view1> [-verilog | -liberty | -vhdl]

-revised Use the -revised switch to specify that the Revised database
will be validated. This option is the default.

-Golden Use the -Golden switch to specify that the Golden database
will be validated.
November 2019 297 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Layout Versus Schematic
❑ Run the READ DESIGN command. The -replace option lets the gate netlist
replace the library data.
>read design <gate netlist> -Golden –replace [-verilog | -vhdl]

3. Define the design constraints and run verification.

This step includes setting up the verification with constraints, mapping key points, and
comparing the two designs. For the command flow used to do this step, see Chapter 6,
“Using the Setup Mode” and Chapter 7, “Using the LEC Mode”.

LVR Implementation

Suggested Uses

Use Conformal GXL to analyze circuit libraries and compare designs.

Circuit Library Verification

Conformal analyzes different formats of a circuit library; for example, Verilog versus Liberty
or Verilog versus SPICE. No manual modeling or setups are required. See LVR Flow on
page 295 for library verification steps.

Design Comparison

Use Conformal GXL to compare a Verilog gate design netlist to a design SPICE netlist. Unlike
comparison with an RTL model where scan function is disabled, using a gate design netlist
as the reference enables Conformal to verify scan function.

Conformal Dofile Examples

The first dofile example below illustrates a typical Conformal session. Compare this dofile with
the second dofile example to gain a better understanding of the relationship of the Conformal
GXL flow to the general Conformal L flow.

The first example illustrates a typical Conformal dofile used to do an equivalence check on an
RTL versus a gate netlist.

lec.dofile:

// Define embedded blocks for black boxing here
// For example: add notranslate module PLL* -both
November 2019 298 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Layout Versus Schematic
read design rtl.v –Golden
read library library.v –revised –verilog
read design netlist.v –revised

// Define all design constraints and
// modeling options
// For example: add pin constraint 0 SE -both

set system mode lec
add compare points –all
compare
report compare data

As illustrated below, with the addition of the LVR flow into Conformal, the dofile requires very
little modification.

lvr.dofile:

// Define embedded blocks for black
// boxing here
// For example: add notranslate module PLL* -both
// >>>> Circuit library analysis step

read design sim_library.v –Golden
read design netlist.sp –revised -spice
validate circuit –revised

// >>>> Netlist verification step

read design rtl.v -Golden –replace

// Define all design constraints and
// modeling options
// For example: add pin constraint 0 SE –both

set system mode lec
add compare points –all
compare
report compare data
November 2019 299 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Layout Versus Schematic
November 2019 300 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
13
Conformal Custom

■ Overview on page 302

❑ Custom Licensing on page 303

❑ Abstraction Methods on page 303

■ Starting Conformal GXL on page 303

■ Conformal GXL Process Flow on page 304

❑ Reading a Transistor Netlist on page 305

❑ Defining Constraints on page 308

❑ Running Logic Transistor Abstraction on page 313

❑ Reporting MOS Direction on page 313

❑ Continuing the Verification Flow on page 314

❑ Specifying Conditions for Abstracting Logic on page 314

❑ Analyzing Switch and Primitive Drive Strength on page 316

■ Custom Menu on page 318

❑ General Setup on page 319

❑ Custom Setup on page 328

❑ Data Entry Menu on page 338

❑ Application Menu on page 342

❑ RAM Primitive on page 347

❑ ROM Primitive on page 355
November 2019 301 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Conformal Custom
Overview

This chapter describes the standard commands used in a typical Conformal Custom (also
known as Conformal GXL) session and introduces you to the process flow, as shown in the
following figure:

Conformal Custom supports transistor netlists with legal SPICE and some variants (.cir,
.sp, .spi, and .cdl). Conformal Custom also supports Verilog switch-level netlists, but
these netlists do not have the information required for Conformal Custom checking (such as
MOS body connections).

The tool does not support DSPF netlists. A DSPF netlist is a SPICE format created for a GDS
(layout) extraction tools and it includes RC networks. Instead, output the SPICE netlist used
for cell-level LVS, which can be output from the library cell schematic view.

Note: When parsing a SPICE file, any net connected to a PMOS bulk node is assumed to be
VDD. Any net connected to an NMOS bulk node is assumed to be ground. To override this
setting, use the SET SPICE OPTION command with the -NOBulk option.

Important

If you use SET SPICE OPTION -NOBulk, you must use it before reading in the
SPICE file.

You can also write out a Verilog gate-level netlist from the abstracted transistor netlist. This
gate level netlist is used for simulation acceleration, emulation, and ATPG.

Transistor
Netlist

Abstract
Verilog
Model

RTL
Model
or Gate
Netlist

Conformal Custom

Automatic
Abstraction

Conformal LEC
November 2019 302 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#setSpiceOption

Conformal Equivalence Checking User Guide
Conformal Custom
Custom Licensing

You must have the Conformal GXL license to use the transistor abstraction capability within
Conformal. To check whether you are licensed to run transistor abstraction, inspect your
license file and look for the following FEATURE lines:

FEATURE Conformal_Custom cdslmd 6.200 14-dec-2006 5…

Contact your Cadence sales representative if you want to obtain this feature.

Abstraction Methods

Conformal GXL automatically abstracts functionality from a transistor netlist using the
following methods:

■ Automatic Functional Analysis

Conformal GXL automatically abstracts the Boolean function of Static CMOS,
Pass-GATE, and Tristate logic. Conformal GXL recognizes MUXs, and abstracts
transistors into latches and DFFs. It also determines signal directions through MOS
transistors and module I/O.

■ Pre-Charge Logic Abstraction

Conformal GXL abstracts the logical function of a dynamic circuit in the evaluate phase.
The tool requires you to identify the pre-charge (off-duty) clock.

■ Pattern Matching

Conformal GXL also recognizes transistor patterns that you define. If you specify the
transistor netlist for the pattern along with its corresponding functional Verilog or VHDL
model, Conformal GXL uses the functional model you supplied every time it encounters
its corresponding pattern in the design during abstraction.

Starting Conformal GXL

To start the Conformal GXL software in graphical mode, run the following command:

lec –gxl

To start the Conformal GXL software in non-graphical mode, run the following command:

lec –gxl -nogui
November 2019 303 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Conformal Custom
Conformal GXL Process Flow

As part of Conformal GXL, LTX is an extension to the basic Conformal process flow. The
following figure shows the Conformal GXL Transistor Abstraction Flow:

Read Transistor
Netlist

Abstract Logic

Run Abstraction

All transistor
directions
resolved?

Continue
Verification
Flow

Report MOS
Direction

Define Constraints

Transistors
requiring
MOS
direction
assignment

YES

NO

See Reading a Transistor Netlist on page 305

See Defining Constraints on page 308

See Running Logic Transistor Abstraction
on page 313

See Reporting MOS Direction on page 313

See Continuing the Verification Flow on page 314
November 2019 304 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Conformal Custom
Reading a Transistor Netlist

Your first task is to read in a compatible transistor netlist to Conformal. Conformal reads
SPICE and Verilog transistor netlists. The following sections guide you as you:

■ Prepare the netlist

■ Read in a netlist and transistor description

Preparing to Read a SPICE Netlist

Before reading in a SPICE netlist to Conformal, inspect the netlist to determine the names of
the N-channel and P-channel devices. Conformal automatically recognizes model names
beginning with ‘p’ and the model name ‘up’ as a PMOS type, and recognizes model names
beginning with ‘n’ as an NMOS type. However, if other names are used, such as UNAME1 or
UNAME2, you must do one of the following:

■ Insert a .model card at the top of the netlist.

The .model card maps the device names UNAME2 to NMOS and UNAME1 to PMOS. For
example:
.model UNAME1 PMOS
.model UNAME2 NMOS
.SUBCKT K1 n0 n1 n2
Mx0 n0 n1 n2 n3 UNAME1
Mx1 n0 n1 n2 n3 UNAME2
Xx2 n0 n1 n2 n3 n4 n5 n6 K2
.ENDS K1

■ Use the SET MOS MODEL command to define the MOS model names used in the SPICE
netlist.

■ Insert an *.EQUIV or *.EQUIVALENCE directive at the top of the netlist to replace user-
defined model names with the model names that Conformal can automatically recognize.
For example:
*.EQUIV PMOS=UNAME1 NMOS=UNAME2
SUBCKT K1 n0 n1 n2
Mx0 n0 n1 n2 n3 UNAME1
Mx1 n0 n1 n2 n3 UNAME2
Xx2 n0 n1 n2 n3 n4 n5 n6 K2
.ENDS K1

Note: If the *.EQUIV statement stretches over multiple lines, you must use an asterisk
and plus sign (*+) at the beginning of each additional line to indicate continuation.

Note: Conformal treats resistor definitions in the SPICE netlist as wires and it ignores
capacitors.

SPICE ports and transistors are bidirectional. That is, all ports are defined as INOUT, and
transistor source-drain is interchangeable. During abstraction, Conformal determines signal
November 2019 305 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#setMosModel

Conformal Equivalence Checking User Guide
Conformal Custom
direction through the source-drain of a transistor. Additionally, it assigns port directions. In
situations where Conformal cannot determine the signal direction through a transistor or a
port, your assistance is required. Assign port directions in the SPICE netlist with the
.PININFO directive as shown in the following example:

.SUBCKT K3 n0 n1 n2
*.PININFO n0:I n1:I n2:O
Mx0 n0 n1 n2 vdd PCH
Mx1 n0 n1 n2 gnd NCH
.ENDS K3

The following applies to .PININFO Directives:

■ <port>:I

Declares the port is an input (see n0:I in this example).

■ <port>:O

Declares the port is an output (see n2:O in this example).

■ <port>:B

Declares the port is bidirectional (not used in this example).

Reading Netlists and Descriptions

To read a transistor netlist into the design space of Conformal, use the READ DESIGN
command with either the -Golden or -revised switch.
November 2019 306 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Conformal Custom
Reading a Transistor Description

In addition to reading netlists, read a transistor description for pattern-matching purposes.
See the READ PATTERN command and refer to the next figure:

The design shown in the following figure can be interpreted as a latch or as a 3-to-1
multiplexer. For this example, the circuit is treated as a multiplexer.

The following example lists the Verilog transistor netlist (pattern) for the previous design.

module mux3x1 (a, b, c, sela, selb, selc, y);
input a, b, c, sela, selb, selc;
output y;
wire s;
tranif1 t0 (s, a, sela);
tranif1 t1 (s, b, selb);
tranif1 t2 (s, c, selc);
inv d0(y,s);
inv fdbk(s, y);
endmodule

Additionally, the following example lists the substitute Verilog model for this pattern.

module mux3x1 (a, b, c, sela, selb, selc, y);
input a, b, c, sela, selb, selc;
output y;
wire y_;
assign y_ = sela ? a : 1'bz;
assign y_ = selb ? b : 1'bz;
assign y_ = selc ? c : 1'bz;
assign y = ~y_;
endmodule

a

sela

b

selb

c

selc

y

November 2019 307 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#readsubckt

Conformal Equivalence Checking User Guide
Conformal Custom
The following is an example of a command file (dofile) for Conformal GXL LTX that
demonstrates how to execute the multiplexer as shown in the previous example:

read pattern pattern.v -verilog
// reads the mux3x1 transistor netlist or pattern
read library lib.v -verilog
// reads the verilog substitute model for the pattern
read design Golden.v
// reads the Golden transistor netlist that
// includes mux3x1 along with other circuitry
abstract logic
// calls up LTX abstraction routine

Defining Constraints

The ABSTRACT LOGIC command is included in the dofile shown in the previous example.
However, before you use this command, you must consider issues that can impact the
abstraction.

Resolving Global Net Names

Conformal GXL automatically recognizes VDD, GND, and VSS global nets in SPICE. If other
global net names are used for power and ground in the netlist, use the ADD TIED SIGNALS
command before transistor abstraction. For example:

add tied signals 0 cds.global.gnd_ -all -Golden
add tied signals 1 cds.global.vdd_ -all -Golden

Adding Net Attributes

Use the ADD NET ATTRIBUTE command to identify an internal net as a pre-charge clock to
a dynamic circuit. This case arises when the pre-charge clock is generated internally and is
not available as an external design pin. For example:

add net attribute CLOCK0 net134 -module bitpre -Golden

In this example, CLOCK0 defines the off-state of the pre-charge logic. That is, a zero value on
the net (net134) puts the circuit in pre-charge or off-state mode, while a one value on the
same net puts the circuit in duty-state or evaluate mode.

Resolving Modules in the Design Hierarchy

Conformal GXL automatically resolves modules in simple cases; that is, modules having few
inputs, outputs, and instances. However, in more complex cases that include unnecessary
November 2019 308 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#addTiedSignals
../Conformal_Ref/LEC_Ref_commands.html#addNetAttr

Conformal Equivalence Checking User Guide
Conformal Custom
levels of design hierarchy, use the RESOLVE command to manually resolve modules in the
design hierarchy.

This command un-groups a module and raises its contents one level. For example, when a
flip-flop module instantiates two latches, a master and a slave latch, use the RESOLVE
command to resolve the latch hierarchy. Then, the Conformal GXL abstraction engine
combines the master and slave latch circuitry to create a single flip-flop.

After resolving the hierarchy, the internal database in Conformal is modified. You cannot undo
the changes in the hierarchy.

Important

The hierarchy in the designs should be maintained to the extent possible to simplify
abstraction and diagnosis.

When the design is relatively small, and submodule abstraction fails because of many
hierarchical relationships between pins, use the FLATTEN command to force Conformal to
resolve all submodules. This command can sometimes help improve abstraction. For
example:

flatten -module chip -force -revised

Adding Pin Equivalences

Pin equivalences are used to define the relationship between two or more pins in a module.
When two pins are equivalent through inversion, as shown in the following pass-gate
example, use the ADD PIN EQUIVALENCES command.

Note: If you use the -both option, every primary input pin you list must exist in both designs
(Golden and Revised). If they do not, Conformal returns an error message.

a

enb

ena

y

November 2019 309 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#resolve
../Conformal_Ref/LEC_Ref_commands.html#flatten
../Conformal_Ref/LEC_Ref_commands.html#addPinEquiv

Conformal Equivalence Checking User Guide
Conformal Custom
Disabling the Pre-Charge Clock in a Dynamic Circuit

When a design has pre-charge logic, Conformal GXL requires you to identify the pre-charge
clock and define its off-state. Use the ADD CLOCK command to declare a pre-charge clock.

The following figure illustrates a pre-charge NAND gate. In this example, pin pre in module
NAND represents the pre-charge clock.

To define the off-state for this circuit, specify the following constraint:

add clock 1 pre -Golden

As a result of the ADD CLOCK command, Conformal GXL models the design as a static NAND
gate, as shown in the following figure:

Specifying Conditions for Abstracting Logic

The SET ABSTRACT MODEL command specifies certain conditions for abstracting transistor
logic. The command’s -pre_charge_keep_clock option includes the defined pre-charge
clock in the abstracted logic function (the default behavior removes the defined pre-charge
clock from the abstracted logic). This is indicated when you define a precharge clock with one
of the following commands:

pre_

pre_

a

b

pre

y

y
a

b

pre

NAND
November 2019 310 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#setAbstractModel
../Conformal_Ref/LEC_Ref_commands.html#addClock

Conformal Equivalence Checking User Guide
Conformal Custom
add net attribute CLOCK0 | CLOCK1
add clock 0 | 1

When you use -pre_charge_keep_clock, the resulting logic is equivalent to RTL that
explicitly models the pre-charge condition, rather than RTL that models only the evaluate
function. In the latter, the output function is not defined during precharging. (See the following
examples.)

Explicit modeling:

always @(clock or a or b) begin
if (clk) y = a ! b;
else y = 1'b1; // precharge
end
Evaluate function:
assign y = a ! b;
Note: Designers employ explicit modeling when the precharge function output is latched
during pre-charge. Thus, the resulting functionality of either method is equivalent. It is strictly
a matter of coding style. Both methods are acceptable.

Reporting Conditions for Abstracting Logic

If you ran the SET ABSTRACT MODEL command to abstract transistor logic from particular
modules, use the REPORT ABSTRACT MODEL command and Conformal GXL reports their
abstraction conditions.

Resetting Conditions for Abstracting Logic

If you ran the SET ABSTRACT MODEL command to abstract transistor logic from particular
modules, use the RESET ABSTRACT MODEL command to reset the abstraction conditions to
their original state.

Assigning Pin Direction

Although Conformal GXL is capable of determining pin and signal direction, some cases
require manual assistance. For transistor netlists that lack pin direction information, use the
ASSIGN PIN DIRECTION command to make a manual assignment. For example:

assign pin direction in mux2p in0 -revised

Copying Modules

You can copy a module’s logic or pin direction from the RTL to assist in abstraction. Use the
COPY MODULE command:
November 2019 311 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#reportAbstractModel
../Conformal_Ref/LEC_Ref_commands.html#resetAbstractModel
../Conformal_Ref/LEC_Ref_commands.html#assignpindirection
../Conformal_Ref/LEC_Ref_commands.html#copyModule

Conformal Equivalence Checking User Guide
Conformal Custom
Assigning Transistor Direction

For Conformal GXL to successfully abstract a logical gate-level model of a transistor netlist,
it must determine signal directions through all transistors in the design. There are three
possible directions a signal can flow in an N channel or P channel transistor:

■ From drain to source

■ From source to drain

■ Both ways (bidirectional)

Note: In SPICE, MOS transistors are all bidirectional. Thus, the source and drain ports are
interchangeable. However, signals always flow into the gate of a transistor, and the burden
falls on Conformal GXL to determine the signal directions. The following figure illustrates this
concept.

In Verilog the task of determining signal direction is simplified because Verilog supports two
transistor definitions:

■ One definition is a unidirectional transistor declaration for which the signal flows from
source to drain, or from drain to source, but not both directions.

■ The other is a bidirectional N or P transistor declaration, where signals can flow in both
directions.

The following illustrates the two Verilog transistor definition types:

■ nmos ins0 (net1, net2, net3)

❑ Unidirectional N channel transistor

❑ net1 is output and net2 is input

❑ Similarly for P transistors, pmos ins1 (net1, net2, net3)

■ tranif1 ins0 (net1, net2, net3)

❑ Bidirectional N channel transistor
November 2019 312 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Conformal Custom
❑ net1 and net2 are inout

❑ net3 is gate port

❑ Similarly for P transistors, tranif0 ins1 (net1, net2, net3)

Assigning MOS Direction

If Conformal GXL cannot determine the direction of a signal through a transistor device,
manually assign the direction using the ADD MOS DIRECTION command. For example:

add mos direction phgx10 M30/N12 ixMM -Golden

The following is a transistor definition example:

transistor-type name output(drain) data(source) control(gate)
nmos n1 il vss a

For this example shown above, use the -all option as follows to assign direction from vss
to i1:

-all -from_source

In your designs, use -all -from_source to apply MOS direction from source to drain on
all of the transistor-MOS instances in your design.

Likewise, -all -from_drain assigns MOS direction from drain to source on all of the
transistor-MOS instances in your design.

Running Logic Transistor Abstraction

After reading a transistor design and defining constraints as needed, perform logical
transistor abstraction, which is the process of abstracting a functional gate model from the
transistor netlist. Use the ABSTRACT LOGIC command for this step.

Note: If neither the -all or -module option is specified, Conformal abstracts the current
root module and any modules that are instantiated under it.

Reporting MOS Direction

After reading in a SPICE or Verilog transistor netlist, applying constraints, and running
transistor abstraction, you can use the REPORT MOS DIRECTION command to check if the
abstraction is complete.

If the resulting abstraction is not complete, Conformal GXL lists the modules and the number
of transistors you must constrain. The following is an example of what the command returns:
November 2019 313 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#addmosdirection
../Conformal_Ref/LEC_Ref_commands.html#abstractLogic
../Conformal_Ref/LEC_Ref_commands.html#reportmosdirection

Conformal Equivalence Checking User Guide
Conformal Custom
// Command: abstract logic -Golden
Module ‘mux4x2’ has 4 bi-directional MOS
Module ‘cluster’ has 2 bi-directional MOS

Continuing the Verification Flow

When you have successfully abstracted a transistor netlist using Conformal GXL, use
Conformal to run logic equivalency checking against another RTL, GATE, or Transistor netlist.

Specifying Conditions for Abstracting Logic

This section describes some of the issues that can occur when specifying conditions for
abstracting transistor logic for latch modeling.

Pin Equivalences

In this example, an RTL model and circuit are not equivalent except when Clk and ClkB are
inverted. Before abstracting circuits, use the following command:

add pin equivalence Clk -inv Clkb
November 2019 314 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Conformal Custom
Flatten or Resolve

Abstraction works hierarchically but not across hierarchy except for constraint or pin
equivalence propagation. Functions across hierarchy are not abstracted. In the following
illustration of a circuit, the right tinv and hldr cells are parts of the D Latch.

Use the following command to pop these cells up one level:

resolve tinv hldr -revised

Or you can use the following command to remove all hierarchy:

flatten -module DLAT -revised

Abstraction will complete and result compares to model.

Abstraction Options

Abstraction options affect how certain circuits are abstracted. Use these options to transform
special circuits, such as:

■ Domino (pre-charge) logic modeling

■ RAM pre-charge, sense amp, and pulse clock modeling

■ Custom circuit weak pull-up and level restorer modeling

Before abstracting, use the SET ABSTRACT MODEL command. To limit scope of the
abstraction, use the command’s -module option.

Transient Pulse Generators

Pulse generators are commonly used in memories. The start of the pulse initiates an access.
The end of the pulse provides a signal to sample the data for reading. Pulse generators have
transient function and are not supported by traditional abstraction or static formal verification
equivalence checking technique.
November 2019 315 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#setAbstractModel

Conformal Equivalence Checking User Guide
Conformal Custom
In the following example, transient pulse generators abstract correctly but cannot be used for
logic verification:

Pulse = Clock && !Clock

To fix this, manually disable the trigger to turn the pulse off:

remove x4
add tied signal 1 n4

Or use the abstraction model capability:

set abstract model -transform_pulse_generator_on

Analyzing Switch and Primitive Drive Strength

Use the SET XC command to analyze switch and primitive drive strength to achieve the most
accurate logic function result. This technique can be applied to complex custom macros such
as RAM and ROM and is essential to accurate verification of circuits with complex layer switch
nets.
November 2019 316 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#setXC

Conformal Equivalence Checking User Guide
Conformal Custom
Diagram 1 shows an example of a layered switch network of a ROM function. This is the same
logic function as the logic primitive network in Diagram 2. The SET XC command provides
the analysis capability needed to successfully compare these functions.
November 2019 317 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Conformal Custom
Custom Menu

This section describes forms are accessible from the Custom menu. This menu contains the
following sub-menus:

Note: These features require a Conformal GXL license.

■ General Setup on page 319

■ Custom Setup on page 328

■ Data Entry Menu on page 338

■ Application Menu on page 342

■ RAM Primitive on page 347

■ ROM Primitive on page 355
November 2019 318 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Conformal Custom
General Setup

Tie Off Cell Pins to 0 or 1

Use the Tie Off Cell Pins to 0 or 1 form to add and delete pin constraints to primary input pins.
To open this form, choose Custom – General Setup – Tie Off Cell Pins to 0 or 1.

For each list there are four columns with the headings: Pin, 0, 1, and
GROUPING_CONSTRAINT. The primary input list is shown in the Pin column. Each
primary input is either a system class primary input (S: name) or a user-defined class primary
input (U: name).

Selecting Primary Inputs

In the following procedures, you are asked to select primary inputs. Use any of the following
procedures to select primary inputs:

■ Click a primary input to select it.

■ Click and drag the mouse over a group of adjacent primary inputs to select them.

■ Click the first primary input in a group, press and hold the Shift key, and click the final
primary input in a group to select the entire group.
November 2019 319 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Conformal Custom
■ Press the Ctrl-key and click a primary input to add it to the selected group.

The following procedures explain how to add and delete pin constraints.

Adding a Pin Constraint to a Primary Input

Use the following procedure to add a constraint to a single primary input using the Pin
Constraints form:

1. In the Pin column, click a primary input to select it.

2. Right-click and choose the Constraint 0 or Constraint 1 constraint from the pop-up
menu.

The selected primary input appears in the appropriate column.

