
Synopsys® TestMAX™ DFT User
Guide

Version T-2022.03, March 2022

Copyright and Proprietary Information Notice
© 2022 Synopsys, Inc. This Synopsys software and all associated documentation are proprietary to Synopsys, Inc.
and may only be used pursuant to the terms and conditions of a written license agreement with Synopsys, Inc. All
other use, reproduction, modification, or distribution of the Synopsys software or the associated documentation is
strictly prohibited.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America.
Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader’s responsibility to
determine the applicable regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Trademarks
Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth at
https://www.synopsys.com/company/legal/trademarks-brands.html.
All other product or company names may be trademarks of their respective owners.

Free and Open-Source Licensing Notices
If applicable, Free and Open-Source Software (FOSS) licensing notices are available in the product installation.

Third-Party Links
Any links to third-party websites included in this document are for your convenience only. Synopsys does not endorse
and is not responsible for such websites and their practices, including privacy practices, availability, and content.

www.synopsys.com

Synopsys® TestMAX™ DFT User Guide
T-2022.03

2

https://www.synopsys.com/company/legal/trademarks-brands.html
https://www.synopsys.com/

Feedback

Contents
New in This Release .35

Related Products, Publications, and Trademarks .36

Conventions .36

Customer Support . 37

Part 1: DFT Overview

1. Introduction to Synopsys DFT Tools . 40

Key Features . 40

Key Benefits . 41

DFT Compiler and the Synopsys TestMAX Product Platform41

DFTMAX Scan Compression . 43

DFTMAX Ultra Scan Compression . 43

DFTMAX LogicBIST Self-Test .44

Other Tools in the Synopsys Test and Yield Solution . 44

2. Designing for Manufacturing Test . 46

Functional Testing Versus Manufacturing Testing .46

Modeling Manufacturing Defects .47
Understanding Stuck-At Fault Models . 47

Controllable and Observable Faults .48
Detecting Stuck-At Faults .48

Determining Coverage . 50
Understanding Fault Simulation . 50
Automatically Generating Test Patterns . 51
Formatting Test Patterns .52

Achieving Maximum Fault Coverage for Sequential Cells . 52
Controllability of Sequential Cells .52
Observability of Sequential Cells . 52

Understanding the Full-Scan Test Methodology . 53

3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Scan Styles Supported by DFT Compiler .54
Multiplexed Flip-Flop Scan Style . 54
Clocked-Scan Scan Style . 54
Level-Sensitive Scan Design (LSSD) Style . 55
Scan-Enabled Level-Sensitive Scan Design (LSSD) Style 56
Summary of Supported Scan Cells . 57

Logic Library Considerations . 57

Describing the Test Environment . 58

Test Design Rule Checking Functions . 58

Getting the Best Results With Scan Design . 58

3. Scan Design Techniques . 60

Internal Scan Design .60
Scan Cells .60
Scan Chains . 61
Scan Cells in Semiconductor Vendor Libraries . 61
The Effect of Adding Scan Circuitry to a Design . 61
ATPG and Internal Scan .62
Applying Scan Patterns . 62
Full-Scan Design .64

Test for System-On-A-Chip Designs . 65

Boundary Scan Design . 65

4. Scan Styles . 67

Multiplexed Flip-Flop Scan Style .67
Flip-Flop Equivalents . 67
Master-Slave Latch Equivalents . 68
Multiplexed Flip-Flop Scan Style Characteristics . 70

Clocked-Scan Scan Style . 71
Flip-Flop Equivalents . 71
Latch Equivalents . 73
Clocked-Scan Scan Style Characteristics . 74

LSSD Scan Style .75
Single-Latch LSSD . 75

Single-Latch LSSD Scan Style Characteristics . 78
Double-Latch LSSD . 78

4

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Double-Latch LSSD Scan Style Characteristics . 80
Clocked LSSD .81

Clocked LSSD Scan Style Characteristics .83

Scan-Enabled LSSD Style . 83
Scan-Enabled LSSD Scan Style Characteristics . 85

5. Scan Design Requirements . 86

Test Port Requirements .86

Test Timing Requirements .88

Test Clock Requirements . 89
Clock Requirements in Edge-Sensitive Scan Shift Styles 89

Skew Issues . 89
Mixed Edges .90
Multiple Clocks . 91

Clock Requirements in LSSD Scan Styles .92
Master Scan Clock and Slave Clock . 92
Synchronized Clocks . 92
Skew Control . 92

Test Protocol Requirements . 92
Valid and Invalid Test Protocols . 93
Methods of Generating Test Protocols . 93

Reading In an Existing Test Protocol .93
Creating a Fully User-Specified Test Protocol . 94
Inferring a Test Protocol Based on Partial Specification 94
Inferring a Test Protocol .94
Initialization Protocol .94

Protocol Types . 94
Strobe-Before-Clock Protocol .95
A Strobe-Before-Clock Example . 95
Strobe-After-Clock Protocol . 97
A Strobe-After-Clock Example . 97

Part 2: DFT Compiler Scan

6. Getting Started .101

Preparing to Run DFT Compiler . 103
Invoking the Synthesis Tool . 103

5

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Setting Up Your Design Environment .104
Reading In Your Design . 105
Setting the Scan Style . 105
Configuring the Test Cycle Timing . 106
Defining the DFT Signals . 107

Performing Scan Synthesis .108
Performing One-Pass Scan Synthesis . 110
Performing Scan Insertion . 110

Configuring Scan Insertion .111
Performing Pre-DFT Test DRC . 112
Previewing Scan Insertion . 114
Inserting the DFT Logic . 115
Performing Post-DFT Optimization . 115

Analyzing Your Post-DFT Design . 116

Reporting . 117

Designing Block by Block . 120

Performing Scan Extraction . 121

Hierarchical Scan Synthesis . 122
Top-Down Flat Versus Bottom-Up Hierarchical . 122
Introduction to Test Models . 124
Writing Out a CTL Model at the Core Level .125
Reading In and Using CTL Models at the Top Level . 127
Checking Connectivity to Cores at the Top Level . 129
Using Advanced Clock Feedthrough Analysis . 129
Connecting the Scan-Enable Pins of Cores .130
Hierarchical Synthesis, DFT Insertion, and Layout Flows 131
Linking Test Models to Library Cells . 133
Checking Library Cells for CTL Model Information . 134

Physical DFT Features in Design Compiler . 135

DFT Flows in DC Explorer . 135

7. Running the Test DRC Debugger . 138

Starting and Exiting the Graphical User Interface . 138

Exploring the Graphical User Interface .139
Logic Hierarchy View . 140
Console . 141
Command Line . 141

6

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Viewing Man Pages . 141
Menus . 142

Checking Scan Test Design Rules .142
Examining DRC Violations . 142
Viewing Test Protocols . 143

Viewing Design Violations .143
Reporting DRC Violations .143
Inspecting DRC Violations . 145

Viewing a Violation .145
Viewing Multiple Violations Together . 147
Viewing CTL Model Scan Chain Information . 148
Viewing test_setup Pin Data Waveforms . 149

Commands Specific to the DFT Tools in the GUI .151
gui_inspect_violations . 151
gui_wave_add_signal . 152
gui_violation_schematic_add_objects .152

8. Performing Scan Replacement . 154

Scan Replacement Flow . 154

Preparing for Scan Replacement . 156
Selecting a Scan Replacement Strategy . 156
Identifying Barriers to Scan Replacement . 157

Logic Library Does Not Contain Appropriate Scan Cells 158
Support for Different Types of Sequential Cells and Violations 158
Attributes That Can Prevent Scan Replacement . 160
Invalid Clock Nets . 161
Invalid Asynchronous Pins . 164

Preventing Scan Replacement . 164

Specifying a Scan Style . 165
Types of Scan Styles . 165

Multiplexed Flip-Flop Scan Style . 166
Clocked Scan Style . 166
LSSD Scan Style . 166
Scan-Enabled LSSD Scan Style . 167

Scan Style Considerations . 167
Setting the Scan Style . 168

Verifying Scan Equivalents in the Logic Library . 168
Checking the Logic Library for Scan Cells . 169
Checking for Scan Equivalents . 170

7

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Scan Cell Replacement Strategies . 170
Specifying Scan Cells .171

Restricting the List of Available Scan Cells . 171
Scan Cell Replacement Strategies . 172
Mapping Sequential Gates in Scan Replacement 172

Multibit Components . 173
What Are Multibit Components? . 174
How DFT Compiler Creates Multibit Components 174
Controlling Multibit Test Synthesis . 175
Performing Multibit Component Scan Replacement 175
Disabling Multibit Component Support .176

Test-Ready Compilation . 176
What Is Test-Ready Compile? . 176

The Test-Ready Compile Flow .177
Preparing for Test-Ready Compile . 178

Performing Test-Ready Compile in the Logic Domain 179
Controlling Test-Ready Compile . 179
Comparing Default Compile and Test-Ready Compile180
Complex Compile Strategies . 183

Validating Your Netlist . 184
Running the link Command . 184
Running the check_design Command . 185

Performing Constraint-Optimized Scan Insertion . 185
Supported Scan States .186
Locating Scan Equivalents . 186
Preparing for Constraint-Optimized Scan Insertion . 188
Scan Insertion . 189

Specification Phase . 191
Preview . 192
Synthesis . 193

9. Architecting Your Test Design . 194

Configuring Your DFT Architecture . 195
Defining Your Scan Architecture .195

Setting Design Constraints .196
Defining Constant Input Ports During Scan . 197
Specifying Test Ports . 197

Specifying Individual Scan Paths . 197

Architecting Scan Chains . 199

8

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Controlling the Scan Chain Length . 200
Specifying the Global Scan Chain Length Limit .200
Specifying the Global Scan Chain Exact Length . 200

Determining the Scan Chain Count . 201
Defining Individual Scan Chain Characteristics . 201
Balancing Scan Chains . 202

Concatenating Scan Cells and Segments . 203
Multiple Clock Domains . 203
Multibit Components and Scan Chains . 206

Physical Reordering and Repartitioning . 207
Controlling the Routing Order .208
Retiming Scan-Ins and Scan-Outs to the Leading Clock Edge 209
Routing Scan Chains and Global Signals . 211
Rerouting Scan Chains .211
Stitching Scan Chains Without Optimization . 212

Specifying a Stitch-Only Design .212
Mapping the Replacement of Nonscan Cells to Scan Cells212
Criteria for Conversion Between Nonscan and Scan Cells 214

Scan Stitching Only Scan-Replaced Cells . 215
Using Existing Subdesign Scan Chains . 216
Uniquifying Your Design . 218
Reporting Scan Path Information on the Current Design 219

Architecting Scan Signals . 219
Specifying Scan Signals for the Current Design . 220
Selecting Test Ports . 225

Defining Existing Unconnected Ports as Scan Ports 225
Sharing a Scan Input With a Functional Port .226
Sharing a Scan Output With a Functional Port . 226
Controlling Subdesign Scan Output Ports . 227

Controlling Scan-Enable Connections to DFT Logic . 228
Associating Scan-Enable Ports With Specific Scan Chains228
Defining Dedicated Scan-Enable Signals for Scan Cells228
Connecting the Scan-Enable Signal in Hierarchical Flows 230
Preserving Existing Scan-Enable Pin Connections 232

Controlling Buffering for DFT Signals .233
Suppressing Replacement of Sequential Cells . 233

In Logic Scan Synthesis .234
Changing the Scan State of a Design . 234
Removing Scan Configurations . 235
Keeping Specifications Consistent . 235

9

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Synthesizing Three-State Disabling Logic . 236
Configuring Three-State Buses . 239

Configuring External Three-State Buses . 239
Configuring Internal Three-State Buses .239
Overriding Global Three-State Bus Configuration Settings 239
Disabling Three-State Buses and Bidirectional Ports 240

Handling Bidirectional Ports . 241
Setting Individual Bidirectional Port Behavior . 241
Fixed Direction Bidirectional Ports . 241

Assigning Test Port Attributes . 242

Architecting Test Clocks . 242
Defining Test Clocks . 243
Specifying a Hookup Pin for DFT-Inserted Clock Connections 244
Requirements for Valid Scan Chain Ordering . 245
Lock-Up Latch Insertion Between Clock Domains . 246
Automatically Creating Skew Subdomains Within Clock Domains251
Manually Creating Skew Subdomains at Associated Internal Pins 254
Manually Creating Skew Subdomains With Scan Skew Groups 256
Defining Scan Chains by Scan Clock . 258
Handling Multiple Clocks in LSSD Scan Styles . 259

Using Multiple Master Clocks .259
Dedicated Test Clocks for Each Clock Domain . 260
Controlling LSSD Slave Clock Routing . 261

Configuring Clock-Gating Cells . 263
Introduction to Clock Gating in DFT Flows . 264
Clock-Gating Control Points . 264

Configuring Clock-Gating Control Points . 265
Scan-Enable Signal Versus Test-Mode Control Signal 266
Improving Observability When Using Test-Mode Control Signals 267

Discrete-Logic Clock-Gating Cells and Integrated Clock-Gating Cells 269
Inferred and Instantiated Clock-Gating Cells . 270

Inferring Clock-Gating Cells Using Power Compiler 270
Instantiating Clock-Gating Cells in the RTL . 270

Choosing a Clock-Gating Control Point Configuration 272
Initialization for Special Cases of Before-Latch Control Points 273

Reporting Unconnected Clock-Gating Cell Test Pins During Pre-DFT DRC . . .274
Automatically Connecting Test Pins During DFT Insertion275
Specifying Signals for Clock-Gating Cell Test Pin Connections 276
Identifying Clock-Gating Cells in an ASCII Netlist Flow 277
Limitations . 278

10

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Specifying a Location for DFT Logic Insertion . 278
Creating New DFT Logic Blocks . 282

Partitioning a Scan Design With DFT Partitions . 283
Defining DFT Partitions .284
Configuring DFT Partitions . 285
Per-Partition Scan Configuration Commands .287

set_scan_configuration .287
set_dft_signal . 288
set_dft_location .288
set_scan_path . 288
set_testability_configuration . 289
set_wrapper_configuration . 289

Known Issues of the DFT Partition Flow . 289

Modifying Your Scan Architecture .290

10. Advanced DFT Architecture Methodologies . 291

Inserting Test Points . 291
Test Point Types . 292

Force Test Points . 292
Control Test Points . 294
Observe Test Points . 296
Multicycle Test Points .296

Test Point Structures . 297
Test Point Components . 297
Test Point Register Clocks . 298
Test Point Enable Logic . 299
Sharing Test Point Registers . 301

Automatically Inserted Test Points . 303
Enabling Automatic Test Point Insertion . 305
Configuring Global Test Point Insertion Settings . 305
Configuring the Random-Resistant Test Point Target 307
Configuring the Untestable Logic Test Point Target309
Configuring the X-Blocking Test Point Target . 311
Configuring the Multicycle Path Test Point Target 312
Configuring the Shadow Wrapper Test Point Target 312
Configuring the Core Wrapper Test Point Target . 313
Configuring the XOR Self-Gating Test Point Target315
Configuring the User-Defined Test Point Target .317
Enabling Multiple Targets in a Single Command . 318
Implementing Test Points From an External File . 318
Customizing the Test Point Analysis . 321

11

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Running Test Point Analysis . 322
Automatic Test Point Insertion Example Script . 324
Limitations .324

User-Defined Test Points . 325
Enabling User-Defined Test Point Insertion . 326
Configuring User-Defined Test Points . 326
Limitations .328

Previewing the Test Point Logic . 328
Inserting the Test Point Logic . 330

Using AutoFix . 330
When to Use AutoFix . 331

Uncontrollable Clock Signals . 331
Uncontrollable Asynchronous Set and Reset Signals 332
Uncontrollable Three-State Bus Enable Signals . 333
Uncontrollable Bidirectional Enable Signals .334

The AutoFix Flow . 335
Configuring AutoFix . 337

Enabling AutoFix Capabilities . 337
Configuring Clock AutoFixing .338
Configuring Set and Reset AutoFixing .338
Configuring Three-State Bus AutoFixing . 340
Configuring Bidirectional AutoFixing . 340
Applying Hierarchical AutoFix Specifications . 341
Previewing the AutoFix Implementation .343

AutoFix Script Example . 343

Using Pipelined Scan Enables for Launch-On-Extra-Shift (LOES) 344
The Pipelined Scan-Enable Architecture . 344
Pipelined Scan-Enable Requirements . 347
Implementing Pipelined Scan-Enable Signals . 348
Pipelined Scan-Enable Signals in Hierarchical Flows 349
Implementation Considerations for Pipelined Scan-Enable Signals351
Pipelined Scan Enable Limitations . 354
Excluding Elements from a Pipelined Scan-Enable Configuration 354

Multiple Test Modes . 355
Introduction to Multiple Test Modes . 355
Defining Test Modes . 356

Defining the Usage of a Test Mode . 357
Defining the Encoding of a Test Mode .358

Applying Test Specifications to a Test Mode . 360
Recommended Ordering of Global and Mode-Specific Commands363

12

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Using Multiple Test Modes in Hierarchical Flows . 363
Supported Test Specification Commands for Test Modes 365

set_dft_signal . 365
set_scan_configuration .366
set_scan_path . 366

Multiple Test-Mode Scan Insertion Script Examples . 367

Test-Mode Control Using the IEEE 1500 and IEEE 1149.1 Interfaces 375
IEEE 1500 Test Mode Control Architecture . 375

Core-Level Test-Mode Control . 376
Core Integration With IEEE 1500 Test-Mode Control 378
Chip-Level Test-Mode Control . 379

Inserting IEEE 1500 at the Core Level .380
Inserting IEEE 1500 and IEEE 1149.1 at the Chip Level 381
Customizing the IEEE 1500 Architecture . 382

Configuring the WIR .382
Configuring the DFT-Inserted TMCDR .383
Using an Existing TMCDR . 383
Using WIR Test-Mode Decoding With No TMCDR 384
Controlling the Test-Mode Encoding Style . 385
Reporting the Test Mode Encodings . 385
Specifying WIR Opcodes for CDRs . 386

Writing Test Protocols . 386
Script Examples . 388
Limitations . 390

Multivoltage Support . 391
Configuring Scan Insertion for Multivoltage Designs . 391
Configuring Scan Insertion for Multiple Power Domains 392
Mixture of Multivoltage and Multiple Power Domain Specifications 392
Reusing Multivoltage Cells . 393

Reusing Level Shifters in Scan Paths . 394
Reusing Isolation Cells in Scan Paths .395

Scan Path Routing and Isolation Strategy Requirements 401
Using Domain-Based Strategies for DFT Insertion . 405
DFT Considerations for Low-Power Design Flows .406
Previewing a Multivoltage Scan Chain .408
Scan Extraction Flows in the Presence of Isolation Cells 409
Limitations . 410

Controlling Power Modes During Test . 410
Inserting Power Controller Override Logic . 410

Limitations .413

13

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Controlling Clock-Gating Cell Test Pin Connections .413
Connecting User-Instantiated Clock-Gating Cells . 414

Script Example . 416
Limitations .417

Excluding Clock-Gating Cells From Test-Pin Connection417
Connecting Clock-Gating Cell Test Pins Without Scan Stitching 420

Internal Pins Flow . 422
Defining Signals on Internal Pins . 423
Writing Out the Test Protocol . 424
Limitations of the Internal Pins Flow . 425

Creating Scan Groups .425
Configuring Scan Grouping . 425

Creating Scan Groups . 425
Removing Scan Groups . 427
Integrating an Existing Scan Chain Into a Scan Group 427
Reporting Scan Groups . 429

Scan Group Flows . 429
Known Limitations .429

Shift Register Identification . 429
Simple Shift Register Identification .430
Synchronous-Logic Shift Register Identification . 431
Shift Register Identification in an ASCII Netlist Flow . 431

Performing Scan Extraction . 432

11. Wrapping Cores .434

Core Wrapping Concepts . 434
Wrapper Cells and Wrapper Chains .435
Wrapper Test Modes .438
The Simple Core Wrapping Flow . 438

Simple Core Wrapper Cells . 439
Simple Core Wrapper Chains . 444

The Maximized Reuse Core Wrapping Flow . 445
Maximized Reuse Core Wrapper Cells . 445
Maximized Reuse Core Wrapper Chains .447
Maximized Reuse Shift Signals . 448

Wrapping Three-State and Bidirectional Ports . 449

Wrapping a Core . 450
Enabling Core Wrapping .451

14

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Defining Wrapper Shift Signals .451
Defining Dedicated Wrapper Clock Signals . 453
Configuring Global Wrapper Settings . 453
Configuring Port-Specific Wrapper Settings . 454
Controlling Wrapper Chain Count and Length . 455
Configuring Simple Core Wrapping . 456

Configuring Dedicated Wrapper Cell Clocks . 456
Using Shared Wrapper Cells . 457
Configuring Shared Wrapper Cell Clocks . 457
Using In-Place Shared Wrapper Cells . 458
Creating Separate Input and Output Wrapper Chains 459

Configuring Maximized Reuse Core Wrapping . 459
Enabling Maximized Reuse Core Wrapping . 460
Applying a Register Reuse Threshold . 461
Applying a Combinational Depth Threshold .464
Specifying Port-Specific Maximized Reuse Behaviors465
Special Cases for Register Reuse .466
Using Dedicated Wrapper Cells .468
Configuring Dedicated Wrapper Cell Clocks . 469
Defining Input/Output Clock-Domain-Based Wrapper Shift Signals469
Including Additional Scan Cells in Input and Output Wrapper Chains 470
Using the Pipelined Scan-Enable Feature . 470
Low-Power Maximized Reuse Features . 472
Hierarchical Core Wrapping . 475
Limitations of the Maximized Reuse Flow . 477

Determining Power Domains for Dedicated Wrapper Cells 477
Using the set_scan_path Command With Wrapper Chains 478
Previewing the Wrapper Cells . 479

Previewing Maximized Reuse Wrapper Cells . 481
Post-DFT DRC Rule Checks . 483

Creating User-Defined Core Wrapping Test Modes . 483

Creating Compressed EXTEST Core Wrapping Test Modes 485

Creating an IEEE 1500 Wrapped Core . 486

Wrapping Cores With OCC Controllers . 487
Wrapping Cores With OCC Clock Outputs .488

Wrapping Cores With DFT Partitions . 489

Wrapping Cores With Multibit Registers . 490

Wrapping Cores With Synchronizer Registers . 491

Wrapping Cores With Existing Scan Chains .492

15

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Creating an EXTEST-Only Core Netlist . 496

Integrating Wrapped Cores in Hierarchical Flows .497
Scheduling Wrapped Cores . 497
Integrating Wrapped Cores in a Compressed Scan Flow 500
Nested Integration of Wrapped Cores . 502
Mixing Wrapped and Unwrapped Cores . 503
Top-Down Flat Testing With Transparent Wrapped Cores 503

Introduction to Transparent Test Modes . 504
Defining Core-Level Transparent Test Modes . 505
Defining Top-Level Flat Test Modes .506
Limitations .507

SCANDEF Generation for Wrapper Chains . 507

Core Wrapping Scripts . 508
Core Wrapping With Dedicated Wrapper Cells . 508
Core Wrapping With Maximized Reuse . 509

12. On-Chip Clocking Support . 511

Background . 512

Supported DFT Flows . 513

Clock Type Definitions .513

Capabilities . 514

OCC Controller Structure and Operation . 515
DFT-Inserted and User-Defined OCC Controllers . 515
Synchronous and Asynchronous OCC Controllers . 518
OCC Controller Signal Operation . 519
Clock Chain Operation . 520
Logic Representation of an OCC Controller and Clock Chain 521
Scan-Enable Signal Requirements for OCC Controller Operation 522

Enabling On-Chip Clocking Support . 522

Specifying OCC Controllers . 523
Specifying DFT-Inserted OCC Controllers . 523

Defining Clocks .523
Defining Global Signals . 526
Configuring the OCC Controller . 527
Configuring the Clock Selection Logic . 529
Configuring the Clock-Chain Clock Connection .532
Specifying Scan Configuration . 532

16

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Performing Timing Analysis . 533
Script Example . 533

Specifying Existing User-Defined OCC Controllers . 534
Defining Clocks .535
Defining Global Signals . 538
Specifying Clock Chains . 539
Scan Configuration for User-Defined OCC Controllers 540
Script Example . 540

Specifying OCC Controllers for External Clock Sources 542
Using OCC Controllers in Hierarchical DFT Flows .543

Integrating Cores That Contain OCC Controllers 543
Defining Signals for Cores Without Preconnected OCC Signals 544
Defining Signals for Cores With Preconnected OCC Signals 545
Handling Cores With OCC Clock Output Pins . 546

Reporting Clock Controller Information .546
DFT-Inserted OCC Controller Flow . 546
Existing User-Defined OCC Controller Flow . 547

DRC Support . 548
Enabling the OCC Controller Bypass Configuration .548

DFT-Inserted OCC Controller Configurations . 549
Single OCC Controller Configurations . 549

Example 1 . 549
Example 2 . 550
Example 3 . 550

Multiple DFT-Inserted OCC Controller Configurations 551
Example 1 . 552
Example 2 . 552

Waveform and Capture Cycle Example . 553

Limitations . 554

13. Pre-DFT Test Design Rule Checking .557

Test DRC Basics . 557
Test DRC Flow . 557

Preparing Your Design . 559
Creating the Test Protocol . 560
Assigning a Known Logic State . 560
Performing Test Design Rule Checking . 560
Reporting All Violating Instances . 561
Analyzing and Debugging Violations . 561

17

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Summary of Violations . 561
Enhanced Reporting Capability . 562

Test Design Rule Checking Messages .564
Understanding Test Design Rule Checking Messages 564

Effects of Violations on Scan Replacement . 564
Viewing the Sequential Cell Summary . 565

Classifying Sequential Cells . 565
Sequential Cells With Violations .566

Cells With Scan Shift Violations .566
Black-Box Cells . 567
Constant Value Cells . 567

Sequential Cells Without Violations . 567

Checking for Modeling Violations . 567
Black-Box Cells .567

Correcting Black-Box Cells . 568
Unsupported Cells . 569
Generic Cells . 571
Scan Cell Equivalents .571

Scan Cell Equivalents and the dont_touch Attribute 572
Latches . 572

Nonscan Latches . 572

Setting Test Timing Variables . 573
Protocols for Common Design Timing Requirements 573

Preclock Measure Protocol . 574
End-of-Cycle Measure Protocol . 574

Setting Timing Variables . 574
test_default_period Variable . 575
test_default_delay Variable . 575
test_default_bidir_delay Variable . 575
test_default_strobe Variable . 576
test_default_strobe_width Variable .577
The Effect of Timing Variables on Vector Formatting578

Creating Test Protocols . 579
Design Characteristics for Test Protocols .579

Scan Style . 580
New DFT Signals . 580
Existing Clock Ports . 580
Existing Asynchronous Control Ports .580
Bidirectional Ports .581

STIL Test Protocol File Syntax . 581

18

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Defining the test_setup Macro . 581
Defining Basic Signal Timing . 582
Defining the load_unload Procedure . 584
Defining the Shift Procedure . 584

Defining an Initialization Protocol . 584
Scan Shift and Parallel Measure Cycles . 587

Multiplexed Flip-Flop Scan Style . 587
Clocked-Scan Scan Style .588
LSSD Scan Style . 588
Scan-Enabled LSSD Scan Style . 588

Examining a Test Protocol File .589
Updating a Protocol in a Scan Chain Inference Flow 591

Masking Capture DRC Violations . 592
Configuring Capture DRC Violation Masking . 592
Reporting Capture DRC Violation Masking . 593
Resetting Capture DRC Violation Masking .594

14. Previewing, Inserting, and Checking DFT Logic . 595

Previewing the DFT Logic .595
Running the preview_dft Command . 596
Previewing Additional Scan Chain Information .596
Previewing Test Mode Information . 600
Previewing the DFT Design Using Script Commands 601

Inserting the DFT Logic . 602
Scan Replacement . 602
Scan Element Allocation and Ordering . 603
Test Signals .603
Pad Cells .604

Post-DFT Insertion Test Design Rule Checking . 604
Running Post-DFT DRC After DFT Insertion . 605
Checking for Topological Violations . 605
Checking for Scan Connectivity Violations .606

Scan Chain Extraction . 607
Causes of Common Violations . 607
Ability to Load Data Into Scan Cells . 607

Incomplete Test Configuration . 608
Invalid Clock Logic . 609
Incorrect Clock Timing Relationship .612
Nonscan Sequential Cells . 614

19

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Ability to Capture Data Into Scan Cells . 615
Clock Driving Data . 616
Untestable Functional Path . 617
Uncontrollable Asynchronous Pins .618

Post-DFT DRC Limitations . 619

15. Exporting Data to Other Tools . 620

Exporting a Design to TestMAX ATPG . 620
Introduction to STIL Protocol Files . 621
Exporting Your Design to TestMAX ATPG . 622
Adjusting WaveformTable Timing for Delay Test . 624
Reading Designs With Black-Box Test Models Into TestMAX ATPG 625
STIL Protocol File Procedure and WaveformTable Examples 625
Limitations . 627

Using The SCANDEF-Based Reordering Flow .627
Introduction to SCANDEF .627
SCANDEF Constructs .628
Generating SCANDEF Information .630

Writing Out the SCANDEF Information . 630
Script Example . 631

Generating SCANDEF Information in Hierarchical DFT Flows 632
Preventing Scan Optimization in a Core . 632
Allowing Scan Optimization in a Core . 633
Using SCANDEF Information in a Manual Core Integration Flow 635

SCANDEF Examples . 635
Default (Two Scan Chains) . 635
Mixed Clock Edges . 636
set_scan_path With No Elements . 636
set_scan_path With Unordered Elements . 637
set_scan_path With Ordered Elements . 637
Scan Elements That Cannot Be Reordered or Repartitioned 638
Unrouted Scan Groups . 638
Serial-Routed Scan Groups . 639
CTL-Modeled Core .639
Inferred Shift Register . 640
PARTITION Name Conventions .640

Support for Other DFT Features . 641
Limitations of SCANDEF Generation . 642

Verifying DFT Inserted Designs for Functionality . 643
Verification Setup File Generation . 643

20

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Test Information Passed to the Verification Setup File644
Script Example . 644
Formality Tool Limitations . 645

Part 3: DFTMAX Compression

16. Introduction to DFTMAX .647

The DFTMAX Compression Architecture . 647
The DFTMAX Codec . 647
Decompressor Operation . 649
Compressor Operation . 649
The Congestion-Aware DFTMAX Codec . 650

DFTMAX Compression Requirements . 650
Design Requirements . 651
Pin Requirements . 651

Multicore Processing . 652
License Usage . 652

Limitations . 654
Current Limitations . 654
DFTMAX Compression Limitations .654

17. Using DFTMAX Compression . 655

Top-Down Flat Compressed Scan Flow . 655

Top-Down Flat Compressed Scan Flow With DFT Partitions 660
When to Use DFT Partitions in a Scan Compression Flow 660
Configuring Partition Codecs . 661
Choosing a Partitioned Codec Insertion Method . 662
Per-Partition Scan Compression Configuration Commands664

set_scan_compression_configuration . 665
set_dft_location .665
set_dft_signal . 665

Limitations of DFT Partitions in Scan Compression Flow 666
DFT Partition Script Example . 666

DFTMAX Scan Compression and Multiple Test Modes . 667
Defining Multiple Compressed Scan Modes . 667

21

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Per-Test-Mode Scan Compression Configuration Commands 669
set_scan_compression_configuration . 670
set_scan_path . 670

Multiple Test-Mode Script Examples . 671
Multiple Standard Scan Modes and One Compressed Scan Mode 671
Multiple Standard Scan and Compressed Scan Modes 673
Standard Scan Flow Using Multiple Test Modes and Partitions675
Scan Compression Flow Using Multiple Test Modes and Partitions 676

Excluding Scan Chains From Scan Compression . 677

Scan Compression and OCC Controllers . 679
Using Compressed Clock Chains .679
Defining External Clock Chains . 681

Specifying a Different Scan Pin Count for Compressed Scan Mode 682

Adding Compressed Chain Lock-Up Latches .684

Reducing Power Consumption in DFTMAX Designs . 685
Reducing Compressor Power When Codec Is Inactive 686

Preserving Compressor Gating Cells During Optimization 687
Reducing Scan Shift Power Using Shift Power Groups 687

The Shift Power Groups Architecture . 688
Scan-Enable Signal Requirements for Shift Power Groups689
Configuring Shift Power Groups . 689
Integrating Cores With Shift Power Groups in Hierarchical Flows 691
Configuring Shift Power Groups in TestMAX ATPG692
Using Shift Power Groups With Other DFT Features 693
Limitations of Shift Power Groups . 694

Forcing a Compressor With Full Diagnostic Capabilities . 695

Performing Congestion Optimization on Compressed Scan Designs697

Using AutoFix With Scan Compression . 698
One-Pass DFTMAX Example With AutoFix . 698
One-Pass DFTMAX Example With AutoFix and Multiple Test Modes 700

18. Hierarchical Adaptive Scan Synthesis . 703

The HSS Flow .703

The HASS Flow .705
Preparing Cores in the HASS Flow . 705
HASS Integration of Compressed Scan Cores . 706
HASS Integration of Additional Uncompressed Scan Logic 708

22

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

The Hybrid Flow . 711
Performing Top-Level Hybrid Integration . 712
Performing Top-Level Hybrid Integration with Partitions714

Using Multiple Test Modes in Hierarchical Flows . 716
Default Core-Level Test Mode Assignment . 717
User-Defined Core-Level Test Mode Scheduling . 719

Top-Level Integration Script Examples . 721
Typical HASS Flow Script .722
Typical Hybrid Flow Script . 722
Hybrid Flow Script With Multiple Test Modes .723

HASS and Hybrid Flow Limitations .724

19. Managing X Values in Scan Compression . 726

High X-Tolerance Scan Compression . 726
The High X-Tolerance Architecture .726
Enabling High X-Tolerance . 728
Scan-In and Scan-Out Requirements .728
Limitations . 730

Static-X Analysis . 730

Architecting X Chains . 732
The X-Chain Architecture . 732
Enabling X Chains . 733
Manually Specifying X-Chain Cells .734
Using the set_scan_path Command With X Chains . 735
Using AutoFix With X Chains . 735
Using X Chains in Hierarchical Flows . 737

Static-X Cells in the HASS Flow . 737
Hierarchical Blocks and X Sources . 739

Using the test_simulation_library Variable . 740
Representing X Chains in SCANDEF Files . 741
Passing X-Chain Information to TestMAX ATPG . 742
Error and Warning Summaries . 743
X-Chain Usage Guidance .744

20. Advanced DFTMAX Compression . 745

Specifying a Location for Codec Logic Insertion . 745

23

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Pipelined Scan Data . 746
Introduction to Pipelined Scan Data .747
Using Pipelined Scan Data .747

Enabling Pipelined Scan Data . 748
Automatically Inserting Head and Tail Pipeline Registers 748
Specifying User-Defined Head and Tail Pipeline Registers 749

Using Pipelined Scan Data With Scan Compression . 752
Configuring Pipelined Scan Data in a Compressed Scan Flow 752
Avoiding X Capture in Head Pipeline Registers . 755
Adding Pipeline Stages at the Compressor Inputs 757

Pipelined Scan Data Specifications . 759
Scan Architecture . 759
Scan Register Synchronization . 759

Pipelined Scan Data Test Protocol Format . 760
Pipelined Scan Data Limitations .760
Hierarchical Flows With Pipelined Scan Data . 761

General Rules .762
Pipelined Scan Data in the Standard Scan HSS Flow763
Pipelined Scan Data in the HASS and Hybrid Flows763

Sharing Codec Scan I/O Pins .764
Specifying the I/O Sharing Configuration . 765
Determining the Fully Shared I/O Configuration .767

Determining Shared Input Pin Types . 768
Adding High X-Tolerance Block-Select Pins . 770
Automatically Computing the Fully Shared Configuration 772
Manually Computing the Fully Shared Configuration772

Codec I/O Sharing in the HASS Flow . 773
Codec I/O Sharing in the Hybrid Flow . 774
Codec I/O Sharing in the Top-Down Flat Flow .775
Codec I/O Sharing With OCC Controllers . 778
Codec I/O Sharing With Identical Cores . 779

Identical Core Connections . 779
Specifying Identical Cores . 781
Using Scrambled Output Connections .781
Specifying Shared Codec Inputs With Dedicated Codec Outputs 782

Codec I/O Sharing With Shared Codec Controls . 783
Configuring Shared Codec Controls . 784
Specifying User-Defined Codec Enable Signals . 786

Codec I/O Sharing Groups . 786
Defining Sharing Groups in the HASS Flow . 787
Defining Sharing Groups in the Hybrid Flow . 788

24

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Defining Sharing Groups for Codecs in Partitioned Cores791
Defining Sharing Groups in the Top-Down Flat Flow793

Codec I/O Sharing and Standard Scan Chains . 794
Codec I/O Sharing and Pipelined Scan Data .797
Integrating Cores That Contain Shared Codec I/O Connections 800

Integrating Shared I/O Cores . 800
Integrating Identical High X-Tolerance Shared I/O Cores 802
Integrating Shared I/O Cores Using Shared Codec Controls803
Integrating Shared I/O Cores That Contain Shared Codec Controls 805

Shared Codec I/O Limitations . 806

Implicit Scan Chains . 807
Defining Implicit Scan Chains .808
Implicit Scan Chain Script Example . 810
Protocol Example . 811
Limitations . 812

21. DFTMAX Compression With Serializer . 813

Overview . 814

Architecture . 815
Serializer Clock Controller . 816
Deserializer Registers .816
Serializer Registers .816

Serializer Operation .816

Higher Shift Speed and Update Stage . 817

Scan-Enable Signal Requirements for Serializer Operation 821

Timing Paths . 822

Scan Clocks . 823
Deserializer/Serializer Update Stage Register Clocks 824
Specifying a Clock for Deserializer/Serializer Registers824
Staggered Scan Clocks . 825
Specifying Scan Clock Ports . 826

User Interface . 826

Configuring Serialized Compressed Scan . 827

Deserializer/Serializer Register Size .828

Serializer Implementation Flow . 829

Serialized Compressed Scan Core Creation . 829

25

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Serializer Core-Level Flow . 830
User-Defined Ports for the Serializer Core-Level Flow 831
Nondefault Scan Clock Timing for Core-Level Flows .832

Top-Down Flat Flow . 833
Serial Mode and Standard Scan Mode . 833
Serial Mode, Parallel Mode, and Standard Scan Mode 833

Top-Down Partition Flow . 835
Serializer Chains Dedicated to Each Partition . 836
Serializer Chains Concatenated Across Partitions . 838

HASS Flow . 840
Serializer Chains Dedicated to Each Core .841
Serializer Chains Concatenated Across Cores . 846

Hybrid Flow . 847
Serializer Chains Concatenated Across Cores . 850

Serializer IP Insertion . 850
Configuring Serializer IP Insertion . 852
Serializer IP Insertion in the Top-Down Flat Flow . 853
Serializer IP Insertion in the Top-Down Flat Flow With Partitions854
Serializer IP Insertion in the HASS Flow . 855

Referencing Multiple Codecs in Compressed Scan Cores 857
Serializer IP Insertion in the Hybrid Flow . 859

Serializer IP Insertion in the Hybrid Flow With Top-Level Partitions860
Incorporating External Chains Into the Hybrid Serializer IP Flows861

Serializer IP Insertion and Standard Scan Chains . 864
Limitations . 865

Wide Duty Cycle Support for Serializer . 865
Block Diagram .866
Timing Diagram .868
Internally Generated Clocks . 869
Wide Duty Cycle in a Core-Level Flow . 871
Wide Duty Cycle in the HASS Flow . 871
Wide Duty Cycle in the Hybrid Flow . 871
Dual STIL Flow Parallel Patterns . 872
Limitations . 874

Serializer in Conjunction With On-Chip Clocking Controllers 874
OCC and SPC Chains in a Serializer Design . 874
Using Serializer With User-Defined OCC Controllers .875

26

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Using a Serializer Clock Controller With Multiple OCC Controllers 875
Waveforms for a Serializer With OCC Controllers . 877

Using Integrated Clock-Gating Cells in the Serializer Clock Controller878

User-Defined Pipelined Scan Data . 878

Running TestMAX ATPG on Serializer Designs . 879
Simulation and Patterns . 879
STIL Protocol File . 880

load_unload Procedure . 880
UserKeywords SerializerStructures . 883
Compressor Structures .887
ClockStructures . 889

Debugging TestMAX ATPG Serializer DRC Errors .890
Debugging R33 Through R38 DRC Errors . 890
Providing Guidance for R34 and R36 DRC Errors 893

Pattern Translation . 896
Translating Parallel Mode Patterns to Serial Mode Patterns 896
Translating Serial Mode Patterns to Standard Scan Mode Patterns 899

Known Issues . 899
C1 Violations . 899
Serializer Core-Level Flow With Pipelined Scan Data Insertion 900

DFTMAX Compression With Serializer Limitations .900

Out-of-Scope Serializer Functionality . 901

DFTMAX Compression Error Messages .901
TEST-1093 . 902
TEST-1094 . 902
TEST-1095 . 902
TEST-1096 . 902
TEST-1097 . 902

Part 4: DFTMAX Ultra Compression

22. Introduction to DFTMAX Ultra . 904

The DFTMAX Ultra Compression Architecture . 904

Usage Flow . 905

Hierarchical DFT Insertion . 906

Test Pattern Creation Using TestMAX ATPG . 907

27

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Pattern Simulation . 908

23. DFTMAX Ultra Compression Architecture . 909

DFTMAX Ultra Compression Architecture . 909
Input Shift Register and Decompression MUX .910
Control Register . 911
Output XOR Compression Tree and Shift Register . 911
Test Pattern Scan Procedure . 912
Scan-Enable Signal Requirements for Codec Operation 913

Multiple-Input, Multiple-Output Architecture . 913

DFTMAX Ultra Architectures for On-Chip Clocking (OCC)915
External Clock Chain . 915
Compressed Clock Chain .916

24. Using DFTMAX Ultra Compression . 918

DFTMAX Ultra Compression Requirements . 918

Top-Down Insertion Compressed Scan Flow . 919
Enabling DFTMAX Ultra Compression . 919
Configuring the DFTMAX Ultra Codec . 921
Configuring the Codec Clock . 923

Top-Down Insertion Compressed Scan Flow With Partitions 925
Using Dedicated Scan Data Connections for Each Partition 925
Using Serial Scan Data Connections Between Partitions 927
Per-Partition Streaming Configuration Commands .929

set_streaming_compression_configuration . 929
set_dft_signal . 930

The Multiple-Input, Multiple-Output Codec Architecture . 930

DFTMAX Ultra Compression and Multiple Test Modes . 931
Defining Multiple DFTMAX Ultra Compressed Scan Modes 932
Mixing DFTMAX and DFTMAX Ultra Compression Modes 933
Per-Test-Mode Streaming Configuration Options .934

Using OCC Controllers With DFTMAX Ultra Compression935
Creating External Clock Chains . 935

Automatically Creating External Clock Chains .936
Manually Specifying External Clock Chains .936
Budgeting Scan I/Os and External Clock Chains 937

28

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Creating Compressed Clock Chains . 937
OCC Controllers and Streaming Codec Scan-Enable Constraints938

Reducing Power Consumption in DFTMAX Ultra Designs 939
Reducing Compressor Power When Codec Is Inactive 939
Reducing Scan Shift Power Using Shift Power Groups 940

The Shift Power Groups Architecture . 940
Configuring Shift Power Groups . 942
Integrating Cores With Shift Power Groups in Hierarchical Flows 943
Configuring Shift Power Groups in TestMAX ATPG945
Using Shift Power Groups With Other DFT Features 946
Limitations of Shift Power Groups . 947

Planning, Previewing, and Inserting DFTMAX Ultra Compression 948
Planning the Streaming DFT Architecture . 948

DFT Planner Flow Report . 948
DFT Planner Elements Report .951
DFT Planner Limitations .955

Previewing and Inserting DFT Logic . 956
Writing Out Test Protocols for TestMAX ATPG .957

Library Cell Requirements for Codec Implementation . 958

25. Hierarchical DFTMAX Ultra Compression . 959

Overview of Hierarchical DFTMAX Ultra Compression . 959

Creating Cores for Integration .960

Performing Core Integration . 961
Automatic Detection of Existing Logic Types . 961
Configuring Core Integration .962

Configuring the Standard Scan Mode . 962
Configuring the Compressed Scan Mode . 963

Core Integration Script Examples .966
Integrating Only Compressed Scan Cores . 966
Integrating Compressed Scan Cores With Uncompressed Logic 967

Using DFT Partitions During Core Integration . 967

Using Multiple Test Modes in Hierarchical Flows . 969
Mixing DFTMAX and DFTMAX Ultra Compression Core Modes 970

26. DFTMAX Ultra Limitations and Known Issues . 972

DFT Synthesis Limitations . 972

29

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Supported DFT Insertion Flows . 974

27. DFTMAX Ultra STIL Protocol File Syntax . 975

STIL Protocol File Contents . 975

STIL Protocol File Example . 975

28. DFTMAX Ultra Flow Naming Conventions . 981

Describing Existing Logic . 981

Describing DFT Logic To Be Inserted .985

Describing Additional DFT Features . 987
Partitions . 987
Scan I/Os . 988
Multiple Test Modes . 990
Additional Naming Convention Rules . 990

Scan Flow Mapping .990

Part 5: DFTMAX LogicBIST Self-Test

29. Introduction to LogicBIST . 994

Introduction to LogicBIST . 994

LogicBIST Requirements .995

The LogicBIST Flow . 995

30. The LogicBIST Architecture .998

LogicBIST Architecture Overview . 998
The LogicBIST Decompressor . 999
The LogicBIST Compressor . 1000
The LogicBIST BIST Controller . 1001
The LogicBIST Clock Controller . 1002
The LogicBIST Control and Data Signals . 1002

The LogicBIST Operational Modes . 1003
The LBIST_EN and START Signals . 1003
The STATUS_0 and STATUS_1 Signals . 1004
The Scan-In and Scan-Out Signals . 1005

30

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

LogicBIST Clock Control . 1006
Overview of Clock Configurations . 1006
External Clocks . 1007
OCC-Controlled Clocks With Default Capture Behavior1008
OCC-Controlled Clocks With Weighted Clock Capture Groups 1009
External and Internal Clocks in the Same Design . 1011

Isolating the Design During LogicBIST Self-Test . 1012
Isolating the Self-Test Design Using Core Wrapping 1012
Isolating the Self-Test Design Using Test Points . 1013
Comparing the Two Isolation Approaches . 1014

Providing Testability for LogicBIST Self-Test . 1015
Enabling DFT Logic During Autonomous Self-Test . 1015
Blocking Internal X Sources . 1018
Ensuring Testability for Reset Signals . 1019
Ensuring Testability for Integrated Clock-Gating Cells 1020

31. Using LogicBIST Self-Test . 1022

Configuring LogicBIST Self-Test . 1022
Defining the LogicBIST Control Signals . 1023
Defining the LogicBIST Scan-In Signal . 1023
Defining the LogicBIST Self-Test Mode . 1023
Configuring the PRPG and MISR Lengths .1024
Configuring the Pattern Counter and Shift Counter Lengths 1025
Configuring the Self-Test Capture Clock Timing .1025
Configuring Clock and Reset Weights . 1027
Configuring Self-Test Isolation Logic . 1028

Configuring Wrapper Chain Isolation Logic . 1028
Configuring Test Point Isolation Logic . 1030

Controlling Self-Test Through IEEE 1500 Logic . 1030
Inserting LogicBIST in Designs With Trailing-Edge Flip-Flops 1032
Inserting LogicBIST in Designs With External Chains 1032
Inserting LogicBIST in Designs With Clock-Gating Cells 1033

Previewing and Inserting the LogicBIST Implementation 1034
Previewing the LogicBIST Implementation .1034
Inserting the LogicBIST Logic . 1037
Writing Out the LogicBIST Design Files .1037

Computing the Seed and Signature Values in TestMAX ATPG 1038

31

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Setting the Seed and Signature Values in Synthesis . 1040

Simulating Autonomous BIST Operation . 1041

Integrating the Self-Test Logic into the Functional Design Logic 1042
Connecting the Self-Test Signals to the Functional Design Logic 1042
Ensuring the Required Test Mode for Autonomous Self-Test1045
Monitoring the Self-Test Status Signals . 1046

Example LogicBIST Scripts .1048
Example Core Insertion Script Using Core Wrapping 1048
Example Core Insertion Script Using Test-Point Isolation 1049
Example Script to Automatically Set Seed and Signature Values 1050

32. Advanced LogicBIST Configuration . 1053

Handling of Combinational Paths Between Input and Output Ports During LBIST
Operation . 1053

Using Programmable LogicBIST Configuration Values .1054

Simplifying the MISR XOR Compressor . 1056

Simplifying the Weighted Clock/Reset Logic . 1056

Minimizing Reconfiguration MUXs Across Test Modes .1057

Choosing a Particular Integrated Clock-Gating Cell . 1058

Implementing Burn-In Mode . 1058

Implementing Power Ramp-Up and Ramp-Down Logic . 1060

Implementing MISR Monitoring Logic . 1062

Changing the Test Mode Used for Autonomous Self-Test 1062

Post-DFT Design Optimization . 1063
Post-DFT Optimization and BIST Constants . 1063
Preserving the BIST Constants in a compile Flow . 1064
Preserving the BIST Constants in a compile_ultra Flow 1064
Regenerating Seed and Signature Values after Design Changes 1065
Ungrouping LogicBIST Blocks for Additional Area Reduction 1067

33. LogicBIST Limitations and Known Issues . 1068

LogicBIST Limitations and Known Issues .1068

Appendixes

32

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

A. DFT Attributes . 1072

Cell Attributes . 1072

Design Attributes . 1074

Pin Attributes . 1074

Port Attributes . 1075

B. Legacy Test Point Insertion . 1076

Introduction . 1076

Differences Between Newer and Legacy Test Point Features 1077

Test Point Types . 1077
Force Test Points . 1078
Control Test Points . 1079
Observe Test Points . 1082

Test Point Signals . 1082

Sharing Test Point Scan Cells . 1083

Automatically Inserted Test Points (Legacy) .1085
Enabling Automatic Test Point Insertion .1085
Configuring Pattern Reduction and Testability Test Point Insertion 1086
Script Example . 1088

User-Defined Test Points (Legacy) . 1089
Configuring User-Defined Test Points . 1089
User-Defined Test Points Example .1091

Previewing the Test Point Logic . 1093

Inserting the Test Point Logic . 1094

C. Legacy RTL Design Rule Checking .1095

Understanding the Flow . 1095

Specifying Setup Variables . 1097

Generating a Test Protocol . 1097
Defining a Test Protocol . 1097

Reading in an Initialization Protocol in STIL Format 1098
Setting the Scan Style . 1101
Design Examples . 1102

Test Protocol Example 1 . 1102

33

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Test Protocol Example 2 . 1103

Running RTL Test DRC . 1106

Understanding the Violations . 1107
Violations That Prevent Scan Insertion . 1107

Uncontrollable Clocks .1107
Asynchronous Control Pins in Active State . 1108

Violations That Prevent Data Capture . 1108
Clock Used As Data .1109
Black Box Feeds Into Clock or Asynchronous Control 1109
Source Register Launch Before Destination Register Capture 1110
Registered Clock-Gating Circuitry . 1111
Three-State Contention . 1112
Clock Feeding Multiple Register Inputs . 1112

Violations That Reduce Fault Coverage .1113
Combinational Feedback Loops .1113
Clocks That Interact With Register Input . 1114
Multiple Clocks That Feed Into Latches and Flip-Flops 1114
Black Boxes . 1116

Limitations . 1117

Glossary . 1118

34

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

About This User Guide
The TestMAX DFT User Guide describes the process for inserting standard scan,
compressed scan, and self-test logic into a design, using either a flat (top-down) or
hierarchical (bottom-up) flow. You can then generate test patterns for these designs with
the Synopsys® TestMAX™ ATPG tool.

The TestMAX DFT User Guide is organized into the following parts:

• Part I: DFT Overview – Provides overview of design-for-test (DFT) concepts and flows

• Part II: DFT Compiler Scan – Describes DFT configuration and insertion for standard
scan logic

• Part III: DFTMAX Compression – Describes configuration and insertion for DFTMAX
compressed scan, including serialized compressed scan logic

• Part IV: DFTMAX Ultra Compression – Describes configuration and insertion for
DFTMAX Ultra streaming compressed scan logic

• Part V: DFTMAX LogicBIST Self-Test – Describes configuration and insertion for
DFTMAX LogicBIST self-test logic

This manual is intended for ASIC design engineers who have some experience with
testability concepts and for test and design-for-test (DFT) engineers who want to
understand how basic test automation concepts and practices relate to the DFT Compiler
and TestMAX DFT tools.

This preface includes the following sections:

• New in This Release

• Related Products, Publications, and Trademarks

• Conventions

• Customer Support

New in This Release
Information about new features, enhancements, and changes, known limitations, and
resolved Synopsys Technical Action Requests (STARs) is available in the TestMAX
DFTRelease Notes on the SolvNetPlus site.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

35

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

About This User Guide
Related Products, Publications, and Trademarks

Feedback

To see the TestMAX DFT Release Notes:

1. Go to the SolvNet Download Center located at the following address:

https://solvnet.synopsys.com/DownloadCenter

2. Select “TestMAX DFT (Synthesis),” and then select a release in the list that appears.

Related Products, Publications, and Trademarks
For additional information about the TestMAX DFT tool, see the documentation on the
Synopsys SolvNetPlus support site at the following address:

https://solvnetplus.synopsys.com

You might also want to see the documentation for the following related Synopsys products:

• Design Compiler®

• Design Vision™

• Library Compiler™

• PrimeTime®

• Power Compiler™

• TestMAX™ Advisor

• TestMAX™ ATPG

Conventions
The following conventions are used in Synopsys documentation.

Convention Description

Courier Indicates syntax, such as write_file.

Courier italic Indicates a user-defined value in syntax, such as
write_file design_list

Courier bold Indicates user input—text you type verbatim—in examples, such
as
prompt> write_file top

Purple • Within an example, indicates information of special interest.
• Within a command-syntax section, indicates a default, such as

include_enclosing = true | false

Synopsys® TestMAX™ DFT User Guide
T-2022.03

36

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnet.synopsys.com/DownloadCenter
https://solvnetplus.synopsys.com

About This User Guide
Customer Support

Feedback

Convention Description

[] Denotes optional arguments in syntax, such as
write_file [-format fmt]

... Indicates that arguments can be repeated as many times as
needed, such as
pin1 pin2 ... pinN.

| Indicates a choice among alternatives, such as
low | medium | high

\ Indicates a continuation of a command line.

/ Indicates levels of directory structure.

Bold Indicates a graphical user interface (GUI) element that has an
action associated with it.

Edit > Copy Indicates a path to a menu command, such as opening the Edit
menu and choosing Copy.

Ctrl+C Indicates a keyboard combination, such as holding down the Ctrl
key and pressing C.

Customer Support
Customer support is available through SolvNetPlus.

Accessing SolvNetPlus
The SolvNetPlus site includes a knowledge base of technical articles and answers to
frequently asked questions about Synopsys tools. The SolvNetPlus site also gives you
access to a wide range of Synopsys online services including software downloads,
documentation, and technical support.

To access the SolvNetPlus site, go to the following address:

https://solvnetplus.synopsys.com

If prompted, enter your user name and password. If you do not have a Synopsys user
name and password, follow the instructions to sign up for an account.

If you need help using the SolvNetPlus site, click REGISTRATION HELP in the top-right
menu bar.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

37

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnetplus.synopsys.com

About This User Guide
Customer Support

Feedback

Contacting Customer Support
To contact Customer Support, go to https://solvnetplus.synopsys.com.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

38

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnetplus.synopsys.com

Feedback

Part 1: DFT Overview

Synopsys® TestMAX™ DFT User Guide
T-2022.03

39

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

1
Introduction to Synopsys DFT Tools

The DFT Compiler and TestMAX DFT tools comprise the Synopsys test synthesis solution.
They enable transparent implementation of DFT capabilities into the Synopsys synthesis
flow without interfering with functional, timing, signal integrity, or power requirements.

This chapter introduces the basic features, benefits, and components of the DFT Compiler
and TestMAX DFT tools. It includes the following topics:

• Key Features

• Key Benefits

• DFT Compiler and the Synopsys TestMAX Product Platform

• DFTMAX Scan Compression

• DFTMAX Ultra Scan Compression

• DFTMAX LogicBIST Self-Test

• Other Tools in the Synopsys Test and Yield Solution

Key Features
The DFT Compiler and TestMAX DFT tools offer the following features:

• One-pass test synthesis

• Comprehensive RTL and gate-level DFT design rule checking

• Rapid scan synthesis

• DFTMAX scan compression technologies

• Hierarchical scan synthesis

• Automatic and manual test point insertion

• Core wrapping with register reuse

• Physical scan ordering

• Boundary-scan insertion

Synopsys® TestMAX™ DFT User Guide
T-2022.03

40

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Introduction to Synopsys DFT Tools
Key Benefits

Feedback

Key Benefits
DFT Compiler enables you to quickly and accurately account for testability and resolve
any test issues early in the design cycle. RTL test design rule checking enables you to
create test-friendly RTL that can then be easily synthesized in the one-pass test synthesis
environment. The integration of test within the Design Compiler topographical environment
ensures predictable timing closure and achieves physically optimized scan designs.

Note the following key benefits of DFT Compiler:

• Offers transparent DFT implementation within the synthesis flow

• Accounts for testability early in the design cycle at RTL

• Removes unpredictability from the back end of the design process

• Achieves predictable timing, power, and signal integrity closure concurrent with test

DFT Compiler and the Synopsys TestMAX Product Platform
The DFT Compiler and TestMAX DFT tools, along with the TestMAX ATPG tool, are part of
the larger Synopsys TestMAX product platform, as shown in Figure 1.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

41

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Introduction to Synopsys DFT Tools
DFT Compiler and the Synopsys TestMAX Product Platform

Feedback

Figure 1 Synopsys TestMAX Test Automation Solution

Synopsys® TestMAX™ DFT User Guide
T-2022.03

42

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Introduction to Synopsys DFT Tools
DFTMAX Scan Compression

Feedback

DFTMAX Scan Compression
The TestMAX DFT tool provides DFTMAX scan compression, which enables you to
implement test data volume scan compression without affecting the functional, timing, or
power requirements of your design.

DFTMAX scan compression provides the following key benefits and features:

• Significant test time and test volume reduction

• Same high test coverage and ease of use as standard scan

• No impact on design timing or design physical implementation

• One-pass test compression synthesis flow

• Hierarchical scan synthesis flows

See Also

• Chapter 16, Introduction to DFTMAX for more information about DFTMAX scan
compression

DFTMAX Ultra Scan Compression
The TestMAX DFT tool provides DFTMAX Ultra scan compression, an advanced test
compression solution that is designed for hierarchical flows to deliver high quality
results as measured by test time, data volume, design area and congestion, and time to
implementation.

DFTMAX Ultra scan compression provides the following key benefits and features:

• Familiar user interface for DFTMAX compression users

• Very high scan compression ratios, even with few scan I/O pins

• Same high test coverage and ease of use as standard scan

• Minimal impact to the clock tree (no codec clock controller required)

• Improved ease of use for hierarchical scan synthesis flows

See Also

• Chapter 22, Introduction to DFTMAX Ultra for more information about DFTMAX Ultra
scan compression

Synopsys® TestMAX™ DFT User Guide
T-2022.03

43

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Introduction to Synopsys DFT Tools
DFTMAX LogicBIST Self-Test

Feedback

DFTMAX LogicBIST Self-Test
Built-in self-test (BIST) capability enables a design to test itself autonomously without
using external test data. DFTMAX LogicBIST self-test provides a low-overhead logic BIST
(LBIST) solution for digital logic designs, such as automotive applications.

DFTMAX LogicBIST self-test provides the following key benefits and features:

• Low BIST controller area overhead

• Reuses the scan chain and test-mode control logic already implemented for
manufacturing test

• Low LogicBIST-mode pin requirements

• Easy interface to functional logic

• Seed and expected signature values can be hardcoded or programmable

• Targets stuck-at and transition-delay faults

• Simple one-pass DFT insertion flow

See Also

• Chapter 29, Introduction to LogicBIST for more information about DFTMAX LogicBIST
self-test

Other Tools in the Synopsys Test and Yield Solution
Synopsys provides a complete test and yield solution that accelerates higher quality,
reliability, and yield. It spans the full flow from IP all the way through post-silicon test, and it
covers all the key design blocks: logic, memory, I/O, and analog and mixed-signal (AMS).
The return loop indicates the ability to optimize design rules, layouts, circuit design, and so
on, based on learning from silicon analysis.

This solution includes:

• TestMAX™ ATPG, TetraMAX® II ATPG, and TetraMAX ATPG

Provides high-coverage pattern generation for digital-logic designs

• TestMAX™ Advisor and SpyGlass® DFT ADV

Provides RTL testability analysis and improvement for maximum ATPG coverage

• STAR Hierarchical System

Provides IEEE standards-based hierarchical SoC test and pattern-porting capabilities

Synopsys® TestMAX™ DFT User Guide
T-2022.03

44

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Introduction to Synopsys DFT Tools
Other Tools in the Synopsys Test and Yield Solution

Feedback

• STAR Memory System® IP

Provides advanced test, diagnostics and repair for embedded and external memory
manufacturing defects (including FinFET technologies); and provides error correction
for lifetime transient errors

• DesignWare IP

Provides high-speed interfaces (such as USB, DDR, and PCIe) with embedded self-
test capability

• Yield Explorer

Identifies dominant yield loss mechanisms by combining fabrication plant, test, and
design data

• Camelot™

Enables product engineers to exactly identify the failure mechanisms to drive quick
resolution of the problems

Synopsys® TestMAX™ DFT User Guide
T-2022.03

45

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

2
Designing for Manufacturing Test

The manufacturing test process ensures high-quality integrated circuits by screening
out devices with manufacturing defects. You can attain maximum test coverage of your
integrated circuit by using DFT Compiler when you adopt structured DFT techniques.

This chapter includes the following topics:

• Functional Testing Versus Manufacturing Testing

• Modeling Manufacturing Defects

• Achieving Maximum Fault Coverage for Sequential Cells

• Understanding the Full-Scan Test Methodology

• Scan Styles Supported by DFT Compiler

• Describing the Test Environment

• Test Design Rule Checking Functions

• Getting the Best Results With Scan Design

Functional Testing Versus Manufacturing Testing
IC test is composed of two primary approaches: functional testing and manufacturing
testing.

Functional testing verifies that your circuit functional testingperforms as it is designed to perform. For
example, assume that your design is an adder circuit. Functional testing verifies that your
circuit performs the addition function and computes the correct results over the range
of values tested. However, exhaustive testing of all possible input combinations grows
exponentially as the number of inputs increases. To maintain a reasonable test time, you
need to focus functional test patterns on the general function and corner cases.

Manufacturing testing manufacturing testingverifies that your circuit does not have manufacturing defects by
focusing on circuit structure rather than functional behavior.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

46

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Designing for Manufacturing Test
Modeling Manufacturing Defects

Feedback

Manufacturing defects manufacturing defectsinclude problems such as

• Power or ground shorts

• Open interconnect on the die caused by dust particles

• Short-circuited source or drain on the transistor, caused by metal spike-through

Manufacturing defects might remain undetected by functional testing yet cause
undesirable behavior during circuit operation. To provide the highest-quality products,
development teams must prevent devices with manufacturing defects from reaching
customers. Manufacturing testing enables development teams to screen devices for
manufacturing defects.

Typically, development teams perform both functional and manufacturing testing of
devices.

Modeling Manufacturing Defects
When a manufacturing defect occurs, the physical defect has a logical effect on the circuit
behavior. An open connection can appear to float either high or low, depending on the
technology. A signal shorted to power appears to be permanently high. A signal shorted to
ground appears to be permanently low. Many manufacturing defects can be represented
using the industry-standard stuck-at fault model.

This topic covers the following:

• Understanding Stuck-At Fault Models

• Determining Coverage

• Understanding Fault Simulation

• Automatically Generating Test Patterns

• Formatting Test Patterns

Understanding Stuck-At Fault Models
The stuck-at fault modelstuck-at-0stuck-at-0 modelstuck-at-0 model faultmodelingrepresents a signal that is permanently low, regardless of the other
signals that normally control the node. The stuck-at fault modelstuck-at-1stuck-at-1 modelstuck-at-1 model represents a signal that is
permanently high, regardless of the other signals that normally control the node.

For example, assume that you have a 2-input AND gate that has stuck-at-0 fault on the
output pin. As shown in Figure 2, the output is always 0, regardless of the logic level of the
two inputs.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

47

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Designing for Manufacturing Test
Modeling Manufacturing Defects

Feedback

Figure 2 2-Input AND Gate With Stuck-At-0 Fault on Output Pin

Controllable and Observable Faults
The node of a stuck-at fault must be controllable and observable for the fault to be
detected.

A node is controllable if you can drive it to a specified logic value by setting the primary
inputs to specific values. A primary input is an input that can be directly controlled in the
test environment.

A node is observable if you can predict the response on it and propagate the fault effect to
the primary outputs, where you can measure the response. A primary output is an output
that can be directly observed in the test environment.

To faultdetectingprocessdetect a stuck-at fault on a target node:

• Control the target node to the opposite of the stuck-at value by applying data at the
primary inputs.

• Make the node’s fault effect observable by controlling the value at all other nodes
affecting the output response, so the targeted node is the active (controlling) node.

The set of logic 0s and 1s applied to the primary inputs of a design is called the inputstimulusinputstimulusinput
stimulus. The resulting values at the primary outputs, assuming a fault-free design, are
called the expected response, definitionresponse, circuitexpectedexpected responseexpected response. The actual values measured at the primary outputs are
called the outputresponseresponse, circuitoutputoutput responseoutput response.

If the output response does not match the expected response for a given input stimulus,
the input stimulus has detected the fault.

Detecting Stuck-At Faults
To detect a faulty node that is stuck-at-0, you need to apply an input stimulus that forces
a particular node to 1. For the 2-input AND gate shown in Figure 2, for example, apply
a logic 1 at both inputs. The expected response for this input stimulus is logic 1, but the
output response is logic 0. This input stimulus detects the stuck-at-0 fault.

This method of determining the input stimulus to detect a fault uses the single stuck-at fault modelsinglesingle stuck-at fault modelstuck-at
fault model. The single stuck-at fault model assumes that only one node is faulty and that
all other nodes in the circuit are good.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

48

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Designing for Manufacturing Test
Modeling Manufacturing Defects

Feedback

The single stuck-at fault model greatly reduces the complexity of fault modeling and is
technology independent, enabling the use of algorithmic pattern generation techniques.

A more complicated example shows the requirement of controlling all other nodes to
ensure the observability of a particular target node. faultdetectingexample

Figure 3 shows a circuit with a detectable stuck-at-0 fault at the output of cell G2.

Figure 3 Simple Circuit With Detectable Stuck-At Fault

To detect the fault, control the output of cell G2 to logic 1 (the opposite of the faulty value)
by applying a logic 0 value at primary input C.

To ensure that the fault effect is observable at primary output Z, control the other nodes
in the circuit so that the response value at primary output Z depends only on the output of
cell G2, as follows:

• Apply a logic 1 at primary input D so the output of cell G3 depends only on the output
of cell G2. The output of cell G2 is the controlling inputcontrolling inputinputcontrollingcontrolling input of cell G3.

• Apply logic 0s at primary inputs A and B so the output of cell G4 depends only on the
output of cell G2.

Given the input stimulus of A = 0, B = 0, C = 0, and D = 1, a fault-free circuit produces a
logic 1 at output port Z. If the output of cell G2 is stuck-at-0, the value at output port Z is a
logic 0 instead. Thus, this input stimulus detects a stuck-at-0 fault on the output of cell G2.

This set of input stimulus and expected response values is called a test vectortest vectortest vector. Following
the process previously described, you can generate test vectors to detect stuck-at-1 and
stuck-at-0 faults for each node in the design.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

49

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Designing for Manufacturing Test
Modeling Manufacturing Defects

Feedback

Determining Coverage
A common definition of the testabilitytestability of a design is the extent to which the design can be
tested for the presence of manufacturing defects, as represented by the single stuck-at
fault model.

Common metrics for measuring coverage are:

• Test coverage—the percentage of detected faults for all detectable faults; gives the
most meaningful measure of test pattern quality

• Fault coverage—the percentage of detected faults for all faults; gives no credit for
undetectable faults

• ATPG effectiveness—the percentage of faults that are resolvable by the ATPG
process; full credit is given to faults which are detected and faults which are proven to
be untestable

For larger combinational designs and sequential designs, it is not feasible to analyze the
coverage results for existing functional test vectors or to manually generate test vectors
to achieve high fault coverage results. Fault simulation tools determine the coverage of a
set of test vectors. Automatic test pattern generation (ATPG) tools generate manufacturing
test vectors. Both types of automated tools require models for all logic elements in your
design to correctly c ATPG (automatic test pattern generation)determining expected resultsalculate the expected response. Your semiconductor vendor provides
these models.

For more details on how these metrics are calculated, see “Coverage Calculations” in
TestMAX ATPG and TestMAX Diagnosis Online Help.

Understanding Fault Simulation
Fault simulation fault simulationdetermines the fault coverage of a set of test vectors. It can be thought
of as performing many logic simulations concurrently—one that represents the fault-free
circuit (the machine (good, faulty)good machinegood machine) and many that represent the circuits containing single stuck-at
faults (the faulty machines). Fault simulation detects a fault each time the output response
of the faulty machine differs from the output response of the good machine for a given
vector.

Fault simulation determines all faults detected by a test vector. Fault simulating the test
vector generated to detect the stuck-at-0 fault on the output of G2 in Figure 3 shows that
this vector also detects the following single stuck-at faults:

• Stuck-at-1 on all pins of G1 (and ports A and B)

• Stuck-at-1 on the input of G2 (and port C)

• Stuck-at-0 on the inputs of G3 (and port D)

Synopsys® TestMAX™ DFT User Guide
T-2022.03

50

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Designing for Manufacturing Test
Modeling Manufacturing Defects

Feedback

• Stuck-at-1 on the output of G3

• Stuck-at-1 on the inputs of G4

• Stuck-at-0 on the output of G4 (and port Z)

You can generate fault simulationmanufacturing test vectors by manually generating test vectors and then
fault-simulating them to determine the fault coverage. For large or complex designs, this
process is time-consuming and often does not result in high fault coverage results.

Automatically Generating Test Patterns
You use an ATPG tool (such as the TestMAX ATPG tool) to generate test patterns and
provide fault coverage statistics for the generated pattern set. The difference between
test vectors and test patterns is defined in Chapter 3, Scan Design Techniques. For now,
consider the terms test vector and test pattern as synonymous.

When using ATPG for combinational circuits, it is usually possible to generate test vectors
that provide high fault coverage for combinational designs. combinational ATPGATPG (automatic test pattern generation)combinationalATPG (automatic test pattern generation)combinational(<seeitalic>see also combinational ATPG)Combinational ATPG tools use
both random and deterministic techniques to generate test patterns for stuck-at faults on
cell pins.

During combinational ATPGrandom pattern generationrandom pattern generation, the tool assigns input stimulus in a pseudorandom
manner and then fault-simulates the generated vector to determine which faults are
detected. As the number of faults detected by successive random patterns decreases,
ATPG shifts to a deterministic technique.

During combinational ATPGdeterministic pattern generationdeterministic pattern generation, the tool uses a pattern generation algorithm
based on path-sensitivity concepts to generate a test vector that detects a specific fault in
the design. After generating a vector, the tool fault simulates the vector to determine the
complete set of faults detected by the vector. Test-pattern generation continues until all
faults have either been detected or have been identified as undetectable by this algorithm.

Because of the effects of memory and timing, ATPG for sequential circuits is much more
difficult than for combinational circuits. It is often not possible to generate high-fault-
coverage test vectors for complex sequential designs, even when using sequential ATPG. ATPG

(automatic test pattern generation)sequentialATPG (automatic test pattern generation)sequential(<seeitalic>see also sequential ATPG)sequential ATPG deterministic pattern generationSequential ATPG tools use deterministic pattern generation algorithms based on extended
applications of the path-sensitivity concepts.

Structured DFT techniques, such as internal scan, simplify the test-pattern generation task
for complex sequential designs, resulting in higher fault coverage and reduced testing
costs.

See Also

• Chapter 3, Scan Design Techniques for more information about testing a design with
internal scan

Synopsys® TestMAX™ DFT User Guide
T-2022.03

51

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Designing for Manufacturing Test
Achieving Maximum Fault Coverage for Sequential Cells

Feedback

Formatting Test Patterns
To screen out manufacturing defects in your chips, you need to translate the generated
test patterns into a format acceptable to the automatic test equipment (ATE)automated test equipment (ATE (automatic test equipment)ATE). On the
ATE, the logic 0s and 1s in the input stimulus are translated into low or high voltages to
be applied to the primary inputs of the device under test. The logic 0s and 1s in the output
response are compared with the voltages measured at the primary outputs. One test
vector corresponds to one ATE cycle.

You might use more than one set of test vectors for manufacturing testing. The collection
of all test vector sets used to test a design is often referred to as the test program.

Achieving Maximum Fault Coverage for Sequential Cells
You can achieve the best fault coverage internal scanrequirementsresults for sequential cells when all the nodes in
your design are controllable and observable. Adding scan logic to your design enhances
its controllability and observability.

Controllability of Sequential Cells
For sequential cells, controllability controllabilitysequential cellssequential cellscontrollabilityrequirements ensure that all state elements can be
controlled, by scan or other means, to desired state values from the boundary of the
design. These requirements are involved primarily with the shift operations in scan test.

In an ideal full-scan design, the scan chain contains all state elements, the scan chain
operates correctly, and the circuit is fully controllable. In this ideal full-scan circuit, any
circuit state can be achieved.

Observability of Sequential Cells
For sequential cells, observability observabilitysequential cellssequential cellsobservabilityrequirements ensure predictable capture of the next
state of the circuit and visibility at the boundary of the design. These requirements are
involved primarily with the capture operations in scan test. Although scan shift problems
affect the observability of sequential cells, they are typically detected during controllability
checks.

observabilityscanscan observabilityIn the context of scan design, a circuit is observable when the tester can successfully
clock the scan cells in the circuit and then shift their state to the scan outputs.

For a circuit to be observable, the tester must be able to

1. Observe the primary outputs of the circuit after shifting in a scan pattern.

Normally, this involves no DFT and does not present problems.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

52

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Designing for Manufacturing Test
Understanding the Full-Scan Test Methodology

Feedback

2. Reliably capture the next state of the circuit.

If the functional operation is impaired, unpredictable, or unknown, the next state is
unknown. This unknown state makes at least part of the circuit unobservable.

3. Extract the next state by shifting out the output response of the scan cells.

This process is similar to shifting in a scan pattern. The additional requirement is that
the shift registers pass data reliably to the output ports.

The rules governing the controllability and observability of scan cells are called test design
rules.

See Also

• Chapter 13, Pre-DFT Test Design Rule Checking for more information about checking
for test design rule violations before DFT insertion

Understanding the Full-Scan Test Methodology
In the full-scan methodology, DFT Compiler replaces all sequential cells in your design full

scantest methodologytest methodologyfull-scanwith their scannable equivalents during scan insertion.

A sequential cell might not be scannable because of test design rule violations or because
you have explicitly excluded the cell from the scan chain. In this case, DFT Compiler
classifies the cell as a black-box sequential cell during test design rule checking. Black-
box sequential cells lower fault coverage results.

Because it is a more predictable methodology, full scan typically provides higher fault
coverage in a shorter period of time than partial scan. Full scan also provides improved
diagnostic capabilities compared to partial scan.

However, because full scan substitutes scannable equivalents for all sequential cells, it
increases design area and decreases design performance. Integration with synthesis
minimizes the area and performance overhead of full scan. In most cases, performance
can be maintained in a full-scan design, but at the cost of additional area.

See Also

• Chapter 3, Scan Design Techniques for more information about full scan testing of a
design

Synopsys® TestMAX™ DFT User Guide
T-2022.03

53

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Designing for Manufacturing Test
Scan Styles Supported by DFT Compiler

Feedback

Scan Styles Supported by DFT Compiler
DFT Compiler supports the following scan styles:

• Multiplexed Flip-Flop Scan Style

• Clocked-Scan Scan Style

• Level-Sensitive Scan Design (LSSD) Style

• Scan-Enabled Level-Sensitive Scan Design (LSSD) Style

• Summary of Supported Scan Cells

These scan styles are described in the following topics.

Multiplexed Flip-Flop Scan Style
The multiplexed flip-flop scan style uses a multiplexed data input to provide serial shift
capability. In functional mode, the scan-enable signal, acting as the multiplexer select line,
selects the system data input. During scan shift, the scan-enable signal selects the scan
data input. The scan data input comes from either the scan-input port or the scan output
pin of the previous cell in the scan chain.

The following test pins are required on a multiplexed flip-flop equivalent cell:

• Scan-input

• Scan-enable

• Scan-output (can be shared with a functional output pin)

Test pins are identified in the test_cell group of the cell description in the logic library.
For information on modeling test cells in your logic library, see the Library Compiler user
guides.

Multiplexed flip-flop is the scan style most commonly supported in logic libraries. Most
libraries provide multiplexed flip-flop equivalents for D, JK, and master-slave flip-flops.

See Also

• Multiplexed Flip-Flop Scan Style on page 67 for more information about the
multiplexed flip-flop scan style

Synopsys® TestMAX™ DFT User Guide
T-2022.03

54

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Designing for Manufacturing Test
Scan Styles Supported by DFT Compiler

Feedback

Clocked-Scan Scan Style
The clocked-scan scan style uses a dedicated, edge-triggered test clock to provide serial
shift capability. In functional mode, the system clock is active and system data is clocked
into the cell. During scan shift, the test clock is active and scan data is clocked into the
cell.

The following test pins, identified in the test_cell group of the scan cell description in the
logic library, are required on a clocked-scan cell:

• Scan-input

• Test-clock

• Scan-output (can be shared with a functional output pin)

DFT Compiler supports clocked-scan cells for both flip-flops and latches.

See Also

• Clocked-Scan Scan Style on page 71 for more information about the clocked-scan
scan style

Level-Sensitive Scan Design (LSSD) Style
DFT Compiler supports three variations of the level-sensitive scan design (LSSD) style:

• LSSD (level-sensitive scan design)scan stylevariationsSingle-latch

• Double-latch

• Clocked

These variations can be mixed in a single design. The following section briefly describes
these variations.

Both the single-latch and double-latch variations use the classical LSSD (level-sensitive scan design)scan cellLSSD scan cell, which
consists of two latches acting as a LSSD (level-sensitive scan design)master-slave pairmaster-slave pair. The master latch has dual input ports
and can latch either functional data or scan data. In functional mode, the system master
clock input controls the data input. In scan mode, the test master clock input controls the
transfer of data from the data input to the master latch. The slave clock input controls the
transfer of data from the master latch to the slave latch.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

55

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Designing for Manufacturing Test
Scan Styles Supported by DFT Compiler

Feedback

The following test pins, identified in the test_cell group of the scan cell description in the
logic library, are required on an LSSD cell:

• Scan-input

• Test master-clock

• Test slave-clock (except for double-latch LSSD)

• Scan-output (can be shared with a functional output pin)

See Also

• LSSD Scan Style on page 75 for more information about the LSSD scan style,
including the single-latch, double-latch, and clocked LSSD scan styles

Scan-Enabled Level-Sensitive Scan Design (LSSD) Style
The scan-enabled LSSD scan style provides edge-triggered flip-flop behavior in functional
mode, but it uses master-slave test clocks to provide skew-tolerant serial shift capability
in test mode. In functional mode, when the scan-enable signal is de-asserted, system
data is clocked into the cell on clock edges. In test mode, when the scan-enable signal is
asserted, test data is clocked through the cell using master-slave clocking. In test mode,
the system clock is repurposed as the scan-shift slave clock, and a separate scan-shift
master clock signal is required.

The following test pins, identified in the test_cell group of the scan cell description in the
logic library, are required on a clocked-scan cell:

• Scan-input

• Test master-clock

• Test slave-clock (shared with functional clock pin)

• Scan-enable

• Scan-output (can be shared with a functional output pin)

See Also

• Scan-Enabled LSSD Style on page 83 for more information about the scan-enabled
LSSD scan style

Synopsys® TestMAX™ DFT User Guide
T-2022.03

56

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Designing for Manufacturing Test
Scan Styles Supported by DFT Compiler

Feedback

Summary of Supported Scan Cells
Table 1 shows the scan cells supported by DFT Compiler. The columns represent circuit
clocking in functional mode; the rows represent circuit clocking in scan mode. Use this
table to determine scan cell support and the corresponding scan style for your design.

Table 1 Supported Scan Cells

Functional mode

Scan mode Edge-triggered clock Single level-sensitive
clock

Dual master-slave
level-sensitive clocks

Same edge-triggered
clock

MUX
flip-flop(multiplexed_
flip_flop)

Same master-slave
level-sensitive clocks

MUX master-slave
latch(multiplexed_
flip_flop)

Different
edge-triggered clock

Clocked-scan
flip-flop(clocked_scan)

Clocked-scan
latch(clocked_scan)

Different dual
master-slave
level-sensitive clocks

Clocked LSSD(lssd) Single-latch LSSD(lssd)

Master-slave clocks
with different master
clock, same slave
clock

Scan-enabled
LSSD(scan_enabled_ls
sd)

Double-latch LSSD(lssd)

Note: The scan_style argument is shown in parentheses.

For example, if your design has one level-sensitive clock (C) in functional mode and two
nonoverlapping clocks (A and B) for scan shift, you need to set the scan style to lssd.

Logic Library Considerations
The ability of DFT Compiler to support a particular scan style depends on whether the
scan cells can be modeled in the logic library.

With the Library Compiler tool, you can use a state table to model sequential cells. State
table models can accurately model the behavior of complex scan cells, such as those
that have multiple clocks active at the same time. DFT Compiler does not support every
complex sequential cell that can be modeled by using state table models.

For more information about modeling scan cells, see Library Compiler User Guide.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

57

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Designing for Manufacturing Test
Describing the Test Environment

Feedback

Describing the Test Environment
A test protocol completely describes the test environment for a design. test protocoldefinitionstest protocolThe test protocol
includes

• The test timing information

• The initialization sequence used to configure the design for scan testing

• The test configuration used to select between scan shift and parallel cycles during
pattern application

• The pattern application sequence

The process for scan-testing a design is basically the same for every design. It consists of
scanning data in, performing the normal operation sequence, and scanning data out.

The instructions for performing scan testing, however, are unique to each design. Those
instructions include how to configure the design for scan testing, what ports are involved,
and so on. A test protocol is the set of specific instructions for scan testing a design.test protocoldefinition

Test Design Rule Checking Functions
The design rule checkingfunctionstest design rule checker has two distinct functions:

• As a standalone program, it provides feedback on the testability of the design to guide
DFT.

• As a preprocessor to scan insertion, it flags valid sequential cells for scan replacement.
In this mode, it produces no user output.dft_drcpreprocessor to test insertion

In test DRC, scan data is simulated symbolically, but the design is simulated
deterministically.

Because rule checking depends on the dynamic operation of the design, design rule
violations can be caused by both structural problems and operational problems. You
can often modify the dynamics of the scan operation to fix a problem that appears to be
structural.

Getting the Best Results With Scan Design
To get the best scan design techniquescan design results, your ATPG tool must be able to controllabilitycontrol the inputs and
observe the outputs of individual cells in a circuit. By observing all the states of a circuit
(complete fault coverage), the ATPG tool can check whether the circuitry is good or faulty
for each output. The quality of the fault coverage depends on how well a device’s circuitry
can be observed and fault coverageand controllabilitycontrolled.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

58

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Designing for Manufacturing Test
Getting the Best Results With Scan Design

Feedback

If the ATPG tool cannot observe the states of individual sequential elements in the circuit,
fault coverage is lowered because the distinction between a good circuit and a faulty
circuit is not visible at a given output.

To maximize your fault coverage, follow these recommendations:

• Use full scan.

• Fix all design rule violations.

• Follow these design guidelines:

◦ Be careful when you use gated clocksgated clocks. If the clock signal at a flip-flop or latch is
gated, a primary clock input might not be able to control its state. If your design has
extensive clock gating, use AutoFix or provide another way to disable the gating
logic in test mode.

Note:
DFT Compiler supports gated-clock structures inserted by the Power
Compiler tool.

◦ Generate clock signals off-chip clock signalsoff-chip or use clock controllers compatible with DFT
Compiler. If uncontrollable clock signals are generated on-chip, as in frequency
dividers, you cannot control the state of the sequential cells driven by these signals.
If your design includes internally generated, uncontrollable clock signals, internally generatedclock signals, use
AutoFix or provide another way to bypass these signals during testing.

◦ Minimize combinational feedback loops, effect on scan designcombinational feedback loops. Combinational feedback loops are difficult
to test because they are hard to place in a known state.

◦ Use scan-compatible sequential elements. Be sure that the library you select has scannable

cell equivalents in libraryscannable equivalents for the sequential cells in your design.

◦ Avoid uncontrollable asynchronous behaviorasynchronous behavior. If you have asynchronous functions in
your design, such as flip-flop preset and clear, use AutoFix so that you can control
the asynchronous pins or make sure you can hold the asynchronous inputs inactive
during testing.

◦ Control bidirectional signals from primary inputs.

The scan design technique does not work well with certain circuit structures, such as

• Large, nonscan macro functionsmacro functions, such as microprocessor cores

• Compiled compiled cellscells, such as RAM cellsRAM and arithmetic logic units

• Analog analog circuitrycircuitry

For these structures, you must provide a test method that you can integrate with the
overall scan-test scheme.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

59

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

3
Scan Design Techniques

A variety of scan design techniques are available to help you prepare your design to take
advantage of manufacturing test techniques. Each major technique is discussed in this
chapter.

This chapter includes the following topics:

• Internal Scan Design

• Test for System-On-A-Chip Designs

• Boundary Scan Design

Internal Scan Design
Internal internal scanscan design is the most popular DFT technique; it alsodesign-for-test (DFT) techniquesinternal scan has the greatest potential
for high fault coverage results. This technique simplifies the pattern generation problem
by dividing complex sequential designs into fully isolated combinational blocks (full-scan
design) or partially isolated combinational blocks (partial-scan design). Internal scan
modifies existing sequential elements in the design to support a serial shift capability
in addition to their normal functions. This serial shift capability enhances internal node
controllability and observability with a minimum of additional I/O pins.

Scan Cells
internal scanscan cell examplescan cellexamplemultiplexed flip-flopscan cell exampleFigure 4 shows a D flip-flop modified to support internal scan by the addition of a
multiplexer (this scan style is called multiplexed flip-flopscan stylemultiplexed flip-flopmultiplexed flip-flop). Inputs to the multiplexer are the
data input of the flip-flop (d) and the scan-input signal (scan_in). The active input of the
multiplexer is controlled by the scan-enable signal (scan_enable). Input pins are added to
the cell for the scan_in and scan_enable signals. One of the data outputs of the flip-flop (q
or qb) is used as the scan-output signal (scan_out). The scan_out signal is connected to
the scan_in signal of another scan cell to form a serial scan (shift) capability.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

60

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Scan Design Techniques
Internal Scan Design

Feedback

Figure 4 D Flip-Flop With Scan Capability

Scan Chains
The modified sequential cells are chained together to form one or more large shift
registers, called scan chainscan chainscan chains or scan pathscan pathscan paths. The sequential cells connected in a scan
chain are scan controllable and scan observable. A sequential cell is controllabilityscanstructured logic, definingscan controllablescan controllable
when it can be set to a known state by serially shifting in specific logic values. ATPG tools
consider scan-controllable cells pseudo-primaryinputpseudo-primary inputinputpseudo-primarypseudo-primary inputs of the design. A sequential cell is scan

observabilityobservabilityscanscan observablescan observable when its state can be observed by serially shifting out data. ATPG tools
consider scan-observable cells pseudo-primaryoutputpseudo-primary outputoutputpseudo-primarypseudo-primary outputs of the design.

Scan Cells in Semiconductor Vendor Libraries
Most semiconductor vendor libraries include pairs of equivalent nonscan and scan cells
that support a given scan style. One special test cell is a scan flip-flop that logically
combines a D flip-flop and a multiplexer, as shown in Figure 4.

The Effect of Adding Scan Circuitry to a Design
internal scandesign impactAdding scan circuitry to a design usually has the following effects:

• Design size and power increase slightly because scan cells are usually larger than the
nonscan cells they replace and the nets used for the scan signals occupy additional
area.

• Design performance (speed) decreases marginally because of changes in the electrical
characteristics of the scan cells that replace the nonscan cells.

• Global test signals that drive many sequential elements might require buffering to
prevent electrical design rule violations.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

61

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Scan Design Techniques
Internal Scan Design

Feedback

The effects of adding scan circuitry vary, depending on the scan style and the
semiconductor vendor library you use. For some scan styles, such as LSSD (level-sensitive scan design)level-sensitive scan design (<seeitalic>see LSSD)LSSD, introducing
scan circuitry produces a negligible local change in performance.

By integrating DFT capabilities within synthesis, the DFT Compiler tool minimizes the
overhead of scan circuitry based on performance, area, and electrical design rules.

ATPG and Internal Scan
For scan designs, ATPG tools generate input stimulus, for the primary inputs and pseudo-
primary inputs, and expected responses, for the primary outputs and pseudo-primary
outputs. The set of input stimulus and output response that includes primary inputs,
primary outputs, pseudo-primary inputs, and pseudo-primary outputs is called a test patterndefinitiontest patterntest
pattern or scan patternscan pattern scan pattern.

A test pattern represents many test vectors because

• The pseudo-primary input data must be serialized to be applied at the input of the scan
chain

• The pseudo-primary output data must be serialized to be measured at the output of the
scan chain

Applying Scan Patterns
Test patterns are applied to a scan-based design through the scan chains. The process is
the same for full-scan and partial-scan designs.

Scan cells operate in one of two modes: parallel mode or shift mode. For the multiplexed
flip-flop scan style shown in Figure 4 on page 61, the mode is controlled by the scan-
enable pin. In parallel mode, the input to each scan element comes from the combinational
logic block. In shift mode, the input comes from the output of the previous scan cell or a
scan-input port. Other scan styles work similarly.

The target tester applies a scan pattern, as illustrated in Figure 5.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

62

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Scan Design Techniques
Internal Scan Design

Feedback

Figure 5 Scan Pattern Application Sequence

To apply a scan pattern, the target tester

1. Selects shift mode by setting the scan-enable port. This test signal is connected to all
scan cells.

2. Shifts in the input stimulus for the scan cells (pseudo-primary inputs) at the scan-input
ports.

3. Selects parallel mode by inverting the scan-enable port.

4. Applies the input stimulus to the primary inputs.

5. Checks the output response at the primary outputs after the circuit has settled and
compares it to the expected fault-free response. This process is called parallel
measure.

6. Pulses one or more clocks to capture the steady-state output response of the nonscan
logic blocks into the scan cells. This process is called parallel capture.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

63

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Scan Design Techniques
Internal Scan Design

Feedback

7. Selects shift mode by resetting the scan-enable port.

8. Shifts out the output response of the scan cells (pseudo-primary outputs) at the
scan-output ports and compares the scan cell contents with the expected fault-free
response.

Full-Scan Design
In the full-scan design technique, all sequential cells in your design are modified to
perform a serial shift function. Sequential elements that are not scanned are treated as black-box

cellblack-box cells (cells with unknown function).

Full scan divides a sequential design into combinational blocks, as shown in Figure 6 on
page 64. In the figure, clouds represent combinational logic and rectangles represent
sequential logic. The full-scan diagram shows the scan path through the design.full scandesign

Figure 6 Scan Path Through a Full-Scan Design

Through pseudo-primary inputs, full scanbenefitsthe scan path enables direct control of inputs to all
combinational blocks. Through pseudo-primary outputs, the scan path enables direct
observability of outputs from all combinational blocks. full scanATPG algorithmATPG (automatic test pattern generation)full-scan designYou can use efficient combinational
ATPG algorithms to achieve high fault coverage results on the full-scan design.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

64

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Scan Design Techniques
Test for System-On-A-Chip Designs

Feedback

Test for System-On-A-Chip Designs
SoC Test provides a standards-based infrastructure for automatically incorporating a
variety of structured and scalable DFT structures into system-on-a-chip (SoC) designs,
all within the Synopsys synthesis environment. The value of SoC DFT directly parallels
that of SoC functional design. By incorporating functional block test reuse, you can focus
attention and effort on the integration of system components and optimization of the final
test system.

Boundary Scan Design
Boundary scan is a boundary scan techniquedesign-for-test (DFT) techniquesboundary scanDFT technique that simplifies printed circuit board testing using a
standard chip-board test interface. The Institute of Electrical and Electronics Engineers
(IEEE) has established the industry standard for this test interface. This standard is
known as the IEEE Standard Test Access Port and Boundary Scan Architecture (IEEE 1149.1 StandardIEEE Std
1149.1).

The boundary-scan technique is often referred to as JTAGJTAG. JTAG stands for Joint Test
Action Group, the group that initiated the standardization of this test interface.

Boundary scan enables board-level testing by providing direct access to the input and
output pads of the integrated circuits on a printed circuit board. Boundary scan modifies
the I/O circuitry of individual ICs and adds control logic so the input and output pads of
every boundary-scan IC can be joined to form a board-level serial scan chain.

The boundary-scan technique uses the serial scan chain to access the I/O ports of chips
on a board. Because the scan chain is composed of the input and output pads of a chip’s
design, the chip’s primary inputs and outputs are accessible on the board for applying and
sampling data. boundary scan techniqueusageBoundary scan supports the following board-level test functions:

• Testing the interconnect wiring on a printed circuit board for shorts, opens, and bridging
faults

• Testing clusters of non-boundary-scan logic

• Identifying missing, misoriented, or wrongly selected components

• Identifying fixture problems

• Limited testing of individual chips on a board

Note:
Although boundary scan addresses several board-test issues, it does not
directly address chip-level testability. Combine chip-test techniques (such as
internal scan) with boundary scan to provide testability at both the chip and
board level.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

65

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Scan Design Techniques
Boundary Scan Design

Feedback

Figure 7 depicts a simple printed circuit board with several boundary-scan ICs and
illustrates some of the failures that boundary scan can detect.boundary scan techniqueboard example

Figure 7 Board Testing With IEEE Std 1149.1 Boundary Scan

In the Synopsys design environment, the TestMAX DFT tool supports implementation of
boundary-scan ports, interconnections, and control.

For more information about IEEE Std 1149.1 and IEEE Std 1149.6 boundary-scan,
see TestMAX DFT Boundary Scan User Guide and the TestMAX DFT Boundary Scan
Reference Manual.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

66

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

4
Scan Styles

DFT Compiler supports a variety of scan styles. This chapter discusses each supported
scan style.

This chapter includes the following topics:

• Multiplexed Flip-Flop Scan Style

• Clocked-Scan Scan Style

• LSSD Scan Style

• Scan-Enabled LSSD Style

Multiplexed Flip-Flop Scan Style
The multiplexed flip-flop scan style uses a multiplexed data input to provide scan shift
capability. In functional mode, the scan-enable signal, acting as the multiplexer select line,
selects the system data input. During scan shift, the scan-enable signal selects the scan
data input. The scan data input comes from either the scan-input port or the scan-output
pin of the previous cell in the scan chain.

The following test pins are required on a multiplexed flip-flop equivalent cell:

• Scan-input

• Scan-enable

• Scan-output (can be shared with a functional output pin)

Test pins are identified in the test_cell group of the cell description in the logic library.
For information on modeling test cells in your logic library, see the Library Compiler user
guides.

Multiplexed flip-flop is the scan style most commonly supported in logic libraries. Most
libraries provide multiplexed flip-flop equivalents for D flip-flops.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

67

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Scan Styles
Multiplexed Flip-Flop Scan Style

Feedback

Flip-Flop Equivalents
Figure 8 shows an example of a D flip-flop before and after scan substitution, using the
multiplexed flip-flop scan style. The pin connection mappings are shown in parentheses.
In this example, the scan-in pin is SI, the scan-enable pin is SE, and the scan-out pin is
shared with the functional output pin Q.

Figure 8 D Flip-Flop After Multiplexed Scan Cell Substitution
Previous cell’s

scan output

Next cell’s
scan input

D Q

CLK

D
SI

SE
CLK

Q

New globally-routed test signals
Flip-flop Flip-flop

scan equivalent

(1)

(3)

(2)

(1)

(3)

(2)

Figure 9 shows the generic model used by DFT Compiler for multiplexed scan flip-flops.
The library model’s test_cell ports are shown in parentheses.

Figure 9 Default Multiplexed Flip-Flop Scan Cell

D
SI

CLK

1D

C1
Q
QB

(test_scan_enable)

(test_scan_out)

(test_scan_out_inverted)

SE

(test_scan_in)

Table 2 lists the signal-type pin connections for the multiplexed scan flip-flop cell.

Table 2 Signal-Type Pin Connections for
Multiplexed Scan Flip-Flop

Pin Signal type

SI ScanDataIn

SE ScanEnable

Q ScanDataOut

QB ScanDataOut

Synopsys® TestMAX™ DFT User Guide
T-2022.03

68

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Scan Styles
Multiplexed Flip-Flop Scan Style

Feedback

Master-Slave Latch Equivalents
Figure 10 shows an example of a master-slave latch before and after scan substitution,
using the multiplexed scan style. The pin connection mappings are shown in parentheses.
In this example, the scan-in pin is SI, the scan-enable pin is SE, and the scan-out pin is
shared with the functional output pin Q.

Figure 10 Latch After Multiplexed Scan Cell Substitution
Previous cell’s

scan output

Next cell’s
scan input

D Q

CLKB

D
SI

SE

CLKA

Q

Master-slave
latch Master-slave latch

scan equivalent

CLKA

CLKB

(1) (2)

(3)
(4)

(1)

(3)
(4)

(2)

New globally-routed test signals

Figure 11 shows the logic diagram for the generic model of a multiplexed master-slave
latch. The library model’s test_cell ports are shown in parentheses.

Figure 11 Default Multiplexed Master-Slave Latch Scan Cell

D
SI

CLKA

(Master)
1D

C1

Q
QB

(test_scan_enable)

(test_scan_out)

(test_scan_out_inverted)

SE

(Slave)
1D

C1CLKB
(test_scan_clock_a)

(test_scan_clock_b)

(test_scan_in)

Table 3 is the truth table for this model. Note that the master clock CLKA and slave clock
CLKB are nonoverlapping, as shown in Figure 12.

Table 3 Truth Table for Multiplexed Master-Slave Latch Scan Cell

D SI SE CLKA CLKB Q QB Mode

0 X 0 0 1 Functional

1 X 0 1 0 Functional

X 0 1 0 1 Scan

Synopsys® TestMAX™ DFT User Guide
T-2022.03

69

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Scan Styles
Multiplexed Flip-Flop Scan Style

Feedback

Table 3 Truth Table for Multiplexed Master-Slave Latch Scan Cell (Continued)

D SI SE CLKA CLKB Q QB Mode

X 1 1 1 0 Scan

X X X 0 0 Q QB Either

Note: The master clock (CLKA) pulse precedes the slave
clock (CLKB) pulse, and the clocks are nonoverlapping.

Figure 12 Nonoverlapping Master-Slave Scan Clocks

ScanMasterClock

ScanSlaveClock

Table 4 lists the signal-type pin connections for the multiplexed master-slave latch scan
cell.

Table 4 Signal-Type Pin Connections for
Multiplexed Master-Slave Latch Cell

Pin Signal type

SI ScanDataIn

SE ScanEnable

Q ScanDataOut

QB ScanDataOut

Multiplexed Flip-Flop Scan Style Characteristics
The multiplexed flip-flop scan style has the following general characteristics:

• Additional delay caused by the multiplexer in the functional path.

• Low cell area overhead. A multiplexed D-type flip-flop is typically 15 percent to 30
percent larger than a standard D-type flip-flop.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

70

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Scan Styles
Clocked-Scan Scan Style

Feedback

• Low routing overhead due to one additional global scan-enable signal. Skew is not
critical on this signal.

• A minimum of one additional I/O port (scan-enable). You might not need an additional
I/O port for scan-in or scan-out if you can multiplex these functions with existing
functional ports in your design.

• Typically used with edge-triggered design styles.

Clocked-Scan Scan Style
The clocked-scan scan style uses a separate dedicated edge-triggered test clock to
provide scan shift capability. In functional mode, the system clock is active and system
data is clocked into the cell. During scan shift, the test clock is active and scan data is
clocked into the cell.

The following test pins, identified in the test_cell group of the scan cell description in the
logic library, are required on a clocked-scan cell:

• Scan-input

• Test-clock

• Scan-output (can be shared with a functional output pin)

DFT Compiler supports clocked-scan cells for both flip-flops and latches.

Flip-Flop Equivalents
Figure 13 shows an example of a D flip-flop before and after scan substitution with the
clocked-scan scan style. The pin connection mappings are shown in parentheses. In this
example, the scan-in pin is SI, the dedicated edge-triggered test clock pin is SCLK, and
the scan-out pin is shared with the functional output pin Q.

Figure 13 D Flip-Flop After Clocked-Scan Cell Substitution
Previous cell’s

scan output

D Q

CLK

D
CLK

SI
SCLK

Q

Flip-flop Clocked-scan flip-flop
scan equivalent

(1) (2)

(3)

Next cell’s
scan input

(2)(1)
(3)

New globally-routed test signals

Synopsys® TestMAX™ DFT User Guide
T-2022.03

71

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Scan Styles
Clocked-Scan Scan Style

Feedback

Figure 14 shows the generic model used by DFT Compiler for clocked-scan flip-flops. The
library model’s test_cell ports are shown in parentheses.

Figure 14 Default Clocked-Scan Flip-Flop Scan Cell

D
CLK

SI
SCLK

1D

C1

2D

C2

Q
QB

(test_scan_clock)

(test_scan_in)

(test_scan_out)

(test_scan_out_inverted)

Table 5 is the truth table for this model.

Table 5 Truth Table for Clocked-Scan Flip-Flop Cell

D SI SCLK CLK Q QB Mode

0 X 0 0 1 Functional

1 X 0 1 0 Functional

X 0 0 0 1 Scan

X 1 0 1 0 Scan

X X 0/1 0 Q QB Either

Table 6 lists the signal-type pin connections for the clocked-scan flip-flop cell.

Table 6 Signal-Type Pin Connections for
Clocked-Scan Flip-Flop

Pin Signal type

SI ScanDataIn

SCLK ScanMasterClock

Q ScanDataOut

QB ScanDataOut

Synopsys® TestMAX™ DFT User Guide
T-2022.03

72

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Scan Styles
Clocked-Scan Scan Style

Feedback

Latch Equivalents
Clocked-scan cells for latches are level sensitive in functional mode but are edge triggered
during scan shift.

Figure 15 shows an example of a latch before and after scan substitution with the clocked-
scan scan style. The pin connection mappings are shown in parentheses. In this example,
the scan-in pin is SI, the dedicated edge-triggered test clock pin is SCLK, and the scan-out
pin is shared with the functional output pin Q.

Figure 15 Latch After Clocked-Scan Cell Substitution
Previous cell’s

scan output

D Q

CLK

D
CLK

SI
SCLK

Q

Latch
Clocked-scan latch

scan equivalent

(1) (2)

(3)

(1)
(3)

Next cell’s
scan input

(2)

New globally-routed test signals

Figure 16 shows the logic diagram of the default model used by DFT Compiler for a
clocked-scan latch. The library model’s test_cell ports are shown in parentheses.

Figure 16 Default Clocked-Scan Latch Cell

D
CLK

SI
SCLK

1D

C1

2D

C2

Q
QB

(test_scan_clock)

(test_scan_in)

(test_scan_out)

(test_scan_out_inverted)

Table 7 is the truth table for this model.

Table 7 Truth Table for Clocked-Scan Latch Cell

D SI SCLK CLK Q QB Mode

0 X 0 0 1 Functional

1 X 0 1 0 Functional

Synopsys® TestMAX™ DFT User Guide
T-2022.03

73

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Scan Styles
Clocked-Scan Scan Style

Feedback

Table 7 Truth Table for Clocked-Scan Latch Cell (Continued)

D SI SCLK CLK Q QB Mode

X 0 0 0 1 Scan

X 1 0 1 0 Scan

X X 0/1 0 Q QB Either

Table 8 lists the signal-type pin connections for the clocked-scan latch cell.

Table 8 Signal-Type Pin Connections for
Clocked-Scan Latch Cell

Pin Signal type

SI ScanDataIn

SCLK ScanMasterClock

Q ScanDataOut

QB ScanDataOut

Clocked-Scan Scan Style Characteristics
Characteristics of the clocked-scan scan style include the following:

• It has negligible performance overhead.

• Low cell area overhead. A clocked-scan cell is typically 15 percent to 30 percent larger
than a standard D-type flip-flop.

• Moderate increased routing overhead due to an additional global test clock signal. This
clock signal is an edge-triggered clock signal, and skew must be managed to avoid
hold violations along the scan path.

• Logic libraries supporting this scan style typically have both flip-flop and latch-
equivalent cells.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

74

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Scan Styles
LSSD Scan Style

Feedback

• It is well suited to use in partial-scan designs. A dedicated test clock provides a
mechanism for easily maintaining the state of nonscan cells during scan shift.

• It supports latches with asynchronous pinslatchesasynchronous preset or clear pins.

• It is typically used with edge-triggered design styles.

LSSD Scan Style
DFT Compiler supports three variations of the LSSD scan style, depending on the type of
sequential cell being scan-replaced:

• LSSD (level-sensitive scan design)scan stylevariationsSingle-latch

Scan-replaces standard latch cells with LSSD scan cells

• Double-latch

Scan-replaces master-slave latch cells with LSSD scan cells

• Clocked

Scan-replaces edge-triggered flip-flops with LSSD-compatible flip-flop scan cells

These variations can be mixed in a single design.

Both the single-latch and double-latch variations use a classical LSSD (level-sensitive scan design)scan cellLSSD scan cell for scan
replacement, which consists of two latches acting as a LSSD (level-sensitive scan design)master-slave pairmaster-slave pair. The master latch
has dual input ports and can latch either functional data or scan data. In functional mode,
the system master clock input controls the functional data input. In scan mode, the test
master clock input controls the transfer of data from the scan data input to the master
latch. The slave clock input controls the transfer of data from the master latch to the slave
latch.

The clocked variation uses a special LSSD-compatible flip-flop cell that operates as a flip-
flop during functional mode, but operates as an LSSD cell during scan shift.

The following test pins, identified in the test_cell group of the scan cell description in the
logic library, are required on an LSSD scan cell:

• Scan-input

• Test master-clock

• Test slave-clock (except for double-latch LSSD)

• Scan-output (can be shared with a functional output pin)

Synopsys® TestMAX™ DFT User Guide
T-2022.03

75

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Scan Styles
LSSD Scan Style

Feedback

Single-Latch LSSD
In the single-latch LSSD scan styleLSSD (level-sensitive scan design)single latchscan stylesingle-latch variation, DFT Compiler replaces simple latches in your design with
LSSD scan cells.

Figure 17 shows a latch before and after scan substitution, using the single-latch LSSD
scan style. The pin connection mappings are shown in parentheses. In this example, the
scan-in pin is SI, the master test clock is CLKA, the slave test clock is CLKB, the system
master clock is CLK, and the scan-out pin is SQ.

Figure 17 Latch After LSSD Single-Latch Scan Replacement
Previous cell’s

scan output

D Q

CLK

D
CLK

SI SQ

MQ

CLKA

CLKBSimple
latch cell

LSSD
scan cell

(1) (2)

(3)

(1) (2)
(3)

Next cell’s
scan inputNew globally-routed test signals

Figure 18 shows the generic model used by DFT Compiler for single-latch LSSD. The
library model’s test_cell ports are shown in parentheses.

Figure 18 Default Single-Latch LSSD Scan Cell

D
CLK

SI
CLKA

CLKB

(Master)

1D

C1

2D

C2 (Slave)
1D

C1

MQ
MQB

SQ
SQB

(test_scan_clock_a)

(test_scan_clock_b)

(test_scan_in)
(test_scan_out)

(test_scan_out_inverted)

Table 9 is the truth table for the LSSD master latch.

Table 9 Truth Table for LSSD Master Latch

D SI CLKA CLK MQ Mode

0 X 0 0 Functional

1 X 0 1 Functional

Synopsys® TestMAX™ DFT User Guide
T-2022.03

76

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Scan Styles
LSSD Scan Style

Feedback

Table 9 Truth Table for LSSD Master Latch (Continued)

D SI CLKA CLK MQ Mode

X 0 0 0 Scan

X 1 0 1 Scan

X X 0 0 MQ Either

Table 10 lists the signal-type pin connections for the LSSD master latch.

Table 10 Signal-Type Pin Connections for
LSSD Master Latch

Pin Signal type

SI ScanDataIn

CLKA ScanMasterClock

Table 11 is the truth table for the LSSD slave latch.

Table 11 Truth Table for LSSD Slave Latch

MQ CLKB SQ Mode

0 0 Scan

1 1 Scan

X 0 SQ Scan

Table 12 lists the signal-type pin connections for the LSSD slave latch.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

77

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Scan Styles
LSSD Scan Style

Feedback

Table 12 Signal-Type Pin Connections for
LSSD Slave Latch

Pin Signal type

CLKB ScanSlaveClock

SQ ScanDataOut

In functional mode, the master latch of the scannable LSSD cell functions like the original
latch in the design. When the level-sensitive clock CLK is asserted, data is transferred
from input pin D to master latch output pin MQ. During functional operation, the scan shift
master clock CLKA remains quiet.

In scan shift mode, the two LSSD (level-sensitive scan design)single latchnonoverlapping test clocksnonoverlapping test clocks CLKA and CLKB are used to shift
data from the scan input through both master and slave latches to the slave output pin SQ.
Figure 12 illustrates the nonoverlapping master-slave test clocks.

Single-Latch LSSD Scan Style Characteristics
The characteristics of the single-latch LSSD variation are the following:

• Negligible performance overhead.

• High cell area overhead. Replacing a simple latch with an LSSD cell can increase
sequential logic area by 100 percent or more, because the new cell adds a slave latch.

• Significant increased routing overhead due to two additional global master-slave test
clock signals. However, master-slave test clocks do not require as much careful skew
control as edge-triggered clock signals.

• It supports latches with asynchronous pinssingle-latch LSSDLSSD (level-sensitive scan design)single latchasynchronous pinsasynchronous preset or clear pins.

• It is well suited for use in partial-scan designs because of the dedicated test clocks.

Double-Latch LSSD
In the LSSD (level-sensitive scan design)double latchscan styledouble-latch LSSD variation, DFT Compiler replaces master-slave latch pair cells
with LSSD scan cells. Figure 19 shows a cell before and after scan substitution. The pin
connection mappings are shown in parentheses. In this example, the scan-in pin is SI, the
master test clock is CLKA, the slave test clock is CLKB, and the scan-out pin is shared
with the functional output pin Q.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

78

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Scan Styles
LSSD Scan Style

Feedback

Figure 19 Master-Slave Latch After LSSD Double-Latch Scan Replacement
Previous cell’s

scan output

D Q

CLK
CLKB

D
CLK

SI
CLKA

CLKB

Q

Master-slave
latch cell LSSD

scan cell

(1) (2)

(3)
(4)

(1)
(3)

(4)
Next cell’s
scan input

(2)

New globally-routed test signals

Figure 20 shows the generic model used by DFT Compiler for double-latch LSSD. The
library model’s test_cell ports are shown in parentheses. The truth tables for this model are
the same as for the single-latch LSSD model (see Table 9 and Table 11).

Figure 20 Default Double-Latch LSSD Scan Cell

D
CLK

SI
CLKA

CLKB

(Master)

1D

C1

2D

C2 (Slave)
1D

C1
Q
QB

(test_scan_clock_a)

(test_scan_clock_b)

(test_scan_in)
(test_scan_out)

(test_scan_out_inverted)

In functional mode, the master and slave latches in the LSSD cell take over the function
of both the master and the slave latches in the original flip-flop. Data from input pin D is
clocked through the latch pair using master-slave clocking on the LSSD (level-sensitive scan design)double latchmaster clockmaster clock CLK and LSSD

(level-sensitive scan design)double latchslave clockslave clock CLKB inputs. Data is clocked out to the slave output Q. A master latch output
cannot be used in the double-latch LSSD scan style.

In scan shift mode, two-phase, nonoverlapping master-slave test clocks CLKA and CLKB
are applied to the clock inputs to shift data from the scan input through both master and
slave latches to the slave output pin Q.

Note that in the double-latch LSSD variation, the slave clock input CLKB is used in both
functional mode and scan shift mode. In the single-latch LSSD variation, the slave clock
input CLKB is used only in scan shift mode.

Table 13 is the truth table for this model.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

79

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Scan Styles
LSSD Scan Style

Feedback

Table 13 Truth Table for Double-Latch LSSD Scan Cell

D SI CLK CLKA CLKB Q QB Mode

0 X 0 0 1 Functional

1 X 0 1 0 Functional

X 0 0 0 1 Scan

X 1 0 1 0 Scan

X X 0 0 0 Q QB Either

Note: The master clock CLK or CLKA pulse
precedes the slave clock CLKB pulse, and
the clocks are nonoverlapping, as shown in
Figure 12 on page 70.

Table 14 lists the signal-type pin connections for the clocked LSSD scan cell.

Table 14 Signal-Type Pin Connections for
Double-Latch LSSD Scan Cell

Pin Signal type

SI ScanDataIn

CLKA ScanMasterClock

CLKB ScanSlaveClock

Q ScanDataOut

QB ScanDataOut

Double-Latch LSSD Scan Style Characteristics
The characteristics of the double-latch LSSD variation are as follows:

• Negligible performance overhead.

• Low cell area overhead (15 percent to 30 percent).

Synopsys® TestMAX™ DFT User Guide
T-2022.03

80

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Scan Styles
LSSD Scan Style

Feedback

• Moderate increased routing overhead due to one additional global master test clock
signal. However, master-slave test clocks do not require as much careful skew control
as edge-triggered clock signals.

• Support for latches with asynchronous pinsdouble-latch LSSDLSSD (level-sensitive scan design)double latchasynchronous pinsasynchronous preset or clear pins.

• Suitability for partial-scan designs because of the dedicated test clocks.

Clocked LSSD
In the clocked LSSD scan styleLSSD (level-sensitive scan design)clocked scan styleclocked LSSD variation, DFT Compiler replaces edge-triggered flip-flops with LSSD-
compatible flip-flop cells that use the standard LSSD master-slave test clockstest clockmastertest clockslaveLSSD (level-sensitive scan design)test clockmaster-slave test clocks for scan
shift. In functional mode, a clocked LSSD cell functions as an edge-triggered cell with
the system clock active and system data clocked into the cell. In scan mode, two-phase,
nonoverlapping master-slave test clocks are applied to the master test and slave test clock
inputs to shift data from the scan-input pin to the scan-output pin.

Figure 21 shows an edge-triggered flip-flop before and after clocked LSSD scan cell
substitution. The pin connection mappings are shown in parentheses. In this example,
the scan-in pin is SI, the master test clock is CLKA, the slave test clock is CLKB, and the
scan-out pin is shared with the functional output pin Q. The functional system clock is
CLK.

Figure 21 Edge-Triggered Flip-Flop After Clocked LSSD Scan Replacement
Previous cell’s

scan output

D Q

CLK

D
CLK

SI
CLKA

CLKB

Q

Flip-flop

Clocked LSSD
scan equivalent

(1) (2)

(3)

Next cell’s
scan input

(2)(1)
(3)

New globally-routed test signals

Different implementations of the clocked LSSD scan cell can be modeled by use of a state
table. Figure 22 shows the generic model used by DFT Compiler for clocked LSSD if the
logic library does not include an explicit state table model. The library model’s test_cell
ports are shown in parentheses.

Note:
The generic model provides backward compatibility with previous versions
of DFT Compiler. This model is compatible with either A-before-B clocking
during shift or B-before-A clocking during shift if the right protocol is used. If the

Synopsys® TestMAX™ DFT User Guide
T-2022.03

81

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Scan Styles
LSSD Scan Style

Feedback

generic model is not adequate, it is strongly recommended that you use a logic
library with an explicit state table model for the clocked LSSD scan style.

Figure 22 Default Clocked LSSD Scan Cell

Table 15 is the truth table for this model.

Table 15 Truth Table for Clocked LSSD Scan Cell

D SI CLKA CLKB CLK Q QB Mode

0 X 0 0 0 1 Functional

1 X 0 0 1 0 Functional

X 0 0 0 1 Scan

X 1 0 1 0 Scan

X X 0 0 0/1 Q QB Either

Note: The master clock CLKA pulse precedes the slave
clock CLKB pulse, and the clocks are nonoverlapping, as
shown in Figure 12 on page 70.

Table 16 lists the signal-type pin connections for the clocked LSSD scan cell.

Table 16 Signal-Type Pin Connections for
Clocked LSSD Scan Cell

Pin Signal type

SI ScanDataIn

Synopsys® TestMAX™ DFT User Guide
T-2022.03

82

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Scan Styles
Scan-Enabled LSSD Style

Feedback

Table 16 Signal-Type Pin Connections for
Clocked LSSD Scan Cell (Continued)

Pin Signal type

CLKA ScanMasterClock

CLKB ScanSlaveClock

Q ScanDataOut

QB ScanDataOut

Clocked LSSD Scan Style Characteristics
The characteristics of the clocked LSSD variation are as follows:

• Negligible performance overhead.

• Moderate cell area overhead. A scan cell is 40 percent to 80 percent larger than a flip-
flop.

• Significant increased routing overhead due to two additional global master-slave test
clock signals. However, master-slave test clocks do not require as much careful skew
control as edge-triggered clock signals.

• Suitability for partial-scan designs because of the dedicated test clocks.

Scan-Enabled LSSD Style
The scan-enabled LSSD scan style uses a scan-enable signal to control the behavior of
the scan cell. In functional mode, the de-asserted scan-enable signal causes the cell to
behave like an edge-triggered flip-flop. During scan shift, the asserted scan-enable signal
causes the cell to behave like a master-slave latch scan cell.

Figure 23 shows a flip-flop before and after scan substitution, using the scan-enabled
LSSD style. The pin connection mappings are shown in parentheses. In this example, the
scan-in pin is SI, the scan-enable pin is SE, the master test clock is CLKA, the slave test
clock is shared with the functional clock pin CLK, and the scan-out pin is shared with the
functional output pin Q.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

83

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Scan Styles
Scan-Enabled LSSD Style

Feedback

Figure 23 Edge-Triggered Flip-Flop After Scan-Enabled LSSD Scan Replacement
Previous cell’s

scan output

D Q

CLK

D
CLK

SI
SE

CLKA

Q

Flip-flop

Scan-enabled LSSD
scan equivalent

(1) (2)

(3)

(1)
(3)

Next cell’s
scan input

(2)

New globally-routed test signals

Figure 24 shows the generic model used by DFT Compiler for scan-enabled LSSD. The
library’s test_cell ports are shown in parentheses.

Figure 24 Default Scan-Enabled LSSD Cell

D

CLK
SE

SI
CLKA

(Master)

1D

C1

2D

C2

(Slave)
1D

C1
Q
QB

(test_scan_out)

(test_scan_out_inverted)

(test_scan_clock_a)

(test_scan_clock_b)

(test_scan_in)

(test_scan_enable)

Table 17 is the truth table for this model.

Table 17 Truth Table for Scan-Enabled LSSD Scan Cell

D SI SE CLKA CLK Q QB Mode

0 X 0 0 0 1 Functional

1 X 0 0 1 0 Functional

X 0 1 0 1 Scan

X 1 1 1 0 Scan

X X X 0 0/1 Q QB Either

Note: The master clock CLKA pulse precedes the slave
clock CLK pulse, and the clocks are nonoverlapping, as
shown in Figure 12 on page 70.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

84

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Scan Styles
Scan-Enabled LSSD Style

Feedback

Table 18 lists the signal-type pin connections for the scan-enabled LSSD cell.

Table 18 Signal-Type Pin Connections for
Scan-Enabled LSSD Cell

Pin Signal type

SI ScanDataIn

SE ScanEnable

CLKA ScanMasterClock

Q ScanDataOut

QB ScanDataOut

Note:
The functional clock pin CLK should be defined as a master clock signal, but
with slave clock timing.

In functional mode, the primary clock signal CLK is provided to the master-slave latches
in inverted/noninverted form, resulting in edge-triggered operation. In scan shift mode, the
primary clock is blocked from the master latch, and CLKA is used as a master clock to
clock scan data into the master latch from the SI pin instead. The CLK signal is still used
as a slave clock to transfer data from the master latch to the slave latch.

The scan-enabled LSSD style is similar to the clocked LSSD style, except that the scan-
enable signal is used to re-purpose an existing clock signal.

Scan-Enabled LSSD Scan Style Characteristics
The characteristics of the scan-enabled LSSD scan style are as follows:

• Negligible performance overhead.

• Moderate area overhead. A scan cell is 30 percent to 60 percent larger than a flip-flop.

• Significant increased routing overhead due to two additional global test signals.
However, minimal skew control is needed on the scan-enable signal, and master-slave
test clocks do not require as much careful skew control as edge-triggered clock signals.

• Suitability for partial-scan designs because of the dedicated test clocks.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

85

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

5
Scan Design Requirements

This chapter discusses the scan design requirements for test ports, test timing, test clocks,
and test protocols in design-for-test strategies.

This chapter includes the following topics:

• Test Port Requirements

• Test Timing Requirements

• Test Clock Requirements

• Test Protocol Requirements

Test Port Requirements
One goal of the scan design technique is to minimize the number of physical I/O pins
(corresponding to logic ports) allocated for test purposes. The following I/O port requirementstest port requirements, I/O signalsI/O ports are
required by the different scan styles:

• scan input I/O portScan In

This input port, required by all scan styles, drives a serial scan chain. If your design
has multiple scan chains, each scan chain must have its own scan-in port. On the clock
transition when the scan cells are shifted, the data at each scan-in port is clocked into
the first cell in the corresponding scan chain.

In some cases, you can use a functional data input port as a scan-in port, thus saving
an additional test port in your design. Confirm that this configuration is acceptable to
your ASIC vendor.

• scan output I/O portScan Out

This output port, required by all scan styles, sees the value at the end of a serial scan
chain. If your design has multiple scan chains, each scan chain must have a scan-out
port. On the clock transition when the scan cells are shifted, the data at each scan-out
port changes to reflect the value held in the last cell of the corresponding scan chain.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

86

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Scan Design Requirements
Test Port Requirements

Feedback

You can use a functional data output pin as a scan-out portfunctional data output pin as a scan-out port in one of two ways:

◦ The scan-out pin of the last scan cell in a scan chain is connected directly (or
through buffers or inverters) to a functional output port.

◦ Use the scan-enable signal to multiplex scan-out data and functional data at a pin,
as shown in Figure 25. DFT Compiler inserts this multiplexing logicmultiplexing logic automatically
when you define a functional output as a scan-output port before routing the scan
chains.

Figure 25 Multiplexing Scan-Out Data and Functional Data

• scan clockmaster I/O portScan Clock A (master)

This input port, required by all LSSD variations, is a level-sensitive signal that controls
the latching of serial scan data into the master latch of LSSD.

• scan clockslave I/O portScan Clock B (slave)

This input port is optional for double-latch LSSD but is required for other types of
LSSD. The port is a level-sensitive signal that controls latching of data from the master
latch to the slave latch of LSSD cells.

• scan enable I/O portScan Enable

This input port, required by the multiplexed flip-flop scan style, configures scan cells
for their serial shift mode. For all scan styles, you can use a scan-enable input to
control the behavior of other devices, such as disabling logic for three-state drivers or
multiplexing logic between individual scan cells or between scan cells and I/O ports.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

87

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Scan Design Requirements
Test Timing Requirements

Feedback

The scan-enable signal can be active high or active low, if the sense is consistent
throughout the design.

• test scan clock I/O portTest Scan Clock clocked-scan scan styletest scan clock

This input port, required by the clocked-scan scan style, is an edge-sensitive signal that
controls the clocking of serial scan data.

Table 19 shows the additional I/O port requirements I/O ports used by each scan style. The term sharable
means that the port is required and can be shared. The I/O ports in the table are named
according to their function, but you can assign another name.

Table 19 Additional I/O Port Requirements for Scan Styles

I/O signal function Multiplexed
flip-flop

Clocked-scan LSSD

Scan in Sharable Sharable Sharable

Scan out Sharable Sharable Sharable

Scan clock A Don’t use Don’t use Required

Scan clock B Don’t use Don’t use Required for
single-latch;
optional for
double-latch

Scan enable Required Required for
multiplexed outputs
and three-state
disabling

Required for
multiplexed
outputs and
three-state
disabling

Test scan clock Don’t use Required Don’t use

Test Timing Requirements
The default timing in DFT Compiler is appropriate for most strobe-after-clock protocolpre-clock measure (strobe
before clock) implementations. End-of-cycle measure (strobe after clock) timing can be
manually configured, but is strongly discouraged. For more information, see Setting Timing
Variables on page 574.

Your semiconductor vendor might have timing requirements that are different from those
set by default in DFT Compiler and those recommended for use with TestMAX ATPG. At
the start of the design process, discuss test timing requirements with your semiconductor

Synopsys® TestMAX™ DFT User Guide
T-2022.03

88

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Scan Design Requirements
Test Clock Requirements

Feedback

vendor. Understand semiconductor vendor test timing requirements before running DFT
Compiler.

Semiconductor vendors commonly specify the following timing parameters:

• meeting vendor requirementstest timingperiodTest period

• meeting vendor requirementstest timinginput delayInput timing

• meeting vendor requirementstest timingbidirectional delayBidirectional timing

• meeting vendor requirementstest timingoutput strobeOutput strobe timing

• Clocking requirements

Test Clock Requirements
Each scan style imposes requirements on the scan chain clocks. clocking constraintsdesign considerationsclocking requirements (<seeitalic>see clocking constraints)requirements, clocks(<seeitalic>see also clocking constraints)[requirements, clocksZZZ]When you specify design
constraints involving clock control, the default settings are the safest. If you override the
defaults, consider the issues in this topic.

Clock Requirements in Edge-Sensitive Scan Shift Styles
clocking constraintsedge-sensitive scan shift styleedge-sensitive scan shift style clocking requirementsScan chain clocking issues for edge-sensitive scan shift are different from those for LSSD
scan styles. Edge-sensitive scan shift scan styles include multiplexed flip-flop and clocked
scan.

To avoid timing-related problems in edge-sensitive scan shift styles, you must align the
clocks to all flip-flops in each chain. The safest way to align the clocks is to make all flip-
flops share a common clock with the same phase and no skew. Under these conditions, if
the path from the clock-to-Q to the test input of the next stage is longer than the hold time
of that stage, the shift occurs reliably on the active edge of the clock. The clock must have
a controlled path from an external primary input so the shift function can be performed on
demand in any state.

Skew Issues
clocking constraintsskew issuesskew issues and clocking constraintsSkew can arise from clock tree buffers, but a more serious source of skew is gating and
multiplexing logic that is inserted on clock lines to obtain supposedly congruent clocks
for the scan chain. Gating logic is not necessarily discouraged, but its introduction can
cause hold time problems that must be addressed. Fortunately, the Synopsys environment
includes timing analysis that detects hold time problems.hold-time violation caused by skew

Construct scan chains to reduce the risk of skew outside of tolerable limits. Skew can
result in hold time violations if it delays downstream flip-flop clocks longer than it delays
upstream flip-flop clocks. This condition is illustrated in Figure 26.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

89

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Scan Design Requirements
Test Clock Requirements

Feedback

Figure 26 Hold Time Violation Caused by Delayed Downstream Clock

If the skew is bad enough, two flip-flops can share a single state, causing data to fall
through and resulting in incorrect scan operation.

Use the set_scan_configuration -internal_clocks [single|multi] to avoid
problems when placing gating logic on the clock lines. Alternatively, you can enable hold
time violation fixing by using the set_fix_hold command before running the insert_dft
command.commandsset_fix_holdset_fix_hold commandcommandsset_scan_configurationset_scan_configuration commandcommandscreate_clockcreate_clock command

Although unlikely, skew can also cause setup violations.

Mixed Edges
clocking constraintsmixed phasesphases, mixedIf clocking on the scan chain is both inverted and noninverted, a problem similar to
excessive skew can occur. For example, if the upstream flip-flop is rising-edge triggered
and the downstream flip-flop is falling-edge triggered, a positive clock pulse first clocks a
value into the upstream flip-flop. Then, on the same pulse’s falling edge, it clocks the same
value into the downstream flip-flop. Figure 27 illustrates this condition.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

90

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Scan Design Requirements
Test Clock Requirements

Feedback

Figure 27 Mixing Edges in a Scan Chain

If you must mix edges, there can be only one point in the chain where the clock phase
reverses and clocks upstream flip-flops on the trailing edge of the clock. You must clock
downstream flip-flops on the leading edge. For a positive pulse, the falling-edge-triggered
flip-flop must be clocked first; for a negative pulse, the rising-edge-triggered flip-flop must
be clocked first.

If you specify an invalid arrangement, the preview_dft command rejects the
specification.

Multiple Clocks
clocking constraintsmultiple clocksclocks, multipleIf clocks originate from different sources, you must consider whether these clocks can
be constrained to the same timing, given real-world tester constraints. The timing is
determined from the waveforms defined with the set_dft_signal commandset_dft_commandset_dft_signal command. If optimistic
assumptions are made in the defined waveforms, the circuit might not test properly.
Consequently, using multiple clocks results in greater risk and lower predictability than
using a single clock for all cells on a scan chain.

commandsinsert_dftinsert_dft commandThe insert_dft command reduces risks by

• Allowing only one clock per scan chain (default)

• Minimizing clock domain crossing

• Inserting lockup latches between clock domains (default)

If you change the defaults, you must pay attention to these risks.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

91

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Scan Design Requirements
Test Protocol Requirements

Feedback

Clock Requirements in LSSD Scan Styles
clocking constraintsrequirements in LSSD scan stylesLSSD (level-sensitive scan design)clocking constraintsThe same clocking requirements apply to all of the LSSD scan styles:

• Single-latch LSSD

• Double-latch LSSD

• Clocked LSSD

LSSD implements the shift function by using separate scan clocks on the master latch
and the slave latch. Each master-slave latch pair is called a shift register latch. Test data
transferred from a preceding shift register latch is stored in the master latch of the shift
register latch when the “a scan clock” is active. The master test clock then changes to
the inactive state, causing all latches to retain their stored values. The slave test clock
then changes to the active state, permitting the slave latch to take on the state held in the
master latch.

Scan mode does not require a scan mode controlLSSD (level-sensitive scan design)scan mode controlscan mode control. Scan control is performed by using a
clock different from the one used in functional mode.

Master Scan Clock and Slave Clock
To make an LSSD circuit scan-controllable, the scan chain must be complete from the
scan input to the last flip-flop in the chain. The master scan clock and slave clock must be
controllable from primary inputs.

Synchronized Clocks
synchronized clocks in LSSD scan styleclock synchronization in LSSD scan styleYou must synchronize the clocks for the various scan cells in the chain. Master latches
must be enabled by the same clock pulse; slave latches must be enabled by a different,
nonoverlapping clock pulse. If there is overlap, all latches are simultaneously transparent,
causing incorrect operation.

If you specify an invalid arrangement, the preview_dft command rejects the
specification.

Skew Control
skew control in LSSD scan styleUnlike edge-sensitive scan shift scan styles, LSSD scan styles do not require skew control
because there is no race between clock and data. Correct low-frequency operation of the
circuit for scan is ensured with LSSD.

Test Protocol Requirements
This topic discusses valid and invalid test protocols, methods of generating test protocols,
and protocol types.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

92

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Scan Design Requirements
Test Protocol Requirements

Feedback

Valid and Invalid Test Protocols
DFT Compiler uses the test protocol for test design rule checking. TestMAX ATPG uses
the test protocol generated by DFT Compiler for its own test design rule checking, as well
as pattern generation and vector formatting steps. Using a single test protocol throughout
these steps ensures consistency in processing the design for test.

Protocols are valid or invalid, depending on the following:

• Valid protocol

A protocol is valid when the design, test attributes, or test specifications have not
changed since the last use of the create_test_protocol or read_test_protocol
command.

• Invalid protocol

A protocol is invalid if there are any changes to a design’s test attributes or test
specifications since the last create_test_protocol or read_test_protocol
command.

A protocol can become invalid if any of the following commands change the design, test
attributes, or test specifications and you do not rerun the create_test_protocol or
read_test_protocol command:

• create_port

• link

• compile

• compile_ultra

• set_dft_signal -view spec -type

• set_dft_signal -view existing_dft

• set_dft_signal -view existing_dft -type constant -active_state

Methods of Generating Test Protocols
DFT Compiler requires a test protocol before you can perform test design rule checking.
This topic discusses the ways you can generate a test protocol.

Reading In an Existing Test Protocol
You might want to use an existing test protocol that was created for the current design or
for another design that has a similar structure. You do this with the read_test_protocol
command.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

93

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Scan Design Requirements
Test Protocol Requirements

Feedback

Creating a Fully User-Specified Test Protocol
A fully specified test protocol, in which all timing and test configuration constraints are
defined, produces the most accurate results for your design. It also provides the shortest
runtime. You do this with the create_test_protocol command.

Inferring a Test Protocol Based on Partial Specification
DFT Compiler can infer a test protocol for test design rule checking if you do not fully
specify the test timing and configuration. Because DFT Compiler has to infer timing and
test configuration, this protocol might not provide results that are as accurate as a fully
specified protocol. Also, the runtime might be significantly slower than the fully specified
protocol. You infer a test protocol with the -infer_clock and -infer_asynch options of
the create_test_protocol command.

Inferring a Test Protocol
If you do not provide a test protocol, the protocol creation step can infer a protocol for your
design. However, you are advised to fully specify your design and create a test protocol
from that full specification. Certain environment variables and design characteristics
determine the specific scan test instructions generated in the test protocol.

Initialization Protocol
An initialization protocol consists of the default pattern application sequence plus a
user-defined initialization sequence. The initialization protocol is a series of initialization
sequences read in from disk with the read_test_protocol -section test_setup
command plus the create_test_protocol command, with or without the -infer_clock
and -infer_asynch options.

Protocol Types
When test design rule checking infers a test protocol, the relationship between clock timing
and strobe time determines the type of protocol it uses. If the tester strobe occurs in the
middle of the cycle, before active clock edges, test design rule checking uses the strobe-
before-clock protocol. If the tester strobe occurs at the end of the cycle, after the active
edge of the clock, test design rule checking uses the strobe-after-clock protocol.

TestMAX ATPG uses the strobe-before-clock protocol.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

94

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Scan Design Requirements
Test Protocol Requirements

Feedback

Strobe-Before-Clock Protocol
If DFT Compiler infers a strobe-before-clock protocol, it uses the following steps to expand
each scan pattern:

1. Data scan in

2. Parallel measure and capture cycle

3. Data scan out

TestMAX ATPG uses the strobe-before-clock protocol.

Because the strobe occurs before the active edge of the clock, parallel measure and
capture can take place in the same vector. Also, because the scan output is strobed
before the scan data is shifted, an extra vector is not required to compare the first scan
out. The strobe-before-clock protocol provides a small savings in vector count because
you save two cycles for each operation.

A Strobe-Before-Clock Example
Figure 28 provides a simple multiplexed flip-flop design example.

Figure 28 Strobe-Before-Clock Multiplexed Flip-Flop Design Example

Synopsys® TestMAX™ DFT User Guide
T-2022.03

95

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Scan Design Requirements
Test Protocol Requirements

Feedback

The test protocol generated by DFT Compiler for the design in Figure 28 contains the
following instructions for scan testing the design:

1. Initialize the tester and configure the design.

a. Initialize the tester.

Place the system clock (CLK) in inactive state.

All nonclock input ports (IN1, IN2, TEST_SI, TEST_SE, and CDN) are “don’t care”
values.

The output ports (OUT1 and OUT2) are masked.

b. Configure the design.

Disable the asynchronous pins by applying a logic 1 to the asynchronous control
port (CDN).

All other ports are unchanged.

2. For each scan pattern, perform the following steps:

a. Scan in data.

Assert the scan-enable signal by applying a logic 1 to the scan-enable input port
(TEST_SE).

Disable the asynchronous pins on the scan cells by applying a logic 1 to the
asynchronous control port (CDN).

For each bit in the scan chain, apply data to the scan-input port (TEST_SI) and
toggle the clock port (CLK).

All other input ports (IN1 and IN2) are don’t care values; the output ports (OUT1
and OUT2) are masked.

b. Perform parallel measure and capture.

Apply parallel data to all nonclock inputs.

Measure the response at the outputs, then pulse the system clock to capture the
response in the scan cells.

Note:
In strobe-after-clock protocols, this step must be split into two steps,
where measure is one step and pulse is the next.

c. Scan out data.

Assert the scan-enable signal by applying a logic 1 to the scan-enable input port
(TEST_SE).

Synopsys® TestMAX™ DFT User Guide
T-2022.03

96

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Scan Design Requirements
Test Protocol Requirements

Feedback

Disable the asynchronous pins on the scan cells by applying a logic 1 to the
asynchronous control port (CDN).

All other input ports (IN1, IN2, and TEST_SI) are unchanged.

The nonscan-output ports (OUT1) are masked.

For each bit in the scan chain, measure the response at the scan-output port
(OUT2), then toggle the clock port (CLK).

Strobe-After-Clock Protocol
If DFT Compiler infers a strobe-after-clock protocol, it uses the following steps to apply a
scan pattern:scan patternapplyingstandard protocol

1. Data scan in

2. Parallel measure cycle

3. Parallel capture cycle

4. Measure first scan out

5. Data scan out

Note:
Older versions of DFT Compiler used default timing values that required a
strobe-after-clock protocol. This is no longer the default behavior and using a
strobe-after-clock protocol is strongly discouraged.

A Strobe-After-Clock Example
Figure 29 provides a simple multiplexed flip-flop design example.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

97

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Scan Design Requirements
Test Protocol Requirements

Feedback

Figure 29 Strobe-After-Clock Multiplexed Flip-Flop Design Example

The test protocol generated by DFT Compiler for the design in Figure 29 contains the
following instructions for scan testing the design:

1. Initialize the tester and configure the design:

a. Initialize the tester.

Place the system clock (CLK) in inactive state.

All nonclock input ports (IN1, IN2, TEST_SI, TEST_SE, and CDN) are “don’t care”
values.

The output ports (OUT1 and OUT2) are masked.

b. Configure the design.

Disable the asynchronous pins by applying a logic 1 to the asynchronous control
port (CDN).

All other ports are unchanged.

2. For each scan pattern, perform the following steps:

a. Scan in data.

Assert the scan-enable signal by applying a logic 1 to the scan-enable input port
(TEST_SE).

Disable asynchronous pins on the scan cells by applying a logic 1 to the
asynchronous control port (CDN).

For each bit in the scan chain, apply data to the scan-input port (TEST_SI) and
toggle the clock port (CLK).

Synopsys® TestMAX™ DFT User Guide
T-2022.03

98

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Scan Design Requirements
Test Protocol Requirements

Feedback

All other input ports (IN1 and IN2) are don’t care values; the output ports (OUT1
and OUT2) are masked.

b. Perform parallel measure.

Apply parallel data to all nonclock inputs; the clock is held inactive.

Measure the response at the outputs.

c. Perform capture.

Pulse the system clock to capture the response in the scan cells.

All nonclock inputs remain unchanged; all outputs are masked.

d. Measure the first scan out.

Assert the scan-enable signal by applying a logic 1 to the scan-enable input port
(TEST_SE).

Disable asynchronous pins on the scan cells by applying a logic 1 to the
asynchronous control port (CDN).

All other input ports (IN1, IN2, and TEST_SI) are unchanged.

Nonscan-output ports (OUT1) are masked.

Measure the response at the scan-output port (OUT2).

e. Scan out data.

For each bit in the scan chain, toggle the clock port (CLK) and measure the
response at the scan-output port (OUT2). The values applied to nonclock inputs are
unchanged. All nonscan outputs (OUT1) are masked.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

99

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Part 2: DFT Compiler Scan

Synopsys® TestMAX™ DFT User Guide
T-2022.03

100

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

6
Getting Started

This chapter provides an overview of the basic flows, processes, and reports for DFT
Compiler. References are provided throughout this chapter to more detailed information in
subsequent chapters.

The basic processes, flows, and reports for using DFT Compiler are described in the
following topics:

• Preparing to Run DFT Compiler

• Performing Scan Synthesis

• Analyzing Your Post-DFT Design

• Reporting

• Designing Block by Block

• Performing Scan Extraction

• Hierarchical Scan Synthesis

• Physical DFT Features in Design Compiler

• DFT Flows in DC Explorer

Figure 30 shows a typical DFT insertion design flow that starts from RTL.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

101

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Getting Started

Feedback

Figure 30 Typical Flat Design Flow for an Unmapped Design

Synopsys® TestMAX™ DFT User Guide
T-2022.03

102

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Getting Started
Preparing to Run DFT Compiler

Feedback

Preparing to Run DFT Compiler
Before running DFT Compiler, you need to set up your interface, prepare your design
environment, and read in your design.

This topic covers the following:

• Invoking the Synthesis Tool

• Setting Up Your Design Environment

• Reading In Your Design

• Setting the Scan Style

• Configuring the Test Cycle Timing

• Defining the DFT Signals

Invoking the Synthesis Tool
You can use DFT Compiler from within any of the following synthesis tools:

• Design Compiler

• Design Vision

• DC Explorer

The invocation commands are shown in Table 19. DC Explorer runs in topographical mode
by default, and it does not support DFT insertion or post-DFT commands.

User interface Invocation command Prompt

dc_shell dc_shell>Design Compiler

dc_shell -topographical_mode dc_shell-topo>

Design Compiler NXT dcnxt_shell dcnxt_shell>

design_vision design_vision>

design_vision -topographical_mode design_vision-topo>

Design Vision

dcnxt_shell -gui dcnxt_shell>

DC Explorer de_shell de_shell>

Synopsys® TestMAX™ DFT User Guide
T-2022.03

103

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Getting Started
Preparing to Run DFT Compiler

Feedback

Setting Up Your Design Environment
To set up your design environment, you need to define the paths for the logic libraries
and designs you are using, and define any special reporting parameters. The following
Synopsys system variablessystem variables enable you to define the key parameters of your design environmentdesign
environment:

Variable Description

link_library The ASIC vendor logic library where your design
is initially represented.

target_library Usually the same as your link_library,
unless you are translating a design between
technologies.

symbol_library A file that contains definitions of the graphic
symbols that represent cells in design schematics.

search_path A list of alternative directory names to search
to find the link_library, target_library,
symbol_library, and design files.

hdlin_enable_dft_drc_info Reports file names and line numbers associated
with each violation during test design rule
checking (DRC). This makes it easier for you to
later edit the source code and fix violations.

For example,

configure logic libraries
set_app_var target_library {my_library.db}
set_app_var link_library {* my_library.db}
set_app_var hdlin_enable_rtldrc_info true

Logic library configuration commands are normally included in the .synopsys_dc.setup file
or user script, rather than entered manually at a tool prompt.

If you are using the Design Compiler tool in a physical synthesis flow, you must also
configure your physical libraries. For example,

configure physical libraries for topographical mode
if {![file isdirectory my_mw_design_library]} {
 create_mw_lib -technology my_technology.tf \
 -mw_reference_library mw_reference_library \
 my_mw_design_library
} else {
 set_mw_lib_reference my_mw_design_library \
 -mw_reference_library my_mw_reference_library
}

Synopsys® TestMAX™ DFT User Guide
T-2022.03

104

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Getting Started
Preparing to Run DFT Compiler

Feedback

open_mw_lib my_mw_design_library

set_tlu_plus_files \
 -max_tluplus my_TLUPLUS_MAX.tluplus \
 -min_tluplus my_TLUPLUS_MIN.tluplus \
 -tech2itf_map my_tech.map

Physical library configuration commands are normally included in your user script.

For more information about setting up your design environment, including logic and
physical libraries, see “Setting Up the Libraries” chapter in the Design Compiler User
Guide.

Reading In Your Design
To read in your design, specify the appropriate file read commands depending on the file
format: read_ddc, read_verilog, read_vhdl. The following example reads in a list of
Verilog files:

dc_shell> read_verilog {my_design.v my_block.v}
Use the current_design and link commands to link the top level of the current design:

dc_shell> current_design my_design
dc_shell> link
If DFT Compiler is unable to resolve any references, you must provide the missing designs
before proceeding.

After linking, use the read_sdc command (or the source command) to apply the design
constraints:

dc_shell> read_sdc top_constraints.sdc
Note:

If you read in the top-level design in the Synopsys logic database (.ddc) format,
the design constraints might already be applied.

For more information about reading in your design, see “Reading Designs” section in the
Design Compiler User Guide.

Setting the Scan Style
DFT Compiler uses the selected scan style to perform scan synthesis. A scan style
dictates the appropriate scan cells to insert during optimization. This scan style is used on
all modules of your design.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

105

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Getting Started
Preparing to Run DFT Compiler

Feedback

There are four types of scan styles available in DFT Compiler, shown in Table 19.

Scan style Keyword

Multiplexed flip-flop (default) multiplexed_flip_flop

Clocked scan clocked_scan

Level-sensitive scan design lssd

Scan-enabled level-sensitive scan design scan_enabled_lssd

The default style is multiplexed flip-flop. To specify another scan style, use the -style
option of the set_scan_configuration command. For example,

dc_shell> set_scan_configuration -style clocked_scan

See Also

• Chapter 4, Scan Styles for more information about the supported scan styles

• Specifying a Scan Style on page 165 for more information about the process for
selecting and specifying a scan style for your design

Configuring the Test Cycle Timing
Set the test timing variables to the values required by your ASIC vendor. If you are
using TestMAX ATPG to generate test patterns, and your vendor does not have specific
requirements, the default settings produce the best results:

dc_shell> set_app_var test_default_delay 0
dc_shell> set_app_var test_default_bidir_delay 0
dc_shell> set_app_var test_default_strobe 40
dc_shell> set_app_var test_default_period 100
These are the default settings; you do not need to add them to your script.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

106

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Getting Started
Preparing to Run DFT Compiler

Feedback

Defining the DFT Signals
Most DFT Compiler commands include the concept of a view, specified with the -view
option. The valid view values are:

• -view existing_dft
The existing DFT view is descriptive and describes an existing signal network. An
example is an existing functional clock signal that is also used as a scan clock in test
mode.

• -view spec
The specification view is prescriptive and describes action that must be taken during
DFT insertion. It indicates that the signal network or connection does not yet exist, and
the insert_dft command must create it. An example is a scan-enable signal network
that must be routed to all scannable flip-flops during DFT insertion.

A view is typically specified in scan specification commands, such as set_dft_signal.
When performing scan synthesis, you use a combination of the two views. When you
define existing signals that are used in test mode, you use the existing DFT view. When
you define the DFT structure you want inserted, you use the specification view.

Define any clocks and asynchronous set and reset signals in the existing DFT view:

dc_shell> set_dft_signal -view existing_dft -type ScanClock ...
dc_shell> set_dft_signal -view existing_dft -type Reset ...
If you have a dedicated scan-enable port, define it in the specification view:

dc_shell> set_dft_signal -view spec -type ScanEnable \
 -port scan_enable_port -active_state 1
If no scan-enable port is identified, DFT Compiler creates a new scan-enable port.

If you are using existing ports as scan-in and scan-out ports, define them in the
specification view (even if they have existing functional logic connections):

dc_shell> set_dft_signal -view spec -type ScanDataIn -port DAT_IN[7]
dc_shell> ...
dc_shell> set_dft_signal -view spec -type ScanDataIn -port DAT_IN[0]
dc_shell> set_dft_signal -view spec -type ScanDataOut -port DAT_OUT[7]
dc_shell> ...
dc_shell> set_dft_signal -view spec -type ScanDataOut -port DAT_OUT[0]
Otherwise, DFT Compiler creates new scan-in and scan-out ports as needed.

After defining your DFT signals, create a test protocol:

dc_shell> create_test_protocol

Synopsys® TestMAX™ DFT User Guide
T-2022.03

107

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Getting Started
Performing Scan Synthesis

Feedback

See Also

• Chapter 9, Architecting Your Test Design for more information about defining DFT
signals

Performing Scan Synthesis
The scan synthesis process reads your RTL design, synthesizes it, tests it again, performs
scan insertion, and analyzes your post-DFT design.

This topic covers the following processes:

• Performing One-Pass Scan Synthesis

• Performing Scan Insertion

• Performing Post-DFT Optimization

Note:
The first step pertains only to RTL designs. If your design is already mapped to
logic gates, start with the Performing Pre-DFT Test DRC step.

Figure 31 shows a basic scan synthesis flow.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

108

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Getting Started
Performing Scan Synthesis

Feedback

Figure 31 Basic Scan Synthesis Flow

Synopsys® TestMAX™ DFT User Guide
T-2022.03

109

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Getting Started
Performing Scan Synthesis

Feedback

Performing One-Pass Scan Synthesis
After reading in your RTL files, you are ready to perform one-pass scan synthesis, which
performs test-ready compilation. To do this, specify the compile -scan command, as
shown in the following example:

dc_shell> compile -scan
When using the DC Ultra tool (such as with topographical mode), use the following
command:

dc_shell> compile_ultra -scan
The -scan option performs a test-ready compile, which maps directly to scan cells. This
helps eliminate logically untestable circuitry and is an important part of the Synopsys test
methodology. The resulting netlist with unstitched scan cells is called an unrouted scan
design.

See Also

• Chapter 8, Performing Scan Replacement for more information about one-pass scan
synthesis

Performing Scan Insertion
The scan insertion process consists of four primary phases:

• Configuring Scan Insertion

• Previewing Scan Insertion

• Performing Pre-DFT Test DRC

• Inserting the DFT Logic

This topic briefly describes each of these phases.

For a complete description of the scan insertion process, see Chapter 9, Architecting Your
Test Design.”

Figure 32 illustrates the scan insertion flow.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

110

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Getting Started
Performing Scan Synthesis

Feedback

Figure 32 Scan Insertion Flow

Configuring Scan Insertion
To configure scan insertion, you can specify test ports, define test modes, and identify
and mark any cells that you do not want to have scanned. You can set many of these
configuration parameters by using commands such as set_scan_configuration,
set_dft_signal, or set_scan_element.

The following example shows some typical DFT configuration commands:

dc_shell> set_scan_configuration -chain_count 4

dc_shell> set_dft_signal -view spec \
 -type ScanDataIn -port TEST_SI

dc_shell> set_dft_signal -view spec \
 -type ScanDataOut -port TEST_SO

dc_shell> set_dft_signal -view spec \
 -type ScanEnable -port TEST_SE

See Also

• Chapter 9, Architecting Your Test Design for more information about configuring scan
insertion

Synopsys® TestMAX™ DFT User Guide
T-2022.03

111

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Getting Started
Performing Scan Synthesis

Feedback

Performing Pre-DFT Test DRC
Pre-DFT test design rule checking (DRC) process analyzes your unrouted scan design,
based on a set of constraints applicable to your selected scan style, then outputs a set of
violations. Based on the violations, you make changes to your design to prepare it for DFT
insertion. Figure 33 illustrates the pre-DFT test DRC flow.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

112

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Getting Started
Performing Scan Synthesis

Feedback

Figure 33 Pre-DFT Test DRC Flow

To perform pre-DFT test design rule checking,

1. Create the test protocol.

You can use the test protocol definition you previously used for RTL test DRC, but you
must still regenerate it.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

113

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Getting Started
Performing Scan Synthesis

Feedback

dc_shell> create_test_protocol
2. Run pre-DFT test DRC.

dc_shell> dft_drc
3. Check for violations, then do one of the following:

• If violations are reported, make changes to the design or test protocol and repeat
steps 1 and 2.

• If no violations are reported, proceed to scan insertion.

See Also

• Chapter 13, Pre-DFT Test Design Rule Checking for more information about checking
for test design rule violations before DFT insertion

Previewing Scan Insertion
Before performing scan insertion, you can preview your scan design by running the
preview_dft command. This command generates a scan chain design that satisfies scan
specifications on your current design and displays the scan chain design. This allows you
to preview your scan chain design without synthesizing it and change your specifications
as necessary. The following example shows how to specify the preview_dft command:

dc_shell> preview_dft
Example 1 shows an example of the report generated by the preview_dft command.

Example 1 Report Generated by the preview_dft Command
**
Preview DFT report
Design: P
Version: 1998.02
Date: Wed Apr 21 11:25:53 1999
**
Number of chains: 1
Test methodology: full scan
Scan style: multiplexed_flip_flop
Clock domain: no_mix
Scan chain '1' (test_so) contains 4 cells

See Also

• Previewing the DFT Logic on page 595 for more information about previewing scan
insertion

Synopsys® TestMAX™ DFT User Guide
T-2022.03

114

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Getting Started
Performing Scan Synthesis

Feedback

Inserting the DFT Logic
After configuring and previewing your design, assemble the scan chains by using the
insert_dft command:

dc_shell> insert_dft

See Also

• Inserting the DFT Logic on page 602 for more information about how DFT insertion
performs scan replacement, scan stitching, and signal routing

Performing Post-DFT Optimization
Post-DFT optimization is gate-level optimization performed after inserting and mapping
the new DFT structures. It performs optimizations such as selecting scan-out signal
connections (Q or QN) to minimize constraint violations. This reduces the scan-related
overhead on timing performance and area, and it eliminates synthesis design rule errors.

The insert_dft command creates scan chains that are functional under zero-delay
assumptions using the scan clock waveforms described by the set_dft_signal
command. However, post-DFT optimization uses the clock waveforms described by the
create_clock command; it does not use the scan clock timing values described by the
set_dft_signal command.

To include scan clock timing in post-DFT optimization, you can use multicorner-multimode
optimization in Design Compiler Graphical to define a mode where the scan clocks
are defined with the create_clock command. For more information, see “Optimizing
Multicorner-Multimode Designs” in the Design Compiler User Guide.

The post-DFT optimization flow depends on the Design Compiler mode.

Post-DFT Optimization in Design Compiler Wire Load Mode
In Design Compiler wire load mode, the insert_dft command automatically performs
basic gate-level post-DFT optimization by default. If needed, you can disable it with the
following command:

dc_shell> set_dft_insertion_configuration \
 -synthesis_optimization none
In this case, you can still manually perform a post-DFT incremental compile if you disable
automatic post-DFT synthesis optimization:

dc_shell> # for a DC Expert compile
dc_shell> insert_dft
dc_shell> compile -scan -incremental

dc_shell> # for a DC Ultra compile

Synopsys® TestMAX™ DFT User Guide
T-2022.03

115

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Getting Started
Analyzing Your Post-DFT Design

Feedback

dc_shell> insert_dft
dc_shell> compile_ultra -scan -incremental
Post-DFT Optimization in Design Compiler Topographical Mode
In Design Compiler topographical mode, the insert_dft command maps new logic, but
does not perform post-DFT optimization. In this mode, you perform post-DFT optimization
by manually running an incremental post-DFT topographical compile after the insert_dft
command completes. For example,

dc_shell-topo> insert_dft
dc_shell-topo> compile_ultra -scan -incremental ;# topographical
Design Compiler synthesis optimizes the newly inserted DFT logic, and it optimizes the
design to accommodate the additional area and timing overhead of the DFT logic.

The tool issues a warning message if you attempt to enable post-DFT optimization in
topographical mode:

dc_shell-topo> set_dft_insertion_configuration \
 -synthesis_optimization all

Warning: Synthesis optimizations for DFT are not allowed in
DC-Topographical flow. Turning off all the optimizations.
Accepted insert_dft configuration specification.

This incremental compile behavior also applies to Design Compiler Graphical, which runs
from within Design Compiler in topographical mode. However, the incremental compile
command also requires the -spg option:

dc_shell-topo> insert_dft
dc_shell-topo> compile_ultra -scan -spg -incremental

Analyzing Your Post-DFT Design
After you perform DFT insertion, you should perform design rule checking again to ensure
that no new violations have been introduced into your design:

dc_shell> dft_drc
This is called post-DFT DRC. DFT Compiler checks for and describes potential problems
with the testability of your design. These checks are more comprehensive than those
in pre-DFT DRC, and they check for the correct operation of the scan chain. After you
correct all the reported violations, you can proceed with the next step. Failure to correct
the reported violations typically results in lower fault coverage.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

116

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Getting Started
Reporting

Feedback

Note:
Some features and flows do not support post-DFT DRC, as noted in Post-DFT
DRC Limitations on page 619. In such cases, use DRC in the TestMAX ATPG
tool to validate the DFT-inserted design.

To analyze your post-DFT design:

1. Save your design and test protocol.

dc_shell> write -format ddc -hierarchy \
 -output my_design.ddc

dc_shell> write_test_protocol \
 -output my_design_final.spf

2. Run post-DFT test DRC.

dc_shell> dft_drc
Note:

Some features and flows do not support post-DFT DRC in DFT Compiler;
you must perform DRC in the TestMAX ATPG tool.

3. Report the scan structures.

dc_shell> report_scan_path -view existing_dft \
 -chain all

dc_shell> report_scan_path -view existing_dft \
 -cell all

See Also

• Post-DFT Insertion Test Design Rule Checking on page 604 for more information
about analyzing your post-DFT design

Reporting
All DFT specification commands have corresponding reporting commands. To report what
exists in the design, use the -view existing_dft option of the reporting command. To
report what you have specified for insertion, use the -view spec option, which is also the
default.

Example 2 DFT Configuration Report
dc_shell> report_dft_configuration

**

Synopsys® TestMAX™ DFT User Guide
T-2022.03

117

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Getting Started
Reporting

Feedback

Report : DFT configuration
Design : test
Version: 2003.12
Date : Fri Aug 22 16:10:05 2003
**

DFT Structures Status
-------------- --------
Scan: Enable
Autofix: Enable
Test point: Disable
Wrapper: Disable
Integration: Disable
Boundary scan: Disable

Example 3 Scan Configuration Report
dc_shell> report_scan_configuration

**
Report : Scan configuration
Design : SYNCH
Version: 2003.12
Date : Fri Aug 22 15:48:24 2003
**

==
TEST MODE: Internal_scan
VIEW : Specification
==

Chain count: Undefined
Scan Style: Multiplexed flip-flop
Maximum scan chain length: Undefined
Preserve multibit segments: True
Clock mixing: Not defined
Internal clocks: False
Add lockup: True
Insert terminal lockup: False
Create dedicated scan out ports: False
Shared scan in: 0
Bidirectional mode: No bidirectional type

Example 4 DFT Signal Report
dc_shell> report_dft_signal -view existing_dft

**

Report : DFT signals
Design : SYNCH
Version: 2003.12
Date : Fri Aug 22 15:48:51 2003

Synopsys® TestMAX™ DFT User Guide
T-2022.03

118

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Getting Started
Reporting

Feedback

**

==
TEST MODE: Internal_scan
VIEW : Existing DFT
==
Port SignalType Act Hkup Timing
----- ----- --- ---- ----
hrst_L Reset 0 - P 100.0 R 55.0 F 45.0
mrxc ScanMasterClock 1 - P 100.0 R 45.0 F 55.0
mrxc MasterClock 1 - P 100.0 R 45.0 F 55.0
clk3 ScanMasterClock 1 - P 100.0 R 45.0 F 55.0
clk3 MasterClock 1 - P 100.0 R 45.0 F 55.0
clk2 ScanMasterClock 1 - P 100.0 R 45.0 F 55.0
clk2 MasterClock 1 - P 100.0 R 45.0 F 55.0

dc_shell> report_dft_signal -view spec
**
Report : DFT signals
Design : SYNCH
Version: 2003.12
Date : Fri Aug 22 16:25:11 2003
**

==
TEST MODE: Internal_scan
VIEW : Specification
==
Port SignalType Active Hookup Timing
---- ---------- ----- ------ ------
SI1 ScanDataIn - - Delay 5.0

Example 5 Report on a User-Specified Scan Path
dc_shell> report_scan_path -view spec -chain all

**
Report : Scan path
Design : SYNCH
Version: 2003.12
Date : Fri Aug 22 15:50:07 2003
**

==
TEST MODE: Internal_scan
VIEW : Specification
==
Scan_path ScanDataIn (h) ScanDataOut(h) ScanEnable (h)
--------- ------------- -------------- -------------
chain1 - - -

Synopsys® TestMAX™ DFT User Guide
T-2022.03

119

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Getting Started
Designing Block by Block

Feedback

Example 6 AutoFix Configuration Report
dc_shell> report_autofix_configuration

**
Report : Autofix configuration
Design : example
Version: V-2004.06-SP1
Date : Fri Jul 2 12:11:19 2004

**
==
TEST MODE: all_dft
VIEW : Specification
==

Fix type: Set
Fix method: Mux
Fix latches: Disable
Fix type: Clock
Fix latches: Disable
Fix clocks used as data: Disable
Fix type: Internal_bus
Fix method: Enable_one
Fix type: External_bus
Fix method: Disable_all

Designing Block by Block
If you develop your designs on a block-by-block basis, you can use pre-DFT DRC (or RTL
DRC) to check the test design rules of any particular block without also performing DFT
insertion in that block. This allows you to assess the testability as you develop each block
of your design, which helps you identify and fix testability problems at an early stage.

To do this, define the existing DFT signals in the block, such as scan clocks, then run pre-
DFT DRC.

Although fixing testability problems on a block-by-block basis is an important “divide-
and-conquer” technique, testability problems are global in nature. A completely testable
subblock might show testability problems when it is embedded in its environment.

See Also

• Chapter 13, Pre-DFT Test Design Rule Checking for more information about checking
for test design rule violations before DFT insertion

Synopsys® TestMAX™ DFT User Guide
T-2022.03

120

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Getting Started
Performing Scan Extraction

Feedback

Performing Scan Extraction
Scan extraction is the process of reading in an ASCII netlist that lacks test attributes, then
analyzing the netlist to determine the scan chain structures. After identifying the scan
structures, you can write out test model and test protocol files for design reuse.

The scan chain extraction process extracts scan chains from a design by tracing scan
data bits through the multiple time frames of the protocol simulation. For a given design,
specifying a different test protocol can result in different scan chains. As a corollary,
scan chain-related problems can be caused by an incorrect protocol, by incorrect
set_dft_signal specifications, or even by incorrectly specified timing data.

When performing scan extraction, define your test structures in the existing DFT view (by
using the -view existing_dft option) because they already exist in your design.

Scan extraction only supports standard scan designs. You cannot extract scan structures
for compressed scan designs.

To perform scan extraction:

1. Perform the steps described in Preparing to Run DFT Compiler on page 103: read in
and link the design, configure the scan style, and define the basic DFT signals.

2. Specify that the design contains existing scan structures:

dc_shell> set_scan_state scan_existing
3. Define the scan input and scan output for each existing scan chain using the

set_scan_path and set_dft_signal commands, as shown in the following example:

dc_shell> set_dft_signal -view existing_dft \
 -type ScanDataIn -port {TEST_SI1 TEST_SI2}

dc_shell> set_dft_signal -view existing_dft \
 -type ScanDataOut -port {TEST_SO1 TEST_SO2}

dc_shell> set_dft_signal -view existing_dft \
 -type ScanEnable -port TEST_SE

dc_shell> set_scan_path chain1 \
 -view existing_dft \
 -scan_data_in TEST_SI1 \
 -scan_data_out TEST_SO1

dc_shell> set_scan_path chain2 \
 -view existing_dft \
 -scan_data_in TEST_SI2 \
 -scan_data_out TEST_SO2

Synopsys® TestMAX™ DFT User Guide
T-2022.03

121

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Getting Started
Hierarchical Scan Synthesis

Feedback

4. Create the test protocol by using the create_test_protocol command:

dc_shell> create_test_protocol
5. Extract the scan chains by using the dft_drc command:

dc_shell> dft_drc
6. Report the extracted scan chains by using the report_scan_path commands, and

ensure that the reports are as expected:

dc_shell> report_scan_path -view existing_dft \
 -chain all

dc_shell> report_scan_path -view existing_dft \
 -cell all

Hierarchical Scan Synthesis
In hierarchical scan synthesis, you perform DFT insertion at a lower level of hierarchy,
then incorporate those completed scan structures into DFT insertion at a higher level
of hierarchy. Test models represent DFT-inserted blocks during DFT operations, which
improves tool performance and capacity for multi-million-gate designs.

Hierarchical scan synthesis is described in the following topics:

• Top-Down Flat Versus Bottom-Up Hierarchical

• Introduction to Test Models

• Writing Out a CTL Model at the Core Level

• Reading In and Using CTL Models at the Top Level

• Checking Connectivity to Cores at the Top Level

• Using Advanced Clock Feedthrough Analysis

• Connecting the Scan-Enable Pins of Cores

• Hierarchical Synthesis, DFT Insertion, and Layout Flows

• Linking Test Models to Library Cells

• Checking Library Cells for CTL Model Information

Top-Down Flat Versus Bottom-Up Hierarchical
In top-down flat scan synthesis, you perform a single DFT insertion operation at the
top level of your design. See Figure 34. This flow is simple, but it requires that DFT

Synopsys® TestMAX™ DFT User Guide
T-2022.03

122

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Getting Started
Hierarchical Scan Synthesis

Feedback

insertion be repeated for the entire design if any part of the design changes, which is time-
consuming for large designs.

Figure 34 Top-Down Flat Scan Synthesis

TOP
BLK

Top-down flat DFT insertion in TOP

TOP
BLK

TOP before DFT insertion

insert_dft

In bottom-up hierarchical scan synthesis, you perform DFT insertion at a lower level of
hierarchy, then incorporate those completed scan structures into DFT insertion at a higher
level of hierarchy. See Figure 35. This is also simply called a hierarchical scan synthesis
(HSS) flow.

Figure 35 Bottom-Up Hierarchical Scan Synthesis

TOP

BLK
BLK

Core-level DFT insertion
in BLK

Top-level DFT insertion in TOP,
with integrated core BLK

Synopsys® TestMAX™ DFT User Guide
T-2022.03

123

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Getting Started
Hierarchical Scan Synthesis

Feedback

Hierarchical scan synthesis uses test models to represent core designs during top-level
DFT operations, which improves tool performance and capacity for multimillion-gate
designs. This is useful when

• You have a very large design that is not suitable for a single top-down DFT insertion

• You want to be able to rearchitect DFT structures in a block independently of its
surrounding design logic

• You want to create a DFT-inserted block that can be reused in future designs

A lower-level block that is DFT-inserted is called a core. When a core is incorporated into
scan structures at a higher level of DFT insertion, the core is said to be integrated at that
level. The level of hierarchy where a core is integrated is sometimes referred to as the top
level (as opposed to the core level), although this DFT-inserted top level can itself become
a core in an even higher level of hierarchy.

Note:
In the DFT documentation, the term “block” refers to any hierarchical design,
while the term “core” refers specifically to DFT-inserted blocks with CTL model
information.

After a core is created, its scan structures are fixed. However, core-level scan chains
become scan segments that are incorporated into top-level scan chain balancing.

Introduction to Test Models
In a hierarchical scan synthesis flow, the tool creates a test model for a DFT-inserted core
that describes only the information needed to integrate the core at a higher level of design
hierarchy. Test models store information about

• Port names

• Port directions (input, output, bidirectional)

• Scan structures (such as scan chains, pipeline registers, and terminal lockup latches)

• Scan clock signals

• Asynchronous sets and reset signals

• Three-state disable signals

• Other test-related signals

• Multiple test modes

• Test protocol information, such as initialization, sequencing, and clock waveforms

Figure 36 shows a test model representation of a design example.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

124

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Getting Started
Hierarchical Scan Synthesis

Feedback

Figure 36 Test Model Representation of a Design Example

Chain: “1”, Length: 11

Chain: “2”, Length: 10

BLK

CLK1

test_se

test_si2 test_so2

test_si1 test_so1

CLK2

(CLK2)(CLK1)

(CLK2)

Test models are described using Core Test Language (CTL); thus, test models are
typically called CTL models. CTL models can be written and read in three file formats:

• .ddc format

This is a binary file that is typically written out in a synthesis flow. When you write out
a design in .ddc format after performing DFT insertion, it automatically includes the
binary CTL model description of that design.

• .ctl format

This is an ASCII file that contains the ASCII Core Test Language description of a core.

• .ctlddc format

This is a binary file that can be optionally written out in a synthesis flow. This format
includes only the binary CTL model description of the design. It can be read in and
linked like a .ddc file.

A CTL model does not include SCANDEF information. However, a .ddc file can contain
both CTL model information and SCANDEF information.

CTL models are not adequate for the generation of test patterns; you must use an actual
netlist representation for automatic test pattern generation (ATPG).

Writing Out a CTL Model at the Core Level
To create a CTL model for a core, you perform DFT insertion for the core design, then you
write out its CTL model information.

Cores can be written in the file formats shown in Table 20. Different formats contain
different information.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

125

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Getting Started
Hierarchical Scan Synthesis

Feedback

Table 20 Design Compiler Commands for Writing Out CTL-Modeled Designs

Format Command Output data description

.ddc1 write -format ddc -hierarchy
-output core.ddc

Complete binary database for the current
design; includes netlist, constraints,
attributes, and CTL model information

.ctl write_test_model -format ctl
-output core.ctl

ASCII CTL model representation of the
current design; does not include netlist,
constraints, or attributes information

.ctlddc write_test_model -format ddc
-output core.ctlddc

Binary CTL model representation of the
current design; does not include netlist,
constraints, or attributes information

It might be useful to write out the design in multiple formats. For example, you can write
out a .ddc file containing the CTL model information for use by the tool at the integration
level, along with an ASCII CTL model for reference.

Example 7 shows a simple core-level script.

Example 7 Core-Level Script Example
configure libraries
set link_library {* my_lib.db}
set target_library {my_lib.db}

read and link the design
read_verilog RTL/core.v
current_design core
link

perform test-ready compile
compile -scan

configure DFT
set_dft_signal -view existing_dft -type ScanClock \
 -port clk -timing [list 45 55]

preview and insert DFT
create_test_protocol
dft_drc
set_scan_configuration -chain_count 2
preview_dft
insert_dft

write out core-level design information
write -format ddc -hierarchy -output DDC/core.ddc ;# full design
write_test_model -format ctl -output CTL/core.ctl ;# ASCII CTL model

1. Includes block abstractions

Synopsys® TestMAX™ DFT User Guide
T-2022.03

126

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Getting Started
Hierarchical Scan Synthesis

Feedback

write -format verilog -hierarchy -output GATES/core.vg ;# ATPG netlist
write_test_protocol -output SPF/core.spf ;# ATPG protocol

Reading In and Using CTL Models at the Top Level
At the top level of your design, you read in CTL-modeled core designs along with the other
design logic, then you perform scan insertion. The tool automatically incorporates the
core-level scan structures into the top-level scan structures.

You can read CTL-modeled core designs into a top-level design in multiple formats.
Different formats provide different types of information, as shown in Table 21. For multiple
cores, you can read in a mix of formats.

Table 21 Commands for Reading In CTL-Modeled Designs

Format Commands Input data description

.ddc2 read_ddc core.ddc Complete binary database for the core;
includes netlist, constraints, attributes, and
CTL model information

.ctl read_test_model -format ctl
-design core core.ctl

ASCII CTL model of the core; does not
include netlist, constraints, or attributes
information

.ctl (with
netlist)

read_verilog core.v
read_test_model -format ctl
-design core core.ctl

ASCII CTL model of the core with netlist;
does not include constraints or attributes
information

.ctlddca read_test_model -format ddc
core.ctlddc

Binary CTL model of the core; does not
include netlist, constraints, or attributes
information

.ctlddc
(with
netlist)

read_verilog core.v
read_test_model -format ddc
core.ctlddc

Binary CTL model of the core with netlist;
does not include constraints or attributes
information

The read_test_model command attaches CTL model information to a design. If the
design already has CTL model information, the newly read CTL model replaces the
existing model. If the design does not exist, the command creates a black-box design
using the port information in the CTL model information.

When you link the top-level design, the link process looks for .ddc files in the search path
to resolve any unresolved references. It does not consider .ctl or .ctlddc files, although it
does consider .ctlddc files that have a .ddc extension.

2. For this case, you can include the .ddc or .ctlddc files in the link_library list instead of explicitly reading it in, or you
can rely on the link process to read them in (for files that have a .ddc extension).

Synopsys® TestMAX™ DFT User Guide
T-2022.03

127

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Getting Started
Hierarchical Scan Synthesis

Feedback

You can use the list_test_models command, before or after linking, to see what
designs have CTL test models attached to them. For example,

dc_shell> list_test_models
 core1 /home/hier_dft/top.db
 core2 /home/hier_dft/top.db

For CTL-modeled cores, DFT and synthesis commands use different types of information:

• DFT commands

When DFT commands (such as the preview_dft and insert_dft commands) are
run, they use the CTL model information attached to CTL-modeled cores in place of
any netlist information. They also use test attributes, if present.

If the use_test_model -false command is applied to a core, the CTL model
information is ignored and the netlist information is used instead.

• Synthesis reporting and optimization commands

When synthesis reporting and optimization commands (such as report_timing and
compile) are run, they use only the netlist, constraints, and attributes information for
CTL-modeled cores. Synthesis commands do not use CTL model information at all.

Caution:
If a CTL-modeled core contains no netlist information, it is treated as a
black box. Use this representation only in a flow that performs DFT insertion
without synthesis optimization.

When using Design Compiler topographical mode, you can use test models from DFT
Compiler together with block abstractions from Design Compiler topographical mode or
IC Compiler. For more information, see “Compile Flows in Topographical Mode” in the
Design Compiler User Guide.

Note that the post-insertion incremental optimization performed by the insert_dft
command in Design Compiler wire load mode is a synthesis operation, not a DFT
operation, and it uses netlist information if available.

Example 8 shows a simple top-level script that integrates two cores: one saved in .ddc
format, and another saved in Verilog format with an ASCII CTL model.

Example 8 Top-Level Core Integration Script Example
configure libraries
set link_library {* my_lib.db}
set target_library {my_lib.db}

read two cores and top-level netlist, then link the design
read_ddc DDC/core.ddc ;# contains netlist and CTL model information

read_verilog GATES/IPBLK.vg ;# Verilog netlist for IP block

Synopsys® TestMAX™ DFT User Guide
T-2022.03

128

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Getting Started
Hierarchical Scan Synthesis

Feedback

read_test_model -format ctl \
 -design IPBLK CTL/IPBLK.ctl ;# attach CTL model to Verilog design

read_verilog RTL/top.v

current_design top
link

perform test-ready compile
compile -scan

configure DFT
set_dft_signal -view existing_dft -type ScanClock \
 -port clk -timing [list 45 55]

preview and insert DFT
create_test_protocol
dft_drc
set_scan_configuration -chain_count 2
preview_dft
insert_dft

write out top-level design information
write -format ddc -hierarchy -output DDC/top.ddc ;# full design
write -format verilog -hierarchy -output GATES/top.vg ;# ATPG netlist
write_test_protocol -output SPF/top.spf ;# ATPG protocol

Checking Connectivity to Cores at the Top Level
In a core integration flow, you must ensure that the TestMode and Constant signals
entering a block match what is required to shift the scan chains through the block. If
conditions do not match, scan blockages can result.

You can use design rule checking (DRC) to confirm that these conditions are met before
DFT insertion. Before running the dft_drc command, set the following variable:

dc_shell> set_app_var test_validate_test_model_connectivity true
The dft_drc command simulates the test_setup procedure and reports any mismatches
between actual and expected values on the TestMode and Constant signals of instances
represented by the test models.

If a mismatch is detected, the scan segments represented in the test model are not
stitched onto the scan chains.

Using Advanced Clock Feedthrough Analysis
A clock feedthrough is a logic path in the design where the output pin of the path has
the same clock behavior as the input pin of the path. The tool uses feedthrough path

Synopsys® TestMAX™ DFT User Guide
T-2022.03

129

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Getting Started
Hierarchical Scan Synthesis

Feedback

information during DRC. When the tool writes out CTL test model information for the
design, the model includes any feedthrough paths that span from input to output.

By default, DFT Compiler performs basic analysis of clock network logic to determine
clock propagation behavior. However, for complex clock network logic, you can enable
advanced clock feedthrough analysis by setting the following variable:

dc_shell> set_app_var test_fast_feedthrough_analysis true
This variable setting enables the DRC engine (which the dft_drc command runs
internally) to detect clock feedthrough paths in the logic of the current design.

Enabling fast feedthrough analysis can help during both core creation and core integration:

• During core creation, feedthroughs from input port through complex logic to output port
can be detected and included in the CTL model of the core.

• During core integration, if you have CTL-modeled cores that contain unidentified
feedthrough paths, you can also set the test_simulation_library variable to
configure the DRC engine to use a netlist simulation model for that core.

If you created the core with advanced feedthrough analysis, the CTL model should
include any feedthrough paths through complex logic and you should not need to
reanalyze the logic using a netlist simulation model. However, verify that the CTL
model includes all expected feedthrough paths in this case.

Note:
Although feedthroughs that vary on a per-test-mode basis can be understood
by DFT DRC and insertion of the current design, they cannot be described in
the resulting CTL model.

Connecting the Scan-Enable Pins of Cores
When you insert DFT at a top level that contains cores, the cores already contain
complete scan-enable networks. Instead of connecting the top-level scan-enable signal to
target pins inside the core, DFT Compiler must connect to scan-enable signal pins at the
core boundary.

You can use the -usage option of the set_dft_signal command to give DFT Compiler
more information about the intended use of the scan-enable signal. Signals with a usage
of scan enable scan cells during scan shift, while signals with a usage of clock_gating
enable clock-gating cells during scan shift.

When scan-enable signals at the core and/or top level are defined with the -usage option,
DFT Compiler attempts to determine which top-level signal should drive each core-level
signal, using the priorities shown in Table 22. The column headers along the top denote

Synopsys® TestMAX™ DFT User Guide
T-2022.03

130

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Getting Started
Hierarchical Scan Synthesis

Feedback

various core-level scan-enable usages. For each usage, that column shows the priorities
used to determine how top-level signals are connected to that core-level signal.

Table 22 Core-Level and Top-Level Scan-Enable Usages With Priorities

Core Top scan clock_gating scan plus
clock_gating

No usage
specified

scan 1 2 1

clock_gating 1

scan plus clock_gating 2 2 1 2

No usage specified 3 3 3 3

New port created
(test_se)

43 43 43 43

These connection priorities propagate signal usages upward through the hierarchy
while preserving the original usage intent as much as possible. You can use the
set_dft_signal -connect_to command and related options to specify specific source-
to-pin signal connections that override these default signal connection behaviors.

See Also

• Connecting the Scan-Enable Signal in Hierarchical Flows on page 230 for more
information about how you can connect the scan-enable signal to cores

Hierarchical Synthesis, DFT Insertion, and Layout Flows
When designing your hierarchical flow, remember that synthesis, DFT insertion, and layout
tool domains each have their own independently configurable hierarchical flows. Not all
synthesized blocks require DFT insertion, and not all synthesized or DFT-inserted blocks
require layout.

In Figure 37, BLK1 uses bottom-up synthesis, top-down DFT insertion, and is placed and
routed only as part of a higher level design.

3. Only one new port is created for all core pin configurations requiring a new port; this new port will behave like a
scan-enable signal with no usage specified for all further DFT integration purposes.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

131

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Getting Started
Hierarchical Scan Synthesis

Feedback

Figure 37 Independent Hierarchical Synthesis, DFT, and Layout Flows

TOP

BLK1 BLK2

SUB MEM

TOP

BLK1 BLK2

SUB MEM

TOP

BLK1 BLK2

SUB MEM

Synthesis DFT insertion Place and route

In addition, different blocks can use different tool features:

• For synthesis, some blocks can use wire load synthesis, some blocks can use DC Ultra
synthesis, and some blocks can use synthesis in Design Compiler topological mode.

• For DFT, some blocks can use standard scan insertion, while other blocks can use
compressed scan insertion.

For each tool domain, create a hierarchical flow that considers the needs of each design
block. Also, consider interactions between the tool domains, such as

• Ensuring that mapped designs are provided to DFT insertion and layout

• Providing test-ready designs to DFT insertion for better results

• Including SCANDEF information when writing out DFT-inserted core designs to enable
scan chain reordering in layout

When you write out a synthesis block abstraction of a DFT-inserted core in .ddc format,
the .ddc file contains CTL model information for use by DFT insertion.

• For more information about hierarchical flows in Design Compiler topographical mode,
see “Compile Flows in Topographical Mode” in the Design Compiler User Guide.

• For more information about hierarchical synthesis flows, see “Using Hierarchical
Models” in the Design Compiler User Guide.

See Also

• Generating SCANDEF Information in Hierarchical DFT Flows on page 632 For more
information about using SCANDEF information in hierarchical flows

Synopsys® TestMAX™ DFT User Guide
T-2022.03

132

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Getting Started
Hierarchical Scan Synthesis

Feedback

Linking Test Models to Library Cells
When complex library cells have built-in scan chains, Core Test Language (CTL) test
models must be linked to the library cells for DFT Compiler to connect the scan chains at
the top level.

If you have the original library source file, you can use the read_lib -test_model
command to annotate test model information to a library cell when the library is read
in. After the library has been read and annotated with the test model, a library .db file
containing the test model can be written out. For example,

read_lib lib_file.lib -test_model [lib_cell_name:]model_file.ctl
write_lib lib -output lib_file.db

If the CTL model name differs from the intended library cell name, an optional library cell
name prefix can be used to specify the model’s intended library cell.

To link multiple test models to multiple cells within a single library, supply the model files to
the -test_model option as a list:

read_lib lib_file.lib -test_model [list \
 [lib_cell_name:]model_file1.ctl \
 [lib_cell_name:]model_file2.ctl]

Note:
The read_lib command is a Library Compiler command. To use it in a DFT
flow, you must link the Design Compiler and Library Compiler tools together.
For more information, see the Synthesis Tools Installation Notes and Library
Compiler Installation Notes.

If you only have a compiled library .db file, you can use the read_test_model command
to link a test model to an existing library cell or design in memory. Specify the library cell
or design name with the -design option. The library cell name can be provided with or
without the logic library name prefix. For example,

read_test_model -format ctl \
 -design design_name model_file.ctl

read_test_model -format ctl \
 -design lib_cell_name model_file.ctl

read_test_model -format ctl \
 -design logic_lib/lib_cell_name model_file.ctl

If you have subdesigns that are modeled using extracted timing models (ETMs), you can
also link CTL test models to the ETM library cells just as you would with logic library cells.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

133

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Getting Started
Hierarchical Scan Synthesis

Feedback

You can use the report_lib command to determine if a library cell has CTL test model
information applied to it, using either the read_lib -test_model or read_test_model
command.

Note:
When you link a test model to a library cell with the read_test_model
command, it takes precedence over any existing test model information present
in the library.

Checking Library Cells for CTL Model Information
To determine if a library cell has CTL model information attached to it, read in the
library, then run the report_lib command. If a library cell in the library has CTL model
information attached, the report will indicate ctl in the attributes column, as shown in
Example 9.

Example 9 Simple report_lib Output for Library Cell With Test Model
Cell Footprint Attributes

my_memory "MEM" b, d, s, u, ctl, t

Synopsys® TestMAX™ DFT User Guide
T-2022.03

134

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Getting Started
Physical DFT Features in Design Compiler

Feedback

Physical DFT Features in Design Compiler
When you use Design Compiler with physical libraries and design information, several
DFT features directly use physical information to improve the DFT implementation.

Table 23 shows the DFT features and their supported physical synthesis flows.

Table 23 DFT Features That Use Physical Information

DFT feature Design Compiler in
topographical mode?

Design Compiler
Graphical?

Scan chain reordering
Scan cells are ordered by physical
proximity to minimize wire length. See
Physical Reordering and Repartitioning on
page 207.

Yes Yes

DFTMAX reduced-congestion codec
Codecs are implemented with a logic
structure that minimizes congestion. See
Performing Congestion Optimization on
Compressed Scan Designs on page 697.

No Yes

Test point insertion
Test points are grouped by physical
proximity to share registers. See Sharing
Test Point Registers on page 301.

Yes Yes

Pipelined scan-enable signals
Scan cells are grouped by physical
proximity to share pipeline registers. See
Implementation Considerations for Pipelined
Scan-Enable Signals on page 351.

Yes Yes

See Also

• Invoking the Synthesis Tool on page 103 for more information about invoking Design
Compiler in topographical mode and Design Compiler Graphical

DFT Flows in DC Explorer
DC Explorer can improve your productivity during development of RTL and constraints by
enabling fast synthesis in the early design stages. During this exploratory phase, you can
also use DC Explorer to evaluate the DFT DRC readiness of the design.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

135

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Getting Started
DFT Flows in DC Explorer

Feedback

In general, DC Explorer accepts all DFT specification commands that can be applied
before DFT insertion. This includes (but is not limited to)

• Standard scan and compressed scan configuration commands

• Scan path and scan group definition commands

• Test-mode creation commands

• OCC controller configuration commands

• DFT partition commands

• Test point configuration commands

• The create_test_protocol command

• The read_test_model command

• The read_test_protocol command

• The report_scan_path command (when used to report user-specified scan
structures)

• The dft_drc command

• The write_test_protocol command

Note that although some of these DFT specification commands do not affect pre-DFT
DRC, they are accepted without warning or error. This allows typical pre-DFT DRC scripts
to execute cleanly.

DC Explorer does not support the DFT preview or insertion commands or DFT commands
that are run after DFT insertion. This includes

• The preview_dft and insert_dft commands

• The report_scan_path command (when used to report DFT-inserted scan structures)

• The write_scan_def command

• The write_test_model command

If you attempt to use an unsupported command that would not significantly affect the
structure of the design, DC Explorer issues a warning:

de_shell> preview_dft
Warning: Command 'preview_dft' is not supported in DC Explorer. The
command is ignored. (DESH-009)
0

Synopsys® TestMAX™ DFT User Guide
T-2022.03

136

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Getting Started
DFT Flows in DC Explorer

Feedback

If you attempt to use an unsupported command that would significantly affect the structure
of the design, DC Explorer issues an error:

de_shell> insert_dft
Error: Command 'insert_dft' is not supported in DC Explorer. (DESH-008)
0

IEEE Std 1149.1 and IEEE Std 1149.6 boundary-scan configuration and insertion, which is
provided by the TestMAX DFT tool, is not supported in DC Explorer.

See Also

• Invoking the Synthesis Tool on page 103 for more information about invoking DC
Explorer

Synopsys® TestMAX™ DFT User Guide
T-2022.03

137

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

7
Running the Test DRC Debugger

This chapter describes debugging design rule checking (DRC) violations by using the
Design Vision graphical user interface (GUI).

Design Vision provides analysis tools for viewing and analyzing your design. It allows you
to view the design violations, and it can provide an early warning of test-related issues.
The GUI provides the debug environment for pre-DFT DRC violations, post-DFT DRC
violations, and Core Test Language (CTL) models.

This chapter includes the following topics:

• Starting and Exiting the Graphical User Interface

• Exploring the Graphical User Interface

• Viewing Design Violations

• Commands Specific to the DFT Tools in the GUI

Starting and Exiting the Graphical User Interface
To invoke Design Vision and view test DRC results, you need to

• Execute the design_vision command or, for topographical mode, the
design_vision -topographical_mode command from the command line.

• Choose File > Execute Script to run dc_shell script.

• Choose Test > Run DFT DRC to check the design for DRC violations. This brings up
the violation browser.

Alternatively,

• Enter the dft_drc command on the Design Vision command line. Then choose Test >
Browse Violations to invoke the violation browser.

To exit Design Vision,

• Choose File > Exit

You can also enter exit or quit on the command line or press Control-c three times in the
Linux shell.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

138

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Running the Test DRC Debugger
Exploring the Graphical User Interface

Feedback

To invoke Design Vision directly from dc_shell, enter

dc_shell> gui_start
To use options with this command, see the Design Vision User Guide for further
information.

Note:
Before invoking Design Vision or opening the GUI, make sure you have
correctly set your display environment variable. See the Design Compiler User
Guide for information on setting this variable.

Exploring the Graphical User Interface
The Design Vision window is a top-level window in which you can display design
information in various types of analysis views. The GUI functions as a visual analysis tool
to help you to visualize and analyze the violations in your design.

Figure 38 shows the Design Vision window running in the Design Vision foreground.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

139

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Running the Test DRC Debugger
Exploring the Graphical User Interface

Feedback

Figure 38 The Design Vision Window

The window consists of a title bar, a menu bar, and several toolbars at the top of the
window and a status bar at the bottom of the window.You use the workspace between
the toolbars and the status bar to display view windows containing graphical and textual
design information. You can open multiple windows and use them to compare views, or
different design information within a view, side by side.

Logic Hierarchy View
The logic hierarchy view helps you navigate through your design and gather information.
The view is divided into the following two panes:

• Instance tree

• Objects list

The instance tree lets you quickly navigate the design hierarchy and see the relationships
among its levels. If you select the instance name of a hierarchical cell (one that contains

Synopsys® TestMAX™ DFT User Guide
T-2022.03

140

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Running the Test DRC Debugger
Exploring the Graphical User Interface

Feedback

subblocks), information about that instance appears in the object table. You can Shift-click
or Control-click instance names to select combinations of instances.

By default, the object table displays information about hierarchical cells belonging to
the selected instance in the instance tree. To display information about other types of
objects, select the object types in the list above the table. You can display information
about hierarchical cells, all cells, pins and ports, pins of child cells, and nets.

Console
The console provides a command-line interface and displays information about the
commands you use in the session in the following two views:

• Log view

• History view

The log view is displayed by default when you start Design Vision. The log view provides
the session transcript. The history view provides a list of the commands that you have
used during the session. To select a view, click the tab at the bottom of the console.

Command Line
You can enter dc_shell commands on the command line at the bottom of the console.
Enter these commands just as you would enter them at the dc_shell prompt in a standard
Linux shell. When you issue a command by pressing Return or clicking the prompt button
to the left of the command line, the command output, including processing messages and
any warnings or error messages, is displayed in the console log view.

You can display, edit, and reissue commands on the console command line by using the
arrow keys to scroll up or down the command stack and to move the insertion point to the
left or right on the command line. You can copy text in the log view and paste it on the
command line.

You can also select commands in the history view and edit or reissue them on the
command line.

Viewing Man Pages
The GUI provides an HTML-based browser that lets you view, search, and print man
pages for commands, variables, and error messages.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

141

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Running the Test DRC Debugger
Exploring the Graphical User Interface

Feedback

To view a man page in the man page viewer,

1. Choose Help > Man Pages.

2. Click the category link for the type of man page you want to view: Commands,
Variables, or Messages.

3. Click the title link for the man page you want to view.

Menus
The menu bar provides menus with the commands you need to use the GUI. Choose
commands on the Test menu to view design violations and to open the violation browser.

Checking Scan Test Design Rules
Check the current design for DRC violations in your scan test implementation before you
perform other DFT Compiler operations such as inserting scan cells. You can use the
violation browser and the violation inspector to examine and debug any DRC violations
that you find.

To view DRC violations,

• Choose Test > Run DFT DRC.

DFT Compiler checks the design for DRC violations and displays messages in the console
log view. If violations exist, Design Vision automatically opens a new Design Vision
window and displays the violation messages in the violation browser.

Examining DRC Violations
You can use the DRC violation browser to search for and view information about DRC
violations in the current design.

To open the violation browser and view violations,

• Choose Test > Browse Violations

The violation browser view window appears in a new Design Vision window, docked to the
left side of the window.

See Also

• Viewing Design Violations on page 143 for more information about viewing and
debugging DRC violations in the GUI

Synopsys® TestMAX™ DFT User Guide
T-2022.03

142

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Running the Test DRC Debugger
Viewing Design Violations

Feedback

Viewing Test Protocols
You can view details about the default test protocol and any user-defined test protocols
that you created for the design.

To view test protocols,

1. Choose Test > Browse Test Modes. The Test Modes Details dialog box appears.
Alternatively, you can open this dialog box by clicking the Test Modes button in the
violation inspector.

2. Select a test protocol name in the Test Modes list.

Viewing Design Violations
This topic covers the following:

• Reporting DRC Violations

• Inspecting DRC Violations

Reporting DRC Violations
The violation browser lets you examine detailed information about violations and also
provides a variety of tools for viewing the different aspects of a violation. The violation
browser groups the warning and error messages into categories that help you find the
problems you are concerned about.

To report the DRC violations,

• Choose Test > Browse Violations.

This opens the violation browser view window, as shown in Figure 39.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

143

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Running the Test DRC Debugger
Viewing Design Violations

Feedback

Figure 39 Violation Browser View Window

The violation browser window consists of two panes: a violation category tree on the left
and a violation pin list on the right. The Violation Categories pane lists different categories
of violations, for example, Modeling and Pre-DFT.

To see the violations:

1. Click the expansion button (plus sign) of the violation category to display the violations
of that group.

The expanded view displays the types and number of violations.

2. Select a DRC violation type in the left pane.

A list of violating pins appears in the right pane.

3. (Optional) To filter the violating pins list, enter pin names or name patterns in the
Include box, the Exclude box, or both, and click Apply.

• To show only violating pins that match the names or name patterns, enter them in
the Include box.

• To suppress violating pins that match the names or name patterns, enter them in
the Exclude box.

You can use the ? and * wildcard characters to create name patterns. Separate
multiple names or name patterns with blank spaces.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

144

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Running the Test DRC Debugger
Viewing Design Violations

Feedback

For example,

• Expand the Pre-DFT category view.

• Select violation D1.

The resulting D1 violations are shown in the right-side pane.

• Click a specific violation pin or violation ID, and the corresponding description is
displayed in the description pane.

• Click the Inspect Violation button to view the violation schematic. For more details, see
Inspecting DRC Violations on page 145.

(Optional) To view the man page of a violation, click the Help button.

Inspecting DRC Violations
You can analyze and debug DRC violations by using the violation inspector window.
You can inspect multiple violations of the same type together. Use the schematic view to
inspect the logic structure of the DRC violation, including pin data. You can also display
waveforms for test_setup pin data.

This topic covers the following:

• Viewing a Violation

• Viewing Multiple Violations Together

• Viewing CTL Model Scan Chain Information

• Viewing test_setup Pin Data Waveforms

Viewing a Violation
When you select a violation in the violation browser, the corresponding path schematic
is displayed in the violation inspector so that you can investigate the violations. A path
schematic can contain cells, pins, ports, and nets.

To open the violation schematic,

• Click the Inspect Violation tab at the bottom of the console.

This opens the violation inspector window, as shown in Figure 40.

This window displays the path schematic for visually examining any violations and the
violation source. A path schematic provides contextual information and details about
the path and its components. Red-colored cells indicate pins with violations.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

145

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Running the Test DRC Debugger
Viewing Design Violations

Feedback

Figure 40 Violation Inspector: Viewing a Violation

• (Optional) Select the data type name in the “Pin data type” menu to display a different
pin data type.

• Display object information in an InfoTip by moving the pointer over a pin, cell, net, or
other type of object.

• Pin information includes the cell name, pin direction, and simulation values.

• Cell information includes the cell name and the names and directions of the attached
pins.

• Net information includes the net name, local fanout value, and fanout value.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

146

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Running the Test DRC Debugger
Viewing Design Violations

Feedback

• If you define a DFT signal with the set_dft_signal command, the signal source is
highlighted with a hatched fill pattern, as shown in Figure 41.

Figure 41 Highlighted DFT Signal Sources

Viewing Multiple Violations Together
To view the path schematics for multiple violations,

1. Shift-click to select multiple violation IDs in the violation browser.

2. Click the Inspect Violation button at the bottom of the window.

The schematics of the selected violations are displayed in the schematic viewer of the
violation inspector.

Figure 42 shows the selection of multiple violations.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

147

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Running the Test DRC Debugger
Viewing Design Violations

Feedback

Figure 42 Viewing Multiple Violations

Viewing CTL Model Scan Chain Information
A CTL model provides information about scan cells and the test modes in which they are
active. It also describes characteristics of each scan chain, such as the chain length and
the scan-in, scan-out, scan clock, and scan-enable pins.

If your design contains CTL-modeled cells, the violation schematic displays them as black
boxes with a hatched fill pattern to distinguish them from other cells.

When you click on a scan-in or scan-out pin of a CTL-modeled cell, the tool displays
an abstract representation of that scan chain with following information, as shown in
Figure 43:

• Scan input

• Scan output

• Scan enable

• Scan clock

Synopsys® TestMAX™ DFT User Guide
T-2022.03

148

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Running the Test DRC Debugger
Viewing Design Violations

Feedback

Figure 43 Displaying CTL Model Scan Chain Information

Clicking on scan clock or scan-enable pins of a CTL-modeled cell does not display any
scan chain information.

Viewing test_setup Pin Data Waveforms
In the Violation Inspector window, the “Pin data type” menu lets you choose what data to
annotate on pins in the design schematic. Most pin data types are one or three characters
(test cycles) long. However, pin data from the test_setup procedure is arbitrarily long and
cannot be annotated on the schematic.

When you select “Test setup” in the “Pin data type” list, a waveform viewer appears that
displays pin data waveforms for one or more pins. You can add, remove, and group
pins together. The waveform viewer is integrated with the schematic display, so you can
explore the logic cone and add additional pins of interest as needed.

To display test_setup waveforms for pins,

1. Select one or more pin names in the violation browser.

2. Click the Inspect Violation button.

3. Select “Test setup” in the “Pin data type” list.

The waveform view appears below the schematic view in the violation inspector
window, as shown in Figure 44. You can adjust the relative heights of these views by
dragging the split bar up or down.

The waveform view consists of two panes: an expandable signal list on the left and
the waveform viewer on the right. You can adjust the relative widths of the panes by
dragging the split bars left or right.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

149

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Running the Test DRC Debugger
Viewing Design Violations

Feedback

4. Select one or more objects (pins, cells, nets, or buses) for the signals that you want to
inspect.

5. Click the “Add to Wave View” button.

The signal names and values appear in the signal list, and a waveform for each signal
appears in the waveform viewer.

Figure 44 Waveform Viewer

To change the visible time range,

• Drag the pointer left or right over the portion of the global time range that you want to
view.

You can use the reference and target markers, C1 and C2, to measure the time between
events. C1 marks the current event and C2 marks the event you want to measure. The

Synopsys® TestMAX™ DFT User Guide
T-2022.03

150

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Running the Test DRC Debugger
Commands Specific to the DFT Tools in the GUI

Feedback

number of events or time units between the markers appears in the marker region above
the upper timescale.

• To move C1, left-click or drag the pointer in the marker region.

• To move C2, middle-click or drag the pointer with the middle mouse button in the
marker region.

You can move or copy signals into a group or from one group to another. You can also
remove selected signals or clear the waveform view.

To move signals into a group or from one group to another,

1. Select the signal names in the signal list pane.

2. Drag the selected signals over the group name.

To copy signals into a group or from one group to another,

1. Select the signal names in the signal list pane.

2. Shift-drag the selected signals over the group name.

To remove signals from the waveform view,

1. Select the signal names in the signal list pane.

2. Click the Selected button.

To clear the waveform view, click the All button.

Commands Specific to the DFT Tools in the GUI
Detailed descriptions of the DFT-specific commands and options in the GUI are listed in
this topic.

gui_inspect_violations
The gui_inspect_violations command brings up the specified DFT DRC violations in
a new violation inspector window unless a violation inspector window has been marked
for reuse. If no violation inspector window exists, a new violation inspector window is
created as a new top-level window. Subsequent windows are created in the active top-
level window. The new violation inspector window that is created is not marked reusable.

The syntax for this command is

gui_inspect_violations -type violation_type violation_list

Synopsys® TestMAX™ DFT User Guide
T-2022.03

151

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Running the Test DRC Debugger
Commands Specific to the DFT Tools in the GUI

Feedback

To inspect multiple violations (5, 9,13) of type D1, for example, use the following syntax:

gui_inspect_violations -type D1 {5 9 13}

To inspect a single violation 4 of type D2, for example, use the following syntax:

gui_inspect_violations -type D2 4

or

gui_inspect_violations D2-4

gui_wave_add_signal
The gui_wave_add_signal command adds specified objects to the waveform view of
a specified violation inspector window. If you specify a cell, a group is created in the
waveform view and all the pins of the cell are added to this group as a list of signals. For a
bus, all nets are added. The objects that are added will be selected.

The syntax of the command is

gui_wave_add_signal
 [-window inspector_window]
 [-clct list]

To add a port object i_rd, for example, use the following syntax:

This command adds the port object to the first violation in
the inspector window with a waveform view
gui_wave_add_signal i_rd

To add selected objects, use the following syntax:

Adds selected objects to the waveform view of the violation inspector
named ViolationInspector.3
gui_wave_add_signal -window ViolationInspector.3 -clct [get_selection]

gui_violation_schematic_add_objects
The gui_violation_schematic_add_objects command adds specified objects to the
schematic view of a specified violation inspector window and selects them.

The syntax of this command is

gui_violation_schematic_add_objects
 [-window inspector_window]
 [-clct list]

Synopsys® TestMAX™ DFT User Guide
T-2022.03

152

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Running the Test DRC Debugger
Commands Specific to the DFT Tools in the GUI

Feedback

Options Descriptions

-window
inspector_window

Specifies a signal to be added to the specified violation
inspector window.
If inspector_window is not a valid violation in the inspector
window, an error message displays and the command exits.
If no -window option is specified, the signal is added to the
waveform viewer of the first launched violation inspector.

-clct list Specifies that list is to be considered as a collection of
object handles.
In the absence of the -clct option, list is considered as a
collection of object names.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

153

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

8
Performing Scan Replacement

This chapter describes the scan replacement process, including constraint-optimized scan
insertion.

The scan replacement process inserts scan cells into your design by replacing nonscan
sequential cells with their scan equivalents. If you start with an HDL description of your
design, scan replacement occurs during the initial mapping of your design to gates.
You can also start with a gate-level netlist; in this case, scan replacement occurs as an
independent process.

With either approach, scan synthesis considers the design constraints and the impact of
both the scan cells themselves and the additional loading due to scan chain routing to
minimize the overhead of the scan structures on the design.

This chapter includes the following topics:

• Scan Replacement Flow

• Preparing for Scan Replacement

• Specifying a Scan Style

• Verifying Scan Equivalents in the Logic Library

• Scan Cell Replacement Strategies

• Test-Ready Compilation

• Validating Your Netlist

• Performing Constraint-Optimized Scan Insertion

Scan Replacement Flow
Figure 45 shows the flow for the scan replacement process. This flow assumes that you
are starting with an HDL description of the design. If you are starting with a gate-level
netlist, you must use constraint-optimized scan insertion. (See Preparing for Constraint-
Optimized Scan Insertion on page 188).scan replacementflowflowsscan replacement

Synopsys® TestMAX™ DFT User Guide
T-2022.03

154

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Performing Scan Replacement
Scan Replacement Flow

Feedback

Figure 45 Synthesis and Scan Replacement Flow

The following steps explain the scan replacement process:

1. Select a scan style.

DFT Compiler requires a scan style to perform scan synthesis. The scan style dictates
the appropriate scan cells to insert during optimization. You must select a single scan
style and use this style on all the modules of your design.

2. Check test design rules of the HDL-level design description.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

155

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Performing Scan Replacement
Preparing for Scan Replacement

Feedback

3. Synthesize your design.

Test-ready compile maps all sequential cells directly to scan cells. During optimization,
DFT Compiler considers the design constraints and the impact of both the scan cells
themselves and the additional loading due to scan chain routing to minimize the
overhead of the scan structures on the design.

Preparing for Scan Replacement
This topic discusses what to consider before starting the scan replacement process, and it
covers the following:

• Selecting a Scan Replacement Strategy

• Identifying Barriers to Scan Replacement

• Preventing Scan Replacement

Selecting a Scan Replacement Strategy
You should select the scan replacement strategy based on the status of your design. If
you have an optimized gate-level design and will not be using the compile command to
perform further optimization, you should use constraint-optimized scan insertion, when to useconstraint-optimized scan insertion. In all
other cases, you should use test-ready compilewhen to usetest-ready compile to insert the scan cells.

Figure 46 shows how to determine the appropriate scan replacement strategy.scan replacementselecting a strategyselectingscan replacement strategy

Figure 46 Selecting a Scan Replacement Strategy

Synopsys® TestMAX™ DFT User Guide
T-2022.03

156

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Performing Scan Replacement
Preparing for Scan Replacement

Feedback

Ttest-ready compilebenefitsest-ready compile offers the following advantages:

• Single-pass synthesis

With test-ready compile, the Synopsys tools converge on true one-pass scan
synthesis. As a practical matter, design constraints usually result in some cleanup and
additional optimization after compile, but test-ready compile is more straightforward
compared with other methods.

• Better quality of results

Test-ready compile offers better quality of results (QoR) compared with past methods.
Including scan cells at the time of first optimization results in fewer design rule
violations and other constraint violations due to scan circuitry.

• Simpler overall flow

Test-ready compile requires fewer optimization iterations compared with previous
methods.

See Also

• Test-Ready Compilation on page 176 for more information about test-ready
compilation

• Performing Constraint-Optimized Scan Insertion on page 185 for more information
about constraint-optimized scan insertion

Identifying Barriers to Scan Replacement
You should perform pre-DFT DRC by running the dft_drc command to identify conditions
that prevent scan replacement. The following topics cover DRC violations that prevent
scan replacement:

• Logic Library Does Not Contain Appropriate Scan Cells

• Support for Different Types of Sequential Cells and Violations

• Attributes That Can Prevent Scan Replacement

• Invalid Clock Nets

• Invalid Asynchronous Pins

See Also

• Chapter 13, Pre-DFT Test Design Rule Checking for more information about checking
for test design rule violations prior to DFT insertion

Synopsys® TestMAX™ DFT User Guide
T-2022.03

157

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Performing Scan Replacement
Preparing for Scan Replacement

Feedback

Logic Library Does Not Contain Appropriate Scan Cells
If a scan equivalent does not exist for a sequential cell, scan replacement cannot occur for
that cell. DFT Compiler generates the following warning message when a scan equivalent
does not exist for a sequential cell:

TEST-120 messagemessageswarningTEST-120Warning: No scan equivalent exists for cell %s (%s). (TEST-120)

This warning message can occur when

• The logic library does not contain scan cells.

• The logic library contains scan cells, but it does not provide a scan equivalent for the
indicated nonscan cell.

• The logic library contains scan cells, but it incorrectly models the scan equivalent for
the nonscan cell.

• The logic library contains scan cells, but all possible scan equivalents have the
dont_use attribute applied.

If DFT Compiler cannot find scan equivalents for any sequential cell in the logic library, it
generates the following warning message:

TEST-224 messagemessageswarningTEST-224Warning: Target library for design contains no scan-cell models.
(TEST-224)

If you see this warning, check with your library vendor to see if the vendor provides a logic
library that supports scan synthesis.

If DFT Compiler finds a scan cell in the logic library that is not the obvious replacement cell
you expect, the reason could be that

• The chosen scan equivalent results in a lower-cost implementation overall.

• The exact scan equivalent does not exist in the logic library or it has the dont_use
attribute applied.

• The logic library has a problem. In that case, contact the library vendor for more
information.

Support for Different Types of Sequential Cells and Violations
DFT Compiler supports sequential cells that have the following characteristics:

• During functional operation, the cell functions as a D flip-flop, a D latch, or a master-
slave latch.

• During scan operation, the cell functions as a D flip-flop or a master-slave latch.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

158

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Performing Scan Replacement
Preparing for Scan Replacement

Feedback

• The cell stores a single bit of data.

Edge-triggered cells that violate this requirement cause DFT Compiler to generate the
following warning message:

Warning: TEST-462 messagemessageswarningTEST-462Cell %s (%s) is not supported because it has
too many states (%d states). This cell is being
black-boxed. (TEST-462)

Master-slave latch pairs with extra states cause DFT Compiler to generate one of these
warning messages, depending on the situation:

Warning: TEST-463 messagemessageswarningTEST-463Master-slave cell %s (%s) is not supported
because state pin %s is neither master nor slave. This
cell is being black-boxed. (TEST-463)

Warning: TEST-464 messagemessageswarningTEST-464Master-slave cell %s (%s) is not supported
because there are two or more master states. This cell
is being black-boxed. (TEST-464)

Warning: TEST-465 messagemessageswarningTEST-465Master-slave cell %s (%s) is not supported
because there are two or more slave states. This cell
is being black-boxed. (TEST-465)

• The cell has a three-state output.

Cells that violate this requirement cause DFT Compiler to generate this warning
message:

Warning: TEST-468 messagemessageswarningTEST-468Cell %s (%s) is not supported because it is a
sequential cell with three-state outputs. This cell is
being black-boxed. (TEST-468)

• The cell uses a single clock per internal state.

Cells that violate this requirement cause DFT Compiler to generate one of these
warning messages:

Warning: TEST-466 messagemessageswarningTEST-466Cell %s (%s) is not supported because state
pin %s has no clocks. This cell is being black-boxed. (TEST-466)

Warning: TEST-467 messagemessageswarningTEST-467Cell %s (%s) is not supported because state
pin %s is multi-port. This cell is being black-boxed. (TEST-467)

Note that the cell might use different clocks for functional and test operations.

Note:
Your design will contain unsupported sequential cells only if you explicitly
instantiate them. DFT Compiler does not insert unsupported sequential cells.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

159

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Performing Scan Replacement
Preparing for Scan Replacement

Feedback

Attributes That Can Prevent Scan Replacement
scan replacementpreventingThe following attributes affect scan replacement:

• attributesscan_elementscan_element attributescan_element == false
The scan_element attribute is applied by the set_scan_element command. When set
to false, it excludes sequential cells from scan replacement and scan stitching. The
behavior depends on the type of cell the attribute is applied to:

◦ If the scan_element attribute is set to false on an unmapped sequential cell or a
nonscan cell, the cell is never scan-replaced or scan-stitched.

◦ If the scan_element attribute is set to false on a test-ready cell,

▪ Subsequent test-ready compile commands do not unscan it.

▪ In wire load mode, the insert_dft command unscans it (unless the
set_dft_insertion_configuration -synthesis_optimization option is set
to none) and does not stitch it into scan chains.

▪ In topographical mode, the insert_dft command keeps the cell scan-replaced
(to minimize layout disturbance) but does not stitch it into scan chains.

• dont_touch attributeattributesdont_touchdont_touch == true
The dont_touch attribute is applied by the set_dont_touch command. When set
to true, it prevents the cell type from being changed, which indirectly affects scan
replacement. The behavior depends on the type of cell the attribute is applied to:

◦ Test-ready cell: If the dont_touch attribute is set to true on a test-ready cell, the
cell is kept as a scan-replaced cell. If the cell is a valid scan cell, it is stitched into
scan chains. If not, due to other directives such as set_scan_element false, it
remains as an unstitched test-ready cell.

◦ Nonscan cell: If the dont_touch attribute is set to true on a nonscan cell, the cell is
kept as a nonscan cell. It is not scan-replaced or stitched into scan chains. Pre-DFT
DRC notes such cells with the following information message:

TEST-121 messagemessagesinformationTEST-121Information: Cell %s (%s) could not be made scannable as
it is dont_touched. (TEST-121)

Nonscan cells identified as shift register elements can be stitched into scan chains.

◦ Unmapped sequential cell: If the dont_touch attribute is set to true on an
unmapped sequential cell before the initial compile, the attribute prevents the
cell from being mapped. As a result, DFT insertion fails with the following error
message:

Error: DFT insertion isn't supported on designs with unmapped cells.
(TEST-269)

Synopsys® TestMAX™ DFT User Guide
T-2022.03

160

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Performing Scan Replacement
Preparing for Scan Replacement

Feedback

The dont_touch attribute is ignored when an identified shift register is split by the scan
architect; the head scan flip-flops of any new shift register segments are scan-replaced
even if they have the dont_touch attribute applied.

A dont_touch attribute on the top-level design does not affect scan replacement of the
design.

Note:
Although the -exclude_elements option of the set_scan_configuration
excludes cells from scan stitching, it does not prevent scan replacement, and
it does not cause excluded test-ready cells to be unscanned. To prevent cells
from being scan-replaced, use the set_scan_element false command.

Nonscan sequential cells generally reduce the fault coverage results for full-scan designs.
If you do not want to exclude affected cells from scan replacement, remove the script
commands that apply the attributes, then rerun the script.

Invalid Clock Nets
The term clocksystemsystem clockdefinitionssystem clocksystem clock refers to a clock used in the parallel capture cycle. The term clocktesttest clockdefinitionstest clocktest
clock refers to a clock used during scan shift. Multiplexed flip-flop designs use the same
clock as both the system clock and the test clock.

clockinvalidfault coverage impactfault coverageimpactinvalid clock netsIn a nonscan design, an invalid clock net, whether a system clock or a test clock, prevents
scan replacement of all sequential cells driven by that clock net.

clockrequirementsrequirements, clocksclocking constraintsrequirements for valid clocksThe requirements for valid clocks in DFT Compiler include the following:

• A system or test clock used during scan testing must be driven from a single top-level
port.

An active clock edge at a sequential cell must be the result of a clock pulse applied at a
top-level port, not the result of combinational logic driving the clock net.

• A system or test clock used during scan testing can be driven from a bidirectional port.

DFT Compiler supports the use of bidirectional ports as clock ports if the bidirectional
ports are designed as input ports during chip test. If a bidirectional port drives a clock
net but the port is not designed as an input port during chip test mode, DFT Compiler
forces the net to X and cells clocked by the net to become black-box sequential cells.

• A system or test clock used during scan testing must be generated in a single tester
cycle.

The clock pulse applied at the clock port must reach the sequential cells in the same
tester cycle. DFT Compiler does not support sequential gating of clocks, such as clock
divider circuitry.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

161

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Performing Scan Replacement
Preparing for Scan Replacement

Feedback

• A system or a test clock used during scan testing cannot be the result of multiple clock
inputs.

DFT Compiler does not support the use of combinationally combined clock signals,
even if the same port drives the signal.

Note:
If the same port drives the combinationally combined clock signal, as
shown in the design on the left in Figure 47 or the design in Figure 48, DFT
Compiler does not detect the problem in nonscan or unrouted scan designs.

Figure 47 shows design examples that use combinationally combined clocks. When
multiple clock signals drive a clock net, DFT Compiler forces the net to X and cells
clocked by the net become black-box sequential cells.

Figure 47 Examples of Combinationally Combined Clock Nets

clockreconvergentDFT Compiler supports the use of reconvergent clocks, such as clocks driven by
parallel clock buffers. Figure 48 shows a design example that uses a reconvergent
clock net.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

162

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Performing Scan Replacement
Preparing for Scan Replacement

Feedback

Figure 48 Example of a Reconvergent Clock Net

• A test clock must remain active throughout the scan shift process.

To load the scan chain reliably, make sure the test clock remains active until scan shift
completes. For combinationally gated clocks, you must configure the design to disable
the clock gating during scan shift.

DFT Compiler supports combinational clock gating during the parallel capture cycle.

dft_drc commandidentifying invalid clock netsclockinvalididentifyingidentifying invalid clock netsTest design rule checking on a nonscan design might not detect invalid clock nets. DFT
Compiler identifies all invalid clock nets only in existing scan designs.

clockinvaliduncontrollableuncontrollable clockDFT Compiler cannot control the clock net when

• A sequential cell drives the clock net

• A multiplexer with an unspecified select line drives the net of a test clock

• Combinational clock-gating logic can generate an active edge on the clock net

DFT Compiler generates this warning message when it detects an uncontrollable clock:

TEST-169 messagemessageswarningTEST-169Warning: Normal mode clock pin %s of cell %s (%s) is
uncontrollable. (TEST-169)

correctinguncontrollable clocksBecause uncontrollable clock nets prevent scan replacement, you should correct
uncontrollable clocks. Sequentially driven clocks require test-mode logic to bypass the
violation. You can bypass violations caused by other sources of uncontrollable clocks by
using test configuration or test-mode logic.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

163

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Performing Scan Replacement
Preparing for Scan Replacement

Feedback

clockinvalidgatedDFT Compiler can control a combinationally gated test clock that cannot generate an
active clock edge. However, DFT Compiler considers this type of clock invalid, because
the clock might not remain active throughout scan shift. In this case, DFT Compiler
generates this warning message:

TEST-186 messagemessageswarningTEST-186Warning: Shift clock pin %s of cell %s (%s) is illegally
gated. (TEST-186)

correctinginvalid clock gatingBecause invalid gated-clock nets prevent scan replacement, you should correct invalid
gated clocks. You can use AutoFix to bypass invalid gated clocks when using the
multiplexed flip-flop scan style. You might also be able to change the test configuration to
bypass the violation.

See Also

• Using AutoFix on page 330 for more information about fixing uncontrollable clocks
with AutoFix

Invalid Asynchronous Pins
asynchronous pinsuncontrollableuncontrollable asynchronous pinDFT Compiler considers a net that drives an asynchronous pin as valid if it can disable the
net from an input port or from a combination of input ports. DFT Compiler cannot control
an asynchronous pin driven by ungated sequential logic.

In a nonscan design, asynchronous pinsuncontrollablefault coverage impactfault coverageimpactuncontrollable asynchronous pina net with uncontrollable asynchronous pinfault coverage impactan uncontrollable asynchronous pin prevents scan
replacement of all sequential cells connected to that net.

DFT Compiler generates this warning message when it detects an uncontrollable
asynchronous pin:

TEST-116 messagemessageswarningTEST-116Warning: Asynchronous pins of cell FF_A (FD2) are uncontrollable.
(TEST-116)

correctinguncontrollable asynchronous pinsasynchronous pinsuncontrollablecorrectinguncontrollable asynchronous pincorrectingBecause nets with an uncontrollable asynchronous pin prevent scan replacement, you
should correct uncontrollable nets. Use AutoFix if you are using the multiplexed flip-flop
scan style, test configuration, or test-mode logic to bypass uncontrollable asynchronous
pin violations.

Preventing Scan Replacement
You can use the following attributes to prevent scan replacement during test-ready compile
and DFT insertion:

• scan_element == false

• dont_touch == true

Synopsys® TestMAX™ DFT User Guide
T-2022.03

164

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Performing Scan Replacement
Specifying a Scan Style

Feedback

Setting the scan_element attribute to false prevents a cell from being scan-replaced and
scan stitched. Setting the dont_touch attribute to true on a nonscan cell prevents it from
being scan replaced and scan stitched.

See Also

• Attributes That Can Prevent Scan Replacement on page 160 for more information
about synthesis and test attributes that can affect scan replacement

Specifying a Scan Style
This topic explains the process for selecting and specifying a scan style for your design. It
covers the following:

• Types of Scan Styles

• Scan Style Considerations

• Setting the Scan Style

Types of Scan Styles
scan stylesupported optionsDFT Compiler supports the scan styles listed in the following topics:

• Multiplexed Flip-Flop Scan Style

• Clocked Scan Style

• LSSD Scan Style

• Scan-Enabled LSSD Scan Style

Note:
The LSSD scan style includes the LSSD and clocked LSSD scan styles.

This topic briefly describes each scan style.

See Also

• Chapter 4, Scan Styles for more information about scan styles

Synopsys® TestMAX™ DFT User Guide
T-2022.03

165

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Performing Scan Replacement
Specifying a Scan Style

Feedback

Multiplexed Flip-Flop Scan Style
DFT Compiler supports multiplexed flip-flop scan equivalents for D flip-flops and master-
slave flip-flops. The multiplexed flip-flop scan equivalents for all flip-flop styles must be
fully functionally modeled in the logic library. multiplexed flip-flop, advantages and disadvantagesThis scan style has the following advantages:

• Multiplexed flip-flop is the most widely known and understood scan style.

• Multiplexed flip-flop scan cells are easy to design and characterize, as they consist of a
conventional flip-flop plus a data selection MUX.

multiplexed flip-flop, advantages and disadvantagesThe multiplexed flip-flop scan style has the disadvantage that hold time or clock skew
problems can occur on the scan path because of a short path from a scan cell’s scan
output pin to the next scan cell’s scan input pin. DFT Compiler can reduce the occurrence
of these problems by considering hold time violations during optimization.

Clocked Scan Style
DFT Compiler supports clocked-scan equivalents for D flip-flops and latches. clocked scanThe clocked-
scan style is well suited for use in multiple-clock designs because of the dedicated test
clock.

The clocked-scan style also has some disadvantages:

• Hold time or clock skew problems can occur on the scan path because the path from
a scan cell’s scan output pin to the next scan cell’s scan input pin is too short. DFT
Compiler can reduce the occurrence of these problems by considering hold time
violations during optimization.

• This scan style requires the routing of two edge-triggered clocks. Routing clock lines is
difficult because you must carefully control the clock skew.

LSSD Scan Style
DFT Compiler supports level-sensitive scan design (LSSD) equivalents for D flip-flops,
master-slave flip-flops, and D latches. LSSDadvantagesTiming problems on the scan path are unlikely in
LSSD designs because of the use of nonoverlapping two-phase clocks during the scan
operation.

LSSDdisadvantagesThe LSSD scan style also has some disadvantages:

• This scan style requires a greater wiring area than the multiplexed flip-flop or clocked-
scan styles.

• DFT Compiler does not support the scan replacement of more complex LSSD cells,
such as multiple data port master latches.

When you use the LSSD scan style, define the clock waveforms so that the master and
slave clocks have nonoverlapping waveforms because master and slave latches should
never be active simultaneously.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

166

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Performing Scan Replacement
Specifying a Scan Style

Feedback

Scan-Enabled LSSD Scan Style
DFT Compiler supports scan-enabled level-sensitive scan design (LSSD) equivalents for
D flip-flops. This scan style is similar to the LSSD scan style, except that a global scan-
enable signal is used to repurpose the functional clock as the slave test clock in test mode.
LSSDadvantagesTiming problems on the scan path are unlikely in LSSD designs because of the use of
nonoverlapping two-phase clocks during the scan operation.

LSSDdisadvantagesThe scan-enabled LSSD scan style also has some disadvantages:

• This scan style requires a greater wiring area than the multiplexed flip-flop or clocked-
scan styles.

• DFT Compiler only supports the scan replacement of flip-flops.

When you use the scan-enabled LSSD scan style, define the clock waveforms so that
the master and slave clocks have nonoverlapping waveforms because master and slave
latches should never be active simultaneously.

Scan Style Considerations
You must select a single scan style and use this style for all modules of your design. scan

styleselectingselectingscan styleConsider the following questions when selecting a scan style:

• Which scan styles are supported in your logic library?

To make it possible to implement internal scan structures in the scan style you
select, appropriate scan cells must be present in the logic libraries specified in the
target_library variable.

scan equivalentsfault coverage impactfault coverage, impactscan equivalentsUse of sequential cells that do not have a scan equivalent always results in a loss of
fault coverage in full-scan designs. Techniques to verify scan equivalents are discussed
in Verifying Scan Equivalents in the Logic Library on page 168.

• What is your design style?

If your design is predominantly edge-triggered, use the multiplexed flip-flop, clocked
scan, clocked LSSD, or scan-enabled LSSD scan style.

If your design has a mix of latches and flip-flops, use the clocked scan or LSSD scan
style.

If your design is predominantly level-sensitive, use the LSSD scan style.

• How complete are the models in your logic library?

The quality and accuracy of the scan and nonscan sequential cell models in the
Synopsys logic library affect the behavior of DFT Compiler. Incorrect or incomplete
library models can cause incorrect results during test design rule checking.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

167

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Performing Scan Replacement
Verifying Scan Equivalents in the Logic Library

Feedback

DFT Compiler requires a complete functional model of a scan cell to perform test
design rule checking. The Library Compiler UNIGEN model supports complete
functional modeling of all supported scan cells. However, the usual Library Compiler
sequential modeling syntax supports only complete functional modeling for multiplexed
flip-flop scan cells.

scan celldetermining scan functionalityWhen the logic library does not provide a functional model for a scan cell, the cell is a
black box for DFT Compiler.

scan celllibrary descriptionFor information on the scan cells in the logic library you are using, see your ASIC
vendor. For information on creating logic library elements or to learn more about
modeling scan cells, see the information about defining test cells in the Library
Compiler documentation.

Setting the Scan Style
DFT Compiler uses the selected scan style to perform scan synthesis. A scan style
dictates the appropriate scan cells to insert during optimization. This scan style is used on
all modules of your design.

There are four types of scan styles available in DFT Compiler, shown in Table 24.

Table 24 Scan Style Keywords

Scan style Keyword

Multiplexed flip-flop multiplexed_flip_flop

Clocked scan clocked_scan

Level-sensitive scan design lssd

Scan-enabled level-sensitive scan design scan_enabled_lssd

The default style is multiplexed flip-flop. To specify another scan style, use the -style
option of the set_scan_configuration command. For example,

dc_shell> set_scan_configuration -style clocked_scan

Verifying Scan Equivalents in the Logic Library
Before starting scan synthesis, you need to confirm that your logic library contains scan
cells and then verify that the scan cells are suitable for the selected scan style.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

168

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Performing Scan Replacement
Verifying Scan Equivalents in the Logic Library

Feedback

This topic covers the following:

• Checking the Logic Library for Scan Cells

• Checking for Scan Equivalents

Checking the Logic Library for Scan Cells
You can determine whether the logic library contains scan cells by using either of the
following methods:

• Search the identifyingscan cellslibrary .ddc file.

Every scan cell, regardless of the scan style, must have a scan input pin and a scan
output pin. You can determine whether the logic library contains scan cells by using the

commandsfilterfilter commandfilter command to search for scan input or scan output pins.

Depending on its polarity, a scan input pin can have a signal_type attribute of either
test_scan_in or test_scan_in_inverted in the logic library. A scan output pin can
have a signal_type attribute of either test_scan_out or test_scan_out_inverted
in the logic library, depending on its polarity.

The following command sequence shows the use of the filter command:

dc_shell> read_ddc class.ddc

dc_shell> get_pins class/*/* -filter "@signal_type = test_scan_in"
If the library contains scan cells, the filter command returns a list of pins; if the
library does not contain scan cells, the filter command returns an empty list.

• identifyingscan cellsCheck the test design rules.

As one of the first checks it performs, the commandsdft_drcdft_drc commandidentifyingscan cellsdft_drc commandidentifyingscan cellsscan celldft_drc command determines the presence
of scan cells in the logic library. If the logic libraries identified in the target_library
variable do not contain scan cells, the dft_drc command generates the following
warning message:

messageswarningTEST-224TEST-224 messageWarning: Target library for design contains no scan-cell models.
(TEST-224)

You must a design loaded and linked before you run the dft_drc command.

If your logic library does not contain scan cells, check with your semiconductor vendor to
see if the vendor provides a logic library that supports test synthesis.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

169

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Performing Scan Replacement
Scan Cell Replacement Strategies

Feedback

Checking for Scan Equivalents
identifyingscan equivalentsscan equivalentsidentifyingTo verify that the logic library contains scan equivalents for the sequential cells in
your design, run the dft_drc commandidentifyingscan equivalentsidentifyingscan equivalentsdft_drc command on your design or on a design containing the
sequential cells likely to be used in your design.

messageswarningTEST-120TEST-120 messageIf the logic library does not contain a scan equivalent for a sequential cell in a nonscan
design or the scan equivalent has the dont_use attribute applied, the dft_drc command
generates the following warning message:

Warning: No scan equivalent exists for cell instance (reference).
(TEST-120)

listing scan equivalentsscan equivalentslistingIn verbose mode (dft_drc -verbose), the TEST-120 message lists all scan equivalent
pairs available in the target library in the selected scan style. If the target library contains
no scan equivalents in the chosen scan style, no scan equivalents are listed.

Suppose you have a design containing D flip-flops but the target logic library contains scan
equivalents only for JK flip-flops. Example 10 shows the warning message issued by the
dft_drc command, along with the scan equivalent mappings to the available scan cells.

Example 10 Scan Equivalent Listing
Warning: No scan equivalent exists for cell q_reg (FD1P). (TEST-120)

Scan equivalent mappings for target library are:

 FJK3 -> FJK3S
 FJK2 -> FJK2S
 FJK1 -> FJK1S

Scan Cell Replacement Strategies
This topic describes how to select the set of scan cells and multibit components to use in
your scan replacement strategy. It covers the following:

• Specifying Scan Cells

• Multibit Components

Synopsys® TestMAX™ DFT User Guide
T-2022.03

170

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Performing Scan Replacement
Scan Cell Replacement Strategies

Feedback

Specifying Scan Cells
Before you perform scan cell replacement, you need to specify the set of scan cells to be
used by DFT Compiler. This topic covers the following:

• Restricting the List of Available Scan Cells

• Scan Cell Replacement Strategies

• Mapping Sequential Gates in Scan Replacement

Restricting the List of Available Scan Cells
set_scan_register_type commandcommandsset_scan_register_typescan cellspecifyingcompile -scan commandspecifying scan cellsinsert_dft commandspecifying scan cellsThe set_scan_register_type command lets you specify which flip-flop scan cells are to
be used by compile -scan to replace nonscan cells. The command restricts the choices
of scan cells available for scan replacement. You can apply this restriction to the current
design, to particular designs, or to particular cell instances in the design.

Note:
The set_scan_register_type command applies to the operation of both the
compile -scan command and the insert_dft command.

The set_scan_register_type command has the following syntax:

 set_scan_register_type [-exact]
 -type scan_flip_flop_list [cell_or_design_list]

The scan_flip_flop_list value is the list of scan cells that the compile -scan
command is allowed to use for scan replacement. There must be at least one such cell
named in the command. Specify each scan cell by its cell name alone, without the library
name.

The cell_or_design_list value is a list of designs or cell instances where the restriction
on scan cell selection is to be applied. In the absence of such a list, the restriction applies
to the current design, set by the current_design command, and to all lower-level designs
in the design hierarchy.

The -exact option determines whether the restriction on scan cell selection also applies
to back-end delay and area optimization done by the insert_dft command or by
subsequent synthesis operations such as the compile -incremental command. If the
-exact option is used, the restriction still applies to back-end optimization. In other words,
scan cells can be replaced only by other scan cells in the specified list. If the -exact
option is not used, the optimization algorithm is free to use any scan cell in the target
library.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

171

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Performing Scan Replacement
Scan Cell Replacement Strategies

Feedback

Scan Cell Replacement Strategies
Here are some examples of set_scan_register_type commands:

dc_shell> set_scan_register_type -exact -type FD1S
This command causes the compile -scan command to use only FD1S scan cells to
replace nonscan cells in the current design. Because of the -exact option, this restriction
applies to both initial scan replacement and subsequent optimization.

dc_shell> set_scan_register_type -exact \
 -type {FD1S FD2S} {add2 U1}
This command causes compile -scan to use only FD1S or FD2S scan cells to replace
each nonscan cell in all designs and cell instances named add2 or U1. In all other designs
and cell instances, compile -scan can use any scan cells available in the target library.
The -exact option forces any back-end delay optimization to respect the scan cell list,
thus allowing only FD1S and FD2S to be used.

dc_shell> set_scan_register_type \
 -type {FD1S FD2S} {add2 U1}
This command is the same as the one in the previous example, except that the -exact
option is not used. This means that the back-end optimization algorithm is free to replace
the FD1S and FD2S cells with any compatible scan cells in the target library.

If you use the set_scan_register_type command on generic cell instances, be sure to
use the -scan option with the compile command. Otherwise, the scan specification will be
lost.

To report scan paths, scan chains, and scan cells in the design, use the
report_scan_path command, as shown in the following examples:

dc_shell> report_scan_path -view existing_dft \
 -chain all

dc_shell> report_scan_path -view existing_dft -cell all
To cancel all set_scan_register_type settings currently in effect, execute the following
command:

dc_shell> remove_scan_register_type

Mapping Sequential Gates in Scan Replacement
To use the set_scan_register_type command effectively, understanding the scan
replacement process is important.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

172

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Performing Scan Replacement
Scan Cell Replacement Strategies

Feedback

The compile -scan command maps sequential gates into scan flip-flops and latches,
using three steps:

1. The compile -scan command maps each sequential gate in the generic design
description into an initial nonscan latch or flip-flop from the target library. In the
absence of any set_scan_register_type specification, compile -scan chooses
the smallest area-cost flip-flop or latch. For a design or cell instance that has a
set_scan_register_type setting in effect, compile -scan chooses the nonscan
equivalent of a scan cell in the scan_flip_flop_list.

2. The compile -scan command replaces the nonscan flip-flops with scan flip-
flops, using only the scan cells specified in the set_scan_register_type
command, where applicable. If compile -scan is unable to use a scan cell from the
scan_flip_flop_list, it uses the best matching scan cell from the target library and
issues a warning.

3. If the -exact option is not used in the set_scan_register_type command, the
Design Compiler and DFT Compiler tools attempt to remap each scan flip-flop into
another component from the target library to optimize the delay or area characteristics
of the circuit. If the -exact option is used, optimization is restricted to using the scan
cells in the scan_flip_flop_list.

The operation of step 1 can be controlled by the set_register_type command. The
set_register_type command specifies a list of allowed cells for implementing functions
specified in the HDL description of the design, but you need to be careful about using
this command in conjunction with scan replacement. For example, if you tell the compile
command to use a sequential cell that has no scan equivalent, DFT Compiler will not be
able to replace the cell with a corresponding scan cell.

The set_scan_register_type command affects only the replacement of nonscan cells
with scan cells. It cannot be used to force existing scan cells to be replaced by new scan
cells. To make this type of design change, you need to go back to the original nonscan
design and apply a new set_scan_register_type specification, followed by a new
compile -scan or insert_dft operation.

Multibit Components
Multibit components are supported by DFT Compiler during scan replacement. This topic
covers the following:

• What Are Multibit Components?

• How DFT Compiler Creates Multibit Components

• Controlling Multibit Test Synthesis

Synopsys® TestMAX™ DFT User Guide
T-2022.03

173

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Performing Scan Replacement
Scan Cell Replacement Strategies

Feedback

• Performing Multibit Component Scan Replacement

• Disabling Multibit Component Support

What Are Multibit Components?
A multibit component is a multibitcomponentssequence of cells with identical functionality. It can consist of
single-bit cells or the set of multibit cells supported by Design Compiler synthesis. Cells
can have identical functionality even if they have different bit-widths. Multibit synthesis
ensures regularity and predictability of layout.

HDL Compiler infers multibit components through HDL directives. Specify
multibit components by using the Design Compiler create_multibit command
and remove_multibit command. Control multibit synthesis by using the
set_multibit_options command. For further information, see the Design Compiler User
Guide.

When you create a new multibit component with the create_multibit command, choose
a name that is different from the name of any existing object in your design. This will
prevent possible conflicts later when you use the set_scan_path command.

For more information about multibit inference from RTL, see HDL Compiler for Verilog
User Guide.

See Also

• “Multibit Register Synthesis and Physical Implementation Application Note” for detailed
information on multibit cells and flows across multiple tools

How DFT Compiler Creates Multibit Components
Multibit components have the following properties:

• All the synthesis and optimization that DFT Compiler performs is as prescribed by the
multibit mode in effect.

• Scan chain allocation and routing result in a layout that is as regular as possible.

To achieve these goals, DFT Compiler groups sequential multibit components into
synthesizable segments.

A synthesizable segment, an extension of the user segment concept, has the following
properties: synthesizable segmentdefining

• Its implementation is not fixed at the time of specification.

• It consists of a name and a sequence of cells that implicitly determine an internal
routing order.

• It lacks access pins and possibly internal routing.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

174

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnet.synopsys.com/dow_retrieve/latest/dg/dftolh/Default.htm#ni/mban/mban.htm

Chapter 8: Performing Scan Replacement
Scan Cell Replacement Strategies

Feedback

• It does not need to be scan-replaced.

• Test synthesis controls the implementation.

A synthesizable segment that cannot be synthesized into a valid user segment is invalid.
Only multibit synthesizable segments are supported.

Controlling Multibit Test Synthesis
You control multibit test synthesis through the specification of the scan configuration by
using the following commands: multibitcontrolling test synthesis

• set_scan_configuration

• reset_scan_configuration

• set_scan_path

• set_scan_element
Commands that accept segment arguments also accept multibit components. You can
refer by instance name to multibit components from the top-level design through the
design hierarchy. Commands that accept sets of cells also accept multibit components.
When you specify a multibit component as being a part of a larger segment, the multibit
component is included in the larger user-defined segment without modification.

Performing Multibit Component Scan Replacement
multibitcomponent scan replacementUse the compile -scan command or the insert_dft command to perform
multibit component scan replacement. These commands perform a homogeneous
scan replacement. Bits of a multibit component are either all scan-replaced or all
not scan-replaced. Bits are then assembled into multibit cells as specified by the
set_multibit_options command.

The number of cells after scan replacement can change. For example, a 4-bit cell can be
scan-replaced by two 2-bit cells. If this occurs, the two 2-bit cells get new names. If the cell
is scan-replaced with a cell of equal width, a 4-bit cell replaced by a 4-bit cell for example,
the name of the cell remains the same.

You control the scan replacement of multibit components by using the set_scan_element
command.

When specifying individual cells by using either of these commands, do not specify an
incomplete multibit component unless you previously disabled multibit optimization.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

175

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Performing Scan Replacement
Test-Ready Compilation

Feedback

Disabling Multibit Component Support
You can disable structured logic and multibit component support by doing one of the
following: structured logicdisabling

• Remove some or all of the multibit components by using the remove_multibit
command.

• Remove a previously defined scan path by using the remove_scan_path command.

Test-Ready Compilation
Scan cell replacement works most efficiently if it is done when you compile your design.
This topic describes the following topics related to the test-ready compilation process:

• What Is Test-Ready Compile?

• Preparing for Test-Ready Compile

• Controlling Test-Ready Compile

• Comparing Default Compile and Test-Ready Compile

• Complex Compile Strategies

What Is Test-Ready Compile?
Test-ready compile integrates logic test-ready compileoptimizationtest-ready compiledefinitionstest-ready compileoptimization and scan replacement. During the first
synthesis pass of each HDL design or module, test-ready compile maps all sequential
cells directly to scan cells. The optimization cost function considers the impact of the scan
cells themselves and the additional loading due to the scan chain routing. By accounting
for the timing impact of internal scan design from the start of the synthesis process, test-
ready compile eliminates the need for an incremental compile after scan insertion.

During optimization, DFT Compiler cannot determine whether the sequential cells in your
HDL description meet the test design rules, so it maps all sequential cells to scan cells.
Later in the scan synthesis process, DFT Compiler can convert some sequential cells
back to nonscan cells. For example, test design rule checking might find scan cells with
test design rule violations. In other circumstances, you might manually specify some
sequential cells as nonscan elements. In such cases, DFT Compiler converts the scan
cells to nonscan equivalents during execution of the insert_dft command.

Typically, the input to test-ready compile is an HDL design description. You can also
perform test-ready compile on a nonscan gate-level netlist that requires optimization. For
example, a gate-level netlist resulting from technology translation usually requires logic

Synopsys® TestMAX™ DFT User Guide
T-2022.03

176

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Performing Scan Replacement
Test-Ready Compilation

Feedback

optimization to meet constraints. In such a case, use test-ready compile to perform scan
replacement.

The Test-Ready Compile Flow
Figure 49 shows the test-ready compile flow and the commands required to complete this
flow.

Figure 49 Test-Ready Compile Flow

Synopsys® TestMAX™ DFT User Guide
T-2022.03

177

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Performing Scan Replacement
Test-Ready Compilation

Feedback

Before performing test-ready compile:

• Select a scan style

For information about selecting a scan style, see Specifying a Scan Style on
page 165.

• Prepare for logic synthesis

For information about preparing for logic synthesis, see Preparing for Test-Ready
Compile on page 178.

The result of test-ready compile is an optimized design that contains unrouted scan cells.
The optimization performed during test-ready compile accounts for both the impact of the
scan cells and the additional loading due to the scan chain routing. A design in this state is
known as an unrouted scan design, after test-ready compiledesign state, unrouted scanunrouted scan design.

Preparing for Test-Ready Compile
Figure 50 shows the optimizationpreparing forsynthesissynthesis preparation steps. For more information about these steps,
see the Design Compiler User Guide.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

178

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Performing Scan Replacement
Test-Ready Compilation

Feedback

Figure 50 Synthesis Preparation Steps

Performing Test-Ready Compile in the Logic Domain
test-ready compileinvokingThe compile -scan command invokes test-ready compile. You must compile -scan command-scan option, compile commandcommandscompileenter this command
from the dc_shell command line; the Design Analyzer menus do not support the -scan
option.

dc_shell> compile -scan
For details of how to constrain and compile your design, see Design Compiler User Guide.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

179

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Performing Scan Replacement
Test-Ready Compilation

Feedback

Controlling Test-Ready Compile
You can use the following variable and commands to control scan implementation by
compile -scan: set_scan_configuration command-style optioncommandsset_scan_configuration-style optionscan implementation, controllingtest-ready compilecontrolling scan implementation

• set_scan_configuration -style

• set_scan_element element_name true | false

• set_scan_register_type [-exact] -type scan_flip_flop_list
[cell_or_design_list]

• set_scan_configuration -preserve_multibit_segment
The set_scan_configuration -style command determines which scan style the
compile -scan command uses for scan implementation.

You might not want to include a particular element in a scan chain. If this is the case, first
analyze and elaborate the design. Then, use the set_scan_element false command
in the generic technology (GTECH) sequential element. Subsequently, when you use
the compile -scan command, this element is implemented as an ordinary sequential
element and not as a scan cell. The following example shows a script that uses the
set_scan_element false command on generics:

analyze -format VHDL -library WORK switch.vhd
elaborate -library WORK -architecture rtl switch
set_scan_element false Q_reg
compile -scan

Note:
Use the set_scan_element false statement sparingly. For combinational
ATPG, using nonscan elements generally results in lower fault coverage.

You might want to specify which flip-flop scan cells are to be used for replacing nonscan
cells in the design. In that case, use the set_scan_register_type command as
described in Specifying Scan Cells on page 171.

Comparing Default Compile and Test-Ready Compile
The following example shows the effect of test-ready compile on a small design. The
Verilog description shown in Example 11 describes a small design containing two flip-flops:
one a simple D flip-flop and one a flip-flop with a multiplexed data input.

Example 11 Verilog Design Example
module example (d1,d2,d3,sel,clk,q1,q2);
input d1,d2,d3,sel,clk;
output q1,q2;
reg q1,q2;

Synopsys® TestMAX™ DFT User Guide
T-2022.03

180

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Performing Scan Replacement
Test-Ready Compilation

Feedback

 always @ (posedge clk) begin
 q1 = d1;
 if (sel) begin
 q2=d2;
 end else begin
 q2=d3;
 end
 end
endmodule

optimizationdefault compileVerilog exampleThe following command sequence performs the default compile process on the Verilog
design example:

dc_shell> set target_library class.db
dc_shell> read_file -format verilog example.v
dc_shell> set_max_area 0
dc_shell> compile
Example 12 shows the VHDL equivalent to the Verilog design example provided in
Example 11.

Example 12 VHDL Design Example
--
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
--
entity EXAMPLE is
 port(d1:in STD_LOGIC;
 d2:in STD_LOGIC;
 d3:in STD_LOGIC;
 sel:in STD_LOGIC;
 clk:in STD_LOGIC;
 q1:out STD_LOGIC;
 q2:out STD_LOGIC
);
end EXAMPLE;
--
architecture RTL of EXAMPLE is
begin
 process
 begin
 wait until (clk'event and clk = '1');
 q1 <= d1;
 if (sel = '1') then
 q2 <= d2;
 else
 q2 <= d3;
 end if;
 end process;
end RTL;

Synopsys® TestMAX™ DFT User Guide
T-2022.03

181

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Performing Scan Replacement
Test-Ready Compilation

Feedback

optimizationdefault compileVHDL exampleThe following command sequence performs the default compile process on the VHDL
design example:

dc_shell> set target_library class.db
dc_shell> analyze -format vhdl \
 -library work example.vhd
dc_shell> elaborate -library work EXAMPLE
dc_shell> set_max_area 0
dc_shell> compile
Figure 51 shows the result of the default compile process on the design example. Design
Compiler synthesis uses the D flip-flop (FD1) and the multiplexed flip-flop scan cell (FD1S)
from the class logic library to implement the specified functional logic.

Figure 51 Gate-Level Design: Default Compile

Using default compile increases the scan replacement runtime and can result in sequential
cells that do not have scan equivalents.

test-ready compileexampleoptimizationtest-ready compileTo invoke test-ready compile, specify the scan style before optimization and use the -scan
option of the compile command:

dc_shell> set_scan_configuration -style multiplexed_flip_flop
dc_shell> compile -scan
Figure 52 shows the result of the test-ready compile process on the design example.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

182

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Performing Scan Replacement
Test-Ready Compilation

Feedback

Figure 52 Gate-Level Design: Test-Ready Compile

During test-ready compile, DFT Compiler

• Implements the scan equivalent cells by using the multiplexed flip-flop scan cell (FD1S)

• Ties the scan-enable pins (SE) to logic 0 so that the functional data input pins are
active

• Ties the inactive scan input pins (SI) to logic 0

During scan routing, DFT Compiler replaces the temporary scan connections with the final
scan connections.

test-ready compiledegeneration supportA scan equivalent might not exist for the exact implementation defined, such as for the
simple D flip-flop in the previous example. In that case, DFT Compiler might use a scan
cell that can be logically modified to meet the required implementation. For example, if the
target library contains a scan cell with asynchronous pins that can be tied off, test-ready
compile automatically uses that scan cell.

Complex Compile Strategies
incremental compilestest-ready compileincremental compilesbottom-up compiletest-ready compilebottom-up compileFor larger designs or for designs with more aggressive timing goals, you might need to
use more complex compile strategies, such as bottom-up compile, or you might need to
use incremental compile a number of times. To include test-ready compile in your compile
scripts, always use the -scan option of the compile command when compiling each
current design, even if there are no sequential elements in the top level of the current
design.

Example 13 illustrates this guideline. It shows you how to perform a bottom-up compile
for the a design, TOP, that has no sequential elements at the top level but instantiates two
sequential modules A and B. (For clarity, details on how you might constrain the designs

Synopsys® TestMAX™ DFT User Guide
T-2022.03

183

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Performing Scan Replacement
Validating Your Netlist

Feedback

are omitted.) Note that the compile -scan command is used at the top level even though
there are no sequential elements at the top level of the design.

Example 13 Bottom-Up Compile Script
dc_shell> current_design A
dc_shell> compile -scan

dc_shell> current_design B
dc_shell> compile -scan

dc_shell> current_design TOP
dc_shell> compile -scan

Validating Your Netlist
Before you assemble the scan structures, you need to use the link and check_design
commands to check the correctness of your design. You should fix any errors reported by
these commands to guarantee the maximum fault coverage.

This topic discusses the procedures for running the link and check_design commands.

Running the link Command
commandslinklink commandThe link command attempts to find models for the references in your design. variableslink_librarylink_library variableThe
command searches the design files and library files defined by the link_library
variable. If the link_library variable does not specify a path for a design file or library
file, the link command uses the directory names defined in the search path. Specifying
the asterisk character (*) in the link_library variable forces the link command to
search the designs in memory.

correctingunresolved referencesunresolved referencedefinitionsunresolved referencereference, unresolvedIf the link command reports unresolved references, such as missing designs or library
cells in the netlist, resolve these references to provide a complete netlist to DFT Compiler.
DFT Compiler operates on the complete netlist. DFT Compiler does not know the
functional behavior of a missing cell, so it cannot predict the output of that cell. As a result,
output from the missing reference is not observable. Each missing reference results in a
large number of untestable faults in the vicinity of that cell and lower total fault coverage.

If the unresolved reference involves a simple cell, you can often fix the problem by adding
the cell to the library or by replacing the reference with a valid library cell.

Handling a compiled cell requires a more complex solution. If the compiled cell does not
contain internal gates, such as a ROM or programmable logic array, you can compile a
behavioral model of the cell into gates and then run DFT Compiler on the equivalent gates.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

184

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Performing Scan Replacement
Performing Constraint-Optimized Scan Insertion

Feedback

• For more information, see man page for the link command.

• For more information about missing references and link errors, see Design Compiler
User Guide.

Running the check_design Command
commandscheck_designcheck_design commandThe check_design command reports electrical design errors, such as port mismatches
and shorted outputs that might lower fault coverage. For best fault coverage results,
correct any design errors identified in your design.

For more information about the check_design command, see Design Compiler User
Guide.

Performing Constraint-Optimized Scan Insertion
During the scan replacement process, constraint-optimized scan insertion does the
following:

• Inserts the scan cells

• Optimizes the scan logic, based on the design constraints

• Fixes all compile-related design rule violations

Scan insertion is the process of performing scan replacement and scan assembly in
a single step scan insertiondefinitiondefinitionsscan insertion. You use the insert_dft commandcommandsinsert_dftinsert_dft command to invoke constraint-optimized scan
insertion. However, you can also perform scan replacement and scan assembly in
separate steps.

Constraint-optimized scan insertion is covered in the following topics:

• Supported Scan States

• Locating Scan Equivalents

• Preparing for Constraint-Optimized Scan Insertion

• Scan Insertion

Synopsys® TestMAX™ DFT User Guide
T-2022.03

185

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Performing Scan Replacement
Performing Constraint-Optimized Scan Insertion

Feedback

Supported Scan States
Constraint-optimized scan replacementusing constraint-optimized scan insertionscan insertion bottom-up design flowsupport for mixed scan statessupports mixed scan states during constraint-optimized scan insertionscan replacementscan insertion.
Modules can have the following scan statessupported by constraint-optimized scan insertionconstraint-optimized scan insertionsupport for mixed scan statesscan states:

• definitionsnonscan designscan statesnonscanNonscan

The design contains nonscan sequential cells. Constraint-optimized scan insertion
must scan-replace and route these cells.

• definitionsunrouted scan designscan statesunrouted scanUnrouted scan

The design contains unrouted scan cells. These unrouted scan cells can result from
test-ready compile or from the scan replacement phase of constraint-optimized scan
insertion. Constraint-optimized scan insertion must include these cells in the final scan
architecture.

• definitionsscan designscan statesscanScan

The design contains routed scan chains. Constraint-optimized scan insertion must
include these chains in the final scan architecture.

Because the focus of this chapter is the scan replacement process, this discussion
assumes that

• The input to constraint-optimized scan insertion is an optimized nonscan gate-level
design

• The output from constraint-optimized scan insertion is an optimized design that
contains unrouted scan cells. Note that constraint-optimized scan insertion performs
scan replacement only.

Note:
When you do not route the scan chains, the optimization performed during
constraint-optimized scan insertion accounts for the timing impact of the scan
cell, but it does not take into account the additional loading due to the scan
chain routing.

Locating Scan Equivalents
To perform scan replacement, scan replacementmethodconstraint-optimized scan insertion first locates simple scan
equivalents by using the identical-function method. If this method does not achieve scan
replacement, then sequential-mapping-based scan replacement is used.

Like test-ready compile, constraint-optimized scan insertiondegeneration supportconstraint-optimized scan insertion supports degeneration of scan
cells to create the required scan equivalent functionality.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

186

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Performing Scan Replacement
Performing Constraint-Optimized Scan Insertion

Feedback

Replacing scan replacementtiming impactsequential cells with their scan equivalents modifies the design timing, as
shown in Figure 53. DFT Compiler performs scan-specific optimizations to reduce the
timing overhead of scan replacement. By using focused techniques, constraint-optimized
scan insertion optimizes the scan logic faster than the incremental compile process could.

Figure 53 Timing Changes Due to Scan Replacement

Figure 54 shows the flow used to insert scan cells with constraint-optimized scan insertion
and the commands required to complete this flow.constraint-optimized scan insertionprocess flow, scan replacement

Synopsys® TestMAX™ DFT User Guide
T-2022.03

187

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Performing Scan Replacement
Performing Constraint-Optimized Scan Insertion

Feedback

Figure 54 Constraint-Optimized Scan Insertion Flow (Scan Replacement Only)

For details about scan replacement methods, see “Performing Test-Ready Compile” in the
Design Compiler User Guide.

Preparing for Constraint-Optimized Scan Insertion
Before performing constraint-optimized scan insertion,

• Verify the timing characteristics of the design.

Constraint-optimized scan insertion results in a violation-free design when the design
has the following timing characteristics:

◦ The nonscan design does not have constraint violations.

◦ The timing budget is good.

◦ You have properly applied realistic path constraints.

◦ You have described the clock skew.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

188

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Performing Scan Replacement
Performing Constraint-Optimized Scan Insertion

Feedback

Note:
If your design enters constraint-optimized scan insertion with violations, long
runtime can occur.

• Select a scan style.

• Identify barriers to scan replacement.

Scan Insertion
To alter a default scan design, you must specify changes to the scan configuration. You
can make specifications at any point before scan synthesis. This topic describes the
specification commands you can use.

With the DFT Compiler scan insertion capability, you can

• Implement automatically balanced scan chains

• Specify complete scan chains

• Generate scan chains that enter and exit a design module multiple times

• Automatically fix certain scan rule violations

• Reuse existing modules that already contain scan chains

• Control the routing order of scan chains in a hierarchy

• Perform scan insertion from the top or the bottom of the design

• Implement automatically enabling or disabling logic for bidirectional ports and internal
three-state logic

• Share functional ports as test data ports. DFT Compiler inserts enabling and disabling
logic, as well as multiplexing logic, as necessary

You can design scan chains by using a specify-preview-synthesize process, which
consists of multiple specification and preview iterations to define an acceptable scan
design. After the scan design is acceptable, you can invoke the synthesis process to insert
scan chains. Figure 55 shows this specify-preview-synthesize process.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

189

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Performing Scan Replacement
Performing Constraint-Optimized Scan Insertion

Feedback

Figure 55 The Scan Insertion Process

Example 14 is a basic scan insertion script.

Example 14 Basic Scan Insertion Script
current_design Top
set_dft_configuration -fix_set enable -fix_reset enable
set_scan_configuration -chain_count ...
create_test_protocol -infer_clock -infer_asynch
dft_drc
preview_dft
insert_dft
dft_drc
report_scan_path -view existing_dft -chain all
report_constraints -all_violators

Synopsys® TestMAX™ DFT User Guide
T-2022.03

190

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Performing Scan Replacement
Performing Constraint-Optimized Scan Insertion

Feedback

In this example, the following DFT configuration command enables AutoFix. For more
information, see Using AutoFix on page 330.

dc_shell> set_dft_configuration -fix_reset enable -fix_set enable
The scan specification command is set_scan_configuration -chain_count 1. It
specifies a single scan chain in the design.

The preview_dft command is the preview command. It builds the scan chain and
produces a range of reports on the proposed scan architecture.

The insert_dft command is the synthesis command. It implements the proposed scan
architecture.

The following topics describe these steps in the design process.

Specification Phase
During the specification phase, you use the scan and DFT specification commands to
describe how the insert_dft command should configure the scan chains and the design.
You can apply the commands interactively from the dc_shell or use them within design
scripts. The specification commands annotate the database but do not otherwise change
the design. They do not cause any logic to be created or any scan routing to be inserted.

The specification commands apply only to the current design and to lower-level
subdesigns within the current design.

If you want to do hierarchical scan insertion by using a bottom-up approach, use the
following general procedure:

1. Set the current design to a lower-level subdesign (current_design command).

2. Set the scan specifications for the subdesign (set_scan_path, set_scan_element,
and so on).

3. Insert the scan cells and scan chains into the subdesign (dft_drc, preview_dft, and
insert_dft).

4. Repeat steps 1, 2, and 3 for each subdesign, at each level of hierarchy, until you finish
scan insertion for the whole design.

By default, the insert_dft command recognizes and keeps scan chains already inserted
into subdesigns at lower levels. Thus, you can use different sets of scan specifications for
different parts or levels of the design by using the insert_dft command separately on
each part or level.

Note that each time you use the current_design command, any previous scan
specifications no longer apply. This means that you need to enter new scan specifications
for each newly selected design.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

191

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Performing Scan Replacement
Performing Constraint-Optimized Scan Insertion

Feedback

Scan Specification

Using the scan specification commands, you can specify as little or as much scan detail
as you want. If you choose not to specify any scan detail, the insert_dft command
implements the default full-scan methodology. If you choose to completely specify the scan
design that you require, you explicitly assign every scan element to a specific position in a
specific scan chain. You can also explicitly define the pins to use as scan control and data
pins.

Alternatively, you can create a partial specification, where you define some elements but
do not issue a complete specification. If you issue a partial specification, the preview_dft
command creates a complete specification during the preview process.

The scan specification commands are

• set_scan_configurationscan insertionspecifying scan chain configurationset_scan_configuration commandcommandsset_scan_configurationset_scan_configuration command

• set_scan_pathscan insertionspecifying scan chain configurationset_scan_path commandcommandsset_scan_pathset_scan_path command

• set_dft_signalscan insertionspecifying scan chain configurationset_dft_signal commandcommandsset_dft_signalset_dft_signal command

• set_scan_elementscan insertionspecifying scan chain configurationset_scan_element commandcommandsset_scan_elementset_scan_element command

• reset_scan_configurationscan insertionspecifying scan chain configurationreset_scan_specification commandcommandsreset_scan_specificationreset_scan_specification command

These commands are described in detail later in this section.

DFT Configuration

The DFT configuration commands are as follows:

• reset_dft_configurationcommandsreset_dft_configurationreset_dft_configuration command

• set_autofix_configurationcommandsset_autofix_configurationset_autofix_configuration command

• set_autofix_elementcommandsset_autofix_elementset_autofix_element command

• set_dft_configurationcommandsset_dft_configurationset_dft_configuration command

• set_dft_signalcommandsset_dft_signalset_dft_signal command

Preview
The preview_dft commandcommandspreview_dftpreview_dft command produces a scan chain design that satisfies scan
specifications on the current design and displays the scan chain design for you to preview.
If you do not like the proposed implementation, you can iteratively adjust the specification
and rerun preview until you are satisfied with the proposed design.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

192

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Performing Scan Replacement
Performing Constraint-Optimized Scan Insertion

Feedback

The preview_dft command performs the following tasks:

• It checks the specification for consistency. For example, you cannot assign the same
scan element to two different chains.

• It creates a complete specification if you have specified only a partial specification.

• It runs AutoFix.AutoFixrunning with preview_dft

• It produces a list of test points that are to be inserted into the design, based on
currently enabled utilities.test pointsinserting

When you use the preview_dft command, you can use the -script option to create a
dc_shell script that completely specifies the proposed implementation. You can edit this
script and use the edited script as an alternative means of iterating to a scan design that
meets your requirements.

Caution:
The preview_dft command does not annotate the design database with
test information. If you want to annotate the database with the completed
specification, use the -script option to create a specification dc_shell script
and then run this script. The specification commands in this script add attributes
to the database.preview_dft commandcreating a specification dc_shell scriptcommandspreview_dftcreating a specification dc_shell script

Synthesis
You invoke the synthesis process by using the insert_dft commandcommandsinsert_dftinvoking synthesis processinsert_dft commandinvoking synthesis process, which implements
the scan design determined by the preview process. If you issue this command without
explicitly invoking the preview process, the insert_dft command transparently runs
preview_dft.

Execute the dft_drc command at least one time before executing the insert_dft
command. Executing the dft_drc command provides information on circuit testability
before inserting scan into your design.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

193

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

9
Architecting Your Test Design

This chapter describes the basic processes involved in configuring and architecting your
test design for scan insertion.

This chapter includes the following topics:

• Configuring Your DFT Architecture

• Architecting Scan Chains

• Architecting Scan Signals

• Architecting Test Clocks

• Configuring Clock-Gating Cells

• Specifying a Location for DFT Logic Insertion

• Partitioning a Scan Design With DFT Partitions

• Modifying Your Scan Architecture

The standard DFT architecture process consists of configuring your architecture, building
scan chains, connecting test signals, setting test clocks, and analyzing your configurations
before and after scan insertion. Figure 56 shows the basic flow of the scan chain
generation process.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

194

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Configuring Your DFT Architecture

Feedback

Figure 56 Scan Chain Generation Process

Specify Preview Assemble

Scan

User-generated

dc_shell script

DFT Compiler-

dc_shell script

Prescan

generated

design

design

Reports

Configuring Your DFT Architecture
Before you run scan insertion, you need to configure your DFT architecture. This topic
includes the following topics related to the configuration process:

• Defining Your Scan Architecture

• Specifying Individual Scan Paths

Defining Your Scan Architecture
To define your scan architecture, you need to set design constraints, define any test
modes, specify test ports, and identify and mark any cells that you do not want to have
scanned.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

195

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Configuring Your DFT Architecture

Feedback

scan assemblybasic command flowUse the following script for the basic scan assembly flow:

current_design top

specify the scan architecture
set_scan_configuration -chain_count 4

create the test protocol
create_test_protocol

check pre-DFT DRC test design rules
dft_drc

preview the scan structures
preview_dft

assemble the scan structures
insert_dft

check post-DFT DRC test design rules
dft_drc

scan configurationdefinitionsscan configurationScan configuration is the specification of global scan properties for the current design. commandsset_scan_configurationset_scan_configuration commandscan configurationspecifyingspecifyingscan configurationscan architecturespecifyingspecifyingscan architectureUse
the set_scan_configuration command to specify global scan properties such as

• Scan style and methodology

• Length and number of scan chains

• Handling of multiple clocks

• Internal and external three-state nets

• Bidirectional ports

Note:
This list of the set_scan_configuration command’s options is not exhaustive.
For a complete listing, as well as a description of each option’s purpose, see
the man page.

DFT Compiler automatically generates a complete scan architecture from the global
properties that you have defined.

Setting Design Constraints
You should set constraints before running the insert_dft command because it minimizes
constraint violations. Use Design Compiler commands to set area and timing constraints
on your design. If you have already compiled your design, you do not need to reset your
constraints.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

196

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Configuring Your DFT Architecture

Feedback

For more information about setting area and timing constraints on your design, see
Synopsys Timing Constraints and Optimization User Guide.

Defining Constant Input Ports During Scan
If your design requires a signal to be held constant to enable DFT logic or satisfy test
design rules, use the set_dft_signal command to define a constant or test-mode signal.

See Also

• Chapter 13, Pre-DFT Test Design Rule Checking for more information about running
test design rule checking prior to DFT insertion

Specifying Test Ports
The insert_dft command adds scan signals that use existing ports. These ports are
identified by using the set_dft_signal command. If the tool cannot find existing ports
that it can use as test ports, it adds new ports to the design. The insert_dft command
names the new ports according to the following variables:

• test_clock_port_naming_style variableport nametest_clock_port_naming_styletest_clock_port_naming_styleenvironment variablestest_clock_port_naming_stylevariablesenvironmenttest_clock_port_naming_style

• test_scan_clock_a_port_naming_style variableport nametest_scan_clock_a_port_naming_styletest_scan_clock_a_port_naming_styleenvironment variablestest_scan_clock_a_port_naming_stylevariablesenvironmenttest_scan_clock_a_port_naming_style

• test_scan_clock_b_port_naming_style variableport nametest_scan_clock_b_port_naming_styletest_scan_clock_b_port_naming_styleenvironment variablestest_scan_clock_b_port_naming_stylevariablesenvironmenttest_scan_clock_b_port_naming_style

• test_scan_clock_port_naming_style variableport nametest_scan_clock_port_naming_styletest_scan_clock_port_naming_styleenvironment variablestest_scan_clock_port_naming_stylevariablesenvironmenttest_scan_clock_port_naming_style

• test_scan_enable_inverted_port_naming_ style variableport nametest_scan_enable_inverted_port_naming_styletest_scan_enable_inverted_port_naming_styleenvironment variablestest_scan_enable_inverted_port_naming_stylevariablesenvironmenttest_scan_enable_inverted_port_naming_style

• test_scan_enable_port_naming_style variableport nametest_scan_enable_port_naming_styletest_scan_enable_port_naming_styleenvironment variablestest_scan_enable_port_naming_stylevariablesenvironmenttest_scan_enable_port_naming_style

• test_clock_in_port_naming_style variableport nametest_clock_in_port_naming_styletest_clock_in_port_naming_styleenvironment variablestest_clock_in_port_naming_stylevariablesenvironmenttest_clock_in_port_naming_style

• test_clock_out_port_naming_style variableport nametest_clock_out_port_naming_styletest_clock_out_port_naming_styleenvironment variablestest_clock_out_port_naming_stylevariablesenvironmenttest_clock_out_port_naming_style

Specifying Individual Scan Paths
scan chainspecifyingDFT Compiler supports detailed specification of individual scan paths. Use the following
commands to specify the scan architecture scan specificationsdefinitionsscan specification:

• set_scan_element commandcommandsset_scan_elementset_scan_element
Use this command to specify sequential elements that are to be excluded from scan
replacement. By default, all nonviolating sequential cells with equivalent scan cells are
scan-replaced. You can specify leaf cells, hierarchical cells, references, library cells,
and designs.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

197

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Configuring Your DFT Architecture

Feedback

Use the set_scan_element command sparingly. For best results, use the command
only on leaf or hierarchical cells.

• set_scan_path commandcommandsset_scan_pathset_scan_path
Use this command to specify properties specific to a scan chain, such as name,
membership, chain length, clock association, and ordering.

• set_dft_signal commandcommandsset_scan_signalset_dft_signal
Use this command to specify desired port connections and scan chain assignments for
test signals.

• set_scan_bidi commandcommandsset_scan_bidiset_autofix_element
Use this command to control particular bidirectional ports on the top level of the current
design.

In case you are unfamiliar with some of the scan path components used in the scan
specification commands, Figure 57 illustrates the scan path components.scan linkdiagramscan element, diagramscan segmentdiagram

Figure 57 Scan Path Components

instA

top

test_so

test_si

clk1

Si So

latch1

clk2 ~Q

D Q

dff2

clk2

instC

~Q

D Q

dff1

clk1

clk1 ~Q

D Q

Si

So

dff1

~Q

D Q

Si

So

dff2

instB

clk2

clk2 ~Q

D Q

Si

So

dff1

~Q

D Q

Si

So

dff2

D

Si

Scan link

Scan segment

Scan element

Synopsys® TestMAX™ DFT User Guide
T-2022.03

198

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Scan Chains

Feedback

Figure 57 shows a single scan path that starts at port test_si, which receives the
test_scan_in scan signal, and ends at port test_so, which drives the test_scan_out
scan signal. Cells instA/dff1, instA/dff2, instB/dff1, and instB/dff2 are examples of scan
elements. The shift register in instC is a defined scan segment. In the bottom-up flow, the
scan chains in instA and instB are considered subchains or inferred scan segmentsscan segments. The
thick lines represent scan links. The latch (instance latch1) is also a scan link.

The topics in this chapter discuss some of the situations you might encounter during scan
specification. See Chapter 8, Performing Scan Replacement,” for scan style selection
considerations.

Architecting Scan Chains
The set_scan_configuration command enables you to specify the scan chain design.
This command controls almost all aspects of how the insert_dft command makes
designs scannable. Exceptions are specific to particular scan chains and are specified in
the set_scan_path command options.

This topic covers the following topics related to architecting scan chains:

• Controlling the Scan Chain Length

• Determining the Scan Chain Count

• Defining Individual Scan Chain Characteristics

• Balancing Scan Chains

• Physical Reordering and Repartitioning

• Controlling the Routing Order

• Retiming Scan-Ins and Scan-Outs to the Leading Clock Edge

• Routing Scan Chains and Global Signals

• Rerouting Scan Chains

• Stitching Scan Chains Without Optimization

• Scan Stitching Only Scan-Replaced Cells

• Using Existing Subdesign Scan Chains

• Uniquifying Your Design

• Reporting Scan Path Information on the Current Design

Synopsys® TestMAX™ DFT User Guide
T-2022.03

199

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Scan Chains

Feedback

Controlling the Scan Chain Length
scan chaindetermining lengthscan assemblydetermining scan chain lengthYou can globally specify the length of scan chains. Controlling the length of the scan chain
can help to balance the scan configuration in a design that has bottom-up or system-on-a-
chip (SoC) scan insertion.

Specifying the Global Scan Chain Length Limit
Setting the scan chain length limit helps with bottom-up scan insertion by balancing scan
chains more efficiently at the top level. Setting a limit on the length of scan chains allows
for design constraints related to pin availability or test vector depth.

Use the commandsset_scan_configurationset_scan_configuration -max_length command to specify the length of a
scan chain:

dc_shell> set_scan_configuration -max_length 7
For example, if you set the scan chain length limit to 7 registers for a single-clock, single-
edge design with 29 flip-flops, the insert_dft command creates five scan chains with
lengths of 6, 6, 6, 6, and 5 registers. This scan chain allocation meets the scan chain
length limit while also balancing the scan chain lengths as closely as possible.

Note:
Specifying both the -max_length option and the -chain_count option
(described in the next section) might result in conflicting scan chain allocations.
In such a case, the -max_length option takes precedence.

Specifying the Global Scan Chain Exact Length
You can specify an exact length for all scan chains by using the -exact_length option of
the set_scan_configuration command.

For example, suppose your design has 420 flip-flops, and you want an exact length
of 80 flip-flops per scan chain. In this case, specifying set_scan_configuration
-exact_length 80 creates five chains with 80 flip-flops and one chain with 20 flip-flops.

Caution:
The exact length feature is meant to be used only with standard scan, including
standard scan configured for multiple test modes. It is not currently supported
with DFTMAX compressed scan modes. Do not use this feature with DFTMAX
scan compression.

scan cellexclusion conditionsNote the following properties of the -exact_length option:

• This option disables scan chain balancing.

• The -exact_length option should not be used with the -max_length or
-chain_count option.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

200

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Scan Chains

Feedback

• The report_scan_configuration command reports the value of the exact length
configuration.

• The user-specified chain configuration is preserved.

• The quality of results cannot be guaranteed when this option is used on designs
containing complex segments.

Determining the Scan Chain Count
scan chaindetermining countscan assemblydetermining scan chain countYou can specify the number of scan chains. DFT Compiler attempts to create the specified
number of scan chains while minimizing the longest scan chain length. Use these
questions to decide how many scan chains to request:

• meeting vendor requirementsscan chain countHow many scan chains does your semiconductor vendor allow?

Many semiconductor vendors restrict the maximum number of scan chains due to
software or tester limitations. Before performing scan specification, check with your
semiconductor vendor for the maximum number of scan chains supported.

• How many clock domains exist in your design?

To prevent timing problems on the scan path in multiplexed flip-flop designs, allocate
a scan chain for each clock domain (DFT Compiler default behavior). DFT Compiler
considers each edge of a clock a unique clock domain. Multiple clock domains do not
affect the number of scan chains in scan styles other than multiplexed flip-flop.

• How much time will it take to test your design?

Because the test time is proportional to the length of the longest scan chain, increasing
the number of scan chains reduces the test time for a design.

Use the commandsset_scan_configurationset_scan_configuration command-chain_count option-chain_count option, set_scan_configuration commandset_scan_configuration -chain_count command to specify the number of
scan chains.

dc_shell> set_scan_configuration -chain_count optionset_scan_configuration command-chain_count 7
By default, DFT Compiler generates

• One scan chain per clock domain if you select the multiplexed flip-flop scan style

• One scan chain if you select any other scan style

Note:
The -max_length and -chain_count options are mutually exclusive. If
you use both options, the -max_length option takes precedence over the
-chain_count option.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

201

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Scan Chains

Feedback

Defining Individual Scan Chain Characteristics
Typically, scan chains are configured using global chain count or chain length settings.
Use the commandsset_scan_pathsyntaxset_scan_path commandsyntaxset_scan_path command to specify one or more additional requirements for
individual scan chains in the current design.

The set_scan_path command enables you to

• Specify a name for a scan chain

• Allocate scan cells, scan segments, and subdesign scan chains to scan chains and
specify the ordering of the scan chain

• Specify a dedicated scan-out port

• Limit a scan chain’s elements to only those components you specify or enable DFT
Compiler to balance scan chains by adding more elements

• Specify individual exact scan chain lengths

• Assign scan chains to clock domains

Scan chain elements cannot belong to more than one chain. The command options
are not incremental. Where set_scan_path commands conflict, the preview command
(preview_dft) and scan insertion command (insert_dft) apply the most recent
command.

For example, the following command sets the length of an individual scan chain:

dc_shell> set_scan_path C1 -exact_length 40

Balancing Scan Chains
The insert_dft command always attempts to balance the number of cells in each scan
chain. However, some scan chain requirements can limit or disable balancing, such as

• Disabling clock mixing or clock edge mixing

• Defining scan chains with the set_scan_path command

• Using test models

• Using a hierarchical DFT insertion flow

• Specifying a global scan chain exact length

When overriding the default behavior, always use the preview_dft command to verify
that the result meets your requirements.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

202

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Scan Chains

Feedback

Concatenating Scan Cells and Segments
When concatenating scan cells or segments to form scan chains, the insert_dft
command can join them using only the scan cell sequences shown in Figure 58. The tool
might insert additional synchronization elements, such as lock-up latches or retiming flip-
flops (not shown), to create the sequences.

Figure 58 Valid Scan Cell and Segment Concatenation Sequences

Valid clock-crossing scan configuration
Invalid clock-crossing scan configuration
Valid only in shared codec I/O flow with pipeline registers

D
SI
SE

Q

D
SI
SE

Q

D
SI
SE

Q

D Q

G

D
SI
SE

Q D Q

G

Posedge

Posedge +
lock-up latch

Negedge +
lock-up latch

Negedge

D
SI
SE

Q

D
SI
SE

Q

Posedge

Negedge

The irregularly dashed blue lines indicate sequences allowed only in the specific scenario
described in SolvNet article 1656177, “Why Does insert_dft Add Extra Retiming Registers
in a Shared Codec I/O Flow?“

This figure is relevant within a single clock domain or between clock domains with the
same test clock waveforms. Between test clocks with differing waveforms, the tool
determines the valid scan cell sequences using the waveform timing.

Multiple Clock Domains
scan chainbalancingmultiple clock designsmultiple clocksscan insertionbalancing scan chainsThe clock edge of a scan cell represents both the clock identity and the active clock edge
of the cell. For multiplexed flip-flop designs, DFT Compiler allocates cells to scan chains
based on clock edges by default. You can override this default behavior set_scan_configuration command-clock_mixing optioncommandsset_scan_configuration-clock_mixing option, set_scan_configuration commandby using the
set_scan_configuration -clock_mixing command.

For example, assume that you have a design with three clock domains and your desired
scan architecture contains two balanced scan chains.

dc_shell> set_dft_signal -view existing_dft \
 -type ScanClock -timing [list 45 55] \
 -port {clk1 clk2}

Synopsys® TestMAX™ DFT User Guide
T-2022.03

203

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnet.synopsys.com/retrieve/1656177.html
https://solvnet.synopsys.com/retrieve/1656177.html

Chapter 9: Architecting Your Test Design
Architecting Scan Chains

Feedback

dc_shell> set_scan_configuration -chain_count 2
multiple clocksscan insertiondefault behaviorIn the default case shown in Figure 59, DFT Compiler overrides your request for two
chains and generates three scan chains, one for each clock edge (clk1, positive-edge clk2,
negative-edge clk2). Because the clock domains contain unequal numbers of cells, DFT
Compiler generates unbalanced scan chains.

Figure 59 Unbalanced Scan Chains Due to Multiple Clock Domains

INST_A
TOP

test_so2

test_si1

clk1

clk1 ~Q

D Q

Si

So

dff1

~Q

D Q

Si

So

dff2

INST_

clk1

clk1 ~Q

D Q

Si

So

dff1

~Q

D Q

Si

So

dff2

INST_C

clk2

clk2 ~Q

D Q

Si

So

dff1

~Q

D Q

Si

So

dff2

test_si3 test_si2

test_so1 test_so3

multiple clocksscan insertionmixing edgesYou can reduce the number of scan chains and achieve slightly better balancing by mixing
clock edges within a single chain.

dc_shell> set_dft_signal -view existing_dft \
 -type ScanClock -timing [list 45 55] \
 -port {clk1 clk2}

dc_shell> set_scan_configuration -chain_count 2

dc_shell> set_scan_configuration -clock_mixing mix_edges
Mixing clock edges in a single scan chain produces a small timing risk. DFT Compiler
automatically orders the cells within the scan chain so the cells clocked later in the cycle
appear earlier in the scan chain, resulting in a functional scan chain. Figure 60 shows the
scan architecture when you allow edge mixing.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

204

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Scan Chains

Feedback

Figure 60 Better Balancing With Mixed Clock Edges

instA
top

test_so2

test_si1

clk1

clk1 ~Q

D Q

Si

So

dff1

~Q

D Q

Si

So

dff2

instB

clk1

clk1 ~Q

D Q

Si

So

dff1

~Q

D Q

Si

So

dff2

instC

clk2

clk2 ~Q

D Q

Si

So

dff1

~Q

D Q

Si

So

dff2

test_si2

test_so1

multiple clocksscan insertionmixing clocksYou can balance the scan chains by mixing clocks:

dc_shell> set_dft_signal -view existing_dft \
 -type ScanClock -timing [list 45 55] \
 -port {clk1 clk2}

dc_shell> set_scan_configuration -chain_count 2

dc_shell> set_scan_configuration -clock_mixing mix_clocks
Directly mixing clock edges in a single scan chain could produce a large timing risk. To
reduce this risk, DFT Compiler adds lock-up latches to the scan path wherever clock skew
issues might occur. Figure 61 shows the resulting scan architecture.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

205

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Scan Chains

Feedback

Figure 61 Balanced Scan Chains With Mixed Clocks

instB
top

test_so2

test_si1

clk1

clk1 ~Q

D Q

Si

So

dff1

~Q

D Q

Si

So

dff2

instC

clk2

clk2 ~Q

D Q

Si

So

dff1

~Q

D Q

Si

So

dff2

instA

clk1

clk1 ~Q

D Q

Si

So

dff1

~Q

D Q

Si

So

dff2

test_si2

test_so1

clk1

Si So

latch1

See Also

• Architecting Test Clocks on page 242 for details about scan lock-up latches and other
clock-mixing considerations

Multibit Components and Scan Chains
A multibit component is a group of cells with identical functionality, inferred from RTL
code or created by the create_multibit command. Depending on tool configuration
and design constraints, synthesis implements a multibit component using multibit cells or
single-bit cells.

By default, the insert_dft command treats the cells inside a multibit component as
discrete sequential cells that can be reordered, split up, and rebalanced across scan
chains as needed.

If you want to treat each sequential multibit component as a scan segment to retain cell
grouping and order, use the following command:

dc_shell> set_scan_configuration -preserve_multibit_segment true

Synopsys® TestMAX™ DFT User Guide
T-2022.03

206

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Scan Chains

Feedback

In this case, the cells inside a multibit component cannot be separated for length-
balancing purposes. You can report the multibit scan segments that will be used by using
the preview_dft -show {segments} command.

The -preserve_multibit_segment option applies globally to the current design and
overrides any specification on subdesigns.

Physical Reordering and Repartitioning
In Design Compiler in topographical mode and in Design Compiler Graphical, the tool
orders scan cells by physical proximity to minimize wire length. To use this feature, you
must use both the -spg and -scan options in the initial and incremental compile_ultra
commands. See Example 15.

Example 15 Performing Physical Reordering and Repartitioning of Scan Chains
compile_ultra -scan ;# initial compile

...apply DFT configuration settings...

preview_dft
insert_dft
compile_ultra -scan -incremental ;# incremental post-DFT compile
Note:

This feature requires a license corresponding to the type of scan inserted in the
design—a DFT Compiler license for standard scan designs and a DFTMAX or
TestMAX DFT license for compressed scan designs.

After DFT insertion, when you incrementally optimize the design, the tool reorders and
repartitions the scan elements as needed to further reduce congestion. In this case, the
compile_ultra command issues the following message:

Information: Performing scan chain reordering in the SPG flow. (SPG-126)

Repartitioning uses the multi_directional repartitioning method by default. You can use
the set_optimize_dft_options command to configure scan repartitioning. For example,

dc_shell> set_optimize_dft_options \
 -repartitioning_method single_directional
To perform reordering but not repartitioning, use the following command:

dc_shell> set_optimize_dft_options -repartitioning_method none
To disable both reordering and repartitioning, set the following variable:

dc_shell> set_app_var \
 test_enable_scan_reordering_in_compile_incremental false

Synopsys® TestMAX™ DFT User Guide
T-2022.03

207

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Scan Chains

Feedback

Reordering and repartitioning follow the same rules used to generate the SCANDEF
information that drives reordering and repartitioning in layout.

See Also

• Introduction to SCANDEF on page 627 for more information about reordering and
repartitioning

Controlling the Routing Order
scan orderingcontrollingscan routingUse the set_scan_path command to control the routing order explicitly. You can specify
the routing order of nonscan as well as scanned sequential cells.set_scan_path commandcommandsset_scan_path Each set_scan_path
command generates a scan chain; DFT Compiler uses the first command argument as
the scan chain name. If you enter multiple set_scan_path commands with the same scan
chain name, DFT Compiler uses only the last command entered.

You can provide partial or complete scan ordering specifications. -complete option, set_scan_path commandset_scan_path command-complete optionUse the -complete
true option to indicate that you have completely specified a scan chain. DFT Compiler
does not add cells to a completely specified scan chain. If you provide a partial scan-
ordering specification, DFT Compiler might add cells to the scan chain. DFT Compiler
places the cells specified in a partial ordering at the end of the scan chain.

scan orderingvalidatingvalidatingscan orderingDFT Compiler validates the specified scan ordering. The checks performed by DFT
Compiler include

• Cell assignment

DFT Compiler verifies that you have not assigned a cell to more than one scan chain.
A violation triggers the following error message during execution of the set_scan_path
command:

TESTDB-256 messagemessageserrorTESTDB-256Error: Scan chains ’%s’ and ’%s’ have common elements. (TESTDB-256)
Common elements are:
 %s

DFT Compiler discards the second scan path specification, keeping the first scan path
specification which contains the common element.

• multiple clocksscan chain orderingClock ordering

DFT Compiler verifies that the active clock edge of the next scan cell occurs
concurrently or before the active clock edgeup latch.

If your multiplexed flip-flop design violates this requirement, DFT Compiler reorders
the invalid mixed-clock scan chains and triggers the following warning message during
execution of the preview_dft command:

TEST-342 messagemessageswarningTEST-342Warning: User specification of chain ’%s’ has been reordered.
(TEST-342)

Synopsys® TestMAX™ DFT User Guide
T-2022.03

208

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Scan Chains

Feedback

• multiple clocksscan specificationClock mixing

DFT Compiler verifies that all cells on a scan path have the same clock unless you
have specifically requested clock mixing. A violation triggers the following warning
message during execution of the preview_dft command:

TEST-353 messagemessageswarningTEST-353Warning: Chain ’%s’ has elements clocked by different clocks.
(TEST-353)

DFT Compiler creates the requested scan chain. Unless you have disabled scan lock-
up latch insertion, DFT Compiler inserts a scan lock-up latch between clock domains.

• black-box cellscan specificationBlack-box cells

DFT Compiler verifies that the specified cells are valid scan cells. If a sequential cell
has a test design rule violation or has a scan_element false attribute, DFT Compiler
considers it a black-box cell. A violation triggers the following warning message during
execution of the preview_dft command:

TEST-376 messagemessageswarningTEST-376Warning: Cannot add ’%s’ to chain ’%s’. The element is not being
scanned. (TEST-376)

DFT Compiler creates the requested scan chain without the violating cells.

Retiming Scan-Ins and Scan-Outs to the Leading Clock Edge
In some cases, hierarchical blocks can contain scan chains with a mix of positive edge-
triggered and negative edge-triggered flip-flops. When these block-level scan chains are
combined at a higher level in the design hierarchy to form longer scan chains, half-cycle
paths across clock edges might be created between the scan chains. Meeting timing for
these half-cycle scan chain paths can be challenging at higher frequencies, especially for
chips with long top-level routes between blocks.

To avoid these half-cycle paths when block-level scan chains are combined, use the
-add_test_retiming_flops option of the set_scan_configuration command. For
example,

dc_shell> set_scan_configuration -add_test_retiming_flops begin_and_end
When this option is specified for block-level scan chain insertion, flip-flops triggering on
the leading edge of the test clock are added as needed to any scan chains that begin or
end with trailing-edge-triggered flip-flops. For return-to-zero clocks, rising-edge flip-flops
are used to retime to the leading edge. For return-to-one clocks, falling-edge flip-flops are
used to retime to the leading edge. The tool automatically chooses the edge-triggered
retiming cell from the target library.

Valid keywords for the -add_test_retiming_flops option are begin_and_end,
begin_only, end_only, and none. The default is none, which disables retiming register
insertion.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

209

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Scan Chains

Feedback

Table 25 shows the retiming behaviors provided by the -add_test_retiming_flops
option.

Table 25 Retiming Behaviors Provided by the -add_test_retiming_flops Option

If the scan chain begin_only end_only begin_and_end

Begins with a
leading-edge flip-flop

Begins with a
trailing-edge flip-flop

Adds retiming flip-flop to
beginning of scan chain

Adds retiming flip-flop to
beginning of scan chain

Ends with a
leading-edge flip-flop

Ends with a
trailing-edge flip-flop

Adds retiming flip-flop to
end of scan chain

Adds retiming flip-flop to
end of scan chain

To report the locations where these retiming flip-flops are to be added, use the
preview_dft command. For details on this command, see Previewing the DFT Logic on
page 595.

In addition, when this feature is enabled (with any value other than none), the following are
clocked on the leading edge:

• Head pipeline registers

• DFT-inserted clock chains

• Shift-power control (SPC) chains

• DFTMAX Ultra decompressor registers

• DFTMAX serializer decompressor registers

If you generate a SCANDEF file for a design with retiming flip-flops, the retiming flip-flops
are not included between the START and STOP points in the SCANDEF file. Only the
original design scan cells are included between the START and STOP points.

This feature controls only one aspect of retiming flip-flop insertion. The tool can also
insert retiming flip-flops as described in Codec I/O Sharing and Standard Scan Chains on
page 794.

See Also

• Mixed Edges on page 90 for more information about the scan chain timing
requirements of mixed edges

Synopsys® TestMAX™ DFT User Guide
T-2022.03

210

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Scan Chains

Feedback

Routing Scan Chains and Global Signals
scan outputselectingMost scan cells have both a scan output pin (test_scan_out) and an inverted scan output
pin (test_scan_out_inverted) defined in the logic library. If the functional path through a
sequential cell has timing constraints, DFT Compiler automatically selects the scan output
pin with the most timing slack for use as the scan output. To disable this behavior, set the test_disable_find_best_scan_out

variablevariablestest_disable_find_best_scan_outtest_disable_find_best_scan_out variable to true.

bottom-up design flowcomparing results with top-downtop-down design flow, comparing results with bottom-upScan chain allocation and ordering might differ between a top-down implementation and a
bottom-up implementation because

• DFT Compiler does not modify subdesign scan chains unless explicitly specified in
your scan configuration.

• DFT Compiler overrides alphanumeric ordering to provide a shared scan output
connection on the current design but not on subdesigns.

Rerouting Scan Chains
scan orderingreroutingreroutingscan pathscan chainreroutingThe scan specification process previously discussed enables both initial routing and
rerouting of your design. However, the specify-preview loop runs faster than the specify-
synthesize loop. Try to avoid rerouting by iterating through the specify-preview loop until
the scan architecture meets your requirements.

scan assemblydesign optimizationTo optimize the design during scan assembly, DFT Compiler

• Performs scan-specific optimizations to reduce the timing impact of scan routing.

In many cases, the scan path uses the functional output as the scan output. The
scan path routing increases the output load on the functional output. If you used test-
ready compile for scan replacement, this additional loading is compensated for during
optimization. If you used constraint-optimized scan insertion, DFT Compiler uses
focused optimization techniques during scan assembly to minimize the impact of the
additional load on the overall design performance.

• Replaces unrouted scan cells with their nonscan equivalents.

If you used test-ready compile for scan replacement, your design might contain
unrouted scan cells. scan cellunrouted, causesThese unrouted scan cells occur because the cell has a test
design rule violation.

DFT Compiler replaces these unrouted scan cells with their nonscan equivalents during
execution of the insert_dft command.

Your design might contain sequential cells that are defined in the logic library as scan
cells but can also implement functional logic in your design. These cells have functional

Synopsys® TestMAX™ DFT User Guide
T-2022.03

211

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Scan Chains

Feedback

connections to both the data and scan inputs, and DFT Compiler does not modify these
cells during scan assembly.

• Fixes hold time violations on the scan path if the clock net has the fix_hold attribute.

Stitching Scan Chains Without Optimization
scan chainstitchingIn some circumstances, you might want to stitch your design’s scan chains together but
avoid the optimization step. This process is referred to as “rapid scan synthesisrapid scan synthesis.” Such
circumstances might include

• Stitching completed subdesigns together

• Performing synthesis and scan insertion in the logic domain and optimizations in the
physical domain

• Performing analysis on the design

Specifying a Stitch-Only Design
scan chainstitchingWhen DFT Compiler performs scan stitching without optimization, it still performs
comprehensive logic DFT design rule checks, but it eliminates the runtime-intensive
synthesis mapping, timing violation fixing, and design rule fixing steps.

Consequently, the design is only stitched and no further optimizations are performed on
the design.

To enable scan stitching without optimization, use the following command:

dc_shell> set_scan_replacement

Mapping the Replacement of Nonscan Cells to Scan Cells
You might want to stitch a design that has not been scan-replaced. The
set_dft_insertion_configuration -synthesis_optimization none command can
perform scan replacement on designs of this sort.

If a simple one-to-one mapping of a nonscan to a scan cell is not available in the library,
DFT Compiler performs a cell decomposition followed by a sequential mapping algorithm.
You can avoid this step by using the following command:

dc_shell> set_scan_replacement \
 -nonscan nonscan_cell_list \
 -multiplexed_flip_flop scan_cell
The options in this command should always be specified as a pair. If they are not, an error
results. Many cells can be listed in the -nonscan option, but only one cell can be listed
in the -multiplexed_flip_flop option. You can use the -lssd option in place of the
-multiplexed_flip_flop option.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

212

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Scan Chains

Feedback

If you use this command and a scan cell definition exists in the ASIC library, the mapping
you specified with the commandsset_scan_replacementset_scan_replacement commandset_scan_replacement command overrides the library definition.
This command is global in nature; it affects the entire design.

For example, the scan cell DFFS1 is a direct mapping of the nonscan cell DFFD1, but with
scan pins. To specify the mapping of the DFFD1 nonscan cell to the DFFS1 scan cell, use
the following command:

dc_shell> set_scan_replacement -nonscan DFFD1 \
 -multiplexed_flip_flop DFFS1
Few-Pins-to-Many-Pins Scan Cell Replacement Situation

scan cell replacementIf you select a scan cell that has more pins than the nonscan cell it replaces, the extra
pins are tied to the inactive state and a warning is issued. You can fix this problem by
respecifying a more appropriate cell with the commandsset_scan_replacementset_scan_replacement commandset_scan_replacement command.

Figure 62 Few-to-Many Scenario (Accepted)

D Q

D

Q

data1

scan_in

scan_en

clk

SI

SE

RST
SO

CLR

out1

scan_outS
D

F
F

1
Rout1data1

clk D
F

F
1

set_scan_replacement -nonscan DFF1 \

-multiplexed_flip_flop SDFF1R

In Figure 62, the replacement cell has more inputs and outputs than required by the
nonscan cell. The unused pins of the scan cell are left unconnected.

Many-Pins-to-Few-Pins Scan Cell Replacement Scenario

scan cell replacementAlternatively, if you select a scan cell that has fewer pins than the nonscan cell it replaces,
the extra pins are left unconnected. To avoid problems with incorrect logic, an error
message is issued and the replacement does not occur. You can fix this problem by
respecifying a more appropriate cell with the set_scan_replacement command.

In Figure 63, for example, the clear and reset pins do not exist on the scan cell. They are
left unconnected, causing incorrect logic.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

213

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Scan Chains

Feedback

Figure 63 Many-to-Few Scenario (Rejected)

RST

CLR

clear

reset

clear

reset

?

?

D Q out1data1

clk D
F

F
1

R
D

Q

data1

scan_in

scan_en

clk

SI

SE

SO

out1

scan_outS
D

F
F

1

set_scan_replacement -nonscan DFF1R \

-multiplexed_flip_flop SDFF1

Criteria for Conversion Between Nonscan and Scan Cells
scan cellexclusion conditionsThis topic describes the conditions under which

• A sequential cell is excluded from the DRC violations

• A sequential cell is excluded from the scan chains

• A nonscan cell becomes a scan cell

• A scan cell is unscanned

DRC Violation Report (dft_drc)

A cell XYZ should be reported as a valid nonscan cell by DRC if the following command is
used:

dc_shell> set_scan_element false XYZ
Scan Architect (insert_dft)

A cell XYZ will not be part of the scan chains if any of the following conditions are met:

• The following command is used:

dc_shell> set_scan_element false XYZ
• The cell XYZ is DRC violated

• The following command is used:

dc_shell> set_scan_configuration -exclude_elements XYZ

Synopsys® TestMAX™ DFT User Guide
T-2022.03

214

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Scan Chains

Feedback

Note:
You use set_scan_configuration -exclude_elements to prevent flip-
flops from being stitched into the scan chains. The difference between using
set_scan_configuration -exclude_elements and set_scan_element
false is that the former command does not unscan the specified flip-flops
during insert_dft whereas the latter command does unscan the flip-flops.

Scan Replacement (insert_dft)

A nonscan flip-flop cell, FF, will become a scan cell in either of the two following cases:

• Both of the following conditions are met:

◦ The nonscan flip-flop cell is not DRC violated

◦ The following command is used:

 dc_shell> set_scan_element true FF
• Both of the following conditions are met:

◦ The following command is used:

 dc_shell> set_scan_element true FF
◦ The following command is used:

 dc_shell> set_scan_configuration -exclude_elements FF
A scan cell, SFF, will be converted to a nonscan cell in either of the two following cases:

• The following command is used:

dc_shell> set_scan_element false SFF
• Both of the following conditions are met:

◦ The scan cell, SFF, is DRC violated

◦ The following command is used:

 dc_shell> set_dft_insertion_configuration \
 -unscan true

Scan Stitching Only Scan-Replaced Cells
By default, the insert_dft command performs scan replacement for all cells that are not
scan replaced, but have scan equivalents and do not violate DRC.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

215

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Scan Chains

Feedback

If you have a design that is already scan-replaced and you do not want the insert_dft
command to perform scan replacement of nonscan cells, specify the following command
before running the insert_dft command:

dc_shell> set_scan_configuration -replace false
With this setting, DRC evaluates only scan-replaced cells for inclusion in scan chains;
nonscan cells are left as-is.

If you read in a .ddc file for a test-ready design, you do not need to specify the
set_scan_configuration -replace false command. The design database contains
the test attributes needed for the tool to recognize the scan-replacement results.

Using Existing Subdesign Scan Chains
A subdesign scan chain uses subdesign ports for all test signals. DFT Compiler can infer
subdesign scan chains during test design rule checking.

existing scan chainsscan chainexistingTo reuse existing subdesign scan chains, follow these steps:

• Set the current design to the subdesign containing the existing scan chain.

• Use the set_signal_type commandcommandsset_signal_typesignal_type attribute, identifying existing scan portsidentifyingscan ports, existingscan portset_dft_signal command to identify the existing scan ports.

• Create a test protocol by using the create_test_protocol command.

• Set the current design to the design where you are assembling the scan structures.

• Use the set_scan_path command to control the scan chain connections, if desired.

For example, subdesign sr in Figure 64 contains a shift register. The shift register performs
a serial shift function, so DFT Compiler can use this existing structure in a scan chain.
The scan input signal connects to subdesign port sr_D. The scan output signal connects
to subdesign port sr_Q. The shift register always performs the serial shift function, so the
shift register does not need a scan-enable signal.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

216

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Scan Chains

Feedback

Figure 64 Subdesign Scan Chain Example Before Scan Insertion

subdesign scan chaininferringUse the following command sequence to infer the subdesign scan chain in module sr:

dc_shell> current_design sr
dc_shell> set_dft_signal -view spec -port sr_D -type ScanDataIn
dc_shell> set_dft_signal -view spec -port sr_Q -type ScanDataOut
dc_shell> create_test_protocol
dc_shell> dft_drc
subdesign scan chainincludingUse the following command sequence to include this scan chain in a top-level scan chain:

dc_shell> current_design top
dc_shell> create_test_protocol
dc_shell> dft_drc
dc_shell> insert_dft
dc_shell> dft_drc
Figure 65 shows the top-level scan chain, which includes the subdesign scan chain. DFT
Compiler added a multiplexer, controlled by the scan-enable signal, to select between
the functional data input and the scan input. The hierarchical cell name determines the
location of the subdesign scan chain in the top-level scan chain.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

217

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Scan Chains

Feedback

Figure 65 Subdesign Scan Chain Example After Scan Insertion

IP1

IP2

test_si

test_se
clk

test_so

OP1

Uniquifying Your Design
When you run the insert_dft command, DFT Compiler automatically assigns a unique
name to any subdesigns that changed during the scan insertion process. The default
naming convention saves subdesign A as A_test_1. If two instances of subdesign A are
different, they are saved as A_test_1 and A_test_2. The following scenarios illustrate
examples in which unique names are assigned to instances of a subdesign:

• You specify a different scan ordering in each instance of the same reference design.

For example, if you route and rebalance a design so that two instances of the
subdesign have different scan chain ordering, the insert_dft command uniquifies
the design.

• The insert_dft command identifies different solutions during constraint optimization
and design rule fixing.

Constraint optimization and design rule fixing are features of the insert_dft
command. To eliminate unnecessary uniquification, turn off these features by entering
the following commands:

dc_shell> set_dft_insertion_configuration \
 -synthesis_optimization none

• There are scan violations in one instance but not in another instance, and insert_dft
repairs one but not the other.

You can choose the suffix that gets appended to the design name to create the unique
name. The naming convention for the suffix appended to the design name is controlled by
the following command:

dc_shell> set_app_var insert_test_design_naming_style name
In the previous example, the default name is design_name_test_counter.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

218

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Scan Signals

Feedback

Note:
To prevent uniquification of your design, enter the command:

dc_shell> set_dft_insertion_configuration \
 -preserve_design_name true

Reporting Scan Path Information on the Current Design
Use the report_scan_path command to display scan path information for the current
design.

Note:
To show changes caused by running the insert_dft command, you must run
the dft_drc command before the report_scan_path command. Running an
incremental compile or any other command that changes the database causes
the dft_drc results to be discarded. In such a case, you need to run dft_drc
again before you use report_scan_path.

Example 16 shows the type of information displayed by the report_scan_path
-chain all command.

Example 16 Scan Path Information Displayed by the report_scan_path Command
==
AS BUILT BY insert_dft
==

Scan_path Len ScanDataIn ScanDataOut ScanEnable MasterClock SlaveClock
----------- ---- ----------- ----------- ----------- ----------- -----------
I 1 22 test_si1 test_so1 test_se CLK -
I 2 21 test_si2 test_so2 test_se CLK -
I 3 21 test_si3 test_so3 test_se CLK -

For more information, see man page for the report_scan_path command.

Architecting Scan Signals
For test design rule checking to recognize test ports in your design, your scan-inserted
design must have appropriate signal_type attributes on the test ports. If you are using
your own placeholder test ports, you must set these attributes with the set_dft_signal
command. If the insert_dft command creates any needed ports, these attributes are
automatically set.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

219

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Scan Signals

Feedback

The following topics discuss the process for architecting scan signals:

• Specifying Scan Signals for the Current Design

• Selecting Test Ports

• Controlling Scan-Enable Connections to DFT Logic

• Controlling Buffering for DFT Signals

• Suppressing Replacement of Sequential Cells

• Changing the Scan State of a Design

• Removing Scan Configurations

• Keeping Specifications Consistent

• Synthesizing Three-State Disabling Logic

• Configuring Three-State Buses

• Handling Bidirectional Ports

• Assigning Test Port Attributes

Specifying Scan Signals for the Current Design
Use the set_dft_signal commandsyntaxcommandsset_dft_signalsyntaxset_dft_signal command to specify one or more scan signals for the current
design.

Table 26 provides a list of signal_type attribute values.test signal type attributes

Table 26 signal_type Attribute Values for Test Signals

Test I/O port
signal

signal_type value Valid on
input

Valid on
output

Valid on
three-state
output

Valid on
bidirectional
input/output

Scan-in ScanDataIn test_scan_in attribute Yes No No Yes

Scan-out ScanDataOut test_scan_out attribute No Yes Yes Yes

Scan-enable ScanEnable Yes No No Yes

Bidirectional
enables

InOutControltest_bidir_control attributetest_bidir_control_inverted attribute Yes No No 4

Asynchronous
control ports

Reset test_asynch attributetest_asynch_inverted attribute Yes No No Yes

4. Not recommended; complex methodologies required

Synopsys® TestMAX™ DFT User Guide
T-2022.03

220

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Scan Signals

Feedback

The following is an example of the set_dft_signal command specifying a scan-in port. If
you enter

dc_shell> set_dft_signal -view spec -port scan_in -type ScanDataIn
DFT Compiler responds with the following:

Accepted dft signal specification for modes: all_dft

In the preceding example, the -view spec option indicates that the specified ports are to
be used during DFT scan insertion and that DFT Compiler is to perform the connections.
In this example, scan_in is the name of the scan-in port that the insert_dft command
uses. (The other value of the -view argument is -existing_dft, which directs the tool to
use the specified ports as is because they are already connected.)

When the insert_dft command creates additional ports for scan test signals, it assigns a
name to each new port. You can control the naming convention by using the port namenaming style variablestest portnaming style variablesscan-test signals, port naming style variablesport naming
style variables shown in Table 27.

Table 27 Port Naming Style Variables

Name Default

test_scan_in_port_naming_style variableport nametest_scan_in_port_naming_styleenvironment variablestest_scan_in_port_naming_stylevariablesenvironmenttest_scan_in_port_naming_styletest_scan_in_port_naming_style test_si%s%s

test_scan_out_port_naming_style variableport nametest_scan_out_naming_styleenvironment variablestest_scan_out_port_naming_stylevariablesenvironmenttest_scan_out_port_naming_styletest_scan_out_port_naming_style test_so%s%s

test_scan_enable_port_naming_style variableport nametest_scan_enable_port_naming_styleenvironment variablestest_scan_enable_port_naming_stylevariablesenvironmenttest_scan_enable_port_naming_styletest_scan_enable_port_naming_style test_se%s

test_scan_enable_inverted_port_naming_ style variableport nametest_scan_enable_inverted_port_naming_styleenvironment variablestest_scan_enable_inverted_port_naming_stylevariablesenvironmenttest_scan_enable_inverted_port_naming_styletest_scan_enable_inverted_port_naming_style test_sei%s

test_clock_port_naming_style variableport nametest_clock_port_naming_styleenvironment variablestest_clock_port_naming_stylevariablesenvironmenttest_clock_port_naming_styletest_clock_port_naming_style test_c%s

test_scan_clock_port_naming_style variableport nametest_scan_clock_port_naming_styleenvironment variablestest_scan_clock_port_naming_stylevariablesenvironmenttest_scan_clock_port_naming_styletest_scan_clock_port_naming_style test_sc%s

test_scan_clock_a_port_naming_style variableport nametest_scan_clock_a_port_naming_styleenvironment variablestest_scan_clock_a_port_naming_stylevariablesenvironmenttest_scan_clock_a_port_naming_styletest_scan_clock_a_port_naming_style test_sca%s

test_scan_clock_a_port_naming_style variableport nametest_scan_clock_a_port_naming_styleenvironment variablestest_scan_clock_a_port_naming_stylevariablesenvironmenttest_scan_clock_a_port_naming_styletest_scan_clock_b_port_naming_style test_scb%s

test_mode test_mode%s

test_point_clock none

Synopsys® TestMAX™ DFT User Guide
T-2022.03

221

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Scan Signals

Feedback

Follow these guidelines when using the set_dft_signal command:

• Use the set_dft_signal command for scan insertion and for design rule checking.
The set_dft_signal command indicates I/O ports that are to be used as scan
ports. After the insert_dft command connects these ports, it places the necessary
signal_type attributes on the ports for post-insertion design rule checking.

• Use the set_dft_signal -view existing_dft command if you read in an
ASCII netlist and you need to perform design rule checking. Before you use the
set_dft_signal command, the ASCII netlist does not contain the signal_type
attributes annotated by scan insertion. Without these attributes, dft_drc does not
know which ports are scan ports and therefore reports that the design is untestable.

• Use the set_dft_signal -view existing_dft command if the ports in your design
are already connected and no connection is to be made by DFT Compiler.

• Use the set_dft_signal -view spec command if the connections do not exist in
your design and you expect DFT Compiler to make the connections for you.

Using the -view spec and -view existing_dft Arguments

Unlike other tools used in the implementation flow, DFT Compiler changes the functionality
of your design such that the design can operate in either functional (“mission”) mode or
test mode.

To construct this dual modality, DFT Compiler needs to know what already exists in the
design. You use the -view existing_dft option with the set_dft_signal command
to provide such information. The tool then uses this information to perform pre-insertion
design rule checking (DRC) to determine the elements that can be incorporated into scan
chains.

Typical examples that use the -view existing_dft option include

• Clock signals:

set_dft_signal -view existing_dft -type ScanClock -port \
 clk -timing {45 55}

• Asynchronous set and reset signals:

set_dft_signal -view existing_dft -type Reset -port rst \
 -active_state 0

By default, DFT Compiler creates new ports in the design if they are needed. You can
specify which existing ports the tool uses to build the DFT structures by using the -view
spec option with the set_dft_signal command.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

222

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Scan Signals

Feedback

Typically, the -view spec option is used to specify ports that are to function as scan-in
and scan-out ports (either dedicated scan-in and scan-out ports or shared functional ports
used also as scan-in and scan-out ports), such as

set_dft_signal -view spec -type ScanDataIn -port scan_in_1
set_dft_signal -view spec -type ScanDataOut -port scan_out_1

and

set_dft_signal -view spec -type ScanDataIn -port data_in_bus_2
set_dft_signal -view spec -type ScanDataIn -port data_out_bus_2

As a general rule,

• If the information is needed for pre-insertion DRC, then it should be specified by using
the -view existing_dft option.

• If the information is needed to build DFT structures, then is should be specified by
using the -view spec option.

Allocating Scan Ports

Ports that are defined to be scan-in and scan-out data ports are used in the order specified
by the commands. For example, suppose that you identify three scan-in data ports and
three scan-out data ports as follows:

set_dft_signal -type ScanDataIn -port [list SIN1 SIN2 SIN3]
set_dft_signal -type ScanDataOut -port [list SOUT1 SOUT2 SOUT3]

DFT Compiler allocates the listed ports to scan-in and scan-out functions as follows:

• If you specify two standard scan chains, the tool uses only the first two of the listed
scan-in ports, SIN1 and SIN2, and only the first two listed scan-out ports, SOUT1 and
SOUT2. SIN3 and SOUT3 are not used for scan chain connection purposes.

• If you specify three standard scan chains, the tool uses all of the listed scan-in and
scan-out ports: SIN1, SIN2, SIN3, SOUT1, SOUT2, and SOUT3.

• If you specify four standard scan chains, the tool first uses the three designated scan-
in and three designated scan-out ports. For the fourth chain, it creates an additional
dedicated scan-in port and an additional scan-out port. The scan-out port can be an
existing output port connected to the output of a flip-flop, which can be reused as a
scan-out port, or it can be a new dedicated output port.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

223

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Scan Signals

Feedback

Using -type Constant versus Using -type TestMode

The difference between Constant and TestMode signal definitions is as follows:

• Constant signal definitions specify the value of the signal in test mode, but they do
not specify anything about the signal's value in functional mode. Figure 66 shows the
behavior of a Constant signal in the functional and test modes.

Figure 66 Constant Signal Specification

CLK

CLK_EN
U_CG

CLK

CLK_EN
U_CG

Functional mode: Test mode:

1 (-type Constant)
• TestMode signal definitions specify the value of the signal in both test mode and

functional mode. Figure 67 shows the behavior of a Constant signal in the functional
and test modes.

Figure 67 Design With a Controlled Clock Signal

RSTN

RST_DIS

RSTN

RST_DIS

Functional mode: Test mode:

1 (-type TestMode)0 (-type TestMode)
This difference affects the generation of verification setup files, which are specified with
the set_svf command. Verification setup files contain information about the functional
mode values for any defined DFT signal. This allows Formality equivalence checking to
disable the test logic added by DFT Compiler when the synopsys_auto_setup variable is
set to true.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

224

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Scan Signals

Feedback

This difference affects verification setup file generation for the preceding examples as
follows:

• The Constant signal definition does not result in any verification setup file directives
because it contains no information about the functional mode value of CLK_EN.

• The TestMode signal definition specifies that the functional mode value for the
RST_DIS signal is 1. This results in the following verification setup file directive:

guide_scan_input \
 -design { top } \
 -disable_value 0 \
 -ports { RST_DIS }

Selecting Test Ports
By default, DFT Compiler creates dedicated test ports as needed, but it also minimizes
the number of dedicated test ports by sharing scan outputs with functional ports when the
design contains scannable cells that directly drive functional ports.

You can also share ports between test and normal operation, which minimizes the number
of dedicated test ports required for internal scan. If your semiconductor vendor does
not support this configuration, you can request dedicated scan output ports. Always use
dedicated ports for scan-enable and test clock signals.

The following topics describe how to select and define existing ports in your design as test
ports:

• Defining Existing Unconnected Ports as Scan Ports

• Sharing a Scan Input With a Functional Port

• Sharing a Scan Output With a Functional Port

• Controlling Subdesign Scan Output Ports

Defining Existing Unconnected Ports as Scan Ports
You can define existing unconnected ports in your RTL description for use as test ports.
These are known as placeholder scan ports or scan portdummydefinitionsdummy scan portdummy scan ports. This approach allows
you to use the same testbench for the RTL and gate-level implementations of your design.

Use the set_dft_signal commandcommandsset_dft_signalset_dft_signal command to instruct DFT Compiler to use these ports:

dc_shell> set_dft_signal -type ScanDataIn -view spec \
 -port SI1

dc_shell> set_dft_signal -type ScanEnable -view spec \
 -port SE \
 -active_state 1

Synopsys® TestMAX™ DFT User Guide
T-2022.03

225

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Scan Signals

Feedback

dc_shell> set_dft_signal -type ScanDataOut -view spec \
 -port SO

Sharing a Scan Input With a Functional Port
scan inputsharingBy default, DFT Compiler always creates a dedicated scan input port, sharingscan input port. To share a scan
input port with a specified existing functional port, use the commandsset_dft_signalset_dft_signal commandset_dft_signal command.

dc_shell> set_dft_signal -type ScanDataIn -view spec \
 -port DATA_in[0]
bidirectional portsusing asscan inputscan inputbidirectionalIf you select a bidirectional port as the scan input port, DFT Compiler automatically inserts
the necessary bidirectional control logic to enable the input path during scan shift.

Sharing a Scan Output With a Functional Port
scan outputsharingBy default, if a scannable cell directly drives an output port in the current design, DFT
Compiler automatically uses it as the last cell in the scan chain. DFT Compiler disrupts
the ordering to place this cell at the end of the scan chain. If multiple scannable sequential
cells directly drive output ports, DFT Compiler uses the cell that would have been stitched
closest to the end of the scan chain. If the scan cell is the last cell in a scan segment,
the entire scan segment is placed at the end of the scan chain. Use the preview_dft commandpreview_dft command<seeitalic>see also</> previewing[preview_dft commandzzz]commandspreview_dftpreview_dft
command to see if a cell or segment has been moved to the end of the scan chain to
prevent a dedicated scan output port.

To select the functional port to be used as a scan output port, use the set_dft_signal
command.

dc_shell> set_dft_signal -type ScanDataOut -view spec \
 -port DATA_out[0]
If a scannable sequential cell drives the specified output port, DFT Compiler places that
cell last in the scan chain. Otherwise, DFT Compiler automatically adds the control or
multiplexing logic required to share the scan output port with the functional output port. bidirectional

portsusing asscan outputscan outputthree-statescan outputbidirectionalIf you select a bidirectional or three-state port as the scan output port, DFT Compiler
automatically inserts the necessary control logic to enable the output path during scan
shift.

By default, if the specified port is tied to logic 0 or logic 1, DFT Compiler ignores the
constant value during scan insertion and drives the port directly as a scan output, as
shown in Figure 68. This behavior ensures that no additional logic is added at the port if it
was undriven in the RTL and tied to logic 0 during synthesis.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

226

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Scan Signals

Feedback

Figure 68 Scan Output Port With Constant MUXing Disabled

IDOUT[2] IDOUT[2]

D
SI
SE

QD
SI
SE

Q

If the existing constant value driving the port is required for proper operation in functional
mode, set the test_mux_constant_so variable to true test_mux_constant_so variablevariablestest_mux_constant_soscan outputsharing with constant signal. In this case, DFT Compiler
multiplexes the scan-out signal with the constant value, using the scan-enable signal to
control the multiplexer, as shown in Figure 69.

Figure 69 Scan Output Port With Constant MUXing Enabled

IDOUT[2] IDOUT[2]

D
SI
SE

QD
SI
SE

Q

scan outputdedicatingIf your semiconductor vendor requires dedicated top-level scan output ports or you
prefer them, use the set_scan_configuration command to always use dedicated scan
outputs:

-create_dedicated_scan_out_ports option, set_scan_configuration commandset_scan_configuration command-create_dedicated_scan_out_ports optiondc_shell> set_scan_configuration \
 -create_dedicated_scan_out_ports true

Controlling Subdesign Scan Output Ports
test_dedicated_subdesign_scan_outs variableBy default, when DFT Compiler routes scan chains through subdesigns, it uses existing
subdesign output ports driven by scan cells wherever possible. This minimizes the
number of new output ports added to subdesigns, and it can reduce the amount of
design uniquification required for multiply-instantiated designs. However, it can also add
the loading of external scan routes outside the subdesign to functional nets inside the
subdesign.

To always create dedicated scan-out ports on subdesigns, set the following variable:

dc_shell> test_dedicated_subdesign_scan_outs variablevariablestest_dedicated_subdesign_scan_outsset_app_var test_dedicated_subdesign_scan_outs true
Note that this variable setting alone does not guarantee isolation of the functional path
from external scan path loading. You must also apply the set_fix_multiple_port_nets
command to subdesigns where the functional subdesign outputs should be isolated from
external scan path loading. For more information about this command, see the man page.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

227

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Scan Signals

Feedback

Controlling Scan-Enable Connections to DFT Logic
By default, DFT Compiler uses a global scan-enable signal for DFT logic connections. In
some cases, you might want to create multiple scan-enable signals and control how they
connect to the DFT logic.

The following topics describe how to control scan-enable connections to DFT logic:

• Associating Scan-Enable Ports With Specific Scan Chains

• Defining Dedicated Scan-Enable Signals for Scan Cells

• Connecting the Scan-Enable Signal in Hierarchical Flows

• Preserving Existing Scan-Enable Pin Connections

Associating Scan-Enable Ports With Specific Scan Chains
scan chainassociate scan-enable portsTo associate a specific port with specific scan chains, use the commandsset_dft_signalset_dft_signal commandset_dft_signal and
set_scan_path commands, as follows:

dc_shell> set_dft_signal -type ScanEnable -view spec \
 -port port_name -active_state 1

dc_shell> set_scan_path {chain_names} -view spec \
 -scan_enable port_name
If the condition set with these commands cannot be met, a warning is issued during scan
preview and scan insertion.

Defining Dedicated Scan-Enable Signals for Scan Cells
By default, DFT Compiler chooses an available ScanEnable signal to connect to the scan-
enable pins of scan cells. However, you can also define a dedicated ScanEnable signal to
use for these scan-enable pin connections.

Specifying a Global Scan-Enable Signal

You can define a global ScanEnable signal to use for the scan-enable pins of scan cells
by using the -usage scan option when defining the signal with the set_dft_signal
command:

set_dft_signal
 -type ScanEnable
 -view spec
 -usage scan
 -port port_list

To define a signal with the scan usage, the -view option must be set to spec.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

228

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Scan Signals

Feedback

When you define a ScanEnable signal with the scan usage, the insert_dft command is
limited to using only that signal to connect to the scan-enable pins of scan cells. If there
are insufficient ScanEnable signals for other purposes, DFT Compiler creates additional
ScanEnable signals as needed.

You can use the report_dft_signal and remove_dft_signal commands for reporting
and removing the specification, respectively.

Specifying Object-Specific Scan-Enable Signals

You can also define dedicated ScanEnable signals for specific parts of the design by using
the -connect_to option and associated options of the set_dft_signal command:

set_dft_signal
 -type ScanEnable
 -view spec
 -usage scan
 -port port_list
 [-connect_to object_list]
 [-connect_to_domain_rise clock_list]
 [-connect_to_domain_fall clock_list]
 [-exclude object_list]
The -connect_to option specifies a list of design objects that are to use the specified
ScanEnable signal. The supported object types are

• Scan cells

• Hierarchical cells

• Designs

• Test clock ports

This allows you to make clock-domain-based signal connections. It includes scan cells
clocked by the specified test clocks. The functional clock behavior is not considered.

• Scan-enable pins of CTL-modeled cores

The -connect_to_domain_rise and -connect_to_domain_fall options accept a test
clock port list and work the same as the -connect_to option, except that they apply only
to rising-edge and falling-edge scan cells, respectively.

You can also use the -exclude option to specify a list of scan cells, hierarchical cells, or
design names to exclude from the object-specific control signal.

The following example defines two ScanEnable signals, named SE_CLK1 and SE_CLK2,
to connect to the scan-enable pins of test clock domains CLK1 and CLK2, respectively:

dc_shell> set_dft_signal -type ScanClock -view existing_dft \
 -port {CLK1 CLK2} -timing {45 55}
dc_shell> set_dft_signal -type ScanEnable -view spec -usage scan \

Synopsys® TestMAX™ DFT User Guide
T-2022.03

229

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Scan Signals

Feedback

 -port SE_CLK1 -connect_to {CLK1}
dc_shell> set_dft_signal -type ScanEnable -view spec -usage scan \
 -port SE_CLK2 -connect_to {CLK2}
Note the following limitation:

• You cannot specify object-specific scan-enable specifications for pipelined scan-enable
signals.

Connecting the Scan-Enable Signal in Hierarchical Flows
When you insert DFT at a top level that contains cores, which are DFT-inserted blocks
represented by CTL models, the cores already contain complete scan-enable networks.
Instead of connecting the top-level ScanEnable signal to target pins inside the core, DFT
Compiler must connect to ScanEnable signal pins at the core boundary.

When ScanEnable signals at the core and/or top level are defined with the -usage option
of the set_dft_signal command, DFT Compiler attempts to determine which top-
level signal should drive each core-level signal, using the priorities shown in Table 22 on
page 131.

You can override the default connection behaviors for cores by using object-specific signal
definitions at the top level, applied using the set_dft_signal -connect_to command
and associated options:

set_dft_signal
 -type ScanEnable
 -view spec
 -usage scan | clock_gating
 -port port_list
 [-connect_to object_list]
 [-connect_to_domain_rise clock_list]
 [-connect_to_domain_fall clock_list]
 [-exclude object_list]
Object-specific specifications are described in Specifying Object-Specific Scan-Enable
Signals on page 229. However, not all object types accepted by the object_list argument
apply to cores. The object types that apply to cores are

• Test clock ports

This allows you to make clock-domain-based signal connections to cores. It includes
core-level scan-enable pins associated with the specified test clocks. The functional
clock behavior is not considered.

• Scan-enable pins of CTL-modeled cores

This allows you to make direct pin-to-pin connections from top-level signal sources to
core-level pins.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

230

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Scan Signals

Feedback

Specifying Domain-Based Connections to Core Scan-Enable Pins

When you specify a top-level domain-based signal connection, DFT Compiler uses
information inside a core’s CTL model to determine the core scan-enable pins associated
with each core clock. To ensure that this information is present in the model, the following
requirements must be observed during core creation:

• Core-level ScanEnable signals must be defined using the -usage option of the
set_dft_signal command. This ensures that the core’s internal scan-enable signal is
not used outside its intended usage.

• Core-level ScanEnable signals defined with a usage of clock_gating must also be
defined as domain-specific signals using the -connect_to clock_list option of the
set_dft_signal command. This ensures that clock-specific clock-gating annotations
are included in the CTL model.

Example 17 shows part of a core-level ASCII CTL model that contains clock domain
information for a scan-enable signal defined with a usage of scan.

Example 17 Scan Chain Clock Information in an ASCII CTL Model
CTL all_dft {
 ...
 Internal {
 "SE_SCAN" {
 CaptureClock "CLK" {
 LeadingEdge;
 }
 DataType User "ScanEnableForScan" {
 ActiveState ForceUp;
 }
 }
 }
}

Example 18 shows part of a core-level ASCII CTL model that contains clock domain
information for a scan-enable signal defined with a usage of clock_gating. The domain-
based signal specification causes the CaptureClock constructs to be included.

Example 18 Clock-Gating Clock Information in an ASCII CTL Model
CTL all_dft {
 ...
 Internal {
 "SE_CG" {
 CaptureClock "CLK" {
 LeadingEdge;
 }
 DataType User "ScanEnableForClockGating" {
 ActiveState ForceUp;
 }

Synopsys® TestMAX™ DFT User Guide
T-2022.03

231

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Scan Signals

Feedback

 }
 }
}

The CTL model information for a signal can contain multiple DataType constructs (for
signals defined with multiple usages) and multiple CaptureClock constructs (for signals
associated with multiple clocks).

Consider a core with two scan-enable pins, where pin SE1 is associated with CLK1
and pin SE2 is associated with CLK2. The following top-level commands connect
corresponding top-level scan-enable signals TOP_SE1 and TOP_SE2 to these core-level
pins indirectly using domain-based specifications:

dc_shell> set_dft_signal -type ScanClock -view existing_dft \
 -port {CLK1 CLK2} -timing {45 55}
dc_shell> set_dft_signal -type ScanEnable -view spec -usage scan \
 -port TOP_SE1 -connect_to {CLK1}
dc_shell> set_dft_signal -type ScanEnable -view spec -usage scan \
 -port TOP_SE2 -connect_to {CLK2}
Specifying Connections Directly to Core Scan-Enable Pins

You can specify pin-based signal connection specifications that connect any top-level
ScanEnable signal to any core-level ScanEnable pin. These pin-based connection
specifications override the default connection behavior, and there is no requirement for the
top-level and core-level signal usages to match.

Consider a core with two scan-enable pins, where pin SE1 is associated with CLK1 and
pin SE2 is associated with CLK2. The following top-level commands connect top-level
scan-enable signals to corresponding core-level pins using direct core pin specifications:

dc_shell> set_dft_signal -type ScanEnable -view spec -usage scan \
 -port TOP_SE1 -connect_to {CORE/SE_SCAN1}
dc_shell> set_dft_signal -type ScanEnable -view spec -usage scan \
 -port TOP_SE2 -connect_to {CORE/SE_SCAN2}

Preserving Existing Scan-Enable Pin Connections
During DFT insertion, DFT Compiler identifies the scan-enable pins of scan cells and scan
cores that should be connected to the global scan-enable signal. These are known as
scan-enable target pins.

By default, if a scan-enable target pin already has a connection, DFT Compiler
disconnects it to make the connection to a scan-enable signal. During DFT insertion, the
insert_dft command issues a TEST-394 warning to note the disconnection:

Warning: Disconnecting pin 'memwrap/UMEM/SE' to route scan enable.
(TEST-394)

Synopsys® TestMAX™ DFT User Guide
T-2022.03

232

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Scan Signals

Feedback

To preserve existing connections to scan-enable target pins during DFT insertion, set the
following variable:

dc_shell> set test_keep_connected_scan_en true
In this case, the insert_dft command issues a TEST-410 warning to confirm that the
existing connection is kept:

Warning: Not disconnecting pin 'memwrap/UMEM/SE' to route scan enable.
(TEST-410)

For more information, see the man page. For an example application, see SolvNet article
034774, “How To Connect DFT Signals to Hierarchical Pins of Verilog Wrappers.”

Controlling Buffering for DFT Signals
To have synthesis buffer a DFT signal, use the set_driving_cellset_dft_signal commandcommandsset_dft_signal command to specify
the source port’s drive characteristics:

dc_shell> set_driving_cell -lib_cell BUFX4 test_scan_enable
To prevent synthesis from buffering a DFT signal, use the set_ideal_networkset_dft_signal commandcommandsset_dft_signal command
to configure the source port as the driver of an ideal network:

dc_shell> set_ideal_network test_scan_enable

Suppressing Replacement of Sequential Cells
Use the set_scan_element commandsyntaxcommandsset_scan_elementsyntaxset_scan_element command to determine whether specific sequential cells are
to be replaced by scan cells that become part of the scan path during the insert_dft
command.

For full-scan designs, the insert_dft command replaces all nonviolated sequential cells
with equivalent scan cells by default. Therefore, you do not need to set the scan_element
attribute unless you want to suppress replacement of sequential cells with scan cells. To
prevent such replacement for certain cells, set the scan_element attribute to false for
those cells.

Note:
If you want to specify which scan cells are to be used for scan replacement, use
the set_scan_register_type command.

You should not use the set_scan_element true command if you use the compile -scan
command to replace elements.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

233

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnet.synopsys.com/retrieve/034774.html
https://solvnet.synopsys.com/retrieve/034774.html

Chapter 9: Architecting Your Test Design
Architecting Scan Signals

Feedback

In Logic Scan Synthesis
In logic scan synthesis, the set_scan_element false command unscans the cell on a
design in which scan replacement has already occurred.

Changing the Scan State of a Design
In certain circumstances, you might find it necessary to manually set the scan state of a
design. Use the set_scan_state command to do so. The set_scan_state command
has three options: unknown, test_ready, and scan_existing.

If there are nonscan elements in the design, use the set_scan_element false command
to properly identify them.

You can check the test state of the design by using the report_scan_state command.

One situation in which you would set the scan state is if you needed to write a netlist of a
test-ready design and read it into a third-party tool. After making modifications, you can
bring the design back into DFT Compiler as shown in Example 19.test_ready, setting scan state to

Example 19 Changing the Scan State of a Design
dc_shell> read_file -format verilog my_design.v

dc_shell> report_scan_state

**
Report : test
 -state
Design : MY_DESIGN
Version: 2002.05
Date : Wed Jul 25 18:12:39 2001
**

Scan state : unknown scan state

1
dc_shell> set_scan_state test_ready
Accepted scan state.
1
dc_shell> report_scan_state

**
Report : test
 -state
Design : MY_DESIGN
Version: 2002.05
Date : Wed Jul 25 18:14:47 2001
**

Synopsys® TestMAX™ DFT User Guide
T-2022.03

234

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Scan Signals

Feedback

Scan state : scan cells replaced with loops

Caution:
You do not need to set the scan state if you are following the recommended
design flow.

Removing Scan Configurations
The commandsremove_scan_configurationsyntaxremove_scan_configuration commandsyntaxscan configurationremovingreset_scan_configuration command removes scan specifications from the current
design. Note that this command deletes only those specifications you defined with the
set_scan_configuration command.

Specifications defined using other commands are removed by issuing the corresponding
remove command. For example, you use the remove_scan_path command to remove the
path specifications you defined with the set_scan_path command.

Note that the reset_scan_configuration command does not change your design. It
merely deletes specifications you have made.

You can use the reset_scan_configuration command to remove explicit specifications
of synthesizable segments. When you remove an explicit specification, the multibit
component inherits the current implicit specification.

Note:
The reset_scan_configuration command does not affect the settings
made with the set_scan_register_type command. These settings must be
removed with the remove_scan_register_type command.

Keeping Specifications Consistent
The set of user specifications scan specificationsconsistencycontributing to the definition of the scan design must
be consistent. User-supplied specification commands forming part of a consistent
specification have the following characteristics:

• Each specification command is self-consistent. It cannot contain mutually exclusive
requirements. For example, a command specifying the routing order of a scan chain
cannot specify the same element in more than one place in the chain.

• All specification commands are mutually consistent. Two specification commands
must not impose mutually exclusive conditions on the scan design. For example, two
specification commands that place the same element in two different scan chains are
mutually incompatible.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

235

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Scan Signals

Feedback

• All specification commands yield a functional scan design. You cannot impose a
specification that leads to a nonfunctional scan design. For example, a specification
that mandates fewer scan chains than the number of incompatible clock domains is not
permitted.

The number of clock domains in your design, together with your clock-mixing specification,
determines the minimum number of scan chains in your design. If you specify an exact
number of scan chains smaller than this minimum, the insert_dft command issues a
warning message and implements the minimum number of scan chains.

Synthesizing Three-State Disabling Logic
DFT Compiler can, by default, handle three-state nets. It does so with the following
functionality:

• By default, it distinguishes between internal and external three-state nets.

• By default, it prevents bus contention by causing only one three-state driver to be
active at one time.

• By default, it modifies internal three-state nets in bottom-up design methodology to
make exactly one three-state driver active.

bus contention, preventing during scan shiftTo prevent bus contention or bus float, internal three-state nets in your design must have a
single active driver during scan shift. DFT Compiler automatically performs this task.

DFT Compiler determines if the internal three-state nets in your design meet this
requirement.

three-state netspreventingbus contentionthree-state netsinserting disabling logicprocessBy default, DFT Compiler adds disabling logic to internal three-state nets that do not meet
this requirement. The scan-enable signal controls the disabling logic and forces a single
driver to be active on the net throughout scan shift.

In some cases, DFT Compiler adds redundant disabling logic because three-state netsinserting disabling logiclimitationslimitationsinserting three-state disabling logicthe disabling logic
checks for internal three-state nets are limited.

Figure 70 shows the simple internal three-state net used as an example throughout this
section.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

236

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Scan Signals

Feedback

Figure 70 Internal Three-State Net Example

e3

d3

e2

d2

e1

d1

u3

u2

u1

o1

Figure 71 shows the disabling logic added by DFT Compiler during the insert_dft
process.

Figure 71 Three-State Output With Disabling Logic

Drivers inactive
during scan shift

Driver active
during scan shift

e3

d3

e2

d2

e1

d1

u3

u2

u1

o1

test_se

three-state netspreventinginsertion of disabling logicIf the design already contains logic that prevents or can be configured to prevent
the occurrence of bus contention and bus float during scan shift, you can use the
set_dft_configuration command to prevent DFT Compiler from inserting the disabling
logic:

dc_shell> set_dft_configuration -fix_bus disable

Synopsys® TestMAX™ DFT User Guide
T-2022.03

237

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Scan Signals

Feedback

During scan shift, DFT Compiler does not check for bus contention or bus float conditions.
If you do not add the three-state disabling logic, verify that no invalid conditions occur
during scan shift.

If you want to perform bottom-up scan insertion, you must choose a strategy for
handling the insertion of three-state enabling and disabling logic. If you use the
set_dft_configuration -fix_bus disable command, your design will be free of bus
float or bus contention during scan shift. However, three-state netsdefault insert_scan behavior andinsert_dft commandthree-state net behaviorcommandsinsert_dftdefault three-state net behaviorduring bottom-up scan insertion, the
insert_dft command might be forced to modify modules that it has already processed.

This strategy is easy to implement in scripts but can result in repeated modifications to
subblocks. Note that DFT Compiler does recognize three-state enabling and disabling
logic that it has previously inserted in a submodule and so does not insert unnecessary or
redundant enabling and disabling logic.

three-state netsdesign strategy, defaultdesign strategy, three-state netsFor example, consider a top-level design with two instances of a module of type
sub_type_1. Both of these instances drive a three-state bus that, in turn, drives inputs
on another module. If you perform scan insertion with default settings on the design
sub_type_1, then in the top design, the three-state ports that drive this common bus will
be turned off in scan shift, thus creating a float condition. In other words, when you run
the insert_dft command at the top level with default options selected, the insert_dft
command modifies one of the two instances of sub_type_1. As a result, each net within
the bus has a single enabled driver during scan shift.

You can consider two other, nondefault, strategies when you want to use bottom-up scan
insertion.

bottom-up design flowinserting three-state disabling logicYou can synthesize three-state disabling logic at the top level only. Synthesis of disabling
logic at the top level guarantees a consistent implementation across all subdesigns. Use
the set_dft_configuration -fix_bus disable command to disable synthesis of
three-state disabling logic in subdesigns.

dc_shell> # subdesign command sequence
dc_shell> current_design subdesign
dc_shell> set_dft_configuration -fix_bus disable
...
dc_shell> insert_dft

dc_shell> # top-level command sequence
dc_shell> current_design top
dc_shell> set_dft_configuration -fix_bus enable
...
dc_shell> insert_dft
A third option is to use the preview_dft -show {tristates} command before you
run the set_dft_configuration command on each submodule to determine what
enabling and disabling logic should be inserted on the external three-state nets for each
module. This strategy is the most complex to use, and your scripts need to be specific

Synopsys® TestMAX™ DFT User Guide
T-2022.03

238

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Scan Signals

Feedback

to each design. However, if you implement this method correctly, you can assemble
submodules into a complete testable design without further modification of a submodule
by the set_dft_configuration command.

See Also

• Previewing Additional Scan Chain Information on page 596 for more information
about previewing tristate conditioning logic

Configuring Three-State Buses
The set_dft_configuration command can configure three-state buses according to
settings applied by the set_autofix_configuration command.

If the -fix_bus option of the set_scan_configuration command is set to disable,
no changes to the three-state driver logic are made, regardless of any other three-state
settings.

Configuring External Three-State Buses
On external three-state nets, the -type external_bus option of the
set_autofix_configuration command controls three-state disabling behavior.
If you want to make no changes to the external three-state nets, use the
-method no_disabling option. If you want to allow exactly one three-state driver to be
enabled on each external three-state net, you can use the -method enable_one option.
If you want to ensure that all external three-state nets are disabled, use the -method
disable_all option, which is the default behavior for the external_tristates type.

You might have multiple modules that are stitched together at the top level, and you
might want to be sure that one of those modules contains the active three-state drivers
while the other modules are all off. You can do that by using a bottom-up scan insertion
methodology and by setting the set_autofix_configuration command appropriately for
each module before you run the insert_dft command on that module.

Configuring Internal Three-State Buses
The same rules apply for internal three-state nets as for external three-state nets. If you
allow all your subdesigns to be set to the default behavior, insert_dft can choose a
three-state driver on the net to make active and can disable all others.

Overriding Global Three-State Bus Configuration Settings
You can override these internal and external three-state net settings by using the
set_autofix_element command, which can be applied to individual nets in your design.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

239

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Scan Signals

Feedback

This command applies only to the nets and not to individual three-state drivers.

You might have a situation in which multiple instances of the same design must have
separate three-state configuration settings. You can achieve this by uniquifying the
particular instances and then using the set_autofix_element command to define the
type of enabling or disabling logic you want to see applied on that instance.

Disabling Three-State Buses and Bidirectional Ports
There are several different methods you can use to disable logic to ensure that three-state
buses and bidirectional ports are properly configured during scan shift:

• To set the default behavior for top-level three-state specifications, use the following
command:

set_dft_configuration \
 -fix_bus enable | disable

• To set the default behavior for top-level bidirectional port specifications, use the
following command:

set_dft_configuration \
 -fix_bidirectional enable | disable

• To set global three-state specifications, use the following command:

set_autofix_configuration \
 -type internal_bus | external_bus \
 -method disable_all | enable_one | no_disabling

• To set global bidirectional port specifications, use the following command:

set_autofix_configuration \
 -type bidirectional \
 -method input | output | no_disabling

• To set local three-state specifications on a specific list of objects, use the following
command:

set_autofix_element \
 -type internal_bus | external_bus \
 -method input | output | no_disabling \
 object_list

• To set local bidirectional port specifications on a specific list of objects, use the
following command:

set_autofix_element \
 -type bidirectional \
 -method input | output | no_disabling \
 object_list

Synopsys® TestMAX™ DFT User Guide
T-2022.03

240

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Scan Signals

Feedback

Handling Bidirectional Ports
meeting vendor requirementsbidirectional portsbidirectional portsmeeting vendor requirementsvendor requirements, meetingEvery bidirectional portshandlingsemiconductor vendor has specific requirements regarding the treatment of
bidirectional ports during scan shift. Some vendors require that bidirectional ports be held
in input mode during scan shift, some require that bidirectional ports be held in output
mode during scan shift, and some have no preference. DFT Compiler provides the ability
to set the bidirectional mode both globally and individually.

Before you insert control logic for bidirectional ports, understand your vendor’s
requirements for these cells during scan shift.

If the -fix_bidirectional disable option of the bidirectional portsadding disabling logic todisabling logicadding to bidirectional portsset_dft_configuration command
is set, no disabling logic is added to any bidirectional ports, regardless of any other
bidirectional port settings.

Setting Individual Bidirectional Port Behavior
To specify bidirectional behavior on individual ports, use the set_autofix_element
command.

Use the reset_autofix_element command to remove all set_autofix_element
specifications for the current design.

Use the preview_dft -show {bidirectionals} command to see the bidirectional port
conditioning that will be implemented for each bidirectional port in a design.

See Also

• Previewing Additional Scan Chain Information on page 596 for more information
about previewing bidirectional conditioning logic

Fixed Direction Bidirectional Ports
Bidirectional ports that have enables connected to constant values and that are therefore
always configured in either input mode or output mode are referred to as bidirectional portsdegenerateddegenerated
bidirectional ports. DFT Compiler does not add control logic for degenerated bidirectional
ports.

DFT Compiler recognizes constant values on the enable pins of bidirectional ports for the
following cases:

• Enable forced to a constant value by a tie-off cell in the circuit

• Enable forced to a constant value by a set_dft_signal command

Synopsys® TestMAX™ DFT User Guide
T-2022.03

241

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Test Clocks

Feedback

Assigning Test Port Attributes
If you always save and read mapped designs in the .ddc format, you usually do not need
to explicitly set signal_type attributes. set_dft_signal commandcommandsset_dft_signalIf you do not save your design in .ddc format, you
must use the set_dft_signal command.

Note:
Use the set_dft_signal command for scan-inserted, existing-scan, and test-
ready designs.

When insert_dft sets attributes on test ports, for all scan styles, it creates the following
values:

• It places either a test_scan_enable or a test_scan_enable_inverted attribute on
scan-enable ports. The test_scan_enable attribute causes a logic 1 to be applied to
the port for scan shift. The test_scan_enable_inverted attribute causes a logic 0 to
be applied to the port for scan shift.test_scan_enable attributetest_scan_enable_inverted attribute

• Scan input ports are identified with the test_scan_in attribute. test_scan_in attribute

• Scan output ports are identified with the test_scan_out or test_scan_out_inverted
attribute.test_scan_out attributetest_scan_out_inverted attribute

Note that some scan styles require test clock ports on the scan cell.

Architecting Test Clocks
When DFT Compiler creates a test protocol, it uses defaults for the clock timing, based on
the clock type, unless you explicitly specify clock timing.

This topic shows you how to set test clocks and handle multiple clock designs. It includes
the following:

• Defining Test Clocks

• Specifying a Hookup Pin for DFT-Inserted Clock Connections

• Requirements for Valid Scan Chain Ordering

• Lock-Up Latch Insertion Between Clock Domains

• Automatically Creating Skew Subdomains Within Clock Domains

• Manually Creating Skew Subdomains at Associated Internal Pins

Synopsys® TestMAX™ DFT User Guide
T-2022.03

242

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Test Clocks

Feedback

• Manually Creating Skew Subdomains With Scan Skew Groups

• Defining Scan Chains by Scan Clock

• Handling Multiple Clocks in LSSD Scan Styles

Defining Test Clocks
To explicitly define test clocks in your design, use the set_dft_signal command. For
example,

dc_shell> set_dft_signal -view existing_dft -type ScanClock \
 -port CLK -timing {45 55}
Specify the clock signal type with the -type option. For the multiplexed flip-flop style, use
the ScanClock type. For other scan styles, see the man page.

Define the test clock waveform with the -timing option. The waveform definition is a pair
of values that specifies the rising-edge arrival time followed by the falling-edge arrival time.
Figure 72 shows a return-to-zero clock waveform definition.

Figure 72 Return-to-Zero Test Clock Waveform Definition

45ns 55ns 100ns0ns

set_dft_signal ... -timing {45 55}

Figure 73 shows a return-to-one clock waveform definition.

Figure 73 Return-to-One Test Clock Waveform Definition

45ns 55ns 100ns0ns

set_dft_signal ... -timing {55 45}

If you use the -infer_clock option of the create_test_protocol command to infer test
clocks in your design, the tool uses the default clock waveforms shown in Table 27.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

243

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Test Clocks

Feedback

Scan clock type First edge (ns) Second edge (ns)

Edge-triggered (non-LSSD styles) 45.0 55.0

Master clock (LSSD styles) 30.0 40.0

Slave clock (LSSD styles) 60.0 70.0

For all test clocks, the clock period is the value defined by the test_default_period
variable.

After defining or inferring your test clocks, you can verify their timing characteristics by
using the report_dft_signal command.

The rise and fall clock waveform values are the same as the values specified in the
statements that make up the STIL waveform section. The rise argument becomes the
value of the rise argument in the waveform statement in the test protocol clock group. The
fall argument becomes the value of the fall argument in the waveform statement in the test
protocol clock group.

Specifying a Hookup Pin for DFT-Inserted Clock Connections
In some cases, DFT Compiler might need to make a connection to an existing scan clock
network during DFT insertion. Some examples are

• Pipeline clock connections for automatically inserted pipelined scan data registers

• Test point clock connections for test points with flip-flops

• ATE clock connections for DFT-inserted OCC controllers

• Codec clock connections for serialized and streaming scan compression

• Self-test clock connections to the LogicBIST self-test controller and codec

By default, DFT Compiler makes the clock connection at the source port specified in the
-view existing_dft signal definition. However, if you want DFT Compiler to make the
clock connection at an internal pin, such as a pad cell or clock buffer output, you can
specify it with the -hookup_pin option in a subsequent -view spec signal definition. For
example,

dc_shell> set_dft_signal -view existing_dft -type ScanClock \
 -port CLK -timing {45 55}
dc_shell> set_dft_signal -view spec -type ScanClock \
 -port CLK -hookup_pin UCLKBUF/Z
You do not specify the clock waveform timing for the -view spec signal definition, but you
must specify the associated port with the -port option.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

244

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Test Clocks

Feedback

Requirements for Valid Scan Chain Ordering
This topic describes the requirements for valid scan chain ordering in the multiplexed flip-
flop scan style.

DFT Compiler generates valid mixed-clock scan chains based on the ideal test clock
timing. Scan chain cells are ordered by the ideal test clock edge times, as defined with
the -timing option of the set_dft_signal command. Cells clocked by later clock edges
are placed before cells clocked by earlier clock edges. This guarantees that all cells in the
scan chain get the expected data during scan shift.

Figure 74 shows the ideal test clock waveforms for two test clocks. The clock edges are
numbered by their edge timing order, with the latest clock edge indicated by (1).

Figure 74 Ideal Test Clock Waveforms for Two Test Clocks

(1
)

(3
)

(2
)

(4
)

Latest edges firstEarliest edges last

Figure 75 shows how DFT Compiler constructs a scan chain containing a scan cell
clocked by each clock edge. The scan cells are ordered with the cells clocked by the latest
clock edges coming first.

Figure 75 Scan Chain Cells for Two Test Clocks

(2)(1) (3) (4)

To maintain the validity of your scan chains, do not change the test clock timing after
assembling the scan structures.

Although DFT Compiler chooses an order that ensures correct shift function under ideal
clock timing, it cannot guarantee that capture problems will not occur. Capture problems
are caused by your logic functionality; modify your design to correct capture problems. For
more information, see Chapter 13, Pre-DFT Test Design Rule Checking.”

By default, when you request clock mixing within a multiplexed flip-flop scan chain, DFT
Compiler inserts lock-up latches to prevent timing problems. For more information, see
Lock-Up Latch Insertion Between Clock Domains on page 246.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

245

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Test Clocks

Feedback

Lock-Up Latch Insertion Between Clock Domains
This topic describes how the tool adds lock-up latches between clock domains in the
multiplexed flip-flop scan style.

scan lock-up elementdefinitionsscan lock-up latchlatch, scan lock-upA scan lock-up latch is a retiming sequential cell on a scan path that can address skew
problems between adjacent scan cells when clock mixing or clock-edge mixing is enabled.
DFT Compiler inserts them to prevent skew problems that might occur.

Consider the scan structure in Figure 76, where a scan cell clocked by CLK1 feeds a scan
cell clocked by CLK2, and both clocks are defined with the same ideal waveform definition.

Figure 76 Two Scan Cells Clocked by Two Different Clocks
D
SI
SE

Q

FF1

D
SI
SE

Q

FF2CLK1 CLK2

If both scan cells receive a clock edge at the same time, no timing violations occur.
However, if the CLK2 waveform at FF2 is delayed, perhaps due to higher clock tree
latency, a hold violation might result where FF2 incorrectly captures the current cycle’s
data instead of the previous cycle’s data. Figure 77 shows this hold violation for leading-
edge scan cells.

Figure 77 Timing for Two Leading-Edge Scan Cells Clocked by Two Different Clocks

CLK1

FF1/Q

CLK2 (delayed)

data1 data2

A lock-up latch prevents hold violations for scan cells that might capture data using a
skewed clock edge. It is a latch cell that is inserted between two scan cells and clocked by
the inversion of the previous scan cell’s clock. Figure 78 shows the same two scan cells
with a lock-up latch added.

Figure 78 Two Scan Cells With a Lock-Up Latch
D
SI
SE

Q

FF1

D
SI
SE

Q

FF2CLK1 CLK2
Lock-up latch

D Q

G

Synopsys® TestMAX™ DFT User Guide
T-2022.03

246

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Test Clocks

Feedback

The lock-up latch cell works by holding the previous cycle’s scan data while the current
cycle’s scan data is captured, effectively delaying the output data transition to the next
edge of the source clock. Figure 79 shows the lock-up timing behavior for the example.
Although this example uses return-to-zero clock waveforms, lock-up latch operation is
similar for return-to-one clock waveforms.

Figure 79 Timing for Two Leading-Edge Scan Cells With a Lock-Up Latch

CLK1

FF1/Q

LOCKUP/Q

CLK2 (delayed)

data2
(held)

data1
(held)

data1 data2

data1
(latch transparent)

data2
(latch transparent)

Lock-up latch operation for trailing-edge scan cells is similar to that of leading-edge scan
cells, except that the data is held into the next clock cycle as shown in Figure 80.

Figure 80 Timing for Two Trailing-Edge Scan Cells With a Lock-Up Latch

CLK1

FF1/Q

LOCKUP/Q

CLK2 (delayed)

data2
(held)

data1
(held)

data1 data2

data1
(trans.)

data2
(trans.)

By default, DFT Compiler adds scan lock-up latches as needed to multiplexed flip-flop
scan chains. Scan chain cells are ordered by the ideal test clock edge times, as defined
with the -timing option of the set_dft_signal command. Cells clocked by later clock

Synopsys® TestMAX™ DFT User Guide
T-2022.03

247

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Test Clocks

Feedback

edges are placed before cells clocked by earlier clock edges. Adjacent scan chain cells
clocked by different clock edges are handled as follows:

• When the scan cells are clocked by clock edges with different ideal clock edge timing,
DFT Compiler does not insert a lock-up latch. The second scan cell captures data
using an earlier clock edge, and DFT Compiler assumes this difference in the ideal
clock edge timing is sufficient to avoid a hold time violation.

• When the scan cells are clocked by clock edges with identical ideal clock edge timing,
DFT Compiler inserts a lock-up latch to avoid a potential hold violation due to clock
skew.

Note:
DFT Compiler builds scan paths that meet zero-delay timing (without clock
propagation delay or uncertainty). In Figure 79, if CLK2 is skewed later than
CLK1 by more than the active-high pulse width of CLK1, a hold violation can
still occur.

Figure 81 shows a set of ideal test clock waveforms for a set of overlapping test clocks.
The clock edges are numbered by their edge timing order, with the latest clock edge
indicated by (1). Clock edges with identical ideal clock edge timing are highlighted.

Figure 81 Ideal Test Clock Waveforms for Overlapping Test Clocks

(2
)

(1
)

(3
)

(4
)

(6
)

(5
)

Latest edges firstEarliest edges last

Figure 82 shows how DFT Compiler constructs a scan chain containing a scan cell
clocked by each clock edge. The scan cells are ordered with the cells clocked by the latest
clock edges coming first. Lock-up latches are inserted between scan cells clocked by the
clock edges with identical ideal clock edge timing.

Figure 82 Scan Chain Lock-Up Latches for Overlapping Test Clocks

(1) (5) (6)L L(4)(2) (3)

Synopsys® TestMAX™ DFT User Guide
T-2022.03

248

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Test Clocks

Feedback

However, in most designs, all test clocks share identical return-to-zero test clock
waveforms, as shown in Figure 83.

Figure 83 Ideal Test Clock Waveforms for Simple Test Clocks

(2
)

(4
)

Latest edges firstEarliest edges last

(1
)

(3
)

In this case, the ordering behavior is simplified. The scan cells are ordered with all falling-
edge scan cells first and all rising-edge scan cells last, as shown in Figure 84. Lock-up
latches are inserted between differently-clocked scan cells within the rising-edge and
falling-edge sections of the scan chain.

Figure 84 Scan Chain Lock-Up Latches for Simple Test Clocks

(1) (3) (4)L L(2)

DFT Compiler inserts a lock-up latch at the same level of hierarchy as the scan output pin
of the preceding scan element:

• If the preceding element is a CTL model or is located in a block containing CTL model
information, the lock-up latch is inserted at the level of hierarchy where the CTL model
exists.

• If the preceding element is a leaf scan cell (that does not exist in a CTL-modeled
block), the lock-up latch is inserted at the level of hierarchy where the scan cell exists.

The set_scan_configuration command provides options to control lock-up latch
insertion. By default, DFT Compiler performs automatic lock-up latch insertion for
multiplexed flip-flop scan chains. To disable this feature, use the -add_lockup option of
the set_scan_configuration command:

dc_shell> set_scan_configuration -add_lockup false
To add lock-up latches at the end of each scan chain to assist with potential block-to-block
timing issues during core integration, use the -insert_terminal_lockup option of the
set_scan_configuration command:

dc_shell> set_scan_configuration -insert_terminal_lockup true

Synopsys® TestMAX™ DFT User Guide
T-2022.03

249

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Test Clocks

Feedback

The default lock-up element type is a level-sensitive lock-up latch. To use a lock-up flip-
flop instead, use the -lockup_type option of the set_scan_configuration command:

-lockup_type optiondc_shell> set_scan_configuration -lockup_type flip_flop
When a lock-up flip-flop is used, the data is held as shown in Figure 85.

Figure 85 Timing for Two Scan Cells With a Lock-Up Flip-Flop

CLK1

FF1/Q

LOCKUP_FF/Q

CLK2 (delayed)

data1 data2

data1 data2

Regardless of your selected scan style or configuration, you can explicitly add scan lock-
up elements to your scan chain by using the set_scan_path commandcommandsset_scan_pathset_scan_path command.

multiple clocksscan assemblyscan lock-up latchesscan assemblyscan lock-up latchesscan lock-up latchinsertingFor successful lock-up operation, the falling edge of the current scan cell must occur
after or concurrent with the rising edge of the next scan cell. This requirement is always
inherently met when DFT Compiler inserts lock-up elements between scan chain cells.
However, when you are manually inserting lock-up elements with the set_scan_path
command, you must ensure that this requirement is met.

scan lock-up latchpreviewingpreviewingscan lock-up latchesUse the preview_dft -show cells command to see where the insert_dft command
will insert scan lock-up elements in your scan chain:

dc_shell> preview_dft
...
Scan chain '1' (test_si --> Z[3]) contains 4 cells:

 Z_reg[0] (CLK1, 45.0, rising)
 Z_reg[1] (l)
 Z_reg[2] (CLK2, 45.0, rising)
 Z_reg[3]

You can also use the scan_lockup cell attribute to locate lock-up elements:

dc_shell> set lockup_cells \
 [get_cells -hierarchical * -filter {scan_lockup==true}]

Synopsys® TestMAX™ DFT User Guide
T-2022.03

250

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Test Clocks

Feedback

Automatically Creating Skew Subdomains Within Clock Domains
This topic describes how the tool can add lock-up latches within a clock domain between
subdomains that might have higher skew between them.

Note:
This feature is only supported for the multiplexed flip-flop scan style.

For the purpose of building scan chains, the insert_dft command, by default, treats the
entire clock network driven by a given clock source as the same-skew clock signal.

Consider the netlist shown in Figure 86, which shows a clock network structure before
clock tree synthesis. By default, the insert_dft command treats all four flip-flops as
belonging to the same-skew top-level clock signal, CLK.

Figure 86 Circuit With Same Top-Level Clock Driving Internal Clock Signals
D
SI
SE

Q

FF1 D
SI
SE

Q

FF3CLK

D
SI
SE

Q

FF4

D
SI
SE

Q

FF2

PLL

test_mode

test_si

test_so

set_scan_configuration \
 -internal_clocks none ;# default setting

Note that the MUX cell introduces a delay in the clock network. If clock tree synthesis
balances the test mode clock latency equally to all flip-flops, the MUX cell should not
cause any timing problems. However, because clock tree synthesis might not consider
the test mode clock tree latencies used for scan shift, a potential scan path hold violation
could occur at FF3/SI.

To avoid creating this potential hold time violation, you can treat the scan cells
downstream from any multi-input cell as a different skew subdomain within the clock
domain, driven by their own internal clock pin (such as the MUX output pin).

To do this, use the following command:

dc_shell> set_scan_configuration -internal_clocks multi

Synopsys® TestMAX™ DFT User Guide
T-2022.03

251

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Test Clocks

Feedback

This command instructs the insert_dft command to

• Identify all multiple-input gates (such as MUX cells) in each clock network.

Note:
Integrated clock-gating cells, which have the
clock_gating_integrated_cell attribute defined, are not considered;
they are transparent for the determination of skew subdomains.

• Create an internal clock at the output pins of these gates.

• Treat these internal clocks as skew subdomains of the parent clock.

This feature affects only scan chain architecture; the clock network is still a single test
clock domain for all other DFT operations, including writing out the test protocol.

The resulting scan chains depend on the current clock-mixing setting, which is controlled
by the -clock_mixing option of the set_scan_configuration command. If clock mixing
is disabled by specifying the no_mix or mix_edges clock-mixing mode, the insert_dft
command creates separate scan chains for each internal clock, as shown in Figure 87.

Figure 87 Circuit With Internal Clocks With Clock Mixing Disabled

D
SI
SE

Q

FF1 D
SI
SE

Q

FF3CLK

D
SI
SE

Q

FF4

D
SI
SE

Q

FF2

PLL

test_mode

test_si1
test_so1

test_so2
test_si2

set_scan_configuration \
 -internal_clocks multi -clock_mixing no_mix | mix_edges

If clock mixing is enabled by specifying the mix_clocks or mix_clocks_not_edges clock-
mixing mode, the insert_dft command can use lock-up latches to keep the scan cells
from different internal clocks on the same scan chain, as shown in Figure 88.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

252

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Test Clocks

Feedback

Figure 88 Circuit With Internal Clocks With Clock Mixing Enabled

D
SI
SE

Q

FF1 D
SI
SE

Q

FF3CLK

D
SI
SE

Q

FF4

D
SI
SE

Q

FF2

PLL

test_mode

test_si

test_so
L

set_scan_configuration \
 -internal_clocks multi -clock_mixing mix_clocks | mix_clocks_not_edges

If global clock mixing is disabled, you can still enable clock mixing for the internal clocks
within each parent clock domain by using the -mix_internal_clock_driver option of
the set_scan_configuration command:

dc_shell> set_scan_configuration \
 -internal_clocks multi \
 -clock_mixing no_mix | mix_edges \
 -mix_internal_clock_driver true
You can create skew subdomains within specific clock domains by using the
-internal_clocks option of the set_dft_signal command. The following command
tells the insert_dft command to create internal clocks at multiple-input cells only for the
CLK domain:

dc_shell> set_dft_signal -view existing_dft \
 -type ScanClock -timing [list 45 55] \
 -internal_clocks multi -port CLK
If you set different -internal_clocks values using the set_scan_configuration and
set_dft_signal commands, the more specific setting applied with the set_dft_signal
command takes precedence. For example, assume that you set the following opposing
-internal_clocks values by using these two commands:

dc_shell> set_scan_configuration -internal_clocks none

dc_shell> set_dft_signal -view existing_dft \
 -type ScanClock -timing [list 45 55] \
 -internal_clocks multi -port CLK
Because the value set by the set_dft_signal command takes precedence, signals
driven by CLK via MUX cells or other multiple-input gates are treated as separate clocks.
All other clocks in the design are treated according to the default configuration.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

253

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Test Clocks

Feedback

This feature is similar to the -associated_internal_clocks feature described in
Manually Creating Skew Subdomains at Associated Internal Pins on page 254, except
that the internal clocks are created at all multi-input cell output pins instead of only user-
specified pins.

When you use user-defined test points or test points inserted by AutoFix, testability logic
might be inserted in the clock network. The preview_dft command does not see internal
clocks created by test points, but the insert_dft command does. For more information
about test points, see Chapter 10, Advanced DFT Architecture Methodologies.”

Manually Creating Skew Subdomains at Associated Internal Pins
This topic describes how you can manually define subdomains of a parent clock network
that might have higher skew between them.

For the purpose of building scan chains, DFT insertion, by default, treats the entire clock
network driven by a given clock source as the same-skew clock signal.

Consider the netlist shown in Figure 89, which shows a clock network structure before
clock tree synthesis. By default, the insert_dft command treats all four flip-flops as
belonging to the same-skew top-level clock signal, CLK.

Figure 89 Circuit With Same Top-Level Clock Driving Internal Clock Signals
D
SI
SE

Q

FF1 D
SI
SE

Q

FF3CLK

D
SI
SE

Q

FF4

D
SI
SE

Q

FF2

PLL

test_mode

test_si

test_so

set_scan_configuration \
 -internal_clocks none ;# default setting

Note that the MUX cell introduces a delay in the clock network. If clock tree synthesis
balances the test mode clock latency equally to all flip-flops, the MUX cell should not
cause any timing problems. However, because clock tree synthesis might not consider
the test mode clock tree latencies used for scan shift, a potential scan path hold violation
could occur at FF3/SI.

To avoid creating this potential hold time violation, you can treat the scan cells
downstream from the MUX cell as a different skew subdomain within the clock domain,
driven by their own internal clock pin (the MUX output pin).

Synopsys® TestMAX™ DFT User Guide
T-2022.03

254

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Test Clocks

Feedback

To do this, define the scan clock as follows:

dc_shell> set_dft_signal -view existing_dft -type ScanClock \
 -timing {45 55} -associated_internal_clocks {UMUX/Z}
This command instructs the insert_dft command to

• Create an internal clock at each associated internal pin in the list

• Treat these internal clocks as skew subdomains of the parent clock

This feature affects only scan chain architecture; the clock network is still a single test
clock domain for all other DFT operations, including writing out the test protocol.

In the previous example, the clock network contains a skew subdomain driven by
UMUX/Z, plus the remainder of the parent clock domain, as shown in Figure 90. These
are treated as separate clock domains according to the set_scan_configuration
-clock_mixing setting applied to the design.

Figure 90 Circuit With Top-Level Clock Source and Associated Internal Clock Pin

D
SI
SE

Q

FF1 D
SI
SE

Q

FF3CLK

D
SI
SE

Q

FF4

D
SI
SE

Q

FF2

PLL

test_mode

UMUX/Z associated internal clock domain

set_dft_signal -view existing_dft -type ScanClock -timing {45 55} \
 -port CLK -associated_internal_clocks {UMUX/Z}

This feature is similar to the -internal_clocks feature described in Automatically
Creating Skew Subdomains Within Clock Domains on page 251, except that the internal
clocks are created only at the user-specified pins instead of all multi-input cell output pins.

Associated internal clocks take precedence over any -internal_clocks specifications.

Limitations

Note the following requirements and limitations:

• Associated internal clocks can be defined only on leaf pins, not hierarchical pins.

• Pre-DFT DRC drives the clock signal directly at both the clock source and the internal
pins, allowing the clock signal to bypass cells that are black boxes in synthesis.
However, post-DFT DRC drives the clock signal only at the clock source.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

255

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Test Clocks

Feedback

To propagate the clock through blockages during post-DFT DRC, use a
custom test_setup procedure (if initialization vectors are needed) or the
test_simulation_library variable (if Verilog simulation models are needed).

• This feature is used only with -view existing_dft clock signal definitions.

• The association is valid only when -type is MasterClock, ScanMasterClock,
ScanSlaveClock, or ScanClock.

• To remove the internal pin associations, you must use the remove_dft_signal
command to remove both the DFT signal and the association list.

• The -mix_internal_clock_driver option of the set_scan_configuration
command does not affect associated internal clocks defined in the current design.

• The -hookup_sense option has no effect. You can associate only the same clock edge
from a top-level clock edge to of a list of pins.

• The report_dft_signal command does not show the associated internal pins.

Manually Creating Skew Subdomains With Scan Skew Groups
This topic describes how to define a skew subdomain on any arbitrary set of scan cells.
Such a set of scan cells is called a scan skew group.

Note:
This feature is only supported for the multiplexed flip-flop scan style.

In some cases, you might want to provide manual guidance for lock-up latch insertion
between areas of the design with potentially differing clock tree latencies. Consider
Figure 91, in which block BLK has a different clock latency than the top-level logic.

Figure 91 Circuit With Clock Tree Containing Multiple Latency Regions

D
SI
SE

Q

FF1

D
SI
SE

Q

FF2

CLK

D
SI
SE

Q

FF3

test_si
test_soBLK

A lock-up latch at the scan input pin of BLK would prevent hold violations along the scan
path. However, the scan chain is entirely within the same scan clock domain, and there
are no multi-input cells that allow the -internal_clocks option to be used.

You can use scan skew groups to provide manual guidance for lock-up latch insertion.
A scan skew group is a group of scan cells that might have a different clock latency

Synopsys® TestMAX™ DFT User Guide
T-2022.03

256

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Test Clocks

Feedback

characteristic than other parts of the design. The DFT architect treats the scan skew group
as a unique skew subdomain.

To define a scan skew group, use the set_scan_skew_group command:

set_scan_skew_group
 group_name
 -include_elements {include_list}

Each scan skew group has a unique name for identification. The include list can contain
leaf cells, hierarchical cells, and CTL-modeled cells. Wildcards and collections are
supported. You can define as many scan skew groups in your design as needed. You
cannot include the same scan cell in multiple scan skew groups.

For the previous example, consider the following scan skew group definition:

dc_shell> set_scan_skew_group BLK_SSG -include_elements {BLK/FF*}
If clock mixing is enabled, DFT insertion adds a lock-up latch between the top-level and
block-level scan cells, as shown in Figure 92. (If clock mixing is disabled, DFT insertion
keeps the top-level and block-level scan cells in separate scan chains, not shown.)

Figure 92 Circuit With Lock-Up Latch Due to Scan Skew Group Definition

D
SI
SE

Q

FF1

D
SI
SE

Q

FF2

CLK

D
SI
SE

Q

FF3

test_si
test_soBLK

L

BLK_SSG scan skew group

CLK scan clock domain

Scan skew groups override the normal scan clock domain identification behaviors such as

• Scan clock name

• The -internal_clocks option of the set_scan_configuration command

• The -mix_internal_clock_driver option of the set_scan_configuration
command

The preview_dft -show {scan_clocks} command reports the scan skew group name
as the clock name. For example,

Scan chain '1' (test_si1 --> test_so1) contains 3 cells:
 FF1 (l) (CLK, 45.0, rising)
 BLK/FF2 (BLK_SSG/Z, 45.0, rising)
 BLK/FF3

Synopsys® TestMAX™ DFT User Guide
T-2022.03

257

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Test Clocks

Feedback

If you include scan cells from different scan clock domains in the same scan skew group,
the preview_dft and insert_dft commands issue a warning message:

Scan skew group 2CLK_SSG contains scan cells from the following clock
 domains: CLK1, CLK2. (TEST-1923)

In this case, the DFT architect treats all cells in the scan skew group as if they are in the
same clock domain. No lock-up latches will be inserted between them, as shown by the
example in Figure 93. This can occur even if clock mixing is disabled because the scan
cells in the scan skew group are no longer treated as belonging to different clock domains.

Figure 93 Circuit With Scan Skew Group Spanning Multiple Clock Domains

CLK1

test_si
test_soL

CLK2

LD
SI
SE

Q

FF1

D
SI
SE

Q

FF2

D
SI
SE

Q

FF3

D
SI
SE

Q

FF4

2CLK_SSG scan skew group

No lock-up latch inserted

Scan skew groups override only clock identity considerations. They do not override the
clock timing considerations of scan chain architecture such as

• Scan clock waveform timing

• Scan clock edge polarity

Defining Scan Chains by Scan Clock
You might want to define a scan chain that is specific to a particular scan clock domain. To
do this, use the -scan_master_clock option of the set_scan_path command:

dc_shell> set_scan_path chain_name -view spec \
 -scan_master_clock clock_name
If you also use the -exact_length option to define the number of scan cells to be
included in that scan chain, DFT Compiler includes additional scan cells clocked by other
clocks if the clock-mixing requirements allow.

If you use the -edge option with the -scan_master_clock option when defining a scan
path using the set_scan_path command, the tool includes only the elements controlled
by the specified edge of the specified clock in the scan chain. The valid arguments to the
-edge option are rising and falling.

For example,

dc_shell> set_scan_path c1 -view spec \
 -scan_master_clock clk1 -edge rising

Synopsys® TestMAX™ DFT User Guide
T-2022.03

258

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Test Clocks

Feedback

In this example, scan chain c1 will contain elements that are triggered by the rising edge of
clock clk1.

Note the following limitations of the -edge option:

• When there are no elements present for the defined scan chains, the scan path name
is reused.

• This option is not supported with multivoltage designs.

• This option is not supported with the other set_scan_path options, such as the -head,
-tail, -ordered, and -length options.

If the specifications in the set_scan_path command cannot be met, they are not applied.

Handling Multiple Clocks in LSSD Scan Styles
This topic provides information on handling multiple clocks in level-sensitive scan designs
(LSSD) scan styles.

Using Multiple Master Clocks
LSSDmultiple master clocksmultiple clocksLSSD designsIn LSSD scan designs, you need not allocate scan chains by clock for timing purposes;
however, you might want to do so. Assume that you have a latch-based design with two
system enables, en1 and en2, and you want a scan chain allocated for each enable. The
command sequence given in Example 20 accomplishes this.

Example 20 Command Sequence for Multiple Master Clocks in LSSD
dc_shell> set_scan_configuration -style lssd

create test A clock ports and assign to scan chains
dc_shell> create_port -direction in {A_CLK1 A_CLK2}
dc_shell> set_dft_signal -view spec -port A_CLK1 \
 -type ScanMasterClock
dc_shell> set_scan_path 1 -view spec \
 -scan_master_clock A_CLK1
dc_shell> set_dft_signal -view spec -port A_CLK2 \
 -type ScanMasterClock
dc_shell> set_scan_path 2 -view spec \
 -scan_master_clock A_CLK2

explicitly allocate cells to scan chains by system enable
dc_shell> create_clock en1 -name cclk1 -period 100
dc_shell> set cclk1_cells [get_object_name [all_registers -clock cclk1]]
dc_shell> set_scan_path 1 -include_elements $cclk1_cells
dc_shell> create_clock en2 -name cclk2 -period 100
dc_shell> set cclk2_cells [get_object_name [all_registers -clock cclk2]]
dc_shell> set_scan_path 2 -include_elements $cclk2_cells

Synopsys® TestMAX™ DFT User Guide
T-2022.03

259

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Test Clocks

Feedback

preview scan configuration and implement
dc_shell> create_test_protocol
dc_shell> dft_drc
dc_shell> preview_dft -show all
dc_shell> insert_dft

Dedicated Test Clocks for Each Clock Domain
insert_dft commanddedicated test clocksThe insert_dft command creates clocks that are used only for test purposes when it
routes scan chains by using the following scan styles:

• LSSD (which includes clocked LSSD)

• Scan-enabled LSSD

The test clocks are dedicated for each system clock domain. This makes clock trees and
clock signal routing easier. The insert_dft command uses the following guidelines to
determine how test clocks are added:

• For sequential cells with multiple test clocks, the insert_dft command adds a
test clock for each unique set of master and slave system clocks. For example, in
Figure 94, cell U1 is clocked by C1 (master) and B1 (slave), cell U2 is clocked by
C2 and B1, cell U3 is clocked by C1 and B2, and cell U4 is clocked by C2 and B2,
resulting in four unique clock sets. As a result, the insert_dft command adds four
test clocks, one for each unique clock set.

Figure 94 Adding Test Clocks for Sequential Cells With Multiple Test Clocks

c

c

U1

U3

C1 c

c

U2

U4

C2

b
a

port_3

B2

b

a
port_1

B1 b
a

port_2

b
a

port_4

• For cells that are clocked by the same system clock, the insert_dft command
adds the same test clock to these cells, even though they are clocked by different
clock senses (rising edge, falling edge, active low, and active high). When a clock is
distributed to pins with mixed clock senses, the insert_dft command inserts inverters
to ensure design functionality.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

260

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Test Clocks

Feedback

Controlling LSSD Slave Clock Routing
LSSDcontrolling slave clock routinglevel-sensitive scan design (<seeitalic>see</> LSSD)For designs using either LSSD scan style or clocked LSSD scan style, all single-latch and
flip-flop elements have an unconnected slave clock pin after scan replacement.

If possible, the insert_dft command uses the slave clocks distributed to double-latch
elements and does either of the following:

• Creates, at most, one new port per design when you want to use only the slave clocks
distributed to the double-latch elements

• Creates one or more ports when you want test clocks created according to different
system clocks

The insert_dft command uses the following guidelines when connecting slave clock
pins of single-latch and flip-flop elements after scan replacement:

• Connect the unconnected slave clock pin of LSSD scan style single-latch or flip-flop
elements to the slave clock pin of the double-latch that is clocked by the same system
clock. See Figure 95.

Note:
For clarity, the A clock is omitted in Figure 95 through Figure 98 after scan
replacement.

Figure 95 Single-Latch and Double-Latch Cells With the Same System Clock

U1

U2

c

cC1

Before scan replacement After scan replacement

U3c

bB1

SL

DL

FF

U1

U2

c

cC1

U3c

bB1

DL

DL

FF

b

b

• Connect to a new slave clock, creating a new one if necessary, if a system clock drives
multiple cells with different slave clocks. See Figure 96.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

261

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Architecting Test Clocks

Feedback

Figure 96 Single-Latch and Double-Latch Cells Clocked by the Same System Clock

U1

U2

c

cC1

Before scan replacement After scan replacement

U3c

bB1

SL

DL

DL

U1

U2

c

cC1

U3c

bB1

DL

DL

DL

b

bB2 bB2

New port

• Connect to a new slave clock port, creating one if necessary, if double-latch cells are
driven by different clocks. See Figure 97.