Adding a Constraint to a Group of Primary Inputs

Use the following procedure to add a constraint to a group of primary inputs using the Pin
Constraints form:

1. In the Pin column, select multiple pins with one of the methods described in “Selecting
Primary Inputs” on page 319.

2. Right-click to open the pop-up menu and choose a constraint.

Deleting Pin Constraints

Use the following procedure to delete one or all constraints using the Pin Constraints form:

1. Click a primary input in the 0, 1, or GROUPING_CONSTRAINT column to select it.

2. Right-click and choose one of the following from the pop-up menu:

To delete a constraint from the selected pin, choose Delete Pin Constraint. Conformal
removes the pin constraint. And in the case of GROUPING_CONSTRAINT, Conformal
deletes the entire group.

To delete all constraints, choose Delete All Pin Constraints. Conformal deletes all
constraints from all columns.
November 2019 320 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Conformal Custom
Sorting Pin Lists

You can alphabetically sort the primary input lists.

1. Right-click in the Pin, 0, or 1 column.

2. Choose Sort from the pop-up menu.

Set Equivalent or Inverted Cell Input Pins

Use the Set Equivalent or Inverted Cell Input Pins form to add and delete pin equivalences.
To open this form, choose Custom – General Setup – Set Equivalent or Inverted Cell
Input Pins.

The primary input lists for each of the Golden and the Revised designs are displayed in their
respective columns. Conformal displays added pin equivalences below the target primary
input with a connecting line. Inverted pin equivalences are denoted with (-) following the
primary input name.

Module Name Specifies the module that needs to be updated pins of that
module are converted to a bus.

Pin Specifies the pins of that module are converted to a bus.
November 2019 321 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Conformal Custom
Adding a Pin Equivalence

1. Click a primary input in either in one of the columns to select it.

2. Right-click and choose Set Target from the pop-up menu.

The font color of the selected primary input changes to red to show that it is the target
primary input.

3. Click the second primary input (in the same column) that must be equivalent to the target
primary input.

4. Right-click and choose Add Pin Equivalence or Add Invert Pin Equivalence from the
pop-up menu.

Sorting the Primary Input Lists

To alphabetically sort the primary input lists by column, right-click in the column you want to
sort and choose Sort from the pop-up menu.
November 2019 322 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Conformal Custom
Group Single Pins into Bus

Use the Group Single Pins into Bus form, or the PIN GROUP command, to combine a group
of single nets or pins into a bus. To open the Pin Group form, choose Custom – General
Setup – Group Single Pins into Bus.

The Conformal software uses the following two default patterns to group pins or nets into
busses:

■ Name[#]

■ Name<#>

For example, nets blb[3] blb[4] blb[5] will be grouped into bus blb[5:3], and pins
wladd<1> wladd<2> wladd<3> will be grouped into bus wladd[3:1].

Ascend Defines the bus in ascending numerical order. By default,
buses are defined in descending numerical order.
November 2019 323 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Conformal Custom
Add Bus Expression Specifies expression(s) for rules on signals to bus. You can
specify your own renaming mapping of specific names to two
default patterns, so that it recognizes those names as buses
also.

For example:

"mybus_%d_bar" "mybus_bar[@1]"
maps the following names into the first default bus name:

mybus_12_bar mybus_13_bar mybus_14_bar => mybus_bar[12]
mybus_bar[13] mybus_bar[14]
then the renamed names will be further grouped into bus
mybus_bar[14:12]

All Specifies that when pins of a module are converted to a bus,
all instantiations of that module need to be updated.

Module Name Specifies the module that needs to be updated pins of that
module are converted to a bus.

Pin Specifies the single nets or pins to be grouped into a bus.
Right-click and choose Group Pin from the pop-up menu to
open the form to create a bus.
November 2019 324 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Conformal Custom
Flatten

Use the Flatten form, or the FLATTEN command, to remove all hierarchy on a specified
module or for all modules in the database. If you do not specify one or all modules, Conformal
flattens the root module by default. Thus, this expands all of the gate primitive or transistor
primitive devices into the cell that is being flattened.

To open the Flatten form, do the following:

➤ Choose Custom – General Setup – Flatten

All Flattens all modules within the given defaults.

Module Name Specifies the module to flatten. By default, the root module is
flattened.

In the module list, right-click on a name and choose Flatten
from the pop-up menu to flatten the module.
November 2019 325 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Conformal Custom
Ungroup Module

Use the Ungroup Module form, or the RESOLVE command, to ungroup a module in the
Golden or Revised design hierarchy. Resolving or ungrouping is the process of eliminating a
module and promoting its content up one level of the hierarchy.

To open the Ungroup Module form, choose Custom – General Setup – Ungroup Module.

All Resolves all modules within all hierarchies of the specified
design.

Module Name Specifies the module for which to resolve its hierarchy.

In the module list, right-click on a name and choose Resolve
from the pop-up menu to ungroup the module in the design
hierarchy.
November 2019 326 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Conformal Custom
Group Instances into New Module

Use the Group Instances into New Module form, or GROUP command, to group instances
together so that they become a new submodule. This applies to submodules, latches,
registers, gates, and transistors.

To open the Group Instances form, choose Custom – General Setup – Group Instances
into New Module

Module Name Specifies a module for which to apply the grouping.

Instance Specifies the instances to group. Right-click on an instance name
and choose Group Instance from the pop-up menu to group
instances into a new submodule.

Specify New Group Module Name

Specifies the name of the new module.

Specify New Group Instance Name

Specifies the instance name for the new module.
November 2019 327 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Conformal Custom
Custom Setup

SPICE Netlist Options

Use the SPICE Netlist Options form, or the SET SPICE OPTION command, to specify
options for reading the SPICE netlist design. To open this form, choose Custom – Custom
Setup – SPICE Netlist Options.

Use Net Connected to MOS Body Port as Power/Ground Supply

Identifies nets connected to PMOS bulk terminals as power
and nets connected to NMOS bulk terminals as ground.

Blackbox Sub Circuits with No MOS Devices

Specifies that SUBCKT contains no transistors and will be
treated as a blackbox.

Use Global Pins to Define Power/Ground Supply

Specifies that extra ports for GLOBAL signals will be created
for SUBCKT.

Do Not Remove Leading "X" Character in Instance Name

Specifies that the first character ’X’ of the name of instance
will not be retained.
November 2019 328 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Conformal Custom
MOS Devices Name

Use the MOS Devices Names form, or the SET MOS MODEL command, to specify the MOS
model names used in SPICE. You can then re-read the SPICE netlist.

When reading in SPICE netlists, the parser automatically identifies transistor model names
as PMOS and NMOS types. However, if you have models that were not defined using .MODEL
statements, the parser identifies them as ERROR. Instead of altering your SPICE file, you can
use this form.

To open the MOS Devices Name form, choose Custom – Custom Setup – MOS Devices
Names.

PMOS Devices Defines the model name as a P-Channel device.

NMOS Devices Defines the model name as an N-Channel device.
November 2019 329 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Conformal Custom
Pre-charge Clocks

Use the Pre-charge Clocks form, or the ADD NET ATTRIBUTE and ADD CLOCK commands,
to specify or delete primary inputs as clocks to transistor-MOS. To open this form, choose
Custom – Custom Setup – Pre-charge Clocks.

Click the Golden or Revised tab to switch between the two lists. The primary input list is
shown in the Pin column. Each primary input is either a system class primary input (S: name)
or a user-defined class primary input (U: name).

To add a clock to a primary input, click a primary input under the Net or Pin column to select
it, then right-click to open the pop-up menu and select Add Clock 0 or Add Clock 1.

To alphabetically sort the primary input lists, right-click in one of the columns and choose Sort
from the pop-up menu.
November 2019 330 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Conformal Custom
Module Pin Direction

Use the Pin Direction form to assign direction to module boundary pins in the Golden or
Revised design. To open this form, choose Custom – Custom Setup – Module Pin
Direction.

Click the Golden or Revised tab to switch between the two pages, where for each page,
there is a Module Name and Pin List column. All of the design’s modules are listed in the
Module Name column. All of the selected module’s boundary pins are displayed with their
current direction (IN, OUT, or IO) in the Pin List column.

To sort the displayed names, right-click in the column you want to sort to open the pop-up
menu and choose Sort.

To assign pin direction to a module, do the following:

1. Double-click a module name in the Module Name column.

The pin names appear in the Pin List column.

2. Click a pin in the Pin List column to select it.

3. Right-click to open the pop-up menu and choose IN, OUT, or IO to assign a new pin
direction.

The Pin List column updates with the new pin direction assignment.
November 2019 331 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Conformal Custom
Circuit to Logic Transformation Settings

Use the Circuit to Logic Transformation Settings form, or the SET ABSTRACT MODEL
command options, to specify certain conditions for abstracting transistor logic. To open this
form, choose Custom – Custom Setup – Circuit to Logic Transformation Setting.

All Abstracts transistor logic from all modules within the
given defaults.

Also Apply to Golden/Revised
Side

Applies the same abstraction conditions for the Golden
or Revised design.

Module Name Specifies the modules to which to abstracts transistor
logic.

Keeper as Pull-up Regards charge keepers as weak pull-up devices.

Weak as Pull-up Regards devices that are tied to PMOS as weak
devices.

Weak as Pull-down Regards devices that are tied to NMOS as weak
devices.

Keeper as Latches Regards charge keepers as latches.

Tristate Table Nets as Latches Regards tristate table nets as latches.
November 2019 332 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Conformal Custom
Pre-charge Keep Clock For domino logic, regards pre-charge clocks as part of
the logic function.

This option includes the defined pre-charge clock in the
abstracted logic function (the default behavior removes
the defined pre-charge clock from the abstracted logic).

When you use this option, the resulting logic is
equivalent to RTL that explicitly models the pre-charge
condition, rather than RTL that models only the
evaluate function. In the latter, the output function is not
defined during pre-charging.

Pre-charge Logical as Latch Abstracts pre-charge logic functions as a latch. This
assumes that data input is stable in active clocks.

Bit-line Pre-Charge as
Equalization

Handles circuits that include bit-line pre-charge, and
equalization.

Buffered-type Amplifier Handles the following portions of a circuit: buffered-type
sense amplifiers, level shifters, pre-charge, and
equalization.

Multiple Clock Precharge Propagates clocks through logic gates which have more
than one clock input.

Rephrase by Name Positive Gives logic abstraction hint about the desired phase of
state elements, such as D-latches and DFFs. When
abstracting state elements, logic abstraction will
choose a phase for each state element, where its
name specifies the net which will be driven by the ’Q’
pin, if possible.

If this is not possible, then abstraction will try to choose
a net for the ’Qn’ pin which has a name specified by the
Rephrase by Name Negative option.

Note: The SET MAPPING METHOD command’s
-phase option will allow mapping and comparison of
state elements with different phases in the Golden and
Revised designs. Consider running SET MAPPING
METHOD -phase before using this option, as it requires
less effort.

Rephrase by Name Negative Specifies the net which will be driven by the ’Qn’ pin, if
possible.

Enable Pulse Transformation Enables pulse transformation.
November 2019 333 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Conformal Custom
Ignore D-latch Contention Continues to form the D-Latch, even if contention on a
net is detected.

By default, Circuit Logic Transformation stops the
execution of abstraction of latches and flip-flips (state
elements) when a power to ground through a stack of
active ON transistors is possible. Use this option to
report the short and continue to abstract the state
element.

Restrict Pattern Restricts the pattern to the specified modules specified
and restricts the specified modules to use only those
patterns.

Other unspecified modules can be abstracted using
other patterns not associated with that or any other
module.

By default, the pattern and module linkage and
abstraction uses only patterns for that module, but still
can use that pattern and any pattern for modules that
are not defined.

Restrict Modules Restricts the pattern matching to the specified modules.
November 2019 334 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Conformal Custom
MOS Direction

Use the MOS Direction form to add and delete unidirection to bidirectional MOS devices. To
open this form, choose Custom – Custom Setup – Transistor Logic Direction Settings.

Click the Golden or Revised tab to switch between the two lists.

To add a transistor-MOS instance direction, do the following:

1. Double-click a module name to show the name in the Module Name field.

2. In the Bi-Direction Instance column, double-click an instance to select it.

Module Name Specifies the module to adds unidirection to all bidirectional
MOS devices.

All of the design’s modules are shown in the Module Name
column.

Source Displays the source pin name for the MOS direction.

Drain Displays the drain pin name for the MOS direction.

Uni-Direction Instance Displays all unidirection MOS devices.

Bi-Direction Instance Displays all bidirectional MOS devices.
November 2019 335 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Conformal Custom
This shows the source pin and drain pin in the respective Source and Drain fields.

3. Right-click in the Bi-Direction Instance display area to open the pop-up menu and
choose Add Direction from Source to Drain or Add Direction from Drain to Source.

The selected instance moves to the Uni-Direction Instance column.

To delete a transistor-MOS instance direction, do the following:

1. Double-click a module name to show the name in the Module Name field.

2. Click an instance name in the Uni-Direction Instance column to select it.

3. Right-click to open the pop-up menu and choose Delete MOS Direction.

This removes the transistor-MOS direction and moves the instance name to the
Bi-Direction Instance display list.

To alphabetically sort module and MOS direction instance lists, right-click in the appropriate
column to open the pop-up menu and choose Sort.
November 2019 336 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Conformal Custom
Define Power and Ground Supply

Use the Define Power and Ground Supply form, or the ADD SUPPLY command, to define
power and ground ports of a module or the global power and ground signals for the entire
design. To open this form, choose Custom – Custom Setup – Define Power and Ground
Supply.

Click the Golden or Revised tab to switch between the two lists.

To add a power or ground attribute, click a name in the Net or Pin column to select it, then
right-click to open the pop-up menu and select Add Power Attribute or Add Power
Attribute.

All Defines power and ground ports for all modules within
the given defaults.

Also Apply to Golden/Revised
Side

Defines power and ground ports for all modules in the
Golden or Revised design.

Module Name Specifies the module to apply the attribute setting.

Net and Pin Specifies the module to apply the attribute setting.
November 2019 337 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Conformal Custom
Data Entry Menu

Design

Use the Read Design form, or the READ DESIGN command, to select and configure the
format of the design(s) to read in.

➤ Choose Custom – Data Entry – Design.

For more information, see Read Design Form on page 109.
November 2019 338 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Conformal Custom
Pattern Match

Use the Pattern Match form, or the SET PATTERN MATCH command, to set the pattern
matching modules. To open this form, choose Custom – Data Entry – Pattern Match.

Set Pattern File Specifies that the name of the pattern (that was read in
with the READ PATTERN command) that will apply to
the module(s), as well as its format, type, and whether
the files are handled as case-sensitive.

You can enter the name of the file, or click the Browser
icon select a file from the Log File browser window.

Set Remodel File Specifies the name of the remodel file and its format,
type, and whether the files are handled as case-
sensitive.

You can enter the name of the file, or click the Browser
icon select a file from the Log File browser window.
November 2019 339 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Conformal Custom
Selective Pattern Match Enables pattern matching.

Mapping File specifies the file that contains the pairs
of patterns and modules for pattern matching. The
format of the mapping file is <pattern_name>
<module_name>.

You can enter the name of the file, or click the Browser
icon select a file from the Log File browser window.

Pattern Module Pair Setting Specifies a pattern module pair. Specify the pattern
name and module name and select Add Selected to
apply the setting.
November 2019 340 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Conformal Custom
Cell Remodel

Use the Cell Remodel form to read in a circuit and write it out to a Verilog format. To open this
form, choose Custom – Data Entry – Cell Remodel.

Set Read In Circuit Specifies the name of the circuit to be remodeled,
including its format, type (Golden or Revised), and
whether the files are handled as case-sensitive.

You can also select the Replace Circuit Verilog File
option to write out the Golden or Revised design in
Verilog format and replace the existing file’s contents.

You can enter the name of the file, or click the Browser
icon select a file from the Design File browser window.

Set Remodel File Specifies the name of the remodel version netlist file.
You can enter the name of the file, or click the Browser
icon select a file from the Design File browser window.
November 2019 341 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Conformal Custom
Application Menu

Logic Abstraction

Use the Logic Abstraction form to run functional analysis on circuit netlists, which can contain
different devices, including transistors, gates, and state elements. The analysis abstracts a
logically-correct gate and a state primitive model. Use the logic model and compare it to the
RTL model for complete functional verification. You can also write out the logic model and use
it during high-performance simulation or fault grading.

➤ Choose Custom – Application – Logic Abstraction.

The Golden Module and Revised Module columns list all of the relevant design’s modules,
which you can specify for transistor abstraction.

All Abstracts logic information from all cells in the database, including
cells that are not used by the current root module.

Pure Performs basic gate abstraction, which is useful for debugging.

NO_ASM Disables the Advanced State-element Modeling (ASM) algorithm. By
default, Logic Abstraction enables the Advanced State-element
Modeling (ASM) algorithm to analyze loop structure to produce
better modeling of state elements, such as D-Latch, DFF, and bus-
keeping I/O logic.
November 2019 342 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Conformal Custom
To post abstraction information to the Transcript window, click the module name, right-click to
open the pop-up menu, and choose Abstract.

To display the schematic view, click a module name to select it, right-click to open the pop-up
menu, and choose Schematic View.

To alphabetically sort the module lists, right-click in the column to open the pop-up menu, and
choose Sort.

Click Refresh to return the displayed modules to their original numerical order or to update
the displayed hierarchy after you read in a design.

NO_AUTO Does not invoke hierarchical analysis. By default, Logic Abstraction
enables propagation of constants, pin constraints, non-inverted and
inverted pin relationships across module boundaries.

Module Name Specifies the module and its hierarchy for which to abstract logic
information. Type the name in the field and press Enter to add it to
the list.
November 2019 343 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Conformal Custom
Test View Abstraction

Use the Test View Abstraction form to run structurally accurate abstraction. With this feature,
only limited boolean simplification is done for abstraction. As a result, the gate-level structure
of the original logic is preserved as much as possible after abstraction.

➤ Choose Custom – Application – Test View Abstraction.

The Golden Module and Revised Module columns list all of the relevant design’s modules,
which you can specify for transistor abstraction.

All Abstracts test view information from all cells in the database,
including cells that are not used by the current root module.

Module Name Specifies the module to abstract test view information. double left-
click on the name in list to add it to this field.
November 2019 344 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Conformal Custom
Power View Abstraction

Use the Power View Abstraction form, or the ABSTRACT LOGIC -POWER_VIEW command,
to run power-aware abstraction. With this feature, the connectivity of the power and ground
pins are retained. Only limited boolean simplification is run to ensure that the abstraction
results are as similar as possible to the original switch-level netlist.

➤ Choose Custom – Application – Power View Abstraction.

The Golden Module and Revised Module columns list all of the relevant design’s modules,
which you can specify for power-aware abstraction.

All Abstracts power-aware information from all cells in the database,
including cells that are not used by the current root module.

Module Name Specifies the module and its hierarchy for which to abstract power-
aware information. Type the name in the field and press Enter to add
it to the list.
November 2019 345 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Conformal Custom
Library Verification

Use the Library Verification form, or the VALIDATE LIBRARY command, to compare all top-
level cells with matching names. Conformal abstracts the modules on the SPICE side before
comparison. This application is for library verification during library design.

➤ Choose Custom – Application – Library Verification.

The Golden Module and Revised Module columns list all of the relevant design’s modules,
which you can specify for power-aware abstraction.

Golden Library Validates the Golden database.
November 2019 346 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Conformal Custom
RAM Primitive

Use the RAM Primitive window to generate Verilog RAM primitive models.

The Place form contains the following two pages:

■ RAM Primitive - Standard on page 348

■ RAM Primitive - Specialty on page 349

■ RAM Primitive - SRAM on page 350

■ ROM Primitive on page 355

Revised Library Validates the Revised database.

No ASM Disables the Advanced State-element Modeling (ASM)
algorithm.

ASM (the default) helps to analyze loop structure to
produce better modeling of state elements, such as D-
Latch, DFF, and bus-keeping I/O logic.

Copy Pin Direction From
Golden

Copies the pin directions from the Golden design to the
Revised design. This is for all pins within the library
cells being validated.

Skip Extra Cell Reporting Skips reporting the cells that only exist in the Golden or
Revised design.
November 2019 347 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Conformal Custom
RAM Primitive - Standard

Use the RAM Primitive Standard page to create standard memory primitives.

➤ Choose Custom – RAM Primitive, and select the Standard tab.

Most of the RAM Primitive forms’s Speciality page options are the same as in the Specialty
and SRAM pages. See RAM Primitive Form Fields and Options on page 351 for more
information. Options that are unique to the Standard page are identified in the descriptions.
November 2019 348 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Conformal Custom
RAM Primitive - Specialty

Use the RAM Primitive Specialty page to create specialty memory primitives, such as CAMs,
using the RAM Primitive window. Unlike standard memory primitives, with specialty memory
primitives there is no column muxing, you can make the memory array core directly
accessible, and pre-address decode provides direct access to word lines

➤ Choose Custom – RAM Primitive, and select the Specialty tab.

Most of the RAM Primitive forms’s Speciality page options are the same as in the Standard
and SRAM pages. See RAM Primitive Form Fields and Options on page 351 for more
information. Options that are unique to the Speciality page are identified in the descriptions.
November 2019 349 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Conformal Custom
RAM Primitive - SRAM

Use the RAM Primitive SRAM page to create static random access memory primitives. An
SRAM family is a traditional single port RAM with custom read and write access to support
high speed applications and multiple access in a single clock cycle (read/write or write/read).
Bi-directional memory bit modeling support is available with this type of memory.

➤ Choose Custom – RAM Primitive, and select the SRAM tab.

Most of the RAM Primitive forms’s Speciality page options are the same as in the Standard
and Specialty pages. See RAM Primitive Form Fields and Options on page 351 and R/W
Sub-Page Fields and Options on page 353 for more information. Options that are unique to
the SRAM page are identified in the descriptions.
November 2019 350 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Conformal Custom
RAM Primitive Form Fields and Options

The following describes all fields and options for all pages of the RAM Primitive form. The
differences in each are noted.

General and Output Module Name specifies the name of the module.

Output File specifies the name of the output file.

Instance File specifies the name of the instance file.

Assertion Checking
(for the Standard and
Specialty pages)

During Verilog simulation, this specifies the type of
assertions to trigger for the occurrences: Ignore (the
default), Warning, or Error. You can select one or more
of the following:

■ Write Collision for multiple write or red/write ports.

■ R/W Collision between different read and write or
read and read/write ports.

■ Illegal Word does not use the entire address space.

Simultaneous Read/Write
(for the SRAM page)

Specifies the simultaneous read/write behavior. The
default is Read then Write.

Physical Parameters Sets default values for the following physical parameters,
which you can override during instantiation:

■ Words specifies the value for the number of words
(default is 512).

■ Data Bits specifies the value for the number of bits
per word (default is 16).

■ YMUX default is 8. (This is for standard and SRAM
primitives only.)
November 2019 351 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Conformal Custom
General Function Specifies your memory primitive’s general functionality.
You can select one or more of the following:

■ Idle Charge preserves pre-charge. Tristate bit lines
are modeled as high value (1).

■ Bit Set specifies asynchronous set for one or more
bits in the array for every address.

■ Bit Reset specifies asynchronous reset for one or
more bits in the array for every address.

■ Core Access (for specialty primitives only) specifies
access to every state of a pin.

■ Bi-Directional Model (for SRAM primitives only)
enables bi-directional bit cell model during synthesis.

■ Word Line Match (for SRAM primitives only)
specifies that latches are at the word line address
inputs of the simulation model and at the word lines
of the synthesized primitive.

Simulation Initialization ■ Array Initialization sets a simulation initialization of
array. This is required to support Verilog simulation.

■ Init File Format specifies the format of your
initialization file: BIN (the default) or HEX.

■ Init File specifies the name of the initialization file.

Write/Read Access Trigger
(for the SRAM page)

Specifies in the simulation model how the read and write
access is initiated: high, rising, or falling clock edge.

Port Configuration Configures the number of ports. The maximum number
for each port type is 8. This section controls the number
pages located at the bottom of the RAM Primitive form.

■ # RW Ports specifies the number of read/write
ports. This corresponds to the R/W # sub-tab.

■ # Write Ports specifies the number of write-only
ports. This corresponds to the Write # sub-tab.