Figure 97 Single-Latch and Double-Latch Cells Clocked by Separate System Clocks

U1

U2

c

cC1

Before scan replacement After scan replacement

bB1

SL

DL

U1

U2

c

cC1

bB1

DL

DL

b
New port

C2 C2

Synopsys® TestMAX™ DFT User Guide
T-2022.03

262

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Configuring Clock-Gating Cells

Feedback

• Connect to a new slave clock, creating a new port if necessary, if there are no double-
latch cells. See Figure 98.

Figure 98 Connecting Slave Clock Pin: No Double-Latch Cells

U1

U2

c

cC1

Before scan replacement After scan replacement

SL

SL

U1

U2

c

cC1

b

DL

DL

b
New port

C2 C2

Configuring Clock-Gating Cells
The following topics discuss how to incorporate clock-gating logic into your DFT design:

• Introduction to Clock Gating in DFT Flows

• Clock-Gating Control Points

• Discrete-Logic Clock-Gating Cells and Integrated Clock-Gating Cells

• Inferred and Instantiated Clock-Gating Cells

• Choosing a Clock-Gating Control Point Configuration

• Reporting Unconnected Clock-Gating Cell Test Pins During Pre-DFT DRC

• Automatically Connecting Test Pins During DFT Insertion

• Specifying Signals for Clock-Gating Cell Test Pin Connections

• Identifying Clock-Gating Cells in an ASCII Netlist Flow

• Limitations

Synopsys® TestMAX™ DFT User Guide
T-2022.03

263

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Configuring Clock-Gating Cells

Feedback

Introduction to Clock Gating in DFT Flows
Clock gating provides a way to disable, or gate, the clock signal to a set of flip-flops
to reduce their switching power consumption. However, clock gating requires special
consideration in DFT-inserted designs.

To be included in scan chains, sequential cells must be reliably clocked during scan
shift. In the example in Figure 99, the clock-gating control signal is driven by scan cells
in the scan chain, which causes pre-DFT DRC to identify the gated clock signal as
uncontrollable. As a result, the clock-gated cells are omitted from the scan chain, and test
observability is reduced at their register inputs and test controllability is reduced at their
register outputs.

Figure 99 Example of Clock-Gating Cell Without Testability Control Signal

CLK

D QD
SI
SE

Q

D
SI
SE

Q D Q

D Q

G

Clock-gating cell

Clock-gated cells
(omitted from scan chains

due to uncontrollable clock)

Functional gating
enable signal logic

Gated clock
Ungated clock

To resolve this, clock-gating cells require an override control signal to keep the clock
signal always-active in scan shift mode. The following sections describe different ways of
implementing and controlling this override control signal of clock-gating cells.

Clock-Gating Control Points
The following topics discuss how clock-gating control points can be configured:

• Configuring Clock-Gating Control Points

• Scan-Enable Signal Versus Test-Mode Control Signal

• Improving Observability When Using Test-Mode Control Signals

Synopsys® TestMAX™ DFT User Guide
T-2022.03

264

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Configuring Clock-Gating Cells

Feedback

Configuring Clock-Gating Control Points
In a clock-gating cell, a control point is a testability logic gate that allows the clock to be
forced always-active when a test control signal is asserted. There are two degrees of
freedom in control point implementation, as shown in Figure 100:

• The control point can be placed before or after the latch element.

• The control signal can be driven by the scan-enable or test-mode signal.

Figure 100 Clock-Gating Control Points Before and After Latch

D Q

G

D Q

G

Clock-gating cell:
control point after latchClock-gating cell:

control point before latch

CLKI CLKI

Functional enable
test_se or test_mode

test_se or test_mode
Functional enable

CLKO
CLKO

The commandsset_clock_gating_styleset_clock_gating_style commandset_clock_gating_style command configures these two aspects using the
following options:

• The -control_point option specifies where to insert the control point relative to the
latch. It can be set to none, before, or after. The default is none.

• The -control_signal option specifies what type of control signal to use. It can be set
to test_mode or scan_enable. The default is scan_enable.

You can use the -control_signal option only when the -control_point option is
set to before or after. If an existing signal of the specified type has been defined with
the set_dft_signal command, it is used. Otherwise, a new signal is created. See
Automatically Connecting Test Pins During DFT Insertion on page 275 for details.

For most designs, the “before” control point style driven by the scan-enable signal is
recommended for the following reasons:

• The “before” control point ensures that no combinational path exists from the control
signal input port to the downstream clock pins of the scan cells.

• If the “after” control point is used and both phases of the clock are gated in the design,
there is no time at which the control signal can cleanly toggle without truncating an
active clock pulse.

• Most integrated clock-gating (ICG) cells are implemented using control points before
the latch. For more information on ICG cells, see Discrete-Logic Clock-Gating Cells
and Integrated Clock-Gating Cells on page 269.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

265

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Configuring Clock-Gating Cells

Feedback

• A scan-enable control signal ensures that the gated clocks are always-active during
scan shift, but that the functional clock-gating paths can still be tested during scan
capture.

• A test-mode control signal prevents the functional clock-gating paths from being tested,
requiring additional testability logic to be inserted in the design.

The following command implements the recommended control point style:

dc_shell> set_clock_gating_style \
 -control_point before -control_signal scan_enable

Scan-Enable Signal Versus Test-Mode Control Signal
The scan-enable and test-mode signals differ in the following ways:

• A scan-enable signal is asserted only during scan shift.

• A test-mode signal is asserted during the entire test (scan shift and scan capture).

Using the scan-enable signal as the clock-gating control signal typically provides higher
fault coverage than the test-mode signal because the functional clock-gating path
is exercised in scan capture mode. Fault coverage with the scan-enable signal is
comparable to a circuit without clock gating, as shown in Figure 101.

Figure 101 Test Coverage With Scan-Enable Signal

D Q

G
D
SI
SE

Q

test_se

CLK

D
SI
SE

Q
0 during scan capture

0

= fully tested = partially tested = not tested

Clock-gating cell

If you use a test-mode signal as the clock-gating control signal, the test-mode signal is
asserted during both scan shift and scan capture. This bypasses the functional clock-
gating control logic completely and prevents it from being tested in scan capture mode, as
shown in Figure 102. In addition, the clock-gating enable signal asserted by the test-mode
signal can be tested only for stuck-at-0 faults (assuming an active-high test-mode signal).

Synopsys® TestMAX™ DFT User Guide
T-2022.03

266

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Configuring Clock-Gating Cells

Feedback

Figure 102 Test Coverage With Test-Mode Signal

D Q

G
D
SI
SE

Q

test_mode

CLK

D
SI
SE

Q
1 during scan capture

1 1 1

= fully tested = partially tested = not tested

Clock-gating cell

Improving Observability When Using Test-Mode Control Signals
If you must use a test-mode signal as the clock-gating control signal, you can enable an
observability logic feature that improves coverage of the functional logic generating the
gating signal. Figure 103 shows an observability logic example.

Figure 103 Observability Logic in Clock-Gating Circuits

D Q

G

D
SI
SE

Q

test_mode

CLK

D
SI
SE

Q
1 during scan capture

1 1

= fully tested = partially tested = not tested

Clock-gating cell

D
SI
SE

Q

Observation
registerOther observed functional control signals

Clock-gating observability logic

1

1

1

XOR tree

In test mode, an XOR tree observes the functional gating control signals from one or more
clock-gating cells; the output of the XOR tree is captured by a dedicated observability
register. This observability register is included in the scan chains, but its output is not
otherwise connected functionally in the design. AND or NAND gates (depending on
synthesis) prevent the observability logic from consuming power during mission mode.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

267

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Configuring Clock-Gating Cells

Feedback

Note that placing the control point after the latch allows the latch to be tested by the
observability logic.

To enable clock-gating observability logic when using test-mode control signals, use the
following command:

dc_shell> set_clock_gating_style \
 -control_signal test_mode \
 -observation_point true
The tool inserts an observability logic structure in each design hierarchy level where clock-
gating cells exist. By default, the maximum depth of each XOR tree is 5, which means
that a maximum of 25 = 32 clock-gating control signals can be observed within a hierarchy
level by one observability register. The tool adds more observability registers as needed.

To change the maximum depth of the XOR tree, use the following command:

dc_shell> set_clock_gating_style \
 -observation_logic_depth logic_depth
If you set the logic depth of your XOR tree too small, clock gating creates more XOR trees
and associated registers to provide enough XOR inputs to accommodate signals from all
the gated registers. Each additional XOR tree adds some overhead for area and power.
Using one XOR tree adds the least amount of overhead to the design.

If you set the logic depth of your XOR tree too high, clock gating can create one XOR tree
with plenty of inputs. However, too large a tree can cause the delay in the observability
circuitry to become critical.

Use a value that meets the following two criteria in choosing or changing the XOR logic
tree depth:

1. High enough to create the fewest possible XOR trees

2. Low enough to prevent critical delay in the observability circuitry

Synopsys® TestMAX™ DFT User Guide
T-2022.03

268

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Configuring Clock-Gating Cells

Feedback

Discrete-Logic Clock-Gating Cells and Integrated Clock-Gating
Cells
Clock-gating cells can be classified by cell structure into two types:

• Discrete-logic clock-gating cells

These are clock-gating cells that are built from discrete logic library gates, such as a
latch gate and an AND gate.

• Integrated clock-gating cells (ICGs)

These are library cells that contain the clock-gating logic within a single integrated
library cell. Their Liberty library cell models describe information such as the type of
control point (none, before, or after) and the setup and hold requirements of the gating
signal versus the clock signal.

Figure 104 shows an example of both types of clock-gating cells (with active-high clock
signals, active-high control signals, and the control points before the latch).

Figure 104 Discrete-Logic and Integrated Clock-Gating Cells

AND2
D Q

G
OR2

ENCLK

Discrete-logic clock-gating cell
(built by Power Compiler)

CLK

EN
TE

CLKO

Integrated clock-gating cell

CLKI

ENAB
TEST

my_lib/ICG_POS_PRELAT

For both types of clock-gating cell, the pin that drives the control signal is called the test
pin of the clock-gating cell.

You can use Power Compiler to insert either type of clock-gating cell. Use the
set_clock_gating_style command to configure the desired clock-gating cell
characteristics. For discrete-logic clock-gating cells, Power Compiler builds customized
gate-level clock-gating structures (contained in a level of hierarchy) according to your
specifications. For integrated clock-gating cells, Power Compiler searches the available
target libraries and uses integrated clock-gating cell that match your specifications, or you
can specify a particular cell by name.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

269

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Configuring Clock-Gating Cells

Feedback

Inferred and Instantiated Clock-Gating Cells
The following topics describe the two ways to incorporate clock-gating logic into your
design:

• Inferring Clock-Gating Cells Using Power Compiler

• Instantiating Clock-Gating Cells in the RTL

Inferring Clock-Gating Cells Using Power Compiler
You can use Power Compiler to automatically infer clock-gating logic where load-enabled
registers are described in the RTL. The resulting gating logic is typically inserted at the
leaf-level registers of the clock tree based on each register’s functionality, which is referred
to as fine-grained clock gating.

When Power Compiler inserts clock-gating cells in the design (either discrete-logic or
integrated clock-gating cells), it automatically annotates attributes so that DFT Compiler
can identify the clock-gating cells and make the necessary test signal connections during
DFT insertion.

To automatically insert clock-gating cells using Power Compiler during initial RTL
synthesis, use the -gate_clock option of the compile or compile_ultra command. For
example,

dc_shell> compile_ultra -scan -gate_clock
Power Compiler ties the test pins of inserted clock-gating cells to ground. The resulting
clock-gating cells behave only in their functional capacity until you run DFT insertion, at
which point the test pins are connected to the appropriate test control signals.

For more information on using Power Compiler to configure and insert clock-gating logic in
your design, see “Clock Gating” chapter of the Power Compiler User Guide.

Instantiating Clock-Gating Cells in the RTL
You can describe clock-gating logic in your RTL. This is often done near clock tree sources
to gate entire clock domains for power savings, which is referred to as coarse-grained
clock gating.

Unlike inferred clock-gating cells, instantiated clock-gating (ICG) cells are not
automatically recognized by DFT insertion. You must manually identify them so that their
test pins are connected to a clock-gating control signal.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

270

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Configuring Clock-Gating Cells

Feedback

There are three ways to identify instantiated ICG cells:

• set_app_var power_cg_auto_identify true
This variable setting causes the tool to look for and identify any not-yet-identified ICG
cells. This analysis is performed each time a command that works on clock-gating
circuitry is called.

• identify_clock_gating [-gating_elements cells]
This command causes the tool to look for and identify any not-yet-identified ICG
cells. This analysis is performed when the command is run. You can use the
-gating_elements option to restrict identification to particular cells.

• set_dft_clock_gating_pin -pin_name pin object_list
This command manually identifies ICG cells by specifying their test pins. For details,
see Connecting User-Instantiated Clock-Gating Cells on page 414.

DFT insertion connects only test pins that are undriven or driven by a logic constant; these
valid test pins are reported by TEST-130 messages during pre-DFT DRC. Test pins with
other existing connections are left unchanged, and no message is reported for them.

Clock-gating cell identification
method

Reporting command Warning for existing
RTL connections?

set_app_var
power_cg_auto_identify true

report_clock_gating (after
automatic identification runs)

No

identify_clock_gating report_clock_gating No

set_dft_clock_gating_pin report_dft_clock_gating_pin Yes (TEST-2059)

For non-ICG clock-gating logic (built with discrete logic gates), you must incorporate your
own testability logic; DFT insertion does not make connections to manually instantiated
discrete-logic clock-gating logic.

Instantiated ICG Cells With Existing RTL Test-Pin Connections

For instantiated ICG cells, an “existing test-pin connection” refers to an ICG test pin driven
by a non-constant signal in the RTL.

Control signals used by existing test-pin connections must be defined in both the spec and
existing_dft signal views:

define ScanEnable signal for clock-gating cells
set_dft_signal -view spec \
 -type ScanEnable -port SE_ICG
set_dft_signal -view existing_dft \
 -type ScanEnable -port SE_ICG ;# needed for existing RTL connections

Synopsys® TestMAX™ DFT User Guide
T-2022.03

271

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Configuring Clock-Gating Cells

Feedback

The existing_dft signal definition ensures that pre-DFT DRC understands the existence
and function of that signal. Otherwise, scan cells driven by that ICG cell incur D1 or D9
violations and are omitted from the scan chains.

Normally, ICG cells with existing test-pin connections do not need to be identified to the
tool. However, they must be identified if you are also inserting LogicBIST self-test; see
Ensuring Testability for Integrated Clock-Gating Cells on page 1020.

Choosing a Clock-Gating Control Point Configuration
Table 28 shows the possible combinations of latch-based clock gating, clock waveforms,
control signals, and control point location you can use.clock gatinglatch-based configurations

Table 28 Latched-Based Clock-Gating Configurations

Clock-gating
style

Clock waveform Control signal Control point
location

Gated register can be
scanned?

Before latch Yestest_mode

After latch Yes

Before latch Yesscan_enable

After latch Yes

Before latch Yes5test_mode

After latch Yes

Before latch Yes6

Latch-based gating
for positive-edge
flip-flops

scan_enable

After latch No

Before latch Yestest_mode

After latch Yes

Before latch Yesscan_enable

After latch Yes

Before latch Yes5

Latch-based gating
for negative-edge
flip-flops

test_mode

After latch Yes

5. This configuration requires additional initialization cycles to be manually specified for the test protocol.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

272

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Configuring Clock-Gating Cells

Feedback

Table 28 Latched-Based Clock-Gating Configurations (Continued)

Clock-gating
style

Clock waveform Control signal Control point
location

Gated register can be
scanned?

Before latch Yes6scan_enable

After latch No

For each combination, the last column indicates whether the gated register can be
included in scan chains. Four special cases, marked with footnotes, require additional
consideration as described in the following section.

Initialization for Special Cases of Before-Latch Control Points
In the four special cases marked by footnotes in Table 28, the gating latch is inactive at the
beginning of the test program (time = 0). This unknown latch state causes an X value to
reach the gated flip-flops, which would normally prevent them from being included in scan
chains. Figure 105 shows the clock waveform and clock-gating logic for these cases.

Figure 105 Special Clock-Gating Cases With Inactive Latch at Beginning of Test Clock Cycle

D Q

G

Clock-gating cell for
positive-edge flip-flops

D Q

G
0

Clock-gating cell for
negative-edge flip-flops

functional enable
control signal

functional enable
control signal

1

If you are using a scan-enable control signal, which asserts and de-asserts during every
test pattern, the DRC engine performs an analysis of the clock-gating logic to verify a
known state in the latch. This analysis supports only one such level of special-case clock
gating, although you can have additional levels of non-special-case clock gating.

If you are using a test-mode control signal, to achieve a known state in the latch, you
must add a clock pulse to the test_setup section of the test protocoltest protocol. Use the following
set_dft_drc_configuration command to update the test_setup section with the clock
pulse:

dc_shell> set_dft_drc_configuration -clock_gating_init_cycles 1
If you have multiple cascaded latch-based clock-gating cells and the first latch is loaded
with the test-mode signal, use the following set_dft_drc_configuration command to
update the test_setup section with the specified number of clock pulses:

dc_shell> set_dft_drc_configuration -clock_gating_init_cycles n
6. This configuration supports only one level of clock gating.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

273

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Configuring Clock-Gating Cells

Feedback

Here, n equals the number of clock pulses required to initialize clock-gating latches.

Note the following:

• The set of clock cycles should equal the depth of the chain of clock-gating latches.
Make sure this is the case.

• Violations still occur when there are multiple cascaded latches and the scan-enable
and control point location are used as before, with mixed active-high and active-low
latches.

Reporting Unconnected Clock-Gating Cell Test Pins During
Pre-DFT DRC
When you run pre-DFT DRC, the tool issues a TEST-130 message for every clock-
gating cell (discrete-logic or integrated) known to DFT Compiler whose test pin is not yet
connected. For example,

Warning: Clock gating cell sub1/clk_gate_ZI_reg has unconnected test pin.
(TEST-130)
Information: Cells with this violation : sub1/clk_gate_ZE_reg,
sub1/clk_gate_ZI_reg, sub2/clk_gate_ZE_reg, sub2/clk_gate_ZI_reg.
(TEST-283)

If clock-gating cell test pin connections are enabled (which is the default), this message
is informational and no action is needed. DFT insertion hooks up the test pin to the
appropriate test signal. Although the test pin is not yet connected, pre-DFT DRC models
the clock-gating cell as if connected.

If clock-gating cell test pin connections are disabled (using the -connect_clock_gating
disable option of the set_dft_configuration command), this message is a warning
that the indicated test pin is unconnected and will not be connected by DFT insertion. For
more information on this case, see the TEST-130 man page.

This message is reported only for clock-gating cell test pins known to DFT Compiler.
For clock-gating cells inserted by Power Compiler, no action is needed. For manually
instantiated integrated clock-gating cells, use the set_dft_clock_gating_pin command
to identify the test pins to be connected; if you do not identify these test pins, pre-DFT
DRC does not issue this message or model the clock-gating cells as controllable, and DFT
insertion will not connect the test pins.

If the test pin of a clock-gating cell is already connected, no TEST-130 message is
reported by pre-DFT DRC, and the flip-flops controlled by the clock-gating cell are put onto
the scan chain during DFT insertion provided no other violations exist for the cell.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

274

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Configuring Clock-Gating Cells

Feedback

Automatically Connecting Test Pins During DFT Insertion
When you run the insert_dft command, the tool automatically hooks up any
unconnected test pins of clock-gating cells known to DFT Compiler, corresponding to the
TEST-130 messages issued during pre-DFT DRC.

Note:
The insert_dft command preserves any clock-gating test pins with
preexisting connections; the command creates only missing connections.

DFT insertion makes the connections of the top-level scan-enable or test-mode signals to
the test pins of the clock-gating cells through the hierarchy. If the design does not have a
test port at any level of hierarchy, a new test port is created. If a test port exists, it is used.

Table 29 describes the connections made by the insert_dft command.

Table 29 Connections Made to the Clock-Gating Cells by insert_dft

Clock-gating
control signal

DFT signal defined? Top-level port used

scan_enable No set_dft_signal defined
with -type ScanEnable

test_se created and connected to test pins of
clock-gating cells.

scan_enable set_dft_signal -view
spec|exist -type
ScanEnable -port test_se
-active_state 0|1

No new port created. User-defined port
test_se used to connect to test pins of
clock-gating cells.

test_mode No set_dft_signal defined
with -type TestMode

New port. test_cgtm created to connect to
test pins of clock-gating cells.

test_mode set_dft_signal -view
spec|exist -type
TestMode -port test_mode
-active_state 0|1

No new port created. User-defined port
test_mode used to connect to test pins of
clock-gating cells.

Note:
The DFT signal specifications intended for clock-gating cell connections are not
mode-specific. Therefore you cannot specify a test mode using the -test_mode
option of the set_dft_signal command.

Clock-gating cell test pins are hooked up by default. To disable this feature, use the
following command:

dc_shell> set_dft_configuration -connect_clock_gating disable

Synopsys® TestMAX™ DFT User Guide
T-2022.03

275

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Configuring Clock-Gating Cells

Feedback

Specifying Signals for Clock-Gating Cell Test Pin Connections
By default, DFT Compiler chooses an available ScanEnable or TestMode signal to
connect to clock-gating cell test pins, depending on the type of control signal specified
with the set_clock_gating_style command. However, you can also define a dedicated
ScanEnable or TestMode signal to use for these test pin connections.

Specifying a Global Clock-Gating Control Signal

You can define a global clock-gating ScanEnable or TestMode control signal by using
the -usage clock_gating option when defining the signal with the set_dft_signal
command:

set_dft_signal
 -type ScanEnable | TestMode
 -view spec
 -usage clock_gating
 -port port_list

The -type option must be set to ScanEnable or TestMode to match the design’s
clock-gating control-signal style. You can report the control-signal style using the
report_clock_gating -style command. If these settings do not match, the signal
specification is ignored.

The -view option must be set to spec because DFT insertion makes new connections to
the signal.

When you define a clock-gating control signal with the clock_gating usage, the
insert_dft command is limited to using only that signal to connect to the test pins of
clock-gating cells. If there are insufficient ScanEnable or TestMode signals for other
purposes, DFT Compiler creates additional ScanEnable or TestMode signals as needed.

You can use the report_dft_signal and remove_dft_signal commands for reporting
and removing the specification, respectively.

Specifying Object-Specific Clock-Gating Control Signals

You can also define dedicated ScanEnable or TestMode clock-gating control signals for
specific parts of the design by using the -connect_to option of the set_dft_signal
command:

set_dft_signal
 -type ScanEnable | TestMode
 -view spec
 -usage clock_gating
 -port port_list
 [-connect_to object_list]
 [-exclude object_list]

Synopsys® TestMAX™ DFT User Guide
T-2022.03

276

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Configuring Clock-Gating Cells

Feedback

The -connect_to option specifies a list of design objects that are to use the specified
clock-gating control signal. The supported object types are

• Clock-gating cells

For Power Compiler clock-gating cells, specify the hierarchical clock-gating cell. For
existing clock-gating cells identified with the set_dft_clock_gating_pin command,
specify the leaf clock-gating cell.

• Hierarchical cells

• Designs

• Test clock ports

This allows you to make clock-domain-based signal connections. It includes clock-
gating cells that gate the specified test clocks. The functional clock behavior is not
considered.

Note:
This specification requires that a functional clock also be defined on the test
clock port.

• Scan-enable or test-mode pins of CTL-modeled cores

You can also use the -exclude option to specify a list of clock-gating cells, hierarchical
cells, or design names to exclude from the object-specific control signal.

The following example defines a ScanEnable signal named SE_CG to connect to the test
pins of existing clock-gating cells ICG_CLK100 and ICG_CLK200:

dc_shell> set_dft_signal \
 -type ScanEnable -view spec -port SE_CG \
 -usage clock_gating -connect_to {ICG_CLK100 ICG_CLK200}

Identifying Clock-Gating Cells in an ASCII Netlist Flow
If you are using an ASCII netlist flow and clock-gating cell attributes are not present, you
need to ensure that the required attributes are present for the clock-gating cells so that the
dft_drc and insert_dft commands can recognize them. You can do this by using the
identify_clock_gating command or by following a Power Compiler recommended flow
and manually identifying the clock-gating cells.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

277

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Specifying a Location for DFT Logic Insertion

Feedback

Limitations
Note the following limitations:

• The insert_dft command cannot be used on an unmapped design to connect to
clock-gating cells, that is, when a design is still in the RTL stage.

• Only the clock-gating cells recognized by Power Compiler are supported for automatic
test pin connection. You must manually specify the test pins of user-instantiated
integrated clock-gating cells. For more information, see Connecting User-Instantiated
Clock-Gating Cells on page 414.

• If you use the set_dft_signal -connect_to command to make clock-domain-
based connections to clock-gating cells, only Power Compiler clock-gating cells are
considered; user-instantiated clock-gating cells are not considered.

• Clock-gating cell connections are not mode-specific.

• The preview_dft and insert_dft commands do not report connections made to
clock-gating cells.

Specifying a Location for DFT Logic Insertion
By default, DFT Compiler places global test logic, such as test-mode decode logic and
compressed scan codecs, at the top level of the current design. Other test logic types,
such as lock-up latches and reconfiguration MUXs, are placed at the local point of use.

You can specify alternative insertion locations for different types of test logic with the
set_dft_location command:

set_dft_location dft_hier_name
 [-include test_logic_types]
 [-exclude test_logic_types]

The specified instance name must be a hierarchical cell. It cannot be a library cell, black
box, or black-box CTL model.

If the specified hierarchical cell does not exist, the insert_dft command creates it during
test insertion. For more information, see Creating New DFT Logic Blocks on page 282.

By default, all test logic is synthesized inside the specified hierarchical cell. To synthesize
only some types of test logic at that location, use the -include or -exclude option and list
the test logic types to be included in or excluded from the specified cell.

For example, to place DFTMAX codec logic inside my_cell, and place the remaining test
logic at the top level:

dc_shell> set_dft_location my_cell -include CODEC

Synopsys® TestMAX™ DFT User Guide
T-2022.03

278

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Specifying a Location for DFT Logic Insertion

Feedback

To place all test logic inside my_cell except for test control module logic, which remains at
its default top-level location:

dc_shell> set_dft_location my_cell -exclude TCM
The valid test logic types are:

• CODEC
This type includes the compressor and decompressor (codec) logic inserted by the tool
for compressed scan, serialized compressed scan, and streaming compressed scan
modes.

• PIPELINE_SI_LOGIC
This type includes all head and tail pipelined scan data registers.

• PIPELINE_SE_LOGIC
This type includes all pipelined scan-enable logic.

• PLL
This type includes on-chip clock controller (OCC) and clock chain logic. For more
information, see Chapter 12, On-Chip Clocking Support.”

• WRAPPER
This type includes core wrapping cells and wrapper mode logic configured by the
set_wrapper_configuration command. For more information, see Chapter 11,
Wrapping Cores.”

• BSR
This type includes the IEEE Std 1149.1 boundary scan register logic inserted when the
set_dft_configuration -bsd enable command is used.

• TAP
This type includes the IEEE Std 1149.1 TAP controller logic inserted when the
set_dft_configuration -bsd enable command is used.

• SERIAL_CNTRL
This type includes the serializer clock controller used in serializer flows.

• SERIAL_REG
This type includes the standalone deserializer and serializer registers used in the
serializer IP insertion flow. This type does not affect the normal serializer insertion flow.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

279

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Specifying a Location for DFT Logic Insertion

Feedback

• XOR_SELECT
This type includes the sharing compressor and block-select logic inserted at the
compressor outputs in the shared codec I/O flow. For more information, see Sharing
Codec Scan I/O Pins on page 764.

• TCM
This type includes the test control module logic that decodes test-mode signals in a
multiple test-mode flow. For more information about multiple test modes, see Multiple
Test Modes on page 355.

• LOCKUP_LATCH
This type includes all lock-up latches.

• RETIMING_FLOP
This type includes all retiming flip-flops.

• REC_MUX
This type includes all scan chain reconfiguration MUXs used to reconfigure scan chains
for different test modes in a multiple test-mode flow. It also includes scan-out MUXs,
tristate and bidirectional disable logic, and any other glue logic added during DFT
insertion.

• IEEE_1500
This type includes all DFT-inserted IEEE 1500 logic used for test-mode control. At the
chip level, it also includes the server logic that interfaces to the IEEE Std 1149.1 TAP
controller.

When test logic is placed in an alternative location, new test signal pins are created on
hierarchical blocks as needed to route the test signals to the specified location. Table 30
lists the possible port types and their naming conventions. If you are moving test logic with
many individual signals, such as lock-up latch cells, this can result in a large number of
hierarchy pins being created.

Table 30 New Hierarchy Pin Naming Conventions for DFT-Modified Instances

Port Purpose Direction

test_si%d External scan input pin Input

test_so%d External scan output pin Output

test_se Scan enable (single) Input

test_se%s Scan enables (multiple) Input

Synopsys® TestMAX™ DFT User Guide
T-2022.03

280

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Specifying a Location for DFT Logic Insertion

Feedback

Table 30 New Hierarchy Pin Naming Conventions for DFT-Modified Instances
(Continued)

Port Purpose Direction

test_mode%d Test-mode Input

comp_shift_clk%d External compression shift clock Input

comp_lfsr_clk%d External compression linear feedback
shift register (lfsr) clock pins

Input

comp_load_en%d External compression load pins Input

comp_unload_en%d External compression unload pins Input

scan_in%d Internal scan-in pins Output

scan_out%d Internal scan-out pins Input

Lockup_latch clock Name of clock driving the lock-up latch Input

Functional input net name Net name where the tool inserts the
scan-out MUX

Input

Testmode name_out Output test-mode pin for a test_mode Output

If you issue multiple set_dft_location commands, the insert_dft command uses
the last specified location for each test logic type during DFT insertion. In Example 21,
reconfiguration MUXs and lock-up latches are kept at their local point of use, test-mode
decode logic is placed in a top-level UTCM block, and all other test logic types are placed
in a UTEST_LOGIC block.

Example 21 Issuing Multiple set_dft_location Commands
set_dft_location -exclude {REC_MUX LOCKUP_LATCH BSR} UTEST_LOGIC
set_dft_location -include {TCM} UTCM ;# TCM location is overwritten

You can use the report_dft_location command to see the currently defined locations
for all DFT logic types. The default location for global test logic types is reported as <top>,
which represents the top level of the current design. The default location for local test logic
types is reported as <local>, which represents the local point of use. Example 22 shows
the report resulting from the commands in Example 21.

Example 22 Example of a report_dft_location Report
Design Name DFT PARTITION NAME DFT TYPE DFT Hierarchy Location
==
top default_partition BSR <top>
top default_partition CODEC UTEST_LOGIC

Synopsys® TestMAX™ DFT User Guide
T-2022.03

281

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Specifying a Location for DFT Logic Insertion

Feedback

top default_partition LOCKUP_LATCH <local>
top default_partition XOR_SELECT <top>
top default_partition RETIMING_FLOP <local>
top default_partition TAP UTEST_LOGIC
top default_partition TCM UTCM
top default_partition PIPELINE_SE_LOGIC UTEST_LOGIC
top default_partition PIPELINE_SI_LOGIC UTEST_LOGIC
top default_partition PLL UTEST_LOGIC
top default_partition REC_MUX <local>
top default_partition SERIAL_CNTRL UTEST_LOGIC
top default_partition SERIAL_REG UTEST_LOGIC
top default_partition WRAPPER UTEST_LOGIC
top default_partition IEEE_1500 UTEST_LOGIC

You can use the remove_dft_location command to remove the location specification
for one or more test logic types. When a test logic type has no location specification, it is
inserted at its default location.

In a multiple partition flow, only the following test logic types can be specified on a per-
partition basis: CODEC, SERIAL_REG, PIPELINE_SI_LOGIC, LOCKUP_LATCH, REC_MUX. For
other test logic types, you can only specify the location for the default partition.

The following test logic types are not affected by the set_dft_location command:

• AutoFix logic

• Automatically inserted test points

• User-defined test points

• AND gates inserted by the insert_dft command to suppress toggling

Creating New DFT Logic Blocks
When using the set_dft_location command, if a specified hierarchical cell does not
exist, the set_dft_location command issues a warning:

dc_shell> set_dft_location UCODEC -include {CODEC TCM}
Warning: Specified hierarchy name 'UCODEC' doesn't exist in the current
 design 'test'. (UIT-1112)
Accepted DFT location specification.
1
dc_shell> set_dft_location UOCC -include {PLL}
Warning: Specified hierarchy name 'UOCC' doesn't exist in the current
 design 'test'. (UIT-1112)
Overwriting previous DFT Hierarchy Location specification for type 'PLL'.
Accepted DFT location specification.
1

Synopsys® TestMAX™ DFT User Guide
T-2022.03

282

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Partitioning a Scan Design With DFT Partitions

Feedback

During DFT insertion, the insert_dft command creates the hierarchical cells before
inserting the DFT logic and issues information messages with the cell and design names
of the new DFT blocks:

dc_shell> insert_dft
...
Created instance 'UCODEC' of design 'top_dft_design'
Created instance 'UOCC' of design 'top_dft_design_1'
 Architecting Scan Chains

You can specify cell instance names with the set_dft_location command, but the
resulting design names are automatically generated. To use specific design names for the
new DFT blocks, use the rename_design command after DFT insertion completes. For
example,

set_dft_location UCODEC -include {CODEC TCM}
set_dft_location UOCC -include {PLL}
insert_dft
rename_design [get_attribute [get_cells UCODEC] ref_name] CODEC_design
rename_design [get_attribute [get_cells UOCC] ref_name] OCC_design

Partitioning a Scan Design With DFT Partitions
In some cases, you might want to apply different DFT configuration to different parts of
the design. For example, you might want to use different scan-enable signals for different
blocks, or you might want to enable clock-mixing for some blocks but not others.

You can use DFT partitions to do this. They allow you to divide up your design logic into
multiple partitions, then you apply DFT configuration commands to each partition.

The following topics describe how to use DFT partitions:

• Defining DFT Partitions

• Configuring DFT Partitions

• Per-Partition Scan Configuration Commands

• Known Issues of the DFT Partition Flow

Synopsys® TestMAX™ DFT User Guide
T-2022.03

283

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Partitioning a Scan Design With DFT Partitions

Feedback

Defining DFT Partitions
To use DFT partitions, you must first define them. You can use the following commands to
define and manage partition definitions in your top-level run:

• define_dft_partition

• report_dft_partition

• remove_dft_partition
You can use the define_dft_partition command to define a partition. The most
commonly used options are:

define_dft_partition
 partition_name
 [-include list_of_cells_or_references]
 [-clocks list_of_clocks]

You must provide a unique name for each partition definition. This name is used to
reference the partition when providing codec information, as well as to identify the partition
in subsequent DFT reports.

A partition definition can include design references, hierarchical cells, scan cells, core
scan segments, or clock domains. Although partitions are usually defined along physical or
logical hierarchy boundaries, it is not a requirement.

To specify a set of cells, design references, or core scan segments, use the -include
option. Leaf cells can be specified, although only sequential cells are relevant to the
partition definition. Design references are converted to the set of all hierarchical instances
of those designs. A particular cell or design reference can exist in only one partition
definition. In Example 23, two partitions are defined using hierarchical cells, and a third
partition is defined using a design reference.

Example 23 Defining Three Partitions Using Cells and References
define_dft_partition P1 -include [get_cells {U_SMALL_BLK1 U_SMALL_BLK2}]
define_dft_partition P2 -include [get_cells {U_BIG_BLK}]
define_dft_partition P3 -include [get_references {my_ip_design}]

A partition can also be defined to include one or more clock domains with the -clocks
option. The partition includes all flip-flops clocked by the specified clocks. In Example 24,
two partitions are created by clock domain.

Example 24 Defining Partitions by Clock Domain
define_dft_partition P1 -clocks {CLK1 CLK2}
define_dft_partition P2 -clocks {CLK3}

Synopsys® TestMAX™ DFT User Guide
T-2022.03

284

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Partitioning a Scan Design With DFT Partitions

Feedback

The tool creates a default partition named default_partition that includes the flip-flops not
included in any user-defined partitions. You cannot use the name default_partition when
defining a partition.

You can use the report_dft_partition command to see what partitions have been
defined. Example 25 shows the output from the report_dft_partition command for the
three partitions previously defined in Example 23. Note that the design reference has been
converted to the corresponding set of hierarchical instances of that design.

Example 25 Example of Output From the report_dft_partition Command
Cells or Designs defined in Partition 'P1':
 U_SMALL_BLK1
 U_SMALL_BLK2
Cells or Designs defined in Partition 'P2':
 U_BIG_BLK
Cells or Designs defined in Partition 'P3':
 U_MY_IP_BLK

You can use the remove_dft_partition command to remove one or more user-defined
partition definitions. The default partition cannot be removed.

remove_dft_partition {P1 P2 P3}

Configuring DFT Partitions
After the DFT partitions are defined, you can configure the scan configuration for each
partition. Use the current_dft_partition command to set the current partition, then
apply one or more supported test configuration commands to configure scan for that
partition.

All DFT partitions share a common global configuration. Partition-specific configuration
commands are applied incrementally on top of the global configuration.

In a DFT partition flow, the sequence of configuration commands is:

• Apply global DFT configuration settings

• Define DFT partitions with define_dft_partition

• Apply partition-specific DFT configuration settings to each partition with
current_dft_partition

Example 26 shows an example of global and partition-specific configuration commands.

Example 26 Configuring Two DFT Partitions
apply global DFT configuration settings
set_scan_configuration -clock_mixing mix_clocks
set_dft_signal -view existing_dft \
 -type ScanClock -timing [list 45 55] -port CLK

Synopsys® TestMAX™ DFT User Guide
T-2022.03

285

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Partitioning a Scan Design With DFT Partitions

Feedback

set_dft_signal -view spec -type TestMode -port TM

define DFT partitions
define_dft_partition P1 -include {BLK1}
define_dft_partition P2 -include {BLK2}

configure DFT partition P1
current_dft_partition P1
set_dft_signal -view spec -type ScanEnable -port SE1
set_dft_signal -view spec -type ScanDataIn -port {SI1 SI2}
set_dft_signal -view spec -type ScanDataOut -port {SO1 SO2}
set_scan_configuration -chain_count 2

configure DFT partition P2
current_dft_partition P2
set_dft_signal -view spec -type ScanEnable -port SE2
set_dft_signal -view spec -type ScanDataIn -port {SI3 SI4 SI5}
set_dft_signal -view spec -type ScanDataOut -port {SO3 SO4 SO5}
set_scan_configuration -chain_count 3

If you are defining scan-in or scan-out signals using the set_dft_signal command, you
must define them as a part of each partition’s scan configuration. Scan-enable signals can
be defined globally or on a per-partition basis. However, if a scan-enable signal is defined
for only one partition, it is automatically applied to the remaining partitions. Other signal
types, such as reset, clock, and test-mode signals, must be defined globally before any
partitions are defined, or as part of the default partition configuration.

For the entire design, the total scan chain count is the sum of the scan chain counts
across all partitions. Each scan chain requires its own scan-in and scan-out pin pair,
just as a scan chain does in an unpartitioned flow. Scan chains are not combined or
rebalanced across the partitions.

Figure 106 shows the scan mode chain connections for Example 26. A total of five scan-in
and scan-out pins are used, two for partition P1 and three for partition P2.

Figure 106 DFT Partition Scan Chains

P1 scan-ins

P1 scan-outs

P1 P2

P2 scan-ins

P2 scan-outs

Synopsys® TestMAX™ DFT User Guide
T-2022.03

286

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Partitioning a Scan Design With DFT Partitions

Feedback

After configuring the partitions, you can use the preview_dft command to display the
scan chain distribution across partitions. Example 27 shows a report example.

Example 27 Output From the preview_dft Command for Multiple DFT Partitions
**
Current mode: Internal_scan
**

Number of chains: 5
Scan methodology: full_scan
Scan style: multiplexed_flip_flop
Clock domain: no_mix

Scan chain '1' (SI1 --> SO1) contains 32 cells (Partition 'P1')
 Active in modes: Internal_scan

Scan chain '2' (SI2 --> SO2) contains 32 cells (Partition 'P1')
 Active in modes: Internal_scan

Scan chain '3' (SI3 --> SO3) contains 22 cells (Partition 'P2')
 Active in modes: Internal_scan

Scan chain '4' (SI4 --> SO4) contains 21 cells (Partition 'P2')
Active in modes: Internal_scan

Scan chain '5' (SI5 --> SO5) contains 21 cells (Partition 'P2')
Active in modes: Internal_scan

Per-Partition Scan Configuration Commands
This topic lists the commands you can use to configure DFT insertion on a per-partition
basis. Commands not listed in this section should be applied as part of the global DFT
configuration.

set_scan_configuration
The following set_scan_configuration options can be specified on a per-partition basis:

• -chain_count

• -max_length

• -exact_length

• -clock_mixing

• -insert_terminal_lockup

• -test_mode

Synopsys® TestMAX™ DFT User Guide
T-2022.03

287

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Partitioning a Scan Design With DFT Partitions

Feedback

• -exclude_elements

• -voltage_mixing

• -power_domain_mixing

set_dft_signal
The following set_dft_signal options can be specified on a per-partition basis:

• -view

• -type ScanDataIn | ScanDataOut | ScanEnable | LOSPipelineEnable

• -port

• -hookup_pin

• -hookup_sense

• -active_state

set_dft_location
The following set_dft_location test logic types can be specified on a per-partition basis
with the -include and -exclude options:

• CODEC

• SERIAL_REG

• PIPELINE_SI_LOGIC

• LOCKUP_LATCH

• REC_MUX
For other test logic types, you can only specify the location for the default partition.

set_scan_path
The following set_scan_path options can be specified on a per-partition basis:

• -include_elements

• -head_elements

• -tail_elements

• -ordered_elements

• -complete

Synopsys® TestMAX™ DFT User Guide
T-2022.03

288

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Partitioning a Scan Design With DFT Partitions

Feedback

• -exact_length

• -scan_master_clock

• -scan_slave_clock

• -scan_enable

• -scan_data_in

• -scan_data_out

set_testability_configuration
The following set_testability_configuration options can be specified on a per-partition
basis:

• -clock_signal

• -allowed_clock_signal

• -disallowed_clock_signal

• -control_signal

• -test_points_per_scan_cell

• -max_test_points

set_wrapper_configuration
The following set_wrapper_configuration options can be specified on a per-partition
basis:

• -chain_count

• -max_length

• -mix_cells

Known Issues of the DFT Partition Flow
The following known issues apply to the partition flow:

• The -include option of the set_scan_path command requires lists of cells and design
names. The option does not accept collections.

• If you repeat the same partition name, no error or warning message is issued. The first
partition definition is honored and the rest are ignored.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

289

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Architecting Your Test Design
Modifying Your Scan Architecture

Feedback

• If you define a scan-enable signal for a partition, that scan-enable signal is reused for
any subsequently configured partitions for which the signal has not been defined. This
reuse avoids having to create new scan-enable signals.

• The define_dft_partition command does not perform duplicate object checking
between cell instances and design modules. The overlapping objects will be included
only in one of the partitions.

• If you apply commands or options that do not support per-partition specification to a
DFT partition, they are ignored with no warning.

Modifying Your Scan Architecture
scan configurationmodifyingUnless conflicts occur, the set_scan_configuration commands are additive. You can
enter multiple set_scan_configuration commands to define your scan configuration. If
a conflict occurs, the latest set_scan_configuration command overrides the previous
configuration.

scan architecturemodifyingTo modify your scan configuration, you can rely on the override capability or remove
the complete scan configuration and start over. Use the reset_scan_configuration commandcommandsremove_scan_configurationreset_scan_configuration
command to remove the complete scan configuration. Do not use the reset_design commandcommandsreset_designreset_design
command to remove the scan configuration. Configuring the scan chain does not place
attributes on the design, so the reset_design command has no effect on the scan
configuration and removes all other attributes from your design, including constraints
necessary for optimization.

To make minor adjustments to the scan architecture, modify the scan specification script
generated by the preview_dft -script command.

dc_shell> preview_dft -script > scan_arch.tcl
dc_shell> # manually modify scan_arch.tcl to reflect desired architecture
dc_shell> source scan_arch.tcl
dc_shell> preview_dft
dc_shell> insert_dft

See Also

• Previewing the DFT Logic on page 595 for more information about previewing scan
chain structures

Synopsys® TestMAX™ DFT User Guide
T-2022.03

290

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

10
Advanced DFT Architecture Methodologies

This chapter describes advanced features that can be used while inserting scan circuitry
into your design. These features can be used to improve design testability using manual
and automatic techniques, improve the frequency of the scan testing logic, reduce power
consumption during test, and provide improved integration of tool-inserted and user-
defined test logic.

This chapter describes advanced DFT architecture-related methodologies and processes
in the following topics:

• Inserting Test Points

• Using AutoFix

• Using Pipelined Scan Enables for Launch-On-Extra-Shift (LOES)

• Multiple Test Modes

• Test-Mode Control Using the IEEE 1500 and IEEE 1149.1 Interfaces

• Multivoltage Support

• Controlling Power Modes During Test

•

• Controlling Clock-Gating Cell Test Pin Connections

• Internal Pins Flow

• Creating Scan Groups

• Shift Register Identification

• Performing Scan Extraction

Inserting Test Points
Test points are points in the design where the TestMAX DFT tool inserts logic to improve
the testability of the design. The tool can automatically determine where to insert test

Synopsys® TestMAX™ DFT User Guide
T-2022.03

291

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Inserting Test Points

Feedback

points to improve test coverage and reduce pattern count. You can also manually define
where test points are to be inserted.

The test point capabilities are described in the following topics:

• Test Point Types

• Test Point Structures

• Automatically Inserted Test Points

• User-Defined Test Points

• Previewing the Test Point Logic

• Inserting the Test Point Logic

Caution:
To use any functionality in this section, you must enable the testability client
by using the following command:

dc_shell> set_dft_configuration -testability enable
Otherwise, the tool provides the legacy test point functionality described in
Appendix B, Legacy Test Point Insertion.”

Test Point Types
The available test point types are:

• Force Test Points

• Control Test Points

• Observe Test Points

• Multicycle Test Points

Note:
The test point schematics in these topics show the functional operation of the
test points. During synthesis, constant logic is simplified, and the test point logic
might be optimized into the surrounding logic.

Force Test Points
Force test points allow a signal to be overridden (always force) throughout the entire test
program. They are typically used to block some other value (such as an X value) from
propagating.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

292

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Inserting Test Points

Feedback

The following force test point types are available:

• force_0

• force_1

• force_01
The force_0 and force_1 test point types allow a signal to be replaced with a constant
0 or constant 1 value throughout the entire test session. These test point types are useful
when a particular signal must be forced to a known value for testability purposes. A logic
gate is used to replace the original signal with a fixed constant 0 or 1 value when the
TestMode signal is asserted. See Figure 107.

Figure 107 Example of a force_0 or force_1 Test Point

The force_01 test point type allows a signal to be replaced with a scan-selected value
throughout the entire test session. A multiplexer is used to replace the original signal with
the output of this scan register when the TestMode signal is asserted. See Figure 108.

Figure 108 Example of a force_01 Test Point

TestMode

ScanIn

CLK
ScanEnable

D
SI
SE

Q

SRC

0

1
ScanOut

PinTest-point register

The forced value can vary per-pattern (as the scan register reloads with each pattern), but
it remains constant for all capture cycles within a given pattern.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

293

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Inserting Test Points

Feedback

Control Test Points
Control test points allow a hard-to-control signal to be controllable (selectively forced) for
some test vectors but not others. They are typically inserted to increase the fault coverage
of the design. They provide some control while still allowing some observation of upstream
logic.

The following control test point types are available:

• control_0

• control_1

• control_01
A control_0 or control_1 test point is built with a controlling logic gate, an enabling
AND gate, and a source scan register. When TestMode is not asserted, the signal always
retains its original value. When TestMode is asserted, the signal is forced with a fixed
constant 0 or 1 value only when the output of the scan register selects the constant value.
This allows the test program to select either the original signal behavior or the constant-
forced behavior on a per-pattern basis. See Figure 109 and Figure 110.

Figure 109 Example of a control_1 Test Point

TestMode

ScanIn

CLK
ScanEnable

D
SI
SE

Q

TPE ScanOut

Pin

Test-point register

Synopsys® TestMAX™ DFT User Guide
T-2022.03

294

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Inserting Test Points

Feedback

Figure 110 Example of a control_0 Test Point

TestMode

ScanIn

CLK
ScanEnable

D
SI
SE

Q

TPE ScanOut

Pin

Test-point register

A control_01 test point is similar to the control_0 and control_1 test point types,
except that a scan-selected source signal value from a scan register is selectively driven
onto the net on a vector-by-vector basis. As a result, the control_01 test point requires
two scan cells per control point, one for the source signal value and one for the enable
register that specifies that the source signal should be driven. See Figure 111.

Figure 111 Example of a control_01 Test Point

TestMode

ScanIn

CLK
ScanEnable

D
SI
SE

Q

SRC ScanOut

Pin

Test-point registers

TestMode

ScanIn

CLK
ScanEnable

D
SI
SE

Q

TPE ScanOut

0

1

A control point can be enabled or disabled per-pattern, but its assertion behavior remains
constant across capture cycles within a given pattern.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

295

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Inserting Test Points

Feedback

Observe Test Points
The observe test point type is typically inserted at hard-to-observe signals in a design to
reduce test data volume or to increase coverage.

An observe test point is a scan register with its data input connected to the signal to
be observed. An AND gate prevents the register from capturing and propagating toggle
activity when not in use. It also allows transitions to be blocked in particular test modes,
such as during at-speed testing. See Figure 112.

Figure 112 Example of an observe Test Point

ScanIn

CLK
ScanEnable

ScanOutD
SI
SE

Q

OBS

Pin

Test-point
register

TestMode

Multicycle Test Points
During ATPG, when a scan cell captures a value from a logic path constrained by a
multicycle path exception, it captures a dynamic X value because the multicycle logic
might not be stable by the capturing clock edge. These captured X values can affect other
captured values in compressed designs, and they can propagate through the scan cell into
other areas of the design when fast sequential ATPG is used.

The multicycle test point prevents these X values from being captured. It implements the
following scan capture behavior:

• When the TestMode signal is asserted, the register holds state instead of capturing.

• When the TestMode signal is deasserted, the register captures normally.

Scan shift operation and functional operation are unaffected. This test point uses
reconfigured scan path logic to avoid inserting logic along the functional path. See
Figure 113.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

296

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Inserting Test Points

Feedback

Figure 113 Example of a Multicycle Test Point

ScanIn
ScanEnable

Q
ScanIn

ScanEnable

Q

TestMode

D
SI
SE

Q

FF

D
SI
SE

Q

FF

set_multicycle_path

1

0

set_multicycle_path

The multicycle test point does not provide coverage for the blocked capture path.
However, it does prevent multicycle X values from propagating into scan compression
logic or self-test logic.

Multicycle test points can only be inserted using automatic test point insertion.

Test Point Structures
The following topics describe how test point logic is structured:

• Test Point Components

• Test Point Register Clocks

• Test Point Enable Logic

• Sharing Test Point Registers

Test Point Components
Test points are constructed from (up to) three primary components:

• Pin

The functional pin where the test point is inserted to assert its behavior. This is the pin
where the test point is “located at.” Every test point has a corresponding insertion pin.

• Register

A scan-controllable register that provides source (driving) or sink (capturing) capability
to the test point logic. A single register can be shared by multiple test points. Some test
points do not use a register.

• Control signal

The TestMode or lbistEnable signal that activates the test point logic.

Table 31 summarizes which components are used by each type of test point.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

297

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Inserting Test Points

Feedback

Table 31 Components Used by Each Type of Test Point

Test point type Source register? Sink register? Control signal?

force_0,
force_1

X

force_01 X X

control_0,
control_1

X X

control_01 X (two registers) X

observe X X

multicycle X

Note:
Test point registers do not use a traditional reset signal; their value is set by
scan shift when used and blocked by the control signal when not used.

Test Point Register Clocks
As described in Test Point Components on page 297, some test point types use a
register to drive (source) or capture (sink) data. By default, the tool clocks this register with
the same clock as the surrounding logic.

For source registers, the tool uses the dominant clock of the fanout registers, which
capture data propagating from the test point:

Figure 114 Using Dominant Fanout Clock

D
SI
SE

Q

SRC

D
SI
SE

Q

CLK1

CLK2

CLK2

D
SI
SE

Q
D
SI
SE

Q
D
SI
SE

Q

Fanout
logic

Dominant fanout clock used

TP

Pin
Source

test-point register

Synopsys® TestMAX™ DFT User Guide
T-2022.03

298

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Inserting Test Points

Feedback

For sink registers, the tool uses the dominant clock of the fanin registers, which drive data
that propagates to the test point:

Figure 115 Using Dominant Fanin Clock

D
SI
SE

Q

OBSCLK2

Sink
test-point register

Pin

D
SI
SE

Q

CLK1

CLK2

D
SI
SE

Q
D
SI
SE

Q
D
SI
SE

Q

Fanin
logic

Dominant fanin clock used

Or, you can specify a dedicated test point clock signal to be used for all test point
registers:

• You can specify the name of a scan clock signal, defined as a ScanClock signal type
with the set_dft_signal command.

• In a DFT-inserted OCC controller flow, you can specify the name of a PLL output pin. In
this case, the tool maps the test point clock to the output pin of the corresponding OCC
controller during DFT insertion.

• In a user-defined OCC controller flow, you can directly specify the name of an output
pin of an existing OCC controller.

For more information about OCC controller flows, see Chapter 12, On-Chip Clocking
Support.

For multivoltage designs, the register is associated with the power domain of the block in
which the test point is inserted.

Test Point Enable Logic
When a test point is not enabled, its register output must be held constant.

When the test_tp_enable_logic_type application variable is set to its default of gate,
the tool uses a gate-based (AND or OR) enable logic structure to meet this requirement,
as shown in Figure 116.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

299

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Inserting Test Points

Feedback

Figure 116 Default Gate-Based Enable Logic Structure

TestMode

ScanIn

CLK
ScanEnable

D
SI
SE

Q

TPE ScanOut

Source test-point register

TestMode

ScanIn

CLK
ScanEnable

D
SI
SE

Q

OBS

ScanOut

Sink test-point register

(observe)
(control
or force)

When the test_tp_enable_logic_type application variable is set to reset or set,
the tool uses an asynchronous reset- or set-based enable logic structure, as shown in
Figure 117.

Figure 117 Reset-Based and Set-Based Enable Logic Structure

TestMode

ScanIn

CLK
ScanEnable

ScanOut

Source test-point register

ScanIn

CLK
ScanEnable

D
SI
SE

Q

OBS

ScanOut

Sink test-point register

(observe)

(control
or force)

D
SI
SE

Q

TPE

QN

TestMode

The asynchronous enable logic behaves as shown in Table 32.

Table 32 Asynchronous Set/Reset Enable Logic Behavior

TestMode (control
signal)

ScanEnable Register operation

1 (test point enabled) 1 Register scan shifts

1 (test point enabled) 0 Source register holds state, sink register captures

0 (test point disabled) 1 Register scan shifts (in a test mode where the test point
is not enabled)

0 (test point disabled) 0 Register “captures” set or reset value in test mode,
holds set or reset value in functional mode

Note:
The figures and table in this topic assume active-high DFT signals and active-
low asynchronous pins for simplicity. The actual logic implementation considers
the signal and pin polarities in your design.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

300

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Inserting Test Points

Feedback

The selected enable logic type is used for all DFT-inserted source and sink test point
registers, including the “control+observe” test point used by the self_gating testability
target.

See Also

• SolvNet article 2835133, “Why Doesn't a Reset-Based Test Point Register Need a
Defined Reset Signal?” for details on how the reset signal is used

Sharing Test Point Registers
By default, to reduce the area overhead of test point logic, the TestMAX DFT tool shares
each test point register with multiple test points.

Sharing Source and Enable Registers

A source or enable test point register can be shared with multiple force or control test point
pins. No additional logic gates are required; the register outputs are tied to multiple test
point logic gates. Figure 118 shows the logic for multiple control_0 and control_1 test
points that share the same enable register.

Figure 118 Shared Source Register for Multiple control_0/1 Test Points

TestMode

ScanIn

CLK
ScanEnable

D
SI
SE

Q

TPE ScanOut

net_controlled
net

net

net_controlled
net

net_controlled

net_controlled
net

Test-point register

Multiple test-point pins

Sharing Sink Registers

A sink test point register can be shared with multiple observe test point pins. The tool
builds an XOR reduction tree which collapses multiple observed signals down to a
single sink signal connected to the AND gate at the data input of the sink register. See
Figure 119.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

301

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnet.synopsys.com/retrieve/2835133.html
https://solvnet.synopsys.com/retrieve/2835133.html

Chapter 10: Advanced DFT Architecture Methodologies
Inserting Test Points

Feedback

Figure 119 Shared Sink Register For Multiple observe Test Points

ScanIn

CLK
ScanEnable

ScanOutD
SI
SE

Q

OBS

Multiple test-point pins
Test-point register

TestMode

Sharing Rules

The test point pins within each sharing group share the same test point type,
clock domain, and power domain. The pins are chosen to be in close physical
or logical proximity. The maximum number of pins in a group is set by the
-test_points_per_scan_cell option of the relevant test point configuration command.
The register is inserted in the lowest hierarchy level common to all pins.

A register cannot be shared as both a source (data) and enable (control) register.

Physical Test Point Grouping

In Design Compiler in topographical mode and in Design Compiler Graphical, the tool
groups pins that are in close physical proximity, then creates the test point register within
the group. Test point groups of differing type, clock domain, or power domain are created
independently and thus might overlap.

Figure 120 Shared Source Registers (Red) and Sink Registers (Blue)

SRC

C0

C0
C1

C1

C0

C1

C1

SRC

C0

C0
C1

C1

C0

C1

C1

SRC

C0

C0
C1

C1

C0

C1

C1

SNK

O

O

O

O

O

SNK

O

O

O

O

O

Control group Control group Control group

Observe group Observe group

C0 C0

Synopsys® TestMAX™ DFT User Guide
T-2022.03

302

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Inserting Test Points

Feedback

See SolvNet article 2670826, “Visualizing Test-Point Register Sharing in the Layout View”
to display the sharing groups in your own design.

Wire Load Mode Grouping

In wire load mode, compatible pins are sorted in alphanumerical order, then grouped along
the sorted list. This method tends to keep pins together with common logical hierarchy,
which is correlated (to some degree) to physical proximity.

Automatically Inserted Test Points
You can automatically insert test points in your design to improve its testability. With this
feature, the TestMAX DFT tool calls the TestMAX Advisor tool to analyze the design and
determine an optimal set of test points, then the TestMAX DFT tool implements them
during DFT insertion.

You can use one or more test point targets, each focusing on a different aspect of
testability:

• random_resistant
This target inserts test points that improve random-pattern coverage. This improves
the coverage for a given pattern count. It can also improve the maximum coverage
obtainable for the design.

• untestable_logic
This target inserts test points that make untestable logic testable. This improves the
maximum coverage obtainable for a design. It also improves the coverage for a given
pattern count.

• x_blocking
This target inserts test points to block X values at their sources so they cannot
propagate into downstream logic and be captured.

• multicycle_paths
This target inserts test points to prevent multicycle-path-constrained logic from being
captured by scan cells (which ATPG treats as an X value).

• shadow_wrapper
This target inserts shadow wrappers around untestable blocks or macrocells so that
surrounding logic can be tested. The outputs are forced to known values and the inputs
are observed to ensure coverage.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

303

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnet.synopsys.com/retrieve/2670826.html

Chapter 10: Advanced DFT Architecture Methodologies
Inserting Test Points

Feedback

• core_wrapper
This target inserts a test-point-based wrapper chain at the data I/O ports of the current
design. Only inward-facing (INTEST) functionality is provided, but test point register
sharing ensures very low overhead.

• self_gating
This target inserts test points that improve the testability of XOR self-gating logic. (For
details on this clock-gating feature, see the “XOR Self-Gating” section of the Power
Compiler User Guide.)

• user
This target inserts test points whose types and locations are provided by the user.

The following topics describe how to configure automatic test point insertion:

• Enabling Automatic Test Point Insertion

• Configuring Global Test Point Insertion Settings

• Configuring the Random-Resistant Test Point Target

• Configuring the Untestable Logic Test Point Target

• Configuring the X-Blocking Test Point Target

• Configuring the Multicycle Path Test Point Target

• Configuring the Shadow Wrapper Test Point Target

• Configuring the Core Wrapper Test Point Target

• Configuring the XOR Self-Gating Test Point Target

• Configuring the User-Defined Test Point Target

• Enabling Multiple Targets in a Single Command

• Implementing Test Points From an External File

• Customizing the Test Point Analysis

• Running Test Point Analysis

• Automatic Test Point Insertion Example Script

• Limitations

Synopsys® TestMAX™ DFT User Guide
T-2022.03

304

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Inserting Test Points

Feedback

Enabling Automatic Test Point Insertion
To enable automatic test point insertion, issue the following command before pre-DFT
DRC:

dc_shell> set_dft_configuration -testability enable
Note:

A TestMAX DFT and TestMAX Advisor license, or a DFTMAX license and
a Spyglass® DFT ADV license, are required to use the automatic test point
insertion feature.

Then, use the set_testability_configuration command to configure one or more
automatic test point targets:

• To configure global settings, which are shared by all targets, omit the -target option.

• To enable a particular target (and to optionally configure any target-specific options it
supports), specify that target with the -target option.

To enable multiple test point targets, issue a separate configuration command for each
target, as shown in Automatic Test Point Insertion Example Script on page 324.

Before previewing the test points with the preview_dft command, run test point analysis
as described in Running Test Point Analysis on page 322.

Configuring Global Test Point Insertion Settings
To configure global aspects and defaults of automatic test point insertion, use the
set_testability_configuration command without the -target option:

dc_shell> set_testability_configuration
 [-clock_signal clock_name]
 [-allowed_clock_signal clock_list]
 [-disallowed_clock_signal clock_list]
 [-control_signal control_name]
 [-only_from_file false | true]
 [-test_points_per_scan_cell n]
 [-sg_command_file file_name]
 [-max_test_points n]
 [-test_point_file file_name]
 [-effort low | medium | high]
 [-target_test_coverage coverage_value]
 [-random_pattern_count n]
 [-include_elements cell_list]
 [-include_fanin_cone pin_port_list]
 [-include_fanout_cone pin_port_list]
 [-exclude_elements cell_list]
 [-exclude_fanin_cone pin_port_list]
 [-exclude_fanout_cone pin_port_list]

Synopsys® TestMAX™ DFT User Guide
T-2022.03

305

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Inserting Test Points

Feedback

Table 33 shows the global configuration options.

Table 33 Global set_testability_configuration Options

To do this Use this option

Use a single dedicated clock for all test point
registers in the design7 -clock_signal clock_name

(default is the dominant clock)

Use a particular TestMode signal to enable the
test points7 -control_signal control_name

(default is the first available TestMode signal)

Specify the list of a previously defined scan
clock signals to use for DFT-inserted test point
registers.

-allowed_clock_signal clock_list

Specify the list of a previously defined scan clock
signals that you must not use for DFT-inserted
test point registers.

-disallowed_clock_signal clock_list

Specify whether file-based test points should
augment or replace analysis-based test points.7

-only_from_file false | true

Specify the number of force, control, or observe
points that can share a test point register7

-test_points_per_scan_cell n
(default is 8)

Customize the test point analysis with
user-provided TestMAX Advisor Tcl commands

-sg_command_file file_name

Set the maximum number of random_resistant
and untestable_logic test points (combined)
that can be inserted

-max_test_points n
(default is 5% of the total register count)

Implement test points defined in an external file
(see Implementing Test Points From an External
File on page 318)

-test_point_file file_name

Control the settings used for per-partition
random_resistant analysis (see Configuring
the Random-Resistant Test Point Target on
page 307)

-effort low | medium | high
-target_test_coverage coverage_value
-random_pattern_count n

Restrict test point insertion to only particular
hierarchical cells or logic cones

-include_elements cell_list
-include_fanin_cone pin_port_list
-include_fanout_cone pin_port_list
(default is to consider the entire design)

7. This option can also be specified per-target to override the global value.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

306

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Inserting Test Points

Feedback

Table 33 Global set_testability_configuration Options (Continued)

To do this Use this option

Exclude particular hierarchical cells or logic cones
from test point insertion

-exclude_elements cell_list
-exclude_fanin_cone pin_port_list
-exclude_fanout_cone pin_port_list
(default is not to exclude anything)

The -max_test_points option applies to the random_resistant and untestable_logic
targets. When both targets are enabled, the analysis automatically allocates the global
limit across them. Any per-target -max_test_points limits apply in addition to, not
in place of, the global limit. For details, see SolvNet article 3021459, “How Does The
-max_test_points Option Work?”

Configuring the Random-Resistant Test Point Target
You can use the random_resistant test point target to improve the testability of hard-to-
test logic in your design. This improves the coverage for a given pattern count. It can also
improve the maximum coverage obtainable and ATPG effectiveness for the design.

The random-resistant target invokes a TestMAX Advisor algorithm that determines an
optimal set of test points that improves random-pattern test coverage for a given pattern
count. It provides the following benefits:

• High capacity—No random pattern simulation is used; instead, the pattern count is a
parameter in a mathematical probabilistic fault-detection analysis.

• Easy to use—The algorithm finds the optimum set of control_0, control_1, and observe
test points; there is no need to guess at per-type limits.

To enable and configure the random-resistant target, use the following command:

dc_shell> set_testability_configuration
 -target random_resistant
 [-clock_signal clock_name]
 [-control_signal control_name]
 [-allowed_clock_signal clock_list]
 [-disallowed_clock_signal clock_list]
 [-only_from_file false | true]
 [-test_points_per_scan_cell n]
 [-effort low | medium | high]
 [-max_test_points n]
 [-target_test_coverage coverage_value]
 [-random_pattern_count n]
 [-include_elements cell_list]
 [-include_fanin_cone pin_port_list]
 [-include_fanout_cone pin_port_list]
 [-exclude_elements cell_list]

Synopsys® TestMAX™ DFT User Guide
T-2022.03

307

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnet.synopsys.com/retrieve/3021459.html
https://solvnet.synopsys.com/retrieve/3021459.html

Chapter 10: Advanced DFT Architecture Methodologies
Inserting Test Points

Feedback

 [-exclude_fanin_cone pin_port_list]
 [-exclude_fanout_cone pin_port_list]

The -target random_resistant option enables the random-resistant target and is
required to use it. The remaining options, described in Table 34, can be specified to
override their defaults.

Table 34 Random-Resistant set_testability_configuration Options

To do this Use this option

Override the corresponding global value of a
parameter

-clock_signal clock_name
-control_signal control_name
-test_points_per_scan_cell n

Control the runtime-versus-accuracy tradeoff of
the analysis

-effort low | medium | high
(default is medium)

Specify the list of a previously defined scan
clock signals to use for DFT-inserted test point
registers.

-allowed_clock_signal clock_list

Specify the list of a previously defined scan clock
signals that you must not use for DFT-inserted
test point registers.

-disallowed_clock_signal clock_list

Specify whether file-based test points should
augment or replace analysis-based test points.8

-only_from_file false | true

Set the number of random-resistant test points at
which the analysis completes8 -max_test_points n

(default is no target-specific limit)

Set the random-pattern test coverage value at
which the analysis completes8 -target_test_coverage coverage_value

(default is 100)

Specifies the random pattern count used for the
analysis

-random_pattern_count n
(default is 64000)

Restrict test point insertion to only particular
hierarchical cells or logic cones

-include_elements cell_list
-include_fanin_cone pin_port_list
-include_fanout_cone pin_port_list
(default is to consider the entire design)

Exclude particular hierarchical cells or logic cones
from test point insertion

-exclude_elements cell_list
-exclude_fanin_cone pin_port_list
-exclude_fanout_cone pin_port_list
(default is not to exclude anything)

8. Random-resistant analysis completes when either of these criteria is met.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

308

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Inserting Test Points

Feedback

If you are inserting LogicBIST self-test, for best results, set the -random_pattern_count
option to the number of self-test patterns.

See Also

• Info_random_resistance rule documentation in the TestMAX Advisor documentation for
details on the random-resistant analysis algorithm and its parameters

Configuring the Untestable Logic Test Point Target
You can use the untestable_logic test point target to make untestable logic testable.
This improves the maximum coverage obtainable for a design. It also improves the
coverage for a given pattern count.

The untestable logic target invokes a TestMAX Advisor algorithm that determines an
optimal set of force_01 and observe test points to control uncontrollable nets and observe
unobservable logic, respectively.

Figure 121 Untestable Logic Made Testable

0

1

TestMode

force_01
test point

SRC

D Q
X

OBS
observe

test point

BBOX

Uncontrollable
startpoint

Nonobserving
endpoint

Untestable logic
made testable

The untestable logic target differs from the X-blocking target as follows:

• It inserts observe test points as well as force_01 test points.

• It performs gain-based analysis, which prefers test points with the highest testability
improvement first.

• It considers the -max_test_points option.

To enable and configure the untestable logic target, use the following command:

dc_shell> set_testability_configuration
 -target untestable_logic
 [-clock_signal clock_name]
 [-control_signal control_name]
 [-allowed_clock_signal clock_list]

Synopsys® TestMAX™ DFT User Guide
T-2022.03

309

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnet.synopsys.com/dow_retrieve/latest/spyglass/spyglass_olh/index.html#page/TestMaxAdvisor/Info_random_resistance.htm

Chapter 10: Advanced DFT Architecture Methodologies
Inserting Test Points

Feedback

 [-disallowed_clock_signal clock_list]
 [-only_from_file false | true]
 [-test_points_per_scan_cell n]
 [-max_test_points n]
 [-include_elements cell_list]
 [-include_fanin_cone pin_port_list]
 [-include_fanout_cone pin_port_list]
 [-exclude_elements cell_list]
 [-exclude_fanin_cone pin_port_list]
 [-exclude_fanout_cone pin_port_list]

The -target untestable_logic option enables the untestable logic target and is
required to use it. The remaining options, described in Table 35, can be specified to
override their defaults.

Table 35 Untestable Logic set_testability_configuration Options

To do this Use this option

Override the corresponding global value of a
parameter

-clock_signal clock_name
-control_signal control_name
-test_points_per_scan_cell n

Specify the list of a previously defined scan
clock signals to use for DFT-inserted test point
registers.

-allowed_clock_signal clock_list

Specify the list of a previously defined scan clock
signals that you must not use for DFT-inserted
test point registers.

-disallowed_clock_signal clock_list

Specify whether file-based test points should
augment or replace analysis-based test points.1

-only_from_file false | true

Set the number of untestable logic test points at
which the analysis completes

-max_test_points n
(default is no target-specific limit)

Restrict test point insertion to only particular
hierarchical cells or logic cones

-include_elements cell_list
-include_fanin_cone pin_port_list
-include_fanout_cone pin_port_list
(default is to consider the entire design)

Exclude particular hierarchical cells or logic cones
from test point insertion

-exclude_elements cell_list
-exclude_fanin_cone pin_port_list
-exclude_fanout_cone pin_port_list
(default is not to exclude anything)

This target is highly recommended for designs with LogicBIST self-test.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

310

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Inserting Test Points

Feedback

See Also

• TA_10 rule documentation in the TestMAX Advisor documentation for details on the
untestable logic analysis algorithm

Configuring the X-Blocking Test Point Target
You can use the x_blocking test point target to identify and block X-value sources from
black-box cells. This target inserts force_01 test points at the sources to force scan-
controllable values in place of the X values.

Figure 122 X-Value Source Blocked by force_01 Test Point

0

1

X

TestMode

D
SI
SE

Q

FF1force_01
test point

SRC

The X-blocking target differs from the untestable logic target as follows:

• It blocks all X sources in the design regardless of gain improvement, which is important
for designs with LogicBIST self-test.

• It does not consider the -max_test_points option.

To enable the X-blocking target, use the following command:

dc_shell> set_testability_configuration
 -target x_blocking
 [-clock_signal clock_name]
 [-control_signal control_name]
 [-test_points_per_scan_cell n]

The -target x_blocking option enables the X-blocking target and is required to use it.
The remaining options, described in Table 36, can be specified to override their defaults.

Table 36 X-Blocking set_testability_configuration Options

To do this Use this option

Override the corresponding global value of a
parameter

-clock_signal clock_name
-control_signal control_name
-test_points_per_scan_cell n

Synopsys® TestMAX™ DFT User Guide
T-2022.03

311

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnet.synopsys.com/dow_retrieve/latest/spyglass/spyglass_olh/index.html#page/dft%2FTA_10.htm

Chapter 10: Advanced DFT Architecture Methodologies
Inserting Test Points

Feedback

This target blocks X values from black-box cells. It does not block values from registers
with uncontrolled clock or asynchronous set/reset signals.

This target is highly recommended for designs with LogicBIST self-test.

Configuring the Multicycle Path Test Point Target
You can use the multicycle_paths test point target to prevent multicycle-path-
constrained logic from being captured by scan cells (which ATPG treats as an X value).
This target inserts multicycle path test points at multicycle-constrained data input pins of
scan cells.

To enable the multicycle paths target, use the following command:

dc_shell> set_testability_configuration
 -target multicycle_paths
 [-control_signal control_name]

The -target multicycle_paths option enables the multicycle paths target and is
required to use it. The remaining options, described in Table 37, can be specified to
override their defaults.

Table 37 Multicycle Paths set_testability_configuration Options

To do this Use this option

Override the corresponding global value of the
parameter

-control_signal control_name

You must apply all multicycle constraints before test point analysis is run. See Previewing
the Test Point Logic on page 328.

See Also

• Atspeed_05 rule documentation in the TestMAX Advisor documentation for details on
the multicycle paths analysis rule

• Multicycle Test Points on page 296 for information on the multicycle path test point

Configuring the Shadow Wrapper Test Point Target
You can use the shadow_wrapper test point target to allow logic around untestable blocks
or macrocells to be tested.

This target inserts force_01 test points at data output pins to drive known values, and it
inserts observe test points at data input pins to ensure coverage. If the functional logic
around a pin already allows for testability, the analysis detects this and does not insert a
test point.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

312

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnet.synopsys.com/dow_retrieve/latest/spyglass/spyglass_olh/index.html#page/dft%2FAtspeed_05.htm

Chapter 10: Advanced DFT Architecture Methodologies
Inserting Test Points

Feedback

Figure 123 Shadow Wrapper Around a Black-Box Cell

OBS

observe
observe
observe

SRC

force_01
force_01
force_01

TestMode

U_BBOX
D
SI
SE

Q

D
SI
SE

Q

D
SI
SE

Q

D
SI
SE

Q

To enable the shadow wrapper target, use the following command:

dc_shell> set_testability_configuration
 -target shadow_wrapper
 -isolate_elements cell_list
 [-clock_signal clock_name]
 [-control_signal control_name]
 [-test_points_per_scan_cell n]

The -target shadow_wrapper option enables the shadow wrapper target and the
-isolate_elements option specifies the list of cells to isolate; both are required. The
remaining options, described in Table 38, can be specified to override their defaults.

Table 38 Shadow Wrapper set_testability_configuration Options

To do this Use this option

Override the corresponding global value of a
parameter

-clock_signal clock_name
-control_signal control_name
-test_points_per_scan_cell n

Only hierarchical, black-box, and CTL-modeled cells can be isolated.

Configuring the Core Wrapper Test Point Target
You can use the core_wrapper test point target to insert an inward-facing-only wrapper
chain, constructed using test points, at the data I/O ports of the current design.

This target inserts force_01 test points at data input ports to drive known values, and
it inserts observe test points at data output ports to ensure coverage. If the functional
logic around a port already allows for testability, the analysis detects this and reuses the
functional registers instead of inserting a test point.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

313

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Inserting Test Points

Feedback

This is not a replacement for full core wrapping in a hierarchical test flow. Instead, it
provides a lightweight core isolation capability suitable for unwrapped designs with built-
in self-test (BIST). This isolation method is area-efficient, especially when reused registers
are used.

Figure 124 Test-Point-Based Wrapper Chain and LogicBIST Self-Test Logic

Core
logic

CORE
CLK

Scan chain

SRC OBS

PRPG LogicBIST FSM MISR

LBIST_EN

force_01
force_01

observe
observe
observe

If an input port is directly registered, its functional register is reused to implement the
force_01 test point by modifying the scan-enable connection to hold state during capture,
as shown in Figure 125. Similarly, functional output registers can take the place of observe
test points. Small amounts of logic can be permitted between ports and their registers by
adjusting fanout and depth threshold values.

Figure 125 Functional Input Register Reused as State-Holding force_01 Test Point

D
SI
SE

Q

FFA

A

ScanEnable
LBIST_EN

0

1

Scan-out

Scan-in
Existing reused
functional register

Just as with the full core-wrapping DFT client, clock, test, and asynchronous set/reset
ports are not wrapped. See Wrapper Cells and Wrapper Chains on page 435 for details.

To enable this lightweight core wrapper target, use the following command:

dc_shell> set_testability_configuration
 -target core_wrapper
 [-clock_signal clock_name]
 [-control_signal control_name]
 [-test_points_per_scan_cell n]

Synopsys® TestMAX™ DFT User Guide
T-2022.03

314

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Inserting Test Points

Feedback

 [-reuse_threshold threshold_value]
 [-depth_threshold threshold_value]

The -target core_wrapper option enables the core wrapper target and is required to
use it. The remaining options, described in Table 39, can be specified to override their
defaults. They work the same as described in The Maximized Reuse Core Wrapping Flow
on page 445.

Table 39 Core Wrapper set_testability_configuration Options

To do this Use this option

Override the corresponding global value of a parameter -clock_signal clock_name
-control_signal control_name
-test_points_per_scan_cell n

Specify the maximum number of functional I/O registers
allowed for reuse before adding a test point

-reuse_threshold threshold_value
(default is 0)

Set the maximum number of combinational logic levels
(including buffers and inverters) allowed for reuse
before adding a test point

-depth_threshold threshold_value
(default is 1)

Exclude particular ports from being wrapped -exclude_elements port_list
(default is not to exclude ports)

Configuring the XOR Self-Gating Test Point Target
You can use the self_gating test point target to improve the testability of XOR self-gating
logic. (For details on this clock-gating feature, see the “XOR Self-Gating” section of the
Power Compiler User Guide.)

XOR self-gating logic is inherently difficult to test. False-positive comparator faults are
difficult to test, while false-negative comparator faults are redundant and impossible to
test. The next-state values are often driven by complex datapath logic that is difficult to
control.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

315

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Inserting Test Points

Feedback

This target improves XOR self-gating testability by inserting the following:

• Per-comparator control_0 test points

These allow comparators to be masked so that individual comparators can be tested.
Each test point reuses the functional register from the neighboring bit.

• Per-gating-group observe test point

This allows the clock-gating cell enable signal to be directly tested.

• Per-gating-group control_1 test point

This allows the next-state values to be captured and tested independently of the self-
gating logic. It shares its register with the observe test point.

Figure 126 XOR Self-Gating Test Points

CLK
EN

CLKO

UICGTST

D
SI
SE

Q

D
SI
SE

Q

D
SI
SE

Q

D
SI
SE

Q

TestMode

ScanEnable D
SI
SE

Q

TPE

Per-comparator
control_0
test point logic

Per-gating-group
control_1 + observe
test point logic

For self-gating groups with three or fewer registers, the per-comparator control_0 test
points are not inserted.

To enable the XOR self-gating target, use the following command:

dc_shell> set_testability_configuration
 -target self_gating
 [-clock_signal clock_name]
 [-control_signal control_name]

Synopsys® TestMAX™ DFT User Guide
T-2022.03

316

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Inserting Test Points

Feedback

The -target self_gating option enables the self-gating target and is required to use it.
The remaining options, described in Table 40, can be specified to override their defaults.

Table 40 XOR Self-Gating set_testability_configuration Options

To do this Use this option

Override the corresponding global value of a parameter -clock_signal clock_name
-control_signal control_name

Configuring the User-Defined Test Point Target
The user test point target controls the implementation of user-defined test points.

This target applies to the following:

• User-defined test points specified by the -test_point_file option

Test points not from TestMAX Advisor in an external file are assigned to the user test
point target. User-defined test points from an external file are not implemented unless
the user target is enabled.

• The set_test_point_element command

User-defined test points defined with the set_test_point_element command are
always implemented, whether the user target is enabled or not. However, the user
target allows you to specify implementation defaults for them.

To enable the user-defined target, use the following command:

set_testability_configuration
 -target user
 [-clock_signal clock_name]
 [-control_signal control_name]
 [-test_points_per_scan_cell n]

The -target user option enables the user-defined target and is required to use test
points from an external file. The remaining options, described in Table 41, can be specified
to override their defaults.

Table 41 User-Defined set_testability_configuration Options

To do this Use this option

Override the corresponding global value of a
parameter

-clock_signal clock_name
-control_signal control_name
-test_points_per_scan_cell n

Synopsys® TestMAX™ DFT User Guide
T-2022.03

317

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Inserting Test Points

Feedback

See Also

• Implementing Test Points From an External File on page 318 for details on TestMAX
Advisor and user-defined test point files

Enabling Multiple Targets in a Single Command
You can enable multiple targets in a single set_testability_command by specifying a list
with the -target option:

dc_shell> set_testability_configuration \
 -target {random_resistant x_blocking}
Information: Creating testability configuration for target
 'random_resistant'.
Information: Creating testability configuration for target 'x_blocking'.
Accepted testability configuration specification for design 'top'.
1

If you specify an option that pertains to some targets but not others, the tool warns of
unsupported target/option combinations (but accepts the valid combinations):

dc_shell> set_testability_configuration \
 -target {random_resistant x_blocking} -max_test_points 100
Warning: The '-max_test_points' option does not apply to the
'x_blocking' target. (UIT-1810)
Information: Creating testability configuration for target
'random_resistant'.
Information: Creating testability configuration for target 'x_blocking'.
Accepted testability configuration specification for design 'top'.
1

For suggestions on resolving the UIT-1810 warning message, see its man page.

Implementing Test Points From an External File
You can implement test points defined in an external file by using the -test_point_file
option of the set_testability_configuration command:

dc_shell> set_testability_configuration
 -test_point_file file_name
The -test_point_file option is a global option that specifies the name of the test point
file to implement.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

318

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Inserting Test Points

Feedback

The test point file must be formatted as follows:

• A test point is described by a line containing three fields, separated by whitespace:

◦ A user-defined label (not used by the tool; can be any string)

◦ The test point type keyword

◦ The net where the test point should be inserted

• For net names, the hierarchy separator character can be “/” (used by the synthesis
tools) or “.” (used by the TestMAX Advisor tool).

• Text after “#” is a comment and is ignored.

• Blank lines are ignored.

Note that file-based test points are not implemented unless their targets are enabled (just
as with analysis-based test points). Test points are assigned to targets as described in the
following sections.

Using User-Defined Test Point Files

Test points from user-defined test point files are assigned to the user test point target.
Example 28 shows an example user-defined test point file.

Example 28 Example User-Defined Test Point File
Put these memories into test mode
* force_1 MEM0_0/TSTMODE
* force_1 MEM0_1/TSTMODE
* force_1 MEM1_0/TSTMODE
* force_1 MEM1_1/TSTMODE

these test points come from our in-house Perl script
TP1 control_1 core0/U37641/Z # my_algorithm.pl result: Q=478 V=479
TP2 control_0 core4/U73087/Z # my_algorithm.pl result: Q=861 V=22
TP3 control_0 core0/U64599/Z # my_algorithm.pl result: Q=227 V=964
TP4 control_1 core4/U99749/Z # my_algorithm.pl result: Q=841 V=9
Using TestMAX Advisor Test Point Files

Test points from a TestMAX Advisor test point file (with in-line comments) are routed to
their corresponding targets. Example 29 shows an example test point file generated by the
TestMAX Advisor tool that contains random_resistant and x_blocking test points.

Example 29 Example TestMAX Advisor Test Point File
Moment : "TP analysis start " # Time : 2017- 1-30 9:52:19
Design : "top"
Initial Random Pattern Test Coverage : 80.68602
Stuck At Test Coverage : 99.44180

Synopsys® TestMAX™ DFT User Guide
T-2022.03

319

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Inserting Test Points

Feedback

Random Pattern Count : 10
Effort Level : medium
Requested Test Points : 1
Cut-Off Gain : 0.00000, (cumulative gain of last '1' test points)
Thread Count : 8

Index Test_Point_Type Net Comment
1 observe sub3.N50 #Gain : 0.04860 Cov : 80.73462 S@TC : 99.4
Search completed : 1 (dft_rrf_tp_count(1 - 1)) test points identified.
BENCHMARK : "COMPLETE TP ANALYSIS " # Time : 5.7086
Moment : "TP analysis End " # Time : 2017- 1-30 9:52:24

X Source Section
Index force_01 net
* force_01 sub2.nZ[0] # -xsource -cell_name sub2.BBOX
* force_01 sub2.nZ[1] # -xsource -cell_name sub2.BBOX
* force_01 sub2.nZ[2] # -xsource -cell_name sub2.BBOX
* force_01 sub2.nZ[3] # -xsource -cell_name sub2.BBOX
Using TestMAX Advisor Test Point Files Without Rerunning Analysis

By default, analysis is performed for all enabled targets. However, when implementing
test points from a TestMAX Advisor file, you can prevent analysis from rerunning for its
targets by specifying the -only_from_file true option for those targets. Analysis is still
performed for any targets enabled without this option.

The following command implements random_resistant and x_blocking test points from
a TestMAX Advisor file, then also implements shadow-wrapper test points that are not
described in the file:

global options - specify test point file
dc_shell> set_testability_configuration -test_point_file
 my_rrf_xblocking_TPs.txt

enable targets for implementation
implement these from the existing TestMAX Advisor file:
dc_shell> set_testability_configuration -target {random_resistant} \
 -only_from_file true
dc_shell> set_testability_configuration -target {x_blocking} \
 -only_from_file true

derive these in the current run (during run_test_point_analysis)
dc_shell> set_testability_configuration -target {shadow_wrapper} \
 -isolate_elements {IP_BLOCK1 IP_BLOCK2}

Figure 127 shows how the test points are populated in each target for this example.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

320

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Inserting Test Points

Feedback

Figure 127 Combining File-Based and Analysis-Based Test Points

SpyGlass DFT

set_testability_configuration
 -target { }

set_testability_configuration
 -test_point_file my_rrf_xblocking_TPs.txt

random_resistant x_blocking shadow_wrapper

insert_dft

run_test_point_analysis

File-based test points (global option) Analysis-based test points

Enabled targets
for implementation

-only_from_file
true

If you implement TestMAX Advisor test points from a file by enabling its target without
specifying the -only_from_file true option, both the file-based and analysis-based test
points are implemented for that target.

Customizing the Test Point Analysis
To customize the test point analysis, you can provide a user file containing one or more
TestMAX Advisor Tcl commands to be included:

dc_shell> set_testability_configuration -sg_command_file my_sg_cmds.tcl
This user file is an unordered list of one or more of the following commands:

read_file
set_parameter
set_option
set_goal_option

Synopsys® TestMAX™ DFT User Guide
T-2022.03

321

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Inserting Test Points

Feedback

The run_test_point_analysis command automatically places the commands at the
appropriate points in the internal analysis script (also known as the TestMAX Advisor
project file):

Figure 128 Including User Commands in the TestMAX Advisor Test Point Analysis

my customization
set_goal_option addrules ...
set_parameter ...
read_file -type sgdc ...
set_option ... ;# comment

** **** ************ *** *********** ******** *** ** **** **** ** ** ********** ** * ********* ********* **** ******** **** ** *** ** **** **** ******* ** *** ******* ******* ** *** ********* ** ********* ** ** *** ***** ** ************ *** ********* ****** ** *********** ** *** ********* **** ******** **** ** *** ****** ******** ** *** ****** ****** ***** **** ** ********** ** *** ********** ******* **
* ****** * **** ** *** ******* * ************* ****** ******* * ************** **** * *** *** * ******** *** ****
********* ***** **** ************ *** ***** **** ** * ***
******* ***************** ************ ************* ** ************ ******** ************* ****************************** ************* **************************** ************* *** ******* ** *******
***************** *** ***
*********** ************************* ******* * *** ******* * * *************** ***** * ************* ************** * *********** *************** ******** * ************** * ************* ******************************** ** ************* *** ** ***************** *************** ******** * ********************** * ***************** *************** ******** * ***** * *************** ******** *** ************* *** ************************************** ************* *********************** ****** ************* *************** *** ************* ***************** * ************* ******************************* *********

my_sg_cmds.tcl

_snpDft*/sg_config.prj
(internal SpyGlass DFT project file)

Note:
TestMAX Advisor design constraint (*.sgdc) commands cannot be placed
directly in the user file, but they can be placed in a separate file and applied by
a read_file -type sgdc command in the user file.

Comments after commands are preserved; full-line comments are not.

After the run_test_point_analysis command completes, you can examine the
TestMAX Advisor project file by looking at the sg_config.prj file in the newly created
_snpDft* directory.

Running Test Point Analysis
If you have configured testability analysis features that require TestMAX Advisor analysis,
you must run the analysis after pre-DFT DRC and prior to previewing the test point
implementation. To do this, use the run_test_point_analysis command:

create_test_protocol
dft_drc
run_test_point_analysis
preview_dft -test_points all

The run_test_point_analysis command requires that the SPYGLASS_HOME
environmental variable (not Tcl application variable) be set so it can find the spyglass
executable. You can check this as follows:

dc_shell> echo $env(SPYGLASS_HOME)
/global/apps/spyglass_2017.09-SP2

Synopsys® TestMAX™ DFT User Guide
T-2022.03

322

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Inserting Test Points

Feedback

Caution:
You must use Spyglass version N-2017.12-SP2 or later.

When you run the run_test_point_analysis command, it automatically reports the
status of the TestMAX Advisor analysis:

dc_shell> run_test_point_analysis
Information: Starting test point analysis.
Information: Test point analysis directory is '/proj/chip/_snpDft_user3.25145.
0'.
Information: SpyGlass run started at 09:06:21 AM on May 01 2018
Information: SpyGlass Predictive Analyzer(R) - Version SpyGlass_vO-2019.06

Estimated stuck-at test coverage: 0.73%
Global test point limit of 20 specified.

Analysis for 'untestable_logic' target started.
 No per-target limit specified.
 4 test points found with estimated test coverage: 64.52%
 4 test points found.
Analysis for 'untestable_logic' target completed.

Analysis for 'random_resistant' target started.
 No per-target limit specified.
 Estimated random pattern test coverage: 78.50%
 1 test points found with estimated random pattern coverage: 84.57%
 2 test points found with estimated random pattern coverage: 87.82%
 3 test points found with estimated random pattern coverage: 88.05%
 ...
 15 test points found with estimated random pattern coverage: 91.31%
 16 test points found with estimated random pattern coverage: 91.33%
 16 test points found.
Analysis for 'random_resistant' target completed.

SpyGlass Message Summary:
 Reported Messages: 0 Fatals, 0 Errors, 0 Warnings, 23 Infos

SpyGlass-DFT Technology Summary:
 Random pattern fault coverage = 91.2%
 Random pattern test coverage = 91.3%
 Stuck-at fault coverage = 64.5%
 Stuck-at test coverage = 64.5%
 Percentage of scannable flops = 99.7%

Information: SpyGlass critical reports for the current run are present in
 directory './sg_config/consolidated_reports/top_sg_dft_testpoint_analysis/'.

Information: SpyGlass run completed at 09:09:00 AM on May 01 2018
Information: Test point analysis completed.
1

The following targets do not require analysis (although doing so is harmless):

• The core_wrapper target

• The user target

• Any target that has the -only_from_file true option set

Synopsys® TestMAX™ DFT User Guide
T-2022.03

323

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Inserting Test Points

Feedback

Automatic Test Point Insertion Example Script
The following script inserts several kinds of testability test points, using a test-mode control
signal named TM_TESTPOINTS.

define DFT signals
set_dft_signal -view existing_dft -type ScanClock \
 -port CLK -timing [list 45 55]
set_dft_signal -view spec -type TestMode \
 -port TM_TESTPOINTS

enable automatic test point insertion
set_dft_configuration -testability enable

configure global automatic test point insertion settings
(shared by all targets)
set_testability_configuration \
 -control_signal TM_TESTPOINTS \
 -test_points_per_scan_cell 16

enable and configure test point targets
set_testability_configuration \
 -target random_resistant \
 -random_pattern_count 1024

set_testability_configuration \
 -target x_blocking

set_testability_configuration \
 -target shadow_wrappers \
 -isolate_elements {IP_CORE1 IP_CORE2}

preview test points
create_test_protocol
dft_drc
run_test_point_analysis ;# runs TestMAX Advisor to compute test points
preview_dft -test_points all

insert DFT logic
insert_dft

Limitations
Automatic test point insertion has the following limitations:

• For targets that require TestMAX Advisor analysis, you must use Spyglass version
N-2017.12-SP2 or later.

• The -control_signal option must be specified, otherwise the control signal for the
test point logic is tied to logic 0.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

324

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Inserting Test Points

Feedback

• The shadow_wrapper target supports only leaf cells (such as macro cells), not
hierarchical cells.

• The multicycle_paths target does not process bused endpoints unless the following
command is run prior to pre-DFT DRC and test point analysis:

dc_shell> change_names -rules verilog -hierarchy
• Test point registers are always positive-edge, even if the dominant clocking around a

test point is negative-edge.

• Testability analysis does not consider the presence of user-defined test points.

• Testability analysis does not consider set_scan_element false specifications.

• The report_testability_configuration command does not show the inherited
global -test_points_per_scan_cell value for targets.

• The reset_testability_configuration command is not supported.

• File names provided to the -sg_command_file option must be absolute. (You can
use the Tcl file normalize command for this.) You cannot use paths relative to the
current directory.

• AutoFix is not supported with the new test point infrastructure.

• Spurious TEST-394 warnings are issued for test point blocks.

User-Defined Test Points
User-defined test points provide you with the flexibility to insert control and observe test
points at user-specified locations in the design. User-defined test points can be used for
a variety of purposes, including the ability to fix uncontrollable clocks and asynchronous
signals, increase the coverage of the design, and reduce the pattern count.

Note:
A DFTMAX or TestMAX DFT license is required to use the user-defined test
point insertion feature.

The following topics describe how to implement user-defined test points:

• Enabling User-Defined Test Point Insertion

• Configuring User-Defined Test Points

• Limitations

Synopsys® TestMAX™ DFT User Guide
T-2022.03

325

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Inserting Test Points

Feedback

Enabling User-Defined Test Point Insertion
To enable user-defined test point insertion, you must first issue the following command
before pre-DFT DRC:

dc_shell> set_dft_configuration -testability enable
After you have enabled user-defined test point insertion, you can enable and configure
one or more user-defined test point specifications with the set_test_point_element
command, as described in the following topics.

Caution:
If you do not enable the testability client, then the
set_test_point_element command provides the legacy behavior described in
Appendix B, Legacy Test Point Insertion.”

Configuring User-Defined Test Points
You can use the set_test_point_element command to specify the location and
type of user-defined test points to insert in the design during DFT insertion, as well as
other aspects of test point construction. User-defined test points can be defined at leaf
pins, hierarchy pins, and ports. These test points are then inserted by the insert_dft
command.

To define a user-defined test point, use the following command:

set_test_point_element
 -type force_0 | force_1 | force_01
 | control_0 | control_1 | control_01 | observe
 [-control_signal control_name]
 [-clock_signal clock_name]
 [-test_points_per_source_or_sink n]
 pin_port_list

Specify the test point type and the list of signal pins or ports to be forced, controlled, or
observed. For more information on test point types, see Test Point Types on page 292.

The remaining options, described in Table 42, can be specified to override their defaults.

Table 42 set_test_point_element Options

To do this Use this option

Use a particular test clock for any test point
registers needed by these test points

-clock_signal clock_name
(default is the dominant clock)

Use a particular TestMode, ScanEnable, or
lbistEnable signal to enable these test points

-control_signal control_name
(default is the first available TestMode signal)

Synopsys® TestMAX™ DFT User Guide
T-2022.03

326

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Inserting Test Points

Feedback

Table 42 set_test_point_element Options (Continued)

To do this Use this option

Specify the number of force, control, or observe
points (in this specification only) that can share a
test point register

-test_points_per_source_or_sink n
(default is 8)

Caution:
Options not listed above are unsupported. They are used by the legacy user-
defined test point feature that is used when the testability DFT client is not
enabled. See Appendix B, Legacy Test Point Insertion.”

The test points are implemented using clock, control signal, and test points per scan cell
settings as follows, highest precedence first:

• From the set_test_point_element specification

• From the set_testability_configuration global specification

• Using the global testability defaults

Note:
The user testability target does not need to be enabled to implement test points
using the set_test_point_element command, and the user target settings do
not affect test points implemented by the set_test_point_element command.

By default, any needed source or sink registers are created by the insert_dft command.

Registers are not shared across multiple set_test_point_element specifications. If test
points within a limited physical region should share registers, they should all be provided in
a single set_test_point_element command.

If the specified pin list spans multiple clock or power domain configurations, the tool
creates separate test point registers for each configuration.

After specifying test point definitions with the set_test_point_element command, you
can report them with the report_test_point_element command, or remove them before
DFT insertion with the remove_test_point_element command. For more information
about these commands, see the man pages.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

327

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Inserting Test Points

Feedback

See Also

• Sharing Test Point Registers on page 301 for details on test point registers sharing

• Configuring the User-Defined Test Point Target on page 317 for details on the user
testability target

• Configuring Global Test Point Insertion Settings on page 305 for details on the global
testability configuration

Limitations
User-defined test point insertion has the following limitations:

• The -control_signal option must be specified, otherwise the control signal for the
test point logic is tied to logic 0.

• All specifications must use the same explicitly specified control signal; you cannot use
multiple control signals across set_test_point_element specifications.

• Test point registers are always positive-edge, even if the dominant clocking around a
test point is negative-edge.

• User-defined test points do not inherit the -test_points_per_scan_cell value from
the global or user target set_testability_configuration value.

Previewing the Test Point Logic
To preview the test point logic that the tool will implement according to your specifications,
use the following command after running test point analysis:

dc_shell> preview_dft -test_points all
Note:

If you are using TestMAX Advisor testability features, you must first run analysis
as described in Running Test Point Analysis on page 322.

The test point preview report is organized as follows:

• The legend at the beginning defines attributes used in the report.

◦ Test point registers and test point pins use separate attributes.

• In the table, each line with values in the “Test Point Type” and “Pin” columns indicates a
test point of that type at that pin.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

328

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Inserting Test Points

Feedback

• For each test point, the “Test Point Register” column indicates the source or sink
register used for that test point.

◦ An empty value means this test point shares the same register as the previous test
point.

◦ A value of “-” means no test point register is needed for that test point type.

• The summary at the end reports indicates how many test points and test point registers
will be implemented.

Example 30 shows an example test point preview report.

Example 30 Example Test Point Preview Report
********************** Test Point Plan Report *********************

 Test point register attributes:
 d - dedicated (DFT-inserted) test point register
 f - reused (functional) test point register
 tpe - test point enable signal
 src - test point source signal
 snk - test point sink signal

 Test point pin attributes:
 r - random-resistant test point pin
 x - X-blocking test point pin
 m - multicycle path test point pin
 w - core wrapper test point pin
 s - shadow wrapper test point pin
 g - self-gating test point pin
 a - AutoFix test point pin
 u - user-defined test point pin

Index Test Point Register Test Point Type Pins
----- ------------------- --------------- ----
 1 U_dft_tp_sdtc_ip_0/dtc_reg (d, src) (CLK1)
 force_01 IP_BLOCK/RX0 (u)
 force_01 IP_BLOCK/RX1 (u)
 2 U_dft_tp_sdtc_ip_1/dtc_reg (d, snk) (CLK1)
 observe IP_BLOCK/TX0 (u)
 observe IP_BLOCK/TX1 (u)
 3 sub3/mult_60/U_dft_tp_sdtc_ip_2/dtc_reg (d, tpe) (CLK3)
 control_0 sub3/mult_60/U1057/Z (r)
 control_1 sub3/mult_60/U1156/Z (r)
 control_1 sub3/mult_60/U1262/Z (r)
 control_0 sub3/mult_60/U1343/Z (r)
 4 sub3/mult_60/U_dft_tp_sdtc_ip_3/dtc_reg (d, snk) (CLK3)
 observe sub3/mult_60/U4479/Z (r)
 observe sub3/mult_60/U4483/Z (r)
 observe sub3/mult_60/U4487/Z (r)

Synopsys® TestMAX™ DFT User Guide
T-2022.03

329

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Using AutoFix

Feedback

 observe sub3/mult_60/U4596/Z (r)
 5 sub2/U_dft_tp_sdtc_ip_4/dtc_reg (d, src) (CLK2)
 force_01 sub2/BBOX/Z[0] (x)
 force_01 sub2/BBOX/Z[1] (x)
 6 sub2/U_dft_tp_sdtc_ip_5/dtc_reg (d, snk) (CLK2)
 observe sub2/BBOX/A[0] (x)
 observe sub2/BBOX/A[1] (x)
 7 - multicycle MULT_reg[3]/D (m)
 8 - multicycle MULT_reg[2]/D (m)
 9 - multicycle MULT_reg[1]/D (m)
 10 - multicycle MULT_reg[0]/D (m)

****************** Test Point Summary *******************
 Number of testability force_01 test points: 2
 Number of testability control_0 test points: 2
 Number of testability control_1 test points: 2
 Number of testability observe test points: 6
 Number of testability multicycle path test points: 4
 Number of user-defined force_01 test points 2
 Number of user-defined observe test points: 2

 Total number of test points: 20
 Total number of DFT-inserted test point registers: 6

Inserting the Test Point Logic
After you define the test point insertion configuration, the insert_dft command inserts
the test point logic. Test point scan registers are placed in the lowest level of hierarchy
common to all test points for that register.

The tool creates a new test-mode signal if one is needed but not defined.

Using AutoFix
The AutoFix feature automatically fixes scan rule violations resulting from the following
types of uncontrollable signals:

• Clock signals

• Asynchronous set signals

• Asynchronous reset signals

• Three-state bus enable signals

• Bidirectional enable signals

By default, only the three-state bus and bidirectional fixing capabilities are enabled. You
can enable fixing for one or more additional signal types to fix testability problems in your

Synopsys® TestMAX™ DFT User Guide
T-2022.03

330

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Using AutoFix

Feedback

design. You can specify AutoFix configurations globally or on particular design objects.
AutoFix is supported in both the multiplexed flip-flop and LSSD scan styles.

When enabled, AutoFix automatically fixes all violations of the specified type(s) found
by the dft_drc command. If there are no violations, AutoFix makes no changes to the
design.

This topic covers the following:

• When to Use AutoFix

• The AutoFix Flow

• Configuring AutoFix

• AutoFix Script Example

When to Use AutoFix
Use AutoFix to resolve testability problems caused by uncontrollable signals, as described
in the following topics:

• Uncontrollable Clock Signals

• Uncontrollable Asynchronous Set and Reset Signals

• Uncontrollable Three-State Bus Enable Signals

• Uncontrollable Bidirectional Enable Signals

Uncontrollable Clock Signals
Each scan flip-flop in a design must be clocked by a signal that can be controlled by a
primary input port. Otherwise, the clocking of data into the flip-flop cannot be controlled
during test. Uncontrollable clock signals are flagged by the dft_drc command as design
rule violations. If you do not fix these violations, the associated flip-flops are not included in
scan chains and faults downstream from the flip-flop outputs might not be detectable.

When AutoFix is enabled for uncontrollable clock signals, it inserts a multiplexer test point
to select a controllable clock signal during test, as shown in Figure 129. The multiplexer
is controlled by a test-mode signal. For mission-mode operation, the test-mode signal is
inactive and the circuit operation is unchanged. During test, the signal is asserted and the
flip-flop is clocked by the controllable primary input signal.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

331

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Using AutoFix

Feedback

Figure 129 AutoFix Controllability Logic for an Uncontrollable Clock Signal

CLK
test_mode

Uncontrollable
clock signal

Uncontrollable
clock signal

0

1

Uncontrollable Asynchronous Set and Reset Signals
The asynchronous set and reset inputs of each flip-flop must be inactive during test.
Otherwise, the data in the flip-flop can be set or cleared at any time, leaving unknown data
in the flip-flop.

When AutoFix is enabled for uncontrollable asynchronous set or reset signals, by default
it inserts a multiplexer test point to select a controllable set or reset signal during test, as
shown in Figure 130. The multiplexer is controlled by a test-mode signal. For mission-
mode operation, the test-mode signal is inactive and the circuit operation is unchanged.
During test, the asynchronous signal is driven by the controllable primary input signal.

Figure 130 AutoFix MUX-Based Controllability Logic for an Uncontrollable Reset Signal

test_mode

Uncontrollable
reset signal

Uncontrollable
reset signal

RSTN

0

1

AutoFix can also insert gating logic to de-assert the uncontrollable asynchronous set or
reset signal, as shown in Figure 131. The gating logic is controlled by a test-mode or scan-
enable control signal. For mission-mode operation, the control signal is inactive and the
circuit operation is unchanged. When controlled by a test-mode signal, the asynchronous
signal is held inactive throughout the entire test program. When controlled by a scan-
enable signal, the asynchronous signal is held inactive during scan shift but remains
controlled by the functional logic during scan capture.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

332

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Using AutoFix

Feedback

Figure 131 AutoFix Gating-Based Controllability Logic for an Uncontrollable Reset Signal

test_mode
or

test_se

Uncontrollable
reset signal

Uncontrollable
reset signal

Typically, one of the following configurations is used:

• The mux method with a test-mode signal

This method provides direct control of asynchronous resets during scan shift and scan
capture. However, it blocks the functional reset path; this can cause faults in the reset
logic to become untestable.

• The gate method with a scan-enable signal

This method disables asynchronous resets during scan shift only. During scan capture,
the functional reset logic controls the reset line; this does not impose any restrictions
on reset logic testability.

Uncontrollable Three-State Bus Enable Signals
Three-state bus enable signals must be controllable during scan shift. Otherwise, the
three-state buses might float or be driven to contention as controlling scan cells shift
values through the scan chains.

When AutoFix is enabled for an uncontrollable three-state enable signal, it inserts
a multiplexer test point to select a constant enable signal during test, as shown in
Figure 132. The multiplexer is controlled by a scan-enable signal. For mission-mode
and scan capture operation, the test-mode signal is inactive and the circuit operation is
unchanged. During scan shift, the signal is asserted during scan shift and the three-state
driver is controlled by the constant value. Scan capture operation is unchanged.

Figure 132 AutoFix Controllability Logic for an Uncontrollable Tristate Signal

Uncontrollable
tristate enable

signal Uncontrollable
tristate enable

signal

test_se
0 or 1 1

0

Synopsys® TestMAX™ DFT User Guide
T-2022.03

333

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Using AutoFix

Feedback

The constant value applied to the three-state driver depends on the type of three-state
bus, shown in Figure 133. For an internal bus that exists entirely within the current design,
only a single tristate driver is active on each tristate net during scan shift; the rest are
held inactive. For an external bus that has a driver outside the current design, none of the
drivers are active on each tristate net during scan shift.

Figure 133 Three-State Bus Types

test_se

DOUT

1

1 1 0 1 1

Internal three-state bus External three-state bus

If you have a three-state bus that spans multiple blocks that are AutoFixed separately, at
least one block should be fixed as an internal bus so that the bus is driven during scan
shift.

Uncontrollable Bidirectional Enable Signals
Bidirectional enable signals must be controllable during scan shift. Otherwise, the
bidirectional ports might float or be driven to contention as controlling scan cells shift
values through the scan chains.

When AutoFix is enabled for an uncontrollable bidirectional enable signal, it inserts
a multiplexer test point to select a constant enable signal during test, as shown in
Figure 134. By default, the constant value is chosen so that the bidirectional driver is in
input mode during scan shift; scan capture operation is unchanged.

Figure 134 AutoFix Controllability Logic for an Uncontrollable Bidirectional Signal

Uncontrollable
bidirectional

enable signal Uncontrollable
bidirectional

enable signal

test_se
0 or 1 1

0

Synopsys® TestMAX™ DFT User Guide
T-2022.03

334

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Using AutoFix

Feedback

Scan-out ports driven by bidirectional drivers are always forced to the output direction
during scan shift, regardless of whether AutoFix bidirectional fixing is enabled or how it is
configured. For more information, see Sharing a Scan Output With a Functional Port on
page 226.

If a bidirectional driver cell drives an output port instead of an inout port, AutoFix classifies
the driver as a three-state bus driver instead of a bidirectional driver because data values
cannot propagate in the input direction.

The AutoFix Flow
The AutoFix design test point insertion, design flowdesign flow, test point insertionflow is very similar to the ordinary scan synthesis design flow. The
general steps in the design flow are illustrated in Figure 135.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

335

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Using AutoFix

Feedback

Figure 135 Scan Synthesis Design Flow With AutoFix

Test-ready compile

Design rule checking

Scan and test point specification

Preview scan chains and test points

Insert scan chains and test points

Check results

Repeat for each

block as needed

You start with the compile commandcommandscompile compile -scan and dft_drc commandcommandsdft_drcdft_drc commands. Then you specify the
parameters for scan insertion and AutoFix. After you set these parameters, you run the preview_dft

commandcommandspreview_dftpreview_dft command<seeitalic>see also</> previewing[preview_dft commandzzz]preview_dft command to get a preview of the scan chains and AutoFix test points. If
necessary, you repeat the setup steps to obtain the desired configuration of scan chains
and test points.

When this configuration is satisfactory, you perform scan chain routing and test point
insertion with the insert_dft commandcommandsinsert_dftinsert_dft command. Finally, you check the results with the dft_drc
and report_scan_path commands.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

336

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Using AutoFix

Feedback

Configuring AutoFix
The following topics explain how to use AutoFix:

• Enabling AutoFix Capabilities

• Configuring Clock AutoFixing

• Configuring Set and Reset AutoFixing

• Configuring Three-State Bus AutoFixing

• Configuring Bidirectional AutoFixing

• Applying Hierarchical AutoFix Specifications

• Previewing the AutoFix Implementation

Enabling AutoFix Capabilities
You can enable or disable individual AutoFix capabilities using the options of the
set_dft_configuration command shown in Table 43.

Table 43 Options of the set_dft_configuration Command to Enable AutoFix

Signal type to AutoFix Enabling option of the
set_dft_configuration command

Default

Clock signals -fix_clock disable | enable disable

Asynchronous set signals -fix_set disable | enable disable

Asynchronous reset signals -fix_reset disable | enable disable

Three-state bus enable signals -fix_bus disable | enable enable

Bidirectional enable signals -fix_bidirectional disable | enable enable

By default, only the three-state bus and bidirectional fixing capabilities are enabled. To
show the current set_dft_configuration settings, use the report_dft_configuration
command. To remove the current settings, use the reset_dft_configuration command.

After enabling an AutoFix capability, configure it using the set_autofix_configuration
command.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

337

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Using AutoFix

Feedback

Configuring Clock AutoFixing
Use the following options of the set_autofix_configuration command to configure
clock AutoFixing:

set_autofix_configuration
 -type clock
 [-test_data clock_signal]
 [-control_signal test_mode_signal]

To specify an existing scan clock signal to use, define it as a TestData signal
as well as a ScanClock signal, then specify it with the -test_data option of the
set_autofix_configuration command:

set_dft_signal -view existing_dft -type ScanClock -port CLK \
 -timing [list 45 55]
set_dft_signal -view spec -type TestData -port CLK

set_autofix_configuration -type clock -test_data CLK

If no clock signal is specified, AutoFix chooses an available scan clock signal that is also
defined as a TestData signal. If no such signal exists, AutoFix creates a dedicated scan
clock signal to use for fixing uncontrollable asynchronous clock signals.

To specify an existing test-mode signal to use for AutoFixed clock test points, use the
-control_signal option of the set_autofix_configuration command:

set_dft_signal -view spec -type TestMode -port AUTOFIX_TM

set_autofix_configuration -type clock -control_signal AUTOFIX_TM

If no control signal is specified, AutoFix chooses an available test-mode signal that is not
already used for another purpose. If no such signal exists, AutoFix creates a dedicated
test mode signal.

Configuring Set and Reset AutoFixing
Use the following options of the set_autofix_configuration command to configure set
and reset AutoFixing:

set_autofix_configuration
 -type set | reset
 [-method mux | gate]
 [-test_data set_reset_signal]
 [-control_signal control_signal]
 [-fix_latch disable | enable]

By default, AutoFix uses MUXs to fix uncontrollable asynchronous set or reset signals. To
specify an existing controllable set or reset signal to be selected by the MUXs, define it as

Synopsys® TestMAX™ DFT User Guide
T-2022.03

338

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Using AutoFix

Feedback

a TestData signal as well as a Set or Reset signal, then specify it with the -test_data
option of the set_autofix_configuration command:

set_dft_signal -view existing_dft -type Reset -port RSTN -active_state 0
set_dft_signal -view spec -type TestData -port RSTN -active_state 0

set_autofix_configuration -type set -test_data RSTN
set_autofix_configuration -type reset -test_data RSTN

If no such signal is specified, AutoFix chooses a set or reset signal that is also defined as
a TestData signal. If no such signal exists, AutoFix creates a dedicated asynchronous
reset signal to use for fixing uncontrollable asynchronous set and reset signals.

Use the -type set or -type reset option of the set_autofix_configuration
command to configure set or reset AutoFixing, respectively. You can use a single existing
asynchronous set or reset signal to AutoFix both uncontrollable set and reset signals.
However, the same asynchronous signal cannot be used to AutoFix both the set and reset
pins of the same cell. If this occurs in your design, you must specify separate set and reset
signals.

The mux fixing method can use only a test-mode control signal. To specify an existing
test-mode signal to control the MUXs, use the -control_signal option of the
set_autofix_configuration command:

set_dft_signal -view spec -type TestMode -port AUTOFIX_TM

set_autofix_configuration -type set -control_signal AUTOFIX_TM
set_autofix_configuration -type reset -control_signal AUTOFIX_TM

If no control signal is specified, AutoFix chooses an available test-mode signal that is not
already used for another purpose. If no such signal exists, AutoFix creates a dedicated
test mode signal.

To fix uncontrollable sets and resets using gating logic instead of a MUX, use the -method
option to specify the gate fixing method:

set_autofix_configuration -type set -method gate
set_autofix_configuration -type reset -method gate

The gate fixing method can use either a scan-enable or test-mode control signal.
To specify a scan-enable or test-mode signal to control the gating logic, use the
-control_signal option of the set_autofix_configuration command:

set_autofix_configuration -type set -method gate -control_signal SE_FIX
set_autofix_configuration -type reset -method gate -control_signal SE_FIX

If no control signal is specified, AutoFix chooses an available test-mode signal that is not
already used for another purpose. If no such signal exists, AutoFix creates a dedicated
test mode signal.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

339

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Using AutoFix

Feedback

By default, AutoFix does not consider set or reset pins of latch cells. To consider latch set
and reset pins, use the -fix_latch enable option of the set_autofix_configuration
command.

Note:
If you use the gate fixing method along with a scan-enable control signal, you
must also allow unstable reset signals in both DFT DRC and TestMAX ATPG
DRC. For more information, see SolvNet article 021644, “How Can I Improve
Testability for Internally Generated Asynchronous Set and Reset Signals?”

Configuring Three-State Bus AutoFixing
Use the following options of the set_autofix_configuration command to configure
three-state bus AutoFixing:

set_autofix_configuration
 -type internal_bus | external_bus
 [-method no_disabling | enable_one | disable_all]

The internal_bus type configures three-state buses that do not drive ports of the current
design. The external_bus type configures three-state buses that drive ports of the
current design.

Use the -method option to control how the tristate drivers are to be enabled during scan
shift. The values are

• no_disabling – do not insert controlling logic

• enable_one – enable one driver; disable all other drivers

• disable_all – disable all drivers

The default methods for the internal_bus and external_bus types are enable_one and
disable_all, respectively. If you have a three-state bus that spans multiple blocks that
are AutoFixed separately, configure one block to use the enable_one method to avoid bus
float during scan shift.

AutoFix combines all scan-enable signals defined without the -usage option into a single
merged signal to enable all three-state bus AutoFix test points. This ensures that no three-
state contention occurs when data is scanned though the shift chains. You cannot use the
-control_signal option to specify a control signal for three-state bus AutoFixing.

Configuring Bidirectional AutoFixing
Use the following options of the set_autofix_configuration command to configure
bidirectional AutoFixing:

set_autofix_configuration
 -type bidirectional
 [-method input | output | no_disabling]

Synopsys® TestMAX™ DFT User Guide
T-2022.03

340

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnet.synopsys.com/retrieve/021644.html
https://solvnet.synopsys.com/retrieve/021644.html

Chapter 10: Advanced DFT Architecture Methodologies
Using AutoFix

Feedback

Use the -method option to control how the bidirectional drivers are to be enabled during
scan shift. The values are

• input – force bidirectional drivers to input direction

• output – force bidirectional drivers to output direction

• no_disabling – do not insert controlling logic

The default method for the bidirectional type is input.

AutoFix combines all scan-enable signals defined without the -usage option into a
single merged signal to enable all bidirectional AutoFix test points. This ensures that no
bidirectional contention occurs when data is scanned through the shift chains. You cannot
use the -control_signal option to specify a control signal for bidirectional AutoFixing.

Applying Hierarchical AutoFix Specifications
By default, AutoFix specifications applied with the set_autofix_configuration
command apply to the entire design. To fix only particular design objects, specify them
with the -include_elements option of the set_autofix_configuration command. For
example,

set_autofix_configuration -type set -include_elements {MY_CORE}
set_autofix_configuration -type reset -include_elements {MY_CORE}

To fix the design globally except for some particular design objects, specify them with the
-exclude_elements option of the set_autofix_configuration command. For example,

set_autofix_configuration -type set -exclude_elements {U_IP_CORE}
set_autofix_configuration -type reset -exclude_elements {U_IP_CORE}

You can specify both the -include_elements and -exclude_elements options to
exclude cells within an included cell, but not vice versa.

The set_autofix_configuration command applies a global configuration; subsequent
specifications for a capability take precedence over previous specifications. If you
need to specify different fixing configurations for different areas of the design, use the
set_autofix_element command, which differs from the set_autofix_configuration
command as follows:

• The set_autofix_element command applies a local fixing configuration to the
specified list of design objects.

• Multiple set_autofix_element command specifications can be applied to the design.

You can mix global and local specifications. The global fixing configuration is used where
no local configuration applies. For example,

specify global fixing configuration
set_autofix_configuration -type clock -test_data CLK

Synopsys® TestMAX™ DFT User Guide
T-2022.03

341

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Using AutoFix

Feedback

specify local fixing configuration
set_autofix_element -type clock -test_data RXCLK {UBLK_RX}
set_autofix_element -type clock -test_data TXCLK {UBLK_TX}

To apply local fixing configurations only to particular parts of the design without also
globally fixing the design, specify a global fixing configuration that includes all of the
local design objects (to limit global fixing), then apply the local fixing specifications. For
example,

specify global configuration that prevents fixing outside UBLK_RX
and UBLK_TX
set_autofix_configuration -type clock -include_elements {UBLK_RX UBLK_TX}

specify local fixing configuration
set_autofix_element -type clock -test_data RXCLK {UBLK_RX}
set_autofix_element -type clock -test_data TXCLK {UBLK_TX}

Note the following precedence rules:

• Local specifications (applied with the set_autofix_element command) take
precedence over global specifications (applied with the set_autofix_configuration
command).

• Local specifications at lower hierarchy levels take precedence over local specifications
at higher levels.

• If multiple specifications apply to the same object, later specifications take precedence
over earlier specifications.

• Specifications for different fixing types are independent and do not affect each other.

Table 44 shows the valid design object types you can use in AutoFix specifications for
each fixing type.

Table 44 Valid Design Object Types for AutoFix
Specifications

Fixing type Valid design object types

clock cell (hierarchical and leaf)

set cell (hierarchical and leaf)

reset cell (hierarchical and leaf)

internal_bus net

external_bus net

bidirectional port

Synopsys® TestMAX™ DFT User Guide
T-2022.03

342

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Using AutoFix

Feedback

Previewing the AutoFix Implementation
After you enable and configure the AutoFix capabilities, you can preview the scan
architecture with the fixes included. To do this, use the preview_dft commandcommandspreview_dftpreview_dft -test_points all
-show {cells} command, which provides the following information:

• The number of test points implemented by AutoFix

• The scan chain configuration with AutoFix considered

The test point section of the preview report shows the test points to be implemented. It
does not include three-state bus or bidirectional test points.

The scan cells section of the preview report shows only the sequential cells included in
scan chains; it does not show the cells omitted due to DRC violations. Check to see if
the DRC-violating cells to be AutoFixed exist in the report. If needed, you can revise the
AutoFix configuration and rerun the preview_dft command.

Note:
Before DFT insertion, the dft_drc command always reports the DRC violations
without AutoFix considered; use the preview_dft command to assess the
effects of AutoFix.

When you are satisfied with the scan chains and test points reported by the preview_dft
command, insert DFT using the insert_dft commandcommandsinsert_dftinsert_dft command. You should always run the dft_drc

commandcommandsdft_drcdft_drc command after DFT insertion to check for any remaining design rule violations.

AutoFix Script Example
The script in Example 31 fixes uncontrollable clock and reset signals using AutoFix.

Example 31 Scan Synthesis With Test Point Insertion
current_design MY_DESIGN
compile -scan
create_test_protocol
dft_drc

configure scan
set_scan_configuration -clock_mixing mix_edges ...

configure DFT signals
set_dft_signal -view spec -type TestMode -port TEST_MODE

set_dft_signal -view existing_dft -type ScanClock \
 -port {CLK RXCLK TXCLK} -timing {45 55}
set_dft_signal -view existing_dft -type Reset -port RSTN -active_state 0

configure signals for AutoFix

Synopsys® TestMAX™ DFT User Guide
T-2022.03

343

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Using Pipelined Scan Enables for Launch-On-Extra-Shift (LOES)

Feedback

set_dft_signal -view spec -type TestData -port {CLK RXCLK TXCLK RSTN}

configure clock AutoFix
set_dft_configuration -fix_clock enable
set_autofix_configuration -type clock -test_data CLK
set_autofix_element -type clock -test_data RXCLK {U_RX_BLK}
set_autofix_element -type clock -test_data TXCLK {U_TX_BLK}

configure reset AutoFix
set_dft_configuration -fix_reset enable
set_autofix_configuration -type reset -test_data RSTN \
 -exclude_elements {U_IP_CORE}

preview_dft -test_points all
insert_dft
dft_drc
report_scan_path -chain all

Using Pipelined Scan Enables for Launch-On-Extra-Shift (LOES)
You can use pipelined scan-enable signals to provide launch-on-extra-shift (LOES)
transition-delay timing in TestMAX ATPG, which improves ATPG efficiency and reduces
pattern count. This is described in the following topics:

• The Pipelined Scan-Enable Architecture

• Pipelined Scan-Enable Requirements

• Implementing Pipelined Scan-Enable Signals

• Pipelined Scan-Enable Signals in Hierarchical Flows

• Implementation Considerations for Pipelined Scan-Enable Signals

• Pipelined Scan Enable Limitations

The Pipelined Scan-Enable Architecture
Transition-delay fault testing requires two at-speed clock cycles in a row—one to launch
and one to capture—so that the launched data must propagate through the logic cones at-
speed to be captured properly. These at-speed clock pulses are typically provided by an
on-chip clocking (OCC) controller, as described in Chapter 12, On-Chip Clocking Support.”

By default, DFT Compiler implements a simple scan-enable signal, which is externally
controlled at test clock frequencies. This requires the use of Launch-on-Capture (LOC)
transition-delay timing, shown in Figure 136, where scan enable is de-asserted before
both the launch and capture clock pulses.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

344

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Using Pipelined Scan Enables for Launch-On-Extra-Shift (LOES)

Feedback

Figure 136 Launch-on-Capture (LOC) Transition-Delay Timing

ATECLK

External
scan enable

OCC clock

Scan cell data
at Q pins

Scan-shifted data Scan-captured data

Scan enable at
target pins

Because scan enable is de-asserted for the launch clock pulse, the launch data must be
controlled indirectly (captured through the logic cones) by the data from the previous scan-
shift cycle. This requires fast-sequential ATPG, which imposes additional constraints and
overhead on ATPG.

To avoid this limitation, you can implement pipelined scan-enable signals, which can
generate the scan-enable transition at-speed. This allows launch-on-extra-shift (LOES)
transition-delay timing, as shown in Figure 137, where TestMAX ATPG directly controls the
launch data.

Figure 137 Launch-On-Extra-Shift (LOES) Transition-Delay Timing

ATECLK

External
scan enable

OCC clock
(1)

(2)

Scan cell data
at Q pins

Scan-shifted data Scan-captured data

Pipelined scan enable
at target pins

The waveforms for the external signals are identical between LOC and LOES, but the
scan-enable signal that reaches the scan cells is different.

The pipelined scan-enable feature works by creating a registered scan-enable transition
on the chip, just as an OCC controller generates controlled at-speed clock pulses on the
chip. Figure 138 shows the pipelined scan-enable logic structure.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

345

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Using Pipelined Scan Enables for Launch-On-Extra-Shift (LOES)

Feedback

Figure 138 Pipelined Scan-Enable Logic
D
SI
SE

QD
SI
SE

Q

Pipelined scan-enable
signal generation logicPLLREFCLK

OCC
controllerATECLK

D
SI
SE

Q

global_pipe_se
test_se

OCC clock
domain

The global_pipe_se signal controls whether the output scan-enable signal operates in
nonpipelined or pipelined mode:

• When the global_pipe_se signal is de-asserted, the register is bypassed and the output
scan-enable signal is a simple non-pipelined scan-enable signal.

• When the global_pipe_se signal is asserted,

◦ When the input scan-enable signal is asserted, the output scan-enable signal is
immediately asserted.

◦ When the input scan-enable signal is de-asserted, the register holds the output
scan-enable asserted until the next leading clock edge of the at-speed clock.

Each clock domain and clock edge has its own pipelined scan-enable logic construct that
de-asserts the scan-enable signal synchronized to that clock edge.

Note:
The pipelined scan-enable feature and the pipelined scan data feature are
independent and unrelated. Either can be used separately, or they can be used
together, but the commands, limitations, and messages are specific to one or
the other and must not be confused.

For more information on launch-on-capture (LOC) and launch-on-extra-shift (LOES)
timing, see the “Transition-Delay Fault ATPG Timing Modes” in TestMAX ATPG and
TestMAX Diagnosis Online Help.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

346

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Using Pipelined Scan Enables for Launch-On-Extra-Shift (LOES)

Feedback

Pipelined Scan-Enable Requirements
Launch-on-extra-shift (LOES) with pipelined scan-enable signals has the following
requirements:

• All scan-enable signals must have the same pipelined scan-enable depth after DFT
insertion. Valid depths are zero (not pipelined) and one (pipelined).

• Each clock domain and clock edge must have its own pipelined scan-enable signal,
which all scan flip-flops clocked by that domain and edge must use.

• Clock-gating cells should also use the pipelined scan enable for its clock domain and
edge.

It is possible to use LOES when clock-gating cells use the nonpipelined scan enable.
However, you should use the pipelined scan enable because it maximizes the amount
of data that can be launched in the extra shift, which should result in a smaller pattern
set. It also allows the use of the legacy ATPG method Launch-On-Last-Shift, where the
last scan shift doubles as the transition launch cycle (which might be important in the
case of design reuse).

• The non-pipelined scan enable must be used for OCC controllers. This allows the OCC
controller to generate the extra-shift launch clock followed by the capture clock as an
at-speed clock pair.

• The non-pipelined scan enable must be used for clock chains used by OCC controllers.
This holds the clock chain data steady during capture. If the pipelined scan enable is
used, the clock chain bits are corrupted by the launch clock.

• When clock mixing is used, lock-up latches might be ineffective because the clock
timing in the extra shift uses the launch waveform table rather than shift timing. As
a result, DRC in the TestMAX ATPG tool marks the first flip-flop following the clock
domain crossing as disturbed, which can reduce coverage slightly (although an
incremental LOC run can detect these faults).

All on-chip scan-enable signals (nonpipelined, and pipelined for each clock edge) can be
derived from a single scan-enable signal source.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

347

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Using Pipelined Scan Enables for Launch-On-Extra-Shift (LOES)

Feedback

Implementing Pipelined Scan-Enable Signals
To implement pipelined scan-enable signals, do the following:

1. Enable the pipelined scan-enable feature:

dc_shell> set_scan_configuration -pipeline_scan_enable true
2. Define the enable signal:

dc_shell> set_dft_signal -view spec -type LOSPipelineEnable \
 -port PSE_EN -active_state 1 -test_mode all
This enable signal selects launch-on-extra-shift (LOES) when asserted and Launch-on-
Capture (LOC) operation when de-asserted.

If you do not define an enable signal, the tool creates a signal named
global_pipe_se.

You can use the -connect_to option to control the enable signal per clock domain.
The enable signal must be defined as a ScanClock before the pipelined scan enable
definition. For example:

dc_shell> set_dft_signal -view spec -type LOSPipelineEnable \
 -port PSE_EN -active_state 1 -test_mode all -connect_to
 CLK1
You can drive the enable signal from an on-chip configuration register by using the
internal pins flow. For more information, see Internal Pins Flow on page 422.

3. (Optional) In Design Compiler Graphical, implement pipelined scan-enable clusters for
large or timing-critical designs.

You can create multiple physically compact clusters of scan cells, each with their own
local pipelined scan-enable (PSE) construct. This improves the critical path delay
between the pipeline registers and their scan cells.

To do this, use the -pipeline_fanout_limit option of the set_scan_configuration
command to specify the number of scan cells per PSE cluster. The tool creates as
many clusters as needed, each with exactly the specified number of scan cells. (The
last-created cluster in each clock domain might have fewer scan cells.) The pipeline
registers have the size_only attribute set, which prevents duplicate register merging
by the compile_ultra command.

See Implementation Considerations for Pipelined Scan-Enable Signals on page 351
for details on clustering and timing. See SolvNet article 2543967, “The Pipelined Scan-
Enable Fanout Limit, Duplicate Scan-Enable Signals, and the TEST-1073 Error,” for
details on how the fanout limit is applied.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

348

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnet.synopsys.com/retrieve/2543967.html
https://solvnet.synopsys.com/retrieve/2543967.html

Chapter 10: Advanced DFT Architecture Methodologies
Using Pipelined Scan Enables for Launch-On-Extra-Shift (LOES)

Feedback

The default is to not implement clusters.

Caution:
Do not use this feature in wire load mode because scan cell clustering
cannot use physical information, which might degrade results.

If you are using a DFT-inserted OCC controller, the clock connection might be incorrect.
See Pipelined Scan Enable Limitations on page 354 for details.

The test protocol created by the tool does not constrain the pipeline enable signal, so
post-DFT DRC checks both the LOC and LOES modes. The protocol written out by the
write_test_protocol command also does not constrain the enable signal. Use the
add_pi_constraint command in TestMAX ATPG to assert or de-assert the pipeline
enable signal. See “Using Launch-On Extra-Shift Timing” in TestMAX ATPG and TestMAX
Diagnosis Online Help for more information.

Pipelined Scan-Enable Signals in Hierarchical Flows
In hierarchical flows, the rules for pipelined scan-enable signals are:

• You must enable pipelined scan enables at every hierarchical integration level above
where pipelined scan enables have been implemented.

• The tool adds top-level pipeline logic to top-level logic and nonpipelined cores.

• Nonpipelined cores must be created with per-clock-domain scan-enable signals to
allow pipelining at the top level.

Figure 139 shows the integration of a pipelined and nonpipelined core.

Figure 139 Pipelined Scan-Enable and Core Integration

D
SI
SE

QD
SI
SE

QD
SI
SE

Q
PSE

D
SI
SE

QD
SI
SE

QD
SI
SE

Q
PSE

D
SI
SE

QD
SI
SE

Q
PSE

D
SI
SE

QD
SI
SE

Q
PSE

global_pipe_se
test_se

CLK1
CLK2

test_se1

test_se2

CORE_SE

CORE_PSE

Top-level pipelined
scan-enable logic

Core with regular,
per-domain scan enables

Core with pipelined
scan enables

Synopsys® TestMAX™ DFT User Guide
T-2022.03

349

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Using Pipelined Scan Enables for Launch-On-Extra-Shift (LOES)

Feedback

Creating Cores With Pipelined Scan Enable

To create a core that contains pipelined scan enables, see Implementing Pipelined Scan-
Enable Signals on page 348.

Integrating Cores With Pipelined Scan Enable

At the top level, enable and configure the pipelined scan-enable feature, as described
in Implementing Pipelined Scan-Enable Signals on page 348. You must do this at all
hierarchical core integration levels above where the feature is used.

The tool recognizes when a core already contains pipelined scan-enable signals. It
automatically makes the connections from the top-level signals to the corresponding core
pins. It does not insert any additional pipelining logic for these connections, which ensures
that all scan cells have exactly one level of scan-enable pipelining.

Implementing Nonpipelined Scan-Enable Cores That Can Be Pipelined

You can create nonpipelined scan-enable DFT-inserted cores whose scan-enable signals
can be pipelined when the core is integrated. This might be useful in some design
scenarios, such as to share top-level pipeline constructs across multiple integrated cores,
or to create blocks for design reuse that might or might not require pipelined scan enables.

To do this, create the core as follows:

1. Enable domain-specific scan-enable signals:

dc_shell> set_scan_configuration -domain_based_scan_enable true
This causes the tool to create a nonpipelined scan-enable signal for each scan clock
and edge.

2. (Optional) If you have existing ports for each domain-specific scan-enable signal,
define them using the -associated_clock option of the set_dft_signal command:

dc_shell> set_dft_signal -view spec -type ScanEnable \
 -port SE_CLK1 -associated_clock CLK1

dc_shell> set_dft_signal -view spec -type ScanEnable \
 -port SE_CLK2 -associated_clock CLK2

dc_shell> set_dft_signal -view spec -type ScanEnable \
 -port SE_CLK3 -associated_clock CLK3
Caution:

When using the -associated_clock option, you must define scan-enable
signals for all scan clock domains. Otherwise, the tool reuses existing scan

Synopsys® TestMAX™ DFT User Guide
T-2022.03

350

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Using Pipelined Scan Enables for Launch-On-Extra-Shift (LOES)

Feedback

signals for unspecified clocks (instead of creating new signals), which is
incorrect.

Note:
You cannot use the -associated_clock option to define a scan-enable
signal for an OCC controller or clock chain. The tool always creates a new
scan-enable signal for them.

The scan-enable signals are timing-critical because they will eventually be driven by
pipeline registers. Be sure the signals are constrained at-speed and meet timing. For
timing details, see Implementation Considerations for Pipelined Scan-Enable Signals on
page 351.

When you integrate the core at the top level (with pipelined scan-enable signals), the tool
automatically drives each core-level scan enable with a top-level pipeline construct of the
corresponding clock.

Implementation Considerations for Pipelined Scan-Enable Signals
Note the following considerations when implementing pipelined scan-enable signals.

Timing Considerations

For a regular scan-enable signal, the signal path is a single-cycle path at the shift clock
frequency, which is likely to be fairly slow—and even that requirement can be relaxed
by adding extra cycles in TestMAX ATPG using the -use_delay_capture_start and
-use_delay_capture_end options of the write_patterns command.

For a pipelined scan-enable signal, this relaxed timing applies only to the external signal
source. The de-assertion event from the pipeline register must reach all downstream flip-
flop scan-enable pins in a single cycle at the capture clock frequency, which is much faster
than shift. This path cannot be relaxed because a multicycle path would result in bad
patterns, and slowing down the clock makes the test less-than-at-speed.

Figure 140 shows the relaxed externally driven assertion path in green and the critical
register-driven de-assertion path in red.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

351

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Using Pipelined Scan Enables for Launch-On-Extra-Shift (LOES)

Feedback

Figure 140 Pipelined Scan-Enable Pipeline Register Timing Path

D
SI
SE

QD
SI
SE

Q

OCC
controller

global_pipe_se
test_se

OCC clock
domain

Critical register-to-
register deassertion path

(high fanout, at-speed
capture clock frequency)

Same clock tree

Relaxed source-to-register assertion path

D
SI
SE

Q

The pipeline register and its fanout scan cells are all typically driven by the same skew-
balanced clock tree. As a result, the scan-enable buffer tree paths are standard register-
to-register timing paths, with allowable delays between nearly zero and almost a full clock
cycle. The buffer tree does not need to be skew-balanced.

In addition,

• For high-frequency clocks driving large clock domains, the buffer tree delay might be
greater than the clock period. In this case, you can move the pipeline register’s clock
connection earlier in the clock tree, as long as hold constraints are met in all operating
conditions.

• If you use power-aware functional output gating, the critical path for transition delay
testing becomes the path from the scan-enable pipeline register through the toggle
suppression gate into the functional logic. This feature is described in .

Physical Synthesis Implementation Considerations

In Design Compiler in topographical mode and in Design Compiler Graphical, the tool
creates physically aware buffer trees on the pipelined scan-enable nets to avoid synthesis
design rule violations. For details, see “Performing Automatic High-Fanout Synthesis” in
the Design Compiler User Guide.

If you set a fanout limit to implement pipelined scan-enable clusters, the tool analyzes
scan cell locations to create compact clusters. Then, it builds physically aware buffer trees
to all cluster pipeline registers (green) and within each cluster from the pipeline register to
the scan cells (red), as shown in Figure 141.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

352

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Using Pipelined Scan Enables for Launch-On-Extra-Shift (LOES)

Feedback

Figure 141 Pipelined Scan-Enable Signal With Fanout-Limited Scan Cell Clusters

PSE D
SI
SE

Q

D
SI
SE

Q

D
SI
SE

Q

D
SI
SE

Q

D
SI
SE

Q

D
SI
SE

Q

PSE D
SI
SE

Q

D
SI
SE

Q

D
SI
SE

Q

D
SI
SE

Q

D
SI
SE

Q

D
SI
SE

Q

PSE D
SI
SE

Q

D
SI
SE

Q

D
SI
SE

Q

D
SI
SE

Q

D
SI
SE

Q

D
SI
SE

Q

PSE D
SI
SE

Q

D
SI
SE

Q

D
SI
SE

Q

D
SI
SE

Q

D
SI
SE

Q

D
SI
SE

Q

PSE D
SI
SE

Q

D
SI
SE

Q

D
SI
SE

Q

D
SI
SE

Q

D
SI
SE

Q

D
SI
SE

Q

PSE D
SI
SE

Q

D
SI
SE

Q

D
SI
SE

Q

D
SI
SE

Q

D
SI
SE

Q

D
SI
SE

Q

See SolvNet article 2552200, “Visualizing Pipelined Scan-Enable Clusters in the Layout
View” to display the clustering in your own design.

Wire Load Mode Implementation Considerations

In wire load mode, the tool buffers high-fanout nets by default, but because there is no
physical information, it is likely that these buffer trees will be removed and rebuilt during
layout.

To defer scan-enable network buffering until layout, use the following commands after DFT
insertion and before post-DFT optimization:

disable DRC fixing on scan nets
set_auto_disable_drc_nets -scan true ;# includes PSE register net

apply ideal network property to SE ports and PSE register outputs
set_ideal_network {test_se global_pipe_se}
set_ideal_network [get_pins -hierarchical *test_pipe_se*/* \
 -filter {pin_direction == out}]

In wire load mode, it is recommended not to set a fanout limit to create pipelined scan-
enable clusters because there is no physical information to optimally choose which scan
cells to include in each cluster.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

353

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnet.synopsys.com/retrieve/2552200.html
https://solvnet.synopsys.com/retrieve/2552200.html

Chapter 10: Advanced DFT Architecture Methodologies
Using Pipelined Scan Enables for Launch-On-Extra-Shift (LOES)

Feedback

Pipelined Scan Enable Limitations
Note the following requirements and limitations of pipelined scan-enable signals:

• Scan-enable signals defined with the -usage scan option of the set_dft_signal
command are not supported. Scan-enable signals with no usage, and those defined
with the -usage clock_gating option, are supported.

• When using DFT-inserted OCC controllers, the clock connection to the pipeline scan-
enable registers might be wrong.

This usually means that the tool uses the clock coming from the uncontrolled PLL
source. In this case, TestMAX ATPG will generate patterns, but those patterns will fail
Verilog simulation. The correct clock connection to the pipeline scan enable register is
the output of the OCC controller, at the leaf level of the clock tree. If the register is in a
module with scan flip-flops that it controls, the same clock signal that drives the scan
flip-flops should also drive the pipeline scan-enable register. The register’s instance
name is test_pipe_se_<m>_reg_<n>. There might be more than one for each clock,
and they might be buried in the design hierarchy, depending on the settings.

• If you set the -internal_clocks option of the set_scan_configuration command
to multi or single, pipelined scan-enable insertion and domain-based scan-enable
insertion treat each internal clock region as a separate scan clock domain, which might
not be the desired result.

Excluding Elements from a Pipelined Scan-Enable Configuration
When you enable the pipelined scan enable feature, all scan-enable connections
are subject to pipelining behavior. However, in some design scenarios, you
might want to exclude specific scan elements from pipelining. To do this, use the
set_pipeline_scan_enable_configuration command with the -exclude element-
list option.

The element list to be excluded can consist of any of the following:

• Instance names - The tool excludes any scan-enable connection to that cell.

• Hierarchies - The tool excludes any scan-enable connection to any instance contained
in that hierarchy or its child hierarchies.

• Scan clock ports – The tool excludes any scan element that belongs to that clock
domain.

• Scan clock hookup pins - The tool excludes any scan element that belongs to that
clock domain.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

354

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Multiple Test Modes

Feedback

This example shows how you can exclude a specified hierarchy:

dc_shell> set_pipeline_scan_enable_configuration -exclude { de_a }
When a specific scan-enable connection is excluded from a pipelined scan-enable signal,
the tool routes the connection as if the pipelined scan-enable were not enabled. The tool
tries to connect directly from the port or hookup-pin to the scan-enable pin of the scan cell.

Multiple Test Modes
A design’s scan interface must accommodate a variety of structural tests. Scan test, burn-
in, and other tests performed at various production steps might require different types of
access to scan elements of a design. To accommodate these different test requirements,
multiple scan architectures can be provided on the same scan design. This approach is
also useful for complex test schemes such as scan compression and core wrapping, which
target tests in different parts of a design at different times.

The following topics explain the process for setting up architectures to perform multiple
test-mode scan insertion:

• Introduction to Multiple Test Modes

• Defining Test Modes

• Applying Test Specifications to a Test Mode

• Recommended Ordering of Global and Mode-Specific Commands

• Using Multiple Test Modes in Hierarchical Flows

• Supported Test Specification Commands for Test Modes

• Multiple Test-Mode Scan Insertion Script Examples

See Also

• DFTMAX Scan Compression and Multiple Test Modes on page 667 for more
information about defining and configuring multiple DFTMAX compression modes

• DFTMAX Ultra Compression and Multiple Test Modes on page 931 for more
information about defining and configuring multiple DFTMAX Ultra compression modes

Introduction to Multiple Test Modes
You can reconfigure the scan chains in your design to suit various tester requirements
by defining different modes of operation, called test modes. For example, suppose you
have a simple design with 12 scan cells that must operate in two different scan modes. In

Synopsys® TestMAX™ DFT User Guide
T-2022.03

355

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Multiple Test Modes

Feedback

one mode, scan data is shifted through two chains (six cells each), and in the other mode,
scan data is shifted through three chains (four cells each). Figure 142 shows how DFT
Compiler inserts MUXs to support these two scan chain configurations. These MUXs are
known as reconfiguration MUXs.

Note:
Reconfiguration MUXs might appear at any level in your design. This is usually
dependent on the location of the scan elements where the MUXing takes place.

Figure 142 Configuring Scan Chains With Test-Mode Logic

A B C D

I J K L

E F G H

test_si1

test_si2

test_mode

test_si3

test_so1

test_so2

test_so3

Each test mode is activated by asserting one or more test-mode signals according to
a particular test-mode encoding. Different test modes can have different scan-in and
scan-out pin counts, and can even have independent sets of scan-in and scan-out pins
altogether.

Defining Test Modes
To define a test mode, use the define_test_mode command:

define_test_mode test_mode_name

Synopsys® TestMAX™ DFT User Guide
T-2022.03

356

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Multiple Test Modes

Feedback

Each test mode must have a unique name that is used to refer to the test mode in
subsequent DFT commands or reports. The name of the default standard scan test mode
is Internal_scan. You can configure this default mode and define additional modes, or
you can create an entirely new set of named modes without using the default test mode.

Example 32 defines three newly-named test modes.

Example 32 Defining Three New User-Defined Test Modes
define_test_mode LONG ;# long scan chains
define_test_mode MEDIUM ;# medium scan chains
define_test_mode SHORT ;# short scan chains

Defining the Usage of a Test Mode
By default, a test mode represents a standard scan test mode of operation. To specify how
a test mode is to be used, use the -usage option of the define_test_mode command.
The valid keywords for this option are:

• scan – This is the traditional standard scan mode operation, which is the default if the
-usage option is not specified. The scan chains are driven directly by top-level scan-in
ports, and they drive, in turn, top-level scan-out ports. This mode is used for testing all
logic internal to the core.

• scan_compression – This is the compressed scan mode of operation provided
by the DFTMAX compression. In this mode, the internal scan chains are driven by
combinational scan data decompressors, and the scan chains drive the combinational
scan data compressors. This mode is used for testing all logic internal to the core with
reduced test data volume and test application time.

• streaming_compression – This is the compressed scan mode of operation provided
by DFTMAX Ultra compression. In this mode, the internal scan chains are driven by
shift register scan data decompressors, and the scan chains drive the shift register
scan data compressors. This mode is used for testing all logic internal to the core with
significantly reduced test data volume and test application time.

• wrp_if – This is the inward facing, or INTEST, mode of wrapper operation. This mode
is used for testing all logic internal to the core. In this mode, wrappers are enabled and
configured to drive and capture data within the design, in conjunction with the internal
scan chains.

• wrp_of – This is the outward facing, or EXTEST, mode of wrapper operation. This
mode is used for testing all logic external to the design. Wrappers are enabled and
configured to drive and capture data outside of the design. In this mode the internal
chains are disabled.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

357

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Multiple Test Modes

Feedback

• wrp_safe – This is the safe wrapper mode. In this mode, the internal chains are
disabled, and the internal core is protected from any toggle activity. This mode is
optional and provides isolation of the core while other cores are being tested. When
active, safe mode enables driving steady states into or out of the design.

Example 33 defines three standard scan test modes plus a DFTMAX compressed scan
mode.

Example 33 Providing Test-Mode Usage Information With the -usage Option
define_test_mode LONG ;# long scan chains
define_test_mode MEDIUM ;# medium scan chains
define_test_mode SHORT ;# short scan chains
define_test_mode COMPRESSED -usage scan_compression
After test modes have been defined, you can use the list_test_modes command to
report the currently defined test-mode names. Example 34 shows the report for the three
standard scan test modes defined in Example 32.

Example 34 Test Modes Reported by the list_test_modes Command
Test Modes
==========

 Name: LONG
 Type: InternalTest
 Focus:

 Name: MEDIUM
 Type: InternalTest
 Focus:

 Name: SHORT
 Type: InternalTest
 Focus:

 Name: Mission_mode
 Type: Normal

Defining the Encoding of a Test Mode
Each test mode is activated by asserting one or more test-mode signals according
to a particular encoding associated with that test mode. To declare these test-mode
signals, use the set_dft_signal -type TestMode command. If no test-mode signals
are available, or not enough test-mode signals are available to satisfy the test-mode
encodings, DFT Compiler creates new test-mode ports as needed.

By default, DFT Compiler assigns a binary encoding to the test modes. Binary encoding
requires the fewest number of test-mode signals. With binary encoding, n test-mode
signals can provide test-mode encodings for up to 2n-1 test modes, allowing for an
encoding that deactivates all test modes and activates mission mode.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

358

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Multiple Test Modes

Feedback

To report the test-mode signals and encodings associated with each test mode, use the
preview_dft command. Example 35 shows the preview report for the three standard
scan test modes defined in Example 32.

Example 35 Test-Mode Encodings Reported by the preview_dft Command
================================
Test Mode Controller Information
================================

Test Mode Controller Ports

test_mode: test_mode2
test_mode: test_mode1

Test Mode Controller Index (MSB --> LSB)
--
test_mode2, test_mode1

Control signal value - Test Mode

00 LONG - InternalTest

01 MEDIUM - InternalTest

10 SHORT - InternalTest

You can also specify one-hot test-mode encoding by using the following command:

set_dft_configuration -mode_decoding_style one_hot

This command causes one-hot test-mode encodings to be used, and simplified test-mode
decoding logic to be built that takes advantage of the properties of one-hot encodings.
One-hot encodings provide simplified decoding logic, at the expense of a greater number
of required test-mode signals. With one-hot encoding, n test-mode signals can provide
test-mode encodings for up to n test modes, with mission mode being activated by an
encoding where none of the test-mode signals are asserted.

Note:
One-hot test-mode encodings take the active state of each test-mode signal
into account. If you define all test-mode signals using the -active_state 0
option of the set_dft_signal command, each one-hot encoding contains a
single asserted 0 value.

You can also specify your own test-mode encodings with the -encoding option of the
define_test_mode command. The syntax of the encoding argument consists of one or
more test-mode signal names and binary value pairs. These pairs are separated by a
space when multiple ports are specified.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

359

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Multiple Test Modes

Feedback

Example 36 shows how to use a binary encoding where mission mode is activated by
the 00 encoding and the three test-mode encodings have at least one test-mode signal
asserted.

Example 36 Specifying User-Defined Binary Test-Mode Encodings
set_dft_signal -view spec -port {TM1 TM0} -type TestMode

define_test_mode LONG -encoding {TM1 0 TM0 1}
define_test_mode MEDIUM -encoding {TM1 1 TM0 0}
define_test_mode SHORT -encoding {TM1 1 TM0 1}
If you are providing your own one-hot encodings, configure the test-mode decoding to
one_hot to build simplified one-hot decoding logic. Example 37 shows how to configure
one-hot encodings for the three example test modes.

Example 37 Specifying User-Defined One-Hot Test-Mode Encodings
set_dft_signal -view spec -port {TM2 TM1 TM0} -type TestMode

set_dft_configuration -mode_decoding_style one_hot

define_test_mode LONG -encoding {TM2 0 TM1 0 TM0 1}
define_test_mode MEDIUM -encoding {TM2 0 TM1 1 TM0 0}
define_test_mode SHORT -encoding {TM2 1 TM1 0 TM0 0}
If your test-mode control signals come from internal design pins, such as the outputs of
test control registers, use the -hookup_pin option from the internal pins flow to make the
connections. Example 38 shows how to hook up two test-mode signals to corresponding
control register output pins.

Example 38 Using Internal Design Pins for Test-Mode Signals
set_dft_signal -view spec -type TestMode \
 -port TM1 -hookup_pin TESTCTL_reg[1]/Q
set_dft_signal -view spec -type TestMode \
 -port TM0 -hookup_pin TESTCTL_reg[0]/Q

define_test_mode LONG -encoding {TM1 0 TM0 1}
define_test_mode MEDIUM -encoding {TM1 1 TM0 0}
define_test_mode SHORT -encoding {TM1 1 TM0 1}

If the internal pins do not directly correspond to top-level ports, you must use the internal
pins flow. For more information, see Internal Pins Flow on page 422.

Applying Test Specifications to a Test Mode
After you have defined test modes, you can apply mode-specific test specifications to
each test mode. Not all commands and options can be used to apply mode-specific test

Synopsys® TestMAX™ DFT User Guide
T-2022.03

360

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Multiple Test Modes

Feedback

specifications. For more information about the available commands and options, see
Supported Test Specification Commands for Test Modes on page 365.

When you apply test specifications before defining any test modes, they are applied to
the default test mode. As new test modes are defined, they inherit the test specification
settings from this default mode. You can use this behavior to predefine global test
specifications shared by all modes.

After you define a test mode with the define_test_mode command, that test mode
becomes the current test mode. Subsequent scan specification commands apply
only to that test mode. You can use this behavior to implicitly apply mode-specific test
specifications after defining a test mode, as shown in Example 39.

Example 39 Applying Scan Specifications Using Implicitly Defined Current Test Mode
define_test_mode LONG ;# long scan chains
set_scan_configuration -chain_count 2 -clock_mixing mix_clocks

define_test_mode MEDIUM ;# medium scan chains
set_scan_configuration -chain_count 3 -clock_mixing mix_clocks

define_test_mode SHORT ;# short scan chains
set_scan_configuration -chain_count 5

You can also use the current_test_mode command to change the current test mode at
any time, as shown in Example 40.

Example 40 Applying Scan Specifications Using Explicitly Defined Current Test Mode
define_test_mode LONG
define_test_mode MEDIUM
define_test_mode SHORT

current_test_mode LONG ;# long scan chains
set_scan_configuration -chain_count 2 -clock_mixing mix_clocks

current_test_mode MEDIUM ;# medium scan chains
set_scan_configuration -chain_count 3 -clock_mixing mix_clocks

current_test_mode SHORT ;# short scan chains
set_scan_configuration -chain_count 5

You can use the -test_mode option to directly apply a scan specification to a particular
test mode at any time, regardless of the current test mode, as shown in Example 41.

Example 41 Applying Scan Specifications Using the -test_mode Option
set_scan_configuration -test_mode LONG \
 -chain_count 2 -clock_mixing mix_clocks
set_scan_configuration -test_mode MEDIUM \
 -chain_count 3 -clock_mixing mix_clocks

Synopsys® TestMAX™ DFT User Guide
T-2022.03

361

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Multiple Test Modes

Feedback

set_scan_configuration -test_mode SHORT \
 -chain_count 5

To apply a scan specification to all test modes after previously defining some test modes,
use the -test_mode all option, as shown in Example 42.

Example 42 Applying Scan Specification to All Test Modes
set_dft_signal -view spec -test_mode all \
 -type ScanDataIn -port {SI1 SI2 SI3}

Note:
The -test_mode option also accepts the all_dft keyword, which is equivalent
to all.

When multiple scan specification commands are applied to a test mode, they are applied
cumulatively. A new scan specification command overwrites a previous scan specification
according to the same precedence rules used in a single test-mode flow.

Example 43 shows how to apply clock mixing to all test modes except for the SHORT test
mode:

Example 43 Overwriting a Previous Scan Specification Setting for a Test Mode
set_scan_configuration -test_mode all \
 -clock_mixing mix_clocks
set_scan_configuration -test_mode LONG \
 -chain_count 2
set_scan_configuration -test_mode MEDIUM \
 -chain_count 3
set_scan_configuration -test_mode SHORT \
 -chain_count 5 -clock_mixing no_mix ;# overwrites mix_clocks
The default for the -clock_mixing option is no_mix. In this example, the first command
applies the -clock_mixing no_clocks option to all test modes. The subsequent
two commands configure the chain counts for the first two test modes. Because the
-chain_count option does not overwrite the -clock_mixing option, the mix_clocks
specification remains in place for the LONG and MEDIUM test modes. In the last command,
the -clock_mixing option reapplies the default clock mixing behavior of no_mix to the
SHORT test mode to overwrite the mix_clocks behavior previously applied to all test
modes.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

362

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Multiple Test Modes

Feedback

Recommended Ordering of Global and Mode-Specific Commands
When applying scan specifications in a multiple test-mode environment, perform these
steps:

1. Define TestMode signals with the set_dft_signal -test_mode all command.

2. Define all test modes, their usage, and optional encodings with the define_test_mode
command.

3. Define clock and asynchronous DFT signals and constants that are common to all test
modes with the set_dft_signal -test_mode all command.

4. Define any mode-specific DFT signals with the set_dft_signal -test_mode
test_mode_name command.

5. Specify any scan specifications to be used in all test modes using the -test_mode all
option of the set_scan_configuration and set_scan_path commands.

6. Specify any scan specifications to be used in specific test modes using the
-test_mode test_mode_name option of the set_scan_configuration and
set_scan_path commands.

Note:
If you reference any test modes using the -test_mode option of any DFT
configuration commands, you must define those test modes with the
define_test_mode command before referencing them.

Using Multiple Test Modes in Hierarchical Flows
In hierarchical flows, different cores might have different test modes defined. In this case,
DFT Compiler creates as many top-level test modes as needed to accommodate all of the
core-level test modes.

By default, the relationship between core-level and top-level test modes is determined by
test mode name according to the following rules:

• For each core-level test mode, a top-level test mode of the same name is created.

• If multiple cores share a test mode with the same name, those core-level test modes
are included in a top-level test mode of the same name.

• If a core does not have a test mode that matches a top-level test mode name, it is
excluded from that top-level test mode.

The preview_dft and insert_dft commands report the core-level test modes used in
each of the top-level test modes.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

363

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Multiple Test Modes

Feedback

Consider an example where coreA has two test modes named SHORT and MEDIUM, and
coreB has two test modes named MEDIUM and LONG. At the top level, DFT Compiler
creates all three test modes. The preview_dft and insert_dft commands report the
core-level test modes as shown in Example 44.

Example 44 Top-Level Test Mode Report for Default Name-Based Relationships
Control signal value - Integration Test Mode
 Core Instance - Test Mode
--
00 SHORT - InternalTest
 coreA - SHORT: InternalTest

01 MEDIUM - InternalTest
 coreA - MEDIUM: InternalTest
 coreB - MEDIUM: InternalTest

10 LONG - InternalTest
 coreB - LONG: InternalTest

Note that coreB does not participate in top-level test mode SHORT, and coreA does not
participate in top-level test mode LONG.

At the top level, you can override the default name-based association of core-level test
modes by using the define_test_mode -target command. The -target option takes a
list of core and test mode pairs that should be included in that top-level test mode.

The previous example can be modified to use the closest matches for the missing core-
level test modes, as shown in Example 45.

Example 45 Specifying User-Defined Core-Level Test Mode Relationships
top-level test mode definitions
define_test_mode SHORT \
 -target {coreA:SHORT coreB:MEDIUM}
define_test_mode MEDIUM \
 -target {coreA:MEDIUM coreB:MEDIUM}
define_test_mode LONG \
 -target {coreA:MEDIUM coreB:LONG}

The preview_dft and insert_dft commands report the core-level test modes as shown
in Example 46.

Example 46 Top-Level Test Mode Report for User-Defined Test Mode Relationships
Control signal value - Integration Test Mode
 Core Instance - Test Mode
--
00 SHORT - InternalTest
 coreA - SHORT: InternalTest
 coreB - MEDIUM: InternalTest

Synopsys® TestMAX™ DFT User Guide
T-2022.03

364

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Multiple Test Modes

Feedback

01 MEDIUM - InternalTest
 coreA - MEDIUM: InternalTest
 coreB - MEDIUM: InternalTest

10 LONG - InternalTest
 coreA - MEDIUM: InternalTest
 coreB - LONG: InternalTest

Note:
If you use the -target option of the define_test_mode command, you must
completely define the core test mode relationships for all cores and test modes.
When the -target option is used, name-based test mode association is no
longer performed for any core or test mode.

Supported Test Specification Commands for Test Modes
This topic lists the commands and options you can use to configure DFT insertion for
specific test modes. These commands and options honor the -test_mode option or the
current test-mode focus. Other DFT configuration commands and options apply to all test
modes.

set_dft_signal
You can use the set_dft_signal -test_mode command to declare different DFT signals
for different test modes. For example, each test mode can have different scan-in and scan-
out ports.

Keep in mind that pre-DFT DRC only analyzes the global all test mode; it does not
consider mode-specific signals applied to other modes. As a result,

• Mode-specific signals defined with the -view spec option, such as scan-in and scan-
out signals, can be safely made, as these signals do not yet exist during pre-DFT DRC.

• Mode-specific signals defined with the -view existing option, such as constants and
reset signals, must be made with care, as these signals are not considered during pre-
DFT DRC. However, they are incorporated into the mode-specific test protocols used
by post-DFT DRC.

Note that you can apply a baseline set of signals to the all test mode to be used by
pre-DFT DRC, along with mode-specific signals to be used by post-DFT DRC.

All test modes must share the same scan-enable signals. You cannot specify different
scan-enable signals for different test modes.

If the -test_mode option is not specified, this command applies to the current test mode.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

365

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Multiple Test Modes

Feedback

set_scan_configuration
The following set_scan_configuration options can be applied to specific test modes:

• -chain_count

• -clock_mixing

• -exclude_elements
Note:

Shared wrapper cells are not supported for per-test-mode exclusion.

• -max_length
If the -test_mode option is not specified, these options apply to the current test mode.
Other options of the set_scan_configuration command apply to all test modes.

set_scan_path
The following set_scan_path options can be applied to specific test modes:

• -scan_master_clock

• -exact_length
Use the set_scan_path -test_mode command to provide scan chain specifications
for the test modes in your design.The scan path specification can be given for any
chains in any defined test mode. It can include pin access information provided with
the -scan_data_in, -scan_data_out, -scan_enable, -scan_master_clock, and
-scan_slave_clock options. The specification can also specify a list of design elements
to be included. When specifying pins with the -scan_data_in or -scan_data_out
options, the signals must be previously defined with the set_dft_signal command using
the ScanDataIn or ScanDataOut signal types.If the scan path specification applies to a
test mode which has the usage specified as scan, both the port and hookup arguments of
the set_dft_signal command can be specified for the ScanDataIn and ScanDataOut
signals.If the scan path specification applies to a test mode which has the usage specified
as scan_compression, then only the -hookup option of the set_dft_signal command
can be specified for the ScanDataIn and ScanDataOut signals. A port argument must
not be used for compressed scan mode scan path definitions, as these codec-connected
compressed chains have no direct access from the ports.

If the -test_mode option is not specified, the specification applies to the current test
mode. To apply the specification to all test modes, you must use the -test_mode all
option.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

366

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Multiple Test Modes

Feedback

Multiple Test-Mode Scan Insertion Script Examples
This topic provides examples of basic scan, DFTMAX compressed scan, and core
wrapping scripts in a multiple test-mode environment.

Example 47 shows a basic scan script that defines four scan test modes. The scan1 mode
has one chain, the scan2 mode has two chains, the scan3 mode has four chains, and the
scan 4 mode has eight chains. Each set of chains uses separate scan-in and scan-out
pins.

Example 47 Basic Scan Multiple Test-Mode Script
Define the pins for use in any test mode with "-test_mode all"
 for {set i 1} {$i <= 15 } { incr i 1} {
 create_port -direction in test_si[$i]
 create_port -direction out test_so[$i]
 set_dft_signal -type ScanDataIn -view spec -port test_si[$i] \
 -test_mode all
 set_dft_signal -type ScanDataOut -view spec -port test_so[$i] \
 -test_mode all
 }

#Define Test Clocks
set_dft_signal -view existing_dft -type TestClock -timing {45 55} \
 -port clk_st

#Define TestMode signals to be used
set_dft_signal -view spec -type TestMode -port \
 [list i_trdy_de i_trdy_dd i_cs]

#Define the test modes
define_test_mode scan1 -usage scan \
 -encoding {i_trdy_de 0 i_trdy_dd 0 i_cs 1}
define_test_mode scan2 -usage scan \
 -encoding {i_trdy_de 0 i_trdy_dd 1 i_cs 0}
define_test_mode scan3 -usage scan \
 -encoding {i_trdy_de 0 i_trdy_dd 1 i_cs 1}
define_test_mode scan4 -usage scan \
 -encoding {i_trdy_de 1 i_trdy_dd 0 i_cs 0}

#Configure the basic scan modes
set_scan_configuration -chain_count 1 -clock_mixing mix_clocks \
 -test_mode scan1
set_scan_configuration -chain_count 2 -clock_mixing mix_clocks \
 -test_mode scan2
set_scan_configuration -chain_count 4 -clock_mixing mix_clocks \
 -test_mode scan3
set_scan_configuration -chain_count 8 -clock_mixing mix_clocks \
 -test_mode scan4

Give a chain spec to be applied in each of the modes
set_scan_path chain1 -view spec -scan_data_in test_si[1] \

Synopsys® TestMAX™ DFT User Guide
T-2022.03

367

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Multiple Test Modes

Feedback

 -scan_data_out test_so[1] -test_mode scan1

set_scan_path chain2 -view spec -scan_data_in test_si[2] \
 -scan_data_out test_so[2] -test_mode scan2

set_scan_path chain3 -view spec -scan_data_in test_si[3] \
 -scan_data_out test_so[3] -test_mode scan2

set_scan_path chain4 -view spec -scan_data_in test_si[4] \
 -scan_data_out test_so[4] -test_mode scan3

set_scan_path chain5 -view spec -scan_data_in test_si[5] \
 -scan_data_out test_so[5] -test_mode scan3

set_scan_path chain6 -view spec -scan_data_in test_si[6] \
 -scan_data_out test_so[6] -test_mode scan3

set_scan_path chain7 -view spec -scan_data_in test_si[7] \
 -scan_data_out test_so[7] -test_mode scan3

set_scan_path chain8 -view spec -scan_data_in test_si[8] \
 -scan_data_out test_so[8] -test_mode scan4

set_scan_path chain9 -view spec -scan_data_in test_si[9] \
 -scan_data_out test_so[9] -test_mode scan4

set_scan_path chain10 -view spec -scan_data_in test_si[10] \
 -scan_data_out test_so[10] -test_mode scan4

set_scan_path chain11 -view spec -scan_data_in test_si[11] \
 -scan_data_out test_so[11] -test_mode scan4

set_scan_path chain12 -view spec -scan_data_in test_si[12] \
 -scan_data_out test_so[12] -test_mode scan4

set_scan_path chain13 -view spec -scan_data_in test_si[13] \
 -scan_data_out test_so[13] -test_mode scan4

set_scan_path chain14 -view spec -scan_data_in test_si[14] \
 -scan_data_out test_so[14] -test_mode scan4

set_scan_path chain15 -view spec -scan_data_in test_si[15] \
 -scan_data_out test_so[15] -test_mode scan4

set_dft_insertion_configuration -synthesis_optimization none

create_test_protocol
dft_drc
preview_dft -show all

insert_dft

current_test_mode scan1

Synopsys® TestMAX™ DFT User Guide
T-2022.03

368

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Multiple Test Modes

Feedback

dft_drc -verbose

current_test_mode scan2
dft_drc -verbose

current_test_mode scan3
dft_drc -verbose

current_test_mode scan4
dft_drc -verbose

list_test_modes

list_licenses
change_names -rules verilog -hierarchy
write -format verilog -hierarchy -output vg/top_scan.v
write_test_protocol -test_mode scan1 \
 -output stil/scan1.stil -names verilog
write_test_protocol -test_mode scan2 \
 -output stil/scan2.stil -names verilog
write_test_protocol -test_mode scan3 \
 -output stil/scan3.stil -names verilog
write_test_protocol -test_mode scan4 \
 -output stil/scan4.stil -names verilog

exit

Example 48 shows a DFTMAX compression script. In this script, three test modes are
created. One mode is used for compression testing, a second mode is used for basic scan
test and has eight chains, and a third mode uses a single basic scan chain.

Example 48 Basic DFTMAX Compressed Scan Multiple Test-Mode Script

Define the pins for compression/base_mode using "-test_mode all"
These modes are my_comp and my_scan1
 for {set i 1} {$i <= 13 } { incr i 1} {
 create_port -direction in test_si[$i]
 create_port -direction out test_so[$i]
 set_dft_signal -type ScanDataIn -view spec -port test_si[$i] \
 -test_mode all
 set_dft_signal -type ScanDataOut -view spec -port test_so[$i] \
 -test_mode all
 }
#Define Test Clocks
set_dft_signal -view existing_dft -type TestClock -timing {45 55} \
 -port clk_st

#Define TestMode signals to be used
set_dft_signal -view spec -type TestMode -port \
 [list i_trdy_de i_trdy_dd i_cs]

#Define the test modes and usage

Synopsys® TestMAX™ DFT User Guide
T-2022.03

369

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Multiple Test Modes

Feedback

define_test_mode my_base1 -usage scan \
 -encoding {i_trdy_de 0 i_trdy_dd 0 i_cs 1}
define_test_mode my_base2 -usage scan \
 -encoding {i_trdy_de 0 i_trdy_dd 1 i_cs 0}
define_test_mode burn_in -usage scan \
 -encoding {i_trdy_de 0 i_trdy_dd 1 i_cs 1}
define_test_mode scan_compression1 -usage scan_compression \
 -encoding {i_trdy_de 1 i_trdy_dd 0 i_cs 0}
define_test_mode scan_compression2 -usage scan_compression \
 -encoding {i_trdy_de 1 i_trdy_dd 0 i_cs 1}

#Enable DFTMAX compression
set_dft_configuration -scan_compression enable

#Configure DFTMAX compression
set_scan_compression_configuration -base_mode my_base1 -chain_count 32 \
 -test_mode scan_compression1 -xtolerance high
set_scan_compression_configuration -base_mode my_base2 -chain_count 256 \
 -test_mode scan_compression2 -xtolerance high

#Configure the basic scan modes
set_scan_configuration -chain_count 4 -test_mode my_base1
set_scan_configuration -chain_count 8 -test_mode my_base2
set_scan_configuration -chain_count 1 -clock_mixing mix_clocks \
 -test_mode burn_in

set_dft_insertion_configuration -synthesis_optimization none

Give a chain spec to be applied in my_base1
This will also define the scan ports for scan_compression1
set_scan_path chain1 -view spec -scan_data_in test_si[1] \
 -scan_data_out test_so[1] \
 -test_mode my_base1
set_scan_path chain2 -view spec -scan_data_in test_si[2] \
 -scan_data_out test_so[2] \
 -test_mode my_base1
set_scan_path chain3 -view spec -scan_data_in test_si[3] \
 -scan_data_out test_so[3] \
 -test_mode my_base1
set_scan_path chain4 -view spec -scan_data_in test_si[4] \
 -scan_data_out test_so[4] \
 -test_mode my_base1

Give a chain spec to be applied in my_base2
This will also define the scan ports for scan_compression2
set_scan_path chain5 -view spec -scan_data_in test_si[5] \
 -scan_data_out test_so[5] -test_mode my_base2
set_scan_path chain6 -view spec -scan_data_in test_si[6] \
 -scan_data_out test_so[6] -test_mode my_base2
set_scan_path chain7 -view spec -scan_data_in test_si[7] \
 -scan_data_out test_so[7] -test_mode my_base2
set_scan_path chain8 -view spec -scan_data_in test_si[8] \
 -scan_data_out test_so[8] -test_mode my_base2

Synopsys® TestMAX™ DFT User Guide
T-2022.03

370

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Multiple Test Modes

Feedback

set_scan_path chain9 -view spec -scan_data_in test_si[9] \
 -scan_data_out test_so[9] -test_mode my_base2
set_scan_path chain10 -view spec -scan_data_in test_si[10] \
 -scan_data_out test_so[10] -test_mode my_base2
set_scan_path chain11 -view spec -scan_data_in test_si[11] \
 -scan_data_out test_so[11] -test_mode my_base2
set_scan_path chain12 -view spec -scan_data_in test_si[12] \
 -scan_data_out test_so[12] -test_mode my_base2

Give a chain spec to be applied in burn_in
set_scan_path chain4 -view spec -scan_data_in test_si[13] \
 -scan_data_out test_so[13] -test_mode burn_in

create_test_protocol
dft_drc
preview_dft -show all

insert_dft

list_test_modes

current_test_mode scan_compression1
report_dft_signal
dft_drc -verbose

current_test_mode scan_compression2
report_dft_signal
dft_drc -verbose

current_test_mode my_base1
report_dft_signal
dft_drc -verbose

current_test_mode my_base2
report_dft_signal
dft_drc -verbose

current_test_mode burn_in
report_dft_signal
dft_drc -verbose

change_names -rules verilog -hierarchy
write -format verilog -hierarchy \
 -output vg/10x_xtol_moxie_top_scan_mm.v
write_test_protocol -test_mode scan_compression1 \
 -output stil/scan_compression1.stil -names verilog
write_test_protocol -test_mode scan_compression2 \
 -output stil/scan_compression2.stil -names verilog
write_test_protocol -test_mode my_base1 \
 -output stil/my_base1.stil -names verilog
write_test_protocol -test_mode my_base2 \
 -output stil/my_base2.stil -names verilog
write_test_protocol -test_mode burn_in \

Synopsys® TestMAX™ DFT User Guide
T-2022.03

371

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Multiple Test Modes

Feedback

 -output stil/10x_xtol_moxie.burn_in.stil -names verilog

exit

Example 49 shows a core wrapper script. This script defines all the modes that are
created in a wrapper insertion process, which supports at-speed test and shared wrapper
cells.

Example 49 Basic Core Wrapper Multiple Test-Mode Script

#Define Test Clocks
set_dft_signal -view existing_dft -type TestClock -timing {45 55} \
 -port clk_s

#Define TestMode signals to be used
set_dft_signal -view spec -type TestMode -port \
 [list i_trdy_de i_trdy_dd i_cs i_wr]

#Define the test modes and usage
define_test_mode burn_in -usage scan \
 -encoding {i_trdy_de 0 i_trdy_dd 0 i_cs 0 i_wr 1}
define_test_mode domain -usage scan \
 -encoding {i_trdy_de 0 i_trdy_dd 0 i_cs 1 i_wr 0}
define_test_mode my_wrp_if -usage wrp_if \
 -encoding {i_trdy_de 0 i_trdy_dd 0 i_cs 1 i_wr 1}
define_test_mode my_wrp_if_delay -usage wrp_if \
 -encoding {i_trdy_de 0 i_trdy_dd 1 i_cs 0 i_wr 0}
define_test_mode my_wrp_if_scl_delay -usage wrp_if \
 -encoding {i_trdy_de 0 i_trdy_dd 1 i_cs 0 i_wr 1}
define_test_mode my_wrp_of -usage wrp_of \
 -encoding {i_trdy_de 0 i_trdy_dd 1 i_cs 1 i_wr 0}
define_test_mode my_wrp_of_delay -usage wrp_of \
 -encoding {i_trdy_de 0 i_trdy_dd 1 i_cs 1 i_wr 1}
define_test_mode my_wrp_of_scl_delay -usage wrp_of \
 -encoding {i_trdy_de 1 i_trdy_dd 0 i_cs 0 i_wr 0}
define_test_mode my_wrp_safe -usage wrp_safe \
 -encoding {i_trdy_de 1 i_trdy_dd 0 i_cs 0 i_wr 1}

#Set scan chain count as desired
set_scan_configuration -chain_count 1 -clock_mixing mix_clocks \
 -test_mode burn_in
set_scan_configuration -chain_count 5 -test_mode domain
set_scan_configuration -chain_count 8 -test_mode wrp_if
set_scan_configuration -chain_count 8 -test_mode wrp_of

Enable and configure wrapper client
set_dft_configuration -wrapper enable

#Configure for shared wrappers, using existing cells and \
 create glue logic around existing cells
set_wrapper_configuration -class core_wrapper \
 -style shared \

Synopsys® TestMAX™ DFT User Guide
T-2022.03

372

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Multiple Test Modes

Feedback

 -shared_cell_type WC_S1 \
 -use_dedicated_wrapper_clock true \
 -safe_state 1 \
 -register_io_implementation in_place \
 -delay_test true

#Create the test protocol and run pre-drc
create_test_protocol
dft_drc -verbose

#Report the configuration of the wrapper utility, optional
report_wrapper_configuration

#Preview all test structures to be inserted
preview_dft -test_wrappers all
preview_dft -show all

report_dft_configuration

#Run scan insertion and wrap the design
set_dft_insertion_configuration -synthesis_optimization none
insert_dft

list_test_modes

current_test_mode burn_in
report_scan_path -view existing_dft -cell all > \
 reports/xg_wrap_dedicated_delay_path_burn_in.rpt

current_test_mode domain
report_scan_path -view existing_dft -cell all > \
 reports/xg_wrap_dedicated_delay_path_domain.rpt

current_test_mode my_wrp_of
report_scan_path -view existing_dft -cell all > \
 reports/xg_wrap_dedicated_delay_path_my_wrp_of.rpt

current_test_mode my_wrp_of_delay
report_scan_path -view existing_dft -cell all > \
 reports/xg_wrap_dedicated_delay_path_my_wrp_of_delay.rpt

current_test_mode my_wrp_of_scl_delay
report_scan_path -view existing_dft -cell all > \
 reports/xg_wrap_dedicated_delay_path_my_wrp_of_scl_delay.rpt

current_test_mode my_wrp_if
report_scan_path -view existing_dft -cell all > \
 reports/xg_wrap_dedicated_delay_path_my_wrp_if.rpt

current_test_mode my_wrp_if_delay
report_scan_path -view existing_dft -cell all > \
 reports/xg_wrap_dedicated_delay_path_my_wrp_if_delay.rpt

Synopsys® TestMAX™ DFT User Guide
T-2022.03

373

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Multiple Test Modes

Feedback

current_test_mode my_wrp_if_scl_delay
report_scan_path -view existing_dft -cell all > \
 reports xg_wrap_dedicated_delay_my_wrp_if_scl_delay.rpt

report_dft_signal -view existing_dft -port *
report_area

change_names -rules verilog -hierarchy

write -format ddc -hierarchy -output db/scan.ddc
write -format verilog -hierarchy -output vg/scan_wrap.vg
write_test_model -output db/des_unit.scan.ctldb
write_test_protocol -test_mode burn_in -output stil/burn_in.spf
write_test_protocol -test_mode domain -output stil/domain.spf
write_test_protocol -test_mode my_wrp_if_delay \
 -output stil/my_wrp_if_delay.spf
write_test_protocol -test_mode my_wrp_if_scl_delay \
 -output stil/my_wrp_if_scl_delay.spf
write_test_protocol -test_mode my_wrp_if -output stil/my_wrp_if.spf
write_test_protocol -test_mode my_wrp_of -output stil/my_wrp_of.spf
write_test_protocol -test_mode my_wrp_of_delay \
 -output stil/my_wrp_of_delay.spf
write_test_protocol -test_mode my_wrp_of_scl_delay \
 -output stil/my_wrp_of_scl_delay.spf
write_test_protocol -test_mode wrp_if -output stil/extra_wrp_if.spf

exit

Note that you can also run the report_scan_path -test_mode tms command, which
displays a report containing test-related information about the current design, as shown in
Example 50.

Example 50 report_scan_path Output Example
dc_shell> report_scan_path -test_mode tms
Number of chains: 3
Scan methodology: full_scan
Scan style: multiplexed_flip_flop

Clock domain: mix_clocks
Chn Scn Prts (si --> so) #Cell Inst/Chain Clck (prt, tm,edge)
--- ------------------- ----- ---------- -------------------
S 1 test_si1 --> test_so1 2 U2/1 (s) CK3, 45.0,rising)
S 2 test_si2 --> test_so2 2 U2/2 (s) (CK2, 45.0,rising)
W 3 test_si3 --> test_so3 8 U2/WrapperChain_0 (s) (WCLK,45.0, rising)

Synopsys® TestMAX™ DFT User Guide
T-2022.03

374

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Test-Mode Control Using the IEEE 1500 and IEEE 1149.1 Interfaces

Feedback

Test-Mode Control Using the IEEE 1500 and IEEE 1149.1
Interfaces

Normally, the test mode of a design is controlled by one or more test-mode ports. You can
use the IEEE 1500 insertion feature to control the test mode of a design through standard
IEEE 1500 or IEEE 1149.1 interfaces instead. This feature allows you to

• Insert IEEE 1500 test-mode control logic, which provides a standard interface for test
mode control, at the core level and chip level

• Insert server control logic, which provides complete access to all on-chip IEEE 1500
controllers through an IEEE Std 1149.1 (JTAG) interface, at the chip level

• Integrate cores that use either IEEE 1500 or test-mode ports for test mode control

• Create test protocols that set up a design’s test mode using the core-level or chip-level
logic at that level

Note:
A DFTMAX or TestMAX DFT license is required to use the IEEE 1500 test-
mode control feature.

Test-mode control through IEEE 1500 is described in the following topics:

• IEEE 1500 Test Mode Control Architecture

• Inserting IEEE 1500 at the Core Level

• Inserting IEEE 1500 and IEEE 1149.1 at the Chip Level

• Customizing the IEEE 1500 Architecture

• Writing Test Protocols

• Script Examples

• Limitations

IEEE 1500 Test Mode Control Architecture
The architecture used for test-mode control through IEEE 1500 depends on whether you
are inserting control logic at the core level or chip level, and whether you are integrating
cores, as described in the following topics:

• Core-Level Test-Mode Control

• Core Integration With IEEE 1500 Test-Mode Control

• Chip-Level Test-Mode Control

Synopsys® TestMAX™ DFT User Guide
T-2022.03

375

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Test-Mode Control Using the IEEE 1500 and IEEE 1149.1 Interfaces

Feedback

For more information about IEEE 1500, see IEEE Std 1500-2005 - IEEE Standard
Testability Method for Embedded Core-based Integrated Circuits, available at the following
address:

http://standards.ieee.org/

Core-Level Test-Mode Control
An IEEE 1500 controller presents a standardized interface for accessing the test
capabilities of a design. Figure 143 shows the basic implementation used by the TestMAX
DFT tool.

Figure 143 IEEE 1500 Controller Logic

W
SI

W
SO

W
R

C
K

C
ap

tu
re

W
R

Sh
ift

W
R

U
pd

at
eW

R

Se
le

ct
W

IR

WIR decode

W
R

ST
N

WIR

WBY

CDRn

SOSI WBR

Data registers

Instruction register

Wrapper serial control
(WSC) interface

The IEEE 1500 controller logic is accessed primarily through a mandatory serial interface,
known as the wrapper serial control (WSC) interface. The WSC interface uses the
following wrapper controller signals to provide access to the instruction and data registers:

• WSI - scan path input

• WRSTN - active-low reset

• WRCK - controller clock

• CaptureWR - data capture enable

• ShiftWR - shift enable

• UpdateWR - update enable

• SelectWIR - shift path selection between controller instruction or data registers

• WSO - scan path output

These signals provide access to the instruction and data registers. When SelectWIR is
asserted, a new instruction can be shifted into the WIR. When SelectWIR is de-asserted,

Synopsys® TestMAX™ DFT User Guide
T-2022.03

376

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
http://standards.ieee.org/

Chapter 10: Advanced DFT Architecture Methodologies
Test-Mode Control Using the IEEE 1500 and IEEE 1149.1 Interfaces

Feedback

a new data value can be shifted into the data register selected by the WIR. A single-bit
wrapper bypass register (WBY) is required for compliance.

The wrapper boundary register (WBR) represents the wrapper chain present in wrapped
cores. It can be implemented as one or more register segments. Typically a minimum of
two segments are used: one for inputs and one for outputs.

The IEEE 1500 specification also allows one or more core data registers (CDRs) to be
implemented. These CDRs allow design-specific functionality to be accessed from the
WSC.

When IEEE 1500 test-mode control is enabled, DFT insertion creates a CDR to control the
test mode. This test-mode CDR (TMCDR) drives the test control module (TCM), as shown
in Figure 144. The TMCDR in the IEEE 1500 controller takes the place of the test-mode
input ports that typically drive the test-mode signals. By shifting different values into the
TMCDR, the core can be placed into different test modes.

Figure 144 Core-Level IEEE 1500 Test-Mode Control

CORE

TCM Test-mode
enable signals

TMCDR
WBY

WIR

IEEE 1500
controller

In addition to driving the test-mode control signals of the TCM, the TMCDR also drives on-
chip clocking (OCC) controller enable and PLL bypass signals.

Note:
If you have test-mode signals that control other testability features, such as
AutoFix or clock gating, you must define them as port-driven signals. They are
not controlled by the TMCDR.

Note the following aspects of the DFTMAX implementation of the IEEE 1500 controller:

• The WBR is optional; you can enable IEEE 1500 test-mode control when creating
unwrapped cores.

• The WSC interface provides the WBR shift, capture, and update control signals, but
normal scan input and output signals provide the WBR shift data. This allows the WBR
to be controlled using the normal WSC signals, while still allowing the WBR to use scan
compression.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

377

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Test-Mode Control Using the IEEE 1500 and IEEE 1149.1 Interfaces

Feedback

Core Integration With IEEE 1500 Test-Mode Control
When you use IEEE 1500 test-mode control, you can integrate cores with or without IEEE
1500 test-mode control.

When you integrate a core with IEEE 1500 test-mode control, the IEEE 1500 controller
inside that core is daisy-chained with the IEEE 1500 controller in the current design, as
shown in Figure 145.

Figure 145 Integrating a Core That Uses IEEE 1500 Test-Mode Control

CORE

TMCDR
WBY

WIR

SUBCORE
TCM

TMCDR
WBY

WIR

TCM

IEEE 1500
controller

IEEE 1500
controller

When you integrate a core with test-mode ports, the test-mode ports of that core are
driven by the test control module (TCM) of the current design, as shown in Figure 146.
Glue logic might be added, depending on how the core-level test modes map to the test
modes of the current design.

Figure 146 Integrating a Core That Uses Test Mode Ports

CORE

TMCDR
WBY

WIR

SUBCORE
TCM

TCM

IEEE 1500
controller

Test-mode
port(s)

You can integrate a mix of cores with and without IEEE 1500 test-mode control. All cores
with IEEE 1500 test-mode control are daisy-chained off the IEEE 1500 controller of the
current design, and all cores with test-mode ports are driven by the TCM of the current
design.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

378

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Test-Mode Control Using the IEEE 1500 and IEEE 1149.1 Interfaces

Feedback

When you use IEEE 1500 test-mode control for a core, you must also use IEEE 1500 test-
mode control for each higher level of DFT insertion up to and including the chip level.

Chip-Level Test-Mode Control
At the chip level, the tool inserts an IEEE 1500 controller and integrates all cores, just
as at the core level. In addition, it inserts glue logic, called server logic, that connects
the IEEE 1500 controller logic to the chip-level IEEE Std 1149.1 interface, as shown in
Figure 147.

Figure 147 Integrating a Core That Uses IEEE 1500 Test-Mode Control

IEEE Std
1149.1

TAP
controller

Server
logic

CHIP

TCM

TMCDR
WBY

WIR

Chip-level
IEEE 1500
controller

Any cores with
IEEE 1500
controllers

TDI

TCK

TMS

TRSTN

TDO

By design, the control and data signals used by IEEE 1500 are similar to those used by
IEEE Std 1149.1. Figure 148 shows a summary of the signal connectivity provided by the
server logic.

Figure 148 Summary of Control and Data Signals Used by the Server Logic

Shift-IR
Shift-DR

Capture-IR
Capture-DR

Update-IR
Update-DR

ShiftWR

CaptureWR

UpdateWR

Reset WRSTN

SelectWIR

WRCK

W
IR

W
BY

TM
C

D
R

W
BR

Select-IR
Select-DR

IEEE Std
1149.1

TAP
controller

Server
logic

TDI

TCK

TMS

TRSTN

TDO

Synopsys® TestMAX™ DFT User Guide
T-2022.03

379

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Test-Mode Control Using the IEEE 1500 and IEEE 1149.1 Interfaces

Feedback

Inserting IEEE 1500 at the Core Level
To use a DFT-inserted IEEE 1500 controller for test-mode control at the core level,

1. Enable IEEE 1500 test-mode controller insertion with the following command:

dc_shell> set_dft_configuration -ieee_1500 enable
The tool automatically recognizes cores with IEEE 1500 test-mode control logic; you do
not need to specify them.

2. If you have existing placeholder ports for the IEEE 1500 wrapper serial control (WSC)
interface signals, define them with the set_dft_signal command:

dc_shell> set_dft_signal -view spec -type WSI -port port
dc_shell> set_dft_signal -view spec -type WRSTN -port port \
 -active_state 0
dc_shell> set_dft_signal -view spec -type WRCK -port port
dc_shell> set_dft_signal -view spec -type CaptureWR -port port
dc_shell> set_dft_signal -view spec -type ShiftWR -port port
dc_shell> set_dft_signal -view spec -type UpdateWR -port port
dc_shell> set_dft_signal -view spec -type SelectWIR -port port
dc_shell> set_dft_signal -view spec -type WSO -port port
If you do not define these signals, the tool creates them automatically.

3. When you define your DFT signals, do not define the following test-mode signals:

• Test-mode signals for multiple test-mode selection

• On-chip clocking (OCC) controller test-mode signals and PLL bypass signals

When the tool automatically creates these signals, it creates test-mode core data
register (TMCDR) bits to drive them. These TMCDR bits take the place of traditional
port-driven test mode signals.

Note:
If you have test-mode signals that control other testability features, such
as AutoFix or clock gating, define them in the usual way. They are not
controlled by the TMCDR.

4. Continue with DFT insertion in the usual way.

After DFT insertion, the tool places information about the IEEE 1500 interface signals into
the CTL model. This allows the interface to be recognized during chip-level integration.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

380

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Test-Mode Control Using the IEEE 1500 and IEEE 1149.1 Interfaces

Feedback

Inserting IEEE 1500 and IEEE 1149.1 at the Chip Level
To use a DFT-inserted IEEE 1500 controller for test-mode control at the chip level where
IEEE Std 1149.1 logic will also be inserted,

1. Enable IEEE 1500 test-mode controller insertion and IEEE Std 1149.1 insertion with
the following command:

dc_shell> set_dft_configuration -ieee_1500 enable -bsd enable
The tool automatically recognizes cores that have IEEE 1500 test-mode control logic
described in their CTL models; you do not need to specify these cores.

2. Define the ports or pad hookup pins for the IEEE Std 1149.1 interface signals with the
set_dft_signal command:

dc_shell> set_dft_signal -view spec -type TDI -port port \
 -hookup_pin pin
dc_shell> set_dft_signal -view spec -type TRSTN -port port \
 -hookup_pin pin -active_state 0
dc_shell> set_dft_signal -view spec -type TCK -port port \
 -hookup_pin pin
dc_shell> set_dft_signal -view spec -type TMS -port port \
 -hookup_pin pin
dc_shell> set_dft_signal -view spec -type TDO -port port \
 -hookup_pin pin
dc_shell> set_dft_signal -view spec -type TdoEn -port port \
 -hookup_pin pin
All signals except TRSTN are required. If these signals do not exist, the tool does not
automatically create them.

3. When you define your DFT signals, do not define the following test-mode signals:

• Test-mode signals for multiple test-mode selection

• On-chip clocking (OCC) controller test-mode signals and PLL bypass signals

When the tool automatically creates these signals, it creates test-mode core data
register (TMCDR) bits to drive them. These TMCDR bits take the place of traditional
port-driven test mode signals.

Note:
If you have test-mode signals that control other testability features, such
as AutoFix or clock gating, define them in the usual way. They are not
controlled by the TMCDR.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

381

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Test-Mode Control Using the IEEE 1500 and IEEE 1149.1 Interfaces

Feedback

4. Continue with DFT insertion and boundary-scan insertion in the usual way.

For more information about the boundary-scan insertion capability provided by the
TestMAX DFT tool, see the TestMAX DFT Boundary Scan User Guide.

Note:
When IEEE 1500 test-mode control is enabled, the DFT-inserted TAP controller
implements only the instructions needed for IEEE 1500 control. To implement
mandatory IEEE Std 1149.1 instructions, boundary-scan logic, or user-defined
instructions, use the 2-pass method described in SolvNet article 039402, “How
Can I Use Additional Boundary-Scan Features With IEEE 1500 Test-Mode
Control?”

Customizing the IEEE 1500 Architecture
In the IEEE 1500 architecture, test-mode signals are generated from wrapper instruction
register (WIR) and test-mode core data register (TMCDR) decoding logic. This topic
describes the options used to configure this decoding logic.

The following topics describe how you can customize the IEEE 1500 architecture:

• Configuring the WIR

• Configuring the DFT-Inserted TMCDR

• Using an Existing TMCDR

• Using WIR Test-Mode Decoding With No TMCDR

• Controlling the Test-Mode Encoding Style

• Reporting the Test Mode Encodings

• Specifying WIR Opcodes for CDRs

Configuring the WIR
By default, the tool sizes the WIR automatically, based on the opcodes that select the core
data registers. For the default case, which is a TMCDR with no user-defined CDRs, the
tool uses a single-bit WIR. If you define additional CDRs or specify particular opcodes to
be used, the tool creates a wider WIR as needed.

To specify a particular WIR size, use the following command:

dc_shell> set_ieee_1500_configuration -wir_width width

Synopsys® TestMAX™ DFT User Guide
T-2022.03

382

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnet.synopsys.com/retrieve/039402.html
https://solvnet.synopsys.com/retrieve/039402.html
https://solvnet.synopsys.com/retrieve/039402.html

Chapter 10: Advanced DFT Architecture Methodologies
Test-Mode Control Using the IEEE 1500 and IEEE 1149.1 Interfaces

Feedback

Configuring the DFT-Inserted TMCDR
By default, the tool sizes the TMCDR to contain all test-mode encodings using the
specified encoding mode. To specify a wider TMCDR size, use the -exact_length option.
For example,

dc_shell> set_scan_path TMCDR -class ieee_1500 \
 -view spec -test_mode all \
 -exact_length tmcdr_width
The -class 1500 option indicates that you are defining a CDR register (in this case, the
TMCDR) that is selected by the WIR. The scan path name can be anything except the
reserved values of WIR and WBY.

Using an Existing TMCDR
Instead of using a DFT-inserted TMCDR, you can use an existing TMCDR for test-mode
control of your design.

Example 51 defines an existing TMCDR.

Example 51 Defining an Existing Test-Mode Core Data Register
define the control and scan-in/scan-out signal pins of the TMCDR
set_dft_signal -view spec -type WSI -hookup_pin MY_TMCDR/wsi
set_dft_signal -view spec -type WRCK -hookup_pin MY_TMCDR/wrck
set_dft_signal -view spec -type WRSTN -hookup_pin MY_TMCDR/wrstn \
 -active_state 0
set_dft_signal -view spec -type ShiftWR -hookup_pin MY_TMCDR/shiftwr
set_dft_signal -view spec -type CaptureWR -hookup_pin MY_TMCDR/capturewr
set_dft_signal -view spec -type UpdateWR -hookup_pin MY_TMCDR/updatewr
set_dft_signal -view spec -type WSO -hookup_pin MY_TMCDR/wso

define the TMCDR scan path design
set_scan_path MY_TMCDR_SCANPATH -class ieee_1500 \
 -view spec -test_mode all \
 -ordered_elements {MY_TMCDR/DOUT[3] \
 MY_TMCDR/DOUT[2] \
 MY_TMCDR/DOUT[1] \
 MY_TMCDR/DOUT[0]} \
 -hookup {MY_TMCDR/wsi \
 MY_TMCDR/wrck \
 MY_TMCDR/wrstn \
 MY_TMCDR/shiftwr \
 MY_TMCDR/capturewr \
 MY_TMCDR/updatewr \
 MY_TMCDR/wso}

prevent scan insertion/stitching on the CDR block
set_scan_element false MY_TMCDR
set_scan_configuration -exclude_elements MY_TMCDR

Synopsys® TestMAX™ DFT User Guide
T-2022.03

383

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Test-Mode Control Using the IEEE 1500 and IEEE 1149.1 Interfaces

Feedback

Specify the leaf or hierarchical register output pins with the -ordered_elements option,
ordered from WSI to WSO. Specify the remaining input and output control and scan data
pins used to access the TMCDR with the -hookup option. All pins should be unconnected
or tied to ground because the tool connects them during DFT insertion. (The signal and
scan path specifications are defined with the -view spec option because the tool makes
these connections during DFT insertion.)

The following signal types are required for an existing TMCDR specification: WSI, WRCK,
ShiftWR, WSO. Other signal types are optional.

To use specific TMCDR register output bits for specific DFT signals, specify the register
outputs as hookup pins with the set_dft_signal command. For example,

set_dft_signal -view spec -type pll_bypass \
 -hookup_pin MY_TMCDR/DOUT[3]
set_dft_signal -view spec -type pll_reset \
 -hookup_pin MY_TMCDR/DOUT[2]
set_dft_signal -view existing_dft -type Constant -active_state 0 \
 -hookup_pin MY_TMCDR/DOUT[0]

You can specify hookup pins for some or all of the DFT signals in the design. Unspecified
DFT signals will use the remaining available TMCDR bits in the usual way.

If the existing TMCDR does not contain enough bits for all DFT signals in the design, the
tool creates and uses a DFT-inserted TMCDR for the additional signals.

Using WIR Test-Mode Decoding With No TMCDR
By default, the tool uses a TMCDR, selected by the WIR, to generate the test-mode
signals. The advantage of this method is that only a single WIR instruction is consumed
by test functionality; all of the test-mode encodings are contained in the TMCDR data
encoding space.

However, you can omit the TMCDR register and use the WIR directly for test-mode
decoding. In this case, WIR instruction encodings are created for all test modes. To do
this, define the TMCDR with a zero width specified:

dc_shell> set_scan_path TMCDR -class ieee_1500 \
 -view spec -test_mode all \
 -exact_length 0
When the TMCDR is omitted, DFTMAX sizes the WIR to contain all test-mode encodings
using the specified encoding mode. To specify a wider WIR size, use the following
command:

dc_shell> set_ieee_1500_configuration -wir_width width

Synopsys® TestMAX™ DFT User Guide
T-2022.03

384

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Test-Mode Control Using the IEEE 1500 and IEEE 1149.1 Interfaces

Feedback

Controlling the Test-Mode Encoding Style
The tool automatically chooses encodings for each test mode that can be enabled by
the TMCDR. By default, binary encodings are used, which provide the most compact
encodings but require the use of decoding logic to generate the test-mode enable signals.

You can also specify one-hot test-mode encoding, which requires simplified decoding logic
at the expense of more test-mode encoding bits, by using the following command:

dc_shell> set_dft_configuration -mode_decoding_style one_hot

Reporting the Test Mode Encodings
When the tool determines the WIR opcode that selects the TMCDR, the preview_dft and
insert_dft commands report the chosen opcode as follows:

Info: CDR Opcode is set to '1'(WSO-->WSI)

The preview_dft command also provides information about the test-mode encodings.
The following report example is for a design using the default TMCDR test-mode decoding
mode:

dc_shell> preview_dft
...
================================
Test Mode Controller Information
================================

Test Mode Controller Ports

test_mode: BLK_Test_Controller_1500_inst/CDR[1]
test_mode: BLK_Test_Controller_1500_inst/CDR[0]

Test Mode Controller Index (WSO --> WSI)
--
BLK_Test_Controller_1500_inst/CDR[1],
BLK_Test_Controller_1500_inst/CDR[0]

Control signal value - Test Mode

00 Mission_mode - Normal
01 wrp_of - ExternalTest
10 wrp_if - InternalTest
11 ScanCompression_mode - InternalTest

The following report example is for a design using the optional WIR test-mode decoding
mode:

dc_shell> preview_dft
...
Test Mode Controller Ports

Synopsys® TestMAX™ DFT User Guide
T-2022.03

385

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Test-Mode Control Using the IEEE 1500 and IEEE 1149.1 Interfaces

Feedback

test_mode: BLK_Test_Controller_1500_inst/WIR[1]
test_mode: BLK_Test_Controller_1500_inst/WIR[0]

Test Mode Controller Index (WSO --> WSI)
--
BLK_Test_Controller_1500_inst/WIR[1],
BLK_Test_Controller_1500_inst/WIR[0]

Control signal value - Test Mode

00 Mission_mode - Normal
01 wrp_of - ExternalTest
10 wrp_if - InternalTest
11 ScanCompression_mode - InternalTest

Specifying WIR Opcodes for CDRs
By default, the tool chooses WIR opcodes for all CDRs selectable by the WIR. This
includes

• The WBY register

• TMCDR registers

• User-defined CDR registers

To specify the WIR opcode that selects a particular CDR, use the -opcode option of the
set_scan_path command.

For the default DFT-inserted TMCDR that does not normally have a scan path
specification, specify only the opcode with no other information. For example,

dc_shell> set_scan_path TMCDR -class ieee_1500 \
 -view spec -test_mode all \
 -opcode opcode_string
For a CDR that already has a scan path specification, include the -opcode option in the
specification.

If you have not specified the WIR size, the tool sizes the WIR to accommodate your
opcodes. If you have specified the WIR size, choose your opcode encodings accordingly.

Writing Test Protocols
When you perform DFT insertion, the tool creates a test protocol for each newly created
test mode. When you use IEEE 1500 test-mode control, each test protocol configures the
test mode through the appropriate interface—IEEE 1500 at the core level and IEEE Std
1149.1 at the chip level. You can use the write_test_protocol command to write out
these test protocols in STIL format.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

386

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Test-Mode Control Using the IEEE 1500 and IEEE 1149.1 Interfaces

Feedback

Example 52 shows the test_setup section of a core-level test protocol that initializes the
test mode through the IEEE 1500 interface.

Example 52 Core-Level Test Protocol Using IEEE 1500 Test-Mode Control
 "test_setup" {
...
 Ann {* Reset 1500 Logic *} V {
 "WSI" = 0;
 "WRSTN" = 0;
 "SelectWIR" = 0;
 }
 Ann {* Unreset 1500 Logic *} V {
 "WRSTN" = 1;
 }
 Ann {* Prepare To Load WIR *} V {
 "WRCK" = P;
 "ShiftWR" = 1;
 "SelectWIR" = 1;
 }
 Ann {* Load 1500 WIR *} Macro "wir_load";
 Ann {* Update 1500 WIR *} V {
 "ShiftWR" = 0;
 "UpdateWR" = 1;
 }
 Ann {* Prepare To Load CDR *} V {
 "ShiftWR" = 1;
 "UpdateWR" = 0;
 "SelectWIR" = 0;
 }
 Ann {* Load 1500 CDR *} Macro "cdr_load";
 Ann {* Update 1500 CDR *} V {
 "ShiftWR" = 0;
 "UpdateWR" = 1;
 }
 Ann {* 1500 Wrapper Clock Off *} V {
 "WRCK" = 0;
 "UpdateWR" = 0;
 }
 }

Example 53 shows the test_setup section of a chip-level test protocol that initializes the
test mode through the IEEE Std 1149.1 interface. The test_setup sections of the test
protocols use macros to simplify the initialization of the WIR and CDR.

Example 53 Chip-Level Test Protocol Using IEEE 1500 Test-Mode Control
 "test_setup" {
...
 Ann {* Test-Logic-Reset *} V {
 "tdi" = 0;
 "trstn" = 0;
 }

Synopsys® TestMAX™ DFT User Guide
T-2022.03

387

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Test-Mode Control Using the IEEE 1500 and IEEE 1149.1 Interfaces

Feedback

 Macro "reset_to_shift_ir";
 Macro "SELECT_WIR";
 Macro "exit1_ir_to_shift_dr";
 Macro "wir_load_CORE2_ScanCompression_mode";
 Macro "wir_load_CORE1_ScanCompression_mode";
 Macro "wir_load_top_CORES1AND2";
 Macro "exit1_dr_to_shift_ir";
 Macro "SELECT_CDR";
 Macro "exit1_ir_to_shift_dr";
 Macro "cdr_load_CORE2_ScanCompression_mode";
 Macro "cdr_load_CORE1_ScanCompression_mode";
 Macro "cdr_load_top_CORES1AND2";
 Ann {* Update-DR *} V {
 "tck" = P;
 "tms" = 1;
 "trstn" = 1;
 }
 Ann {* Run-Test-Idle *} V {
 "tms" = 0;
 }
 Ann {* JTAG TCK Off *} V {
 "tck" = 0;
 }
 }

If a test mode contains an untested core with an IEEE 1500 controller, the corresponding
test protocol loads the WS_BYPASS instruction into the wrapper instruction register (WIR)
of the untested core.

Script Examples
Example 54 shows a script that inserts compressed scan, core wrapping, and IEEE 1500
test-mode control logic at the core level.

Example 54 Core-Level Insertion of IEEE 1500 Test-Mode Control
initial compile
current_design core
link
create_clock -period 10 CLK
compile -scan

enable DFT clients
set_dft_configuration \
 -scan_compression enable -wrapper enable -ieee_1500 enable

define DFT signals
set_dft_signal -view existing_dft -type ScanClock \
 -timing {45 55} -port CLK
set_dft_signal -view spec -type ScanDataIn -port [get_ports SI*]
set_dft_signal -view spec -type ScanDataOut -port [get_ports SO*]

Synopsys® TestMAX™ DFT User Guide
T-2022.03

388

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Test-Mode Control Using the IEEE 1500 and IEEE 1149.1 Interfaces

Feedback

set_dft_signal -view spec -type WSI -port WSI
set_dft_signal -view spec -type WRSTN -port WRSTN
set_dft_signal -view spec -type WRCK -port WRCK
set_dft_signal -view spec -type CaptureWR -port CaptureWR
set_dft_signal -view spec -type ShiftWR -port ShiftWR
set_dft_signal -view spec -type UpdateWR -port UpdateWR
set_dft_signal -view spec -type SelectWIR -port SelectWIR
set_dft_signal -view spec -type WSO -port WSO

configure scan, scan compression, core wrapping
set_scan_configuration -chain_count 2
set_scan_compression_configuration -chain_count 8
set_wrapper_configuration -class core_wrapper -maximize_reuse enable

insert DFT and write out design
create_test_protocol
dft_drc
insert_dft
write -format ddc -output core.ddc

Example 55 shows a script that inserts IEEE 1500 test-mode control, along with the server
and IEEE Std 1149.1 TAP controller logic, at the chip level.

Example 55 Chip-Level Insertion of IEEE 1500 Test-Mode Control
initial compile
current_design chip
link
compile -scan -incremental

enable DFT clients
set_dft_configuration \
 -bsd enable -scan enable -scan_compression enable -ieee_1500 enable

define DFT signals
set_dft_signal -view existing_dft -type ScanClock \
 -port TCK -timing {45 55}
set_dft_signal -view existing_dft -type ScanClock \
 -port CLK -timing {45 55}

for {set i 1} {$i <= 2} {incr i} {
 set_dft_signal -view spec -type ScanDataIn \
 -port SI${i} -hookup_pin U_SI${i}_PAD/Z
 set_dft_signal -view spec -type ScanDataIn \
 -port SI${i} -hookup_pin U_SI${i}_PAD/Z
}
set_dft_signal -view spec -type ScanEnable -port SE -hookup_pin U_SE/Z

set_dft_signal -view spec -type TDI -port TDI -hookup_pin U_TDI/Z
set_dft_signal -view spec -type TRST -port TRST_N -hookup_pin U_TRSTN/Z
set_dft_signal -view spec -type TCK -port TCK -hookup_pin U_TCK/Z
set_dft_signal -view spec -type TMS -port TMS -hookup_pin U_TMS/Z

Synopsys® TestMAX™ DFT User Guide
T-2022.03

389

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Test-Mode Control Using the IEEE 1500 and IEEE 1149.1 Interfaces

Feedback

set_dft_signal -view spec -type TDO -port TDO -hookup_pin U_TDO/A
set_dft_signal -view spec -type TdoEn -port TDO -hookup_pin U_TDO/E

configure wrapped compressed scan core integration
define_test_mode CORES_STD -usage scan \
 -target {CORE1:wrp_if CORE2:wrp_if}
define_test_mode CORES_COMP -usage scan_compression \
 -target {CORE1:ScanCompression_mode CORE2:ScanCompression_mode}
define_test_mode ONLY_TOP -usage scan \
 -target {chip}

set_scan_configuration -test_mode CORES_STD \
 -chain_count 4 -clock_mixing mix_clocks
set_scan_configuration -test_mode ONLY_TOP \
 -chain_count 4 -clock_mixing mix_clocks
set_scan_compression_configuration \
 -test_mode CORES_COMP -base_mode CORES_STD \
 -integration_only true

insert DFT and write out design
create_test_protocol
dft_drc
insert_dft
change_names -rules verilog -hierarchy
write -format ddc -output chip.ddc

Limitations
Note the following requirements and limitations:

• When IEEE 1500 test-mode control is enabled, the DFT-inserted TAP controller
implements only the instructions needed for IEEE 1500 control. To implement
mandatory IEEE Std 1149.1 instructions, boundary-scan logic, or user-defined
instructions, use the 2-pass method described in SolvNet article 039402, “How Can I
Use Additional Boundary-Scan Features With IEEE 1500 Test-Mode Control?”

• The chip level must have multiple test modes to control.

• At least one core must have IEEE 1500 logic inserted.

• You can only integrate cores containing IEEE 1500 logic up one level, into a chip level
that uses IEEE 1500 and IEEE Std 1149.1 test-mode control. Nested integration of
IEEE 1500 cores is not supported.

• The test-mode control data register (TMCDR) drives only the test-mode selection
signals and the OCC controller test-mode and pll_bypass signals. If you have test-
mode signals that control other testability features, such as AutoFix or clock gating, you
must define them as port-driven signals. They are not controlled by the TMCDR.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

390

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnet.synopsys.com/retrieve/039402.html
https://solvnet.synopsys.com/retrieve/039402.html

Chapter 10: Advanced DFT Architecture Methodologies
Multivoltage Support

Feedback

• All IEEE 1500 signal and scan specifications must be applied to the global test mode;
specifications applied to specific user-defined test modes are ignored.

• The WBR boundary scan register does not support WSI-to-WSO scan shifting through
the IEEE 1500 controller.

• You cannot specify user-defined test mode encodings when using DFT-inserted IEEE
1500 test-mode control.

Multivoltage Support
The increasing presence of multiple voltages in designs has resulted in the need for
DFT insertion to build working scan chains with minimal voltage crossings and minimal
level shifters. This topic describes the methodology for running DFT insertion in designs
containing multiple voltages.

The following topics describe multivoltage support:

• Configuring Scan Insertion for Multivoltage Designs

• Configuring Scan Insertion for Multiple Power Domains

• Mixture of Multivoltage and Multiple Power Domain Specifications

• Reusing Multivoltage Cells

• Scan Path Routing and Isolation Strategy Requirements

• Using Domain-Based Strategies for DFT Insertion

• DFT Considerations for Low-Power Design Flows

• Previewing a Multivoltage Scan Chain

• Scan Extraction Flows in the Presence of Isolation Cells

• Limitations

Configuring Scan Insertion for Multivoltage Designs
The following command instructs the DFT insertion process to build scan chains that can
cross different voltage regions:

dc_shell> set_scan_configuration -voltage_mixing true
When set to true, DFT insertion attempts to minimize voltage crossings to reduce the
number of level shifters added. The default of this option is false.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

391

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Multivoltage Support

Feedback

If you use any commands, such as the set_scan_path command, that violate the voltage
mixing specification, the preview_dft and insert_dft commands issue the following
warning message and continue with scan insertion:

Warning: elements are supplied by different voltages. (TEST-1026)

Configuring Scan Insertion for Multiple Power Domains
The following command instructs the DFT insertion process to build scan chains that can
cross different power domains:

dc_shell> set_scan_configuration \
 -power_domain_mixing true
When set to true, DFT insertion attempts to minimize power domain crossings to reduce
the number of isolation cells added. DFT insertion does not check or remove existing
isolation cells. The default of this option is false.

If you use any commands, such as the set_scan_path command, that violate the power
domain mixing specification, the preview_dft and insert_dft commands issue the
following warning message and continue with scan insertion:

Warning: elements are supplied by different power domains. (TEST-1029)

Mixture of Multivoltage and Multiple Power Domain Specifications
The interaction between the -voltage_mixing and -power_domain_mixing options is as
shown in Figure 149.

Figure 149 Interaction Between Voltage Mixing and Power Domain Mixing

PD1, V1 PD2, V1

Scan path 1

PD3, V2

Scan path 2

Synopsys® TestMAX™ DFT User Guide
T-2022.03

392

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Multivoltage Support

Feedback

Here the scan cells are contained within three blocks as follows:

• Power domain PD1, Voltage V1

• Power domain PD2, Voltage V1

• Power domain PD3, Voltage V2

By default, DFT Compiler does not allow voltage mixing or power domain mixing within the
same scan path. Table 44 shows the allowable scan paths with the various combinations
of -voltage_mixing and -power_domain_mixing.

If -voltage_mixing is: And -power_domain_mixing is: Allowable scan paths

False False None

False True Scan path 1 only

True False None

True True Scan paths 1 and 2

Note:
The behavior of DFT insertion in an always-on synthesis environment is
such that you must run an incremental compile after running the insert_dft
command to insert any missing multivoltage cells that might be needed.

Reusing Multivoltage Cells
By default, the insert_dft command reuses existing level shifters and isolation cells if
they are on the scan path. It reuses only combinational multivoltage cells and does not
reuse sequential multivoltage cells, such as latch-based isolation cells. If you do not want
the insert_dft command to reuse existing multivoltage cells (level shifters and isolation
cells), use the following command:

dc_shell> set_scan_configuration \
 -reuse_mv_cells false
This topic covers the following:

• Reusing Level Shifters in Scan Paths

• Reusing Isolation Cells in Scan Paths

Synopsys® TestMAX™ DFT User Guide
T-2022.03

393

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Multivoltage Support

Feedback

Reusing Level Shifters in Scan Paths
If a scan path goes through a level shifter and you enable multivoltage cell reuse, scan
insertion connects the scan chain at the output side of the level shifter, as shown in
Figure 150.

Figure 150 Shared Level Shifter Along Scan Path

DO
LS1

Level shifter

V1

DI

V2

D
SI
SE

Q

FF2

D
SI
SE

Q

FF1

If the scan path goes through a level shifter and you disable multivoltage cell reuse, a new
level shifter is added to connect to the scan path. See Figure 151.

Figure 151 Separate Level Shifters Along Scan Path

If the level shifter is within a block and you enable multivoltage cell reuse, then scan
insertion reuses the existing level shifter and hierarchical port, as shown in Figure 152.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

394

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Multivoltage Support

Feedback

Figure 152 Shared Level Shifter in a Block Along Scan Path

DO
LS1

Level shifter

V1

DI

V2

D
SI
SE

Q

FF2

D
SI
SE

Q

FF1

If you disable multivoltage cell reuse and the existing level shifter is within a block, then
the new level shifter is added within the block and a new hierarchical port is added. See
Figure 153.

Figure 153 Separate Level Shifters in a Block Along Scan Path

Reusing Isolation Cells in Scan Paths
In the following examples, the scan path and functional path for a given signal route to the
same downstream power domain, which is different from the source power domain.

If a scan path goes through an isolation cell in a parent power domain, and you enable
multivoltage cell reuse, then scan insertion connects the scan chain at the output side of
the isolation cell, as shown in Figure 154.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

395

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Multivoltage Support

Feedback

Figure 154 Shared Isolation Cell Along Scan Path in Parent Domain

DO
Isolation cell

PD1

DI

PD2

D
SI
SE

Q

FF2

D
SI
SE

Q

FF1

ISO1

If you disable multivoltage cell reuse, then the scan path is connected to the net before
the isolation cell and a new hierarchical port and isolation cell are added, as shown in
Figure 155.

Figure 155 Separate Isolation Cells Along Scan Path in Parent Domain

If the isolation cell is within the source power domain, and you enable multivoltage cell
reuse, then scan insertion reuses the existing hierarchical port and isolation cell, as shown
in Figure 156.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

396

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Multivoltage Support

Feedback

Figure 156 Shared Isolation Cell Along Scan Path in Source Domain

DO
Isolation cell

PD1

DI

PD2

D
SI
SE

Q

FF2

D
SI
SE

Q

FF1

ISO1

If you disable multivoltage cell reuse, and the existing isolation cell is within the source
power domain, then a new hierarchical port and isolation cell are added, as shown in
Figure 157.

Figure 157 Separate Isolation Cells Along Scan Chain in Source Domain

If the isolation cell is within the fanout power domain, and you enable multivoltage cell
reuse, then scan insertion reuses the existing hierarchical port and isolation cell, as shown
in Figure 158.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

397

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Multivoltage Support

Feedback

Figure 158 Shared Isolation Cell Along Scan Path in Fanout Domain

DO

PD1

DI

PD2

D
SI
SE

Q

FF2

D
SI
SE

Q

FF1 Isolation cell

ISO1

If you disable multivoltage cell reuse, and the existing isolation cell is within the fanout
power domain, then a new hierarchical port and isolation cell are added, as shown in
Figure 159.

Figure 159 Separate Isolation Cells Along Scan Path in Fanout Domain

If the scan path routes to a different downstream power domain than the functional path,
an existing isolation cell can be reused if the isolation strategy allows both the original
power domain connection and the new scan path power domain connection to be driven
by the isolation cell.

Consider the -diff_supply_only isolation strategy defined in the following example,
which specifies that isolation cells should be added to the parent power domain of PD1
with the -location parent option:

set_isolation iso_PD1 \
 -domain PD1 \
 -diff_supply_only true \
 -applies_to outputs
set_isolation_control iso_PD1 \

Synopsys® TestMAX™ DFT User Guide
T-2022.03

398

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Multivoltage Support

Feedback

 -domain PD1 \
 -location parent

The -diff_supply_only strategy allows an isolation cell in the source domain to
isolate multiple fanout power domains, if they differ from the source domain. If you
enable multivoltage cell reuse, then scan insertion reuses the existing isolation cell and
hierarchical port, as shown in Figure 160.

Figure 160 Shared Isolation Cell in Parent Domain With Multiple Sink Domains

DO
Isolation cell

PD1

DI

PD2

D
SI
SE

Q

FF2

D
SI
SE

Q

FF1

ISO1

PD3

test_si

If you disable multivoltage cell reuse, then a new isolation cell is added, as shown in
Figure 161:

Figure 161 Separate Isolation Cells in Parent Domain With Multiple Sink Domains

DO

Isolation cellsPD1

DI

PD2

D
SI
SE

Q

FF2

D
SI
SE

Q

FF1
ISO1

PD3

test_si
ISO2

Synopsys® TestMAX™ DFT User Guide
T-2022.03

399

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Multivoltage Support

Feedback

Consider the -diff_supply_only isolation strategy defined in the following example,
which specifies that isolation cells should be added within the power domain PD1 with the
-location self option:

set_isolation iso_PD1 \
 -domain PD1 \
 -diff_supply_only true \
 -applies_to outputs
set_isolation_control iso_PD1 \
 -domain PD1 \
 -location self

If you enable multivoltage cell reuse, then scan insertion reuses the existing isolation cell
and hierarchical port, as shown in Figure 162:

Figure 162 Shared Block Isolation Cell With Multiple Sink Domains

Isolation cell

PD1

DI

PD2

D
SI
SE

Q

FF2

D
SI
SE

Q

FF1

ISO1

PD3

test_si

DO

Synopsys® TestMAX™ DFT User Guide
T-2022.03

400

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Multivoltage Support

Feedback

If you disable multivoltage cell reuse, and the existing isolation cell is within a block, then a
new isolation cell and hierarchical port are added, as shown in Figure 163:

Figure 163 Separate Parent Isolation Cells With Multiple Sink Domains
PD1

DI

PD2

D
SI
SE

Q

FF2

D
SI
SE

Q

FF1
ISO1

PD3

DO

Isolation cells

ISO2
test_so test_si

Scan Path Routing and Isolation Strategy Requirements
The isolation strategy applied to a cross-domain net might restrict the power domain
connections allowed for that net:

• A set_isolation -diff_supply_only isolation strategy allows multiple fanout power
domains to be driven by the same isolated net, if they differ from the source domain.

• A set_isolation -source -sink isolation strategy requires that any specified
source and sink power domains connected to an isolated net match the isolation
strategy.

When the insert_dft command routes a scan chain along an existing hierarchical output
port to a different downstream power domain, the isolation strategy requirements of the
existing net might require new isolation cells and hierarchical ports to be added along the
scan path.

Consider the -diff_supply_only isolation strategy defined in the following example,
which specifies that isolation cells should be added to the parent power domain of PD1:

set_isolation iso_PD1 \
 -domain PD1 \
 -diff_supply_only true \
 -applies_to outputs
set_isolation_control iso_PD1 \
 -domain PD1 \
 -location parent

Synopsys® TestMAX™ DFT User Guide
T-2022.03

401

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Multivoltage Support

Feedback

If the existing functional path is routed through the same power domain, but the scan path
is routed to a different power domain, an isolation cell is added within the parent power
domain as shown in Figure 164.

Figure 164 Isolation Cell in Parent Domain With Differing Isolation Requirements

DO

Isolation cellPD1

DI

PD1

D
SI
SE

Q

FF2

D
SI
SE

Q

FF1

ISO2

PD2

test_si

test_so

Consider the -diff_supply_only isolation strategy defined in the following example,
which specifies that isolation cells should be added within the source power domain PD1:

set_isolation iso_PD1 \
 -domain PD1 \
 -diff_supply_only true \
 -applies_to outputs
set_isolation_control iso_PD1 \
 -domain PD1 \
 -location self

If the existing functional path is routed to a different power domain but the scan path
is routed through the same power domain, a hierarchical port is added to bypass the
isolation cell as shown in Figure 165.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

402

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Multivoltage Support

Feedback

Figure 165 Isolation Cell in Source Domain With Differing Isolation Requirements

Isolation cell

PD1

DI

PD2

D
SI
SE

Q

FF2

D
SI
SE

Q

FF1
ISO1

PD1

test_si

DO

test_so

You can configure the isolation cell strategy to place the isolation cells in the fanout
domains to avoid the creation of additional hierarchical scan pins. Consider the following
example, modified to use the -location fanout option:

set_isolation iso_PD1 \
 -domain PD1 \
 -diff_supply_only true \
 -applies_to outputs
set_isolation_control iso_PD1 \
 -domain PD1 \
 -location fanout

In this modified example, the isolation cells and resulting isolated nets are now located in
the fanout power domain, as shown in Figure 166. No additional hierarchical scan pins are
needed to meet the isolation strategy requirements.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

403

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Multivoltage Support

Feedback

Figure 166 Isolation Cell in Fanout Domain With Differing Isolation Requirements

DI

PD2

D
SI
SE

Q

FF2

PD1

test_si

Isolation cell

ISO1DO

PD1

D
SI
SE

Q

FF1

Consider the -source -sink isolation strategy defined in the following example, which
specifies two isolation strategies: one that requires isolation cells for nets that fan out to
sink power domain SS2, and one that requires isolation cells for nets that fan out to sink
power domain SS3.

set_isolation iso1_PD1 \
 -domain PD1 \
 -source SS1 -sink SS2
set_isolation_control iso1_PD1 \
 -domain PD1 \
 -location parent

set_isolation iso2_PD1 \
 -domain PD1 \
 -source SS1 -sink SS3
set_isolation_control iso2_PD1 \
 -domain PD1 \
 -location parent

If you enable multivoltage cell reuse, the insert_dft command is unable to reuse the
existing isolation cell ISO1 for the scan path connection, because the existing cross-
domain isolated net cannot drive two different power domains. Instead, a new isolation cell
and hierarchical port are added, as shown in Figure 167.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

404

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Multivoltage Support

Feedback

Figure 167 Separate Isolation Cells in Parent Domain With Differing Isolation Requirements

DO

Isolation cells

PD1 (SS1)

DI

PD2 (SS2)

D
SI
SE

Q

FF2

D
SI
SE

Q

FF1
ISO1

PD3 (SS3)

test_si
ISO2

test_so

Using Domain-Based Strategies for DFT Insertion
For the insert_dft command to properly insert level shifters and isolation cells, you must
specify the level shifter and isolation cell strategies on a power-domain basis, even if you
have specified similar strategies on the blocks and individual ports. If you only specify
the strategies on the blocks and ports, the insert_dft command might not be able to
automatically insert level shifters and isolation cells on any new ports that it creates.

For example, if your power intent specification is applied to all outputs with the
-applies_to outputs option:

create_power_domain PD1 -elements U_block

set_isolation iso_PD1 \
 -domain PD1 \
 -isolation_power_net VDD -isolation_ground_net VSS \
 -clamp_value 1 \
 -applies_to outputs

and if the insert_dft command creates new output pins on the blk_a block that requires
isolation, then isolation cells are automatically added where they are needed.

However, if your power intent specification is applied to selected existing design elements
with the -elements option:

create_power_domain PD1 -elements U_block

set_isolation PD1 \
 -domain BLOCK \
 -isolation_power_net VDD -isolation_ground_net VSS \
 -clamp_value 1 \
 -elements {Z}

Synopsys® TestMAX™ DFT User Guide
T-2022.03

405

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Multivoltage Support

Feedback

The isolation strategy applies only to existing output pin Z. Any new output pins that are
created by the insert_dft command are not isolated.

The same behavior applies to level shifter insertion strategies specified by the
set_level_shifter command.

DFT Considerations for Low-Power Design Flows
Low-power designs often use the following special cells:

• Isolation cells

• Retention registers

• Power switches

You must configure these special cells such that the data shifts through the scan chains
during test operations. After DFT insertion using the insert_dft command, the dft_drc
command can identify design rule violations on isolation cells and retention registers,
if any, that would prevent scan shifting through such cells. However, the command
cannot identify design rule violations on isolation cells and retention registers before the
insert_dft command is run.

The control signals for these special cells are typically driven by a power controller. If
the power controller is located off-chip, you can constrain the control signals at the ports
for correct shift operation. If the power controller is located on-chip and does not include
testability logic, the tool can insert power controller override logic for you. For more
information, see Inserting Power Controller Override Logic on page 410.

You must keep any DFT constraints on special cells in place up to the write_scan_def
command when you generate a SCANDEF file for scan chain reordering.

Also note that the dft_drc command cannot detect design rule violations on power
switches in pre- or post-DFT insertion.

A multivoltage-aware verification tool such as MVSIM or MVRC can detect such violations
if there are any. For further information, see the MVSIM and MVRC documentation.

Isolation Cells

For example, if a scan chain traverses an isolation cell, you must ensure that the isolation
cell passes the scan data to the flip-flop driven by the isolation cell during the test
operation, as shown in Figure 168.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

406

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Multivoltage Support

Feedback

Figure 168 Proper Configuration of a Scan Chain That Includes an Isolation Cell

SI

D Q

SE

SI

D Q

SE

ISO

EN

ISO_EN

0

Retention Registers

The design’s retention registers must be in normal or power-up mode during the test
operation. You should check that any save or restore signals are at their correct states.

Registers That Drive Low-Power Control Signals

If the design contains registers that drive low-power control signals, such as the enable
signal of the isolation cells or the save/restore signals of the retention registers, you must
not put these registers onto the scan chains. Otherwise, this could cause these control
signals to switch during test operations. Figure 169 shows the consequences of putting
such registers on the scan chains.

These registers must also drive the low power control signals to a constant state so that
the controls cannot be toggled during test operations. You can check for this during the
dft_drc command by ensuring that these registers are included in the TEST-504 and
TEST-505 violations.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

407

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Multivoltage Support

Feedback

Figure 169 Consequences of Putting Registers That Drive Low-Power Control Signals on the
Scan Chains

SI

D Q

SE

SI

D Q

SE

ISO

EN

SI

D
Q

SE

SAVE

RESTORE

...00101011...

...00101011...

...00101011...

...00101011...

Previewing a Multivoltage Scan Chain
The preview_dft -show all command reports the operating condition and the power
domain of a scan cell whenever a scan path crosses a voltage or power domain. It also
indicates whether a scan cell is driving a level shifter or an isolation cell.

In Example 56, (v) indicates that the scan cell drives a level shifter and (i) indicates that
the scan cell drives an isolation cell.

Example 56 Preview Report With Voltage and Power Domains
**
Preview_dft report
For : 'Insert_dft' command
Design : seqmap_test
Version: Z-2007.03
Date : Tue Jan 30 17:02:47 2007
**
Number of chains: 1
Scan methodology: full_scan
Scan style: multiplexed_flip_flop
Clock domain: mix_clocks
Voltage Mixing: True
Power Domain Mixing: True

Synopsys® TestMAX™ DFT User Guide
T-2022.03

408

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Multivoltage Support

Feedback

 (i) shows cell scan-out drives an isolation cell
 (l) shows cell scan-out drives a lockup latch
 (s) shows cell is a scan segment
 (t) shows cell has a true scan attribute
 (v) shows cell scan-out drives a level shifter cell
 (w) shows cell scan-out drives a wire

Scan chain '1' (test_si --> test_so) contains 56 cells:

 u2/q_reg[3] (voltage 1.08) (pwr domain 'pd_2') (clk, 55.0, falling)
 u2/q_reg[4]
 ...
 u2/q_reg[26]
 u2/q_reg[27]
 u1/q_reg[3] (v)(i) (voltage 0.80) (pwr domain 'pd_1')
 u1/q_reg[4]
 ...
 u1/q_reg[26]
 u1/q_reg[27]
 u2/q_reg[0] (v)(i) (voltage 1.08) (pwr domain 'pd_2') (clk, 45.0,
rising)
 u2/q_reg[1]
 ...
 u2/q_reg[22]
 u2/q_reg[23]
 u1/q_reg[0] (v)(i) (voltage 0.80) (pwr domain 'pd_1')
 u1/q_reg[1]
 ...

See Also

• Previewing the DFT Logic on page 595 for more information about previewing scan
chain structures

Scan Extraction Flows in the Presence of Isolation Cells
If you need to run the scan extraction flow on a netlist for a design that is already scan-
inserted and contains isolation cells, you must specify any constraints that are needed at
the enable pin of isolation cells in addition to the constraints that might be required for DFT
signals. If this is not done, you might fail to extract scan chains. DFT Compiler does not
check the validity of isolation logic.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

409

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Controlling Power Modes During Test

Feedback

Limitations
The following limitations apply to multivoltage and multipower domains:

• Multivoltage and multipower domains are supported only in multiplexed flip-flop scan
style.

• Multivoltage and multipower domains are supported only in the following flows:

◦ Basic scan, including AutoFix, observe point insertion, user-defined test point
insertion, and HSS

◦ DFTMAX compressed scan

• Multivoltage and multipower domains are not supported in the following flows:

◦ BSD insertion

◦ Core integration

Controlling Power Modes During Test
Power-sensitive designs often contain multiple power domains. This allows power supplies
for inactive logic to be switched off, reducing power consumption during operation. These
designs typically have a power controller block, which supplies the necessary power
supply control signals to power switches, isolation cells, and retention registers.

When the device is being tested, the power control signals must be controlled to ensure
that the design is testable. This topic describes the features provided by DFT Compiler to
automate the control of power modes during test.

Inserting Power Controller Override Logic
The power controller block generates control signals for the power supply control logic that
exists throughout the design. The power control signals at the block outputs are defined
using commands that are part of the IEEE 1801 specification, also known as the Unified
Power Format (UPF) specification.

DFT Compiler does not create the power controller block, but it can insert testability logic
at the block outputs to override the power control signals during test mode. This logic is
known as the power controller override logic. This logic allows the signals to be controlled
during test mode without manually-created power controller initialization vectors. It also
provides observability of the power controller outputs for improved test coverage.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

410

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Controlling Power Modes During Test

Feedback

To use this feature, enable the power controller override feature, and specify the power
controller hierarchical cell instance with the following commands:

set_dft_configuration -power_control enable
set_dft_power_control power_controller_hier_cell

The control signal outputs of the power controller block must be defined using the signal
specification options of the applicable UPF commands:

• create_power_switch -control_port

• set_isolation_control -isolation_signal

• set_retention_control -save_signal
When a power controller block is configured, the insert_dft command inserts wrapper
chain override logic at the control signal outputs inside the specified power controller
block. Figure 170 shows the structure of the power controller override logic.

Figure 170 Power Controller Override Logic

Power Controller Design Logic
pco_out

pco_in

pwr_switch_en

isolate

retain

pco_override
pco_shift_clk

pco_update_clk

pwr_switch_en

isolate

retain

Override logic
added inside
power controller block

The power controller override wrapper chain is composed of control-observe cells along
the power controller outputs. The wrapper chain is a separate chain that cannot be
combined with other scan chains. For designs with scan compression, the power controller
override wrapper chain exists outside the compressor-decompressor logic.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

411

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Controlling Power Modes During Test

Feedback

The following signals provide control of the power controller override logic:

• pco_in and pco_out
These signals are the scan-in and scan-out signals for the wrapper chain cells.

• pco_override
This signal is asserted in test mode to override the power controller’s control signals
with the wrapper chain override values.

• pco_shift_clk
When clocked with ScanEnable de-asserted, this signal captures the current output
values from the power controller to improve observability. When clocked with
ScanEnable asserted, this signal shifts data through the shadow registers of the
wrapper chain. When the override is asserted, the current override state is not affected
when data is shifted through the wrapper chain shadow registers.

• pco_update_clk
This signal is clocked to transfer the control signal values from the wrapper cell shadow
registers to the wrapper cell output registers.

By default, the tool creates these signals and ports. To use existing placeholder ports for
these signals, define them as follows:

dc_shell> # PCO control signals
dc_shell> set_dft_signal -view spec -type pco_override -port port_name
dc_shell> set_dft_signal -view spec -type pco_shift_clk -port port_name
dc_shell> set_dft_signal -view spec -type pco_update_clk -port port_name

dc_shell> # PCO scan data signals
dc_shell> set_dft_signal –type ScanDataIn –port pco_in_port_name
dc_shell> set_dft_signal –type ScanDataOut –port pco_out_port_name
dc_shell> set_scan_path -view spec –class pco_wrapper MY_PCO_CHAIN \
 –scan_data_in pco_in_port_name \
 -scan_data_out pco_out_port_name
During power controller override logic insertion, the tool updates the test_setup procedure
with test vectors that place the power control signals into a stable state. If multiple test
modes have been defined, they are all updated.

This stable state has the following characteristics:

• All controllable power supply switches are enabled.

• All controllable isolation cells are set to a pass-through state.

• All controllable retention cells are placed into save mode.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

412

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Controlling Clock-Gating Cell Test Pin Connections

Feedback

If you have defined all power controller signals in the UPF specification, the resulting
test protocol can be used directly in the TestMAX ATPG tool with no editing. If any power
controller signals have not been captured in the UPF specification, you must add the
required signal values to the test_setup procedure.

Limitations
Note the following limitations of the power controller override feature:

• Only one power controller instance can be specified.

• If the power controller logic is distributed across several blocks, you must first group it
into a single block.

• It is not possible to use an existing scan segment as the power controller override
wrapper chain.

• Power controller override signals cannot be internally driven in the internal pins flow.

Controlling Clock-Gating Cell Test Pin Connections
To insert clock-gating cells in a design, you can use the following methods:

• Automatic insertion of clock-gating cells by Power Compiler, using the -gate_clock
option of the compile or compile_ultra commands

• Manual instantiation or insertion of clock-gating cells

A clock-gating cell propagates the clock signal to downstream logic only when the enable
signal is asserted. During scan shift, if the enable signal is controlled by one or more scan
flip-flops, the shifting test data values cause the clock-gating signal to toggle during scan
shift. As a result, the clock signal does not reliably propagate through the clock-gating cell
to downstream scan flip-flops during scan shift, resulting in scan shift violations.

Figure 171 shows an example where the enable signal of an integrated clock-gating cell is
driven by a scan flip-flop. The scan chain path is highlighted in blue. During scan shift, the
clock-gating enable signal driven by FFG toggles, interrupting the scan shift clocks needed
for FF1 and FF2.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

413

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Controlling Clock-Gating Cell Test Pin Connections

Feedback

Figure 171 Clock-Gating Cell Enabled by Scan Flip-Flop Output
CLK

SE

D
SI
SE

Q

FFG

CLK

EN

CLKO

ICGSI

D
SI
SE

Q

FF1

D
SI
SE

Q

FF2
1à

To remedy this, most clock-gating cells have test pins that force the clock signal to
pass through when the test pin is asserted. This ensures that downstream scan cells
successfully receive the clock signal and shift values along the scan chain. Figure 172
shows a test-aware clock-gating cell with its test pin hooked up to the global scan-enable
signal. During scan shift, FF1 and FF2 receive the clock signal and successfully shift data.

Figure 172 Clock-Gating Cell Enabled by Scan Flip-Flop Output
CLK

SE

D
SI
SE

Q

FFG

CLK

EN

CLKO

ICGSI

D
SI
SE

Q

FF1

D
SI
SE

Q

FF2

TST

1à

This topic describes the methods provided by DFT Compiler to control clock-gating cell
test pin connections.

Connecting User-Instantiated Clock-Gating Cells
You can use the insert_dft command to connect user-instantiated clock-gating cells,
that is, to connect to the clock-gating cells that have not been inserted by Power Compiler.
You use the set_dft_clock_gating_pin command to specify the unconnected test pin of
the clock-gating cells in your design. Then you run the insert_dft command to connect
these pins to the test ports.

Connecting user-instantiated clock-gating cells with the set_dft_clock_gating_pin and
insert_dft commands has the following advantages:

• Provides flexibility

• Does not require setting Power Compiler attributes

Synopsys® TestMAX™ DFT User Guide
T-2022.03

414

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Controlling Clock-Gating Cell Test Pin Connections

Feedback

• Has no dependency on the identify_clock_gating command and the
power_cg_auto_identify variable

• Works with multiple ScanEnable and TestMode signal connectivity

Note:
When clock-domain-based connections are specified, using the
set_dft_signal -connect_to command, user-instantiated clock-gating
pins are not connected by domain. For this feature, only clock-gating cells
recognized and inserted by Power Compiler are supported.

The syntax for the set_dft_clock_gating_pin command is

set_dft_clock_gating_pin object_list -pin_name instance_pin_name
 [-control_signal ScanEnable | TestMode]
 [-active_state 1 | 0]

object_list

List of clock-gating cell instances for which test pins are specified. The argument
is mandatory.

-pin_name
Name of the test pin on the specified instances. This pin name must be common
to all specified instances. The argument is mandatory.

-control_signal
Specifies the type of control signal required by the test pin. The argument is
optional. The default is ScanEnable.

-active_state
Specifies the active state of the test pin. The argument is optional. The default is
1.

The command is cumulative.

The specified cells and test pin are not checked. Verify that you have specified the actual
clock-gating cells and test pin in the design and that they were not identified by Power
Compiler. Specifying cells that are not clock-gating cells can cause undesired results when
you run the dft_drc and insert_dft commands.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

415

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Controlling Clock-Gating Cell Test Pin Connections

Feedback

Using the set_dft_clock_gating_pin Commands: Examples

• To specify the test enable (TE) pin on instances U1 and U2 as the clock-gating pin,
using the default signal type ScanEnable:

set_dft_clock_gating_pin [list U1 U2] -pin_name TE
• To specify the test_mode pin as the clock-gating pin of control signal type TestMode on

the hierarchical design des_a:

set_dft_clock_gating_pin \
 [get_cells * -hierarchical -filter "@ref_name == des_a"] \
 -control_signal TestMode -pin_name test_mode

• To specify pin A as a clock-gating pin of control signal type ScanEnable with active
state 1 for all instances of the unique library cell CGC1:

set_dft_clock_gating_pin \
 [get_cells * -hierarchical -filter "@ref_name == CGC1"] \
 -control_signal scan_enable -pin_name A

Use the report_dft_clock_gating_pin command to report the specifications you made
with the set_dft_clock_gating_pin command. To remove the DFT clock-gating pin
specifications, use the remove_dft_clock_gating_pin command.

Interaction With Other Commands

Clock-gating cells identified with the set_dft_clock_gating_pin command can be used
or specified in the following commands:

• In the hook-up-only flow, using the following command:

set_dft_configuration -scan disable -connect_clock_gating enable
• Using the set_dft_signal -connect_to command

The connection is not made when doing clock-domain-based connections.

• Using the set_dft_clock_gating_configuration -exclude_elements command.

Script Example
Example 57 and Example 58 show a hookup-clock-gating only flow and a complete DFT
insertion flow, respectively.

Example 57 Hookup-Clock-Gating Only Flow
read verilog test.v
link
set_dft_signal -view existing_dft -type ScanClock -port clk \
 -timing {45 55}
set_dft_signal -type ScanEnable -port SE1 -view spec
set_dft_clock_gating_pin {clk_gate_out1_reg sub1/clk_gate_out1_reg} \

Synopsys® TestMAX™ DFT User Guide
T-2022.03

416

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Controlling Clock-Gating Cell Test Pin Connections

Feedback

 -pin_name TE
set_dft_configuration -scan disable -connect_clock_gating enable
report_dft_clock_gating_pin
insert_dft

Example 58 Complete DFT Insertion Flow
read verilog test.v
link
set_dft_signal -view existing_dft -type ScanClock -port clk \
 -timing {45 55}
set_dft_signal -type ScanEnable -port SE1 -view spec
set_dft_clock_gating_pin {clk_gate_out1_reg sub1/clk_gate_out1_reg} \
 -pin_name TE
set_dft_configuration -scan enable -connect_clock_gating enable
report_dft_clock_gating_pin
create_test_protocol
dft_drc -verbose
insert_dft

Limitations
Note the following limitations:

• If you use the set_dft_signal -connect_to command to make clock-domain-
based connections to clock-gating cells, only Power Compiler clock-gating cells are
considered; user-instantiated clock-gating cells are not considered.

For more information, see Specifying Signals for Clock-Gating Cell Test Pin
Connections.

• The feature is not supported for pipelined scan-enable signals.

Excluding Clock-Gating Cells From Test-Pin Connection
You might have a portion of the design that is excluded from scan testing, and you
do not want DFT Compiler to connect the test pins of those clock-gating cells to test-
mode or scan-enable signals. To prevent the insert_dft command from connecting
the test pins of some clock-gating cells, use the -exclude_elements option of the
set_dft_clock_gating_configuration command:

set_dft_clock_gating_configuration -exclude_elements object_list

The object_list can include the following object types:

• Clock-gating cell leaf instances

• Clock-gating observation cell leaf instances

Synopsys® TestMAX™ DFT User Guide
T-2022.03

417

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Controlling Clock-Gating Cell Test Pin Connections

Feedback

• Hierarchical cell instances – All clock-gating cells within the instances are included in
the specification.

• Clock-gating library cell – All instances of that cell are included in the specification.

• Clocks – All clock-gating cells in the clock domains are included in the specification.

Instead of connecting the test pins of excluded clock-gating cells to test-mode or scan-
enable signals, DFT Compiler leaves the existing connections in place, which are typically
constant drivers that de-assert the test-mode bypass. Figure 173 shows an example of an
excluded clock-gating cell.

Figure 173 Directly Specified Excluded Clock-Gating Cell

CLK

FFG

FF1

FF2

CLK

EN

CLKO

UICGTST

set_dft_clock_gating_configuration \
 -exclude_elements {UICG}

The dft_drc command does not report any TEST-130 unconnected test-pin messages for
excluded clock-gating cells. However, any downstream scan cells driven by the excluded
clock-gating cells will result in D1 or D9 violations if their clock is uncontrolled.

If you do not know the clock-gating cell instances, but you do know the nonscan flip-
flops whose upstream clock-gating cells should not be connected, you can use the
-dont_connect_cgs_of option of the set_dft_clock_gating_configuration
command:

set_dft_clock_gating_configuration -dont_connect_cgs_of object_list

The object_list can include the following object types:

• Flip-flop leaf instances

• Hierarchical cell instances – All flip-flops within the instances are included in the
specification.

With the -dont_connect_cgs_of option, DFT Compiler identifies any upstream clock-
gating cells from these registers, and prevents their test pin connections. Figure 174
shows an example of an excluded clock-gating cell.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

418

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Controlling Clock-Gating Cell Test Pin Connections

Feedback

Figure 174 Upstream Excluded Clock-Gating Cell

CLK

FFG

FF1

FF2

CLK

EN

CLKO

UICGTST

set_dft_clock_gating_configuration \
 -dont_connect_cgs_of {FF1 FF2}

The upstream clock-gating cell can only drive nonscan cells or scan-replaced cells that
are excluded from scan stitching. If the clock-gating cell drives any valid scan cells that
are incorporated into scan chains, the test pin is connected to ensure proper scan shift
clocking.

Figure 175 shows an example where hierarchical block UBLK is specified with the
-dont_connect_cgs_of option. The four flip-flops inside the block are included in the
specification. However, one of the flip-flops is a valid scan flip-flop that will be included on
a scan chain. As a result, the test pin of upstream clock-gating cell UICG1 is tied to a test
signal. The test pin of clock-gating cell UICG2 is left tied to its de-asserted constant value.

Figure 175 Upstream Excluded Clock-Gating Cell Due to Downstream Scan Flip-Flops

UBLK

CLK

set_dft_clock_gating_configuration \
 -dont_connect_cgs_of {UBLK}

SE

CLK

EN

CLKO

UICG1TST

CLK

EN

CLKO

UICG2TST

D
SI
SE

Q

If DFT Compiler cannot find the upstream clock-gating cells for flip-flops during the
preview_dft or insert_dft commands, it issues TEST-154 information messages for
those flip-flops.

For both exclusion methods, use the report_dft_clock_gating_configuration
command to report the specifications that you previously set. Use the
reset_dft_clock_gating_configuration command to remove the specifications.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

419

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Controlling Clock-Gating Cell Test Pin Connections

Feedback

Exclusion works by leaving the default de-asserted constant value connected to the test
pins of excluded clock-gating cells. If an exclusion applies to a clock-gating cell with an
existing test pin connection other than the default de-asserted constant value, that existing
test pin connection remains in place.

The clock-gating cell test pin connection control methods have the following precedence,
in order of to lowest priority:

• set_dft_signal -connect_to (highest priority)

• set_dft_clock_gating_configuration -exclude_elements

• set_dft_clock_gating_configuration -dont_connect_cgs_of (lowest priority)

When the -dont_connect_cgs_of option is used, upstream clock-gating cells of the
specified registers are excluded from clock-gating cell test pin connection only if none of
the downstream registers are valid scan cells. When the -exclude_elements option is
used, the test pin connections of the specified clock-gating cells are suppressed even if
there are downstream valid scan cells.

Note:
These set_dft_clock_gating_configuration options work with, but are not
intended to be used for, user-instantiated clock-gating cells. If the test pin of a
user-instantiated clock-gating cell should not be hooked up, do not include it in
a set_dft_clock_gating_pin specification. Registers driven by user-defined
clock gating cells are traced through simple buffer and inverter logic only.

Connecting Clock-Gating Cell Test Pins Without Scan Stitching
You can use the insert_dft command to connect the test pins of clock-gating cells to
scan-enable or test-mode signals without also performing scan insertion or scan stitching.
Note, however, that only clock-gating cells with Power Compiler attributes are considered.

To use this feature, you must disable scan insertion and enable the clock-gating
connection before running the insert_dft command. This is accomplished by issuing the
following command:

set_dft_configuration -scan disable -connect_clock_gating enable

When using this flow, do not run the create_test_protocol or dft_drc commands. If
you do, it will prevent the insert_dft command from making the clock-gating cell test pin
connections.

Example 59 shows how to implement this feature.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

420

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Controlling Clock-Gating Cell Test Pin Connections

Feedback

Example 59 Using the insert_dft Command to Connect the Test Pins of Clock-Gating Cells
read ddc design.ddc
set_clock_gating_style -control_signal scan_enable
create_clock clk -name clk
compile_ultra -scan -gate_clock

set_dft_signal -type ScanEnable -view spec -port ICG_SE

Disable scan insertion, enable only clock-gating cell
test pin connections
set_dft_configuration -scan disable -connect_clock_gating enable

Run insert_dft to connect the clock-gating cell test pins only
insert_dft

The insert_dft command issues an information message indicating that clock-gating cell
test pins are being connected to the specified test signal:

 Routing clock-gating cells
Information: Routing clock-gating cell test pins with no specified
driver to scan enable 'ICG_SE'
1

Note:
This capability is not meant to be used as part of a scan-stitching flow. The
feature is solely intended to allow you to connect the test pins of clock-gating
cells, separate from any scan synthesis run. To connect clock-gating test pins
to a different scan-enable signal during scan stitching, use the -usage option of
the set_dft_signal command. For more information, see Specifying Signals
for Clock-Gating Cell Test Pin Connections.

The following scenarios show how to use the insert_dft command to connect clock-
gating cell test pins to various types of test signal ports and pins:

• To connect to the default test_se port:

compile_ultra -gate_clock -scan
set_dft_configuration -scan disable -connect_clock_gating enable
insert_dft

• To connect to an existing scan-enable port:

compile_ultra -gate_clock -scan
set_dft_configuration -scan disable -connect_clock_gating enable
set_dft_signal -view spec -type ScanEnable -port SE
insert_dft

• To connect to an existing test-mode port:

set_clock_gating_style -control_point after -control_signal TestMode
compile_ultra -gate_clock -scan

Synopsys® TestMAX™ DFT User Guide
T-2022.03

421

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Internal Pins Flow

Feedback

set_dft_configuration -scan disable -connect_clock_gating enable
set_dft_signal -view spec -type TestMode -port TM
insert_dft

• To connecting to an input pad cell hookup pin:

compile_ultra -gate_clock -scan
set_dft_configuration -scan disable -connect_clock_gating enable
set_dft_signal -view spec -type ScanEnable -port SE \
 -hookup_pin UPAD_SE/IO_Q
insert_dft

• To connect to an internal pin—for example, to a black-box output:

compile_ultra -gate_clock -scan
set_dft_configuration -scan disable -connect_clock_gating enable
Enable internal pins flow
set_dft_drc_configuration -internal_pins enable
set_dft_signal -view spec -type ScanEnable -port SE \
 hookup_pin IP_CORE/SE_OUT
insert_dft

The following features apply to automatic connection of clock-gating cell test pins:

• Connections are made only to the test pins of valid clock-gating cells that have been
correctly identified and have the required Power Compiler attributes.

• Only connections to clock-gating cells are made unless boundary scan insertion is
enabled, in which case boundary scan insertion takes precedence.

• Connections specified with the set_dft_signal -connect_to command are honored.

• The internal pins flow is supported.

The following features or capabilities do not work or have limited capability:

• If test models need to be connected, you must specify the core-level ScanEnable
pin to be connected to the top-level ScanEnable signal, using the set_dft_signal
-connect_to command.

• Partially incomplete flows (in which you have performed the clock-gating cell
connections to the blocks but not performed the rest of the DFT flow) should not be
used for top-level DFT insertion.

Internal Pins Flow
Normally, DFT signals (such as clocks, resets, scan-ins, and scan-outs) are defined
on ports of the current design. Even when defined with a hookup pin, these signals are
ultimately connected to a port.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

422

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Internal Pins Flow

Feedback

However, advanced DFT architectures might require some DFT signals to connect
to an internal pin, with no straightforward path to a port. The following figure shows
programmable registers intended to drive TestMode signals:

Figure 176 Signals Connected to Internal Pins Instead of Ports

CLK

TM_OUT[1:0]

U_TEST_CTRL

Programmable
test-mode signal
registers

In these cases, you can use the internal pins flow to define such signals. It is called a flow
because it requires consideration both before and after DFT insertion, as described below.

See Also

• SolvNet article 040136, “Using the Internal Pins Flow With Internal Test Registers” for
an example that drives DFT signals from design registers

Defining Signals on Internal Pins
To define signals on internal pins, do the following:

1. In your global DFT configuration, enable the internal pins flow:

set_dft_drc_configuration -internal_pins enable
2. When defining your DFT signals, define each internal-pins signal by using the

-hookup_pin option without the -port option:

set_dft_signal -view spec -type TestMode \
 -hookup_pin U_TEST_CTRL/TM_OUT[1]
set_dft_signal -view spec -type TestMode \
 -hookup_pin U_TEST_CTRL/TM_OUT[0]
The -hookup_pin option accepts only a single pin object; use multiple commands for
multiple pins.

You can define a mix of port-driven and internal-pins signals as needed.

The following signal types can be defined as internal-pins signals.

Supported Internal-Pins Signal Types

ScanMasterClock

Synopsys® TestMAX™ DFT User Guide
T-2022.03

423

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnet.synopsys.com/retrieve/040136.html

Chapter 10: Advanced DFT Architecture Methodologies
Internal Pins Flow

Feedback

Supported Internal-Pins Signal Types

ScanMasterClock

MasterClock

ScanClock

Reset

Constant

TestMode

ScanEnable

ScanDataIn

ScanDataOut

pll_reset

pll_bypass

LOSPipelineEnable

lbistCaptureCycleEnable

Writing Out the Test Protocol
After DFT insertion, the CTL model for the design contains information about internal pins.
This information is understood by DFT Compiler, but it cannot be used by TestMAX ATPG.

Before writing out the STIL protocol file (SPF) for TestMAX ATPG, disable the internal pins
flow:

dc_shell> set_dft_drc_configuration -internal_pins disable
dc_shell> write_test_protocol -test_mode Internal_scan \
 -output Internal_scan_needs_modification.spf
This prevents the write_test_protocol command from including information about
internal pins in the SPF. (This does not affect post-DFT DRC or writing the design in .ddc
format.)

Before using the protocol in TestMAX ATPG, you must make any modifications needed for
the assumptions in the test protocol to be true.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

424

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Creating Scan Groups

Feedback

Limitations of the Internal Pins Flow
Note the following limitations of the internal pins flow:

• In most cases, the output protocol is not accurate and cannot be used in the TestMAX
ATPG tool unless modified.

• Boundary scan and scan extraction flows do not support the internal pins flow.

• You cannot integrate cores created using the internal pins flow unless you set the
test_allow_internal_pins_in_hierarchical_flow variable to true during both
core creation and core integration. For details, see the man page.

Creating Scan Groups
DFT Compiler offers a methodology that enables you to define certain scan chain portions
so that they can be efficiently grouped with other scan chains. This is done without the
need to insert scan at the submodule levels.

This topic covers the following:

• Configuring Scan Grouping

• Scan Group Flows

• Known Limitations

Configuring Scan Grouping
DFT Compiler includes the following set of commands that enable you to configure scan
grouping:

• set_scan_group – creates scan groups

• remove_scan_group – removes scan groups

• report_scan_group – reports scan groups

Creating Scan Groups
The set_scan_group command enables you to create a set of sequential cells, scan
segments, or design instances that should be grouped together within a scan chain. If a
design instance is specified, all sequential cells and segments within it are treated as a
group and is logically ordered.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

425

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Creating Scan Groups

Feedback

The syntax for this command is as follows:

set_scan_group scan_group_name
 -class bypass [-bypass_head_clock CLK1] [-bypass_tail_clock CLK2]
 -include_elements {list_of_cells_or_segments}
 [-access {list_of_access_pins}]
 [-serial_routed true|false]

scan_group_name

Specifies a unique group name.

-class bypass [-bypass_head_clock CLK1] [-bypass_tail_clock CLK2]
Specify the set of elements you want to bypass with the optional values of the
clock for the head and for the tail of the bypass. You can specify a specific
bypass_se signal for this particular bypass segment that takes precedence over
the global bypass_se signal if specified in the set_dft_signal command.

You can set a global bypass_se signal that can be used for all the segments
in the mode where it is defined. It can be ether a port or a hookup_pin. For
example,

- set_dft_signal -type bypass_se -port bypass_se
- set_dft_signal -type bypass_se -hookup_pin internal_pin

-include_elements {list_of_cells_or_segments}

Specifies a list of cell names or segment names that are included in the group.

-access {list_of_access_pins}
Specifies a list of all access pins. Note that these access pins represent only a
serially routed scan group specification. If the -serial_routed option is set to
false, all specified access pins are ignored.

-serial_routed [true | false]

Specifies whether the scan group is serially routed (true) or not (false). The
default is false.

Note the following:

• There is no -view option to the set_scan_group command, because the options only
works in the specification view.

• All scan group specifications are applied across all test modes. You cannot specify a
scan group to be applied on a particular test mode.

• An element specified as part of a scan group cannot be specified as part of a scan
path, and vice versa.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

426

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Creating Scan Groups

Feedback

• Scan group specifications are not cumulative. If you specify the same group name, the
last scan group specification before the insert_dft command is used.

• Grouping elements implies that they must be adjacent in a scan chain.

Example
dc_shell> set_scan_group G1 -include_elements \
 [list ff1 ff3] -access \
 [list ScanDataIn ff1/TI ScanDataOut \
 ff3/QN] -serial_routed true

dc_shell> set_scan_group G2 -include_elements \
 [list ff2 a/ff1]

dc_shell> set_scan_group G3 -include_elements \
 [list U1/1]

dc_shell> set_scan_group G4 -include_elements \
 [list U1/3]
dc_shell - set_scan_group group1 -class bypass -include_elements {cells}
dc_shell - set_scan_group group1 -class bypass [-bypass_head_clock CLK1]
 \
 [-bypass_tail_clock CLK2] -include_elements {cells}
dc_shell - set_scan_group group1 -class bypass -include_elements {cells}
 \
 [-access [list BypassSe PORT]]

Removing Scan Groups
The remove_scan_group command removes all specified scan groups. The syntax of this
command is as follows:

remove_scan_group scan_group_name

scan_group_name

This option specifies the name of the scan group to be removed.

Example
dc_shell> remove_scan_group G1

Integrating an Existing Scan Chain Into a Scan Group
If you have existing serial routed segments at the current design level that you want
to incorporate as part of a longer scan chain, you can use the set_scan_group
-serial_routed true command to accomplish this. When you run the insert_dft
command, it will then connect to this segment while keeping the segment intact.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

427

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Creating Scan Groups

Feedback

You need to provide the following information to the set_scan_group -serial_routed
true command:

• Use the -include_elements option to specify the names of the elements within the
segment.

• Use the -access option to specify how the insert_dft command should connect to
this segment.

Consider the existing scan chain shown in Figure 177.

Figure 177 Integrating an Existing Scan Chain

SI Q

SE

U0

SI Q

SE

U1

SI Q

SE

U2

In this example, the scan chain connects the flip-flops U0 through U1 to U2. The
insert_dft command treats U0 through U2 as a subchain or group and connects through
the scan-in pin of U0, the output pin of U2, and the scan-enable pin of U0. You can then
use the following command to specify the existing scan segment:

set_scan_group group1 -include_elements [list U0 U1 U2] \
 -access [list ScanDataIn U0/SI ScanDataOut U2/Q ScanEnable U0/SE]

If you do not know the names of the individual elements within the scan group, you can
try extracting the element names by using the dft_drc command. Note, however, that
this strategy works only if the scan segment starts and ends at the top level of the current
design. After you have extracted the names of the elements of the scan chain, you can
specify them using the -include_elements option. You might need to disconnect the net
connecting the top-level scan-in port to the scan-in pin of the first flip-flop of the chain, as
well as the net connecting the data-out or scan-out pin of the last flip-flop of the chain to
the scan-out port.

See Also

• Performing Scan Extraction on page 432 for more information about how to extract
pre-existing scan chains in your design

Synopsys® TestMAX™ DFT User Guide
T-2022.03

428

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Shift Register Identification

Feedback

Reporting Scan Groups
The report_scan_group command reports the names of the sequential cells or scan
segments associated with a particular scan group, as specified by the set_scan_group
command).

The syntax of this command is as follows:

report_scan_group [scan_group_name]

scan_group_name

This option specifies the name of the scan group used for reporting purposes.
If a group name is not specified, all serially routed and unrouted groups are
reported.

Scan Group Flows
You can specify scan groups in DFT Compiler in either the standard flat flow or the
Hierarchical Scan Synthesis (HSS) flow.

In the standard flat flow, you can specify valid scan cells as input to scan groups. In the
logic domain, these cells get ordered logically and placed as a group in a scan chain.

In the HSS flow, you can specify core segment names as part of a scan group and then
reuse them in a scan path specification.

Known Limitations
The following known limitations apply when you specify scan groups in DFT Compiler:

• A scan group can contain only a set of elements that belong to one clock domain.

• You cannot specify a collection as a scan group element.

• You cannot specify a group as part of another group.

• You cannot specify a previously defined scan path in a scan group.

Shift Register Identification
The following topics describe shift register identification in DFT flows:

• Simple Shift Register Identification

• Synchronous-Logic Shift Register Identification

• Shift Register Identification in an ASCII Netlist Flow

Synopsys® TestMAX™ DFT User Guide
T-2022.03

429

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Shift Register Identification

Feedback

For more information about how DC Ultra identifies shift registers during a test-ready
compile, see “Sequential Mapping” chapter in the Design Compiler User Guide.

Simple Shift Register Identification
By default, DC Ultra identifies simple shift registers, in which each flip-flop directly
captures the output of the previous flip-flop. When you perform a test-ready compile
with the compile_ultra -scan command, DC Ultra identifies simple shift registers and
performs scan replacement only on the first register of each identified shift register.

Information about the identified shift registers is stored in the design database. DFT
Compiler uses this information during scan stitching to efficiently incorporate the shift
registers into the scan chain. This flow reduces the area overhead for scan replacement.

Shift register identification is not performed across hierarchical boundaries when only a 2-
bit shift register would be created. This typically occurs with registered interfaces where
a single register at the output of one design is connected to a single register at the input
of another design. This behavior reduces port punching when DFT insertion connects
scan chains to shift registers that cross hierarchical boundaries, which can help improve
congestion and scan wire length results. Shift register identification is performed across
hierarchical boundaries for 3-bit and longer shift registers.

The insert_dft command uses the stored shift register information from DC Ultra to
optimize the scan path stitching process. For each shift register, the first scan-replaced
cell provides scan controllability for the entire shift register. Simple shift registers are used
directly in the scan path. If needed, identified shift registers are broken up during DFT
insertion to meet scan chain balancing or maximum scan chain length requirements.

Use the following methods to determine the shift registers that were identified by the
compile_ultra -scan command:

• Use the preview_dft -show {segments} command to report the identified shift
registers, which are treated as scan segments after being identified. For details on
previewing scan segments, see Previewing Additional Scan Chain Information on
page 596.

• Use the shift_register_head and shift_register_flop cell attributes to identify
the leading shift register scan cells and subsequent nonscan cells, respectively:

dc_shell> get_cells -hierarchical * -filter \
 {shift_register_head==true || shift_register_flop==true}

For best results, write out the design in .ddc format to preserve the identified shift register
attributes.

To disable shift-register identification, set the following variable:

dc_shell> set_app_var compile_seqmap_identify_shift_registers false

Synopsys® TestMAX™ DFT User Guide
T-2022.03

430

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Shift Register Identification

Feedback

Synchronous-Logic Shift Register Identification
During a test-ready compile, DC Ultra can optionally identify synchronous-logic shift
registers, in which each flip-flop captures a combinational logic function that includes the
output of the previous flip-flop. DFT insertion updates the combinational logic function
between the flip-flops so that the shift register logically degenerates to a simple shift
register when the scan-enable signal is asserted.

To enable synchronous-logic shift register identification, set the following variable:

dc_shell> set_app_var \
 compile_seqmap_identify_shift_registers_with_synchronous_logic \
 true
The default is false, which preserves multibit registers better between the compile
and insert_dft steps and can provide additional area savings. However, you can
enable synchronous-logic shift register identification if it provides an area benefit for your
particular design.

Shift Register Identification in an ASCII Netlist Flow
When you read in a test-ready (scan-replaced) ASCII netlist (Verilog or VHDL), you use
the set_scan_state command to indicate that the netlist is test-ready:

read_verilog block_test_ready.vg
current_design block
link_design
set_scan_state test_ready
If the netlist contains shift registers previously identified by the compile_ultra -scan
command, the attributes for those shift registers are not stored in the netlist file. As a
result, the set_scan_state command re-identifies them and reapplies their attributes to
the design in memory.

Simple Shift Registers

The set_scan_state test_ready command always re-identifies any simple shift
registers in the design. In other words, it recognizes any structures where a leading scan
cell drives a series of one or more same-clocked nonscan cells.

This feature does not require any variables or additional licenses, and it is performed
regardless of the value of the compile_seqmap_identify_shift_registers variable.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

431

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Performing Scan Extraction

Feedback

Synchronous-Logic Shift Registers

Synchronous-logic shift registers are not re-identified by default. To re-identify them, set
the following variables before running the set_scan_state command:

...read in netlist...
set_app_var compile_seqmap_identify_shift_registers true ;# default is
 true
set_app_var
 compile_seqmap_identify_shift_registers_with_synchronous_logic true
set_app_var
 compile_seqmap_identify_shift_registers_with_synchronous_logic_ascii
 true
set_scan_state test_ready

These variables enable the set_scan_state test_ready command to use the DC Ultra
shift register identification code, as indicated by the following message:

dc_shell> set_scan_state test_ready
Information: Performing full identification of complex shift registers.
 (TEST-1190)

Note:
Synchronous-logic shift register identification using the set_scan_state
command requires a DC Ultra license.

If this code re-identifies shift registers differently than test-ready synthesis did, the tool
restructures the registers, scanning or unscanning registers as needed. This can improve
the quality of results, especially when importing netlists from flows without shift register
identification.

When synchronous-logic shift register re-identification is enabled, it re-identifies (and
restructures) both simple and synchronous-logic shift registers.

To exclude registers from restructuring, apply the set_dont_touch or set_scan_element
false command before running the set_scan_state command.

Performing Scan Extraction
The scan chain extraction process extracts dft_drcextracting scan chainsscan chainextractionscan chains from a design by tracing scan
data bits through the multiple time frames of the protocol simulation. For a given design,
specifying a different test protocol can result in different scan chains. As a corollary,
scan chain-related problems can be caused by an incorrect protocol, by incorrect
set_dft_signal command specifications, or even by incorrectly specified timing data.

When performing scan extraction, you always use the descriptive view (-view
existing_dft), because you are defining test structures that already exist in your design.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

432

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Advanced DFT Architecture Methodologies
Performing Scan Extraction

Feedback

To perform scan extraction,

1. Define the scan input and scan output for each scan chain. To define these
relationships, first use the set_scan_configuration command to specify the scan
style and then use the -view existing_dft option with the set_scan_path and
set_dft_signal commands, as shown in the following examples:

dc_shell> set_scan_configuration \
 -style multiplexed_flip_flop

dc_shell> set_dft_signal -view existing_dft \
 -type ScanDataIn -port TEST_SI

dc_shell> set_dft_signal -view existing_dft \
 -type ScanDataOut -port TEST_SO

dc_shell> set_dft_signal -view existing_dft \
 -type ScanEnable -port TEST_SE

dc_shell> set_scan_path chain1 \
 -view existing_dft \
 -scan_data_in TEST_SI \
 -scan_data_out TEST_SO

2. Define the test clocks, reset, and test-mode signals by using the set_dft_signal
command.

dc_shell> set_dft_signal -view existing_dft \
 -type ScanClock -port CLK \
 -timing [list 45 55]

dc_shell> set_dft_signal -view existing_dft \
 -type Reset -port RESETN \
 -active_state 0

3. Create the test protocol by using the create_test_protocol command.

dc_shell> create_test_protocol
4. Extract the scan chains by using the dft_drc and report_scan_path commands.

dc_shell> dft_drc

dc_shell> report_scan_path -view existing_dft \
 -chain all

dc_shell> report_scan_path -view existing_dft \
 -cell all

Synopsys® TestMAX™ DFT User Guide
T-2022.03

433

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

11
Wrapping Cores

This chapter shows you how to add a test wrapper to a core design, which creates a
wrapped core. A wrapped core provides both test access and test isolation during scan
pattern application.

Core wrapping is described in the following topics:

• Core Wrapping Concepts

• Wrapping a Core

• Creating User-Defined Core Wrapping Test Modes

• Creating Compressed EXTEST Core Wrapping Test Modes

• Creating an IEEE 1500 Wrapped Core

• Wrapping Cores With OCC Controllers

• Wrapping Cores With DFT Partitions

• Wrapping Cores With Multibit Registers

• Wrapping Cores With Synchronizer Registers

• Wrapping Cores With Existing Scan Chains

• Creating an EXTEST-Only Core Netlist

• Integrating Wrapped Cores in Hierarchical Flows

• SCANDEF Generation for Wrapper Chains

• Core Wrapping Scripts

Core Wrapping Concepts
When you integrate a DFT-inserted core into a top-level design, the core-level scan
structures are integrated into the top-level scan structures. However, to test the core-level
logic separately from the top-level logic, the core must be a wrapped core.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

434

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Core Wrapping Concepts

Feedback

DFT Compiler provides two core wrapping flows. The simple core wrapping flow provides
basic core wrapping capabilities. The maximized reuse core wrapping flow minimizes the
area and timing impact of core wrapping by reusing more existing functional registers.

Wrapped cores are described in the following topics:

• Wrapper Cells and Wrapper Chains

• Wrapper Test Modes

• The Simple Core Wrapping Flow

• The Maximized Reuse Core Wrapping Flow

• Wrapping Three-State and Bidirectional Ports

See Also

• SolvNet article 1918995, “How Do Wrapper Chains and Wrapper Cells Work in Detail?”
for additional reference information about wrapper chains and wrapper cells

Wrapper Cells and Wrapper Chains
A wrapped core has a wrapper chain that allows the core to be isolated from the
surrounding logic. A wrapper chain is composed of wrapper cells inserted between the I/O
ports and the core logic of the design. Figure 178 shows an example of a wrapped core.

Figure 178 A Wrapped Core

CORE
wrp_si1 wrp_so1

CLK

CORE

Core
logic

CLK

Wrapper chain

insert_dft

test_si1 test_so1

Core
logic

A wrapper cell consists of a scan cell and MUX logic. It can transparently pass the I/O
signal through, or it can capture values at its input and/or launch values at its output.
Wrapper chains are shift chains (separate from regular scan chains) that allow known
values to be scanned into the wrapper cells and captured values to be scanned out.

Core wrapping is primarily intended to wrap core data ports. The following ports are
excluded from wrapping:

• Functional and test clock ports

• Asynchronous set or reset signal ports

Synopsys® TestMAX™ DFT User Guide
T-2022.03

435

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnet.synopsys.com/retrieve/1918995.html

Chapter 11: Wrapping Cores
Core Wrapping Concepts

Feedback

• Scan-input, scan-output, scan-enable, and other global test signal ports

• Wrapper signal ports

• Any port with a constant test signal value defined

The wrapper chain operates in one of four modes—inactive, inward-facing, outward-
facing, or safe. These wrapper operation modes behave as follows:

• Inactive mode

The wrapper chain is inactive and I/O signals pass through it. This is the behavior used
in mission mode and all non-wrapper test modes.

Figure 179 Inactive Mode of Wrapper Chain

CORE
TOP

CLK

Top-level
logic

Top-level
logic

Core
logic

• Inward-facing mode (INTEST)

This mode is used to test the core in isolation of the surrounding logic. It includes the
wrapper chain and internal chains. The input wrapper cells provide controllability, and
the output wrapper cells provide observability. If safe values are specified to protect the
surrounding fanout logic from the core output response, they are driven from the output
wrapper cells.

Figure 180 Inward-Facing Mode of Wrapper Chain

CORE
TOP

Top-level
logic

CLK

Top-level
logic

Core
logic

1

0

1

Synopsys® TestMAX™ DFT User Guide
T-2022.03

436

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Core Wrapping Concepts

Feedback

• Outward-facing mode (EXTEST)

This mode tests the logic surrounding the core in isolation from the core itself. It
includes only the wrapper chain. The input wrapper cells provide observability, and the
output wrapper cells provide controllability. If safe values are specified to protect the
core inputs from the surrounding fanin logic responses, they are driven from the input
wrapper cells. Clock inputs to the core remain unaffected.

Figure 181 Outward-Facing Mode of Wrapper Chain

CORE
TOP

CLK

Top-level
logic

Top-level
logic

Core
logic

1

0

• Safe mode

This optional mode drives safe values from all wrapper cells that have a safe value
specified. Safe values are driven into core inputs by any such input wrapper cells, and
safe values are driven into the surrounding fanout logic by any such output wrapper
cells. There are no scan chains (internal or wrapper). Clock inputs to the core remain
unaffected.

Figure 182 Safe Mode of Wrapper Chain

CORE
TOP

CLK

Top-level
logic

Core
logic

1

0

1

1

0 Top-level
logic

During core creation, DFT insertion does not mix wrapper chains and regular scan chains
(although they can be compressed by the same codec).

During core integration at the top level, DFT insertion can mix core-level wrapper chains,
core-level scan chains, and top-level scan chains for length-balancing purposes. Core-
level scan chains are not included in top-level test modes that place the core in outward-
facing mode.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

437

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Core Wrapping Concepts

Feedback

See Also

• SolvNet article 3017081, “How Does Core Wrapping Identify Clock Ports for
Exclusion?” for more information about how clock ports are identified

Wrapper Test Modes
When core wrapping is enabled, the insert_dft command creates the following core
wrapping test modes by default:

• wrp_if

This is an inward-facing uncompressed scan mode. The wrapper chain is placed in the
INTEST mode of operation. Both wrapper chains and internal core chains are active.

• ScanCompression_mode

This is an inward-facing compressed scan mode. The wrapper chain is placed in the
INTEST mode of operation. Both wrapper chains and internal core chains are active
and compressed by the scan compression codec. This mode is created only if scan
compression is also enabled.

• wrp_of

This is an outward-facing uncompressed scan mode. Only the wrapper chain is active;
it is placed in the EXTEST mode of operation.

• wrp_safe

This mode drives safe values from both input and output wrapper cells according to
their safe value specifications. This mode is created only if at least one port has a safe
value defined.

When core wrapping is enabled, DFT Compiler does not create the Internal_scan mode
by default because it does not provide inward-facing or outward-facing hierarchical test
capabilities.

You can also create user-defined core wrapping test modes. For more information, see
Creating User-Defined Core Wrapping Test Modes on page 483.

The Simple Core Wrapping Flow
The simple core wrapping flow provides basic core wrapping functionality, as described in
the following topics:

• Simple Core Wrapper Cells

• Simple Core Wrapper Chains

Synopsys® TestMAX™ DFT User Guide
T-2022.03

438

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnet.synopsys.com/retrieve/3017081.html
https://solvnet.synopsys.com/retrieve/3017081.html

Chapter 11: Wrapping Cores
Core Wrapping Concepts

Feedback

Simple Core Wrapper Cells
The simple core wrapping flow uses the following wrapper cell types:

• Dedicated Wrapper Cell

• Dedicated Safe-State Wrapper Cell

• Shared-Register Wrapper Cells

Dedicated Wrapper Cell
By default, the simple core wrapping flow uses the WC_D1 dedicated wrapper cell for core
wrapping. A dedicated wrapper cell is a wrapper cell that uses its own internal dedicated
flip-flop to provide controllability, observability, and shift capabilities. Figure 183 shows the
internal logic of the WC_D1 dedicated wrapper cell.

Figure 183 WC_D1 Dedicated Wrapper Cell

1

0

0

1
cfo

cto

capture_en
cfi

cti

shift_clk

shift_en

WC_D1

The interface to the WC_D1 wrapper cell consists of the following signals:

cti – Core test input

This is the test input to the wrapper cell. It can come from either a primary input
(if the cell is the first cell in the wrapper chain) or the cto signal of the previous
wrapper cell in the chain.

cto – Core test output

This is the test output of the wrapper cell. It can drive either a primary output (if
the cell is the last cell in the wrapper chain) or the cti signal of the next wrapper
cell in the chain.

cfi – Core functional input

For input wrapper cells, this input is fed from the logic surrounding the core. For
output wrapper cells, this input is fed from the core.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

439

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Core Wrapping Concepts

Feedback

cfo – Core functional output

For input wrapper cells, this input drives the core. For output wrapper cells, this
output drives the logic surrounding the core.

shift_clk – Wrapper clock

This is usually driven by the wrp_clock signal in the core. It clocks the flip-flop
in the wrapper cell.

shift_en – Shift enable

This is like a scan-enable signal for wrapper cells. When the signal is high, the
wrapper clock shifts data through the cti and cto scan data pins. When the signal
is low, the wrapper clock captures the functional input value or holds the current
state, depending on the value of the capture_en signal. The shift enable signal
can be controlled differently for input and output wrapper cells.

capture_en – Capture enable

This signal controls what is captured when the wrapper cell is not shifting. When
the signal is low, the wrapper clock captures the functional input value. When
the signal is high, the wrapper clock holds the current wrapper cell state.

Dedicated Safe-State Wrapper Cell
A wrapper cell provides observability at its input, and controllability at its output. The
same WC_D1 wrapper cell is used for both core inputs and core outputs. However, the
controlled output of the wrapper cell can toggle as data is shifted through the wrapper
chain. In some cases, if edge-triggered or level-sensitive logic exists in the fanout of the
wrapper cell, unintended circuit operation can occur.

To avoid this, you can specify a safe value for a wrapper cell. DFT Compiler uses the
WC_D1_S wrapper cell to implement the safe value capability. It contains an additional
multiplexer at its output to drive a static safe logic value, enabled by a safe value control
signal. Figure 184 shows the internal logic of the WC_D1_S wrapper cell.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

440

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Core Wrapping Concepts

Feedback

Figure 184 WC_D1_S Dedicated Wrapper Cell

1

0

0

1

cfo

cto

capture_en
cfi

cti

shift_clk

shift_en

1

0

safe_value
safe_control WC_D1_S

The interface to the WC_D1_S wrapper cell consists of the same signals as the WC_D1
wrapper cell, plus the following additional signals:

safe_control – Control signal

This signal determines when the safe state value is driven at the output.

safe_value – Logic value

This signal specifies the safe state logic value.

Shared-Register Wrapper Cells
wrapper cellssharingsharing wrapper cellsIf your design has existing boundary I/O registers by the ports, you can share these
functional registers with the wrapper cell logic to reduce the core wrapping area overhead.
Shared wrapper cells replace the existing functional register, providing equivalent
functionality in functional mode. Figure 185 shows the internal logic for the WC_S1
and WC_S1_S shared wrapper cells. The signals are identical to the signals used for
dedicated wrapper cells.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

441

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Core Wrapping Concepts

Feedback

Figure 185 WC_S1 and WC_S1_S Shared Wrapper Cells

1

0

0

1
cfo

cto

capture_en
cfi

cti

shift_clk

shift_en

1

0

0

1

cfo

cto

capture_en
cfi

cti

shift_clk

shift_en
1

0

safe_value
safe_control

WC_S1
WC_S1_S

In order for the core wrapping feature to share the existing functional register in the simple
core wrapping flow, the I/O register and the port must meet the following conditions:

• The register’s data input or output must be connected to a boundary port with a wire or
logic path. The logic path must be sensitized to produce a buffering or inverting effect,
and the sensitization must be controlled by a constant signal type (static value of 0 or
1) on a primary input or output.

• The shared registers must be clocked by a functional clock.

Note:
If the functional clock for the I/O registers also clocks other functional
registers internal to the core, it can disturb the internal core logic
during wrapper chain operation. You should either provide a separate
functional clock for shared wrapper cells, or you can use the
-use_dedicated_wrapper_clock option. For more information, see
Configuring Simple Core Wrapping on page 456.

If you enable the shared wrapper cell style, DFT Compiler inserts shared wrapper cells
wherever possible. Figure 186 illustrates some cases where shared wrapper cells can be
used. The shared wrapper cell is placed at the same hierarchical location as the existing
design register.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

442

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Core Wrapping Concepts

Feedback

Figure 186 Examples of Supported Design Register Sharing

A A WC_S1

WC_S1Z Z

However, if a register does not meet the requirements, a dedicated wrapper cell is used
instead. Figure 187 illustrates some cases where shared wrapper cells cannot be used.

Figure 187 Examples of Unsupported Design Register Sharing

B B WC_D1

Y Y
WC_D1

If a register qualifies as both an input shared register and an output shared register, the
register becomes an input shared register, and a dedicated wrapper cell is placed at the
output port. See Figure 188.

Figure 188 Same Register Qualified as Input and Output Shared Register

A AZ ZWC_S1 WC_D1

If an output shared register has a safe state specified, a WC_S1_S wrapper cell is
normally used. However, if the register’s output drives internal logic in addition to the
output port, the safe state logic inside a WC_S1_S wrapper cell would prevent the register
from reliably driving the internal logic. When DFT Compiler detects this situation, it uses
a WC_S1 shared wrapper cell and moves the safe state logic to the output port. See
Figure 189.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

443

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Core Wrapping Concepts

Feedback

Figure 189 Output Shared Register With Safe State and Internal Fanout Connections

WC_S1

Z
Z

safe_control

Simple Core Wrapper Chains
In the simple core wrapping flow, input and output wrapper cells can be placed in the same
wrapper chain. The design can have a single wrapper chain or multiple wrapper chains.

Figure 190 shows the shift and capture behaviors used for inward-facing operation. In
scan capture, the wrapper cell state-holding loops (shown in blue) are used to block
external values at core inputs.

Figure 190 Inward-Facing Wrapper Chain Behaviors in the Simple Core Wrapping Flow

wrp_si1 wrp_so1

CLK Core logic

test_si1 test_so1

1

0

1

wrp_si1

CLK

wrp_so1

1

0

1

Scan shift Scan capture

Core logic

test_so1test_si1

Figure 191 shows the shift and capture behaviors used for outward-facing operation. In
scan capture, the wrapper cell state-holding loops (shown in blue) are used to block core-
driven values at core outputs.

Figure 191 Outward-Facing Wrapper Chain Behaviors in the Simple Core Wrapping Flow

wrp_si1 wrp_so1

CLK Core logic

test_si1 test_so1
wrp_si1

CLK

wrp_so1

Core logic

test_so1test_si1

1

0

1

0

Scan shift Scan capture

Synopsys® TestMAX™ DFT User Guide
T-2022.03

444

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Core Wrapping Concepts

Feedback

The Maximized Reuse Core Wrapping Flow
The simple core wrapping flow adds dedicated wrapper cells when functional I/O registers
are not directly connected to I/O ports through simple buffering or inverting logic. To
reduce the timing and area impact of core wrapping, the TestMAX DFT tool also provides
a maximized reuse mode that can share I/O registers that are connected to I/O ports
through combinational logic.

The maximized reuse flow is described in the following topics:

• Maximized Reuse Core Wrapper Cells

• Maximized Reuse Core Wrapper Chains

• Maximized Reuse Shift Signals

Note:
A DFTMAX or TestMAX DFT license is required to use the maximized reuse
core wrapping feature.

Maximized Reuse Core Wrapper Cells
The maximized reuse core wrapping flow uses the following wrapper cell types:

• Shared-Register Wrapper Cells

• Dedicated Wrapper Cells

Shared-Register Wrapper Cells
By default, the maximized reuse flow uses shared wrapper cells for all ports that meet the
sharing criteria. Figure 192 shows the internal logic for the maximized reuse WC_S1 (no
safe state) and WC_S1_S (safe state) shared wrapper cells. Their logic structure differs
from the same-named wrapper cells used in the simple core wrapper flow.

Figure 192 The WC_S1 and WC_S1_S Shared Wrapper Cells in Maximized Reuse Flow

0

1
cfo

cto

shift_en

cfi

cti

clk

0

1

cfo

cto

shift_en
cfi

cti

clk

1

0

safe_value
safe_control

WC_S1 WC_S1_S

Synopsys® TestMAX™ DFT User Guide
T-2022.03

445

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Core Wrapping Concepts

Feedback

To minimize area overhead, the maximized reuse flow uses an optimized shared wrapper
cell design that has no state-holding loop. The wrapper cell uses an in-place wrapper
register implementation, which means it has no hierarchy around it. The resulting wrapper
cell functionality is implemented by a typical functional scan-equivalent flip-flop.

The maximized reuse flow also allows functional I/O registers connected to I/O ports
through combinational logic to be shared. Figure 193 shows functional I/O registers that
are replaced by shared wrapper cells when maximized reuse is enabled.

Figure 193 Maximized Reuse Examples
A

B

A

B

WC_S1
Y

WC_S1

WC_S1

WC_S1

Z

Y

Z

Note:
The diagrams in this section show WC_S1 shared wrapper cell instances for
clarity. However, the in-place register implementation used by maximized reuse
core wrapping ensures that the names and locations of the wrapped functional
registers are not disturbed.

The maximized reuse flow provides count-based and logic-depth-based thresholds to limit
how many functional registers can be wrapped for an I/O port.

Using existing functional registers as shared wrapper cells can reduce the area
requirements for core wrapping. Any combinational logic between the shared wrapper
cell and the ports is effectively placed outside the block as far as core wrapping logic is
concerned. This logic must be tested using the EXTEST wrapper mode that exercises the
surrounding logic.

Dedicated Wrapper Cells
In the maximized reuse flow, dedicated wrapper cells are used for I/O ports to be wrapped
that exceed the sharing thresholds. Figure 194 shows the internal logic for the WC_D1
and WC_D1_S dedicated wrapper cells. These are the same dedicated wrapper cell
designs used in the simple core wrapper flow.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

446

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Core Wrapping Concepts

Feedback

Figure 194 WC_D1 and WC_D1_S Wrapper Cells

1

0

0

1
cfo

cto

capture_en
cfi

cti

shift_clk

shift_en

WC_D1

1

0

0

1

cfo

cto

capture_en
cfi

cti

shift_clk

shift_en

1

0

safe_value
safe_control

WC_D1_S

Maximized Reuse Core Wrapper Chains
In the maximized reuse core wrapping flow, input and output wrapper cells are placed
in separate wrapper chains with separate input and output wrapper shift-enable signals.
Because shared wrapper cells have no state-holding loop in this flow, wrapper chains are
kept in scan shift mode as needed to block values from being captured by wrapper cells.

Figure 195 shows the shift and capture behaviors used for inward-facing operation. In
scan capture, input wrapper chains are kept in scan shift (highlighted in blue) to block
external values at core inputs.

Figure 195 Inward-Facing Wrapper Chain Behaviors in the Maximized Reuse Core Wrapping
Flow

wrp_si1

CLK Core logic

test_si1 test_so1

1

0

1

wrp_si1

CLK

1

0

1
Core logic

test_so1test_si1

Scan shift Scan capture

wrp_so1
wrp_so2

wrp_si2

wrp_so1

wrp_si2

wrp_so2

Figure 196 shows the shift and capture behaviors used for outward-facing operation. In
scan capture, output wrapper chains are kept in scan shift (highlighted in blue) to block
core-driven values at core outputs. Core wrapper chain scan-ins are driven with logic 0 to
reduce power consumption.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

447

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Core Wrapping Concepts

Feedback

Figure 196 Outward-Facing Wrapper Chain Behaviors in the Maximized Reuse Core
Wrapping Flow

wrp_si1

CLK Core logic

test_si1 test_so1

wrp_si1

CLK Core logic

test_so1test_si1

1

0

1

0

Scan shift Scan capture

wrp_si2

wrp_so1
wrp_so2

wrp_so1
wrp_so2

wrp_si2
00

These shift and capture behaviors apply to all wrapper cells, shared and dedicated, in the
input and output wrapper chains. The state-holding loops of any dedicated wrapper cells
are not used.

In transition-delay ATPG, the highlighted wrapper chains that are kept in scan shift
generate transitions by shifting the opposite value into a wrapper cell from the preceding
wrapper cell.

Maximized Reuse Shift Signals
In the maximized reuse flow, the scan-enable and wrapper shift signals are conditioned by
the currently active test mode as follows:

• In inward-facing wrapper modes, the input wrapper shift signal is always asserted.

• In outward-facing wrapper modes, the output wrapper shift signal is always asserted.

• In outward-facing wrapper modes, the scan-enable signal for the internal core scan
chains is always asserted (to load constant values into all scan chain elements).

Figure 197 shows an example of the conditioning logic.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

448

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Core Wrapping Concepts

Feedback

Figure 197 Scan-Enable and Wrapper Shift Signals in the Maximized Reuse Flow
test_se

test_mode1
test_mode2

TCM

wrp_if

wrp_of

wrp_of

Core chains

Input
wrapper

chains

Output
wrapper
chains

Input wrapper chain
shift signal

Output wrapper chain
shift signal

The wrapper shift signals going to the input and output wrapper chains are conditioned
separately as shown in the diagram, even when a single wrapper shift signal is used.

See Also

• Defining Wrapper Shift Signals on page 451 for details on defining wrapper shift
signals

Wrapping Three-State and Bidirectional Ports
To prevent contention during core integration, three-state and bidirectional ports are
wrapped differently from regular input and output ports. The wrapper cells are inserted
inward from the driver, at the control and data signals.

For a three-state port, as shown in Figure 198, wrapper cells are added to the data-out
and control paths of the three-state driver or pad cell connected to the port. When the
control path wrapper cell enables the three-state driver, the data-out path wrapper cell
controls the output port value; otherwise, the data-out path wrapper cell has no effect.

Figure 198 Three-State Port Wrapping

Z Z

WC_D1

WC_D1

Three-state drivers always have a safe state that drives the output to a safe high-
impedance state. Safe state specifications for three-state ports are ignored.

For a bidirectional port, as shown in Figure 199, wrapper cells are added to the data-out
and control paths as well as the data-in path of the bidirectional pad connected to the port.
When the control path wrapper cell asserts the bidirectional output driver, the data-out
path controls the port; otherwise, the data-in path wrapper cell is controlled by the port.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

449

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Wrapping a Core

Feedback

Figure 199 Bidirectional Port Wrapping

WC_D1

WC_D1

WC_D1
DIODIO

Bidirectional drivers always have a safe state that places the driver cell in output mode,
with a data value driven by the output data wrapper cell. Safe state specifications for
bidirectional ports are ignored

The three-state and bidirectional control and data paths use shared or dedicated wrapper
cells as determined by the current wrapping configuration. In the maximized reuse flow,
the tool always uses a threshold of 1 for the driver control signals.

For degenerate three-state and bidirectional ports, in which the driver cell functionality is
simplified using constant values, only the nonconstant signals are wrapped.

AutoFixing of three-state and bidirectional drivers is independent of wrapper cell insertion.
AutoFixed drivers are still conditioned by the AutoFix logic during any scan shift activity
(wrapper or core logic). For more information, see Uncontrollable Three-State Bus Enable
Signals on page 333.

Wrapping a Core
Core wrapping is performed during DFT insertion. Core wrapping configuration is
described in the following topics:

• Enabling Core Wrapping

• Defining Wrapper Shift Signals

• Defining Dedicated Wrapper Clock Signals

• Configuring Global Wrapper Settings

• Configuring Port-Specific Wrapper Settings

• Controlling Wrapper Chain Count and Length

• Configuring Simple Core Wrapping

• Configuring Maximized Reuse Core Wrapping

• Determining Power Domains for Dedicated Wrapper Cells

• Using the set_scan_path Command With Wrapper Chains

Synopsys® TestMAX™ DFT User Guide
T-2022.03

450

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Wrapping a Core

Feedback

• Previewing the Wrapper Cells

• Post-DFT DRC Rule Checks

Enabling Core Wrapping
To use core wrapping, you must include the DesignWare dw_foundation.sldb synthetic
library in your link library list. This synthetic library contains the wrapper cell designs.

dc_shell> set link_library {* my_tech_lib.db dw_foundation.sldb}
Then, to enable core wrapping after loading and linking the design, use the following
command:

dc_shell> set_dft_configuration -wrapper enable

Defining Wrapper Shift Signals
The wrapper shift signal enables scan data to shift through wrapper chains, just as a scan-
enable signal does for scan chains. You can use any of the following wrapper shift signal
configurations:

• Using a DFT-Created Wrapper Shift Signal

• Defining a Single Dedicated Wrapper Shift Signal

• Reusing an Existing Scan-Enable Signal as the Wrapper Shift Signal

• Defining Separate Input and Output Wrapper Shift Signals

• Defining Clock-Domain-Based Wrapper Shift Signals

• Defining Input and Output Clock-Domain-Based Wrapper Shift Signals

Using a DFT-Created Wrapper Shift Signal

By default, DFT Compiler creates a single wrapper shift signal named wrp_shift.

Defining a Single Dedicated Wrapper Shift Signal

To define a single dedicated wrapper shift signal, define the signal source as a wrp_shift
signal:

dc_shell> set_dft_signal -view spec -type wrp_shift \
 -port my_wrp_shift

Synopsys® TestMAX™ DFT User Guide
T-2022.03

451

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Wrapping a Core

Feedback

Reusing an Existing Scan-Enable Signal as the Wrapper Shift Signal

To reuse an existing scan-enable signal as the wrapper shift signal, define the signal
source as both a ScanEnable signal and wrp_shift signal:

dc_shell> set_dft_signal -view spec -type ScanEnable \
 -port my_test_se
dc_shell> set_dft_signal -view spec -type wrp_shift \
 -port my_test_se
Defining Separate Input and Output Wrapper Shift Signals

To use separate input and output wrapper shift signals for separate input and output
wrapper chains, define two wrp_shift signals with the set_dft_signal command, then
specify them with the -input_shift_enable and -output_shift_enable options of the
set_wrapper_configuration command:

dc_shell> set_dft_signal -view spec \
 -type wrp_shift -port {wrp_ishift wrp_oshift}

dc_shell> set_wrapper_configuration -class core_wrapper \
 -mix_cells false \
 -input_shift_enable wrp_ishift \
 -output_shift_enable wrp_oshift
The -input_shift_enable wrapper shift signal is used for the input wrapper cells, and
the -output_shift_enable wrapper shift signal is used for the output wrapper cells. You
can specify only a single signal for each option.

Defining Clock-Domain-Based Wrapper Shift Signals

To define a clock-domain-based wrapper shift signal, which is used only for wrapper cells
clocked by a particular clock, specify the test clock source with the -connect_to option of
the set_dft_signal command. For example,

dc_shell> # define test clocks
dc_shell> set_dft_signal -view existing_dft -type ScanClock \
 -timing {45 55} -port {CLK1A CLK1B CLK2}

dc_shell> # define per-clock-domain wrapper shift signals
dc_shell> set_dft_signal -view spec -type wrp_shift \
 -port WRP_SHIFT1 -connect_to {CLK1A CLK1B}
dc_shell> set_dft_signal -view spec -type wrp_shift \
 -port WRP_SHIFT2 -connect_to {CLK2}
This syntax is similar to that used for clock-domain-based scan-enable signals.

For any wrapper cell clocks not included in a clock-domain-based wrapper shift signal
definition, the tool uses the first-defined wrapper shift signal.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

452

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Wrapping a Core

Feedback

See Also

• Defining Dedicated Scan-Enable Signals for Scan Cells on page 228 for related
information about clock-domain-based scan-enable signals

Defining Input and Output Clock-Domain-Based Wrapper Shift Signals

In the simple wrapping flow, you cannot define input and output clock-domain-based
wrapper shift signals.

In the maximized reuse flow, you can define such signals by using the input_wrp_shift
and output_wrp_shift signal types. For details, see Defining Input/Output Clock-
Domain-Based Wrapper Shift Signals on page 469.

Defining Dedicated Wrapper Clock Signals
If a dedicated wrapper clock signal is needed, by default, DFT Compiler creates
a wrapper clock signal named wrp_clock. The clock defaults to a 10 percent duty
cycle (with the rising edge and falling edge at 45 percent and 55 percent of the
default clock period, respectively). You can change the default timing by setting the
test_wrapper_new_wrp_clock_timing variable.

If you have an existing port to use for this wrapper clock signal, you can define it with the
set_dft_signal command:

dc_shell> set_dft_signal -view spec -type wrp_clock \
 -port port_name
By default, this clock signal uses the default wrapper clock timing (10 percent duty cycle
or as specified by the test_wrapper_new_wrp_clock_timing variable). You can also
specify signal-specific timing by defining an existing_dft view of the wrapper clock
signal:

dc_shell> set_dft_signal -view existing_dft -type wrp_clock \
 -timing {45 55} -port port_name
By default, DFT Compiler creates any test-mode ports needed to provide the test-mode
encodings for the functional, scan, and wrapper modes. If you have existing ports to
use for these test-mode signals, you can use the set_dft_signal to define them as
TestMode signals.

Configuring Global Wrapper Settings
The set_wrapper_configuration command allows you to specify global configuration
parameters that apply to the entire wrapper chain. You must use the -class
core_wrapper option to configure core wrapping.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

453

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Wrapping a Core

Feedback

By default, DFT Compiler does not create safe state wrapper cells. To specify a safe
state value for all wrapper cells in the wrapper chain, use the -safe_state option of the
set_wrapper_configuration command:

dc_shell> set_wrapper_configuration -class core_wrapper \
 -safe_state 1

Configuring Port-Specific Wrapper Settings
The set_wrapper_configuration command applies to all ports in the design.
To specify the wrapper cell characteristics of specific ports, you can use the
set_boundary_cell command, which provides many of the same options as the
set_wrapper_configuration command.

For example, to specify safe state values for specific ports, use the -safe_state option of
the set_boundary_cell command:

dc_shell> set_boundary_cell -class core_wrapper \
 -ports port_list -type WC_D1_S -safe_state 0 | 1
Note:

When using the set_boundary_cell command, you must explicitly provide the
wrapper cell type in the specification. The specified type should match the safe
state and shared register characteristics for that port. In the preceding example,
a dedicated wrapper cell is used.

To prevent the insertion of wrapper cells for a specific list of ports, use the following
command:

dc_shell> set_boundary_cell -class core_wrapper \
 -ports port_list -type none
This might be needed in cases where an output port drives downstream clock pins or
asynchronous set or reset signals. If the output port is wrapped, toggle activity in the
wrapper cell might cause unintended activity in the downstream logic. Since excluding
ports from the wrapper chain reduces test coverage, you should use this capability only
when necessary.

To specify a dedicated wrapper cell for ports that would otherwise use a shared wrapper
cell, specify a WC_D1 or WC_D1_S wrapper cell with the set_boundary_cell command:

dc_shell> # no safe state:
dc_shell> set_boundary_cell -class core_wrapper \
 -ports port_list -type WC_D1

dc_shell> # safe state:
dc_shell> set_boundary_cell -class core_wrapper \
 -ports port_list -type WC_D1_S -safe_state safe_value

Synopsys® TestMAX™ DFT User Guide
T-2022.03

454

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Wrapping a Core

Feedback

Note:
You cannot use the set_boundary_cell command to force a shared wrapper
cell type to be used for a port if the I/O register does not meet the requirements
for a shared wrapper cell or if sharing has not been enabled with the -style
shared option.

To specify that a particular wrapper clock is to be used for the dedicated wrapper cells of
specific ports, use the following command:

dc_shell> set_boundary_cell -class core_wrapper -type WC_D1 \
 -shift_clk clock_name -ports port_name

Controlling Wrapper Chain Count and Length
You can use the following options of the set_wrapper_configuration command to
control the count or maximum length of the wrapper chains:

dc_shell> set_wrapper_configuration -class core_wrapper \
 -chain_count W ;# wrapper chain count

dc_shell> set_wrapper_configuration -class core_wrapper \
 -max_length X ;# wrapper chain maximum length
If you also specify a chain count with the set_scan_configuration command:

dc_shell> set_scan_configuration -chain_count N
then this value N is the total chain count for both wrapper chains and internal chains.
The tool architects the wrapper chains first, then it architects the internal chains using the
remainder of the total allocation N. Internal scan cells and wrapper cells cannot be mixed
on the same chain.

If any of the following criteria are true:

• Input and output wrapper cell mixing is disabled (set_wrapper_configuration
-mix_cells false)

• The maximized reuse flow is used, which disables input and output wrapper cell mixing

• User-specified wrapper scan path specifications exist (set_scan_path -class
core_wrapper)

then the tool architects the wrapper chains first, then it architects the internal
chains. In this case, wrapper chains and internal chains are not length-balanced
by default. You should explicitly use both the set_wrapper_configuration and
set_scan_configuration commands to configure an overall length-balanced
configuration. In outward-facing modes, use only the set_wrapper_configuration
command to configure the wrapper chains.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

455

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Wrapping a Core

Feedback

If none of these criteria are true, then the tool architects the wrapper chains and
internal chains together. In this case, if you do not specify a count or maximum length
specifically for the wrapper chains, the wrapper chains and internal chains are length-
balanced together using the set_scan_configuration -chain_count or -max_length
specification. However, you can still use the set_wrapper_configuration command to
specify a particular wrapper chain count or maximum length.

If a chain count and chain length specification are both applied with the same command,
the length requirement is used and the count requirement is ignored.

Wrapper chains follow the same clock mixing requirements as normal scan chains. To
allow differently clocked wrapper cells to be mixed in the same wrapper chain, enable
clock mixing with the -clock_mixing option of the set_scan_configuration command.
For example,

dc_shell> set_scan_configuration -clock_mixing mix_clocks
This can improve length balancing. Lock-up latches are inserted between wrapper cells
that do not use the same clock. The default for the -clock_mixing option is no_mix,
which creates separate wrapper chains for each wrapper clock domain.

Configuring Simple Core Wrapping
Configuration of the simple core wrapping functionality is described in the following topics:

• Configuring Dedicated Wrapper Cell Clocks

• Using Shared Wrapper Cells

• Configuring Shared Wrapper Cell Clocks

• Using In-Place Shared Wrapper Cells

• Creating Separate Input and Output Wrapper Chains

Configuring Dedicated Wrapper Cell Clocks
By default, simple core wrapping uses dedicated wrapper cells that use a dedicated
wrapper clock. However, you can use system clocks for dedicated wrapper cells by setting
the following option:

dc_shell> set_wrapper_configuration \
 -use_system_clock_for_dedicated_wrp_cells enable

Synopsys® TestMAX™ DFT User Guide
T-2022.03

456

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Wrapping a Core

Feedback

In this case, the tool attempts to identify and use the dominant clock domain associated
with each port using the following rules.

• A port’s dedicated wrapper cell uses the same clock as the flip-flops associated with
that port.

• If the port is associated with flip-flops of multiple clock domains, the dominant clock is
used.

• If a dominant clock is not found, any user-specified wrapper clock, defined using the
set_dft_signal -view spec -type wrp_clock command, is used.

• If no user-specified wrapper clock has been defined, a dedicated wrapper clock is
created and used.

Using Shared Wrapper Cells
By default, the simple core wrapping flow inserts dedicated wrapper cells to
wrap input and output ports. If you have existing functional I/O registers that you
want to use for shared wrapper cells, specify the -style shared option of the
set_wrapper_configuration command:

dc_shell> set_wrapper_configuration -class core_wrapper \
 -style shared
When the shared wrapper cell style is enabled, by default, the tool uses dedicated wrapper
cells as a fallback for any ports that do not meet the sharing criteria. To prevent the
fallback insertion of dedicated wrapper cells and leave these ports unwrapped instead, use
the -dedicated_cell_type none option of the set_wrapper_configuration command:

dc_shell> set_wrapper_configuration -class core_wrapper \
 -style shared -dedicated_cell_type none
DFT Compiler automatically selects the type of wrapper cell (WC_D1, WC_D1_S, WC_S1,
or WC_S1_S) based on the capabilities needed for each wrapper cell.

If the shared wrapper cells span multiple clock domains, the cells are placed in separate
wrapper chains unless clock mixing is enabled.

Configuring Shared Wrapper Cell Clocks
For shared wrapper cells, core wrapping keeps the register’s existing functional clock
signal. This can disturb the internal core logic during boundary cell operation. You
should either provide a separate functional clock for shared wrapper cells, or use the
-use_dedicated_wrapper_clock option of the set_wrapper_configuration or
set_boundary_cell command:

dc_shell> # global:
dc_shell> set_wrapper_configuration -class core_wrapper \
 -style shared \

Synopsys® TestMAX™ DFT User Guide
T-2022.03

457

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Wrapping a Core

Feedback

 -use_dedicated_wrapper_clock true

dc_shell> # per-port:
dc_shell> set_boundary_cell -class core_wrapper \
 -ports port_list -type WC_S1 \
 -use_dedicated_wrapper_clock true
When enabled, this option uses the dedicated wrapper clock signal when wrapper test
modes are active, but retains the original functional clock signal for other modes. See
Figure 200.

Figure 200 MUXing Dedicated Wrapper Clocks for Shared Wrapper Cells

A A WC_S1

CLK CLK

wrp_clock

Using In-Place Shared Wrapper Cells
When a shared wrapper cell is used for a port, DFT Compiler replaces, or swaps, the
entire I/O register for that port with a shared wrapper cell, as shown in Figure 186 on
page 443. This process introduces a level of hierarchy around the register and renames
the register cell itself.

To preserve the original hierarchical instance path of the register, use the
-register_io_implementation in_place option of the set_wrapper_configuration
or set_boundary_cell commandset_core_wrapper configuration command-register_io_implementationcommandsset_core_wrapper_configuration:

dc_shell> # global:
dc_shell> set_wrapper_configuration -class core_wrapper \
 -style shared \
 -register_io_implementation in_place

dc_shell> # per-port:
dc_shell> set_boundary_cell -class core_wrapper \
 -ports port_list -type WC_S1 \
 -register_io_implementation in_place
This option implements the shared wrapper cell functionality by using discrete logic gates
around the existing I/O register, as shown in Figure 201. The location of the original I/O
register is not disturbed.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

458

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Wrapping a Core

Feedback

Figure 201 Shared Wrapper Cell Using In-Place Register Implementation

Z_reg
1

0

0

1
ZZ_reg

Z

Creating Separate Input and Output Wrapper Chains
By default, the simple wrapper mode inserts a wrapper chain with the following
characteristics:

• Input and output wrapper cells can be mixed on the same scan chain.

• Input and output wrapper cells share the same wrapper shift signal.

To prevent input and output wrapper cells from being mixed on the same scan chains, use
the -mix_cells false option of the set_wrapper_configuration command:

dc_shell> set_wrapper_configuration -class core_wrapper \
 -mix_cells false
If you use a single wrapper shift signal, it is used for both the input and output wrapper
chains. You can also define separate input and output wrapper chain shift signals, as
described in Defining Separate Input and Output Wrapper Shift Signals on page 452.

Configuring Maximized Reuse Core Wrapping
The maximized reuse feature considers how many registers exist in the fanout from an
input port or the fanin to an output port. A single port might have many registers in its fanin
or fanout, which would require many shared wrapper cells to fully wrap the port. If the
number of fanin or fanout registers for a port exceeds a reuse threshold value, a single
dedicated wrapper cell is used for that port.

Configuration of the maximized reuse core wrapping functionality is described in the
following topics:

• Enabling Maximized Reuse Core Wrapping

• Applying a Register Reuse Threshold

• Applying a Combinational Depth Threshold

• Specifying Port-Specific Maximized Reuse Behaviors

• Special Cases for Register Reuse

Synopsys® TestMAX™ DFT User Guide
T-2022.03

459

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Wrapping a Core

Feedback

• Using Dedicated Wrapper Cells

• Configuring Dedicated Wrapper Cell Clocks

• Defining Input/Output Clock-Domain-Based Wrapper Shift Signals

• Including Additional Scan Cells in Input and Output Wrapper Chains

• Using the Pipelined Scan-Enable Feature

• Low-Power Maximized Reuse Features

• Hierarchical Core Wrapping

• Limitations of the Maximized Reuse Flow

Enabling Maximized Reuse Core Wrapping
To enable the maximized reuse feature, use the following command:

dc_shell> set_wrapper_configuration -class core_wrapper \
 -maximize_reuse enable -reuse_threshold N
where the value of N defines the reuse threshold. The default of N is 1.

With the -maximize_reuse option enabled, when the number of registers encountered
from an input or to an output exceeds the reuse threshold, a dedicated wrapper cell is
added to the port. If the number of registers is less than this threshold, the tool can use
these registers for wrapping the core. If a reuse threshold value of zero is specified, the
tool converts all I/O registers to shared wrapper cells and no dedicated wrapper cells are
used unless specified by the user. For more information about how the reuse threshold is
computed, see Applying a Register Reuse Threshold on page 461.

When the -maximize_reuse option is enabled, the tool sets the following options
automatically:

• -style shared

• -register_io_implementation in_place

• -mix_cells false

• -use_system_clock_for_dedicated_wrp_cells enable
Also, you should not use the following options of the set_wrapper_configuration
command with the -maximize_reuse option:

• -delay_test

• -core

Synopsys® TestMAX™ DFT User Guide
T-2022.03

460

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Wrapping a Core

Feedback

• -shared_cell_type

• -shared_design_name

Applying a Register Reuse Threshold
When applying the reuse threshold value to a port, the tool determines the number of
registers associated with that port. If the number of registers for a port does not exceed
the reuse threshold, the registers are replaced with shared wrapper cells. If the number of
registers exceeds the reuse threshold, a dedicated wrapper cell is placed at the port.

Computing Reuse Thresholds for Input Ports

For an input port, the tool determines the number of registers in the fanout of the port. In
addition, it includes any internal registers that feed data pins or synchronous set/reset pins
of the fanout registers. Figure 202 shows an input port with an associated register count of
three.

Figure 202 Input Port Register Count Computation Example

A

Input registers
associated with A = 3

Internal
register

In this example, if the reuse threshold is set to a value of three or higher, the tool replaces
the registers with shared wrapper cells, as shown in Figure 203.

Figure 203 Input Port Registers After Wrapper Cell Replacement

A

WC_S1

WC_S1

WC_S1
Internal
register

The tool places the shared wrapper cells for the fanout registers in the input wrapper
chain. Because any internal registers feeding these fanout registers capture values from
the core logic instead of input ports, the tool places the shared wrapper cells for these
internal registers in the output wrapper chain.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

461

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Wrapping a Core

Feedback

In the maximized reuse flow, dedicated wrapper cells are added to input ports according to
the following rules:

• If the sum of the input fanout registers and the internal registers feeding them exceeds
the reuse threshold, then a dedicated wrapper cell is added to the input port.

• When the input register cells exceed the reuse threshold for a bidirectional port,
dedicated wrapper cells are added to the data-out, enable, and data-in paths.

• If an input port is associated with a CTL-modeled cell, then a dedicated wrapper cell
is added to the port. See Wrapping Ports Associated With CTL-Modeled Cells on
page 466 for details.

A warning is issued if all registers associated with an input port do not use the same clock.

Computing Reuse Thresholds for Output Ports

For an output port, the tool determines the number of registers in the fanin of the port. It
does not include any additional surrounding registers. Figure 204 shows an output port
with an associated register count of two.

Figure 204 Output Port Register Count Computation Example

Y

Output registers to Y = 2

In this example, if the reuse threshold is set to a value of two or higher, the tool replaces
the registers with shared wrapper cells, as shown in Figure 205.

Figure 205 Output Port Registers After Wrapper Cell Replacement

Y

WC_S1

WC_S1

The tool places the shared wrapper cells for the fanin registers in the output wrapper
chain.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

462

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Wrapping a Core

Feedback

In the maximized reuse flow, dedicated wrapper cells are added to output ports according
to the following rules:

• If the sum of the output fanin registers exceeds the reuse threshold, then a dedicated
wrapper cell is added to the output port.

• When the number of the output register cells exceeds the reuse threshold value for a
three-state output port, dedicated wrapper cells are added to both data-out and enable
paths.

• If an output port is associated with a CTL-modeled cell, then a dedicated wrapper
cell is added to the port. See Wrapping Ports Associated With CTL-Modeled Cells on
page 466 for details.

• For three-state and bidirectional ports, only a functional register that directly controls
the pad is considered as a shared wrapper cell for the enable path of the pad. There
can be inverting or noninverting buffers between the register and the pad enable pin. If
no such register is found, a dedicated wrapper cell is added at the driver cell enable pin
to control the port.

A warning is issued if all registers associated with an output port do not use the same
clock.

Registers Associated With Multiple Ports

If the same register is associated with multiple ports, the register is replaced with a shared
wrapper cell if any port meets the threshold. In Figure 206, register AB is in the fanout
of ports A and B. Input port A has two associated registers, and input port B has three
associated registers.

Figure 206 Register in Fanout of Multiple Ports

A

A1

B

AB

B1

B2

Input registers from A = 2

Input registers from B = 3

In this example, if the reuse threshold is set to a value of two, the tool replaces all registers
for input port A with shared wrapper cells, and it inserts a dedicated wrapper cell at input
port B, as shown in Figure 207. Register AB is replaced with a shared wrapper cell to
completely wrap port A, even though it is also in the fanout of the dedicated wrapper cell
for input port B.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

463

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Wrapping a Core

Feedback

Figure 207 Register in Fanout of Multiple Ports After Wrapper Cell Replacement

A

B
B1

B2

WC_S1

WC_S1

WC_D1

Registers that become shared wrapper cells for one port do not affect the associated
register count for other ports. In Figure 207, the associated register count for input port B
is three even though register AB is wrapped for input port A.

If a register is classified as both an input shared register and an output shared register, the
register becomes an input shared register and is removed from the output shared register
list. Unlike the simple core-wrapping flow, no dedicated wrapper cell is placed at the output
port.

Applying a Combinational Depth Threshold
For a core-wrapped design, any logic that exists between the wrapper chain and
the I/O ports becomes logic that is external to the block for testing purposes. The
-reuse_threshold option of the set_wrapper_configuration command applies a
maximum fanout-breadth or fanin-breadth threshold limit for input and output shared
wrapper cells, respectively. However, this reuse threshold only indirectly limits the logic
depth that can exist outside the wrapper chain.

You can use the -depth_threshold option of the set_wrapper_configuration
command to directly specify the maximum number of combinational cells, including buffers
and inverters, that can exist between a port and its associated registers. For example,

dc_shell> set_wrapper_configuration -class core_wrapper \
 -depth_threshold 2
If this depth is exceeded, a dedicated wrapper cell is used for that port. This can be used
to prevent too much logic from being placed on the external side of the wrapper chain.

Figure 208 shows the wrapper cell insertion behavior when the -depth_threshold value
is set to 1.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

464

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Wrapping a Core

Feedback

Figure 208 Core Wrapping With a Combinational Depth Threshold Value of 1

A A
WC_S1

B
B WC_D1

Specifying Port-Specific Maximized Reuse Behaviors
The reuse threshold can be set on a port-by-port basis with the set_boundary_cell
command:

dc_shell> set_boundary_cell -class core_wrapper \
 -reuse_threshold N -ports {port_list}
This command sets the reuse threshold value to N (where N >= 0) for all ports in the
port_list specification.

To ignore the reuse threshold and force the use of a dedicated wrapper cell for one or
more ports, use the following command:

dc_shell> set_boundary_cell -class core_wrapper \
 -ports port_list -type WC_D1
If a port exceeds the reuse threshold and you want to manually specify some port-
associated registers as shared wrapper cells, use the following command:

dc_shell> set_boundary_cell -class core_wrapper \
 -include {IO_register_cell_list} -ports {port_name}
This command causes the cells listed in IO_register_cell_list associated with the
port port_name to be used as shared wrapper cells.

To manually specify some registers as shared wrapper cells for all associated ports that
exceed the reuse threshold, omit the -ports option:

dc_shell> set_boundary_cell -class core_wrapper \
 -include {IO_register_cell_list}
When using the -include option with the -ports option, any specified ports exceeding
the reuse threshold do not get a dedicated wrapper cell. When using the -include option
without the -ports option, all ports associated with the specified registers exceeding the
reuse threshold do not get a dedicated wrapper cell. You can exceed the reuse threshold
when manually specifying shared wrapper cell registers with this option.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

465

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Wrapping a Core

Feedback

If a port meets the reuse threshold and you want to manually exclude some port-
associated registers as shared wrapper cells, use the following command:

dc_shell> set_boundary_cell -class core_wrapper
 -exclude {IO_register_cell_names} -ports {port_name}
This command causes the registers listed in IO_register_cell_names to be excluded
for the port port_name. If a register is excluded for the specified port but qualifies to be
wrapped for another port, the register is still wrapped.

To manually exclude some registers as shared wrapper cells for all associated ports that
meet the reuse threshold, omit the -ports option:

dc_shell> set_boundary_cell -class core_wrapper
 -exclude {IO_register_cell_names}
Note:

The -include and -exclude options of the set_boundary_cell command can
cause a port to become partially wrapped.

Special Cases for Register Reuse
In some cases, ports are associated with logic constructs that require special-case
handling for register reuse.

Wrapping Ports Associated With CTL-Modeled Cells

If your design contains CTL-modeled synchronizer registers, they can be reused as
shared wrapper cells. See Wrapping Cores With Synchronizer Registers on page 491.

Other CTL-modeled cells, such as memories or DFT-inserted cores, cannot be used as
shared wrapper cells. When a port is associated with a CTL-modeled cell, as shown in the
examples in Figure 209 and Figure 210, a dedicated wrapper cell is added to the port.

Figure 209 Core Wrapping of Input Ports Associated With CTL-Modeled Cells

A
A Y

CTL

A

A Y
CTL

A
A Y

CTLWC_D1

A

A Y
CTL

WC_D1

Figure 210 Core Wrapping of Output Ports Associated With CTL-Modeled Cells

Y

A Y
CTL

Y

A Y
CTL

WC_D1

Synopsys® TestMAX™ DFT User Guide
T-2022.03

466

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Wrapping a Core

Feedback

In addition, a warning message is issued:

Warning: Port 'DACK' is connected to cell 'IP_CORE', which is represented
by a CTL model; a dedicated wrapper cell is added to the port.
(TEST-1184)

The scan clocks of the CTL-modeled cell are considered when determining the dominant
system clock to use for the dedicated wrapper cell.

If the CTL-modeled cell has a netlist and there is no path from the port to a register inside
the CTL-modeled cell, this behavior does not apply. In other words, connections to clock,
reset, or DFT-related pins of a CTL-modeled cell do not force a dedicated wrapper cell.

Port Wrapping and Other Black-Box Cells

Black-box cells without CTL models do not affect core wrapping. Wrapper cells are not
added unless needed by other design logic. See Figure 211.

Figure 211 Black-Box Cell With No CTL Model

A
A Y
BBOX A

WC_S1

Y
WC_S1

Y

A Y
BBOX

Note:
If LogicBIST self-test is enabled, dedicated wrapper cells are added as
described in Configuring Wrapper Chain Isolation Logic on page 1028.

Wrapping Ports Associated With Clock-Gating Cells

A dedicated wrapper cell is added to an input port that drives the enable signal of a clock-
gating cell. In Figure 212, an integrated clock-gating cell has both a functional enable pin
and a test-mode pin. A dedicated wrapper cell is added for the functional enable signal
driven by input port CLKEN. No wrapper cells are inserted for the clock signal or the global
test-mode signal.

Figure 212 Integrated Clock Gating Cell Enable Signals

CLK

CLKEN
SE TEST

EN

ICG CLK

CLKEN
SE TEST

EN

ICG

WC_D1

Synopsys® TestMAX™ DFT User Guide
T-2022.03

467

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Wrapping a Core

Feedback

A warning message is issued if such a clock-gating enable signal is detected:

Warning: Port 'CLKEN' is connected to a clock gating cell 'UICG';
 a dedicated wrapper cell is added to the port. (TEST-1183)

Port Wrapping and Feedthrough Paths

Feedthrough paths do not affect core wrapping. Wrapper cells are not added unless
needed by other design logic. See Figure 213.

Figure 213 Combinational Feedthrough Paths

A

Y
B

WC_S1

An information message is issued if a feedthrough port is detected and no dedicated
wrapper cell is manually specified for the port:

Information: No I/O registers are found for port 'B';
 not adding any dedicated wrapper cells to the port. (TEST-1180)
Information: No I/O registers are found for port 'Y';
 not adding any dedicated wrapper cells to the port. (TEST-1180)

Note:
If LogicBIST self-test is enabled, dedicated wrapper cells are added as
described in Configuring Wrapper Chain Isolation Logic on page 1028.

Using Dedicated Wrapper Cells
Dedicated wrapper cells are used for any ports that exceed the reuse or combinational
depth thresholds. You can also manually force the use of a dedicated wrapper cell with the
following command:

dc_shell> set_boundary_cell -class core_wrapper \
 -ports port_list -type WC_D1
In the simple core-wrapping flow, dedicated wrapper cells use the dedicated wrapper
clock. However, in the maximized reuse flow, the tool attempts to identify the dominant
clock domain associated with the port and uses that clock for the dedicated wrapper cell.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

468

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Wrapping a Core

Feedback

The following rules guide the automatic selection of a clock for dedicated wrapper cells in
the maximized reuse flow:

• A port’s dedicated wrapper cell uses the same clock as the flip-flops associated with
that port.

• If the port is associated with flip-flops of multiple clock domains, the dominant clock is
used.

• If a dominant clock is not found, any user-specified wrapper clock, defined using the
set_dft_signal -view spec -type wrp_clock command, is used.

• If no user-specified wrapper clock has been defined, a dedicated wrapper clock is
created and used.

Configuring Dedicated Wrapper Cell Clocks
There are two ways to override automatic clock selection for dedicated wrapper cells:

• To specify a particular wrapper clock to be used for the dedicated wrapper cells of
specific ports, use the following command:

dc_shell> set_boundary_cell -class core_wrapper -type WC_D1 \
 -shift_clk clock_name -ports port_name

• To specify that a dedicated wrapper clock is to be used for all dedicated wrapper cells,
use the following command:

dc_shell> set_wrapper_configuration -class core_wrapper \
 -use_system_clock_for_dedicated_wrp_cells disable

See Also

• Defining Dedicated Wrapper Clock Signals on page 453 for more information about
defining dedicated wrapper clock signals

Defining Input/Output Clock-Domain-Based Wrapper Shift Signals
Two signal types, input_wrp_shift and output_wrp_shift, allow you to define clock-
domain-based input and output wrapper shift signals. For example,

define per-clock-domain input wrapper shift signals
set_dft_signal -view spec -type input_wrp_shift \
 -port WRP_ISHIFT1 -connect_to CLK1
set_dft_signal -view spec -type input_wrp_shift \
 -port WRP_ISHIFT2 -connect_to CLK2

define per-clock-domain output wrapper shift signals
set_dft_signal -view spec -type output_wrp_shift \
 -port WRP_OSHIFT1 -connect_to CLK1

Synopsys® TestMAX™ DFT User Guide
T-2022.03

469

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Wrapping a Core

Feedback

set_dft_signal -view spec -type output_wrp_shift \
 -port WRP_OSHIFT2 -connect_to CLK2
Note:

The input_wrp_shift and output_wrp_shift signal types can be used
only with the -connect_to option as part of a clock-domain-based signal
specification, and they can be used only in the maximized-reuse flow.

See Also

• SolvNet article 2138931, “Why Are There Two Ways to Specify Input and Output
Wrapper Shift Signals?” for more information about input and output wrapper shift
signals

Including Additional Scan Cells in Input and Output Wrapper
Chains
When wrapping a core, you can include additional scan cells in the input and output
wrapper chains by using the -input_wrapper_cells and -output_wrapper_cells
options, respectively. For example,

dc_shell> set_wrapper_configuration \
 -maximize_reuse enable \
 -input_wrapper_cells \
 [get_object_name [get_cells IN_CFG*reg]] \
 -output_wrapper_cells \
 [get_object_name [get_cells OUT_CFG*reg]]
The specified cells are reclassified from internal scan cells to shared wrapper cells in all
test modes. This feature requires that the maximized-reuse feature also be enabled.

Note the following limitations of these options:

• The input is accepted as a simple list. Wildcards and collections are not supported,
although you can use the get_object_name command to convert a collection to a list.

• No checking is performed for invalid object specifications.

Using the Pipelined Scan-Enable Feature
The pipelined scan-enable feature can be used in the maximized reuse flow. By default,
two signals are used to enable shifts for designs using wrapper cells:

• test_se – Pipelined, used for internal flip-flops

• wrp_shift – Pipelined, used for wrapper flip-flops (shared or dedicated)

When the pipelined scan-enable feature is enabled, pipelined scan-enable structures are
added to both of these signals. A pipelined scan-enable cell is used for each clock domain

Synopsys® TestMAX™ DFT User Guide
T-2022.03

470

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnet.synopsys.com/retrieve/2138931.html
https://solvnet.synopsys.com/retrieve/2138931.html

Chapter 11: Wrapping Cores
Wrapping a Core

Feedback

used by the input and output wrapper cells, with pipeline registers clocked by that clock.
Pipelined scan-enable cells are not shared between input and output wrapper cells.

For example, if the design has two clock domains driving input wrapper cells and three
clock domains driving output wrapper cells and if the number of wrapper cells within each
of these domains meets the required pipeline fanout limit, a total of five pipelined scan-
enable cells are created. Two of the pipelined scan-enable cells drive input wrapper cells;
the remaining three pipelined scan-enable cells drive output wrapper cells. To create this
pipelined structure, use the following commands:

dc_shell> set_dft_configuration -wrapper enable

dc_shell> set_wrapper_configuration -class core_wrapper \
 -maximize_reuse enable

dc_shell> set_scan_configuration \
 -pipeline_scan_enable true -pipeline_fanout_limit P
To use the same scan-enable for all registers, define the signal as both a scan-enable
signal and a wrapper shift signal using the set_dft_signal command:

dc_shell> set_dft_signal -view spec -type ScanEnable -port SE

dc_shell> set_dft_signal -view spec -type wrp_shift -port SE

dc_shell> set_dft_configuration -wrapper enable

dc_shell> set_wrapper_configuration -class core_wrapper \
 -maximize_reuse enable

dc_shell> set_scan_configuration \
 -pipeline_scan_enable true -pipeline_fanout_limit P
In this case, pipelined scan-enable cells are not shared between internal cells, input
wrapper cells, or output wrapper cells.

To use separate scan-enables for input and output wrapper chains, use the following
commands:

dc_shell> set_dft_signal -view spec -type ScanEnable -port SE

dc_shell> set_dft_signal -view spec -type wrp_shift -port WSE_I

dc_shell> set_dft_signal -view spec -type wrp_shift -port WSE_O

dc_shell> set_dft_configuration -wrapper enable

dc_shell> set_wrapper_configuration -class core_wrapper \
 -maximize_reuse enable \
 -input_shift_enable WSE_I -output_shift_enable WSE_O

Synopsys® TestMAX™ DFT User Guide
T-2022.03

471

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Wrapping a Core

Feedback

dc_shell> set_scan_configuration \
 -pipeline_scan_enable true -pipeline_fanout_limit P
Note:

A single global_pipe_se signal is used for both internal and wrapper chains for
all of these scenarios.

See Also

• The Pipelined Scan-Enable Architecture on page 344 for more information about the
pipelined scan-enable feature

Low-Power Maximized Reuse Features
The following topics describe low-power features available in the maximized reuse flow.

Loading Constant Core Scan Data in EXTEST Mode
In the maximized reuse flow, to minimize power consumption in wrp_of (EXTEST) mode,
all core scan chain cells are loaded with logic 0. This reduces toggle activity inside the
block during outward-facing (EXTEST) modes. To accomplish this, the logic shown in
Figure 214 drives the first scan cell inputs of the internal scan chains.

Figure 214 Scan Data Gating Logic for Low-Power EXTEST

wrp_of

test_si1
D
SI
SE

Q D
SI
SE

Q D
SI
SE

Q
Scan chain

TCM

This feature is part of the wrapped core scan architecture; there is no option that controls
it.

Gating Dedicated Wrapper Cell Clocks in Non-Wrapper Modes
The tool can insert clock-gating cells to disable the clock used for dedicated wrapper cells
when a wrapper mode is not active. To do this, use the following command:

dc_shell> set_wrapper_configuration -class core_wrapper \
 -gate_dedicated_wrapper_cell_clk enable
The tool adds a clock-gating cell to each dedicated wrapper cell clock source, including
any scan clocks used for dedicated wrapper cells, as shown in Figure 215. Shared
wrapper cells and scan cells are not affected, even if they use the same clock as a
dedicated wrapper cell.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

472

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Wrapping a Core

Feedback

Figure 215 Clock Gating Logic for Low-Power Dedicated Clock Operation

wrp_clk

WC_D1

WC_D1wrp_if

wrp_of

CLK

EN

CLKO

ICGTSTTCM

By default, the clock-gating logic uses discrete latch cells. To use an integrated clock-
gating cell instead, set the desired library cell reference (without the library name) by using
the test_icg_p_ref_for_dft variable.

Gating Scan and Wrapper Cell Clocks in Wrapper Modes
The tool can use integrated clock-gating cells to disable the clock to unused scan and
wrapper cells in the wrp_of (EXTEST) and wrp_safe (SAFE) wrapper modes, as shown in
Table 45.

Table 45 Gated-Clock Behaviors in Wrapper and Non-Wrapper Test Modes

Test mode Clock disabled for
input wrapper cells?

Clock disabled for
scan cells?

Clock disabled for
output wrapper cells?

INTEST (wrp_if) No No No

EXTEST (wrp_of) No Yes No

SAFE (wrp_safe) Yes Yes Yes

All other test modes No No No

Mission mode No No No

To modify only existing integrated clock-gating cells in the design, use the following
command:

dc_shell> set_wrapper_configuration -class core_wrapper \
 -gate_cells existing_cg
Figure 216 highlights the logic added to existing clock-gating cells by DFT insertion. The
functional enable and test enable signals are both deasserted to disable the clock. The
existing_cg mode leaves the clock tree unchanged.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

473

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Wrapping a Core

Feedback

Figure 216 Clock-Disabling Logic for Existing Clock-Gating Cells

CLK
EN

CLKO

TST ICG

wrp_of
wrp_safe

Input wrapper cells

Core scan cells

Output wrapper cells

CLK
EN

CLKO

TST ICG
TCM

wrp_safe

Functional enable signal

Test enable signal

Functional enable signal

Test enable signal

Existing ICG cells

If an existing clock-gating cell gates multiple cell types, that gated clock signal is disabled
only when all downstream clocked cells can be gated.

To apply clock-disabling logic to all wrapper and scan cells in the design for more
aggressive power reduction, use the following command:

dc_shell> set_wrapper_configuration -class core_wrapper \
 -gate_cells all
Existing integrated clock-gating cells are modified as previously described. In addition,
new integrated clock-gating cells are added to ungated wrapper and scan cells. Figure 217
highlights the clock-gating cells added by DFT insertion. The tool inserts a clock-gating cell
for each group of same-edge cells clocked by a common hierarchical net. It does not trace
backward through buffers and inverters to find logically identical nets.

Figure 217 Clock-Disabling Logic Added for Ungated Cells

CLK
EN

CLKO

TST ICG

wrp_of
wrp_safe

Input wrapper cells

Core scan cells

Output wrapper cells

CLK
EN

CLKO

TST ICG
TCM

wrp_safe

DFT-inserted ICG cells

You must specify the desired integrated clock-gating library cell references (without the
library name) using the test_icg_p_ref_for_dft variable for rising-edge cells and the
test_icg_n_ref_for_dft variable for falling-edge cells (if present). Otherwise, DFT
insertion does not add clock-gating logic.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

474

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Wrapping a Core

Feedback

Note the following limitations of low-power wrapper and scan cell clock gating:

• Multiple levels of existing clock-gating cells are not supported.

• Falling-edge scan cells use the test_icg_p_ref_for_dft variable instead of the
test_icg_n_ref_for_dft variable.

Hierarchical Core Wrapping
The hierarchical core wrapping feature can be used to build a core that contains only
wrapper and core chains, but does not contain any test control module (TCM) or wrapper
mode logic. This core can then be used at a higher level of integration with other wrapper
chains or compression architectures. This hierarchical wrapping feature is only available in
the maximized reuse flow.

Note:
This feature should not be confused with simply integrating a wrapped core
in a hierarchical DFT flow, which is covered in Integrating Wrapped Cores in
Hierarchical Flows on page 497.

To enable hierarchical wrapping, use the following commands at the core level:

dc_shell> set_dft_configuration -wrapper enable

dc_shell> set_wrapper_configuration -class core_wrapper \
 -maximize_reuse enable -hier_wrapping enable
By default, hierarchical wrapping is disabled.

When hierarchical wrapping is enabled, a single mode, Internal_scan, is created. This
mode creates both wrapper chains and core internal chains. In addition, the following core-
level input ports and signals are created:

• Three separate shift signals are created to control input wrapper chains, output
wrapper chains, and core internal chains.

• If safe states are specified, separate input and output safe control signals are created
for input and output wrapper cells.

• In the maximized reuse flow, shared wrapper cells do not use a capture signal.
However, if there are dedicated wrapper cells in the input and output wrapper chains,
separate input and output capture-enable signals are created for input and output
wrapper cells.

By default, the tool creates these signals using default port and signal names. To use
existing placeholder ports for these signals instead, define them with the set_dft_signal
command as follows:

dc_shell> set_dft_signal -view spec -type wrp_shift -port port_name
dc_shell> set_dft_signal -view spec -type wrp_ded_capture_in \

Synopsys® TestMAX™ DFT User Guide
T-2022.03

475

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Wrapping a Core

Feedback

 -port port_name
dc_shell> set_dft_signal -view spec -type wrp_ded_capture_out \
 -port port_name
dc_shell> set_dft_signal -view spec -type wrp_safe_in -port port_name
dc_shell> set_dft_signal -view spec -type wrp_safe_out -port port_name
The test model generated after hierarchical wrapping includes attributes that identify input
and output wrapper chains, input and output wrapper scan-enable signals, input- and
output-dedicated safe control signals, and input- and output-dedicated wrapper capture-
enable ports.

Note:
Multiple test modes are not allowed at the core level when using hierarchical
wrapping to create the core.

After the core is created, to enable integration of hierarchically wrapped cores at a higher
level of the hierarchy, use the following commands:

dc_shell> set_dft_configuration -wrapper enable

dc_shell> set_wrapper_configuration -class core_wrapper \
 -maximize_reuse enable
During integration, the tool detects any hierarchical wrapped cores using the previously
stored test attributes. Wrapper cells are incrementally added as needed to augment core-
level wrapper capabilities, as shown in Figure 218. The tool creates the normal set of
wrapper test modes, selected by a test control module, according to user specifications.
As with typical wrapping flows, multiple test modes, including scan compression, are
allowed at this level.

Figure 218 Integrating Wrapper-Only Cores at a Higher Level

CORE1

TOP

WC_S1 WC_S1

WC_S1

CORE2

WC_S1 WC_S1

WC_S1

TCM
test_mode1
test_mode2

Core-level input wrapper chains are mixed with integration-level input wrapper cells, and
core-level output wrapper chains are mixed with integration-level output wrapper cells.
Core-level wrapper shift, capture, and safe control signals are connected to appropriate
integration-level wrapper logic.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

476

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Wrapping a Core

Feedback

Core-level wrapper chains can be integrated only one time. There is no support for
recursive wrapping flows that propagate wrapper capabilities up through multiple hierarchy
levels.

Limitations of the Maximized Reuse Flow
Note the following limitations related to the behavior of the scan-enable signal in capture
mode:

• Preexisting scan-enable control of clock-gating cells

If the design has I/O registers controlled by clock-gating cells that are controlled by
the scan-enable port, these I/O registers might not shift during the capture mode
operation of the INTEST and EXTEST modes because scan-enable might not be active
in capture mode.

• Preexisting scan-enable control of set and reset

If the set or reset pins of the I/O registers are controlled by the scan-enable port, the
I/O registers might not shift during the capture mode of operation of the INTEST and
EXTEST modes because scan-enable might not be active in capture mode.

Determining Power Domains for Dedicated Wrapper Cells
By default, dedicated wrapper cells are added to the top-level power domain. To have
dedicated wrapper cells added to power domains other than the top-level power domain,
use the following command:

dc_shell> set_wrapper_configuration -class core_wrapper \
 -add_wrapper_cells_to_power_domains enable
When this option is enabled, no new wrapper chain hierarchical block is created to enclose
the dedicated wrapper cells. Wrapper cells are added according to the following rules:

• If the port is connected to an I/O register, the dedicated wrapper cell is added to the
top-level power-domain hierarchy of the I/O register.

• If the port is connected to a CTL model, the top-level power-domain hierarchy of the
instantiated CTL model is used as the location for the dedicated wrapper cell.

• If the port is connected to a gate, the top-level power-domain hierarchy of the gate is
used as the location for the dedicated wrapper cell.

• If none of these conditions apply, the cell is added to the top-level hierarchy.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

477

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Wrapping a Core

Feedback

Using the set_scan_path Command With Wrapper Chains
You can use the set_scan_path command to control detailed aspects of wrapper chain
construction. The following options are supported for wrapper chains:

set_scan_path
 -class wrapper scan_chain_name
 [-ordered_elements ordered_port_list]
 [-complete true | false]
 [-input_wrapper_cells_only enable | disable]
 [-output_wrapper_cells_only enable | disable]
 [-scan_enable se_port]
 [-test_mode test_mode_name]
 [-scan_data_in si_port]
 [-scan_data_out ordered_port_list]

You must always specify the -class wrapper option when using set_scan_path to
configure wrapper chains.

You can use the -ordered_elements option to control the ordering of wrapper cells in
the wrapper chain. Provide an ordered list of ports, and DFT Compiler uses it to order the
corresponding wrapper cells according to the specification:

dc_shell> set_scan_path -class wrapper WC1 \
 -ordered_elements {C B A Z Y}
By default, DFT Compiler can add wrapper cells to the beginning of the specified chain.
To prevent this, specify the -complete true option. You cannot use multiple ordered list
specifications to add more wrapper cells to an already specified wrapper chain because
the last specification for a chain overwrites any previous specification. Wrapper cells
cannot belong to more than one chain, so if you specify a cell as belonging to more than
one chain, the last specification takes precedence.

As described in Wrapping Three-State and Bidirectional Ports on page 449, multiple
wrapper cells are inserted for three-state and bidirectional portswrapper cellstristate and bidirectional portstristate ports, wrappingbidirectional ports, wrapping. You can reference these
wrapper cells in the ordered list of ports by appending /out, /en, or /in to the name of the
bidirectional or three-state port. For example, the following command specifies an ordering
for ports named a, b, c, and d, where a is an input port, b is a three-state port, and c and d
are bidirectional ports.

dc_shell> set_scan_path Wchain0 -class wrapper \
 -ordered_elements [list A B/in B/out C/out \
 D/out B/en C/en D/en] -complete true \
 -test_mode test_mode_name

Synopsys® TestMAX™ DFT User Guide
T-2022.03

478

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Wrapping a Core

Feedback

Note:
All of the wrapper cells for an individual three-state or bidirectional port must
be in the same wrapper chain. For example, you cannot specify that the enable
wrapper cell and output wrapper cell belong to different chains for a given port.

You can use the -scan_data_in and -scan_data_out options to specify the wrapper
scan-in or wrapper scan-out signals for a chain:set_scan_signal commandcommandsset_scan_signalwrapper chain ports, specifying

dc_shell> set_dft_signal -type ScanInData -port wsi
dc_shell> set_dft_signal -type ScanDataOut -port wso
dc_shell> set_scan_path -class wrapper WC2 \
 -ordered_elements [list A B C] \
 -scan_data_in wsi -scan_data_out wso
The following commands implement separate input and output wrapper chains with
separate wrapper shift signals using the set_scan_path command:

dc_shell> set_dft_signal -view spec \
 -type wrp_shift -port {wrp_ishift wrp_oshift}

dc_shell> set_scan_path -class wrapper WC_inputs \
 -input_wrapper_cells_only enable \
 -scan_enable wrp_ishift

dc_shell> set_scan_path -class wrapper WC_outputs \
 -output_wrapper_cells_only enable \
 -scan_enable wrp_oshift
A set_scan_path specification applied with the -class wrapper option and without
the -test_mode option applies to all wrapper modes. You can also explicitly specify the
-test_mode all option. To apply a set_scan_path specification to a specific wrapper
mode, you must predefine the wrapper mode before referencing it. For more information,
see Creating User-Defined Core Wrapping Test Modes on page 483.

For more information about the set_scan_path command, see the man page.

Previewing the Wrapper Cells
After you have configured your wrapper chain and wrapper cells, use the preview_dft
command with the -test_wrappers all option to preview the scan chain and wrapper
chain characteristics. Example 60 shows a wrapper chain preview report for a design.

Example 60 Preview Report of Shared I/O Registers
dc_shell> preview_dft -test_wrappers all
...
**
Test wrapper plan report
Design : coreJF

Synopsys® TestMAX™ DFT User Guide
T-2022.03

479

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Wrapping a Core

Feedback

Version: 2004.12
Date : Wed Feb 2 12:00:12 2005
**

Number of designs to be wrapped : 1
MY_core

Number of Wrapper Interface ports : 5

port type port name
--------- ---------
WRP_CLOCK wrp_clock
WRP_CLOCK ck1
WRP_CLOCK ck2
WRP_SHIFT wrp_shift

Note: Dedicated wrapper cells are grouped into a hierarchical instance
named:
"coreJF_Wrapper_inst" (Module name: "coreJF_Wrapper_inst_design")

Wrapper Length: 7

 Wrapper Wrapper Cntrl Safe Wrapper
Index Port Function Cell Type Cell Impl Value Clock Cell Name
----- ---- -------- --------- ---- ---- ----- ------- ---------
9 * control WC_S1_S - INP 0 ck1 BI1_2
8 bidi[1] inout WC_S1 - INP - ck1 BI1_3
7 bidi[1] tristate WC_S1 9 INP - ck1 BI1_1
6 A1 input WC_S1 - SWP - ck1 I1_reg
5 A2 input WC_D1 - SWP - wrp_clk A2_wrp0_8
4 A3 input WC_D1 - SWP - wrp_clk A3_wrp0_7
3 A4 input WC_D1 - SWP - wrp_clk A4_wrp0_6
2 Q1 output WC_S1 - SWP - ck1 Q1_reg
1 Q2 output WC_S1 - SWP - ck2 iQ2_reg
0 Q3 output WC_S1 - SWP - ck2 iQ3_reg

Number of ports not wrapped : 3
MAINT_PORT
ck1
ck2

Input and output wrapper chains as well as core scan chains are shown in the
preview_dft report. To see this information, run the following command:

dc_shell> preview_dft -show all -test_wrappers all

Synopsys® TestMAX™ DFT User Guide
T-2022.03

480

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Wrapping a Core

Feedback

For all ports that have wrapper cells, the following information is reported:

• Index number of wrapper cell (used to indicate duplicate input/output wrapper cells and
to reference control cells)

• Port name

• Wrapper cell type: dedicated or shared

• Function of wrapper cell: input, output, three-state, or control

• Control cell index number associated with a bidirectional or three-state wrapper cell

• Wrapper cell implementation: swapped-in (SWP) or in-place (INP)

• Safe value

• Wrapper cell clock

• Wrapper cell instance name

After DFT is inserted with the insert_dft command, you can report both normal scan
chains and wrapper chains with the report_scan_path command. To report wrapper
chains, use the -test_mode option of the report_scan_path command to provide the
wrapper test-mode name. To list the available test modes, use the list_test_modes
command.

Previewing Maximized Reuse Wrapper Cells
In the maximized reuse flow, the preview_dft command shows additional information
about how register reuse is applied.

The preview report uses annotations to indicate when a shared wrapper cell is associated
with multiple ports. Figure 219 shows a design to be core-wrapped in the maximized
reuse flow, and Example 61 shows the corresponding wrapper chain report from the
preview_dft command.

Figure 219 Design Example With Common Shared Wrapper Cells

B
FF1

C
FF4

Y

Z

int

FF2

FF3

A

Synopsys® TestMAX™ DFT User Guide
T-2022.03

481

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Wrapping a Core

Feedback

Example 61 Wrapper Chain Preview Report with Common Shared Wrapper Cells
dc_shell> preview_dft -test_wrappers all
...
 Wrapper Wrapper Control Safe Wrapper
Index Port Function Cell Type Cell Impl Value Clock Cell Name
----- ---- -------- --------- ---- ---- ----- ------- ---------
 4 A input WC_S1 - INP - CLK FF1_reg
 4 B input WC_S1 INP - CLK FF1_reg(d)
 4 Y output WC_S1 INP - CLK FF1_reg(*)
 3 B input WC_S1 - INP - CLK FF2_reg
 3 C output WC_S1 INP - CLK FF2_reg(*)(i)
 2 C input WC_S1 - INP - CLK FF3_reg
 1 C output WC_S1 - INP - CLK int_reg
 0 Y output WC_S1 - INP - CLK FF4_reg
 0 Z output WC_S1 INP - CLK FF4_reg(d)

Note the following reporting conventions:

• Shared registers that are common to multiple input ports and multiple output ports are
shown with the letter d (d) for all subsequent entries after the first register entry; these
marked entries do not count against the total wrapped register count.

• Internal registers in the fanin to an input shared register are classified as output
registers (because they drive values that are captured during outward-facing test).

• Shared registers that are common to both an input port and an output port but are used
only as input wrapper cells are classified as input registers and shown with an asterisk
(*) for the output port.

• Shared input registers that are in the fanin to another shared input register are
classified as input registers and shown with the annotation (*)(i) for the fanin to the
shared input register.

The preview report also indicates the reason why a dedicated wrapper cell is used at a
port instead of a shared wrapper cell. Figure 220 shows a design to be core-wrapped in
the maximized reuse flow, and Example 62 shows the corresponding wrapper chain report
from the preview_dft command.

Figure 220 Design Example With Dedicated Wrapper Cells
A

EN

FF1

Z

FF2
FF3

FF4
FF5

CLK

EN

CLKO

ICG

CLK

Synopsys® TestMAX™ DFT User Guide
T-2022.03

482

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Creating User-Defined Core Wrapping Test Modes

Feedback

Example 62 Wrapper Chain Preview Report With Dedicated Wrapper Cells
dc_shell> preview_dft -test_wrappers all
...
Note: Dedicated wrapper cells are grouped into a hierarchical instance named:
"top_Wrapper_inst" (Module name: "top_Wrapper_inst_design")

Dedicated Wrapper
Cell Reason Description
----------------- -----------
TEST-1183 Port drives enable pin of clock-gating cell
TEST-1185 Number of I/O registers exceeds reuse threshold

Wrapper Length: 3

 Wrapper Wrapper
Index Port Function Cell Type ... Cell Name
----- ---- -------- --------- ---------
 2 A input WC_S1 FF1_reg
 1 EN input WC_D1 top_Wrapper_inst/top_EN_wrp0_1 (TEST-1
183)
 0 Z output WC_D1 top_Wrapper_inst/top_Z_wrp0_0 (TEST-11
85)

In the wrapper chain report, each port with a dedicated wrapper cell has a reason
message code indicating why the dedicated wrapper cell is used. A short description for
each reason is shown in a legend table before the report. For more information about
a dedicated wrapper cell reason, see the man page. For a complete list of dedicated
wrapper cell reasons, see SolvNet article 038531, “What Are the Reasons for Dedicated
Wrapper Cells to Be Inserted?”

Post-DFT DRC Rule Checks
You can perform post-DFT DRC for the wrapper modes. To verify that the input wrapper
chains shift in wrp_if (INTEST) mode, use the following commands:

dc_shell> current_test_mode wrp_if

dc_shell> dft_drc
To verify that the output wrapper chains shift in wrp_of (EXTEST) mode, run the following
commands:

dc_shell> current_test_mode wrp_of

dc_shell> dft_drc

Creating User-Defined Core Wrapping Test Modes
Normally, when core wrapping is enabled, DFT Compiler creates a default set of core
wrapping test modes as described in Wrapper Test Modes on page 438. You can

Synopsys® TestMAX™ DFT User Guide
T-2022.03

483

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnet.synopsys.com/retrieve/038531.html
https://solvnet.synopsys.com/retrieve/038531.html

Chapter 11: Wrapping Cores
Creating User-Defined Core Wrapping Test Modes

Feedback

also create user-defined test modes for wrapped cores using the define_test_mode
command.

Table 46 shows the test mode usage types you can specify with the -usage option of the
define_test_mode command. You can define one or more test modes for each usage.
When you define a test mode for a given usage, the default test mode is not created for
that usage.

Table 46 Test Mode Usage Types for Wrapped Cores

Test mode usage Test mode description Default test mode name

wrp_if Inward-facing uncompressed scan mode wrp_if

scan_compression Inward-facing compressed scan mode ScanCompression_mode

wrp_of Outward-facing uncompressed scan mode wrp_of

wrp_safe Safe mode wrp_safe

scan Unwrapped standard scan mode Internal_scan9

You can configure individual user-defined test modes using the -test_mode option of DFT
configuration commands. The -test_mode option cannot reference a default test mode
unless that mode name was explicitly defined with the define_test_mode command.

Note that only the following options of the set_wrapper_configuration command can
be used with the -test_mode option:

• -max_length

• -chain_count

• -mix_cells

• -input_shift_enable

• -output_shift_enable

• -shift_enable

• -no_dedicated_wrapper_cells
Example 63 defines a set of user-defined core wrapping test modes. The inward-facing
compressed scan mode, defined with -usage scan_compression, specifies the base
mode as the inward-facing uncompressed scan mode, defined with -usage wrp_if.

9. This default unwrapped test mode is not created when core wrapping is enabled; it can only be created for a
wrapped core by defining a user-defined test mode.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

484

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Creating Compressed EXTEST Core Wrapping Test Modes

Feedback

Example 63 User-Defined Core Wrapping Test Modes
define test modes
define_test_mode MY_INTEST -usage wrp_if
define_test_mode MY_INTEST_COMP -usage scan_compression
define_test_mode MY_EXTEST -usage wrp_of

configure scan modes
set_wrapper_configuration -test_mode MY_INTEST \
 -class core_wrapper -chain_count 1 -mix_cells true
set_scan_configuration -test_mode MY_INTEST \
 -chain_count 2 -clock_mixing mix_clocks \

set_wrapper_configuration -test_mode MY_EXTEST \
 -class core_wrapper -chain_count 2 -mix_cells false
set_scan_configuration -test_mode MY_EXTEST \
 -chain_count 2 -clock_mixing mix_clocks

set_scan_compression_configuration \
 -test_mode MY_INTEST_COMP -base_mode MY_INTEST \
 -chain_count 12

Creating Compressed EXTEST Core Wrapping Test Modes
When you use DFTMAX Ultra streaming compression, you can compress both your
inward-facing (INTEST) and outward-facing (EXTEST) test modes. This helps reduce scan
I/O requirements when you have many wrapped cores instantiated at a higher level.

Figure 221 Uncompressed and Compressed Outward-Facing (EXTEST) Wrapper Modes

WCORE

Uncompressed
outward-facing wrapper mode

W
ra

pp
er

 c
ha

in

W
ra

pp
er

 c
ha

in

WCORE

Compressed
outward-facing wrapper mode

To do this, define a streaming compression mode that references an uncompressed
outward-facing mode as its base mode. For example,

enable DFT clients
set_dft_configuration -wrapper enable -streaming_compression enable

define test modes
define_test_mode wrp_if -usage wrp_if
define_test_mode wrp_if_comp -usage streaming_compression
define_test_mode wrp_of -usage wrp_of

Synopsys® TestMAX™ DFT User Guide
T-2022.03

485

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Creating an IEEE 1500 Wrapped Core

Feedback

define_test_mode wrp_of_comp -usage streaming_compression

configure inward-facing standard and compressed modes
set_scan_configuration \
 -test_mode wrp_if \
 -chain_count 2
set_streaming_compression_configuration \
 -test_mode wrp_if_comp -base_mode wrp_if \
 -chain_count 4

configure outward-facing standard and compressed modes
set_wrapper_configuration -class core_wrapper \
 -test_mode wrp_of \
 -chain_count 2
set_streaming_compression_configuration \
 -test_mode wrp_of_comp -base_mode wrp_of \
 -chain_count 4 -inputs 1 -outputs 1

Wrapper chain count and length is configured as follows:

• For the compressed EXTEST mode, wrapper chains are always length-balanced using
the configuration specified by the set_streaming_compression_configuration
command. The set_wrapper_configuration command should not be applied to this
mode.

• For the uncompressed EXTEST mode and all other wrapper modes, wrapper
chains follow the rules described in Controlling Wrapper Chain Count and Length on
page 455.

Keep in mind that unlike uncompressed EXTEST chains, compressed EXTEST chains
cannot be concatenated with other chains for rebalancing at higher levels. Just as with
other compression modes, compressed EXTEST modes require dedicated codec scan I/O
connections during core integration.

Alternatively, you can create many uncompressed wrapper chains at the core level, then
concatenate or compress them along with other chains at a higher level in standard or
compressed scan modes, respectively.

Note:
Because this feature is intended for few scan I/O pins, it requires DFTMAX Ultra
streaming compression. Other compression technologies are not supported.

Creating an IEEE 1500 Wrapped Core
To create an IEEE 1500 wrapped core, simply enable both of the following features:

• Core wrapping (described in this chapter)

• Core-level IEEE 1500 test-mode control

Synopsys® TestMAX™ DFT User Guide
T-2022.03

486

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Wrapping Cores With OCC Controllers

Feedback

Figure 222 shows a core with these features enabled. In an IEEE 1500 core, the wrapper
chain is also called the wrapper boundary register (WBR).

Figure 222 Wrapped Core With IEEE 1500 Controller

CORE

TCM

TMCDR
WBY

WIR

IEEE 1500
controller

Core
logic

wrp_if

wrp_of
ScanCompression_mode

WBR (wrapper chain)

The WBR operation is controlled by the IEEE 1500 logic, but it uses regular scan-in and
scan-out signals instead of the IEEE 1500 WSI and WSO scan signals. This enables the
following features:

• The WBR can be implemented using separate input and output wrapper chains, which
is required in the maximized reuse flow.

• The WBR can be compressed by scan compression codecs.

See Also

• Test-Mode Control Using the IEEE 1500 and IEEE 1149.1 Interfaces on page 375 for
information on implementing IEEE 1500 test-mode control

Wrapping Cores With OCC Controllers
When you create a core with a DFT-inserted or user-defined OCC controller, the clock
chain provides control of the OCC-controlled clock.

When you also wrap such a core, the tool uses the following rules to determine how clock
chains are incorporated into the core wrapping test modes that are created:

• Clock chains are always included in inward-facing (INTEST) modes. This allows the
internal logic clocked by the OCC controller to be tested.

• Clock chains are included in outward-facing (EXTEST) modes only when the
corresponding OCC-controlled clock clocks any shared or dedicated wrapper cell. This
allows those wrapper cells to be controlled.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

487

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Wrapping Cores With OCC Controllers

Feedback

Note:
If you define a clock chain with the set_scan_path -test_mode all
command, the clock chain is forced to be included in all test modes. To avoid
this, define the clock chain only with the set_scan_group command, or apply
the set_scan_path specification to only the desired test modes.

Use the preview_dft -test_wrappers all command to report the clock associated with
each wrapper cell.

See Also

• Chapter 12, On-Chip Clocking Support for more information on OCC controllers and
clock chains.

Wrapping Cores With OCC Clock Outputs
In some cases, you might have a core in which an OCC-controlled clock drives a core
output port, as shown in Figure 223.

Figure 223 OCC-Controlled Clock Driving a Core Output Port

PLLREFCLK
OCC

controller

ATECLK
CLKOUT

CORE

In this case, do the following tasks during core creation:

• Enable advanced clock feedthrough analysis to help DRC include the clock output
information into the core’s CTL model:

dc_shell> set_app_var test_fast_feedthrough_analysis true
• Ensure that the clock chains are included in outward-facing (EXTEST) mode so that

the top-level logic clocked by the OCC clock can be tested.

The presence of the OCC clock output is not a sufficient condition to do this. You must
either clock at least one wrapper cell with the OCC clock, or you must manually define
the clock chain with the set_scan_path -test_mode all command.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

488

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Wrapping Cores With DFT Partitions

Feedback

You do not need to disable wrapping on the clock output port. The tool recognizes the
output port as a feedthrough port, as shown by the following message:

Information: No I/O registers are found for port 'CLKOUT'; not adding any
dedicated wrapper cells to the port. (TEST-1180)

See Also

• Using Advanced Clock Feedthrough Analysis on page 129 for more information on
advanced clock feedthrough analysis.

Wrapping Cores With DFT Partitions
If you are using DFT partitions, the tool creates wrapper chains within each partition and
assigns wrapper cells to partitions as follows:

• Shared wrapper cells are functional scan cells. They inherently belong to a DFT
partition, as specified by the DFT partition configuration.

• Dedicated wrapper cells are associated with a port. The tool finds the first test cell (flip-
flop or clock-gating cell) in the fanout of the port, then assigns the dedicated wrapper
cell to the DFT partition for that test cell.

The following example shows per-partition wrapper chain configuration:

enable core wrapping
set_dft_configuration -wrapper enable
set_wrapper_configuration -class core_wrapper -maximize_reuse enable

define DFT partitions
define_dft_partition P1 -include ...
define_dft_partition P2 -include ...

configure DFT partition P1
current_dft_partition P1
set_scan_configuration -chain_count 4
set_wrapper_configuration -class core_wrapper -chain_count 2

configure DFT partition P2
current_dft_partition P2
set_scan_configuration -chain_count 4
set_wrapper_configuration -class core_wrapper -chain_count 2

Note the following limitation:

• When you use DFT partitions, separate wrapper chains are created within each
partition. Wrapper chains cannot span across partitions.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

489

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Wrapping Cores With Multibit Registers

Feedback

Wrapping Cores With Multibit Registers
You can core-wrap designs that use multibit registers.

Multibit registers have multiple state elements (bits) that are individually addressable but
share clock and scan signals. This reduces power consumption and routing congestion.

Both the RTL bus inference flow and placement-based register banking flows are
supported. (However, if you use the -input_map_file or -register_group_file option
of the identify_register_banks command in the placement-based flow, then the
algorithms in this section are disabled.)

The Maximized Reuse Core Wrapper Flow

In the maximized reuse flow, multibit registers associated with ports can be shared
wrapper cells. For best results, enable and configure maximized reuse core wrapping
before performing multibit banking with

• The initial compile_ultra command (RTL bus inference flow)

• The identify_register_banks command (placement-based banking flow)

This informs the multibit banking algorithms that you will perform maximized reuse core
wrapping during DFT insertion. The tool builds each multibit register from single-bit
registers of the same type—input registers, output registers, or core registers—so they
can be stitched into the corresponding wrapper or core scan chains.

To confirm this, the tool issues the following message during multibit banking:

Information: DFT core wrapping client enabled; banking anticipates core
wrapping. (TEST-1291)

Table 47 lists the wrapper configuration commands used by multibit banking.

Table 47 Wrapper Configuration Commands Used by Multibit Banking

Wrapper configuration command Required?

set_dft_configuration -wrapper enable Required

set_wrapper_configuration -class core_wrapper \
-maximize_reuse enable

Required

set_wrapper_configuration -class core_wrapper \
-reuse_threshold value

Optional

set_wrapper_configuration -class core_wrapper \
-depth_threshold value

Optional

Synopsys® TestMAX™ DFT User Guide
T-2022.03

490

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Wrapping Cores With Synchronizer Registers

Feedback

Specifying the threshold values allows multibit banking to determine any ports that get
dedicated wrapper cells by exceeding the thresholds. This removes the multibit banking
register-type restrictions for registers associated with those ports.

Other core wrapper settings, such as port-specific wrapper cell specifications, are not
considered by multibit banking. You do not need to define DFT signals, create a test
protocol, or perform pre-DFT DRC.

If you forget to enable and configure core wrapping before performing multibit banking, the
tool issues the following message during multibit banking:

Information: DFT core wrapping client disabled; banking anticipates no
core wrapping. (TEST-1290)

To prevent multibit registers from being used as shared wrapper cells, which forces
dedicated wrapper cells on any ports associated with them (as indicated by TEST-1067
warnings), set the following variable:

dc_shell> set_app_var test_soc_core_wrap_allow_multibit_ioregs false
The Simple Core Wrapper Flow

In the simple core wrapper flow, multibit registers cannot be wrapper cells. Ports
associated with multibit registers always get a dedicated wrapper cell.

See Also

• “Multibit Register Synthesis and Physical Implementation Application Note” for detailed
information on multibit cells and flows across multiple tools

Wrapping Cores With Synchronizer Registers
You can core-wrap designs that use synchronizer registers.

Synchronizer registers synchronize data communicated between asynchronous clock
domains. A synchronizer register consists of two or more serially connected registers
within the synchronizer cell.

The Simple Core Wrapper Flow

In the simple core wrapper flow, synchronizer registers cannot be shared wrapper cells.
Ports associated with synchronizer registers always get a dedicated wrapper cell.

The Maximized Reuse Core Wrapper Flow

In the maximized reuse flow, you can reuse CTL-modeled synchronizer registers as
shared wrapper cells by setting the following synchronizer length limit variable:

dc_shell> set_app_var test_core_wrap_sync_ctl_segment_length 2

Synopsys® TestMAX™ DFT User Guide
T-2022.03

491

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnet.synopsys.com/dow_retrieve/latest/dg/dftolh/Default.htm#ni/mban/mban.htm

Chapter 11: Wrapping Cores
Wrapping Cores With Existing Scan Chains

Feedback

Ports associated with synchronizer registers longer than this value get a dedicated
wrapper cell. The default is 0, which does not allow synchronizer registers to be reused as
shared wrapper cells. For more information, see the man page.

For this feature, the synchronizer register must be a library cell that has a CTL model with
a single test mode of type “InternalTestMode” with a single scan chain from scan data
input to scan data output. Synchronizer registers modeled using Liberty library constructs
are not supported.

Wrapping Cores With Existing Scan Chains
To wrap a core that is already scan-stitched, you should use the scan-stitched core flow.
Figure 224 illustrates this flow.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

492

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Wrapping Cores With Existing Scan Chains

Feedback

Figure 224 Scan-Stitched Core Flow Diagram

Scan-stitched .ctlddc design

No

Yes

No

Yes

Yes

No

Next step

Configure wrapper

Design

Insert test wrapper

Select test mode

Create core hierarchy

OK?
rules

Preview
OK?

Generate report

Design

OK?
rules

Synopsys® TestMAX™ DFT User Guide
T-2022.03

493

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Wrapping Cores With Existing Scan Chains

Feedback

Start the flow with a CTL test model of the core. If you use a test model, DFT Compiler
cannot touch the scan logic in the model during wrapping.

1. Create an enclosing top-level hierarchy that instantiates the core.

Figure 225 shows the hierarchy you should create. You must create an empty top-
level design with the same input and output pins as the core design, instantiate the test
model within the top-level design, and connect all of the input and output pins. You can
also include unconnected placeholder ports for wrapper signals in the top-level design.

You can use a text editor or an automated script to create a netlist file that
accomplishes this step.

Figure 225 Creating Core Hierarchy

MINUTES_BUTTON
HOURS_BUTTON

ALARM_BUTTON

RSTN

test_se
test_si1

CLK

MY_wrp_clock

HOURS_BUTTON
MINUTES_BUTTON
ALARM_BUTTON

RSTN

test_se
test_si1

CLK

HOURS

MINUTESMINUTES

HOURS

CORE
(CTL model)

TOP

2. Configure the core wrapper.

Use the set_dft_configuration -wrapper enable command set_dft_configuration commandcommandsset_dft_configurationwrapper configurationconfiguration, wrapper to enable
core wrapping. If you do not issue this command, the other core wrapping
commands will not have any effect. To set the configuration for wrapping, use the
set_wrapper_configuration set_core_wrapper_configuration commandcommandsset_core_wrapper_configuration command. You can override the wrapper configuration
on any ports by using the set_boundary_cell command.set_core_wrapper_cell commandcommandsset_core_wrapper_cell

dc_shell> set_dft_configuration -wrapper enable

dc_shell> set_wrapper_configuration \
 -class core_wrapper -maximize_reuse true

3. Define the wrapper signals and configure the wrapper chains.

By default, control signals are added to the design to control the wrapper configuration.
To specify existing placeholder ports for these signals, use the set_dft_signal

Synopsys® TestMAX™ DFT User Guide
T-2022.03

494

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Wrapping Cores With Existing Scan Chains

Feedback

command to specify the names and connections of these signals. These wrapper
signals must exist in the top-level design you previously created.set_dft_signal commandcommandsset_dft_signal

dc_shell> set_dft_signal -view spec \
 -type wrp_clock -port MY_wrp_clock

4. Configure the wrapper chain characteristics.

You can use the set_wrapper_configuration and set_boundary_cell commands
to specify any wrapper chain characteristics. You can use the set_scan_pathset_core_wrapper_path

commandcommandsset_core_wrapper_path command to specify the order of the wrapper cells.

dc_shell> set_wrapper_configuration -class core_wrapper \
 -chain_count 2

dc_shell> set_boundary_cell -class core_wrapper \
 -ports {CLKOUT} -type none

dc_shell> set_scan_path \
 -class wrapper WC0 \
 -ordered_elements [list ordered_port_list]

5. Check test design rules.

Use the dft_drc command to check test design rules.

dc_shell> create_test_protocol
dc_shell> dft_drc

6. Preview the wrapper and scan cells before inserting them.

Use the preview_dft command to report on the wrapper and scan cells before you
actually insert them.

dc_shell> preview_dft -test_wrappers all
7. Insert the wrapper cells.

Use the insert_dft command to insert the wrapper cells into the design and stitch the
wrapper chain.

dc_shell> insert_dft
8. (Optional) Select the test mode.

You should check the design rules for each test mode created. Use the
current_test_mode command to set the test mode to each of the modes of operation:current_test_mode commandcommandscurrent_test_mode

dc_shell> current_test_mode wrp_if

Synopsys® TestMAX™ DFT User Guide
T-2022.03

495

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Creating an EXTEST-Only Core Netlist

Feedback

9. Check that the design is ready for ATPG by using the dft_drc command.

dc_shell> dft_drc
This verifies that the scan chains and wrapper cells operate correctly for the current
test mode. You can repeat this step for additional test modes.

Creating an EXTEST-Only Core Netlist
During core creation, you can create and write out an additional version of the core netlist
that contains only the logic needed for operation in outward-facing (EXTEST) test modes.
This EXTEST-only core netlist significantly reduces the memory requirements for pattern
generation of top-level test modes in TestMAX ATPG and for pattern simulation.

After inserting DFT and writing the full netlist files, protocol files, and other design files,
execute the following command:

dc_shell> create_dft_netlist –type extest
This command removes all logic in the design except for the following:

• Wrapper chains

• Interface logic between wrapper chains and I/O ports

• Wrapper chain control logic

• Test-mode decode logic

• IEEE 1500 controller logic

• Any other logic required for EXTEST mode operation

Note:
A DFTMAX or TestMAX DFT license is required to create an EXTEST-only core
netlist.

After removing the unnecessary logic with the create_dft_netlist command, write
out an EXTEST-only Verilog netlist file using the write -format verilog command.
Because the create_dft_netlist command removes logic from the design in memory,
these should be the last steps in your core creation script.

You can use this EXTEST-only core netlist in any TestMAX ATPG pattern generation run
where the core operates in its outward-facing test mode. All of the necessary logic is
retained so that the core operates properly when exercised by the test protocols.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

496

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Integrating Wrapped Cores in Hierarchical Flows

Feedback

Note the following limitations:

• The create_dft_netlist command can only be run after DFT is inserted, or after
a DFT-inserted design is read from a .ddc file. Existing-scan inference flows are not
supported.

• The create_dft_netlist command uses attributes set by the insert_dft command.
Any structural design modifications made after DFT insertion are not considered during
netlist processing.

• Cores with multiple EXTEST test modes are not supported.

See Also

• SolvNet article 2686021, “How To Preserve Special Logic When Creating an EXTEST
Netlist” for details on using the dont_touch attribute to preserve special logic

Integrating Wrapped Cores in Hierarchical Flows
The following topics describe how wrapped cores can be integrated:

• Scheduling Wrapped Cores

• Integrating Wrapped Cores in a Compressed Scan Flow

• Nested Integration of Wrapped Cores

• Mixing Wrapped and Unwrapped Cores

• Top-Down Flat Testing With Transparent Wrapped Cores

Scheduling Wrapped Cores
In hierarchical flows, wrapped cores have inward-facing and outward-facing test modes
that must be incorporated into top-level test modes during core integration. To specify this
test-mode mapping for wrapped cores, use the -target option of the define_test_mode
command at the top level.

The -target option specifies a list of core and test-mode pairs to use for the top-level test
mode being defined; each pair consists of a core instance name and a core test-mode
name separated by a colon (:). In compressed scan flows, the list can also contain the
name of the current design to specify that the top-level logic should be active and tested.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

497

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnet.synopsys.com/retrieve/2686021.html
https://solvnet.synopsys.com/retrieve/2686021.html

Chapter 11: Wrapping Cores
Integrating Wrapped Cores in Hierarchical Flows

Feedback

When you use the -target option in a flow that integrates wrapped cores, the following
rules apply:

• All test modes must be defined with the define_test_mode command; no test modes
are automatically created.

• All test mode definitions must use the -target option.

• Targeted cores (included in the target list) are placed in their targeted mode.

• If a core is targeted in some core-testing modes but not others, it is not tested in the
test modes where it is not targeted. This is known as sparse targeting. (To completely
exclude a core from all top-level test modes, use the -exclude_elements option of the
set_scan_configuration command.)

◦ Untested wrapped cores are placed in SAFE mode, if available. Otherwise, they are
placed in mission mode.

• Untargeted cores (not included in any target list) are tested in top-level modes where
the top-level logic is tested:

◦ In top-level standard scan modes, they are placed in standard scan mode.

◦ In top-level compressed scan modes, they are placed in compressed scan mode
(for compressed scan cores) or standard scan mode (for standard scan cores).

◦ They are placed in the first available such mode defined inside the core’s test
model.

• The top-level logic, which is all scannable logic outside DFT cores, is only active and
tested when targeted.

• Untested wrapped cores with a default-named wrp_of test mode do not need to be
explicitly scheduled; they are automatically placed in that mode when the top-level
logic is scheduled. Outward-facing test modes with nondefault names must be explicitly
scheduled.

Note:
The -target option has some limitations when used in compressed scan core
integration modes. See HASS and Hybrid Flow Limitations on page 724.

Figure 226 shows an example with three DFT cores instantiated in a top-level design. The
example includes two wrapped cores with inward-facing and outward-facing test modes
and a scannable memory with a single Internal_scan test mode.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

498

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Integrating Wrapped Cores in Hierarchical Flows

Feedback

Figure 226 Three Cores With Different Test Modes Instantiated in a Top-Level Design

WCORE2WCORE1 MEM
TOP

Available core-level
test modes:

wrp_if

ScanCompres
sion_mode

wrp_of

Internal_scanwrp_if

ScanCompres
sion_mode

wrp_of

The combination of the core-wrapping feature and the -target option provide a great deal
of flexibility in testing the design—one core at a time, all cores together, in groups, top-
level logic only with no cores active, and so on. Example 64 shows commands that define
a schedule for the wrapped core example.

Example 64 Specifying User-Defined Test Mode Scheduling
test cores one at a time in standard scan mode
define_test_mode STD_ONLY1 -usage scan -target {Wcore1:wrp_if}
define_test_mode STD_ONLY2 -usage scan -target {Wcore2:wrp_if}

test both cores together in compressed scan mode
define_test_mode COMP_1AND2 -usage scan_compression \
 -target {Wcore1:ScanCompression_mode Wcore2:ScanCompression_mode}

test top-level logic in standard and compressed scan modes
define_test_mode STD_ONLYTOP -usage scan -target {top}
define_test_mode COMP_ONLYTOP -usage scan_compression -target {top}

For the previous example, Figure 227 shows the top-level test modes created by the tool
during core integration. Each column represents a core, each row represents a top-level
test mode, and the intersections of the columns and rows show the core-level test mode
used for that top-level test mode. Blue columns indicate logic scheduled by the -target
option.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

499

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Integrating Wrapped Cores in Hierarchical Flows

Feedback

Figure 227 Top-Level Test Modes With User-Defined Test-Mode Scheduling

Available core-level
test modes:

wrp_if
ScanCompres

sion_mode
wrp_of

WCORE1 WCORE2
Internal_scan

MEM

Internal_scan

top
wrp_if

ScanCompres
sion_mode

wrp_of

define_test_mode STD_ONLY2 -usage scan
 -target {WCORE2:wrp_if}

define_test_mode COMP_1AND2
 -usage scan_compression
 -target {WCORE1:ScanCompression_mode
 WCORE2:ScanCompression_mode}

define_test_mode STD_ONLY1 -usage scan
 -target {WCORE1:wrp_if}

define_test_mode STD_ONLYTOP
 -usage scan -target {top}

Internal_scandefine_test_mode COMP_ONLYTOP
 -usage scan_compression -target {top}

wrp_if

wrp_if

ScanCompres
sion_mode

ScanCompres
sion_mode

wrp_of wrp_of

wrp_of wrp_of

Top-level
test mode definitions:

(Top-level
logic tested)

(Top-level
logic tested)

Wrapped cores are not usually scheduled in inward-facing modes in test modes that test
top-level logic because the active wrapper chains prevent the cores from capturing values
from the top-level logic. If this configuration is detected, the tool issues a warning:

Warning: Inward-facing cores are tested along with logic outside those
cores in test mode 'COMP_1AND2_WITH_TOP'. (TEST-2077)

However, to test wrapped cores along with top-level logic, they can be placed in
transparent modes, as described in Top-Down Flat Testing With Transparent Wrapped
Cores on page 503.