■ # Read Ports specifies the number of read-only
ports. This corresponds to the Read # sub-tab.
November 2019 352 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Conformal Custom
Depending on what you specified in the Port Configuration section, Conformal displays sub-
pages (tabs) for each port. Use these to configure each of your ports.

R/W Sub-Page Fields and Options

Write Driver Enable Bit-Wise specifies a bit-wise driver write enable.

For the SRAM page, select Width or Weak-Write.

Bit Line Pullups generates memory primitive when -
sram option is used also ??

Column Options
(for the Standard page).

Separate MUX specifies that your memory writes and
reads bit line data through separate column-select
circuitry. Use the Write Enable or Read Enable options
to specify a column decode enable input, either
<port>_wclk or <port>_rclk, that can disable all
column selection.

Shared specifies that your memory writes and reads bit
line data through the same column-select circuitry. Use
the Enable sub-option to specify a column decode
enable input, <port>_colclk, that can disable all
column selection.

Pre-decoded specifies that your memory writes and
reads bit line data were previously decoded.

Decode Options
(for the Specialty page).

Address Decode specifies word lines that ere decoded
internally.

Pre-Decode specifies word lines that were previously
decoded.

Write Thru Checks Specifies how to treat write thru checks. Select Ignore,
Warn, or Error.

Out Boundary Specifies whether the out boundary should be a buffer,
D-latch flip-flop (DFF), or an Inverted Data Line.

For memories that do not have column MUXes, the
Inverted Data Line option brings the bit-line bar directly
out to the output and calls it <>port_doutB. For
memories with YMUXes, this option brings the bit-line
bar out and calls it <>port_doutB.
November 2019 353 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Conformal Custom
Write Sub-Page Fields and Options

Read Sub-Page Fields and Options

Write Driver Enable Choose Global or Bit-Wise.

Write Driver Types Choose Buffer, Tristate, Precharge, or Discharge.

Column Option
(for the Standard page).

Column Clock specifies an enable clock for the column
decoder.

Decode Options
(for the Specialty page).

Address Decode specifies word lines that ere decoded
internally.

Pre-Decode specifies word lines that were previously
decoded.

X Decode Option
(for the Standard page).

Row Clock specifies a clock enable for the row decoder.

Decode Options
(for the Specialty page).

Address Decode specifies word lines that ere decoded
internally.

Pre-Decode specifies word lines that were previously
decoded.

Column Option Column Clock specifies a clock enable for the column
decoder.

Bit Line Option
Bit Lines

Choose Differential, Single Wired-AND or Single
Wired-OR.

Out Boundary Specify whether the out boundary should be a buffer,
latch D flip-flop (DFF), or an Inverted Data Line.

For memories that do not have column MUXes, the
Inverted Data Line option brings the bit-line bar directly
out to the output and calls it <>port_doutB. For
memories with YMUXes, this option brings the bit-line
bar out and calls it <>port_doutB.
November 2019 354 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Conformal Custom
ROM Primitive

Use the ROM Primitive window to generate Verilog ROM primitive models.

➤ Choose Custom – ROM Primitive.

Click Create to generate the memory primitive, or Close to cancel your settings.

Module Name Specifies the name of the module.

Output File Specifies the name of the output file. You can type the
name, or use the Open File button to select an output
file.

Instance File Specifies the name of the instance file. You can type the
name, or use the Open File button to select an output
file.

Code File Specifies the name of the code file. You can type the
name, or use the Open File button to select an instance
file.

Code File Format Specifies a file format of Bin (the default) or Hex.

Default Output Value Specifies an output value of 0 (the default) or 1.
November 2019 355 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Conformal Custom
November 2019 356 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
14
Conformal ECO Designer Functionality
and Methodology

Note: This feature requires a Conformal ECO XL or GXL license.

An Engineering Change Order (ECO) is a change to a design after it has already been
processed, typically after place and route. There are two different types of ECOs: functional
and non-functional. Functional ECOs change the functionality of the design. Non-functional
ECOs do not change the design functionality and normally deal with timing, design rule, or
signal integrity.

For information on the Conformal ECO methodology, refer to the Conformal ECO User
Guide.
November 2019 357 Product Version 19.2
© 1999-2019 All Rights Reserved.

../ConformalECO_User/ConformalECO_UserTOC.html#firstpage
../ConformalECO_User/ConformalECO_UserTOC.html#firstpage

Conformal Equivalence Checking User Guide
Conformal ECO Designer Functionality and Methodology
November 2019 358 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
15
FPGA Capabilities and Process Flow

■ Overview on page 360

■ FPGA Front-End Verification on page 361

❑ Requirements and Licensing on page 361

❑ Front-End Verification Flow on page 361

❑ Current Capabilities on page 365

■ FPGA Back-End Verification Flow on page 367

❑ Generating a Post-PAR Gate Netlist on page 368

❑ Comparing the Designs on page 369

❑ Continuing the Conformal Verification Flow on page 370

■ Tips for the FPGA Flow on page 371

❑ Xilinx Tips on page 371

❑ Synplify Pro Tips on page 373

❑ General FPGA Tips on page 374
November 2019 359 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
FPGA Capabilities and Process Flow
Overview

More and more of today’s designers are using programmable logic devices in their designs.
FPGA designs have been closing the gap on their ASIC counterparts because of
technological advancements in density and performance.

As the size and complexity for FPGA devices increase, conventional verification approaches
that many FPGA designers have been using are no longer adequate. FPGA synthesis
involves steps that are unique to FPGA devices, such as FSM recoding, aggressive
sequential optimization, memory inference, and mapping to embedded on-chip functions.
The Conformal Equivalence Checker’s FPGA feature uses FPGA-specific modeling and
analysis techniques to check functional equivalencies during the FPGA implementation
process.

The FPGA feature is targeted at designs created by the Synplicity FPGA synthesis tool,
Synplify Pro. Better integration with FPGA synthesis means that FPGA runs verification
smoother and more efficiently. The FPGA feature reads in the setup files created by Synplify
Pro, thus creating a correct verification environment for the front end. Additionally, the FPGA
feature addresses the back end by allowing you to verify gate netlists that have been through
place and route (PAR) changes within the Integrated Synthesis Environment (ISE) from
Xilinx. That is, with the FPGA feature you will compare the post-synthesis gate netlists against
the post-PAR gate netlists, thereby allowing functional closure on your designs.
November 2019 360 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
FPGA Capabilities and Process Flow
The following figure illustrates an overview of the FPGA flow.

FPGA Front-End Verification

This section details the FPGA front-end verification. During front-end verification, the FPGA
feature compares the Golden RTL design with the post-synthesis Verilog gate netlist.

Requirements and Licensing

The FPGA flow requires Synplify Pro 8.0, Alliance™ Xilinx ISE 6.2i (or later), and Conformal
L 5.0 (or later).

Front-End Verification Flow

A summary of the front-end process flow is as follows, shown in the following figure.

■ Generate a post-synthesis gate netlist using Synplify Pro with the Verification Mode on.

■ Translate the .vif files into Conformal command files.
November 2019 361 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
FPGA Capabilities and Process Flow
■ Run Conformal using the /verif/<implementation_name>.vtc dofile.

■ Debug the designs if there are miscompares.

Generating a Gate Netlist

The first step in the FPGA flow is to generate a gate netlist using the Verification Mode in
Synplify Pro.

To access the Verification Mode from Synplify Pro, do one of the following:

■ Use the Synplify Pro GUI:

Turn on
Verification Mode

Generate
Netlist

Run
<implementation_name>.vtc

Mismatched
Results?Debug

Designs are Equivalent

Synplify Pro 8.0

Conformal L

Yes

No

Translate .vif
Files
November 2019 362 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
FPGA Capabilities and Process Flow
a. Choose Project – Implementation Options, or click the Impl Options button from
the Synplify Pro main window.

The Options for Implementation window appears.

b. Select the Device tab.

c. Under Technology, select one of the following supported technologies:

❍ Xilinx Spartan, Spartan-II, Spartan-IIE, Spartan-3, Virtex, Virtex-II, Virtex-II Pro,
Virtex-E.

d. Under Device Mapping Options, select Verification Mode.

e. Click OK.

■ Add the following line to your synthesis project file:
set_option -verification_mode 1

Continue synthesizing the design after turning on the verification mode.

Comparing RTL Versus Post Synthesis Verilog Gate Netlist

Synplify Pro operates in a verification mode in which it generates scripts and gate netlists
compatible with Conformal. This product records the optimizations it has performed during
synthesis in a verification interface format (VIF) file. The interface is triggered by enabling the
variables: Impl Options...Verification Mode, and Impl
Options...Implementation results...Write Verification Interface
Format (VIF) file in the GUI, or by inserting the following options in the synthesis project
file:

set_option -verification_mode 1
set_option -write_vif 1

Because Conformal does not read the VIF file directly, Synplicity provides a Tcl script called
vif2conformal.tcl to translate the content of this file to Conformal command file format.
You can run this script automatically after logic synthesis using a new mechanism available
in Synplify Pro v8.0. This mechanism provides a method to configure user-defined Tcl
commands at different times during the Synthesis process.

You can specify Tcl commands in a file called synhooks.tcl, and set the environment
variable SYN_TCL_HOOKS as follows:

SYN_TCL_HOOKS =<some path>/synhooks.tcl

The synhooks.tcl file template is available under the Synplify installation and can be
modified as required.
November 2019 363 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
FPGA Capabilities and Process Flow
The following portion from the synhooks.tcl file shows how to generate Conformal-specific
side files automatically. The vif2conformal translator is available in the
<Synplify_install>/lib/ directory (accessible through the $LIB variable).

proc syn_on_end_run {runName run_dir implName} {
runName: Name of the run Ex: compile, synthesis
run_dir: Current run directory.
implName: Implementation Name Ex:rev_1
puts "*** syn_on_end_run called. Options: $runName, $run_dir $implName"
TODO: Add your custom code here
global LIB
#cd to the verif directory under current implementation
cd $run_dir/verif
#Source vif2conformal script:
source $LIB/vif2conformal.tcl
#Set the variable "vif_file" to the .vif file
set vif_file [glob *.vif]
#Execute the vif2conformal on the .vif file
vif2conformal $vif_file
}
###

To run Synplify Pro FPGA synthesis in batch mode:

% synplify_pro -batch <project>.prj

Once logic Synthesis is run, Synplify Pro generates a Verification Interface File
<design>.vif in <project directory>/verif and a Verilog gate netlist
<design>.vm in the <project directory>.

The vif2conformal translation script will generate Conformal command files. For a list of these
files, see Synplify Pro Generated Setup Files on page 365.

To run verification on the generated gate netlist:

% cd <syn_project_dir>/verif
% lec -dofile <design>.vtc
Note: Make sure the $XILINX environment variable is defined. This environment variable
points to the Xilinx software tree where the formal verification libraries are stored.

Note: If Conformal encounters issues with any the side files, user can manually edit the
Conformal command files to fix the problem. Issues encountered in the past revolve around
register naming differences between Conformal and Synplify Pro.
November 2019 364 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
FPGA Capabilities and Process Flow
Continuing the Conformal Verification Flow

After running the Conformal dofile, proceed to debug the designs if there are any
miscompares. For more information see Chapter 8, “Debugging”.

Synplify Pro Generated Setup Files

Setup files are generated when you turn on the Verification Mode for Synplify Pro (see
Generating a Gate Netlist on page 362). The files are saved in the implementation directory
that contains the output files, under /verif. Conformal uses the setup files during
verification, thus you must run Conformal from the /verif directory:

■ vtc—Synplify Pro generates this file to run Conformal verification.

■ vlc—This file links Conformal to simulation libraries for the FPGA devices. A sample
vlc file contains something similar to the following:

-y $XILINX/verilog/verplex/unisims
-y $XILINX/verilog/verplex/simprims

You must set the correct path to $XILINX before running the verification.

■ vfc, vmc, vsc—These files give Conformal FSM encoding information, mapping
information, and setup constraints.

■ vif—Verification interface in ASCII format and it contains all of the Synplify Pro
information necessary to perform verification. The vtc, vlc, vfc, vmc, and vsc files are
generated automatically using the vif file.

■ vsq—This file contains sequential constant information. The run script does not utilize
this file because Conformal performs its own sequential constant learning.

Current Capabilities

This section describes FPGA capabilities for front-end verification. The FPGA feature
supports the following:

■ Flattened comparisons

■ Verilog, VHDL, and mixed Verilog/VHDL

■ Output files from Synplify Pro 8.0 on a Sun Solaris, Linux, or Hewlett-Packard HP-UX
platform, but not output files from a Microsoft Windows platform
November 2019 365 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
FPGA Capabilities and Process Flow
■ Xilinx Virtex and Spartan family of FPGA devices (Virtex, Virtex-E, Virtex-II, Virtex-II Pro,
Spartan, Spartan-II, Spartan-IIE, and Spartan-3)

■ Xilinx Alliance series (ISE 6.2 or later)

Support for Synthesis Features

The FPGA feature supports a wide range of synthesis features:

■ full_case

■ parallel_case

■ syn_direct_enable

■ syn_encoding

■ syn_hier

■ syn_keep

■ syn_maxfan

■ syn_multstyle

■ syn_noclockbuf

■ syn_replicate

■ syn_sharing

■ syn_srlstyle

■ syn_state_machine

■ syn_useenables

■ syn_useioff

■ translate_on/off

However, FPGA has limited support for the following features:

■ syn_romstyle (supports select_rom and logic)

■ syn_ramstyle (supports select_ram and registers)

The features that are not yet supported are:

■ xc_pullup/xc_pulldown
November 2019 366 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
FPGA Capabilities and Process Flow
■ syn_pipeline

■ syn_allow_retiming

■ syn_tristatomux.

FPGA Back-End Verification Flow

During back-end verification, Conformal compares the post-synthesis Verilog gate netlist
generated by Synplify Pro with the post-PAR Verilog gate netlist generated by Xilinx ISE 6.2
or later.

A summary of the back-end verification flow is as follows:

■ Generate a post-PAR gate netlist using Xilinx ISE 6.2 or later.

■ Read the post-synthesis gate netlist and the processed post-PAR gate netlist into
Conformal and compare the designs.

■ Debug the designs if there are miscompares.
November 2019 367 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
FPGA Capabilities and Process Flow
The following figure shows the process flow, which is described in detail in the sections that
follow.

Generating a Post-PAR Gate Netlist

Using the EDIF gate netlist produced by Synplify Pro, generate the post-PAR gate netlist. The
EDIF gate netlist is located in the synthesis implementation directory. There are two ways to
generate the gate netlist: with the GUI or the command terminal.

Synthesized
EDIF Netlist

Yes

NGDBuild

MAP

PAR

Read in Designs

Designs are Equivalent

Mismatched

Flattened NCD File

Mapped NCD

PARed NCD

Post-PAR NetlistSynthesized Verilog
Gate Netlist

Debug

No

Xilinx Implementation

Conformal L

NetGen
November 2019 368 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
FPGA Capabilities and Process Flow
■ From the Xilinx ISE GUI

■ From the command line

To generate the post-PAR gate netlist from the Xilinx ISE GUI:

1. Launch the Xilinx software and create a Xilinx ISE project using the EDIF gate netlist.

2. Create a post-PAR Verilog gate netlist using the Xilinx ISE tools.

Historically, Xilinx generated flat post-PAR netlists. However, in Xilinx ISE 5.i releases (or
later), you can maintain hierarchy levels. This allows for better control over blackboxing, and
running gate-to-gate Conformal hierarchically.

To maintain a hierarchy levels, create a file called <filename>.ucf that contains the
following directive:

INST <instance_path> KEEP_HIERARCHY = TRUE;

Then, run the Xilinx flow as follows:

1. Process EDIF
% ngdbuild -uc <filename>.ucf <filename>.edf <filename>.ngd

2. Run MAP
% map <filename>.ngd -o <mapped>.ncd

3. Run PAR
% par -w <mapped>.ncd <par>.ncd <pcffile>.pcf

4. Create Post-PAR Verilog file for equivalence checking
% netgen -ecn conformal -mhf -ngm <mapped>.ngm <par>.ncd <design_par_ecn>.v

Note: Netgen generates extra Verilog files that represent the hierarchical models that you
want to keep.

Comparing the Designs

To run verification, read the synthesized Verilog gate netlist from Synplify Pro and the
processed post PAR Verilog gate into Conformal. The following is a sample dofile for the
verification:

set log file lec.log –replace
add notranslate module RAM* X_RAM* -library –both

read design -f $XILINX/verilog/Verplex/verilog.vc \
<post_synthesis>.vm -verilog -Golden
read design -f $XILINX/verilog/Verplex/verilog.vc <post_PAR>.v -verilog -revised
November 2019 369 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
FPGA Capabilities and Process Flow
set flatten model -seq_constant
set flatten model –all_seq_merge
set flatten model –self_seq_merge

//Connect GSR and GTS to 0(GND)
add tied signal 0 glbl.GSR -rev
add tied signal 0 glbl.GTS –rev
add renaming rule r1 “_Z” “” -Golden
set mapping method -nets

// Flat comparison
set system mode lec
add compared points -all
compare

Continuing the Conformal Verification Flow

After comparing the two netlists, proceed to debugging the designs if there are any
miscompares.
November 2019 370 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
FPGA Capabilities and Process Flow
Tips for the FPGA Flow

This section discusses topics that can be helpful when using Conformal to formally verify
FPGA designs that are synthesized using Synplify Pro and implemented using Xilinx tools
and libraries.

Xilinx Tips

This section discusses tips for using the Xilinx tools and libraries.

Xilinx Formal Verification Libraries

Xilinx distributes two verification libraries for Conformal, which you can download and copy
into your Xilinx ISE 6.2i installation:

■ UNISIMS Xilinx library—A front-end Verilog library referenced by the Synplify Pro netlist.

Note: Designers can instantiate UNISIMS models directly into their RTL code. See
Instantiating UNISIM Models Directly into RTL on page 371.

■ SIMPRIM—A back-end Verilog library for designs that have gone through map or
place-and-route.

You can download the Cadence Conformal verification libraries at
http://www.xilinx.com/ise/partner_libraries. To download these libraries, you must have Xilinx
ISE 6.2i (or higher) installed on your system. After you download these libraries, copy them
into the following directories in your Xilinx ISE 6.2i installation:

$XILINX/verilog/verplex/unisims$XILINX/verilog/verplex/simprims
Note: $XILINX is an environment variable that points to your Xilinx installation directory.

Instantiating UNISIM Models Directly into RTL

To instantiate UNISIM models (such as DCM, clock buffers, LVDS input buffers, and
differential receivers) directly into RTL code, blackbox these instantiated blocks during the
RTL to gate comparison:

➤ Edit the Conformal command file called <design>.vtc by adding the
ADD NOTRANSLATE MODULE command before the READ DESIGN commands. For
example:
add notranslate module DCM IBUFGDS IBUFDS -both
add notranslate module RAMB* -both

.

.

November 2019 371 Product Version 19.2
© 1999-2019 All Rights Reserved.

http://www.xilinx.com/ise/partner_libraries

Conformal Equivalence Checking User Guide
FPGA Capabilities and Process Flow
.

If you are instantiating UNISIM models from the Synplify Pro software tree under
$SYNPLIFY_HOME/lib/xilinx/{virtex.v, virtex2.v, virtexe.v, unisim.v
etc.,}, always reference these libraries in the Synplicity Project file, as follows:

add_file -verilog "$LIB/xilinx/unisim.v"

This ensures that, when Conformal files are created from vif, the Conformal run script
<design>.vtc makes references to the Xilinx FV libraries—not the Synplicity models.
Reason being, the UNISIM models under the Synplify Pro software tree are defined as
blackboxes and, in some cases, models should not be blackboxed during the Conformal run.
This way, you have control over what gets blackboxed in the Golden and Revised design
netlists.

Xilinx CORE Generator

The Xilinx CORE Generator has a catalog of ready-made parameterized functions that range
from simple arithmetic operators (like adders, accumulators, and multipliers) to system-level
building blocks (like filters, transforms, and memory resources).

Xilinx does not provide synthesizable models for these cores, which is a prerequisite for
Conformal. Instead, Xilinx provides:

■ <block>.edn—A tailored, Xilinx implementation netlist with complete relative
placement information to guarantee performance

■ <block>.vho or <block>.veo—VHDL or Verilog instantiation code

■ <block>.vhd or <block>.v—VHDL or Verilog wrappers for simulation support

■ A schematic symbol

The lack of synthesizable models directly affects the equivalency checking flow, because the
implementation netlist generated by the Xilinx CORE generator cannot be verified against a
higher-level RTL Golden model. The assumption is that the generator creates a netlist that is
constructed correctly and that can map directly to a particular Xilinx device.

To work around this:

■ For RTL to post-FPGA synthesis comparisons:

Blackbox the Xilinx CORE Generator blocks for the Golden and Revised sides. Add the
following directive to the Conformal dofile, for each block generated by the Xilinx CORE
generator:
add notranslate module <module_name> -both
November 2019 372 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
FPGA Capabilities and Process Flow
■ For post-FPGA synthesis to post-PAR comparisons, either:

❑ Blackbox the Xilinx CORE generator blocks using the HRC verification capability in
Xilinx ISE 6.2i.

❑ Or, translate the EDIF netlist for blocks into Verilog, and instantiate it in both gate
netlists for comparison.

Xilinx provides a Perl script that runs the commands necessary to translate the EDIF
netlist into Verilog:
$XILINX/verilog/bin/<platform>/core2formal.pl

To run these commands, set the following Xilinx environment:
% xilperl $XILINX/verilog/bin/<platform>/core2formal.pl -verplex \
-<family> <block>.edn

Where:

❑ <family> can be virtex, virtexe, virtex2, virtex2p, spartan2,
spartan2e, or spartan3.

❑ <platform> can be:

❍ sol—Solaris UNIX workstations

❍ lin— for Linux workstations

❍ nt for PC workstations

Synplify Pro Tips

This section discusses tips for using Synplify Pro with Conformal.

Synplify Pro Limitations

Conformal does not support

■ Synplify Pro Pipelining or Register Retiming options.

■ RAM inference (not fully supported, see RAM Modeling on page 374)

■ MUX transformations

Hierarchical and Blackboxing Options

By default, Synplify Pro FPGA Synthesis performs cross-hierarchical boundary optimizations.
Even though the hierarchy in <design>.vm, which is the gate-level netlist that Synplify Pro
November 2019 373 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
FPGA Capabilities and Process Flow
generates, matches the RTL hierarchy, the module interfaces (ports) do not. Thus, you cannot
run the HRC flow in Conformal—you can only run the flat (default) runs.

If you want to blackbox a portion of the hierarchy, the module boundaries/pin-out must match
in both netlists. You can specify in Synplify Pro that you want to maintain the module-interface
boundaries using the following directive:

Syn_hier = "hard"

Without this directive, blackboxing results in non-equivalencies when you run Conformal.

General FPGA Tips

This section describes some general tips for using the FPGA feature in Conformal.

RAM Modeling

If you do not use the Xilinx CORE Generator to create RAM memories, you can infer the
memory in your RTL code. Synplify Pro provides directives and coding styles to infer
memories.

For RTL-to-gate comparisons, Conformal can compare distributed/select RAM memories and
single-port block RAM. Inferred dual-port block RAMs are harder to compare, and should be
blackboxed.

Distributed/select ROM implementation is supported in this flow, but mapping a ROM function
to a block RAM is not supported. To work around this, use the Xilinx CORE generator to
create the block RAM/ROM and then blackbox it for equivalence checking.