You do not need to set the -wrapper option of the set_dft_configuration command
to enable when integrating wrapped cores; this option is only needed when creating
wrapped cores.

Integrating Wrapped Cores in a Compressed Scan Flow
In test modes that test wrapped cores, wrapped cores are placed in the inward-facing
(INTEST) modes specified by the test mode schedule definition. For wrapped cores with
scan compression, the codecs inside the core are used, as shown in Figure 228. In this
case, compressed scan cores act as cores to be integrated.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

500

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Integrating Wrapped Cores in Hierarchical Flows

Feedback

Figure 228 Testing Two Wrapped Inward-Facing Compressed Scan Cores

UTOPGATES

W
ra

pp
er

 c
ha

in

W
ra

pp
er

 c
ha

in

W
ra

pp
er

 c
ha

in

W
ra

pp
er

 c
ha

in

WCORE1 WCORE2

In test modes that test the top-level logic, wrapped cores are placed in their outward-
facing (EXTEST) modes, which allows the tests to control and observe signals at the core
boundaries. In this case, the outward-facing wrapper chains become scan segments at the
top level, which can be concatenated and compressed as with any other scan segment.
You can use the Hybrid integration flow to compress these wrapper chains with a top-level
codec, as shown in Figure 229.

Figure 229 Testing the Top-Level Logic With Outward-Facing Wrapped Cores

UTOPGATES

W
ra

pp
er

 c
ha

in

W
ra

pp
er

 c
ha

in

W
ra

pp
er

 c
ha

in

W
ra

pp
er

 c
ha

in

WCORE1 WCORE2

Because the outward-facing chains of wrapped cores are incorporated into the top-level
scheduled modes, you should ensure that the number and lengths of the wrapper chains
allow them to be effectively length-balanced in the top-level scan chains.

In flows with DFT partitions, you can reassign the outward-facing wrapper chains of
cores to another partition by specifying those cores with the -extest_cells option of the
define_dft_partition command. This allows you to compress core wrapper chains with
specific top-level codecs. For example,

reassign the outward-facing wrapper chains of the wrapped core WCORE
to partition P_UDL1
define_dft_partition P_UDL1 -include {UDL1} -extest_cells {WCORE}
define_dft_partition P_UDL2 -include {UDL2}

Figure 230 shows the scan compression logic created by these commands.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

501

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Integrating Wrapped Cores in Hierarchical Flows

Feedback

Figure 230 Reassigning Outward-Facing Chains to a Different DFT Partition

WCORE

W
ra

pp
er

 c
ha

in

W
ra

pp
er

 c
ha

in

de
fa

ul
t_

pa
rt

iti
on

P_
U

D
L1

P_
U

D
L2

The -extest_cells option affects all test modes that use the specified cores in outward-
facing modes, including uncompressed scan modes. You can reassign multiple cores to a
single partition or you can distribute the cores across the partitions. Test modes that use
the cores in inward-facing modes are unaffected.

Nested Integration of Wrapped Cores
You can perform multiple levels of integration for wrapped cores, as shown in Figure 231.

Figure 231 Nested Integration of Wrapped Cores

W
ra

pp
er

 c
ha

in

W
ra

pp
er

 c
ha

in

WCORE

SUB TOP

Core wrapping information is passed upward through each subsequent level of integration,
so that each higher integration level effectively also becomes a wrapped core. Additional
scan logic, such as unwrapped cores or glue logic, can exist at any level.

Nested integration of wrapped cores is supported. However, nested core wrapping, which
is enabling core wrapping when a wrapped core already exists in the design hierarchy, is
not supported.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

502

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Integrating Wrapped Cores in Hierarchical Flows

Feedback

Mixing Wrapped and Unwrapped Cores
If you mix wrapped and unwrapped cores, the unwrapped cores are tested along with the
top-level logic. Unwrapped cores are integrated according to the usual rules:

• For unwrapped compressed scan cores, the core-level connections are promoted to
top-level connections.

• For unwrapped standard scan cores, the core-level scan segments are incorporated
into top-level scan chains. In the Hybrid mode, they are compressed by the top-level
codec.

Figure 232 shows an unwrapped, compressed scan core that is tested along with the top-
level logic in a compressed scan flow.

Figure 232 Testing an Unwrapped Compressed Scan Core Along With the Top-Level Logic

WCORE

W
ra

pp
er

 c
ha

in

W
ra

pp
er

 c
ha

in

UTOPGATES UIPCORE

Only DFT-inserted cores, which have CTL model information, can be included in top-level
test-mode schedule definitions. If you have hierarchical blocks at the top level that are not
DFT-inserted, do not include them in the top-level test-mode schedule definition; they have
no core-level test modes to schedule.

Top-Down Flat Testing With Transparent Wrapped Cores
In some cases (such as for IDDQ testing), you might want to make core wrapper
chains transparent to perform top-down flat testing of the full chip. This can be done by
implementing and using a transparent mode in your wrapped cores.

Transparent modes are described in the following topics:

• Introduction to Transparent Test Modes

• Defining Core-Level Transparent Test Modes

• Defining Top-Level Flat Test Modes

• Limitations

Synopsys® TestMAX™ DFT User Guide
T-2022.03

503

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Integrating Wrapped Cores in Hierarchical Flows

Feedback

Introduction to Transparent Test Modes
Wrapped cores allow a design to be tested hierarchically. Inward-facing test modes test
the logic inside a core, and outward-facing test modes test the logic surrounding a core. In
both types of modes, the wrapper chain is actively used to logically separate the core logic
from the surrounding logic.

To perform top-down flat testing of a design with wrapped cores, wrapped cores must
provide an additional test mode where the wrapper chain is logically transparent. This
core-level test mode is called a transparent test mode. At the top level, wrapped cores
can be placed into their transparent modes to perform top-down flat testing of the entire
design. This top-level test mode is called a flat test mode.

At the core level, a transparent test mode is defined as an extension of an inward-facing
standard scan or compressed scan test mode. A transparent mode is identical to its
referenced inward-facing mode, except that

• Wrapper chains are treated as regular scan chains.

• Dedicated wrapper cells are logically transparent, although their flip-flops remain in the
wrapper chains and act as observe test points on I/O paths.

• Any scan compression codecs from the referenced inward-facing mode are reused.

• Feedthrough chains drive the outward-facing wrapper scan I/Os in transparent mode.

Figure 233 shows how the transparent mode of a wrapped core relates to the inward-
facing and outward-facing test modes. Standard scan modes are not shown.

Figure 233 The Three Test Mode Types of a Wrapped Core

W
ra

pp
er

 c
ha

in

W
ra

pp
er

 c
ha

in

Outward-facing test modeInward-facing test mode Transparent test mode

W
ra

pp
er

 c
ha

in

W
ra

pp
er

 c
ha

in

WCOREWCOREWCORE

Transparent modes require that dedicated wrapper scan I/Os be used in the core’s
outward-facing modes. The tool creates and stitches placeholder chains, called
feedthrough chains, between these outward-facing I/Os in the transparent modes. Each
feedthrough chain consists of two scan cells that are clocked by the same head and tail
clock and edge as the outward-facing wrapper chains they represent.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

504

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Integrating Wrapped Cores in Hierarchical Flows

Feedback

At the top level, a flat test mode is defined as an extension of a top-level-only mode,
which tests only top-level logic with wrapped cores in outward-facing mode. A flat mode is
identical to its underlying top-level-only mode, except that:

• You schedule wrapped cores in transparent mode instead of outward-facing mode.

• Any top-level scan compression codecs from the underlying top-level-only mode are
reused.

Figure 234 shows how wrapped cores, placed in their transparent modes, are tested along
with the top-level logic in a top-level flat test mode.

Figure 234 Performing Top-Down Flat Testing Using Wrapped Cores in Transparent Mode

UTOPGATES WCORE2WCORE1

The feedthrough chains allow the codec from the top-level-only mode to be reused in
the flat test mode. Feedthrough chains are used only in flat test modes where they are
compressed by a top-level codec reused from the underlying top-level-only mode.

Feedthrough chains are unused in

• Top-level flat standard scan modes

• Top-level flat compressed scan modes without top-level codecs that compress the core
wrapper connections, such as the DFTMAX HASS integration flow

• Flat modes where the top-level codec participates in codec I/O sharing

See Limitations on page 507.

Defining Core-Level Transparent Test Modes
To define a transparent test mode at the core level, use the -transparent_mode_of
option of the define_test_mode command to specify a previously defined inward-facing
standard scan or compressed scan test mode as the parent mode. The transparent mode
is derived from this parent mode. For example,

define inward-facing modes
define_test_mode INWARD_STD –usage wrp_if
define_test_mode INWARD_COMP –usage scan_compression

Synopsys® TestMAX™ DFT User Guide
T-2022.03

505

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Integrating Wrapped Cores in Hierarchical Flows

Feedback

define outward-facing mode
define_test_mode OUTWARD_STD –usage wrp_of

define transparent modes
define_test_mode TRANS_STD –usage wrp_if \
 -transparent_mode_of INWARD_STD
define_test_mode TRANS_COMP –usage scan_compression \
 -transparent_mode_of INWARD_COMP
Specify the usage of a transparent mode to be the same as its parent mode: wrp_if for a
standard scan mode and scan_compression for a compressed scan mode.

To define dedicated wrapper scan I/Os for the core’s outward-facing modes, use the
-test_mode option of the set_dft_signal command. For example,

define dedicated scan I/Os for outward-facing mode
set_dft_signal -view spec -type ScanDataIn -port SI[*] \
 -test_mode {INWARD_STD TRANS_STD INWARD_COMP TRANS_COMP}
set_dft_signal -view spec -type ScanDataOut -port SO[*] \
 -test_mode {INWARD_STD TRANS_STD INWARD_COMP TRANS_COMP}

set_dft_signal -view spec -type ScanDataIn -port WSI[*] \
 -test_mode {OUTWARD_STD}
set_dft_signal -view spec -type ScanDataOut -port WSO[*] \
 -test_mode {OUTWARD_STD}
A transparent mode inherits all DFT configuration information from its parent mode. Do not
apply any other DFT configuration commands specifically to the transparent test modes;
they are ignored. Do not specify a base mode for transparent compressed scan modes.
As a reminder, the define_test_mode -transparent_mode_of, preview_dft, and
insert_dft commands print the following message:

Information: Transparent modes inherit their DFT configuration from their
parent modes; any other DFT specifications applied to transparent modes
are ignored. (TEST-2082)

For more information, see the man page for this message.

Defining Top-Level Flat Test Modes
To define a flat test mode at the top level, define a test mode that schedules the cores in
their transparent mode along with the top-level logic of the current design. For example,

define modes that test only cores
define_test_mode CORES_INWARD_STD -usage scan \
 -target {core1:INWARD_STD core2:INWARD_STD}
define_test_mode CORES_INWARD_COMP -usage scan_compression \
 -target {core1:INWARD_COMP core2:INWARD_COMP}

define modes that test only top-level logic
define_test_mode TOPONLY_STD -usage scan \
 -target {top}

Synopsys® TestMAX™ DFT User Guide
T-2022.03

506

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
SCANDEF Generation for Wrapper Chains

Feedback

define_test_mode TOPONLY_COMP -usage scan_compression \
 -target {top}

define flat test modes that test the entire design
define_test_mode TOPFLAT_STD -usage scan \
 -target {core1:TRANS_STD core2:TRANS_STD top}
define_test_mode TOPFLAT_COMP -usage scan_compression \
 -target {core1:TRANS_COMP core2:TRANS_COMP top}
The tool automatically identifies the standard scan or compressed scan top-level-only
mode associated with each flat mode.

Do not apply any DFT configuration commands specifically to the flat test modes; they are
ignored.

Limitations
Note the following limitations of top-down flat testing using transparent core-level test
modes:

• DFTMAX Ultra compression is not supported.

• You must define core-level transparent and top-level flat test modes with the
define_test_mode command; they are not created by default.

• At the core level, to create transparent modes, you must use dedicated wrapper scan I/
Os in the outward-facing modes.

• At the top level, you cannot mix transparent and nontransparent core test modes in the
same test mode.

• At the top level, you cannot define multiple flat top-level scan compression modes.

• At the top level, codecs with shared I/O connections cannot be reused by a top-level
flat mode. In this case, the tool inserts a new codec for the flat mode. This new codec
does not compress any feedthrough chains.

SCANDEF Generation for Wrapper Chains
SCANDEF generation is supported for wrapper chains. The SCANDEF information is
generated as follows:

• Wrapper cells can be reordered within wrapper chains.

• Wrapper chain cells cannot be repartitioned with regular scan chain cells.

• Input wrapper cells can be repartitioned between input wrapper chains, and output
wrapper cells can be repartitioned between output wrapper chains.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

507

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Core Wrapping Scripts

Feedback

• If input and output wrapper cell mixing is enabled, input wrapper chain cells can be
repartitioned with output wrapper chain cells.

Input and output wrapper chain mixing is enabled by default in the simple wrapper flow
and disabled by default in the maximized reuse flow. You can change this setting with
the -mix_cells option of the set_wrapper_configuration command.

• Each wrapper cell is represented as an ORDERED construct that ensures all logic
gates for that wrapper cell are kept together. However, a shared wrapper cell in the
maximized reuse flow is simply a scan cell, so it is represented as an individual scan
cell instead of an ORDERED construct.

See Also

• Using The SCANDEF-Based Reordering Flow on page 627 for more information
about generating SCANDEF information

Core Wrapping Scripts
The following script examples illustrate core wrapping.

Core Wrapping With Dedicated Wrapper Cells
Example 65 uses the simple wrapping flow to wrap a core with dedicated wrapper cells at
all ports.

Example 65 Script Example for Dedicated Wrapper
read_ddc ddc/des_unit.ddc
current_design des_unit
uniquify
link

set_dft_signal -view existing_dft -type ScanClock -timing {45 55} \
 -port clk_st

Enable and configure wrapper client
set_dft_configuration -wrapper enable
set_wrapper_configuration -class core_wrapper \
 -style dedicated \
 -use_dedicated_wrapper_clock true \
 -safe_state 1

Set scan chain count as desired
set_scan_configuration -chain_count 10

Create the test protocol and run pre-drc
create_test_protocol

Synopsys® TestMAX™ DFT User Guide
T-2022.03

508

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Core Wrapping Scripts

Feedback

dft_drc -verbose

Report the configuration of the wrapper utility, optional
report_wrapper_configuration

Preview all test structures to be inserted
preview_dft -show all -test_wrappers all
report_dft_configuration

Run scan insertion and wrap the design
set_dft_insertion_configuration -synthesis_optimization none

insert_dft

current_test_mode wrp_of
report_scan_path -view existing_dft -cell all \
 > reports/wrap_dedicated_wrp_of.rpt

current_test_mode wrp_if
report_scan_path -view existing_dft -cell all \
 > reports/wrap_dedicated_wrp_if.rpt

report_dft_signal -view existing_dft -port *

report_area

change_names -rules verilog -hierarchy

write -format ddc -hierarchy -output ddc/scan.ddc
write -format verilog -hierarchy -output vg/scan_wrap.vg
write_test_protocol -test_mode wrp_if -output stil/wrp_if.spf
write_test_protocol -test_mode wrp_of -output stil/wrp_of.spf

Core Wrapping With Maximized Reuse
Example 66 wraps a core with maximized reuse enabled.

Example 66 Script Example for Maximized Reuse Wrapping
read_ddc ddc/des_unit.ddc
current_design des_unit
uniquify
link

set_dft_signal -view existing_dft -type ScanClock -timing {45 55} \
 -port clk_st

Enable and configure wrapper client
set_dft_configuration -wrapper enable

Configure for maximized reuse wrappers, using existing cells
set_wrapper_configuration -class core_wrapper \

Synopsys® TestMAX™ DFT User Guide
T-2022.03

509

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Wrapping Cores
Core Wrapping Scripts

Feedback

 -maximize_reuse enable \
 -reuse_threshold 4 \
 -style shared \
 -register_io_implementation in_place \
 -mix_cells false \
 -use_system_clock_for_dedicated_wrp_cells enable \
 -safe_state 1

Set scan chain count as desired
set_scan_configuration -chain_count 10

Create the test protocol and run pre-drc
create_test_protocol
dft_drc -verbose

Report the configuration of the wrapper utility, optional
report_wrapper_configuration

Preview all test structures to be inserted
preview_dft -show all -test_wrappers all
report_dft_configuration

Run scan insertion and wrap the design
set_dft_insertion_configuration -synthesis_optimization none

insert_dft

current_test_mode wrp_of
report_scan_path -view existing_dft -cell all \
 > reports/wrap_dedicated_wrp_of.rpt

current_test_mode wrp_if
report_scan_path -view existing_dft -cell all \
 > reports/wrap_dedicated_wrp_if.rpt

report_dft_signal -view existing_dft -port *

report_area

change_names -rules verilog -hierarchy

write -format ddc -hierarchy -output ddc/scan.ddc
write -format verilog -hierarchy -output vg/scan_wrap.vg
write_test_protocol -test_mode wrp_if -output stil/wrp_if.spf
write_test_protocol -test_mode wrp_of -output stil/wrp_of.spf

Synopsys® TestMAX™ DFT User Guide
T-2022.03

510

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

12
On-Chip Clocking Support

On-Chip Clocking (OCC) support is common to all scan ATPG (Basic-Scan and Fast-
Sequential) and compressed scan environments. This implementation is intended for
designs that require ATPG in the presence of phase-locked loop (PLL) and clock controller
circuitry.

OCC support includes phased-locked loopsphase-locked loops, clock shapers, clock shapersclock dividers and multipliersmultipliers
and so on. In the scan-ATPG environment, scan chain load_unloadload_unload is controlled through
an ATE clockautomatic test equipment (ATE) clock. However, internal clock signals that reach state
elements during capture are PLL-related.

OCC flows can use either the user-defined clock controller and clock chains or the DFT-
inserted OCC clock controller. If you use an existing user-defined clock controller, you
would need a set of user-defined commands to identify the existing clock controller outputs
with their corresponding clock chain control bits.

This chapter includes the following topics:

• Background

• Supported DFT Flows

• Clock Type Definitions

• Capabilities

• OCC Controller Structure and Operation

• Enabling On-Chip Clocking Support

• Specifying OCC Controllers

• Reporting Clock Controller Information

• DRC Support

• DFT-Inserted OCC Controller Configurations

• Waveform and Capture Cycle Example

• Limitations

Synopsys® TestMAX™ DFT User Guide
T-2022.03

511

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: On-Chip Clocking Support
Background

Feedback

Background
at-speed testingAt-speed testing for deep-submicron defects requires not only more complex fault modelsfault models
for ATPG and fault simulation, such as transition faults and path delay faults, but also
requires the accurate application of two high-speed clock pulses to apply the tests for
these fault models. The time delay between these two clock pulses, referred to as the
launch clock and the capture clock, is the effective cycle time at which the circuit will be
tested.

A key benefit of scan-based at-speed testing is that only the launch clocklaunch clock and the capture
clock need to operate at the full frequency of the device under test. Scan shift clocksScan shift clocks
and shift datashift data can operate at a much slower speed, thus reducing the performance
requirements of the test equipment. However, complex designs often have many different
high-frequency clock domains, and the requirement to deliver a precise launch and
capture clock for each of these from the tester can add significant or prohibitive costs to
the test equipment. Furthermore, special tuning is often required for properly controlling
the clock skew to the device under test.

One common alternative for at-speed testing is to leverage existing on-chip clock
generation circuitry. This approach uses the active controller, rather than off-chip clocks
from the tester, to generate the high-speed launch and capture clock pulses. This type of
approach generally reduces tester requirements and cost and can also provide high-speed
clock pulses from the same source as the device in its normal operating mode without
additional skews from the test equipment or test fixtures.

When using this approach, additional on-chip controller circuitry is inserted to control the
on-chip clocks in test mode. The on-chip clock control is then verified, and at-speed test
patterns are generated that apply clocks through proper control sequences to the on-
chip clock circuitry and test-mode controls. The DFT Compiler and TestMAX ATPG tools
support a comprehensive set of features to ensure that

• The test-mode control logic for the OCC controller operates correctly and has been
connected properly

• Test-mode clocks from the OCC circuitry can be efficiently used by TestMAX ATPG for
at-speed test generation

• OCC circuitry can operate asynchronously to other shift clocks from the tester

• TestMAX ATPG patterns do not require additional modifications to use the OCC and to
run properly on the tester

Synopsys® TestMAX™ DFT User Guide
T-2022.03

512

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: On-Chip Clocking Support
Supported DFT Flows

Feedback

Supported DFT Flows
OCCsupported flowsOn-chip clocking (OCC) is supported in the following DFT flows:

• Basic scan flow

• Top-down, nonhierarchical compressed scan insertion flow

• Bottom-up basic scan flow with OCC controller stitching at the top level

• Bottom-up hierarchical adaptive scan synthesis flow, which represents subblocks with
test models that are OCC controller stitched at the top level

• Hierarchical adaptive scan synthesis (HASS) and Hybrid flows, which stitch the cores
at the top level with integration at the top level

Clock Type Definitions
OCCdefinitionsNote the following clock definitions as they apply to OCC controller clocks in this chapter.
Figure 235 shows an example of each clock type.

• Reference ClocksOCC definitionReference clock – The frequency reference to the phase-locked loop (PLL). It must be
maintained as a constantly pulsing and free-running oscillator, or the circuitry will lose
synchronization.

• PLL ClocksOCC definitionPLL clock – The output of the PLL. It is also a free-running source that runs at a
constant frequency that might or might not be the same as the reference clock.

• ATE ClocksOCC definitionATE clock – Shifts the scan chain, typically more slowly than a reference clock. This
signal must preexist, or you must manually add this signal (that is, port) when inserting
the OCC. The period for this clock is determined by the test_default_period
variable. Usually the ATE clock is not used as a reference clock, but it must be treated
as a free-running oscillator so that it does not capture predictable data while the OCC
controller generates at-speed clock pulses. The ATE clock is called a dual clock signal
when the same port drives both the ATE clock and the reference clock.

• Internal ClocksOCC definitionInternal clock – The OCC controller is responsible for gating and selecting between
the PLL and ATE clocks, thus creating the internal clock signal to satisfy ATPG
requirements.

• external ClocksOCC definitionExternal clock – A primary clock input of a design that directly clocks flip-flops through
the combinational logic, without the use of a PLL clock. The period for this clock is
determined by the test_default_period variable.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

513

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: On-Chip Clocking Support
Capabilities

Feedback

Figure 235 Clock Types Used in the OCC Controller Flow

PLL
Reference clock PLL clock

OCC-generated
internal clock

ATE clock

OCC
controller

External clock

(10MHz)

(50MHz) (300MHz)

(10MHz)

(10MHz shift,
300MHz capture)

Capabilities
OCCcapabilitiesThe following OCC features are available:

• Synthesis of individual or multiple clock controllers and clock chains, using the DFT-
inserted OCC controller

• Support of pre-DFT DRC, scan chain stitching, and post-DFT DRC in documented
OCC support flows

• Support of a PLL-bypass configuration when an external (ATE) clock is used for
capture, thus bypassing the PLL clock(s)

• Generation of STIL protocol files with internal clock control details for use with the
TestMAX ATPG tool

• Support of post-DFT DRC, scan chain shifting, and scan compression

• Support of user-defined clock controller logic and clock chains that are already
instantiated in the design

Synopsys® TestMAX™ DFT User Guide
T-2022.03

514

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: On-Chip Clocking Support
OCC Controller Structure and Operation

Feedback

OCC Controller Structure and Operation
OCC controller types and operation is covered in the following topics:

• DFT-Inserted and User-Defined OCC Controllers

• Synchronous and Asynchronous OCC Controllers

• OCC Controller Signal Operation

• Clock Chain Operation

• Logic Representation of an OCC Controller and Clock Chain

• Scan-Enable Signal Requirements for OCC Controller Operation

DFT-Inserted and User-Defined OCC Controllers
You can use DFT-inserted or user-defined OCC controllers, as described in the following
flows:

• Specifying DFT-Inserted OCC Controllers

The insert_dft command performs insertion and synthesis of a DFT-inserted OCC
controller and clock chain, making control signal connections and modifying the clock
signal connections as needed. The OCC controller design is validated and incorporated
into the resulting test protocol. This flow is shown in Figure 236.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

515

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: On-Chip Clocking Support
OCC Controller Structure and Operation

Feedback

Figure 236 OCC and Clock Chain Synthesis Insertion Flow

ref_clk DFF

DFF

DFF

DFF

DFF

DFF

DFF

pllclk1
pllclk2
pllclk3

CLKO1

CLKO3
CLKI

PLL

CLKO2

ref_clk
pllclk1
pllclk2
pllclk3

CLKO1

CLKO3
CLKI

PLL

CLKO2

DFT-inserted
OCC

controller

DFF

DFF

DFF

DFF

DFF

DFF

DFF

DFF

intclk1
intclk2
intclk3

Clock chaintest_si1
test_si2
test_si3

ate_clk
pll_bypass

test_se
test_mode

pll_reset

test_so3
test_so2
test_so1

insert_dft

• Specifying Existing User-Defined OCC Controllers

The RTL contains the OCC controller and clock chain logic, all control signal and clock
signal connections, and the connections from the clock chain to the OCC controller.
Before DFT insertion, this existing user-defined OCC controller and clock chain logic is
described to the tool using the set_dft_signal and set_scan_group commands. The
OCC controller design is validated and incorporated into the resulting DFT logic and
test protocol. This flow is shown in Figure 237.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

516

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: On-Chip Clocking Support
OCC Controller Structure and Operation

Feedback

Figure 237 User-Defined Clock Controller and Clock Chain Flow

ref_clk
pllclk1
pllclk2
pllclk3

CLKO1

CLKO3
CLKI

PLL

CLKO2

User-defined
OCC

controller

DFF

DFF

DFF

DFF

DFF

DFF

DFF

DFF

intclk1
intclk2
intclk3

test_si1
test_si2
test_si3

ate_clk
pll_bypass

test_se
test_mode

pll_reset

test_so3
test_so2
test_so1

insert_dft

ref_clk
pllclk1
pllclk2
pllclk3

CLKO1

CLKO3
CLKI

PLL

CLKO2

User-defined
OCC

controller

DFF

DFF

DFF

DFF

DFF

DFF

DFF

DFF

intclk1
intclk2
intclk3

Clock chain

ate_clk
pll_bypass

test_se
test_mode

pll_reset

Clock chain

Note that in this flow, the tool does not make any signal connections to the OCC
controller or clock chain logic, except for scan data connections to the clock chain
segments. You must ensure that all clock and control signal connections exist prior to
DFT insertion.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

517

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: On-Chip Clocking Support
OCC Controller Structure and Operation

Feedback

Synchronous and Asynchronous OCC Controllers
You can use synchronous or asynchronous OCC controllers, as described in this section:

• Synchronous OCC controller

The clocks controlled by the OCC controller are synchronous. The initial rising edges of
the controlled clocks are synchronized to the lowest-frequency output clock, as shown
in Figure 238.

Figure 238 Synchronous OCC Controller Generating Two Clock Pulses

Synchronous
OCC controller

CLKX1

CLKX4

PLL CLKX2

Synchronous input clocks Synchronized pulses

Synchronous OCC controllers have the following requirements:

◦ The rising edge of each clock being controlled must be at time zero of its waveform
definition.

◦ The clocks being controlled must have a synchronous 1x, 2x, or 4x frequency
multiplier relationship with respect to the lowest-frequency controlled clock.

◦ Capture paths between the controlled clock domains must capture data without hold
violations.

TestMAX ATPG understands that the controlled clock domains are synchronous; faults
between them can be tested. For more information, see “Using Synchronized Multi-
Frequency Internal Clocks” in TestMAX ATPG and TestMAX Diagnosis Online Help.

Synchronous clock information is described in the ClockTiming block of a STIL
protocol file (SPF). For more information, see “Specifying Synchronized Multi-
Frequency Internal Clocks for an OCC Controller” in TestMAX ATPG and TestMAX
Diagnosis Online Help.

• Asynchronous OCC controller

Each controlled clock uses dedicated clock control logic that generates clock pulses
with no regard to alignment with other controlled clocks, as shown in Figure 239. The
input clocks being controlled can be synchronous or asynchronous with each other.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

518

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: On-Chip Clocking Support
OCC Controller Structure and Operation

Feedback

Figure 239 Asynchronous OCC Controller Generating Two Clock Pulses

Asynchronous
OCC controller

CLKO1

CLKO3

PLL CLKO2

Asynchronous input clocks Asynchronous pulses

ATPG treats the controlled clock domains as asynchronous; faults between them are
not tested.

A synchronous OCC controller preserves the synchronous relationship of its input clocks,
if they meet the requirements. You cannot use a synchronous OCC controller to control
asynchronous clocks; it will not make them synchronous.

An asynchronous OCC controller uses separate, independent pulse generation logic
for each controlled clock. You can use an asynchronous OCC controller to control
synchronous clocks, but their synchronous relationships are lost; there is no guarantee
that their pulse sequences will initiate on the same rising edge.

When a single OCC controller controls a mix of synchronous and asynchronous clocks,
you must use an asynchronous controller. If needed, you can use a mix of synchronous
and asynchronous OCC controllers.

OCC Controller Signal Operation
For Figure 236 on page 516 and Figure 237 on page 517, note the following:

• The reference clock (refclk) is always free-running. It is used as a test default
frequency input to the PLL.

• The PLL clocks (pllclk1, pllclk2, and pllclk3) are free-running clock outputs from the on-
chip clock generator; they can be divided, shaped, or multiplied. They are used for the
launch and capture of internal scanable elements that become internal clocks.

• The ATE clock (ate_clk) shifts the scan chain per tester specifications. Each PLL might
have its own ATE clock.

See Waveform and Capture Cycle Example on page 553 for a waveform diagram
that demonstrates the relationship between the various clocks.

• The on-chip clockcontrollerOCC controller serves as an interface between the on-chip clock generator and
internal scan chains. This logic typically contains clock MUXing logicclock multiplexing logic that allows

Synopsys® TestMAX™ DFT User Guide
T-2022.03

519

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: On-Chip Clocking Support
OCC Controller Structure and Operation

Feedback

internal clocks to switch from a slow ATE clock during shift to a fast PLLclockPLL clock during
capture.

• internal clocksInternal clocks (intclk1, intclk2, and intclk3) are outputs of the PLL control logic driving
the scan cells. Each internal clock is controlled or enabled by the clock chain and is
connected to the sequential elements within the design.

• The OCC bypass signal (pll_bypass) allows the ATE clock signal to connect directly to
the internal clock signals, thus bypassing the PLL clocks.

• The scan enable signalScanEnable signal (test_se) enables switching between the ATE shift clock
and output PLL clock signals. ScanEnable must be inactive during every capture
procedure, as described in Scan-Enable Signal Requirements for OCC Controller
Operation on page 522. You can use individual ScanEnable signals for each PLL
clock signal.

• The TestMode signal (test_mode) must be active in order for the circuit to work.

• The OCC reset signal (pll_reset) is asserted during test setup to reset the OCC
controller flip-flops to their initial states.

Clock Chain Operation
The clock chainclock chain provides a per-pattern clock selection mechanism for ATPG. It is
implemented as a scan chain segment of one or more scan cells. Clock selection values
are loaded into the clock chain as part of the regular scan load process.

A clock chain operates as follows:

• During scan shift, the clock chain shifts in new values when clocked by a scan clock.

The clock chain can be clocked by either the rising or falling clock edge, depending on
what best fits into the overall DFT architecture.

• During scan capture, the clock chain holds its value.

The value scanned into the clock chain must be scanned out, undisturbed, after
capture. The clock controller inserted by DFT Compiler meets this requirement. If you
provide your own clock controller, ensure that it meets this requirement.

Note the following scan architecture aspects of clock chains:

• For standard scan designs, the clock chain can be a dedicated scan chain or a
segment within a scan chain.

• For DFTMAX compressed scan designs, the clock chain can be an uncompressed
(external) scan chain or a special segment within a compressed scan chain. For more
information, see Scan Compression and OCC Controllers on page 679.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

520

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: On-Chip Clocking Support
OCC Controller Structure and Operation

Feedback

• For DFTMAX Ultra compressed scan designs, the clock chain must be an
uncompressed (external) scan chain. For more information, see Using OCC Controllers
With DFTMAX Ultra Compression on page 935.

• Clock chains of the same type (compressed or external) can be concatenated together.

Compressed clock chains are concatenated into a single chain and placed inside the
compressor where a regular single chain would be placed.

In the DFT-inserted OCC controller flow, the tool inserts a clock chain block that is
separate from the OCC controller block.

In the user-defined OCC controller flow, the clock chain can be a part of the OCC
controller design or it can be a separate design.

Logic Representation of an OCC Controller and Clock Chain
Figure 240 shows the logic structure of an OCC controller and clock chain.

Figure 240 Logic Representation of an OCC Controller

Note: This is a conceptual logic view, not a functional implementation.

An OCC controller is designed to deliver up to a user-specified number N of at-speed
clock pulse cycles during capture. A PLL cycle counter generates N successive one-hot

Synopsys® TestMAX™ DFT User Guide
T-2022.03

521

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: On-Chip Clocking Support
Enabling On-Chip Clocking Support

Feedback

enable signals, each of which is gated by the output of a clock chain scan cell. This logic
structure provides ATPG with the flexibility to control which cycles deliver an at-speed
clock pulse. For an OCC controller that handles multiple OCC generators, the clock chain
contains a set of N scan cells for each clock.

Note that the figure shows the conceptual operation of a single-clock OCC controller.
Implementation details, such as cleanly switching between the PLL clock and ATE clock
and providing synchronous or asynchronous control of multiple clocks, are not shown.

See Also

• SolvNet article 034274, “DFT-inserted OCC Controller Data Sheet” for more
information about the logic structure and operation of the DFT-inserted OCC controller

Scan-Enable Signal Requirements for OCC Controller Operation
The scan-enable signal switches the OCC controller between the ATE shift clock and
output PLL clock signals. Therefore, for proper operation, the scan-enable signal must be
held in the inactive state in all capture procedures.

If you use the STIL protocol file created by the tool, the protocol already meets this
requirement. The tool constrains all scan-enable signals to the inactive state in the capture
procedures, excluding any scan-enable signals defined with the -usage {clock_gating}
option of the set_dft_signal command. (Signals with multiple usages that include
clock_gating are still constrained.)

If you use a custom STIL protocol file, make sure that all scan-enable signals used by
OCC controllers are constrained to the inactive state in all capture procedures.

Enabling On-Chip Clocking Support
OCC supportenablingTo enable OCC support for a design that contains or will contain OCC controllers, use the
-clock_controller option of the set_dft_configuration command:

dc_shell> set_dft_configuration commandset_dft_configuration -clock_controller enable
In hierarchical flows, you also must enable OCC support at all hierarchical levels above
those that contain OCC controllers. For more information, see Using OCC Controllers in
Hierarchical DFT Flows on page 543.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

522

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnet.synopsys.com/retrieve/034274.html

Chapter 12: On-Chip Clocking Support
Specifying OCC Controllers

Feedback

Specifying OCC Controllers
This topic covers the different methods of specifying OCC controllers in DFT Compiler:

• Specifying DFT-Inserted OCC Controllers

• Specifying Existing User-Defined OCC Controllers

• Specifying OCC Controllers for External Clock Sources

• Using OCC Controllers in Hierarchical DFT Flows

Specifying DFT-Inserted OCC Controllers
If you have a design that contains an OCC generator, such as a PLL, but not an OCC
controller and clock chain, DFT Compiler can insert both the OCC controller and clock
chain. Note that this clock controller design supports only one ATE clock per OCC
controller. This topic describes the flow associated with this type of implementation.

The PLL clock is expected to already be connected in the design being run through this
flow. DFT Compiler will disconnect this PLL clock at the hookup location and insert the
newly synthesized clock controller at this location.

This topic covers the following:

• Defining Clocks

• Defining Global Signals

• Configuring the OCC Controller

• Configuring the Clock Selection Logic

• Configuring the Clock-Chain Clock Connection

• Specifying Scan Configuration

• Performing Timing Analysis

• Script Example

Defining Clocks
You need to define the reference clocks, definingreference, PLL clocks, definingPLL, and ATE clocks by using the set_dft_signal commandset_dft_signal
command. Note that this command does not require you to specify the primary inputs.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

523

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: On-Chip Clocking Support
Specifying OCC Controllers

Feedback

This topic covers the following:

• Reference Clocks

• PLL-Generated Clocks

• ATE Clocks

Reference Clocks
Reference clock signals are always defined in the existing DFT view. The insert_dft
command does not connect them because they are considered to be functional signals
rather than test signals. The only effect of defining them is that they are defined in the test
protocol for use by DRC in the TestMAX ATPG tool. For some special cases, a reference
clock signal might not be needed.

The following example shows how to define a PLL reference clock that has the same
period as the test_default_period variable (assumed to be 100 ns).

dc_shell> set_dft_signalset_dft_signal -view existing_dft \
 -type MasterClock -port refclk1 \
 -timing [list 45 55]

dc_shell> set_dft_signal -view existing_dft \
 -type refclock -port refclk1 \
 -period 100 -timing [list 45 55]
Note that you only need to define the reference clock with signal type MasterClock
when the reference clock has the same period as the test_default_period variable.
Otherwise, this signal definition is not needed and not accepted.

To define a reference clock that has a period other than the test_default_period, use
the following command:

dc_shell> set_dft_signal -view existing_dft \
 -type refclock -port refclk1 \
 -period 10 -timing [list 3 8]
Note:

When the reference clock period differs from the test_default_period, do not
define the signal as any signal type other than refclock.

Also note the following caveats associated with the test_default_period when defining
a reference clock:

• If the reference clock period is an integer divisor of the test_default_period, then
patterns can be written in a variety of formats, including STIL, STIL99, and WGL.

• If the reference clock is not an integer divisor to the test_default_period, the only
format that can be written in a completely correct way is STIL. Other formats, including

Synopsys® TestMAX™ DFT User Guide
T-2022.03

524

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: On-Chip Clocking Support
Specifying OCC Controllers

Feedback

STIL99, cannot include the reference clock pulses, and a warning is printed, indicating
that these pulses must be added back to the patterns manually.

• Do not define a reference clock period or timings with resolution finer than 1
picosecond. The TestMAX ATPG tool cannot work with finer timing resolutions.

PLL-Generated Clocks
For DFT Compiler to correctly insert the OCC, you must define the PLL-generated clocks
as well as the point at which they are generated. The following examples show how to
define a set of launch and capture clocks for internal scannable elements controlled by the
OCC controller:

dc_shell> set_dft_signal -view existing_dft \
 -type Oscillator \
 -hookup_pin PLL/pllclk1

dc_shell> set_dft_signal -view existing_dft \
 -type Oscillator \
 -hookup_pin PLL/pllclk2

dc_shell> set_dft_signal -view existing_dft \
 -type Oscillator \
 -hookup_pin PLL/pllclk3
For a synchronous OCC controller, you can optionally specify the clock period of the
slowest-frequency clock with the test_sync_occ_1x_period variable. This variable
affects the clock period values in the ClockTiming block of the STIL protocol file. Although
the value does not affect pattern generation in TestMAX ATPG, you can specify it for
informational purposes. For more information, see the man page.

ATE Clocks
The following examples show how to define the signal behavior of the ATE-provided clock
required for shifting scan elements:

dc_shell> set_dft_signal -view existing_dft \
 -type ScanClock \
 -port ATEclk \
 -timing [list 45 55]

dc_shell> set_dft_signal -view existing_dft \
 -type Oscillator \
 -port ATEclk
The ATE clock must be defined as both -type ScanClock and -type Oscillator. The
ScanClock signal definition uses the -view existing_dft option because the -timing
option can be specified only in that view. The Oscillator signal definition uses the -view
existing_dft option so that the ATE clock is modeled as a free-running clock in the test
protocol.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

525

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: On-Chip Clocking Support
Specifying OCC Controllers

Feedback

By default, DFT Compiler makes the ATE clock connection at the source port specified
in the -view existing_dft signal definition. To specify a hookup pin to be used for the
clock connection, use the -hookup_pin option in a subsequent -view spec scan clock
signal definition. For example,

dc_shell> set_dft_signal -view spec \
 -type ScanClock \
 -port ATEclk \
 -hookup_pin PAD_ateclk/Z
Define this additional specification only for the ScanClock signal definition; do not define it
for the Oscillator signal definition.

Note:
You can use the same clock port as both the ATE clock and PLL reference
clock. However, caveats apply. For more information, see SolvNet article
037838, “How Can I Use the Same Clock Port for the ATE and PLL Reference
Clocks?”

See Also

• Specifying a Hookup Pin for DFT-Inserted Clock Connections on page 244 for more
information about clock hookup pins

Defining Global Signals
You must identify the top-level interface signals that control the OCC controller. This
includes the OCC bypass, OCC reset, and ScanEnable signals. You must also define a
dedicated TestMode signal that activates the OCC controller logic. In the OCC controller
insertion flow, these signals are defined with the -view spec option because they will be
implemented and connected by the insert_dft command.

The following examples show how to define a set of OCC controller interface signals for
the design example:

dc_shell> set_dft_signal -view spec \
 -type pll_reset \
 -port OCC_reset

dc_shell> set_dft_signal -view spec \
 -type pll_bypass \
 -port PLL_bypass

dc_shell> set_dft_signal -view spec \
 -type ScanEnable \
 -port SE

dc_shell> set_dft_signal -view spec \

Synopsys® TestMAX™ DFT User Guide
T-2022.03

526

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnet.synopsys.com/retrieve/037838.html
https://solvnet.synopsys.com/retrieve/037838.html
https://solvnet.synopsys.com/retrieve/037838.html

Chapter 12: On-Chip Clocking Support
Specifying OCC Controllers

Feedback

 -type TestMode \
 -port TM_OCC
The TestMode signal must be a dedicated signal for the OCC controller. It must be active
in all test modes and inactive in mission mode. It cannot be shared with TestMode signals
used for other purposes, such as AutoFix or multiple test-mode selection.

Note:
In the internal pins flow, you can specify internal hookup pins for these OCC
control signals by using the -hookup_pin option of the set_dft_signal
command. However, you cannot specify internal hookup pins for ATE clocks or
reference clocks.

Configuring the OCC Controller
To specify where to insert a DFT-inserted OCC controller, use the set_dft_clock_controller

commandset_dft_clock_controller command. Note the following syntax and descriptions:

set_dft_clock_controller
 [-cell_name cell_name]
 [-design_name design_name]
 [-pllclocks ordered_list]
 [-1x_clocks ordered_list]
 [-2x_clocks ordered_list]
 [-4x_clocks ordered_list]
 [-ateclocks clock_name]
 [-chain_count integer]
 [-cycles_per_clock integer]
 [-test_mode_port port_name]

Option Description

-cell_name cell_name Specifies the hierarchical name of the clock controller
cell.

-design_name design_name Specifies the OCC controller design name. You must
specify snps_clk_mux.

-pllclocks ordered_list For asynchronous OCC controllers, specifies the
ordered list of PLL output clock pins to control.

-1x_clocks ordered_list For synchronous OCC controllers, specifies the ordered
list of PLL output clock pins to control that run at the
slowest frequency.

-2x_clocks ordered_list For synchronous OCC controllers, specifies the ordered
list of PLL output clock pins to control that run at two
times the slowest frequency.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

527

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: On-Chip Clocking Support
Specifying OCC Controllers

Feedback

Option Description

-4x_clocks ordered_list For synchronous OCC controllers, specifies the ordered
list of PLL output clock pins to control that run at four
times the slowest frequency.

-ateclocks clock_name Specifies the ATE clock (port) you want to connect to
the OCC controller. Note: You cannot specify multiple
clocks per controller.

-chain_count integer Specifies the number of clock chains. The default
number of clock chains is one.

-cycles_per_clock integer Specifies the maximum number of capture cycles
per clock. You should specify a value of two or
greater.Capture cycles are cycles during capture when
capture clocks are pulsed. Typically, for at-speed
transition testing, there are two capture cycles: one
is used for launching a transition and the other for
capturing the effect of that transition.

-test_mode_port port_name Specifies the test-mode port used to enable the
clock controller. Use this option if you have multiple
test-mode ports and you want to use a specific port
to enable the clock controller. The specified port
must be defined as a TestMode signal using the
set_dft_signal command.

For asynchronous OCC controllers, use the -pllclocks option to specify the list of
hierarchical clock source pins to be controlled.

For synchronous OCC controllers, use the -1x_clocks, -2x_clocks, and -4x_clocks
options to specify the list of synchronous hierarchical clock source pins to be controlled.
The -1x_clocks option is required; the first clock in the list is used as the master
synchronization clock. The -2x_clocks and -4x_clocks options are optional.

The following example inserts an asynchronous OCC controller that controls three clocks:

dc_shell> set_dft_clock_controller \
 -cell_name occ_snps \
 -design_name snps_clk_mux \
 -pllclocks { pll/pllclk1 pll/pllclk2 pll/pllclk3 } \
 -ateclocks { ATEclk } \
 -cycles_per_clock 2 -chain_count 1
To insert multiple OCC controllers, use multiple set_dft_clock_controller commands.
You can insert a mix of synchronous and asynchronous OCC controllers.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

528

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: On-Chip Clocking Support
Specifying OCC Controllers

Feedback

Configuring the Clock Selection Logic
By default, the OCC controller uses purely combinational clock-gating logic for glitch-free
selection between the fast and slow clocks. However, this is a legacy clock selection logic
structure that can introduce a number of logic gates along the fast and slow clock paths,
and its implementation is not configurable.

To avoid these issues, you can use latch-based clock-gating logic. For the fast and slow
clocks, the combinational gating-enable signals are combined and latched for each clock;
the latched enable signal is then used to gate the clock.

When latch-based clock-gating logic is used, the gate structure used to combine the
clocks is also configurable. The clock selection logic configuration is global and applies
to all OCC controllers inserted by DFT insertion in the current design. Cores that contain
previously inserted OCC controllers can use a different clock selection logic configuration.

Note:
DFT insertion applies the dont_touch attribute to any library cells referenced
by the design attributes (but not variables) in this section. This implicitly applies
the dont_touch attribute to any other instances of these library cells in your
design, which excludes them from optimization after DFT insertion. To prevent
this, set the dont_touch attribute on the OCC controller designs and remove it
from the attribute-referenced library cells after DFT insertion.

See Also

• SolvNet article 034274, “DFT-inserted OCC Controller Data Sheet” for more
information about the combinational and latch-based clock selection logic structures

Using Latch-Based Clock-Gating Logic
To use latch-based clock-gating logic, set the following variable to true:

dc_shell> set_app_var test_occ_insert_clock_gating_cells true
The default latch-based clock-gating logic structure is shown in Figure 241. Clock paths
are shown in bold, and rectangles indicate hierarchy created inside the OCC controller
block by DFT insertion.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

529

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnet.synopsys.com/retrieve/034274.html

Chapter 12: On-Chip Clocking Support
Specifying OCC Controllers

Feedback

Figure 241 Default Latch-Based Clock-Gating and Clock Selection Logic Structure

D Q

G
LAT

D Q

G
LAT

pll_clk

ate_clk

Clock
output

pll_clock_gated

ate_clock_gated

Clock-gating logic
Clock-ORing logic

pll_bypass
test_mode

test_se
test_mode
pll_bypass

The tool always uses latch-based clock gating for synchronous OCC controllers. If you
have not set the test_occ_insert_clock_gating_cells variable to true, the tool
issues a warning indicating that latch-based clock gating will be used for them.

When you use latch-based clock gating in a serialized compressed scan flow, the
test_elpc_unique_fsm variable must be set to its default of true. For details on this
variable, see Serializer in Conjunction With On-Chip Clocking Controllers on page 874.

Specifying Library Cells for the Clock-Gating Logic
You can configure the library cells used for the clock-gating logic. This allows you to use
higher-drive cells or specially designed clock-driver cells along the clock path.

By default, the latch-based clock-gating logic uses discrete latch cells. To use an
integrated clock-gating cell instead, as shown in Figure 242, set the desired library cell
reference (without the library name) using the test_icg_p_ref_for_dft variable. For
example,

dc_shell> set_app_var test_icg_p_ref_for_dft ICGPTX8

Figure 242 Specifying an Integrated Clock-Gating Cell for the Clock-Gating Logic

pll_clk pll_clock_gated

EN

CLKOUTCLKIN
ICG

ate_clk ate_clock_gated

EN

CLKOUTCLKIN
ICGtest_se

test_mode
pll_bypass

For more information about this variable, see the man page. For information on clock
gating styles, see the Power Compiler User Guide.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

530

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: On-Chip Clocking Support
Specifying OCC Controllers

Feedback

Specifying Library Cells for the Clock-ORing Logic
You can configure the library cells used for the clock-ORing logic. This allows you to use
higher-drive cells or specially designed clock-driver cells along the clock path.

By default, gate-level synthesis maps the default clock-ORing logic structure to any
suitable gate configuration. You can specify the library cells used for the clock-ORing logic
by setting design attributes on the current design to the desired library cell references
(without the library name). Table 48 shows the allowed attribute combinations. Buffer
specifications are optional.

Table 48 Specifying Library Cells for the Clock-ORing Logic

Logic structure Structure type and design attributes

pll_clock_gated

ate_clock_gated

NOR2 clock ORing10

occ_lib_cell_nor2
occ_lib_cell_clkinv

pll_clock_gated

ate_clock_gated

pll_bypass
test_mode

ANDOR21 clock ORing
occ_lib_cell_andor21
occ_lib_cell_clkbuf (optional)

pll_clock_gated

ate_clock_gated

pll_bypass
test_mode

ANDOR22 clock ORing
occ_lib_cell_andor22
occ_lib_cell_clkbuf (optional)

For example,

dc_shell> set_attribute [current_design] occ_lib_cell_andor21 CKAO21X8
Note:

The NOR2 logic structure requires that the design provide an active PLL clock
during OCC bypass mode because this structure does not include a logic term
that blocks unknown initial values from an unclocked PLL-clocked gating latch.
Post-DFT DRC is not supported for PLL bypass mode. In TestMAX ATPG, run
the following commands before running DRC for PLL bypass mode:

DRC-T> add_clocks 0 pll_pin_pathname -pllclock
DRC-T> set_drc -pll_simulate_test_setup

10. Requires manual intervention to pass post-DFT DRC in PLL bypass mode - see note.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

531

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: On-Chip Clocking Support
Specifying OCC Controllers

Feedback

Configuring the Clock-Chain Clock Connection
By default, the clock-chain clock connection shares the first functional clock output of the
OCC controller. This places the clock chain in both the PLL and ATE clock paths.

To use a dedicated clock-chain clock connection from the OCC controller design, set the
test_dedicated_clock_chain_clock variable to true. This creates a dedicated OCC
controller clock output for the clock chain that places it in only the ATE clock path, which
prevents it from affecting the high-speed PLL clock path.

Figure 243 shows both types of clock-chain clock connections.

Figure 243 Shared and Dedicated Clock Chain Clock Connections

OCC clock chain

Clock
output

OCC controller

OCC clock chain

Shared clock chain clock connection Dedicated clock chain clock connection

D Q

G
LAT

D Q

G
LAT

PLL clock

ATE clock

Clock
output

OCC controller

D Q

G
LAT

D Q

G
LAT

PLL clock

ATE clock

In both cases, you should consider how the clock-chain clock connection interacts with
clock tree synthesis (CTS). For more information, see man page. Also, note that this
variable can be set to true only when the test_occ_insert_clock_gating_cells
variable is also set to true.

Specifying Scan Configuration
Use the set_scan_configuration command to define scan ports, scan chains, and the
global scan configuration.

To specify scan constraints in your design, use the following command:

set_scan_configuration -chain_count <#chains>...

If the current design is to be used as a test model later in a hierarchical flow, it is important
to avoid clock mixing. Such mixing can cause the clock chain of the OCC controller
to mix with flip-flops of opposite polarity on a single scan chain. As a result, this scan
chain cannot be combined with scan chains of other test models and the minimum scan
chain count at the top level is increased. This problem is worsened when multiple OCC
controllers are added to the design or when multiple subdesigns of the top-level design will
have OCC controllers.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

532

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: On-Chip Clocking Support
Specifying OCC Controllers

Feedback

Performing Timing Analysis
After DFT insertion completes, you must ensure that the OCC controller logic is properly
constrained for timing analysis.

If you are using the combinational clock-gating method and synthesis maps the clock
selection logic to a MUX cell, you must use the set_clock_gating_check command to
manually specify a clock-gating check at the MUX inputs. This check is needed to check
the timing between the fast-clock-enable registers and the “FastClock” gates (multiplexers
between the fast clocks and the slow clocks). Combinational clock gating is used when the
test_occ_insert_clock_gating_cells variable is set to its default of false.

See Also

• SolvNet article 034274, "DFT-Inserted OCC Controller Data Sheet"

The two sections titled “Special Considerations” for information about synthesizing a
DFT-inserted OCC controller

• SolvNet article 022490, “Static Timing Analysis Constraints for On-Chip Clocking
Support for more information about performing timing analysis in a DFT-inserted OCC
controller flow

Script Example
Example 67 shows DFT Compiler performing pre-DFT DRC, scan chain stitching, and
post-DFT DRC. The STIL protocol file generated at the end of the DFT insertion process
contains PLL clock details suitable for the TestMAX ATPG tool.

Example 67 Flow Example for DFT-Inserted OCC Controller and Clock Chain
read_verilog mydesign.v
current_design mydesign
link

Define the PLL reference clock
top level free running clock
set_dft_signal -view existing_dft -type refclock \
 -port refclk1 -period 100 -timing [list 45 55]

set_dft_signal -view existing_dft -type MasterClock \
 -port refclk1 -timing [list 45 55]

Define the ATE clock
the ATE-provided clock for shift of scan elements
set_dft_signal -view existing_dft -type ScanClock \
 -port ATEclk -timing [list 45 55]

set_dft_signal -view existing_dft -type Oscillator \
 -port ATEclk

Synopsys® TestMAX™ DFT User Guide
T-2022.03

533

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnet.synopsys.com/retrieve/034274.html
http://solvnet.synopsys.com/retrieve/022490.html
http://solvnet.synopsys.com/retrieve/022490.html

Chapter 12: On-Chip Clocking Support
Specifying OCC Controllers

Feedback

Define the PLL generated clocks --
these are the launch/capture clocks for internal scannable
elements and are controlled by occ controller
set_dft_signal -view existing_dft -type Oscillator \
 -hookup_pin pll/pllclk1

set_dft_signal -view existing_dft -type Oscillator \
 -hookup_pin pll/pllclk2

set_dft_signal -view existing_dft -type Oscillator \
 -hookup_pin pll/pllclk3

Enable PLL capability
set_dft_configuration -clock_controller enable

The following command specifies the OCC controller
design to be instantiated. The DFT Compiler synthesized
clock controller is named snps_clk_mux
set_dft_clock_controller -cell_name snps_pll_controller \
 -design_name snps_clk_mux -pllclocks { pll/pllclk1 \
 pll/pllclk2 pll/pllclk3 } -ateclocks { ATEclk } \
 -cycles_per_clock 2 -chain_count 1

set_scan_configuration -chain_count 30 -clock_mixing no_mix
create_test_protocol
dft_drc
report_dft_clock_controller -view spec
preview_dft -show all
insert_dft
dft_drc

Run DRC with external clocks enabled during capture
(PLL bypassed)
set_dft_drc_configuration -pll_bypass enable
dft_drc

change_names -rules verilog -hierarchy
write -format verilog -hierarchy -output top.scan.v

Write out combined PLL enabled/bypassed test protocol:
write_test_protocol -output scan_pll.stil

Specifying Existing User-Defined OCC Controllers
If you have a design that contains an OCC generator and it already instantiates an
existing user-defined OCC controller and clock chain, DFT Compiler can analyze the OCC
controller, validate the functionality, and incorporate it into the test protocol.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

534

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: On-Chip Clocking Support
Specifying OCC Controllers

Feedback

This topic covers the following:

• Defining Clocks

• Defining Global Signals

• Specifying Clock Chains

• Scan Configuration for User-Defined OCC Controllers

• Script Example

Defining Clocks
Use the set_dft_signal command to define the following clock signals for Figure 237:

• Reference Clocks

• PLL-Generated Clocks

• ATE Clocks

• Clock Chain Configuration and Control-Per-Pattern Information

Reference Clocks
A reference clock definition is used primarily as an informational device. The only effect of
defining them is that they are defined in the test protocol for use by TestMAX ATPG. For
some special cases, a reference clock signal might not be needed.

The following example shows how to define a PLL reference clock that has the same
period as the test_default_period variable (assumed to be 100 ns).

dc_shell> set_dft_signalset_dft_signal -view existing_dft \
 -type MasterClock -port refclk1 \
 -timing [list 45 55]

dc_shell> set_dft_signal -view existing_dft \
 -type refclock -port refclk1 \
 -period 100 -timing [list 45 55]
Note that you only need to define the reference clock with signal type MasterClock
when the reference clock has the same period as the test_default_period variable.
Otherwise, this signal definition is not needed and not accepted.

To define a reference clock that has a period other than the test_default_period, use
the following command:

dc_shell> set_dft_signal -view existing_dft \
 -type refclock -port refclk1 \
 -period 10 -timing [list 3 8]

Synopsys® TestMAX™ DFT User Guide
T-2022.03

535

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: On-Chip Clocking Support
Specifying OCC Controllers

Feedback

Note:
When the reference clock period differs from the test_default_period, do not
define the signal as any signal type other than refclock.

Also note the following caveats associated with the test_default_period when defining
a reference clock:

• If the reference clock period is an integer divisor of the test_default_period, then
patterns can be written in a variety of formats, including STIL, STIL99, and WGL.

• If the reference clock is not an integer divisor of the test_default_period, the only
format that can be written in a completely correct way is STIL. Other formats (including
STIL99) cannot include the reference clock pulses. A warning is printed, indicating that
these pulses must be added back to the patterns manually.

• Do not define a reference clock period or timings with resolution finer than 1
picosecond. The TestMAX ATPG tool cannot work with finer timing resolutions.

PLL-Generated Clocks
PLL clocks are the output of the PLL. This output is a free-running source that also runs
at a constant frequency, which might not be the same as the reference clock’s. This
information is forwarded to the TestMAX ATPG tool through the protocol file to allow the
verification of the clock controller logic.

The following commands show how to define the PLL clocks for the design example:

dc_shell> set_dft_signal -view existing_dft \
 -type Oscillator \
 -hookup_pin PLL/pllclk1

dc_shell> set_dft_signal -view existing_dft \
 -type Oscillator \
 -hookup_pin PLL/pllclk2

dc_shell> set_dft_signal -view existing_dft \
 -type Oscillator \
 -hookup_pin PLL/pllclk3
For synchronous OCC controllers, you must also update the STIL protocol file with an
appropriate ClockTiming block before using it in TestMAX ATPG. See the “Specifying
Synchronized Multi-Frequency Internal Clocks for an OCC Controller” section in TestMAX
ATPG and TestMAX Diagnosis Online Help.

ATE Clocks
An ATE clock signal can be pulsed several times before and after scan shift (scan-enable
signal inactive) to synchronize the clock controller logic in the capture phase and back into
the shift phase.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

536

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: On-Chip Clocking Support
Specifying OCC Controllers

Feedback

The following commands show how to define ATE clocks for the design example:

dc_shell> set_dft_signal -view existing_dft \
 -type ScanClock \
 -port ATEclk \
 -timing [list 45 55]

dc_shell> set_dft_signal -view existing_dft \
 -type Oscillator \
 -port ATEclk
ATEclk must be defined as -type ScanClock and -type Oscillator.
Note:

You can use the same clock port as both the ATE clock and PLL reference
clock. However, caveats apply. For more information, see SolvNet article
037838, “How Can I Use the Same Clock Port for the ATE and PLL Reference
Clocks?”

A user-defined OCC controller can use ATE clock synchronization logic which differs
from the DFT-inserted OCC controller. In these cases, you might need to set the
test_ate_sync_cycles variable to a nondefault value. For more information, see SolvNet
article 035708, “What Does the test_ate_sync_cycles Variable Do?”

Clock Chain Configuration and Control-Per-Pattern Information
You must specify the correlation between the internal clock signals driven from the clock
controller outputs, the signals driven from the clock generator (PLL) outputs, and the
signals provided by the user-defined clock chain. This information indicates how the clock
signal is enabled by the clock chain control bits in each clock cycle. The correspondence
between the controlled internal clock signals and clock chain control bits is identified in the
protocol file for TestMAX ATPG to generate patterns.

You must specify

• All user-defined clock controller outputs referencing the internal clocks

• A corresponding set of clock chain control bits, ATE clock, and clock generator output
(PLL) for each clock controller output

The following example specifies a user-defined OCC controller with a three-bit clock chain:

dc_shell> set_dft_signal -view existing_dft \
 -type Oscillator \
 -hookup_pin occ_ctrl/clkout \
 -ate_clock ATEclk \
 -pll_clock PLL/pllclk1 \
 -ctrl_bits [list 0 occ_chn/FF_cyc1/Q 1 \
 1 occ_chn/FF_cyc2/Q 1 \
 2 occ_chn/FF_cyc3/Q 1]

Synopsys® TestMAX™ DFT User Guide
T-2022.03

537

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnet.synopsys.com/retrieve/037838.html
https://solvnet.synopsys.com/retrieve/037838.html
https://solvnet.synopsys.com/retrieve/037838.html
https://solvnet.synopsys.com/retrieve/035708.html
https://solvnet.synopsys.com/retrieve/035708.html

Chapter 12: On-Chip Clocking Support
Specifying OCC Controllers

Feedback

Note:
The -ctrl_bits option is used to provide a list of triplets that specify the
sequence of bits needed to enable the propagation of the clock generator
outputs. The first element of each triplet is the cycle number (integer) indicating
the cycle where the clock signal will be propagated. The second element is the
pin name (a valid design hierarchical pin name) of the clock chain control bit.
The third element is the active state (0 or 1) of the control bit signal. For more
information about this option, see the set_dft_signal man page.

Note:
The -view existing_dft option is used because connections already exist
between the referenced port and the clock controller.

Defining Global Signals
You must identify the top-level interface signals that control the OCC controller. This
includes the OCC bypass, OCC reset, and ScanEnable signals. You must also define a
dedicated TestMode signal that activates the OCC controller logic. In the user-defined
OCC controller flow, these signals are defined with the -view existing_dft option
because they already exist and must be described to DFT Compiler.

The following examples show how to define a set of OCC controller interface signals for
the design example:

dc_shell> set_dft_signal -view existing_dft \
 -type pll_reset \
 -port OCC_reset

dc_shell> set_dft_signal -view existing_dft \
 -type pll_bypass \
 -port PLL_bypass

dc_shell> set_dft_signal -view existing_dft \
 -type ScanEnable \
 -port SE

dc_shell> set_dft_signal -view existing_dft \
 -type TestMode \
 -port TM_OCC
The TestMode signal must be a dedicated signal for the OCC controller. It must be active
in all test modes and inactive in mission mode. It cannot be shared with TestMode signals
used for other purposes, such as AutoFix or multiple test-mode selection.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

538

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: On-Chip Clocking Support
Specifying OCC Controllers

Feedback

Note:
You can specify an internal hookup pin for any of these OCC controller interface
signals by using the -hookup_pin option of the set_dft_signal command.
You cannot specify internal hookup pins for ATE clocks or reference clocks.

Specifying Clock Chains
Specify clock chains by using the set_scan_group command. This ensures that the
sequential cells are treated as a group and are logically ordered.

dc_shell> set_scan_group clk_chain \
 -class OCC \
 -include_elements \
 [list occ_chn/FF_1 occ_chn/FF_2] \
 -access [list ScanDataIn occ_chn/si \
 ScanDataOut occ_chn/so \
 ScanEnable occ_chn/se] \
 -serial_routed true
In this flow, you should insert the clock chain to be clocked by the falling edge of the
internal clock in such a way that it can be placed at the head of a scan chain. When
defining the clock chain, use the set_scan_group -class OCC command to specify
the special treatment of the clock chain, and avoid using the set_scan_path command
so that the scan architect has maximum flexibility in putting the clock chain in the
best location on the scan chains. The -class OCC option allows the clock chain to be
recognized if the module is incorporated as a test model in the integration flow.

In case a separate scan path is required for the clock chain, the set_scan_path -class
OCC command is also available. If you are using scan compression, the clock chain
does not need to be a separate scan path, but if you want to define it as such, two
set_scan_path commands are required, one with the -test_mode Internal_scan
option and one with the -test_mode ScanCompression_mode option. The process
of combining scan compression with clock controllers results in a multiple test-mode
architecture; therefore, both modes must be specified.

If the current design is to be used later as a test model in a hierarchical flow and your scan
configuration allows clock mixing, you should make sure that the clock chains are kept
separate from other scan chains. Otherwise, the top-level scan architecture might require
too many scan chains because the submodule scan chains are incompatible with each
other. To force the clock chains to be separate, use the set_scan_path command with
the -class occ and -complete true options. For more information, see SolvNet article
018046, “How Can I Control Scan Stitching of OCC Controller Clock Chains?”

Synopsys® TestMAX™ DFT User Guide
T-2022.03

539

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
http://solvnet.synopsys.com/retrieve/018046.html
http://solvnet.synopsys.com/retrieve/018046.html

Chapter 12: On-Chip Clocking Support
Specifying OCC Controllers

Feedback

Scan Configuration for User-Defined OCC Controllers
For proper clock control during test, your user-defined OCC controller and clock chain
must be excluded from scan replacement. To do this, use the set_scan_element
command:

dc_shell> set_scan_element false {occ_ctrl occ_chn}
For convenience, you can apply this directive using RTL pragmas in your user-defined
OCC RTL. For details, see SolvNet article 2898128, “Excluding User-Defined OCC
Controllers from DFT Insertion.”

If the current design is to be used later as a test model in a hierarchical flow, it is important
to avoid clock mixing. If you must mix clocks, use the method described in Specifying
Clock Chains on page 539 to avoid problems integrating the clock chains at the next
higher level of hierarchy.

If your OCC controller uses integrated clock-gating cells, verify that pre-DFT DRC does
not issue any TEST-130 identification messages for them, or incorrect test-pin connections
will result. For details, see SolvNet article 2819507, “Simulation Fails Due to Bad ICG
Test-Pin Connection in User-Defined OCC Controller.”

Script Example
When you run a design that contains a user-defined OCC controller and clock chains, a
STIL protocol file is generated, as shown in Example 68.

Example 68 Flow Example for Existing OCC Controller and Clock Chain
read_verilog mydesign.v
current_design mydesign
link

Define the PLL reference clock
(top-level free running clock)
set_dft_signal -view existing_dft -type refclock \
 -port refclk1 -period 100 -timing [list 45 55]

set_dft_signal -view existing_dft -type MasterClock \
 -port refclk1 -timing [list 45 55]

Define the ATE clock
(the ATE-provided clock for shift of scan elements)
set_dft_signal -view existing_dft -type ScanClock \
 -port ATEclk -timing [list 45 55]

set_dft_signal -view existing_dft -type Oscillator \
 -port ATEclk

Define the PLL generated clocks
set_dft_signal -view existing_dft -type Oscillator \

Synopsys® TestMAX™ DFT User Guide
T-2022.03

540

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
http://solvnet.synopsys.com/retrieve/2898128.html
http://solvnet.synopsys.com/retrieve/2898128.html
http://solvnet.synopsys.com/retrieve/2819507.html
http://solvnet.synopsys.com/retrieve/2819507.html

Chapter 12: On-Chip Clocking Support
Specifying OCC Controllers

Feedback

 -hookup_pin pll/pllclk1

set_dft_signal -view existing_dft -type Oscillator \
 -hookup_pin pll/pllclk2

set_dft_signal -view existing_dft -type Oscillator \
 -hookup_pin pll/pllclk3

Enable PLL capability
set_dft_configuration -clock_controller enable

Specify clock controller output and control-per-pattern information
set_dft_signal -type Oscillator -hookup_pin occ_ctrl/clkout \
 -ate_clock ATEclk -pll_clock PLL/pllclk1 \
 -ctrl_bits [list 0 occ_chn/FF_1/Q 1 \
 1 occ_chn/FF_2/Q 1] \
 -view existing_dft

Define the existing clock chain segments
set_scan_group clk_chain -class occ\
 -include_elements [list occ_chn/FF_1 \
 occ_chn/FF_2] \
 -access [list ScanDataIn occ_chn/si \
 ScanDataOut occ_chn/so
 ScanEnable occ_chn/se] \
 -serial_routed true

Specify global controller signals
set_dft_signal -type pll_reset -port OCC_reset -view existing_dft
set_dft_signal -type pll_bypass -port PLL_bypass -view existing_dft
set_dft_signal -type ScanEnable -port SE -view existing_dft

Define the TestMode signals
set_dft_signal -type TestMode -port TM_OCC -view existing_dft

Registers inside the OCC controller and clock chain should not
be scan-replaced. (The OCC controller requires nonscan cells, and the
clock chain is already a stitched scan segment.)
set_scan_element false {occ_ctrl occ_chn}

If you are using automatic clock-gating cell identification (the
identify_clock_gating command or the power_cg_auto_identify variable),
prevent identification inside the OCC controller.
set_dft_clock_gating_configuration -exclude_elements {occ_ctrl}

set_scan_configuration -chain_count 30 -clock_mixing no_mix
create_test_protocol
dft_drc
report_dft_clock_controller -view existing_dft
preview_dft -show all
insert_dft
dft_drc

Synopsys® TestMAX™ DFT User Guide
T-2022.03

541

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: On-Chip Clocking Support
Specifying OCC Controllers

Feedback

Run DRC with external clocks enabled during capture
(PLL bypassed)

set_dft_drc_configuration -pll_bypass enable
dft_drc

change_names -rules verilog -hierarchy
write -format verilog -hierarchy -output top.scan.v

Write out combined PLL enabled/bypassed test protocol:
write_test_protocol -output scan_pll.stil

Specifying OCC Controllers for External Clock Sources
In some cases, the on-chip clocking source might be external to the current design, as
shown in Figure 244, so that the PLL clocks enter the design through input ports.

Figure 244 On-Chip Clock Source External to Current Design

ref_clk
CLKO1

CLKO3
CLKI

PLL

CLKO2

CORE

ate_clk

DFT-inserted
OCC controller

PLLclk1
PLLclk2
PLLclk3

ATEclk
External clock source (outside current design)

Define such external clock sources as follows:

• Define the port-driven PLL-generated clocks at the ports, and define them as
ScanClock instead of Oscillator:

dc_shell> set_dft_signal -view existing_dft \
 -type ScanClock \
 -port {PLLclk1 PLLclk2 PLLclk3} \
 -timing {45 55}
Specify typical scan clock timing, even though the clock is a PLL-generated clock
instead of a tester-driven clock. This timing discrepancy does not affect OCC
architecture or operation.

• If the reference clock does not enter the design, you do not need to define it.

• Include the PLL-generated input ports in the PLL clock sources list specified with the
-pllclocks option:

dc_shell> set_dft_clock_controller \
 -cell_name occ_snps \

Synopsys® TestMAX™ DFT User Guide
T-2022.03

542

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: On-Chip Clocking Support
Specifying OCC Controllers

Feedback

 -design_name snps_clk_mux \
 -pllclocks {PLLclk1 PLLclk2 PLLclk3} \
 -ateclocks {ATEclk} \
 -cycles_per_clock 2 -chain_count 1

The resulting SPF does not pulse the clock ports during capture, which is incorrect.
As a workaround, define the clock as a reference clock in the TestMAX ATPG tool. For
example,

DRC-T> add_clock 0 {PLLclk1 PLLclk2 PLLclk3} -refclock
External clock sources are not supported for existing user-defined OCC controllers.

Using OCC Controllers in Hierarchical DFT Flows
You can integrate DFT-inserted cores that contain OCC controllers, as described in the
following topics:

• Integrating Cores That Contain OCC Controllers

• Defining Signals for Cores Without Preconnected OCC Signals

• Defining Signals for Cores With Preconnected OCC Signals

• Handling Cores With OCC Clock Output Pins

Integrating Cores That Contain OCC Controllers
You can integrate DFT-inserted cores that contain OCC controllers. It does not matter
whether a core was created with the DFT-inserted or user-defined OCC controller flow;
once created, it is simply a core that contains OCC controller information in its CTL model,
and the hierarchical OCC integration flow treats the core the same in either case.

Enable the OCC controller feature at all hierarchical levels above those that contain OCC
controllers:

dc_shell> set_dft_configuration -clock_controller enable
Top-level connections for the pll_reset, pll_bypass, ATE clock, and OCC TestMode
signals of all core-level OCC controllers should be either all preconnected or all left
unconnected so that the insert_dft command can make the connections. The DFT
architect cannot recognize partially connected conditions reliably and might make
mistakes if some, but not all, of these signals are already connected.

If you define a top-level DFT-inserted OCC controller, and the current design contains
cores that have their own OCC controllers, all core-level OCC signals must be
unconnected so that the insert_dft command can make the top-level connections.
Preconnected core-level OCC signals are not supported when a top-level DFT-inserted
OCC controller is used.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

543

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: On-Chip Clocking Support
Specifying OCC Controllers

Feedback

Defining Signals for Cores Without Preconnected OCC Signals
Top-level integration uses signal types to determine the correct connections to make. Most
DFT signals used by OCC controllers, including the pll_reset and pll_bypass types,
can be connected by the insert_dft command.

However, the ATE clock signal has no special signal type in the core test model, so
user guidance is required. To give this guidance, use the -connect_to option of the
set_dft_signal command.

Example 69 defines the OCC signals in an integration flow where the insert_dft
command must make the OCC signal connections to two cores containing OCC
controllers.

Example 69 OCC Signal Definitions for Cores Without Preconnected OCC Signals
Define the PLL reference clock (top-level free-running clock)
#
this is a functional signal that must always be preconnected
set_dft_signal -view existing_dft -type refclock \
 -port refclk1 -period 100 -timing [list 45 55]

set_dft_signal -view existing_dft -type MasterClock \
 -port refclk1 -timing [list 45 55]

Define the ATE clock
#
this is the ATE-provided clock for shift of scan elements
set_dft_signal -view existing_dft -type ScanClock \
 -port ATEclk -timing [list 45 55] \
 -connect_to [list CORE1/ATEclk CORE2/ATEclk]

set_dft_signal -view spec -type ScanClock \
 -port ATEclk \
 -connect_to [list CORE1/ATEclk CORE2/ATEclk]

set_dft_signal -view existing_dft -type Oscillator \
 -port ATEclk

Specify global OCC controller signals, all in spec view
set_dft_signal -view spec -type pll_reset -port OCC_reset
set_dft_signal -view spec -type pll_bypass -port PLL_bypass
set_dft_signal -view spec -type ScanEnable -port SE

Define the PLL TestMode signals
set_dft_signal -view spec -type TestMode -port TM_OCC

This example uses both the -view existing_dft and -view spec options for the ATE
clock. The -view spec option specifies that a change to the design is needed during DFT
insertion, but clock timing can only be attached to a clock specification in the existing view.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

544

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: On-Chip Clocking Support
Specifying OCC Controllers

Feedback

For most signal types, the -connect_to option is used only with -view spec signal
definitions to define connections to be made by DFT insertion. However, for ATE clocks,
the -connect_to option is also used for the -view existing_dft signal definition so that
the information is passed to pre-DFT DRC.

Defining Signals for Cores With Preconnected OCC Signals
When the DFT signals used by OCC controllers are preconnected to the cores, define
them at the top level with only the -view existing_dft option of the set_dft_signal
command.

Example 70 defines the OCC signals in an integration flow where the OCC connections to
two cores already exist.

Example 70 OCC Signal Definitions for Cores With Preconnected OCC Signals
Define the PLL reference clock (top-level free-running clock)
#
this is a functional signal that must always be preconnected
set_dft_signal -view existing_dft -type refclock \
 -port refclk1 -period 100 -timing [list 45 55]

set_dft_signal -view existing_dft -type MasterClock \
 -port refclk1 -timing [list 45 55]

Define the ATE clock
#
this is the ATE-provided clock for shift of scan elements
set_dft_signal -view existing_dft -type ScanClock \
 -port ATEclk -timing [list 45 55] \
 -connect_to [list CORE1/ATEclk CORE2/ATEclk]

set_dft_signal -view existing_dft -type Oscillator \
 -port ATEclk

Specify global OCC controller signals, all in existing_dft view
set_dft_signal -view existing_dft -type pll_reset -port OCC_reset
set_dft_signal -view existing_dft -type pll_bypass -port PLL_bypass
set_dft_signal -view existing_dft -type ScanEnable -port SE

Also define ScanEnable in spec view for top-level DFT insertion
set_dft_signal -view spec -type ScanEnable -port SE

Define the PLL TestMode signals
set_dft_signal -view existing_dft -type TestMode -port TM_OCC

For most signal types, the -connect_to option is used only with -view spec signal
definitions to define connections to be made by DFT insertion. However, for ATE clocks,
the -connect_to option is also used for the -view existing_dft signal definition so that
the information is passed to pre-DFT DRC.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

545

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: On-Chip Clocking Support
Reporting Clock Controller Information

Feedback

Handling Cores With OCC Clock Output Pins
When a core has a clock output driven by an OCC clock generated inside the core, the
core CTL model models the clock output as a clock feedthrough connection from the
corresponding ATE clock. For example,

 Internal {
 "ATECLK" {
 DataType ScanMasterClock MasterClock;
 }
 "PLL_CLK_OUT" {
 IsConnected Out {
 Signal "ATECLK";
 }
 }

At the integration level, if you have multiple such cores that use the same ATE clock, by
default DFT insertion does not insert lockup latches for scan chain crossings between
the core output clock domains because they are not seen as separate clock domains.
To treat these clock domains as separate, specify the core clock output pins with the
-associated_internal_clocks option for the ATE clock signal definition. For example,

set_dft_signal -view existing_dft -type ScanClock \
 -port ATEclk -timing [list 45 55] \
 -associated_internal_clocks {CORE1/PLL_CLK_OUT CORE2/PLL_CLK_OUT}
This causes DFT insertion to treat the core output clock domains as separate domains
for scan architecting purposes. No special treatment is needed for any top-level OCC
controllers that also share the same ATE clock signal, because the tool already treats their
output clock domains as separate domains.

Reporting Clock Controller Information
Use the report_dft_clock_controller command to generate reports.

DFT-Inserted OCC Controller Flow
For DFT-inserted OCC controllers and clock chains, use the
report_dft_clock_controller -view spec command to output a report. This report
displays the options that you set for the set_dft_clock_controller command.

Example 71 shows a clock controller report for the DFT-inserted OCC controller flow.

Example 71 Report Example from the report_dft_clock_controller -view spec Command
**
Report : Clock controller
Design : des_chip

Synopsys® TestMAX™ DFT User Guide
T-2022.03

546

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: On-Chip Clocking Support
Reporting Clock Controller Information

Feedback

Version: G-2012.06
Date : Fri Sep 7 05:42:06 2012
**

==
TEST MODE: all_dft
VIEW : Specification
==
Cell name: pll_controller_0
Design: snps_clk_mux
Chain count: 1
Cycle count: 2
PLL clock: u_pll/clkgenx2 u_pll/clkgenx3
ATE clock: ateclk

Existing User-Defined OCC Controller Flow
For existing user-defined OCC controllers and clock chains, after you define the
internal clock signals and the corresponding control-per-pattern information, use the
report_dft_clock_controller -view existing_dft command to report what you
have specified. In Example 72, the report shows information about the clock generator
signal, the ATE clock, the OCC controller output, and the clock chain control bits.

Example 72 Report Example from the report_dft_clock_controller Command
**
Report : Clock controller
Design : des_chip
Version: G-2012.06
Date : Fri Sep 7 05:18:55 2012
**

Clock controller: ctrl_0
==
 Number of bits per clock: 4
 Controlled clock output pin: duto/clk
 ==
 Clock generator signal: dutp/PLLCLK
 ATE clock signal: i_ateclk
 Control pins:
 cycle 0 duto/snps_clk_chain_0/FF_0/Q 1
 cycle 1 duto/snps_clk_chain_0/FF_1/Q 1
 cycle 2 duto/snps_clk_chain_0/FF_2/Q 1
 cycle 3 duto/snps_clk_chain_0/FF_3/Q 1
 ==
==

Synopsys® TestMAX™ DFT User Guide
T-2022.03

547

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: On-Chip Clocking Support
DRC Support

Feedback

DRC Support
D-rulesD-rules (Category D – DRC Rules) support PLL-related design rule checks. The checked
rule and message text correspond by number to TestMAX ATPG PLL-related C-rulesC-rules
(Category C – Clock Rules). The rules are as follows:

• D28 – Invalid PLL source for internal clock

• D29 – Undefined PLL source for internal clock

• D30 – Scan PLL conditioning affected by nonscan cells

• D31 – Scan PLL conditioning not stable during capture

• D34 – Unsensitized path between PLL source and internal clock

• D35 – Multiple sensitizations between PLL source and internal clock

• D36 – Mistimed sensitizations between PLL source and internal clock

• D37 – Cannot satisfy all internal clocks off for all cycles

• D38 – Bad off conditioning between PLL source and internal clock

Enabling the OCC Controller Bypass Configuration
Use the set_dft_drc_configuration and write_test_protocol commands to enable
the OCC controller bypass configuration for design rule checking. The -pll_bypass
option of the set_dft_drc_configuration command enables post-scan insertion DRC
with constraints that put the OCC clock controller in bypass configuration.

The syntax is as follows:

set_dft_drc_configuration -pll_bypass enable | disable

The default setting is disable.

To perform DRC of both bypass configurations, PLL active and PLL bypassed, use the
following commands:

insert_dft

set_dft_drc_configuration -pll_bypass disable ;# already the default
dft_drc

set_dft_drc_configuration -pll_bypass enable
dft_drc

write_test_protocol my_design.spf

Synopsys® TestMAX™ DFT User Guide
T-2022.03

548

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: On-Chip Clocking Support
DFT-Inserted OCC Controller Configurations

Feedback

The test protocol written by the write_test_protocol command contains information
for PLL bypass as well as for PLL enabled. In the TestMAX ATPG tool, use the run_drc
-patternexec command to select the operating mode to use.

DFT-Inserted OCC Controller Configurations
This topic shows DFT-inserted OCC controller configurations and the associated
configuration commands, as described in the following topics:

• Single OCC Controller Configurations

• Multiple DFT-Inserted OCC Controller Configurations

Single OCC Controller Configurations
This topic shows the results of using various configurations of the
set_dft_clock_controller command on the design example shown in Figure 245.

Figure 245 Design Example for Single OCC Controller Insertion

UPLL

FF1

CLKGEN SUB1

FF2 FF3

U1

The following configuration examples are applied to this design:

• Example 1 – Controller inserted at the output of UPLL, within the CLKGEN block.

• Example 2 – Controller inserted at the output of the CLKGEN block.

• Example 3 – Controller inserted at the output of the buffer.

Example 1
The first example, shown in Figure 246, uses the following configuration:

dc_shell> set_dft_clock_controller \
 -pllclocks {CLKGEN/UPLL/clkout}

Synopsys® TestMAX™ DFT User Guide
T-2022.03

549

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: On-Chip Clocking Support
DFT-Inserted OCC Controller Configurations

Feedback

In this case, the following occurs:

• The controller is inserted at the output of PLL, within the clkgen1 block.

• The clocks of all flip-flops are controllable.

Figure 246 Controller Inserted at Output of PLL Within CLKGEN Block

UPLL

FF1

CLKGEN SUB1

FF2 FF3

U1

OCC
controller

Example 2
The second example, shown in Figure 247, uses the following configuration:

dc_shell> set_dft_clock_controller \
 -pllclocks {CLKGEN/clkout}
In this case, the following occurs:

• The controller is inserted at the output of the CLKGEN block.

• The FF1 clock remains uncontrollable.

Figure 247 Controller Inserted at Output of CLKGEN Block

UPLL

FF1

CLKGEN SUB1

FF2 FF3

U1

OCC
controller

Example 3
The third example, shown in Figure 248, uses the following configuration:

dc_shell> set_dft_clock_controller \
 -pllclocks {SUB1/U1/Z}

Synopsys® TestMAX™ DFT User Guide
T-2022.03

550

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: On-Chip Clocking Support
DFT-Inserted OCC Controller Configurations

Feedback

In this case, the following occurs:

• The controller is inserted at the output of buffer U1.

• The FF1 and FF2 clocks remain uncontrollable.

Figure 248 Controller Inserted at Output of the Buffer

UPLL

FF1

CLKGEN SUB1

FF2 FF3

U1

OCC
controller

Multiple DFT-Inserted OCC Controller Configurations
This topic shows the results of configuring multiple DFT-inserted OCC controllers for the
design example shown in Figure 249.

Figure 249 Design Example for Multiple OCC Controller Insertion

UPLL1

UPLL2
or

clock divider

FF1

FF2

When multiple PLLs exist in a design, the reference clock input to each PLL cell must be a
free-running clock in test mode. Care must be taken to insure that an OCC controller is not
inserted at a location that would block a free-running clock to a downstream PLL cell.

In this design example, the primary PLL named UPLL1 receives the incoming reference
clock and generates a PLL output clock. This PLL output clock then feeds either a second
PLL or clock divider cell, creating a second cascaded PLL output clock.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

551

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: On-Chip Clocking Support
DFT-Inserted OCC Controller Configurations

Feedback

The following configuration examples are applied to this design:

• Example 1 – Controller incorrectly inserted, at the output of UPLL1.

• Example 2 – Controller correctly inserted, at the output of a buffer driven by UPLL1.

Example 1
The first example, shown in Figure 250, uses the following configuration:

dc_shell> set_dft_clock_controller \
 -pllclocks {UPLL1/clkout}
dc_shell> set_dft_clock_controller \
 -pllclocks {UPLL2/clkout}
In this case, the following occurs:

• The controller is inserted at the output of UPLL1.

• As a result, the free-running clock to UPLL2 is blocked by the first OCC controller,
causing incorrect operation of UPLL2.

The incorrect operation of UPLL2 might only be detectable during Verilog simulation of the
resulting netlist.

Figure 250 Free-Running Clock Blocked to UPLL2

UPLL1
FF1

FF2

Reference clock is
no longer free-running

UPLL2
or

clock divider

OCC
controller #2

OCC
controller #1

Example 2
The second example, shown in Figure 251, uses the following configuration:

dc_shell> set_dft_clock_controller \
 -pllclocks {U1/Z}
dc_shell> set_dft_clock_controller \
 -pllclocks {UPLL2/clkout}

Synopsys® TestMAX™ DFT User Guide
T-2022.03

552

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: On-Chip Clocking Support
Waveform and Capture Cycle Example

Feedback

This example uses a buffer to isolate the downstream fanout that the first OCC controller
should drive. In this case, the following occurs:

• The controller is inserted at the output of buffer U1 driven by UPLL1.

• As a result, the free-running clock from UPLL1 propagates to UPLL2, allowing correct
operation of UPLL2.

Figure 251 Free-Running Clock Propagates to UPLL2

UPLL1

UPLL2
or

clock divider

FF1

FF2

O
C
C

O
C
C

U1

OCC
controller #2

OCC
controller #1

You must ensure that the isolation buffer is not optimized away by applying a
set_dont_touch command, applying a set_size_only command, or using hierarchy.
After the clock controller is inserted, the resulting test protocol references the specified pin
as a PLL pin.

Waveform and Capture Cycle Example
Figure 252 shows an example of the relationship between various clocks when the design
contains an OCC generator and an OCC controller.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

553

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: On-Chip Clocking Support
Limitations

Feedback

Figure 252 Desired Clock Launch Waveform Example

pll clock

ATEclk

intclk

Capture load_unload

Launch

clock

Capture

clock

Shift

clock

Shift

clock

scan_enable

For information about pll clock, ATEclk, and intclk, see Clock Type Definitions on
page 513.

Limitations
Note the following limitations:

• Inferencing internal PLL or any reference clocks is not supported. For pre-DFT DRC,
you must explicitly define your reference clock, ATE clock, and PLL clocks.

• You can use differing -cycles_per_clock values across OCC controllers, but only if at
least one OCC controller is synchronous. For this case, the tool generates the correct
netlist and SPF, but post-DFT DRC might fail.

• You cannot mix the DFT-inserted and user-defined OCC controller types in the same
DFT insertion run. However, this restriction does not apply to cores that already contain
OCC controllers. In integration flows, you can mix OCC controller types across cores
and between cores and the top level.

• If you run the insert_dft command multiple times to perform DFT operations
incrementally, you must perform all OCC operations together with scan insertion in the
last insert_dft run.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

554

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: On-Chip Clocking Support
Limitations

Feedback

• If you are using synchronous OCC controllers,

◦ You cannot use serialized scan compression.

◦ Multifrequency capture must be enabled in TestMAX ATPG. To do this, run the
set_drc -fast_multifrequency_capture on command prior to running DRC.

• The only supported scan style is multiplexed flip-flop.

• Fast-sequential patterns with OCC support cannot measure the primary outputs
between system pulses. The measure primary output is placed before the first system
pulse and measures only Xs. You have to use pre-clock-measure, with the strobe being
placed before the clock.

• External clocks, which have a direct connection to scan flip-flops, cannot serve as ATE
clocks for the OCC controller.

• The set_dft_clock_controller -ateclocks command accepts only one port. The
user can have multiple OCC controllers, but only one port can be specified with the
-ateclocks option per controller.

• End-of-cycle measures cannot be used when an OCC controller is used to control the
clock.

• If you are using the combinational clock-gating method and synthesis maps the clock
selection logic to a MUX cell, you must use the set_clock_gating_check command
to manually specify a clock-gating check at the MUX gate. For more information, see
Performing Timing Analysis on page 533.

For DFT-inserted asynchronous OCC controllers, combinational clock gating is used
when the test_occ_insert_clock_gating_cells variable is set to its default of
false. For more information, see SolvNet article 022490, “Static Timing Analysis
Constraints for On-Chip Clocking Support.”

For DFT-inserted synchronous OCC controllers, latch-based clock gating is always
used, regardless of the value of the test_occ_insert_clock_gating_cells variable.

• If you are using pipelined scan-enable signals and OCC controllers together,

◦ The pipelined scan-enable registers must be clocked by the OCC-controlled clock
for that clock domain.

However, when you implement a DFT-inserted OCC controller along with a
pipelined scan-enable signal in the same run, the tool incorrectly drives the pipeline
registers with the uncontrolled PLL clock instead. This must be manually corrected.

Existing (user-defined) OCC controllers are connected properly.

◦ The OCC controller must use the unpipelined scan-enable signal, not the pipelined
version.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

555

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
http://solvnet.synopsys.com/retrieve/022490.html
http://solvnet.synopsys.com/retrieve/022490.html

Chapter 12: On-Chip Clocking Support
Limitations

Feedback

If you are inserting or defining an OCC controller in the current design and plan to
implement pipelined scan-enable signals at a higher level, you must create the core
in anticipation of the pipelined scan-enable requirements at the higher level.

To do this, ensure that the OCC controller uses a different scan-enable signal than
the scan cells. The domain-based scan-enable feature (set_scan_configuration
-domain_based_scan_enable true) alone does not ensure this, and the -usage
scan option of the set_dft_signal command does not make this distinction.

Then, pass each OCC-controlled clock to an output of the core, then use them for
the clock connections of each pipelined scan-enable register that drives the core.

There are no tool options to automate this signal configuration; you must manually
ensure these connections.

• When a pipelined scan-enable signal is used with OCC flows, the insert_dft
command fails to make some connections properly. To use these features together, you
must check and correct the connections so that the following requirements are met:

◦ The scan-enable connections to the OCC controller and clock chain must use the
unpipelined scan-enable signal. That is, use the input to the scan-enable pipeline
register instead of its output.

◦ The clock connection to the scan-enable pipeline register in OCC controller clock
domains must be connected to the internal clock output of the OCC controller block.

◦ In hierarchical OCC controller flows, the OCC controller can be inserted or defined
at the core level, then scan-enable pipeline registers can be inserted during the top-
level integration phase. In this case, the OCC controller is correctly connected at
the core level, but the connections are incorrectly made during top-level integration.

To ensure correct operation, you must design the core to provide multiple scan-
enable signals. Connect the OCC controller to the unpipelined scan-enable signal,
and use the pipelined scan-enable signal for the remaining connections.

To satisfy the requirement that the scan-enable pipeline register must be clocked by
the OCC controller's clock output, you must also pass the OCC internal clock to an
output of the core, then use it for the clock connection of the top-level scan-enable
pipeline register.

• In hierarchical OCC controller flows, if you insert a DFT-inserted OCC controller during
integration, the OCC signals of cores containing OCC controllers must be left dangling
to be completed by DFT insertion; they cannot be preconnected.

• External (port-driven) clock sources are not supported for existing user-defined OCC
controllers.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

556

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

13
Pre-DFT Test Design Rule Checking

This chapter describes the process for preparing for and running test design rule checking
(DRC), and checking violations before DFT insertion.

This chapter includes the following topics:

• Test DRC Basics

• Classifying Sequential Cells

• Checking for Modeling Violations

• Setting Test Timing Variables

• Creating Test Protocols

• Masking Capture DRC Violations

Test DRC Basics
This topic discusses the test DRC flow, the types of messages generated as a result of
running the process, and the effects of violations on scan replacement.

Test DRC Flow
You use the dft_drc command to activate test design rule checking. However, before
running this process, you must first create a test protocol that includes timing information
(see Creating the Test Protocol on page 560 for information on creating test protocols).

After running the dft_drc command, violation messages are reported in three categories:

• Information messages – no action is required.

• Warning messages – you should analyze the violations; however, you can still run
certain DFT commands.

• Error messages – these indicate serious errors that you need to correct before you can
use the DFT commands.

Figure 253 illustrates a general test design rule checking flow.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

557

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Pre-DFT Test Design Rule Checking
Test DRC Basics

Feedback

Figure 253 Test DRC Flow

Read and link the design

Set test attributes

on the design

Create a test protocol Read in a test protocol

Run design rule checking

Violations? Analyze

Change design and/or

test protocol

Proceed to scan synthesis

Yes

No

Existing protocol?

No

Yes

Synopsys® TestMAX™ DFT User Guide
T-2022.03

558

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Pre-DFT Test Design Rule Checking
Test DRC Basics

Feedback

The following steps outline the test DRC process:

1. Read and link the design into DFT Compiler.

For details, see the Preparing Your Design on page 559.

2. Determine if you have an existing test protocol for the design.

If so, read the test protocol into DFT Compiler.

If not, do the following:

• Set the appropriate test attributes on the design.

• Create the test protocol.

3. Run design rule checking.

• If test DRC reports no violations, you can insert DFT structures into your design.

• If test DRC reports violations, you can graphically analyze the violations by using
Design Vision. See Chapter 7, Running the Test DRC Debugger.”

To fix the violations, either change your design, change your test protocol, or do
both.

Preparing Your Design
To prepare your design-for-test DRC, follow these steps:

1. Set the search_path variable to point to directory paths that contain your design and
library files.

2. Set the link_library variable to point to the logic library files referred to by your
design.

3. Set the target_library variable to point to logic library files you want mapped to your
design.

4. Use the read_file command to read your design into DFT Compiler.

5. Run the link command to link your design with your logic library.

For more information about reading in your design, see “Reading Designs” in the Design
Compiler User Guide.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

559

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Pre-DFT Test Design Rule Checking
Test DRC Basics

Feedback

Creating the Test Protocol
If you have an existing test protocol, read the test protocol into DFT Compiler by using the
read_test_protocol command. If you do not have an existing test protocol, create it by
following these steps:

1. Identify the test-related ports in your design. Such signals include

• Clocks

• Asynchronous sets and resets

• Scan inputs

• Scan outputs

• Scan enables

2. Define DFT signals on these ports by using the set_dft_signal command.

3. Run the create_test_protocol command to create the test protocol for your design.

Assigning a Known Logic State
You can use the set_test_assume command to assign a known logic state to output pins
of black-box sequential cells. The command syntax is

set_test_assume value pin_list

The value argument specifies the assumed value, 1 or 0, on this output pin or pins.

The pin_list argument specifies the names of output pins of unknown black-box cells,
including nonscan sequential cells in full-scan designs. The hierarchical path to the pin
should be specified for pins in subblocks of the current design.

The dft_drc command takes into account the conditions you define with the
set_test_assume command.

Performing Test Design Rule Checking
After you create or read in a test protocol, perform test design rule checking by running the
dft_drc command.

If you run the insert_dft command without first running the dft_drc command, the tool
implicitly runs the dft_drc command before proceeding with DFT insertion.

In either case, the following message indicates that test DRC checking is performed:

Information: Starting test design rule checking. (TEST-222)

In the AutoFix flow, the first DRC analysis determines what test points are needed. The
insert_dft command inserts the test point logic into the design database, then implicitly

Synopsys® TestMAX™ DFT User Guide
T-2022.03

560

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Pre-DFT Test Design Rule Checking
Test DRC Basics

Feedback

runs the dft_drc command again to determine the final DRC results. In this case, you will
see an additional TEST-222 message issued during DFT insertion.

Reporting All Violating Instances
By default, the dft_drc command generates a message only for the first violating instance
of a given violation type. To see all violations, use the dft_drc -verbose dft_drc command-verbose option-verbose option, dft_drc command command.

You cannot perform verbose violation reporting when the dft_drc command is implicitly
run by the preview_dft or insert_dft command.

Analyzing and Debugging Violations
You can graphically analyze the cause of a violation by using Design Vision, as described
in Chapter 7, Running the Test DRC Debugger.”

After you have located the cause of the violation, you can either change the design,
change the test protocol, or do both. Then rerun the previously described steps to see if
the violations have been fixed.

You can also use AutoFix to fix uncontrollable clocks and asynchronous sets and resets.

See Also

• Using AutoFix on page 330 for more information about using AutoFix to fix design
testability issues

Summary of Violations
At the completion of design rule checking, the dft_drc command displays a violation
summary. Example 73 shows the format of the violation summary. dft_drcsummarizing violationsviolationssummarizingsummarizing violations

Example 73 Violation Summary
--
 DRC Report
 Total violations: 6
--
6 PRE-DFT VIOLATIONS
 3 Uncontrollable clock input of flip-flop violations (D1)
 3 DFF set/reset line not controlled violations (D3)

Warning: Violations occurred during test design rule
checking. (TEST-124)
--
 Sequential Cell Report
 3 out of 5 sequential cells have violations
--
SEQUENTIAL CELLS WITH VIOLATIONS
 * 3 cells have test design rule violations

Synopsys® TestMAX™ DFT User Guide
T-2022.03

561

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Pre-DFT Test Design Rule Checking
Test DRC Basics

Feedback

SEQUENTIAL CELLS WITHOUT VIOLATIONS
 * 2 cells are valid scan cells

The total number of violations for the circuit appears in the header. If there are no
violations in the circuit, the dft_drc command displays only the violation summary header.
Within the summary, violations are organized by category. A violation category appears in
the summary only if there are violations in that category. For each category, the dft_drc
command displays the number (n) of violations, along with a short description of each
violation and the corresponding error message number. Using the error message number,
you can find the violation in the dft_drc run.

Unknown cell violations have message numbers in the TEST-451 to TEST-456 range.
Unsupported cell violations have message numbers in the TEST-464 to TEST-469TEST-460 to TEST-469 range.
The following is an excerpt from a violation summary for unknown cells:

--
 DRC Report
 Total violations: 4
--

3 MODELING VIOLATIONS
 1 Cell has unknown model violation (TEST-451)

Enhanced Reporting Capability
You can enable enhanced DRC reporting by setting the
test_disable_enhanced_dft_drc_reporting variable to false. When enhanced
reporting is enabled, the reporting and formatting of rule violations are changed to provide
a better understanding of the respective rules.

Example 74 provides a typical enhanced DRC report:

Example 74 Enhanced DRC Report Example
In mode: all_dft...
 Pre-DFT DRC enabled
Information: Starting test design rule checking. (TEST-222)
 Loading test protocol
 ...basic checks...
 ...basic sequential cell checks...
 ...checking for scan equivalents...
 ...checking vector rules...
 ...checking pre-dft rules...
Simulation library files used for DRC

./core_slow_lvds_pads.v
./core_slow_special_cells.v
Cores and modes used for DRC in mode: all_dft

SUB_1: U1, U3, U4 mode: Internal_scan
SUB_2: U5, U6 mode: Internal_scan

Synopsys® TestMAX™ DFT User Guide
T-2022.03

562

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Pre-DFT Test Design Rule Checking
Test DRC Basics

Feedback

Modeling and user constraints that will prevent scan insertion

Warning: Cell U34 will not be scanned due to set_scan_element command.
(TEST-202)
DRC violations which will prevent scan insertion

Warning: Cell U1 has constant 1 value. (TEST-505)
Warning: Reset input RN of DFF U53 was not controlled. (D3-1)
Information: There are 10 other cells with the same violation. (TEST-171)
DRC Violations which can affect ATPG coverage

Warning: Clock CCLK can capture new data on LS input of DFF U25. (D13-1)
 Source of violation: input CLK of DLAT U13/clk_gate_flop/latch.
Warning: CCLK clock path affected by new capture on LS input of DFF U17
(D15-1)
 Source of violation: input CLK of DLAT U18/clk_gate_flop/latch.

DRC Report
Total violations: 14

1 MODELING AND USER VIOLATIONS AFFECTING SCAN INSERTION
 1 cell with set_scan_element constraint (TEST-202)
11 DRC VIOLATIONS AFFECTING SCAN INSERTION
 1 Constant cell (TEST-505)
11 DFF reset line not controlled violations (D3)
2 DRC VIOLATIONS AFFECTING ATPG coverage
 1 Data path affected by clock captured by clock in level sensitive
 clock_port violations
(D13)
 1 Clock path affected by clock captured by clock in level sensitive
 clock_port violations
(D15)

Sequential Cell Report
 Cells Core core_cells

Sequential elements detected: 50 5 50
Clock gating cells: 0
Synchronizing cells: 0
Non scan elements: 1 0 0
Excluded scan elements: 0 0 0
Violated scan elements: 11 1 10
Scan elements: 39 4 40

Synopsys® TestMAX™ DFT User Guide
T-2022.03

563

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Pre-DFT Test Design Rule Checking
Test DRC Basics

Feedback

Test Design Rule Checking Messages
When you invoke the dft_drc command, it generates messages to assist you in
determining problems with your scan design. These messages fall into three categories:

• Information

messagesinformationinformation message, dft_drcInformation messages give you the status of the design rule checker or more detail
about a particular rule violation.

• Warning

A dft_drc commandmessageswarning (see also messages, warning)warning message indicates a testability problem that lowers the fault coverage of
the design. Most of the violations reported by the dft_drc command are warning
messages. The warnings allow you to evaluate the effect of violations and determine
acceptable violations, based on your test requirements.

Many warnings reported by dft_drc reduce fault coverage. Try to correct all violations,
because a cell that violates a design rule, as well as the cells in its neighborhood, is not
testable. A cell’s neighborhood can be as large as its transitive fanin and its transitive
fanout.

• Error

An dft_drc commandmessageserror (see also messages, error)error message indicates a serious problem that prevents further processing of the
design in DFT Compiler until you resolve the problem.

Understanding Test Design Rule Checking Messages
You can online help, messagesaccess online help for most warning messages generated by dft_drc. Online
help provides information about the violation and information about how to proceed. help commandcommandshelpUse
the help command to access online help:

dc_shell> man message_id
Replace the message_id argument with the string shown in the parentheses that follow the
warning text.

To keep a record of the information, warning, and error messages for your design, direct
the output from the dft_drcdirecting output to a filedft_drc command to a file with a command such as

dc_shell> dft_drc > my_drc.out
In this example, my_drc.out is the name of the output file.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

564

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Pre-DFT Test Design Rule Checking
Classifying Sequential Cells

Feedback

Effects of Violations on Scan Replacement
When violations occur, the dft_drc command issues the following message:

Warning: Violations occurred during test design rule checking. (TEST-124TEST-124 message)

For designs that are synthesized with the compile -scan command, the default behavior
is that violations on scan-replaced cells cause the insert_dft command to unscan those
cells. Sequential cells with violations are not included in a scan chain because they would
probably prevent the scan chain from working as intended.

For designs that are not synthesized with the compile -scan command, violations on
sequential cells cause the insert_dft command not to perform scan replacement for
those cells.

For certain violation types, you can configure DFT insertion to include violating sequential
cells in scan chains. See Masking Capture DRC Violations on page 592.

Viewing the Sequential Cell Summary
sequential cellsummary reportfault coverageevaluatingsequential cell summaryWhen the dft_drc command completes DRC, it provides a summary of the test status of
the sequential cells in your design. Example 75 shows an example of the summary.

Example 75 Sequential Cell Summary
--
 Sequential Cell Report

 2 out of 133721 sequential cells have violations
--

SEQUENTIAL CELLS WITH VIOLATIONS
 * 2 cells have capture violations
SEQUENTIAL CELLS WITHOUT VIOLATIONS
 *133719 cells are valid scan cells

To get a complete listing of all the cells in each category, run the dft_drc command-verbose option-verbose option, dft_drc commanddft_drc -verbose
command.

For information about classifying sequential cells, see the next section.

Classifying Sequential Cells
After the violation summary, the dft_drc command displays a summary of sequential cell
information.

Example 76 shows the syntax of the sequential cell summary.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

565

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Pre-DFT Test Design Rule Checking
Classifying Sequential Cells

Feedback

Example 76 Sequential Cell Summary
--
 Sequential Cell Report

 2 out of 133721 sequential cells have violations
--

SEQUENTIAL CELLS WITH VIOLATIONS
 * 2 cells have capture violations
SEQUENTIAL CELLS WITHOUT VIOLATIONS
 *133719 cells are valid scan cells

The number of sequential cells with violations appears in the header. This number is the
sum of the cells with scan shift violations, capture violations, and constant values, along
with the cells that are black boxes. If a design has no sequential cells, only a header with
the following message appears:

There are no sequential cells in this design

Within the summary, the sequential cells are divided into two groups: those with violations
and those without. Only the categories of sequential cells that are found in the design are
listed in the summary. In verbose mode, cell names are listed within each category. More
information about the sequential cell categories is provided in the following topics.

Sequential Cells With Violations
This topic of the sequential cell summary points to problematic sequential cells. The cells
in this group have corresponding violations that can be found in the DRC output of the
dft_drc command.

Cells With Scan Shift Violations
This category includes cells with scan-in and scan connectivity violations. Within this
category, cells are listed by the type of scan shift violation.

• Not scan-controllable

The dft_drc command cannot transport data from a scan-in port into the cell.

• Not scan-observable

The dft_drc command cannot transport data from the cell to a scan-out port.

Note:
Cells in multibit components are homogeneous. If a cell in a multibit
component has violations, all of the cells in that multibit component have
violations.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

566

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Pre-DFT Test Design Rule Checking
Checking for Modeling Violations

Feedback

After dft_drc has run, you can invoke the report_scan_path -view existing_dft
-chain all command to observe the scan chains as extracted by the dft_drc command.

Black-Box Cells
Included in the black-box cells category are sequential cells that cannot be used for scan
shift. Unknown cells and unsupported cells are classified as black boxes. These cells are
not scan-replaced when you run the insert_dft command.

Constant Value Cells
The constant value category includes sequential cells that are constant during scan
testing. These cells are assumed to hold constant values; they are not scan-replaced by
insert_dft. For every constant value sequential cell, there is a corresponding TEST-504
or TEST-505 violation.

Sequential Cells Without Violations
The valid scan cells category displays the number of sequential cells that have no test
design rule violations. ATPG tools can use these cells for scan shift and for measuring
circuit response data. Valid scan cells can be scan-replaced by insert_dft.

Note:
Valid scan cells can have capture violations. Valid cells with capture violations
only are scan-replaced.

The number of synchronization latches is listed in the last category.

Checking for Modeling Violations
If you instantiate a cell that DFT Compiler doesn’t understand, you can get modeling
violations. The dft_drc command performs modeling checks locally, one cell at a time.

Modeling violations are covered in the following topics:

• Black-Box Cells

• Unsupported Cells

• Generic Cells

• Scan Cell Equivalents

• Latches

Synopsys® TestMAX™ DFT User Guide
T-2022.03

567

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Pre-DFT Test Design Rule Checking
Checking for Modeling Violations

Feedback

Black-Box Cells
A cell whose output is considered unknown is classified as a black-box cell. These cells
might lack a functional description in the logic library. Such cells are marked as black-box
by the report_lib command. Also, the dft_drc command identifies black-box cellset_test_assumeblack-box sequential
cells.

The dft_drc command requires that you have a functional modeldft_drcfunctional cell modelsfunctional model in your library for each
leaf cell in your design. If you use cells that do not have functional models, the dft_drc
command displays the following warning:

Warning: Cell %s (%s) is unknown (black box) because functionality for
output pin %s is bad or incomplete. (TEST-451TEST-451 message)

You do not need to correct black-box violations for memory macro cells; they are always
modeled as black-box cells by the dft_drc command. In TestMAX ATPG, you can use
memory models so that sequential ATPG can obtain fault coverage around the memories.

For more information about modeling the behavior of cells, see Library Compiler
documentation.

Correcting Black-Box Cells
black-box cellcausesidentifyingblack box cellsDFT Compiler models a cell as a black box in these cases:

• link commandcommandslinkThe link command cannot resolve the cell reference by using the logic libraries or
designs in the search_path (unresolved reference).

• The logic library model for the cell reference does not contain a functional description
(black-box library cell).

In the following cases, a black-box cell can have a severe impact on fault coverage:

• The black-box cells are pad cells.

The dft_drc command completely fails and prevents insert_dft from working. This
occurs during scan stitching at the top level.

• A black-box cell controls the enable signal of an internal three-state driver or a
bidirectional signal.

The insert_dft command inserts three-state and bidirectional control logic if the
existing control logic is a black box, even if doing so is unnecessary.

DFT Compiler generates this warning message when it models a cell as a black box:

TEST-451 messagemessageswarningTEST-451Warning: Cell %s (%s) is unknown (black box) because functionality for
output pin %s is bad or incomplete. (TEST-451)

Synopsys® TestMAX™ DFT User Guide
T-2022.03

568

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Pre-DFT Test Design Rule Checking
Checking for Modeling Violations

Feedback

The method for correcting the violation depends on the source of the violation and the
complexity of the cell.

Note:
Use the link command to correct unresolved references.

Black-Box Library Cell

If no functional description of the cell exists in the logic library, you need to obtain either a
functional model or a structural model of the cell.

correctingblack box library cellsIf the cell can be functionally modeled by the Library Compiler tool, obtain an updated logic
library that includes a functional model of the cell.

If you have a simulation model for the black box, declare it by using the following variable:

dc_shell> set_app_var test_simulation_library simulation_library_path
Note the following license-related requirements:

• If you have a Library Compiler license and the library source code, add the functional
description to the library cell model.

See the Library Compiler documentation for information about cell modeling.

• If you do not have a Library Compiler license or library source code, ask your
semiconductor vendor for a library that contains a functional model of the cell.

black-box cellstructural modelIf the Liberty syntax does not support functional modeling of the cell, create a structural
model for the cell and link the design to this structural model instead of the library cell
model.

Note:
You should only use the test_simulation_library variable to replace leaf
cells that do not have functional models. Do not use the variable to replace any
arbitrary module in the design. If you want to replace the entire design module
that consists of leaf cells, you should use the remove_design command to
remove the module and then read the Verilog netlist description of that module
into memory.

Unsupported Cells
Cells can have a functional description and still not be supported by the dft_drc
command. Using state table models, library developers can describe cells that violate the
current assumptions for test rule checking. The dft_drc command detects those cells and
flags them as black boxes.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

569

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Pre-DFT Test Design Rule Checking
Checking for Modeling Violations

Feedback

DFT Compiler supports single-bit cells or multibit cells that have identical functionality on
each pin; these cells have the following characteristics:

• The functional view, which Design Compiler synthesis understands and manipulates, is
either a flip-flop, a latch, or a master-slave cell with clocked_on and clocked_on_also
attributes.

• The test view, used for scan shifting, is either a flip-flop or a master-slave cell.

• The functional view and the test view each have a single clock per internal state.

The multibit library cell interfaces must be either fully parallel or fully global. For cells that
do not meet these criteria, DFT Compiler uses single-bit cells.

For example, if you want to infer a 4-bit banked flip-flop with an asynchronous clear signal,
the clear signal must be either different for each bit or shared among all 4 bits. If the first
and second bits share one asynchronous reset but the third and fourth bits share another
reset, DFT Compiler does not infer a multibit flip-flop. Instead, DFT Compiler uses 4
single-bit flip-flops. For more information about multibit cells and multibit components, see
the Design Compiler User Guide.multibitsupported library cells

DFT Compiler does not support registers or duplicate sequential logic within a cell. The
nonscan equivalent of a scan cell must have only one state. A scan cell can have multiple
states in shift mode.

If the dft_drc command detects such a cell, it issues the following warning:

Cell %s (%s) is not supported because it has too many
states (%d states). This cell is being black-boxed. (TEST-462 messageTEST-462)

When the dft_drc command recognizes part of a cell as a master-slave latch pair but
finds extra states, it issues one of the following warnings, depending on the situation:

Master-slave cell %s (%s) is not supported because the state
pin %s is neither a master nor a slave. This cell is being
black-boxed. (TEST-463TEST-463 message)

Master-slave cell %s (%s) is not supported because there
are two or more master states. This cell is being
black-boxed. (TEST-464TEST-464 message)

Master-slave cell %s (%s) is not supported because there
are two or more slave states. This cell is being
black-boxed. (TEST-465TEST-465 message)

If the dft_drc command detects a state with no clocks or with multiple clocks, it issues
one of the following warnings:

Cell %s (%s) is not supported because the state pin %s has no
clocks. This cell is being black-boxed. (TEST-466 messageTEST-466)

Synopsys® TestMAX™ DFT User Guide
T-2022.03

570

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Pre-DFT Test Design Rule Checking
Checking for Modeling Violations

Feedback

Cell %s (%s) is not supported because the state pin %s is
multi-port. This cell is being black-boxed. (TEST-467TEST-467 message)

In addition, the dft_drc command detects and rejects sequential cells with three-state
outputs and issues the following warning:

Cell %s (%s) is not supported because it is a sequential
cell with three-state outputs. This cell is being
black-boxed. (TEST-468TEST-468 message)

Black-box cells have an adverse effect on fault coverage. To avoid this effect, you must
replace unsupported cells with cells that DFT Compiler can support.

Note:
Unsupported cells can originate only from explicit instantiation. They are not
used by the Design Compiler or DFT Compiler tools. For more information
about modeling sequential cells, see the Library Compiler documentation.unsupported cells

Generic Cells
Your design should be a mapped netlist. In the RTL stage, the dft_drc command will map
your design into an internal representation.

Some generic cells, such as unimplemented DesignWare parts and operators, have
implicit functional descriptions. The dft_drc command treats them as black-box cells and
displays the following warning message:

Warning: Cell %s (%s) is unknown (black box) because
functionality for output pin %s is bad or incomplete. (TEST-451TEST-451 message)

If you instantiate generic cells after running compile -scan, you must recompile your
design.

Scan Cell Equivalents
When checking test design rules in a design without scan chains, the dft_drc command
verifies that each sequential element has not been explicitly marked by using the
set_scan_element false command. If a scan cell equivalent does not exist or it has the
dont_use attribute applied, the dft_drc command issues the following warning message:

Warning: No scan equivalent exists for cell %s (%s). (TEST-120 TEST-120 message)

Note:
Use the set_scan_element false command to prevent scan replacement.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

571

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Pre-DFT Test Design Rule Checking
Checking for Modeling Violations

Feedback

The cells in violation are marked as nonscan. In the full-scan methodology, these cells are
black boxes. If these cells are not valid nonscan, they are in violation and are black boxes.
You can suppress the TEST-120 warning with the dft_drcset_scan_element commandset_scan_element commandto suppress TEST-120 warningset_scan_element command. For
example, to ensure that a nonscan latch cell is not made scannable, enter the command

dc_shell> set_scan_element false latch_name
If you use the set_scan_element command, the dft_drc command issues the following
information message:

Information: Cell %s (%s) will not be scanned due to a
set_scan_element command. (TEST-202 messageTEST-202)

If the dft_drc command cannot find scan cell equivalents in the target library, the
probable reason is that the target library does not contain test cells. In such cases, the
dft_drc command issues the following warning:

Warning: Target library for design contains no scan-cell models.
(TEST-224TEST-224 message)

Scan Cell Equivalents and the dont_touch Attribute
If you set the dont_touch attribute, and dft_drcdft_drcdont_touch attributedont_touch attribute on a nonscan cell before scan cell replacement, that
cell is not modified or scan-replaced when you optimize the design. In this case, the
dft_drc command produces the following warning:

Warning: Cell %s (%s) can’t be made scannable because it is
dont_touched. (TEST-121TEST-121 message)

If you apply the dont_touch attribute to scan-replaced cell, the cell can still be added to a
scan chain.

Note:
Use the dont_touch attribute carefully, because it can increase the number of
nonscan cells, and nonscan cells lower fault coverage.

Use the set_scan_element commandto prevent scan replacementset_scan_element commandand dft_drcdft_drc commandset_scan_element false command if you do not want to make a sequential cell
scannable but you do want to be able to modify the cell during optimization.

Latches
DFT Compiler replaces latches with scannable latches whenever possible. If the dft_drc
command cannot find scan cell equivalents for the latches, it marks the latches as
nonscan and issues the TEST-120 warning as previously explained.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

572

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Pre-DFT Test Design Rule Checking
Setting Test Timing Variables

Feedback

Nonscan Latches
DFT Compiler models dft_drcnonscan latchesnonscan latches in two ways:

• As black boxes

• As synchronization elements

If you do not scan replace your latches, you can ignore “no-scan equivalent” messages for
latches.

A nonscan latch is treated by default as a black box. However, if the latch satisfies the
requirements for a synchronization element, the dft_drc command treats the latch as a
synchronization element.

Note:
The dft_drc command allows synchronous elements to be on the scan chain.

Setting Test Timing Variables
This topic discusses the process for setting test timing variables for your design. The
timing variables are used by the test protocol for design rule checking and for DFT preview
and insertion.

This topic covers the following:

• Protocols for Common Design Timing Requirements

• Setting Timing Variables

Protocols for Common Design Timing Requirements
Before creating a test protocol and checking test design rules, you need to identify the
timing information for your design. You do this by setting a number of timing variables and,
if necessary, by defining test clock requirements. Timing variables are discussed in detail
in Setting Timing Variables on page 574.

Defining test clock requirements is discussed in detail in Chapter 9, Architecting Your Test
Design.”

If your design’s timing variable values are the same as the variables’ defaults, you do not
need to make any changes.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

573

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Pre-DFT Test Design Rule Checking
Setting Test Timing Variables

Feedback

Preclock Measure Protocol
To use a preclock measure protocol, use the default test timing variable values, which are
as follows:

test_default_period : 100 ;
test_default_delay : 0 ;
test_default_bidir_delay : 0 ;
test_default_strobe : 40 ;
test_default_strobe_width : 0 ;

This configuration places the measure strobe before the default clock pulse. If you
use a nondefault clock waveform, adjust the strobe value accordingly. Check with your
semiconductor vendor for specific timing information.

End-of-Cycle Measure Protocol
To use an end-of-cycle measure protocol, set the test timing variables as follows:

test_default_period : 100 ;
test_default_delay : 0 ;
test_default_bidir_delay : 0 ;
test_default_strobe : 95 ;
test_default_strobe_width : 0 ;

This configuration places the measure strobe after the default clock pulse. Although the
end-of-cycle measure protocol works with TestMAX ATPG, the default preclock measure
protocol is more efficient.

The end-of-cycle measure protocol cannot be used with

• Clocks controlled by OCC controllers

• DFTMAX high X-tolerance scan compression (with or without serializer)

• DFTMAX Ultra scan compression

Setting Timing Variables
Before you run the create_test_protocol command, you need to define timing
variables. The command uses the following test variables to determine the values in the
test protocol timing variables:

test_default_period
test_default_delay
test_default_bidir_delay
test_default_strobe
test_default_strobe_width

Synopsys® TestMAX™ DFT User Guide
T-2022.03

574

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Pre-DFT Test Design Rule Checking
Setting Test Timing Variables

Feedback

The requirements from your semiconductor vendor default test protocolspecifying timing information, together with the basic scan test
requirements, drive the specification of test timing parameters. If you intend to use
postclock strobing, you need to change the default variable values. You can do this
every time you create a new design, or you can add these variable values to your
local .synopsys_dc.setup file.

test_default_period Variable
The test variablestest_default_periodtest_default_period variabledefinitiontest_default_period variablesettingvariablestesttest_default_periodtest_default_period variable defines the default, in ns, for the period in the test
protocol. The period value must be a positive real number.

By default, test perioddefaultDFT Compiler uses a 100 ns test period. If your semiconductor vendor uses a
different test period, test periodspecifyingspecifyingtest periodtest_default_period variablevariablestest_default_periodspecify the required test period by using the test_default_period
variable.

The syntax for setting the variable is

set_app_var test_default_period period

For example,

dc_shell> set_app_var test_default_period 100
In the .synopsys_dc.setup file, the test_default_period variable is set to 100 ns.

test_default_delay Variable
The test_default_delay variabledefinitiontest_default_delay variablesettingtest variablestest_default_delayvariablestesttest_default_delaytest_default_delay variable defines the default, in ns, for the input delay in the inferred

test protocoldefault delayinferred test protocol. The delay value must be a nonnegative real number less than the
strobe value. See the default timing in Figure 254 on page 579.

By default, inputdelaydefaultinputtimingDFT Compiler applies data to all nonclock input ports 0 ns after the start of the
cycle. If your semiconductor vendor requires different input timing, inputdelayspecifyingspecifyinginput delaytest_default_delay variablevariablestest_default_delayspecify the required
input delay by using the test_default_delay variable.

The syntax for setting the variable is

set_app_var test_default_delay delay

For example,

dc_shell> set_app_var test_default_delay 5
In the .synopsys_dc.setup file, test_default_delay is 0 ns.

test_default_bidir_delay Variable
The test_default_bidir_delay variabledefinitiontest_default_bidir_delay variablesettingtest variablestest_default_bidir_delayvariablestesttest_default_bidir_delaytest_default_bidir_delay variable defines the default, in ns, for the bidirectional
delay in the inferred test protocolbidirectional delayinferred test protocol. The bidir_delay must be a positive real number less
than the strobe value and can be less than, greater than, or equal to the delay value. See
the default timing in Figure 254 on page 579.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

575

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Pre-DFT Test Design Rule Checking
Setting Test Timing Variables

Feedback

By default, bidirectional delaydefaultbidirectional timingbidirectional delay(see also test_default_bidir_delay variable)DFT Compiler applies data to all bidirectional ports in input mode 0 ns after the
start of the parallel measure cycle. In any cycle where a bidirectional port changes from
input mode to output mode, DFT Compiler releases data from the bidirectional port 0 ns
after the start of the cycle. If your semiconductor vendor requires different bidirectional
timing,bidirectional delayspecifyingspecifyingbidirectional delaytest_default_bidir_delay variablevariablestest_default_bidir_delay specify the required bidirectional delay by using the test_default_bidir_delay
variable.

The risks associated with bidirectional delayincorrect, risks ofincorrect specification of the bidirectional delay time include

• Test design rule violations

• Bus contention

• Simulation mismatches

Minimize these risks by carefully specifying the bidirectional delay time.

DFT Compiler bidirectional delayusageuses the bidirectional delay time as

• The data application time for bidirectional ports in input mode during the parallel
measure cycle and during scan-in for bidirectional ports used as scan inputs or scan-
enable signals

• The data release time for bidirectional ports in input mode during cycles in which the
bidirectional port changes from input mode to output mode

DFT Compiler bidirectional delayrequirementsrequirementsbidirectional delayperforms relative timing checks during test design rule checking. The
following requirements must be met:

• The bidirectional delay time must be less than the strobe time.

If you change the strobe time from the default, confirm that the bidirectional delay value
meets this requirement.

• If the bidirectional port drives sequential logic, the bidirectional delay time must be
equal to or greater than the active edge of the clock.

The syntax for setting the variable is

set_app_var test_default_bidir_delay bidir_delay

For example,

dc_shell> set_app_var test_default_bidir_delay 40
In the .synopsys_dc.setup file, test_default_bidir_delay is 0 ns.

test_default_strobe Variable
The test_default_strobe variabledefinitiontest_default_strobe variablesettingtest variablestest_default_strobevariablestesttest_default_strobetest_default_strobe variable defines the default, in ns, for the strobe in the inferred
test protocol. The strobe value must be a positive real number less than the period value

Synopsys® TestMAX™ DFT User Guide
T-2022.03

576

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Pre-DFT Test Design Rule Checking
Setting Test Timing Variables

Feedback

and greater than the test_default_delay value (see the default timing in Figure 254 on
page 579).

outputstrobedefaultstrobeBy default, DFT Compiler compares data at all output ports 40 ns after the start of the
cycle. If your semiconductor vendor requires different strobe timing, outputstrobespecifyingspecifyingoutput strobetest_default_strobe variablevariablestest_default_strobespecify the strobe time
by using the test_default_strobe variable.

The syntax for setting the variable is

set_app_var test_default_strobe strobe

For example:

dc_shell> set_app_var test_default_strobe 100
In the .synopsys_dc.setup file, test_default_strobe is 40 ns.

test_default_strobe_width Variable
The test_default_strobe_width variabledefinitiontest_default_strobe_width variablesettingtest variablestest_default_strobe_widthvariablestesttest_default_strobe_widthtest_default_strobe_width variable defines the default, in ns, for the strobe width
in the inferred test protocol. The strobe width value must be a positive real number. The
strobe value plus the strobe width value must be less than or equal to the period value.
See the default timing in Figure 254 on page 579.

clock timingmeeting vendor requirementsmeeting vendor requirementstest timingclock waveformsClocking requirements specified by semiconductor vendors include

• Clock waveform timing

• Maximum number of unique clock waveforms

• Minimum delay between different clock waveforms, which allows for clock skew on the
tester

DFT Compiler provides the capability to specify clock waveform timing but does not place
any restrictions on the number of unique waveforms that can be defined or the minimum
time between clock waveforms. By determining what restrictions the semiconductor
vendor places on these timing parameters, you can define clock waveforms that meet the
restrictions.

When DFT Compiler infers clock ports during dft_drc, the clock type determines the
default timing for each clock edge. Table 49 provides the default clock timing for each
clock type.clock timingdefault

Table 49 Default Clock Timing for Each Clock Type

Clock type First edge Second edge

Edge-triggered or
D-latch enable

45 55

Synopsys® TestMAX™ DFT User Guide
T-2022.03

577

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Pre-DFT Test Design Rule Checking
Setting Test Timing Variables

Feedback

Table 49 Default Clock Timing for Each Clock Type
(Continued)

Clock type First edge Second edge

Master clock 30 40

Slave clock 60 70

Edge-triggered 45 60

Master clock1 50 60

Slave clock 40 70

DFT Compiler determines the polarity of the first edge (rise or fall) so that the first clock
edge triggers the majority of cells on a clock. The timing arcs in the logic library specify
each cell’s trigger polarity. The polarity of the second edge is opposite the polarity of the
first edge, that is, if the first edge is rising (falling), the second edge is falling (rising).

Use the set_dft_signal command to specify clock waveforms if your semiconductor
vendor’s requirements differ from the default timing.

The set_dft_signal command has a time period associated with it. That period has to
be identical to the test_default_period value. If you change the value of one, you must
check the value of the other.

The syntax for setting the variable is

set_app_var test_default_strobe_width strobe_width

If you need a window strobe in your STIL protocol file (SPF) or STIL patterns, set the
default of test_default_strobe_width to 1 ns, as shown in the following command:

dc_shell> set_app_var test_default_strobe_width 1
In the .synopsys_dc.setup file, test_default_strobe_width is 0 ns.

Note:
When test_default_strobe_width is 0 ns, the strobe width is equal to one of
two values: the difference between the strobe time and the end of the period, or
the difference between the strobe time and the first input event after the strobe
occurs, whichever occurs first.

The Effect of Timing Variables on Vector Formatting
Figure 254 shows a timing diagram for a strobe-before-clock scheme.timingattributeseffect on vector formattingvectorformatting, timing attributes

Synopsys® TestMAX™ DFT User Guide
T-2022.03

578

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Pre-DFT Test Design Rule Checking
Creating Test Protocols

Feedback

Figure 254 Effect of Timing Variables on Vector Formatting

active

stable

stable

inactive inactive

inputs stable

Input data

Output data

Clocks

Bidirectionals

Period

Delay = 0

Start of Strobe

Bidirectional delay = 0

Strobe width

stable

Creating Test Protocols
Test protocols are an intrinsic part of your design-for-test process and must be created
before you run the dft_drc command. This topic covers the following topics related to
creating test protocols:

• Design Characteristics for Test Protocols

• STIL Test Protocol File Syntax

• Defining an Initialization Protocol

• Scan Shift and Parallel Measure Cycles

• Examining a Test Protocol File

Synopsys® TestMAX™ DFT User Guide
T-2022.03

579

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Pre-DFT Test Design Rule Checking
Creating Test Protocols

Feedback

Design Characteristics for Test Protocols
A test protocol is based on certain characteristics of a design. The following topics discuss
how a protocol is affected by these design characteristics:

• Scan Style

• New DFT Signals

• Existing Clock Ports

• Existing Asynchronous Control Ports

• Bidirectional Ports

Scan Style
Each scan style has a unique method of performing scan shift, which must be reflected in
the test protocol.

See Also

• Scan Shift and Parallel Measure Cycles on page 587 for more information about how
scan style influences the scan shift process

New DFT Signals
The DFT signal attributes are set automatically for each new test port created by
the insert_dft command. The DFT signal attributes are preserved if you save the
design in Synopsys .ddc format. If you have an existing scan design that is not saved
in Synopsys .ddc format, you must reidentify each test port with the appropriate
set_dft_signal command.

Existing Clock Ports
You specify existing clock ports (and their timing attributes) by using the set_dft_signal
command.

Tracing back from the clock pins on all sequential elements to the ports driving these pins
interesting Clock ports can also be inferred by. The default timing for the clock signals is
determined by the set_scan_configuration -style command.

Existing Asynchronous Control Ports
You specify existing asynchronous control ports by using the following command:

dc_shell> set_dft_signal -view existing_dft \
 -type Reset -port RSTN -active_state 0

Synopsys® TestMAX™ DFT User Guide
T-2022.03

580

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Pre-DFT Test Design Rule Checking
Creating Test Protocols

Feedback

Asynchronous control ports can also be inferred by tracing back from the asynchronous
pins on all sequential elements to the ports controlling these pins. Asynchronous control
ports must be identified because all asynchronous inputs must be disabled during scan
shift to allow predictable loading and unloading of the scan data.

Bidirectional Ports
In all cycles except parallel measure and capture, all nondegenerated bidirectional ports
are assumed to be in output (driving) mode and are appropriately masked. During parallel
measure and capture cycles, ATPG data controls the bidirectional ports as normal input or
output ports but the test_default_bidir_delay variable controls the timing.

STIL Test Protocol File Syntax
DFT Compiler reads test protocols written in the Standard Test Interface Language (STIL).
The STIL format is also used by TestMAX ATPG.

Although the STIL protocol file syntax is the same as that used by TestMAX ATPG, DFT
Compiler cannot read some of the STIL elements that are available in TestMAX ATPG.

The following STIL STIL formatsavailableavailable STIL formatselements are not available in DFT Compiler:

• Post load_unload vectors

• Multiple scan groups in the load_unload procedure

• Multiple waveforms in the timing section

For general information on STIL standards (IEEE Std. 1450.0-1999), see the STIL home
page at

http://grouper.ieee.org/groups/1450/index.html

Note that both the DFT Compiler and TestMAX ATPG tools use the IEEE P1450.1
extensions to STIL. For details, see Appendix E, “STIL IEEE P1450.1 Extensions,” in
TestMAX ATPG and TestMAX Diagnosis Online Help.

Defining the test_setup Macro
The test_setup macro is optional. It defines any STIL formatstest_setup macrotest_setup macroinitialization sequences that the design
might need for test mode or to ensure that the device is in a known state. A test_setup
macro example is shown in Example 77.

Example 77 Defining the test_setup Macro in the SPF
STIL;
 ScanStructures {
 ScanChain "c1" { ScanIn SDI2; ScanOut SDO2; }
 ScanChain "c2" { ScanIn SDI1; ScanOut D1; }

Synopsys® TestMAX™ DFT User Guide
T-2022.03

581

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
http://grouper.ieee.org/groups/1450/index.html

Chapter 13: Pre-DFT Test Design Rule Checking
Creating Test Protocols

Feedback

 ScanChain "c3" { ScanIn DIN; ScanOut YABX; }
 ScanChain "c4" { ScanIn "IRQ[4]"; ScanOut XYZ; }
 }
Procedures {
 "load_unload" {
 V { CLOCK=0; RESETB=1; SCAN_ENABLE = 1; }
 Shift {
 V { _si=####; _so=####; CLOCK=P;}
 }
 }
}
MacroDefs {
 test_setup {
 V {TEST_MODE = 1; PLL_TEST_MODE = 1; PLL_RESET = 1; }
 V {PLL_RESET = 0; }
 V {PLL_RESET = 1; }
 }
}

If you need to initialize a port to X in the test_setup macro, the STIL assignment
character for this is N. An X indicates that outputs are measured and the result is masked.

Defining Basic Signal Timing
If you do not define the STIL formatssignal timingsignal timingSTIL formatsignal timing explicitly, DFT Compiler uses its own defaults.

Example 78 contains many additions to define signal timing. Line numbers have been
added for reference. Note:

• Lines 6–9. Defines some additional signal groups so that timing for all inputs or outputs
can be defined in just a few lines, instead of explicitly naming each port and its timing.

• Lines 12–28. Defines a waveform table with a period of 1,000 ns that defines the timing
to be used during nonshift cycles.

• Line 37. Adds the W statement to ensure that BROADSIDE_TIMING is used for V
cycles during the load_unload procedure.

• Line 48. Causes the test_setup macro to use BROADSIDE_TIMING.

Example 78 Defining Timing in the SPF
1. STIL;
2. UserKeywords PinConstraints;
3. PinConstraints { "TEST_MODE" 1; "PLL_TEST_MODE" 1; }
4. SignalGroups {
5. bidi_ports = '"D[0]" + "D[1]" + "D[2]" + "D[3]" + "D[4]"
 + "D[5]" + "D[6]" + "D[7]" + "D[8]" + "D[9]" + "D[10]" +
 "D[11]" + "D[12]" + "D[13]" + "D[14]" + "D[15]" ‘;
6. input_grp1 = 'SCAN_ENABLE + BIDI_DISABLE + TEST_MODE +
 PLL_TEST_MODE' ;
7. input_grp2 = 'SDI1 + SDI2 + DIN + "IRQ[4]"' ;

Synopsys® TestMAX™ DFT User Guide
T-2022.03

582

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Pre-DFT Test Design Rule Checking
Creating Test Protocols

Feedback

8. in_ports = 'input_grp1 + input_grp2';
9. out_ports = 'SDO2 + D1 + YABX + XYZ';
10. }
11. Timing {
12. WaveformTable "BROADSIDE_TIMING" {
13. Period '1000ns';
14. Waveforms {
15. CLOCK { P { '0ns' D; '500ns' U; '600ns' D; } }
 // clock
16. CLOCK { 01Z { '0ns' D/U/Z; } }
17. RESETB { P { '0ns' U; '400ns' D; '800ns' U; } }
 // async reset
18. RESETB { 01Z { '0ns' D/U/Z; } }
19. input_grp1 { 01Z { '0ns' D/U/Z; } }
20. input_grp2 { 01Z { '10ns' D/U/Z; } }
 // outputs are to be measured at t=350
21. out_ports { HLTX { '0ns' X; '350ns' H/L/T/X; } }
 // bidirectional ports as inputs are forced at t=20
22. bidi_ports { 01Z { '0ns' Z; '20ns' D/U/Z; } }
23. // bidirectional ports as outputs are measured at
 t=350
24. bidi_ports { X { '0ns' X; } }
25. bidi_ports { HLT { '0ns' X; '350ns' H/L/T; } }
26. }
27. } // end BROADSIDE_TIMING
28. }
29. ScanStructures {
30. ScanChain "c1" { ScanIn SDI2; ScanOut SDO2; }
31. ScanChain "c2" { ScanIn SDI1; ScanOut D1; }
32. ScanChain "c3" { ScanIn DIN; ScanOut YABX; }
33. ScanChain "c4" { ScanIn "IRQ[4]"; ScanOut XYZ; }
34. } // end scan structures
35. Procedures {
36. "load_unload" {
37. W "BROADSIDE_TIMING" ;
38. V {CLOCK=0; RESETB=1; SCAN_ENABLE=1; BIDI_DISABLE=1;
 bidi_ports = \r16 Z;}
39. V {}
40. V { bidi_ports = \r4 1010 ; }
41. Shift {
42. V { _si=####; _so=####; CLOCK=P;}
43. }
44. } // end load_unload
45. } //end procedures
46. MacroDef {
47. "test_setup" {
48. W "BROADSIDE_TIMING" ;
49. V {TEST_MODE = 1; PLL_TEST_MODE = 1; PLL_RESET = 1;
50. BIDI_DISABLE = 1; bidi_ports = ZZZZZZZZZZZZZZZZ; }
51. V {PLL_RESET = 0; }
52. V {PLL_RESET = 1; }
53. } // end test_setup
54. } //end procedures

Synopsys® TestMAX™ DFT User Guide
T-2022.03

583

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Pre-DFT Test Design Rule Checking
Creating Test Protocols

Feedback

Defining the load_unload Procedure
The load_unload procedure STIL formatsload_unload procedureload_unload procedureSTIL formatcontains information about placing the scan chains into a
shiftable state and shifting 1 bit through them. DFT Compiler creates this procedure if you
define the scan-enable information before you write out the STIL file. Example 79 shows
the syntax used to define scan chains.

Example 79 Defining Scan Chain Loading and Unloading in the SPF
STIL;
ScanStructures {
 ScanChain "c1" { ScanIn SDI2; ScanOut SDO2; }
 ScanChain "c2" { ScanIn SDI1; ScanOut D1; }
 ScanChain "c3" { ScanIn DIN; ScanOut YABX; }
 ScanChain "c4" { ScanIn "IRQ[4]"; ScanOut XYZ; }
}
Procedures {
 "load_unload" {
 V { CLOCK=0; RESETB=1; SCAN_ENABLE=1; }
 }
}

Defining the Shift Procedure
The STIL formatsshift procedureshift procedureSTIL formatshift procedure specifies how to shift the scan chains within the definition of the
load_unload procedure. The bold text shown in Example 80 defines the shift procedure.

Example 80 Defining the Scan Chain Shift Procedure in the SPF
STIL;
ScanStructures {
 ScanChain "c1" { ScanIn SDI2; ScanOut SDO2; }
 ScanChain "c2" { ScanIn SDI1; ScanOut D1; }
 ScanChain "c3" { ScanIn DIN; ScanOut YABX; }
 ScanChain "c4" { ScanIn "IRQ[4]"; ScanOut XYZ; }
}
Procedures {
 "load_unload" {
 V { CLOCK=0; RESETB=1; SCAN_ENABLE = 1; }
 Shift {
 V { _si=####; _so=####; CLOCK=P;}
 }
 }
}

Defining an Initialization Protocol
If your design requires an initialization sequence to configure it for scan testing,
you can provide the initialization vectors through an initialization protocol. With an

Synopsys® TestMAX™ DFT User Guide
T-2022.03

584

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Pre-DFT Test Design Rule Checking
Creating Test Protocols

Feedback

initialization protocol, you provide specific vectors to initialize the design while letting the
create_test_protocol command complete the scan shifting steps of the protocol.

Use the following process to generate an initialization protocol:

1. Analyze the design to determine its test configuration requirements.

• Determine the initial state required and the initialization sequence necessary to
achieve this state.

• Determine the test configuration required to maintain this initial condition throughout
scan testing.

2. Generate a default test protocol file.

• Specify timing parameters if you require values other than the default.

• Specify test configuration requirements determined in the analysis step by using the
set_dft_signal command.

• Run create_test_protocol to generate the default protocol.

• Use the write_test_protocol command to write the ASCII protocol file.

3. Create the initialization protocol file.

Modify the initialization sequence in the test_setup section of the test protocol file.

4. Read in the initialization protocol.

First remove the existing protocol by using the remove_test_protocol command,
then read the initialization protocol using the following command.

read_test_protocol -section test_setup
5. Rerun create_test_protocol to complete the test protocol.

Run test DRC.

See the design in Figure 255 for an illustration of the use of an initialization protocol.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

585

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Pre-DFT Test Design Rule Checking
Creating Test Protocols

Feedback

Figure 255 Design That Needs an Initialization Protocol

test_mode

enable

clk

FF1

FF2
FF1_out

In this design, the clock signal, clk, is active low. For the clock signal to reach FF2, you
need to initialize it by pulsing clk one time so that the enable signal FF1_out is asserted.
Because the create_test_protocol command has no knowledge of this requirement,
you need to modify the generated protocol to include this special initialization sequence.

The initialization sequence generated by the create_test_protocol command looks like
the following:

"test_setup" {
 W "_default_WFT_";
 V { "CLK"=1; }
 V { "CLK"=1; "test_mode"=1; }
 }

If this initialization sequence has not been modified, test DRC gives the following
violations:

4 PRE-DFT VIOLATIONS
 3 Uncontrollable clock input of flip-flop violations (D1)
 1 Clock not able to capture violation (D8)

The initialization sequence that is necessary to initialize the circuit is as follows:

"test_setup" {
 W "_default_WFT_";
 V { "CLK"=1; }
 V { "CLK"=1; "test_mode"=1; }
 V { "CLK"=P; "test_mode"=1; }
 V { "CLK"=1; "test_mode"=1; }

Test DRC requires that all clock signals are in their inactive state at the end of the
initialization sequence. When this initialization sequence is applied, test DRC indicates
that there are no test design rule violations.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

586

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Pre-DFT Test Design Rule Checking
Creating Test Protocols

Feedback

However, after the insert_dft command completes, this initialization sequence is lost.
You must reapply the same initialization sequence to ensure that post-DFT test DRC
reports no violations.

Table 49 shows the flows you should use with various types of test protocols.

If you have Use this flow

No test protocol set_dft_signal... create_test_protocol dft_drc

Only the test_setup section in
the protocol

set_dft_signal... read_test_protocol -section
test_setup create_test_protocol dft_drc

Full protocol read_test_protocol (no -section test_setup)
set_dft_signal (for clocks and asynchronous signals)
dft_drc

Scan Shift and Parallel Measure Cycles
The standard strobe-before-clock protocol shifts all scan chains simultaneously. This
protocol allows scan shift output for the current pattern and scan shift input for the next
pattern to overlap. If scan groups are used, not all scan chains are required to shift
simultaneously. For more information about scan groups, see Creating Scan Groups on
page 425.

The process DFT Compiler uses to perform scan shift is determined by the scan style you
selected with the set_scan_configuration commandcommandsset_scan_configuration-style optionset_scan_configuration -style command. test_default_scan_style variableenvironment variablestest_default_scan_stylevariablestest_default_scan_style

For all scan styles, the parallel measure cycle is performed by application of data to
nonclock input ports, holding clocks inactive, and comparing data at output ports. The
capture cycle involves pulsing a clock. Nonclock input ports remain unchanged from the
parallel measure cycle; output ports and bidirectional ports are masked.

Multiplexed Flip-Flop Scan Style
For the multiplexed flip-flop scan style, scan shift is performed by execution of the
following steps n times, where n is the number of bits in the longest scan chain:

1. Assert the scan-enable signals.

2. Apply scan data at the scan input ports.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

587

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Pre-DFT Test Design Rule Checking
Creating Test Protocols

Feedback

3. Compare scan data at the scan output ports.

4. Pulse the system clocks.

System clock ports are identified with the set_dft_signal command as ScanClock
signals.test_scan_clock attribute

During the parallel measure and capture cycles, test design rule checking treats the scan-
enable signal like any other parallel input; in some capture cycles, the captured data can
be from the scan path rather than the functional path. Because fault detection occurs only
during the parallel measure cycle and during comparison of captured data at the scan
output ports, treating the scan-enable signal as a parallel input allows inclusion of scan
logic and clock logic in the fault list and detection of faults on these nodes.

Clocked-Scan Scan Style
For the clocked-scan scan style, scan shift is performed by execution of the following
steps n times, where n is the number of bits in the longest scan chain:

1. Apply scan data at the scan input ports.

2. Compare scan data at the scan output ports.

3. Pulse the scan clock ports.

Scan clock ports are identified with the set_dft_signal command as
ScanMasterClock signals.test_scan_clock attribute

LSSD Scan Style
For the LSSD scan style, scan shift is performed by execution of the following steps n
times, where n is the number of bits in the longest scan chain:

1. Apply scan data at the scan input ports.

2. Compare scan data at the scan output ports.

3. Pulse the test master clock, then pulse the slave clock.

Test master and slave clock ports are identified with the set_dft_signal command as
ScanMasterClock and ScanSlaveClock signals, respectively. test_scan_clock_a attributetest_scan_clock_b attribute

Synopsys® TestMAX™ DFT User Guide
T-2022.03

588

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Pre-DFT Test Design Rule Checking
Creating Test Protocols

Feedback

Scan-Enabled LSSD Scan Style
For the scan-enabled LSSD scan style, scan shift is performed by execution of the
following steps n times, where n is the number of bits in the longest scan chain:

1. Assert the scan-enable signals.

2. Apply scan data at the scan input ports.

3. Compare scan data at the scan output ports.

4. Pulse the test master clock, then pulse the slave clock.

Test master clock ports are identified with the set_dft_signal command as
ScanMasterClock signals. System clock ports, which are repurposed as slave test
clock ports in test mode, are also identified as ScanMasterClock signals but must
have slave test clock timing waveforms defined. test_scan_clock_a attributetest_scan_clock_b attribute

Examining a Test Protocol File
You can convert a test protocol file into an ASCII file that you can view and edit. To print
this test protocol file to a file, use the write_test_protocol commandcommandswrite_test_protocolcommandswrite_test_protocolwrite_test_protocol command. The command
syntax is as follows:

write_test_protocol [-output test_protocol_file_name]
 [-test_mode mode_name]
 [-names verilog | verilog_single_bit]

Option Description

-output test_protocol_file_name Specifies the name of the ASCII output file. The
default file name is design_name.spf, where
design_name is the current design, and the .spf
extension identifies the file type as a STIL format
test protocol file.

-test_mode mode_name Specifies the CTL model test mode from which the
protocol is generated.

-names verilog |
verilog_single_bit

Specifies the form of the names used in the
STIL protocol file. Names can be unchanged
from internal representation (the default). They
can also be modified as Verilog names or as
Verilog names compatible with the usage of the
verilogout_single_bit environment variable. In
all cases, the internal representation is not changed.
This option takes effect only in conjunction with
-test_mode options, when HSS is used. In all other
cases, the form of the names is determined by the
setting of the test_stil_netlist_format variable.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

589

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Pre-DFT Test Design Rule Checking
Creating Test Protocols

Feedback

Note:
Do not use the write_test_protocol command before you run
create_test_protocol. If you do, you will get an error message to the effect
that no test protocol exists.

Example 81 shows the test protocol file for a multiplexed flip-flop design. This file was
generated by use of the write_test_protocol command after execution of test design
rule checking on the design.

Example 81 Test Protocol for Multiplexed Flip-Flop Design Example
STIL 1.0 {
 Design P2000.9;
}
Header {
 Title DFT Compiler 2003.06 STIL output;
 Date Thu Apr 10 14:30:34 2003 ;
 History {
 }
}
Signals {
 CDN In; CLK In; DATA In; IN1 In; TEST_SE In;
TEST_SI In;
 OUT1 Out; OUT2 Out;
}
SignalGroups {
 all_inputs = ‘ CDN + CLK + DATA + IN1 + TEST_SE +
 TEST_SI ’; // #signals=6
 all_outputs = ‘ OUT1 + OUT2 ’; // #signals=2
 all_ports = ‘ all_inputs + all_outputs ’; // #signals=8
 _pi = ‘ all_inputs ’; // #signals=6
 _po = ‘ all_outputs ’; // #signals=2
}
Timing {
 WaveformTable _default_WFT_ {
 Period ‘100ns’;
 Waveforms {
 all_inputs { 0 { ‘5ns’ D; } }
 all_inputs { 1 { ‘5ns’ U; } }
 all_inputs { Z { ‘5ns’ Z; } }
 all_inputs { N { ‘5ns’ N; } }
 all_outputs { X { ‘0ns’ X; } }
 all_outputs { H { ‘0ns’ X; ‘95ns’ H; } }
 all_outputs { T { ‘0ns’ X; ‘95ns’ T; } }
 all_outputs { L { ‘0ns’ X; ‘95ns’ L; } }
 CLK { P { ‘0ns’ D; ‘45ns’ U; ‘55ns’ D; } }
 CDN { P { ‘0ns’ U; ‘45ns’ D; ‘55ns’ U; } }
 }
 }
}
PatternBurst __burst__ {

Synopsys® TestMAX™ DFT User Guide
T-2022.03

590

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Pre-DFT Test Design Rule Checking
Creating Test Protocols

Feedback

 PatList {
 __pattern__ {
 }
 }
}
PatternExec {
 PatternBurst __burst__ ;
}
Procedures {
 capture {
 W _default_WFT_ ;
 V { _pi =\r6 #; _po =\r2 #; }
 }
 capture_CLK {
 W _default_WFT_ ;
 forcePI : V { _pi =\r6 #; }
 measurePO : V { _po =\r2 #; }
 pulse : V { CLK =P; }
 }
 capture_CDN {
 W _default_WFT_ ;
 forcePI : V { _pi =\r6 #; }
 measurePO : V { _po =\r2 #; }
 pulse : V { CDN =P; }
 }
}
MacroDefs {
 test_setup {
 W _default_WFT_ ;
 V { CLK =0; }
 V { CDN =1; CLK =0; }
 }
}

Updating a Protocol in a Scan Chain Inference Flow
If you import an existing-scan netlist without any test attributes, test DRC can infer the
scan structures if you perform the following steps:

1. Specify test clocks and other test attributes in the design.

2. Create a test protocol.

3. Run the dft_drc command to infer scan structures.

If scan chain inference is successful, the protocol is updated to contain procedures to shift
the scan chain.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

591

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Pre-DFT Test Design Rule Checking
Masking Capture DRC Violations

Feedback

Masking Capture DRC Violations
By default, DFT Compiler excludes sequential cells with DRC violations from scan chains.
In some cases, such as spare cells that have constant data inputs, you can include
violating cells in scan chains.

DFT Compiler allows you to mask cells with certain capture DRC violation types, as
described in the following topics:

• Configuring Capture DRC Violation Masking

• Reporting Capture DRC Violation Masking

• Resetting Capture DRC Violation Masking

Configuring Capture DRC Violation Masking
You can mask the following capture DRC violation types during pre-DFT DRC:

• TEST-504 – Cell always captures constant zero value

• TEST-505 – Cell always captures constant one value

• D17 – Cell has a clock, set, or reset input pin that cannot capture data

When a violation type is masked, violating cells are included in scan chains. To mask a
violation type, use the set_dft_drc_rules command. The syntax is

set_dft_drc_rules
 [-allow drc_list]
 [-ignore drc_list]
 [-cell cell_list]

The -allow and -ignore options both allow you to specify one or more violation types to
mask. The difference is as follows:

• -allow – DFT allows violating cells to be included in scan chains, but the violations are
still reported

• -ignore – DFT completely ignores the violating cells; the violating cells are included in
scan chains and the violations are not reported

For example, the following command includes constant-capturing sequential cells in scan
chains (with warnings issued during pre-DFT DRC):

dc_shell> set_dft_drc_rules -allow {TEST-504 TEST-505}

Synopsys® TestMAX™ DFT User Guide
T-2022.03

592

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Pre-DFT Test Design Rule Checking
Masking Capture DRC Violations

Feedback

By default, the specification applies globally to the entire design. To limit the specification
to certain cells, use the -cell option. For example, the following command includes
specific noncapturing sequential cells in scan chains (with no warnings):

dc_shell> set_dft_drc_rules -ignore {D17} \
 -cell [get_object_name [get_cells {CONFIG_reg[*]}]]
You can issue multiple set_dft_drc_rules commands. The tool applies all command
specifications cumulatively. Cell-specific specifications take precedence over global
specifications.

Reporting Capture DRC Violation Masking
You can use the report_dft_drc_rules command to report masking specifications
previously applied with the set_dft_drc_rules command. The syntax is

report_dft_drc_rules
 [-violation drc_list]
 [-cell cell_list]

By default, all previously applied command specifications are reported. For example,

dc_shell> report_dft_drc_rules

 Violation Default Specified Range/
 Name Action Action Cell list

 TEST-504 omit allow all cells
 TEST-505 omit allow BLK1
 omit allow BLK2
 omit ignore USPAREGATES

You can use the -violation option to restrict the report to certain violation types. For
example,

dc_shell> report_dft_drc_rules -violation {TEST-504}

 Violation Default Specified Range/
 Name Action Action Cell list

 TEST-504 omit allow all cells

You can use the -cell option to restrict the report to certain cell-specific command
specifications. For example,

dc_shell> report_dft_drc_rules -cell {BLK1 BLK2}

 Violation Default Specified Range/
 Name Action Action Cell list

Synopsys® TestMAX™ DFT User Guide
T-2022.03

593

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Pre-DFT Test Design Rule Checking
Masking Capture DRC Violations

Feedback

 TEST-505 omit allow BLK1
 omit allow BLK2

Resetting Capture DRC Violation Masking
You can use the reset_dft_drc_rules command to remove masking specifications
previously applied with the set_dft_drc_rules command. The syntax is

reset_dft_drc_rules
 [-violation drc_list]
 [-cell cell_list]

By default, all previously applied command specifications are removed. For example,

dc_shell> reset_dft_drc_rules
You can use the -violation option to remove only specifications for certain violation
types. For example,

dc_shell> reset_dft_drc_rules -violation {TEST-504 TEST-505}
You can use the -cell option to remove only certain cell-specific command specifications.
For example,

dc_shell> reset_dft_drc_rules -cell {BLK1 BLK2}

Synopsys® TestMAX™ DFT User Guide
T-2022.03

594

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

14
Previewing, Inserting, and Checking DFT Logic

This chapter describes how to preview your DFT design, insert the DFT logic, and check
the inserted DFT logic for correct operation.

This chapter includes the following topics:

• Previewing the DFT Logic

• Inserting the DFT Logic

• Post-DFT Insertion Test Design Rule Checking

Previewing the DFT Logic
Use the preview_dft command to preview your scan design. The preview_dft
command runs the same scan architecture algorithms as the insert_dft command,
except that it reports the scan architecture to be implemented instead of actually
implementing it. This allows you to preview your scan chains and DFT logic without
synthesizing them and to change your specifications to explore the design space as
necessary.

You should always use the preview_dft command to generate a DFT preview report for
your design. Although you can also use the report_scan_path -view existing_dft
command after DFT insertion to report the implemented scan chains, the preview_dft
report includes additional DFT architecture information such as test points, test signals,
DFT-inserted cores, and scan compression.

The following topics describe usage of the preview_dft command:

• Running the preview_dft Command

• Previewing Additional Scan Chain Information

• Previewing Test Mode Information

• Previewing the DFT Design Using Script Commands

For more information about using the -test_wrappers option to preview core wrapper
chains, see Previewing the Wrapper Cells on page 479 and Previewing Maximized Reuse
Wrapper Cells on page 481.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

595

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 14: Previewing, Inserting, and Checking DFT Logic
Previewing the DFT Logic

Feedback

Running the preview_dft Command
Before running the preview_dft command, a valid test protocol must exist in memory.
You can create a test protocol with the create_test_protocol command, or you can
read an existing test protocol in with the read_test_protocol command. For details, see
Creating the Test Protocol on page 560.

The preview_dft command also requires that pre-DFT DRC be run. If you run the
preview_dft command without first running the dft_drc command, the tool implicitly
runs the dft_drc command before proceeding with DFT preview.

When these requirements have been met, you can generate the DFT preview report:

dc_shell> preview_dft
Example 82 shows a simple DFT preview report example.

Example 82 Preview Report Generated by the preview_dft Command
**
Preview_dft report
For : 'Insert_dft' command
Design : top
Version: I-2013.12-SP3
Date : Mon May 12 09:16:49 2014
**

Number of chains: 2
Scan methodology: full_scan
Scan style: multiplexed_flip_flop
Clock domain: mix_clocks

Scan chain '1' (MY_SI1 --> MY_SO1) contains 6 cells

Scan chain '2' (MY_SI2 --> MY_SO2) contains 6 cells

Previewing Additional Scan Chain Information
To show additional information about the scan chains, use the -show option of the
preview_dft command:

dc_shell> preview_dft -show {...}

Synopsys® TestMAX™ DFT User Guide
T-2022.03

596

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 14: Previewing, Inserting, and Checking DFT Logic
Previewing the DFT Logic

Feedback

This option accepts a list of keywords that cause additional types of information to be
included in the preview report. Valid keywords (with corresponding report examples) are:

• cells – Shows all scan cells and scan segments in each scan chain:

Scan chain '1' (test_si1 --> test_so1) contains 6 cells:

 Z1F_reg[0]
 Z1F_reg[1]
 Z1F_reg[2] (l)
 Z2F_reg[0]
 Z2F_reg[1]
 Z2F_reg[2]

• scan_clocks – Shows scan clock domains along the scan chains:

Scan chain '1' (test_si1 --> test_so1) contains 6 cells:

 Z1F_reg[0] (CLK1, 55.0, falling)
 ...
 Z2F_reg[0] (CLK2, 55.0, falling)
 ...
 Z2F_reg[2]

• scan_signals – Shows information about DFT signals and hookup pins associated
with each scan chain:

Scan chain '1' (MY_SI1 --> MY_SO1) contains 6 cells

 Scan signals:
 test_scan_in: MY_SI1 (no hookup pin)
 test_scan_out: MY_SO1 (no hookup pin)

• segments – Shows information about scan segments included in the scan chains:

Core scan segment 'core/1' (core/test_si --> core/test_so) contains 3
cells:
 core/Z2R_reg[0]
 core/Z2R_reg[1]
 core/Z2R_reg[2]

 Other access pins:
 core/test_se (test_scan_enable)
 core/CLK2 (test_scan_clock)

Also include the cells keyword to see the scan cells contained in each segment.

Scan segments result from

◦ Scan chains within CTL-modeled cores

◦ Identified shift registers

◦ DFT-inserted and user-defined clock chains

Synopsys® TestMAX™ DFT User Guide
T-2022.03

597

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 14: Previewing, Inserting, and Checking DFT Logic
Previewing the DFT Logic

Feedback

◦ set_scan_group -serial_routed true specifications

◦ Multibit components, when the -preserve_multibit_segment option of the
set_scan_configuration command is set to true

• qgates – Shows toggle suppression gates implemented along the scan chains due to
the set_scan_suppress_toggling command:

 (g) shows cell scan-out drives a toggle suppressing gate

Scan chain '1' (test_si1 --> test_so1) contains 3 cells:

 Z1F_reg[0]
 Z1F_reg[1]
 Z1F_reg[2] (g)

The qgates keyword implicitly includes the scan keyword.

• voltages – Shows scan cell operating voltage information along the scan chains

(i) shows cell scan-out drives an isolation cell
(v) shows cell scan-out drives a level shifter cell

Scan chain '1' (test_si1 --> test_so1) contains 4 cells:

 Z1F_reg[0] (voltage 1.08)
 Z1F_reg[1]
 Z2F_reg[0] (voltage 0.80)
 Z2F_reg[1]

• power_domains – Shows power domains along the scan chains

(i) shows cell scan-out drives an isolation cell
(v) shows cell scan-out drives a level shifter cell

Scan chain '1' (test_si1 --> test_so1) contains 4 cells:

 Z1F_reg[0] (pwr domain 'pd_2')
 Z1F_reg[1]
 Z2F_reg[0] (pwr domain 'pd_1')
 Z2F_reg[1]

• bidirectionals – Shows information about bidirectional conditioning logic used to
enable scan paths:

 Bidirectional Port Specified Resolved
 Conditioning Conditioning

 BIDI[0] Input Input
 BIDI[1] Input Output
 BIDI[2] Input Input

Synopsys® TestMAX™ DFT User Guide
T-2022.03

598

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 14: Previewing, Inserting, and Checking DFT Logic
Previewing the DFT Logic

Feedback

• tristates – Shows information about all tristate conditioning logic used to prevent
tristate contention during scan shift

 Tristate net Specified Resolved
 Disabling Disabling

 Z[0] disable_all disable_all
 Z[1] disable_all disable_all
 Z[2] disable_all disable_all

• scan – Shows scan cells that explicitly have the scan_element attribute set to true:

 (t) shows cell has a true scan attribute

Scan chain '1' (MY_SI1 --> MY_SO1) contains 12 cells

 core/Z2R_reg[1] (t)

This attribute is typically applied with the set_scan_element true command. If the
cells keyword is not also specified, only scan cells with the scan_element attribute
set to true are shown.

• scan_summary – Shows a short summary of the scan chains and their scan clocks:

Chain Scan Ports # Cells Inst/Chain Clock (port,time,edge)
----- ----------------- ------- ---------- ----------------------
S 1 MY_SI1 --> MY_SO1 6 Z1F_reg[0] (CLK1, 55.0, falling)
 Z2F_reg[0] (CLK2, 55.0, falling)
S 2 MY_SI2 --> MY_SO2 6 Z1R_reg[0] (CLK1, 45.0, rising)
 Z2R_reg[0] (CLK2, 45.0, rising)

Use this keyword by itself.

• all – Show all information about scan chains (equivalent to specifying all keywords
except scan_summary)

The preview report format adapts to the keywords you specify. For example, with the
-show {scan_clocks} option, the report shows only the scan cells at scan clock
transitions along the chain, with other cells represented by an ellipsis (“...”). With the
-show {scan_clocks cells} option, all scan cells are shown along with the scan clock
transitions.

The preview report uses attributes to show where certain scan structures exist along the
scan chains. For example,

dc_shell> preview_dft -show {cells segments}
...
 (l) shows cell scan-out drives a lockup latch
 (s) shows cell is a scan segment
 (m) shows cell scan-out drives a multi-mode multiplexer
 (L) shows test retiming flop

Synopsys® TestMAX™ DFT User Guide
T-2022.03

599

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 14: Previewing, Inserting, and Checking DFT Logic
Previewing the DFT Logic

Feedback

 (t) shows cell has a true scan attribute
 (w) shows cell scan-out drives a wire

Scan chain 'MY_CHAIN' (SI --> SO) contains 4 cells
 Active in modes: Internal_scan :

 core1/CLK_CHAIN (s) (m) (CLK, 55.0, falling)
 (l) (L) core2/CLK_CHAIN (s) (m) (CLK, 55.0, falling)

Some less common attributes, such as retiming flip-flops, are shown in the legend only
when used in the report.

For more information about the keywords used with the -show option, see preview_dft
man page.

Previewing Test Mode Information
If you have multiple test modes in your design, the DFT logic uses test-mode signals to
select the test mode. In this case, the preview_dft command does the following:

• It reports the scan chain structures for each test mode.

• It reports the test-mode signals and encodings to be used for test mode selection.

Example 83 shows a preview report for a design with two test modes.

Example 83 Preview Report Section Describing Multiple Test Modes
**
Current mode: SHORT
**

Number of chains: 3
Scan methodology: full_scan
Scan style: multiplexed_flip_flop
Clock domain: mix_clocks

Scan chain '1' (test_si1 --> test_so1) contains 4 cells
 Active in modes: SHORT

Scan chain '2' (test_si2 --> test_so2) contains 4 cells
 Active in modes: SHORT

Scan chain '3' (test_si3 --> test_so3) contains 4 cells
 Active in modes: SHORT

**
Current mode: LONG
**

Synopsys® TestMAX™ DFT User Guide
T-2022.03

600

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 14: Previewing, Inserting, and Checking DFT Logic
Previewing the DFT Logic

Feedback

Number of chains: 1
Scan methodology: full_scan
Scan style: multiplexed_flip_flop
Clock domain: mix_clocks

Scan chain '1' (test_si1 --> test_so1) contains 12 cells
 Active in modes: LONG

================================
Test Mode Controller Information
================================

Test Mode Controller Ports

test_mode: test_mode2
test_mode: test_mode1

Test Mode Controller Index (MSB --> LSB)
--
test_mode2, test_mode1

Control signal value - Test Mode

01 SHORT - InternalTest
10 LONG - InternalTest

You can create multiple test modes with the define_test_mode command. Compressed
scan designs always have multiple test modes (at least one standard scan mode and one
compressed scan mode).

See Also

• Multiple Test Modes on page 355 for more information about defining test modes

Previewing the DFT Design Using Script Commands
To gain more understanding of the test structures to be built, you can use following
command to preview the DFT design using DFT configuration commands:

dc_shell> preview_dft -script
The result is a set of DFT commands (such as define_test_mode, set_scan_path, and
set_test_point_element) that describe the DFT structures to be built.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

601

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 14: Previewing, Inserting, and Checking DFT Logic
Inserting the DFT Logic

Feedback

Note the following:

• The command output is intended to help understand the DFT design; it is not intended
to be sourced directly as a configuration script in a subsequent run.

• You can modify and apply the set_scan_path commands to implement your own scan
cell order. However, keep in mind that the -ordered_elements option prevents the
specified scan cells from being reordered or repartitioned using SCANDEF information.

Inserting the DFT Logic
After configuring and previewing your design, assemble the scan chains by using the
insert_dft command:

dc_shell> insert_dft
This following topics describe how the preview_dft and insert_dft commands
generate a scanned design:

• Scan Replacement

• Scan Element Allocation and Ordering

• Test Signals

• Pad Cells

Scan Replacement
Scan replacement is the process of remapping nonscan sequential cells to library cells
have appropriate test pins for the chosen scan style.

DFT Compiler performs the following scan replacement tasks during the insert_dft
command:

• Scan-replaces sequential elements if a scan replacement on the sequential elements
was not performed previously, and the cell does not violate test DRC.

The set_scan_configuration -replace false setting disables this behavior. For
more information, see Scan Stitching Only Scan-Replaced Cells on page 215.

• Converts the scan elements that resulted from a test-ready compile or a previous scan
insertion back to nonscan elements if test DRC violations prevent their inclusion in a
scan chain, and the set_dft_insertion_configuration -unscan true command
has been issued.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

602

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 14: Previewing, Inserting, and Checking DFT Logic
Inserting the DFT Logic

Feedback

Scan Element Allocation and Ordering
DFT Compiler allocates and orders scan elements to scan chains in the following manner:

• Allocates scan elements to produce the minimum number of scan chains consistent
with clock domain requirements. By default, the insert_dft command generates
a scan design with the number of scan chains being equal to the number of clock
domains. The resulting design contains one scan chain for each set of sequential
elements clocked by the same edge of the same test clock.

• Automatically infers existing scan chains both in the current design and in subdesigns.
This is true only if the design has the proper attributes.

• Does not reroute existing scan chains previously built by the insert_dft command or
subdesign scan chains built by the insert_dft command, even if their routing does
not conform to default behavior.

• In Design Compiler wire load mode, allocates and orders scan elements into scan
chains alphanumerically, using the full hierarchical path specification of the scan
element name.

• In Design Compiler topographical mode, allocates and orders scan elements into scan
chains using virtual layout information, which reduces scan routing overhead. In this
case, the preview_dft and insert_dft commands issue the following message to
indicate that topographical information is used:

Running DFT insertion in topographical mode.

Test Signals
DFT Compiler inserts and routes test signals in the following manner:

• Automatically inserts and routes global test signals to support the specified scan style.
These test signals include clocks and enable signals.

• Allocates ports to carry test signals. Where possible, the insert_dft command uses
“mission” ports (that is, normal function ports) to carry scan-out ports and inserts
multiplexing logic, if required. The insert_dft command performs limited checking for
existing multiplexing logic to prevent redundant insertion.

• Inserts three-state and bidirectional disabling logic during default scan synthesis.
The insert_dft command checks for existing disabling logic to prevent redundant
insertion.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

603

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 14: Previewing, Inserting, and Checking DFT Logic
Post-DFT Insertion Test Design Rule Checking

Feedback

Pad Cells
By default, AutoFix is enabled for bidirectional and three-state pad cells. If the current
design includes such pad cells with functional models in the logic library, the insert_dft
command inserts DFT testability logic for them byinsert_dft commandpad cellscommandsinsert_dftpad cellspad cellsinsert_dft command

• Ensuring correct core-side hookup to all pad cells and three-state drivers

• Inserting required logic to force bidirectional pads carrying scan-out signals into output
mode during scan shift

• Inserting required logic to force bidirectional pads carrying scan-in, control, and clock
signals into input mode during scan shift

• Determining requirements and, if necessary, inserting required logic to force all other
nondegenerated bidirectional ports into input mode during scan shift

• Inserting required logic to enable three-state output pads associated with scan-out
ports during scan shift

• Inserting required logic to disable three-state outputs that are not associated with scan-
out ports during scan shift

See Also

• Configuring Three-State Bus AutoFixing on page 340 for information on AutoFixing
three-state output drivers

• Configuring Bidirectional AutoFixing on page 340 for information on AutoFixing
bidirectional pad cells

Post-DFT Insertion Test Design Rule Checking
After you perform scan insertion, you can run the dft_drc command to perform design
rule checking of the DFT-inserted to ensure that no violations have been introduced into
your design by the scan insertion process. This is called post-DFT DRC.

This topic covers the following topics related to post-DFT DRC:

• Running Post-DFT DRC After DFT Insertion

• Checking for Topological Violations

• Checking for Scan Connectivity Violations

• Causes of Common Violations

• Ability to Load Data Into Scan Cells

Synopsys® TestMAX™ DFT User Guide
T-2022.03

604

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 14: Previewing, Inserting, and Checking DFT Logic
Post-DFT Insertion Test Design Rule Checking

Feedback

• Ability to Capture Data Into Scan Cells

• Post-DFT DRC Limitations

Running Post-DFT DRC After DFT Insertion
You can perform post-DFT DRC after the insert_dft command completes successfully.
Use the current_test_mode command to change the focus to each test mode of interest,
then run the dft_drc command. For example,

dc_shell> insert_dft
...
dc_shell> current_test_mode wrp_if
dc_shell> dft_drc
...
dc_shell> current_test_mode wrp_of
dc_shell> dft_drc
...
dc_shell> current_test_mode ScanCompression_mode
dc_shell> dft_drc
...

At the beginning of its output, the dft_drc command issues a message confirming that
post-DFT DRC is being run:

dc_shell> dft_drc
In mode: Internal_scan...
 Design has scan chains in this mode
 Design is scan routed
 Post-DFT DRC enabled
...

If your design contains only the default Internal_scan test mode, you do not need to set
the current test mode; the Internal_scan mode is the default.

Note:
Some features and flows do not support post-DFT DRC, as noted in Post-DFT
DRC Limitations on page 619. In such cases, use DRC in the TestMAX ATPG
tool to validate the DFT-inserted design.

Checking for Topological Violations
dft_drctopological checksTopological checks are global connectivity checks that the dft_drc command performs in
a structural manner.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

605

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 14: Previewing, Inserting, and Checking DFT Logic
Post-DFT Insertion Test Design Rule Checking

Feedback

If the dft_drc command violationstopologicalnets and driverscannot determine the logic function associated with a wired net, it
issues the following warning message:

Warning: Type of wired net %s is unknown. (TEST-114TEST-114 message)

The presence of a dft_drcnon-three-state drivernon-three-state driver on a three-state net (see Figure 256) results in
contention on that net.

Figure 256 A Non-Three-State Driver

OUTAIN3

E2

IN2

E1

IN1

If the dft_drc command detects such a condition, it flags the violation with:

Warning: Three-state net %s is not properly driven. (TEST-115)TEST-115 message.

If the dft_drc command detects the presence of a pull-up driver or a pull-down driver on a
non-three-state net, it flags the problem with

Error: Pullup/pulldown net %s has dft_drcillegal driverillegal driver(s).
(TEST-331TEST-331 message)

Any violation on a net forces the net to the value X for the entire protocol simulation.

Checking for Scan Connectivity Violations
After the dft_drc command completes test protocol simulation, it analyzes the simulation
results to determine the following:

• The architecture of the scan chains

• Whether the capture state and the state of the cell that is scanned are the same

The report_scan_path command reports the scan chain architecture determined by the
dft_drc command.

Running an incremental compile or other command that affects the database can cause
the information gathered by dft_drc to be invalidated. If you run a report_scan_path

Synopsys® TestMAX™ DFT User Guide
T-2022.03

606

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 14: Previewing, Inserting, and Checking DFT Logic
Post-DFT Insertion Test Design Rule Checking

Feedback

and get an error message saying that no scan path is defined, try running dft_drc again,
immediately followed by a report_scan_path command.

Scan Chain Extraction
scan chaindefinitionscan chainA scan chain is a group of sequential elements through which a uniquely identifiable bit of
scan data travels. The dft_drc command extracts dft_drcextracting scan chainsscan chainextractionscan chains from a design by tracing
scan data bits through the multiple time frames of the protocol simulation. Scan chains
are scan chainprotocol dependenceprotocol dependent: For a given design, specifying a different test protocol can result
in different scan chains. As a corollary, scan-chain-related problems can be caused by
an incorrect protocol, by incorrect set_dft_signal specifications, or even by incorrectly
specified timing data.

Causes of Common Violations
During test design rule checking on scan designs, DFT Compiler simulates the test
protocol to verify that the scan operation functions correctly. Protocol simulation verifies
that scan cells predictably perform the following tasks:

• Receive data during scan input

• Capture data during parallel capture

• Shift data during scan output

The following topics describe the scan operation checks for each of these tasks and
provide guidance in correcting the problems.

Ability to Load Data Into Scan Cells
scan cellloading data, requirementsloading scan data, requirementsrequirementsloading scan dataTo ensure that the scan shift process can successfully load data into the scan cells, DFT
Compiler verifies that

• Data arrives at the scan input pin of each scan cell

• The test clock pulse arrives at the test clock pin of each scan cell

• Scan data is not corrupted during scan shift

If a scan cell does not meet these conditions, DFT Compiler cannot control the scan cell.
Typical causes for uncontrollable scan cells scan celluncontrollablecausesuncontrollable scan cell (see scan cell, uncontrollable)include

• Incorrect or incomplete test configuration

• Invalid clock logic

• Incorrect timing relationships between clocks for two-phase clocking

Synopsys® TestMAX™ DFT User Guide
T-2022.03

607

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 14: Previewing, Inserting, and Checking DFT Logic
Post-DFT Insertion Test Design Rule Checking

Feedback

• Nonscan sequential cells clocked by the test clock

• Invalid scan path

identifyingscan cellsuncontrollablescan celluncontrollableidentifyingDFT Compiler generates this error message when it detects that it cannot shift through a
scan chain:

Begin Scan chain violations...

Error: Chain c1 blocked at DFF gate FF_A after tracing 2 cells. (S1-1)

Scan chain violations completed...

The following topics provide examples of the typical causes of uncontrollable scan cells.

Incomplete Test Configuration
Figure 257 shows a simple scan design with a scan chain.

Figure 257 Simple Scan Design

OUT2

CLK

IN2

OUT1

IN1

test_si
test_se

CDN

scan celluncontrollablemissing scan-input portWhen reading a design from an ASCII netlist that contains existing scan chains, you must
specify the test ports. If you do not identify the scan input port, DFT Compiler does not flag
any violations during DRC, but it will not be able to extract scan chains.

If the scan input port information is not specified, the dft_drc command generates a pre-
DFT DRC report even though the netlist contains scan chains:

dc_shell> dft_drc
In mode: all_dft...
 Pre-DFT DRC enabled

Information: Starting test design rule checking. (TEST-222)
...

Synopsys® TestMAX™ DFT User Guide
T-2022.03

608

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 14: Previewing, Inserting, and Checking DFT Logic
Post-DFT Insertion Test Design Rule Checking

Feedback

Also, the report_scan_path -chain all command does not report any scan chains:

dc_shell> report_scan_path -chain all
...
==
TEST MODE: Internal_scan
VIEW : Existing DFT
==

==
AS SPECIFIED BY USER
==

==
AS BUILT BY insert_dft
==

No scan path defined in this mode.

To resolve this, identify the scan input ports, scan output ports, test clocks, and
asynchronous sets and resets, then rerun dft_drc. For example,

set_scan_state scan_existing

set_dft_signal -view existing -type ScanEnable -port test_se
set_dft_signal -view existing -type ScanDataIn -port test_si
set_dft_signal -view existing -type ScanDataOut -port OUT2

set_scan_path C1 -view existing \
 -scan_data_in test_si -scan_data_out OUT2

After the test ports are defined, the dft_drc command generates a post-DFT DRC report,
and the scan chains are properly inferred.

Invalid Clock Logic
scan celluncontrollableinvalid clock logicFigure 258 shows a design with a combinationally gated clock.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

609

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 14: Previewing, Inserting, and Checking DFT Logic
Post-DFT Insertion Test Design Rule Checking

Feedback

Figure 258 Combinationally Gated Clock

OUT2CLK

IN3

OUT1

IN1

test_si
test_se

IN1

If you do not hold port IN3 at logic 1 during scan shift, pulses applied at clock port CLK
might not reach the clock pin of cell FF_B; therefore, the clock input of cell FF_B violates
the test clock requirements. DFT Compiler generates error messages such as these:

--
Begin Scan chain violations...

Error: Chain c1 blocked at DFF gate U1 after tracing 0 cells. (S1-1)

Scan chain violations completed...
--

Invoke the Design Vision Graphical Schematic Debugger, as shown in Figure 259.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

610

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 14: Previewing, Inserting, and Checking DFT Logic
Post-DFT Insertion Test Design Rule Checking

Feedback

Figure 259 The Design Vision Graphical Schematic Debugger

The debugger shows that the clock input of the cell FF_B contains an X. This indicates
that the clock was is completely controllable.

In Figure 260, if SEL = 1, the path from CLK1 is active, although the path from CLK2 is
not. In general, you use the set_dft_signal command to specify constant logic values
on ports commandsset_dft_signalprotocol inferenceset_dft_signal commandprotocol inferencedft_drcset_dft_signal, as explained later in this chapter.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

611

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 14: Previewing, Inserting, and Checking DFT Logic
Post-DFT Insertion Test Design Rule Checking

Feedback

Figure 260 A Clock Selector Network

In this example, if you specify set_dft_signal-view existing_dft -type Constant
-active_state 1 on the SEL port, you will see this violation:

Begin Pre-DFT violations...

Warning: Clock CLK2 cannot capture data with other clocks
off. (D8-1)

Pre-DFT violations completed...

A D8 violation indicates that a clock cannot capture data while others are off. Each clock
must be capable of capturing data. This does not prevent scan insertion, but you might
want to investigate the cause of the violation.

You can correct invalid clock-gating violations by inserting logic.test modecorrecting invalid clock gating violationscorrecting invalid clock gating violations (see test mode)

If a clock pin is driven by constant logic, the dft_drc command issues a warning:

Warning: Clock input CP of DFF FF_A couldn’t capture data.
(D17-1)

The waveforms of the inferred clocks are taken either from a previous invocation of the dft_drcclocks

inferred by set_dft_signalset_dft_signal command or from the scan style-dependent default timing values.

Incorrect Clock Timing Relationship
scan celluncontrollableincorrect clock timingclock timingeffect of incorrectA structurally valid scan chain becomes invalid due to the clock timing definitions in the
following cases:

• The cell ordering of the scan chain in a scan design with multiple clock domains has
later cells triggered by later clocks (data flow-through).

• The active levels of the master clock and the slave clock overlap in designs with two-
phase clocking.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

612

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 14: Previewing, Inserting, and Checking DFT Logic
Post-DFT Insertion Test Design Rule Checking

Feedback

Figure 261 shows a scan design with multiple clocks. Structurally this design meets the
scan design rules. However, the ability to shift data through the scan chain depends on the
relationship between the multiple clocks.

Figure 261 Existing Scan Design With Multiple Clocks

Unless CLK1 and CLK2 have identical timing, this design always results in an invalid scan
path due to the clock timing relationship. CLK2 triggers cell FF_B, and CLK1 triggers both
the cell driving it (FF_A) and the cell driven by it (FF_C).

If the clock timings are identical, design rule checker will report warning messages such as

Warning: Multiple clocks (CLK1 CLK2) were used to shift scan chain c1.
(S22-1)

If the clock timings are different, design rule checker will report warning messages such as

Warning: Dependent slave FF_B may not hold same value as master FF_A.
(S29-1)

Figure 262 shows an LSSD design. Structurally, this design meets the scan design rules.
However, the ability to shift data through the scan chain depends on the relationship
between the master clock (TMCLK) and the slave clock (SLCLK).

Synopsys® TestMAX™ DFT User Guide
T-2022.03

613

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 14: Previewing, Inserting, and Checking DFT Logic
Post-DFT Insertion Test Design Rule Checking

Feedback

Figure 262 Simple LSSD Design

DFT Compiler uses zero-delay timing, so you cannot depend on delays in the clock nets
to prevent overlapping master and slave clocks. Because DFT Compiler considers both
the master and slave clocks active at 55 ns after the start of the vector, this command
sequence defines an invalid timing relationship for the design in Figure 262:

dc_shell> set_dft_signal -view existing_dft \
 -type ScanClock -timing [list 45 55] \
 -port TMCLK

dc_shell> set_dft_signal -view existing_dft \
 -type ScanClock -timing [list 55 65] \
 -port SLCLK

Nonscan Sequential Cells
scan celluncontrollablenonscan cellFigure 263 shows a scan design with a nonscan sequential cell.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

614

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 14: Previewing, Inserting, and Checking DFT Logic
Post-DFT Insertion Test Design Rule Checking

Feedback

Figure 263 Scan Design With Nonscan Sequential Cell

DFT Compiler supports this configuration but generates uncontrollable-scan-cell
messages to indicate exclusion of the nonscan cell from the scan chain.

If the nonscan cell has a scan_element false attribute, DFT Compiler generates warning
messages such as this:

Warning: Nonscan DFF U1 disturbed during time 45 of shift
procedure. (S19-1)

Ability to Capture Data Into Scan Cells
scan cellcapturing data, requirementscapturing scan data, requirementsrequirementscapturing scan dataTo ensure that the parallel capture cycle results in data that is successfully captured into
the scan cells, DFT Compiler verifies that

• The capture data is valid.

Valid capture data depends only on the scanned-in state and primary input values.
Modification of capture data by other capture data or the capture clock invalidates the
capture data.

• The system clock pulse arrives at the system clock pin of each scan cell.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

615

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 14: Previewing, Inserting, and Checking DFT Logic
Post-DFT Insertion Test Design Rule Checking

Feedback

If a scan cell does not meet these conditions, DFT Compiler cannot capture data into the
scan cell. scan cellunreliable data capturecausesTypical causes of failed data capture include the following:

• A clock signal drives the data input to a scan cell.

• untestable functional pathdefinitionsuntestable functional pathA functional path in the design has sequential endpoints clocked by different clock
domains (untestable functional path).

• A bidirectional port drives the data input to a scan cell, and the data is released before
the capture clock.

• A master-slave cell with an inferred behavior for the B clock pulse causes the cell
capture state to be different from the cell scan-out state.

• A sequential element drives an asynchronous input to a scan cell.

• The test protocol does not include a capture clock.

DFT Compiler generates diagnostic messages indicating the source of the violation.

The following topics provide examples of the typical causes of failed data capture.

Clock Driving Data
scan cellunreliable data captureclock driving dataclockdriving dataIn the design shown in Figure 264, the clock signal CLK drives the data input to cell FF_B.
Pulsing the clock signal during capture can cause the data input to cell FF_B to change.

Figure 264 Design With Clock Driving Data

Synopsys® TestMAX™ DFT User Guide
T-2022.03

616

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 14: Previewing, Inserting, and Checking DFT Logic
Post-DFT Insertion Test Design Rule Checking

Feedback

DFT Compiler generates this warning message:

Warning: Clock CLK connects to LE clock/data inputs CP/D of DFF FF_B.
(C12-1)

Although the dft_drc output and the scan path report indicate that the affected cell is
scannable, the cell is actually scan controllable only.

fault coverageimpactclock driving dataclockinvalidfault coverage impactThis violation usually has a minor impact on fault coverage, so make it one of the last
violations you correct, if at all. correctingclock driving dataCorrecting this violation requires the addition of test-mode
logic, which also has a minor fault coverage impact. Fixing the violation means trading one
set of untested faults for another, possibly smaller, set of untested faults.

Use the Design Vision Graphical Schematic Debugger to locate and analyze the clock-
driving data problem.

Untestable Functional Path
scan cellunreliable data captureuntestable functional pathuntestable functional pathexampleFigure 265 shows a design with an untestable functional path. A functional path exists
between cells q1_reg and q2_reg. Using the default clock waveform of rising edge at 45
ns and falling edge at 55 ns, q2_reg receives the data captured in cell q1_reg.

Figure 265 Untestable Functional Path

Because the capture data in cell q2_reg depends on data other than the scanned-in state
and the primary input values, DFT Compiler generates warning messages such as these:

Warning: Clock clk can capture new data on TE input CP of DFF q2_reg.
(D14-1)
 Source of violation: input CP of DFF q1_reg.

Use the Design Vision Graphical Schematic Debugger to locate and analyze the
untestable functional path problem. Contact Synopsys support personnel for access to a
script that loads the debugger.

In most cases, you must change the design to correct the problem.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

617

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 14: Previewing, Inserting, and Checking DFT Logic
Post-DFT Insertion Test Design Rule Checking

Feedback

Uncontrollable Asynchronous Pins
The asynchronous pins shown in scan cellunreliable data captureuncontrollable asynchronous pinasynchronous pinuncontrollableunreliable data captureuncontrollable asynchronous pinunreliable data captureFigure 266 are uncontrollable, because they are
driven by sequential logic. If you hold the TM signal at logic 1 only during scan shift, the
asynchronous resets on cells FF_A and FF_B can change as a result of the capture clock.

Figure 266 Uncontrollable Asynchronous Pins

DFT Compiler will report the following:

Warning: Clock CDN cannot capture data with other clocks off. (D8-1)

Uncontrollable pins usually occur when the asynchronous signal is generated from the
state of other sequential devices, as shown in Figure 267. You can correct this violation by
inserting test-mode logic.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

618

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 14: Previewing, Inserting, and Checking DFT Logic
Post-DFT Insertion Test Design Rule Checking

Feedback

Figure 267 Circuit With Uncontrollable Asynchronous Clear

Post-DFT DRC Limitations
Post-DFT DRC is not supported when the following features are used:

• Integrating compressed scan cores

• Using implicit scan chains

• Performing reordering in the ASCII netlist flow

• Placing OCC controllers into bypass mode when you use the occ_lib_cell_nor2
design attribute to use NOR2 clock ORing logic

Synopsys® TestMAX™ DFT User Guide
T-2022.03

619

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

15
Exporting Data to Other Tools

This chapter describes how to export output data from DFT Compiler to other tools, such
as TestMAX ATPG.

This chapter includes the following topics:

• Exporting a Design to TestMAX ATPG

• Using The SCANDEF-Based Reordering Flow

• Verifying DFT Inserted Designs for Functionality

Exporting a Design to TestMAX ATPG
After you perform DFT insertion in DFT Compiler, you can write out the design netlist and
the STIL protocol files for the test modes of interest. TestMAX ATPG reads these files,
performs its own DRC check, and generates test patterns and provides fault coverage
statistics for the generated pattern set.

TestMAX ATPG also provides graphical debugging capabilities for DRC violations.

To learn more about exporting your design to TestMAX ATPG, see the following topics:

• Introduction to STIL Protocol Files

• Exporting Your Design to TestMAX ATPG

• Adjusting WaveformTable Timing for Delay Test

• Reading Designs With Black-Box Test Models Into TestMAX ATPG

• STIL Protocol File Procedure and WaveformTable Examples

• Limitations

For more information about TestMAX ATPG, see TestMAX ATPG and TestMAX Diagnosis
Online Help.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

620

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 15: Exporting Data to Other Tools
Exporting a Design to TestMAX ATPG

Feedback

Introduction to STIL Protocol Files
The write_test_protocol command writes out a STIL protocol file (SPF) for a specified
test mode. For example,

dc_shell> write_test_protocol \
 -test_mode Internal_scan \
 -output Internal_scan.spf
A STIL protocol file contains the test protocol information needed by TestMAX ATPG to
understand a test mode, such as

• Scan clocks (including clock waveform and strobe timing information)

• Scan chains

• Scan compression structures

• A test setup macro that initializes the design for test

• Various other test procedures that describe how to perform load/unload, launch, and
capture operations

In SPF, macros and procedures describe how to drive the design’s primary inputs and
observe its primary outputs over one or more clock cycles to perform a particular task.
Each macro or procedure references a named WaveformTable construct that defines what
signal timing to use. Table 50 describes the macros and procedures that DFT Compiler
creates in the SPF.

Table 50 SPF Macros and Procedures Created by DFT Compiler

Macro or Procedure
Name

Referenced WaveformTable Description

test_setup (macro) _default_WFT_ Initializes the design for the specified test mode

load_unload
(procedure)

_default_WFT_ Scans new data into the scan chains while
simultaneously scanning the current captured
data out of the scan chains

multiclock_capture
(procedure)

_multiclock_capture_WFT_ Used for test operations that do not require a
high-speed external clock, such as stuck-at
capture and delay test launch and capture using
an OCC clock

allclock_launch
(procedure)

_allclock_launch_WFT_ Performs launch for delay test when using
external clocks

allclock_capture
(procedure)

_allclock_capture_WFT_ Performs capture for delay test when using
external clocks

Synopsys® TestMAX™ DFT User Guide
T-2022.03

621

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 15: Exporting Data to Other Tools
Exporting a Design to TestMAX ATPG

Feedback

Table 50 SPF Macros and Procedures Created by DFT Compiler (Continued)

Macro or Procedure
Name

Referenced WaveformTable Description

allclock_launch_
capture (procedure)

_allclock_launch_
capture_WFT_

For delay test in full-sequential ATPG only,
performs launch and capture in the same test
clock period when using external clocks

Note:
The three “allclock” procedures are used for delay test, a term that includes
the path delay, transition delay, and dynamic bridging fault models. Their
WaveformTable timing must be manually modified before use; see Adjusting
WaveformTable Timing for Delay Test on page 624.

See STIL Protocol File Procedure and WaveformTable Examples on page 625 for an
example of how a procedure references a WaveformTable.

Procedures use the event ordering used by TestMAX ATPG: force PI, measure PO, pulse
clock. For a preclock measure protocol, all three events happen within a single test clock
cycle. For an end-of-cycle measure protocol, each of the three events happens in its own
test clock cycle. For most designs, a preclock measure protocol should be used.

For launch and capture operations, the procedures do not explicitly force the clocks to
pulse; instead, the clocks are left unconstrained so that TestMAX ATPG can choose which
clocks to pulse in each test pattern.

The SPF reflects any constant signals defined on primary inputs using the
set_dft_signal -type Constant command. However, it does not reflect assumed
signal values applied with the set_test_assume command. These assumptions exist only
within DFT Compiler in cases where the final test_setup initialization procedure is not yet
available; you must provide a test protocol to TestMAX ATPG with an updated test_setup
procedure that matches these assumptions.

For more information about STIL protocol files, see “STIL Protocol Files” topic in TestMAX
ATPG and TestMAX Diagnosis Online Help.

See Also

• Setting Test Timing Variables on page 573 for more information about configuring
preclock measure and end-of-cycle measure test protocols in DFT Compiler

Synopsys® TestMAX™ DFT User Guide
T-2022.03

622

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 15: Exporting Data to Other Tools
Exporting a Design to TestMAX ATPG

Feedback

Exporting Your Design to TestMAX ATPG
To export your design to TestMAX ATPG, do the following:

1. Before starting any work with DFT Compiler, including scan insertion, set the test
timing variables to the values specified by your ASIC vendor. If your ASIC vendor does
not have specific requirements, the following defaults achieve the best results from
TestMAX ATPG:

dc_shell> set_app_var test_default_delay 0
dc_shell> set_app_var test_default_bidir_delay 0
dc_shell> set_app_var test_default_strobe 40
dc_shell> set_app_var test_default_period 100
These are the default settings; you do not need to add them to your script.

2. Guide netlist formatting by setting the environment variables that affect how designs
are written out.

Note:
Set the environment variables before you write out the netlist or STIL
protocol file.

For example, if you want vectored ports in your Verilog design to be bit-blasted, set the
verilogout_single_bit variable to true. For more information about environment
variables that affect how designs are written out, see the HDL Compiler for Verilog
User Guide or the HDL Compiler for VHDL User Guide.

3. Prior to DFT insertion, check for design rule violations by running pre-DFT DRC:

dc_shell> dft_drc
Any nonscan sequential cell or capture violation has the potential to lower fault
coverage. Fix any design rule violations, then repeat the dft_drc command until no
design rule violations are found.

For more information, see Chapter 13, Pre-DFT Test Design Rule Checking.”

4. Perform DFT preview and insertion:

dc_shell> preview_dft
dc_shell> insert_dft

5. After DFT insertion, check for design rule violations by running post-DFT DRC:

dc_shell> dft_drc
Verify that all scan chains are free from violations. TestMAX ATPG cannot use scan
chains with violations.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

623

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 15: Exporting Data to Other Tools
Exporting a Design to TestMAX ATPG

Feedback

For more information, see Post-DFT Insertion Test Design Rule Checking on
page 604.”

Note:
Some features and flows do not support post-DFT DRC, as noted in Post-
DFT DRC Limitations on page 619. In such cases, use DRC in the TestMAX
ATPG tool to validate the DFT-inserted design.

6. Write out the design netlist in Verilog format. For example,

dc_shell> change_names -hierarchy -rules verilog
dc_shell> write -format verilog -hierarchy -output my_design.v

7. Write out a test protocol file for each test mode of interest. For example,

dc_shell> write_test_protocol \
 -test_mode Internal_scan \
 -output Internal_scan.spf
dc_shell> write_test_protocol \
 -test_mode ScanCompression_mode \
 -output ScanCompression_mode.spf
All of the information that TestMAX ATPG requires to create ATPG test patterns, such
as scan pins and constrained signals, is included in the STIL protocol file.

Adjusting WaveformTable Timing for Delay Test
Delay test is a type of ATPG test that targets timing-sensitive faults. It includes the path
delay, transition delay, and dynamic bridging fault models.

The SPF created by the write_test_protocol command contains three “allclock”
procedures, which are used for delay test. The WaveformTables for these procedures
contain a copy of the _default_WFT_ WaveformTable timing by default. To create delay
test patterns, you must manually modify the external clocks to constrain the timing as
follows:

• _allclock_launch_WFT_ (referenced by allclock_launch procedure)

This WaveformTable describes the delay test launch clock timing for external clocks.

To constrain the timing, modify the WaveformTable timing to move the external clock
edges toward the end of the test period (toward the allclock_capture cycle).

• _allclock_capture_WFT_ (referenced by allclock_capture procedure)

This WaveformTable describes the delay test capture clock timing for external clocks.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

624

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 15: Exporting Data to Other Tools
Exporting a Design to TestMAX ATPG

Feedback

To constrain the timing, modify the WaveformTable timing to move the external clock
edges toward the beginning of the test period (toward the allclock_launch cycle),
keeping the strobe before the first clock edge.

• _allclock_launch_capture_WFT_ (referenced by allclock_launch_capture procedure)

For delay test in full-sequential ATPG only, this WaveformTable describes the delay
test timing for external clocks that perform launch and capture in the same test clock
period.

To constrain the timing, modify the WaveformTable timing to tighten the pulse width.

Each two-clock transition fault test consists of a launch cycle using
_allclock_launch_WFT_ timing, followed by a capture cycle using _allclock_capture_WFT_
timing. The active clock edges of these two cycles should be close to each other. Make
sure that the clock leading-edge comes after the all_outputs strobe time, and adjust the
time for all values (L, H, T and X) in _allclock_capture_WFT_ if necessary.

Do not modify any PLL reference clocks, or the PLLs might lose phase lock.

For more information about delay test fault models and how to modify the WaveformTable
timing when using them, see TestMAX ATPG and TestMAX Diagnosis Online Help.

Reading Designs With Black-Box Test Models Into TestMAX ATPG
If you export a design that contains black-box cores with test models, the output netlist
includes empty submodules for the cores. However, to test the logic inside these cores,
they must have an actual netlist representation in automatic test pattern generation
(ATPG).

By default, if you read in two modules with the same name into the TestMAX ATPG tool,
the last one takes precedence. If you have a top-level netlist with empty submodules, read
it into the TestMAX ATPG tool first, and then read in the netlists for the submodules. For
example,

BUILD> read_netlist top.v
BUILD> read_netlist module_1.v module_2.v ... module_n.v
BUILD> run_build_model top

STIL Protocol File Procedure and WaveformTable Examples
Example 84 shows a multiclock_capture procedure example. The W construct references
a WaveformTable for timing.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

625

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 15: Exporting Data to Other Tools
Exporting a Design to TestMAX ATPG

Feedback

Example 84 multiclock_capture Procedure Example
Procedures {
 "multiclock_capture" {
 W "_multiclock_capture_WFT_";
 C {
 "all_inputs" = 00 \r91 N 111 \r14 0 \r33 N 1 \r32 N;
 "all_outputs" = \r165 X;
 "all_bidirectionals" = ZZZ;
 }
 F {
 "i_scan_block_sel[0]" = 1;
 "i_scan_block_sel[1]" = 1;
 "i_scan_compress_mode" = 0;
 "i_scan_testmode" = 1;
 }
 V {
 "_po" = \r168 #;
 "_pi" = \r179 #;
 }
 }
}

Example 85 shows a _multiclock_capture_WFT_ WaveformTable example that provides
the timing for the previous multiclock_capture procedure. The formatting has been
adjusted for clarity.

Example 85 _multiclock_capture_WFT_ WaveformTable Example
WaveformTable "_multiclock_capture_WFT_" {
 Period '100ns';
 Waveforms {
 "all_inputs" {
 0 { '0ns' D; } }
 "all_inputs" {
 1 { '0ns' U; } }
 "all_inputs" {
 Z { '0ns' Z; } }
 "all_inputs" {
 N { '0ns' N; } }

 "all_outputs" {
 X { '0ns' X;
 '40ns' X; } }
 "all_outputs" {
 H { '0ns' X;
 '40ns' H; } }
 "all_outputs" {
 T { '0ns' X;
 '40ns' T; } }
 "all_outputs" {
 L { '0ns' X;
 '40ns' L; } }

Synopsys® TestMAX™ DFT User Guide
T-2022.03

626

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 15: Exporting Data to Other Tools
Using The SCANDEF-Based Reordering Flow

Feedback

 "CLK1" {
 P { '0ns' D;
 '45ns' U;
 '55ns' D; } }

 "CLK2" {
 P { '0ns' D;
 '45ns' U;
 '55ns' D; } }
 }
}

Limitations
Note the following limitation:

• TestMAX ATPG does not accept designs in which the original source was VHDL and
two-dimensional arrays are used in top-level buses in the final netlist.

Using The SCANDEF-Based Reordering Flow
DFT Compiler can generate SCANDEF information that describes how scan cells in the
design can be reordered and repartitioned. You can use this SCANDEF information in
the IC Compiler tool to optimize scan chains and to fix timing violations using physical
information. You can also use this information in other place-and-route tools.

This topic covers the following:

• Introduction to SCANDEF

• SCANDEF Constructs

• Generating SCANDEF Information

• Generating SCANDEF Information in Hierarchical DFT Flows

• SCANDEF Examples

• Support for Other DFT Features

• Limitations of SCANDEF Generation

Introduction to SCANDEF
Scan-inserted designs require additional routing compared to nonscan designs. To meet
die size and timing requirements, you should reduce the routing overhead as much as
possible. One way to do this is to optimize scan chains based on physical information.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

627

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 15: Exporting Data to Other Tools
Using The SCANDEF-Based Reordering Flow

Feedback

There are two types of scan optimization operations:

• Scan reordering changes the scan chain position of two (or more) scan cells within the
same scan chain. Figure 268 shows a scan reordering example.

Figure 268 Scan Reordering of Two Scan Cells

• Scan repartitioning swaps two (or more) scan cells between different scan chains, such
that the original chain lengths are preserved. Figure 269 shows a scan repartitioning
example.

Figure 269 Scan Repartitioning of Two Scan Cells

During scan reordering and repartitioning, the layout tool must honor DFT constraints such
as clock mixing, DFT partitions, multivoltage regions, and multiple test modes. However,
communicating this information directly to the layout tool would be complex and error-
prone.

Instead, SCANDEF communicates what reordering and repartitioning operations
are possible given the DFT constraints. As a result, the layout tool does not need to
understand DFT constraints; it simply optimizes as allowed by the SCANDEF.

SCANDEF Constructs
A SCANDEF file is a DEF file that uses a set of scan-specific constructs to describe scan
chain information. A stub chain definition describes a portion of a scan chain that can
be reordered within itself. A stub chain consists of a START point, a STOP point, and
one or more scan elements between them. Example 86 shows the first three stub chain
definitions in a SCANDEF file.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

628

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 15: Exporting Data to Other Tools
Using The SCANDEF-Based Reordering Flow

Feedback

Example 86 SCANDEF Example
VERSION 5.5 ;
NAMESCASESENSITIVE ON ;
DIVIDERCHAR "/" ;
BUSBITCHARS "[]" ;
DESIGN top ;

SCANCHAINS 8 ;

- 1
+ START U131 Y
+ FLOATING ZN_reg[0] (IN SI) (OUT Q)
 ZN_reg[1] (IN SI) (OUT Q)
 ZN_reg[2] (IN SI) (OUT Q)
 ZN_reg[3] (IN SI) (OUT Q)
 ZN_reg[4] (IN SI) (OUT Q)
+ PARTITION CLK_45_45
+ STOP ZN_reg[4] SI ;

- 2
+ START U132 Y
+ FLOATING ZN_reg[5] (IN SI) (OUT Q)
+ ORDERED SR_reg[3] (IN SI) (OUT Q)
 SR_reg[2] (IN D) (OUT Q)
 SR_reg[1] (IN D) (OUT Q)
 SR_reg[0] (IN D) (OUT Q)
+ PARTITION CLK_45_45
+ STOP ZN_reg[4] SI ;

- 3
+ START test_si2
+ FLOATING IP_inst (IN test_si1) (OUT test_so1) (BITS 5)
 IPglue_logic_cell1 (IN TI) (OUT SO)
 IPglue_logic_cell2 (IN TI) (OUT SO)
+ PARTITION IPCLK_45_45
+ STOP test_so2 ;

...

Note the following constructs:

• The START and STOP points specify the stub chain boundaries. They can be a variety
of scan chain constructs such as scan I/O ports, codec logic gates, lockup latches,
reconfiguration MUXs, or buffer/inverter pins. Therefore, stub chains are not usually
identical to scan chains, and the number of stub chains defined in the SCANDEF
information does not necessarily match the number of scan chains in the design.

• A FLOATING section is an unordered list of cells that can be freely reordered by the
layout tool. Because the cells are described as an unordered list, the scan cell order in
the SCANDEF file has no requirement to match the order in the design.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

629

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 15: Exporting Data to Other Tools
Using The SCANDEF-Based Reordering Flow

Feedback

• An ORDERED section describes a group of scan cells that cannot be reordered within
that group, but can be reordered as a group within a stub chain. Common causes of
ORDERED sections are shift registers identified by the compile_ultra command,
scan segments defined with the set_scan_path -ordered_elements command, and
buffers or inverters between scan cells.

• The BITS attribute indicates a scan element that represent multiple scan bits. This
allows complex scan cells, such as DFT-inserted cores, to be represented in abstract
form. By default, each individual scan element represents a single scan bit.

• A PARTITION name indicates that the stub chain elements can be repartitioned
with those of another stub chain with the same partition name. The tool constructs
partition names so that identical names indicate stub chains that are compatible for
repartitioning. Partition names are made unique or omitted for stub chains whose
elements cannot be repartitioned.

A stub chain can include zero or more ORDERED sections. However, it can only contain
zero or one FLOATING section, as having multiple FLOATING sections within the same
stub chain is meaningless.

A SCANDEF file does not necessarily contain all scan cells in the design. It contains
information only about scan cells in the design that can be reordered or repartitioned.
Scan cells or scan segments that cannot be optimized are omitted from the file.

The layout tool can reorder and/or repartition many scan cells at a time. For example,
several compatible scan chains in a geographic region can be completely reconstructed, if
the SCANDEF information is honored and the original scan chain lengths are preserved.

Generating SCANDEF Information
Generation of SCANDEF information is covered in the following topics:

• Writing Out the SCANDEF Information

• Script Example

Writing Out the SCANDEF Information
To generate SCANDEF information, perform the following steps after reading in your
design and applying the DFT configuration:

1. Execute the insert_dft command.

If you are using Design Compiler topographical mode, perform a post-DFT incremental
compile with the compile_ultra -incremental -scan command.

2. Execute the change_names command with the necessary name rules.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

630

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 15: Exporting Data to Other Tools
Using The SCANDEF-Based Reordering Flow

Feedback

3. Generate the SCANDEF information with the write_scan_def command:

dc_shell> write_scan_def -output filename.scandef
This command writes out the SCANDEF information to the specified file name. It also
annotates the current design in memory with the SCANDEF information.

4. Write out the design database files, depending on your layout tool:

• For the IC Compiler tool, use the write -format ddc command. This .ddc file
contains the SCANDEF information. The IC Compiler tool does not need the
SCANDEF file from the previous step, but you can use the file for reference.

• For other layout tools, use the write -format verilog command. The layout tool
also needs the SCANDEF file from the previous step.

Note:
You must execute the write_scan_def command to annotate the scan
ordering information onto the current design, even when using the .ddc flow.

You can use the resulting SCANDEF information in your place-and-route tool to optimize
scan chain routing order. When you read SCANDEF information into the IC Compiler tool,
it checks the integrity of the information against the design netlist before using it.

Script Example
Example 87 shows how to generate the SCANDEF information for a typical design.
The script generates a .ddc file with SCANDEF information, and also writes an ASCII
SCANDEF file.

Example 87 Example SCANDEF Generation Script
read_file -format ddc top.ddc
current_design top
set_scan_configuration -style multiplexed_flip_flop
set_dft_signal -view existing_dft -type ScanClock \
 -port clock -timing [list 45 55]
create_test_protocol
dft_drc
preview_dft
insert_dft
change_names ...
write_scan_def -output my_def.scandef
write_test_protocol -output test_mode.spf
write -format verilog -hierarchy -output top.v
write -format ddc -hierarchy -output top.ddc

Synopsys® TestMAX™ DFT User Guide
T-2022.03

631

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 15: Exporting Data to Other Tools
Using The SCANDEF-Based Reordering Flow

Feedback

Generating SCANDEF Information in Hierarchical DFT Flows
In hierarchical DFT flows, you perform DFT insertion in one or more cores, then you
integrate those cores at the top level. When you write out SCANDEF information at the top
level, you can control whether scan optimization is allowed within each core, as described
in the following topics:

• Preventing Scan Optimization in a Core

• Allowing Scan Optimization in a Core

• Using SCANDEF Information in a Manual Core Integration Flow

Preventing Scan Optimization in a Core
By default, when you generate SCANDEF information for a design with cores, the tool
represents scan chains inside the core with a BITS construct that does not include any
individual core-level scan elements. Therefore, scan optimization cannot optimize any
individual scan elements within the core, although it can reorder and repartition the core’s
completed scan chains as scan segments.

Example 88 shows the SCANDEF information for a top-level design that integrates a core
containing two scan chains.

Example 88 SCANDEF Information for Scan Optimization Prevented in a Core
- 1
+ START PIN test_si1
+ FLOATING Z_reg[0] (IN TI) (OUT Q)
 Z_reg[1] (IN TI) (OUT Q)
 CORE (IN test_si1) (OUT test_so1) (BITS 3)
+ PARTITION CLK1_45_45
+ STOP PIN test_so1 ;

- 2
+ START PIN test_si2
+ FLOATING Z_reg[2] (IN TI) (OUT Q)
 Z_reg[3] (IN TI) (OUT Q)
 CORE (IN test_si2) (OUT test_so2) (BITS 3)
+ PARTITION CLK1_45_45
+ STOP PIN test_so2 ;

Figure 270 shows a graphical representation of the SCANDEF information from the
previous example.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

632

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 15: Exporting Data to Other Tools
Using The SCANDEF-Based Reordering Flow

Feedback

Figure 270 Schematic Example for Scan Optimization Prevented in a Core

test_si1 test_so1

CORE

test_si2 test_so2

(BITS 3)

(BITS 3)

TOP

Use this default behavior for cores that are

• IC Compiler block abstractions

Such cores are physically completed cores in layout; no further scan optimization can be
performed on them in layout.

Allowing Scan Optimization in a Core
In some cases, you might want to allow scan optimization for a DFT-inserted core. For
example, the core might be included as a logical (but not physical) level of hierarchy in the
top-level design so that the core-level gates can be freely optimized along with the top-
level gates.

To allow scan optimization for one or more core instances, specify them with the
-expand_elements option when generating the SCANDEF information for the top-level
design. For example,

dc_shell> write_scan_def -expand_elements {CORE} -output top.scandef
The tool incorporates the core-level SCANDEF information into the generated top-level
SCANDEF information. Correspondingly, the cores themselves must contain SCANDEF
information, which is accomplished in the core-level run by using the write_scan_def
command before writing out the core design in .ddc or .ctlddc format.

Example 89 shows the SCANDEF information for a top-level design integrating a core with
two scan chains represented in expanded form. Note that the individual scan elements
inside the core can be reordered and repartitioned with elements outside the core.

Example 89 SCANDEF Information for Scan Optimization Allowed in a Core
- 1
+ START PIN test_si1
+ FLOATING Z_reg[0] (IN TI) (OUT Q)
 Z_reg[1] (IN TI) (OUT Q)
 CORE/Z_reg[0] (IN TI) (OUT Q)
 CORE/Z_reg[1] (IN TI) (OUT Q)

Synopsys® TestMAX™ DFT User Guide
T-2022.03

633

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 15: Exporting Data to Other Tools
Using The SCANDEF-Based Reordering Flow

Feedback

 CORE/Z_reg[2] (IN TI) (OUT Q)
+ PARTITION CLK1_45_45
+ STOP PIN test_so1 ;

- 2
+ START PIN test_si2
+ FLOATING Z_reg[2] (IN TI) (OUT Q)
 Z_reg[3] (IN TI) (OUT Q)
 CORE/Z_reg[3] (IN TI) (OUT Q)
 CORE/Z_reg[4] (IN TI) (OUT Q)
 CORE/Z_reg[5] (IN TI) (OUT Q)
+ PARTITION CLK1_45_45
+ STOP PIN test_so2 ;

Figure 271 shows a graphical representation of the SCANDEF information from the
previous example.

Figure 271 Schematic Example for Scan Optimization Allowed in a Core

test_si1 test_so1

CORE

test_si2 test_so2

TOP

If a core does not contain SCANDEF information, the write_scan_def command issues a
warning:

Warning: SCANDEF information for design instance %s is not available.
NETLIST information is available. SCANDEF for design instance %s will be
expanded using netlist information.

In this case, DFT Compiler expands the indicated core’s scan chains by exploring the core
netlist structure. Basic reordering requirements such as clock mixing are inferred from the
top level, but any user-applied core-level scan constraints (such as scan group or scan
path definitions) are lost.

Use the -expand_elements option for cores that are

• Design Compiler block abstractions

• Design Compiler full-netlist designs

Such cores are not yet physically completed cores in layout, and further scan optimization
can be performed on them in layout.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

634

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 15: Exporting Data to Other Tools
Using The SCANDEF-Based Reordering Flow

Feedback

See Also

• Writing Out the SCANDEF Information on page 630 for more information about
writing out a core design that contains SCANDEF information

Using SCANDEF Information in a Manual Core Integration Flow
In a manual core integration flow, the scan pins of DFT-inserted cores are preconnected in
the top-level design and no DFT insertion is performed by DFT Compiler. As a result, the
tool does not create any SCANDEF information for the top-level design.

However, you can run scripts that post-process and merge core-level SCANDEF files so
that they can be applied to the top-level design in the layout tool. SolvNet article 017172,
“Converting Block-Level SCANDEF to Upper-Level SCANDEF” provides a Perl script that
you run in a Linux shell.

SCANDEF Examples
This topic shows how various DFT scenarios are represented in SCANDEF. The examples
use a design with six scan cells (FF1 through FF6) and scan-in and scan-out ports for two
scan chains (SI1, SI2, SO1, and SO2).

Note:
Depending on your DFT configuration, the tool might use head or tail scan-cell
pins instead of scan ports as START and STOP pins, which prevents those
scan cells from being optimized. For more information, see SolvNet article
022408, “Determining START and STOP Points in a SCANDEF File.”

Default (Two Scan Chains)
set_scan_configuration -chain_count 2

The SCANDEF information is as follows:

- 1
+ START PIN SI1
+ FLOATING FF1 (IN TI) (OUT QN)
 FF2 (IN TI) (OUT QN)
 FF3 (IN TI) (OUT Q)
+ PARTITION CLK_45_45
+ STOP PIN SO1 ;

- 2
+ START PIN SI2
+ FLOATING FF4 (IN TI) (OUT QN)
 FF5 (IN TI) (OUT QN)
 FF6 (IN TI) (OUT Q)

Synopsys® TestMAX™ DFT User Guide
T-2022.03

635

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnet.synopsys.com/retrieve/017172.html
https://solvnet.synopsys.com/retrieve/017172.html
https://solvnet.synopsys.com/retrieve/022408.html
https://solvnet.synopsys.com/retrieve/022408.html

Chapter 15: Exporting Data to Other Tools
Using The SCANDEF-Based Reordering Flow

Feedback

+ PARTITION CLK_45_45
+ STOP PIN SO2 ;
Both stub chains represent complete scan chains (from scan-in to scan-out). The partition
names are identical, which allows scan cells to be swapped (repartitioned) between stub
chains.

Mixed Clock Edges
In this specific example, FF1, FF2, and FF3 are clocked by the trailing clock edge.

set_scan_configuration -chain_count 1 -clock_mixing mix_clocks

The SCANDEF information is as follows:

- 1_SG1
+ START PIN SI1
+ FLOATING FF1 (IN TI) (OUT QN)
 FF2 (IN TI) (OUT QN)
+ PARTITION CLK_55_55
+ STOP FF3 TI ;

- 1_SG2
+ START FF3 QN
+ FLOATING FF4 (IN TI) (OUT QN)
 FF5 (IN TI) (OUT QN)
 FF6 (IN TI) (OUT Q)
+ PARTITION CLK_45_45
+ STOP PIN SO1 ;

A single chain is created because clock mixing is enabled. However, two stub chains are
required because scan cells of different clock edges cannot be swapped with each other.
The partition name includes the clock edge to implement this restriction. FF3 is fixed as
the output of the first stub chain; it cannot be reordered or repartitioned.

set_scan_path With No Elements
set_scan_configuration -chain_count 2
set_scan_path MYCHAIN1 -exact_length 2

The SCANDEF information is as follows:

- 2
+ START PIN SI2
+ FLOATING FF3 (IN TI) (OUT QN)
 FF4 (IN TI) (OUT QN)
 FF5 (IN TI) (OUT QN)
 FF6 (IN TI) (OUT Q)
+ PARTITION CLK_45_45
+ STOP PIN SO2 ;

- MYCHAIN1

Synopsys® TestMAX™ DFT User Guide
T-2022.03

636

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 15: Exporting Data to Other Tools
Using The SCANDEF-Based Reordering Flow

Feedback

+ START PIN SI1
+ FLOATING FF1 (IN TI) (OUT QN)
 FF2 (IN TI) (OUT Q)
+ PARTITION CLK_45_45
+ STOP PIN SO1 ;

The stub chain name reflects the scan chain name and the chain lengths reflect the exact
length requirement. Otherwise, there are no restrictions; the cells can be reordered and
repartitioned.

set_scan_path With Unordered Elements
set_scan_configuration -chain_count 2
set_scan_path MYCHAIN1 -include_elements {FF2 FF1}

The SCANDEF information is as follows:

- 2
+ START PIN SI2
+ FLOATING FF4 (IN TI) (OUT QN)
 FF5 (IN TI) (OUT QN)
 FF6 (IN TI) (OUT Q)
+ PARTITION CLK_45_45
+ STOP PIN SO2 ;

- MYCHAIN1
+ START PIN SI1
+ FLOATING FF1 (IN TI) (OUT QN)
 FF2 (IN TI) (OUT QN)
 FF3 (IN TI) (OUT Q)
+ PARTITION CLK_45_45_SNPS_UNIQUE_PARTITION_NAME_00001
+ STOP PIN SO1 ;

FF1 and FF2 can be reordered within their stub chain, so they are included in a
FLOATING section. However, the set_scan_path specification requires that they remain
in their scan chain, so a unique partition name is assigned. (This restriction also applies to
FF3, which was added for scan chain balancing.)

set_scan_path With Ordered Elements
set_scan_configuration -chain_count 2
set_scan_path MYCHAIN1 -ordered_elements {FF2 FF1}

The SCANDEF information is as follows:

- 2
+ START PIN SI2
+ FLOATING FF4 (IN TI) (OUT QN)
 FF5 (IN TI) (OUT QN)
 FF6 (IN TI) (OUT Q)
+ PARTITION CLK_45_45
+ STOP PIN SO2 ;

Synopsys® TestMAX™ DFT User Guide
T-2022.03

637

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 15: Exporting Data to Other Tools
Using The SCANDEF-Based Reordering Flow

Feedback

- MYCHAIN1
+ START PIN SI1
+ FLOATING FF3 (IN TI) (OUT QN)
+ ORDERED FF2 (IN TI) (OUT QN)
 FF1 (IN TI) (OUT Q)
+ PARTITION CLK_45_45_SNPS_UNIQUE_PARTITION_NAME_00001
+ STOP PIN SO1 ;

The ORDERED section requires that FF2 and FF1 can only move within their stub chain
as a unit, and the unique partition name ensures that they remain in their scan chain.

Scan Elements That Cannot Be Reordered or Repartitioned
set_scan_configuration -chain_count 2
set_scan_path MYCHAIN1 -ordered_elements {FF2 FF1} -complete true

The SCANDEF information is as follows:

- 2
+ START PIN SI2
+ FLOATING FF3 (IN TI) (OUT QN)
 FF4 (IN TI) (OUT QN)
 FF5 (IN TI) (OUT QN)
 FF6 (IN TI) (OUT Q)
+ PARTITION CLK_45_45
+ STOP PIN SO2 ;

FF2 and FF1—and their scan chain—do not appear in the SCANDEF information at all.
The tool detects that they cannot be reordered within their stub chain or repartitioned with
other chains, so it omits them to create more efficient SCANDEF information.

Unrouted Scan Groups
set_scan_configuration -chain_count 1
set_scan_group MYGROUP1 -include_elements {FF2 FF1} -serial_routed false

The SCANDEF information is as follows:

- 1_SG1
+ START PIN SI1
+ FLOATING FF3 (IN TI) (OUT QN)
 FF4 (IN TI) (OUT QN)
 FF5 (IN TI) (OUT QN)
+ PARTITION CLK_45_45
+ STOP FF6 TI ;

- 1_SG2
+ START FF6 Q
+ FLOATING FF1 (IN TI) (OUT QN)
 FF2 (IN TI) (OUT Q)

Synopsys® TestMAX™ DFT User Guide
T-2022.03

638

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 15: Exporting Data to Other Tools
Using The SCANDEF-Based Reordering Flow

Feedback

+ PARTITION CLK_45_45_MYGROUP1
+ STOP PIN SO1 ;

FF2 and FF1 are an unordered (unrouted) group, so they can be reordered within their
group. However, the unique partition name ensures they cannot be repartitioned out of
their stub chain.

Serial-Routed Scan Groups
set_scan_configuration -chain_count 1
set_scan_group MYGROUP1 -include_elements {FF2 FF1} -serial_routed true

The SCANDEF information is as follows:

- 1_SG1
+ START PIN SI1
+ FLOATING FF3 (IN TI) (OUT QN)
 FF4 (IN TI) (OUT QN)
 FF5 (IN TI) (OUT QN)
+ PARTITION CLK_45_45
+ STOP FF6 TI ;

FF2 and FF1 do not appear in the SCANDEF information at all. The tool detects that they
cannot be reordered within their group or repartitioned with other chains, so it omits them
to create more efficient SCANDEF information.

CTL-Modeled Core
In this specific example, a CTL-modeled core with a single scan chain is included.

set_scan_configuration -chain_count 1

The SCANDEF information is as follows:

- SUB_GP1
+ START PIN SI1
+ FLOATING FF1 (IN TI) (OUT QN)
 FF2 (IN TI) (OUT QN)
 FF3 (IN TI) (OUT QN)
 FF4 (IN TI) (OUT QN)
 FF5 (IN TI) (OUT QN)
 FF6 (IN TI) (OUT QN)
 block1 (IN test_si1) (OUT test_so1) (BITS 20)
+ PARTITION CLK_45_45
+ STOP PIN SO1 ;

By default, the CTL model contents are abstracted by the BITS parameter, which indicates
the length of that scan segment. However, the contents can be expanded if needed—see
Generating SCANDEF Information in Hierarchical DFT Flows on page 632.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

639

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 15: Exporting Data to Other Tools
Using The SCANDEF-Based Reordering Flow

Feedback

Inferred Shift Register
In this specific example, FF5 and FF6 are inferred as a shift register.

set_scan_configuration -chain_count 2

The SCANDEF information is as follows:

- 1
+ START PIN SI1
+ FLOATING FF1_reg (IN TI) (OUT QN)
+ ORDERED FF5_reg (IN TI) (OUT Q)
 FF6_reg (IN D) (OUT Q)
+ PARTITION CLK_45_45
+ STOP PIN SO1 ;

- 2
+ START PIN SI2
+ FLOATING FF2_reg (IN TI) (OUT QN)
 FF3_reg (IN TI) (OUT QN)
 FF4_reg (IN TI) (OUT Q)
+ PARTITION CLK_45_45
+ STOP PIN SO2 ;

The shift register elements are captured in an ORDERED section. It is contained in a
partition with a nonunique name, which allows it to be repartitioned into other compatible
stub chains.

PARTITION Name Conventions
In a SCANDEF file, a PARTITION name indicates that the stub chain elements can be
repartitioned with those of another stub chain with the same partition name. The tool
constructs partition names so that identical names indicate stub chains that are compatible
for repartitioning. Partition names are made unique or omitted for stub chains whose
elements cannot be repartitioned.

The partition naming convention for the different scenarios is as follows:

• MUX-D style without multivoltage

<clock_name>_<capture_time_of_first_state_of_first_segment_of_chain>_
<launch_time_of_last_state_of_last_segment_of_chain>

• MUX-D style with multivoltage

<clock_name>_<capture_time_of_first_state_of_first_segment_of_chain>_
<launch_time_of_last_state_of_last_segment_of_chain>_
<voltage_domain>_<power_domain>

Synopsys® TestMAX™ DFT User Guide
T-2022.03

640

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 15: Exporting Data to Other Tools
Using The SCANDEF-Based Reordering Flow

Feedback

• LSSD style when test_lssd_no_mix is FALSE

SNPS_LSSD_<clock_name>_<master_clock_name>_<slave_clock_name>_
<voltage_domain>_<power_domain>

• LSSD style when test_lssd_no_mix is TRUE

SNPS_LSSD_<clock_name>_<chain_system_clock_name>_<master_clock_name>_
<slave_clock_name>_<voltage_domain>_<power_domain>

• LSSD style with X-chains

LSSD_X_<clock_name>_<master_clock_name>_<slave_clock_name>_
<voltage_domain>_<power_domain>

• Scan-enabled LSSD style without multivoltage

<clock_name>_<capture_time_of_first_state_of_first_segment_of_chain>_
<launch_time_of_last_state_of_last_segment_of_chain>

• Scan-enabled LSSD style with multivoltage

<clock_name>_<capture_time_of_first_state_of_first_segment_of_chain>_
<launch_time_of_last_state_of_last_segment_of_chain>_
<voltage_domain>_<power_domain>

• Multiple test-mode SCANDEF generation (when mode-specific DFT specifications
exist)

<clock_name>_<capture_time_of_first_state_of_first_segment_of_chain>_
<launch_time_of_last_state_of_last_segment_of_chain>_
M1[_M2_...additional_modes]

For wrapper chains, WRPSI_, WRPSO_ and WRPS_ are the corresponding keywords
used to represent the different wrapper chains.

Support for Other DFT Features
The following DFT features are supported:

• Standard scan and compressed scan

• User-defined test modes

• Internal pins flow

• Memories with test models

• Multivoltage designs

• Hierarchical flows (with test models)

Synopsys® TestMAX™ DFT User Guide
T-2022.03

641

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 15: Exporting Data to Other Tools
Using The SCANDEF-Based Reordering Flow

Feedback

• On-chip clocking controller (OCC) flows

• Core wrapping

• Shift registers

Limitations of SCANDEF Generation
Note the following limitations of SCANDEF generation:

• Manual post-DFT modifications to the scan structure or scan element naming are not
supported.

Only incremental compiles and the change_names command update the stored
SCANDEF information. Manual post-DFT design modifications that affect the scan
architecture or scan element naming are not supported. Examples include:

◦ Hierarchy uniquification or ungrouping

◦ ECO modification to scan chains or logic that affects DFT operation

◦ Modifying IEEE 1801 Standard (UPF) power intent to insert isolation and/or level-
shifter cells after DFT insertion

• For stub chains that terminate at a reconfiguration MUX, the STOP pin is the scan-
in pin of the last scan cell instead of the input pin of the reconfiguration MUX. This
prevents the last scan cell in the stub chain from being reordered or repartitioned.

• set_scan_path specifications with the -include_elements or -ordered_elements
options use a unique partition name to keep those elements in the chain. Any
additional scan elements added to that chain for balancing cannot be repartitioned, but
they can be reordered.

• Boundary-scan chains are not supported.

• Scan extraction flows that have combinational logic between two adjacent scan flip-
flops are not supported.

• set_scan_group specifications might not be represented properly.

• Some set_scan_path specifications, when applied to a specific test mode other than
the first-defined test mode, are not represented properly.

For details, see SolvNet article 2314593, “SCANDEF Generation Limitations for
Multiple Test Modes.”

Synopsys® TestMAX™ DFT User Guide
T-2022.03

642

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnet.synopsys.com/retrieve/2314593.html
https://solvnet.synopsys.com/retrieve/2314593.html

Chapter 15: Exporting Data to Other Tools
Verifying DFT Inserted Designs for Functionality

Feedback

Verifying DFT Inserted Designs for Functionality
After DFT insertion, the resulting scan-inserted design is verified for functional equivalence
with respect to the nonscan design. This is done to ensure that DFT insertion did not
introduce any logic errors. Verification is accomplished by using the Synopsys Formality
tool.

The following topics describe the verification process:

• Verification Setup File Generation

• Test Information Passed to the Verification Setup File

• Script Example

• Formality Tool Limitations

Verification Setup File Generation
By default, Design Compiler synthesis automatically creates a verification setup file in
your working directory. The automated setup file has the extension .svf and is named
default.svf. This file tracks any design changes that are required for the verification
process and assists the Formality tool in compare-point matching and verification.

The automated setup file is stored in binary format.

Use the set_svf command to generate a Formality setup information file for efficient
compare-point matching in the Formality tool.

The syntax is as follows:

set_svf
 file_name
 [-append]
 [-off]

Argument Definitions

file_name
Specifies the file into which Formality setup information is recorded. You must
specify a file name unless the -off option is specified.

-append
Appends to the specified file. If another Formality setup verification file is already
open, then it will be closed before opening the specified file. If -append is not
used, then set_svf overwrites the named file, if it exists.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

643

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 15: Exporting Data to Other Tools
Verifying DFT Inserted Designs for Functionality

Feedback

-off
Stops recording Formality setup information to the currently open file. To resume
recording into the same file, you must reissue the set_svf command with the
-append option.

Test Information Passed to the Verification Setup File
When you run the insert_dft command, the following DFT specific information is
recorded in the verification setup file:

• Scan-enable signals are disabled.

• Test modes are disabled wherever they are used (for example, AutoFix or scan
compression).

• Constants are passed to the file.

• Core wrapper shift(wrp_shift) is disabled.

• The TCK, TMS, and TRST ports of boundary-scan designs are held at 0 and the TDO
port is not verified.

The setup information is reported in the assumptions summary report.

For more information about verifying design logic with Formality, see Formality User
Guide.

Script Example
Example 90 shows you how to use a verification setup file for functionality checking in the
Formality tool.

Example 90 Formality Script Example For Equivalence Checking
enable automatic setup to disable scan/test logic
set synopsys_auto_setup true

set the verification setup file location
set_svf ./my_svf_file

read libraries
foreach file $link_library {read_db $lib}

read reference design
create_container pre_dft
read_ddc ./outputs/des_unit.pre_dft.ddc
set_top des_unitset_reference_design pre_dft:/WORK/des_unit

read implementation design

Synopsys® TestMAX™ DFT User Guide
T-2022.03

644

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 15: Exporting Data to Other Tools
Verifying DFT Inserted Designs for Functionality

Feedback

create_container post_dft
read_ddc ./outputs/des_unit.post_dft.ddc
set_top des_unit
set_implementation_design post_dft:/WORK/des_unit

match compare points and verify
match
verify

Formality Tool Limitations
The following feature is not supported:

• Internal pins flow

Synopsys® TestMAX™ DFT User Guide
T-2022.03

645

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Part 3: DFTMAX Compression

Synopsys® TestMAX™ DFT User Guide
T-2022.03

646

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

16
Introduction to DFTMAX

DFTMAX compression provides synthesis-based scan data compression technology to
lower the cost of testing complex designs, particularly when fabricated with advanced
process technologies. These deep-submicron (DSM) designs can have subtle
manufacturing defects that are only detected by applying DSM tests, such as at-speed
and bridging tests, in addition to stuck-at tests. The extra patterns needed to achieve high
test quality for these designs can increase both the test time and the test data, resulting
in higher test costs. DFTMAX compression reduces these costs by delivering a significant
test data and test time reduction with very low silicon area overhead.

The following topics introduce you to DFTMAX compression:

• The DFTMAX Compression Architecture

• DFTMAX Compression Requirements

• Multicore Processing

• Limitations

The DFTMAX Compression Architecture
The DFTMAX compression architecture is described in the following topics:

• The DFTMAX Codec

• Decompressor Operation

• Compressor Operation

• The Congestion-Aware DFTMAX Codec

The DFTMAX Codec
DFTMAX compressed scan appears similar to standard scan at the chip-level interface,
but it contains combinational compression logic and uses many more scan chains of
shorter lengths within the chip core. As scan input values are shifted in, the decompressor
distributes them across numerous scan chains. The distribution method is accomplished
with a patented hardware scheme and a process that allows chip-level scan input values

Synopsys® TestMAX™ DFT User Guide
T-2022.03

647

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 16: Introduction to DFTMAX
The DFTMAX Compression Architecture

Feedback

to be placed into various scan chains. To maximize test coverage and minimize pattern
count, the decompressor adapts to the needs of automatic pattern generation to supply
the required values in the scan chain cells.

DFTMAX compression provides the following key benefits and features:

• A significant test time and test data reduction compared to standard scan

• Similar ease-of-use as standard scan

• Concurrent optimization of area, power, timing, physical constraints, and test
constraints through a synthesis-based implementation

• Pin-limited test optimizations

• Unknown logic value (X) handling

• Flexible scan channel configurations to support multisite testing and wafer-level burn-in

Figure 272 shows the DFTMAX compression architecture.

Figure 272 DFTMAX Compression Architecture

Compressor

Decompressor

Codec
(has very small
area overhead)

Compressed scan chains
(shorter length

reduces test time)

Compressed scan data in

Compressed scan data out

DFTMAX compression divides standard scan chains into a larger number of shorter
chains, called compressed scan chains, which reduces tester time. The decompressor
controls the flow of scan data into the scan chains. The compressor reduces the captured
data from the larger number of compressed scan chains so that it can be observed
through the scan-out ports. The combination of the decompressor and compressor
wrapped around the scan chains is called the codec, which is short for compressor-
decompressor.

The codec significantly reduces the amount of test data needed to comprehensively test
the chip. In turn, this lowers automatic test equipment (ATE) memory requirements and
allows additional deep submicron (DSM) test patterns.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

648

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 16: Introduction to DFTMAX
The DFTMAX Compression Architecture

Feedback

Decompressor Operation
Figure 273 shows a decompressor logic structure example. The decompressor outputs are
driven by different combinations of scan-in data pins, either directly or through MUXs. One
or more scan-in data pins, called load-mode pins, are dedicated to the MUX select signals.

Figure 273 Decompressor Logic Structure Example for 4-to-8 Decompressor

sel[0] din[2] din[1] din[0]

dout[7] dout[6] dout[5] dout[4] dout[3] dout[2] dout[1] dout[0]

Load-mode pins Regular scan-in data pins

Scan-in pins

This logic structure takes advantage of the fact that not every scan cell must be uniquely
controllable in every pattern. Typically, only a sparse set of scan cells are required to be
controlled in a pattern. In each shift clock cycle, ATPG can choose load-mode and scan
data values that steer these required values into the compressed scan chains.

Some designs might have complex logic that requires more scan cells to be controlled
in each pattern. As the decompressor input width increases, the number of load-mode
and scan-in data pins increases to provide additional controllability at the decompressor
outputs.

The decompressor output width is equal to the number of compressed scan chains. As the
compressed chain count increases, more data steering logic configurations are needed. If
the compressed chain count is increased too high, the data steering configurations must
repeat, which can reduce the ability of ATPG to steer data into the compressed chains.

Compressor Operation
Figure 274 shows a compressor logic structure example. The compressor outputs are
driven by different combinations of compressed scan chains, combined using XOR logic.
An incorrect data value (fault) from a compressed scan chain results in a specific signature
of incorrect values at the compressor outputs.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

649

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 16: Introduction to DFTMAX
DFTMAX Compression Requirements

Feedback

Figure 274 Compressor Logic Structure Example for 8-to-4 Compressor

dout[2] dout[1] dout[0]dout[3]

din[5] din[4] din[3]din[6] din[1] din[0]din[7] din[2]

The compressor input width is equal to the number of compressed scan chains. As the
compressed chain count increases, more XOR configurations are needed. If the chain
count is increased too high, the XOR configurations (and therefore the compressed chain
signatures) must repeat, which can impact the diagnosability of the design.

As the compressor output width increases, the number of fault signatures observed at
each output port decreases. This can improve the diagnosability of the design, especially
when multiple faults must be simultaneously diagnosed.

The Congestion-Aware DFTMAX Codec
If you are using Design Compiler Graphical (which is enabled by specifying the -spg
option of the compile_ultra command), the TestMAX DFT tool

• Builds congestion-aware decompressor and compressor structures to reduce
congestion

• Performs scan chain reordering and repartitioning in the incremental compile to reduce
scan chain wire length

See Also

• Performing Congestion Optimization on Compressed Scan Designs on page 697 for
more information about using DFTMAX compression in a Design Compiler Graphical
flow

DFTMAX Compression Requirements
You need to consider both design and pin requirements when using DFTMAX
compression. The following two topics describe these requirements.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

650

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 16: Introduction to DFTMAX
DFTMAX Compression Requirements

Feedback

Design Requirements
Designs that use DFTMAX compression are generally scan-replaced, that is, test-ready.
The supported DFTMAX flows include top-down and bottom-up methodologies. When
starting with an RTLRTL design, run the compile or compile_ultra command with the -scan
option to bring your design into a test-ready statetest-ready state.

Pin Requirements
DFTMAX compression reuses the scan ports and scan-enable signals that were used
in regular scan mode in DFT Compiler. Only one additional test-mode port is required to
differentiate between Scan Compression modescan compression mode and Internal Scan modeinternal scan mode.

If you already have a test-mode port in your design, you can define it and specify the
hookup point by using the following set_dft_signal commandcommand:

set_dft_signal -type TestMode -hookup_pin

If you do not have a test-mode port, the insert_dft command automatically creates one
for you. Note that you cannot use the same test-mode port for the on-chip clocking (OCC),
AutoFix, or scan compression mode. If you want to associate a particular test-mode port
with the OCC or AutoFix test-mode port, you can do so by using the -control_signal
option of the set_autofix_configuration command to control the order of the specified
TestMode pins.

For accessing the compressed scan chains in compressed scan mode using a single
scan-in pin and scan-out pin, use DFTMAX Ultra. You can define the minimal number of
access pins for compressed scan mode with the following command:

set_scan_compression_configuration -xtolerance default \
 -inputs 1 -outputs 1

When using DFTMAX compression with the high X-tolerance capability, a minimum of
two scan-in pins and one scan-out pin are supported. You can define the minimal number
of access pins in compressed scan mode with high X-tolerance enabled by using the
following command:

set_scan_compression_configuration -xtolerance high \
 -inputs 2 -outputs 1

See Also

• High X-Tolerance Scan Compression on page 726 for more information about the
high X-tolerance scan compression architecture

Synopsys® TestMAX™ DFT User Guide
T-2022.03

651

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 16: Introduction to DFTMAX
Multicore Processing

Feedback

Multicore Processing
DFT Compiler supports multicore processing. To enable this feature, run the following
command:

set_host_options -max_cores maximum_number_of_cores

The maximum_number_of_cores value, which specifies the number of cores for threading,
should be a positive integer that is 2 or greater.

You must specify the number of cores the tool can use before running the insert_dft
command.

The maximum_number_of_cores setting is persistent throughout a given Design Compiler
shell session. Therefore, if you specified this setting during an initial compile stage and did
not quit the session, the same setting remains in effect during the DFT insertion stage.

The setting is not saved into a .ddc file. If you quit the session before DFT insertion and
then start a new shell, DFT insertion will use the tool’s default settings.

If you request more cores than are available, the insert_dft command proceeds, using
the number of cores that actually are available.

Use the remove_host_options command to revert to the tool defaults.

License Usage
For multicore processing, one DFT Compiler or TestMAX DFT license supports up to eight
cores, that is, one license is required for every eight cores.

The tool checks out licenses per the specifications defined in the set_host_options
command.

If you do not have access to a sufficient number of licenses, the insert_dft command
issues a (SEC-50) error similar to the following:

Error: All ‘Test-Compression-Synthesis’ licenses are in use (SEC-50)
The current users of this feature are:
designer at runhost, started on Thursday 5/7 at 15:52

The following examples show commands that are common in a DFT flow, along with the
number of required licenses for the multicore operation of each command:

• compile_ultra -scan -spg command with power constraints, using 16 cores

◦ 2 DC Expert

◦ 2 DC Ultra

◦ 2 DFT Compiler

Synopsys® TestMAX™ DFT User Guide
T-2022.03

652

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 16: Introduction to DFTMAX
Multicore Processing

Feedback

◦ 2 Power Compiler

◦ 2 DesignWare

◦ 2 DC-Extension

• insert_dft command with compression and no congestion, using 16 cores

◦ 2 DFT Compiler

◦ 2 DFTMAX

• insert_dft command with compression and congestion, using 16 cores

◦ 2 DFT Compiler

◦ 2 DFTMAX

◦ 2 DC Expert

◦ 2 DC Ultra

◦ 2 DC-Extension

• insert_dft command with streaming compression and congestion, using 16 cores

◦ 2 DFT Compiler

◦ 2 DFTMAX

◦ 2 DFTMAX Ultra

◦ 2 DC Expert

◦ 2 DC Ultra

◦ 2 DC-Extension

Consistent with the compile_ultra command, licenses are not automatically released
until the end of the Design Compiler shell session or until you explicitly issue the
remove_license command.

If you request more licenses than are available per licensing scheme, the insert_dft
command stops and issues an error message similar to the following:

Error: All 'Test-Compression-Synthesis' licenses are in use. (SEC-50)
The current users of this feature are: designer at runhost, started on
Thursday 5/7 at 15:52

Synopsys® TestMAX™ DFT User Guide
T-2022.03

653

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 16: Introduction to DFTMAX
Limitations

Feedback

Limitations
This topic covers current limitations and known issues associated with DFTMAX
compression.

Current Limitations
The following features are currently not supported:

• You cannot use the existing scan flow to insert compression logic into a design that
already has standard scan chains at the top level.

• You cannot use the set_scan_path command, unless it is used with a multiple test-
mode specification.

DFTMAX Compression Limitations
Note the following limitations of DFTMAX compression:

• There is no graphical design rule checking (DRC) debugging support in the Synopsys
Design Vision™ GUI for compressor design rule violations.

• There is no plan to support the ability to read back Verilog patterns.

• Write patterns nshifts is not supported with DFTMAX compression.

• You cannot write out a parallel Verilog testbench when you read in the image saved
after running DRC in regular scan mode.

• Each pattern in scan compression mode pattern is dependent on the next pattern.
Because of this, you cannot reorder any ATPG patterns, including basic scan patterns.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

654

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

17
Using DFTMAX Compression

If you are currently implementing standard scan logic, you can insert DFTMAX
compression into your design by using a single additional command. Typically, no other
changes to your design are required.

This chapter describes the processes associated with using DFTMAX compression. It
includes the following topics:

• Top-Down Flat Compressed Scan Flow

• Top-Down Flat Compressed Scan Flow With DFT Partitions

• DFTMAX Scan Compression and Multiple Test Modes

• Excluding Scan Chains From Scan Compression

• Scan Compression and OCC Controllers

• Specifying a Different Scan Pin Count for Compressed Scan Mode

• Adding Compressed Chain Lock-Up Latches

• Reducing Power Consumption in DFTMAX Designs

• Forcing a Compressor With Full Diagnostic Capabilities

• Performing Congestion Optimization on Compressed Scan Designs

• Using AutoFix With Scan Compression

Top-Down Flat Compressed Scan Flow
This topic describes the top-down flat flow with DFTMAX compression.

Example 91 shows a basic top-down flat compressed scan insertion script for a test-ready
design previously compiled with the compile -scan command. The three commands in
bold indicate the commands added to the scan script to enable scan compression.

Example 91 Script for Enabling Compressed Scan in the Top-Down Flat Insertion Flow
read_netlist test_ready.ddc

Synopsys® TestMAX™ DFT User Guide
T-2022.03

655

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: Using DFTMAX Compression
Top-Down Flat Compressed Scan Flow

Feedback

set_dft_configuration -scan_compression enable

set_dft_signal -view existing_dft -type ScanClock \
 -port CLK -timing [list 45 55] ;# default strobe is at 40

set_scan_configuration -chain_count 3 -clock_mixing mix_clocks
set_scan_compression_configuration -chain_count 8

create_test_protocol
dft_drc
preview_dft
insert_dft

change_names -rules verilog -hierarchy

write -format verilog -hierarchy -output design.v

write_test_protocol -output scan.spf \
 -test_mode Internal_scan
write_test_protocol -output scancompress.spf \
 -test_mode ScanCompression_mode
To insert compressed scan logic in your design, use the -scan_compression option of
the set_dft_configuration command. This is the only required command to enable
compressed scan insertion.

dc_shell> set_dft_configuration -scan_compression enable
When scan compression is enabled, the insert_dft command inserts compressed scan
logic into the design and defines the following two test modes:

• Compressed scan mode

This mode configures the scan elements as short chains driven by decompressors.
The default name for this test mode is ScanCompression_mode.

• Standard scan mode

This mode joins the short compressed scan chains to reconfigure them into longer
standard scan chains. This is also known as standard scan mode. The default name for
this test mode is Internal_scan.

These test modes are created automatically during compressed scan insertion. You do not
need to create them or reference them. Figure 275 shows the scan structures for the two
test modes created by Example 91.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

656

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: Using DFTMAX Compression
Top-Down Flat Compressed Scan Flow

Feedback

Figure 275 Standard Scan and Compressed Scan Modes

Scan-ins

Scan-outs

Scan-ins

Scan-outs

3-to-8

8-to-3
test_mode

0
test_mode

1

Standard scan mode Compressed scan mode

At least one test-mode signal is required to select between standard scan mode and
compressed scan mode. If a TestMode signal is defined with the set_dft_signal
command, it is used for mode selection. If no test-mode signals are defined, a test-mode
port is created and used. Test-mode encodings are created that map the test-mode signal
values to each scan mode.

Note:
For more information about working with multiple test modes in DFT Compiler,
including information on specifying test-mode encodings, see Multiple Test
Modes on page 355.

A compressed scan mode is always associated with a corresponding standard scan mode.
The standard scan mode associated with a compressed scan mode is known as its base
mode. The base mode controls aspects of scan configuration that are common to both
modes, such as scan port definitions, scan signal hookup pin definitions, and top-level test
access structures.

The set_scan_configuration command configures aspects of the standard scan mode,
while the set_scan_compression_configuration command configures aspects of the
compressed scan mode. In Example 91 on page 655, three standard scan chains and
eight compressed scan chains are created.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

657

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: Using DFTMAX Compression
Top-Down Flat Compressed Scan Flow

Feedback

You can use the following options of the set_scan_compression_configuration
command to control the compressed scan mode chain counts, in order of highest
precedence first:

• -max_length chain_length
The -max_length option specifies the maximum compressed scan chain length. The
tool attempts to build the number of compressed scan chains needed to meet this
requirement.

• -chain_count chain_count
The -chain_count option specifies the number of compressed scan chains. The tool
attempts to build compressed scan chains with the necessary lengths to meet this
requirement.

• -minimum_compression ratio
The -minimum_compression option specifies the minimum amount of compression.
This is a relative method of specifying the compressed scan chain count. The standard
scan chains are subdivided into compressed scan chains according to this ratio, along
with a 20 percent pattern inflation factor to account for compression overhead:

num_compressed_chains = num_standard_chains * ratio * 1.2
You can use any of these options to directly or indirectly specify the scan compression
ratio for your design. If none of these options are specified, a minimum compression value
of 10 is used. The maximum compressed chain count is 32000.

If you use the high X-tolerance codec architecture, the X-masking architecture places
an additional upper limit, as a function of the scan-in and scan-out pin count, on the
maximum number of compressed scan chains to ensure 100 percent X-tolerance. For
more information, see High X-Tolerance Scan Compression on page 726.

After the standard scan and compressed scan modes have been configured, you can
use the preview_dft command to see the scan architecture and test-mode signal details
before scan insertion is performed, as shown in Example 92.

Example 92 Output From the preview_dft Command for a Compressed Scan Configuration
**
Current mode: Internal_scan
**

Number of chains: 3
Scan methodology: full_scan
Scan style: multiplexed_flip_flop
Clock domain: mix_clocks

Scan chain '1' (test_si1 --> test_so1) contains 22 cells
 Active in modes: Internal_scan

Synopsys® TestMAX™ DFT User Guide
T-2022.03

658

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: Using DFTMAX Compression
Top-Down Flat Compressed Scan Flow

Feedback

Scan chain '2' (test_si2 --> test_so2) contains 21 cells
 Active in modes: Internal_scan

Scan chain '3' (test_si3 --> test_so3) contains 21 cells
 Active in modes: Internal_scan

**
Current mode: ScanCompression_mode
**

Number of chains: 8
Scan methodology: full_scan
Scan style: multiplexed_flip_flop
Clock domain: no_mix

Scan chain '1' contains 8 cells
 Active in modes: ScanCompression_mode

(...omitted...)

Scan chain '8' contains 8 cells
 Active in modes: ScanCompression_mode

================================
Test Mode Controller Information
================================

Test Mode Controller Ports

test_mode: test_mode

Test Mode Controller Index (MSB --> LSB)
--
test_mode

Control signal value - Test Mode

0 Internal_scan - InternalTest
1 ScanCompression_mode - InternalTest

During scan insertion, the insert_dft command creates and instantiates two scan
compression designs: one for the compressorcompressor and one for the decompressordecompressor. By default,
the insert_dft command instantiates these blocks at the top level of the current design.
However, for a top-down flat run, you might want to insert the codec logic into a core-
level hierarchical block. For information on inserting the codec logic within a hierarchical
instance, see Specifying a Location for DFT Logic Insertion on page 278.

After compressed scan is inserted, you can use the report_scan_path command to see
details of the scan chains in the standard scan and compressed scan modes:

dc_shell> report_scan_path -test_mode all

Synopsys® TestMAX™ DFT User Guide
T-2022.03

659

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: Using DFTMAX Compression
Top-Down Flat Compressed Scan Flow With DFT Partitions

Feedback

Write out test protocols for both test modes using the write_test_protocol -test_mode
command:

dc_shell> write_test_protocol -output scan.spf \
 -test_mode Internal_scan
dc_shell> write_test_protocol -output scancompress.spf \
 -test_mode ScanCompression_mode
After you have the netlist and protocol files, you can generate patterns in the TestMAX
ATPG tool.

Compressed scan insertion has the following requirements:

• Compressed scan requires a preclock strobe. You should ensure that the
test_default_strobe variable is set so that the strobe occurs before the active
edges of the test clock waveforms. The default DFT Compiler test timing values meet
this requirement.

• Compressed scan insertion requires an HDL-Compiler license.

Top-Down Flat Compressed Scan Flow With DFT Partitions
The following topics describe how you can use DFT partitions in a compressed scan flow:

• When to Use DFT Partitions in a Scan Compression Flow

• Configuring Partition Codecs

• Choosing a Partitioned Codec Insertion Method

• Per-Partition Scan Compression Configuration Commands

• Limitations of DFT Partitions in Scan Compression Flow

• DFT Partition Script Example

See Also

• Partitioning a Scan Design With DFT Partitions on page 283 for general information
about DFT partitions

When to Use DFT Partitions in a Scan Compression Flow
For larger designs, inserting a single top-level codec that spans multiple blocks might
lead to routing congestion or timing issues due to long routes. For these designs, you can
use DFT partitions to insert multiple codecs that provide localized scan compression for
different blocks.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

660

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: Using DFTMAX Compression
Top-Down Flat Compressed Scan Flow With DFT Partitions

Feedback

This can be accomplished in the following ways:

• Using a top-down flat flow, where multiple codecs are inserted at the same time during
top-level DFT insertion

• Using a bottom-up hierarchical flow, where a codec is inserted during DFT insertion for
each block, then the block-level codec signals are connected and integrated during top-
level DFT insertion

If the entire design does not fit into memory, a bottom-up hierarchical flow must be used.
These flows require you to perform bottom-up DFT insertion, which in turn requires
block-level DFT constraints, DRC checks, and well-defined hierarchical boundaries. For
more information about these bottom-up hierarchical flows, see Chapter 18, Hierarchical
Adaptive Scan Synthesis.

However, some designs cannot use a bottom-up hierarchical flow. Constraints might not
be available at block-level boundaries, or the available design hierarchy boundaries might
not provide the desired mapping of codec blocks to design logic. For these designs, you
can use the top-down flat partition flow.

You can specify separate codec configurations for each partition, and all codecs are
inserted at the same time during top-level DFT insertion. This top-down flat partition flow
provides the same multiple codec flexibility as the bottom-up flows, but without the need
for multiple runs.

Configuring Partition Codecs
You can specify the standard and compressed scan mode characteristics for each
partition. Not all configuration commands support per-partition specification. See Per-
Partition Scan Compression Configuration Commands on page 664 for details.

Example 93 shows an example of global and partition-specific configuration commands.

Example 93 Configuring Two Codecs in a Partition Flow
apply global DFT configuration settings
set_dft_configuration -scan_compression enable -pipeline_scan_data enable
set_dft_signal -view existing_dft \
 -type ScanClock -timing [list 45 55] -port CLK
set_dft_signal -view spec -type TestMode -port TM
set_pipeline_scan_data_configuration \
 -head_pipeline_stages 2 -tail_pipeline_stages 2

define DFT partitions
define_dft_partition P1 -include {BLK1}
define_dft_partition P2 -include {BLK2}

configure DFT partition P1
current_dft_partition P1

Synopsys® TestMAX™ DFT User Guide
T-2022.03

661

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: Using DFTMAX Compression
Top-Down Flat Compressed Scan Flow With DFT Partitions

Feedback

set_dft_signal -view spec -type ScanEnable -port SE
set_dft_signal -view spec -type ScanDataIn -port {SI1 SI2}
set_dft_signal -view spec -type ScanDataOut -port {SO1 SO2}
set_scan_configuration -chain_count 2
set_scan_compression_configuration -chain_count 4
set_dft_location -include {CODEC} BLK1

configure DFT partition P2
current_dft_partition P2
set_dft_signal -view spec -type ScanEnable -port SE
set_dft_signal -view spec -type ScanDataIn -port {SI3 SI4 SI5}
set_dft_signal -view spec -type ScanDataOut -port {SO3 SO4 SO5}
set_scan_configuration -chain_count 3
set_scan_compression_configuration -chain_count 6
set_dft_location -include {CODEC} BLK2

In a partition flow, codecs are still inserted at the top level of the current design by default.
You can use the set_dft_location command to specify the hierarchical block where the
codec is to be inserted. For more information, see Specifying a Location for DFT Logic
Insertion on page 278.

See Also

• Configuring DFT Partitions on page 285 for information about the correct order of
global and per-partition configuration commands

• Per-Partition Scan Configuration Commands on page 287 for the list of DFT
configuration commands that support per-partition specification

• Per-Partition Scan Compression Configuration Commands on page 664 for the list of
scan compression configuration commands that support per-partition specification

Choosing a Partitioned Codec Insertion Method
Two different codec insertion methods are available in the DFT partition flow.

By default, the tool creates a separate codec for each partition. The scan-in and scan-
out signals associated with each partition are used for that partition’s codec connections.
Figure 276 shows the dedicated codec architecture for Example 93 on page 661.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

662

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: Using DFTMAX Compression
Top-Down Flat Compressed Scan Flow With DFT Partitions

Feedback

Figure 276 Partition Scan Chains With Dedicated Codec Architectures

3-to-6

6-to-3

2-to-4

4-to-2

P1 P2

P1 scan-ins

P1 scan-outs

P2 scan-ins

P2 scan-outs

For improved testability, the tool can split a single shared codec architecture across the
partitions. This partitioned codec architecture is enabled by setting the following variable:

dc_shell> set_app_var test_enable_codec_sharing true
Note:

This variable enables the partitioned codec architecture, which is different than
the shared codec I/O feature described in Sharing Codec Scan I/O Pins on
page 764.

The partitioned codec architecture uses the full set of scan-in and scan-out pins across
all partitions. This codec architecture is then replicated for each partition, where only a
dedicated subset of decompressor outputs and compressor inputs is connected to the
compressed scan chains in each partition. The compressor outputs are combined using an
XOR observability tree.

Figure 277 shows the partitioned codec architecture for Example 93 on page 661.
The five scan-in and scan-out pins from the standard scan mode are used to drive the
decompressor inputs and capture the compressor outputs. Each decompressor has
ten output pins, resulting from the sum of the compressed scan chain counts across all
partitions. The same codec architecture is used in each partition, but a different range of
compressor outputs and decompressor inputs is connected for each partition. In partition
P1, the first four decompressor outputs and compressor inputs are used. In partition P2,
the next six decompressor outputs and compressor inputs are used.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

663

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: Using DFTMAX Compression
Top-Down Flat Compressed Scan Flow With DFT Partitions

Feedback

Figure 277 Partition Scan Chains With Partitioned Codec Architectures

5-to-10

10-to-5

5-to-10

10-to-5

P1 and P2 scan-ins

P1 and P2 scan-outs

P1 P2

Note:
To optimize the logic around the unconnected decompressor outputs and
compressor inputs, perform an incremental compile after DFT insertion using
either the compile_ultra -scan -incremental command or the compile
-scan -incremental -boundary_optimization command.

The partitioned codec architecture has testability efficiency similar to inserting a single
codec in an unpartitioned flow. Because all available scan-in and scan-out pins connect
to each codec, this method provides better controllability, observability, and X-tolerance to
the partitions. However, this insertion method does have some limitations:

• All scan-in and scan-out pins must be shared across all codecs.

• Multiple compressed scan modes are not supported.

• Codecs that compress OCC clock chains are not supported.

Per-Partition Scan Compression Configuration Commands
This topic lists the commands you can use to configure DFTMAX scan compression on a
per-partition basis. Commands not listed in this section should be applied as part of the
global DFT configuration settings.

See Also

• Per-Partition Scan Compression Configuration Commands on page 664 for the per-
partition commands that are not specific to the scan compression flow

Synopsys® TestMAX™ DFT User Guide
T-2022.03

664

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: Using DFTMAX Compression
Top-Down Flat Compressed Scan Flow With DFT Partitions

Feedback

set_scan_compression_configuration
The following set_scan_compression_configuration options can be specified on a per-
partition basis:

• -minimum_compression

• -chain_count

• -max_length

• -location

• -inputs

• -outputs

• -shared_inputs

• -shared_outputs

• -shared_codec_controls

• -identical_cores

• -scramble_identical_outputs

• -shared_block_select

• -shift_power_chain_length

• -shift_power_chain_ratio

• -shift_power_clock

• -shift_power_disable

set_dft_location
The following set_dft_location compression logic types can be specified on a per-
partition basis with the -include and -exclude options:

• CODEC

• SERIAL_REG

set_dft_signal
The following set_dft_signal options can be specified on a per-partition basis:

• -type codec_enable [-codec]

Synopsys® TestMAX™ DFT User Guide
T-2022.03

665

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: Using DFTMAX Compression
Top-Down Flat Compressed Scan Flow With DFT Partitions

Feedback

Limitations of DFT Partitions in Scan Compression Flow
The following limitation applies to DFT partitions in DFTMAX compression flows:

• Partition-specific scan-enable signals are not supported by low-power compressor
gating, which is enabled with the set_scan_compression_configuration
-min_power true command.

DFT Partition Script Example
The following script demonstrates the use of compressed scan with multiple DFT
partitions, including per-partition scan-in, scan-out, and codec location specifications.

Example 94 Compressed Scan Insertion With Multiple Partitions
read_ddc ./design_test_ready.ddc
current_design block
link

global DFT configuration
set_dft_configuration -scan_compression enable
set_dft_signal -view existing_dft -type ScanClock \
 -timing {45 55} -port clk

define DFT partitions
define_dft_partition partition1 -include {inst1 inst2}
define_dft_partition partition2 -include {inst3 inst4}

configure each DFT partition
current_dft_partition partition1
set_dft_signal -view spec -type ScanDataIn -port P1_SI*
set_dft_signal -view spec -type ScanDataOut -port P1_SO*
set_scan_configuration -chain_count 5
set_scan_compression_configuration -chain_count 60
set_dft_location -include {CODEC} inst1

current_dft_partition partition2
set_dft_signal -view spec -type ScanDataIn -port P2_SI*
set_dft_signal -view spec -type ScanDataOut -port P2_SO*
set_scan_configuration -chain_count 8
set_scan_compression_configuration -chain_count 60
set_dft_location -include {CODEC} inst4

current_dft_partition default_partition
set_dft_signal -view spec -type ScanDataIn -port PD_SI*
set_dft_signal -view spec -type ScanDataOut -port PD_SO*
set_scan_configuration -chain_count 6
set_scan_compression_configuration -chain_count 60
set_dft_location -include {CODEC} inst5

Synopsys® TestMAX™ DFT User Guide
T-2022.03

666

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: Using DFTMAX Compression
DFTMAX Scan Compression and Multiple Test Modes

Feedback

insert DFT
create_test_protocol
report_dft_partition
preview_dft -show all
insert_dft
dft_drc

write output files
write_scan_def -output ./design.scandef
write -format ddc -hierarchy -output ./scan_inserted_design.ddc
write_test_protocol -output scan.spf -test_mode internal_scan
write_test_protocol -output ascan.spf -test_mode ScanCompression_mode

DFTMAX Scan Compression and Multiple Test Modes
When you insert compressed scan into your design, the tool creates two test modes by
default:

• A compressed scan mode

The default name for this test mode is ScanCompression_mode.

• A standard scan mode

The default name for this test mode is Internal_scan.

Just as you can create multiple standard scan modes with standard scan, you can also
create multiple compressed scan modes with DFTMAX compression. This capability uses
the same multiple test-mode creation, configuration, and reporting commands as used
with multiple standard scan modes. For more information, see Multiple Test Modes on
page 355.

Usage of multiple compressed scan modes is covered in the following topics:

• Defining Multiple Compressed Scan Modes

• Per-Test-Mode Scan Compression Configuration Commands

• Multiple Test-Mode Script Examples

Defining Multiple Compressed Scan Modes
Use the -usage option of the define_test_mode command to specify the type of scan to
be inserted in each mode. In Example 95, two standard scan modes and two compressed
scan modes are defined.

Example 95 Defining Multiple Standard Scan and Compressed Scan Modes
define_test_mode STDSCAN1 -usage scan
define_test_mode STDSCAN2 -usage scan

Synopsys® TestMAX™ DFT User Guide
T-2022.03

667

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: Using DFTMAX Compression
DFTMAX Scan Compression and Multiple Test Modes

Feedback

define_test_mode COMPSCAN1 -usage scan_compression
define_test_mode COMPSCAN2 -usage scan_compression

You can optionally define the test-mode signals and test signal encodings that activate
each of these modes. For more information, see Defining the Encoding of a Test Mode on
page 358.

When you use the default compressed scan mode for scan insertion, the accompanying
standard scan mode is always considered to be the base mode. There is no need to
explicitly specify this base mode relationship when a single compressed scan mode is
inserted. When you define multiple compressed scan modes, each compressed scan
mode must have an associated standard scan base mode.

After defining the compressed scan and standard scan test modes, you must
also specify the accompanying base mode relationships for each compressed
scan mode. You define these relationships with the -base_mode option of the
set_scan_compression_configuration command. In Example 96, two compressed
scan modes are paired with their standard scan base modes.

Example 96 Providing Base Mode Relationships for Compressed Scan Modes
set_scan_configuration -test_mode STDSCAN1 -chain_count 2
set_scan_configuration -test_mode STDSCAN2 -chain_count 3
set_scan_compression_configuration -test_mode COMPSCAN1 \
 -base_mode STDSCAN1 -chain_count 4
set_scan_compression_configuration -test_mode COMPSCAN2 \
 -base_mode STDSCAN2 -chain_count 5
Although each compressed scan mode must have a corresponding base mode, there is no
complementary requirement. You can create as many additional standard scan modes as
needed.

Multiple compressed scan modes can share a common base mode. Define the common
base mode with the set_scan_configuration command, then reference this base
mode using the -base_mode option of each set_scan_compression_configuration
command:

Example 97 Sharing a Base Mode Relationships Across Multiple Compressed Scan Modes
set_scan_configuration -test_mode STDSCAN -chain_count 2
set_scan_compression_configuration -test_mode COMPSCAN1 \
 -base_mode STDSCAN -chain_count 4
set_scan_compression_configuration -test_mode COMPSCAN2 \
 -base_mode STDSCAN -chain_count 5
For multiple compressed scan modes, the same relationship exists between each
compressed scan mode and its corresponding base mode as with a single compressed
scan mode and standard scan mode. By default, each compressed scan mode uses all
available scan-in and scan-out pins from its base mode. In Example 96, compressed

Synopsys® TestMAX™ DFT User Guide
T-2022.03

668

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: Using DFTMAX Compression
DFTMAX Scan Compression and Multiple Test Modes

Feedback

mode COMPSCAN1 creates a decompressor with two inputs, and compressed mode
COMPSCAN2 creates a decompressor with three inputs.

If you want to use a different number of scan-in or scan-out pins in a compressed scan
mode from what is used in its base mode, you can use the -inputs and -outputs options
of the set_scan_compression_configuration command. For more information, see
Specifying a Different Scan Pin Count for Compressed Scan Mode on page 682.

The insert_dft command inserts a separate codec for each compressed scan mode.
This is true even if the codec architectures between two compressed scan modes are
identical. Scan chain reconfiguration MUXs are added to provide the necessary scan chain
paths for all standard scan and compressed scan modes. Additional MUX logic is added
to enable one codec at a time based on the test-mode signal decoding logic. Figure 278
shows how the scan compression codecs in Example 96 are connected.

Figure 278 Multiple Codecs for Multiple Compressed Scan Modes

Scan-ins
Test mode COMPSCAN1

3-to-52-to-4

4-to-2 5-to-3

Scan-outs

Scan-ins
Test mode COMPSCAN2

3-to-52-to-4

4-to-2 5-to-3

Scan-outs

Per-Test-Mode Scan Compression Configuration Commands
This topic lists the commands and options you can use to configure compressed scan
insertion for specific test modes. Additional commands are available to configure other
aspects of DFT insertion for multiple test modes.

For information about other DFT commands that can be applied to specific test modes,
see Supported Test Specification Commands for Test Modes on page 365.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

669

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: Using DFTMAX Compression
DFTMAX Scan Compression and Multiple Test Modes

Feedback

For information on how to order global and mode-specific configuration commands in
your scripts, see Recommended Ordering of Global and Mode-Specific Commands on
page 363.

set_scan_compression_configuration
The following set_scan_compression_configuration options can be applied to specific
test modes:

• -base_mode

• -max_length

• -chain_count

• -minimum_compression

• -inputs

• -outputs

• -shared_inputs

• -shared_outputs

• -identical_cores

• -scramble_identical_outputs

• -shift_power_chain_length

• -shift_power_chain_ratio

• -shift_power_clock

• -shift_power_disable

• -synchronize_chains

Note:
Although the set_scan_compression_configuration command applies to the
current test mode by default, the -test_mode option is typically used together
with the -base_mode option so that the relationship between the test mode and
base mode is explicitly highlighted.

set_scan_path
Use the set_scan_path -test_mode test_mode_name command to provide scan chain
specifications for each test mode in your design. The scan path specification can be given
for any chains in any defined test mode and can include scan data in and scan data out
pin specifications, with both port and hookup arguments. If the scan path specification

Synopsys® TestMAX™ DFT User Guide
T-2022.03

670

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: Using DFTMAX Compression
DFTMAX Scan Compression and Multiple Test Modes

Feedback

applies to a test mode which has the usage specified as scan_compression, then the
scan path statements can use the -hookup option to specify compressed chains, but they
cannot use a port argument.

Multiple Test-Mode Script Examples
The following topics provide examples of multiple test-mode scripts:

• Multiple Standard Scan Modes and One Compressed Scan Mode

• Multiple Standard Scan and Compressed Scan Modes

• Standard Scan Flow Using Multiple Test Modes and Partitions

• Scan Compression Flow Using Multiple Test Modes and Partitions

Multiple Standard Scan Modes and One Compressed Scan Mode
The following script example demonstrates multiple standard scan modes and a single
compressed scan mode.

Example 98 Multiple Standard Scan Modes and One Compressed Scan Mode
Define the scan in and scan out pins, which will be used in
all test modes.
These modes are my_base1,scan_compression1, and burn_in.
for {set i 1} {$i <= 13 } { incr i 1} {
 create_port -direction in test_si[$i]
 create_port -direction out test_so[$i]
 set_dft_signal -type ScanDataIn -view spec \
 -port test_si[$i] -test_mode all
 set_dft_signal -type ScanDataOut -view spec \
 -port test_so[$i] -test_mode all
}

Define Test Clocks
set_dft_signal -view existing_dft -type TestClock -timing {45 55} \
 -port clk_st

Define TestMode signals to be used
set_dft_signal -view spec -type TestMode \
 -port [list i_trdy_de i_trdy_dd i_cs]

Define the test modes, usage and encoding
define_test_mode my_base1 -usage scan \
 -encoding {i_trdy_de 0 i_trdy_dd 0 i_cs 1}
define_test_mode burn_in -usage scan \
 -encoding {i_trdy_de 0 i_trdy_dd 1 i_cs 1}
define_test_mode scan_compression1 -usage scan_compression \
 -encoding {i_trdy_de 1 i_trdy_dd 0 i_cs 0}

Synopsys® TestMAX™ DFT User Guide
T-2022.03

671

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: Using DFTMAX Compression
DFTMAX Scan Compression and Multiple Test Modes

Feedback

Enable DFTMAX compression
set_dft_configuration -scan_compression enable

Configure DFTMAX compression
set_scan_compression_configuration -base_mode my_base1 -chain_count 32 \
 -test_mode scan_compression1 -xtolerance high

Configure the basic scan modes
set_scan_configuration -chain_count 4 -test_mode my_base1
set_scan_configuration -chain_count 1 -clock_mixing mix_clocks \
 -test_mode burn_in

Enable rapid scan stitching feature
set_dft_insertion_configuration -synthesis_optimization none

Give a chain spec to be applied in my_base1
This will also define the scan ports for scan_compression1
set_scan_path chain1 -view spec -scan_data_in test_si[1] \
 -scan_data_out test_so[1] -test_mode my_base1
set_scan_path chain2 -view spec -scan_data_in test_si[2] \
 -scan_data_out test_so[2] -test_mode my_base1
set_scan_path chain3 -view spec -scan_data_in test_si[3] \
 -scan_data_out test_so[3] -test_mode my_base1
set_scan_path chain4 -view spec -scan_data_in test_si[4] \
 -scan_data_out test_so[4] -test_mode my_base1

Give a chain spec to be applied in burn_in
set_scan_path chain4 -view spec -scan_data_in test_si[13] \
 -scan_data_out test_so[13] -test_mode burn_in

Create the test protocol
create_test_protocol

Run pre-DFT DRC
dft_drc

Preview test structures to be inserted
preview_dft -show all

Run test insertion
insert_dft

run post-DFT DRC in scan_compression1 test mode
current_test_mode scan_compression1
report_dft_signal
dft_drc -verbose

run post-DFT DRC in my_base1 test mode
current_test_mode my_base1
report_dft_signal
dft_drc -verbose

run post-DFT DRC in burn_in test mode

Synopsys® TestMAX™ DFT User Guide
T-2022.03

672

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: Using DFTMAX Compression
DFTMAX Scan Compression and Multiple Test Modes

Feedback

current_test_mode burn_in
report_dft_signal
dft_drc -verbose

change_names -rules verilog -hierarchy
write -format verilog -hierarchy -output vg/top_scan_mm.v
write_test_protocol -test_mode scan_compression1 \
 -output stil/scan_compression1.stil \
 -names verilog stil/scan_compression2.stil -names verilog
write_test_protocol -test_mode my_base1 -output stil/my_base1.stil \
 -names verilog
write_test_protocol -test_mode burn_in -output stil/burn_in.stil \
 -names verilog

Multiple Standard Scan and Compressed Scan Modes
The following script example demonstrates multiple standard scan modes and multiple
compressed scan modes.

Example 99 Multiple Standard Scan Modes and Multiple Compressed Scan Modes
Define the scan in and scan out pins, which will be used in
all test modes.
These modes are my_base1, my_base2, scan_compression1,
scan_compression2, and burn_in.
for {set i 1} {$i <= 13 } { incr i 1} {
 create_port -direction in test_si[$i]
 create_port -direction out test_so[$i]
 set_dft_signal -type ScanDataIn -view spec \
 -port test_si[$i] -test_mode all
 set_dft_signal -type ScanDataOut -view spec \
 -port test_so[$i] -test_mode all
}

Define Test Clocks
set_dft_signal -view existing_dft -type TestClock -timing {45 55} \
 -port clk_st

Define TestMode signals to be used
set_dft_signal -view spec -type TestMode \
 -port [list i_trdy_de i_trdy_dd i_cs]

Define the test modes and usage
define_test_mode my_base1 -usage scan \
 -encoding {i_trdy_de 0 i_trdy_dd 0 i_cs 1}
define_test_mode my_base2 -usage scan \
 -encoding {i_trdy_de 0 i_trdy_dd 1 i_cs 0}
define_test_mode burn_in -usage scan \
 -encoding {i_trdy_de 0 i_trdy_dd 1 i_cs 1}
define_test_mode scan_compression1 -usage scan_compression \
 -encoding {i_trdy_de 1 i_trdy_dd 0 i_cs 0}
define_test_mode scan_compression2 -usage scan_compression \
 -encoding {i_trdy_de 1 i_trdy_dd 0 i_cs 1}

Synopsys® TestMAX™ DFT User Guide
T-2022.03

673

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: Using DFTMAX Compression
DFTMAX Scan Compression and Multiple Test Modes

Feedback

Enable DFTMAX compression
set_dft_configuration -scan_compression enable

Configure DFTMAX compression
set_scan_compression_configuration -base_mode my_base1 -chain_count 32 \
 -test_mode scan_compression1 -xtolerance high
set_scan_compression_configuration -base_mode my_base2 -chain_count 256 \
 -test_mode scan_compression2 -xtolerance high

Configure the basic scan modes
set_scan_configuration -chain_count 4 -test_mode my_base1
set_scan_configuration -chain_count 8 -test_mode my_base2
set_scan_configuration -chain_count 1 -clock_mixing mix_clocks \
 -test_mode burn_in

set_dft_insertion_configuration -synthesis_optimization none

Give a chain spec to be applied in my_base1
This will also define the scan ports for scan_compression1
set_scan_path chain1 -view spec -scan_data_in test_si[1] \
 -scan_data_out test_so[1] -test_mode my_base1
set_scan_path chain2 -view spec -scan_data_in test_si[2] \
 -scan_data_out test_so[2] -test_mode my_base1
set_scan_path chain3 -view spec -scan_data_in test_si[3] \
 -scan_data_out test_so[3] -test_mode my_base1
set_scan_path chain4 -view spec -scan_data_in test_si[4] \
 -scan_data_out test_so[4] -test_mode my_base1

Give a chain spec to be applied in my_base2
This will also define the scan ports for scan_compression2
set_scan_path chain5 -view spec -scan_data_in test_si[5] \
 -scan_data_out test_so[5] -test_mode my_base2
set_scan_path chain6 -view spec -scan_data_in test_si[6] \
 -scan_data_out test_so[6] -test_mode my_base2
set_scan_path chain7 -view spec -scan_data_in test_si[7] \
 -scan_data_out test_so[7] -test_mode my_base2
set_scan_path chain8 -view spec -scan_data_in test_si[8] \
 -scan_data_out test_so[8] -test_mode my_base2
set_scan_path chain9 -view spec -scan_data_in test_si[9] \
 -scan_data_out test_so[9] -test_mode my_base2
set_scan_path chain10 -view spec -scan_data_in test_si[10] \
 -scan_data_out test_so[10] -test_mode my_base2
set_scan_path chain11 -view spec -scan_data_in test_si[11] \
 -scan_data_out test_so[11] -test_mode my_base2
set_scan_path chain12 -view spec -scan_data_in test_si[12] \
 -scan_data_out test_so[12] -test_mode my_base2

Give a chain spec to be applied in burn_in
set_scan_path chain4 -view spec -scan_data_in test_si[13] \
 -scan_data_out test_so[13] -test_mode burn_in

Create test protocol

Synopsys® TestMAX™ DFT User Guide
T-2022.03

674

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: Using DFTMAX Compression
DFTMAX Scan Compression and Multiple Test Modes

Feedback

create_test_protocol

Run pre-DFT DRC
dft_drc

Preview test structures to be inserted
preview_dft -show all

Run test insertion
insert_dft

current_test_mode scan_compression1
report_dft_signal
dft_drc -verbose

current_test_mode scan_compression2
report_dft_signal
dft_drc -verbose

current_test_mode my_base1
report_dft_signal
dft_drc -verbose

current_test_mode my_base2
report_dft_signal
dft_drc -verbose

current_test_mode burn_in
report_dft_signal
dft_drc -verbose

change_names -rules verilog -hierarchy
write -format verilog -hierarchy -output vg/top_scan_mm.v
write_test_protocol -test_mode scan_compression1 \
 -output stil/scan_compression1.stil -names verilog
write_test_protocol -test_mode scan_compression2 \
 -output stil/scan_compression2.stil -names verilog
write_test_protocol -test_mode my_base1 -output stil/my_base1.stil \
 -names verilog
write_test_protocol -test_mode my_base2 -output stil/my_base2.stil \
 -names verilog
write_test_protocol -test_mode burn_in -output stil/burn_in.stil \
 -names verilog

Standard Scan Flow Using Multiple Test Modes and Partitions
The following script example demonstrates multiple standard scan modes and partitions.
This example does not insert compressed scan.

Example 100 Multiple Standard Scan Modes With Partitions
read_ddc ./design_test_ready.ddc

Synopsys® TestMAX™ DFT User Guide
T-2022.03

675

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: Using DFTMAX Compression
DFTMAX Scan Compression and Multiple Test Modes

Feedback

current_design block
set_dft_signal -view existing_dft -type ScanClock \
 -timing [list 45 55] -port clk

define_test_mode test_mode1 -usage scan
define_test_mode test_mode2 -usage scan

define_dft_partition partition1 -include [list inst1 inst2]
define_dft_partition partition2 -include [list inst3 inst4]

current_dft_partition part1
set_scan_configuration -exact_length 40 -test_mode test_mode1
set_scan_configuration -exact_length 80 -test_mode test_mode2

current_dft_partition part2
set_scan_configuration -exact_length 40 -test_mode test_mode1
set_scan_configuration -exact_length 80 -test_mode test_mode2

current_dft_partition default_partition
set_scan_configuration -exact_length 40 -test_mode test_mode1
set_scan_configuration -exact_length 80 -test_mode test_mode2

create_test_protocol
report_dft_partition
preview_dft -show all
insert_dft
dft_drc

write_scan_def -output ./design.scandef
write -format ddc -hierarchy -output ./scan_inserted_design.ddc
write_test_protocol -output test_mode1.spf -test_mode test_mode1
write_test_protocol -output test_mode2.spf -test_mode test_mode2

Scan Compression Flow Using Multiple Test Modes and Partitions
The following script example demonstrates a single compressed scan mode, multiple
standard scan modes, and partitions:

Example 101 Standard Scan and Compressed Scan Modes With Partitions
read_ddc ./design_test_ready.ddc

current_design block
set_dft_configuration -scan_compression enable

define_test_mode my_scan_comp -usage scan_compression
define_test_mode test_mode1 -usage scan
define_test_mode test_mode2 -usage scan

define_dft_partition partition1 -include [list inst1 inst2]
define_dft_partition partition2 -include [list inst3 inst4]

current_dft_partition part1

Synopsys® TestMAX™ DFT User Guide
T-2022.03

676

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: Using DFTMAX Compression
Excluding Scan Chains From Scan Compression

Feedback

set_scan_configuration -chain_count 4 -test_mode test_mode1
set_scan_configuration -chain_count 8 -test_mode test_mode2
set_scan_compression_configuration -location inst1 \
 -test_mode my_scan_comp -base_mode test_mode1

current_dft_partition part2
set_scan_configuration -chain_count 8 -test_mode test_mode1
set_scan_configuration -chain_count 10 -test_mode test_mode2
set_scan_compression_configuration -location inst3 \
 -test_mode my_scan_comp -base_mode test_mode1

current_dft_partition default_partition
set_scan_configuration -chain_count 2 -test_mode test_mode1
set_scan_configuration -chain_count 4 -test_mode test_mode2
set_scan_compression_configuration -location inst5 \
 -test_mode my_scan_comp -base_mode test_mode1

create_test_protocol
report_dft_partition
preview_dft -show all
insert_dft
dft_drc
write_scan_def -output ./design.scandef
write -f ddc -hierarchy -output ./scan_inserted_design.ddc
write_test_protocol -output scan.spf -test_mode test_mode1
write_test_protocol -output ascan.spf -test_mode my_scan_comp

Excluding Scan Chains From Scan Compression
external chainsscan chainsexternalIn some cases, you might need to exclude specific scan cells from scan compression by
keeping them on a separate uncompressed scan chain. Such a scan chain is called an
external chain. Figure 279 shows two external chains in a compressed scan design.

Figure 279 External Chains in a Compressed Scan Design

External
chains

To define an external chain, use the set_scan_path command as follows:

set_scan_path scan_chain_name
 -view spec -test_mode all
 -complete true -dedicated_scan_out true
 -ordered_elements ordered_list
 -scan_data_in port_name -scan_data_out port_name

Synopsys® TestMAX™ DFT User Guide
T-2022.03

677

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: Using DFTMAX Compression
Excluding Scan Chains From Scan Compression

Feedback

The external chains consume connections in the scan I/O connection budget. In
compressed scan mode, the tool automatically uses the remaining scan connections
for the codec; you do not need to specify the -inputs and -outputs options of the
set_scan_compression_configuration command. The commands in Example 102
configure the scan structure shown in Figure 279.

Example 102 Configuring External Chains in a Compressed Scan Design
define two external chains
set_scan_path EC1 ... ;# external chain 1
set_scan_path EC2 ... ;# external chain 2

set standard scan chain count to 5;
this also sets the scan I/O budget for both scan modes to 5
set_scan_configuration -chain_count 5

codec uses remaining 3 scan I/O connections;
you do not need to specify "-inputs 3 -outputs 3"
set_scan_compression_configuration -chain_count 8

Note the following aspects of external chain definitions:

• The -ordered_elements option specifies the order of the scan cells in the chain. To
provide an unordered list and allow the tool to manage ordering requirements such as
clock mixing, use the -include_elements option instead.

• The -test_mode all option applies the external chain definition to both the standard
scan and compressed scan modes. To limit the definition to a specific compressed
scan mode, specify it with the -test_mode option. The specified test mode must be
previously defined with the define_test_mode command.

• The scan input and output ports must be previously defined with the set_dft_signal
command. You cannot define external scan chains that use automatically created scan
data ports.

• If you are using the pipelined scan data feature, external chains are treated the same
as other scan chains. This means,

◦ In the automatically inserted pipelined scan data flow, the tool inserts pipeline
registers around the external scan chains the same way it does with other scan
chains.

◦ In the user-defined pipelined scan data flow, you must create and define pipeline
registers with head and tail depths that match other scan chains.

See Also

• HASS and Hybrid Flow Limitations on page 724 for limitations of integrating cores
that contain external chains

Synopsys® TestMAX™ DFT User Guide
T-2022.03

678

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: Using DFTMAX Compression
Scan Compression and OCC Controllers

Feedback

Scan Compression and OCC Controllers
On-chip clocking (OCC) controllers allow on-chip clock sources to be used for at-speed
capture during device testing. In an OCC controller flow, the clock chain is a special scan
segment that provides control over the at-speed capture pulse sequence generated by the
OCC controller.

In a scan compression flow, the clock chain can be compressed or external
(uncompressed), as described in the following topics:

• Using Compressed Clock Chains

• Defining External Clock Chains

See Also

• Chapter 12, On-Chip Clocking Support for more information about OCC controllers

Using Compressed Clock Chains
When you insert DFTMAX scan compression along with a DFT-inserted or user-defined
OCC controller, the clock chain is placed between the decompressor and compressor
by default. The decompressor drives the clock chain along with the other compressed
scan chains, but it dedicates a decompressor scan input to the clock chain as shown in
Figure 280.

Figure 280 Compressed Clock Chain in a Compressed Scan Design

Compressed
clock chain

OCC
controller

Dedicated decompressor scan input

The decompressor scan input path passes through the decompressor to the clock
chain input. This allows the clock chain values to be controlled without imposing ATPG
constraints on other scan cells. Such a clock chain is called a compressed clock chain
because it exists between the decompressor and compressor, even though it is driven by
a dedicated scan-in signal as if it was uncompressed.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

679

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: Using DFTMAX Compression
Scan Compression and OCC Controllers

Feedback

Note:
For codecs with few scan inputs and high compression ratios, DFTMAX
compression might be forced to share the decompressor scan input with
other compressed chains. This happens if the codec would otherwise not be
implementable.

The dedicated scan-in signal reduces the number of scan-in signals available for
data decompression into the remaining compressed chains. You should consider this
when determining compression architecture parameters such as scan input count and
compressed chain count.

The clock chain, which is clocked on the trailing edge, is always placed at the beginning
of its compressed scan chain. Additional scan cells can follow the clock chain for length-
balancing purposes, as allowed by the clock-mixing settings applied to the current design.
The compressed scan chain then proceeds into the compressor in the normal way.

If you are using the high X-tolerance feature, the compressed clock chain reduces the
maximum compressed scan chain limit that can be created for a given number of scan-in
signals. For more information, see Scan-In and Scan-Out Requirements on page 728.

You can use the preview_dft -show {cells scan_clocks} command to see which
compressed scan chain contains the clock chain. The clock chain is marked with a clock
chain segment attribute (o) and a scan segment attribute (s):

**
Current mode: ScanCompression_mode
**
Number of chains: 16
Scan methodology: full_scan
Scan style: multiplexed_flip_flop
Clock domain: no_mix

 (l) shows cell scan-out drives a lockup latch
 (s) shows cell is a scan segment
 (m) shows cell scan-out drives a multi-mode multiplexer
 (o) shows cell is a clock chain segment
 (w) shows cell scan-out drives a wire

Scan chain '1' contains 7 cells
 Active in modes: ScanCompression_mode :

 snps_clk_chain_0/clock_chain (s) (o) (UPLL/CLKO, 55.0, falling)
 Z1_reg[0] (UPLL/CLKO, 45.0, rising)
 Z1_reg[1]
 Z1_reg[2] (m)

For details on previewing scan segments, see Previewing Additional Scan Chain
Information on page 596.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

680

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: Using DFTMAX Compression
Scan Compression and OCC Controllers

Feedback

Defining External Clock Chains
External clock chains are uncompressed and exist outside the codec as shown in
Figure 281.

Figure 281 External Clock Chain in a Compressed Scan Design

External
clock chain

OCC
controller

Dedicated clock
chain scan input

Dedicated clock
chain scan output

External clock chains are normally used only with the following features:

• Shared codec I/O

Compressed clock chain inputs cannot be shared. To avoid multiple unshareable inputs
across shared-I/O cores, use external clock chains, which can be concatenated into
a single top-level clock chain across the cores. See Codec I/O Sharing With OCC
Controllers on page 778.

• DFTMAX Ultra

External clock chains are implemented by default for designs with DFTMAX Ultra
compression; they do not require explicit specification as described in this section. See
Using OCC Controllers With DFTMAX Ultra Compression on page 935.

To manually define the complete external clock chain, use the set_scan_path command.
This method allows you to use specific scan-in and scan-out signals for the clock chain.

For example,

set_dft_signal -view spec -type ScanDataIn -port OCC_SI
set_dft_signal -view spec -type ScanDataOut -port OCC_SO
set_scan_path \
 MY_clock_chain -class occ \
 -include_elements {\
 snps_clk_chain_2/clock_chain \
 CORE1/clock_chain_name \
 CORE2/clock_chain_name} \
 -complete true \

Synopsys® TestMAX™ DFT User Guide
T-2022.03

681

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: Using DFTMAX Compression
Specifying a Different Scan Pin Count for Compressed Scan Mode

Feedback

 -scan_data_in OCC_SI -scan_data_out OCC_SO \
 -test_mode all

The -class occ option indicates that the scan path specification defines a clock chain.
Use the -include_elements option to allow the tool to change the element order, or use
the -ordered_elements option to use only your specified order. The -test_mode all
option must be specified.

Include all top-level and core-level clock chains that comprise the complete clock chain, as
follows:

• Top-level DFT-inserted OCC controllers

Specify the name of the clock chain that DFT insertion will build. For more information,
see SolvNet article 018046, “How Can I Control Scan Stitching of OCC Controller
Clock Chains?”

• Top-level user-defined OCC controllers

Specify the name of the clock-chain scan group, which must be previously defined with
the set_scan_group command.

• Core-level clock chain segments

Specify the core-level clock-chain segment names. You can use the preview_dft
-show {cells segments} command to help determine their names.

You can define multiple external clock chains, if needed.

If you are using DFT partitions, all clock chains to be concatenated must belong to the
same partition. See SolvNet article 2675107, “Concatenating OCC Clock Chains From
Multiple DFT Partitions.“

If you have DFTMAX-only cores with compressed clock chains, do not include these
compressed clock chains in the external clock-chain definition. These compressed clock
chains operate normally when the core is active in its DFTMAX mode.

See Also

• Excluding Scan Chains From Scan Compression on page 677 for general information
on defining external chains

Specifying a Different Scan Pin Count for Compressed Scan
Mode

In a compressed scan mode, the decompressor inputs are driven by scan-in pins and the
compressor outputs drive scan-out pins. By default, DFTMAX compression uses the full
set of scan-in and scan-out pins from the associated base mode for the scan compression

Synopsys® TestMAX™ DFT User Guide
T-2022.03

682

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
http://solvnet.synopsys.com/retrieve/018046.html
http://solvnet.synopsys.com/retrieve/018046.html
https://solvnet.synopsys.com/retrieve/2675107.html
https://solvnet.synopsys.com/retrieve/2675107.html

Chapter 17: Using DFTMAX Compression
Specifying a Different Scan Pin Count for Compressed Scan Mode

Feedback

codec construction as shown in Figure 275 on page 657. If you want to use a different
number of scan-in and scan-out pins for the codec construction, you can use the -inputs
and -outputs options of the set_scan_compression_configuration command.

Figure 282 shows the codec architecture created by the -inputs and -outputs options in
Example 103.

Example 103 Specifying a Different Compressed Scan Pin Configuration
set_scan_configuration -chain_count 6 -clock_mixing mix_clocks
set_scan_compression_configuration -chain_count 8 -inputs 3 -outputs 3

Figure 282 Different Compressed Scan Pin Codec Architecture

Scan-ins

Scan-outs

Scan-ins

Scan-outs

3-to-8

8-to-3
test_mode

0
test_mode

1

Standard scan mode Compressed scan mode

You can use any number or scan-in and scan-out pin connections for a compressed scan
mode relative to the chain count of its base mode. The only requirement is that the scan-in
pin and scan-out pin counts are less than the compressed scan chain count.

You can also use the -inputs and -outputs options to specify asymmetrical scan I/O
configurations for scan compression, where the number of scan-in pins differs from the
number of scan-out pins, as shown in Example 104.

Example 104 Specifying an Asymmetrical Scan Pin Configuration
set_scan_configuration -chain_count 6 -clock_mixing mix_clocks
set_scan_compression_configuration -chain_count 8 -inputs 5 -outputs 3
The minimum number of scan-in and scan-out pins for a compressed scan mode is

• One scan-in and one scan-out pin when default X-tolerance is used

set_scan_compression_configuration \
 -xtolerance default -inputs 1 -outputs 1

Synopsys® TestMAX™ DFT User Guide
T-2022.03

683

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: Using DFTMAX Compression
Adding Compressed Chain Lock-Up Latches

Feedback

• Two scan-in pins and one scan-out pin when high X-tolerance is used

set_scan_compression_configuration \
 -xtolerance high -inputs 2 -outputs 1

Adding Compressed Chain Lock-Up Latches
Shift speeds are limited by the ability to propagate data between an I/O pad cell and the
compressed scan chains. The MUX and XOR gates that are introduced in compressed
scan can add further delay to the scan paths at the scan-in and scan-out paths,
respectively. Because of the one-to-many relationship of compressed scan chains to scan
I/Os, it is possible for leading-edge and trailing-edge scan cells to share the same scan
input or output port, as shown in Figure 283. In these cases, the resulting mix of launch
and capture clock edges reduces the usable clock period.

Figure 283 Compressed Scan Chains With Multiple Edge Polarities

LE TE LE
TE

LE Leading-edge-triggered flip-flop

Trailing-edge-triggered flip-flop

This mixed-edge penalty against shift frequency in compressed scan mode can be
avoided by using lock-up latches at the start or end of the leading-edge or trailing-edge
compressed chains, respectively. By selectively inserting lock-up latches at the end or start
of the compressed chains, the output and input flip-flops are synchronized to the same
clock edge. The inputs of the scan chains are always synchronized to the trailing edge,
and the outputs of the scan chains to the leading edge.

To synchronize the scan chains, use the following command:

set_scan_compression_configuration
 -synchronize_chains head | tail | all | none

You can specify the following values for the -synchronize_chains option:

• head synchronizes the first shift state of all compressed scan chains to the trailing clock
edge.

• tail synchronizes the last shift state of all compressed scan chains to the leading
clock edge.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

684

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: Using DFTMAX Compression
Reducing Power Consumption in DFTMAX Designs

Feedback

• all synchronizes the first and last shift states of all compressed scan chains.

• none does not add lock-up latches to the ends of compressed scan chains for
synchronization. This is the default.

Figure 284 shows how the previous scan compression logic is created when the
-synchronize_chains all option is used.

Figure 284 Compressed Scan Chains With Multiple Edge Polarities and Synchronization

LE TE LE
TE

LE Leading-edge-triggered flip-flop

Trailing-edge-triggered flip-flop

LE Leading-edge lock-up latch

TE

LE

TE

TE Trailing-edge lock-up latch

Note the following restrictions and behaviors:

• Only scan chains coming from the compressor-decompressor are synchronized. All
other chains, such as user-defined logic chains and phase-locked loop (PLL) chains,
are ignored during synchronization.

• Because the inserted lock-up latches are bypassed in standard scan mode, a C3
violation is reported for these latches during standard scan mode DRC.

C3 Clock PI's off state failed to allow transparency of nonscan DLAT S
• The synchronization specification is ignored if you use any of the following features:

◦ set_scan_configuration -add_test_retiming_flops

◦ set_scan_configuration -insert_terminal_lockup true

◦ Pipelined scan data

Reducing Power Consumption in DFTMAX Designs
You can reduce the power consumption of designs with scan compression by using the
following features:

• Reducing Compressor Power When Codec Is Inactive

• Reducing Scan Shift Power Using Shift Power Groups

Synopsys® TestMAX™ DFT User Guide
T-2022.03

685

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: Using DFTMAX Compression
Reducing Power Consumption in DFTMAX Designs

Feedback

Reducing Compressor Power When Codec Is Inactive
In a compressed scan architecture, an XOR compression tree combines the shift outputs
from all compressed chains into a reduced set of scan out data signals. This XOR
compression tree is needed only during scan shifting in that codec’s compressed scan
mode. At other times, the compression logic is not needed, but it will still toggle when the
tail scan flip-flops of the compressed chains toggle. This is a particular concern during
mission mode, when the flip-flops are clocked at their full operating frequency.

To address this, the tool can insert gating at the inputs to the XOR compression tree to
eliminate this toggling activity and reduce power consumption in other modes of operation.

To enable XOR compressor gating, specify the following option:

dc_shell> set_scan_compression_configuration -min_power true
When you enable XOR compressor gating, the tool inserts gating at the inputs to the XOR
compression tree as shown in Figure 285. Every compressor input is AND-gated with an
active-low pwr_save_n signal before going to the XOR tree.

Figure 285 Example of a Default X-Tolerant Compressor With Gated Inputs

pwr_save_n

The pwr_save_n gating signal is generated by combining the scan-enable signal and
the test control module (TCM) signal for the codec’s compression mode, as shown in
Figure 286. By generating this gating signal from the existing test-mode and scan-enable
signals, no additional dedicated control signal is required at the block boundary. In a CTL
test model flow, this also means that no update to a block’s test model is needed when
XOR compressor gating is added to a block.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

686

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: Using DFTMAX Compression
Reducing Power Consumption in DFTMAX Designs

Feedback

Figure 286 Example of Top-Level Compressor Power Gating Control

test_se

test_mode*
One or
more

signals

pwr_save_n

TCM

Preserving Compressor Gating Cells During Optimization
When combinational gating exists at the inputs to a DFTMAX XOR compression tree,
it is possible for the gate remapping algorithms to push gating cells further into the
compression tree when common terms exist in at the inputs of XOR compression gates.
When the gating cells are pushed further into the tree, toggling can occur at the upstream
XOR cells, and the power reduction effectiveness is reduced. To preserve the full power
reduction benefits, logic synthesis optimization must not move the gating cells into the
compression tree.

In the .ddc flow, this is automatically handled. the tool applies the size_only attribute
to the gating cells as soon as they are created, so that optimization cannot remap the
gating cell functionality into a different gate-level structure. Because this attribute persists
in a .ddc flow, the gating cell placement and the power reduction benefits are preserved.

However, in the Verilog flow, this attribute does not persist. To get the same power-saving
benefits, run the write_script command before you write out the Verilog netlist. Extract
the commands that apply the size_only attribute to the compressor gating cells. When
the netlist is read back in, use these commands to reapply the size_only attribute to the
power gating logic.

Reducing Scan Shift Power Using Shift Power Groups
You can use shift power groups to reduce power consumption during scan shift. This
feature is described in the following topics:

• The Shift Power Groups Architecture

• Scan-Enable Signal Requirements for Shift Power Groups

• Configuring Shift Power Groups

• Integrating Cores With Shift Power Groups in Hierarchical Flows

Synopsys® TestMAX™ DFT User Guide
T-2022.03

687

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: Using DFTMAX Compression
Reducing Power Consumption in DFTMAX Designs

Feedback

• Configuring Shift Power Groups in TestMAX ATPG

• Using Shift Power Groups With Other DFT Features

• Limitations of Shift Power Groups

The Shift Power Groups Architecture
During scan shift, there is significant toggle activity in the scan chains. At high scan shift
frequencies, this can result in higher-than-desired shift power consumption.

The shift power groups feature helps reduce power consumption during scan shift in
DFTMAX compressed scan modes. This feature inserts AND gates at the decompressor
outputs before each compressed scan chain. The chains are gated in groups that are
controlled by a shift power control (SPC) chain, as shown in Figure 287.

Figure 287 Shift Power Groups Decompressor Architecture

Decompressor (with shift power gating)

G
N

Shift power
control chain

Latched
shift power
control bits

gsel[*]

test_se

N

(Control chain scan-out)

(Control chain scan-in) (Codec scan-ins)

(Compressed scan chains)
CLK

The SPC chain is an external (uncompressed) chain outside the DFTMAX codec. When
scan-in completes, the SPC registers contain the group mask values for the next pattern.
The de-asserted scan-enable signal, test_se, latches these bits into shadow latches that
retain the mask values for scan-in of the next pattern.

TestMAX ATPG configures the group masking in each pattern, depending on the power
constraints and the number of care bits in each chain group. The larger number of short
chains inherent to scan compression provide finer granularity for this control. Masked
groups load constant values into their chains, which reduces overall toggle activity.

SPC chains must be external chains because a compressed SPC chain would gate itself,
preventing it from reliably loading in each pattern.

The shift power logic also includes a hardware disable signal that, when asserted, disables
the shift power logic by enabling all compressed chains, as shown in Figure 288. This
signal must be de-asserted or asserted prior to DRC, depending on whether the shift
power groups feature is enabled in TestMAX ATPG or not, respectively.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

688

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: Using DFTMAX Compression
Reducing Power Consumption in DFTMAX Designs

Feedback

Figure 288 Shift Power Disabling Logic

G
N

Shift power
control chain

Latched
shift power
control bits

gsel[*]

test_se

N

CLK

N

SPC_disable

Disable
gating

Scan-Enable Signal Requirements for Shift Power Groups
When the DFTMAX shift-power codec scan-enable signal is de-asserted, the shift power
logic latches the values from the control chain. Therefore, for proper operation, this scan-
enable signal must be held in the inactive state in all capture procedures.

The STIL protocol file created by the tool does not apply this constraint. As a result, you
must manually constrain any scan-enable signals used by DFTMAX shift-power codecs,
as described in Configuring Shift Power Groups in TestMAX ATPG on page 692.

Alternatively, if you use a custom STIL protocol file, you can update it to constrain the
scan-enable signals in all capture procedures.

Configuring Shift Power Groups
To configure the shift power groups feature, do the following:

1. Enable the shift power groups feature.

dc_shell> set_scan_compression_configuration \
 -shift_power_groups true

2. Specify the configuration of the compressed chain groups.

• To directly specify the number of compressed chain groups, and therefore the
length of the SPC chain, use the -shift_power_chain_length option:

dc_shell> set_scan_compression_configuration \
 -shift_power_chain_length 16

• To specify the number of compressed chains in each group, which makes
the SPC chain length a function of the compressed chain count, use the
-shift_power_chain_ratio option:

dc_shell> set_scan_compression_configuration \
 -shift_power_chain_ratio 12

Synopsys® TestMAX™ DFT User Guide
T-2022.03

689

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: Using DFTMAX Compression
Reducing Power Consumption in DFTMAX Designs

Feedback

These options are mutually exclusive.

3. Define the shift power groups disable signal.

dc_shell> set_dft_signal -view spec -type TestControl \
 -port SPC_DISABLE

dc_shell> set_scan_compression_configuration \
 -shift_power_disable SPC_DISABLE
You can define the disable signal using the -port and/or -hookup_pin options of
the set_dft_signal command. For an “internal pins” hookup pin, you must use a
test_setup protocol that de-asserts the disable signal.

4. Configure the shift power control chain.

• If no OCC controllers (DFT-inserted or user-defined) are configured in the current
design, you must configure an external SPC chain.

Specify the clock, scan-in, and scan-out signals to use for the SPC chain:

dc_shell> set_scan_compression_configuration \
 -shift_power_clock CLK

dc_shell> set_scan_path SPC -class spc \
 -scan_data_in SPC_IN \
 -scan_data_out SPC_OUT \
 -test_mode all
You do not need to specify SPC scan path elements; the SPC chain is automatically
included in the specification.

• If OCC controllers (DFT-inserted or user-defined) are configured in the current
design, configure an external clock chain:

dc_shell> set_scan_path OCC -class occ \
 -scan_data_in OCC_IN \
 -scan_data_out OCC_OUT \
 -test_mode all ;# includes the SPC chain too
An external clock chain is required because a compressed clock chain would be
gated, preventing it from reliably loading in each pattern.

By default, the tool automatically appends the SPC chain to the clock chain. It is
clocked by the ATE clock unless specified otherwise with the -shift_power_clock
option of the set_scan_compression_configuration command.

Alternately, you can explicitly define a separate external SPC chain as previously
described, which provides independent access to the OCC and SPC chains when
the core is integrated.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

690

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: Using DFTMAX Compression
Reducing Power Consumption in DFTMAX Designs

Feedback

Integrating Cores With Shift Power Groups in Hierarchical Flows
This topic describes how to integrate cores with shift power groups.

Configuring the Control Chain for Shift Power Groups Cores
When you integrate cores that use shift power groups, you must define a top-level external
control chain that includes all core-level and top-level clock chains and/or SPC chains, as
shown in Figure 289.

Figure 289 External Control Chain in a Shift Power Groups Design

Clock chain
OCC

controller

SPC chain

Clock chain
OCC

controller

SPC chain

SPC chain

Use the set_scan_path command to define the top-level external control chain as follows:

• If any core-level or top-level clock chains exist or will be inserted, then define the
external chain using the -class occ option.

• If only core-level or top-level SPC chains exist or will be inserted, then define the
external chain using the -class spc option.

• All core-level clock chains and SPC chains must be explicitly included in the
specification using the -include_elements option. They are not automatically
included.

• All top-level clock chains must be explicitly included in the specification using the
-include_elements option. They are not automatically included.

• Top-level SPC chains are automatically included in the external chain.

The following example includes core-level clock chains and SPC chains along with top-
level clock chains and SPC chains:

set_scan_path clock_chain -class occ \
 -include_elements { \
 core1/SPC \
 core2/SPC \
 coreOCC1/OCC \
 coreOCC2/OCC \
 snps_clk_chain_2/clock_chain} \
 -complete true \

Synopsys® TestMAX™ DFT User Guide
T-2022.03

691

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: Using DFTMAX Compression
Reducing Power Consumption in DFTMAX Designs

Feedback

 -scan_data_in OCC_SI \
 -scan_data_out OCC_SO \
 -test_mode all
(the top-level SPC chain is automatically included)

If you concatenate external control chains from pipelined cores, those cores must be
created with beginning and ending retiming registers to avoid edge-related concatenation
issues at the top level. See the retiming register information in Using Shift Power Groups
With Other DFT Features on page 693.

Connecting Core-Level Shift Power Disable Signals
When integrating cores that contain shift power groups, you must manually hook up core-
level shift power disable signals to a top-level disable signal.

You can use one of the following methods:

• Include preexisting connections to the cores in your top-level RTL.

• Use ECO commands, such as disconnect_net and connect_pin, to make the
connections to the cores.

You can share a single disable signal or use multiple disable signals.

All shift power disable signals must be de-asserted (set to logic 0) to enable the shift
power logic. The DFT-created disable signal for a top-level codec is already de-asserted
in the SPF. Additional disable signals must be manually de-asserted by defining constant
signals on them. For example,

dc_shell> set_dft_signal -view existing_dft -type Constant \
 -port SPC_CORE_DISABLE* -active_state 0
Configuring Shift Power Groups for a Top-Level Codec
If you are implementing a top-level codec, you must configure shift power groups for
that codec using the pertinent options of the set_scan_compression_configuration
command. For more information, see Configuring Shift Power Groups on page 689.

Configuring Shift Power Groups in TestMAX ATPG
Use the following commands in TestMAX ATPG to configure ATPG use of the shift power
groups hardware:

DRC_T> set_drc -spc_chain SPC_chain_name
DRC_T> set_atpg -shift_controller_peak probability_value
SPC_chain_name is the name of the scan path that contains the SPC chain.
probability_value is the maximum percentage of scan cells that can switch in a shift cycle.
TestMAX ATPG rejects patterns that exceed this switching percentage.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

692

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: Using DFTMAX Compression
Reducing Power Consumption in DFTMAX Designs

Feedback

As described in Scan-Enable Signal Requirements for Shift Power Groups on page 689,
you must also constrain the scan-enable signal used by the shift-power logic to be de-
asserted during capture. For example,

DRC_T> add_pi_constraints 0 SE_port ;# signal is active-high
The STIL protocol file (SPF) created by the TestMAX DFT tool enables shift power groups
by default. When enabled, you must configure the feature with the preceding commands,
otherwise the compressed scan chains will fail DRC due to chain blockages.

Alternatively, you can assert the shift power disable signal, in which case the DFTMAX
codec degenerates to a non-shift-power codec and no shift power configuration
commands are needed.

Using Shift Power Groups With Other DFT Features
The shift power groups feature interacts with other DFT features as follows:

• Multiple test modes

You can use shift power groups with multiple test modes, including multiple DFTMAX
compression modes. Configure the SPC chain in each DFTMAX compression mode.
See Per-Test-Mode Scan Compression Configuration Commands on page 669 for
supported options.

The control chain must be external only in DFTMAX compression modes. If desired,
you can use the -test_mode option of the set_scan_path specification to limit the
external chain specification to those modes (instead of all); the control chains are
incorporated into regular scan chains in other modes.

If shift power groups are used, they must be used in all DFTMAX test modes. You
cannot mix codecs with and without shift power groups across test modes.

• DFT partitions

You can use shift power groups with DFT partitions. Configure the SPC chain in
each partition that contains a DFTMAX codec. See Per-Partition Scan Compression
Configuration Commands on page 664 for supported options.

Note that although SPC chains can be created for multiple partitions, they are all
stitched into the single external control chain specified by the set_scan_path
command.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

693

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: Using DFTMAX Compression
Reducing Power Consumption in DFTMAX Designs

Feedback

If shift power groups are used, they must be used in all partitions that contain a
DFTMAX codec. You cannot mix codecs with and without shift power groups across
partitions.

• Retiming registers

When you enable beginning and/or ending retiming registers, SPC chains (and clock
chains) are clocked on the leading clock edge instead of the trailing clock edge. This
facilitates control chain concatenation at the top level.

Limitations of Shift Power Groups
Note the following limitations of shift power groups:

• This feature applies only to the compressed scan chains it is configured for. Standard
scan modes are unaffected.

• When shift power groups are used, they must be used

◦ In all DFTMAX test modes

◦ In all codecs in the design (across both cores and DFT partitions)

You cannot mix DFTMAX codecs with and without shift power groups within the same
design.

• The shift power control (SPC) chain must be an external (uncompressed) chain, which
you explicitly define using the set_scan_path command.

• When using OCC controllers, you must use external (uncompressed) clock chains.

• When integrating cores that contains shift power groups,

◦ You must manually hook up the core-level shift power disable signal to a top-level
shift power disable signal.

◦ In the Hybrid integration flow, you must explicitly configure the
top-level codec using the -inputs and -outputs options of the
set_scan_compression_configuration command. Otherwise, incorrect SPF
might be generated.

• The report_scan_path command does not report SPC chain information.

In the TestMAX ATPG tool, the following requirement applies:

• You must use the add_pi_constraints command to constrain the scan-enable signal
to be de-asserted during scan capture.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

694

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: Using DFTMAX Compression
Forcing a Compressor With Full Diagnostic Capabilities

Feedback

In the TestMAX Diagnosis tool, the following requirement applies:

• Diagnosis capability is limited. High-resolution diagnostics are not supported when shift
power groups are used. Assert the shift power disable signal to generate patterns for
high-resolution diagnostics.

During ATPG, the following tasks are not supported when using shift power groups:

• Analyzing X effects or X sources performed during a TestMAX ATPG simulation

• Comparing simulation results from either a VCD simulation file, the internal patterns
from the fast-sequential simulator, or the internal patterns from the full-sequential
simulator

• Reporting total (cumulative) power data with the report_power command after
performing multiple (incremental) ATPG runs

• Saving patterns and fault lists to files at a specified checkpoint interval during ATPG
pattern generation

• Saving a GZIP-compressed parallel pattern set that can be simulated during the ATPG
process

• Assigning ATPG constraints during an IDDQ measure strobe when the IDDQ fault
model is selected

Forcing a Compressor With Full Diagnostic Capabilities
R10 DRC violations indicate that two or more compressed scan chains share the same
XOR compression signature at the scan outputs. As a result, a single fault detected at a
scan output cannot be uniquely mapped back through the compression logic to a specific
scan chain during diagnosis. This is also called aliasing.

To force DFT insertion to implement only compressors with full diagnostic capabilities, that
is, compressors that do not have any R10 DRC violations, set the following option:

dc_shell> set_scan_compression_configuration -force_diagnosis true
Note that this option does not change how the compressor logic is built; it simply causes
DFT insertion to stop instead of complete if the compressor would have R10 DRC
violations.

Table 51 shows the maximum number of compressed scan chains that can be built for a
given set of scan-out pins without an R10 DRC violation. Note that these limits are lower
than the maximum upper limits shown in Table 52 on page 728.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

695

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: Using DFTMAX Compression
Forcing a Compressor With Full Diagnostic Capabilities

Feedback

Table 51 Compressed Scan Chain Limits for Avoiding
R10 DRC Violations

Number of scan-out pins Maximum number of chains

2 3

3 7

4 15

5 31

6 63

7 127

8 255

9 510

10 1012

11 1980

12 3796

13 7098

14 12910

15 22818

16 32000

For P scanout pins, the maximum number of chains N is computed as follows:

where the number of k-combinations C is computed by

If you exceed these limits when the -force_diagnosis option is set to true, DFT
insertion stops with a TEST-1603 message:

Warning: The compressor generated might have lower diagnostics precision.
(TEST-1603)
Information: Scan routing is not complete. Signals 'serial or

Synopsys® TestMAX™ DFT User Guide
T-2022.03

696

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: Using DFTMAX Compression
Performing Congestion Optimization on Compressed Scan Designs

Feedback

scan_enables' need to be routed. (TEST-899)
Information: DFT insertion was not successful. There were unrecoverable
processing errors. (TEST-211)
0

R10 violations can be issued by post-DFT DRC analysis or by DRC in the TestMAX ATPG
tool.

See Also

• SolvNet article 036993, “What Do R10 and R11 DRC Violations Mean?” for more
information about R10 violations

Performing Congestion Optimization on Compressed Scan
Designs

As the target scan chain compression ratio increases, the number of connections between
the codec logic and compressed scan chains increases, and the number of reconfiguration
MUX connections increases. This also increases the possibility of routing congestion. The
TestMAX DFT tool provides congestion reduction algorithms that use Design Compiler
Graphical technology to reduce the congestion introduced by scan compression logic.

To use this feature, you must perform the initial compile with congestion optimization using
the compile_ultra -scan -spg command. See Example 105.

Example 105 Inserting DFTMAX Scan Compression in a Design Compiler Graphical Flow
compile_ultra -scan -spg

set_dft_configuration -scan_compression enable
...other DFT configuration settings...

preview_dft
insert_dft

In this case, the preview_dft and insert_dft commands issue the following message:

Running Scan Compression with congestion optimization enabled.

Note:
The compressed scan congestion optimization feature does not work in multiple
test-mode flows.

See Also

• Physical DFT Features in Design Compiler on page 135 for more information about
reordering and repartitioning optimizations performed for all scan designs

Synopsys® TestMAX™ DFT User Guide
T-2022.03

697

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnet.synopsys.com/retrieve/036993.html

Chapter 17: Using DFTMAX Compression
Using AutoFix With Scan Compression

Feedback

Using AutoFix With Scan Compression
When you insert compressed scan into a design, a test-mode signal is used to enable
standard scan or compressed scan. The AutoFix feature requires a separate test-mode
signal to enable the testability fixing logic added by DFT Compiler. These test-mode
signals cannot be shared, because the AutoFix testability fixes must be activated for
both values of the compressed scan test-mode pin, that is, in both the standard scan and
compressed scan modes.

When you configure the AutoFix control signal with the -control_signal option of the
set_autofix_configuration command, specify a test-mode signal that is dedicated
to enabling the AutoFix logic. If you have not specified any test-mode encodings with
the define_test_mode -encoding command, the tool will avoid using the AutoFix
control signal when it chooses test-mode signals for the test-mode encodings. If you are
specifying your own test-mode encodings, you should avoid using the AutoFix control
signal in your encodings.

See Also

• Using AutoFix on page 330 for more information about using AutoFix to fix design
testability issues

One-Pass DFTMAX Example With AutoFix
The following example performs compressed scan DFT insertion with AutoFix enabled.

Example 106 One-Pass DFTMAX Flow With AutoFix
Define the clocks and asynchronous signals
set_dft_signal -view existing_dft -type ScanMasterClock -timing {45 55} \
 -port clk_st
set_dft_signal -view existing_dft -type ScanMasterClock -timing {55 45} \
 -port clk_st_inv
set_dft_signal -view existing_dft -type Reset -active_state 0 \
 -port rst_st

Enable DFTMAX compression, AutoFix for clocks, resets, sets, and buses
set_dft_configuration -scan_compression enable \
 -fix_clock enable \
 -fix_reset enable \
 -fix_set enable \
 -fix_bus enable \
 -fix_bidirectional enable \
 -control_points enable \
 -observe_points enable
Configure DFTMAX compression
set_scan_compression_configuration -minimum_compression 10 \

Synopsys® TestMAX™ DFT User Guide
T-2022.03

698

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: Using DFTMAX Compression
Using AutoFix With Scan Compression

Feedback

 -xtolerance high -max_length 20
set_scan_configuration -chain_count 8

Set the global AutoFix settings to use data clock_autofix_clock_s
and control TEST_MODE
set_dft_signal -view existing_dft -type ScanMasterClock -timing {45 55} \
 -port clock_autofix_clock_s
set_dft_signal -view spec -type TestMode -port TEST_MODE
set_dft_signal -view spec -type TestData -port clock_autofix_clock_s
set_autofix_configuration -type clock \
 -include_elements [get_object_name [get_cells -hierarchical *]] \
 -control_signal TEST_MODE \
 -test_data clock_autofix_clock_s

Define the cells to fix and ports to use for clock AutoFix
set_dft_signal -view existing_dft -type ScanMasterClock -timing {45 55} \
 -port clock_autofix_clock_sc
set_dft_signal -view spec -type TestData -port clock_autofix_clock_sc
set_autofix_element [get_object_name [get_cells dd_c/*]] -type clock \
 -control_signal TEST_MODE \
 -test_data clock_autofix_clock_sc

Define the cells to fix and ports to use for reset AutoFix
set_dft_signal -view existing_dft -type Reset -active_state 0 \
 -port reset_autofix_reset
set_autofix_element [get_object_name [get_cells -hierarchical *]] \
 -type reset -control_signal TEST_MODE \
 -test_data reset_autofix_reset

Set up testpoint insertion using TEST_MODE as the mode port
and clk_st as the testpoint clock
set_test_point_element -type force_01 -clock_signal clk_s\
 -control_signal TEST_MODE \
 -test_points_per_source_or_sink 1 {dd_c/\o_data_reg[3]/D}
set_test_point_element -type observe -clock_signal clk_st \
 -control_signal TEST_MODE \
 -test_points_per_source_or_sink 1 {dd_c/\o_data_reg[3]/Q}

Set up port to use for DFTMAX test mode control
set_dft_signal -view spec -type TestMode -port TEST_COMPRESS

Set up scan enable to use i_rd pin
set_dft_signal -view spec -type ScanEnable -port i_rd

set_dft_insertion_configuration -synthesis_optimization none

Create the test protocol
create_test_protocol

Run pre-DFT DRC
dft_drc -verbose

Preview test structures to be inserted

Synopsys® TestMAX™ DFT User Guide
T-2022.03

699

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: Using DFTMAX Compression
Using AutoFix With Scan Compression

Feedback

preview_dft -show all

Run test insertion
insert_dft

One-Pass DFTMAX Example With AutoFix and Multiple Test
Modes
The following script example performs compressed scan DFT insertion of multiple test
modes with AutoFix enabled.

Example 107 One-Pass DFTMAX Flow With AutoFix, Using Multiple Test Modes
read_verilog db/my_design.v
current_design top
uniquify
link

Create ports to use as test-mode selection for test modes defined
with define_test_mode
create_port -direction in TM1
create_port -direction in TM2
create_port -direction in TM3

Test-mode ports must be defined with set_dft_signal -view spec TestMode
before use in define_test_mode encoding
set_dft_signal -view spec -type TestMode \
 -port {TM1 TM2 TM3} -test_mode all

Define the test modes for this design
define_test_mode my_base1 -usage scan \
 -encoding {TM1 0 TM2 0 TM3 1}
define_test_mode scan_compression1 -usage scan_compression \
 -encoding {TM1 1 TM2 0 TM3 0}
define_test_mode burn_in -usage scan \
 -encoding {TM1 0 TM2 1 TM3 1}

Define the clocks and asynchronous signals
set_dft_signal -view existing_dft -type ScanMasterClock \
 -timing {45 55} -port sys_clk -test_mode all
set_dft_signal -view existing_dft -type ScanMasterClock \
 -timing {55 45} -port sys_clk_inv -test_mode all
set_dft_signal -view existing_dft -type Reset -active_state 0 \
 -port sys_reset -test_mode all

Enable DFTMAX compression, AutoFix for clocks, resets, sets, and buses
set_dft_configuration -scan_compression enable \
 -fix_clock enable \
 -fix_reset enable \
 -fix_set enable \

Synopsys® TestMAX™ DFT User Guide
T-2022.03

700

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: Using DFTMAX Compression
Using AutoFix With Scan Compression

Feedback

 -fix_bus enable \
 -fix_bidirectional enable \
 -control_points enable \
 -observe_points enable

Configure the test modes
set_scan_compression_configuration -minimum_compression 10 \
 -xtolerance high -base_mode my_base1 \
 -test_mode scan_compression1
set_scan_configuration -chain_count 8 -test_mode my_base1
set_scan_configuration -chain_count 1 -clock_mixing mix_clocks \
 -test_mode burn_in

Define the cells to fix and ports to use for clock AutoFix
set_dft_signal -view existing_dft -type ScanMasterClock -timing {45 55} \
 -port clock_autofix_clock_s -test_mode all
set_dft_signal -view spec -type TestData -port clock_autofix_clock_s \
 -test_mode all
set_dft_signal -view spec -type TestMode -port TEST_MODE \
 -test_mode all
set_autofix_element [get_object_name [get_cells -hierarchical *]] \
 -type clock -control_signal TEST_MODE \
 -test_data clock_autofix_clock_s

Define the cells to fix and ports to use for reset AutoFix
set_dft_signal -view existing_dft -type Reset -active_state 0 \
 -port reset_autofix_reset -test_mode all
set_autofix_element [get_object_name [get_cells -hierarchical *]] \
 -type reset -control_signal TEST_MODE \
 -test_data reset_autofix_reset

Set up testpoint insertion using TEST_MODE as the mode port
and sys_clk as the testpoint clock
set_test_point_element -type force_01 -clock_signal sys_clk \
 -control_signal TEST_MODE \
 -test_points_per_source_or_sink 1 {dd_c/o_data_reg[3]/D}
set_test_point_element -type observe -clock_signal sys_clk \
 -control_signal TEST_MODE \
 -test_points_per_source_or_sink 1 {dd_c/o_data_reg[3]/Q}

Set up scan enable to use i_rd pin
set_dft_signal -view spec -type ScanEnable -port i_rd -test_mode all

Enable rapid scan stitching
set_dft_insertion_configuration -synthesis_optimization none

Create the test protocol
create_test_protocol

Run pre-DFT DRC
dft_drc -verbose

Preview test structures to be inserted

Synopsys® TestMAX™ DFT User Guide
T-2022.03

701

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 17: Using DFTMAX Compression
Using AutoFix With Scan Compression

Feedback

preview_dft -show all

Generate a report specific to AutoFix
report_autofix_configuration -type all

Run insert_dft to insert into design
insert_dft

List the modes inserted and report the test mode1
list_test_modes
report_test_mode1

Run post-DFT DRC
current_test_mode scan_compression1
report_dft_signal
dft_drc -verbose

current_test_mode my_base1
report_dft_signal
dft_drc -verbose

current_test_mode burn_in
report_dft_signal
dft_drc -verbose

Write test protocol for use in TestMAX ATPG
write_test_protocol -test_mode scan_compression1 \
 -output stil/10x_xtol_moxie_autofix.stil -names verilog
write_test_protocol -test_mode my_base1 \
 -output stil/10x_xtol_moxie.scan_autofix.stil -names verilog

Write out the scan inserted design
change_names -rules verilog -hierarchy
write -format verilog -hierarchy \
 -output vg/10x_xtol_moxie_top_scan_autofix.v
write -format ddc -hierarchy \
 -output db/10x_xtol_moxie_top_scan_autofix.ddc

Synopsys® TestMAX™ DFT User Guide
T-2022.03

702

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

18
Hierarchical Adaptive Scan Synthesis

This chapter explains how to run hierarchical adaptive scan synthesis flows. It also
describes how to integrate compressed scan cores, standard scan cores, and test-ready,
top-level, sequential user-defined logic.

In the hierarchical adaptive scan synthesis (HASS) flow, scan compression logic is placed
at the block level, and all cores with scan compression logic are integrated at the chip
level. This approach helps reduce the routing congestion prevalent in multimillion-gate
designs.

The Hybrid flow is an extension of the HASS flow that provides additional support for
compressed scan insertion for user-defined logic. A normal HASS flow supports insertion
of standard scan chains for user-defined logic, and the Hybrid flow supports insertion of
compressed scan for user-defined logic.

This chapter includes the following topics:

• The HSS Flow

• The HASS Flow

• The Hybrid Flow

• Using Multiple Test Modes in Hierarchical Flows

• Top-Level Integration Script Examples

• HASS and Hybrid Flow Limitations

The HSS Flow
You can use the hierarchical scan synthesis (HSS) flow to insert scan when one or
more standard scan cores are present. The compressed scan HSS flow is similar to the
standard scan HSS flow described in Hierarchical Scan Synthesis on page 122, except
that scan compression is added around standard scan cores at the top level.

When the TestMAX DFT tool inserts scan compression in the HSS flow, it applies
compression to standard scan cores as well as top-level logic. Scan chains inside
standard scan cores are treated as scan segments.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

703

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 18: Hierarchical Adaptive Scan Synthesis
The HSS Flow

Feedback

Figure 290 shows an example of a compressed scan HSS flow.

Figure 290 The Compressed Scan HSS Flow

S_CORE GLUES_CORE

The following logic types are supported in the compressed scan HSS flow:

• Standard scan cores

These cores can be represented by the full netlist or a CTL test model. The TestMAX
DFT tool incorporates the core-level scan chains into scan compression as scan chain
segments. These scan chain segments can be concatenated and rebalanced inside the
codec as needed, but they cannot be subdivided into smaller scan chains.

• Test-ready cores that are scan-replaced, but do not yet have scan chains

The tool incorporates the test-ready logic into scan compression, creating compressed
scan chains as needed to meet the scan chain requirements.

• Cores that have not yet been scan-replaced

The tool performs scan replacement before applying scan compression.

• Top-level glue logic that might or might not be test-ready

The tool performs scan replacement if needed, then it applies scan compression.

The compressed scan HSS flow is automatically applied whenever one or more
standard scan cores are present and scan compression is enabled with the
set_dft_configuration command:

dc_shell> set_dft_configuration -scan_compression enable
You do not need to specify any additional integration options with the
set_scan_compression_configuration command to enable the compressed scan HSS
flow.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

704

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 18: Hierarchical Adaptive Scan Synthesis
The HASS Flow

Feedback

The HASS Flow
Sometimes a design is too large for scan compression to be inserted using a top-down flat
or HSS flow. Or, a design might include some reused compressed scan cores. In these
cases, a bottom-up hierarchical flow is needed to assemble compressed scan cores at the
top level and perform core integration.

You can use the hierarchical adaptive scan synthesis (HASS) flow to perform top-level
core integration with one or more compressed scan cores. The HASS flow is similar to
the hierarchical scan synthesis (HSS) flow described in Hierarchical Scan Synthesis on
page 122, except that the HASS flow adds support for compressed scan cores.

Figure 291 shows an example of the HASS integration flow.

Figure 291 HASS Integration of a Compressed Scan Core

C_CORE C_CORE

In the HASS flow, no scan compression logic is added at the top level. The TestMAX
DFT tool promotes the scan connections of the compressed scan cores to top-level scan
connections.

A compressed scan core contains scan chain logic that can operate in both standard
scan and compressed scan modes. A standard scan core contains scan chains that only
operate in standard scan mode. When a mix of compressed scan and standard scan cores
are integrated at the top level in the HASS flow, the test modes operate as follows:

• In standard scan mode, all cores operate in their standard scan modes.

• In compressed scan mode, compressed scan cores operate in their compressed scan
mode, while the standard scan cores continue to operate in standard scan mode.

Preparing Cores in the HASS Flow
In the HASS flow, at least one top-level compressed scan core is required for top-level
integration. Additional cores, containing compressed scan or standard scan logic, can also
be provided.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

705

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 18: Hierarchical Adaptive Scan Synthesis
The HASS Flow

Feedback

Example 108 shows a typical compressed scan insertion script used in the HASS flow.

Example 108 Typical Core-Level Compressed Scan Insertion Script
read_ddc core1_test_ready.ddc
current_design core1
set_scan_configuration -chain_count 10
set_dft_configuration -scan_compression enable
set_dft_signal -view existing_dft -port CLK -type \
 ScanClock -timing {45 55}

create_test_protocol
dft_drc
preview_dft
insert_dft

current_test_mode Internal_scan
dft_drc
current_test_mode ScanCompression_mode
dft_drc

write -format ddc -hierarchy -output core1.ddc
write_test_model -format ddc -output core1.ctlddc
change_names -rules verilog -hierarchy
write -format verilog -hierarchy -output core1.v

Each core must have CTL test model information so that the tool can perform top-level
integration. If the block fits in memory during top-level integration, you can use the write
command to write a design .ddc file that contains the full design netlist as well as the CTL
test model information:

dc_shell> write -format ddc -hierarchy -output design_name.ddc
If the block is large, you can use the write_test_model command to write out a test-
model-only .ddc file that contains the CTL test model along with an interface-only
representation of the core that allows the test model to be linked at the top level:

dc_shell> write_test_model -format ddc -output design_name.ctlddc
You can use either format for standard scan and compressed scan cores in the HASS
flow.

HASS Integration of Compressed Scan Cores
To enable the HASS flow at the top level, use the following commands:

dc_shell> set_dft_configuration -scan_compression enable
dc_shell> set_scan_compression_configuration -integration_only true
The first command enables scan compression, and the second command enables the
HASS flow.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

706

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 18: Hierarchical Adaptive Scan Synthesis
The HASS Flow

Feedback

The HASS flow does not concatenate or rebalance the scan chain connections of
compressed scan cores at the top level. Each core-level scan chain is promoted to a
top-level scan chain with dedicated scan pin connections in both the standard scan and
compressed scan modes. The top-level scan count, and therefore the scan pin budget, is
determined by the number of scan chains in the compressed scan cores.

Figure 292 shows the results from the HASS flow when three compressed scan cores are
present. All nine codec connections are promoted to nine top-level scan-in and scan-out
connections. No other scan chain count is possible.

Figure 292 HASS Integration of Three Compressed Scan Cores

C_CORE1 C_CORE2 C_CORE3

If you issue a set_scan_configuration -chain_count command requesting fewer scan
chains, the preview_dft and insert_dft commands issue the following warning:

Warning: Cells with 8 new incompatible clock domains have not been
assigned to scan chains. Cannot honor -chain_count specification of 7.
Try using set_scan_configuration -clock_mixing mix_edges or
 -clock_mixing
mix_clocks. (TEST-355)

If you issue a set_scan_configuration -chain_count command requesting more scan
chains, the preview_dft and insert_dft commands issue the following warning:

Warning: Only 8 scan chain elements are free. Cannot honor -chain_count
specification of 9. (TEST-348)

When only compressed scan cores exist, you do not need to specify a chain count with
the set_scan_configuration -chain_count command. However, you can specify the
expected chain count so that the tool verifies the actual number of scan chains against the
expected number.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

707

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 18: Hierarchical Adaptive Scan Synthesis
The HASS Flow

Feedback

HASS Integration of Additional Uncompressed Scan Logic
The HASS flow also supports the presence of uncompressed scan logic in addition to the
compressed scan blocks by creating standard scan chains. The following uncompressed
logic types are supported during top-level integration:

• Standard scan cores

These cores are represented by the full netlist or a CTL test model. The TestMAX DFT
tool incorporates the core-level scan chains into top-level scan chains as scan chain
segments. These scan chain segments can be concatenated and rebalanced at the top
level as needed, but they cannot be subdivided into smaller scan chains.

• Test-ready cores that are scan-replaced, but do not yet have scan chains

The tool architects standard scan chains that are active in both the standard scan and
compressed scan modes.

• Cores that are not scan-replaced

The tool performs scan replacement, then architect standard scan chains that are
active in both the standard scan and compressed scan modes.

• Top-level glue logic that might or might not be test-ready

The tool performs scan replacement if needed, then architect standard scan chains that
are active in both the standard scan and compressed scan modes.

The scan chain connections for compressed cores are always promoted to top-level scan
chain connections. The scan architecture behavior for the additional uncompressed logic
depends on whether a target chain count is specified with the set_scan_configuration
-chain_count command.

Figure 293 shows a top-level design example with a compressed scan core, a standard
scan core, and some top-level glue logic. The compressed scan core C_CORE contains
24 flip-flops divided into 6 compressed scan chains of 4 flip-flops each, with 3 scan-in and
scan-out pins. The standard scan core S_CORE contains 12 flip-flops, split into 4 scan
chains. The top-level glue logic GLUE contains 2 scan-replaced flip-flops with no scan
chains.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

708

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 18: Hierarchical Adaptive Scan Synthesis
The HASS Flow

Feedback

Figure 293 Design Example Before HASS Integration

C_CORE S_CORE4 4
3 3 3 3

1
1

GLUE

Additional uncompressed logicCompressed scan core

When no target chain count is specified, the following goals are used for scan architecture
of the additional logic:

• For the compressed scan mode of operation, the tool attempts to architect scan chains
that do not exceed the longest compressed scan chain inside a compressed scan core.
This preserves the test compression characteristics of the compressed scan cores.

• For the standard scan mode of operation, the tool follows the default rules of scan
chain architecture where the minimum number of scan chains is built that meet any
applied scan architecture requirements.

Figure 294 shows the resulting HASS top-level integration results operating in compressed
scan mode. The codec scan chain connections from C_CORE are promoted directly to
top-level connections. For the remaining uncompressed logic, standard scan chains are
architected so that the chain length of the compressed core is not exceeded.

Figure 294 Compressed Scan Mode After HASS Integration With No Chain Count Specified

C_CORE4 4 S_CORE
3 3 3 3

1 GLUE
1

Figure 295 shows the resulting HASS top-level integration results operating in standard
scan mode. The standard scan chain connections from C_CORE are promoted directly
to top-level connections. For the remaining uncompressed logic, a single standard scan
chain is created that includes joined scan segments from S_CORE and the scan flip-flops
from the GLUE logic.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

709

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 18: Hierarchical Adaptive Scan Synthesis
The HASS Flow

Feedback

Figure 295 Standard Scan Mode After HASS Integration With No Chain Count Specified

1S_CORE
3 3 3 3

GLUE
18 8 8

C_CORE

Note that when a chain count is not specified, the scan chain counts might be different
between the standard scan and compressed scan modes.

When a scan chain count is specified with the set_scan_configuration -chain_count
command, the tool attempts to honor the specified chain count for both the standard scan
and compressed scan modes. Figure 296 shows the HASS top-level integration results
for the compressed scan mode when the set_scan_configuration -chain_count
6 command is specified. Because the specified scan chain count applies to both the
standard scan and compressed scan modes, the scan architecture of the uncompressed
logic is the same in both modes.

Figure 296 Compressed Scan Mode After HASS Integration With -chain_count 6 Specified

C_CORE4 4 S_CORE
3 3 3 3

1 GLUE
1

If you issue a set_scan_configuration -chain_count command requesting fewer scan
chains than is possible, the preview_dft and insert_dft commands issue the following
warning:

Warning: Cells with 4 new incompatible clock domains have not been
assigned to scan chains. Cannot honor -chain_count specification of 3.
Try using set_scan_configuration -clock_mixing mix_edges or
 -clock_mixing
mix_clocks. (TEST-355)

If you issue a set_scan_configuration -chain_count command requesting more
scan chains than is possible, the preview_dft and insert_dft commands issue two
warnings, one for the total set of scan chains and one for the uncompressed logic chains:

Warning: Only 9 scan chain elements are free. Cannot honor -chain_count
specification of 10. (TEST-348)

Synopsys® TestMAX™ DFT User Guide
T-2022.03

710

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 18: Hierarchical Adaptive Scan Synthesis
The Hybrid Flow

Feedback

Warning: Only 6 scan chain elements are free. Cannot honor -chain_count
specification of 7. (TEST-348)

Since compressed scan mode chains are usually short, you should take care to manage
the relative lengths of standard scan and compressed scan chains at the top level. This
might require management of the scan chain lengths of any standard scan cores, as well
as providing an adequate scan pin budget at the top level to avoid excessive standard
scan chain concatenation. If further reduction in chain length is needed, you can use the
Hybrid flow. For more information, see The Hybrid Flow on page 711.

After top-level integration, you can perform DRC of the standard scan mode using the
dft_drc command. However, the tool does not support DRC of the top-level compressed
scan mode. DRC checking for the compressed scan mode is performed in the TestMAX
ATPG tool.

In the HASS flow, a single test-mode pin that is shared across all scan cores is required
for selecting standard scan or compressed scan mode. Complex test-mode encodings are
not supported.

The Hybrid Flow
In the HASS flow, existing compressed scan core chains are promoted to top-level chains
and standard scan is used to access all other logic, including top-level user-defined logic.
If there is a large amount of top-level logic, an imbalance between the compressed scan
chain lengths and standard scan chain lengths might result. This can reduce the effective
amount of test compression.

You can use the Hybrid flow to reduce this chain length imbalance. The Hybrid flow is
a combination of the compressed scan HSS flow and the HASS flow. The Hybrid flow
operates as follows:

• For compressed scan cores, the tool promotes core-level scan connections to top-level
connections, as in the compressed scan HSS flow.

• For uncompressed logic, the tool applies top-level scan compression, as in the HASS
flow.

The Hybrid flow supports the same uncompressed logic types as the HASS flow. For a
list of these logic types, see HASS Integration of Additional Uncompressed Scan Logic on
page 708.

Figure 297 shows an example of the Hybrid integration flow.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

711

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 18: Hierarchical Adaptive Scan Synthesis
The Hybrid Flow

Feedback

Figure 297 Hybrid Integration of a Compressed Scan Core

C_CORE C_CORE

Performing Top-Level Hybrid Integration
To enable the Hybrid flow at the top level, use the following commands:

dc_shell> set_dft_configuration -scan_compression enable
dc_shell> set_scan_compression_configuration -hybrid true
The first command enables scan compression, and the second command enables the
Hybrid flow.

To configure Hybrid integration, you must supply the following information:

• Specify the total top-level scan chain count with the set_scan_configuration
-chain_count command.

• Specify the number of compressed scan chains for the new top-level codec with the
set_scan_compression_configuration -chain_count command, or the maximum
compressed scan chain length with the set_scan_compression_configuration
-max_length command.

Note:
This value does not include the compressed chains in any existing
compressed scan cores.

Just as with the HASS flow, the scan chain connections of compressed scan cores
are promoted to top-level scan chain connections. When you specify the total top-level
chain count with the set_scan_configuration -chain_count command, this value
includes these promoted compressed scan core connections. However, the compressed
chain count specified with the set_scan_compression_configuration -chain_count
command applies only to the logic included in top-level compressed scan insertion.

Figure 298 shows a top-level design that contains a compressed scan core named
C_CORE, a standard scan core named S_CORE, and some top-level logic named GLUE.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

712

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 18: Hierarchical Adaptive Scan Synthesis
The Hybrid Flow

Feedback

Figure 298 Top Level Before Applying Hybrid Integration

C_CORE

Additional uncompressed logicCompressed scan core

S_CORE GLUE

Figure 299 shows the resulting Hybrid top-level design operating in compressed scan
mode. Note the following features:

• The tool determines the number of inputs and outputs on the new top-level codec by
taking the top-level chain count and subtracting the codec connections of the existing
compressed scan cores. In Figure 299, C_CORE uses three of the five total top-level
scan chain connections. The remaining two chain connections determine the width of
the new top-level codec.

• The tool architects four compressed scan chains in the uncompressed logic, then
compresses these chains with the new top-level codec.

Figure 299 Compressed Scan Mode Operation After Hybrid Integration

C_CORE4 4 S_CORE
3 3 3 3

GLUE
1

1

set_scan_configuration -chain_count 5

set_scan_compression_configuration -chain_count 4
Figure 300 shows the HASS top-level integration results operating in standard scan mode.
The TestMAX DFT tool architects two standard scan chains in the uncompressed logic,
and connects them to the two available top-level scan pins.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

713

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 18: Hierarchical Adaptive Scan Synthesis
The Hybrid Flow

Feedback

Figure 300 Standard Scan Mode Operation After Hybrid Integration

S_CORE
3 3 3 3

GLUE
1

1

set_scan_configuration -chain_count 5

8 8 8
C_CORE

Performing Top-Level Hybrid Integration with Partitions
By default, Hybrid integration creates a single codec for all scan logic except the existing
compressed scan cores. You can use the DFT partition feature to create multiple codecs
at the top level. This can help reduce routing congestion. For more information about
defining DFT partitions to create multiple codecs, see Chapter 17, Using DFTMAX
Compression.”

You can use the define_dft_partition command to define an additional partition
and specify the cells and designs to be placed in that partition. All cores and logic not
explicitly assigned to a user-defined partition remain in the default partition, named
default_partition.

You can use the partition feature to perform compressed scan insertion on cores which
have not yet been scan-inserted. This allows you to defer compressed scan insertion of
a core to the top level integration run, where the scan compression configuration can be
adjusted and rerun as needed.

Consider the following scenario:

• Compressed scan core C_CORE already has compressed scan inserted, and only
requires integration at the top level.

• Blocks IP_BLK1 and IP_BLK2 have been synthesized with a test-ready compile, but
they do not yet have scan chains. Each of these blocks should have its own codec
inserted within its hierarchy.

• Some top-level glue logic exists, contained in the GLUE block. This glue logic should
have its own codec inserted at the top level.

The required partitions can be defined as shown in Figure 301.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

714

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 18: Hierarchical Adaptive Scan Synthesis
The Hybrid Flow

Feedback

Figure 301 Hybrid Partition Definitions Before Top-Level Integration

C_CORE IP_BLK1GLUE IP_BLK2

PA
R

TI
TI

O
N

1

PA
R

TI
TI

O
N

2

de
fa

ul
t_

pa
rt

iti
on

Example 109 shows the commands used for partition creation and scan configuration. The
set_dft_location command is used to place the codecs inside IP_BLK1 and IP_BLK2.

Example 109 Defining Partitions in a Hybrid Flow
set_dft_configuration -scan_compression enable
set_scan_compression_configuration -hybrid true

define_dft_partition PARTITION1 -include {IP_BLK1}
define_dft_partition PARTITION2 -include {IP_BLK2}

current_dft_partition PARTITION1
set_scan_configuration -chain_count 3
set_scan_compression_configuration -chain_count 4
set_dft_location -include CODEC IP_BLK1

current_dft_partition PARTITION2
set_scan_configuration -chain_count 3
set_scan_compression_configuration -chain_count 4
set_dft_location -include CODEC IP_BLK2

current_dft_partition default_partition
set_scan_configuration -chain_count 5
set_scan_compression_configuration -chain_count 3

Figure 302 shows the resulting codec configurations after the insert_dft command is
used.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

715

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 18: Hierarchical Adaptive Scan Synthesis
Using Multiple Test Modes in Hierarchical Flows

Feedback

Figure 302 Hybrid Partition Definitions After Top-Level Integration

C_CORE GLUE

PA
R

TI
TI

O
N

1

IP_BLK1

PA
R

TI
TI

O
N

2

IP_BLK2

de
fa

ul
t_

pa
rt

iti
on

The normal Hybrid scan architecture rules apply inside each partition. For example:

• A top-level chain count of five is specified for the default partition. Since C_CORE
already has three scan chain connections, two scan chain connections are allocated to
the codec inserted in the GLUE block.

• A compressed chain count of three is specified for the default partition. Three
compressed chains are created inside the GLUE block during compressed scan
insertion.

• Top-level chain counts and compressed chain counts applied to other partitions only
apply to the codec insertion for logic within those partitions.

See Also

• Top-Down Flat Compressed Scan Flow With DFT Partitions on page 660 for more
information about defining DFT partitions

Using Multiple Test Modes in Hierarchical Flows
In hierarchical scan compression flows with multiple test modes, DFT cores have test
modes that must be incorporated into top-level test modes during core integration. This
process is explained in the following topics:

• Default Core-Level Test Mode Assignment

• User-Defined Core-Level Test Mode Scheduling

See Also

• Multiple Test Modes on page 355 for more information about user-defined test modes

Synopsys® TestMAX™ DFT User Guide
T-2022.03

716

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 18: Hierarchical Adaptive Scan Synthesis
Using Multiple Test Modes in Hierarchical Flows

Feedback

Default Core-Level Test Mode Assignment
By default, the TestMAX DFT tool creates as many top-level test modes as needed to
accommodate all of the core-level test modes present during core integration.

The relationship between core-level and top-level test modes is determined by test mode
name. In scan compression flows, the following additional rule applies:

• A compressed scan core with default test mode names (Internal_scan and
ScanCompression_mode) is always active. It is assigned to

◦ Internal_scan mode in top-level test modes defined with the scan usage

◦ ScanCompression_mode mode in top-level test modes defined with the
scan_compression usage

Figure 303 shows an example with three compressed cores instantiated in a top-level
design. The example includes a compressed scan core with multiple user-defined test
modes, a compressed scan core with the default standard and compressed scan modes,
and a scannable memory with a single Internal_scan test mode.

Figure 303 Three Cores With Different Test Modes Instantiated in a Top-Level Design

TOP

Available core-level
test modes:

Internal_scan

MEM
STD

COMP1
COMP2

MMccore
Internal_scan

ScanCompres
sion_mode

ccore

For this example, Figure 304 shows the top-level test modes created by the tool during
core integration. Each column represents a core, each row represents a top-level test
mode, and the intersections of the columns and rows show the core-level test mode used
for that top-level test mode.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

717

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 18: Hierarchical Adaptive Scan Synthesis
Using Multiple Test Modes in Hierarchical Flows

Feedback

Figure 304 Top-Level Test Modes With Default Test-Mode Assignments

COMP1

STD

Available core-level
test modes:

Internal_scan

MEM

Internal_scan

STD
COMP1
COMP2

MMccore

STD

ccore

Internal_scan

COMP1 ScanCompres
ion_mode

COMP2 COMP2 ScanCompres
ion_mode

Internal_scan

Internal_scan

Top-level test modes
(created by tool):

Internal_scan

ScanCompres
sion_mode

After DFT insertion, the list_test_modes command reports the core-level test modes
used in each of the top-level test modes. For the previous example, the list_test_modes
command reports the core-level test modes as shown in Example 110.

Example 110 Top-Level Test Mode Report for Default Core-Level Test-Mode Assignment
Control signal value - Integration Test Mode
 Core Instance - Test Mode
--
 Name: STD
 Type: InternalTest
 Focus:
 Core ccore in Internal_scan mode
 Core MMccore in STD mode
 Core mem in Internal_scan mode

 Name: COMP1
 Type: InternalTest
 Focus:
 Core ccore in ScanCompression_mode mode
 Core MMccore in COMP1 mode
 Core mem in Internal_scan mode

 Name: COMP2
 Type: InternalTest
 Focus:
 Core ccore in ScanCompression_mode mode
 Core MMccore in COMP2 mode
 Core mem in Internal_scan mode

 Name: Mission_mode
 Type: Normal

Synopsys® TestMAX™ DFT User Guide
T-2022.03

718

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 18: Hierarchical Adaptive Scan Synthesis
Using Multiple Test Modes in Hierarchical Flows

Feedback

User-Defined Core-Level Test Mode Scheduling
At the top level, you can override the default name-based association of core-level test
modes. This is known as test mode scheduling. To do this, use the -target option of the
define_test_mode command:

define_test_mode test_mode_name
 -target {core1:mode1 [core2:mode2 ...] [current_design_name]}

The -target option specifies a list of core and test-mode pairs to use for the top-level test
mode being defined; each pair consists of a core instance name and a core test-mode
name separated by a colon (:). In compressed scan flows, the list can also contain the
name of the current design to specify that the top-level logic should be active and tested.

When you use the -target option in a compressed scan flow, the following rules apply:

• All test modes must be defined with the define_test_mode command; no test modes
are automatically created.

• All test mode definitions must use the -target option.

• Targeted cores (included in the target list) are placed in their targeted mode.

• If a core is targeted in some test modes but not others, it is inactive in the test modes
where it is not targeted. This is known as sparse targeting. (To completely exclude
a core from all top-level test modes, use the -exclude_elements option of the
set_scan_configuration command.)

• Untargeted cores (not included in any target list) are tested in top-level modes where
the top-level logic is tested:

◦ In top-level standard scan modes, they are placed in standard scan mode.

◦ In top-level compressed scan modes, they are placed in compressed scan mode
(for compressed scan cores) or standard scan mode (for standard scan cores).

◦ They are placed in the first available such mode defined inside the core’s test
model.

• The top-level logic, which is all scannable logic outside DFT cores, is only active and
tested when targeted.

Note:
The -target option has some limitations when used in compressed scan core
integration modes. See HASS and Hybrid Flow Limitations on page 724.

Figure 305 shows an example with three compressed cores instantiated in a top-level
design. The example includes a compressed scan core with the default test modes and
two compressed scan cores with multiple user-defined test modes.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

719

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 18: Hierarchical Adaptive Scan Synthesis
Using Multiple Test Modes in Hierarchical Flows

Feedback

Figure 305 Three Cores With Different Test Modes Instantiated in a Top-Level Design

TOP

Available core-level
test modes:

STD
CMP

MMcore1 ccore
Internal_scan

ScanCompres
sion_mode

STD
COMP1
COMP2

MMcore2

The -target option allows the core-level modes to be scheduled to resolve the difference
in user-defined test mode names, as shown in Example 111.

Example 111 Specifying User-Defined Test Mode Assignments
top-level test mode definitions
define_test_mode STD -usage scan \
 -target {MMcore1:STD top}
define_test_mode COMP1 -usage scan_compression \
 -target {MMcore1:CMP top}
define_test_mode COMP2 -usage scan_compression \
 -target {MMcore1:CMP top}

For this example, Figure 306 shows the top-level test modes created by the tool during
core integration. Each column represents a core, each row represents a top-level test
mode, and the intersections of the columns and rows show the core-level test mode used
for that top-level test mode. In addition, the “top” column shows when the top-level logic is
active and tested. Blue columns indicate logic scheduled by the -target option.

Figure 306 Top-Level Test Modes With User-Defined Test-Mode Scheduling

Available core-level
test modes:

STD
CMP

MMcore1 ccore

Top-level test modes
(created by tool):

define_test_mode COMP1 \
 -usage scan_compression \
 -target {MMcore1:CMP top}
define_test_mode COMP2 \
 -usage scan_compression \
 -target {MMcore1:CMP top}

define_test_mode STD -usage scan \
 -target {MMcore1:STD top}

CMP

STD Internal_scan

ScanCompres
sion_mode

top

(Active and
tested)

(Active and
tested)

Top-level
logic

Internal_scan

ScanCompres
sion_mode

(Active and
tested)

STD
COMP1
COMP2

MMcore2

COMP1

STD

CMP COMP1

ScanCompres
sion_mode

After DFT insertion, the list_test_modes command reports the core-level test modes as
shown in Example 112.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

720

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 18: Hierarchical Adaptive Scan Synthesis
Top-Level Integration Script Examples

Feedback

Example 112 Top-Level Test Mode Report for User-Defined Test-Mode Scheduling
Control signal value - Integration Test Mode
 Core Instance - Test Mode
--
 Name: STD
 Type: InternalTest
 Focus:
 Core ccore in Internal_scan mode
 Core MMcore1 in STD mode
 Core MMcore2 in STD mode

 Name: COMP1
 Type: InternalTest
 Focus:
 Core ccore in ScanCompression_mode mode
 Core MMcore1 in CMP mode
 Core MMcore2 in COMP1 mode

 Name: COMP2
 Type: InternalTest
 Focus:
 Core ccore in ScanCompression_mode mode
 Core MMcore1 in CMP mode
 Core MMcore2 in COMP1 mode

 Name: Mission_mode
 Type: Normal

You can use sparse targeting to target a core and/or the top-level logic in some modes
but not others. Sparse targeting is typically used in core wrapping flows where cores can
be placed into inward-facing or outward-facing test modes. For more information, see
Scheduling Wrapped Cores on page 497. Sparse targeting should be used carefully with
unwrapped cores because inactive logic can drive X values into active logic, and the
outputs of active logic cannot be captured by inactive logic.

Top-Level Integration Script Examples
This topic provides the following script examples for the HASS and Hybrid flows:

• Typical HASS Flow Script

• Typical Hybrid Flow Script

• Hybrid Flow Script With Multiple Test Modes

Synopsys® TestMAX™ DFT User Guide
T-2022.03

721

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 18: Hierarchical Adaptive Scan Synthesis
Top-Level Integration Script Examples

Feedback

Typical HASS Flow Script
HASS integration takes place at the top level. Example 113 shows a typical top-level
script.

Example 113 Top-Level Script for HASS Flow
read_verilog TOP.v
read_test_model sub1.ctlddc
read_test_model sub2.ctlddc
current_design TOP
link

set_dft_configuration -scan_compression enable
set_scan_compression_configuration -integration_only true
dft_drc
preview_dft
insert_dft
write_test_protocol -test_mode ScanCompression_mode -output comp.spf
write_test_protocol -test_mode Internal_scan -output scan.spf

Note:
Post-DFT DRC in scan compression mode is not supported at the top level.

Typical Hybrid Flow Script
Example 114 shows a typical script for top-level integration for the Hybrid flow.

Example 114 Script for Top-Level Integration in the Hybrid Flow
read_verilog my_top_test_ready.v
read_test_model ddc/core1.ctlddc
read_test_model ddc/core2.ctlddc

current_design my_top
link

set_dft_configuration -scan_compression enable
set_scan_compression_configuration -hybrid true

set_dft_signal -view existing_dft -type ScanClock \
 -timing {45 55} -port CLK
set_dft_signal -view existing_dft -type constant \
 -active_state 1 -port my_test_mode_port
set_dft_insertion_configuration \
 -synthesis_optimization none -preserve_design_name true

create_test_protocol
dft_drc
preview_dft -show all

Synopsys® TestMAX™ DFT User Guide
T-2022.03

722

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 18: Hierarchical Adaptive Scan Synthesis
Top-Level Integration Script Examples

Feedback

insert_dft
current_test_mode Internal_scan
dft_drc -verbose

remove_design core1
remove_design core2

change_names -rules verilog -hierarchy

write -format verilog -hierarchy -output vg/top_scan.v
write -format ddc -hierarchy -output ddc/top_scan.ddc
write_test_protocol -test_mode ScanCompression_mode \
 -output stil/top_moxie.stil -names verilog
write_test_protocol -test_mode Internal_scan \
 -output stil/scan.stil -names verilog

Hybrid Flow Script With Multiple Test Modes
Example 115 shows a typical script for the top-level integration with multiple test modes
using the Hybrid flow.

Example 115 Top-Level Integration With Multiple Test Modes in the Hybrid Flow
read_verilog my_top_test_ready.v
read_test_model ddc/core1.ctlddc
read_test_model ddc/core2.ctlddc
current_design my_top
link

Define the pins for compression/base_mode using "test_mode all".
These modes are my_comp and my_scan1
for {set i 1} {$i <= 16 } { incr i 1} {
 create_port -direction in test_si[$i]
 create_port -direction out test_so[$i]
 set_dft_signal -type ScanDataIn -view spec -port test_si[$i] \
 -test_mode all
 set_dft_signal -type ScanDataOut -view spec -port test_so[$i] \
 -test_mode all
}

Define TestMode signals to be used
set_dft_signal -view spec -type TestMode \
 -port [list i_trdy_de i_trdy_ddi_cs]

Define the test modes and usage
define_test_mode my_base1 -usage scan \
 -encoding {i_trdy_de 0 i_trdy_dd 0 i_cs 1}
define_test_mode burn_in -usage scan \
 -encoding {i_trdy_de 0 i_trdy_dd 1 i_cs 1}
define_test_mode scan_compression1 -usage scan_compression \
 -encoding {i_trdy_de 1 i_trdy_dd 0 i_cs 0}

Synopsys® TestMAX™ DFT User Guide
T-2022.03

723

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 18: Hierarchical Adaptive Scan Synthesis
HASS and Hybrid Flow Limitations

Feedback

Configure DFTMAX compression
set_dft_configuration -scan_compression enable
set_scan_compression_configuration -base_mode my_base1 \
 -minimum_compression 10 \
 -test_mode scan_compression1 \
 -xtolerance high -hybrid true

Configure the basic scan modes
8 chains for core1 xtol, 8 chains for core2, and 16 for top level
set_scan_configuration -chain_count 16 -test_mode my_base1
1 chain for burn_in mode
set_scan_configuration -chain_count 1 -clock_mixing mix_clocks \
 -test_mode burn_in
set_dft_signal -view existing_dft -type TestClock -timing {45 55} \
 -port CLK
set_dft_insertion_configuration -synthesis_optimization none

Create the test protocol
create_test_protocol

Preview DFT insertion
preview_dft -show all

Run the pre-DFT DRC
dft_drc

Insert DFT logic
insert_dft
current_test_mode my_base1
dft_drc -verbose
change_names -rules verilog -hierarchy
remove_design core1
remove_design core2
write -format verilog -hierarchy -output vg/top_scan.v
write -format ddc -hierarchy -output ddc/top_scan.ddc
write_test_protocol -test_mode scan_compression1 \
 -output stil/ scan_compression1.stil -names verilog
write_test_protocol -test_mode my_base1 \
 -output stil/ my_base1.stil -names verilog
write_test_protocol -test_mode burn_in \
 -output stil/ burn_in.stil -names verilog

HASS and Hybrid Flow Limitations
Note the following limitations of the HASS and Hybrid flows:

• Post-DFT DRC of test modes that contain active compressed scan cores is not
supported.

• Block-level patterns cannot be ported at the top level.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

724

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 18: Hierarchical Adaptive Scan Synthesis
HASS and Hybrid Flow Limitations

Feedback

• When you use the set_scan_configuration -chain_count command at the top
level with a chain count insufficient to satisfy all core scan pin connections, you see the
following warning issued by the preview_dft command:

Warning: Cells with 33 new incompatible clock domains
have not been assigned to scan chains. Cannot honor
-chain_count specification of 2. (TEST-355)

• When you use the -target option of the define_test_mode command,

◦ In the HASS core integration flow, you must enable HASS integration with the
-integration enable option of the set_dft_configuration command, not the
-integration_only true option of the set_scan_compression_configuration
command.

◦ In the Hybrid core integration flow, a top-level codec is inserted in a test mode
only when you target the top-level logic by including the name of the current
design in the target list. You cannot insert a codec for targeted cores without also
compressing the top-level logic, which includes any untargeted standard scan cores
and any wrapped cores in outward-facing mode.

• When you use DFT partitions,

◦ In the Hybrid flow, only one partition can contain both cores and top-level logic. The
remaining partitions can contain cores or top-level logic, but not both.

• When you integrate cores that contain external chains,

◦ In the HASS flow, the external chains are not concatenated with other scan logic;
instead, they use dedicated top-level scan I/O connections. You can use the
set_scan_path command to manually concatenate them with other scan logic.

◦ In the Hybrid flow, you must use the set_scan_path command to define how the
external chains are incorporated into scan chains. Otherwise, incorrect codec logic
can result.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

725

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

19
Managing X Values in Scan Compression

A significant number of X sources in any compression architecture can degrade fault
coverage, especially with high scan compression ratios. Today's complex designs often
contain many such X sources: logic constrained by certain timing exceptions, memories
and IP cores without test modes or models, combinational feedback loops, and nonscan
flip-flops. This chapter describes features provided by DFTMAX compression to analyze
and efficiently mask X values in the design.

This chapter includes the following topics:

• High X-Tolerance Scan Compression

• Static-X Analysis

• Architecting X Chains

High X-Tolerance Scan Compression
DFTMAX compression has a default tolerance for some Xs, but it also provides an
option to implement a full tolerance of Xs. This topic describes high X-tolerance scan
compression, a technology that provides low-impact, 100 percent X-tolerance for designs
that use scan compression in the presence of many X sources.

This topic covers the following:

• The High X-Tolerance Architecture

• Enabling High X-Tolerance

• Scan-In and Scan-Out Requirements

• Limitations

The High X-Tolerance Architecture
DFTMAX compression provides scan compression using only combinational circuitry. This
approach achieves moderate to high compression while minimizing the additional cost for
DFT implementation. Furthermore, scan compression can be applied to a wide variety of

Synopsys® TestMAX™ DFT User Guide
T-2022.03

726

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 19: Managing X Values in Scan Compression
High X-Tolerance Scan Compression

Feedback

designs, including designs with a large number of X values. The source of these Xs are
either static (logic-induced) or dynamic (constraint-induced).

The high X-tolerance scan compression solution provided by DFTMAX compression
meets the challenge of coverage loss by implementing new logic that selectively masks
circuit response on a per-shift basis — a technique that provides 100 percent X-tolerance
without introducing sequential circuitry. Note that this solution does not require any
additional pins to perform X-masking. This architecture is shown in Figure 307.

Figure 307 High X-Tolerance DFTMAX Compression Architecture
test_si

test_so

XOR compressor

Decompression MUX

X-blocking circuit

Mask mode
signals

Mask enable
signal

The high X-tolerance architecture provides the following observe modes:

• A full (unmasked) observe mode, which is equivalent to the default X-tolerance mode

• Additional X-tolerance (masked) observe modes, which can mask X values from
selected chains before they reach the XOR compressor

An existing ScanDataIn port provides the mask enable signal. A mask enable
value of zero selects the full observe mode. A mask enable value of one
plus combinations of the mask mode signals selects additional X-tolerance
observe modes for unload. Information about the X-tolerance observe modes is
contained in the SPF in the CompressorStructures section in the Compressor
my_design_U_compressor_ScanCompression_mode ModeControl definitions.

The high X-tolerance architecture introduces a combinational path between the scan
input and scan output ports. The path travels from the scan input ports, through the
decompression MUX mask signal generation logic, through the X-blocking and XOR
compactor circuits, then through the scan output ports. This path can potentially contain
long routes as well as combinational logic. To help meet timing requirements, you can
use the pipelined scan data feature. For more information, see Pipelined Scan Data on
page 746.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

727

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 19: Managing X Values in Scan Compression
High X-Tolerance Scan Compression

Feedback

Enabling High X-Tolerance
By default, the DFTMAX scan compression logic provides some tolerance of Xs. No option
is needed to obtain this default X-tolerance capability.

For designs with large numbers of X values, you can enable the high X-tolerance feature
with the following command:

dc_shell> set_scan_compression_configuration -xtolerance high
The preview_dft and insert_dft commands report information about the scan
compression codecs in the design. The output from these commands includes an
information message to confirm that the high X-tolerance feature is enabled:

Architecting Load Decompressor (version 5.8)
 Number of inputs/chains/internal modes = 8/20/4
Architecting Unload compressor (version 5.8)
 Number of outputs/chains = 5/20
 Information: Compressor will have 100% x-tolerance

Scan-In and Scan-Out Requirements
The high X-tolerance feature imposes a limit on the number of compressed scan chains
you can build with a given number of scan-in and scan-out pins. Table 52 shows the
maximum number of compressed scan chains that can be built for a given set of scan-in
and scan-out pins.

Table 52 High X-Tolerance Compressed Scan Chain Limits

Number of scan-in and
scan-out pins

Maximum number of chains
without OCC controller

Maximum number of chains
with OCC controller11

2 4

3 12 6

4 32 16

5 80 40

6 192 96

7 448 224

8 1024 512

9 2304 1152

11. This column assumes that a single decompressor input is dedicated to OCC clock chains. Additional dedicated
clock chain decompressor inputs will further reduce the limit.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

728

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 19: Managing X Values in Scan Compression
High X-Tolerance Scan Compression

Feedback

Table 52 High X-Tolerance Compressed Scan Chain Limits (Continued)

Number of scan-in and
scan-out pins

Maximum number of chains
without OCC controller

Maximum number of chains
with OCC controller11

10 5120 2560

11 11264 5632

12 24576 12288

13 32000 26624

14 and higher 32000 32000

If the on-chip clocking (OCC) feature is used with compressed clock chains, the dedicated
decompressor scan input lowers the limit. For more information about compressed clock
chains, see Scan Compression and OCC Controllers on page 679.

Table 53 shows the maximum compressed scan chain count when high X-tolerance is
used with some asymmetrical low-pin-count configurations:

Table 53

Asymmetrical scan-in,
scan-out pin configuration

Maximum number of chains
without OCC controller

Maximum number of chains
with OCC controller

2 scan-ins, 1 scan-out 2

3 scan-ins, 1 scan-out 4

3 scan-ins, 2 scan-outs 8 4

4 scan-ins, 3 scan-outs 24 12

5 scan-ins, 4 scan-outs 64 32

6 scan-ins, 5 scan-outs 160 80

If the specified compressed scan chain count cannot be satisfied, the tool issues an
error message that contains information about how many compressed scan chains were
requested and how many compressed scan chains can be built for the current scan pin
configuration. Example 116 shows the error message issued when 20 compressed scan
chains are requested, but only 12 scan chains can be built.

11. This column assumes that a single decompressor input is dedicated to OCC clock chains. Additional dedicated
clock chain decompressor inputs will further reduce the limit.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

729

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 19: Managing X Values in Scan Compression
Static-X Analysis

Feedback

Example 116 High X-Tolerance Error Message for Insufficient Scan-In Pins
Error: Architecting of Load/Unload compressor failed with the given set
of parameters. (TEST-1722)
 Number of internal chains architected: 20
 Number of available compression channels: 12
 Number of load compressor inputs: 3
 Number of unload compressor outputs: 3

You can also use the TestMAX ATPG analyze_compressors command to determine if
a codec can be built for a given set of parameters. For more information, see TestMAX
ATPG and TestMAX Diagnosis Online Help.

Limitations
Note the following limitations of the high X-tolerance feature:

• All codecs must have the same X-tolerance type when the following features are used:

◦ Shared codec I/O connections

◦ Serialized compressed scan

• You cannot use end-of-cycle measures with high X-tolerance codecs.

Static-X Analysis
Some flip-flops capture X values more often than others because they are located in
the fanout of logic constructs that generate unknown values. A flip-flop that frequently
captures an X value during capture is called a static-X cell.

DFTMAX compression provides a static-X analysis feature that analyzes a design and
reports static-X cells. This analysis feature can be used in both standard scan and
compressed scan flows. When enabled, it reports static-X cell information during pre-DFT
DRC. By itself, static-X analysis does not affect subsequent scan chain architecture.

Static-X analysis is enabled by using the following command:

dc_shell> set_dft_drc_configuration -static_x_analysis enable
When enabled, static-X analysis directs pre-DFT DRC to carry out an X-probability
analysis of the sequential cells by invoking combinational simulation within the tool and
then defining those sequential cells with high X-capture probability as static-X cells. The
analysis is performed using the following procedure:

1. Normal test DRC analysis is performed to determine the set of scannable cells.

2. Constrained primary inputs are set to their constrained values, clocks are set to their
inactive values, and scan-enable signals are set to their inactive (capture) values.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

730

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 19: Managing X Values in Scan Compression
Static-X Analysis

Feedback

3. Constant-value state elements are set to their constant values.

4. Other primary inputs and nonconstant scannable cells are set to random binary values.
All other state elements, such as nonscan cells, are set to X.

5. 1024 random patterns are simulated to determine the frequency that the data input of a
scannable cell is at X.

6. A scannable cell whose data input is X with a frequency exceeding a predetermined
threshold is recorded along with its frequency of capturing an X value. The
predetermined threshold is 25 percent and cannot be changed.

After identifying the static-X cells, the dft_drc command reports them as D39 violations in
the following format:

Warning: Probability of capture X (X probability <%>) exceeds threshold
 for scancell DFF %s. (D39-x)

The dft_drc command also sets the test_dft_xcell_violation attribute on all
identified static-X cells. You can use this attribute to obtain the cells for further script-based
analysis:

dc_shell> set static_x_cells \
 [get_cells -hierarchical * -filter {test_dft_xcell_violation == true}]
When debugging static-X cells, remember that a static-X cell captures the frequent X
values, but the source of these frequent X values will likely exist in the fanin logic to the
cell. The following design constructs can introduce X values into the design logic:

• Black boxes

• CTL models

• Combinational feedback loops

• Uncontrolled internal buses

• Uncontrolled bidirectional ports

• Nonscan cells

Note:
Timing exceptions are not considered as a source of X values during DFTMAX
static-X analysis. Instead, they are considered as dynamic path-specific
sources of X values in the TestMAX ATPG tool.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

731

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 19: Managing X Values in Scan Compression
Architecting X Chains

Feedback

Architecting X Chains
DFTMAX compression provides a static-X chain feature that identifies scan cells that
frequently capture X values, and then groups them exclusively into special scan chains,
called X chains. By grouping X-capturing cells into dedicated scan chains, incidental X
masking of any chain is reduced or eliminated.

The static-X chain feature deals with the pattern inflation that is caused by the occurrence
of static-X cells in compression mode. This method of handling the X cells achieves
better test data volume reduction (TDVR), and improves ATPG quality of results. X-chain
information is communicated seamlessly in the DFTMAX to TestMAX ATPG flow through
the STIL protocol file (SPF). The SCANDEF file generated by the TestMAX DFT tool
groups the X cells into separate SCANDEF partitions so that a place-and-route tool can
preserve those groups.

This topic covers the following:

• The X-Chain Architecture

• Enabling X Chains

• Manually Specifying X-Chain Cells

• Using the set_scan_path Command With X Chains

• Using AutoFix With X Chains

• Using X Chains in Hierarchical Flows

• Using the test_simulation_library Variable

• Representing X Chains in SCANDEF Files

• Passing X-Chain Information to TestMAX ATPG

• Error and Warning Summaries

• X-Chain Usage Guidance

The X-Chain Architecture
The static-X analysis feature identifies and reports scan cells that frequently capture X
values, called static-X cells. However, by itself, the static-X analysis feature does not affect
scan chain architecture; it is only an analysis feature.

The X-chain feature builds on the static-X analysis feature. It groups these identified static-
X cells exclusively into special scan chains, called X chains. This allows pattern generation
to efficiently mask static-X cells for most test patterns, leaving the other chains unmasked,
as shown in Figure 308.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

732

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 19: Managing X Values in Scan Compression
Architecting X Chains

Feedback

Figure 308 X Values in Static-X Chains

As a result, fewer chains are masked by the high X-tolerance masking logic, resulting in
better fault coverage and a lower volume of test data.

Enabling X Chains
To isolate the identified static-X cells and architect X chains that contain only these cells,
use the following commands:

dc_shell> set_dft_drc_configuration -static_x_analysis enable

dc_shell> set_scan_compression_configuration \
 -xtolerance high \
 -static_x_chain_isolation true
The X-chains feature has the following requirements:

• Static-X analysis must be enabled, as the static-X cell attributes are used to determine
which cells are placed in the X chains. For more information, see Static-X Analysis on
page 730.

• The X-chain feature only operates in compressed scan modes, and it requires that high
X-tolerance is enabled. For more information, see High X-Tolerance Scan Compression
on page 726.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

733

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 19: Managing X Values in Scan Compression
Architecting X Chains

Feedback

The preview_dft command reports X chains with an additional “(X chain)” label, as
shown in the following example:

**
Current mode: ScanCompression_mode
**
Number of chains: 320
Scan methodology: full_scan
Scan style: multiplexed_flip_flop
Clock domain: mix_clocks

Scan chain '1' contains 65 cells
 Active in modes: ScanCompression_mode

Scan chain '2' contains 50 cells (X chain)
 Active in modes: ScanCompression_mode

Scan chain '3' contains 65 cells
 Active in modes: ScanCompression_mode

Note:
Use the preview_dft command to identify X chains. The report_scan_path
command does not identify X chains.

The tool performs scan chain balancing with the additional constraint that static-X cells
cannot be mixed with non-static-X cells in the same scan chain. If the number of static-
X cells exceeds 20 percent of the total number of scan cells, the tool issues the following
error message:

Error: Too many static-X cells in design. Cannot isolate cells as
 separate X-chains. (TEST-1090)

Note that assigning the static-X cells to X chains applies an additional constraint to the
physical implementation tool. The static-X cells could be distributed across the chip,
so connecting them together into one or more scan chains can result in long wires that
contribute to routing congestion.

Manually Specifying X-Chain Cells
The X-chain feature uses the test_dft_xcell_violation cell attribute, set by static-X
analysis, to determine the scan cells placed in dedicated X chains. After pre-DFT DRC
completes, you can manually set or remove this attribute on scan cells to modify the set
of static-X cells. The insert_dft command then uses the modified set of static-X cells to
construct the X chains.

To specify cells as static-X cells, use the following command:

dc_shell> set_attribute -type boolean [get_cells cell_list] \
 test_dft_xcell_violation true

Synopsys® TestMAX™ DFT User Guide
T-2022.03

734

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 19: Managing X Values in Scan Compression
Architecting X Chains

Feedback

To remove the static-X attribute from cells, use the following command:

dc_shell> remove_attribute [get_cells cell_list] \
 test_dft_xcell_violation
Note:

The set_attribute and remove_attribute commands must be used after
pre-DFT DRC is run with the dft_drc command, but before scan is inserted
with the insert_dft command.