Handling Multipliers

If the RTL code contains multiplication(s), then Synplify Pro usually map them into Xilinx
MULT18X18 blocks (for Virtex2 devices). Consider the following RTL example:

module mult_11x13 (z, a, b);
output [23:0] z;
input [10:0] a;
input [12:0] b;
assign z = a * b;
endmodule

The synthesized netlist will instantiate a MULT18X18 block, as follows:
MULT18X18 \z.I_3 (
.P({\z.bmult.multxx_genmulta.0.genmultb.genmultb.0.multx_prod [35],
November 2019 374 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
FPGA Capabilities and Process Flow
\z.bmult.multxx_genmulta.0.genmultb.genmultb.0.multx_prod [34],
\z.bmult.multxx_pbuf_0 [33], \z.bmult.multxx_pbuf_0 [32], \z.bmult.multxx_pbuf_0 [31],
\z.bmult.multxx_pbuf_0 [30], \z.bmult.multxx_pbuf_0 [29], \z.bmult.multxx_pbuf_0 [28],
\z.bmult.multxx_pbuf_0 [27], \z.bmult.multxx_pbuf_0 [26], \z.bmult.multxx_pbuf_0 [25],
\z.bmult.multxx_pbuf_0 [24], z_c[23], z_c[22], z_c[21], z_c[20], z_c[19],
z_c[18], z_c[17], z_c[16], z_c[15], z_c[14], z_c[13], z_c[12], z_c[11],
z_c[10], z_c[9], z_c[8], z_c[7], z_c[6], z_c[5], z_c[4], z_c[3], z_c[2],
z_c[1], z_c[0]}),

.A({GND, GND, GND, GND, GND, b_c[12], b_c[11], b_c[10], b_c[9], b_c[8],
b_c[7], b_c[6], b_c[5], b_c[4], b_c[3], b_c[2], b_c[1], b_c[0]}),

.B({GND, GND, GND, GND, GND, GND, GND, a_c[10], a_c[9], a_c[8], a_c[7],
a_c[6], a_c[5], a_c[4], a_c[3], a_c[2], a_c[1], a_c[0]})
);

Notice that the operands of the multiplier were swapped in the gate netlist. To successfully
compare the RTL versus the gate, add the following commands to your Conformal dofile:

> set multiplier implementation csa -Golden
> set multiplier implementation csa -swap -revised

Conformal picks the csa multiplier architecture and swaps the operands on the Revised
netlist. If the swapping fails, Conformal aborts during the comparison.

For multipliers larger than 18x18 (such as 24X24), Synplify Pro uses more than one Xilinx
multiplier block because it cannot fit in a single MULT18X18 block. In this case, comparing the
RTL versus post-synthesis will generate aborts because the structure of the two multipliers is
very different. In such cases, you can either:

■ Use the Xilinx CORE generator to generate the desired large multiplier, rather than infer
it in the RTL. This way, it can be blackboxed during the RTL-to-gate comparison.

■ Or, isolate the multiplier to its own module and then blackbox it during the RTL-to-gate
comparison.

Using the Verilog Always Statement with Mixed Register Types

The following coding style can cause a mismatch between Conformal and Synplify Pro,
because of the way the code is interpreted. (Conformal is in line with simulation behavior.)

Consider the following example:

module test (clk, rst_l, a, b, q1, q2);
input clk, rst_l, a, b;
output q1, q2;
reg q1, q2;
 always @(posedge clk or negedge rst_l)
begin

 if (!rst_l)
 q1 <= 1'b0;

 else
begin
q1 <= a;
q2 <= b;
November 2019 375 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
FPGA Capabilities and Process Flow
end
end

endmodule

In the code above:

■ Synplify Pro implements q2 with a simple DFF (without reset) with b connected to the D
pin.

■ Conformal implements the q2 register as a DFF with a MUX at the D pin. Where the MUX
is selected by reset and the selection is between input signal b and q2 (hold condition).

To work around this inconsistency, recode your RTL as follows (using the example above):

module test (clk, rst_l, a, b, q1, q2);
input clk, rst_l, a, b;
 output q1, q2;
 reg q1, q2;
 always @(posedge clk or negedge rst_l)
 begin

 if (!rst_l)
 q1 <= 1'b0;

else
 begin

 q1 <= a;
end

end
always @(posedge clk)
begin

q2 <= b;
end

endmodule

The following reset coding style is not supported in Conformal. Consider the test case:

module test(in, clk, reset, out);
input clk, in, reset;
output out;
reg rx_reset;
reg out;
always @(posedge clk or posedge reset) begin

if (reset) rx_reset = 1'b0;
else rx_reset = 1'b1;

end
always @(posedge clk or posedge reset) begin

if (reset || rx_reset) out = 1'b0; // Problem Section
else
 out = in;

end
endmodule

Conformal does not support conditional expressions with asynchronous and synchronous
signals, in this case if (reset || rx_reset). (Commented in bold.)
November 2019 376 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
FPGA Capabilities and Process Flow
Instantiating Virtex/Virtex2 Startup Models Directly into RTL

For designs that instantiate start-up blocks, such as STARTUP_VIRTEX2, when a reset signal
other than GSR or GTS is connected to the start-up block, the synthesis tool (in the gate-level
netlist), connects this reset signal to all registers in the design. If the same behavior is not
described in the RTL model, Conformal treats the RTL and the gate-level netlist as non-
equivalent, unless the reset pin is constrained (on both designs) to 0. Consider the following
simple RTL example:

module top (in, clk, rst, out);
input in, clk, rst;
output out;
reg out;
STARTUP_VIRTEX2 STARTUP_I (.GSR(rst));
always @(posedge clk)
begin

out <= in;
end
endmodule

Since the asynchronous reset signal rst is not explicitly specified in the sensitivity list of the
always statement, the register synthesized on the RTL does not have a reset connection.
This causes a mis-compare in Conformal. To work around this, add a pin constraint:

> add pin constraint 0 rst -both

Or, modify the RTL code to behave like the actual implementation:

always @(posedge clk or posedge rst) begin
if (rst) out <= 1'b0;
else

out <= in;
end
November 2019 377 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
FPGA Capabilities and Process Flow
November 2019 378 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
A
VHDL Support

■ Supported and Unsupported IEEE Packages on page 380

■ Read Design on page 387

■ Architectures on page 389

■ Configurations on page 390

■ Declarations on page 393

■ Names on page 394

■ Expressions on page 399

■ Sequential Statements on page 400

■ Concurrent Statements on page 406
November 2019 379 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
VHDL Support
Supported and Unsupported IEEE Packages

The following table lists standard and IEEE packages in two columns: Supported and Not
Supported (Ignored).

For a list of Vital packages that are supported, see Vital Package Support on page 385.

The following table lists the RTL VHDL synthesis subset constructs that are:

■ Supported

■ Ignored

■ Unsupported

Standard and IEEE Packages

Supported: Partially Supported:

standard.vhdl vital_primitives-body.vhdl

textio.vhdl vital_primitives.vhdl

std_logic_1164.vhd vital_timing-body.vhdl

std_logic_arith.vhd vital_timing.vhdl

std_logic_misc.vhd

std_logic_signed.vhd

std_logic_unsigned.vhd

std_logic_textio.vhd

Support Status for RTL VHDL Synthesis Subset Constructs

Design Units: entity supported

generics supported

port default value supported for undriven
submodule input ports.

Architectures: multiple architectures supported
November 2019 380 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
VHDL Support
global signals supported*
See Global Signal on
page 389.

Configurations: configuration declaration supported

block configuration supported

use supported

attribute specifications ignored

component configurations supported*
See Component
Configuration on page 390.

hierarchical block
configuration

ignored

Packages: standard/predefined
packages

supported

IEEE arith/signed/unsigned
packages

supported

Libraries supported

Subprograms: default value ignored

unconstrained parameters supported

subprogram recursion supported

resolution functions supported

Data Types: enumeration supported

integer supported

physical ignored

floating ignored

one-dimensional array supported

two-dimensional array supported

three-dimensional array supported

multi-dimensional array supported

record supported

Support Status for RTL VHDL Synthesis Subset Constructs
November 2019 381 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
VHDL Support
access ignored

file ignored

incomplete type declaration unsupported

Declarations: constant supported

deferred constant unsupported

signal supported

register unsupported

bus supported

initial value supported*
See Initial Value on
page 393.

variable supported

shared variable supported*
See Shared Variable on
page 393.

file ignored

buffer port supported

linkage port supported

alias supported

component supported

attribute supported

Specifications: attribute others/all supported

configuration specifications supported

disconnection specifications unsupported

Names: simple names supported

selected names supported

operator symbols supported

indexed names supported

Support Status for RTL VHDL Synthesis Subset Constructs
November 2019 382 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
VHDL Support
sliced names supported*
See Sliced Names on
page 394.

predefined attributes supported*
See Predefined Attributes on
page 395.

user-defined attributes supported*
See User-Defined Attributes
on page 399.

Operators: logical supported

relational supported

addition supported

signing supported

multiplying supported

miscellaneous supported

operator overloading supported

short-circuit operations unsupported

Expressions: based literals supported

null literals unsupported

physical literals ignored

strings supported

aggregates supported

function calls supported*
See Function Calls on
page 399.

qualified expressions supported

type conversions supported

allocators unsupported

static expressions supported

universal expressions supported

Support Status for RTL VHDL Synthesis Subset Constructs
November 2019 383 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
VHDL Support
Sequential Statements: wait supported*
See Wait Statements on
page 400.

assertion ignored

report ignored

guarded signal assignment supported*
See VHDL GUARDED Block
Support on page 402.

transport / after ignored

signal assignment supported*
See Signal Assignment on
page 402.

variable assignment supported

procedure call supported*
See Procedure Calls on
page 404.

if statement supported

case statement supported

for loop statement supported*
See For Loops on page 404.

while loop statement supported*

See While Loops on
page 406.

next statement supported

exit statement supported

return statement supported

null statement supported

Concurrent Statements: block guard supported*
See VHDL GUARDED Block
Support on page 402.

block supported

Support Status for RTL VHDL Synthesis Subset Constructs
November 2019 384 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
VHDL Support
Note: The * denotes limited support. See the following section for information about
restrictions on these constructs.

Vital Package Support

The Conformal software support the following functions and procedures with ignored delay
values:

process supported

sensitivity list ignored

concurrent procedure call supported

concurrent assertion ignored

concurrent signal assignment supported*
See Signal Assignment on
page 402.

guarded concurrent signal
assignment

supported*
See VHDL GUARDED Block
Support on page 402.

multiple waveforms unsupported

component instantiation supported

generate supported

VitalAND VitalXOR2 VitalNOR3 VitalBUF VitalDECODER2

VitalOR VitalNAND2 VitalXNOR3 VitalINV VitalDECODER4

VitalXOR VitalNOR2 VitalAND4 VitalMUX2 VitalDECODER8

VitalNAND VitalXNOR2 VitalOR4 VitalMUX4 VitalDECODER

VitalNOR VitalAND3 VitalXOR4 VitalMUX8 VitalPathDelay

VitalXNOR VitalOR3 VitalNAND4 VitalMUX VitalPathDelay01

VitalAND2 VitalXOR3 VitalNOR4 VitalPathDelay01Z

VitalOR2 VitalNAND3 VitalXNOR4 VitalWireDelay

Support Status for RTL VHDL Synthesis Subset Constructs
November 2019 385 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
VHDL Support
VHDL 2008 Support

Types

Unconstrained Elements Array supported

Records not supported.

Declarations

PSL Declarations not supported

Reading of Output Ports supported (might
issue rule violation in
VHDL 93)

Non-static Expressions in
Port Map

supported.

Aliases of
Multidimensional Arrays

supported

Expressions

Unary Logical Operators for loop statement supported

Matching Relational
Operators

?=, ?/=, ?<, ?<=, ?>, ?>= supported.

Conditional Operators ?? supported

External Names

(only supported for parsing and skipping the information)

Relative Paths not supported

Absolute Paths not supported

Package Paths not supported

Concurrent Statements

PSL Directives not supported

Process All supported

Lexical

Comments C Style Comments supported (some
limitation in handling
of pragma)

Literals Enhanced Bit String Literals supported
November 2019 386 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
VHDL Support
Read Design

Important

You must specify all necessary VHDL files explicitly in the READ DESIGN command.
In addition, you must read in all related VHDL files in a single READ DESIGN
command.

Library Mapping

You can specify how VHDL libraries are mapped using the READ DESIGN command’s -map,
-mapfile, or -library options.

The -map and -library options work the same in that they map logical library names to
physical directories. You can use multiple -map commands to map multiple physical
directories to one logical library. Use the -mapfile option for more specific library mapping,
such as specifying that a list of files must be compiled into a specified library. If you read in a
file without specifying its library mapping, that file is stored in a default library called work in
a design space or worklib in a library space.

Note: You can map a file into more than one library. In this case, the file is stored in each
library for which it is mapped.

Performing Library Mapping

This section demonstrates how to use the READ DESIGN command to perform library
mapping.

For example, your current directory contains the following files:

Physical File/Directory Contents

top.vhd See Example A-1.

lib1/pkg1.vhd Package package1

lib1/pkg1_body.vhd Package body of package1

lib2/pkg2.vhd Package package2

lib2/pkg2_body.vhd Package body of package2
November 2019 387 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
VHDL Support
Table A-1 Desired Library Mapping

Example A-1 Contents of top.vhd
-------- top.vhd begin --------
library LIB1;
use LIB1.package1.all;
library LIB2;
use LIB2.package2.all;
entity top ...;
architecture rtl of top ...;
-------- top.vhd end --------

To achieve the Desired Library Mapping outlined in Table A-1, the READ DESIGN command
should look like one of the following:

■ read design -vhdl top.vhd -map LIB1 lib1 -map LIB2 lib2

■ read design -vhdl top.vhd -library LIB1 lib1 -library LIB2 lib2

■ read design -vhdl top.vhd \
-mapfile LIB1 lib1/pkg1.vhd lib1/pkg1_body.vhd \
-mapfile LIB2 lib2/pkg2.vhd lib2/pkg2_body.vhd

Note: The tool terminates the <file_list> for -mapfile when it encounters the next
option or the end of the READ DESIGN command. For example, the following command does
not generate the desired library mapping for this example. The tool terminates the file list at
top.vhd; because of this, top.vhd is added to the LIB2 library—not the work directory.

read design -vhdl \
-mapfile LIB1 lib1/pkg1.vhd lib1/pkg1_body.vhd \
-mapfile LIB2 lib2/pkg2.vhd lib2/pkg2_body.vhd \
top.vhd

In the following example, top.vhd is correctly added to the work library because the LIB2
file list terminates at lib2/pkg2_body.vhd.

read design -vhdl \
-mapfile LIB1 lib1/pkg1.vhd lib1/pkg1_body.vhd \
-mapfile LIB2 lib2/pkg2.vhd lib2/pkg2_body.vhd \
-Golden \
top.vhd

Logical Library Name Physical File/Directory

LIB1 lib1

LIB2 lib2

work top.vhd (implicit)
November 2019 388 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
VHDL Support
Handling Unspecified Library Mappings

The tool handles library.declaration references as follows:

■ If the library is defined and the declaration exists, the tool returns the declaration.
Otherwise, the tool searches for the declaration in the work directory. If the tool finds the
declaration, it returns the declaration.

■ If the library is undefined, because of unspecified library mappings, the tool searches
through the work library. If the tool finds the declaration in the work library, it returns the
declaration with a note; otherwise, the tool returns an error message.

■ If the tool finds a work.declaration reference while parsing a file that is stored in a
logical library (for example, lib1), the tool searches through lib1, and then through the
default work library for the declaration. Once the tool finds the declaration, it returns the
declaration. The tool notifies you when it returns a declaration from the default work
library.

Architectures

Global Signal

Restriction

The Conformal software does not support a Global Signal when the design includes it in
multiple entities. When the design uses a Global Signal within an entity, it is treated as a local
signal.

Example

In the following example, the Conformal software does not support the Global Signal glob1
because it is used in two entities. See lines 10 and 19 in bold.

1. PACKAGE pack IS

2. SIGNAL glob1 : BOOLEAN;

3. END pack;

4.

5. USE work.pack.all;
November 2019 389 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
VHDL Support
Configurations

Component Configuration

The Conformal GENERATE support Component Configurations for references to labels and
indices of GENERATE statements. In the following example, the Component Configuration
uses GENERATE labels and indices. See bold lines 17, 20, and 24.

6. ENTITY test IS

7. … END test;

8. ARCHITECTURE arch OF test IS

9. …

10. glob1 <= in0 OR in1;

11. END arch;

12.

13. USE work. pack.all;

14. ENTITY test2 IS

15. …

16. END test2;

17. ARCHITECTURE arch OF test2 IS

18. …

19. glob1 <= in0 AND in1;

20. END arch;

1. ARCHITECTURE rtl_arch OF design IS

2. COMPONENT comp_a PORT(…) END COMPONENT;

3. COMPONENT comp_b PORT(…) END COMPONENT;

4. BEGIN

5. gen_label_1: FOR idx IN 0 TO 255 GENERATE

6. comp_a (…);
November 2019 390 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
VHDL Support
Nested Configurations

The Conformal software supports nested configurations and configurations with more than
one level of hierarchy. It allows multiple architectures of an entity to exist by creating new
modules with composite names created from the entity and architecture names. The
Conformal software also allows the same architecture to be configured differently internally
for different instances by creating a unique composite name for each such differing sub-
configuration.

7. END FOR;

8. gen_label_2: FOR idx IN 0 TO 255 GENERATE

9. comp_b (…);

10. END FOR;

11. END

12.

13. CONFIGURATION real_config OF design IS

14. USE work.all;

15. FOR rtl_arch

16. -- using generate statement label and indices

17. FOR gen_label_1(255 DOWNTO 1)

18. USE CONFIGURATION my_lib.comp_a_config;

19. END FOR;

20. FOR gen_label_1(0)

21. USE CONFIGURATION my_lib.comp_a_config_2;

22. END FOR;

23. -- using generate statement label w/o indices

24. FOR gen_label_2

25. USE CONFIGURATION my_lib.comp_b_config;

26. END FOR;

27. END FOR;

28. END;
November 2019 391 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
VHDL Support
The following is an example:

-- entity e1 has two architectures e1a0 and e1a1
entity e1 is

port (e1out : out BIT);
end e1;
architecture e1a0 of e1 is
begin

e1out <= ’0’;
end e1a0;
architecture e1a1 of e1 is
begin

e1out <= ’1’;
end e1a1;
-- entity e2 has an architecture e2arch which has a component C1
entity e2 is

port (e2out : out BIT);
end e2;
architecture e2arch of e2 is

component C1 is
port (e1out : out BIT);

end component C1;
begin

e2i1 : C1 port map (e1out => e2out);
end e2arch;
-- a configuration for e2 which binds component C1 to
entity/architecture e1(e1a0)
use work.e1;
configuration e2conf of e2 is

for e2arch
for e2i1 : C1 use entity e1(e1a0);
end for;

end for;
end configuration e2conf;
-- entity e3
entity e3 is

port (e3out1, e3out2 : out BIT);
end e3;
architecture e3arch of e3 is

component C2 is
port (e2out : out BIT);

end component C2;
begin

e3i1 : C2 port map (e2out => e3out1);
e3i2 : C2 port map (e2out => e3out2);

end e3arch;
configuration e3conf of e3 is

for e3arch
for e3i1 : C2

use configuration work.e2conf; -- nested configuration
end for;
for e3i2 : C2

use entity work.e2(e2arch); -- further configuring sub-hierarchy
November 2019 392 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
VHDL Support
for e2arch
for e2i1 : C1 use entity work.e1(e1a1);
end for;

end for;
end for;

end for;
end configuration e3conf;

Declarations

Initial Value

The Conformal software supports Initial Value variables or signals with the READ DESIGN
command’s -initial_value option.

Example

In the following example, signal out1 will get the initial value of high, which is ’1’. This initial
value ’1’ will be discarded if the variable high is assigned.

Shared Variable

Restriction

The Conformal software does not support Shared Variables when they are declared inside a
package.

1. proc1 : PROCESS is

2. VARIABLE high : BIT := ’1’;

3. BEGIN

4. out1 <= high;

5. END PROCESS proc1;
November 2019 393 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
VHDL Support
Example

In the following example, the Conformal software does not support the SHARED VARIABLE
counter because it is declared inside a package. See line 5, in bold.

Names

Sliced Names

Restriction

The Conformal software does not support Sliced Names when their ranges are not
computable.

Example

In the following example, the Conformal software does not support Sliced Name in0 (idx
DOWNTO 0) because input idx is not computable. See line 15, in bold.

1. LIBRARY IEEE;

2. USE IEEE.STD_LOGIC_1164.ALL;

3.

4. PACKAGE pack1 IS

5. SHARED VARIABLE counter: INTEGER RANGE 0 TO 99 := 0;

6. END PACKAGE pack1;

1. ENTITY test IS

2. PORT (

3. clk : IN BIT;

4. idx : IN INTEGER RANGE 0 TO 3;

5. in0 : IN BIT_VECTOR(3 DOWNTO 0);

6. out0 : OUT BIT_VECTOR(3 DOWNTO 0)
November 2019 394 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
VHDL Support
Predefined Attributes

The Conformal software only supports the following Predefined Attributes:

7.);

8. end test;

9.

10. ARCHITECTURE arch OF test IS

11. BEGIN

12. proc1 : PROCESS (clk)

13. BEGIN

14. IF clk‘EVENT AND clk=‘1’ THEN

15. out0 <= in0(idx DOWNTO 0);

16. END IF;

17. END PROCESS;

18. END arch;

■ LEFT ■ RIGHT

■ HIGH ■ LOW

■ RANGE ■ REVERSE_RANGE

■ LENGTH ■ ASCENDING

■ LEFTOF ■ RIGHTOF

■ PRED ■ SUCC

■ POS ■ VAL

■ BASE ■ EVENT*

■ STABLE* ■ LAST_VALUE*

■ TRANSACTION*

*See Restriction 2 on page 396.
November 2019 395 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
VHDL Support
Restriction 1

The return value of a Predefined Attribute must be globally computable.

Example 1

In the following example, the Conformal software does not support the Predefined Attribute
RANGE because the variable tmp is not computable. See line 13, in bold.

Restriction 2

The Conformal software supports the asterisked (*) predefined attributes (shown above), but
only when they are used with synthesizable clock expressions.

1. ENTITY attributes3 IS

2. PORT (input : IN BIT_VECTOR(7 DOWNTO 0);

3. output1 : OUT BIT_VECTOR(7 DOWNTO 0);

4. idx : In INTEGER RANGE 0 TO 7

5.);

6. END attributes3;

7.

8. ARCHITECTURE arch OF attributes3 IS

9. BEGIN

10. PROCESS (input)

11. VARIABLE tmp: BIT_VECTOR(idx DOWNTO 0);

12. BEGIN

13. FOR i IN tmp’RANGE LOOP

14. output1(i) <= input(i) XOR ’1’;

15. END LOOP;

16. END PROCESS;

17. END arch;
November 2019 396 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
VHDL Support
Example 2a

In this example, the Conformal software supports the Predefined Attribute STABLE because
it is used in a synthesizable clock expression on line 3 (in bold).

Example 2b

In this example, the Conformal software does not support the Predefined Attribute EVENT
because the design uses it in a non-synthesizable clock expression on line 3 (in bold).

Out-of-Range Handling

For the following attributes:

If variable x is out-of-range, the Conformal software has two choices to interpret the attribute
value:

■ If -RANGECONSTRAINT is specified in the READ DESIGN command, (or set hdl
compiler rangeconstraint), Conformal will result dont care for attributes when ’x’
if out-of-range

1. PROCESS

2. BEGIN

3. IF NOT clk’STABLE AND clk = ’1’ THEN

4. ...

1. PROCESS

2. BEGIN

3. IF clk’EVENT THEN

4. …

■ LEFTOF ■ RIGHTOF

■ PRED ■ SUCC

■ VAL
November 2019 397 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
VHDL Support
■ If -RANGECONSTRAINT is not specified, the Conformal software will result a value for
attribute as following:

For example:

type T is (e0, e1, e2, e3, e4, e5);
attribute ENUM_ENCODING: STRING;
attribute ENUM_ENCODING of T: type is "1100 0110 1000 0110 0100 0001";
subtype ST is T range e4 downto e1;

-- p = 0
ST’val(p) = 0000
-- x = e0 (1100)
ST’succ(x) = e4 (0100)
ST’pred(x) = e1 (0110)
ST’rightof(x) = e1 (0110)
ST’leftof(x) = e4 (0100)
-- x = e1 (0110)
ST’pred(x) = ST’rightof(x) = e1 (0110)
-- x = e4 (0100)
ST’succ(x) = ST’leftof(x) = e4 (0100)

Note: The default values of the attributes are only for the scenarios where x is a variable. If
the argument of these attributes is a constant which is out-of-range, the Conformal software
will error it out.

If you use the READ DESIGN command with the -architecture, -configuration,
-rootconfig, and -lastmod options, the Conformal software links the entity/architecture
based on the following priorities:

1. -rootconfig has the highest priority.

2. -configuration has the second priority.

3. -architecture has the third priority.

4. -lastmod is the fourth priority.

T’VAL(x) x itself

T’SUCC(x) T’RIGHT if T is ascending, T’LEFT is T is descending

T’PRED(x) T’LEFT if T is ascending, T’RIGHT is T is descending

T’RIGHTOF(x) T’RIGHT

T’LEFTOF(x) T’LEFT
November 2019 398 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
VHDL Support
User-Defined Attributes

Restriction

Conformal ignores all User-Defined Attributes except when they are used in one of the
following forms:

■ Form A:
TYPE state_type IS (Init, State1, State2, State3);
ATTRIBUTE enum_encoding : STRING;
ATTRIBUTE enum_encoding OF state_type :

TYPE IS "0001 0010 0100 1000";
SIGNAL current_state, next_state: state_type;

■ Form B:
TYPE state_type IS (Init, State1, State2, State3);
ATTRIBUTE enum_encoding : STRING;
ATTRIBUTE enum_encoding OF state_type :

TYPE IS "Init=0001,State1=0010,State2=0100,State3=1000";
SIGNAL current_state, next_state: state_type;

Expressions

Function Calls

Restriction

The Conformal software does not support a Function Call when the function includes a WAIT
construct or clock signal.

Example

In the following example, the Conformal software does not support FUNCTION func1
because it contains a clock expression on line 3 (in bold).

1. FUNCTION func1 (in0, clk : IN STD_LOGIC) RETURN STD_LOGIC IS

2. BEGIN

3. IF clk’EVENT AND clk = ’1’ THEN
November 2019 399 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
VHDL Support
Sequential Statements

Wait Statements

Caution

The Conformal software supports multiple WAIT statements. However, if
you choose to use multiple WAIT statements, Cadence recommends
verifying that the FSM encoding is what you expected.

Restriction 1

The Conformal software does not support WAIT statements used within subprograms.

Example 1

In this example, the Conformal software does not support the WAIT statement because it is
used within a procedure. See line 3, in bold.

Restriction 2

When a design uses a WAIT statement within one path of a process, all other paths of the
same process must have at least one WAIT statement.

4. …

1. PROCEDURE pro1 (in0, clk : IN STD_LOGIC) IS

2. BEGIN

3. WAIT UNTIL clk’EVENT AND clk = ’1’;

4. …
November 2019 400 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
VHDL Support
Example 2

In this example, the Conformal software does not support the WAIT statement inside process
proc1 because the WAIT statement is used in the ELSE branch (line 18), but not in the IF
branch.

1. ENTITY test IS

2. PORT (

3. clk : IN BIT;

4. x : IN BIT;

5. in0 : IN BIT_VECTOR(3 DOWNTO 0);

6. out0 : OUT BIT_VECTOR(3 DOWNTO 0);

7.);

8. END test;

9.

10. ARCHITECTURE arch OF test IS

11. BEGIN

12.

13. proc1 : PROCESS (clk,x)

14. BEGIN

15. IF (x=’1’) THEN

16. out0 <= (others => ’0’);

17. ELSE

18. WAIT UNTIL clk’EVENT AND clk=’1’ ;

19. out0 <= in0;

20. END IF;

21.

22. END PROCESS;

23. END arch;
November 2019 401 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
VHDL Support
Restriction 3

The Conformal software does not support the WAIT FOR statement.

Example 3

In this example, the Conformal software does not support the WAIT FOR statements in lines
4 and 6.

Signal Assignment

The following Signal Assignment information applies to Sequential Statements and
Concurrent Statements.

VHDL GUARDED Block Support

The Conformal software supports GUARDED Signal Assignments. A GUARDED signal is a
signal for which several drivers exist. The synthesis interpretation and limitations are:

1. Latch devices will be synthesized.

2. No tri-state devices will be synthesized. For BUS or REGISTER signal types, the software
issues the following warning message:
RTL2.8: ’BUS’ and ’REGISTER’ signal type are not supported for synthesis.

3. For guarded assignment without guard signal, the Conformal software issues the
following errors:

1. clock_gen: PROCESS

2. BEGIN

3. iclk <=’0’;

4. WAIT FOR clk_prd/2;

5. iclk <=’1’;

6. WAIT FOR clk_prd/2;

7. END PROCESS clock_gen;

8. clk <= iclk;

9. …
November 2019 402 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
VHDL Support
RTL2.9: Guarded assignment requires GUARD signal
RTL2.10: Guard is not declared

4. You can use the multi_port portname pragma to specify multi-port latches. In the
following example, port l1 is the multi_port:
library ieee;
use ieee.std_logic_1164.all;
entity test is
port (

a, c, g,b_init, d, s_in, inv_c :in std_logic;
l1_out, l2_out, s_out: out std_logic);

end test;
architecture arch of test is

signal l1: std_logic register := ’0’;
signal l2: std_logic register := ’0’;

begin
-- pragma multi_port l1
load : block(c = ’1’ and g = ’1’) begin

l1 <= guarded d;
end block;
scan : block(a = ’1’) begin

l1 <= guarded s_in xor inv_c;
end block;
shft : block(b_init = ’1’) begin

l2 <= guarded l1;
end block;
l1_out <= l1;
l2_out <= l2;
s_out <= l2 xor inv_c;

end arch;

Example 1

In the following example, the Conformal software does not support the GUARDED signal. See
line 2, in bold.

Restriction 1

The Conformal software ignores delay mechanisms used in signal assignments; for example,
AFTER, TRANSPORT and INERTIAL.

1. bb: BLOCK (RISING_EDGE (clock))

2. z <= GUARDED x;

3. END bb;

4. …
November 2019 403 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
VHDL Support
For example, the Conformal software ignores AFTER, INERTIAL, and TRANSPORT. See lines
1, 2, and 3.

Procedure Calls

Restriction

The Conformal software does not support Procedure Calls when the procedure includes a
WAIT construct or clock signal.

Example

this example, the Conformal software does not support PROCEDURE proc1 because it
contains a clock expression. See line 3, in bold.

For Loops

Restriction

The Conformal software does not support FOR-LOOP when the loop index range is globally
non-computable.

1. Output_pin1 <= Input_pin AFTER 10 ns;

2. Output_pin2 <= INERTIAL Input_pin AFTER 30 ns;

3. Output_pin3 <= TRANSPORT Input_pin AFTER 40 ns, NOT Input_pin AFTER 70 ns;

4. …

1. PROCEDURE proc1 (in0 : INOUT STD_LOGIC; clk : IN STD_LOGIC) IS

2. BEGIN

3. IF clk’EVENT AND clk = ’1’ THEN

4. …
November 2019 404 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
VHDL Support
Example

In the following example, the Conformal software does not support the FOR-LOOP because
the input count is not computable. See line 17, in bold.

1. LIBRARY IEEE;

2. USE IEEE.STD_LOGIC_1164.ALL;

3.

4. ENTITY for_loop IS

5. PORT (data : IN STD_LOGIC_VECTOR(3 DOWNTO 0);

6. clk : IN STD_LOGIC;

7. count : IN INTEGER RANGE 0 TO 5;

8. data_out : OUT STD_LOGIC_VECTOR(3 DOWNTO 0));

9. END for_loop;

10.

11. ARCHITECTURE rtl OF for_loop IS

12. BEGIN

13. PROCESS (clk, count)

14. VARIABLE data_temp : STD_LOGIC_VECTOR(3 DOWNTO 0);

15. BEGIN

16. IF (CLK’EVENT AND CLK = ’1’) THEN

17. FOR i IN 0 TO count LOOP

18. data_temp(i) := data(i);

19. END LOOP;

20. END IF;

21. data_out <= data_temp;

22. END PROCESS;

23. END rtl;
November 2019 405 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
VHDL Support
While Loops

Restriction

Conformal does not support while loops that have loop control statements.

Example

In the following example, the while loop in line 20 is not supported because it contains a loop
control statement.

1. LIBRARY IEEE;
2. USE IEEE.STD_LOGIC_1164.ALL;
3.
4. ENTITY while_loop IS
5. PORT (data : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
6. clk : IN STD_LOGIC;
7. count : IN INTEGER RANGE 0 TO 5;
8. data_out : OUT STD_LOGIC_VECTOR(3 DOWNTO 0));
9. END while_loop;
10.
11. ARCHITECTURE rtl OF while_loop IS
12. BEGIN
13. PROCESS (clk, count)
14. VARIABLE i: integer;
15. VARIABLE data_temp : STD_LOGIC_VECTOR(3 DOWNTO 0);
16. BEGIN
17. IF (CLK'EVENT AND CLK = '1') THEN
18. i := 0;
19. WHILE(i<4) LOOP
20. NEXT WHEN i = 1;
21. data_temp(i) := data(i);
22. i := i + 1;
23. END LOOP;
24. END IF;
25. data_out <= data_temp;
26. END PROCESS;
27. END rtl;

Concurrent Statements

Signal Assignment

See Signal Assignment on page 402.
November 2019 406 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
B
Verilog Support

■ Verilog Configurations on page 408

❑ Supported Constructs on page 408

❑ Unsupported Constructs and Workaround Solutions on page 409

❑ Instance Configuration Examples on page 410

■ Verilog 2001 Support Tables on page 411

❑ Supported on page 411

❑ Limited Support on page 412

❑ Ignored on page 412

❑ Not Applicable on page 413
November 2019 407 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Verilog Support
Verilog Configurations

A configuration is an explicit set of rules that specify the exact source description to be used
to represent each instance in a design. There could be more than one model describing the
same module if they are at different levels of abstraction, such as behavioral, synthesis, and
simulation. A configuration allows you to specify which model is to be used for each instance
(or selected instances) in the design.

The Conformal software supports a subset of Verilog configurations, as defined in the Verilog
2005 Language Reference Manual. In particular, ‘hierarchical use configurations,’ liblist
ordering, and cell configurations are not supported. The namespace mapping is supported
through the READ DESIGN command’s -map and -mapfile options. The Conformal
software supports the configuration of several levels of hierarchy through instance
configurations.

The Conformal software allows Verilog modules read during READ DESIGN to be stored in a
user defined design namespace using the -map or -mapfile option. If either option is not
specified, the Verilog modules are stored in the default design namespace called ’work’. The
verilog modules read in during READ LIBRARY are automatically stored in a default library
namespace also called ’work’. Thus, ’work’ is the name of two default namespaces in
Conformal: default design namespace and default library namespace. For Liberty library
cells, the name of the library is itself the name of the namespace.

If a module is specified in the configuration along with a library name, for example,
clock_lib.clock_mod_1, then the module clock_mod_1 is searched only in the
namespace clock_lib. However, if a module work.mod_2 or simply mod_2 was specified,
then the design namespace ’work’ is first searched for module mod_2. Only if the module is
not found, is the library space ’work’ searched.

Supported Constructs

The Conformal software supports the configuration of several levels of hierarchy through
instance configurations. For example, the following instance configurations is the supported
constructs:

config cfg;
design work.top;
instance top.i1 use lib1.mybuf;

// the instance i1 of module top is bound to the module mybuf in library lib1
endconfig
November 2019 408 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Verilog Support
Synthesizable UDPs

Conformal tools focus on synthesizable user-defined primitives (UDPs). The behavior,
however, might be different in simulation tools. For example, the following UDPs are
synthesized as the same OR gate in Conformal, but in simulation tools they might have
different behavior.

table
//A1, A2: O
1 0: 1;
0 1: 1;
1 1: 1;
0 0: 0;
endtable
table
//A1, A2: O
1 ?: 1;
? 1: 1;
0 0: 0;
endtable

Unsupported Constructs and Workaround Solutions

liblist ordering is not supported. For example, the module top has two instances i1 and
i2 in top.v.

There is one module mybuf in mybuf.v. The following commands will map the module
mybuf to user defined design namespace lib1/lib2 and map the module top to user
defined design namespace mywork.

read design -root top -noelab \
-mapfile lib1 lib1_src/mybuf.v \
-mapfile lib2 lib2_src/mybuf.v \
-mapfile mywork mywork_src/top.v

The following construct binds instance top.i1 to module mybuf in lib1, and binds instance
top.i2 to module mybuf in lib2 using the liblist constructs.

config cfg;
design mywork.top;
instance top.i1 liblist lib1;
instance top.i2 liblist lib2;

endconfig

Since the liblist is an unsupported construct, the workaround solution is to use instance
configuration as the following:

config cfg;
design mywork.top;
instance top.i1 use lib1.mybuf;
instance top.i2 use lib2.mybuf;

endconfig
November 2019 409 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Verilog Support
Instance Configuration Examples

For example, if a design whose top module top has three instances i1, i2 and i3 of module
mod1, and you read in the configuration cfg1, the following shows the design hierarchy
before and after applying the configuration:

config cfg1;
design work.top;
instance top.i2 use mybuf;
instance top.i3 use mynot;

endconfig

In another example, if a design whose top module has an instance i1 of module m1, and you
want to configure the instance i12 of i1 to use liberty cell m2cell from the Liberty library
cell_lib_W125_V1, you can use the following configuration:

config cfg1;
design work.top;
instance top.i1.i12 use cell_lib_W125_V1.m2cell;

endconfig

Before configuration After configuration

TOP

mod mod mod

TOP

mod mybuf mynot

TOP

i1 m1

i12 m2

TOP

i1 m1_1

i12 m2cell
November 2019 410 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Verilog Support
Verilog 2001 Support Tables

Supported

ANSI C Style Module Declarations

ANSI C Style Task/Function Declarations

ANSI C Style UDP Declarations

Arithmetic Shift Operators

Array Bit And Part Selects

Arrays Of Net

Assignment Width Extension Past 32 Bits

Automatic (Recursive) Functions

Automatic (Re-Entrant) Tasks

Combinatorial Logic Sensitivity Lists

Combined Port And Data Type Declarations

Comma Separated Sensitivity Lists

Constant Functions

Default Net Type None

Disabling Implicit Net Declarations

Enhanced Conditional Compilation

Explicit Inline Parameter Redefinition

Fixed Local Parameters

Generate Blocks

Implicit Nets For Continuous Assignments

Implicit Port Connections

Module Parameter Port Lists

Multi-Dimensional Arrays

Operator: <<< : Shift Left (Signed Data Type)

Operator: >>> : Shift Right (Signed Data Type)
November 2019 411 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Verilog Support
Limited Support

Ignored

Power Operator

Sign Conversion System Functions

Signed Based Integer Numbers

Signed Functions

Signed Reg, Net And Port Declarations

Sized And Typed Parameter Constants

Variable Vector Part Selects

Arrays of Instance
Conformal supports global hierarchical references to an instance of the array_instance
(for example, array_instance[0].reg1)

Attributes
Conformal supports the following attribute pragmas:

■ (* synthesis, full_case [= <optional_value>] *)

■ (* synthesis, parallel_case [= <optional_value>] *)

■ (* synthesis, black_box *) - Partial support: black box will apply to the followed module.

■ (* synthesis, async_set_reset [="signal_name1, signal_name2, ..."] *)

■ (* synthesis, fsm_state [=<encoding_scheme>] *)

■ (* synthesis, implementation = "<value>" *)

Real Data Types
Conformal supports real type literals mixed with integer type in constant expression

Reg Declaration Initial Assignments

Source File And Line Compiler Directive
November 2019 412 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Verilog Support
Not Applicable

Variable Initial Value At Declaration

Enhanced File I/O

Enhanced Input Timing Checks

Enhanced Invocation Option Testing

Enhanced PLA System Tasks

Enhanced SDF File Support

Enhanced Verilog PLI Support

Extended Number Of Open Files

Extended VCD Files

Negative Input Timing Constraints

Negative Pulse Detection

On-Detect Pulse Error Propagation

Standard Random Number Generator

String Read And Write System Tasks
November 2019 413 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Verilog Support
November 2019 414 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
C
SystemVerilog Support

■ SystemVerilog Support Tables on page 417

❑ Literals on page 417

❑ Data Types on page 417

❑ Arrays on page 420

❑ Data Declarations on page 422

❑ Attributes on page 423

❑ Operators & Expressions on page 423

❑ Procedural Statements on page 425

❑ Processes on page 426

❑ Tasks and Functions on page 426

❑ Classes on page 427

❑ Randomization & Constraints on page 429

❑ Synchronization on page 433\

❑ Scheduling Semantics on page 433

❑ Clocking Blocks on page 433

❑ Program Blocks on page 434

❑ Assertions on page 434

❑ Coverage on page 437

❑ Modules and Hierarchy on page 438

❑ Interfaces on page 439

❑ Packages on page 440
November 2019 415 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
SystemVerilog Support
❑ Configuration Libraries on page 440

❑ System Tasks and Functions on page 441

❑ VCD Data on page 441

❑ Macros and Compiler Directives on page 442

❑ APIs on page 443

❑ Configuring the Contents of a Design on page 444

❑ Annexes on page 445

❑ Non-std on page 445

■ System Verilog Assertions (SVA) on page 446

❑ Supported SVA System Functions on page 447

❑ Default Clocking on page 447

❑ Property Declaration on page 448

❑ Property Binding on page 448

❑ Supported SVA Properties on page 448

❑ Clocked Boolean Expression on page 448
November 2019 416 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
SystemVerilog Support
SystemVerilog Support Tables

The following tables are sorted by category.

Literals

Data Types

IEEE 1800-2005 Status

3.3 unsized literals Supported

3.4 shortreal literals Supported

3.5 time units in literals Supported

3.5 time units in literals (step) Unsupported

3.6 string literals Supported

3.7 array literals Supported

3.8 structure literals Supported

IEEE
1800-2005

IEEE
1800-2009 Status

4.3 logic (4-state) data types Supported

4.3 integer and bit (2-state) data types Supported

4.3 byte, shortint, longint Supported

4.4 short real data types Round to Int
value

4.5 void data type (see void functions 12.3.1) Void function

4.6 chandle data type Unsupported

4.7 6.16 string data type Unsupported

4.7 6.16 Parameters and localparams of strings Unsupported

4.7 6.16 string data arrays Unsupported
November 2019 417 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
SystemVerilog Support
4.7 6.16 string operator: != Unsupported

4.7 6.16 string operator: == Unsupported

4.7 6.16 string operator: < Unsupported

4.7 6.16 string operator: <= Unsupported

4.7 6.16 string operator: > Unsupported

4.7 6.16 string operator: >= Unsupported

4.7 6.16 string operator: concat {s1,s2} Unsupported

4.7 6.16 string operator: {multiplier{s1}} Unsupported

4.7 6.16 stringo perator: str[i] Unsupported

4.7.1 string len() Unsupported

4.7.2 string putc() Unsupported

4.7.3 string getc() Unsupported

4.7.4 string toupper() Unsupported

4.7.5 string tolower() Unsupported

4.7.6 string compare() Unsupported

4.7.7 string icompare() Unsupported

4.7.8 string substr() Unsupported

4.7.9 string atoi() Unsupported

4.7.9 string atohex() Unsupported

4.7.9 string atooct() Unsupported

4.7.9 string atobin() Unsupported

4.7.10 string atoreal() Unsupported

4.7.11 string itoa() Unsupported

4.7.12 string hextoa() Unsupported

4.7.13 string octtoa() Unsupported

4.7.14 string bintoa() Unsupported

4.7.15 string realtoa() Unsupported

IEEE
1800-2005

IEEE
1800-2009 Status
November 2019 418 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
SystemVerilog Support
4.8 event data type Unsupported

4.9 User-defined types (use before called) Supported

4.9 User-defined types (interface typedef scoping) Supported

4.10 enumeration data type - 2 state Supported

4.10 enumeration data type - 4 state Supported

4.10.2 Enumeration data type (OOMR to enum constants) Supported

4.10.2 Enumeration data type shorthand (name[N]) Supported

4.10.2 Enumeration data type shorthand (name[N]=C) Supported

4.10.2 Enumeration data type shorthand (name[N:M]) Supported

4.10.2 Enumeration data type shorthand (name[N:M]=C) Supported

4.10.1 typedef enum Supported

4.10.2 enum type ranges Supported

4.10.3 enum type checking Supported

4.10.4 enum methods - numerical expressions Supported

4.10.4 enum methods - constant expression for enum
constant

Supported

4.10.4.1 enum methods - first Supported

4.10.4.2 enum methods - last Supported

4.10.4.3 enum methods - next Supported

4.10.4.6 enum methods - name Supported

4.10.4.4 enum methods - prev Supported

4.10.4.5 enum methods - num Supported

4.11 Packed structure data type Supported

4.11 Packed structure data type (initializing members) Supported

4.11 Unpacked structure data type (static arrays/reals) Supported

4.11 Unpacked structure data type (string) Unsupported

4.11 Dynamic objects inside unpacked structs Unsupported

IEEE
1800-2005

IEEE
1800-2009 Status
November 2019 419 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
SystemVerilog Support
Arrays

4.11 Unpacked structure data type (OOMR's to
members)

Supported

4.11 Packed union data type Supported

4.11 Packed union data type (tagged) Unsupported

4.11 Unpacked Union data type Unsupported

4.11 Unpacked Union data type (tagged) Unsupported

4.12 Class data type - store object handles in dynamic
arrays (see 5.6)

Unsupported

4.12 Class data type - store object handles in queues
(see 5.14 in 1800-2005, or 7.10 in 1800-2009))

Unsupported

4.12 Class data type - store object handles in
associative arrays (see 5.9)

Unsupported

4.12 Class data type - store object handles in mailbox Unsupported

4.14 Enum static casting Supported

4.15 $cast dynamic casting (class type) Unsupported

4.15 $cast dynamic casting (non-class type) Unsupported

4.15 $cast dynamic casting (enums) Supported

4.16 bit stream casting Supported

4.17 Default attribute type Unsupported

IEEE
1800-2005

IEEE
1800-2009 Status

5.6, 9, 14,
and 4.7

7.5, 6.16 Public access to QDAs and strings Unsupported

5.6, 9, 14,
and 4.7

7.5, 6.16 Local and protected access to QDAs and strings Unsupported

IEEE
1800-2005

IEEE
1800-2009 Status
November 2019 420 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
SystemVerilog Support
5.6, 9, 14,
and 4.7

7.5, 6.16 QDAs as local variables in tasks/functions/
methods

Unsupported

5.6 7.5 Dynamic arrays of strings Unsupported

5.9, 14,
and 4.7

7.8, 6.16 Queues and associative arrays of strings Unsupported

5.6, 9,
and 14

7.5 Hierarchical (OOMR) refereces to QDAs Unsupported

5.2 array of mailboxes Unsupported

5.2 packed arrays Supported

5.2 unpacked arrays Supported

5.2 packed arrays (slicing any dimension of
multi-dimensional array)

Supported

5.4 unpacked arrays (slices) Supported

5.4 indexing of arrays Supported

5.5 7.11 array query functions Supported

5.6 7.5 dynamic arrays (details below) Unsupported

5.6 7.5 dynamic arrays of classes Unsupported

5.6 7.5 dynamic arrays in classes (public/local) Unsupported

5.6 7.5 dynamic arrays in packages Unsupported

5.6 7.5 dynamic arrays i-- multidimensional Unsupported

5.6.1 dynamic arrays with copy, resize Unsupported

5.6.1 dynamic arrays - new[] Unsupported

5.6.2 dynamic arrays - size() Unsupported

5.6.3 dynamic arrays - delete() Unsupported

5.7 array assignment Supported

5.8 arrays as arguments Supported

5.9 7.8 associative arrays Unsupported

5.9 7.8 associative arrays of classes Unsupported

IEEE
1800-2005

IEEE
1800-2009 Status
November 2019 421 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
SystemVerilog Support
Data Declarations

5.9 7.8 associative arrays in classes (public/local) Unsupported

5.9 7.8 associative arrays in packages Unsupported

5.9.1 wildcard index types for integral types Unsupported

5.9.2 string index types Unsupported

5.9.3 class index types Unsupported

5.9.4 integer/int index types Unsupported

5.9.5 signed packed array index types Unsupported

5.9.6 unsigned packed array index types Unsupported

5.9.7 associative arrays - indextype=other user defined
type

Unsupported

5.1 associative array methods Unsupported

5.1 associative array locator methods Unsupported

5.11 associative array assignment Unsupported

5.12 associative array arguments - pass by reference Unsupported

5.12 associative array arguments - pass by value Unsupported

5.13 associative array literals Unsupported

5.14 7.10 queues Unsupported

5.14 7.10 queues of classes Unsupported

5.14 7.10 queues in classes (public/local) Unsupported

5.14 7.10 queues in packages Unsupported

5.15 array manipulation methods Unsupported

IEEE
1800-2005

IEEE
1800-2009 Status

6.3 constants (in classes) Unsupported

IEEE
1800-2005

IEEE
1800-2009 Status
November 2019 422 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
SystemVerilog Support
Attributes