Use this capability to include additional scan cells in the X chains. For example, certain
scan cells might frequently capture dynamic X values during pattern generation in
TestMAX ATPG. If you know the timing exceptions and are able to translate them to
capturing scan cell names, you can mark these scan cells as static-X cells with the
set_attribute command.

The test_dft_xcell_violation attribute is only honored for leaf scan cells. It is ignored
for hierarchical cells (including CTL-modeled cells).

Using the set_scan_path Command With X Chains
If both static-X cells (identified during pre-DFT DRC) and non-static-X cells are defined in
a common set_scan_path command applied to a scan compression mode, the resulting
scan path is not an X chain even though it contains static-X cells. When this happens, the
tool issues the following warning message:

Warning: Chain %s has both X and non-X cells. (TEST-1079)

However, if the defined scan path consists entirely of static-X cells, the scan path becomes
an X-chain.

This behavior applies only to set_scan_path commands applied to a scan compression
mode. If a set_scan_path specification is applied to a standard scan mode, it does not
affect X-chain scan architecture.

Using AutoFix With X Chains
If static-X analysis reports a large number of static-X cells, you can use AutoFix to fix X-
capture problems.

When using AutoFix with the X-chains feature, pre-DFT DRC performs static-X analysis
before applying AutoFix. If the features are used together, they can potentially interact in a
way that affects the static-X analysis and the resulting X chains.

Consider the circuit shown in Figure 309. Flip-flop FF1 always captures an X value.
During static-X analysis, FF1 is treated as a nonscan cell due to its uncontrollable reset
and is therefore not marked as a scannable static-X cell. During AutoFix processing, the

Synopsys® TestMAX™ DFT User Guide
T-2022.03

735

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 19: Managing X Values in Scan Compression
Architecting X Chains

Feedback

uncontrollable reset becomes controllable, and FF1 becomes scannable. It is placed into a
regular scan chain despite always capturing an X value.

Figure 309 Using AutoFix With X Chains

FF1
BBOX X

Uncontrolled
reset

FF2

Sequential cells with D1, D2, and D3 violations (uncontrollable clock, set, and reset
signals) are susceptible to this interaction if they frequently capture X values and are
subsequently made scannable by AutoFix.

To avoid this interaction, use the following two-pass flow:

1. Apply AutoFix with scan insertion disabled, so that only the AutoFix logic is inserted:

set_dft_configuration \
 -scan disable \
 -fix_clock enable -fix_set enable -fix_reset enable
set_autofix_configuration ...
preview_dft
insert_dft

2. Disable AutoFix, reenable scan insertion, and continue with normal scan insertion:

set_dft_configuration \
 -fix_clock disable -fix_set disable -fix_reset disable \
 -scan enable -scan_compression enable
set_scan_configuration ...
set_scan_compression_configuration ...

An alternative solution is to use the single-pass flow and manually mark the affected X-
capturing sequential cells with the test_dft_xcell_violation attribute. However, this
solution requires knowledge of the cells that are affected by the interaction.

See Also

• Using AutoFix on page 330 for more information about using AutoFix to fix design
testability issues

Synopsys® TestMAX™ DFT User Guide
T-2022.03

736

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 19: Managing X Values in Scan Compression
Architecting X Chains

Feedback

Using X Chains in Hierarchical Flows
This topic provides information on using X chains in hierarchical flows. The behaviors
described in this section result from using core test language (CTL) models to represent
core blocks during hierarchical flows.

Note:
When a DFT run includes a previously scan-inserted core read from a full-
netlist .ddc file, the tool still uses a CTL model representation during DFT
operations.

This topic covers the following:

• Static-X Cells in the HASS Flow

• Hierarchical Blocks and X Sources

Static-X Cells in the HASS Flow
This topic pertains to the HASS flow, in which standard scan is inserted at the core level,
and then compressed scan is inserted at the top level using these core-level standard
scan chain segments. Figure 310 shows an example of this flow.

Figure 310 Applying the HASS Flow to a Standard Scan Core

S_CORE GLUES_CORE

Static-X analysis can be performed in both standard scan and compressed scan flows.
However, X chains can only be created in compressed scan flows. When creating a
standard scan core that will subsequently be scan-compressed in a HASS flow, X analysis
can be used to determine if there are any static-X cells in the core. However, X chains
cannot be used to consolidate the static-X cells into X chains at the core level.

When using this flow, you should use static-X analysis to ensure that the standard scan
core does not contain any static-X cells. If it does, consider using AutoFix to resolve the X
sources. For more information, see Using AutoFix on page 330. Note that AutoFix might
not be able to resolve all X sources.

At the top level, the core is modeled using CTL model information during hierarchical
compressed scan insertion. Any static-X cells that exist in the core-level scan chain

Synopsys® TestMAX™ DFT User Guide
T-2022.03

737

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 19: Managing X Values in Scan Compression
Architecting X Chains

Feedback

segments are not visible to top-level DRC analysis, and they are incorporated into regular
codec scan chains.

The dft_drc -verbose command reports the core-level standard scan chain segments
as possible D39 violations, with one violation reported for each segment:

Begin Pre-DFT violations...

 Warning: Probability of capture X (100) exceeds threshold for scancell
 CORE Usub. (D39-1)
 Warning: Probability of capture X (100) exceeds threshold for scancell
 CORE Usub. (D39-2)
 Warning: Probability of capture X (100) exceeds threshold for scancell
 CORE Usub. (D39-3)
 Warning: Probability of capture X (100) exceeds threshold for scancell
 CORE Usub. (D39-4)

Pre-DFT violations completed...

 DRC Report

 Total violations: 4

4 PRE-DFT VIOLATIONS
 4 Static X scan cell violations (D39)

Warning: Violations occurred during test design rule checking. (TEST-124)

 Sequential Cell Report
 0 out of 1333 sequential cells have violations

SEQUENTIAL CELLS WITHOUT VIOLATIONS
 * 1329 cells are valid scan cells
 Z_reg[30]
 Z_reg[29]
 Z_reg[28]
 ...

CORE SEGMENTS WITHOUT VIOLATIONS
 * 4 core segments are valid scan segments
 Usub/1
 Usub/2
 Usub/3
 Usub/4

Synopsys® TestMAX™ DFT User Guide
T-2022.03

738

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 19: Managing X Values in Scan Compression
Architecting X Chains

Feedback

The CTL model scan chain segments are reported as D39 violations to report that the
segments could potentially contain static-X cells. Although the scan chain segments are
reported as possible static-X sources, they are not incorporated into the top-level X chains.

Pre-DFT DRC also issues the following warning message:

Warning: Static X-cell analysis may be inaccurate on design containing
 cells with CTL models. (TEST-610)

For compressed scan cores used in a hierarchical adaptive scan synthesis (HASS) flow,
there is no problem with static-X cells, if they are present, because the static-X cells were
already isolated into X chains when the models were created.

Hierarchical Blocks and X Sources
When a compressed scan insertion run includes a previously scan-inserted core, the
core is represented using CTL model information. This is true even when the core is
represented as a full netlist read from a .ddc file. This CTL model contains information
about the DFT logic in the core, but does not include functional information about the core
outputs.

In some cases, it might be possible for X sources to drive core outputs. Consider the
example shown in Figure 311, where a memory cell drives a core output.

Figure 311 Modeling Cores With X Sources Using CTL Models

CORE

FF1

CORE
TOP

CTL
model

MEM

During core-level DRC, no scannable cells capture an X value from the memory, and
therefore no static-X cells are reported by static-X analysis. During top-level DRC, a
scannable cell now captures the memory output. However, the core is modeled using CTL
model information, which does not model the functional core outputs. As a result, static-X
analysis does not detect that flip-flop FF1 frequently captures an X value, and it is placed
into a regular codec scan chain.

If you know the list of affected top-level flip-flops, apply the test_dft_xcell_violation
attribute to place them into X chains. For more information, see Manually Specifying X-
Chain Cells on page 734.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

739

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 19: Managing X Values in Scan Compression
Architecting X Chains

Feedback

Using the test_simulation_library Variable
In some cases, the synthesis libraries used by the tool might model a cell as a black box,
while the simulation libraries used by the TestMAX ATPG tool might provide functional
information for the same cell. The test_simulation_library variable enables DFTMAX
DRC to use the TestMAX ATPG simulation libraries.

When using the X-chains flow, it is desirable to replace most types of black-box cells
with their simulation models. This provides a more accurate assessment of X behaviors
during static-X analysis. You can verify the resulting X chains in the TestMAX ATPG
tool by looking for the M469, M470, and M471 messages in conjunction with the
analyze_compressors -xchain_analysis command. These messages report on the
consistency of X-capture frequency between regular scan chains and X chains.

However, you should not configure memory cell models with the
test_simulation_library variable when using the X-chains flow. Figure 312 shows an
example where flip-flops capture the values from memory outputs.

Figure 312 Memory Outputs Driving Scan Cells

If the simulation model is configured for the memory, pre-DFT DRC reports the information
shown in Example 117.

Example 117 Pre-DFT DRC Report for Memory Models
In mode: all_dft...
 Pre-DFT DRC enabled

Information: Starting test design rule checking. (TEST-222)
 Loading test protocol
 ...basic checks...
 ...basic sequential cell checks...
 ...checking for scan equivalents...
 ...Loading simulation libraries...
 ...checking vector rules...

Synopsys® TestMAX™ DFT User Guide
T-2022.03

740

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 19: Managing X Values in Scan Compression
Architecting X Chains

Feedback

 ...checking pre-dft rules...

Begin Modeling violations...
Warning: Cell U_RAM (MEM) is unknown (black box) because functionality
for output pin Q[0] is bad or incomplete. (TEST-451)
Information: Cells with this violation : U_RAM. (TEST-283)

Modeling violations completed...

Begin Pre-DFT violations...

Warning: Clock input clk of DFF U_RAM cannot capture data. (D17-1)
Warning: Probability of capture X (100) exceeds threshold for scancell
 DFF U_RAM. (D39-1)

Pre-DFT violations completed...

The D39 violation is issued for the memory model itself. However, no D39 violations
are issued for the sequential cells that capture the memory outputs. The simulation
model used by DFTMAX DRC is treated like a Verilog netlist with instantiated sequential
cells. These sequential cells are considered as valid scannable cells within the dft_drc
command, which results in hiding the X-generation effect of the memory outputs. As a
result, the sequential cells connected directly or indirectly to the memory outputs are not
treated as static-X cells and are therefore not placed into X chains.

Subsequently, in the TestMAX ATPG tool, memories are X-generators during much of
the ATPG process, and those sequential cells capture Xs, although the actual capture
details might depend on the particulars of the ATPG engine and target faults. Therefore,
it is better to put those cells into X chains. To do this, the memory models should not be
configured with the test_simulation_library variable. Instead, the normal black-box
synthesis memory models should be used during DFTMAX pre-DFT DRC.

Representing X Chains in SCANDEF Files
The TestMAX DFT tool puts DFTMAX X-chain information in the SCANDEF file to instruct
the physical implementation tool to preserve the X chains during optimization. Static-X
cells are written into a SCANDEF partition whose label name starts with X_. This allows
the place-and-route tool to preserve those groups, as shown in the following SCANDEF
fragment:

- 1424
+ START M12/U4497 Y
+ FLOATING Q12/PCB_8192x64c16s0_bit_reg_17_ (IN SI) (OUT Q)
Q12/PCB_8192x64c16s0_bit_reg_49_ (IN SI) (OUT Q)
Q12/PCB_8192x64c16s0_bit_reg_50_ (IN SI) (OUT Q)

Synopsys® TestMAX™ DFT User Guide
T-2022.03

741

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 19: Managing X Values in Scan Compression
Architecting X Chains

Feedback

Q12/PCB_8192x64c16s0_bit_reg_25_ (IN SI) (OUT Q)
Q12/PCB_8192x64c16s0_bit_reg_28_ (IN SI) (OUT Q)
Q12/PCB_8192x64c16s0_bit_reg_56_ (IN SI) (OUT Q)
+ PARTITION X_clk_core_45_45
+ STOP Q12/PCB_8192x64c16s0_bit_reg_21_ SI ;

Passing X-Chain Information to TestMAX ATPG
To generate the test patterns and masking controls, the ATPG tool needs to have access
to information about the structure of the X chains. The TestMAX DFT tool puts this
information into the SPF for use by the ATPG tool.

The following is an SPF example with X chains:

Compressor "top_U_compressor_ScanCompression_mode" {
 ModeGroup mode_group;
 UnloadGroup unload_group;
 UnloadModeGroup unload_mode_group0 unload_mode_group1
 unload_mode_group2;
CoreGroup core_group;
UnloadModeEnable enable_group;
Modes 193;
Mode 0 {
 ModeControls {
 "test_si17" = 0;
 }
 Connection "3" 0 1 2 3;
 Connection "4" 4;
 Connection "5" 5;
 Connection "6" 6;

Compressed chains that are part of the CoreGroup but are not connected in Mode 0 are
implicitly defined as X chains. In the following example, compressed chains “1” and “2”
are X chains that consist of static-X cells exclusively. Mode 0 is called the full observe
XOR mode. The two X chains are observed by a direct-observability mode, in which each
X-chain can be observed at a different, single output with no other compressed chains
XORed.

 Mode 58 {
 ModeControls {
 "test_si17" = 1;
 "test_si15" = 0;
 "test_si16" = 0;
 "test_si1" = 1;
 "test_si2" = 1;
 "test_si3" = 1;
 "test_si4" = 0;
 "test_si5" = 0;
 "test_si6" = 1;
 }
 Connection "1" 3;

Synopsys® TestMAX™ DFT User Guide
T-2022.03

742

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 19: Managing X Values in Scan Compression
Architecting X Chains

Feedback

 Connection "2" 11;
 Connection "28" 6;
 Connection "53" 14;
 Connection "78" 15;
 Connection "103" 10;
 Connection "127" 0;
 Connection "177" 2;
 Connection "226" 16;
 Connection "1012" 12;
 Connection "1013" 9;
 Connection "1014" 1;
 Connection "1015" 8;
 Connection "1016" 5;
 Connection "1018" 13;
 Connection "1019" 4;
 Connection "1020" 7;

Error and Warning Summaries
The following error and warning messages exist for this feature:

• TEST-1090 (Error) Too many X cells in design. Cannot isolate static X cells as separate
X chains.

Description:

You receive this message if you have specified X-chain isolation in a Scan
Compression mode and more than 20 percent of valid scan cells have static-X (D39)
violations.

• TEST-1088 (Warning) Static X chain isolation is ignored in %s as high xtolerance is not
enabled.

Description:

You receive this message if you have specified X-chain isolation
without high X-tolerance in a Scan Compression mode, using the
set_scan_compression_configuration command. Static-X chain isolation will be
ignored for this mode.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

743

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 19: Managing X Values in Scan Compression
Architecting X Chains

Feedback

• TEST-610 (Warning) Static X cell analysis may be inaccurate on design containing
cells with CTL models.

Description:

This message indicates that the current design has cells with CTL models, which
means the static-X cell analysis might be inaccurate.

• TEST-1079 (Warning) Chain %s has both X and non-X cells.

Description:

You receive this message if you have specified a set_scan_path command that
mixes X and non-X cells within the same scan chain in a scan compression mode. The
resulting mixed chain will not be considered as an X-chain.

X-Chain Usage Guidance
The X-chains feature is intended for designs that have static-X values. This feature
might not improve results for designs with dynamic X values when compared to high X-
tolerance without X chains. There is no automated way to determine which type of X value
is propagated within a design. Additional test data volume reduction can be achieved with
the X-chain feature if the following conditions are met:

• A considerable number of memories or hard macros are used in TestMAX ATPG.

• A large number of R14 violations are issued by DRC in the TestMAX ATPG tool.

• Many scan cells are analyzed as X-scan cells due to capturing X values from tiex cells,
as noted when executing the TestMAX ATPG set_simulation -analyze_x_sources
and run_simulation commands.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

744

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

20
Advanced DFTMAX Compression

This chapter describes advanced features that can be used while inserting compressed
scan circuitry into your design. These features are used to customize DFT insertion, to
improve the frequency of the scan testing logic, and to reduce the pattern count for pin-
limited designs.

This chapter includes the following topics:

• Specifying a Location for Codec Logic Insertion

• Pipelined Scan Data

• Sharing Codec Scan I/O Pins

• Implicit Scan Chains

Specifying a Location for Codec Logic Insertion
By default, the tool inserts the scan compression codec at the top level of the current
design. However, you can use the set_dft_location command to specify an alternate
insertion location:

dc_shell> set_dft_location -include {CODEC} instance_name
The specified instance name must be a hierarchical cell. It cannot be a library cell, black
box, or black-box CTL model.

If the specified hierarchical cell does not exist, the insert_dft command creates it during
DFT insertion. For more information, see Creating New DFT Logic Blocks on page 282.

Note:
Compressed scan reconfiguration MUXs and test-mode decode logic are not
placed in the specified location.

When a top-down multiple partition flow is used, this feature can be used to place each
partition’s codec logic at a specified location. For example,

Example 118 Specifying Codec Logic Insertion Locations for Multiple Partitions
set_dft_location core ;# place all non-codec logic in core

Synopsys® TestMAX™ DFT User Guide
T-2022.03

745

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Pipelined Scan Data

Feedback

define_dft_partition P1 -include BLK1
define_dft_partition P2 -include BLK2

current_dft_partition P1
set_scan_configuration -chain_count 4
set_scan_compression_configuration -chain_count 10
set_dft_location -include {CODEC} core/BLK1

current_dft_partition P2
set_scan_configuration -chain_count 3
set_scan_compression_configuration -chain_count 8
set_dft_location -include {CODEC} core/BLK2

For compatibility, the tool also supports an older, deprecated method for specifying the
codec insertion location:

dc_shell> set_scan_compression_configuration -location instance_name
The specified instance name must already exist. This method takes precedence over the
set_dft_location command.

See Also

• Specifying a Location for DFT Logic Insertion on page 278 for more information about
specifying the insertion location for other types of DFT logic

• Per-Partition Scan Compression Configuration Commands on page 664 for more
information about DFT specifications that can be specified per-partition

Pipelined Scan Data
Pipelined scan data is a feature provided by the TestMAX DFT tool to resolve delay
problems associated with long routes in compressed scan chain logic.

This topic covers the following:

• Introduction to Pipelined Scan Data

• Using Pipelined Scan Data

• Using Pipelined Scan Data With Scan Compression

• Pipelined Scan Data Specifications

• Pipelined Scan Data Test Protocol Format

• Pipelined Scan Data Limitations

• Hierarchical Flows With Pipelined Scan Data

Synopsys® TestMAX™ DFT User Guide
T-2022.03

746

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Pipelined Scan Data

Feedback

Introduction to Pipelined Scan Data
In typical scan flows, long wires between the scan chain input and the first flip-flop and
between the last flip-flop and the scan chain output can cause delay problems. Scan
compression logic and higher scan frequencies further amplify the problem. These delays
are reduced by placing pipeline registers at the beginning and end of the scan chains.
They divide the long routes between the scan chain terminals into smaller wires between
the registers and therefore help reduce the path delay.

Figure 313 shows an example of a compressed scan design with pipeline registers. The
head pipeline registers are placed between the scan inputs and the decompressor, and
the tail pipeline registers are placed between the compressor and the scan outputs.

Figure 313 Pipeline Registers in a Compressed Scan Design

C_CORE
Head pipeline registers

Tail pipeline registers

The tool can automate the insertion of the head and tail pipeline registers around the
codec, or you can provide user-defined pipeline registers at the scan inputs and outputs
that the tool connects to the codec. Test DRC verifies the correct operation of the pipeline
registers and updates the test protocol that TestMAX ATPG uses for pattern generation.

Using Pipelined Scan Data
The pipelined scan data feature provides two methods of specifying pipeline register
insertion:

• Pipeline registers can be automatically inserted and connected by the tool during the
insert_dft command.

• User-defined pipeline registers can be provided in the design logic. The tool makes
the needed scan path connections to these existing pipeline registers during the
insert_dft command.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

747

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Pipelined Scan Data

Feedback

These pipeline register insertion methods are explained in the following topics:

• Enabling Pipelined Scan Data

• Automatically Inserting Head and Tail Pipeline Registers

• Specifying User-Defined Head and Tail Pipeline Registers

Enabling Pipelined Scan Data
For both the automatically inserted and user-defined pipeline register flows, use the
set_dft_configuration command to enable the pipelined scan data feature in the
compressed scan flow:

set_dft_configuration -pipeline_scan_data enable

By default, pipeline registers are not inserted.

The type of insertion method is determined by the commands you use to configure the
pipeline registers. You must choose either automatic or user-defined pipeline register
insertion, as these methods are mutually exclusive.

Automatically Inserting Head and Tail Pipeline Registers
The set_pipeline_scan_data_configuration command is used to configure the
automatic pipeline register insertion. Specify the number of head and tail pipeline stages
using the -head_pipeline_stages and -tail_pipeline_stages options:

set_pipeline_scan_data_configuration \
 -head_pipeline_stages integer \
 -tail_pipeline_stages integer \
 -head_scan_flop true

The -head_scan_flop option causes the tool to create scan-replaced head pipeline
registers that hold their state during scan capture. For more information, see Avoiding X
Capture in Head Pipeline Registers on page 755.

DFT insertion uses a D flip-flop from the target library for the automatically inserted
pipeline registers. To minimize the need for lock-up latches at the compressed scan
chains, the head pipeline registers are clocked on the trailing clock edge, and the tail
pipeline registers are clocked on the leading clock edge. Rising-edge-triggered or falling-
edge-triggered flip-flops are used depending on whether the scan clock uses a return-
to-zero or return-to-one waveform. Figure 314 shows the flip-flops used for both types of
clock waveforms.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

748

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Pipelined Scan Data

Feedback

Figure 314 Pipeline Registers in a Compressed Scan Design

Return-to-zero scan clock Return-to-one scan clock

SI SISO SO

Note:
If you enable retiming registers on the scan input side by using the
set_scan_configuration -add_test_retiming_flops command with the
begin_only or begin_and_end option values, the head pipeline registers are
clocked on the leading clock edge instead.

The newly inserted pipeline registers have names of the form

 SNPS_PipeHead_SI_pin_name_stage
 SNPS_PipeTail_SO_pin_name_stage

where SI_pin_name is the scan in port, SO_pin_name is the scan out port, and stage is
the stage depth.

By default, a new test clock port named SNPS_PipeClk is created for the
pipeline registers. If you want to use an existing design clock instead, use the
-head_pipeline_clock and -tail_pipeline_clock options to specify the clock:

set_pipeline_scan_data_configuration \
 -head_pipeline_clock clock_name \
 -tail_pipeline_clock clock_name \
 -head_pipeline_stages integer \
 -tail_pipeline_stages integer \
 -head_scan_flop true

Use the report_pipeline_scan_data_configuration command to report the current
automatic insertion configuration, and the reset_pipeline_scan_data_configuration
command to reset the automatic insertion configuration.

The automatically inserted pipeline register flow is only available for compressed scan
designs created with the tool.

Specifying User-Defined Head and Tail Pipeline Registers
DFT Compiler can connect user-provided pipeline registers to the compressed scan
logic. You can use this feature to pre-place pipeline registers at strategic locations in tight
floorplans. DFT Compiler automatically makes the needed scan path connections during
the insert_dft command.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

749

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Pipelined Scan Data

Feedback

You can use the set_scan_path command to specify the scan data path connections to
these pipeline registers:

set_scan_path chain_name \
 -scan_data_in port_name \
 -scan_data_out port_name \
 -pipeline_head_registers instance_list \
 -pipeline_tail_registers instance_list \
 -view spec

Note:
Do not specify a test mode for the set_scan_path command when defining
pipeline connections. The tool automatically propagates the specification to all
test modes during scan architecture.

Each set_scan_path command associates a set of existing head and/or tail pipeline
registers with a scan-in and scan-out port. A full scan path chain definition with scan
elements is not needed. You can provide a list of multiple pipeline registers to implement
multiple pipeline stages. The head and tail pipeline depths can be different.

For user-defined pipeline registers, you are responsible for the connections to the scan
data ports and between the pipeline stages, and for proper conditioning for the scan ports
and clocks to the pipeline registers. Figure 315 demonstrates the required connections for
two head pipeline registers and two tail pipeline registers per scan chain.

Figure 315 User-Defined Pipeline Registers and Connections

C_COREUser-defined pipeline registers
Pipeline connections
made during
DFT insertion

During DFT insertion, DFT Compiler makes connections from the pipeline registers to the
scan decompression MUX and XOR compressor logic, but does not check the validity of
the paths between the scan inputs and head registers and between the tail registers and
the scan outputs. After DFT insertion, the dft_drc command determines whether the scan
chains are shifting properly.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

750

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Pipelined Scan Data

Feedback

You can apply the set_size_only command to user-defined pipeline registers before the
first compile -scan command so that the registers are not removed by logic optimization.
Although the size_only property allows the compile -scan command to scan-replace
the pipeline registers with their scan equivalents, the insert_dft command will unscan
the pipeline registers before making the pipeline connections.

When user-defined pipeline registers are specified with the set_scan_path command,
DFT Compiler ignores any options relating to automatically inserted pipeline registers
specified with the set_pipeline_scan_data_configuration command.

Observe these additional requirements when implementing user-defined pipeline registers:

• Design the pipeline structures before DFT insertion so that the registers can be
referenced in the set_scan_path command.

• Ensure that the specified chain count and the number of scan chains are the same.

• Specify the head and tail pipeline registers with a full hierarchical name.

• Specify the corresponding scan input and output ports for each external chain.

• Specify the pipeline registers in scan order, from input pin to scan chain, and from scan
chain to output pin.

• All head pipeline registers must be triggered by the same clock. All tail pipeline
registers must be triggered by the same clock. The clock can be dedicated or shared
with other scan flip-flops.

• DFT Compiler accepts any clocking scheme that ensures correct scan shift. However,
a good rule to follow is to have all the head pipeline registers triggered by the latest
edge of the shift clocks and to have the tail registers triggered by the earliest edge of
the shift clocks.

• All head pipelines must have the same depth, and all tail pipelines must have the same
depth.

• Design your head pipeline registers to retain their values or propagate a constant value
during the capture cycles for optimal ATPG results. This prevents unknown values
from propagating to the unload data. Master-slave pipeline registers require particular
care. For more information, see Avoiding X Capture in Head Pipeline Registers on
page 755.

• The tail registers are assumed to have unknown values at the beginning of unload and
do not need to maintain the state.

The user-defined pipeline register flow is available in both the DFT Compiler and TestMAX
DFT tools.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

751

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Pipelined Scan Data

Feedback

Using Pipelined Scan Data With Scan Compression
The following topics describe considerations that apply to pipelined scan data in
compressed scan flows:

• Configuring Pipelined Scan Data in a Compressed Scan Flow

• Avoiding X Capture in Head Pipeline Registers

• Adding Pipeline Stages at the Compressor Inputs

Configuring Pipelined Scan Data in a Compressed Scan Flow
The compressed scan flow with pipelining is similar to the regular scan flow. It follows
the typical methodology of specify, preview, and insert. The tool wires the scan chain
elements, and if necessary, inserts synchronization logic and generates appropriate test
protocol files to be used in automatic test pattern generation (ATPG).

The following steps demonstrate a compressed scan flow with pipelining. This command
sequence example applies to an unmapped design.

1. Read the design.

dc_shell> read_file -format verilog rtl.v

dc_shell> current_design top

dc_shell> link

2. Choose a scan style for your design.

dc_shell> set_scan_configuration \
 -style multiplexed_flip_flop

3. Perform a test-ready compile.

dc_shell> compile -scan
4. Specify scan clocks and other DFT signals.

dc_shell> for {set i 0} {$i < 3i} {incr i} {
 set_dft_signal -view spec \
 -type ScanDataIn -port SI_$i \
 -test_mode all

 set_dft_signal -view spec \
 -type ScanDataOut -port SO_$i \
 -test_mode all
 }

dc_shell> set_dft_signal -view spec \
 -type Reset -port resetn -active_state 0

Synopsys® TestMAX™ DFT User Guide
T-2022.03

752

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Pipelined Scan Data

Feedback

dc_shell> set_dft_signal -view spec \
 -type ScanEnable -port test_se \
 -active_state 1

5. Enable compressed scan and pipelined scan data.

dc_shell> set_dft_configuration \
 -pipeline_scan_data enable \
 -scan_compression enable

dc_shell> set_scan_compression_configuration \
 -xtolerance default

6. Specify the scan architecture.

dc_shell> set_scan_configuration \
 -chain_count 32 -clock_mixing mix_clocks

7. Enable automatic pipeline register insertion, or specify user-defined pipeline register
scan path connections.

a. For automatically inserted pipeline registers:

dc_shell> set_pipeline_scan_data_configuration \
 -head_pipeline_clock CLK \
 -tail_pipeline_clock CLK \
 -head_pipeline_stages 1 \
 -tail_pipeline_stages 2 \
 -head_scan_flop true

dc_shell> set_scan_path chain0 -view spec \
 -scan_data_in SI_0 \
 -scan_data_out SO_0

 . . .

dc_shell> set_scan_path chain31 -view spec \
 -scan_data_in SI_31 \
 -scan_data_out SO_31
The -head_scan_flop option is used to prevent the head pipeline registers from
capturing during scan capture.

b. For user-defined pipeline register connections:

dc_shell> set_scan_path chain0 -view spec \
 -pipeline_head_registers \
 {head_pipe_0_reg} \
 -pipeline_tail_registers \
 {tail_stage1_pipe_0_reg tail_stage2_pipe_0_reg} \
 -scan_data_in test_SI_0 \

Synopsys® TestMAX™ DFT User Guide
T-2022.03

753

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Pipelined Scan Data

Feedback

 -scan_data_out test_SO_0

 . . .

dc_shell> set_scan_path chain31 -view spec \
 -pipeline_head_registers \
 {head_pipe_31_reg} \
 -pipeline_tail_registers \
 {tail_stage1_pipe_31_reg tail_stage2_pipe_31_reg} \
 -scan_data_in test_SI_31 \
 -scan_data_out test_SO_31

8. Generate a test protocol and check for design violations by running the test design rule
checking at the gate level.

dc_shell> create_test_protocol
dc_shell> dft_drc

9. Preview the scan structures.

dc_shell> preview_dft
10. Build the scan structures into your design.

dc_shell> set_dft_insertion_configuration \
 -synthesis_optimization none \
 -preserve_design_name true

dc_shell> insert_dft

11. Write out the pipeline-inserted netlist and the test protocol files.

dc_shell> report_scan_path -view spec \
 -chain all

dc_shell> report_scan_configuration

dc_shell> change_names -rules verilog -hierarchy

dc_shell> write -format ddc -hierarchy -output design.ddc

dc_shell> write -format verilog -hierarchy -output design.v

dc_shell> write_test_protocol \
 -output ScanCompression.spf \
 -test_mode ScanCompression_mode

dc_shell> write_test_protocol -output Scan.spf \
 -test_mode Internal_scan

Synopsys® TestMAX™ DFT User Guide
T-2022.03

754

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Pipelined Scan Data

Feedback

Avoiding X Capture in Head Pipeline Registers
When pipelined scan data is used in a compressed scan flow, the head pipeline registers
should hold their state or capture a constant value during the capture cycle. This prevents
unknown X values from being captured in the head pipeline registers, which would then
get propagated through the decompression MUX and into the compressed scan chains.

The following methods can be used to capture known values in the head pipeline registers
during scan capture:

• Capture the current register output state during scan capture, as shown in Figure 316.

Figure 316 Head Pipeline Register With State-Holding Scan Flip-Flop

SOD
SI
SE

QSI

SE

CLK

D Q

If you are using the automatic pipeline insertion flow, specify the -head_scan_flop
true option of the set_pipeline_scan_data_configuration command. The tool will
use scan head pipeline registers, and tie each register’s output to its functional data
input so that the state is held during scan capture.

• Use a dedicated head pipeline register clock, as shown in Figure 317.

Figure 317 Head Pipeline Register With Dedicated Clock

SOSI

CLK

PCLK

D Q D Q

If you are using the automatic pipeline insertion flow, you can specify a dedicated
head pipeline register clock using the -head_pipeline_clock option of the
set_pipeline_scan_data_configuration command.

If the clock is independently controllable from the top level, you should add a constraint
in the TestMAX ATPG tool to suppress the dedicated head pipeline register clock
during scan capture.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

755

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Pipelined Scan Data

Feedback

• Use a gated head pipeline register clock, as shown in Figure 318.

Figure 318 Head Pipeline Register With Gated Clock

SOSI

CLK

SE
D Q D Q

There is no option to implement a gated clock in the automatic pipeline register
insertion flow.

• Capture a constant value during scan capture, as shown in Figure 319.

Figure 319 Head Pipeline Registers With Constant Value Capture

SOSI

CLK

SE

0 or 1
D Q D Q

There is no option to implement a constant value capture in the automatic pipeline
register insertion flow.

Post-DFT DRC verifies whether the head pipeline registers hold their values during
capture and issues an R-18 violation message if the check is unsuccessful.

Master-Slave Pipeline Registers

When master-slave pipeline registers are used, take care to ensure that the slave register
is a valid dependent slave of the master. To do this, ensure that the slave always captures
new data from the master, so that the master flip-flop holds its state but the slave flip-flop
does not.

For example, when the pipeline clock has a return-to-zero waveform, the master flip-flop
is the rising edge triggered flip-flop, and the slave flip-flop is a falling edge triggered flip-
flop immediately following it. At the end of every shift cycle, the master and slave flip-flops
have exactly the same data.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

756

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Pipelined Scan Data

Feedback

Adding Pipeline Stages at the Compressor Inputs
When tail scan data pipelining is used in a compressed scan flow, the compressor logic
drives the tail pipeline registers. The tail pipeline registers are clocked on the leading
pipeline clock edge.

If the last scan element of a compressed scan chain is clocked on the trailing clock edge,
only a partial clock cycle is available for the compressor XOR logic. This occurs when

• The last scan element is clocked by the trailing edge of any clock.

• The last scan element is clocked by the leading edge of a clock other than the pipeline
clock, requiring a lock-up latch to hold the data until the trailing edge.

In addition, any long routing from the last scan element to the compressor also subtracts
from the usable clock period. These scenarios are shown in Figure 320.

Figure 320 Partial-Cycle Paths Through the Compressor Logic

PCLK

LE TE LE

TE

LE Leading-edge-triggered flip-flop

Trailing-edge-triggered flip-flop

TE Trailing-edge lock-up latch

TETE

LE LE LE

To remedy this, you can add a stage of pipeline registers that are clocked by the same
clock and edge as the tail pipeline registers to all compressor inputs, as shown in
Figure 321.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

757

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Pipelined Scan Data

Feedback

Figure 321 Full-Cycle Paths Through the Compressor Logic

PCLK

LE TE LE

TE

LE Leading-edge-triggered flip-flop

Trailing-edge-triggered flip-flop

TE Trailing-edge lock-up latch

TE TE

LE LE LE LE LELE

LE LE LE

The compressor input pipeline registers push any partial-cycle paths and long routes
to the input side of these pipeline registers so that a full clock cycle is available for the
compressor XOR logic. The pipeline registers are added inside the compressor design so
that long routes remain on the input side when the compressor block is placed far away in
layout. Pipeline registers are added at all compressor inputs to handle long routes when
the last scan element is driven by the same clock as the tail pipeline registers.

To enable this feature, use the following option:

dc_shell> set_scan_compression_configuration -compressor_pipeline true
You can confirm that the pipeline registers are added by looking at the codec information
in the preview_dft or insert_dft report. For example,

Architecting Load Decompressor (version 5.8)
 Number of inputs/chains/internal modes = 6/30/3
Architecting Pipelined Unload compressor (version 5.8)
 Number of outputs/chains = 6/30

This feature requires that tail scan data pipelining registers also be used. The compressor
pipeline registers do not count against the tail scan data pipeline register depth.

Note the following limitations:

• Streaming compressed scan is not supported.

• Serialized compressed scan is not supported.

• End-of-chain retiming flip-flops can be used with pipelined compressor inputs, but the
combination of these features adds extra retiming flip-flops and lockup latches that
increase complexity without adding timing margin.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

758

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Pipelined Scan Data

Feedback

• Post-DFT DRC reports these pipeline register cells as nonscan cells. However, DRC in
the TestMAX ATPG tool reports and uses them as scan cells.

• In some cases, post-DFT DRC reports an S19 violation on one of the compressor
pipeline registers. This warning can be safely ignored.

Pipelined Scan Data Specifications
This topic covers the following:

• Scan Architecture

• Scan Register Synchronization

Scan Architecture
While implementing pipelined scan data logic, DFT Compiler takes the following aspects
into consideration:

• Pipeline registers are automatically excluded from scan replacement. This exclusion
takes precedence over any other scan membership specifications, such as
the set_scan_path command and the -include and -exclude options of the
set_scan_configuration command.

• In compressed scan modes, lock-up latches are inserted (as needed) at the beginning
and/or end of the compressed chains. There is no optimization to minimize them by
consolidating them outside the compression logic.

• Inversions in the pipelined scan data path are supported.

• DFT Compiler ignores pipeline registers during synthesis of compressed scan chains.

Scan Register Synchronization
DFT Compiler has the following requirements for scan synchronization:

• DFT Compiler checks whether synchronization between head pipeline registers and
scan chains can be done. It also checks for synchronization between scan chains and
tail pipeline registers. If there is a discrepancy, an error message is displayed and scan
architecting or insertion is prevented.

• The clock signal triggering the lock-up element at the beginning of the chain is the
inversion of the clock signal triggering the first flip-flop of the same chain. Similarly, the
clock signal triggering the lock-up element at the end of the chain is the inversion of the
clock signal triggering the last flip-flop of the chain.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

759

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Pipelined Scan Data

Feedback

Pipelined Scan Data Test Protocol Format
The test protocol file generated for the internal scan mode is the same as in a normal scan
flow. The test protocol file generated for the scan compression mode contains information
about the pipeline registers. The test protocol file has the following additional information:

• The number of head pipeline stages is indicated by the LoadPipelineStages keyword.

• The number of tail pipeline stages is indicated by the UnloadPipelineStages
keyword.

For example,

CompressorStructures {
 LoadPipelineStages 3;
 UnloadPipelineStages 2;
 Compressor des2_U_decompressor {
 ModeGroup mode_group;
 LoadGroup load_group;
 CoreGroup core_group;
 Modes 3;
 ...}
 Compressor des2_U_compressor {
 UnloadGroup unload_group;
 CoreGroup core_group;
 Mode {{....}}
}

Pipelined Scan Data Limitations
These are the requirements and limitations for implementing pipeline registers in a
compressed scan flow:

• For maximum observability, the head pipeline flip-flops must hold state during the
capture cycle to avoid capturing unknown X values.

• Compressed scan does not support unbalanced pipelining across chains. The number
of head pipeline stages does not need to match the number of tail pipeline stages, but
all decompressor inputs and all compressor outputs—including any associated with
compressed clock chains—must have the same pipeline depth.

• If you are using external (uncompressed) chains, such as external clock chains or other
user-defined external chains, their pipeline depths must match other scan chains. For
more information, see Excluding Scan Chains From Scan Compression on page 677.

• Scan-enable pipelining is independent of compressor scan data pipelining. Scan-
enable signals can have any number of pipeline stages; however, the logic must be
such that the load_unload and capture operations can be independently verified by
DRC. For example, test_setup and/or load_unload preamble must set the design in

Synopsys® TestMAX™ DFT User Guide
T-2022.03

760

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Pipelined Scan Data

Feedback

shift mode, so that when the scan-enable signal is at the nonshift value, the flip-flops
are able to capture the system data.

• Any combinational logic between the scan ports and the pipeline registers must be
sensitized to a known state.

• In designs with OCC controllers, an ATE clock cannot be used to directly clock head or
tail pipelined scan data registers:

◦ For DFT-inserted OCC controllers, when you specify the ATE clock as the pipeline
register clock, the tool uses an OCC-controlled clock associated with the ATE
clock. For details, see SolvNet article 2685005, “How Are OCC Clocks Chosen for
Pipelined Scan Data Registers?”

◦ For user-defined OCC controllers, if the ATE clock is manually connected to the
pipeline registers, no DRC violations are reported, but incorrect ATPG patterns
might be generated.

• Multiple test-mode operation with user-defined pipeline registers is not supported.
However, multiple test-mode operation with automatically inserted pipeline registers is
supported.

• User-defined pipeline registers and automatically inserted pipeline registers are
mutually exclusive.

Hierarchical Flows With Pipelined Scan Data
In hierarchical flows, you can enable pipelined scan data at the chip level. When
compressed scan cores already contain pipeline stages, the TestMAX DFT tool
incrementally adds top-level pipeline stages as needed to meet the top-level pipeline
depth target. This is known as incremental pipelining.

Consider a core created with a pipeline depth of one:

set_dft_configuration -pipeline_scan_data enable

set_pipeline_scan_data_configuration \
 -head_pipeline_stages 1 \
 -tail_pipeline_stages 1 \
 -head_pipeline_clock clk \
 -tail_pipeline_clock clk

When this core is integrated at the chip level, the chip-level pipeline depth is set to two:

set_dft_configuration -pipeline_scan_data enable

set_pipeline_scan_data_configuration \
 -head_pipeline_stages 2 \
 -tail_pipeline_stages 2 \

Synopsys® TestMAX™ DFT User Guide
T-2022.03

761

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnet.synopsys.com/retrieve/2685005.html
https://solvnet.synopsys.com/retrieve/2685005.html

Chapter 20: Advanced DFTMAX Compression
Pipelined Scan Data

Feedback

 -head_pipeline_clock clk \
 -tail_pipeline_clock clk

Figure 322 shows how the tool adds an additional pipeline stage to meet the chip-level
target. The bolded flip-flops are added at the chip level during integration.

Figure 322 Hierarchical Pipelined Scan Data Example

L L

At the core level, the pipeline registers can be driven by a shared functional clock or a
dedicated pipeline clock. At the chip level, you typically connect this core-level clock pin to
the desired chip-level clock signal. However, in the automatically inserted pipeline register
flow, if you have a dedicated core-level pipeline clock pin that is unconnected at the chip
level, the tool automatically connects it to the chip-level pipeline clock.

General Rules
The following general rules apply to all integration flows where cores are integrated at the
chip level with pipelined scan data enabled:

• Pipelined scan data must be enabled when integrating pipelined cores, even if no
additional pipeline stages are added at the top level.

• During chip-level integration, the tool adds pipeline stages as needed to meet the top-
level pipeline depth specification.

• The only requirement for pipeline clock configuration is that the resulting pipeline scan
path must meet scan-shift timing requirements (which the tool verifies before DFT
insertion). Given this,

◦ The head and tail pipeline clocks inside a core can differ.

◦ The pipeline clock configuration can differ across cores.

◦ Each higher integration level can use a different incremental pipeline clock.

Lockup latches are automatically inserted as needed.

• Unconnected core-level pipeline clock pins (whether DFT-created or user-defined) are
automatically connected to the chip-level pipeline clock signal (whether DFT-created or
user-defined).

Synopsys® TestMAX™ DFT User Guide
T-2022.03

762

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Pipelined Scan Data

Feedback

Pipelined Scan Data in the Standard Scan HSS Flow
In the standard scan HSS flow, note the following:

• DFT Compiler supports only unpipelined standard scan cores in hierarchical flows.
Pipelined standard scan cores are not supported.

• The scan chains in standard scan cores can be used as scan segments that are mixed
with other scan cells or scan segments.

Figure 323 shows these properties.

Figure 323 Integration Properties for the Pipelined Standard Scan HSS Flow

Pipelined Scan Data in the HASS and Hybrid Flows
Figure 324 shows incremental pipelining in the HASS and Hybrid core integration flows. In
the Hybrid flow, the tool also adds pipeline stages around the top-level codec to meet the
top-level pipeline depth.

Figure 324 Incremental Pipelining in the HASS and Hybrid Flows

Synopsys® TestMAX™ DFT User Guide
T-2022.03

763

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Sharing Codec Scan I/O Pins

Feedback

See Also

• The HASS Flow on page 705 for more information about the HASS flow

• The Hybrid Flow on page 711 for more information about the Hybrid flow

Sharing Codec Scan I/O Pins
DFTMAX compression provides design testability with reduced scan pin count
requirements. However, the tool normally requires each codec to have dedicated scan-
in and scan-out pin connections. For large designs with many blocks and many separate
codecs, the scan pin requirements can still be challenging for pin-limited designs.

The tool allows multiple codecs to share the same scan-in and scan-out pins or ports in
the HASS and Hybrid flows, as shown in Figure 325. This is known as codec I/O sharing.

Figure 325 Dedicated Codec I/O Connections and Shared Codec I/O Connections

C_CORE2C_CORE1 C_CORE2C_CORE1

Sharing compressor

Dedicated codec I/O connections
Shared codec I/O connections

Codec I/O sharing provides the following features:

• I/Os can be shared across nonidentical cores and codecs of different widths.

• When codec inputs have dissimilar widths or when an increased number of scan inputs
is provided, the codec input connections are allocated evenly across the scan inputs.

• Identical cores can use optimized shared I/O connections for improved testability.

• You can combine shared codec inputs with dedicated codec outputs.

• You can create multiple shared codec I/O groups.

For a list of the limitations of the shared codec I/O feature, see Shared Codec I/O
Limitations on page 806.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

764

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Sharing Codec Scan I/O Pins

Feedback

This topic covers the following:

• Specifying the I/O Sharing Configuration

• Determining the Fully Shared I/O Configuration

• Codec I/O Sharing in the HASS Flow

• Codec I/O Sharing in the Hybrid Flow

• Codec I/O Sharing in the Top-Down Flat Flow

• Codec I/O Sharing With OCC Controllers

• Codec I/O Sharing With Identical Cores

• Codec I/O Sharing With Shared Codec Controls

• Codec I/O Sharing Groups

• Codec I/O Sharing and Standard Scan Chains

• Codec I/O Sharing and Pipelined Scan Data

• Integrating Cores That Contain Shared Codec I/O Connections

• Shared Codec I/O Limitations

Specifying the I/O Sharing Configuration
To share codec scan I/O pins, use the -shared_inputs and -shared_outputs options of
the set_scan_compression_configuration command:

set_scan_compression_configuration
 -shared_inputs M
 -shared_outputs N

The value M specifies the size of the set of shared scan-in pins used for all codec input
connections. The value N specifies the size of the set of shared scan-out pins used for all
codec output connections. These values pertain only to the scan I/O signals needed for
codec connections; scan I/O signals for external chains in compressed scan mode and for
scan chains in standard scan mode should not be included in these values.

Figure 326 shows two compressed scan cores with connections that are fully shared using
the set_scan_compression_configuration -shared_inputs 4 -shared_outputs 4
command. The first codec has four I/O pins and the second codec has three I/O pins. A
minimum shared set of four top-level scan I/O pins is required to satisfy the connections
of the wider codec. All shared scan inputs are tied together, and the scan outputs are
combined with an output sharing compressor block.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

765

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Sharing Codec Scan I/O Pins

Feedback

Figure 326 Compressed Scan Mode Operation for Two Codecs With Fully Shared I/O

C_CORE1 C_CORE2

Sharing compressor

-shared_inputs 4

-shared_outputs 4
You can use the -shared_inputs option to set the number of shared scan inputs
to any value from fully shared to unshared, inclusive. Similarly, you can use the
-shared_outputs option to set the number of shared scan outputs to any value from
fully shared to unshared, inclusive. Values between the fully shared and unshared values
are called partially shared values. For more information about computing the fully shared
configuration, see Determining the Fully Shared I/O Configuration on page 767.

Note:
If you specify the fully unshared (dedicated) outputs value, you must use the
flow described in Specifying Shared Codec Inputs With Dedicated Codec
Outputs on page 782.

To enable the codec I/O sharing feature, you must specify shared inputs with the
-shared_inputs option. The -shared_outputs option by itself cannot enable codec I/
O sharing, and you cannot share outputs without also sharing inputs. If you specify the
-shared_inputs option without the -shared_outputs option, the codec outputs are
automatically fully shared.

As you increase the number of shared scan inputs, the controllability of the compressed
scan chains increases. As you increase the number of shared outputs, the observability
of the compressed scan chains increases. Figure 327 shows the same two codecs with
partially shared inputs and outputs.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

766

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Sharing Codec Scan I/O Pins

Feedback

Figure 327 Two Codecs With Partially Shared Inputs and Outputs

C_CORE1 C_CORE2

-shared_inputs 5

-shared_outputs 5

Sharing compressor

If you provide too few scan inputs with the -shared_inputs option, the tool issues the
following warning message and proceeds with the fully shared input value:

Warning: Your request for 3 shared codec scan inputs in partition
default_partition cannot be met; 4 shared scan inputs will be used
instead. (TEST-1420)

If you provide too few scan outputs with the -shared_outputs option, a similar warning
message and adjustment occur:

Warning: Your request for 3 shared codec scan outputs in partition
default_partition cannot be met; 4 shared scan outputs will be used
instead. (TEST-1421)

DFT insertion places the output sharing compressor at the top level by default. To insert
the sharing compressor inside a specific hierarchical block, specify the location using
the set_dft_location -include XOR_SELECT command. For more information, see
Specifying a Location for DFT Logic Insertion on page 278.

Determining the Fully Shared I/O Configuration
The configuration with the minimum number of shared inputs and outputs for a design is
called the fully shared configuration. It is described in more detail in the following topics:

• Determining Shared Input Pin Types

• Adding High X-Tolerance Block-Select Pins

• Automatically Computing the Fully Shared Configuration

• Manually Computing the Fully Shared Configuration

Synopsys® TestMAX™ DFT User Guide
T-2022.03

767

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Sharing Codec Scan I/O Pins

Feedback

Note:
For simplicity, shared codec I/O figures outside this section do not separate
input pins into different categories.

Determining Shared Input Pin Types
When you share the scan input connections of compressed scan codecs, their scan-in
pins are categorized for sharing, as described in the following topics:

• Scan-In Pins That Drive Compressed OCC Clock Chains

• Load Mode Scan-In Pins

• High X-Tolerance Enable Scan-In Pins

• Regular Scan-In Data Pins

Scan-In Pins That Drive Compressed OCC Clock Chains
By default, when you insert scan compression in an OCC controller flow, the clock chain
is compressed. DFTMAX compression dedicates a decompressor scan input path to the
clock chain as shown in Figure 280. This allows the clock chain values to be controlled
without imposing constraints on other scan cells.

When you use codec I/O sharing, codec inputs that drive compressed clock chains cannot
be shared. However, you must still include these inputs in the value provided to the
-shared_inputs option. Figure 328 shows two compressed scan cores, where one core,
C_CORE1, has a compressed clock chain driven by a dedicated codec scan input. The
fully shared input value in this example is five.

Figure 328 Dedicated Scan Inputs for Compressed Clock Chains

C_CORE1 C_CORE2OCC
controller

Sharing compressor

Dedicated compressed
clock chain scan-in pin

Shared load-mode pins
Shared regular scan-in data pins

Synopsys® TestMAX™ DFT User Guide
T-2022.03

768

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Sharing Codec Scan I/O Pins

Feedback

If you are using the Hybrid flow with a top-level OCC controller and the top-level codec
compresses the clock chain of the top-level OCC controller, you must include a scan input
for the top-level codec.

If you are using external clock chains, do not include them in the value provided to the
-shared_inputs option; they are excluded from scan compression.

See Also

• Codec I/O Sharing With OCC Controllers on page 778 For more information about
using compressed clock chains and external clock chains with shared-I/O connections.

Load Mode Scan-In Pins
In a DFTMAX codec, some of the scan-in data pins are designated as load-mode pins.
When you use codec I/O sharing, load-mode pins can be shared, but only with other load-
mode pins. Figure 329 shows the fully shared configuration for two cores with different
load-mode pin counts.

Figure 329 Two Codecs With Different Load-Mode Pin Counts

Shared load-mode pins Shared regular scan-in data pins

C_CORE1 C_CORE2

See Also

• Decompressor Operation on page 649 for more information about load-mode pins

High X-Tolerance Enable Scan-In Pins
High X-tolerance enable scan-in pins enable high X-tolerance masking. Each high X-
tolerance core or codec has only one of these pins. An output sharing compressor used
with high X-tolerance cores or codecs also has one of these pins.

When you use codec I/O sharing, these high X-tolerance enable scan-in pins can be
shared, but only with other high X-tolerance enable scan-in pins. Figure 330 shows the
fully shared configuration for two high X-tolerance cores.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

769

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Sharing Codec Scan I/O Pins

Feedback

Figure 330 Two Codecs With Shared High X-Tolerance Pins
Shared load-mode pins
Shared regular scan-in data pins

Shared
high X-tolerance

enable pin

C_CORE1 C_CORE2

(High X-tol) (High X-tol)

Sharing compressor

Because codec I/O sharing requires that all codecs have the same X-tolerance type, these
enable pins do not impose any complexity on the fully shared input computation. If high X-
tolerance is used, all codecs have a single high X-tolerance enable pin, which is shared as
other scan-in data pins are shared.

Note:
In this section, only the high X-tolerance enable connection to the output
sharing compressor is shown for clarity. In other areas of the shared codec I/O
documentation, it is omitted as the focus is on the block-select connections to
the sharing compressor.

See Also

• The High X-Tolerance Architecture on page 726 for more information about high X-
tolerance enable pins

Regular Scan-In Data Pins
Regular scan-in data pins are all remaining pins that do not fall into the other three
categories. When you use codec I/O sharing, regular scan-in data pins can be shared, but
only with other regular scan-in data pins.

Adding High X-Tolerance Block-Select Pins
When you share the scan-out pins of high X-tolerance codecs, you must allow for
additional scan-in pins to provide block-select X-masking signals for the output sharing
compressor. Figure 331 shows the additional block-select signal connections.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

770

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Sharing Codec Scan I/O Pins

Feedback

Figure 331 Adding Shared Inputs for High X-Tolerance Block-Select Signals

C_CORE1

(High X-tolerance)

C_CORE2

(High X-tolerance)

N

Sharing compressor

-shared_inputs

The number of additional block-select scan-in pins N is equal to log2 of the number of
shared codecs, rounded up to the next integer value. This number must be included in the
value provided to the -shared_inputs option. Table 54 shows the number of additional
scan-in pins required as a function of the number of shared codecs.

Table 54

Number of shared codecs Required number of additional scan data inputs

2 1

3 to 4 2

5 to 8 3

9 to 16 4

17 to 32 5

33 to 64 6

The preview_dft command at the integration level reports the block-select signal
connections that will be created. Example 119 shows the preview report for two shared-I/O
codecs.

Example 119 Shared Codec I/O Block Select Signals in preview_dft Report
ScanDataIn Ports:

 (si) shows Regular ScanDataIn signal
 (lm) shows Load Mode signal
 (sel) shows Block Select signal
 (xtol) shows Xtol Enable signal

Synopsys® TestMAX™ DFT User Guide
T-2022.03

771

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Sharing Codec Scan I/O Pins

Feedback

test_si1 (drives C_CORE1/test_si1) (si)
test_si2 (drives C_CORE1/test_si2) (lm)
test_si3 (drives C_CORE1/test_si3) (lm)
test_si4 (drives C_CORE1/test_si4) (xtol)

test_si1 (drives C_CORE2/test_si1) (si)
test_si2 (drives C_CORE2/test_si2) (lm)
test_si4 (drives C_CORE4/test_si3) (xtol)

test_si5 (drives U_sharing_compressor/bsel[0]) (sel)
test_si4 (drives U_sharing_compressor/xtol_enable) (xtol)

If you are using dedicated (unshared) outputs by setting the -shared_outputs option to
the fully unshared value, no shared codec I/O block-select signals are needed because
there is no output sharing compressor.

Automatically Computing the Fully Shared Configuration
To automatically compute the fully shared configuration, use the preview_dft command.
Specify a value of 1 for the -shared_inputs and -shared_outputs options, run the
preview_dft command, and obtain the values reported in the TEST-1420 and TEST-1421
warning messages.

For example,

dc_shell> set_scan_compression_configuration \
 -shared_inputs 1 -shared_outputs 1
dc_shell> preview_dft
...
Warning: Your request for 1 shared codec scan inputs in partition
default_partition cannot be met; 4 shared scan inputs will be used
instead. (TEST-1420)
Warning: Your request for 1 shared codec scan outputs in partition
default_partition cannot be met; 4 shared scan outputs will be used
instead. (TEST-1421)

This approach is useful when codec information is not readily available for cores or
codecs, such as when you do not have the CTL models available in an integration flow or
you are using the top-down flat insertion flow and the codecs do not yet exist.

Manually Computing the Fully Shared Configuration
This topic describes how to manually compute the fully shared configuration. You can use
this approach if the preview report takes too long to generate or if you are designing core-
level scan architectures to meet a particular top-level sharing goal.

Note:
If you are using the Hybrid integration mode, include the top-level codec in
these computations.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

772

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Sharing Codec Scan I/O Pins

Feedback

To manually compute the fully shared input configuration value, which is the minimum
value that can be specified with the -shared_inputs option, do the following:

1. If all codecs have the same load-mode pin count, compute the maximum scan-in width
of all codecs to be shared, then go to step 3.

If you do not know this information, use the automatic computation method described in
Automatically Computing the Fully Shared Configuration on page 772.

2. If some codecs have different load-mode pin counts, do the following:

a. For each codec to be shared, separate the scan-in pins into load-mode pins and
non-load-mode pins.

The non-load-mode pins are the remaining scan-in pins that are compressed clock
chain scan-in pins, high X-tolerance enable pins, or regular scan-in data pins.

b. Compute the maximum load-mode pin count value across all codecs.

c. Compute the maximum non-load-mode pin count value across all codecs.

d. Add together the maximum values from steps 2b and 2c, then go to step 3.

3. If compressed clock chains are used, add the number of compressed clock chain scan-
in pins because these pins cannot be shared.

4. If high X-tolerance is used, add N additional scan inputs for block-select signals,
where N is equal to log2 of the number of shared codecs, rounded up to the next
integer value. For more information, see Adding High X-Tolerance Block-Select Pins on
page 770.

To manually compute the fully shared output configuration value, which is the minimum
value that can be specified with the -shared_outputs option, compute the maximum
scan-out width of all codecs to be shared.

Codec I/O Sharing in the HASS Flow
In the HASS flow, one or more compressed scan cores are integrated at the top level.
Figure 332 shows two cores with fully shared codec I/O connections. The first codec has
four I/O pins and the second codec has three I/O pins; the values for the -shared_inputs
and -shared_outputs options of the set_scan_compression_configuration command
are determined by the wider codec.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

773

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Sharing Codec Scan I/O Pins

Feedback

Figure 332 HASS Flow With Full Codec I/O Sharing

C_CORE1 C_CORE2

Sharing compressor

-shared_inputs 4

-shared_outputs 4

Codec I/O Sharing in the Hybrid Flow
In the Hybrid flow, a new codec is inserted at the top level along with existing block-level
codecs. When the codec I/O sharing feature is not used, only the remaining scan data
pins not used by the existing block-level codecs are used for the new top-level codec.
Figure 333 shows a top-level design where the new top-level codec uses the remaining
three available scan data I/O connections.

Figure 333 Hybrid Flow With Codec I/O Sharing Disabled

C_CORE

set_scan_configuration -chain_count 6

set_scan_compression_configuration -inputs 3 -outputs 3
When codec I/O sharing is performed, the new top-level codec can use some or all of the
scan input pins used by the existing block-level codecs. Figure 334 shows an example of
partial scan-in sharing and Figure 335 shows an example of full scan-in sharing.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

774

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Sharing Codec Scan I/O Pins

Feedback

Figure 334 Hybrid Flow With Some Codec Input Sharing

C_CORE

set_scan_configuration -chain_count 6

set_scan_compression_configuration -inputs 4 -outputs 6
-shared_inputs 6 -shared_outputs 6

Sharing compressor

Figure 335 Hybrid Flow With Full Codec Input Sharing

C_CORE

set_scan_configuration -chain_count 6

set_scan_compression_configuration -inputs 6 -outputs 6
-shared_inputs 6 -shared_outputs 6

Sharing compressor

The I/O sharing feature provides a degree of freedom in the construction of the new top-
level codec. Because the top-level codec characteristics can no longer be derived from
other scan configuration information in the Hybrid flow, you must explicitly configure
the top-level codec characteristics using the -inputs and -outputs options of the
set_scan_compression_configuration command.

Codec I/O Sharing in the Top-Down Flat Flow
In a normal top-down flat flow, multiple codecs are created by defining multiple DFT
partitions. Each partition specifies the scan logic to be scan-compressed with a

Synopsys® TestMAX™ DFT User Guide
T-2022.03

775

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Sharing Codec Scan I/O Pins

Feedback

codec. However, each DFT partition is an independent scan context with its own scan
configuration. This prevents the codec I/O sharing feature from being applied as follows:

• Scan I/O ports can only belong to one partition at a time; they cannot be shared across
partitions.

• There is no single partition to attach the codec I/O sharing specification.

To remedy this, the top-down flat flow uses subpartitions to enable codec I/O sharing. A
subpartition is defined with the define_dft_partition command, and specifies the scan
logic to be scan-compressed with a codec. These subpartitions are then grouped together
into top-level partitions, which can receive codec I/O sharing and scan port specifications.

This flow is configured as follows:

1. Define the subpartitions containing the logic to be scan-compressed with a codec.

2. Define a top-level partition containing the subpartitions that should share their codec I/
O connections.

3. Configure codec characteristics within each subpartition.

4. Configure the shared codec I/O characteristics within each top-level partition.

The following example defines two codecs with shared I/O connections in a top-down flat
flow:

globally enable scan compression
set_dft_configuration -scan_compression enable

define subpartitions that define codecs
define_dft_partition SUB_P1 -include {BLK1}
define_dft_partition SUB_P2 -include {BLK2}

define top-level partition that groups subpartition codecs together
define_dft_partition PARTITION -include {SUB_P1 SUB_P2} ;# subpartitions

apply subpartition codec characteristics
current_dft_partition SUB_P1
set_scan_configuration -chain_count 2
set_scan_compression_configuration -chain_count 5 -inputs 3 -outputs 3

current_dft_partition SUB_P2
set_scan_configuration -chain_count 1
set_scan_compression_configuration -chain_count 4 -inputs 2 -outputs 2

apply top-level codec I/O sharing characteristics
current_dft_partition PARTITION
set_scan_compression_configuration -shared_inputs 3 -shared_outputs 3

Figure 336 shows the top-down flat DFT insertion results for these commands.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

776

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Sharing Codec Scan I/O Pins

Feedback

Figure 336 Top-Down Flat Flow Codec I/O Sharing

Sharing compressor

PA
R

TI
TI

O
N

BLK1

SU
B

_P
2

BLK2

SU
B

_P
1

When you use the shared codec I/O feature in a top-down flat flow, all scan logic to be
compressed must be placed into subpartitions. If scan cells in a partition exist outside a
subpartition, the tool places them into an external chain that is not compressed inside that
partition. See Figure 337.

Figure 337 Partition-Level External Chains in Top-Down Flat Flow

Sharing compressor

PA
R

TI
TI

O
N

BLK1

SU
B

_P
2

BLK2

SU
B

_P
1

Note:
Subpartition definitions are only supported in a shared codec I/O flow.

An enclosing top-level partition is required because this is the single-group case
of the functionality described in Defining Sharing Groups in the Top-Down Flat
Flow on page 793.

See Also

• Top-Down Flat Compressed Scan Flow With DFT Partitions on page 660 for more
information about defining DFT partitions

Synopsys® TestMAX™ DFT User Guide
T-2022.03

777

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Sharing Codec Scan I/O Pins

Feedback

Codec I/O Sharing With OCC Controllers
In a DFTMAX flow, when you insert scan compression in a design with OCC controllers,
the clock chain is placed between the decompressor and compressor by default, as
described in Using Compressed Clock Chains on page 679.

However, compressed clock chain inputs cannot be shared. This results in a dedicated
scan-in connection for each dedicated clock chain codec input in the design, as shown in
Figure 338.

Figure 338 Shared Codec I/O With Compressed Clock Chains

C
lock chain

OCC
controller

C
lock chain

OCC
controller

C
lock chain

OCC
controller

Sharing compressor

To avoid these unsharable clock chain inputs across shared-I/O cores, you can use
external clock chains, which can be concatenated into a single top-level clock chain across
the cores as shown in Figure 339.

Figure 339 Shared Codec I/O With External Clock Chains

Sharing compressor

C
lock chain

OCC
controller

C
lock chain

OCC
controller

C
lock chain

OCC
controller

Synopsys® TestMAX™ DFT User Guide
T-2022.03

778

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Sharing Codec Scan I/O Pins

Feedback

Although external clock chains require dedicated scan I/Os in each core, they can be
concatenated into a single top-level clock chain, reducing the total scan I/O requirements
at the top level.

Note:
If you are using DFT partitions, all clock chains to be concatenated must belong
to the same partition. See .SolvNet article 2675107, “Concatenating OCC Clock
Chains From Multiple DFT Partitions.“

For details on defining external clock chains, see Defining External Clock Chains on
page 681.

Codec I/O Sharing With Identical Cores
Codec I/O sharing does not require that cores be identical. However, if you are integrating
multiple identical instances of a core, DFTMAX compression can take advantage of their
identicality to optimize their scan-in and scan-out connections for improved testability.

Codec I/O sharing with identical cores is described in the following topics:

• Identical Core Connections

• Specifying Identical Cores

• Using Scrambled Output Connections

• Specifying Shared Codec Inputs With Dedicated Codec Outputs

Identical Core Connections
Identical cores have the same functional and scan logic structures. Because of this,
DFTMAX compression optimizes shared codec I/O connections of identical cores as
follows:

• Identical scan input connections are used so that each pattern sensitizes the same
faults across all cores.

• Identical scan output connections are used to reduce the impact of X values on pattern
count.

You can have multiple groups of identical cores, and you can mix identical cores with
nonidentical (unique) cores. Figure 340 shows the codec scan data connections for two
instances of COREA, two instances of COREB, and a single instance of COREC.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

779

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnet.synopsys.com/retrieve/2675107.html
https://solvnet.synopsys.com/retrieve/2675107.html

Chapter 20: Advanced DFTMAX Compression
Sharing Codec Scan I/O Pins

Feedback

Figure 340 Codec Scan Data Connections for Groups of Identical Cores

1 2 3 41 2 3 1 2 34 1 2 3

1 2 3 4

1 2 3 1 2 3 4 1 2 3 41 2 3

1 2 3 4

COREA_1 COREB_1COREA_2 COREC

4 1 2

1 2 3

Sharing compressor

COREB_2

The tool uses as many shared inputs and outputs as possible. For each identical core
group,

• The core inputs use all available shared scan inputs in sequence.

• The core outputs start at the first scan output, using the largest number of shared
outputs that is a multiple of the core output width.

Figure 341 shows the previous example modified to use a larger number of shared inputs
and outputs.

Figure 341 Codec Scan Data Connections With More Shared Inputs and Outputs

1 2 3 41 2 3 5 6 14 5 6 1

1 2 3 4

4 5 6 1 2 3 4 1 2 3 41 2 3

1 2 3 4

COREA_1 COREB_1COREA_2 COREC

2 3 4

5 6 7

Sharing compressor

COREB_2

5 6 7

5 6

Synopsys® TestMAX™ DFT User Guide
T-2022.03

780

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Sharing Codec Scan I/O Pins

Feedback

Specifying Identical Cores
The tool does not identify identical core instances by default; you must specify them with
the -identical_cores option of the set_scan_compression_configuration command.
Wildcards are supported. For example,

dc_shell> set_scan_compression_configuration \
 -shared_inputs 4 -shared_outputs 4 \
 -identical_cores {COREA_* COREB_*}
If there are multiple groups of identical cores, the tool analyzes them to determine the
identicality grouping. Cores are considered identical when the following codec parameters
match:

• Decompressor input width

• Compressor output width

• X-tolerance configuration

• Compressed scan chain count

The preview_dft and insert_dft commands print information messages that show the
identical core groups:

Information: Detected group of identical cores: COREA_1 COREA_2
(TEST-1450)
Information: Detected group of identical cores: COREB_1 COREB_2
(TEST-1450)

You can use these messages to confirm that identical cores are identified as expected.

When you run TestMAX ATPG, use the -shared_io_analysis option of the set_atpg
command. This option performs an analysis to identify all identical circuit networks in the
identical cores, which results in improved pattern generation.

Using Scrambled Output Connections
If your design generates few X values, you can use nonidentical (scrambled) scan output
connections for the identical cores to potentially improve the diagnosability of the design.
To do this, set the -scramble_identical_outputs option to true:

dc_shell> set_scan_compression_configuration \
 -shared_inputs 4 -shared_outputs 4 \
 -identical_cores {COREA_* COREB_*} \
 -scramble_identical_outputs true
Scrambled output connections, shown in Figure 342, provide more uniqueness in the
output signatures of each identical core.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

781

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Sharing Codec Scan I/O Pins

Feedback

Figure 342 Using Scrambled Output Connections for Identical Cores

4 1 2 1 2 3 4 2 3 4 11 2 3

1 2 3 4

COREA_1 COREB_1COREA_2 COREC

2 3 4

Sharing compressor

COREB_2

For each identical core group, the core outputs start at the first scan output, using all
available shared scan outputs in sequence. When the shared output width is a multiple
of a an identical core’s output width, the sequence advances as needed to avoid identical
connections as much as possible.

Specifying Shared Codec Inputs With Dedicated Codec Outputs
You might want to use identical shared codec input connections for identical cores while
still using dedicated codec output connections. This configuration reduces the scan-in pin
requirements while providing full output observability with no sharing compressor required.

Figure 343 shows an example of this sharing configuration.

Figure 343 Example of Shared Codec Inputs With Dedicated Codec Outputs

C_COREA_1

(High X-tolerance)

C_COREA_2

(High X-tolerance)

-shared_inputs 4

-shared_outputs 6

Synopsys® TestMAX™ DFT User Guide
T-2022.03

782

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Sharing Codec Scan I/O Pins

Feedback

To use dedicated codec outputs, the following requirements must be met:

• All cores are identical in a single group (according to the criteria described in Codec I/O
Sharing With Identical Cores on page 779).

• The value specified for the -shared_inputs option is the fully shared value (equal to
the shared codec input width).

• The value specified for the -shared_outputs option is the fully unshared value (equal
to the sum of all shared codec output widths).

When the tool detects that these requirements are met, it issues the following information
message:

Information: You have asked for shared codec inputs and dedicated codec
outputs in partition partition_name. (TEST-1446)

Note:
In this flow, the -identical_cores option is optional because all cores must be
identical.

Because there is no sharing of codec outputs, no sharing compressor is required. This
also means that no additional shared codec I/O block-select signals must be included
in the -shared_inputs value when using high X-tolerance. For more information about
block-select signals, see Adding High X-Tolerance Block-Select Pins on page 770.

Codec I/O Sharing With Shared Codec Controls
In some cases, you might want to exclude one or more blocks from testing. For example,

• Test blocks individually to perform “core harvesting,” in which redundant blocks take the
place of bad blocks to improve device yield

• Exclude a single block from testing that has known issues or defects

You can implement shared codec control logic to selectively enable observation of
shared-I/O codecs. The tool adds AND-gating logic at the codec inputs of output sharing
compressors, as shown in Figure 344. After DFT insertion, you can write a test protocol
that selectively disables any set of codecs, provided at least one codec is active in the
design across all DFT partitions.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

783

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Sharing Codec Scan I/O Pins

Feedback

Figure 344 Output Sharing Compressor With Codec Control Logic

codec_enable_0
codec_enable_1
codec_enable_2

Sharing compressor XOR logic

Note the following:

• Disabled codecs are omitted from the SPF. In the TestMAX ATPG tool, scan elements
associated with disabled codecs can drive X values.

• To block external X values, test wrapped cores in their inward-facing (INTEST) mode.

• The codec controls logic blocks observation at disabled compressors. However,
disabled blocks can still receive the clock, scan-in, and scan-enable signals and
operate as constructed during gate-level simulation and manufacturing test.

Configuring Shared Codec Controls
To implement codec control logic, enable the following option:

dc_shell> set_scan_compression_configuration -shared_codec_controls true
When using DFT partitions, you can enable this option globally or on a per-partition basis.

The preview_dft command reports the codec enable pins to be implemented for each
output sharing compressor:

dc_shell> preview_dft
...

******************** Shared Codec Controls Report ********************
U_sharing_compressor/codec_enable_0 controls
 sub1:sub_1_U_decompressor_ScanCompression_mode
U_sharing_compressor/codec_enable_1 controls
 sub2:sub_2_U_decompressor_ScanCompression_mode
U_sharing_compressor/codec_enable_2 controls
 top:top_default_partition_U_decompressor_ScanCompression_mode
**

Synopsys® TestMAX™ DFT User Guide
T-2022.03

784

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Sharing Codec Scan I/O Pins

Feedback

The insert_dft command makes the codec enable pin connections as follows:

• If you are using IEEE 1500 test-mode control, the tool automatically implements
TMCDR register bits that drive the codec enable pins.

• If you are not using IEEE 1500 test-mode control, you can define internal hookup pins
for the codec enable signals, as described in Specifying User-Defined Codec Enable
Signals on page 786.

If you do not define any codec enable signals, the tool connects the codec enable pins
to logic 1, and you must modify the netlist to control the codec enable pins.

After DFT insertion, use the write_test_protocol command to write an SPF that
disables one or more codecs by specifying a codec list with the -disable_codecs option.
Reference each codec’s decompressor using the cell_name:decompressor_name syntax.
For example,

write a protocol that tests all codecs
write_test_protocol \
 -test_mode ScanCompression_mode \
 -output COMP_enable_all_codecs.spf

write a protocol that tests only the top-level codec
by disabling all others
write_test_protocol \
 -test_mode ScanCompression_mode \
 -output COMP_disable_core_codecs.spf \
 -disable_codecs {sub1:sub_1_U_decompressor_ScanCompression_mode \
 sub2:sub_2_U_decompressor_ScanCompression_mode}

If you are using IEEE 1500 test-mode control, the write_test_protocol command writes
a test protocol that automatically configures the TMCDR codec selection bits as needed.

If you are not using IEEE 1500 test-mode control, the tool assumes that you are modifying
the test protocol and/or netlist to disable the specified codecs. The write_test_protocol
command issues a reminder as follows:

Information: The codec control pins of the specified disabled codecs must
be driven by logic 0. (TEST-1473)

The codec control information is stored in the .ddc file written for the current design. You
can read the .ddc file back in to generate additional test protocols at a later time.

See Also

• Shared Codec I/O Limitations on page 806 for limitations of shared codec controls

• Integrating Shared I/O Cores That Contain Shared Codec Controls on page 805 for
more information about integrating cores that have shared codec controls

Synopsys® TestMAX™ DFT User Guide
T-2022.03

785

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Sharing Codec Scan I/O Pins

Feedback

Specifying User-Defined Codec Enable Signals
If you are using the shared codec controls feature, you can connect the codec enable
signals to your own internal hookup pins by defining DFT signals with a type of
codec_enable. For example,

dc_shell> set_dft_signal -view spec -type codec_enable \
 -hookup_pin MY_EN_reg[1]/Q
dc_shell> set_dft_signal -view spec -type codec_enable \
 -hookup_pin MY_EN_reg[0]/Q
The codec enable signals must be defined using the -hookup_pin option; they cannot
be defined using the -port option. If you are using DFT partitions, the signals must be
specified on a per-partition basis; you cannot define global signals across to be allocated
all partitions.

If there are fewer signals than codecs being controlled in the group, the tool ignores the
signals, issues a TEST-1482 warning, and connects the codec enable pins to logic 1.

By default, the tool chooses a codec for each codec enable signal. To specify which
codec is controlled by each signal, use the -codec option to reference each codec’s
decompressor using the cell_name:decompressor_name syntax:

dc_shell> set_dft_signal -view spec -type codec_enable \
 -hookup_pin MY_EN_reg[1]/Q \
 -codec sub2:sub_2_U_decompressor_ScanCompression_mode
dc_shell> set_dft_signal -view spec -type codec_enable \
 -hookup_pin MY_EN_reg[0]/Q \
 -codec sub1:sub_1_U_decompressor_ScanCompression_mode
The -codec option can only be used together with the -type codec_enable option.

Codec I/O Sharing Groups
You can use DFT partitions to share I/O connections within multiple codec groups. You can
use this flow to reduce routing congestion by only sharing the connections of codecs that
are in close proximity to each other or to optimize the sharing arrangement for identical
cores.

DFT insertion places each partition’s sharing compressor at the top level by default. To
insert a partition’s sharing compressor inside a specific hierarchical block, specify the
location using the set_dft_location -include XOR_SELECT command applied within
that partition’s configuration. For more information, see Specifying a Location for DFT
Logic Insertion on page 278.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

786

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Sharing Codec Scan I/O Pins

Feedback

This topic covers the following:

• Defining Sharing Groups in the HASS Flow

• Defining Sharing Groups in the Hybrid Flow

• Defining Sharing Groups for Codecs in Partitioned Cores

• Defining Sharing Groups in the Top-Down Flat Flow

Defining Sharing Groups in the HASS Flow
In the HASS flow, create and configure sharing groups as follows:

1. Define DFT partitions containing the compressed scan cores that are to share their
codec I/O connections.

2. Configure the shared codec I/O characteristics within each partition.

The following example defines two DFT partitions, where each contains two compressed
scan cores:

globally enable scan compression and HASS integration
set_dft_configuration -scan_compression enable
set_scan_compression_configuration -integration_only true

define partitions that group cores
define_dft_partition PARTITION1 -include [list C_CORE1 C_CORE2]
define_dft_partition PARTITION2 -include [list C_CORE3 C_CORE4]

apply codec I/O sharing characteristics
current_dft_partition PARTITION1
set_scan_configuration -chain_count 4
set_scan_compression_configuration -shared_inputs 4 -shared_outputs 4

current_dft_partition PARTITION2
set_scan_configuration -chain_count 3
set_scan_compression_configuration -shared_inputs 3 -shared_outputs 3

Figure 345 shows the HASS integration results for these commands.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

787

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Sharing Codec Scan I/O Pins

Feedback

Figure 345 HASS Flow Codec I/O Sharing With Partitions

C_CORE1

Sharing compressor

PA
R

TI
TI

O
N

1

C_CORE2 C_CORE4C_CORE3

PA
R

TI
TI

O
N

2

Sharing compressor

Defining Sharing Groups in the Hybrid Flow
In the Hybrid flow, there are one or more compressed scan cores along with additional top-
level logic to be compressed. You can create one or more top-level codecs to compress
this logic, and you can choose whether or not to share the connections of each top-level
codec, as described in the following topics:

• Using Shared Codecs for Top-Level Logic

• Using Dedicated Codecs for Top-Level Logic

You can define multiple partitions to create multiple top-level codecs, including a mix of
shared and dedicated top-level codecs.

Note:
A top-level codec is a codec that compresses top-level logic, which is logic
that exists outside a compressed scan core. A top-level codec can be defined
in a subpartition (for a shared top-level codec) or in a top-level partition (for a
dedicated top-level codec).

Using Shared Codecs for Top-Level Logic
You can define subpartitions to specify the top-level scan logic to be scan-compressed
with a shared codec. For more information about subpartitions, see Codec I/O Sharing in
the Top-Down Flat Flow on page 775.

In this flow, create and configure sharing groups as follows:

1. Define any subpartitions containing the logic to be scan-compressed with a top-level
shared codec.

2. Define top-level partitions containing the compressed scan cores and/or subpartitions
that are to share their codec I/O connections.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

788

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Sharing Codec Scan I/O Pins

Feedback

3. Configure the top-level logic codec characteristics within each subpartition.

4. Configure the shared codec I/O characteristics within each top-level partition.

The following example defines two top-level DFT partitions, each of which contains two
shared-I/O codecs:

globally enable scan compression and Hybrid integration
set_dft_configuration -scan_compression enable
set_scan_compression_configuration -hybrid true

define subpartitions that define the new top-level codecs
define_dft_partition SUB_GLUE -include [list GLUE_cell_list]

define top-level partitions that group subpartition codecs or cores
define_dft_partition PARTITION1 -include [list C_CORE1 SUB_GLUE]
define_dft_partition PARTITION2 -include [list C_CORE2 C_CORE3]

apply top-level codec characteristics to subpartitions
current_dft_partition SUB_GLUE
set_scan_configuration -chain_count 2
set_scan_compression_configuration -chain_count 3 -inputs 2 -outputs 2

apply codec I/O sharing characteristics
current_dft_partition PARTITION1
set_scan_configuration -chain_count 3
set_scan_compression_configuration -shared_inputs 3 -shared_outputs 3

current_dft_partition PARTITION2
set_scan_configuration -chain_count 3
set_scan_compression_configuration -shared_inputs 3 -shared_outputs 3

Figure 346 shows the Hybrid integration results for these commands.

Figure 346 Hybrid Flow With Sharing Groups and a Shared Top-Level Codec

Sharing compressor

PA
R

TI
TI

O
N

1

C_CORE3C_CORE2

PA
R

TI
TI

O
N

2

Sharing compressor

GLUEC_CORE1

SU
B

_G
LU

E

You can define one or more shared codec subpartitions within any top-level partition, with
or without compressed scan cores. If some scan cells exist in a top-level partition but

Synopsys® TestMAX™ DFT User Guide
T-2022.03

789

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Sharing Codec Scan I/O Pins

Feedback

outside a subpartition, the tool places them into an external chain that is not compressed
inside that partition. See Figure 347.

Figure 347 Partition-Level External Chains in Hybrid Flow

Sharing compressor

PA
R

TI
TI

O
N

1

GLUEC_CORE1
SU

B
_G

LU
E

Additional requirements apply to the scan configuration when codec I/O sharing is used in
the Hybrid flow with shared top-level codecs. For more information, see Shared Codec I/O
Limitations on page 806.

Using Dedicated Codecs for Top-Level Logic
You can define top-level partitions to specify the top-level scan logic to be scan-
compressed with a dedicated codec.

In this flow, create and configure sharing groups as follows:

1. Define a top-level partition containing the logic to be scan-compressed with a dedicated
top-level codec. You can also omit a partition definition and use the default partition.

2. Define additional top-level partitions containing the compressed scan cores and/or
subpartitions that are to share their codec I/O connections.

3. Configure the top-level logic codec characteristics within its top-level partition.

4. Configure the shared codec I/O characteristics within each top-level partition where
sharing occurs.

The following example defines two top-level DFT partitions, one of which contains two
shared-I/O cores, and one of which contains a dedicated top-level codec:

globally enable scan compression and Hybrid integration
set_dft_configuration -scan_compression enable
set_scan_compression_configuration -hybrid true

define top-level partitions that group cores or dedicated codecs
define_dft_partition PARTITION1 -include [list C_CORE1 C_CORE2]
define_dft_partition PARTITION2 -include [list GLUE_cell_list]

Synopsys® TestMAX™ DFT User Guide
T-2022.03

790

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Sharing Codec Scan I/O Pins

Feedback

apply codec I/O sharing characteristics for cores
current_dft_partition PARTITION1
set_scan_configuration -chain_count 3
set_scan_compression_configuration -shared_inputs 3 -shared_outputs 3

apply top-level dedicated codec characteristics
current_dft_partition PARTITION2
set_scan_configuration -chain_count 2
set_scan_compression_configuration -chain_count 3 -inputs 2 -outputs 2

Figure 348 shows the Hybrid integration results for these commands.

Figure 348 Hybrid Flow With Sharing Groups and a Dedicated Top-Level Codec

C_CORE1

Sharing compressor

PA
R

TI
TI

O
N

1

C_CORE2 GLUE
PA

R
TI

TI
O

N
2

Defining Sharing Groups for Codecs in Partitioned Cores
In the HASS and Hybrid flows, you can define sharing groups that reference individual
codecs inside partitioned cores. To do this, reference the codec’s decompressor using the
cell_name:decompressor_name syntax in sharing group partition definitions. For example,

define subpartitions that define the new top-level codecs
define_dft_partition SUB_GLUE -include [list GLUE_cell_list]

define top-level partitions that group cores or dedicated codecs
define_dft_partition PARTITION1 -include [list \
 C_CORE1 \
 C_CORE2:core2_P1_U_decompressor_ScanCompression_mode]
define_dft_partition PARTITION2 -include [list \
 C_CORE2:core2_P2_U_decompressor_ScanCompression_mode \
 SUB_GLUE]

Figure 349 shows the Hybrid integration results for these commands.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

791

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Sharing Codec Scan I/O Pins

Feedback

Figure 349 Hybrid Flow With Individual Codec References in Sharing Groups

C_CORE1

PA
R

TI
TI

O
N

1

PA
R

TI
TI

O
N

2

GLUE

Sharing compressorSharing compressor

SU
B

_G
LU

E

C_CORE2

When you include a core-level decompressor reference in a DFT partition definition, if
core scan segments in other top-level test modes share the same core scan-in pins as the
decompressor, they are also included in that DFT partition for those modes. Figure 350
shows the standard scan results for the previous example, assuming that the standard
scan and compressed scan modes of the cores share the same scan-in and scan-out pins.

Figure 350 Standard Scan Mode for Individual Codec References in Sharing Groups

PA
R

TI
TI

O
N

1

PA
R

TI
TI

O
N

2

SU
B

_G
LU

E
GLUEC_CORE2C_CORE1

If core scan segments in other modes do not share any referenced decompressor scan-in
pins, they are included in the default partition.

You can obtain the decompressor names using one of the following methods:

• Use the list_test_models -compressors command at the top level before DFT
insertion.

• Look in the CompressorStructures section of a core-level ASCII CTL model file.

• Look in the CompressorStructures section of a core-level STIL protocol file that is
generated for the scan compression mode.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

792

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Sharing Codec Scan I/O Pins

Feedback

Note the following requirements and behaviors for referencing core codecs in DFT
partition definitions:

• Codecs are referenced by decompressor name only.

• You can mix decompressor references with other object types in the same partition
definition, subject to the usual restriction that the same underlying scan logic cannot
exist in multiple partitions.

• Any unreferenced codecs are placed in the default partition.

• Decompressor references are supported only in shared codec I/O flows.

Defining Sharing Groups in the Top-Down Flat Flow
This flow is a simple extension of the normal top-down flat codec I/O sharing flow, except
multiple top-level partitions are defined.

Create and configure sharing groups as follows:

1. Define any subpartitions containing the logic to be scan-compressed with a codec.

2. Define top-level partitions containing the subpartitions that are to share their codec I/O
connections.

3. Configure the codec characteristics within each subpartition.

4. Configure the shared codec I/O characteristics within each top-level partition.

The following example defines two codec groups, each with its own shared I/O
connections, in a top-down flat flow:

globally enable scan compression
set_dft_configuration -scan_compression enable

define subpartitions that define codecs
define_dft_partition SUB_P1 -include {BLK1}
define_dft_partition SUB_P2 -include {BLK2}
define_dft_partition SUB_P3 -include {BLK3}
define_dft_partition SUB_P4 -include {BLK4}

define top-level partition that groups subpartition codecs
define_dft_partition PARTITION1 -include {SUB_P1 SUB_P2} ;# subpartitions
define_dft_partition PARTITION2 -include {SUB_P3 SUB_P4} ;# subpartitions

apply subpartition codec characteristics
current_dft_partition SUB_P1
set_scan_configuration -chain_count 3
set_scan_compression_configuration -chain_count 5 -inputs 3 -outputs 3

current_dft_partition SUB_P2
set_scan_configuration -chain_count 2

Synopsys® TestMAX™ DFT User Guide
T-2022.03

793

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Sharing Codec Scan I/O Pins

Feedback

set_scan_compression_configuration -chain_count 4 -inputs 2 -outputs 2

current_dft_partition SUB_P3
set_scan_configuration -chain_count 3
set_scan_compression_configuration -chain_count 5 -inputs 3 -outputs 3

current_dft_partition SUB_P4
set_scan_configuration -chain_count 2
set_scan_compression_configuration -chain_count 4 -inputs 2 -outputs 2

apply top-level codec I/O sharing characteristics
current_dft_partition PARTITION1
set_scan_compression_configuration -shared_inputs 3 -shared_outputs 3

current_dft_partition PARTITION2
set_scan_compression_configuration -shared_inputs 3 -shared_outputs 3

Figure 351 shows the top-down flat DFT insertion results for these commands.

Figure 351 Top-Down Flat Flow Codec I/O Sharing With Multiple Top-Level Partitions

Sharing compressor

PA
R

TI
TI

O
N

1

BLK1

SU
B

_P
2

BLK2

SU
B

_P
1

Sharing compressor

PA
R

TI
TI

O
N

2

BLK3

SU
B

_P
4

BLK4

SU
B

_P
3

Codec I/O Sharing and Standard Scan Chains
When the top-level codec I/O connections are shared in compressed scan mode, the
standard scan mode is also affected.

In the HASS integration flow, due to the reduced number of available scan I/O pins,
the standard scan chains inside the compressed cores can no longer be promoted to
dedicated top-level connections. To remedy this, standard scan chains in compressed
scan cores become scan segments that can be concatenated, if needed, by top-level
integration. Figure 352 shows the compressed scan and standard scan chains for a design
in the HASS integration flow.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

794

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Sharing Codec Scan I/O Pins

Feedback

Figure 352 Standard Scan Chains in the HASS Flow With Codec I/O Sharing

C_CORE1 C_CORE2

Sharing compressor

Compressed scan mode Standard scan mode

C_CORE1 C_CORE2

In the Hybrid flow with codec I/O sharing, core-level scan segments can be mixed with top-
level scan cells to achieve optimal balancing. Figure 353 shows the compressed scan and
standard scan chains for a design in the Hybrid integration flow.

Figure 353 Standard Scan Chains in the Hybrid Flow With Codec I/O Sharing

Compressed scan mode Standard scan mode

C_CORE1 BLK1

SU
B

_P
1

SU
B

_P
1

Sharing compressor

BLK1C_CORE1

In top-down flat flows, the subpartition standard scan chains are promoted to top-
level scan chains with no concatenation or rebalancing within the enclosing top-level
partitions. You must apply the set_scan_configuration -chain_count command
to the subpartitions to manage the standard scan chain counts. Figure 354 shows the
compressed scan and standard scan chains for a design in the top-down flat flow, where
SUB_P1 has a specified chain count of 2 and SUB_P2 has a specified chain count of 1.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

795

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Sharing Codec Scan I/O Pins

Feedback

Figure 354 Standard Scan Chains in the Top-Down Flat Flow With Codec I/O Sharing
PA

R
TI

TI
O

N

BLK1

SU
B

_P
2

SU
B

_P
1

PA
R

TI
TI

O
N

SU
B

_P
2

SU
B

_P
1

Compressed scan mode Standard scan mode

BLK1BLK2 BLK2

Sharing compressor

In the HASS flow with sharing groups, partition boundaries prevent core-level scan
segment concatenation across partitions, but scan segments can still be concatenated
and balanced within each partition. Apply the set_scan_configuration -chain_count
command to each partition to specify the number of standard scan chains for that partition.
Figure 355 shows the standard scan chains for a design in the HASS integration flow with
sharing groups.

Figure 355 Standard Scan Chains in the HASS Flow With Codec I/O Sharing Groups

Standard scan mode

PA
R

TI
TI

O
N

1

C_CORE1 C_CORE2

PA
R

TI
TI

O
N

2

C_CORE3 C_CORE4

In the Hybrid flow with sharing groups, core-level scan segments are concatenated
and balanced within top-level partitions (as in the HASS flow with sharing groups), but
subpartition scan chains are promoted to top-level scan chains (as in the top-down-flat
flows). For subpartitions, apply the set_scan_configuration -chain_count command
to specify the number of standard scan chains to create. For top-level partitions, apply the
set_scan_configuration -chain_count command to specify the total scan chain count
for all cores in the partition, excluding any subpartitions. Figure 356 shows the standard
scan chains for a design in the Hybrid integration flow with sharing groups.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

796

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Sharing Codec Scan I/O Pins

Feedback

Figure 356 Standard Scan Chains in the Hybrid Flow With Codec I/O Sharing Groups

PA
R

TI
TI

O
N

2

SU
B

_P
2

Standard scan mode

BLK2

PA
R

TI
TI

O
N

1

SU
B

_P
1

BLK1 C_CORE2C_CORE1

For pipelined cores, if a leading-edge tail pipeline register in one core is concatenated to
a trailing-edge head pipeline register in another core, the scan architect inserts a lockup
latch and retiming flip-flop between the cores for correct scan shift operation (independent
of the -add_test_retiming_flops option setting of the set_scan_configuration
command). For details, see SolvNet article 1656177, “Why Does insert_dft Add Extra
Retiming Registers in a Shared Codec I/O Flow?“

See Also

• Chapter 18, Hierarchical Adaptive Scan Synthesis for more information about
specifying standard scan chain counts in the HASS and Hybrid flows

• Top-Down Flat Compressed Scan Flow on page 655 for more information about
applying chain count and scan I/O signal specifications to DFT partitions in scan
compression flows

Codec I/O Sharing and Pipelined Scan Data
When codec I/O sharing is used with the pipelined scan data feature, the tool adds
pipeline stages as needed to meet the total top-level pipeline depth, as shown in
Figure 357. Pipeline registers added along the shared scan data path are called shared
pipeline registers, and pipeline registers added along the scan data path to a single shared
codec are called dedicated pipeline registers.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

797

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnet.synopsys.com/retrieve/1656177.html
https://solvnet.synopsys.com/retrieve/1656177.html

Chapter 20: Advanced DFTMAX Compression
Sharing Codec Scan I/O Pins

Feedback

Figure 357 Pipelined Scan Data in the Shared Codec I/O Flow

Shared pipeline registers

Dedicated pipeline registers

By default, the tool uses as many shared pipeline registers as possible to minimize
cell count, and it uses dedicated pipeline registers only to balance cores of differing
depths. In some cases, such as to adjust layout characteristics, you might want to change
the allocation of shared and dedicated pipeline registers. To do this, you can use the
-head_shared_pipeline_stages and -tail_shared_pipeline_stages options of the
set_pipeline_scan_data_configuration command:

set_pipeline_scan_data_configuration
 -head_pipeline_stages total_depth
 -tail_pipeline_stages total_depth
 -head_shared_pipeline_stages shared_depth
 -tail_shared_pipeline_stages shared_depth
 ...

The tool uses the specified number of shared pipeline registers along the shared scan
path, then it uses dedicated pipeline registers as needed for the remaining stages to
meet the total pipeline depth target. Figure 358 shows the previous example with a single
shared head and tail pipeline stage.

Figure 358 Using a Reduced Number of Shared Pipeline Register Stages

Figure 359 shows the relationship between the total and shared pipeline depth
specification options of the set_pipeline_scan_data_configuration command.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

798

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Sharing Codec Scan I/O Pins

Feedback

Figure 359 Relationship Between the Total and Shared Pipeline Depth Specification Options
Total head pipeline depth

(-head_pipeline_stages)
Total tail pipeline depth

(-tail_pipeline_stages)

Shared head pipeline depth
(-head_shared_pipeline_stages)

Shared tail pipeline depth
(-tail_shared_pipeline_stages)

If your design contains dedicated pipeline registers, note the following:

• If you perform a post-DFT incremental compile with the compile_ultra command,
redundant register removal might collapse parallel dedicated pipeline registers
together. To disable redundant register removal on pipeline register cells, issue the
following command before performing the post-DFT incremental compile:

dc_shell> set_size_only [get_cells -hier {SNPS_Pipe*}] true
dc_shell> compile_ultra -scan -incremental

• Dedicated pipeline registers are inserted on a per-test-mode basis, which might result
in parallel pipeline registers along the same scan path with duplicate functionality.

If you are using high X-tolerance with codec I/O sharing and pipelined scan data, the tool
inserts pipeline stages on the block-select signals to match the total head and tail pipeline
latency leading to (but not following) the sharing compressor. Figure 360 shows pipeline
stages added to the block-select signals in a Hybrid flow.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

799

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Sharing Codec Scan I/O Pins

Feedback

Figure 360 I/O Sharing With High X-Tolerance Codecs and Pipelined Scan Data

C_CORE1

(High X-tolerance)

GLUE

(High X-tolerance)

Sharing compressor

N

See Also

• Pipelined Scan Data on page 746 for more information about the pipelined scan data
feature

• Hierarchical Flows With Pipelined Scan Data on page 761 for more information about
the requirements of the pipelined scan data feature in the HASS and Hybrid flows

Integrating Cores That Contain Shared Codec I/O Connections
When you integrate cores, you can include cores that contain shared codec I/O
connections along with compressed scan cores or standard scan cores.

The following topics describe how cores are integrated with shared codec I/O connections:

• Integrating Shared I/O Cores

• Integrating Identical High X-Tolerance Shared I/O Cores

• Integrating Shared I/O Cores Using Shared Codec Controls

• Integrating Shared I/O Cores That Contain Shared Codec Controls

Integrating Shared I/O Cores
If you do not enable codec I/O sharing at the integration level, the tool promotes the
scan I/O connections of each core to top-level scan connections during integration. See
Figure 361.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

800

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Sharing Codec Scan I/O Pins

Feedback

Figure 361 HASS Integration of Shared Codec I/O Cores
TO

P

SH
A

R
ED

_C
O

R
E1

Sharing compressor

SH
A

R
ED

_C
O

R
E2

Sharing compressor

C_CORE

If you enable codec I/O sharing at the integration level with the -shared_inputs option,
the tool performs nested codec I/O sharing. The scan I/O connections of each core are
shared at the integration level. See Figure 362.

Figure 362 Shared-I/O HASS Integration of Shared Codec I/O Cores

TO
P

SH
A

R
ED

_C
O

R
E1

Sharing compressor

SH
A

R
ED

_C
O

R
E2

Sharing compressor

C_CORE

Sharing compressor

The values provided to the -shared_inputs and -shared_outputs options must meet
requirements that are similar to other shared codec I/O flows. The value specified for the
-shared_inputs option must be at least as wide as the widest core scan input. The value
specified for the -shared_outputs option must be equal to the widest core scan output.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

801

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Sharing Codec Scan I/O Pins

Feedback

If some cores have high X-tolerance capability, you must account for additional block-
select pins when specifying a value for the -shared_inputs option. The value must be at
least as large as the sum of the following values:

• The width of the widest core-level scan data input across all cores

• The sum of the block-select signals used across all shared codec I/O cores

• The number of top-level block-select signals needed, which is log2 of the number of
high X-tolerance shared codec I/O cores, rounded up to the next integer value

Figure 363 shows the scan data inputs needed for two shared codec I/O cores.
SHARED_CORE1 has a wider set of scan data inputs. Because there are two shared
codec I/O cores, an additional top-level block-select signal is also required. In this
example, a minimum value of 7 must be specified with the -shared_inputs option.

Figure 363 Shared-I/O HASS Integration of High X-Tolerance Cores

TO
P

SH
A

R
ED

_C
O

R
E1

SH
A

R
ED

_C
O

R
E2

Sharing compressor

Sharing compressor

Sharing compressor

(High X-tol) (High X-tol) (High X-tol) (High X-tol)(High X-tol)

Core-level scan data input connections, shared
Core-level block-select connections, promoted

Top-level block-select connections

See Also

• Adding High X-Tolerance Block-Select Pins on page 770 for more information about
shared codec I/O block-select signals

Integrating Identical High X-Tolerance Shared I/O Cores
If you integrate identical high X-tolerance shared I/O cores using dedicated (unshared)
outputs, you can use identical block-select signal connections for the cores, as shown in
Figure 364.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

802

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Sharing Codec Scan I/O Pins

Feedback

Figure 364 Integrating Identical Shared-I/O High X-Tolerance Cores
TO

P

SH
A

R
ED

_C
O

R
E1

Sharing compressor

(High X-tol)(High X-tol)

Identical shared scan data input connections
Identical block-select signal connections

SH
A

R
ED

_C
O

R
E2

Sharing compressor

(High X-tol)(High X-tol)

To enable this feature, use the following command:

dc_shell> set_scan_compression_configuration -shared_block_select true
This option can be enabled only when the following conditions are met:

• Shared codec I/O is enabled with the -shared_inputs option.

• The cores contain shared-I/O codecs with high X-tolerance, such that the core has one
or more block-select signals.

• All cores in the current design or partition are identical instances of this core, specified
with the -identical_cores option.

• Dedicated (unshared) outputs are used for the cores by specifying the fully unshared
value with the -shared_outputs option. (Using shared block-select signals with
shared core outputs would degrade the high X-tolerance functionality.)

The default is to use separate block-select signals for each identical core.

See Also

• Adding High X-Tolerance Block-Select Pins on page 770 for more information on
core-level block-select signals

Integrating Shared I/O Cores Using Shared Codec Controls
When you integrate cores with shared codec controls enabled, the tool adds AND-gating
logic at the codec inputs of output sharing compressors, as described in Codec I/O
Sharing With Shared Codec Controls on page 783.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

803

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Sharing Codec Scan I/O Pins

Feedback

If a core is a shared I/O core (that is, it contains shared I/O codecs), the gating logic
enables or disables all shared codecs that drive the gating logic. See Figure 365.

Figure 365 Integrating Shared I/O Cores Using Shared Codec Controls

TO
P

SH
A

R
ED

_C
O

R
E1

Sharing compressor

SH
A

R
ED

_C
O

R
E2

Sharing compressor

C_CORE

Sharing compressor

When the preview_dft command reports the codec enable pins, it uses the name of the
shared (merged) codec stored in the core CTL model. For this example, the report is as
follows:

dc_shell> preview_dft
...

******************** Compressors Control Report ********************
U_sharing_compressor/codec_enable_0 controls
 C_CORE:C_CORE_U_decompressor_ScanCompression_mode
U_sharing_compressor/codec_enable_1 controls
 SHARED_CORE1:SHARED_CORE_P1_U_decompressor_ScanCompression_mode
U_sharing_compressor/codec_enable_2 controls
 SHARED_CORE2:SHARED_CORE_P1_U_decompressor_ScanCompression_mode
**

See Also

• Codec I/O Sharing With Shared Codec Controls on page 783 for more information
about using shared codec controls to disable codecs

Synopsys® TestMAX™ DFT User Guide
T-2022.03

804

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Sharing Codec Scan I/O Pins

Feedback

Integrating Shared I/O Cores That Contain Shared Codec Controls
When you integrate shared I/O cores that contain shared codec controls,

• If the core uses IEEE 1500 test-mode control, the core-level codec controls become
available through IEEE 1500 test-mode control at the top level.

• If the core does not use IEEE 1500 test-mode control, the tool has no visibility of the
core-level codec controls, and you cannot disable individual core-level codecs from the
top level.

Figure 366 shows an example where two cores with IEEE 1500 test-mode control and
codec controls are integrated in a top level with codec controls enabled.

Figure 366 Integrating Shared I/O Cores That Contain Shared Codec Controls

TO
P

SH
A

R
ED

_C
O

R
E1

Sharing compressor

SH
A

R
ED

_C
O

R
E2

Sharing compressor

C_CORE

Sharing compressor

When cores use IEEE 1500 test-mode control, the preview_dft command reports core-
level shared codec controls as “can be controlled.” For this example, the report is as
follows:

dc_shell> preview_dft
...

******************** Compressors Control Report ********************
U_sharing_compressor/codec_enable_0 controls
 C_CORE:C_CORE_U_decompressor_ScanCompression_mode
U_sharing_compressor/codec_enable_1 controls
 SHARED_CORE1:SHARED_CORE_P1_U_decompressor_ScanCompression_mode
U_sharing_compressor/codec_enable_2 controls
 SHARED_CORE2:SHARED_CORE_P1_U_decompressor_ScanCompression_mode
SHARED_CORE2:SHARED_CORE2_SHARED_CORE_SHARED_CORE_P2_U_decompressor_Sc

Synopsys® TestMAX™ DFT User Guide
T-2022.03

805

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Sharing Codec Scan I/O Pins

Feedback

 anCompression_mode can be controlled.
SHARED_CORE2:SHARED_CORE2_SHARED_CORE_SHARED_CORE_P1_U_decompressor_Sc
 anCompression_mode can be controlled.
SHARED_CORE1:SHARED_CORE1_SHARED_CORE_SHARED_CORE_P2_U_decompressor_Sc
 anCompression_mode can be controlled.
SHARED_CORE1:SHARED_CORE1_SHARED_CORE_SHARED_CORE_P1_U_decompressor_Sc
 anCompression_mode can be controlled.
**

You do not need to enable shared codec controls at the top level to integrate cores that
contain shared codec controls.

See Also

• Codec I/O Sharing With Shared Codec Controls on page 783 for more information
about using shared codec controls to disable codecs

• Test-Mode Control Using the IEEE 1500 and IEEE 1149.1 Interfaces on page 375 for
more information about test-mode control through an IEEE 1500 interface

Shared Codec I/O Limitations
Note following requirements and limitations of the shared codec I/O feature:

• All codecs must have the same X-tolerance type.

• You can only share outputs when inputs are also shared. If you specify dedicated
inputs, all sharing is disabled.

• To use dedicated (fully unshared) outputs, all inputs must be fully shared and all
cores must be identical in a single group. See Specifying Shared Codec Inputs With
Dedicated Codec Outputs on page 782.

• In Hybrid mode, the compressed scan chain characteristics of a shared top-level
codec must be specified with the -chain_count or -max_length options of the
set_scan_compression_configuration command. They cannot be automatically
derived using the normal chain count heuristics.

• When you use partitions,

◦ Codec I/O can be shared within each top-level partition, but not across top-level
partition boundaries.

◦ Standard scan chains are balanced within each top-level partition, but not across
top-level partition boundaries.

◦ In the -include list of the define_dft_design command, you can reference cores
to be shared only by cell instance; you cannot reference them by design name.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

806

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Implicit Scan Chains

Feedback

• Subpartition definitions (top-level partition definitions that reference other DFT
partitions by name) are only supported when using codec I/O sharing, as a way to
define sharing groups. They are not supported for other flows.

• In flows that use subpartitions, which are the top-down flat flow and the Hybrid flow
with shared top-level codecs, the default partition cannot contain subpartitions because
there is no explicit define_dft_partition command that allows you to reference a
subpartition. You can only include subpartitions in user-defined top-level partitions.

• If you define multiple compression modes and you have DFTMAX cores to be
integrated with shared codec I/O, you must schedule the cores using the -target
option of the define_test_mode command.

• When implementing shared codec controls,

◦ At least one codec must remain active for each output sharing compressor.

◦ In the Hybrid integration mode, if the top-level decompressor name differs between
the preview_dft and list_test_models -compressors commands, you must
use the decompressor name from the preview_dft command.

• When integrating cores that contain shared codec controls, you must use IEEE 1500
test-mode control to make core-level codec controls available at the top level.

Implicit Scan Chains
Implicit scan chains provide a mechanism to specify one or more “implicit” scan segments
that exist outside the current design but should be included in compressed scan insertion.
This is useful when an IP block to be scan-compressed exists at the chip level but
compressed scan is inserted at the core level, as shown in Figure 367.

Figure 367 Implicit Scan Chains Defined in a Core-Level Run

IP
DFT insertion
performed in the
core-level run

Implicit scan chains,
external to the
core-level run

Core-level scan data access ports

Synopsys® TestMAX™ DFT User Guide
T-2022.03

807

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Implicit Scan Chains

Feedback

Each implicit scan chain segment is defined in the core level run, characterized by the
following information:

• Chain name

• Chain length

• Scan clock

• Core-level scan data access ports

When implicit scan chain segments are defined, DFTMAX compression incorporates them
into compressed scan insertion by connecting to the core-level scan data access ports. It
uses the clock and length information to construct scan chains that are optimally balanced
while respecting the chain count and clock-mixing configuration settings applied to the
current design.

Just as with any other user-defined scan segment, implicit scan chains are incorporated
into both the standard scan and compressed scan modes. Reconfiguration MUXs are
added as needed.

When implicit scan chains are used, the tool produces a partial test protocol. This protocol
is not complete and contains only a partial ScanChain definition for the implicit scan
chains. The protocol cannot be used in the TestMAX ATPG tool directly.

Defining Implicit Scan Chains
To define implicit scan chain segments, use the following two commands:

• set_scan_group

• set_scan_path
Use the set_scan_group command to define a scan group for each implicit scan chain:

set_scan_group group_name
 -serial_routed true -segment_length length
 -access {ScanDataIn core_output_port ScanDataOut core_input_port}
 -clock clock_name
 [-edge rising | falling]

where

• The group_name argument is a unique user-defined scan group name.

• The chain_length argument is the chain length of the implicit scan chain.

• The clock_name argument is the scan clock which clocks the implicit scan chain.
It must be defined as a scan clock in the core-level run using the set_dft_signal
command.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

808

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Implicit Scan Chains

Feedback

• The core_output_port argument is the core-level output port that externally connects
to the scan input of the implicit chain.

• The core_input_port argument is the core-level input port that externally connects to
the scan output of the implicit chain.

By default, an implicit scan chain is defined as a rising-edge scan segment. To define it
as a falling-edge scan segment, add the -edge falling option to the set_scan_group
command. You cannot define an implicit scan chain that represents a mix of rising-edge
and falling-edge cells.

Use the set_scan_path command to specify how each scan group is to be incorporated
into scan stitching:

set_scan_path chain_name -test_mode all
 -ordered_elements {group_name ...}
 | -include_elements {group_name ...}
 [-complete true]

where

• The group_name argument is a scan group name, previous defined with the
set_scan_group command.

• The chain_name argument is a unique user-defined scan chain name.

By default, implicit scan chains can be mixed with core-level scan cells if DFT
requirements such as scan clock mixing and chain lengths are met. To force implicit scan
chains to be standalone compressed scan chains, add the -complete true option to the
set_scan_path command. This can be useful when you have an implicit scan chain with a
mix of rising-edge and falling-edge cells that cannot be described by the set_scan_group
-edge command.

After you have defined the implicit scan chains, use the preview_dft command to report
how they will be integrated into the core-level scan structures. Implicit scan chains are
represented as scan segments. The following partial preview report shows a core-level
scan chain that contains an implicit scan chain and two core-level scan cells:

dc_shell> preview_dft -show {segments cells}
...
Scan chain 'c1' contains 5 cells
 Active in modes: ScanCompression_mode :

 sub1/Z_reg[0]
 sub1/Z_reg[1] (m)
 IMPLICIT1 (s) (m)
...

For details on previewing scan segments, see Previewing Additional Scan Chain
Information on page 596.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

809

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Implicit Scan Chains

Feedback

At the chip level, the implicit scan chain segments must be connected to the core-level
scan access ports. These connections, highlighted in Figure 368, can exist in the chip-
level RTL or they can be created using netlist editing commands. the tool does not make
these connections.

Figure 368 Implicit Scan Chain Connections to Core in a Chip-Level Run

IPImplicit scan chain connections must
exist or be created in the chip-level run

Implicit Scan Chain Script Example
The following example shows the use of implicit scan chains in a core-level scan
compression insertion run.

current_design CORE

create scan port that connects to the implicit scan chain’s scan input
(which is an output from CORE)
create_port -direction out dout

create scan port that connects to the implicit scan chain’s scan output
(which is an input from CORE)
create_port -direction in din

define all test signals; test clocks must be defined before being
referenced by set_scan_group -clock
set_dft_signal -view existing_dft -type ScanMasterClock \
 -timing {45 55} -port clk_st

define the implicit scan chain and access pins
in the core design; dout drives the scan input of the external scan
chain and din is driven by the scan output of the external scan chain
set_scan_group IMPLICIT1 -segment_length 67 -serial_routed true \
 -access [list ScanDataIn dout ScanDataOut din] -clock clk_st

define each implicit chain as a scan path
set_scan_path c1 -ordered_elements IMPLICIT1 -test_mode all \
 -complete true

enable DFTMAX compression insertion
set_dft_configuration -scan_compression enable

configure DFTMAX compression

Synopsys® TestMAX™ DFT User Guide
T-2022.03

810

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Implicit Scan Chains

Feedback

set_scan_compression_configuration -minimum_compression 25 \
 -xtolerance high
set_scan_configuration -chain_count 8 -test_mode all

create the test protocol
create_test_protocol

run pre-DFT DRC
dft_drc -verbose

preview DFT insertion
preview_dft -show all

perform DFT insertion
insert_dft

post-DFT DRC is not supported
change_names -rules verilog -hierarchy

write out the compression mode protocol for TestMAX ATPG
write_test_protocol -test_mode ScanCompression_mode \
 -output stil/scan_compression.stil -names verilog

write out the pure scan protocol for TestMAX ATPG
write_test_protocol -test_mode Internal_scan \
 -output stil/internal_scan.stil -names verilog

write out the inserted design in Verilog and Synopsys ddc format
write -format verilog -hierarchy -output vg/design_with_implicit.v
write -format ddc -hierarchy -output db/design_with_implicit.ddc

Protocol Example
The following example is taken from the ScanStructures section of the test protocol written
out by DFT Compiler. The implicit scan segment is characterized by name, scan length,
scan data out, and the scan clock in the test protocol.

ScanStructures {
 ScanChain "c1" {
 ScanLength 67;
 ScanOut "din";
 ScanMasterClock "clk_st";
}

In the same protocol, an example of a normal (nonimplicit) scan chain definition:

ScanChain "2" {
 ScanLength 10;
 ScanEnable "test_se";
 ScanMasterClock "clk_st";
}

Synopsys® TestMAX™ DFT User Guide
T-2022.03

811

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 20: Advanced DFTMAX Compression
Implicit Scan Chains

Feedback

Limitations
Note the following limitations when using implicit scan chains:

• The report_scan_path command does not show the presence of implicit scan chain
segments in the core-level scan chains; use the preview_dft command before DFT
insertion instead.

• At the chip level, the implicit scan chain segments must be connected to the core-level
scan access ports; the tool does not make these connections.

• Implicit scan chains do not reliably mix with scan cells of opposite edge polarity
when edge-mixing is enabled with the set_scan_configuration -clock_mixing
command.

• When implicit scan chains are used, the TestMAX DFT tool produces a partial test
protocol. This protocol is not complete and contains only a partial ScanChain definition
for the implicit scan chains. The protocol cannot be used in the TestMAX ATPG tool
directly.

• Post-DFT DRC is not supported when implicit scan chains are used. Use the TestMAX
ATPG tool to perform DRC checking.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

812

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

21
DFTMAX Compression With Serializer

DFTMAX compression with serializer can be used to improve the ATPG quality of
results (QoR) for designs or blocks with a limited number of top-level ports. This QoR
improvement is accomplished by employing a serial connection between the codec and
the top-level ports.

This chapter includes the following topics:

• Overview

• Architecture

• Serializer Operation

• Higher Shift Speed and Update Stage

• Scan-Enable Signal Requirements for Serializer Operation

• Timing Paths

• Scan Clocks

• User Interface

• Configuring Serialized Compressed Scan

• Deserializer/Serializer Register Size

• Serializer Implementation Flow

• Serialized Compressed Scan Core Creation

• Top-Down Flat Flow

• Top-Down Partition Flow

• HASS Flow

• Hybrid Flow

• Serializer IP Insertion

• Wide Duty Cycle Support for Serializer

Synopsys® TestMAX™ DFT User Guide
T-2022.03

813

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Overview

Feedback

• Serializer in Conjunction With On-Chip Clocking Controllers

• Using Integrated Clock-Gating Cells in the Serializer Clock Controller

• User-Defined Pipelined Scan Data

• Running TestMAX ATPG on Serializer Designs

• DFTMAX Compression With Serializer Limitations

• Out-of-Scope Serializer Functionality

• DFTMAX Compression Error Messages

Overview
The scan architecture that DFTMAX compression creates is called compressed scan. By
default, the connection from the input and output of the compressor/decompressor (codec)
to the top-level ports or pins created by DFTMAX scan compression is combinational. To
improve the ATPG quality of results (QoR) for designs or blocks with a limited number
of top-level ports, DFTMAX compression also supports an optional serial connection
between the codec and the top-level ports.

This chapter uses the term combinational compressed scan, or more generally,
compressed scan, to refer to compressed scan with the default combinational codec-to-
top-level-ports connection. The term serialized compressed scan refers to compressed
scan that uses serializing logic to provide a serial connection to the codec. The term
serializer refers to the logic that provides the serial connection.

For a given number of top-level scan inputs and outputs, DFTMAX compression can
create up to a maximum number of chains with full X-tolerance, using combinational
compressed scan, as shown in Table 55.

Table 55 Number of Available Compressed Scan Chains

Number of
inputs

Number of
outputs

Max number of full Xtol chains =
(number of outputs) x (2(#inputs-1))

1 1 Unavailable

2 2 4

3 3 12

4 4 32

Table 55 shows that the maximum number of chains with full X-tolerance is limited for low
pin-count designs and is not available for one-scan-in-one-scan-out designs. The serializer

Synopsys® TestMAX™ DFT User Guide
T-2022.03

814

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Architecture

Feedback

overcomes this limitation and achieves full X-tolerance for any number of scan inputs and
outputs, including as few as 1 scan-in pin and 1 scan-out pin.

Note:
The maximum number of chains shown in Table 55 will be different if an on-chip
clocking (OCC) chain is present in the design.

Architecture
Figure 369 shows the basic serializer architecture.

Figure 369 Basic Serializer Architecture

Synopsys® TestMAX™ DFT User Guide
T-2022.03

815

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Serializer Operation

Feedback

The serializer architecture consists of the following additional logic:

• Serializer clock controller

• Deserializer registers

• Serializer registers

Serializer Clock Controller
The serializer clock controller contains an FSM counter and clock-gating cells.

• FSM Counter: finite state machine counter creates the clock-enable signal (routed to
clock-gating cells) and the strobe signal (routed to the serializer registers). The counter
is driven by an external clock.

• CGCs: clock-gating cells are inserted at the specified scan-shift clocks. They are
enabled by the FSM counter value and produce internally generated clocks during scan
chain shifting.

Deserializer Registers
Deserializing registers are placed in the decompressor IP at the input side. These
registers load the scan input data serially and supply the data to the compressed chains.

Serializer Registers
Serializing registers are placed in compressor IP at the output side. These registers
capture data from the compressor outputs and stream the data to the scan output.

Serializer Operation
Figure 370 shows the serializer operation and timing diagram involving 4-bit deserializer
and serializer registers.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

816

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Higher Shift Speed and Update Stage

Feedback

Figure 370 Serializer Operation

The sequence of events shown in Figure 370 is as follows:

1. FSM counter starts counting.

2. Deserializer registers start shifting data for the first internal shift.

3. Deserializer registers complete the shift for the first internal shift.

4. First shift data is loaded into the first flip-flops of the compressed chains through the
decompressor. At the same time, the serializer registers capture the compressor
outputs.

5. Tester starts strobing the compressor outputs for the first shift.

6. Tester completes strobing the compressor outputs for the first shift.

7. Deserializer registers complete the shift for the last internal shift.

8. Last shift data is loaded into the compressed chains through the decompressor.

Higher Shift Speed and Update Stage
Because the serializer clock controller behaves like a clock divider, the internal scan
clocks are generated by the external clocks being divided by S, where S is the depth of

Synopsys® TestMAX™ DFT User Guide
T-2022.03

817

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Higher Shift Speed and Update Stage

Feedback

the serializer register segment. For example, when S is 8 and the external clock speed is
10 MHz, the internal clock speed reduces to 1.25 MHz. Thus, the speed of the external
clock can be increased up to S-times faster without affecting the compressed chain shift
timing. (An 80 MHz external clock would result in a 10 MHz internal shift clock.)

However, in a fully X-tolerant implementation of the compression logic, the longest path
traverses from the deserializer flip-flop output pin through the decompressor gates and
then through the compressor selector gates to the serializer flip-flop input pin. This path is
shown in red in Figure 371.

Figure 371 Serializer Architecture Without Update Stage

As the period of the serializer clock decreases, this path becomes critical because it
cannot exceed the clock period.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

818

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Higher Shift Speed and Update Stage

Feedback

Figure 372 Timing Diagram With Update Stage

One way to decouple this critical path from the serializer clock timing is to insert an update
stage between the deserializer register output pins and the decompressor combinational
logic inputs, as shown in Figure 373. This update stage is synchronized by a clock that
runs as fast as the internal shift clock.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

819

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Higher Shift Speed and Update Stage

Feedback

Figure 373 Serializer Architecture With Update Stage

The update stage has the following effects:

• Provides an extra timing margin, as indicated in Figure 372 on page 819.

• Results in one internal clock cycle longer than a serializer architecture without an
update stage. So, for example, if there were 100 test cycles per pattern without the
update stage, then with the update stage, the whole test cycle per pattern would be
100 cycles plus 1 internal clock cycle.

• Decreases the test time by using a faster external clock.

Figure 374 shows the scan shift operation with the update stage implemented.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

820

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Scan-Enable Signal Requirements for Serializer Operation

Feedback

Figure 374 Serializer Operation With Update Stage

Scan-Enable Signal Requirements for Serializer Operation
As previously discussed, the clocks for compressed scan chains are internally generated
by the serializer clock controller. The serializer FSM counter in the controller counts when
the scan-enable signal is active and feeds the clocks to the compressed scan chains
at the proper time. When the scan-enable signal becomes inactive during capture, the
FSM counter is reset and the external clocks directly clock the compressed scan chain.
Therefore, for proper operation, the scan-enable signal must be held in the inactive state
in all capture procedures.

If you use the STIL protocol file created by the TestMAX DFT tool, the protocol already
meets this requirement. The tool constrains all scan-enable signals to the inactive state
in the capture procedures, excluding any scan-enable signals defined with the -usage
clock_gating option of the set_dft_signal command.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

821

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Timing Paths

Feedback

If you use a custom STIL protocol file, keep the following in mind:

• Make sure that all scan-enable signals used by serializer clock controllers are
constrained to the inactive state in all capture procedures.

• If clock pulses are needed to initialize the internal registers whose clock pins are gated
by the serializer clock controller, make sure that the scan-enable signal is inactive
throughout the test_setup procedure. By keeping the scan-enable signal inactive, the
clock pulses needed for initialization can reach the initialization registers. Otherwise,
the initialization might not be performed properly, and you could see unexpected R-rule
violations in DRC.

Timing Paths
The following figures show the datapaths specific to the serialized compressed scan
architecture. Figure 375 shows the datapaths without the update stage. Figure 376 shows
the datapaths with the update stage. The figures demonstrate the use of the DFT-inserted
OCC controller and external clocks.

Figure 375 Datapath Diagrams Without Update Stage

Synopsys® TestMAX™ DFT User Guide
T-2022.03

822

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Scan Clocks

Feedback

Figure 376 Datapath Diagrams With Update Stage

In Figure 375 and Figure 376, the red, purple, green, and blue arrows in the waveforms
and the colored arrows in the block diagrams at the right side of the figures correspond
to each other. The arrows are focused on the paths from the decompressor block to
the core and then from the core to the compressor block. These diagrams are also
useful in understanding the role of the update stage, which relaxes the timing path from
decompressor to core to compressor.

Scan Clocks
The following topics discuss scan shift clocks when using a serializer:

• Deserializer/Serializer Update Stage Register Clocks

• Specifying a Clock for Deserializer/Serializer Registers

• Staggered Scan Clocks

• Specifying Scan Clock Ports

Synopsys® TestMAX™ DFT User Guide
T-2022.03

823

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Scan Clocks

Feedback

Deserializer/Serializer Update Stage Register Clocks
You use one of the scan shift clocks, defined with the command set_dft_signal -type
ScanClock command, as the clock for the deserializer/serializer registers. If you do not
specify a particular clock, the clock for these registers is selected as follows:

• When OCC is used and an automated pipeline scan data register clock is defined as
one of the ATE clocks, then the pipeline scan data clock is used for the deserializer/
serializer registers.

• In other cases, any clock that reduces the number of lock-up latches is used for the
deserializer/serializer registers.

You can determine which clock is selected for the deserializer/serializer registers by using
the preview_dft command, as shown by the following:

 Load/Unload Serializer Clock = CLK1

Load stands for the input-side deserializer registers, and Unload stand for the output-side
serializer registers.

The update stage is implemented by specifying the command
set_serialize_configuration -update_stage true. The clock for the update stage
always has the same clock source as the deserializer/serializer register clock. The update-
stage clock is a gated version of the deserializer/serializer register clock.

Specifying a Clock for Deserializer/Serializer Registers
You can specify a clock for the deserializer/serializer registers in a chip-level flow. If
you have multiple scan clocks and have a particular clock that you need to use for the
deserializer/serializer registers, you can follow Example 120.

Example 120 Script Example for Specifying a Clock for the Deserializer/Serializer Registers
set_dft_signal -view existing_dft -type ScanClock -timing {45 55} \
 -port EXT_CLK1 -test_mode all
set_dft_signal -view existing_dft -type ScanClock -timing {45 55} \
 -port EXT_CLK2 -test_mode all
set_dft_signal -view existing_dft -type ScanClock -timing {45 55} \
 -port EXT_CLK3 -test_mode all
set_serialize_configuration \
 -inputs 1 \
 -outputs 1 \
 -serializer_clock EXT_CLK2 \
 -update_stage true

You can specify a clock for the deserializer/serializer registers with the command
set_serialize_configuration -serializer_clock. The clock specified with the

Synopsys® TestMAX™ DFT User Guide
T-2022.03

824

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Scan Clocks

Feedback

-serializer_clock option has to be predefined with the command set_dft_signal
-type ScanClock.

Staggered Scan Clocks
If you want to use staggered scan-shift clocks to reduce power during shift, the clock
waveforms should be carefully considered. Since the input side of the deserializer
registers and the update stage are triggered by the trailing edge, the timing of internal
scan cells that obtain the data from the deserializer registers-update stage must not occur
later than the trailing edge. Similarly, since the output side of the serializer registers is
triggered by the leading edge, the timing of the internal scan cells that launch the data
through the compressor to the serializer registers must not occur earlier than the leading
edge. A possible way to employ staggered clocks is to use the timing waveforms shown in
Figure 377 for the shift mode.

Figure 377 Staggered Clock Waveform

Suppose, for example, your design has five external clocks, each with different timing, as
shown the following group of set_dft_signal command:

set_dft_signal -type ScanClock -view existing_dft -timing {47 88} \
 -port EXT_CLK1 -test_mode all
set_dft_signal -type ScanClock -view existing_dft -timing {50 68}
 -port EXT_CLK2 -test_mode all
set_dft_signal -type ScanClock -view existing_dft -timing {55 73} \
 -port EXT_CLK3 -test_mode all
set_dft_signal -type ScanClock -view existing_dft -timing {60 78} \
 -port EXT_CLK4 -test_mode all
set_dft_signal -type ScanClock -view existing_dft -timing {65 83} \
 -port EXT_CLK5 -test_mode all

With these specifications, the tool automatically selects EXT_CLK1 as the deserializer/
serializer register clock. It is the only clock that can make the serializer scheme work.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

825

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
User Interface

Feedback

Note:
For this example, even if you choose a clock other than EXT_CLK1 by using
the set_serialize_configuration -serializer_clock clock_name
command, the tool ignores your specification.

Specifying Scan Clock Ports
When you use the serializer technology, you should instruct the tool where to insert the
serializer clock controller. It should be a pin on a clock line that drives all the scan cells.
The following command example shows how to make this specification when you have
pads for the scan clock ports:

set_dft_signal -view existing_dft -type ScanClock -timing {45 55} \
 -port EXT_CLK1 -test_mode all

set_dft_signal -view spec -type ScanClock -port EXT_CLK1 \
 -hookup_pin F1/Y -test_mode all

The value of the -hookup_pin option tells the tool where to insert the serializer clock
controller. Without this option specification, the clock controller would be inserted close to
the port, which might be outside the clock pad and therefore might adversely affect circuit
behavior.

User Interface
The set_scan_compression_configuration -serialize command allows you to
specify the location of the serializer logic. When you want to implement the serializer,
specify the either chip_level or core_level for the -serialize option. The default is
none, which indicates that no serialization is requested and combinational compressed
scan is implemented.

set_scan_compression_configuration ...
 -serialize chip_level | core_level | none

The set_serialize_configuration command is used specifically to define the serializer
options. Additional options are available to configure the serializer insertion:

set_serialize_configuration ...
 -test_mode name
 -parallel_mode name
 -inputs number
 -outputs number
 -update_stage true | false
 -exclude_clocks name
 -serializer_clock name
 -update_clock name
 -strobe name

Synopsys® TestMAX™ DFT User Guide
T-2022.03

826

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Configuring Serialized Compressed Scan

Feedback

 -ip_inputs number
 -ip_outputs number
 -wide_duty_cycle true | false

Note the following conditions:

• The default for the -update_stage option is false.

• The -exclude_clocks option can be used for certain clocks that are not to be gated
by the serializer clock controller.

• The specified number of -inputs and -outputs has to be the same.

• The -ip_inputs and -ip_outputs options are used for serializer IP insertion flow. For
information on this flow, see Serializer IP Insertion on page 850.

• For the usage of -serializer_clock, -update_clock and -strobe, see Scan Clocks
on page 823 and Serialized Compressed Scan Core Creation on page 829.

• The default for the -wide_duty_cycle option is false. For the wide duty cycle support,
see Wide Duty Cycle Support for Serializer on page 865.

To see how these options are used, refer to the script examples in the following top-down
flat flow, top-down partition flow, HASS flow, and Hybrid flow sections.

Configuring Serialized Compressed Scan
Figure 378 and the accompanying script to the right of the figure show you how to use the
following two commands together:

• set_scan_compression_configuration defines the codec specification.

• set_serialize_configuration defines the serializer specification.

Using these commands results in the architecture shown in Figure 378.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

827

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Deserializer/Serializer Register Size

Feedback

Figure 378 Association of set_serialize_configuration With Existing
set_scan_compression_configuration Command

Deserializer/Serializer Register Size
Deserializer/serializer register size is determined by the command:

set_scan_compression_configuration -inputs number -outputs number

The deserializer/serializer register size is equal to the number of codec inputs and
outputs. For example, if this number is 8, then 8-bit deserializer/serializer registers are
implemented.

The deserializer/serializer register is divided into some number of segments, depending on
the number specified in this command:

set_serialize_configuration -inputs number -outputs number

For example, if the number is 2, then two 4-bit deserializer/serializer segments are
created.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

828

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Serializer Implementation Flow

Feedback

Serializer Implementation Flow
When you insert a serializer, two implementation flows are available:

• Core-level flow

• Chip-level flow

The core-level flow is used for serialized compressed scan core creation. The serialized
compressed scan cores are integrated at the chip level in either a HASS or Hybrid flow.
The core-level flow is enabled by the command set_scan_compression_configuration
-serialize core_level. See Serialized Compressed Scan Core Creation on
page 829.

The chip-level flow is used for top-down flat flow, top-down partition flow, HASS flow,
Hybrid flow, and serializer IP insertion flow. The chip-level flow is enabled by the command
set_scan_compression_configuration -serialize chip_level. See

• Top-Down Flat Flow on page 833

• Top-Down Partition Flow on page 835

• HASS Flow on page 840

• Hybrid Flow on page 847

• Serializer IP Insertion on page 850

Serialized Compressed Scan Core Creation
You can create serialized compressed scan cores and integrate them at the chip level
in a HASS flow or a Hybrid flow. For a serialized compressed scan core-level flow, use
the command set_scan_compression_configuration -serialize core_level.
Figure 379 shows a diagram for the serialized compressed scan core.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

829

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Serialized Compressed Scan Core Creation

Feedback

Figure 379 Serialized Compressed Scan Core

Note the following in Figure 379:

• No serializer clock controller is inserted.

◦ The ports for ser_clk, update_clk, and strobe are automatically created.
Therefore the serializer clock controller that is inserted at the top level during HASS
or Hybrid flows feeds signals to these ports.

• Each deserializer/serializer register segment has an interface that connects to and from
the different cores. Even if you specify set_serialize_configuration -inputs 1
-outputs 1, two scan-in and scan-out ports are created, as shown in Figure 379.

Serializer Core-Level Flow
Example 121 shows a typical serialized compressed scan core-level flow:

Example 121 Script Example for a Serialized Compressed Scan Core-Level Flow
set_scan_configuration -chain_count 1
set_dft_configuration -scan_compression enable

Synopsys® TestMAX™ DFT User Guide
T-2022.03

830

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Serialized Compressed Scan Core Creation

Feedback

set_scan_compression_configuration \
 -xtolerance high \
 -chain_count 200 \
 -inputs 8 \
 -outputs 8 \
 -serialize core_level
set_serialize_configuration \
 -inputs 1 \
 -outputs 1 \
 -update_stage true
create_test_protocol
dft_drc
insert_dft

Note:
With regard to command requirements for serialized compressed scan core
creation, you must specify the same value in the set_scan_configuration
-chain_count number and set_serialize_configuration -inputs
number -outputs number commands for each core-level configuration.
Otherwise, you will see unexpected errors in the HASS or Hybrid flows at the
chip level.

User-Defined Ports for the Serializer Core-Level Flow
You might need to specify the port usage for each core before core creation. For example,
suppose you want to specify the particular ports ser_clk, update_clk, and strobe, as
the serializer control ports. You could use a script such as the one shown in Example 122.

Example 122 Script Example for Defining Core-Level Serializer Ports
set_dft_signal -view existing_dft -type ScanClock -timing {45 55} \
 -port MY_SERI_CLK -test_mode all
set_dft_signal -view existing_dft -type ScanClock -timing {45 55} \
 -port MY_UPD_CLK -test_mode all
set_dft_signal -view spec -type TestData \
 -port MY_STROBE -test_mode all
set_serialize_configuration \
 -inputs 1 \
 -outputs 1 \
 -update_stage true \
 -serializer_clock MY_SERI_CLK \
 -update_clock MY_UPD_CLK \
 -strobe MY_STROBE

The ports specified with the -serializer_clock and -update_clock options must
be predefined as test clocks with the set_dft_signal -type ScanClock command,
and the port specified with the -strobe option must be predefined as test data with the
set_dft_signal -type TestData command. All of these ports must be dedicated

Synopsys® TestMAX™ DFT User Guide
T-2022.03

831

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Serialized Compressed Scan Core Creation

Feedback

existing test ports. The tool connects the signals to the specified ports, instead of creating
them.

Nondefault Scan Clock Timing for Core-Level Flows
If you use clock timing that is not the default clock timing (period of 100, rise of 45, and
fall of 55) for a flow that is specified with the set_scan_compression_configuration
-serialize core_level command, you might encounter the following error message
when you run the preview_dft command on the core-level flow:

Error: Cannot synchronize scan chain cells 'U_core1/stat_reg_1_' and
'Serializer_clk_seg'. Both edges of clock 'clkA' occur before clock
'ser_clk' triggers. (TEST-344)

This error can occur because by default the tool automatically creates a serializer clock
named ser_clk and assumes it has the default timing. If you need to use nondefault clock
timing in a core-level implementation flow, you should define a clock port with nondefault
timing specified, as shown in Example 123.

Example 123 Serializer Core-Level Flow Using a Nondefault Clock
set_dft_signal -view existing_dft -type ScanClock -timing {20 30} \
 -port EXT_CLK1 -test_mode all
set_dft_signal -view existing_dft -type ScanClock -timing {20 30} \
 -port EXT_CLK2 -test_mode all
set_dft_signal -view existing_dft -type ScanClock -timing {20 30} \
 -port MY_SER_CLK -test_mode all
set_dft_signal -view existing_dft -type ScanClock -timing {20 30} \
 -port MY_UPD_CLK -test_mode all
set_dft_signal -view spec -type TestData -port MY_STROBE -test_mode all
set_serialize_configuration \
 -inputs 1 \
 -outputs 1 \
 -serializer_clock MY_SERI_CLK \
 -update_clock MY_UPD_CLK \
 -strobe MY_STROBE \
 -update_stage true

As in this example, when you specify a clock port with -update_clock, you should set
the same clock timing as the clock port specified with -serializer_clock, because the
clock timing becomes the same after a serializer clock controller is inserted at the top level
during a HASS or Hybrid flow.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

832

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Top-Down Flat Flow

Feedback

Top-Down Flat Flow
The following two topics describe typical command flows when a serializer codec is
inserted at a top level that does not yet contain a codec:

• Serial Mode and Standard Scan Mode

• Serial Mode, Parallel Mode, and Standard Scan Mode

Serial Mode and Standard Scan Mode
By default, without a user-defined test mode, DFTMAX compression architects the
Internal_scan and ScanCompression_mode modes. When the -serialize chip_level
option is specified, the ScanCompression_mode becomes the serializer mode, which
in this discussion is called serial mode as a matter of convenience. The script in
Example 124 shows you how to create the serial mode.

Example 124 Script Example for a Top-Down Flat Flow: Two Modes
set_scan_configuration -chain_count 2
set_scan_compression_configuration \
 -inputs 8 \
 -outputs 8 \
 -chain_count 200 \
 -serialize chip_level
set_serialize_configuration \
 -inputs 1 \
 -outputs 1 \
 -update_stage true
create_test_protocol
dft_drc
insert_dft
...

Serial mode
write_test_protocol -output SERIAL.spf -test_mode ScanCompression_mode

Standard scan mode
write_test_protocol -output SCAN.spf -test_mode Internal_scan

In this script example, one scan-in port and one scan-out port are created in the serial
mode and two scan-in ports and two scan-out ports are created in the standard scan
mode.

Serial Mode, Parallel Mode, and Standard Scan Mode
In addition to the serial mode provided with the serializer, you can also create a “parallel
mode.” This mode is logically equivalent to combinational compressed scan as shown in

Synopsys® TestMAX™ DFT User Guide
T-2022.03

833

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Top-Down Flat Flow

Feedback

Figure 380. The parallel mode is created with the -parallel_mode option, as shown in the
script of Example 125.

Example 125 Script Example for a Top-Down Flat Flow: Three Modes
define_test_mode my_regular -encoding {TM1 0 TM2 0} \
 -usage scan
define_test_mode my_parallel -encoding {TM1 0 TM2 1} \
 -usage scan_compression
define_test_mode my_serial -encoding {TM1 1 TM2 0} \
 -usage scan_compression
for {set i 0} {$i < 8} {incr i} {
 set_dft_signal -view spec -type ScanDataIn -port SI_${i} \
 -test_mode all
 set_dft_signal -view spec -type ScanDataOut -port SO_${i} \
 -test_mode all
}
set_scan_configuration -chain_count 2 -test_mode my_regular
set_scan_compression_configuration \
 -base_mode my_regular \
 -test_mode my_serial \
 -xtolerance high -chain_count 200 -inputs 8 -outputs 8 \
 -static_x_chain_isolation true \
 -serialize chip_level
set_serialize_configuration \
 -test_mode my_serial \
 -parallel_mode my_parallel \
 -inputs 1 -outputs 1 \
 -update_stage true
create_test_protocol
dft_drc
insert_dft
...

write_test_protocol -output SERIAL.spf -test_mode my_serial
write_test_protocol -output PARALLEL.spf -test_mode my_parallel
write_test_protocol -output SCAN.spf -test_mode my_regular

Be aware that my_parallel as a parallel mode is specified with the -parallel_mode
option of the set_serialize_configuration command and my_serial as a serial mode
is specified with the -test_mode option of the set_scan_compression_configuration
command.

In this example, one scan-in port and one scan-out port are created in the serial mode,
eight scan-in and scan-out ports are created in the parallel mode, and two scan-in and
scan-out ports are created in the standard scan mode.

When the parallel mode is implemented along with the serial mode, only one codec for the
serial mode is implemented and shared with the parallel mode. Figure 380 shows how it is
shared.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

834

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Top-Down Partition Flow

Feedback

Figure 380 Top-Down Flat Flow Diagram

Top-Down Partition Flow
For a top-down partition flow, you can specify serializer insertion in each partition. If
you specify the -update_stage true option with the set_serialize_configuration
command in one partition, the option setting is applied to all other partitions.

There are two top-down partition flows: one that uses dedicated serializer chains for each
partition, and one that concatenates the serializer chains across partitions.

You can create a parallel mode, such as a top-down flat flow, by employing user-defined
test modes, but this capability is available only on the dedicated serializer chain flow.

For the concatenated serializer chain flow, the generated test modes are

• ScanCompression_mode: serial mode

• Internal_scan: standard scan mode

Note:
The top-down partition flow with core-level serializer insertion is not supported.
Core-level serializer insertion is discussed in theSerialized Compressed Scan
Core Creation on page 829.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

835

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Top-Down Partition Flow

Feedback

Serializer Chains Dedicated to Each Partition
You can divide the design into multiple partitions and insert serializer codecs into each
partition. Figure 381 shows a top-down partition flow for which serializer chains are
dedicated to each partition. Example 126 shows the script for this case for two modes.

Figure 381 Top-Down Partition Flow With Serializer Chains Dedicated to Each Partition

Example 126 Script Example for a Top-Down Partition Flow With Serializer Chains Dedicated to
Each Partition: Two Modes

define_dft_partition partition1 -include [list U0 U1 U2 U3 U4]
current_dft_partition partition1
set_scan_configuration -chain_count 8 -clock_mixing mix_clocks
set_dft_configuration -scan_compression enable
set_scan_compression_configuration \
 -location U0 -xtolerance high -chain_count 200 \
 -inputs 8 -outputs 8 \
 -serialize chip_level
set_serialize_configuration \
 -inputs 1 -outputs 1 \
 -update_stage true

current_dft_partition default_partition
set_scan_configuration -chain_count 10 -clock_mixing mix_clocks

Synopsys® TestMAX™ DFT User Guide
T-2022.03

836

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Top-Down Partition Flow

Feedback

set_dft_configuration -scan_compression enable
set_scan_compression_configuration \
 -location U5 -xtolerance high -chain_count 300 \
 -inputs 10 -outputs 10 \
 -serialize chip_level
set_serialize_configuration \
 -inputs 1 -outputs 1 \
 -update_stage true
create_test_protocol
dft_drc
insert_dft
...

write_test_protocol -output SERIAL.spf -test_mode ScanCompression_mode
write_test_protocol -output SCAN.spf -test_mode Internal_scan

In the script shown in Example 126, two scan-in and scan-out ports are created in the
serial mode and 18 scan-in and scan-out ports are created in the standard scan mode, at
the top level.

Example 127 shows this case for three modes.

Example 127 Script Example for a Top-Down Partition Flow With Serializer Chains Dedicated to
Each Partition: Three Modes

define_test_mode my_regular -encoding {TM1 0 TM2 0} \
 -usage scan
define_test_mode my_parallel -encoding {TM1 0 TM2 1} \
 -usage scan_compression
define_test_mode my_serial -encoding {TM1 1 TM2 0} \
 -usage scan_compression

define_dft_partition partition1 -include [list U0 U1 U2 U3 U4]
current_dft_partition partition1
set_scan_configuration -chain_count 8 -test_mode my_regular
set_dft_configuration -scan_compression enable
set_scan_compression_configuration \
 -base_mode my_regular \
 -test_mode my_serial \
 -location U0 -xtolerance high -chain_count 200 \
 -inputs 8 -outputs 8 \
 -serialize chip_level
set_serialize_configuration \
 -test_mode my_serial \
 -parallel_mode my_parallel \
 -inputs 1 -outputs 1 \
 -update_stage true

current_dft_partition default_partition
set_scan_configuration -chain_count 10 -test_mode my_regular
set_dft_configuration -scan_compression enable
set_scan_compression_configuration \

Synopsys® TestMAX™ DFT User Guide
T-2022.03

837

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Top-Down Partition Flow

Feedback

 -base_mode my_regular \
 -test_mode my_serial \
 -location U5 -xtolerance high -chain_count 300 \
 -inputs 10 -outputs 10 \
 -serialize chip_level
set_serialize_configuration \
 -test_mode my_serial \
 -parallel_mode my_parallel \
 -inputs 1 -outputs 1 \
 -update_stage true
create_test_protocol
dft_drc
insert_dft
...

write_test_protocol -output SERIAL.spf -test_mode my_serial
write_test_protocol -output PARALLEL.spf -test_mode my_parallel
write_test_protocol -output SCAN.spf -test_mode my_regular

In the script shown in Example 127, two scan-in and scan-out ports are created in the
serial mode, and 18 scan-in and scan-out ports are created in the parallel mode, and 18
scan-in and scan-out ports are created in the standard scan mode, at the top level.

Serializer Chains Concatenated Across Partitions
Scan ports can access across the multiple partitions. Figure 382 shows the case for a
design with two partitions. Example 128 shows the script for this case.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

838

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Top-Down Partition Flow

Feedback

Figure 382 Top-Down Partition Flow With Serializer Chains Concatenated Across Partitions

For this architecture, the following three command requirements should be observed:

• You should use the -partition all option when defining top-level scan ports with the
set_dft_signal command.

• You should not specify the -inputs and -outputs options with the
set_serialize_configuration command in any partition.

• The number of scan-in and scan-out port pairs defined by the set_dft_signal
-partition all commands should be exactly the same number as the
set_scan_configuration -chain_count number command specified in each
partition.

Example 128 Script Example for a Top-Down Partition Flow With Serializer Chains
Concatenated Across Partitions

set_dft_signal -view spec -type ScanDataIn -port SI_TOP -partition all
set_dft_signal -view spec -type ScanDataOut -port SO_TOP -partition all
define_dft_partition partition1 -include [list U0 U1 U2 U3 U4]
current_dft_partition partition1
set_scan_configuration -chain_count 1 -clock_mixing mix_clocks
set_dft_configuration -scan_compression enable
set_scan_compression_configuration \
 -location U0 -xtolerance high -chain_count 200 \

Synopsys® TestMAX™ DFT User Guide
T-2022.03

839

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
HASS Flow

Feedback

 -inputs 8 -outputs 8 \
 -serialize chip_level
set_serialize_configuration \
 -update_stage true

current_dft_partition default_partition
set_scan_configuration -chain_count 1 -clock_mixing mix_clocks
set_dft_configuration -scan_compression enable
set_scan_compression_configuration \
 -location U5 -xtolerance high -chain_count 300 \
 -inputs 10 -outputs 10 \
 -serialize chip_level
set_serialize_configuration \
 -update_stage true
create_test_protocol
dft_drc
insert_dft
...

write_test_protocol -output SERIAL.spf -test_mode ScanCompression_mode
write_test_protocol -output SCAN.spf -test_mode Internal_scan

In the script shown in Example 128, the commands have one pair of scan-in and scan-out
settings with the -partition all option, and a chain count value of 1 is specified with the
set_scan_configuration -chain_count command. Additionally, the -inputs number
and -outputs number options are not specified in the set_serialize_configuration
command.

This example creates one scan-in port and one scan-out port in the serial mode and the
standard scan mode at the top level.

The tool relies only on the set_dft_signal -partition all command to determine
whether you are using the concatenated serializer chain flow. Be careful to define the
set_dft_signal -partition all command for the scan-in and scan-out ports correctly;
otherwise, you might encounter unexpected errors.

Note:
Implementing a different number of scan ports between the serial mode and the
standard scan mode is not supported.

HASS Flow
You can insert serializer codecs into the core modules and then integrate the multiple
cores at the top level.

For core-level serializer insertion, use the set_scan_compression_configuration
-serialize core_level command on each core. See Serialized
Compressed Scan Core Creation on page 829. At the top level, use

Synopsys® TestMAX™ DFT User Guide
T-2022.03

840

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
HASS Flow

Feedback

the set_scan_compression_configuration -serialize chip_level
-integration_only true command. This command enables the tool to insert a serializer
clock controller at the top level and to integrate the cores.

Similar to the top-down partition flow, there are two HASS flows:

• One that uses dedicated serializer chains for each core.

• One that concatenates the serializer chains across the cores.

You can create a parallel mode by employing user-defined test modes, but this capability
is limited to the dedicated serializer chain flow.

For the concatenated serializer chain flow, the generated test modes are

• ScanCompression_mode: serial mode

• Internal_scan: standard scan mode

Some limitations apply to core integration in the serializer flow. See DFTMAX
Compression With Serializer Limitations on page 900.

Serializer Chains Dedicated to Each Core
Serializer chains are created and dedicated to each core. If you have two cores, you would
need to have at least two scan-in and scan-out ports at the top level. Figure 383 shows an
example for a design with two cores. Example 129 shows the script for this case.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

841

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
HASS Flow

Feedback

Figure 383 HASS Flow With Serializer Chains Dedicated to Each Core

Example 129 Script Example for a HASS Flow With Serializer Chains Dedicated to Each Core
core1
set_scan_configuration -chain_count 1 -clock_mixing mix_clocks
report_scan_configuration
set_dft_configuration -scan_compression enable
set_scan_compression_configuration \
 -xtolerance high \
 -chain_count 150 \
 -inputs 8 \
 -outputs 8 \
 -serialize core_level
set_serialize_configuration \
 -inputs 1 \
 -outputs 1 \
 -update_stage true
report_scan_compression_configuration
report_serialize_configuration
create_test_protocol
dft_drc
preview_dft
insert_dft
current_test_mode ScanCompression_mode
dft_drc
current_test_mode Internal_scan

Synopsys® TestMAX™ DFT User Guide
T-2022.03

842

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
HASS Flow

Feedback

dft_drc

core2
set_scan_configuration -chain_count 1 -clock_mixing mix_clocks
report_scan_configuration
set_dft_configuration -scan_compression enable
set_scan_compression_configuration \
 -xtolerance high \
 -chain_count 250 \
 -inputs 8 \
 -outputs 8 \
 -serialize core_level
set_serialize_configuration \
 -inputs 1 \
 -outputs 1 \
 -update_stage true
report_scan_compression_configuration
report_serialize_configuration
create_test_protocol
dft_drc
preview_dft
insert_dft
current_test_mode ScanCompression_mode
dft_drc
current_test_mode Internal_scan
dft_drc
###For core-level serializer insertion,
###you have to specify the same <number> in the
###set_scan_configuration -chain_count <number> and
###set_serialize_configuration -inputs <number> -outputs <number>
###commands for each core level configuration; otherwise,
###you will see unexpected errors.

top level
set_scan_configuration -chain_count 2 -clock_mixing mix_clocks
set_dft_configuration -scan_compression enable
set_scan_compression_configuration -integration_only true \
 -serialize chip_level
create_test_protocol
dft_drc
preview_dft
insert_dft
write -hierarchy -output TOP.v -format verilog
write_test_protocol -output SERIAL.spf -test_mode ScanCompression_mode
write_test_protocol -output SCAN.spf -test_mode Internal_scan

Example 130 shows the script for the HASS parallel mode flow. In this script example, 2
scan-in and 2 scan-out ports are created for the serial mode and the standard scan mode.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

843

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
HASS Flow

Feedback

Example 130 Script Example for a HASS Parallel Mode Flow With Serializer Chains Dedicated
to Each Core

core1
define_test_mode my_regular -usage scan
define_test_mode my_serial -usage scan_compression
define_test_mode my_parallel -usage scan_compression
set_scan_configuration -chain_count 1 -clock_mixing mix_clocks \
 -test_mode my_regular
report_scan_configuration
set_dft_configuration -scan_compression enable
set_scan_compression_configuration \
 -base_mode my_regular \
 -test_mode my_serial \
 -xtolerance high \
 -chain_count 150 \
 -inputs 8 \
 -outputs 8 \
 -serialize core_level
set_serialize_configuration \
 -test_mode my_serial \
 -parallel_mode my_parallel \
 -inputs 1 \
 -outputs 1 \
 -update_stage true
report_scan_compression_configuration
report_serialize_configuration
create_test_protocol
dft_drc
preview_dft
insert_dft
current_test_mode my_regular
dft_drc
current_test_mode my_serial
dft_drc
current_test_mode my_parallel
dft_drc

core2
define_test_mode my_regular -usage scan
define_test_mode my_serial -usage scan_compression
define_test_mode my_parallel -usage scan_compression
set_scan_configuration -chain_count 1 -clock_mixing mix_clocks \
 -test_mode my_regular
report_scan_configuration
set_dft_configuration -scan_compression enable
set_scan_compression_configuration \
 -base_mode my_regular \
 -test_mode my_serial \
 -xtolerance high \
 -chain_count 250 \
 -inputs 8 \
 -outputs 8 \

Synopsys® TestMAX™ DFT User Guide
T-2022.03

844

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
HASS Flow

Feedback

 -serialize core_level
set_serialize_configuration \
 -test_mode my_serial \
 -parallel_mode my_parallel \
 -inputs 1 \
 -outputs 1 \
 -update_stage true
report_scan_compression_configuration
report_serialize_configuration
create_test_protocol
dft_drc
preview_dft
insert_dft
current_test_mode my_regular
dft_drc
current_test_mode my_serial
dft_drc
current_test_mode my_parallel
dft_drc
For core-level serializer insertion,
you have to specify the same <number> in the
set_scan_configuration -chain_count <number> and
set_serialize_configuration -inputs <number> -outputs <number>
commands for each core level configuration; otherwise,
you will see unexpected errors.

top level
define_test_mode my_regular -encoding {TM1 0 TM2 0} \
 -usage scan
define_test_mode my_serial -encoding {TM1 0 TM2 1} \
 -usage scan_compression
define_test_mode my_parallel -encoding {TM1 1 TM2 0} \
 -usage scan_compression
set_scan_configuration -chain_count 2 -clock_mixing mix_clocks \
 -test_mode all
set_dft_configuration -scan_compression enable
set_scan_compression_configuration -integration_only true \
 -serialize chip_level
create_test_protocol
dft_drc
preview_dft
insert_dft
write -hierarchy -output TOP.v -format verilog
write_test_protocol -output SCAN.spf -test_mode my_regular
write_test_protocol -output SERIAL.spf -test_mode my_serial
write_test_protocol -output PARALLEL.spf -test_mode my_parallel

In this script example, 2 scan-in and 2 scan-out ports are created for the serial mode and
the standard scan mode. For the parallel mode, 16 scan-in and 16 scan-out ports are
created.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

845

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
HASS Flow

Feedback

Serializer Chains Concatenated Across Cores
You can specify the number of scan ports at the top level so that the serializer chains
can be concatenated across multiple cores, as shown in Figure 384. This is controlled
at the top level by specifying the set_scan_configuration -chain_count command.
When you specify a number equivalent to the sum of the numbers specified by
set_serialize_configuration -inputs number -outputs number at each core
level, the core-level scan ports are brought up to the top-level scan ports. They are not
concatenated across the cores. On the other hand, if you specify a number less than the
sum of the numbers specified by set_serialize_configuration -inputs number
-outputs number at each core level, only the specified number of scan ports are created
at the top level, which is accomplished by concatenating each core-level deserializer/
serializer register segment accordingly.

For the design example shown in Figure 384, if you specify the chain count at the top level
by using the set_scan_configuration -chain_count 1 command, only one scan-in
and one scan-out port is created for the serial mode and the standard scan mode.

Figure 384 HASS Flow With Serializer Chains Concatenated Across Multiple Cores

You should not specify a number larger than the sum of the numbers specified with the
set_serialize_configuration -inputs number -outputs number command for
each core.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

846

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Hybrid Flow

Feedback

Note:
In the concatenated serializer chain flow, DFTMAX compression might not be
able to build an optimal length serializer chain segment. Suppose, for example,
that you have 2 scan-ins and scan-outs for a 6-bit serializer on core1, 2 scan-
ins and scan-outs for a 6-bit serializer on core2, 2 scan-ins and scan-outs for a
4-bit serializer on core3, and that you want to create 2 scan-ins and scan-outs
at the top level.

You might expect two 8-bit serializer segments (6/2 + 6/2 + 4/2) to be created at
the top level, by concatenating core-level serializer segments. But this might not
happen.

The workaround in this case is to create 6 scan-ins and scan-outs for core1
and core2, and 4 scan-ins and scan-outs for core3 at the serializer core-level
creation. This would mean that each serializer segment is 1-bit. The tool would
then have more flexibility to create 8-bit serializer segments, which is the
optimal length at the top level.

Hybrid Flow
If you have performed multiple core-level implementations but still have some user-
defined logic at the top level, you can apply the Hybrid flow. The Hybrid flow provides core
integration and serializer insertion for the user-defined logic at the same time at the top
level.

To create a core implemented with a serializer codec, use the
set_scan_compression_configuration -serialize core_level command at
each core level. At the top level, specify the set_scan_compression_configuration
-serialize chip_level -hybrid true command. This enables the tool to insert a
serializer clock controller and a serializer codec for the top-level user-defined logic and
then integrate all the serializer cores.

The Hybrid flow does not support a user-defined test mode. You cannot have both a
parallel mode and a serial mode. Only a serial mode and a standard scan mode are
supported together. The generated test modes are

• ScanCompression_mode: serial mode

• Internal_scan: standard scan mode

Figure 385 shows the Hybrid flow diagram. Example 131 shows the script for this case.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

847

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Hybrid Flow

Feedback

Figure 385 Hybrid Flow Diagram

Example 131 Script Example for a Hybrid Flow
core1
set_scan_configuration -chain_count 1 -clock_mixing mix_clocks
report_scan_configuration
set_dft_configuration -scan_compression enable
set_scan_compression_configuration \
 -xtolerance high \
 -chain_count 150 \
 -inputs 8 \
 -outputs 8 \
 -serialize core_level
set_serialize_configuration \
 -inputs 1 \
 -outputs 1 \
 -update_stage true
report_scan_compression_configuration
report_serialize_configuration
create_test_protocol
dft_drc
preview_dft
insert_dft
current_test_mode ScanCompression_mode
dft_drc
current_test_mode Internal_scan

Synopsys® TestMAX™ DFT User Guide
T-2022.03

848

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Hybrid Flow

Feedback

dft_drc

core2
set_scan_configuration -chain_count 2 -clock_mixing mix_clocks
report_scan_configuration
set_dft_configuration -scan_compression enable
set_scan_compression_configuration \
 -xtolerance high \
 -chain_count 600 \
 -inputs 12 \
 -outputs 12 \
 -serialize core_level
set_serialize_configuration \
 -inputs 2 \
 -outputs 2 \
 -update_stage true
report_scan_compression_configuration
report_serialize_configuration
create_test_protocol
preview_dft
dft_drc
insert_dft
current_test_mode ScanCompression_mode
dft_drc
current_test_mode Internal_scan
dft_drc
For core-level serializer insertion,
###you have to specify the same <number> in the
###set_scan_configuration -chain_count <number> and
###set_serialize_configuration -input <number> -output <number>
###commands for each core level configuration; otherwise,
###you will see unexpected errors.

top level
set_scan_configuration -chain_count 4 -clock_mixing mix_clocks
set_dft_configuration -scan_compression enable
set_scan_compression_configuration \
 -xtolerance high \
 -chain_count 50 \
 -inputs 6 \
 -outputs 6 \
 -hybrid true \
 -serialize chip_level
set_serialize_configuration \
 -inputs 1 \
 -outputs 1 \
 -update_stage true
report_scan_compression_configuration
report_serialize_configuration
create_test_protocol
dft_drc
preview_dft
insert_dft

Synopsys® TestMAX™ DFT User Guide
T-2022.03

849

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Serializer IP Insertion

Feedback

write -hierarchy -output TOP.v -format verilog
write_test_protocol -output SERIAL.spf -test_mode ScanCompression_mode
write_test_protocol -output SCAN.spf -test_mode Internal_scan

For the Hybrid flow, you set the numbers by using the set_scan_configuration
-chain_count number and the set_serialize_configuration -inputs number
-outputs number commands at the top level as follows:

The set_serialize_configuration -inputs number -outputs number command
specifies the number of scan-in and scan-out ports of the serializer codec used to take
care of the top-level user-defined logic. The set_scan_configuration -chain_count
number command specifies the total number of the top-level scan ports. The number
specified with the set_scan_configuration -chain_count number command at the
top level has to be exactly the same number as the sum of the numbers specified with
the set_serialize_configuration -inputs number -outputs number command for
each serializer codec.

In Example 131, you have one scan-in and one scan-out port for core1 and two scan-in
and two scan-out ports for core2. Then, because you have one scan-in and one scan-out
port for the serializer that takes care of the top-level user-defined logic, you have to specify
four scan-in and scan-out ports with the set_scan_configuration -chain_count
number command at the top level. This configuration ends up with four scan-in and four
scan-out ports created for both serial and standard scan mode.

Serializer Chains Concatenated Across Cores
Serializer scan chain concatenation is not supported in the Hybrid flow.

Serializer IP Insertion
When serialized compressed scan is inserted, the tool places the deserializer register
inside the decompression MUX block, and it places the serializer register inside the
XOR compression tree block. This architecture, shown in Figure 386, keeps the scan
compression logic together and minimizes the top-level routing requirements.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

850

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Serializer IP Insertion

Feedback

Figure 386 Default Serialized Compressed Scan Architecture

Deserializer

Serializer

Decompression MUX

XOR compression tree

SI

SO

Decompressor
block

Compressor
block

High-frequency
serial scan
paths

Serializer
clock

controller

However, depending on layout characteristics, the long routes from the top-level scan I/
O connections to the serialization logic can reduce the maximum operating frequency for
these serial scan paths.

DFTMAX compression provides a feature called serializer IP insertion that separates
the deserializer and serializer registers, collectively known as the serializer IP, from the
combinational codec logic. This architecture, shown in Figure 387, places the serializer IP
logic separately so that the layout characteristics of the high-frequency serial scan paths
can be improved.

Figure 387 Serializer IP Insertion Architecture

Deserializer

Decompression MUX

XOR compression tree

SI

SO

Decompressor
block

Compressor
block

Serializer

Serializer IP block
Serializer

clock
controller

Serializer IP insertion can also be applied during HASS and Hybrid integration of cores
that already have combinational compressed scan inserted, as shown in Figure 388.
The tool inserts and connects the deserializer registers to the existing core-level
decompressors, and inserts and connects the serializer registers to the existing core-
level compressors. In addition to improving layout characteristics, this flow can be used to
reduce the scan pin requirements for existing compressed scan cores.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

851

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Serializer IP Insertion

Feedback

Figure 388 Inserting Serializer IP Around Combinational Compressed Scan Core

Deserializer

Serializer

Serializer
clock

controller

SI

SO

U_coreU_core

The following topics provide more information about serializer IP insertion:

• Configuring Serializer IP Insertion

• Serializer IP Insertion in the Top-Down Flat Flow

• Serializer IP Insertion in the Top-Down Flat Flow With Partitions

• Serializer IP Insertion in the HASS Flow

• Serializer IP Insertion in the Hybrid Flow

• Serializer IP Insertion and Standard Scan Chains

• Limitations

Configuring Serializer IP Insertion
To insert serializer IP into a design or partition or around a compressed scan core, use the
-ip_inputs and -ip_outputs options of the set_serialize_configuration command:

set_serialize_configuration \
 -ip_inputs {object_name n object_name n ...} \
 -ip_outputs {object_name n object_name n ...}

These options specify the number of top-level scan ports allocated to the serializer
IP for each object. They replace the -inputs and -outputs options used for normal
serializer insertion. The object_name argument can be a design name, partition name,
or compressed scan core instance name. The input and output port counts must be equal
for each object. If multiple objects exist in the design, multiple object name and port count
pairs can be specified.

If an update stage register is enabled with the -update_stage true option of the
set_serialize_configuration command, the tool includes the update stage register in
the serializer IP block.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

852

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Serializer IP Insertion

Feedback

Example 132 shows the commands used to identify the core shown in Figure 388 on
page 852.

Example 132 Specifying Serializer IP Insertion for Compressed Scan Cores
set_serialize_configuration \
 -ip_inputs {U_core_1 1} \
 -ip_outputs {U_core_1 1}

You can use the set_dft_location command to specify the insertion locations for the
serializer IP logic and the codec logic:

set_dft_location -include {SERIAL_REG} ser_IP_instance_name
set_dft_location -include {DFTMAX} codec_instance_name

If the specified hierarchy level does not exist, the tool creates it during DFT insertion. For
more information, see Specifying a Location for DFT Logic Insertion on page 278.

When serializer IP insertion is enabled, the preview_dft and insert_dft commands
issue messages about each serializer IP block:

Inserting Load Deserializer IP
 top_U_core_1_U_deserializer_ScanCompression_mode
 for mode ScanCompression_mode
 Number of inputs = 1
 Maximum size per input = 3
Inserting Unload Serializer IP
 top_U_core_1_U_serializer_ScanCompression_mode
 for mode ScanCompression_mode
 Number of outputs = 1
 Maximum size per output = 3

Serializer IP Insertion in the Top-Down Flat Flow
In the top-down flat flow, the tool inserts the combinational codec and the serializer IP at
the same time. The script must define both the codec characteristics and the serializer
characteristics.

Since the serializer IP is inserted in the top-level design, the design name is specified
using the -ip_inputs and -ip_outputs options. In Example 133, serializer IP insertion is
performed for a top-level design named top_design.

Example 133 Inserting Serializer IP in a Top-Down Flat Flow
current_design top_design

set_scan_configuration \
 -chain_count 1 -clock_mixing mix_clocks
set_dft_configuration -scan_compression enable

set_scan_compression_configuration \

Synopsys® TestMAX™ DFT User Guide
T-2022.03

853

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Serializer IP Insertion

Feedback

 -chain_count 6 \
 -inputs 3 -outputs 3 \
 -serialize chip_level
set_serialize_configuration \
 -ip_inputs {top_design 1} \
 -ip_outputs {top_design 1}

Figure 389 shows the resulting logic from Example 133.

Figure 389 Serializer IP Insertion in the Top-Down Flat Flow

Serializer
clock

controller

Deserializer

Serializer

top_design

In this example, one scan-in port and one scan-out port are created for the serial mode.
The chain count value of one results in the same scan port count in both the standard
scan mode and the serial mode.

Serializer IP Insertion in the Top-Down Flat Flow With Partitions
In the top-down flat flow with partitions, the combinational codec and the serializer IP are
inserted at the same time. The script must define both the codec characteristics and the
serializer characteristics on a per-partition basis.

Since the serializer IP is inserted inside partitions, the partition names are specified using
the -ip_inputs and -ip_outputs options. In Example 134, serializer IP insertion is
performed for two partitions, a user-defined partition and the default partition.

Example 134 Inserting Serializer IP in a Top-Down Flat Flow With Partitions
set_dft_configuration -scan_compression enable
set_scan_compression_configuration \
 -serialize chip_level

partition1
define_dft_partition partition1 -include {TOP_UDL_1 TOP_UDL_2}
current_dft_partition partition1
set_scan_configuration \
 -chain_count 1 -clock_mixing mix_clocks
set_scan_compression_configuration \
 -chain_count 6 \

Synopsys® TestMAX™ DFT User Guide
T-2022.03

854

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Serializer IP Insertion

Feedback

 -inputs 2 -outputs 2
set_serialize_configuration \
 -ip_inputs {partition1 1} -ip_outputs {partition1 1}

default_partition
current_dft_partition default_partition
set_scan_configuration \
 -chain_count 1 -clock_mixing mix_clocks
set_scan_compression_configuration \
 -chain_count 6 \
 -inputs 3 -outputs 3
set_serialize_configuration \
 -ip_inputs {default_partition 1}
 -ip_outputs {default_partition 1}

Figure 390 shows the resulting logic from Example 134.

Figure 390 Serializer IP Insertion in the Top-Down Flat Flow With Partitions

default_partition

Deserializer

Serializer

partition1

Deserializer

Serializer

Serializer
clock

controller

top_design

In this example, the tool creates one scan-in port and one scan-out port for each partition,
for a total of two scan ports used in the serialized scan and standard scan modes.

Serializer IP Insertion in the HASS Flow
In the HASS integration flow, you can add serializer IPs around one or more compressed
scan cores and perform top-level core integration. The prerequisites for inserting serializer
IP around existing compressed scan cores are as follows:

• The core must have the same number of scan ports in standard scan mode and
compressed scan mode.

set_scan_configuration \
 -chain_count N
set_scan_compression_configuration \
 -inputs N -outputs N

Synopsys® TestMAX™ DFT User Guide
T-2022.03

855

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Serializer IP Insertion

Feedback

• The core must have symmetrical codec scan I/O ports, where the values provided to
the -inputs and -outputs options of the set_scan_compression_configuration
command are equal.

• All scan chains in the core are compressed by a codec.

• No other test modes are defined except Internal_scan and ScanCompression_mode.

• No pipelined scan data is implemented inside the core.

• The core must be provided as a .ddc file or a test model file, so that test model
information is available for the scan compression logic.

In Example 135, serializer IP insertion is performed for core instances U_core_1 and
U_core_2.

Example 135 Inserting Serializer IP Around Cores in a HASS Flow
set_dft_configuration -scan_compression enable
set_scan_configuration -chain_count 3 -clock_mixing mix_clocks
set_scan_compression_configuration \
 -integration_only true \
 -serialize chip_level
set_serialize_configuration \
 -ip_inputs {U_core_1 1 U_core_2 2} \
 -ip_outputs {U_core_1 1 U_core_2 2}

Figure 391 shows the resulting logic from Example 135.

Figure 391 Serializer IP Insertion in the HASS Flow

Serializer
clock

controller

U_core_2

Deserializer

Serializer

U_core_1

Deserializer

Serializer

In this example, the tool creates three scan-in ports and three scan-out ports for the serial
scan mode, one pair for U_core_1 and two pairs for U_core_2. The number specified with
the set_scan_configuration -chain_count command at the top level for the standard
scan mode should be large enough to satisfy the total number of serial mode scan ports
across all cores.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

856

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Serializer IP Insertion

Feedback

Referencing Multiple Codecs in Compressed Scan Cores
When a compressed scan core contains multiple codecs, you must specify the serializer
IP characteristics for each codec. When you specify serializer IP characteristics with
the -ip_inputs and -ip_outputs options, follow the compressed scan core cell name
with the name of a decompressor or compressor, respectively, inside the core. You must
provide a separate entry for each codec inside the core.

Example 136 specifies serializer IP characteristics for a single codec in a compressed
scan core named CORE1 and two codecs in a compressed scan core named CORE2.

Example 136 Serializer IP Insertion for Multiple Codecs in a Compressed Scan Core
set_serialize_configuration \
 -ip_inputs {CORE1 1 \
 CORE2 core2_P1_U_decompressor_ScanCompression_mode 1 \
 CORE2 core2_P2_U_decompressor_ScanCompression_mode 2} \
 -ip_outputs {CORE1 1 \
 CORE2 core2_P1_U_compressor_ScanCompression_mode 1 \
 CORE2 core2_P2_U_compressor_ScanCompression_mode 2}
Figure 392 shows the resulting logic from Example 136.

Figure 392 Serializer IP Insertion for Multiple Codecs in a Compressed Scan Core

Serializer
clock

controller

Deserializer

Serializer

Deserializer

Serializer

CORE2

Deserializer

Serializer

CORE1

You can obtain the decompressor and compressor names using one of the following
methods:

• Use the list_test_models -compressors command at the top level before DFT
insertion.

• Look in the CompressorStructures section of a core-level ASCII CTL model file.

• Look in the CompressorStructures section of a core-level STIL protocol file that is
generated for the scan compression mode.

Example 137 shows a report example from the list_test_models -compressors
command, run at the top level before DFT insertion.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

857

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Serializer IP Insertion

Feedback

Example 137 Report Example From the list_test_models -compressors Command
dc_shell> list_test_models -compressors
 core1 /home/user/core1.db
 Codecs:
 core1_U_decompressor_ScanCompression_mode
 core1_U_decompressor_ScanCompression_mode

 core2 /home/user/core2.db
 Codecs:
 core2_P1_U_decompressor_ScanCompression_mode
 core2_P2_U_decompressor_ScanCompression_mode
 core2_P1_U_compressor_ScanCompression_mode
 core2_P2_U_compressor_ScanCompression_mode

 top /home/user/top.db
 Codecs:

The report from the list_test_models -compressors command shows the list of
designs with CTL model information, along with the codec names defined in each CTL
model. However, the -ip_inputs and -ip_outputs options require core instance
names, not design names. To convert a design name to a list of instances, use the
get_references command. For example,

dc_shell> get_references core2
{CORE2}

Example 138 shows how the decompressor and compressor names are provided in an
example CompressorStructures block, contained in an ASCII CTL model file or STIL
protocol file.

Example 138 Decompressor and Compressor Names in a CompressorStructures Block
CompressorStructures {
 Compressor "core2_P1_U_decompressor_ScanCompression_mode" {
 ...
 }
 Compressor "core2_P2_U_decompressor_ScanCompression_mode" {
 ...
 }
 Compressor "core2_P1_U_compressor_ScanCompression_mode" {
 ...
 }
 Compressor "core2_P2_U_compressor_ScanCompression_mode" {
 ...
 }
}

Synopsys® TestMAX™ DFT User Guide
T-2022.03

858

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Serializer IP Insertion

Feedback

Serializer IP Insertion in the Hybrid Flow
The Hybrid flow is an extension of the HASS flow that applies scan compression to any
uncompressed top-level logic. The requirements and features of serializer IP insertion in
the HASS flow also apply to the Hybrid flow. See Serializer IP Insertion in the HASS Flow
on page 855.

Example 139 shows a typical Hybrid flow that inserts serializer IPs around existing
compressed scan cores, inserts an additional serializer and codec into the top-level user-
defined logic, and then integrates all the structures.

Example 139 Inserting Serializer IP Around Cores in the Hybrid Flow
current_design top_design

set_dft_configuration -scan_compression enable
set_scan_configuration \
 -chain_count 4 -clock_mixing mix_clocks
set_scan_compression_configuration \
 -chain_count 6 \
 -inputs 3 -outputs 3 \
 -hybrid true \
 -serialize chip_level
set_serialize_configuration \
 -ip_inputs {top_design 1 U_core_1 1 U_core_2 2} \
 -ip_outputs {top_design 1 U_core_1 1 U_core_2 2}

Figure 393 shows the resulting logic from Example 139.

Figure 393 Serializer IP Insertion in the Hybrid Flow

Serializer
clock

controller

U_core_1 U_core_2

Deserializer

Serializer

Deserializer

Serializer

User-defined
logic

Deserializer

Serializer

top_design

In this example, the script assigns a single scan-in and scan-out port to the top-level
serializer IP and codec by referencing the top-level design name with the -ip_inputs and
-ip_outputs options. The tool creates one scan-in and scan-out port for the serialized IP
inserted around U_core_1, and it creates two scan-in and scan-out ports for the serialized
IP inserted around U_core_2. There are a total of four scan connections in the serialized
scan mode.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

859

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Serializer IP Insertion

Feedback

The number specified with the set_scan_configuration -chain_count command
at the top level for the standard scan mode should be large enough to satisfy the total
number of serial mode scan ports across all cores. In this example, the chain count value
of four results in four scan-in and scan-out ports in both the standard scan mode and the
serial mode.

Serializer IP Insertion in the Hybrid Flow With Top-Level Partitions
If you need to integrate combinational compressed scan cores but also have a great deal
of user-defined logic at the top level, you might want to use the Hybrid flow with top-level
partitions. This flow allows you to divide the user-defined logic into multiple partitions, each
of which has a serializer codec.

Consider the scenario shown in Figure 394.

• You have two compressed scan cores, U_core_1 and U_core_2.

• You want to distribute the top-level user-defined logic among two partitions, partition1
and the default partition.

• You want to insert serializer IP around each of the two compressed scan cores, with
one top-level serial scan-in and scan-out port for each core.

• You want to insert serialized compressed scan for each of the two top-level partitions,
with one top-level serial scan-in and scan-out port for each partition.

• You want to use four existing scan-in and four scan-out ports at the top level in both
standard scan mode and serial mode.

Figure 394 Serializer IP Insertion in the Hybrid Flow With Top-Level Partitions

Serializer
clock

controller

U_core_2

Deserializer

Serializer

U_core_1

Deserializer

Serializer

default_partition

Deserializer

Serializer

partition1

Deserializer

Serializer

Example 140 shows a Hybrid flow with top-level partitions script for this scenario.

Example 140 Script for a Serializer Hybrid Flow With Top-Level Partitions
global settings
set_dft_configuration -scan_compression enable
set_scan_compression_configuration \

Synopsys® TestMAX™ DFT User Guide
T-2022.03

860

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Serializer IP Insertion

Feedback

 -hybrid true \
 -serialize chip_level

partition1
define_dft_partition partition1 -include {TOP_UDL_1 TOP_UDL_2}
current_dft_partition partition1
set_scan_configuration \
 -chain_count 1 -clock_mixing mix_clocks
set_scan_compression_configuration \
 -chain_count 6 \
 -inputs 5 -outputs 5
set_serialize_configuration \
 -ip_inputs {partition1 1} -ip_outputs {partition1 1}

set_dft_signal -view spec -type ScanDataIn -test_mode all \
 -port {SI_PART1_0}
set_dft_signal -view spec -type ScanDataOut -test_mode all \
 -port {SO_PART1_0}

default partition
current_dft_partition default_partition
set_scan_configuration \
 -chain_count 3 -clock_mixing mix_clocks
set_scan_compression_configuration \
 -chain_count 6 \
 -inputs 5 -outputs 5
set_serialize_configuration \
 -ip_inputs {default_partition 1 U_core_1 1 U_core_2 1} \
 -ip_outputs {default_partition 1 U_core_1 1 U_core_2 1}

set_dft_signal -view spec -type ScanDataIn -test_mode all \
 -port {SI_PARTD_0 SI_PARTD_1 SI_PARTD_2}
set_dft_signal -view spec -type ScanDataOut -test_mode all \
 -port {SO_PARTD_0 SO_PARTD_1 SO_PARTD_2}

create_test_protocol
dft_drc
insert_dft

In this flow, the compressed scan cores must exist in the default partition. As a result,
they are configured by the set_serialize_configuration command applied
to the default partition. The chain count applied to the default partition with the
set_scan_configuration -chain_count command includes both the compressed scan
cores and the new top-level codec.

Incorporating External Chains Into the Hybrid Serializer IP Flows
external chainsscan chainsexternalYou might have compressed scan cores that contain one or more uncompressed external
scan chains, as shown in Figure 395.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

861

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Serializer IP Insertion

Feedback

Figure 395 External Uncompressed Chains in a Compressed Scan Core

U_core U
C

2
U

C
1

These uncompressed external scan chains are specified at the core level with the
set_scan_path command, as shown in Example 141.

Example 141 Defining External Uncompressed Chains at the Core Level
set_scan_path UC1 \
 -view spec -test_mode all_dft \
 -complete true -dedicated_scan_out true \
 -scan_data_in SI_0 -scan_data_out SO_0 \
 -ordered_elements {...}
set_scan_path UC2 \
 -view spec -test_mode all_dft \
 -complete true -dedicated_scan_out true \
 -scan_data_in SI_1 -scan_data_out SO_1 \
 -ordered_elements {...}
set_scan_configuration \
 -chain_count 5 -clock_mixing mix_clocks
set_dft_configuration -scan_compression enable
set_scan_compression_configuration \
 -chain_count 8 \
 -inputs 4 -outputs 4
create_test_protocol
dft_drc
preview_dft -show scan
insert_dft

In Example 142, the Hybrid flow is used to insert serializer IP around a compressed scan
core, and to insert a full serialized codec around the top-level user-defined logic. The tool
includes the external chains in U_core as part of the user-defined logic.

Example 142 Incorporating External Chains Into Serializer IP Hybrid Integration
set_scan_configuration \
 -chain_count 3 -clock_mixing mix_clocks
set_dft_configuration -scan_compression enable
set_scan_compression_configuration \
 -hybrid true \
 -serialize chip_level \
 -chain_count 9 \
 -inputs 3 -outputs 3
set_serialize_configuration \

Synopsys® TestMAX™ DFT User Guide
T-2022.03

862

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Serializer IP Insertion

Feedback

 -ip_inputs [U_core 2 top_design_name 1] \
 -ip_outputs [U_core 2 top_design_name 1]

Figure 396 shows the resulting logic from Example 142.

Figure 396 Serializer IP Insertion in the Hybrid Flow With External Chains

Serializer
clock

controller

U_core U
C

2
U

C
1 User-defined

logic

Serializer

DeserializerDeserializer

Serializer

If you are inserting serializer IP using the Hybrid flow with partitions, all external chains are
placed in the default partition by default. If you want to incorporate an external chain into a
different partition, you can include scan chain names in the partition definitions:

define_dft_partition P1 -include {top_UDL1 U_core/UC1}
define_dft_partition P2 -include {top_UDL2 U_core/UC2}

Figure 397 shows how these commands allocate the external chains between the two
partitions.

Figure 397 Allocating External Chains to Partitions in the Hybrid Serializer IP Flow

Serializer
clock

controller

U_core

Deserializer

Serializer

U
C

1

U
C

2P1

Deserializer

Serializer

P2

Deserializer

Serializer

Note:
Scan chain names are only supported in partition definitions when this flow is
being used.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

863

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Serializer IP Insertion

Feedback

See Also

• Excluding Scan Chains From Scan Compression on page 677 for more information
about external chains

Serializer IP Insertion and Standard Scan Chains
When compressed scan cores are wrapped with serializer IP logic in HASS and Hybrid
integration flows, the standard scan mode is also affected.

Due to the reduced number of available top-level scan I/O pins, the standard scan
chains inside the compressed cores can no longer be promoted to dedicated top-level
connections. To remedy this, standard scan chains in compressed scan cores become
scan segments that can be concatenated, if needed, by top-level integration. Figure 398
shows the compressed scan and standard scan chains for a design in the HASS serializer
IP insertion flow.

Figure 398 Standard Scan Chains in the HASS Serializer IP Insertion Flow

Compressed scan mode Standard scan mode

C_CORE1 C_CORE2

Deserializer Deserializer

Serializer Serializer

C_CORE1 C_CORE2

In the Hybrid flow with serializer IP insertion, core-level scan segments can be mixed with
top-level scan cells to achieve optimal balancing. Figure 399 shows the compressed scan
and standard scan chains for a design in the Hybrid serializer IP insertion flow.

Figure 399 Standard Scan Chains in the Hybrid Serializer IP Insertion Flow

Compressed scan mode Standard scan mode

Deserializer

Serializer

C_CORE

Deserializer

Serializer

C_CORE

Synopsys® TestMAX™ DFT User Guide
T-2022.03

864

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Wide Duty Cycle Support for Serializer

Feedback

Standard scan chain concatenation is not needed for cores that are already serialized
because such a core’s standard scan mode is architected to use the same scan I/O
resources as its serialized compressed scan mode.

Limitations
The serializer IP insertion feature has the following limitations:

• For each combinational compressed scan core, the number of scan inputs and scan
outputs must be the same for the standard scan mode and the compressed scan
mode.

• All cores must have the same X-tolerance type. A mix of default X-tolerance and high
X-tolerance is not supported.

• Multiple user-defined compressed scan test modes are not supported at the core level
or the top level.

• Pipeline scan data registers are not supported at the core level.

• A mix of combinational compressed scan cores and serialized compressed scan cores
is not supported.

• Serializer chains cannot be concatenated across cores at the top level.

• There is no support for core-specific serializer IP insertion.

• The number of serializer scan ports specified with the -ip_inputs and -ip_outputs
options must be less than the number of combinational codec inputs and outputs,
respectively.

• Lock-up latch insertion is not supported between the serializer IP and core scan cells.

◦ If scan clocks exist inside the compressed scan core that differ from the serializer
register clock, you should insert lock-up latches inside the compressed scan
core. Insert them between the decompressor outputs and first scan elements and
between the last scan elements and the compressor inputs. This must be done
manually. The tool cannot modify DFT-inserted cores during serializer IP insertion.

Wide Duty Cycle Support for Serializer
By default, the internally generated scan shift clocks and the update stage clock are
created by gating external clocks with enable signals generated by the serializer FSM
counter. The enable signals go active every S cycles, where S is the length of the
serializer register segment. Therefore, the internally generated scan shift clocks and the
update stage clock are inactive for (S-1) external clock cycles and pulse only at cycle S.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

865

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Wide Duty Cycle Support for Serializer

Feedback

When you have an 8-bit serializer with one scan-in port and one scan-out port, the length
of the serializer segment is 8. When the external clock has a 10 percent duty cycle (for
example, rise = 45ns, fall = 55ns, period = 100ns), the clock duty cycle of the internally
generated clock is 1.25 percent. Figure 400 illustrates this scenario.

Figure 400 Timing Diagram With Default Duty Cycle

With a narrow pulse width, two issues exist:

• The clock skew for internal clocks might be more than the pulse width, thereby leading
to problems in shift.

• Because of rise and fall slew, the clock might not reach its logic level completely, and
the clock waveform might be clipped.

Wide duty cycle support makes the clock duty cycle close to 50 percent, resolving these
problems.

To enable the wide duty cycle support feature, use the following option setting:

set_serialize_configuration -wide_duty_cycle true

After the option is accepted, the preview_dft command shows the following information
message:

Information: Implementing Wide Duty Cycle Serializer Clock Controller.

Block Diagram
Figure 401 shows the block diagram when you implement the wide duty cycle.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

866

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Wide Duty Cycle Support for Serializer

Feedback

Figure 401 Block Diagram With Wide Duty Cycle Support

When the -wide_duty_cycle true option is specified, the tool uses the following
behaviors:

• The update stage is always inserted in the decompressor IP, and the following
information message appears:

Information: the update stage will be enabled in presence of wide duty
cycle.

• Lock-up latches are always inserted in the decompressor IP between the deserializer
registers and the update stage registers. Note that lock-up latch insertion is also
available when the update stage is inserted without the wide duty cycle support
enabled by using the following variable:

set_app_var test_elpc_lul_in_deserializer true
• A synchronizing stage is inserted in the compressor IP. The synchronizing stage

registers help hold the scan-out data until serializer registers capture it. The clock of

Synopsys® TestMAX™ DFT User Guide
T-2022.03

867

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Wide Duty Cycle Support for Serializer

Feedback

the synchronizing stage registers is the same as the clock of the update stage registers
inserted in the decompressor IP.

• No clock-gating logic is used in the serializer clock controller.