Operators & Expressions

6.3.3 parameterized types Supported

6.3.5 const keyword parse and ignore (non-classes) Supported

6.4 variables (var keyword support) Supported

6.6 scope/lifetime (global scope - see $root) Supported

6.6 scope/lifetime (unnamed blocks) Supported

6.6 scope/lifetime (static/auto task/function/block data) Supported

6.7 continuous assign to vars Supported

6.8 signal aliasing Supported

6.9 Type compatibility - incl passing subclass arg to
superclass formal

Unsupported

6.10 6.23 Type operator Supported

IEEE 1800-2005 Status

Default attribute type Unsupported

IEEE
1800-2005

IEEE
1800-2009 Status

8.2 Constraint operators shift, division, modulus,
exponent, logical, concat

Supported

8.3 assignment operators as statements Supported

8.3 assignment operators as expressions Supported

IEEE
1800-2005

IEEE
1800-2009 Status
November 2019 423 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
SystemVerilog Support
8.3 postincrement/decrement statements Supported

8.3 preincrement/decrement statements Supported

8.3 ++ and -- as expressions Supported

8.5 wild equality/inequality Supported

8.6 short real operators Supported

8.12 concatenation Supported

8.13 Unpacked array and structure assignment patterns
except below:

Supported

8.13 assignment patterns - unpacked array Supported

8.13 assignment patterns - unpacked structure Supported

8.13 assignment patterns - left hand side assignment Supported

8.13 assignment patterns - associations by type Supported

8.13 assignment patterns - replications factors Supported

8.13 assignment patterns - simple ’ type qualification for
assignments to OOMRs

Supported

8.13 assignment patterns - simple ’ type qualification for
port connection expressions

Supported

8.13 Structure assignment expressions Supported

8.14 Tagged unions Unsupported

8.15 Aggregate expressions Supported

8.16 Operator Overloading Unsupported

8.17 Streaming Operators Supported

8.18 Conditional operator Supported

8.19 Set membership Unsupported

11.4.7 Logical operators - logical implication (->) and
logical equivalence (<->)

Supported

11.13 let construct Supported

IEEE
1800-2005

IEEE
1800-2009 Status
November 2019 424 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
SystemVerilog Support
Procedural Statements

IEEE
1800-2005

IEEE
1800-2009 Status

10.4 Selection statements - if Supported

10.4 Selection statements - case Supported

10.5.1 do while loop Supported

10.5.2 enhanced for loop Supported

10.5.3 foreach loop Supported

10.5.3 foreach loop with procedural assignment Supported

10.6 jump statements (return, break, continue) Supported

10.7 final blocks Supported

10.7 final blocks in programs Unsupported

10.8 named blocks (matching end block name) Supported

10.8 named blocks (statement labels) Supported

10.10 iff event control Supported

10.11 Level-sensitive sequence controls Unsupported

12.4 Conditional if-else statement - unique0-if Supported

12.5 Case statement - unique0-case Supported
November 2019 425 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
SystemVerilog Support
Processes

Tasks and Functions

IEEE 1800-2005 Status

11.2 always_comb Supported

11.3 always_latch Supported

11.4 always_ff Supported

11.5 continuous assignments (to variables) Supported

11.6 join_none Unsupported

11.6 join_none (disable) Unsupported

11.6 join_none (wait on automatic variables with wait or
event controls)

Unsupported

11.6 join_any Unsupported

11.8 process control (wait fork) Unsupported

11.8 process control (disable fork) Unsupported

11.9 Fine grain process control Unsupported

IEEE
1800-2005

IEEE
1800-2009 Status

12.1 Task/func called via OOMR Unsupported

12.1 Task/func - return object handle Unsupported

12.1 Function return - string Unsupported

12.1 Pass by value - object handles Unsupported

12.2 default function argument types Supported

12.2 default task argument types direction Supported

12.2 multiple statements without begin/end Supported

12.3 function output arguments Supported

12.3.2 void functions Supported
November 2019 426 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
SystemVerilog Support
Classes

12.3.2 discarding func return Supported

12.4.2 Pass dynamic types by reference Supported

12.4.2 Pass strings as arguments to tasks/functions Supported

12.4.2 Pass mailboxes as arguments to tasks/functions Supported

12.4.3 Default argument values Supported

12.4.3 Default argument values (task/func referenced
by OOMR)

Unsupported

12.4.4 Argument passing by name Supported

12.4.5 Optional argument list Supported

12.5 Pass ref arg of type array as actual to imported
task/func having formal argument of type open
array

Unsupported

12.5 Import tasks/functions (DPI) Unsupported

12.5 Export tasks/functions (DPI) Unsupported

13.4.4 Background processes spawned by function
calls - Nonblocking assignment inside a function

Supported

IEEE 1800-2005 Status

7.4 Objects (class instance) - null object handling; can
pass as arg, etc.

Unsupported

7.4 Pass classes by ref to tasks/functions Unsupported

7.4 Pass classes through module ports Unsupported

7.4 Out Of Module References to class instances Unsupported

7.4 Class instances passed to Out Of Module
Reference tasks or functions

Unsupported

7.4 class instances passed to tasks/functions declared
in a package

Unsupported

IEEE
1800-2005

IEEE
1800-2009 Status
November 2019 427 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
SystemVerilog Support
7.5 Object properties - dynamic arrays Unsupported

7.5 Object properties - queues Unsupported

7.5 Object properties - assoc. arrays Unsupported

7.5 Object properties - mailboxes (typeclass) Unsupported

7.5 Object properties - event vars Unsupported

7.5 Object properties - semaphores Unsupported

7.5 Object properties - strings Unsupported

7.5 Object properties - unpacked structs Unsupported

7.5 Object properties - int types, packed structs Unsupported

7.6 Object methods Unsupported

7.7 Constructors - must support all arg types as in any
function

Unsupported

7.8 Static class properties - of same object type as
SV3.1a 11.5

Unsupported

7.9 Static methods Unsupported

7.10 This - needs to be poymorphic; must be able to
pass args

Unsupported

7.11 Assignment, renamic, and copying; myClass c =
myOtherClass new;

Unsupported

7.12 Intstance and subclasses Unsupported

7.13 Overridden members Unsupported

7.14 Super - need to call with args Unsupported

7.15 $cast - need for downcasting from base calass
object handle (see also 3.15)

Unsupported

7.16 Chaining constructors - passing args to
super.new(…)

Unsupported

7.17 Data hiding and encapsulation Unsupported

7.17 Data hiding and encapsulation - parsing support Unsupported

7.18 Constant class properties Unsupported

IEEE 1800-2005 Status
November 2019 428 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
SystemVerilog Support
Randomization & Constraints

7.18 Constant class properties - parsing support Unsupported

7.19 Abstract classes - can use empty virtual methods
Only virtual (parameterized) classes with (static)
function declarations are supported. For example:
package ParamFuncPkg;
virtual class Functions #(parameter SIZE=32);
static function [SIZE-1:0] GetParity (input
[SIZE-1:0] a);
return ^a;

endfunction
endclass
endpackage
module Test (
input logic [7:0] Addr,
output logic Parity
);

always_comb
begin
Parity = (ParamFuncPkg::Functions
#($size(Addr))::GetParity(Addr));

end
endmodule

Limited Support

7.19 Virtual methods Unsupported

7.20 Polymorphism; dynamic method lookup Unsupported

7.21 Class scope resolution operator :: Unsupported

7.22 Out of block declarations Unsupported

7.23 Parameterized classes Unsupported

7.24 Typedef classes - forward referencing Unsupported

IEEE 1800-2005 Status

13.3 Random Variables - rand (class handles) Unsupported

13.3 Random Variables - rand (unpacked structures) Unsupported

13.3 Random Variables - rand (unpacked arrays) Unsupported

13.3 Random Variables - rand (associative arrays) Unsupported

IEEE 1800-2005 Status
November 2019 429 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
SystemVerilog Support
13.3 Random Variables - rand (static arrays) Unsupported

13.3 Random Variables - rand (dynamic arrays) Unsupported

13.3 Random Variables - rand (dynamic array size) Unsupported

13.3 Random Variables - rand (queues) Unsupported

13.3 Random Variables - rand (enum support) Unsupported

13.3 Random Variables - rand (multidimensional packed
arrays)

Unsupported

13.3 Random Variables - rand (multidimensional arrays) Unsupported

13.3 Random Variables - (packed structs) Unsupported

13.3 Random Variables - (int types) Unsupported

13.3 Random Variables - (array randomization: using
arr.size as rand var)

Unsupported

13.4 Constraint blocks - concatenation within a
constraint

Unsupported

13.4 Constraint blocks - support for operators
(/ % ** << >> <<< >>> ^~ | & ^?:)

Unsupported

13.4 Constraint blocks - var ordering Unsupported

13.4 Constraint blocks - external Unsupported

13.4 Constraint blocks - global (contain variables
declared in other classes)

Unsupported

13.4 Constraint blocks -interative Unsupported

13.4 Constraint blocks - distribution (rand with more than
1 dist constrain)

Unsupported

13.4 Constraint blocks - distribution (combo of weighted
and complex constraints)

Unsupported

13.4 Constraint blocks - distribution (range an weight
any integral SV expression)

Unsupported

13.4 Constraint blocks - distribution (dist expression any
integral SV expression)

Unsupported

13.4 Constraint blocks - guards - compare handle with
null (class handles in expressions)

Unsupported

IEEE 1800-2005 Status
November 2019 430 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
SystemVerilog Support
13.4 Constraint blocks - guards (4 state logic evaluation) Unsupported

13.4 Constraint blocks - inheritance (constrain name
same in parent and derived)

Unsupported

13.4 Constraint blocks - implication (contain dist
constraints)

Unsupported

13.4 Constraint blocks - static Unsupported

13.4 Constraint blocks - override Unsupported

13.4 Constraint blocks - named Unsupported

13.4 Constraint blocks - 1d array for values of constraint
inside operator

Unsupported

13.4.11 Constraint blocks - functions in constraints Unsupported

13.4.3 Constraint blocks - set membership (arrays) Unsupported

13.4.6 Constraint blocks - if … else (contain dist
constraints)

Unsupported

13.4.7 Constraint blocks - foreach Unsupported

13.4.9 Constraint blocks - solve before Unsupported

13.5 Randomization methods incl pre/post randomize Unsupported

13.6 In-line constraints - randomize() with Unsupported

13.7 rand_mode() - members of unpacked arrays Unsupported

13.7 rand_mode() - members of unpacked structures Unsupported

13.8 constraint_mode Unsupported

13.10 In-line randomd variable control Unsupported

13.10.1 In-line constraint checker Unsupported

13.11 Randomization of scope Vars - (except below) Unsupported

13.11 Randomization of scope Vars - (packed structs
defined in classes)

Unsupported

13.11 Randomization of scope Vars - (packed structs
defined in a package)

Unsupported

13.11 Randomization of scope Vars - (packed structs in
dist expression)

Unsupported

IEEE 1800-2005 Status
November 2019 431 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
SystemVerilog Support
13.11 Randomization of scope Vars - (packed structs in
set membership)

Unsupported

13.11 Randomization of scope Vars - (bit or part select of
packed structure array member)

Unsupported

13.11 Randomization of scope Vars - (class members in
constraints or arguments)

Unsupported

13.11 Randomization of scope Vars - (multiple constrain
expressions after an if or else)

Unsupported

13.12.1 $urandom (in classes) Unsupported

13.12.2 $urandom_range (in classes) Unsupported

13.12.3 $srandom Unsupported

13.12.4 get_randstate() Unsupported

13.12.5 set_randstate() Unsupported

13.13 Random stability Unsupported

13.14 manually seeding randomize Unsupported

13.15 Randcase Unsupported

13.16.1 Randsequence - randome production weights Unsupported

13.16.2 Randsequence - if …else production statements Unsupported

13.16.3 Randsequence - case production statements Unsupported

13.16.4 Randsequence - repeat production statements Unsupported

13.16.5 Randsequence - interleaving production - rand join Unsupported

13.16.6 Randsequence - aborting productions - break and
return

Unsupported

13.16.7 Randsequence - value passing between
productions

Unsupported

IEEE 1800-2005 Status
November 2019 432 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
SystemVerilog Support
Synchronization

Scheduling Semantics

Clocking Blocks

IEEE 1800-2005 Status

14.2 semaphores Unsupported

14.2 semaphores in packages Unsupported

14.2 semaphores as protected/public in classes in
packages

Unsupported

14.3 mailboxes Unsupported

14.4 parameterized mailboxes Unsupported

14.5.1 Triggering a named event Unsupported

14.5.2 Non-blocking event triggering Unsupported

14.5.3 Waiting for a named event Unsupported

14.5.4 Persistent trigger: Triggered property Unsupported

14.6 Event sequencing Unsupported

14.7 Event variables without assignments Unsupported

IEEE 1800-2005 Status

9.3 Stratified event scheduler Unsupported

IEEE
1800-2005

IEEE
1800-2009 Status

14.14 Global clocking and $global_clock system function Supported

15.2 Clocking blocks (in generate loops) Unsupported

15.3 Input/output skews Unsupported
November 2019 433 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
SystemVerilog Support
Program Blocks

Assertions

For more information, see System Verilog Assertions (SVA) on page 446.

15.4 Hierarchical expressions Unsupported

15.5 Signals in multiple clocking blocks Unsupported

15.6 Clocking block scope and lifetime Unsupported

15.7 Multiple clocking blocks Unsupported

15.8 Clocking blocks inside interfaces Unsupported

15.9 Clocking block events Unsupported

15.10 Cycle delay:## Unsupported

15.11 Default clocking Unsupported

15.12 Input sampling Unsupported

15.13 Synchronous events Unsupported

15.14 Synchronous drives Unsupported

IEEE 1800-2005 Status

16.2-06 Program Blocks Unsupported

IEEE
1800-2005

IEEE
1800-2009 Status

17.2 16.3 Immediate Assertions Supported

17.4 Boolean Assertions Supported

17.5 Sequences (see specifics under 17.6 and 17.7) Unsupported

17.5 16.7 Sequences cycle delay range Supported

IEEE
1800-2005

IEEE
1800-2009 Status
November 2019 434 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
SystemVerilog Support
16.9.4 Global clocking past and future sampled value
functions ($past_gclk, $rose_gclk, $fell_gclk,
$stable_gclk, and $changed_gclk)

Supported

16.9.4 Global clocking future sampled value functions
($future_gclk, $rising_gclk, $falling_gclk,
$steady_gclk, and $changing_gclk)

Supported

17.6 Declaring sequences Unsupported

17.6.1 Typed formal argument in sequences Unsupported

17.7.1 Sequence operator precedence Unsupported

17.7.2 Sequence repetition in sequences Unsupported

17.7.3 Sequence sampled value functions ($rose, $fell,
$stable)

Supported

17.7.4 Sequence AND operation Unsupported

17.7.5 Sequence INTERSECT operation Unsupported

17.7.6 Sequence OR operation Unsupported

17.7.7 Sequence first_match operation Unsupported

17.7.8 Sequence throughout operation Unsupported

17.7.9 Sequence within operation Unsupported

17.7.10 Sequence ended, matched, and triggered Unsupported

Manipulating data in a sequence Unsupported

17.8 Local variables of complex data types Unsupported

17.8 Local variables Unsupported

17.9 Calling subroutines on match of a sequence Unsupported

17.10 system functions ($onehot, $inset, etc) Supported

17.11 Declaring properties (see below) Unsupported

17.11 Decaring properties in a module Unsupported

17.11 Decaring properties in an interface Unsupported

17.11 Declaring properties in a clocking block Unsupported

IEEE
1800-2005

IEEE
1800-2009 Status
November 2019 435 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
SystemVerilog Support
17.11 Declaring properties in a compilation unit scope Unsupported

17.11 Declaring properties: operators NOT Supported

17.11 Declaring properties: operators AND Supported

17.11 Declaring properties: operators OR Supported

17.11 Declaring properties: operators IFELSE Supported

17.11 Declaring properties: operators |-> Supported

17.11 Declaring properties: operators |=> Supported

17.11 Typed formal arguments in property Unsupported

17.11.2 Implication Supported

17.11.4 recursive properties Unsupported

17.12.1 multiple clock support Unsupported

17.13 concurrent assertions (see below) Unsupported

17.13.1 assert statement Supported

17.13.2 assume statement Supported

17.13.3 cover statement Unsupported

17.13.5 concurrent assertions in procedural code Supported

17.14.1 clock resolution Unsupported

17.14 clocked sequences Unsupported

17.14 clock inferred from always block Supported

17.14 Default clocking Unsupported

17.15 bind directive (not including compilation unit) Unsupported

17.28 assertion control tasks ($assertion/off/kill) Unsupported

17.16 expect statement Unsupported

IEEE
1800-2005

IEEE
1800-2009 Status
November 2019 436 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
SystemVerilog Support
Coverage

IEEE 1800-2005 Status

18.2 Covergroups Unsupported

18.3 Covergroup in classes Unsupported

18.2 Covergroup in interfaces Unsupported

18.2 Covergroup in program blocks Unsupported

18.4 Defining coverage points Unsupported

18.4.1 Specifying bins for transitions Unsupported

18.4.2 Automatic bin creation for coverpoints Unsupported

18.4.4 ignore_bins for coverpoints Unsupported

18.4.5 illegal_bins for coverpoints Unsupported

Assertions in generates Unsupported

open-ended bins for coverpoints Unsupported

oOptions: name, comment, weight, per_instance,
at_least, and goal

Unsupported

18.4.3 Wildcard specification of bins Unsupported

18.4.4 Exclusion of coverpoints or transitions Unsupported

18.4.5 Specifying illegal coverpoints or transitions Unsupported

18.5 Cross products Unsupported

18.5.2 Excluding cross products Unsupported

18.5.3 Specifying illegal cross products Unsupported

18.6 Procedural setting of options Unsupported

18.7 Predefined coverage methods (start() and
sample())

Unsupported

18.8 coverage system tasks/functions Unsupported
November 2019 437 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
SystemVerilog Support
Modules and Hierarchy

IEEE 1364-2005 Status

12.4.1 Generate support in if-generates Supported

12.4.2 Generate support in for-generates Supported

IEEE 1800-2005 Status

19.2 packages - classes in packages Unsupported

19.2 packages - extern_constraint declaration Unsupported

19.2 packages - covergroup declaration Unsupported

19.2 Packages - overload declaration Unsupported

19.2 Packages - anonymous_program Unsupported

19.3 compilation unit support Supported

19.4 Top-level instance ($root) Supported

19.6 nested modules Supported

19.7 Extern modules Unsupported

19.8 default port type/direction Supported

19.8 event ports Unsupported

19.8 interface ports Supported

19.8 variable ports (logic, bit, byte, int, enum) Supported

19.8 packed arrays on ports Supported

19.8 unpacked arrays on ports Supported

19.8 packed structures on ports Supported

19.8 unpacked structures on ports Supported

19.8 queues, dynamic/associative arrays, classes ports Unsupported

19.8 strings ports Unsupported

19.8 union ports Unsupported

19.9 list of port expressions Supported
November 2019 438 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
SystemVerilog Support
Interfaces

19.10 timeunitand timeprecision Supported

19.11.3 implicit .name port connections Supported

19.11.4 implicit .* port connections Supported

19.11.4 implicit .* port connections (use in generate block) Supported

19.12 ref ports Supported

19.12 port connection rules (see below) Supported

19.12 input ports declared as variables (built-in or user-
defined types)

Supported

19.12 output ports connected to variables Supported

19.12 output ports declared as variables Supported

19.13 Extended name spaces Supported

19.14 Hierarchical names (see 18.4) Unsupported

IEEE
1800-2005

IEEE
1800-2009 Status

23.2.2.4 Default port values Supported

IEEE 1800-2005 Status

20.2 Attributes on interfaces Unsupported

20.2 Nested interfaces Unsupported

20.2 Nested interface instances Unsupported

20.2 Interfaces connected to ports of interface Unsupported

20.2 Interface arrays Supported

20.2 Interfaces in generates Unsupported

IEEE 1800-2005 Status
November 2019 439 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
SystemVerilog Support
Packages

Configuration Libraries

20.2.2 Named Bundles Supported

20.2.3 Generic Bundles Supported

20.3 Ports in Interfaces Supported

20.4 Modports Supported

20.5 Interfaces and Specify Blocks Supported

20.6 Modports - clocking keyword on Modports Supported

20.6 Modports - task/function export Unsupported

20.6 Extern fork/join tasks Unsupported

20.6 Modports - task/function import Supported

20.6 Tasks and functions on interfaces Supported

20.6 Parameterized Interfaces Supported

20.7 Access without ports (static interface) Unsupported

20.8 Virtual Interfaces Unsupported

20.9 Access to interface objects (through OOMRs) both
port and hierarchical refs

Unsupported

IEEE
1800-2005

IEEE
1800-2009 Status

26.6 Exporting imported names from packages -
package export

Supported

IEEE 1800-2005 Status

21.2 config support for interfaces Unsupported

IEEE 1800-2005 Status
November 2019 440 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
SystemVerilog Support
System Tasks and Functions

VCD Data

IEEE
1800-2005

IEEE
1800-2009 Status

22.2 Elaboration time ’type’ keyword Unsupported

22.3 expression size ($bits) Supported

22.4 Range function $isunbounded Unsupported

22.5 shortreal conversions $shortrealtobits,
$bitstoshortreal

Unsupported

22.6 array querying (see 4.5) Supported

22.7 assertion severity functions Unsupported

22.8 assertion control functions ($asserton $assertoff
$assertkill)

Unsupported

22.9 assertion system functions Unsupported

22.10 Random number system functions $urandom,
$urandom_range

Unsupported

22.11 Program control - need $exit() Unsupported

22.12 Coverage system functions Unsupported

22.13 New format specifiers %u %z Unsupported

22.13 $fread extensions Unsupported

22.14 $readmemb, $readmemh, Unsupported

22.15 $writememb, $writememh Unsupported

22.16 file format considerations for multidimensional
unpacked arrays (MDUAs)

Unsupported

22.17 system task args for MDUAs Unsupported

IEEE 1800-2005 Status

24.0 Mapping SV types to VCD format Unsupported
November 2019 441 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
SystemVerilog Support
Macros and Compiler Directives

Support for Macro Expansions

The SystemVerilog `define macro expansion is described in Section 23.2 of the
SystemVerilog 1800-2005 Standard.

In Verilog, the `define macro text can include a backslash (\) at the end of a line to show
continuation on the next line. SystemVerilog enhances the Verilog ̀ define text substitution
macro compiler directive as follows:

■ The macro text can include `". An `" overrides the usual lexical meaning of " and
indicates that the expansion should include an actual quotation mark. This allows string
literals to be constructed from macro arguments.

■ The macro text can include `\`". A `\`" indicates that the expansion should include
the escape sequence \".

■ The macro text can include ``. This is used to delimit an identifier name without
introducing white space. A `` delimits lexical tokens without introducing white space,
allowing identifiers to be constructed from arguments.

However, the above specification does not describe how to treat escaped Verilog 2001
identifiers that contain macro parameters.

To work around this, the Conformal software has the -KEEP_ESCAPED_ID option for the
READ DESIGN or READ LIBRARY commands.

When used, the -KEEP_ESCAPED_ID option keeps escaped identifiers, as in Verilog 2001.

For example, you have the following macro definition:

`define MACRO_TEST(head, tail) \head``_``tail

■ If you use the -KEEP_ESCAPED_ID option, the escaped identifier is kept as
\head``_``tail.

IEEE 1800-2005 Status

23.2 `define macros Supported

23.3 ‘include (angle brackets <filename>) Supported

23.4 `being_keywords/`end_keywords (allow expanding
set of keywords implied by command line)

Supported
November 2019 442 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
SystemVerilog Support
■ Without the -KEEP_ESCAPED_ID option, Conformal treats \head``_``tail as the
concatenation of three parts:

❑ \head an escaped identifier

❑ _ as an underscore

❑ tail as a macro parameter that will be replaced by actual text passing to the
MACRO_TEST()

Note: \head is not recognized as the first argument (head) because it is not preceded
with the `` operator. Instead, Conformal will expand

`MACRO_TEST(aa, bb)

 to

\head_bb

To treat head as a macro parameter:

`define MACRO_TEST(head, tail) \``head``_``tail

Conformal treats \``head``_``tail as the concatenation of four parts:

❑ \ a backslash character

❑ head a macro parameter

❑ _ an underscore

❑ tail a macro parameter to be replaced by an actual text passing to the
MACRO_TEST()

and the `MACRO_TEST(aa, bb) call will be expanded to

\aa_bb

APIs

IEEE 1800-2005 Status

26.0 Import tasks/functions; context; pure Unsupported

26.4.2 Pure functions (optimizations) Unsupported

26.4.6 Import/export function return types - longint Unsupported

26.4.6 Import/export function return types - shortreal Unsupported

26.4.6 Import/export function return types - chandle Unsupported
November 2019 443 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
SystemVerilog Support
Configuring the Contents of a Design

26.4.6 Import function return types - string Unsupported

26.4.6 Export function return types - string Unsupported

26.4.6 Import/export function/task args - packed union of
type bit/long

Unsupported

26.4.6 Import/export function/task args -enums Unsupported

26.4.6 Import/export function/task dynamic array args
(non-strings)

Unsupported

26.4.6 Import/export function/task dynamic array args Unsupported

26.4.6 export function/task strings Unsupported

26.4.6 Import/export function/task open array handles for
ints

Unsupported

26.4.6 Import/export function/task open array handles for
strings

Unsupported

26.4 Export function/tasks - time consuming Unsupported

28 Assertion API Unsupported

29 Coverage API Unsupported

30 Data Read API Unsupported

VPI Object Model Unsupported

IEEE
1800-2005

IEEE
1800-2009 Status

33.4.3 Local parameter declaration Supported

33.4.3 Named parameter assignment Supported

IEEE 1800-2005 Status
November 2019 444 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
SystemVerilog Support
Annexes

Non-std

IEEE 1800-2005 Status

C Std Package Unsupported

D Link Lists Unsupported

IEEE 1800-2005 Status

$psprintf Unsupported
November 2019 445 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
SystemVerilog Support
System Verilog Assertions (SVA)

The Conformal software accepts all syntactically correct SystemVerilog Assertion (SVA)
constructs, including property and sequence declarations. However, only Boolean-level
constraints are supported by Conformal. Other SVA constructs are ignored. Conformal
supports ’assert’ and ’assume’ properties for Boolean expressions, and treats them as
constraints. The software considers ’assert’ and ’assume’ as interchangeable, and treats both
as constraints.

To read in SVA constructs in the design, run the READ DESIGN command with the -sva
option. The following example shows a command sequence for reading in the SVA constructs
in the barrel_shifter.v file:

read design -Golden barrel_shifter.v -root barrel_shifter -sva

read design -revised shifter.v

set system mode lec

add compare point -all

compare

The following brief describes what the Conformal software supports for System Verilog:

■ Conformal will read all SVA constructs including property and sequence declarations
without erroring out during parsing.

■ Conformal will support assert/assume property for boolean expressions. These
assertions will be treated as constraints.

■ Simple named property instantiations are also supported. Properties can be referred to
by name inside another assertion. However, formal/actual argument passing in the
named property is not currently supported.

■ Assertions can also be embedded inside clocked always blocks.

■ Simple default clocking block is supported.

■ Sampled value functions are supported including $rose, $past, $fell, $onehot,
$stable, and so on.

■ Property operators are supported including negation, disjunction, conjunction,
implication, and if-else.

■ Binding properties are supported for properties declared inside/outside module
declaration, and in a separate file.
November 2019 446 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
SystemVerilog Support
The following brief describes what the Conformal software does not support for System
Verilog:

■ Complex sequential assertions that span over time

■ Immediate assertions

■ Conformal ignores cover statements

■ Sequence operators

Supported SVA System Functions

The following system functions are supported by Conformal, but they are not sampled
functions because no sampled clocks are used.

$onehot (<expression>) returns true if only 1 bit of the expression is high.

$onehot0 (<expression>) returns true if at most 1 bit of the expression is high.

$countones (<expression>) returns the number of ones in a bit vector expression.

For more details, see SV-1800-2005 LRM, 17.10 System functions.

The following sampled value system functions are supported:

$sampled(expression [, clocking_event])

$rose(expression [, clocking_event])

$fell(expression [, clocking_event])

$stable(expression [, clocking_event])

$past(expression1 [, number_of_ticks] [, expression2] [,clocking_event])

For more details, see SV-1800-2005 LRM, 17.7.3 Sampled value functions.

Default Clocking

The clocking_event option specifies the sampling clock edge for the Boolean
expressions. Conformal only handles @(posedge clk) and @(negedge clk). If the
clocking event is not specified, a default clocking must be specified. Conformal supports the
following SVA clocking statements:

clocking clocking_identifier clocking_event ;
endclocking [: clocking_identifier]

default clocking clocking_identifier ;

default clocking clocking_event ;
endclocking

default clocking clocking_identifier clocking_event ;
endclocking [: clocking_identifier]
November 2019 447 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
SystemVerilog Support
Property Declaration

Property can be specified using the following property declaration:

property_declaration ::=
property property_identifier [([tf_port_list])] ;
[@(<clocking_event>] [disable iff (<expression>)] <property_expr>;
endproperty [: property_identifier]

For example:

property GT (x, y); @posedge clk (x > y);
endproperty

p1: assume property (GT (vec1, vec2));
// constraint (vec1 > vec2) @posedge clk

p2: assume property @ posedge clk (vec1 > vec2);
// same effect as p1 above

Property Binding

Conformal supports property binding to specific modules or instances. For more details, see
SystemVerilog LRM 17.15 “Binding properties to scopes or instances”

Binding properties are supported for properties declared, inside/outside module declaration,
and in separate file.

Supported SVA Properties

Conformal supports ’assert property (<property_spec>) as ’assume property
(<property_spec>), which is used as constraint. The <property_spec> can be in
several forms which are described in the following sections.

Clocked Boolean Expression

The <property_spec> can be specified as one of the following clocked Boolean
expression. If b1, b2, b3, b4 are <property_spec>, then Conformal supports:

assert property ([@(<clocking_event>] [disable iff (b1)] b2);

assert property ([@(<clocking_event>] [disable iff (b1)] if (b2) b3 else b4);

The <property_expr> can be any Boolean expressions, SVA system functions, SVA
sampled value functions connected by Verilog operators and the property operators: not, or,
and, |->, if-else.
November 2019 448 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
SystemVerilog Support
The following example shows default clocking applied to the assert property:

default clocking master_clk @(posedge clk);

endclocking

assert property (b2);

The Boolean expression b2 is sampled at the (posedge clk).

Property Specification

Conformal supports the following property declaration and assert or assume property using
the declared property name. For example:

property GT (x, y);
@posedge clk (x > y);

endproperty

p1: assume property (GT (vec1, vec2)); // constraint (vec1 > vec2) @posedge clk

SVA Extension Using assert final Statement

Conformal also supports the following extension to the SVA:

assert final(<property_expr>) [statement_or_null] [else statement_or_null]

e.g. assert final(rst || $onehot(sig))

The [else statement_or_null] portion is ignored when translating assertion statement to
constraint. The assert final is treated as combinational constraint, which can be used in both
concurrent code and procedural code.

SVA Embedded in Procedural Code

Conformal supports embedded SVA inside clocked always blocks. For more details, see
SystemVerilog LRM, 17.13.5 “Embedding concurrent assertions in procedural code.”
November 2019 449 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
SystemVerilog Support
Examples

The following are two shifters. One is the normal shifter and the other is a barrel shifter.

///////////////// normal shifter ///////////////////////////
module shifter(clk, rst_n, in, shift_amoung, out);

input clk;
input rst_n;
input [7:0] in;
input [2:0] shift_amoung;

output [7:0] out;

reg [7:0] out, out_t;

always@(posedge clk or negedge rst_n) begin
if(~rst_n)

out <= #(‘delay) 8’d0;
else
out <= #(‘delay) out_t;

end

always@(shift_amoung or in) begin
if(shift_amoung[0])

out_t = in << 1;
else if(shift_amoung[1])
out_t = in << 2;

else if(shift_amoung[2])
out_t = in << 4;

else
out_t = in;

end

endmodule
///////////////// normal shifter ///////////////////////////

///////////////// barrel shifter ///////////////////////////
module barrel_shifter(clk, rst_n, in, shift_amoung, out);

input clk;
input rst_n;
input [7:0] in;
input [2:0] shift_amoung;

output [7:0] out;

reg [7:0] temp;
reg [7:0] out, out_t;

always@(posedge clk or negedge rst_n) begin
if(~rst_n)

out <= #(‘delay) 8’d0;
else
out <= #(‘delay) out_t;

end

integer i;

always@(i or shift_amoung or in or temp or out_t) begin
temp = in;

for(i=0;i<3;i=i+1) begin
if(shift_amoung[i])

out_t = temp << (1<<i);
else

out_t = temp;
November 2019 450 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
SystemVerilog Support
temp = out_t;
end

end
endmodule
///////////////// barrel shifter ///////////////////////////

The Conformal software reports Non-EQ results for the two shifters. It reports EQ results if
you add an "assert property ($onehot(shift_amoung));" statement to the
barrel_shifter module as follows:

///////////////// barrel shifter ///////////////////////////
module barrel_shifter(clk, rst_n, in, shift_amoung, out);

input clk;
input rst_n;
input [7:0] in;
input [2:0] shift_amoung;

output [7:0] out;

reg [7:0] temp;
reg [7:0] out, out_t;

always@(posedge clk or negedge rst_n) begin
if(~rst_n)

out <= #(‘delay) 8’d0;
else

out <= #(‘delay) out_t;
end

integer i;

always@(i or shift_amoung or in or temp or out_t) begin
temp = in;

for(i=0;i<3;i=i+1) begin
if(shift_amoung[i])

out_t = temp << (1<<i);
else

out_t = temp;
temp = out_t;

end
end

assert property ($onehot(shift_amoung));

endmodule
///////////////// barrel shifter ///////////////////////////
November 2019 451 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
SystemVerilog Support
Sample for Default Clocking
///////////////// default clocking ///////////////////////
module m_unique(q, d, sel, clk);
input [1:0] d;
input [2:0] sel;
input clk;
output [1:0] q;
reg [1:0] q;

always @(posedge clk) begin
case (sel)

3’b001: q <= d;
3’b010: q <= ~d;
3’b100: q <= {d[0], d[1]};
3’b111: q <= ’b0;

endcase
end

default clocking CLK @(posedge clk); endclocking
assert property ($onehot(sel));

endmodule

//

With the default clocking declaration, the combination property assert property
($onehot(sel)) will be translated to clocked constraint assert property
(@(posedge clk) $onehot(sel)) the same as the following assert property
specified.

//
module m_unique(q, d, sel, clk);
input [1:0] d;
input [2:0] sel;
input clk;
output [1:0] q;
reg [1:0] q;

always @(posedge clk) begin
case (sel)

3’b001: q <= d;
3’b010: q <= ~d;
3’b100: q <= {d[0], d[1]};
3’b111: q <= ’b0;

endcase
end

assert property (@(posedge clk) $onehot(sel));

endmodule
///////////////// default clocking ///////////////////////
November 2019 452 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
D
Supported Directives

■ Supported Vendors on page 454

■ Supported Directives on page 454

■ Conformal Directive Examples on page 456

❑ Enabling One Directive on page 457

❑ Disabling All Directives for One Vendor on page 457

❑ Disabling Specified Directives for One Vendor on page 458

❑ Enabling a List of Directives from an RTL File on page 458
November 2019 453 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Supported Directives
Supported Vendors
The following lists the supported vendors for use with the SET DIRECTIVE command to
enable or disable the specified synthesis directives when they are used with the specified
<vendor_name> prefix:

■ ambit

■ cadence

■ conformal

■ pragma

■ quickturn

■ synopsys

■ synthesis

Supported Directives
The following lists the supported directives for use with the SET DIRECTIVE command to
enable or disable the effects of the specified synthesis directives when reading in a Verilog
or VHDL file:

■ assertion_library

■ async_set_reset

■ black_box

■ built_in

■ clock_hold

■ compile_off

■ compile_on

■ dc_script_begin

■ dc_script_end

■ divider

■ enum

■ fsm_state
November 2019 454 Product Version 19.2
© 1999-2019 All Rights Reserved.

../Conformal_Ref/LEC_Ref_commands.html#setdirective

Conformal Equivalence Checking User Guide
Supported Directives
■ full_case

■ implementation

■ infer_latch

■ is_isolation_cell (quickturn not supported)

■ is_level_shifter

■ mem_rowselect

■ multi_port

■ multiplier

■ operand

■ parallel_case

■ power_gating_cell

■ set_implementation

■ pragma

■ state_vector

■ synthesis_off

■ synthesis_on

■ synthesis (ambit only)

■ synthesis off (ambit only)

■ synthesis on (ambit only)

■ template

■ translate_off

■ translate_on
November 2019 455 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Supported Directives
Conformal Directive Examples

The following includes short descriptions and examples of supported Conformal directives:

■ clock_hold “<name> ...”

This directive instructs Conformal to synthesize latch arrays so that the array address is
placed into the clock cone of the synthesized logic.

Example:
// conformal clock_hold “memory_array”
always @(clk or we or addr or din) begin
if (clk && we) memory_array[addr] = din;
end

Without this directive, the above always process results in a latch array with both clk
and we in the clock logic. And addr is used to mux between din and the old state.
Thus, with this directive, we move the addr into the clock logic of the array. This
directive is useful for register files and memory arrays.

■ infer_latch

This directive instructs Conformal to use a D-latch instead of a DFF when there is an
always statement with an edge-triggered clock. The default is to use a DFF.

Example:
always @(posedge clk) begin // conformal infer_latch
qstate = din;
end

In this example, the infer_latch directive tells Conformal to synthesize a latch
enabled with a high clock (rather than a D flip-flop with a positive edge triggered clock)
for the always process. It is similar to writing the following RTL:
always @(clk or din) begin
if (clk) qstate = din;
end

■ multi_port

This directive instructs Conformal to synthesize a multi-port latch or register when
multiple, simultaneous definitions exist for the same state variable.

Example:
always @(clk1 or din1) if (clk1) qstate = din1;
always @(clk2 or din2) if (clk2) qstate = din2;
…
always @(clkn or dinn) if (clkn) qstate = dinn;
November 2019 456 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Supported Directives
This sample case results in n number of latches, each with separate clocks and data
inputs and all outputs wired together. However, the implementation of a multiport cannot
be compared with an n port latch. Thus, you would use the // conformal
multi_port “qstate” directive to synthesize an n port latch with one Q output.
Internally, a primitive UDP model represents the valid function. If a simultaneous write
occurs on multiple ports and the input data on those ports is not equal, the state
becomes an X. This directive is generally used for multi-port memory arrays and custom
designs.

■ mem_rowselect

This directive supersedes the clock_hold directive. It guides memory array RTL
model synthesis so that it includes the same logic in the clock and data cones as in the
implementation. Thus, Conformal can complete equivalence checking. For example:
// conformal mem_rowselect “mem clk addr[7:5] addr[2:0]”
always @(clk or we or addr or din) begin
if (clk && we) mem[addr] = din;
end

The synthesized result creates a row decoder with address bits 7, 6, 5, and 2, 1,
0, and used clk as an enable. The addr bits 3 and 4 are used to column multiplex
input data when we is active. However, when we is not active or a column is selected,
the array data input is in a high Z state, which is representative of memory
implementation.

Note: The wildcard (*) represents any zero or more characters in filenames.

Enabling One Directive

When you employ the SET DIRECTIVE command and you do not specify a directive, the
command applies to all directives. In the following example, the objective is to enable only the
parallel_case directive. To do so, first disable all directives, then enable the specified
directive (parallel_case).

//disable all directives
set directive off
//enable parallel_case
set directive on parallel_case

Disabling All Directives for One Vendor

In the following example, the objective is to disable all Synopsys directives (synopsys
translate_off, synopsys translate_on, synopsys full_case ...).

//disable all synopsys directives
set directive off synopsys
November 2019 457 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Supported Directives
Disabling Specified Directives for One Vendor

In the following example, the objective is to disable synopsys translate_off and
synopsys translate_on. This command has no effect on conformal
translate_off and conformal translate_on.

//disable synopsys translate_off and synopsys translate_on
set directive off synopsys translate_off translate_on

Enabling a List of Directives from an RTL File

In the following examples, we have 2 RTL files: test.v and test1.v.

■ In the following command, the synthesis directive parallel_case is on (enabled) in file
test.v:
set directive on parallel_case -file test.v

■ In the following command, the synthesis directive parallel_case is on (enabled) in file
test.v and test1.v:
set directive on parallel_case -file *.v
November 2019 458 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
E
Conformal Sample Test Case

This appendix uses a small test case to familiarize you with the command flow of the GUI
windows. It includes step-by-step procedures to compare a Verilog gate-level non-scan
design (Golden) with the same design after inserting scan (Revised).

The step-by-step procedure illustrates the following tasks:

1. Starting Conformal on page 460

2. Reading the Library on page 460

3. Read the Designs on page 460

4. Changing to the LEC System Mode on page 462

5. Viewing Unmapped and Mapped Points on page 462

6. Running a Comparison on page 463

7. Diagnosing a Non-Equivalent Point on page 464

8. Opening the Schematic Viewer on page 467

9. Adding Pin Constraints on page 470

10. Rerunning the Comparison on page 470

11. Exiting on page 471

There is also a dofile example at the end of this appendix. See Standard Dofile Example on
page 472.
November 2019 459 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Conformal Sample Test Case
Starting Conformal

Start the Conformal software at the UNIX system prompt in the demo/doc_testcase
directory:

demo/doc_testcase% lec

This action opens the main Conformal CD GUI window.

Reading the Library

The Verilog designs use a Verilog simulation library. To read in the Verilog simulation library,
use the procedure described below. First, open the Read Library window. Then, use the
window to prepare Conformal to read the Library.

1. To open the Read Library form, choose File – Read Library or click the Read Library
icon.

For a description of the Read Library form, see Read Library Form on page 105.

2. When the Read Library window opens, keep the defaults for Format, which is set to
Verilog, and for Type, which is set to Both.

3. Select the Verilog library file (lib.v).

4. Click Add Selected.

The filename appears in the File list display.

5. Click OK to read in the Verilog library.

The Read Library form closes and the Transcript window of the main window notes that
Conformal has successfully read the Verilog library. For the purposes of this test case,
ignore warning messages noted in the transcript window as Conformal reads the library.

Read the Designs

The Verilog gate-level, non-scan design is the Golden design. The Verilog gate-level, scan
design is the Revised design. To read the Golden and Revised designs, use the following
November 2019 460 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Conformal Sample Test Case
procedure, which directs you to open the Read Design window and prepare Conformal to
read the designs.

First, read in the Golden design as follows:

1. To open the Read Design form, choose File – Read Design or click the Read Design
icon.

For a description of the Read Design form, see Read Design Form on page 109.

2. Click Format –Verilog and Type – Golden.

3. Click the Golden Verilog design, Golden.v.

4. Click Add Selected to display the filename in the File list display.

5. Click OK to read in the Golden Verilog design.

The Read Design form closes and the Transcript window of the main CONFORMAL-LEC
window notes that Conformal has successfully read the Verilog design.

For the purposes of this test case, ignore warning messages noted in the transcript
window as Conformal reads the designs.

Repeat the procedure to read in the Revised Verilog design as noted below.

1. To open the Read Design form, choose File – Read Design or click the Read Design
icon.

2. Click Format –Verilog and Type – Revised.

3. Click the Revised Verilog design, revised.v.

4. Click Add Selected to display the filename in the File list display.

5. Click OK to read in the Revised Verilog design.

The Read Design window closes and the Transcript window of the main window notes that
Conformal has successfully read the Verilog design.

For the purposes of this test case, ignore warning messages noted in the transcript window
as Conformal reads the designs.
November 2019 461 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Conformal Sample Test Case
Changing to the LEC System Mode

For this small test case, assume there are no design constraints to specify. Therefore, you are
ready to change system modes to do automatic key point mapping:

When Conformal completes the key point mapping, it displays the following in the Transcript
window of the main CONFORMAL-LEC window:

■ Warning messages

■ Summary table of the mapped and unmapped points

In the Diagnosing a Non-Equivalent Point step, you will use the Conformal tools to examine
the unmapped and mapped points.

Viewing Unmapped and Mapped Points

To view details about the key points information that is displayed in the summary, choose
Tools – Mapping Manager to open the Mapping Manager, or click the Mapping Manager
icon.

As you view the Unmapped Points section of the Mapping Manager, note the following:

■ Both the Golden and Revised designs have an extra primary output pin because the
names are not the same The Golden pin name is n3104gat, and the Revised pin name

➤ Click the LEC mode icon.

■ The Extra icon flags extra unmapped points.

■ The Revised design includes three extra scan pins, which is acceptable because
the Golden design is a non-scan design.
November 2019 462 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Conformal Sample Test Case
is m3104gat. Do the following to manually map the unmapped points as mapped key
points.

Do the following to manually map key points:

1. Click the primary output pin in the Golden design to highlight it.

2. Right-click and choose Set Target Mapping Point from the pop-up menu.

The text for the Golden unmapped point changes color from black to red.

3. Click the primary output pin in the Revised design to highlight it.

4. Right-click and choose Add Mapping Point – Non-invert from the pop-up menu.

Conformal removes the two key points from the Unmapped Points section and they
appear at the bottom of the list in the Mapped Points section.

In the Running a Comparison step, you will run a comparison on all of the mapped points to
determine whether they are equivalent or non-equivalent.

Running a Comparison

1. With the Mapping Manager still open, add all of the mapped points as compare points for
the comparison by clicking the Add All Compare Points icon in the Mapped Points
section.

November 2019 463 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Conformal Sample Test Case
The compare points are now displayed in the Compared Points section. The question
mark (?) preceding each compare point tells that Conformal has not compared these
points.

2. Compare points in the Compared Points section:

In the main window, the status bar shows the comparison’s progress (shown as a
percentage). On completion, each pair of equivalent points is denoted with a green circle.
The non-equivalent compared points are denoted with red circles. (You can specify
Check Mark indicators, if you prefer.)

3. Scroll down the Compared Points list to find the non-equivalent points, or click the
Class icon in the Compared Points section and deselect the Equivalent check box on
the pop-up menu.

Diagnosing a Non-Equivalent Point

In this step, you will diagnose one of the non-equivalent compared points to find out why it is
non-equivalent.

1. In the Mapping Manager, click any non-equivalent compared point. (For example:
Golden: U100/DF.)

2. Right-click and choose Diagnose from the pop-up menu to open the Diagnosis
Manager.

The Diagnosis Manager displays information related to the diagnosis point you selected
in the Running a Comparison step. The information is organized in two columns: Golden
and Revised. In the Diagnosis Manager, find the following fields and windows:

❑ Non-Equivalent Compared Point
You selected this point in the Running a Comparison step.

❑ Diagnosis Point (active)
This point is also shown in the Diagnosis Points (inputs) section.

The simulation values for the Golden and Revised designs are displayed in the

Click the Compare icon.

November 2019 464 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Conformal Sample Test Case
Diagnosis Point (active) section. Notice that the simulation values for the Golden and
Revised designs, which are shown in parenthesis (), are not the same. The
simulation value for the Revised design is one, while the value for the Golden design
is zero.

❑ Corresponding Support
This section displays the corresponding support key point of the diagnosis point for
both the Golden and Revised designs.

❑ Non-corresponding Support
This section displays the non-corresponding support key point of the diagnosis point
for both the Golden and Revised designs.

The corresponding and non-corresponding support key points are the logic fan-in cone
key points of the diagnosis point.

Support points are color coded as follows:

❑ Red—The support point is a non-equivalent compare point

❑ Green—The support point is an equivalent compare point

❑ Black—The support point either has not been compared yet or cannot be compared
(for example, PI)

Non-Corresponding Support Section

This section lists key points in the Revised DFF logic cone that are not in the Golden DFF
logic cone. The scan_en pin is an unmapped key point in the Revised DFF logic cone. The
non-corresponding DFF in the Revised logic cone is a mapped key point, but its Golden
corresponding mapped key point is not in the Golden DFF logic cone.
November 2019 465 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Conformal Sample Test Case
Error Pattern Section

This section lists error patterns that prove the difference in simulation values between the
Golden and Revised diagnosis point. These simulation values for each error pattern correlate
to the Support key points (Corresponding and Non-corresponding) in the Revised design.

Note: When you select a non-corresponding support point, Conformal applies a pink
highlight to the associated column in the test vector set. Refer to the Error Pattern section.

Do the following to see the difference in simulation values for the diagnosis points.

1. Click any error pattern in the list (for example, Error Pattern 5).

2. Click another error pattern and examine the change in simulation values listed in the
Corresponding Support section. (Values are shown in parenthesis.)

Next, you will examine the Error Candidate section to try to determine the cause of this
difference.
November 2019 466 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Conformal Sample Test Case
Error Candidate Section

This section lists gates with a weighted percentage representing likely causes for the
difference in simulation values in the Golden and Revised designs.

Opening the Schematic Viewer continues the diagnosis procedure. It describes how you will
access the schematic viewer to examine a schematic representation of the diagnosis point.

Opening the Schematic Viewer

For optimal viewing of schematic viewer figures, access the PDF version of this Conformal
Equivalence Checking User Guide on screen with a PDF reader, or print this section in
color.

To view a schematic representation of the diagnosis point along with the logic fan-in cone for
both the Golden and Revised designs, click on the Schematic icon on the Diagnosis
Manager menu bar.

The schematic viewer opens with two separate windows for the Golden and Revised DFF
logic cones.

In the Golden schematic representation (Figure E-1 on page 468), the NOR gate leads to the
D input of the D flip-flop. In the Revised schematic representation (Figure E-2 on page 469),
the NOR gate also leads to the D input of the MUX-DFF gate. Notice the simulation value
differences.
November 2019 467 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Conformal Sample Test Case
Figure E-1 Golden Fan-In Cone

In the Revised schematic representation, the select line (scan_en) of the MUX gate is
selecting the scan path instead of the functional path. To see the select line, click the net of
the select line of the MUX gate to highlight the scan_en signal.
November 2019 468 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Conformal Sample Test Case
Figure E-2 Revised Fan-In Cone

From your examination of the design, you can see that you must constrain the scan_en pin
to the functional path of the MUX-DFF gate. With this constraint, the non-equivalent point
becomes equivalent. (Also notice that the scan_en pin was listed as a Non-corresponding
Support point in the Revised column of the Diagnosis Manager.)

In the Adding Pin Constraints,step, you will add the pin constraint that disable the scan logic
that was introduced into the Revised design through the and flow. Before proceeding this
step, use the following information to close the Diagnosis Manager and the Schematic Viewer.

1. Click Cancel in the Diagnosis Manager.
November 2019 469 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Conformal Sample Test Case
2. Use a schematic viewer File drop-down menu to close one schematic window, and its
complementary window closes as well.

Adding Pin Constraints

Add pin constraints in the Setup system mode. Do the following to switch the system mode
and add a pin constraint to the scan_en pin of the Revised design.

1. Click the Setup mode icon at the right end of the toolbar.

2. Choose Setup – Pin Constraints to open the Pin Constraints window.

3. Click the Revised tab.

4. Left-drag to scroll down the Pin list, and then click the scan_en pin to highlight it.

5. Right-click and choose Add Constraint 0 from the pop-up menu.

The (scan_en) pin appears in the 0 column.

6. Click Close.

In Rerunning the Comparison, Conformal will compare with the newly added pin constraint.

Rerunning the Comparison

Repeat the following steps to view the new comparison results:

■ Step 4, Changing to the LEC System Mode on page 462

■ Step 5, Viewing Unmapped and Mapped Points on page 462

Remember to add the two unmapped primary output pins as mapped points.

■ Step 6, Running a Comparison on page 463

When Conformal completes the comparison, the summary table displayed in the Transcript
window of the main CONFORMAL-LEC window shows that all compared points are
November 2019 470 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Conformal Sample Test Case
equivalent. Do the following to see that Conformal also displays this information in the
Mapping Manager.

Exiting

Now that you have verified that the Golden and Revised designs are equivalent, exit
Conformal by doing the following:

1. Choose File – Exit.

The exit confirmation dialog box opens to confirm the exit.

2. Click Yes.

1. Choose the Window – Mapping Manager.

2. In the Mapping Manager, scroll down the Compared Points section to confirm that
each compared point is preceded by a green circle.

Note: When you added the pin constraint you remedied all of the non-equivalent
points.
November 2019 471 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Conformal Sample Test Case
Standard Dofile Example

The following is an example of a standard flat (non-hierarchical) design dofile:

set log file lec.log -replace
read library ...
read design -Golden ...
read design -revised ...
report design data
report black box
report module
<apply design constraints>
<apply modeling options>
set system mode lec
add compare point -all
compare
usage
November 2019 472 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
F
Top-level IO Port Modeling

When a top-level port is declared as an inout (IO) port, the Conformal software must verify it
as both an input port and an output port. In static equivalency checking, all possible modes
of operation are verified regardless of how the module was internally configured. Each top-
level IO port is also replaced by three ports (two inputs and one output) in the flattened
design.

The following figure shows a typical IO port configuration where EO, DO, DI are internal
signals and PAD is the top-level IO port. In actual operations, EO is either (i) HIGH and PAD
acts as an output port for DO, or (ii) LOW and PAD acts as an input port to DI. In proper
operations, PAD must not be driven when it is operating as an output port.

In Conformal equivalency checking, because PAD is an IO port, it will be modeled as follows:
November 2019 473 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Top-level IO Port Modeling
The original PAD port is now an internal signal. The software adds separate input and output
ports (with the same name) that correspond to the inout PAD port. The software also adds an
input port PAD_z which tristates the testers output when it is HIGH.

Because the internal PAD signal is now connected to two output devices, it becomes a wire
resolution node. The software creates wire resolution logics which combine the signals EO,
DO, PAD(input)and PAD_z, and produces the two signals driving DI and PAD(output).

Because the buffer in the circuit on the right blocks the tristate output of the tristate driver, DI
and PAD(output) are not the same signals. In particular, PAD(output) is subjected to
output tristate (output-Z) verification so that the following circuits are non-equivalent:
November 2019 474 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
G
Conformal Primitive Gate Types

The following lists the primitive gate types that are used in the Conformal software.

Note: Although the primitives are listed below in all uppercase, Conformal primitives are case
insensitive.

Cell Type Description

ADD word-level addition primitive

AND AND gate

BUF buffer

BUFIF0 buffer if output is zero

BUFIF1 buffer if output is one

CD 2-input AND gate. First input is control, second input is data.

CMOS complementary-symmetry metaloxidesemiconductor

DFF delay flip-flop

DIV divider

DLAT delay latch

EQ logical equality

GE greater than or equal

GT greater than

INV inverter

LE less than or equal

LT less than

MODULUS modulus

MUX multiplexer
November 2019 475 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Conformal Primitive Gate Types
MULT multiplier

NAND NAND gate

NE logical not equal

NMOS n-type metal-oxide-semiconductor

NOR NOR gate

NOTIF0 NOT if output is zero

NOTIF1 NOT if output is one

ONECOLD One-cold condition

ONECOLD0 Zero-one-cold condition

ONEHOT One-hot condition

ONEHOT0 Zero-one-hot condition

OR OR gate

PMOS p-type metal-oxide-semiconductor

PULLDOWN pull-down resistor

PULLUP pull-up resistor

RCMOS primitive which is same as Verilog’s rcmos primitive gate

REM remainder

RNMOS primitive which is same as Verilog’s rnmos primitive gate

ROL rotate left

ROR rotate right

RPMOS same as Verilog’s rpmos primitive gate

RTRAN same as Verilog’s rtran primitive gate

RTRANIF0 same as Verilog’s rtranif0 primitive gate

RTRANIF1 same as Verilog’s rtranif1 primitive gate

SLA shifter left arithmetic

SLL shifter left logical

SRA shifter right arithmetic

SRL shifter right logical

Cell Type Description
November 2019 476 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Conformal Primitive Gate Types
SUBTRACT subtractor

TIE0 constant 1’b0

TIE1 constant 1’b1

TIEX constant 1’bx

TIEZ constant 1’bz

TRAN transistor

TRANIF0 transistor if output is zero

TRANIF1 transistor if output is one

WAND word-level AND

WBUF word-level buffer

WBUFIF0 word-level bufif0

WBUFIF1 word-level bufif1

WCD word-level CD, m-bit Data, 1-bit Control

WDC word-level DC, m-bit Data, 1-bit Control

WDFF word-level D Flop

WDLAT word-level D Latch

WINV word-level inverter

WMUX word-level MUX

WNAND word-level NAND

WNOR word-level NOR

WOR word-level OR

WSEL word-level selector

WXNOR word-level XNOR

WXOR word-level XOR

XNOR XNOR gate

XOR XOR gate

Cell Type Description
November 2019 477 Product Version 19.2
© 1999-2019 All Rights Reserved.

Conformal Equivalence Checking User Guide
Conformal Primitive Gate Types
November 2019 478 Product Version 19.2
© 1999-2019 All Rights Reserved.

	Contents
	About This Manual
	Audience
	How This Manual Is Organized
	Conventions
	Syntax Structure
	GUI Convention
	Additional Learning Resources

	Introduction to the Conformal Equivalence Checker
	Overview
	Conformal Features
	Supported File Formats
	Conformal Methodology
	Preparing the Designs
	Mapping and Comparing
	Diagnosing

	Conformal Operation
	System Modes
	Transition
	Mapping
	Comparison
	Diagnosis

	Overview of Conformal Tcl
	Conventions
	Specifying the Command Entry Mode
	Using Native Conformal Commands
	Duplicate Commands
	Tcl Version

	Getting Started
	Product and Installation Information
	Start-Up Command Options
	Initial Command Files
	Dofile Command Files
	Saving and Restoring a Session
	Save and Restore Commands
	Checkpoint and Restart Facility
	Transcript Messages
	Aliases

	Setting Preferences
	Font & Size
	Hierarchical Browser On
	Hierarchical Browser Sync. up
	Icon Bar
	Show Static Infobox
	Simplified Schematic Viewing

	Accessing Online Help and Documentation
	Launching Cadence Help
	Getting Help for Cadence Help
	Getting Help on Commands to Run Tools
	Getting Help on Commands and Messages
	Searching the Help Database for Specified Strings
	Using the Help Menu

	Platform Integration
	Dofile Generation from First Encounter
	Dofile Generation from RC Synthesis Tools
	Using Conformal With Virtuoso

	Using the Graphical User Interface
	Main Window
	Selecting Multiple Items
	Drag and Drop
	Menu Bar
	Window Menu
	Icon Bar
	Find Hierarchical Module
	Hierarchical Browser
	Transcript Window
	Command Entry Window
	Status Bar
	Exiting the GUI and Software

	File Menu
	Setup Menu
	Report Menu
	Run Menu - Compare
	Tools Menu

	Command Line Features
	Command Line Editing
	Command Line Completion
	Using Command Line Completion
	Repeating Actions
	Notes

	Managing Rule Checks
	HDL Rule Manager
	HDL Rule Manager Fields and Options
	Severity Levels
	Enabling and Disabling Rule Checks
	Running Incremental Rule Checks
	Reporting Messages for Rule Checks
	Viewing a Specific Message
	Viewing Source Code for an Occurrence

	Modeling Messages

	Using the Setup Mode
	Overview
	Setting Options
	Changing the Root Module
	Adding Search Paths
	Adding Notranslate Modules
	Setting Global Options For Mapping and Comparison

	Reading in Libraries and Designs
	Reading in Library Files
	Reading in Design Files
	Using Verilog Command Filelists
	Comparing Design Hierarchies
	Comparing Libraries

	Design Constraints
	Blackboxes
	Net Constraints
	Pin Constraints
	Pin Equivalences
	Primary Inputs
	Primary Outputs
	Tied Signals
	Instance Constraints
	Instance Equivalences
	Cut Points

	Flattening Options
	Specifying Key Point Mapping Options
	Retaining Gate Pin Information
	Converting DLATs to DFFs
	Converting DLATs to Buffers
	Converting DFF or DLAT to Zero or One Gate
	Gated-Clock Learning
	Converting DFFs to DLATs
	Flatten Model Form

	Mapping Settings
	Mapping Methods
	Renaming Rules

	Using the LEC Mode
	Moving to LEC Mode
	Mapping Modifications
	Altering Key Point Mapping
	Adding Mapped Points
	Inverting Mapping Phase
	Saving Mapping Results

	Compare Options
	Adding Compared Points
	Setting the Compare Effort
	Setting a CPU Limit
	Reporting Compare Time

	Comparison
	Reporting Compare Data
	Reporting Statistics
	Reporting CPU Use

	Report Verification
	Running Additional Reports
	Black Boxes Report
	Cut Points Report
	Design Data Report
	Environment Report
	Floating Signals Report
	Instance Constraints Report
	Instance Equivalences Report
	Messages Report
	Modules Report
	Notranslate Modules Report
	Pin Constraints Report
	Pin Equivalences Report
	Primary Inputs Report
	Primary Outputs Report
	Renaming Rules Report
	Search Paths Report
	Tied Signals Report
	Mapped Points Report
	Unmapped Points Report
	Compared Points Report
	Compare Data Report
	Statistics Report

	Debugging
	Diagnosing Non-Equivalent Points
	Proving Equivalence
	Adding Dynamic Constraints
	Displaying Error Patterns

	Reporting Design Similarities
	Gate Manager
	Gate Manager Fields and Options
	Refreshing the Window
	Opening Schematics from the Gate Manager
	Using the Preferences Drop-Down Menu
	Filtering the Gate List
	Finding Gates
	Reporting Gate Information
	Customizing the Gate List Section with Specified Gates
	Proving Equivalency for Two Specified Gates
	Removing Gates from the Prove List
	Locating an Equivalent Gate
	Adding and Deleting Dynamic Constraints
	Locating a Gate in the Design Hierarchy
	Highlighting a Point in the Hierarchical Browser
	Viewing a Gate’s Location in the Source Code
	Highlighting a Point in the Source Code Manager
	Viewing a Schematic Representation of One Gate

	Gate Reporting
	Setting the Gate Report
	Gate Tracing
	Gate Report Structure

	Mapping Manager
	Mapping Manager Fields and Options
	Setting Preferences
	Copying Information from the Mapping Manager
	Selecting Points
	Adding Unmapped Points as Mapped Points
	Reporting Information on an Unreachable Gate
	Reporting Renaming Rules
	Re-Mapping Key Points
	Adding All Compared Points
	Deleting One or More Mapped Points
	Adding One or More Compared Points
	Changing the Mapping Phase of a Mapped Point
	Highlighting a Mapped Point in the Compared Points Section
	Comparing Key Points
	Deleting One or More Compared Points
	Diagnosing a Non-Equivalent Point in the Compared Points Section
	Sorting Compared Points by Support Size
	Sorting Compared Points by Non-Corresponding Support Cones
	Changing the Mapping Phase of a Compared Point
	Highlighting a Compared Point in the Mapped Points Section
	Displaying the Information Box
	Filtering the Display
	Finding Key Points
	Displaying Specified Classes of Points
	Deleting Mapped or Compared Points
	Displaying Diagnosis Data
	Reporting Gate Information
	Displaying Fan-in and Fan-Out Information
	Locating a Point in the Source Code
	Locating a Point in the Design Hierarchy
	Viewing a Schematic of a Point

	Diagnosis Manager
	Diagnosis Manager Fields and Options
	Setting Preferences
	Copying Information from the Diagnosis Manager
	Refreshing the Window
	Displaying the Information Box
	Selecting a New Active Diagnosis Point
	Changing the Simulation Value
	Saving Modified Values as an Error Pattern
	Viewing a Schematic
	Changing the Mapping Phase of a Mapped Point
	Deleting Mapped Points
	Reporting Renaming Rules
	Adding Unmapped Points as Mapped Points
	Viewing a Schematic Representation of Diagnosis Points
	Displaying the Fill Fanin Cone
	Displaying Gate Information
	Showing a Gate’s Location in the Source Code
	Showing Where a Gate is Located in the Design Hierarchy

	Exit Status Codes

	Resolving Aborts
	Overview
	Avoiding Aborts
	RTL Guidelines
	MDP Flow
	RTL Compiler Flow

	Resolving Aborts
	Hierarchical Comparison
	Analyzing Abort Points
	Multithreading
	Partitioning
	Isolating Abort Modules

	Dofile Template Scripts
	Hierarchical Compare with MDP Flow
	Hierarchical Compare with MDP and Multithreading

	Running Hierarchical Comparison
	Comparing Designs at the Module Level
	Running Dynamic Hierarchical Comparison
	Interrupting a Hierarchical Comparison.

	Hierarchical Comparison Command Flow
	Read the Libraries and Designs
	Generate a Hierarchical Compare Dofile
	No Blackboxing
	Constraint Propagation
	Renaming Rules
	Hierarchical Compare Dofile Execution

	Hierarchical Comparison for Abort Resolution
	Hierarchical Module Comparison Window
	Hierarchical Module Comparison Fields and Options
	Setting General Options
	Reporting CPU Use
	Working with Hierarchical Compare Dofiles
	Finding Module Names
	Deselecting the Dual Scroll Option
	Viewing a Module’s Compare Status
	Specifying Blackbox Modules
	Deleting Previously Added Blackbox Modules
	Ignoring Modules during Comparison
	Deleting No-Blackbox Status
	Running a Hierarchical Comparison
	Comparing Lower-Level Modules
	Highlighting Non-Equivalent Modules
	Deleting and Resetting Hierarchical Compare Results
	Specifying the Root Module

	Advanced Capabilities
	Overview
	Supported Datapath Structures and Optimizations
	Multipliers
	Operator Merging
	Resource Sharing
	Sequential Merge Optimization

	Module-Based Datapath Analysis
	Datapath Module Abstraction
	Datapath Module Abstraction Reporting and Diagnosis
	Handling Aborts in Datapath Module Abstraction
	Datapath Operator Learning
	DC Synthesis Flow
	Sample DC Script
	DC Commands
	MDP Effort Levels
	Dofile Example for Intermediate Netlists
	Dofile Example for Intermediate to Final Netlist
	Extracting Testcases for Datapath Modules
	Recreating Testcases for Datapath Modules
	Isolating Aborted Datapath Modules

	Word-Level Datapath Analysis
	Datapath Learning
	Reporting and Diagnosis of Datapath Analysis

	Sequential Merge Analysis
	Sequential Merge Flow
	Synthesis Requirements
	Sequential Merge Verification
	Setting the Effort Level
	Diagnosing Instance/Sequential Merge Nonequivalence

	Retiming
	Basic Pipeline Retiming
	Advanced Pipeline Retiming
	Pipeline Retiming on a List of Specified Registers
	Pipeline Backward Retiming
	Merging Equivalent Registers
	Retiming Diagnosis
	Flattened Retiming Analysis

	Multithreading Process
	Multithreading Model
	Enabling Multithreaded Processing
	Setting Comparison Effort Levels
	Setting Comparison Options
	Number of Threads Recommendation
	Running Jobs on Server Farms
	Licensing Requirements
	Temporary Files and Directories

	Multi-Threaded Functional Partitioning
	Adding Partition Points
	Adding Partition Points for Comparison
	Name-based Physical Partitioning
	Comparison with Functional Partitioning

	Analyzing Non-Equivalence
	Example Report

	Analyzing Implication Values
	Netlist Analysis
	Extracting Half Adder and Full Adder Cells
	Identifying and Optimizing Library Cells
	Extracting MUX Logic for DFFs

	Sample Dofile

	Layout Versus Schematic
	Overview
	LVR Functionality

	Starting Conformal GXL
	LVR Flow
	Circuit Library Analysis
	Design Logic Function Verification

	LVR Implementation
	Suggested Uses
	Conformal Dofile Examples

	Conformal Custom
	Overview
	Custom Licensing
	Abstraction Methods

	Starting Conformal GXL
	Conformal GXL Process Flow
	Reading a Transistor Netlist
	Defining Constraints
	Running Logic Transistor Abstraction
	Reporting MOS Direction
	Continuing the Verification Flow
	Specifying Conditions for Abstracting Logic
	Analyzing Switch and Primitive Drive Strength

	Custom Menu
	General Setup
	Tie Off Cell Pins to 0 or 1
	Set Equivalent or Inverted Cell Input Pins
	Group Single Pins into Bus
	Flatten
	Ungroup Module
	Group Instances into New Module

	Custom Setup
	SPICE Netlist Options
	MOS Devices Name
	Pre-charge Clocks
	Module Pin Direction
	Circuit to Logic Transformation Settings
	MOS Direction
	Define Power and Ground Supply

	Data Entry Menu
	Design
	Pattern Match
	Cell Remodel

	Application Menu
	Logic Abstraction
	Test View Abstraction
	Power View Abstraction
	Library Verification

	RAM Primitive
	RAM Primitive - Standard
	RAM Primitive - Specialty
	RAM Primitive - SRAM

	ROM Primitive

	Conformal ECO Designer Functionality and Methodology
	FPGA Capabilities and Process Flow
	Overview
	FPGA Front-End Verification
	Requirements and Licensing
	Front-End Verification Flow
	Current Capabilities

	FPGA Back-End Verification Flow
	Generating a Post-PAR Gate Netlist
	Comparing the Designs
	Continuing the Conformal Verification Flow

	Tips for the FPGA Flow
	Xilinx Tips
	Synplify Pro Tips
	General FPGA Tips
	Using the Verilog Always Statement with Mixed Register Types

	VHDL Support
	Supported and Unsupported IEEE Packages
	Vital Package Support

	Read Design
	Library Mapping

	Architectures
	Global Signal

	Configurations
	Component Configuration
	Nested Configurations

	Declarations
	Initial Value
	Shared Variable

	Names
	Sliced Names
	Predefined Attributes
	User-Defined Attributes

	Expressions
	Function Calls

	Sequential Statements
	Wait Statements
	Signal Assignment
	Procedure Calls
	For Loops
	While Loops

	Concurrent Statements
	Signal Assignment

	Verilog Support
	Verilog Configurations
	Supported Constructs
	Synthesizable UDPs
	Unsupported Constructs and Workaround Solutions
	Instance Configuration Examples

	Verilog 2001 Support Tables
	Supported
	Limited Support
	Ignored
	Not Applicable

	SystemVerilog Support
	SystemVerilog Support Tables
	Literals
	Data Types
	Arrays
	Data Declarations
	Attributes
	Operators & Expressions
	Procedural Statements
	Processes
	Tasks and Functions
	Classes
	Randomization & Constraints
	Synchronization
	Scheduling Semantics
	Clocking Blocks
	Program Blocks
	Assertions
	Coverage
	Modules and Hierarchy
	Interfaces
	Packages
	Configuration Libraries
	System Tasks and Functions
	VCD Data
	Macros and Compiler Directives
	APIs
	Configuring the Contents of a Design
	Annexes
	Non-std

	System Verilog Assertions (SVA)
	Supported SVA System Functions
	Default Clocking
	Property Declaration
	Property Binding
	Supported SVA Properties
	Clocked Boolean Expression
	Examples

	Supported Directives
	Supported Vendors
	Supported Directives
	Conformal Directive Examples
	Enabling One Directive
	Disabling All Directives for One Vendor
	Disabling Specified Directives for One Vendor
	Enabling a List of Directives from an RTL File

	Conformal Sample Test Case
	Starting Conformal
	Reading the Library
	Read the Designs
	Changing to the LEC System Mode
	Viewing Unmapped and Mapped Points
	Running a Comparison
	Diagnosing a Non-Equivalent Point
	Non-Corresponding Support Section
	Error Pattern Section
	Error Candidate Section

	Opening the Schematic Viewer
	Adding Pin Constraints
	Rerunning the Comparison
	Exiting
	Standard Dofile Example

	Top-level IO Port Modeling
	Conformal Primitive Gate Types