Timing Diagram
Figure 402 shows the timing diagram for a 4-bit serializer, indicating how it behaves.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

868

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Wide Duty Cycle Support for Serializer

Feedback

Figure 402 Timing Diagram With Wide Duty Cycle Support

Internally Generated Clocks
The following examples show how the internally generated scan shift clocks are created
when wide duty cycle support is enabled.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

869

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Wide Duty Cycle Support for Serializer

Feedback

When you have a 7-bit serializer with one scan-in port and one scan-out port, the length of
the serializer segment is 7. With the wide duty cycle enabled, the clock is on for 3 external
clock cycles and off for 4 external clock cycles, as illustrated in the Figure 403.

Figure 403 Timing Diagram of Default Duty Cycle and Wide Duty Cycle Clock

Table 55 provides a table that shows the clock width based on the length of the serializer
segment.

Serializer segment length # of external clock cycles for clock ON (OFF)

2 1 (1)

3 1 (2)

4 2 (2)

5 2 (3)

6 3 (3)

7 3 (4)

8 4 (4)

9 4 (5)

10 5 (5)

Synopsys® TestMAX™ DFT User Guide
T-2022.03

870

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Wide Duty Cycle Support for Serializer

Feedback

Wide Duty Cycle in a Core-Level Flow
When you use the wide duty cycle feature, you must set the -wide_duty_cycle option to
true at each core creation. This setting allows the tool to insert the update stage and the
synchronization stage into the decompressor and the compressor, respectively.

Use the following command example for the core-level flow:

set_dft_configuration -scan_compression enable
set_scan_compression_configuration \
 -xtolerance high \
 -chain_count 400 \
 -inputs 8 \
 -outputs 8 \
 -serialize core_level
set_serialize_configuration \
 -inputs 1 \
 -outputs 1 \
 -wide_duty_cycle true

Wide Duty Cycle in the HASS Flow
In the HASS flow, use the following command example:

set_dft_configuration -scan_compression enable
set_scan_compression_configuration \
 -integration_only true \
 -serialize chip_level
set_serialize_configuration \
 -wide_duty_cycle true

Note the following when you use the wide duty cycle feature in the HASS flow:

• All serializer cores must be implemented with the -wide_duty_cycle true option.

• The option -wide_duty_cycle true must also to be set at the top level.

Wide Duty Cycle in the Hybrid Flow
In the Hybrid flow, use the following command example:

set_dft_configuration -scan_compression enable
set_scan_compression_configuration \
 -xtolerance high \
 -chain_count 400 \
 -inputs 1 \
 -outputs 1 \
 -hybrid true \
 -serialize chip_level
set_serialize_configuration \

Synopsys® TestMAX™ DFT User Guide
T-2022.03

871

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Wide Duty Cycle Support for Serializer

Feedback

 -inputs 1 \
 -outputs 1 \
 -wide_duty_cycle true

Note the following when you use the wide duty cycle feature in the Hybrid flow:

• All serializer cores and the top-level serializer must be implemented with the option
setting -wide_duty_cycle true.

Dual STIL Flow Parallel Patterns
When you use Wide Duty Cycle support and write out parallel patterns with the Dual STIL
flow in TestMAX ATPG, the waveform table contains multiple clock pulses as shown in
Example 143.

Example 143 Waveform Table _default_WFT_parallel
WaveformTable "_default_WFT_parallel_" {
 Period '30ns';
 Waveforms {
 "EXT_CLK1" { P { '0ns' D; '4ns' U; '7ns' D; '14ns' U; '17ns' D;
 '24ns' U; '27ns' D; } }
 "EXT_CLK2" { P { '0ns' D; '4ns' U; '7ns' D; '14ns' U; '17ns' D;
 '24ns' U; '27ns' D; } }
 "all_bidirectionals" { 0 { '0ns' D; } }
 "all_bidirectionals" { 1 { '0ns' U; } }
 "all_bidirectionals" { T { '0ns' Z; '3ns' T; } }
 "all_bidirectionals" { X { '0ns' Z; '3ns' X; }
 "all_bidirectionals" { H { '0ns' Z; '3ns' H; } }
 "all_bidirectionals" { Z { '0ns' Z; } }
 "all_bidirectionals" { L { '0ns' Z; '3ns' L; } }
 "all_bidirectionals" { N { '0ns' N; } }

This waveform table holds forced values at the state elements for multiple external clock
cycles so that scan cells driven by both the leading and trailing edges of the generated
wide duty cycle clocks can capture the values. Figure 404 shows how the waveform is
used.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

872

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Wide Duty Cycle Support for Serializer

Feedback

Figure 404 Application of the _default_WFT_parallel Waveform

This waveform example uses a 4-bit serializer. The clock-on for the internally generated
wide duty cycle clock is equal to two external clock cycles. The forced value is held across
three external clock cycles. Regardless of whether the scan cells are driven by the leading
or trailing edge of the generated wide duty cycle clock, the scan cells can capture the
forced value.

However, if you make both the external clocks wide and the trailing edge close to the end
of the cycle, the trailing edge of the generated wide duty cycle clock might cross into the
capture window due to internal delay on the clock line. This potential timing issue is shown
in Figure 405.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

873

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Serializer in Conjunction With On-Chip Clocking Controllers

Feedback

Figure 405 Potential Timing Issues for the _default_WFT_parallel Waveform

If this timing problem occurs, the shift operation cannot perform properly on scan cells
triggered by the trailing edge of the generated wide duty cycle clock. The problem is
independent of pattern format. Therefore, you should plan carefully to avoid this problem.

Limitations
Note the following limitation with the wide duty cycle feature:

• Staggered clock is not supported.

Serializer in Conjunction With On-Chip Clocking Controllers
The relationship between serializer clock controllers and on-chip clocking (OCC)
controllers is discussed in the following topics.

OCC and SPC Chains in a Serializer Design
When you use on-chip clocking (OCC) controllers or shift power control (SPC) chains in a
design with a serializer,

• The head of the OCC/SPC chains is driven directly by a dedicated bit in the
deserializer register.

• The tail of the OCC/SPC chains drives the compressor.

Using SPC chains in a design with a serializer without OCC controllers is not supported.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

874

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Serializer in Conjunction With On-Chip Clocking Controllers

Feedback

This is the serializer equivalent of the OCC/SPC chain dataflow used by combinational
DFTMAX compression (dedicated input, compressed output).

Because the clock chain must be driven by the deserializer register to ensure correct scan
operation, you cannot define an external (port-driven) OCC or SPC chain in the serializer
flow.

Using Serializer With User-Defined OCC Controllers
By default, the serializer clock controller generated by the TestMAX DFT tool considers the
clock pulse of the preamble vector outside the shift procedure to ensure correct operation
for the DFT-inserted OCC controller. Existing user-defined OCC controllers that require the
preamble clock pulse to enter shift mode are compatible with the default serializer clock
controller. However, some user-defined OCC controllers do not require the preamble clock
pulse. In this case, specify the following variable before the test protocol generation:

dc_shell> set_app_var test_ate_sync_cycles 0

See Also

• SolvNet article 035708, “What Does the test_ate_sync_cycles Variable Do?” for more
information about the test_ate_sync_cycles variable

Using a Serializer Clock Controller With Multiple OCC Controllers
When multiple DFT-inserted OCC controllers are specified with a serializer, a single
serializer clock controller is inserted. This single serializer clock controller internally
generates a slow clock that connects to the slow_clock pin of each OCC controller. This
clock and controller structure is shown in Figure 406.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

875

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnet.synopsys.com/retrieve/035708.html

Chapter 21: DFTMAX Compression With Serializer
Serializer in Conjunction With On-Chip Clocking Controllers

Feedback

Figure 406 Serializer Clock Controller With Multiple OCC Controllers, Default Architecture

An alternate architecture is also available by setting the test_elpc_unique_fsm variable
to false. In this alternate architecture, a separate serializer clock controller is inserted into
each OCC controller, so that the resulting locally-generated slow serializer clock can feed
the glitch-free clock selection MUX inside the OCC controller. See Figure 407.

Figure 407 Serializer Clock Controller With Multiple OCC Controllers, Alternate Architecture

Synopsys® TestMAX™ DFT User Guide
T-2022.03

876

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Serializer in Conjunction With On-Chip Clocking Controllers

Feedback

This alternate architecture is supported in both the top-down flat flow and the top-down
partition flow. This architecture might lead to long wires connecting the external clock port
to the slow_clk pin of each OCC controller, which can produce congestion and timing
issues when the external clock frequency is high.

See Also

• Chapter 12, On-Chip Clocking Support for more information about OCC controllers

Waveforms for a Serializer With OCC Controllers
If you use a DFT-inserted OCC controller without a serializer, the tool connects the
slow_clk pin of the OCC controller to an ATE-provided clock, which is one of the clocks
specified with the set_dft_signal -type ScanClock command. Even in a serializer
flow, the OCC controller must be connected to a clock corresponding to a scan shift clock
that is actually an internally-generated scan shift clock created by the serializer clock
controller.

The two waveform examples shown in Figure 408 and Figure 409 illustrate parallel mode
and serial mode behavior. For the serial mode example, a single serializer clock controller
is used, as discussed in Using a Serializer Clock Controller With Multiple OCC Controllers
on page 875.

You can compare the waveforms directly at the OCC controller pins.

Figure 408 OCC With Parallel Mode

Synopsys® TestMAX™ DFT User Guide
T-2022.03

877

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Using Integrated Clock-Gating Cells in the Serializer Clock Controller

Feedback

Figure 409 OCC With Serial Mode

As seen in these two figures, the serial mode behavior is the same as the parallel mode
behavior during capture, while the scan-enable signal (scan_en) is low. For the shift
mode, the internally generated clocks need to drive the scan cells. Since this flow uses
an inserted OCC controller, the internally generated scan clock drives the OCC controller
slow_clk input pin. Then, one clock pulse after capture is consumed inside the OCC
controller, the output of the OCC controller drives the scan cells.

Using Integrated Clock-Gating Cells in the Serializer Clock
Controller

By default, the tool uses discrete cells for clock-gating logic in a serializer clock controller.
Using the following variables, you can specify an integrated clock-gating cell library cell
reference (without the library name) for the serializer clock gating logic:

set_app_var test_icg_p_ref_for_dft library_cell_ref
set_app_var test_icg_n_ref_for_dft library_cell_ref

The test_icg_p_ref_for_dft variable specifies a library cell to be used to gate return-
to-zero clocks. The test_icg_n_ref_for_dft variable specifies a library cell to be used
to gate return-to-one clocks. The tool automatically inserts the specified integrated clock-
gating cells depending on the clock polarity.

User-Defined Pipelined Scan Data
If you implement user-defined pipelined scan data registers by hand, be careful of the
driving edge and the timing. The input-side pipelined scan data registers are connected
from the scan-in ports to the deserializer registers directly. The deserializer registers are
triggered by the trailing edge. Ideally, the pipelined scan data registers should be triggered
by the same edge and operate with the same timing to be safe. In the same manner,
the output-side serializer registers should be triggered by the leading edge, so as not to
produce a shift error. The same edge and the same timing are recommended.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

878

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Running TestMAX ATPG on Serializer Designs

Feedback

Running TestMAX ATPG on Serializer Designs
You can perform two types of ATPG with the TestMAX ATPG tool:

• Chip-level ATPG where the serializer clock controller is inserted and the compressed
scan chain clock is provided by the serializer clock controller

• Core-level ATPG where both a serializer clock and internal scan shift clocks are
provided directly from the primary ports

Chip-level ATPG is performed on designs completed with the top-down flat flow, top-
down partition flow, HASS flow, or Hybrid flow. Core-level ATPG is performed on a
core implemented with the set_scan_compression_configuration -serialize
core_level command, which is normally integrated later with other cores by using a
HASS or Hybrid flow.Chip-level and core-level test protocols are somewhat different, but
the TestMAX ATPG tool identifies them and performs ATPG accordingly without requiring
any special commands or guidance.

The following topics are covered in this section:

• Simulation and Patterns

• STIL Protocol File

• Debugging TestMAX ATPG Serializer DRC Errors

• Pattern Translation

• Known Issues

Simulation and Patterns
Serializer designs use MAX Testbench for pattern validation. For details, see “Using MAX
Testbench” in TestMAX ATPG and TestMAX Diagnosis Online Help.

In the TestMAX ATPG tool, patterns can be read and written in the WGL, serial STIL, and
binary pattern formats, and also written out in the TDL91, TSTL2, and FTDL formats.

The ATPG limitations for DFTMAX designs also apply to serializer designs. See DFTMAX
Compression Limitations on page 654.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

879

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Running TestMAX ATPG on Serializer Designs

Feedback

STIL Protocol File
STIL protocol file examples are presented for the following cases:

• load_unload procedures with and without an update stage

• Chip level with and without an update stage

• Core level

Also, the following compressor structure files are considered:

• Decompressor SPF

• Compressor SPF

load_unload Procedure
For the chip-level STIL protocol file, the usage of the load_unload procedure, including
shift and test_setup, is identical to the parallel mode as well as combinational scan
compression mode. Some other UserKeywords sections used by the TestMAX ATPG tool
are provided. An additional sequence provided in the load_unload and shift procedures is
only for the core-level STIL protocol file.

Example 144 shows a STIL protocol file example that does not include an update stage.

Example 144 STIL Protocol File Example Without an Update Stage
"_clk" = '"ext_clk1" + "ext_clk2" + "ser_clk"';
...
 "load_unload" {
 W "_default_WFT_";
 ActiveScanChains core_group;
 C {
 "dat1[0]" = N;
 ...
 }
 "ScanCompression_mode_pre_shift" : V { -- (1)
 "_clk" = 00P;
 "_si" = #;
 "_so" = #;
 "strobe" = 0;
 "test_se" = 1;
 }
 Shift {
 V { -- (2)
 "_clk" = 00P;
 "_si" = #;
 "_so" = #;
 "strobe" = 0;
 }
 V { -- (3)

Synopsys® TestMAX™ DFT User Guide
T-2022.03

880

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Running TestMAX ATPG on Serializer Designs

Feedback

 "_clk" = 00P;
 "_si" = #;
 "_so" = #;
 }
 V { -- (4)
 "_clk" = 00P;
 "_si" = #;
 "_so" = #;
 }
 V { -- (5)
 "_clk" = PPP;
 "_si" = #;
 "_so" = #;
 "strobe" = 1;
 }
 }
 }

This STIL protocol file example defines a configuration with one scan-in and one scan-
out, and a 4-bit deserializer/serializer registers without an update stage. The vector (1)
named “ScanCompression_mode_pre_shift,” which is outside the shift procedure, uses
the first serializer clock (“ser_clk”) to load the first internal shift data into the deserializer
registers. The vector (4), which is the third vector of the shift procedure, completes
loading the first internal shift data into the deserializer registers. At vector (5), internal
scan clocks (“ext_clk1” and “ext_clk2”) are pulsed, and the first internal shift data that
has been placed on the deserializer registers is transferred to the compressed chains;
also, the second internal shift data starts loading into the deserializer registers. The
“ScanCompression_mode_pre_shift” vector is applied only to the first vector, and then the
shift procedure is repeatedly applied as many times as the number of compressed chain
shifts per pattern. The scan-out measure also takes place with each vector.

If the number of compressed chain shifts is 5, the actual vector sequence in a single
pattern is

(1) (2)(3)(4)(5) (2)(3)(4)(5) (2)(3)(4)(5) (2)(3)(4)(5) (2)(3)(4)(5)

and the capture takes place.

Example 145 shows a STIL protocol file example that includes an update stage.

Example 145 STIL Protocol File Example With an Update Stage
"_clk" = '"ext_clk1" + "ext_clk2" + "ser_clk" + "update_clk"';
...
 "load_unload" {
 W "_default_WFT_";
 ActiveScanChains core_group;
 C {
 "dat1[0]" = N;
 ...
 "ScanCompression_mode_pre_shift" : V { -- (1)

Synopsys® TestMAX™ DFT User Guide
T-2022.03

881

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Running TestMAX ATPG on Serializer Designs

Feedback

 "_clk" = 00P0;
 "_si" = #;
 "_so" = #;
 "strobe" = 0;
 "test_se" = 1;
 }
 V { -- (2)
 "_clk" = 00P0;
 "_si" = #;
 "_so" = #;
 }
 V { -- (3)
 "_clk" = 00P0;
 "_si" = #;
 "_so" = #;
 }
 V { -- (4)
 "_clk" = 00P0;
 "_si" = #;
 "_so" = #;
 }
 V { -- (5)
 "_clk" = 00PP;
 "_si" = #;
 "_so" = #;
 }
 Shift {
 V { -- (6)
 "_clk" = 00P0;
 "_si" = #;
 "_so" = #;
 "strobe" = 0;
 }
 V { -- (7)
 "_clk" = 00P0;
 "_si" = #;
 "_so" = #;
 }
 V { -- (8)
 "_clk" = 00P0;
 "_si" = #;
 "_so" = #;
 }
 V { -- (9)
 "_clk" = PPPP;
 "_si" = #;
 "_so" = #;
 "strobe" = 1;
 }
 }
 }

Synopsys® TestMAX™ DFT User Guide
T-2022.03

882

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Running TestMAX ATPG on Serializer Designs

Feedback

If you implement the update stage, you see additional vectors only at the beginning of
each pattern. The first serializer clock (“ser_clk”) is pulsed at the vector (1). The vector (4)
completes loading the first internal shift data into deserializer registers. At the vector (5),
the first internal shift data that was placed on the deserializer registers is transferred to the
update stage. At the same time, the second shift data starts loading into the deserializer
registers. Then, vector (8) completes loading the second internal shift data into the
deserializer register. At vector (9), taking place at the same time, the first internal shift data
that has been on the update stage is transferred to the compressed chains, the second
internal shift data that has been on the deserializer registers is passed on to the update
stage, and the third internal shift data starts loading into the deserializer registers. If the
number of compressed chain shifts is 5, the actual vector sequence in a single pattern is

(1) (2)(3)(4)(5) (6)(7)(8)(9) (6)(7)(8)(9) (6)(7)(8)(9) (6)(7)(8)(9) (6)(7)(8)(9)

and the capture takes place.

UserKeywords SerializerStructures
For the serial mode, “UserKeywords SerializerStructures” is introduced. Some of its
parameters are used during DRC.

Chip-Level STIL Protocol File
The Length <number> is the number of deserializer/serializer registers bits.
The InternalShiftStart <number>, UnloadDataStart <number>, and
ExternalCyclePerShift <number> are determined by architecture. Example 146
shows a chip-level STIL protocol file example without an update stage, and
Figure 410 shows how the Length, InternalShiftStart, UnloadDataStart, and
ExternalCyclePerShift numbers are determined for this STIL protocol file example.

Example 146 Chip-Level STIL Protocol File Example Without an Update Stage
UserKeywords SerializerStructures CompressorStructures;
SerializerStructures {
 InternalShiftStart 5;
 UnloadDataStart 6;
 ExternalCyclesPerShift 4;
 LoadSerializer "U0/U_deserializer_my_serial" {
 Length 4;
 ActiveScanChains load_group; }
 UnloadSerializer "U0/U_serializer_my_serial" {
 Length 4;
 ActiveScanChains unload_group;
 }
}

Synopsys® TestMAX™ DFT User Guide
T-2022.03

883

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Running TestMAX ATPG on Serializer Designs

Feedback

Figure 410 Timing Diagram for SerializerStructures for Chip-Level STIL Protocol File Example
Without an Update Stage

If the update stage is used, the “UserKeywords SerializerStructures” changes as follows:
InternalShiftStart is delayed by 4 cycles, from 5 cycles to 9, and UnloadDataStart is
delayed by 4 cycles, from 6 cycles to 10. Example 147 shows this chip-level STIL protocol
file example with an update stage.

Example 147 Chip-Level STIL Protocol File Example With an Update Stage
UserKeywords SerializerStructures CompressorStructures;
SerializerStructures {
 InternalShiftStart 9;
 UnloadDataStart 10;
 ExternalCyclesPerShift 4;
 LoadSerializer "U0/U_deserializer_my_serial" {
 Length 4;
 ActiveScanChains load_group;
 }
 UnloadSerializer "U0/U_serializer_my_serial" {
 Length 4;
 ActiveScanChains unload_group;
 }
}

Synopsys® TestMAX™ DFT User Guide
T-2022.03

884

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Running TestMAX ATPG on Serializer Designs

Feedback

In addition to the configuration shown in Example 147, if pipelined scan data is used (for
example, two stages of head pipeline), the InternalShiftStart is delayed by another
two cycles, from 9 to 11. If two stages of tail pipeline are also used, UnloadDataStart
is delayed by two cycles, from 12 to 14. Example 148 and Example 149 show these two
cases.

Example 148 SerializerStructures Example With Update Stage and Head Pipeline Registers
UserKeywords SerializerStructures CompressorStructures;
SerializerStructures {
 InternalShiftStart 11;
 UnloadDataStart 12;
 ExternalCyclesPerShift 4;
 SerializerInputPipelineStages 2;
 LoadSerializer "U0/U_deserializer_my_serial" {
 Length 4;
 ActiveScanChains load_group;
 }
 UnloadSerializer "U0/U_serializer_my_serial" {
 Length 4;
 ActiveScanChains unload_group;
 }
}

Example 149 SerializerStructures Example With Update Stage and Head and Tail Pipeline
Registers

UserKeywords SerializerStructures CompressorStructures;
SerializerStructures {
 InternalShiftStart 11;
 UnloadDataStart 14;
 ExternalCyclesPerShift 4;
 SerializerInputPipelineStages 2;
 SerializerOutputPipelineStages 2;
 LoadSerializer "U0/U_deserializer_my_serial" {
 Length 4;
 ActiveScanChains load_group;
 }
 UnloadSerializer "U0/U_serializer_my_serial" {
 Length 4;
 ActiveScanChains unload_group;
 }
}

When you use the wide duty cycle feature, the “UserKeywords SerializerStructures”
section of the STIL protocol file shows at which external clock cycle the leading and
trailing edges of the internally generated scan shift clocks occur. Example 150 provides an
example with this information included.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

885

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Running TestMAX ATPG on Serializer Designs

Feedback

Example 150 Chip-Level STIL Protocol File Example With Wide Duty Cycle Feature
UserKeywords SerializerStructures CompressorStructures;
SerializerStructures {
 InternalShiftStartLeadingEdge 12;
 InternalShiftStartTrailingEdge 15;
 UnloadDataStart 16;
 ExternalCyclesPerShift 7;
 LoadSerializer "U0/U1_deserializer_my_serial" {
 Length 7;
 ActiveScanChains load_group;
 }
 UnloadSerializer "U0/U1_serializer_my_serial" {
 Length 7;
 ActiveScanChains unload_group;
 }
}

This example shows that the leading edge occurs at the 12th cycle and the trailing edge at
the 15th cycle. Figure 411 shows the corresponding timing diagram.

Figure 411 Correspondence Between SerializerStructures and Clock Creation

Core-Level STIL Protocol File
For a core-level test protocol, the InternalShiftStart is used differently. This number is
always one and specifies the number of generic shift procedures performed before the first
internal shift. Example 151 provides a core-level STIL protocol file example.

Example 151 Core-Level STIL Protocol File Example
UserKeywords SerializerStructures CompressorStructures;
SerializerStructures {
 InternalShiftStart 1;
 UnloadDataStart 6;
 ExternalCyclesPerShift 4;
 LoadSerializer "bottom1_U_deserializer_ScanCompression_mode" {
 Length 4;
 ActiveScanChains load_group;

Synopsys® TestMAX™ DFT User Guide
T-2022.03

886

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Running TestMAX ATPG on Serializer Designs

Feedback

 }
 UnloadSerializer "bottom1_U_serializer_ScanCompression_mode" {
 Length 4;
 ActiveScanChains unload_group;
 }
}

Compressor Structures
Figure 412 and Figure 413 contrast the compressor structures of the serial and parallel
modes.

Figure 412 Decompressor SPF

Synopsys® TestMAX™ DFT User Guide
T-2022.03

887

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Running TestMAX ATPG on Serializer Designs

Feedback

Figure 413 Compressor SPF

This comparison assumes the architecture represented in Figure 414. TestMAX ATPG
assigns indexes 0 1 2 ... to the deserializer and serializer registers from the scan-out
side. The scan-in port SI_0 in parallel mode corresponds to the deserializer register bit
0 in serial mode. The scan-out port SO_0 in parallel mode corresponds to the serializer
register bit 0 in serial mode.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

888

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Running TestMAX ATPG on Serializer Designs

Feedback

Figure 414 Correspondence Between Serial and Parallel Modes

ClockStructures
The ClockStructures section prints the output pins of the internally generated scan clocks,
as shown in Example 152:

Example 152 ClockStructures Example for a STIL Protocol File
UserKeywords DontSimulate;
ClockStructures {
 PLLStructures “serializer_init_shift_clocks” {
 Clocks {
 “u_clockcntrl/wide_clkgen/C75/U1/Z” PLLShift {
 OffState 0;
 }
 “u_clockcntrl/wide_clkgen/C75/U2/Z” PLLShift {
 OffState 0;

Synopsys® TestMAX™ DFT User Guide
T-2022.03

889

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Running TestMAX ATPG on Serializer Designs

Feedback

 }
 }
 }
}

This information about internally-generated clocks can help DRC in the TestMAX ATPG
tool. You can prevent the write_test_protocol command from including this information
in the SPF by setting the test_serialize_put_fsm_clock_output variable to false.

Debugging TestMAX ATPG Serializer DRC Errors
When running TestMAX ATPG on designs that contain serializer blocks, you might
encounter design rule violation (DRC) errors that are specific to the serializer flow. This
topic provides debugging information for such DRC errors.

The following topics are discussed in this section:

• Debugging R33 Through R38 DRC Errors

• Providing Guidance for R34 and R36 DRC Errors

Debugging R33 Through R38 DRC Errors
When R33 to R38 errors are issued by TestMAX ATPG, the following debug method might
be helpful to isolate the issue.

For an R37 error:

Error: Scan cell 19806 was clocked during serializer nonshifting cycle.
(R37-1)

The scan cells of the compressed scan chains must be clocked as described in Figure 370
on page 817. This error indicates that the scan cells are clocked at incorrect cycles.

To debug the issue, apply the following method:

DRC-T> set_drc -store_initial_shifts
DRC-T> set_pindata -shift
DRC-T> run_drc -patternexec my_serial
DRC-T> (gui_start)

When you open the TestMAX ATPG GSV, look at the cell 19806. Figure 415 shows the pin
data.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

890

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Running TestMAX ATPG on Serializer Designs

Feedback

Figure 415 Pin Data Example for a Scan Cell With an R37 Error

You can find the clock being pulsed in every shift cycle at the CP pin of the scan cell,
which is not correct. Refer to the SerializerStructures section in your SPF to
determine the correct clocking. If you see the following in the SerializerStructures
section:

UserKeywords SerializerStructures CompressorStructures;
SerializerStructures {
 InternalShiftStart 14;
 UnloadDataStart 17;
 ExternalCyclesPerShift 6;
 SerializerInputPipelineStages 1;
 SerializerOutputPipelineStages 2;
 LoadSerializer
"my_top_U_deserializer_ScanCompression_mode" {
 Length 4;
 ActiveScanChains load_group;
 }
 UnloadSerializer
"my_top_U_serializer_ScanCompression_mode" {
 Length 4;
 ActiveScanChains unload_group;
 }
 LoadSerializer "I_coreA/U_deserializer_ScanCompression_mode" {
 Length 6;
 ActiveScanChains "coreA_load_group";
 }
 UnloadSerializer "I_coreA/U_serializer_ScanCompression_mode" {
 Length 6;
 ActiveScanChains "coreA_unload_group";
 }
}

then the first clocking for compressed scan chains is at the 14th cycle. You can check this
with the value of the InternalShiftStart. If clocking exists in some other cycles, the
clocking scheme is incorrect.

Figure 416 shows the pin data example on one of the scan cells with the correct clocking
behavior.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

891

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Running TestMAX ATPG on Serializer Designs

Feedback

Figure 416 Pin Data Example for a Scan Cell With Correct Clocking

Verify that the clock pulse happens at 14th cycle, which is consistent with the
InternalShiftStart value in the SPF.

As a reference, in the following pin data example shown in Figure 417, notice what
happens to one of the deserializer registers, the serializer registers, serializer FSM
counter, and update stage registers, when you have the same SerializerStructures as
the serializer structure just described.

Figure 417 Pin Data Example for Some Cells of the Serializer Logic

Synopsys® TestMAX™ DFT User Guide
T-2022.03

892

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Running TestMAX ATPG on Serializer Designs

Feedback

The first cell is one of the serializer registers at the output side. The second cell is one
of the deserializer registers at the input side. The third cell is one of the serializer FSM
counter registers. Those registers need to have the external clock pulses from the primary
port without serializer clock gating. The fourth cell is one of the update stage registers.
The clock pulses appear on the registers at the 8th cycle and 14th cycles, which can be
explained in the following way:

The number of head pipeline registers is 1 and the maximum length of the serializer
registers is 6. To load scan data fully to the deserializer registers, 6+1=7 cycles are
required. Then at the next cycle, which is 8th cycle, the scan data that has been loaded
into the deserializer registers is transferred to the update stage registers. This is the
reason why the 8th cycle on the update register has a clocking. The next scan data is also
serially loaded through the pipeline register to the deserializer registers, consecutively.
Since the length of the serializer registers is 6, 8+6=14 is the next clocking for the update
stage to obtain the second scan data. Also, at the 14th cycle, the data transfers from the
update registers to the compressed scan chains.

The preceding examples show how to read the pin data, using the set_drc
-store_initial_shifts command. After you apply this command, DRC in the TestMAX
ATPG tool does not pass, but it does show you the stored shift data. You need to reset this
setting by using the set_drc -nostore_initial_shifts command after you complete
your debug to proceed in the same session.

Providing Guidance for R34 and R36 DRC Errors
In some cases, DRC in the TestMAX ATPG tool cannot identify the deserializer/serializer
registers due to the presence of other topologically-connected nonscan cells. In these
cases, DRC might issue R34 or R36 violations. The TestMAX ATPG tool provides a
method to allow user guidance to be provided in the STIL protocol file to specify the
correct deserializer/serializer registers.

For example, consider the following DRC violations in the TestMAX ATPG tool:

Error: Multiple candidates (192417,185880) for mode-port input with
serializer connection test_si1 (4). (R36-1)
Error: Multiple candidates (192418,185824) for mode-port input with
serializer connection test_si1 (3). (R36-2)
Error: Multiple candidates (192419,185825) for input 2 of load
 compressor
abc_top_U_decompressor_abc. (R36-3)
Error: Multiple candidates (192420,185826) for input 1 of load
 compressor
abc_top_U_decompressor_abc. (R36-4)
Error: Multiple candidates (192421,185827) for input 0 of load
 compressor
abc_top_U_decompressor_abc. (R36-5)

Synopsys® TestMAX™ DFT User Guide
T-2022.03

893

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Running TestMAX ATPG on Serializer Designs

Feedback

To determine the cell names of the reported primitives for the first DRC error, use the
report_primitives command on the two reported primitive IDs:

DRC-T> report_primitives 192417
abc_top_U_decompressor_abc/serial_reg_4_ (192417) DFF (DFF_X1)
 --- I (TIE_0)
 --- I (TIE_0)
 !CK I 88837-u_clockcntrl/U14/X
 --- I 159-
 Q O 178252-/abc_top_U_decompressor_abc/serial_reg_3_/D
 178253-/abc_top_U_decompressor_abc/U7/A ...
DRC-T> report_primitives 185880
xyz_dig_u/xyz__u/shiftreg_reg_47_ (185880) DFF (DFF_X2)
 --- I (TIE_0)
 !RD P I 143-xyz_dig_u/xyz__u/U83/X
 CK I 156-xyz_dig_u/gpio_pads_ctrl_u/svn_buf_s_16_u2/X
 --- I 88745-
 --- O 88743-
 88745-

The reported instance names show that the primitive ID 192417 represents the correct
serializer register. Next, you must identify the serializer index for this primitive. Since the
R36 violations are issued on the deserializer side, which is a compressor, you must run
the report_serializers -load -verbose command. For this example, the output is as
follows:

DRC-T> report_serializers -load -verbose
-- ------ ------
name type length
-- ------ ------
abc_top_U_deserializer_abc load 5
------ ----- ---------------- ----------------- ------
Scanin Index Serializer Index Parallel Outputs invert
------ ----- ---------------- ----------------- ------
test_si1 0 0 xyz_dig_u/xyz__u/shiftreg_reg_43_ no
test_si1 1 1 xyz_dig_u/xyz__u/shiftreg_reg_44_ no
test_si1 2 2 xyz_dig_u/xyz__u/shiftreg_reg_45_ no
test_si1 3 3 xyz_dig_u/xyz__u/shiftreg_reg_46_ no
test_si1 4 4 xyz_dig_u/xyz__u/shiftreg_reg_47_ no

From this report, you can determine that primitive ID 192417 corresponds to the serializer
index 4, as the other primitive ID 185880 matches the load register for serializer index
4. You can repeat this process to match the other serializer register names to their
corresponding index values.

Next, open the STIL protocol file in a text editor. Locate the SerializerStructures
section, and create a ParallelOutputs block as demonstrated in the following file:

UserKeywords SerializerStructures CompressorStructures;
SerializerStructures {
 InternalShiftStart 6;

Synopsys® TestMAX™ DFT User Guide
T-2022.03

894

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Running TestMAX ATPG on Serializer Designs

Feedback

 UnloadDataStart 7;
 ExternalCyclesPerShift 5;
 LoadSerializer "abc_top_U_deserializer_abc" {
 Length 5;
 ActiveScanChains load_group;
 ParallelOutputs {
 0 "abc_top_U_decompressor_abc/serial_reg_0_" no
 1 "abc_top_U_decompressor_abc/serial_reg_1_" no
 2 "abc_top_U_decompressor_abc/serial_reg_2_" no
 3 "abc_top_U_decompressor_abc/serial_reg_3_" no
 4 "abc_top_U_decompressor_abc/serial_reg_4_" no
 }
 }
 UnloadSerializer "abc_top_U_serializer_abc" {
 Length 5;
 ActiveScanChains unload_group;
 }
}

Note the following points when providing deserializer/serializer register guidance to DRC
in the TestMAX ATPG tool:

• The numbers specified before the serializer register name on each line must match the
serializer index values as reported by the report_serializers -verbose command.

• The serializer register names should be enclosed in double quotation marks.

• The no or yes value specified after the serializer register names specifies whether a
logic inversion exists between the data input pin of each serializer register and the
corresponding scan port.

• When you provide deserializer register (input side) guidance as with the previous
example, you must supply it in a ParallelOutputs block inside the LoadSerializer
section. When you provide serializer register (output side) guidance, you must supply it
in a ParallelInputs block inside the UnloadSerializer section.

• Guidance is only needed for deserializer/serializer registers with R36 DRC violations.
You do not need to supply guidance for other deserializer/serializer registers.

When DRC processes the updated STIL protocol file, it will verify that the specified register
names and inversion flags are correct. If DRC determines that the register name is
incorrect, it will issue an M873 warning message:

Warning: Possibly incorrect load serializer parallel output
specification: %d %s.(M873)
Warning: Possibly incorrect unload serializer parallel input
specification: %d %s.(M873)

Synopsys® TestMAX™ DFT User Guide
T-2022.03

895

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Running TestMAX ATPG on Serializer Designs

Feedback

If DRC determines that the register inversion flag is incorrect, it will issue an M874 warning
message:

Warning: Possibly incorrect load serializer parallel output inversion
specification: %d %s %s.(M874)
Warning: Possibly incorrect unload serializer parallel output inversion
specification: %d %s %s.(M874)

When the register names and inversion flags are valid, TestMAX ATPG DRC honors the
specified serializer register definitions and proceeds with the DRC process.

Pattern Translation
This topic describes the following types of serialized scan pattern translation:

• Translating Parallel Mode Patterns to Serial Mode Patterns

• Translating Serial Mode Patterns to Standard Scan Mode Patterns

Translating Parallel Mode Patterns to Serial Mode Patterns
Designs with serialized compressed scan can have both a serial scan mode, where the
codec is connected to deserializer and serializer registers for I/O-limited operation, and
a parallel scan mode, where the codec is connected directly to top-level scan I/O ports.
If the same codec is used in both modes, you can create parallel mode scan patterns in
TestMAX ATPG first, then translate them to serial mode scan patterns. This eliminates the
need for a second pattern generation run.

To ensure that the same codec is used in both modes, you must use the -parallel_mode
option of the set_serialize_configuration command to tie the parallel mode to the
serial mode:

set_scan_compression_configuration \
 -base_mode my_base_mode \ # standard scan base mode
 -test_mode my_serial_mode \ # serial compressed scan mode
 -xtolerance ... \
 -chain_count ... \
 -inputs ... \
 -outputs ... \
 -serialize ...
set_serialize_configuration \
 -test_mode my_serial_mode \ # serial compressed scan mode
 -parallel_mode my_parallel_mode \ # parallel compressed scan mode
 -inputs ... \
 -outputs ...

Synopsys® TestMAX™ DFT User Guide
T-2022.03

896

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Running TestMAX ATPG on Serializer Designs

Feedback

Note:
The terms serial and parallel in this section refer to the type of scan
compression being used, not to serial or parallel scan data loading in TestMAX
ATPG testbenches.

Performing Pattern Translation for Matching Scan Data Pipeline Depths
Use this pattern translation flow if you are not using pipelined scan data, or if you are using
pipelined scan data and the parallel mode has the same pipeline depth as the serial mode.

Note:
When you use the tool to perform automatic pipeline register insertion, it
ensures that all test modes have the same pipeline depth.

To use this pattern translation flow, perform the following steps:

1. Run TestMAX ATPG in parallel scan mode.

2. Execute the run_drc command using the parallel mode SPF:

run_drc my_parallel_mode.spf

In the log file, you will see information reported during compressor rules checking:

Begin compressor rules checking...
Warning: Rule R11 (X on chain affects observe ability of other chains)
was violated 1008 times.
Compressor rules checking completed: #chains=200, #scanins=8,
#scanouts=8, #shifts=100, CPU time=0.13 sec.
Note the #shifts= value, which represents the number of shift cycles used in the
parallel mode.

3. Perform ATPG in the parallel mode.

4. Write out the parallel mode pattern set with the -format binary and
-compressor_based options:

write_patterns compressor_based.db \
 -format binary -replace -compressor_based

When you write out the pattern set with the -compressor_based option, the pattern set
can be only read back into a serial scan mode TestMAX ATPG run.

5. Run TestMAX ATPG in serial scan mode.

6. Set the number of shift cycles to the #shifts= value obtained from the compressor
rules checking log file entry from the parallel mode run:

set_drc -dftmax_shift_cycles 100

Synopsys® TestMAX™ DFT User Guide
T-2022.03

897

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Running TestMAX ATPG on Serializer Designs

Feedback

7. Execute the run_drc command using the serial mode SPF:

run_drc my_serial_mode.spf
add_nofaults ...
add_faults ...

8. Read the previously saved patterns into the TestMAX ATPG tool:

set_patterns -external compressor_based.db
9. Optionally, execute the run_simulation command, the run_fault_sim command, or

an incremental ATPG step:

run_simulation
run_fault_sim

10. Write out the translated serial mode pattern set:

write_patterns translated_serial.stil -format stil -external
It is expected that you might see a small amount of coverage difference between
the original parallel mode ATPG results and the run_fault_sim result using the
translated serial mode patterns. This difference can be caused by different lock-up latch
configurations, different scan chain MUXing, different primary input constraints, and other
minor scan configuration differences.You should use options for the set_build and
set_drc commands that are as similar as possible between the parallel mode and the
serial mode runs.

Performing Pattern Translation Across Different Scan Data Pipeline Depths
Use this pattern translation flow if you are manually inserting pipelined scan data registers
and the parallel mode has a different pipeline depth from the serial mode.

To use this pattern translation flow, perform the following steps:

1. Run TestMAX ATPG in parallel scan mode.

2. Execute the run_drc command using the parallel mode SPF:

run_drc my_parallel_mode.spf

In the log file, you will see information reported during compressor rules checking:

Begin compressor rules checking...
Warning: Rule R11 (X on chain affects observe ability of other
 chains)
was violated 1008 times.
Compressor rules checking completed: #chains=200, #scanins=8,
#scanouts=8, #shifts=201, CPU time=0.13 sec.
Note the #shifts= value, which represents the number of shift cycles used in the
parallel mode.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

898

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Running TestMAX ATPG on Serializer Designs

Feedback

3. Run TestMAX ATPG in serial scan mode.

4. Execute the run_drc command using the serial mode SPF:

run_drc my_serial_mode.spf

Obtain the resulting #shifts= value from the serial mode:

Begin compressor rules checking...
Warning: Rule R11 (X on chain affects observe ability of other
 chains)
was violated 1008 times.
Compressor rules checking completed: #chains=200, #scanins=8,
#scanouts=8, #shifts=202, CPU time=0.13 sec.

5. Take the larger #shifts= value from the two test modes. In this example, the larger
value is 202.

6. Run TestMAX ATPG in parallel scan mode.

7. Set the number of shift cycles to the larger #shifts= value obtained from the parallel
and serial modes:

set_drc -dftmax_shift_cycles 202
8. Follow the steps in “Performing Pattern Translation for Matching Scan Data Pipeline

Depths,” starting with the parallel mode ATPG performed in step 3. In the serial mode
in step 6, use the larger #shifts= value determined from the two test modes.

Translating Serial Mode Patterns to Standard Scan Mode Patterns
To convert serial mode scan patterns to standard scan mode format, use the translation
flow provided in “Translating DFTMAX Compressed Patterns Into Normal Scan Patterns”
in TestMAX ATPG and TestMAX Diagnosis Online Help. This translation flow applies to
both normal compressed scan patterns as well as serialized scan patterns.

Known Issues
The known issues for serializer designs in a TestMAX ATPG flow are described in the
following topics:

• C1 Violations

• Serializer Core-Level Flow With Pipelined Scan Data Insertion

C1 Violations
A C1 violation might occur in parallel mode or regular scan mode when you use Synopsys
automated pipeline scan data in which the clock is shared with the ATE clock of a DFT-
inserted OCC controller. The violation is related to gate-level optimization and causes the

Synopsys® TestMAX™ DFT User Guide
T-2022.03

899

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
DFTMAX Compression With Serializer Limitations

Feedback

clock-off state to be X on a lock-up-latch clock pin that has been inserted after the pipeline
head registers. The violation can be reduced to a warning if the situation is the same as
described earlier. You cannot expect to be able to downgrade all C1 violations.

Serializer Core-Level Flow With Pipelined Scan Data Insertion
Serialized compressed scan core creation with implemented pipeline stages could
produce R rule violations during DRC in the TestMAX ATPG tool. One workaround is to
implement the pipeline stage only at the top level in a HASS or Hybrid flow.

DFTMAX Compression With Serializer Limitations
The following functionalities are not supported:

• Integrating unserialized DFTMAX compression cores

If you integrate DFTMAX compression cores, you must use serializer IP insertion to
serialize them.

• Having a different number of scan ports between a serial mode and a standard scan
mode during HASS or Hybrid core integration

• Multiple serializer test modes

• Sparse scheduling

You cannot use the -target option of the define_test_mode command to target
some cores but not others (also known as sparse targeting) in serializer and serializer
IP insertion flows.

• Parallel mode support in top-down partition with concatenated serializer chain flow,
HASS with concatenated serializer chain flow, and Hybrid flows

• DFT connectivity associations using the set_dft_connect or set_dft_signal
-connect_to commands

• Pipeline scan data registers whose clock is shared with scan cells’ clock

The tool inserts the serializer clock controller on the clock lines to provide internally
generated clocks to the compressed scan chains. If it is inserted on the clock line
feeding the pipelined scan data registers, the pipeline registers do not work properly.

• Pattern translation from serial to parallel

• Launch-on-shift (LOS) transition ATPG

• Internally generated scan-enable signals

• LSSD, scan-enabled LSSD, and clocked scan styles

Synopsys® TestMAX™ DFT User Guide
T-2022.03

900

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
Out-of-Scope Serializer Functionality

Feedback

• Lock-up flip-flops

• Retiming flip-flops

• External on-chip clocking (OCC) chains

• External shift power control (SPC) chains

• Terminal lock-up latches

When enabled, terminal lock-up latches are inserted at the end of the compressed
scan chains (before the serializer compressor) instead of at the scan output ports. This
might result in scan structures that do not shift into the compressor correctly.

• Mix of -xtolerance high and -xtolerance default codecs in top-down partition,
HASS, and Hybrid flows

• Any case with core wrapping in which a dedicated wrapper clock is created when the
insert_dft command is run

The dedicated wrapper clock is not gated by the serializer clock controller.

• Any case with core wrapping in which the DFTMAX Hybrid integration mode is also
used

• Timing constraints for PrimeTime cannot be written from TestMAX ATPG using the
tmax2pt.tcl utility.

Out-of-Scope Serializer Functionality
The following serializer functionalities are out of the current scope:

• Serialized standard scan mode

• Serialized asymmetrical I/O codec compression

• Serialized core with standard scan chains

This is supported only when all scan chains are compressed by the serializer codec

• Legacy Verilog testbench

DFTMAX Compression Error Messages
The following TEST error messages involve the serializer feature.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

901

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 21: DFTMAX Compression With Serializer
DFTMAX Compression Error Messages

Feedback

TEST-1093
Size of the deserializer and serializer are not equal.

TEST-1094
The number of deserializer inputs and serializer outputs are not equal.

TEST-1095
Scan compression mode chains that are outside the codec are not supported in the
serializer flow.

TEST-1096
The head and tail pipeline flip-flops are not triggered by the same clock in the serializer
flow.

TEST-1097
Pipeline clock is not dedicated to pipeline flip-flops in serializer flow.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

902

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Part 4: DFTMAX Ultra Compression

Synopsys® TestMAX™ DFT User Guide
T-2022.03

903

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

22
Introduction to DFTMAX Ultra

DFTMAX Ultra compression is an advanced test compression technology that is designed
for hierarchical flows to deliver high quality results as measured by test time, data volume,
design area and congestion, and time to implementation. The technology delivers very
high compression, even with few scan I/O pins. It uses the same signal interface as
standard scan with minimal impact to the clock tree. The technology is designed to deliver
good results with few internal chains to minimize any impact on layout.

The following topics introduce DFTMAX Ultra compression:

• The DFTMAX Ultra Compression Architecture

• Usage Flow

• Hierarchical DFT Insertion

• Test Pattern Creation Using TestMAX ATPG

• Pattern Simulation

The DFTMAX Ultra Compression Architecture
Scalable Adaptive ScanoverviewDFTMAX Ultra compression is an advanced method of scan compression that provides
high levels of compression, high fault coverage, short scan chains, and low pin count.
The scan architecture uses a shift register structure to shift in and shift out the scan data
streams, allowing all test operations to occur at high frequencies. All scan circuits operate
at the same frequency and no codec clock controller circuit is needed for scan operations.

Figure 418 shows the basic decompression and compression (codec) architecture. The
codec logic uses an existing scan clock; for simplicity, clock connections are not shown.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

904

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 22: Introduction to DFTMAX Ultra
Usage Flow

Feedback

Figure 418 Basic DFTMAX Ultra Compression Architecture

test_si

test_so

Control bits Data bits

Decompression MUX
To scan cell

scan-enable pins
and codec control

signals

test_se

Input
shift register

Output
shift register

XOR compression tree

Latched control bits

The scan-in data port feeds an input shift register. Some bits in the shift register are
used as control bits, while others are used as data bits. The control bits are latched once
per pattern and the latched values configure the compression logic for the pattern. The
data bits supply streaming data to the decompression multiplexer (MUX), which is a
combinational logic block that distributes the data to the compressed scan chains.

At the scan chain outputs, a combinational XOR compression tree and a sequential XOR
output shift register compress the data into a single stream. The compression tree is a
multilevel combinational network of XOR gates that compresses the bits from the scan
chains into a smaller number of bits. The output shift register compresses the data further
to produce a single bit per shift cycle. Redundant connections to the output shift register
help minimize the effect of X values.

The DFTMAX Ultra compression architecture allows test data to be streamed in through
a single input port and to be read out through a single output port, using the normal
shift clock. At the same time, the input and output shift registers allow high levels of
compression to be achieved with very good fault coverage.

DFTMAX Ultra compression is an optional add-on to DFTMAX compression. Together,
they synthesize the streaming scan compression circuitry. You specify the number of scan
inputs, number of scan outputs, and the target number of chains. The tool then determines
the optimum architecture for optimal compression and fault coverage possible with the
available resources.

Usage Flow
To use DFTMAX Ultra compression, you specify the number of scan data inputs and
outputs and the target number of scan chains. The tool determines the optimum

Synopsys® TestMAX™ DFT User Guide
T-2022.03

905

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 22: Introduction to DFTMAX Ultra
Hierarchical DFT Insertion

Feedback

architecture to achieve the desired compression with the available resources and
synthesizes the DFT compressor and decompressor (codec) circuitry. It also generates a
STIL file to describe the test protocol and codec architecture.

The following example shows a typical DFTMAX Ultra compression script:

set_dft_configuration -streaming_compression enable
set_scan_configuration -chain_count 1
set_streaming_compression_configuration -chain_count 80
set_dft_signal -port SI1 -type ScanDataIn
set_dft_signal -port SO1 -type ScanDataOut
...

The set_dft_configuration -streaming_compression enable command enables
DFTMAX Ultra compression.

The chip can be tested in two different modes: standard scan (uncompressed) mode and
compressed scan mode. The -chain_count option is used with two different commands
to specify the number of chains in these two modes:

• In the set_scan_configuration command, the -chain_count option specifies the
number of scan chains for the standard scan chains, which are the scan chains used
in standard scan mode. (This option value is also the default number of input and
outputs ports used in compressed scan mode so that both modes share the same I/O
characteristics.)

• In the set_streaming_compression_configuration command, the -chain_count
option specifies the target number of compressed scan chains, which are the scan
chains used in compressed scan mode.

The tool synthesizes scan compression circuitry for the target number of compressed scan
chains using the specified number of scan data inputs and outputs. In this example, the
circuit has one scan input, one scan output, and 80 compressed scan chains.

Hierarchical DFT Insertion
hierarchyoverviewDFTMAX Ultra compression supports hierarchical DFT insertion. You can perform scan
synthesis independently for each lower-level block. When you use instances of these
blocks at a higher level of hierarchy, the tool integrates the scan circuitry of the lower-level
blocks at the higher level.

There are many ways to build and integrate lower-level blocks to create the top-level
design. Figure 419 shows a few examples.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

906

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 22: Introduction to DFTMAX Ultra
Test Pattern Creation Using TestMAX ATPG

Feedback

Figure 419 Hierarchical DFT Examples

Several criteria can help you choose the best strategy for a hierarchical design:

• What is the target compression level? The need to reduce tester time and test data
volume can determine the DFT flow and choice of block sizes.

• How many I/O pins at the top level are available for use as test I/O pins? Using a larger
number of available pins can improve testing speed and quality of results.

• Is the chip layout congested? To reduce congestion and preserve routing resources,
you can partition the design into smaller blocks, each having its own test circuitry.

• Are multiple test modes needed? Should the modes be implemented at the top level or
at the block level? Which combinations of lower-level test modes need to be accessible
at the top level? You could use different testing modes such as high compression, low
compression, and standard scan, for different purposes.

When using hierarchical scan synthesis, it is important to consider the top-level scan
architecture at the core level. Cores built with scan I/O counts that are a multiple of the
top-level scan I/O count give maximum chain balancing flexibility during integration.
Careful consideration of hierarchical block integration in the early stages of the design flow
can have a significant impact on the final test coverage and pattern count.

Test Pattern Creation Using TestMAX ATPG
The write_test_protocol command writes out a STIL protocol file (SPF) containing
a description of the test circuitry in a given test mode. For compression modes, the
SPF contains information about the scan compression architecture. You use a separate

Synopsys® TestMAX™ DFT User Guide
T-2022.03

907

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 22: Introduction to DFTMAX Ultra
Pattern Simulation

Feedback

write_test_protocol command for each test mode that will be used for testing the
device.

The TestMAX ATPG tool performs automatic test pattern generation for the DFTMAX
Ultra compression designs. The tool has knowledge of the DFTMAX Ultra compression
architecture and its pattern decompression and compression algorithms. Given the design
netlist and an SPF, TestMAX ATPG generates a set of test patterns for that test mode.
The tool attempts to get the best possible fault coverage using a reasonable number of
patterns.

For more information about running TestMAX ATPG on DFTMAX Ultra designs, see
“Using TestMAX ATPG and DFTMAX Ultra Compression” in TestMAX ATPG and TestMAX
Diagnosis Online Help.

Pattern Simulation
simulationoverviewThe test synthesis flow typically uses VCS simulation to validate the test protocol and
test patterns. You can choose either serial or parallel loading of scan data patterns for
simulation. Use serial loading to simulate the full scan-in and scan-out behavior of the test
circuitry and test protocol. Use parallel loading of patterns to simulate just the launch and
capture phases of test.

Parallel simulation of test patterns is much faster than serial simulation. However, only
serial simulation can fully validate the scan circuitry and test protocol. You can use serial
loading for the first few patterns for complete testing, and then use parallel loading for fast
simulation of many patterns.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

908

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

23
DFTMAX Ultra Compression Architecture

Scalable Adaptive ScanarchitectureDFTMAX Ultra compression uses a shift-register scan-data architecture and a single scan
clock to deliver very high compression without restriction on the number of I/O pins. The
input shift register feeds the decompression logic that provides data to many internal scan
chains. The output shift register compresses the scan-out data using XOR logic. This
architecture delivers high scan compression levels while providing a scan-compatible
interface that retains the simplicity of a basic scan design.

The following topics describe the DFTMAX Ultra compression architecture:

• DFTMAX Ultra Compression Architecture

• Multiple-Input, Multiple-Output Architecture

• DFTMAX Ultra Architectures for On-Chip Clocking (OCC)

DFTMAX Ultra Compression Architecture
Scalable Adaptive ScantechnologyDFTMAX Ultra compression supports high levels of compression, high fault coverage,
short scan chains, and low pin count. The scan architecture uses shift-register structures
to feed in and read out the scan data streams, which enables high shift frequencies. All
scan circuits operate at the same frequency; no codec clock controller circuit is needed for
scan operations.

To insert DFTMAX Ultra scan compression, you specify the number of scan inputs
and scan outputs, and the target number of compressed scan chains. The tool then
implements an architecture based on your configuration. The DFTMAX Ultra architecture
supports high compression levels using as few as one scan input and one scan output,
even for a large number of internal scan chains.

Scalable Adaptive Scanblock diagramstreaming technologyblock diagramFigure 420 shows a block diagram for a single-input, single-output DFTMAX Ultra codec.
Clock and control signals are active-high. The codec logic uses an existing scan clock; for
simplicity, clock connections are not shown.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

909

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 23: DFTMAX Ultra Compression Architecture
DFTMAX Ultra Compression Architecture

Feedback

Figure 420 DFTMAX Ultra Compression Architecture, Single Scan-In and Scan-Out Pins

test_so1
RN

Output
shift register

Input
shift registertest_si1

GN

Control bits Data bits

Latched control bits

Decompression MUX

XOR compression tree

test_se

test_mode

To SE pins
of scan cells

DFTMAX Ultra decompressor

DFTMAX Ultra compressor

The features and function of the DFTMAX Ultra architecture are covered in the following
topics:

• Input Shift Register and Decompression MUX

• Control Register

• Output XOR Compression Tree and Shift Register

• Test Pattern Scan Procedure

• Scan-Enable Signal Requirements for Codec Operation

Input Shift Register and Decompression MUX
Scalable Adaptive Scanscan-in pipeline registerpipelineregisterpipelineinput pipeline registerdecompression MUXMUX, decompressionregister, pipelineinput pipelineThe input decompressor circuit uses a shift register and a decompression multiplexer
(MUX). The input scan data at the scan-in pin feeds into the shift register, which is clocked
on the trailing clock edge at the normal scan clock rate. In this implementation example,
the register has eight bits. The four register bits farthest from the scan-in pin feed into the
decompression MUX.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

910

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 23: DFTMAX Ultra Compression Architecture
DFTMAX Ultra Compression Architecture

Feedback

The decompression MUX is a combinational logic block that causes each of the four
scan data bits to fan out to multiple scan chains. The mapping of the four bits from the
shift register to the scan chains remains constant for a particular pattern. However, the
mapping can change from one pattern to the next. The mapping is controlled by bits in the
control register. (For more details, see the next section, “Control Register.”)

The shift-register structure that feeds into the decompression MUX causes the input
data to stream into the scan chains multiple times. Therefore, the timing is shifted by one
clock cycle from successive register bits in the shift register. This architecture allows the
TestMAX ATPG tool to disperse the input data stream both in space and time – in space
by fanning out to multiple chains under the control of the decompression MUX, and in time
by controlling the stream of bits feeding the shift register. Although a single data stream
enters the design, different chains receive different data by this time shifting.

The four last-arriving bits in the shift register are latched into the control register when
the scan enable signal, test_se, is de-asserted. This de-assertion occurs exactly once
per pattern. Other than this once-per-pattern latching function, the input shift register bits
feeding the control register operate only as a time-delay pipeline for the input data stream.

Control Register
control registerregister, controlshadow registerinput pipelinecontrol registerThe control register is a bank of latch cells that stores the configuration of the scan circuit
for a given pattern. Some of the register bits control the mapping of input shift-register bits
to scan chains through the decompression MUX, while others control the X-masking logic
at the ends of the scan chains. In this example, two bits control the decompression MUX
and two bits control the X-masking logic. The control register latches remain constant
during scan shifting, so the scan configuration stays the same within a given pattern.

To program the control register, TestMAX ATPG appends the desired string of control bits
to the end of the previous pattern’s data stream. When scan-in completes, the control bits
occupy the register positions that feed into the control register. The de-asserted scan-
enable signal, test_se, latches these bits into the control register. Thus, the final bits of
the scan-in pattern control X-masking for the current pattern to be scanned out and the
decompression MUX mapping for the next pattern to be scanned in.

Output XOR Compression Tree and Shift Register
Scalable Adaptive Scanscan-out pipeline registerpipelineregisterpipelineoutput pipeline registerXOR compression blockcompression XOR blockcompression pipelineThe output compressor circuit uses a combinational XOR compression tree and a
sequential XOR output shift register.

The XOR compression tree is a multilevel combinational network of XOR gates that
compresses the output bits from the scan chains into a smaller number of bits. Each scan
chain feeds into multiple XOR tree outputs; this redundant logic helps to minimize the
propagation of X values. In this example, the scan chain outputs are compressed into four
bits that feed the output shift register.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

911

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 23: DFTMAX Ultra Compression Architecture
DFTMAX Ultra Compression Architecture

Feedback

configuration registerX-maskingIf TestMAX ATPG determines that there are too many X values for the redundant XOR
tree to isolate the X values, it invokes X-masking to block one or more scan chains during
scan-out. The X-masking bits from the control register specify the chain or chains to mask
for the current pattern and also specify the order of the signals feeding into the XOR
compression logic.

XOR compressionin output pipelineThe compressed bits feed into a chain of flip-flops that operate as an output shift register,
which is clocked on the leading clock edge at the normal scan clock rate. During scan
capture, the register is reset by the scan-enable signal. During scan shift, the XOR gate
between each stage of the shift register merges scan data from an XOR compressor
output into the scan data already moving through the output shift register. This architecture
further compresses the scan data outputs from the XOR compression tree into a single
data stream.

Test Pattern Scan Procedure
Scalable Adaptive Scanscan procedurescan procedureThe ATE equipment performs the scan-in, scan-out procedure as specified by TestMAX
ATPG. In this example, the scan procedure uses 15 extra clock cycles to flush out the
extra bits from the input and output shift registers. For example, if the longest scan chain is
10,000 bits long, then the scan-in, scan-out procedure takes 10,015 scan clock cycles.

Consider two consecutive test patterns, 1 and 2, starting from the point at which pattern 1
has just been scanned in:

1. The first four bits of the input shift register (shifted in at the end of pattern 1) contain the
desired scan control bits to be latched into the control register. The output XOR shift
register contains leftover data from the previous pattern.

2. The scan-enable signal test_se changes from high to low, transitioning the device from
scan shift mode to scan capture mode. The de-assertion of the test_se pin performs
the following:

• It latches the four control bits from the input shift register into the control register
latches. This configures the X-masking circuit to scan out the data from pattern 1,
and it configures the decompression MUX to decompress the data for incoming
pattern 2.

• It resets the output XOR shift register to known zero values.

3. The ATE equipment applies the test vector to the primary inputs of the device and
reads the output vector from the primary outputs.

4. A clock pulse applied to the clock input causes the capture event, which changes the
contents of the scan flip-flops.

5. The scan-enable signal test_se is asserted, which transitions the device from scan
capture mode back into scan shift mode.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

912

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 23: DFTMAX Ultra Compression Architecture
Multiple-Input, Multiple-Output Architecture

Feedback

6. The ATE equipment applies a sequence of clock pulses at the scan clock rate. This
reads out the captured scan data for pattern 1 through the test_so1 output and, at the
same time, scans in the data for pattern 2 through the test_si1 input.

7. Scan-in and scan-out continue until the scan chains are filled with the data for pattern 2
(and the first four bits of the input shift register are filled with the control bits for the next
pattern).

This same sequence is repeated for each pattern until the device is fully tested.

initial patternpattern, initial dummydummy patternBefore the initial scan-in of test pattern data, the MUX control bits of the control register
must be programmed with values for proper decompression of the first test pattern.
Therefore, the first test cycle uses an abbreviated “padding” pattern containing only the
MUX control bits and no actual scan data. For more information about padding patterns,
see “Optimizing Padding Patterns” in TestMAX ATPG and TestMAX Diagnosis Online
Help.

Scan-Enable Signal Requirements for Codec Operation
When the streaming codec scan-enable signal is de-asserted, the control register latches
new control bit values, and the output shift register resets to a known state. Therefore, for
proper operation, this scan-enable signal must be held in the inactive state in all capture
procedures.

If you use the STIL protocol file created by the tool, the protocol already meets this
requirement. In the capture procedures, the tool constrains all scan-enable signals that
drive streaming codecs to the inactive state.

Note:
In some flows, streaming codecs cannot use signals defined with the -usage
option of the set_dft_signal command. See DFT Synthesis Limitations on
page 972.

Note:
When OCC controllers are present, the tool uses different behavior that could
constrain additional scan-enable signals. For more information, see OCC
Controllers and Streaming Codec Scan-Enable Constraints on page 938.

If you use a custom STIL protocol file, make sure that all scan-enable signals used by
DFTMAX Ultra codecs are constrained to the inactive state in all capture procedures.

Multiple-Input, Multiple-Output Architecture
multiple I/O architecturearchitecturemultiple I/OIf the codec is configured to use multiple scan-in and scan-out connections, the tool
synthesizes the scan circuitry in a manner similar to the single-pin circuit, but it splits the

Synopsys® TestMAX™ DFT User Guide
T-2022.03

913

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 23: DFTMAX Ultra Compression Architecture
Multiple-Input, Multiple-Output Architecture

Feedback

input and output shift registers into smaller segments and connects them to the available
input and output pins. By using more scan I/O pins, you get shorter shift registers,
improved controllability, and improved observability into the design.

Figure 421 shows a DFTMAX Ultra codec with two scan data inputs and two scan
data outputs. The codec has four input shift-register scan data bits feeding into the
decompression MUX, four control register bits that control the decompression and
compression logic, and four output shift-register bits.

Figure 421 DFTMAX Ultra Compression Architecture, Multiple Scan-In and Scan-Out Pins

test_so1

Decompression MUX

RN

test_so2
RN

test_si1
Control bits Data bits

GN

test_si2
Control bits Data bits

GN

Input
shift registers

Output
shift registers

XOR compression tree

Latched control bits Latched control bits

CKN CKN

CKCK

The tool determines the total input and output shift register lengths based on the number
of compressed scan chains, then it then splits these shift register lengths across the scan
inputs and outputs (rounding up shorter registers as needed). Therefore, as you increase
the number of scan inputs and outputs, the scan shift overhead of the shift registers is
reduced.

This bit distribution is more flexible than the single-input, single-output design because
there are multiple independent data streams rather than one. This flexibility might allow
the same fault coverage to be achieved with fewer patterns, but at the cost of using more
device pins.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

914

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 23: DFTMAX Ultra Compression Architecture
DFTMAX Ultra Architectures for On-Chip Clocking (OCC)

Feedback

In this example, the distribution of bits in the input shift registers allows TestMAX ATPG
to generate two independent data streams at the same time, one each for test_si1 and
test_si2. Each input shift register provides its own scan data bits for multiplexing to the
scan chains. For each compressed scan chain, TestMAX ATPG has a choice of up to four
different bit streams: two from test_si1 and two from test_si2.

The control register bits are the last data bits shifted into the device for a pattern.
Therefore, the bits of the shift register used for loading the control register are located
closest to the input pin, whereas the bits of the shift register that are available to the
decompression MUX are located farthest from the input pin.

On the output side, the output XOR shift register is divided into two smaller shift registers,
one each for the output pins test_so1 and test_so2. This reduces the amount of data
compression performed in the shift register, which reduces the propagation of X values
and provides greater observability into the design.

DFTMAX Ultra Architectures for On-Chip Clocking (OCC)
On-chip clocking (OCC) controllers allow on-chip clock sources to be used for at-speed
capture during device testing. In an OCC controller flow, the clock chain is a special scan
segment that provides control over the at-speed capture pulse sequence generated by the
OCC controller.

In a streaming compression flow, the clock chain can be external or compressed, as
described in the following sections.

For more information on OCC controllers, see Chapter 12, On-Chip Clocking Support.”

External Clock Chain
When you insert DFTMAX Ultra streaming compression along with a DFT-inserted or
user-defined OCC controller, the clock chain is driven by dedicated scan-in and scan-out
signals by default. This is known as an external clock chain because it exists outside the
decompressor and compressor.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

915

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 23: DFTMAX Ultra Compression Architecture
DFTMAX Ultra Architectures for On-Chip Clocking (OCC)

Feedback

Figure 422 DFTMAX Ultra Codec With External Clock Chain

test_so1

Decompression MUX

test_si1
Data bits Input

shift registers
(N >= 1)

XOR compression tree

OCC
clock
chain

test_so2
Output

shift registers
(N >= 1)

CK

Control bits

GN

CKN

Latched control bits

test_si2

RN

This is the default streaming compression clock chain architecture, even if you do not
explicitly configure an external clock chain with the set_scan_path command.

In a DFTMAX Ultra design, DFT-inserted clock chains are clocked by the rising clock
edge. User-defined clock chains can be clocked by the rising or falling edge.

Compressed Clock Chain
If you have at least two scan inputs, you can optionally include the clock chain in the
codec scan paths. (For configuration details, see Creating Compressed Clock Chains on
page 937).

Synopsys® TestMAX™ DFT User Guide
T-2022.03

916

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 23: DFTMAX Ultra Compression Architecture
DFTMAX Ultra Architectures for On-Chip Clocking (OCC)

Feedback

Figure 423 DFTMAX Ultra Codec With Compressed Clock Chain

test_so1

Decompression MUX

RN

test_so2
RN

test_si1
Control bits

GN

test_si2
Control bits Data bits

GN

Input
shift registers
(N >= 2)

Output
shift registers

(N >= 1)

XOR compression tree

CKN CKN

CKCK

Latched control bits Latched control bits

OCC
clock
chain

CKN

A dedicated scan input drives only control bits and the clock chain, but no data bits. This
ensures that the clock chain does not impose ATPG constraints on other scan cells.

This clock chain architecture is called a compressed clock chain because it shares scan-
in and scan-out pins with the codec, even though the scan data on the input side is
uncompressed.

The data bits are allocated across the remaining input shift registers. At least two codec
scan inputs are required for this architecture. There is no requirement for the number of
scan outputs.

In this architecture, the clock chain is clocked by the input shift register clock.

Long clock chains (from many clocks or multiple OCC controllers) always use a single
scan-in signal; they are not split up to balance them against other compressed chains.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

917

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

24
Using DFTMAX Ultra Compression

Scalable Adaptive ScancommandsTo use DFTMAX Ultra compression, you specify the desired number of compressed
chains and the number of I/O ports to be used for scan input and scan output. The tool
synthesizes the scan circuitry and writes the architectural information to the SPF file.
TestMAX ATPG then generates test patterns for simulation and device testing.

This chapter includes the following topics:

• DFTMAX Ultra Compression Requirements

• Top-Down Insertion Compressed Scan Flow

• Top-Down Insertion Compressed Scan Flow With Partitions

• The Multiple-Input, Multiple-Output Codec Architecture

• DFTMAX Ultra Compression and Multiple Test Modes

• Using OCC Controllers With DFTMAX Ultra Compression

• Reducing Power Consumption in DFTMAX Ultra Designs

• Planning, Previewing, and Inserting DFTMAX Ultra Compression

• Library Cell Requirements for Codec Implementation

DFTMAX Ultra Compression Requirements
To use DFTMAX Ultra scan compression,

• You must have the Design Compiler tool installed and licensed at your site.

• You must have the DFTMAX and DFTMAX Ultra tools, or the TestMAX DFT tool,
licensed at your site.

• You must have an HDL-Compiler license for compressed scan insertion.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

918

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 24: Using DFTMAX Ultra Compression
Top-Down Insertion Compressed Scan Flow

Feedback

• You must have the following cell types available for mapping when using the
insert_dft command:

◦ Level-sensitive latch

◦ Flip-flop with asynchronous reset

For more information, see Library Cell Requirements for Codec Implementation on
page 958.

• You must use a preclock strobe (which is the default). If you set the
test_default_strobe variable, ensure that the strobe occurs before the active edges
of the test clock waveforms.

Note:
See Chapter 28, DFTMAX Ultra Flow Naming Conventions,” for information on
the flow naming conventions used for DFTMAX Ultra flows.

Top-Down Insertion Compressed Scan Flow
This topic describes the top-down insertion (TDI-C) flow with DFTMAX Ultra compression.
In this flow, you insert scan compression into a design that contains no existing scan
compression logic.

This flow is covered in the following topics:

• Enabling DFTMAX Ultra Compression

• Configuring the DFTMAX Ultra Codec

• Configuring the Codec Clock

Enabling DFTMAX Ultra Compression
Commands and command options related to DFTMAX Ultra compression use the word
“streaming.” To enable top-down insertion of DFTMAX Ultra compression (TDI-C), simply
enable DFTMAX Ultra compression as follows:

dc_shell> set_dft_configuration -streaming_compression enable
The tool automatically performs TDI-C compression when all of the following are true:

• DFTMAX Ultra compression is enabled and a codec is configured.

• Scanned or scannable logic exists.

• No standard scan or compressed scan s exist.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

919

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 24: Using DFTMAX Ultra Compression
Top-Down Insertion Compressed Scan Flow

Feedback

When these criteria are met, the preview_dft and insert_dft commands issue the
following messages:

Information: Detected scanned or scannable logic. (TEST-1462)
Information: Inferring the top-down scan insertion (TDI) flow.
(TEST-1436)

Example 153 shows a script that implements DFTMAX Ultra compression using a top-
down insertion flow.

Example 153 Script for Top-Down Insertion of DFTMAX Ultra Compression
enable DFTMAX Ultra compression
set_dft_configuration -streaming_compression enable

specify standard scan chain count
set_scan_configuration -chain_count 2

configure the DFTMAX Ultra codec
set_streaming_compression_configuration \
 -chain_count 8 -inputs 2 -outputs 2

configure required scan clock signals
set_dft_signal -view existing_dft -type ScanClock \
 -port CLK -timing {45 55}

configure optional placeholder DFT signal ports
set_dft_signal -view spec -type ScanDataIn -port SI
set_dft_signal -view spec -type ScanDataOut -port SO
set_dft_signal -view spec -type ScanEnable -port SE
set_dft_signal -view spec -type TestMode -port TM

When DFTMAX Ultra compression is enabled, the insert_dft command inserts
compressed scan logic into the design and defines the following two test modes:

• Compressed scan mode

This mode configures the scan elements as short chains accessed through a DFTMAX
Ultra codec. The default name for this test mode is ScanCompression_mode.

• Standard scan mode

This mode joins the short compressed scan chains to reconfigure them into longer
standard scan chains. This is also known as standard scan mode. The default name for
this test mode is Internal_scan.

These test modes are created automatically during compressed scan insertion; you do not
need to create them or reference them. Figure 424 shows the scan structures for the two
test modes created by Example 153. Three standard scan chains and eight compressed
scan chains are created.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

920

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 24: Using DFTMAX Ultra Compression
Top-Down Insertion Compressed Scan Flow

Feedback

Figure 424 Standard Scan and Compressed Scan Modes

Scan-ins

Scan-outs

Scan-ins

Scan-outs

test_mode
0

test_mode
1

Standard scan mode Compressed scan mode

2-to-8

8-to-2

At least one test-mode signal is required to select between standard scan mode and
compressed scan mode. If a TestMode signal is defined with the set_dft_signal
command, it is used for mode selection. If no test-mode signals are defined, a test-mode
port is created and used. Test-mode encodings are created that map the test-mode signal
values to each scan mode.

Note:
For more information about working with multiple test modes in DFT Compiler,
including information on specifying test-mode encodings, see Multiple Test
Modes on page 355.

A compressed scan mode is always associated with a corresponding standard scan mode.
The standard scan mode associated with a compressed scan mode is known as its base
mode. The base mode controls aspects of scan configuration that are common to both
modes, such as scan I/O port definitions, scan signal hookup pin definitions, and top-level
test access structures.

Configuring the DFTMAX Ultra Codec
The set_streaming_compression_configuration command configures aspects of the
DFTMAX Ultra compressed scan mode, just as the set_scan_configuration command
configures aspects of the standard scan mode.

Use one of the following options of the set_streaming_compression_configuration
command to configure the compression architecture of the codec:

• -compressed_max_length chain_length
The -compressed_max_length option specifies the maximum number of shift cycles of
the entire scan compression path (from decompressor inputs to compressor outputs).
The tool adjusts the shift register and compressed chain lengths together to find an
optimal compression architecture that meets this constraint.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

921

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 24: Using DFTMAX Ultra Compression
Top-Down Insertion Compressed Scan Flow

Feedback

Note:
The shift cycle count is not simply the sum of the input shift register,
compressed chain, and output shift register lengths. See SolvNet article
2151939, “How Do I Determine the Shift Cycle Count of My Scan, DFTMAX,
or DFTMAX Ultra Design?”.

• -max_length chain_length
The -max_length option specifies the maximum allowed length of the compressed
scan chains only (not including the codec shift registers). The tool creates the number
of compressed scan chains needed to meet this requirement.

• -chain_count chain_count
The -chain_count option specifies the number of compressed scan chains. The tool
adjusts the compressed scan chain lengths to meet this requirement.

Figure 425 Streaming Compression Codec Configuration Options
Input
shift register

Output
shift register

-chain_count

-max_length

-compressed_max_length

Specify only one of these options. If no option is specified, the DFT architect aborts with
an error. If multiple options are specified, precedence applies as described in the man
page.

DFTMAX Ultra compression automatically determines the following aspects of codec
architecture:

• It computes the input and output shift register lengths that are optimal for the number of
scan inputs and outputs and the number of compressed scan chains.

• If multiple scan clocks exist, it uses the clock that minimizes the number of lock-up
latches. For more information, see Configuring the Codec Clock on page 923.

By default, a compressed scan mode inherits and uses the same scan I/Os as its base
mode. To specify the number of scan I/Os to use for the codec in compression mode, use

Synopsys® TestMAX™ DFT User Guide
T-2022.03

922

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnet.synopsys.com/retrieve/2151939.html
https://solvnet.synopsys.com/retrieve/2151939.html
https://solvnet.synopsys.com/retrieve/2151939.html

Chapter 24: Using DFTMAX Ultra Compression
Top-Down Insertion Compressed Scan Flow

Feedback

the -inputs and -outputs options of the set_streaming_compression_configuration
command.

Configuring the Codec Clock
By default, the tool selects clocks for the decompressor and compressor that minimize
the number of lock-up latches at the decompressor outputs and compressor inputs. The
selection rules are as follows:

• The decompressor uses a clock whose trailing edge is as late or later than all head
scan elements.

• The compressor uses a clock whose leading edge is as early or earlier than all tail scan
elements.

• If multiple clocks meet these criteria for the decompressor or compressor, the dominant
clock across the head or tail scan elements is used, respectively.

You can determine which clocks are selected for the decompressor and compressor by
looking at the codec information reported by the preview_dft or insert_dft commands.
For example,

Architecting Streaming Decompressor
 Number of inputs = 1
 Maximum size per input = 80
 Decompresor Clock = CLK2
Architecting Streaming Compressor
 Number of outputs = 1
 Maximum size per output = 67
 Compressor Clock = CLK2
Architecting Load Decompressor (version 5.8)
 Number of inputs/chains/internal modes = 80/70/4
Architecting Unload compressor (version 5.8)
 Number of outputs/chains = 67/70
 Information: Compressor will have 100% x-tolerance

In most designs, the decompressor and compressor clocks are the same. If they differ, the
tool issues the following information message:

Information: Different clocks are chosen for the streaming codec
decompressor and compressor clocks. (TEST-1480)

To exclude one or more clocks from automatic clock selection, use the -exclude_clocks
option of the set_streaming_compression_configuration command:

dc_shell> set_streaming_compression_configuration -exclude_clocks {IPCLK}

Synopsys® TestMAX™ DFT User Guide
T-2022.03

923

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 24: Using DFTMAX Ultra Compression
Top-Down Insertion Compressed Scan Flow

Feedback

To specify a particular scan clock for the codec (both decompressor and compressor), use
the -clock option of the set_streaming_compression_configuration command:

dc_shell> set_streaming_compression_configuration -clock CLK2
To specify a particular scan clock for the decompressor or compressor, use the
-decompressor_clock or -compressor_clock option, respectively:

dc_shell> set_streaming_compression_configuration \
 -decompressor_clock CLK1 \
 -compressor_clock CLK3
A referenced scan clock must be previously defined as a scan clock using the
set_dft_signal -type ScanClock command.

By default, DFT Compiler makes the codec clock connections at the source port specified
in the -view existing_dft signal definition, as shown in Figure 426.

Figure 426 Default Codec Clock Connection

However, if you want DFT Compiler to make the clock connection at an internal pin, such
as a pad cell or clock buffer output, you can specify it with the -hookup_pin option in a
subsequent -view spec signal definition, as shown in Figure 427.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

924

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 24: Using DFTMAX Ultra Compression
Top-Down Insertion Compressed Scan Flow With Partitions

Feedback

Figure 427 User-Defined Codec Clock Connection

For more information on specifying a clock hookup pin, see Specifying a Hookup Pin for
DFT-Inserted Clock Connections on page 244.

Top-Down Insertion Compressed Scan Flow With Partitions
In the DFTMAX Ultra compression top-down insertion flow, you can use the DFT partitions
feature to divide the design into multiple partitions. The tool inserts a separate codec for
each partition. This is known as the TDI-C-P flow.

This flow is described in the following topics:

• Using Dedicated Scan Data Connections for Each Partition

• Using Serial Scan Data Connections Between Partitions

• Per-Partition Streaming Configuration Commands

See Also

• Partitioning a Scan Design With DFT Partitions on page 283 for general information
about DFT partitions

Using Dedicated Scan Data Connections for Each Partition
When creating DFT partitions, dedicated scan data connections are created for each
partition by defining the scan data DFT signals within each partition. In Example 154,
scan-in and scan-out signals are created inside each DFT partition.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

925

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 24: Using DFTMAX Ultra Compression
Top-Down Insertion Compressed Scan Flow With Partitions

Feedback

Example 154 Script for Top-Down Insertion Flow With Partitions and Dedicated Scan Data
Connections

enable streaming compression in global configuration
(before any DFT partitions are defined)
set_dft_configuration -streaming_compression enable

define and configure a user-defined DFT partition
define_dft_partition my_part -include {...}
current_dft_partition my_part
set_scan_configuration -chain_count 1
set_streaming_compression_configuration -chain_count 4
set_dft_signal -port SI1 -type ScanDataIn
set_dft_signal -port SO1 -type ScanDataOut

define and configure the default DFT partition
current_dft_partition default_partition
set_scan_configuration -chain_count 1
set_streaming_compression_configuration -chain_count 4
set_dft_signal -port SI2 -type ScanDataIn
set_dft_signal -port SO2 -type ScanDataOut

When the set_dft_signal command is used inside a partition definition, it includes the
partition name in the resulting message:

Accepted dft signal specification for partition 'my_part' and modes:
all_dft

The script in Example 154 results in the scan data connections shown in Figure 428. Each
DFT partition has dedicated scan-in and scan-out connections.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

926

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 24: Using DFTMAX Ultra Compression
Top-Down Insertion Compressed Scan Flow With Partitions

Feedback

Figure 428 Top-Down Insertion Flow With Partitions and Dedicated Scan Data Connections

This is the default method for scan data connections. If you do not explicitly define scan
data signals with the set_dft_signal command, dedicated scan data signals are created
as needed for each partition.

Using Serial Scan Data Connections Between Partitions
When creating DFT partitions, serial scan data connections between the partition
codecs are created by defining the scan data DFT signals with the define_dft_signal
-partition all command. In Example 154, global scan-in and scan-out signals are
created for all DFT partitions.

Example 155 Script for Top-Down Insertion Flow With Partitions and Serial Scan Data
Connections

enable streaming compression in global configuration
(before any DFT partitions are defined)
set_dft_configuration -streaming_compression enable

set_dft_signal -port SI1 -type ScanDataIn -partition all
set_dft_signal -port SO1 -type ScanDataOut -partition all

Synopsys® TestMAX™ DFT User Guide
T-2022.03

927

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 24: Using DFTMAX Ultra Compression
Top-Down Insertion Compressed Scan Flow With Partitions

Feedback

define and configure a user-defined DFT partition
define_dft_partition my_part -include {...}
current_dft_partition my_part
set_scan_configuration -chain_count 1
set_streaming_compression_configuration -chain_count 4

define and configure the default DFT partition
current_dft_partition default_partition
set_scan_configuration -chain_count 1
set_streaming_compression_configuration -chain_count 4

The script in Example 155 results in the scan data connections shown in Figure 429. The
partition codecs are connected using serial scan data connections.

Figure 429 Top-Down Insertion Flow With Partitions and Serial Scan Data Connections

All static control shift registers are stitched into the scan chain first, followed by all dynamic
input data shift registers. This ensures that all control register bits are shifted in last. The
output shift registers are stitched together, with the second and subsequent output shift
registers incorporating the output of the previous register into their XOR shift chain.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

928

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 24: Using DFTMAX Ultra Compression
Top-Down Insertion Compressed Scan Flow With Partitions

Feedback

This connection method has the following requirements:

• You must use only one scan-in and one scan-out signal. You cannot use multiple scan-
in or scan-out signals.

• You must explicitly define the scan data signals with the set_dft_signal -partition
all command. You cannot use this connection method with automatically created scan
data signals.

Per-Partition Streaming Configuration Commands
This topic lists the commands you can use to configure DFTMAX Ultra streaming
compression on a per-partition basis. Streaming compression commands and options not
listed in this section should be applied as part of the global DFT configuration settings.

See Also

• Per-Partition Scan Configuration Commands on page 287 for the per-partition
commands that are not specific to the streaming compression flow.

set_streaming_compression_configuration
The following set_streaming_compression_configuration options can be specified on
a per-partition basis:

• -inputs

• -outputs

• -compressed_max_length

• -max_length

• -chain_count

• -clock

• -min_power

• -shift_power_chain_length

• -shift_power_chain_ratio

• -shift_power_clock

• -shift_power_disable

Synopsys® TestMAX™ DFT User Guide
T-2022.03

929

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 24: Using DFTMAX Ultra Compression
The Multiple-Input, Multiple-Output Codec Architecture

Feedback

set_dft_signal
The following set_dft_signal options can be specified on a per-partition basis:

• -type ScanEnable -usage streaming_codec
Note:

The streaming_codec usage is the only scan-enable usage that supports
per-partition specification. Do not include other usages when defining per-
partition scan-enable signals.

The Multiple-Input, Multiple-Output Codec Architecture
The multiple-input, multiple-output codec architecture uses multiple scan data signals for a
single codec to increase the scan data shifting throughput.

To implement this architecture, specify a standard chain count value larger than one. For
example,

use two scan-ins/scan-outs in standard scan and compressed scan modes
set_scan_configuration -chain_count 2

create four compressed scan chains
set_streaming_compression_configuration -chain_count 4

This creates two scan chains in standard scan mode, but it also provides two scan-in and
scan-out signals in the compressed scan mode. The tool splits the codec input and output
shift registers across the available scan-ins and scan-outs, as shown in Figure 430.

Figure 430 The Multiple-Input, Multiple-Output Codec Architecture

Synopsys® TestMAX™ DFT User Guide
T-2022.03

930

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 24: Using DFTMAX Ultra Compression
DFTMAX Ultra Compression and Multiple Test Modes

Feedback

If you want to specify a different number of scan connections for standard scan
mode and compressed scan, use the -inputs and -outputs options of the
set_streaming_compression_configuration command to specify the number of scan
connections in compressed scan mode:

use eight scan-ins/scan-outs in standard scan mode
set_scan_configuration -chain_count 8

use two scan-ins/scan-outs in compressed scan mode
set_streaming_compression_configuration \
 -inputs 2 -outputs 2 -chain_count 4

You can use the multiple-input, multiple-output architecture with DFT partitions. Apply the
scan configuration commands within each partition definition.

See Also

• Multiple-Input, Multiple-Output Architecture on page 913 for more information about this
architecture

• DFT Synthesis Limitations on page 972 for a list of requirements and limitations of
this architecture

DFTMAX Ultra Compression and Multiple Test Modes
modesscan modesYou invoke DFTMAX Ultra compression by setting the DFT configuration to scan
compression and specifying the streaming scan compression configuration:

set_dft_configuration -streaming_compression enable
set_streaming_compression_configuration ...

When you insert DFTMAX Ultra compressed scan into your design, the tool creates two
test modes by default:

• A standard scan mode

The default name for this test mode is Internal_scan.

• A DFTMAX Ultra compressed scan mode

The default name for this test mode is ScanCompression_mode.

Just as you can create multiple standard scan modes with standard scan, you can also
create multiple compressed scan modes with DFTMAX Ultra compression. This capability
uses the same multiple test-mode creation, configuration, and reporting commands as
used with multiple standard scan modes.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

931

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 24: Using DFTMAX Ultra Compression
DFTMAX Ultra Compression and Multiple Test Modes

Feedback

Usage of multiple compressed scan modes is described in the following topics:

• Defining Multiple DFTMAX Ultra Compressed Scan Modes

• Mixing DFTMAX and DFTMAX Ultra Compression Modes

• Per-Test-Mode Streaming Configuration Options

See Also

• Multiple Test Modes on page 355 for more information about defining multiple test
modes

Defining Multiple DFTMAX Ultra Compressed Scan Modes
You can define user-defined test modes with the define_test_mode command. Define
streaming compression modes with the streaming_compression usage. For example,

dc_shell> define_test_mode COMP -usage streaming_compression
Note:

For backward compatibility, you can also define streaming compression modes
with the scan_compression usage, but only if no DFTMAX compression modes
also exist in the design. This behavior will be obsoleted in a future release.

modesmultiple scan modesscan modesmultipleYou can define and use more than one compressed scan mode for a device. For example,
you might create one compressed scan mode to use for wafer sort testing and another for
class testing of finished devices. When you define multiple compressed scan modes, the
tool creates circuitry to support all such modes in the device.

TestMAX ATPG can select the testing mode by forcing one or more control inputs to
specified values. Example 156 shows a script that defines two compressed scan modes
and one standard scan mode, together with the encoding to select the three test modes.

Example 156 Defining Two Compressed Scan Modes and One Standard Scan Mode
set_dft_configuration -streaming_compression enable

set_dft_signal -type TestMode -port {TM0 TM1}
set_dft_signal -port SI -type ScanDataIn
set_dft_signal -port SO -type ScanDataOut
set_dft_signal -view spec -port SE -type ScanEnable

define_test_mode SCAN -usage scan \
 -encoding {TM0 1 TM1 1}
define_test_mode COMP1 -usage streaming_compression \
 -encoding {TM0 0 TM1 1}
define_test_mode COMP2 -usage streaming_compression \
 -encoding {TM0 1 TM1 0}

Synopsys® TestMAX™ DFT User Guide
T-2022.03

932

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 24: Using DFTMAX Ultra Compression
DFTMAX Ultra Compression and Multiple Test Modes

Feedback

set_scan_configuration -test_mode SCAN -chain_count 1

set_streaming_compression_configuration \
 -test_mode COMP1 -base_mode SCAN \
 -chain_count 80

set_streaming_compression_configuration \
 -test_mode COMP2 -base_mode SCAN \
 -chain_count 40

Subsequent commands in the DFT synthesis flow use the -test_mode option to specify
the test mode to which the command applies. For example,

set_streaming_compression_configuration -test_mode COMP1 ...
set_streaming_compression_configuration -test_mode COMP2 ...
set_scan_path -test_mode COMP1 ...
set_scan_path -test_mode COMP2 ...

For information on how to order global and mode-specific configuration commands in
your scripts, see Recommended Ordering of Global and Mode-Specific Commands on
page 363.

In a hierarchical design, each lower-level block can itself have multiple test modes defined.
By default, all combinations of lower-level test modes blocks are selected from the top
level. However, if only certain combinations of lower-level test modes are needed, you can
specify which combinations of lower-level test modes are selected from the top level.

See Also

• Using Multiple Test Modes in Hierarchical Flows on page 969 for more information
about defining multiple test modes in hierarchical DFTMAX Ultra flows

Mixing DFTMAX and DFTMAX Ultra Compression Modes
You can mix DFTMAX and DFTMAX Ultra compression modes in the same design.
However, note the following requirements:

• Both compression types cannot be active in the same test mode.

• User-defined DFTMAX Ultra test modes must be defined with the
streaming_compression usage so that the tool can differentiate them from DFTMAX
test modes defined with the scan_compression usage.

Example 157 shows a top-down insertion (TDI) flow that configures three compression
modes: a standard scan mode, a DFTMAX compression mode, and a DFTMAX Ultra
compression mode.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

933

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 24: Using DFTMAX Ultra Compression
DFTMAX Ultra Compression and Multiple Test Modes

Feedback

Example 157 Script Example With DFTMAX and DFTMAX Ultra Compression
enable the DFTMAX and DFTMAX Ultra compression clients
set_dft_configuration \
 -scan_compression enable \
 -streaming_compression enable

apply global DFT configuration
set_dft_signal -view existing_dft -type ScanClock \
 -port CLK -timing {45 55}
set_dft_signal -view spec -type ScanEnable -port SE
set_scan_configuration -clock_mixing mix_clocks

define the test modes
define_test_mode SCAN -usage scan
define_test_mode DFTMAX -usage scan_compression
define_test_mode DFTMAX_ULTRA -usage streaming_compression ;# note usage

configure each test mode
set_scan_configuration -test_mode SCAN -chain_count 4
set_scan_compression_configuration \
 -test_mode DFTMAX -base_mode SCAN \
 -chain_count 20
set_streaming_compression_configuration \
 -test_mode DFTMAX_ULTRA -base_mode SCAN \
 -chain_count 80

For information on integrating cores with DFTMAX and DFTMAX Ultra compression
modes, see Mixing DFTMAX and DFTMAX Ultra Compression Core Modes.

Per-Test-Mode Streaming Configuration Options
The following set_streaming_compression_configuration options can be applied to
specific test modes:

• -inputs

• -outputs

• -compressed_max_length

• -max_length

• -chain_count

• -base_mode

• -clock

• -min_power

• -shift_power_chain_length

Synopsys® TestMAX™ DFT User Guide
T-2022.03

934

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 24: Using DFTMAX Ultra Compression
Using OCC Controllers With DFTMAX Ultra Compression

Feedback

• -shift_power_chain_ratio

• -shift_power_clock

• -shift_power_disable

Note:
Although the set_streaming_compression_configuration command applies
to the current test mode by default, the -test_mode option is typically used
together with the -base_mode option so that the relationship between the test
mode and base mode is explicitly highlighted.

Using OCC Controllers With DFTMAX Ultra Compression
The following topics describe how to use OCC controllers with DFTMAX Ultra
compression:

• Creating External Clock Chains

• Creating Compressed Clock Chains

• OCC Controllers and Streaming Codec Scan-Enable Constraints

See Also

• DFTMAX Ultra Architectures for On-Chip Clocking (OCC) on page 915 for architecture
details

Creating External Clock Chains
By default, DFTMAX Ultra compression creates external clock chains so that the control
bits are directly controllable without conflict by ATPG. Figure 431 shows an external clock
chain structure for two core-level OCC controllers and a top-level OCC controller.

Figure 431 External Clock Chain in a DFTMAX Ultra Design

Clock chain

OCC
controller

Clock chain

OCC
controller

Clock chain

OCC
controller

Synopsys® TestMAX™ DFT User Guide
T-2022.03

935

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 24: Using DFTMAX Ultra Compression
Using OCC Controllers With DFTMAX Ultra Compression

Feedback

In a DFTMAX Ultra design, DFT-inserted external clock chains are clocked by the rising
clock edge. User-defined clock chains can be clocked by the rising or falling edge.

You can create external clock chains automatically or manually, as described in the
following topics:

• Automatically Creating External Clock Chains

• Manually Specifying External Clock Chains

Automatically Creating External Clock Chains
By default, DFTMAX Ultra builds a single external (uncompressed) clock chain for all
available core-level and top-level clock chains. The tool uses existing scan-in and scan-out
signals, creating new signals as needed.

For top-level user-defined OCC controllers, define the existing clock chain segments with
the set_scan_group command; the tool automatically includes these segments in its clock
chain.

Note the following:

• To build multiple clock chains, you must manually specify the external clock chains.

• Automatic creation of external clock chains applies to all test modes created for the
design, not just DFTMAX Ultra compression modes.

If you have DFTMAX-only cores with compressed clock chains, the tool does not include
these compressed clock chains in the automatically created external clock chain. These
compressed clock chains operate normally when the core is active in its DFTMAX mode.

Manually Specifying External Clock Chains
To manually define the complete external clock chain for special cases, you can use the
set_scan_path command with the -class occ option. This method allows you to use
specific scan-in and scan-out signals for the clock chain. It also allows you to concatenate
multiple clock chains in a specific order.

For example,

set_dft_signal -view spec -type ScanDataIn -port OCC_SI
set_dft_signal -view spec -type ScanDataOut -port OCC_SO
set_scan_path \
 MY_clock_chain -class occ \
 -include_elements {\
 snps_clk_chain_2/clock_chain \
 CORE1/clock_chain_name \
 CORE2/clock_chain_name} \
 -complete true \
 -scan_data_in OCC_SI -scan_data_out OCC_SO \
 -test_mode all

Synopsys® TestMAX™ DFT User Guide
T-2022.03

936

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 24: Using DFTMAX Ultra Compression
Using OCC Controllers With DFTMAX Ultra Compression

Feedback

For details on defining external clock chains, see Defining External Clock Chains on
page 681.

Budgeting Scan I/Os and External Clock Chains
When you use OCC controllers in a DFTMAX Ultra flow, the tool does not include external
clock chains in the set_scan_configuration -chain_count value. Figure 432 shows an
example.

Figure 432 External Clock Chain Excluded From set_scan_configuration -chain_count Value

Clock chain

OCC
controller

Clock chain

OCC
controller

Clock chain

OCC
controller

set_scan_configuration -chain_count 3

Note the following:

• This behavior is different than non-DFTMAX Ultra flows, which include the clock chains
in the value.

• This behavior affects all test modes created for the design, not just the DFTMAX Ultra
compression modes.

Creating Compressed Clock Chains
You can optionally configure the tool to implement compressed (decompressor-driven)
clock chains. Figure 433 shows compressed clock chain structures for two core-level OCC
controllers and a top-level OCC controller.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

937

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 24: Using DFTMAX Ultra Compression
Using OCC Controllers With DFTMAX Ultra Compression

Feedback

Figure 433 Compressed Clock Chains in a DFTMAX Ultra Design

Clock chain

OCC
controller

Clock chain

OCC
controller

Clock chain

OCC
controller

To implement a compressed clock chain, specify the following option when configuring the
codec:

dc_shell> set_streaming_compression_configuration \
 -external_clock_chain false
In addition, you must also provide at least two codec scan inputs:

dc_shell> set_streaming_compression_configuration -inputs 2 ;# or more
There is no requirement for the number of scan outputs.

Additional limitations apply when using compressed clock chains in DFTMAX Ultra
designs. See Chapter 26, DFTMAX Ultra Limitations and Known Issues.”

See Also

• Compressed Clock Chain on page 916 for architecture details

OCC Controllers and Streaming Codec Scan-Enable Constraints
For proper operation, scan-enable signals that drive streaming codecs must be de-
asserted during capture.

In a DFTMAX Ultra design without OCC controllers, the tool creates a test protocol that
constrains only streaming codec scan-enable signals, as described in Scan-Enable Signal
Requirements for Codec Operation on page 913.

OCC controllers also require that their scan-enable signals be de-asserted during capture.
When OCC controllers are present in a DFTMAX Ultra design, the tool constrains all scan-
enable signals except those defined with a usage of clock_gating, as described in Scan-
Enable Signal Requirements for OCC Controller Operation on page 522.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

938

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 24: Using DFTMAX Ultra Compression
Reducing Power Consumption in DFTMAX Ultra Designs

Feedback

Reducing Power Consumption in DFTMAX Ultra Designs
You can reduce the power consumption of designs with streaming compression by using
the following features:

• Reducing Compressor Power When Codec Is Inactive

• Reducing Scan Shift Power Using Shift Power Groups

Reducing Compressor Power When Codec Is Inactive
In a streaming compression architecture, an XOR compression tree combines the shift
outputs from all compressed chains into a reduced set of scan data that is captured by
the output register. This XOR compression tree is needed only during scan shifting in that
codec’s compressed scan mode. At other times, the compression logic is not needed,
but it will still toggle when the tail scan flip-flops of the compressed chains toggle. This
is a particular concern during mission mode, when the flip-flops are clocked at their full
operating frequency.

To address this, the tool can insert logic that enables the streaming compressor only when
needed, as shown in Figure 434.

Figure 434 Example of a Streaming Compressor With Compressor Gating

test_so1
RN

Output
shift register

Input
shift registertest_si1

GN

Control bits Data bits

Latched control bits

Decompression MUX

XOR compression tree

test_se

test_mode

DFTMAX Ultra decompressor

DFTMAX Ultra compressor

Compressor
control signal

gating

Synopsys® TestMAX™ DFT User Guide
T-2022.03

939

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 24: Using DFTMAX Ultra Compression
Reducing Power Consumption in DFTMAX Ultra Designs

Feedback

The control register signals to the compressor are enabled only when the codec shifts data
in its test mode. At all other times, the control signals are held at logic 0, which causes the
X-blocking logic in the compressor to block the toggle activity of the tail scan cells from
propagating into the compressor logic.

To enable compressor XOR gating, specify the following option:

dc_shell> set_streaming_compression_configuration -min_power true
When enabled, this feature adds one AND gate for each compressor control signal (but
not the decompressor control signals).

Reducing Scan Shift Power Using Shift Power Groups
You can use shift power groups to reduce power consumption during scan shift. This
feature is described in the following topics:

• The Shift Power Groups Architecture

• Configuring Shift Power Groups

• Integrating Cores With Shift Power Groups in Hierarchical Flows

• Configuring Shift Power Groups in TestMAX ATPG

• Using Shift Power Groups With Other DFT Features

• Limitations of Shift Power Groups

The Shift Power Groups Architecture
During scan shift, there is significant toggle activity in the scan chains. At high scan shift
frequencies, this can result in higher-than-desired shift power consumption.

The shift power groups feature helps reduce power consumption during scan shift
in DFTMAX Ultra compressed scan modes. This feature inserts AND gates at the
decompressor outputs before each compressed scan chain. The chains are gated in
groups that are controlled by a shift power control (SPC) chain, as shown in Figure 435.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

940

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 24: Using DFTMAX Ultra Compression
Reducing Power Consumption in DFTMAX Ultra Designs

Feedback

Figure 435 Shift Power Groups Decompressor Architecture

Decompressor (with shift power gating)

G
N

Shift power
control chain

Latched
shift power
control bits

gsel[*]

test_se

N

(Control chain scan-out)

(Control chain scan-in)

(Compressed scan chains)

CLK

Input
shift register

test_si1

GN

Control bits Data bits

DFTMAX Ultra decompressor

The SPC chain is not part of the control chain. Instead, it is an external (uncompressed)
chain outside the DFTMAX Ultra codec. When scan-in completes, the SPC registers
contain the group mask values for the next pattern. The de-asserted scan-enable signal,
test_se, latches these bits into shadow latches that retain the mask values for scan-in of
the next pattern.

TestMAX ATPG configures the group masking in each pattern, depending on the power
constraints and the number of care bits in each chain group. The larger number of short
chains inherent to scan compression provide finer granularity for this control. Masked
groups load constant values into their chains, which reduces overall toggle activity.

SPC chains cannot be compressed because a compressed SPC chain would gate itself,
preventing it from reliably loading in each pattern.

The shift power logic also includes a hardware disable signal that, when asserted, disables
the shift power logic by enabling all compressed chains, as shown in Figure 436. This
signal must be de-asserted or asserted prior to DRC, depending on whether the shift
power groups feature is enabled in TestMAX ATPG or not, respectively.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

941

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 24: Using DFTMAX Ultra Compression
Reducing Power Consumption in DFTMAX Ultra Designs

Feedback

Figure 436 Shift Power Disabling Logic

G
N

Shift power
control chain

Latched
shift power
control bits

gsel[*]

test_se

N

CLK

N

SPC_disable

Disable
gating

Configuring Shift Power Groups
To configure the shift power groups feature, do the following:

1. Enable the shift power groups feature.

dc_shell> set_streaming_compression_configuration \
 -shift_power_groups true

2. Specify the configuration of the compressed chain groups.

• To directly specify the number of compressed chain groups, and therefore the
length of the SPC chain, use the -shift_power_chain_length option:

dc_shell> set_streaming_compression_configuration \
 -shift_power_chain_length 16

• To specify the number of compressed chains in each group, which makes
the SPC chain length a function of the compressed chain count, use the
-shift_power_chain_ratio option:

dc_shell> set_streaming_compression_configuration \
 -shift_power_chain_ratio 12

These options are mutually exclusive.

The default is to include three compressed chains in each group, while still limiting the
SPC chain length to the maximum chain length in the design.

3. Define the shift power groups disable signal.

dc_shell> set_dft_signal -view spec -type TestControl \
 -port SPC_DISABLE

dc_shell> set_streaming_compression_configuration \
 -shift_power_disable SPC_DISABLE

Synopsys® TestMAX™ DFT User Guide
T-2022.03

942

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 24: Using DFTMAX Ultra Compression
Reducing Power Consumption in DFTMAX Ultra Designs

Feedback

You can define the disable signal using the -port and/or -hookup_pin options of
the set_dft_signal command. For an “internal pins” hookup pin, you must use a
test_setup protocol that de-asserts the disable signal.

4. Configure the shift power control chain.

• If no OCC controllers (DFT-inserted or user-defined) are configured in the current
design, you must configure an external SPC chain.

Specify the scan-in and scan-out signals to use for the SPC chain:

dc_shell> set_scan_path SPC -class spc \
 -scan_data_in SPC_IN \
 -scan_data_out SPC_OUT \
 -test_mode all
You do not need to specify SPC scan path elements; the SPC chain is automatically
included in the specification.

• If OCC controllers (DFT-inserted or user-defined) are configured in the current
design, you must explicitly configure an external clock chain:

dc_shell> set_scan_path OCC -class occ \
 -scan_data_in OCC_IN \
 -scan_data_out OCC_OUT \
 -test_mode all ;# includes the SPC chain too
You cannot use the default tool-created external clock chain when using SPC.

By default, the tool automatically includes the SPC chain in the clock chain. It is
clocked by the ATE clock unless specified otherwise with the -shift_power_clock
option of the set_streaming_compression_configuration command.

Alternately, you can explicitly define a separate external SPC chain as previously
described, which provides independent access to the OCC and SPC chains when
the core is integrated.

5. (Optional) Configure the shift power clock.

To specify a particular clock for the SPC chain, use the -shift_power_clock option:

dc_shell> set_streaming_compression_configuration \
 -shift_power_clock CLK
The default is to use the ATE clock in OCC flows and the decompressor clock in non-
OCC flows.

Integrating Cores With Shift Power Groups in Hierarchical Flows
This topic describes how to integrate cores with shift power groups.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

943

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 24: Using DFTMAX Ultra Compression
Reducing Power Consumption in DFTMAX Ultra Designs

Feedback

Configuring the Control Chain for Shift Power Groups Cores

When you integrate cores that use shift power groups, you must define a top-level external
control chain that includes all core-level and top-level clock chains and/or SPC chains, as
shown in Figure 437.

Figure 437 External Control Chain in a Shift Power Groups Design

Clock chain
OCC

controller

SPC chain

Clock chain
OCC

controller

SPC chain

SPC chain

Use the set_scan_path command to define the top-level external control chain as follows:

• If any core-level or top-level clock chains exist or will be inserted, then define the
external chain using the -class occ option.

• If only core-level or top-level SPC chains exist or will be inserted, then define the
external chain using the -class spc option.

• All core-level clock chains and SPC chains must be explicitly included in the
specification using the -include_elements option. They are not automatically
included.

• All top-level clock chains must be explicitly included in the specification using the
-include_elements option. They are not automatically included.

• Top-level SPC chains are automatically included in the external chain.

The following example includes core-level clock chains and SPC chains along with top-
level clock chains and SPC chains:

set_scan_path clock_chain -class occ \
 -include_elements { \
 core1/SPC \
 core2/SPC \
 coreOCC1/OCC \
 coreOCC2/OCC \
 snps_clk_chain_2/clock_chain} \
 -complete true \
 -scan_data_in OCC_SI \
 -scan_data_out OCC_SO \
 -test_mode all
(the top-level SPC chain is automatically included)

Synopsys® TestMAX™ DFT User Guide
T-2022.03

944

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 24: Using DFTMAX Ultra Compression
Reducing Power Consumption in DFTMAX Ultra Designs

Feedback

If you concatenate external control chains from pipelined cores, those cores must be
created with beginning and ending retiming registers to avoid edge-related concatenation
issues at the top level. See the retiming register information in Using Shift Power Groups
With Other DFT Features on page 946.

Connecting Core-Level Shift Power Disable Signals

When integrating cores that contain shift power groups, you must manually connect core-
level shift power disable signals to a top-level disable signal.

You can use one of the following methods:

• Include preexisting connections to the cores in your top-level RTL.

• Use ECO commands, such as disconnect_net and connect_pin, to make the
connections to the cores.

You can share a single disable signal or use multiple disable signals.

All shift power disable signals must be de-asserted (set to logic 0) to enable the shift
power logic. The DFT-created disable signal for a top-level codec is already de-asserted
in the SPF. Additional disable signals must be manually de-asserted by defining constant
signals on them. For example,

dc_shell> set_dft_signal -view existing_dft -type Constant \
 -port SPC_CORE_DISABLE* -active_state 0
Configuring Shift Power Groups for a Top-Level Codec

If you are implementing a top-level codec, you must configure shift power groups for that
codec using the pertinent options of the set_streaming_compression_configuration
command. For more information, see Configuring Shift Power Groups on page 942.

Configuring Shift Power Groups in TestMAX ATPG
Use the following commands in TestMAX ATPG to configure ATPG use of the shift power
groups hardware:

DRC_T> set_drc -spc_chain SPC_chain_name
DRC_T> set_atpg -shift_controller_peak probability_value
SPC_chain_name is the name of the scan path that contains the SPC chain.
probability_value is the maximum percentage of scan cells that can switch in a shift cycle.
TestMAX ATPG rejects patterns that exceed this switching percentage.

The STIL protocol file (SPF) created by the TestMAX DFT tool enables shift power groups
by default. When enabled, you must configure the feature with the preceding commands,
otherwise the compressed scan chains will fail DRC due to chain blockages.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

945

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 24: Using DFTMAX Ultra Compression
Reducing Power Consumption in DFTMAX Ultra Designs

Feedback

Alternatively, you can assert the shift power disable signal, in which case the DFTMAX
Ultra codec degenerates to a non-shift-power codec and no shift power configuration
commands are needed.

Using Shift Power Groups With Other DFT Features
The shift power groups feature interacts with other DFT features as follows:

• Multiple test modes

You can use shift power groups with multiple test modes, including multiple
DFTMAX Ultra compression modes. Configure the SPC chain in each DFTMAX
Ultra compression mode. See Per-Test-Mode Streaming Configuration Options on
page 934 for supported options.

The control chain must be external only in DFTMAX Ultra compression modes. You
can use the -test_mode option of the set_scan_path specification to limit the external
chain specification to those modes (instead of all); the control chains are incorporated
into regular scan chains in other modes.

If shift power groups are used, they must be used in all DFTMAX Ultra test modes. You
cannot mix codecs with and without shift power groups across test modes.

• DFT partitions

You can use shift power groups with DFT partitions. Configure the SPC chain in
each partition that contains a DFTMAX Ultra codec. See Per-Partition Streaming
Configuration Commands on page 929 for supported options.

Although SPC chains can be created for multiple partitions, they are all stitched into the
single external control chain specified by the set_scan_path command.

If shift power groups are used, they must be used in all partitions that contain a
DFTMAX Ultra codec. You cannot mix codecs with and without shift power groups
across partitions.

• Retiming registers

When you enable beginning and/or ending retiming registers, SPC chains are clocked
on the leading clock edge instead of the trailing clock edge. This facilitates control
chain concatenation at the top level. See Retiming Scan-Ins and Scan-Outs to the
Leading Clock Edge on page 209.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

946

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 24: Using DFTMAX Ultra Compression
Reducing Power Consumption in DFTMAX Ultra Designs

Feedback

Limitations of Shift Power Groups
Shift power groups have the following limitations:

• This feature applies only to the compressed scan chains it is configured for. Standard
scan modes are unaffected.

• When shift power groups are used, they must be used

◦ In all DFTMAX Ultra test modes

◦ In all codecs in the design (across both cores and DFT partitions)

You cannot mix DFTMAX Ultra codecs with and without shift power groups within the
same design.

• The shift power control (SPC) chain must be an external (uncompressed) chain that
you explicitly define using the set_scan_path command.

• When integrating cores that contains shift power groups, you must manually connect
the core-level shift power disable signal to a top-level shift power disable signal.

• The report_scan_path command does not report SPC chain information.

In TestMAX Diagnosis, the following requirements apply:

• Diagnosis capability is limited. High-resolution diagnostics are not supported when shift
power groups are used. Assert the shift power disable signal to generate patterns for
high-resolution diagnostics.

In TestMAX ATPG, the following tasks are not supported when using shift power groups:

• Analyzing X effects or X sources performed during a TestMAX ATPG simulation

• Comparing simulation results from a VCD simulation file, the internal patterns from the
fast-sequential simulator, or the internal patterns from the full-sequential simulator

• Reporting total (cumulative) power data with the report_power command after
multiple incremental ATPG runs

• Saving patterns and fault lists to files at a specified checkpoint interval during ATPG
pattern generation

• Saving a GZIP-compressed parallel pattern set that can be simulated during the ATPG
process

• Assigning ATPG constraints during an IDDQ measure strobe when the IDDQ fault
model is selected

Synopsys® TestMAX™ DFT User Guide
T-2022.03

947

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 24: Using DFTMAX Ultra Compression
Planning, Previewing, and Inserting DFTMAX Ultra Compression

Feedback

Planning, Previewing, and Inserting DFTMAX Ultra Compression
The following topics describe how to plan, preview, and insert DFTMAX Ultra compression
in your design:

• Planning the Streaming DFT Architecture

• Previewing and Inserting DFT Logic

• Writing Out Test Protocols for TestMAX ATPG

Planning the Streaming DFT Architecture
As you configure the streaming DFT architecture, you can use the streaming DFT planner
to visualize the currently configured architecture:

streaming_dft_planner [-show flow | elements | all]

The flow report (the default) focuses on the overall DFT architecture structure, scan chain
lengths, and compression ratios. The elements report focuses on the elements within the
scan chains, such as clock and polarity information, lock-up latches, retiming registers,
and test clock waveform information.

The output is ASCII so you can capture it in log files. You can modify the DFT
configuration and rerun the streaming_dft_planner command as many times as needed
until you are satisfied with the architecture.

The following topics provide more information about the streaming DFT planner:

• DFT Planner Flow Report

• DFT Planner Elements Report

• DFT Planner Limitations

See Also

• SolvNet article 2150838, “Understanding the Streaming DFT Planner Report for more
information on the conventions and information fields shown in the DFT planner report

DFT Planner Flow Report
The DFT planner flow report focuses on scan chain lengths and compression ratios. This
report summarizes the DFT architecture. It is useful for length-balancing multiple codecs.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

948

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnet.synopsys.com/retrieve/2150838.html

Chapter 24: Using DFTMAX Ultra Compression
Planning, Previewing, and Inserting DFTMAX Ultra Compression

Feedback

The flow report shows many DFT architecture details, including

• Scan chain counts and lengths, including external chains

• Codec clock, scan-enable, scan-in, and scan-out signal information

• Codec input and output shift register lengths

• Pipeline stages (core-level and top-level)

• Clock chains (core-level and top-level)

• DFT partitions

• The contents of streaming compression cores, including external chains

• The total shift latency of the design architecture

• The streaming compression overhead for each codec

• The streaming compression overhead of the codec that determines the maximum total
shift latency

• The overall input and output target compression of the design architecture

To generate a flow report, use the following command:

dc_shell> streaming_dft_planner -show {flow}
The flow report is the default report type, so you can omit the -show option.

Example 158 shows the planner flow report for a streaming compression core and a top-
level codec.

Example 158 DFT Planner Flow Report Example
Information: Detected compressed scan core(s): core (TEST-1463)
Information: Detected scanned or scannable logic. (TEST-1462)
Information: Inferring the mixed scan insertion and core integration (MII) flow
(TEST-1438)
 Information: Using test design rule information from previous dft_drc run.
Architecting Scan Compression structures
Integrating Streaming Decompressor core/U_deserializer_ScanCompression_mode
 Number of inputs = 2
 Maximum size per input = 8
 Decompressor Clock = CLK
Integrating Streaming Compressor core/U_serializer_ScanCompression_mode
 Number of outputs = 2
 Maximum size per output = 4
 Compressor Clock = CLK
 Architecting Scan Chains
Architecting Pipeline Structures
Information: For incremental pipeline balancing, 0 head stages will be inserted at the
top, along with 1 existing head stages in core core. (TEST-1433)
Information: For incremental pipeline balancing, 0 tail stages will be inserted at the
top, along with 1 existing tail stages in core core. (TEST-1434)
 Number of Head Pipeline Stages = 1
 Number of Tail Pipeline Stages = 1

Synopsys® TestMAX™ DFT User Guide
T-2022.03

949

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 24: Using DFTMAX Ultra Compression
Planning, Previewing, and Inserting DFTMAX Ultra Compression

Feedback

Architecting scan compression mode ScanCompression_mode with base mode Internal_scan
Architecting Streaming Decompressor
 Number of inputs = 1
 Maximum size per input = 6
 Decompressor Clock = ATECLK
Architecting Streaming Compressor
 Number of outputs = 1
 Maximum size per output = 6
 Compressor Clock = ATECLK
Architecting Load Decompressor (version 5.8)
 Number of inputs/chains/internal modes = 13/6/2
Architecting Unload compressor (version 5.8)
 Number of outputs/chains = 6/6
 Information: Compressor will have 100% x-tolerance

 Running Streaming Compression DFT Planner (version 1.0)
==

 Compression DFT Flow for test mode: ScanCompression_mode
 ==

 __
 | design top |
 | |
 | OCC chain |
SI1|---1P------>---------1-----[o]------------------------2---------------1P--->|SO1
 | |
 | __ |
	top-level logic: 6 chains, 128 cells, DIDO			
	chains/channels I(O):6.0(6.0), codec/chain=60%			
	__ __			
	/	-1-----[][][][][][][][][]--------22-	\	
	/	-2-----[][][][][][][][][]--------22-	\	
	_/	-3-----[][][][][][][][]----------21-	_	
		_		...
		_	13	
		_		
SI4	---1P---	-->	_	ATECLK(45,55)
	\test_se	/		
	\	-5-----[][][][][][][][]----------21-	/	
	__	-6-----[][][][][][][][]----------21-	__/	
	__			
__				
	cell core (CTL model: ScanCompression_mode)			
	..			
__.....			
	core: 8 chains, 256 cells, DIDO	
	chains/channels I(O):4.0(4.0), codec/chain=25%	
	__ __	
	/	-core_1-[...........s..........]-32-	\
	/	-core_2-[...........s..........]-32-	\
	_/	-core_3-[...........s..........]-32-	_
		_	
SI2	----	-1P-	->	_
		_	
SI3	----	-1P-	->	_
	\test_se	/
	\	-core_7-[...........s..........]-32-	/
	__	-core_8-[...........s..........]-32-	__/
	
	__	
	..			
	__			

Synopsys® TestMAX™ DFT User Guide
T-2022.03

950

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 24: Using DFTMAX Ultra Compression
Planning, Previewing, and Inserting DFTMAX Ultra Compression

Feedback

 |__|

==

 Streaming Compression DFT Flow Information

DFT Flow: MII
Base scan mode: Internal_scan
Base scan mode chains: 4
Base scan mode maximum shift length: 129

Compression mode maximum shift length: 41
Codec with maximum shift length: core
Codec shift penalty (codec/chain): 25%
Target input compression: 3.15X (w.r.t. Internal_scan)
Target output compression: 3.15X (w.r.t. Internal_scan)

==

Note the following tips for effective use of the DFT planner flow report:

• The scan chains in the diagrams are sized relative to their length. This allows you to
adjust the architecture to balance the shift latency across codecs, cores, and external
chains to maximize ATPG efficiency.

• Use the report to adjust the architecture to not exceed a codec shift penalty of 30%.

DFT Planner Elements Report
The DFT planner elements report uses the same architectural structure as the flow report
for showing cores, top-level logic, and external scan chains. However, it also provides
more information about elements within the scan chains, such as

• Clock timing and waveforms

• OCC controllers

• Scan element clocks and edges

• Pipeline register clocks and edges

• Clock and edge mixing transitions within scan chains

• Lock-up latches

To generate an elements report, use the following command:

dc_shell> streaming_dft_planner -show {elements}
Example 159 shows the planner elements report for a streaming compression core and a
top-level codec.

Example 159 DFT Planner Elements Report Example
Information: Detected compressed scan core(s): core (TEST-1463)
Information: Detected scanned or scannable logic. (TEST-1462)

Synopsys® TestMAX™ DFT User Guide
T-2022.03

951

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 24: Using DFTMAX Ultra Compression
Planning, Previewing, and Inserting DFTMAX Ultra Compression

Feedback

Information: Inferring the mixed scan insertion and core integration (MII) flo
w
(TEST-1438)
 Information: Using test design rule information from previous dft_drc run.
Architecting Scan Compression structures
Integrating Streaming Decompressor core/U_deserializer_ScanCompression_mode
 Number of inputs = 2
 Maximum size per input = 8
 Decompressor Clock = CLK
Integrating Streaming Compressor core/U_serializer_ScanCompression_mode
 Number of outputs = 2
 Maximum size per output = 4
 Compressor Clock = CLK
 Architecting Scan Chains
Architecting Pipeline Structures
Information: For incremental pipeline balancing, 0 head stages will be inserte
d at the
top, along with 1 existing head stages in core core. (TEST-1433)
Information: For incremental pipeline balancing, 0 tail stages will be inserte
d at the
top, along with 1 existing tail stages in core core. (TEST-1434)
 Number of Head Pipeline Stages = 1
 Number of Tail Pipeline Stages = 1
Architecting scan compression mode ScanCompression_mode with base mode Interna
l_scan
Architecting Streaming Decompressor
 Number of inputs = 1
 Maximum size per input = 6
 Decompressor Clock = ATECLK
Architecting Streaming Compressor
 Number of outputs = 1
 Maximum size per output = 6
 Compressor Clock = ATECLK
Architecting Load Decompressor (version 5.8)
 Number of inputs/chains/internal modes = 13/6/2
Architecting Unload compressor (version 5.8)
 Number of outputs/chains = 6/6
 Information: Compressor will have 100% x-tolerance

 Running Streaming Compression DFT Planner (version 1.0)
==
====

 Compression DFT Elements for test mode: ScanCompression_mode
 ==

 Rising edge : r Falling edge : f Lockup latch : L
 Clocks : ATECLK, CLK2
 Pipeline clocks : CLK2(P1)
 Timing :
 _
 ATECLK(45,55) : ________| |_________
 _
 CLK2(45,55) : ________| |_________

 | design top
 |
 |
 |

Synopsys® TestMAX™ DFT User Guide
T-2022.03

952

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 24: Using DFTMAX Ultra Compression
Planning, Previewing, and Inserting DFTMAX Ultra Compression

Feedback

 | ____________
 |
ATECLK|---------->| OCC: MYOCC |--------------------->UPLL/CLKO
 |
 | |____________|
 |
 |
 |
 | OCC chain
 |
 SI1|-1P1(f)------>---------1--------UPLL/CLKO(r)-------2-------------L-1P1(
r)->|SO1
 | ___
 |
 | | top-level logic: 6 chains, 128 cells, DIDO |
 |
 | | __ __ |
 |
 | | / |-2--------UPLL/CLKO(r)------22-| \ |
 |
 | | / |-3--------UPLL/CLKO(r)------22-| \ |
 |
 | | _/ |-4--------UPLL/CLKO(r)------21-| _ |
 |
 | | |_| | ... | |_|--|-L-1P1(
r)->|SO4
 | | |_|13 | | 6|_| |
 |
 | | |_| | | |_| |
 |
 SI4|-1P1(f)-L--|->|_|ATECLK(f) ATECLK(r)|_| |
 |
 | | \test_se | / |
 |
 | | \ |-6--------UPLL/CLKO(r)------21-| / |
 |
 | | __|-7--------UPLL/CLKO(r)------21-|__/ |
 |
 | | |
 |
 | |___|
 |
 | ___
 |
 | | cell core (CTL model: ScanCompression_mode)|
 |
 | |...|
 |
 | |.....___.....|
 |
 | |....| core: 8 chains, 256 cells, DIDO |....|
 |
 | |....| __ __ |....|
 |
 | |....| / |-core_1---CLK2(r)---------------32-| \ |....|
 |
 | |....| / |-core_2---CLK2(r)---------------32-| \ |....|
 |
 | |....| _/ |-core_3---CLK2(r)---------------32-| _ |....|
 |

Synopsys® TestMAX™ DFT User Guide
T-2022.03

953

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 24: Using DFTMAX Ultra Compression
Planning, Previewing, and Inserting DFTMAX Ultra Compression

Feedback

 | |....| |_| | ... | |_|--|-1P-|
--->|SO2
 SI2|----|-1P-|->|_|8 | | 4|_| |....|
 |
 | |....| |_| | | |_|--|-1P-|
--->|SO3
 SI3|----|-1P-|->|_|CLK2(f) CLK(r)|_| |....|
 |
 | |....| \test_se | / |....|
 |
 | |....| \ |-core_7---CLK2(r)---------------32-| / |....|
 |
 | |....| __|-core_8---CLK2(r)---------------32-|__/ |....|
 |
 | |....| |....|
 |
 | |....|___|....|
 |
 | |...|
 |
 | |___|
 |
 |
 |
 |___
____|

==
====

 Streaming Compression DFT Elements Information

DFT Flow: MII
Base scan mode: Internal_scan

Clock with maximum number of flops: CLK2 (r, 256 FFs)
Clock with minimum number of flops: UPLL/CLKO (r, 128 FFs)
Total number of lockup latches: 3

==
====

Note the following tip for effective use of the DFT planner elements report:

• Scan elements clocked by OCC-controlled clocks show the fast clock names for
identification, but the scan architecture (such as ordering and lock-up latches) is
determined by the ATE clock.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

954

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 24: Using DFTMAX Ultra Compression
Planning, Previewing, and Inserting DFTMAX Ultra Compression

Feedback

DFT Planner Limitations
Note the following limitations of the DFT planner:

• When using OCC controllers,

◦ The top-level connections between core-level and top-level clock chain segments
are not shown.

◦ In the elements report, compressed scan chains (core-level or top-level) clocked by
an OCC controller inside a core show the top-level ATE clock name, not the OCC-
controlled clock name.

• When using streaming compressed scan cores,

◦ The codec clock name shown might be the core-level clock name instead of the
name of the top-level clock that reaches it.

◦ In the elements report, pipeline stages inside cores only show depth information,
not clock information.

◦ In the elements report, clock edge information for scan chains inside cores might be
incorrect.

◦ In the elements report, scan chains inside cores do not show full element details.

◦ In mixed insertion and integration (MII) flows, when external chains with pipeline
registers inside cores are included in a top-level external chain, the tail pipeline
depth might not be shown properly.

◦ All CTL-modeled cores must be created with the K-2015.06 release or later. Cores
created with earlier releases are not supported.

• In the elements report,

◦ The correct maximum chain length might not be shown.

◦ Warnings about invalid lock-up latch structures might be incorrect.

• Nested integration flows are not supported.

• Core wrapping is not supported.

• The internal pins flow is not supported.

• Other compression technologies, such as DFTMAX compression, are not supported.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

955

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 24: Using DFTMAX Ultra Compression
Planning, Previewing, and Inserting DFTMAX Ultra Compression

Feedback

Previewing and Inserting DFT Logic
After you complete your DFT configuration, you can use the preview_dft command
to review the scan architecture and test-mode signal details before scan insertion is
performed, as shown in Example 160.

Example 160 Output From the preview_dft Command for a Compressed Scan Configuration
**
Current mode: Internal_scan
**

Number of chains: 3
Scan methodology: full_scan
Scan style: multiplexed_flip_flop
Clock domain: mix_clocks

Scan chain '1' (test_si1 --> test_so1) contains 22 cells
 Active in modes: Internal_scan

Scan chain '2' (test_si2 --> test_so2) contains 21 cells
 Active in modes: Internal_scan

Scan chain '3' (test_si3 --> test_so3) contains 21 cells
 Active in modes: Internal_scan

**
Current mode: ScanCompression_mode
**

Number of chains: 8
Scan methodology: full_scan
Scan style: multiplexed_flip_flop
Clock domain: no_mix

Scan chain '1' contains 8 cells
 Active in modes: ScanCompression_mode

(...omitted...)

Scan chain '8' contains 8 cells
 Active in modes: ScanCompression_mode

================================
Test Mode Controller Information
================================

Test Mode Controller Ports

test_mode: test_mode

Test Mode Controller Index (MSB --> LSB)

Synopsys® TestMAX™ DFT User Guide
T-2022.03

956

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 24: Using DFTMAX Ultra Compression
Planning, Previewing, and Inserting DFTMAX Ultra Compression

Feedback

--
test_mode

Control signal value - Test Mode

0 Internal_scan - InternalTest
1 ScanCompression_mode - InternalTest

During scan insertion, the insert_dft command creates and instantiates two scan
compression designs: one for the compressorcompressor and one for the decompressordecompressor. By default,
the insert_dft command instantiates these blocks at the top level of the current design.
To insert the codec logic into a lower-level hierarchical block, use the set_dft_location
-include {CODEC} command. For more information, see the man page.

After DFT insertion, you can use the report_scan_path command to review the scan
chain structures that now exist in the standard scan and compressed scan modes:

dc_shell> report_scan_path -view existing_dft -test_mode all

See Also

• Chapter 14, Previewing, Inserting, and Checking DFT Logic for more information about
previewing and inserting DFT logic

Writing Out Test Protocols for TestMAX ATPG
You can write out test protocols for both test modes using the write_test_protocol
-test_mode command:

dc_shell> write_test_protocol -output scan.spf \
 -test_mode Internal_scan
dc_shell> write_test_protocol -output scancompress.spf \
 -test_mode ScanCompression_mode
TestMAX ATPG uses these protocol files, along with the design netlist, for pattern
generation.

For more information about running TestMAX ATPG on DFTMAX Ultra designs, see
“Using TestMAX ATPG and DFTMAX Ultra Compression” in TestMAX ATPG and TestMAX
Diagnosis Online Help.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

957

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 24: Using DFTMAX Ultra Compression
Library Cell Requirements for Codec Implementation

Feedback

Library Cell Requirements for Codec Implementation
The DFTMAX Ultra codec architecture requires that the target libraries have the following
cell types available for mapping when using the insert_dft command:

• Level-sensitive latch

• Flip-flop with asynchronous reset

If applied, the dont_use attribute prevents these cell types from being available for
mapping. This attribute might be present in the original library. More commonly, it is
applied by set_dont_use commands in the synthesis script to prevent particular cell types
from being used in the design.

Use the report_lib command to check for library cells that have the dont_use attribute
applied, indicated by the “u” attribute annotation. For example,

dc_shell> report_lib lsi_10k
...
 Attributes:
 Cell Attributes

...
 LD1 s, u
 LD2 s, u
 LD3 s, u
 LD4 s, u
...

Use the remove_attribute command to remove the dont_use attribute from any
required library cells before DFT insertion. For example,

dc_shell> remove_attribute lsi_10k/LD* dont_use
lsi_10k/LD1 lsi_10k/LD2 lsi_10k/LD3 lsi_10k/LD4
dc_shell> insert_dft
If needed, use the set_dont_use command to reapply the attributes after the insert_dft
command completes.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

958

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

25
Hierarchical DFTMAX Ultra Compression

Scalable Adaptive ScanhierarchyDFTMAX Ultra compression supports hierarchical scan synthesis. You can perform scan
synthesis independently for each lower-level DFT-inserted core. When you use instances
of these cores at a higher level of hierarchy, the tool automatically incorporates their scan
structures at the higher level.

Hierarchical DFT using DFTMAX Ultra compression is described in the following topics:

• Overview of Hierarchical DFTMAX Ultra Compression

• Creating Cores for Integration

• Performing Core Integration

• Using DFT Partitions During Core Integration

• Using Multiple Test Modes in Hierarchical Flows

Overview of Hierarchical DFTMAX Ultra Compression
hierarchyoverviewhierarchyoptionsDFTMAX Ultra compression supports hierarchical scan synthesis. You can perform scan
synthesis independently for each lower-level DFT-inserted block, called a core. When
you use instances of these cores at a higher level of hierarchy, the tool automatically
incorporates their scan structures at the higher level. This is called core integration.

Figure 438 shows a core that is created with two DFT partitions, then integrated at a
higher level of hierarchy.

Figure 438 Integrating a Core in a Hierarchical Flow

(Core level) (Top level)

Synopsys® TestMAX™ DFT User Guide
T-2022.03

959

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 25: Hierarchical DFTMAX Ultra Compression
Creating Cores for Integration

Feedback

Note:
The resulting integrated design can itself become a core for use at even higher
levels of hierarchy. However, for simplicity, this section refers to the integration
level as the “top level.”

Creating Cores for Integration
To create a standard scan or compressed scan core, insert scan at the core level. No
special options are needed for core creation. Example 161 shows a simple top-down
insertion compressed scan core creation script.

Example 161 Script for Creation of DFTMAX Ultra Compression Core
enable scan compression
set_dft_configuration -streaming_compression enable

specify standard scan chain count
set_scan_configuration -chain_count 1

enable core-level DFTMAX Ultra compression insertion
and specify compressed chain count
set_streaming_compression_configuration -chain_count 4

configure required scan clock signals
set_dft_signal -view existing_dft -type ScanClock \
 -port CLK -timing {45 55}

configure core-level DFT signal ports (if they exist)
set_dft_signal -view spec -type ScanDataIn -port SI
set_dft_signal -view spec -type ScanDataOut -port SO
set_dft_signal -view spec -type ScanEnable -port SE
set_dft_signal -view spec -type TestMode -port TM

insert DFT
create_test_protocol
dft_drc
preview_dft
insert_dft

write out design in multiple formats
write -format ddc -hierarchy -output core1.ddc
write_test_model -format ddc -output core1.ctlddc
change_names -rules verilog -hierarchy
write -format verilog -hierarchy -output core1.v

Each core must have CTL test model information so that the tool can perform top-level
integration. If the block fits in memory during top-level integration, you can use the write

Synopsys® TestMAX™ DFT User Guide
T-2022.03

960

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 25: Hierarchical DFTMAX Ultra Compression
Performing Core Integration

Feedback

command to write a design .ddc file that contains the full design netlist as well as the CTL
test model information:

dc_shell> write -format ddc -hierarchy -output design_name.ddc
If the block is large, you can use the write_test_model command to write out a test-
model-only .ddc file that contains the CTL test model along with an interface-only
representation of the core that allows the test model to be linked at the top level:

dc_shell> write_test_model -format ddc -output design_name.ctlddc
You can use either format for standard scan and compressed scan cores in core
integration flows.

Performing Core Integration
In the DFTMAX Ultra flow, you can perform DFT insertion with any combination of the
following logic types present anywhere in the logical hierarchy of the design:

• DFTMAX Ultra compressed scan cores

• Standard scan cores

• Scanned or scannable logic

If only scanned or scannable logic exists, the tool performs top-down scan insertion, as
described in Chapter 24, Using DFTMAX Ultra Compression.” However, if one or more
cores are present, the tool performs core integration, as described in the following topics:

• Automatic Detection of Existing Logic Types

• Configuring Core Integration

• Core Integration Script Examples

Automatic Detection of Existing Logic Types
You do not need to specify what types of logic exist at the top level; the tool automatically
detects and prints information messages about what scanned or scannable logic, standard
scan cores, or compressed scan cores exist.

When you run the preview_dft or insert_dft command, the tool detects the existing
logic types and prints one or more of the following information messages:

Information: Detected standard scan core(s): core_list. (TEST-1463)

Information: Detected compressed scan core(s): core_list. (TEST-1463)

Information: Detected scanned or scannable logic. (TEST-1462)

Synopsys® TestMAX™ DFT User Guide
T-2022.03

961

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 25: Hierarchical DFTMAX Ultra Compression
Performing Core Integration

Feedback

After logic detection, the tool infers and reports the flow type as follows:

• If only noncore scanned or scannable logic is detected (TEST-1462), the tool prints the
following message:

Information: Inferring the top-down scan insertion (TDI) flow.
(TEST-1436)

• If only cores are detected (TEST-1463), the tool prints the following information
message:

Information: Inferring the bottom-up core integration (BUI) flow.
(TEST-1437)

• If noncore scanned or scannable logic and cores are both detected (TEST-1462 and
TEST-1463), the tool prints the following message:

Information: Inferring the mixed scan insertion and core integration
(MII) flow. (TEST-1438)

For more information about logic types and flow names, see Chapter 28, DFTMAX Ultra
Flow Naming Conventions.”

Configuring Core Integration
To perform core integration, simply enable DFTMAX Ultra compression:

dc_shell> set_dft_configuration -streaming_compression enable
Then, configure the standard scan and compressed scan modes to be created, as
described in the following topics.

• Configuring the Standard Scan Mode

• Configuring the Compressed Scan Mode

Configuring the Standard Scan Mode
In standard scan mode, all core and noncore logic operates in uncompressed mode.
DFTMAX Ultra compression uses the following core integration rules to create scan chains
from the existing logic in standard scan mode:

• Any scanned or scannable logic is stitched into scan chains.

• Scan chains inside standard scan cores become scan segments that are incorporated
into scan chains, as needed, for length-balancing purposes.

• Scan chains from the standard scan mode of compressed scan cores become scan
segments that are incorporated into scan chains, as needed, for length-balancing
purposes.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

962

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 25: Hierarchical DFTMAX Ultra Compression
Performing Core Integration

Feedback

Use the -chain_count or -max_length option of the set_scan_configuration
command to specify the target scan chain configuration for the standard scan mode. For
example,

dc_shell> set_scan_configuration -chain_count 3

Configuring the Compressed Scan Mode
By default, the tool reuses the base mode scan I/Os for the compressed mode. The
number of base mode I/Os is determined by the base mode chain count, which is typically
set with the set_scan_configuration -chain_count command.

Note:
For simplicity, this section assumes that the set_scan_configuration
-chain_count option is used to specify the base mode chain count.
However, the base mode chain count can also be specified indirectly with the
-max_length option. In addition, either specification can be altered due to
requirements such as clock mixing.

DFTMAX Ultra compression uses the following core integration rules to create scan
structures from the existing logic in compressed scan mode:

• Scan connections of compressed scan cores are promoted to top-level scan
connections.

• Scan chains inside standard scan cores become scan segments that are incorporated
into top-level scan structures as described in the following rule.

• For uncompressed logic (scanned or scannable logic or standard scan core segments),

◦ If no such uncompressed logic exists, then only compressed scan cores exist. See
Integrating Compressed Scan Cores With No Uncompressed Logic on page 963.

◦ If a top-level codec is configured, the tool inserts a top-level codec to compress the
uncompressed logic. See Compressing Uncompressed Logic on page 964.

◦ If no top-level codec is configured, the tool creates standard scan chains from the
uncompressed logic. See Building Standard Scan Chains From Uncompressed
Logic on page 965.

Integrating Compressed Scan Cores With No Uncompressed Logic
If only compressed scan cores exist, all compressed scan core connections are promoted
to top-level connections, regardless of the I/O configuration of the base mode. See
Figure 439.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

963

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 25: Hierarchical DFTMAX Ultra Compression
Performing Core Integration

Feedback

Figure 439 Integrating Only Compressed Scan Cores

In this case, you should set your base mode chain count to match the I/Os used by the
cores in compression mode so that the I/O resources are equally and fully used in both
modes.

Compressing Uncompressed Logic
If you have uncompressed logic in your design, you can compress the logic by
configuring a top-level codec with the -chain_count or -max_length option of the
set_streaming_compression_configuration command. For example,

dc_shell> set_streaming_compression_configuration -chain_count 4
The term “top-level” differentiates this codec from codecs in compressed scan cores.

By default, the codec uses the scan I/Os inherited from the base mode. Figure 440 shows
an example with only uncompressed logic.

Figure 440 Compressing Uncompressed Logic, Including a Standard Scan Core
set_scan_configuration -chain_count 2

set_streaming_compression_configuration -chain_count 4

If compressed scan cores exist, their promoted connections reduce the number of scan
I/Os available to the top-level codec. Figure 441 shows an example with a compressed
scan core along with uncompressed logic.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

964

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 25: Hierarchical DFTMAX Ultra Compression
Performing Core Integration

Feedback

Figure 441 Integrating Compressed Scan Cores and Compressing Uncompressed Logic
set_scan_configuration -chain_count 2

set_streaming_compression_configuration -chain_count 3

If you want to force a specific number of scan-in or scan-out connections to be used for
the top-level codec, use the -inputs or -outputs option, respectively. For example,

dc_shell> set_scan_configuration -chain_count 2

dc_shell> set_streaming_compression_configuration \
 -chain_count 4 -inputs 2 -outputs 2
Figure 442 shows the previous design example with these commands applied. Note
that the -inputs and -outputs options might cause the scan I/O requirements of the
compressed scan mode to differ from the base standard scan mode.

Figure 442 Specifying The Number of Codec Scan I/Os for a Top-Level Codec

set_streaming_compression_configuration
-inputs 2 -outputs 2set_scan_configuration

-chain_count 2

Base standard scan mode
Compressed scan mode

Building Standard Scan Chains From Uncompressed Logic
If you have uncompressed logic in your design and you do not define a codec with the
set_streaming_compression_configuration command, the tool builds standard scan

Synopsys® TestMAX™ DFT User Guide
T-2022.03

965

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 25: Hierarchical DFTMAX Ultra Compression
Performing Core Integration

Feedback

chains from the uncompressed logic. The target chain count is determined by the available
I/Os inherited from the base mode, less any I/Os needed for promoted compressed scan
core connections. See Figure 443.

Figure 443 Integrating Compressed Scan Cores and Scan-Stitching Uncompressed Logic
set_scan_configuration -chain_count 2

Core Integration Script Examples
This topic provides script examples of core integration.

Integrating Only Compressed Scan Cores
Example 162 shows a script that performs BUI[C] integration of DFTMAX Ultra cores.

Example 162 Script for Bottom-Up Integration of Compressed Scan Cores
enable DFTMAX Ultra compression
BUI[C] flow is used automatically when only compressed scan cores exist
set_dft_configuration -streaming_compression enable

configure top-level chain count
(set to number of I/Os required by compressed scan cores in
compressed scan mode)
set_scan_configuration -chain_count 2

configure top-level DFT clocks
set_dft_signal -view existing_dft -type ScanClock \
 -port CLK -timing {45 55}

configure top-level DFT signal
set_dft_signal -view spec -type ScanDataIn -port {SI1 SI2}
set_dft_signal -view spec -type ScanDataOut -port {SO1 SO2}
set_dft_signal -view spec -type ScanEnable -port SE
set_dft_signal -view spec -type TestMode -port TM

insert DFT
create_test_protocol
dft_drc
preview_dft
insert_dft

Synopsys® TestMAX™ DFT User Guide
T-2022.03

966

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 25: Hierarchical DFTMAX Ultra Compression
Using DFT Partitions During Core Integration

Feedback

Integrating Compressed Scan Cores With Uncompressed Logic
Example 163 shows a script that performs MII[C]-C or MII[S][C]-C integration of DFTMAX
Ultra cores and inserts a top-level codec to compress the uncompressed logic. The only
difference from the previous example is the configuration of a top-level codec to compress
the uncompressed logic.

Example 163 Script for Mixed Insertion and Integration of Compressed Scan Cores
enable and configure DFTMAX Ultra compression;
MII[C]-C flow is used when compressed scan cores exist along with
additional scanned or scannable logic
set_dft_configuration -streaming_compression enable

configure scan, including top-level codec
set_scan_configuration -chain_count 2 ;# includes compressed core I/Os
set_streaming_compression_configuration -chain_count 4

configure top-level DFT clocks
set_dft_signal -view existing_dft -type ScanClock \
 -port CLK -timing {45 55}

configure top-level DFT signal
set_dft_signal -view spec -type ScanDataIn -port {SI1 SI2}
set_dft_signal -view spec -type ScanDataOut -port {SO1 SO2}
set_dft_signal -view spec -type ScanEnable -port SE
set_dft_signal -view spec -type TestMode -port TM

insert DFT
create_test_protocol
dft_drc
preview_dft
insert_dft

Using DFT Partitions During Core Integration
define_dft_partition commandcommandsdefine_dft_partitionIn the MII[C]-C flow, if the amount of top-level logic is large, you can optionally create
multiple top-level DFT partitions, each having its own codec. This is known as the MII[C]-
C-P flow. For more information about creating DFT partitions in the DFTMAX Ultra flow,
see Top-Down Insertion Compressed Scan Flow With Partitions on page 925.

Note:
In the MII[C]-C-P flow, all compressed scan cores must remain in the default
partition. You cannot reassign them to user-defined partitions.

Example 164 shows a script that performs MII[C]-C-P integration of DFTMAX Ultra cores,
along with the insertion of two codecs to compress top-level scan logic.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

967

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 25: Hierarchical DFTMAX Ultra Compression
Using DFT Partitions During Core Integration

Feedback

Example 164 Script for Mixed Insertion and Integration of DFTMAX Ultra Compression Cores
With Partitions

enable and configure DFTMAX Ultra compression MII[C]-C flow
set_dft_configuration -streaming_compression enable

configure scan in each partition
define_dft_partition my_part -include {...}
current_dft_partition my_part
set_scan_configuration -chain_count 1
set_streaming_compression_configuration -chain_count 4
set_dft_signal -port SI1 -type ScanDataIn
set_dft_signal -port SO1 -type ScanDataOut

current_dft_partition default_partition
set_scan_configuration -chain_count 2 ;# includes core scan I/Os
set_streaming_compression_configuration -chain_count 4
set_dft_signal -port SI2 -type ScanDataIn
set_dft_signal -port SO2 -type ScanDataOut

configure top-level DFT clocks
set_dft_signal -view existing_dft -type ScanClock \
 -port CLK -timing {45 55}

configure top-level DFT signal
set_dft_signal -view spec -type ScanEnable -port SE
set_dft_signal -view spec -type TestMode -port TM

insert DFT
create_test_protocol
dft_drc
preview_dft
insert_dft

For a design with a single compressed scan core, the script in Example 164 results in the
top-level scan logic shown in Figure 444.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

968

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 25: Hierarchical DFTMAX Ultra Compression
Using Multiple Test Modes in Hierarchical Flows

Feedback

Figure 444 The Mixed Insertion and Integration With Partitions (MII[C]-C-P) Flow

Using Multiple Test Modes in Hierarchical Flows
hierarchymultiple modesmodesmultiple modes in hierarchyscan modesmultiple modes in hierarchyWhen you invoke DFTMAX Ultra compression, by default the tool creates two test
operating modes: a standard (uncompressed) scan mode and a compressed scan mode.
To create a larger set of test modes, use the define_test_mode command. The tool
creates logic to support each defined mode. For details, see DFTMAX Ultra Compression
and Multiple Test Modes on page 931.

In hierarchical flows that perform core integration, each lower-level core can have multiple
test modes defined. By default, the tool groups together identically named modes in
different cores and at the top level and selects those core-level modes as a single mode
at the top level. If the modes have different names, they are grouped by usage and then
combined into all name combinations.

define_test_mode commandtarget optionYou can also explicitly specify which combinations of lower-level test modes are to be
targeted by top-level test modes by using the -target option of the define_test_mode
command. This is known as test mode scheduling.

The default test mode assignment and test mode scheduling behaviors for integrating
DFTMAX Ultra cores are the same as for integrating DFTMAX cores. For more
information, see Using Multiple Test Modes in Hierarchical Flows on page 716.

Note:
The -target option has a limitation when used in the MII compressed scan
core integration mode. See DFT Synthesis Limitations on page 972.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

969

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 25: Hierarchical DFTMAX Ultra Compression
Using Multiple Test Modes in Hierarchical Flows

Feedback

Mixing DFTMAX and DFTMAX Ultra Compression Core Modes
You can integrate cores that have both DFTMAX and DFTMAX Ultra test modes. This
includes any mix of

• Cores that have only DFTMAX modes

• Cores that have only DFTMAX Ultra modes

• Cores that have both DFTMAX and DFTMAX Ultra modes

The requirements described in Mixing DFTMAX and DFTMAX Ultra Compression Modes
on page 933 also apply to core integration modes; see that section for more information.

By default, the relationship between core-level and top-level test modes is determined by
test mode name. If your core-level DFTMAX modes do not share any names with your
core-level DFTMAX Ultra modes, you can use this default name-based core test mode
assignment.

Alternatively, you can override the default name-based association of core-level test
modes. This is known as test mode scheduling. To do this, use the -target option of the
define_test_mode command.

Example 165 shows the integration of two wrapped DFTMAX Ultra cores (CORE1
and CORE2) and an unwrapped DFTMAX legacy IP core (COREIP). Note that HASS
integration must be enabled for DFTMAX compression, while the integration mode is
automatically detected for DFTMAX Ultra.

Example 165 Core Integration Example With DFTMAX and DFTMAX Ultra Compression Cores
enable the DFTMAX and DFTMAX Ultra compression clients
set_dft_configuration \
 -scan_compression enable \
 -streaming_compression enable

configure DFTMAX core integration mode
(DFTMAX Ultra configures itself automatically)
set_scan_compression_configuration -hybrid true

apply global DFT configuration
set_dft_signal -view existing_dft -type ScanClock \
 -port CLK -timing {45 55}
set_dft_signal -view spec -type ScanEnable -port SE
set_scan_configuration -clock_mixing mix_clocks

define the test modes, including core test-mode scheduling
define_test_mode CORES_SCAN -usage scan \
 -target {CORE1:wrp_if CORE2:wrp_if}
define_test_mode CORES_DFTMAX_ULTRA -usage streaming_compression \
 -target {CORE1:ScanCompression_mode CORE2:ScanCompression_mode}
define_test_mode TOP_SCAN -usage scan \

Synopsys® TestMAX™ DFT User Guide
T-2022.03

970

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 25: Hierarchical DFTMAX Ultra Compression
Using Multiple Test Modes in Hierarchical Flows

Feedback

 -target {COREIP:Internal_scan top}
define_test_mode TOP_DFTMAX -usage scan_compression \
 -target {COREIP:ScanCompression_mode top}

configure each test mode
(modes with inward-facing cores use their default configuration)
set_scan_configuration -test_mode TOP_SCAN -chain_count 8
set_scan_compression_configuration \
 -test_mode TOP_DFTMAX -base_mode TOP_SCAN \
 -chain_count 10

See Also

• Using Multiple Test Modes in Hierarchical Flows on page 716 for more information
about default test-mode assignment and test mode scheduling

Synopsys® TestMAX™ DFT User Guide
T-2022.03

971

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

26
DFTMAX Ultra Limitations and Known Issues

This chapter contains the limitations and known issues that apply to DFTMAX Ultra
compression.

This chapter contains the following topics:

• DFT Synthesis Limitations

• Supported DFT Insertion Flows

DFT Synthesis Limitations
Scalable Adaptive ScanlimitationsThe following DFT synthesis requirements and limitations apply to DFTMAX Ultra
compression:

• The minimum compression ratio for DFTMAX Ultra compression is 3. For example,
with five scan inputs and five scan outputs, a minimum of 15 internal chains must be
used.

• The target libraries must have the following cell types available for codec
implementation:

◦ Level-sensitive latch

◦ Flip-flop with asynchronous reset

If applied, the dont_use attribute prevents these cell types from being used for
mapping. Use the remove_attribute command to remove the dont_use attribute
from any required library cells before running the insert_dft command. See Library
Cell Requirements for Codec Implementation on page 958.

• In core integration (BUI and MII) flows, post-DFT DRC of test modes that contain active
compressed scan cores is not supported.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

972

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 26: DFTMAX Ultra Limitations and Known Issues
DFT Synthesis Limitations

Feedback

• When DFT partitions are used,

◦ All partitions must use streaming DFT compression. Any partitions that contain
uncompressed logic (top-level logic or standard scan cores) must have a codec
configured using the set_streaming_compression_configuration command.

You can also keep scan logic or standard scan cores uncompressed by defining
external chains.

◦ All compressed scan cores must remain in the default partition. You cannot reassign
them to user-defined partitions.

• When you use the -target option of the define_test_mode command in the MII core
integration flow, a top-level codec is inserted in a test mode only when you target the
top-level logic by including the name of the current design in the target list. You cannot
insert a codec for targeted cores without also compressing the top-level logic, which
includes any untargeted standard scan cores and any wrapped cores in outward-facing
mode.

• When OCC controllers are used with compressed (decompressor-driven) clock chains,

◦ At least two codec inputs are required. There is no requirement for the codec
outputs. For more information, see Using OCC Controllers With DFTMAX Ultra
Compression on page 935.

◦ The -chain_count option of the set_dft_clock_controller command cannot be
set to a value other than its default of 1.

• You can mix DFTMAX and DFTMAX Ultra compression modes in the same
design. However, both compression types cannot be active in the same test mode.
Compression types other than DFTMAX and DFTMAX Ultra are not supported.

• When integrating pipelined cores, the top-level depths reported by the TEST-1433 and
TEST-1434 information messages are incorrect, and DFT insertion does not abort if the
total pipeline depth is smaller than the largest core-level depth.

• When using wrapped cores, top-down flat testing with transparent wrapped cores is not
supported.

• Synthesis of static-X chains is not supported.

• Scan groups, defined with the set_scan_group command, are not supported.

• Scan-through-TAP, which provides access to internal scan chains through the TDI and
TDO ports of the IEEE Std 1149.1 test access ports (TAP), is not supported.

• End-of-cycle measures are not supported.

• For flows other than top-down insertion (TDI) flows, streaming codecs cannot use
scan-enable signals defined with the -usage option of the set_dft_signal command.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

973

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 26: DFTMAX Ultra Limitations and Known Issues
Supported DFT Insertion Flows

Feedback

You should define at least one scan-enable signal without a usage for proper codec
insertion and operation.

• Modifications to the streaming compression IP blocks, such as adding inversions in
codec scan paths, are not supported.

Supported DFT Insertion Flows
The following DFT insertion flows are supported by DFTMAX Ultra compression:

• TDI-S/C-DIDO

• TDI-S/C-P-DIDO

• BUI[C]-DIDO

• BUI[C-P]-DIDO

• MII[S/C]-S/C-DIDO

• MII[S/C]-S/C-P-DIDO

• MII[S/C-P]-S/C-DIDO

• MII[S/C-P]-S/C-P-DIDO

See Chapter 28, DFTMAX Ultra Flow Naming Conventions,” for information on the flow
naming conventions used in this list.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

974

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

27
DFTMAX Ultra STIL Protocol File Syntax

STIL procedure filesyntaxThe write_test_protocol command writes out a STIL protocol file containing a
complete description of the DFTMAX Ultra compression architecture. TestMAX ATPG uses
this information to generate test patterns for the compressed scan design.

This chapter contains the following topics:

• STIL Protocol File Contents

• STIL Protocol File Example

STIL Protocol File Contents
The write_test_protocol command writes out a STIL protocol file containing a
description of the DFTMAX Ultra compression architecture. TestMAX ATPG uses the
information from the file to determine what types of patterns to generate for the specific
scan compression architecture. In general, you do not need to be concerned about
the contents of this file. However, for debugging purposes, you might want to know the
meanings of the statements in the file.

The CompressorStructures section specifies the architecture of the decompression and
compression logic of the device. Within that section, a Compressor section represents a
decompression or compression structure in the design and provides detailed information
about the logic connections in that structure. TestMAX ATPG uses this information to
configure the test logic for each pattern and generate pattern data to target specific faults.

STIL Protocol File Example
Example 166 shows the sections in a STIL procedure that describe the DFTMAX Ultra
compression architecture implemented for a particular device. The file was written by the
write_test_protocol command for the design shown in Figure 445. Note that the line
numbers shown along the left of the example are not included in the file.

Example 166 STIL Protocol File and DFTMAX Ultra Compression Architecture

1 UserKeywords StreamingStructures CompressorStructures;
2 StreamingStructures {
3 ExternalCyclesPerShift 59;

Synopsys® TestMAX™ DFT User Guide
T-2022.03

975

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 27: DFTMAX Ultra STIL Protocol File Syntax
STIL Protocol File Example

Feedback

4 LoadSerializer "top_U_deserializer_ScanCompression_mode" {
5 Length 59;
6 ActiveScanChains load_group;
7 }
8 UnloadSerializer "top_U_serializer_ScanCompression_mode" {
9 Length 49;
10 ActiveScanChains unload_group;
11 }
12 }
13 CompressorStructures {
14 Compressor "top_U_decompressor_ScanCompression_mode" {
15 LoadSerializer "top_U_deserializer_ScanCompression_mode" 0 1 2 3 4
 5 6 7
16 8 9;
17 ModeSerializer "top_U_deserializer_ScanCompression_mode" 56 57;
18 LoadSerializerDir "top_U_deserializer_ScanCompression_mode" 55;
19 CoreGroup core_group;
20 Modes 4;
21 Mode 0 {
22 UnloadModeSerializer "top_U_deserializer_ScanCompression_mode"
 10 11
23 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
 33 34
24 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53;
25 ModeSerializerControls {
26 "top_U_deserializer_ScanCompression_mode"[56] = 0;
27 "top_U_deserializer_ScanCompression_mode"[57] = 0;
28 }
29 Connection 0 "1" "11" "21" "31" "41";
30 Connection 1 "2" "12" "22" "32" "42";
31 Connection 2 "3" "13" "23" "33" "43";
32 Connection 3 "4" "14" "24" "34" "44";
33 Connection 4 "5" "15" "25" "35" "45";
34 Connection 5 "6" "16" "26" "36" "46";
35 Connection 6 "7" "17" "27" "37" "47";
36 Connection 7 "8" "18" "28" "38" "48";
37 Connection 8 "9" "19" "29" "39" "49";
38 Connection 9 "10" "20" "30" "40" "50";
39 }
40 Mode 1 {
41 UnloadModeSerializer "top_U_deserializer_ScanCompression_mode"
 10 11
42 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
 33 34
43 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53;
44 ModeSerializerControls {
45 "top_U_deserializer_ScanCompression_mode"[56] = 0;
46 "top_U_deserializer_ScanCompression_mode"[57] = 1;
47 }
48 Connection 0 "1" "18" "25" "32" "49";
49 Connection 1 "2" "19" "26" "33" "50";
50 Connection 2 "3" "20" "27" "34" "41";
51 Connection 3 "4" "11" "28" "35" "42";
52 Connection 4 "5" "12" "29" "36" "43";
53 Connection 5 "6" "13" "30" "37" "44";
54 Connection 6 "7" "14" "21" "38" "45";
55 Connection 7 "8" "15" "22" "39" "46";
56 Connection 8 "9" "16" "23" "40" "47";
57 Connection 9 "10" "17" "24" "31" "48";
58 }
59 Mode 2 {

Synopsys® TestMAX™ DFT User Guide
T-2022.03

976

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 27: DFTMAX Ultra STIL Protocol File Syntax
STIL Protocol File Example

Feedback

60 UnloadModeSerializer "top_U_deserializer_ScanCompression_mode"
 10 11
61 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
 33 34
62 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53;
63 ModeSerializerControls {
64 "top_U_deserializer_ScanCompression_mode"[56] = 1;
65 "top_U_deserializer_ScanCompression_mode"[57] = 0;
66 }
67 Connection 0 "1" "15" "29" "33" "47";
68 Connection 1 "2" "16" "30" "34" "48";
69 Connection 2 "3" "17" "21" "35" "49";
70 Connection 3 "4" "18" "22" "36" "50";
71 Connection 4 "5" "19" "23" "37" "41";
72 Connection 5 "6" "20" "24" "38" "42";
73 Connection 6 "7" "11" "25" "39" "43";
74 Connection 7 "8" "12" "26" "40" "44";
75 Connection 8 "9" "13" "27" "31" "45";
76 Connection 9 "10" "14" "28" "32" "46";
77 }
78 Mode 3 {
79 UnloadModeSerializer "top_U_deserializer_ScanCompression_mode"
 10 11
80 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
 33 34
81 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53;
82 ModeSerializerControls {
83 "top_U_deserializer_ScanCompression_mode"[56] = 1;
84 "top_U_deserializer_ScanCompression_mode"[57] = 1;
85 }
86 Connection 0 "1" "12" "23" "34" "45";
87 Connection 1 "2" "13" "24" "35" "46";
88 Connection 2 "3" "14" "25" "36" "47";
89 Connection 3 "4" "15" "26" "37" "48";
90 Connection 4 "5" "16" "27" "38" "49";
91 Connection 5 "6" "17" "28" "39" "50";
92 Connection 6 "7" "18" "29" "40" "41";
93 Connection 7 "8" "19" "30" "31" "42";
94 Connection 8 "9" "20" "21" "32" "43";
95 Connection 9 "10" "11" "22" "33" "44";
96 }
97 }
98 Compressor "top_U_compressor_ScanCompression_mode" {
99 UnloadSerializer "top_U_serializer_ScanCompression_mode" 0 1 2 3 4
 5 6 7
100 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 3
0 31 32
101 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48;
102 ModeSerializer "top_U_deserializer_ScanCompression_mode" 56 57;
103 UnloadModeSerializer "top_U_deserializer_ScanCompression_mode" 10
 11 12
104 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
 35 36
105 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53;
106 UnloadModeControl "top_U_deserializer_ScanCompression_mode" 10;
107 UnloadEnableSerializer "top_U_deserializer_ScanCompression_mode"
 58;
108 UnloadSerializerDir "top_U_deserializer_ScanCompression_mode" 54;
109 CoreGroup core_group;
110 Modes 5;
111 Mode 0 {

Synopsys® TestMAX™ DFT User Guide
T-2022.03

977

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 27: DFTMAX Ultra STIL Protocol File Syntax
STIL Protocol File Example

Feedback

112 ModeSerializerControls {
113 "top_U_deserializer_ScanCompression_mode"[58] = 0;
114 }
115 Connection "1" 0 17 37;
116 Connection "2" 1 18 38;
117 Connection "3" 2 19 39;
118 Connection "4" 3 20 40;
119 Connection "5" 4 21 41;
120 Connection "6" 5 22 42;
121 Connection "7" 6 23 43;
122 Connection "8" 7 24 44;
123 Connection "9" 8 25 45;
124 Connection "10" 9 26 46;
125 Connection "11" 10 27 47;
126 Connection "12" 11 28 48;
127 Connection "13" 0 12 29;
128 Connection "14" 1 13 30;
129 Connection "15" 2 14 31;
130 Connection "16" 3 15 32;
131 Connection "17" 4 16 33;
132 Connection "18" 5 17 34;
133 Connection "19" 6 18 35;
134 Connection "20" 7 19 36;
...

Synopsys® TestMAX™ DFT User Guide
T-2022.03

978

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 27: DFTMAX Ultra STIL Protocol File Syntax
STIL Protocol File Example

Feedback

Figure 445 DFTMAX Ultra Compression Architecture for SPF Example

Line 1, StreamingStructures, starts the section of the STIL protocol file that
describes the DFTMAX Ultra compression architecture for the device. Line 3,
ExternalCyclesPerShift, contains the number of external shift cycles. This number
is added to the maximum length of the internal chains to get the number of shifts per
load operation. Line 5, Length 59 under LoadSerializer, declares that the length of
the input shift register on the input side is 59 bits, whereas Line 9, Length 49 under

Synopsys® TestMAX™ DFT User Guide
T-2022.03

979

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 27: DFTMAX Ultra STIL Protocol File Syntax
STIL Protocol File Example

Feedback

UnloadSerializer, declares that the length of the output shift register on the output side
is 49.

Line 14, Compressor ..., starts the section that describes the architecture of the input
decompression MUX. Lines 15 through 18 describe the functions of the scan-in shift-
register bits used for scan-in data and for configuration of the decompression MUX. Bits
0 through 9, LoadSerializer bits, are the ten data bits that feed into the decompression
MUX. Bits 56 and 57, ModeSerializer bits, control the mapping configuration of these ten
bits to the scan chains. Line 18, the LoadSerializerDir bit, is a direction control bit that
selects one of two ways to order the mapping, either from least to most significant bit or
vice versa.

The DFT logic can be configured into multiple modes, so the STIL protocol file describes
the characteristics of each mode in a separate section. Line 20, Modes 4, declares that
there are four operating modes for the decompression MUX. Line 21, Mode 0, starts the
section that describes Mode number 0.

Line 22, UnloadModeSerializer ..., declares that bits 10 through 53 of the scan-in
shift register are used for configuring the output compression logic in Mode 0. Line 25,
ModeSerializerControls, starts the section that describes the decompression MUX
control bits. Lines 29 through 38, Connection ..., describe the mapping of the scan-in
shift-register data bits to the scan chains.

Line 98, Compressor ..., starts the section that describes the architecture of the output
compression XOR logic. Line 99, UnloadSerializer, declares that 49 bits are used
in the scan-out XOR shift-register stages, designated bits 0 through 48. Lines 102 and
103, which are identical to lines 17 and 22, specify the usage of control bits in the scan-in
shift register. Line 106, UnloadModeControl, and Line 107, UnloadEnableSerializer,
specify that bit 10 and bit 58 control the different modes used for the application of output
masking. Line 108, UnloadSerializerDir, specifies that bit 54 of the scan-in shift
register is a direction control bit, which selects one of two ways to order the mapping of
scan chains to the XOR compression logic.

Each successive Mode section in the compression section describes the usage of masking
control bits from the scan-in shift register and the mapping of scan chains to the XOR
compression logic for that particular mode.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

980

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

28
DFTMAX Ultra Flow Naming Conventions

DFTMAX Ultra compression uses a structured naming convention for describing DFT
flows. This naming convention uses a structured set of abbreviations that describes what
type of logic exists before DFT insertion and what type of scan, compression, and DFT
structures are created by DFT insertion. This chapter describes the naming convention. It
also provides examples of how traditional DFT Compiler and DFTMAX flow names map to
the new flow names.

This chapter contains the following topics:

• Describing Existing Logic

• Describing DFT Logic To Be Inserted

• Describing Additional DFT Features

• Scan Flow Mapping

Describing Existing Logic
In a design, the existing sequential logic can be divided into two types, shown in
Figure 446.

Figure 446 Two Types of Existing Sequential Logic

C_CORES_CORE

CTL-modeled cores Scanned or scannable logic
(outside cores)

Synopsys® TestMAX™ DFT User Guide
T-2022.03

981

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 28: DFTMAX Ultra Flow Naming Conventions
Describing Existing Logic

Feedback

CTL-modeled cores include any standard scan or compressed scan DFT-inserted blocks
represented by a CTL model during DFT insertion, such as

• Full .ddc block netlists with CTL information

• Binary .ctlddc models created by the write_test_model -format ddc command

• ASCII .ctl models created by the write_test_model -format ctl command

Scanned or scannable logic includes any noncore logic to be included in scan chains after
DFT insertion, such as

• Nonscan (but scannable) cells

• Test-ready scan cells

• Scan segments or complete scan chains defined with the set_scan_path command

Table 56 shows the flow name associated with each combination of sequential logic types.

Table 56 Flow Names Indicating Existing Sequential Logic Types

Scanned or
scannable logic?

CTL-modeled
cores?

Flow name Description

(Nothing to do)

X TDI Top-down insertion

X BUI Bottom-up integration

X X MII Mixed insertion and integration

The top-down insertion (TDI) flow type describes the case where no scan-inserted cores
exist, but valid scanned or scannable cells exist to be stitched into newly inserted scan
structures. Figure 447 shows an example of the existing logic in a TDI flow.

Figure 447 Existing Logic in a Top-Down Insertion (TDI) Flow

Scannable logic

The bottom-up integration (BUI) flow type describes the case where scan-inserted cores
exist to be integrated, and no valid scannable cells remain outside the cores. Figure 448

Synopsys® TestMAX™ DFT User Guide
T-2022.03

982

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 28: DFTMAX Ultra Flow Naming Conventions
Describing Existing Logic

Feedback

shows examples of the existing logic in a BUI flow. The cores to be integrated are shown
in blue.

Figure 448 Existing Logic in a Bottom-Up Integration (BUI) Flow

S_CORE2S_CORE1 C_CORE1 C_CORE2and/or

Standard scan cores Compressed scan cores

The mixed insertion and integration (MII) flow type describes the case where scan-
inserted cores exist to be integrated, and valid scannable cells exist outside the cores
to be stitched into newly inserted scan structures. Figure 449 shows an example of the
existing logic in an MII flow.

Figure 449 Existing Logic in a Mixed Insertion and Integration (MII) Flow

C_CORE

A mix of scannable logic and a core

Synopsys® TestMAX™ DFT User Guide
T-2022.03

983

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 28: DFTMAX Ultra Flow Naming Conventions
Describing Existing Logic

Feedback

In the flows that contain cores, which are the BUI and MII flows, add square-bracket
suffixes to indicate what types of cores exist:

• If standard scan cores exist, add [S]:

Figure 450 [S] Flow Suffix for Existing Standard Scan Cores

• If compressed scan cores exist, add [C]:

Figure 451 [C] Flow Suffix for Existing Compressed Scan Cores

Synopsys® TestMAX™ DFT User Guide
T-2022.03

984

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 28: DFTMAX Ultra Flow Naming Conventions
Describing DFT Logic To Be Inserted

Feedback

• If both standard scan and compressed scan cores exist, add [S][C]:

Figure 452 [S][C] Flow Suffix for Existing Standard Scan and Compressed Scan Cores

The square brackets visually indicate that the suffixes represent cores.

Describing DFT Logic To Be Inserted
The previous section shows how the base flow describes what types of sequential
logic already exist. This topic shows how dashed suffixes, appended to the base flow
name, indicate what scan structures are to be inserted. Dashed suffixes represent scan
characteristics applied to the design by DFT configuration commands and options.

If standard scan chains are created from scanned or scannable logic, add the -S suffix:

Figure 453 Inserting Standard Scan Chains in the TDI Flow

TDI-S

Figure 454 Inserting Standard Scan Chains in the MII[S] Flow

S_CORE S_CORE

MII[S]-S

Synopsys® TestMAX™ DFT User Guide
T-2022.03

985

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 28: DFTMAX Ultra Flow Naming Conventions
Describing DFT Logic To Be Inserted

Feedback

Figure 455 Inserting Standard Scan Chains in the MII[C] Flow

C_COREC_CORE

MII[C]-S

If a codec is inserted to compress scanned or scannable logic or standard scan cores, add
the -C suffix:

Figure 456 Inserting Scan Compression in the TDI Flow

TDI-C

Figure 457 Inserting Scan Compression in the BUI[S] Flow

S_CORE2S_CORE1S_CORE2S_CORE1 S_CORE1

BUI[S]-C

Figure 458 Inserting Scan Compression in the MII[S] Flow

S_CORES_CORE

MII[S]-C

Synopsys® TestMAX™ DFT User Guide
T-2022.03

986

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 28: DFTMAX Ultra Flow Naming Conventions
Describing Additional DFT Features

Feedback

Figure 459 Inserting Scan Compression in the MII[C] Flow

C_COREC_CORE

MII[C]-C

If only core scan connections are made in a BUI flow, no suffix is needed:

Figure 460 Making Core Scan Connections in the BUI[S] Flow

S_CORE2S_CORE1 S_CORE1 S_CORE2

BUI[S]

Figure 461 Making Core Scan Connections in the BUI[C] Flow

C_CORE1 C_CORE2 C_CORE1 C_CORE2

BUI[C]

Describing Additional DFT Features
Use the optional conventions described in the following topics to describe additional DFT
insertion features that can be used:

• Partitions

• Scan I/Os

• Multiple Test Modes

• Additional Naming Convention Rules

Partitions
DFT partitions are created with the define_dft_partition command. Use the following
conventions to describe whether DFT partitions exist or are inserted in the flow.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

987

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 28: DFTMAX Ultra Flow Naming Conventions
Describing Additional DFT Features

Feedback

Dashed suffixes indicate the scan characteristics applied during scan insertion. Add -P at
the end of the flow name if partitions are used during insertion or integration.

Figure 462 shows the TDI-C-P flow.

Figure 462 The TDI-C-P Flow

TDI-C-P

Figure 463 shows the MII[C]-C-P flow.

Figure 463 The MII[C]-C-P Flow

C_COREC_CORE

MII[C]-C-P

Scan I/Os
Use the following conventions to describe how the scan I/Os are connected to the scan
structures in the flow:

• Use DIDO (dedicated inputs, dedicated outputs) to describe scan I/O connections that
are dedicated to each scan chain or core scan pin. Figure 464 shows the BUI[C]-DIDO
flow.

Figure 464 The BUI[C]-DIDO Flow

C_CORE1 C_CORE2 C_CORE1 C_CORE2

BUI[C]-DIDO

• Use FIFO (fanin, fanout) to describe scan I/O connections that have multiple
connections in their fanin or fanout. Figure 465 shows the BUI[C]-FIFO flow.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

988

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 28: DFTMAX Ultra Flow Naming Conventions
Describing Additional DFT Features

Feedback

Figure 465 The BUI[C]-FIFO Flow

C_CORE1 C_CORE2 C_CORE1 C_CORE2

BUI[C]-FIFO

• Use SISO (serial input, serial output) to describe scan I/O connections that connect
serially to multiple codecs. Figure 466 shows the TDI-C-P-SISO flow.

Figure 466 The TDI-C-P-SISO Flow

TDI-C-P-SISO

Note:
The SISO scan I/O connection type pertains only to sequential scan
compression technologies, such as DFTMAX Ultra compression.

You can mix different scan connection types for scan inputs and scan outputs. Figure 467
shows the BUI[C]-FIDO flow, which uses shared scan inputs and dedicated scan outputs.

Figure 467 The BUI[C]-FIDO Flow

C_CORE1 C_CORE2 C_CORE1 C_CORE2

BUI[C]-FIDO

Synopsys® TestMAX™ DFT User Guide
T-2022.03

989

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 28: DFTMAX Ultra Flow Naming Conventions
Scan Flow Mapping

Feedback

Multiple Test Modes
User-defined test modes are created with the define_test_mode command. Use the
following conventions to describe how multiple user-defined test modes exist or are
created in the flow:

• Add -MM at the end of the flow name if multiple user-defined test modes are defined in
the current flow.

• Include [-MM] after the integration flow type if cores containing multiple user-defined
test modes are integrated in the flow.

Additional Naming Convention Rules
Any dashed DFT feature suffixes at the core level can become square-bracketed feature
descriptions at the integration level. In Figure 468, compressed scan with partitions is
inserted at the core level using a TDI-C-P flow. When this core is integrated, the core
characteristics are captured parenthetically in the MII[C-P]-C flow name.

Figure 468 Integration of a [C-P] Scan-Inserted Core Created in a TDI-C-P Flow

C_CORE

TDI-C-P

(Core level) (Top level)

MII[C-P]-C

When constructing a flow name, you only need to specify the flow and feature aspects
needed for your reference. The flow name can be as specific or as general as you need it
to be. If scan connections, partitions, or test modes are not relevant for a generalized flow
you are describing, do not include them in the description.

Scan Flow Mapping
This topic contains several figures that show how the traditional DFT Compiler and
DFTMAX flow names map to this flow name convention. The figure titles specify
the traditional flow names and the figures specify the flow names using this naming
convention.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

990

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 28: DFTMAX Ultra Flow Naming Conventions
Scan Flow Mapping

Feedback

Figure 469 The Top-Down Insertion Standard Scan Insertion Flow

TDI-S

Figure 470 The Top-Down Insertion Compressed Scan Insertion Flow

TDI-C

Figure 471 The Standard Scan HSS Integration Flow

S_CORE2S_CORE1 S_CORE1 S_CORE2

BUI[S]

Figure 472 The Compressed Scan HSS Integration Flow

S_CORE2S_CORE1S_CORE2S_CORE1 S_CORE1

BUI[S]-C

Figure 473 The HASS Integration Flow

C_CORE1 C_CORE2 C_CORE1 C_CORE2

BUI[C]

Synopsys® TestMAX™ DFT User Guide
T-2022.03

991

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 28: DFTMAX Ultra Flow Naming Conventions
Scan Flow Mapping

Feedback

Figure 474 The Hybrid Integration Flow

C_COREC_CORE

MII[C]-C

Figure 475 The Hybrid Flow With Top-Level Partitions

C_COREC_CORE

MII[C]-C-P

Synopsys® TestMAX™ DFT User Guide
T-2022.03

992

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Part 5: DFTMAX LogicBIST Self-Test

Synopsys® TestMAX™ DFT User Guide
T-2022.03

993

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

29
Introduction to LogicBIST

This chapter provides an introduction to the LogicBIST tool, which is a synthesis-based
solution for in-system self-test of digital integrated circuits used in automotive, medical,
and aerospace applications. LogicBIST addresses functional safety requirements set forth
by standards such as ISO 26262 for the automotive semiconductor industry.

The following topics introduce LogicBIST self-test:

• Introduction to LogicBIST

• LogicBIST Requirements

• The LogicBIST Flow

Introduction to LogicBIST
Built-in self-test (BIST) capability enables a design to test itself autonomously without
using external test data. The LogicBIST tool provides a low-overhead logic BIST (LBIST)
solution for digital logic designs, such as automotive applications. The characteristics of
this solution are:

• Low BIST controller area overhead

• Reuses the scan chain and test-mode control logic already implemented for
manufacturing test

• Low self-test pin requirements

• Easy interface to functional logic

• Seed and expected signature values can be hard-coded or programmable

• Targets stuck-at and transition-delay faults

• Simple one-pass DFT insertion flow

Synopsys® TestMAX™ DFT User Guide
T-2022.03

994

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: Introduction to LogicBIST
LogicBIST Requirements

Feedback

LogicBIST Requirements
The LogicBIST flow requires the following:

• You must have the Design Compiler and TestMAX ATPG tools installed and licensed at
your site.

• You must have the DFTMAX or TestMAX DFT tool licensed at your site.

• You must have an HDL Compiler license for compressed scan insertion.

• Blocks must be X-clean. See Blocking Internal X Sources on page 1018.

• You must integrate the self-test logic into your design in one of the following ways:

◦ Through signal connections to your functional logic

◦ Through DFT-inserted IEEE 1500 logic

See Also

• The LogicBIST Control and Data Signals on page 1002 for details on the control and
status signals used

• Test-Mode Control Using the IEEE 1500 and IEEE 1149.1 Interfaces on page 375 for
details on inserting IEEE 1500 logic

The LogicBIST Flow
From a high level, the standard LogicBIST flow can be summarized as follows:

1. Insert the LogicBIST DFT logic in the design.

2. Use TestMAX ATPG to create self-test patterns for the design. TestMAX ATPG chooses
a seed value for the design, then it computes the expected signature value for that
seed value.

3. Write out an autonomous self-test testbench file, which simulates on-chip self-test.

4. Apply the bused seed, signature, and pattern count values computed by TestMAX
ATPG to the design.

5. Simulate the resulting netlist and testbench in a Verilog simulator, such as VCS, to
verify the correctness of autonomous BIST operation.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

995

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: Introduction to LogicBIST
The LogicBIST Flow

Feedback

Constant-Driven Values

By default, the seed, signature, and pattern count values are driven by constants in the
netlist. This results in the lowest area overhead, but it also requires that the netlist be
modified to drive those values.

Figure 476 shows the flow diagram for LogicBIST insertion, pattern generation, and
verification. The original netlist (in blue) has the seed, signature, and pattern count values
tied to all-zeroes, and the modified netlist (in red) contains the values computed by
TestMAX ATPG.

Figure 476 The LogicBIST Flow With Constant-Driven Values

LogicBIST

User-specified
pattern count value

VCS
(or other)

Simulate autonomous LogicBIST,
check DONE and PASS results

top_initial.vgLBIST.spf

top_pre_DFT.v DFT
insertion

TestMAX
ATPG

Run ATPG, compute PRPG seed,
MISR signature, fault coverage

testbench.v
testbench.dat

serial.stil

testbench.stil

Modify netlist with
PRPG seed, MISR

signature, pattern count

top_modified.vg

stil2verilog

Programmable Values

You can also implement programmable seed, signature, and pattern count values. This
can provide the following benefits:

• Test with multiple seed and signature pairs, for coverage-critical applications

• Divide self-test into many small segments over time, for time-critical applications

• No need for constant-value netlist modification for scan or functional logic changes

Synopsys® TestMAX™ DFT User Guide
T-2022.03

996

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 29: Introduction to LogicBIST
The LogicBIST Flow

Feedback

Figure 477 shows this flow. In this case, no netlist modification step is needed, but you still
generate the testbench files from the DFT environment.

Figure 477 The LogicBIST Flow With Programmable Values

LogicBIST

User-specified
pattern count value

VCS
(or other)

Simulate autonomous LogicBIST,
check DONE and PASS results

top.vgLBIST.spf

top_pre_DFT.v

TestMAX
ATPG

Run ATPG, compute PRPG seed,
MISR signature, fault coverage

testbench.v
testbench.dat

serial.stil

testbench.stil

Write programmable-
value autonomous
self-test testbench

stil2verilog

DFT
insertion

top.vg

Programmable values can be implemented in one of two ways:

• Using DFT-inserted IEEE 1500 logic

The tool creates the self-test protocol and testbench for you.

• Connecting self-test signals to internal functional registers using hookup pins

You must create your own self-test protocol and testbench for simulation.

See Also

• Using Programmable LogicBIST Configuration Values on page 1054 for details on
configuring programmable self-test logic

• Test-Mode Control Using the IEEE 1500 and IEEE 1149.1 Interfaces on page 375 for
details on inserting IEEE 1500 logic

Synopsys® TestMAX™ DFT User Guide
T-2022.03

997

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

30
The LogicBIST Architecture

LogicBIST self-test enables a design to test itself using the same scan chains already
implemented for manufacturing test. It uses a pseudo-random pattern generator (PRPG)
to create scan data, and a multiple-input signature register (MISR) to capture the design
response. At the end of the test, if the actual signature matches the expected signature,
the self-test asserts a PASS status.

The following topics describe the LogicBIST architecture:

• LogicBIST Architecture Overview

• LogicBIST Clock Control

• Isolating the Design During LogicBIST Self-Test

• Providing Testability for LogicBIST Self-Test

LogicBIST Architecture Overview
The LogicBIST architecture consists of four components - LogicBIST controller,
decompressor, compressor, and LogicBIST clock controller - as shown in Figure 478.

Figure 478 The LogicBIST Architecture

STATUS_0 STATUS_1

XOR compactor

XOR phase shifter

Combinational

Sequential

Decompressor

Compressor

(LE)

(LE)

(LE/TE)

(LE/TE)
(LE)

(TE)

Leading-edge

Trailing-edge

LogicBIST
controller

MY_SI0
MY_SI1

START

FSM

Pattern counter

Shift counter

User pattern value

User shift value
(optional)

CARE PRPG

MISR

= User signature value

User seed value

MY_SO0

LogicBIST clock
controller

CLK1
CLK2

Clock control
logic

(LE)

(LE)

(LE)

LBIST_EN

Synopsys® TestMAX™ DFT User Guide
T-2022.03

998

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 30: The LogicBIST Architecture
LogicBIST Architecture Overview

Feedback

The primary components are described in the following sections:

• The LogicBIST Decompressor

• The LogicBIST Compressor

• The LogicBIST BIST Controller

• The LogicBIST Clock Controller

• The LogicBIST Control and Data Signals

The LogicBIST Decompressor
The LogicBIST decompressor feeds data into the compressed scan chains in the core
logic. It is responsible for generating target fault care bits.

A PRPG, or pseudo-random pattern generator, is comprised of the following two
components:

• A linear feedback shift register (LFSR) that generates the next data bit of the next data
word as a linear XOR function of its current data word

• An XOR phase shifter that removes the correlations that result from the shift-register
nature of the LFSR output taps

Figure 479 shows a simple example PRPG register.

Figure 479 An Example PRPG Register

PRPG

Output scan data

XOR phase shifter

The PRPG operates as follows:

• When the design is operating in mission mode, the PRPG is idle and is not clocked.

• When the design is in a non-LogicBIST scan mode, the PRPG operates as scannable
design logic so that the decompressor logic can be scan-tested.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

999

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 30: The LogicBIST Architecture
LogicBIST Architecture Overview

Feedback

• During LogicBIST operation,

◦ At the beginning of the test program, the user-specified seed value is parallel-
loaded into the PRPG in a single clock cycle.

◦ During the test program, the PRPG generates a new pseudorandom data word in
each clock cycle, which is used to generate scan data for the compressed scan
chains.

Note:
For simplicity, the control logic that implements these modes of operation is not
shown in Figure 479.

After the PRPG is loaded with a seed value and clocked, it generates a stream of data
values that appear to be random values, but are actually a function of that seed value.
Each seed value produces a stream of data values unique to that seed value.

The LogicBIST Compressor
The LogicBIST compressor receives and compresses data from the internal chains during
the unload process. It consists of an XOR-tree compressor and a multiple-input signature
register (MISR). The XOR compressor has no X-tolerance masking.

In the MISR, each register input captures an XOR of the previous register's input and
a data input signal from the XOR compressor to the MISR. Figure 480 shows a simple
example MISR.

Figure 480 An Example MISR Register

MISR

(Data from XOR compressor)

Current MISR signature value

The MISR operates as follows:

• When the design is operating in mission mode, the MISR is idle and is not clocked.

• When the design is in a non-LogicBIST scan mode, the MISR operates as scannable
design logic so that the compressor logic can be scan-tested.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1000

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 30: The LogicBIST Architecture
LogicBIST Architecture Overview

Feedback

• During LogicBIST operation,

◦ The MISR is reset when the design enters the LogicBIST operation mode. The
MISR now has an initial known signature value (all zeros).

◦ For the first pattern, the MISR remains unclocked because the unloaded scan data
is unknown.

◦ For the second and subsequent patterns, the MISR is clocked. The MISR captures
values from the XOR compressor in each shift clock cycle and incorporates it into
the current signature value of the MISR.

During the test program, the sequence of MISR values is dependent on the scan data that
it captures. At the end of the test program, the signature value of the MISR is compared
against the user-specified expected signature value, and the STATUS_* signals are set to
indicate test completion and pass/fail status.

The LogicBIST BIST Controller
The LogicBIST BIST controller contains the following:

• A small finite state machine (FSM) that controls BIST operation.

• A pattern counter that applies the user-specified number of test patterns.

• A shift counter that applies the correct number of shift clock cycles for each test
pattern. For each completed sequence of the shift counter, the pattern counter
decrements by one.

The LogicBIST controller operates as follows:

• When the design is in mission mode and LogicBIST is disabled, the LogicBIST
controller is idle and its clock is disabled. The FSM registers are held in reset (unless
mission mode is overloaded onto a scan mode).

• When the design is in a non-LogicBIST scan mode, the pattern counter and shift
counter operate as scannable design logic so that their logic can be scan-tested. The
FSM flip-flops are excluded from scan testing so any OCC, ICG, reset, or scan-enable
control logic does not interfere with scan testing.

• When the design is in mission mode and LogicBIST is enabled,

◦ The LogicBIST controller controls the scan-enable and wrapper-shift signals in the
design.

◦ At the beginning of the test program, the FSM initializes the decompressor PRPG
and compressor MISR to their initial states, and it loads the pattern and shift
counters to their user-specified initial values.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1001

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 30: The LogicBIST Architecture
LogicBIST Architecture Overview

Feedback

◦ During the test program, the LogicBIST controller runs the pattern and shift
counters through their sequences. As the shift counter counts through its sequence,
the scan chains perform load/unload using the PRPG/MISR, respectively. When the
shift counter reaches zero, the FSM issues the capture cycle(s), decrements the
pattern counter, and begins a new shift counter sequence.

◦ When the pattern counter reaches zero, the current MISR signature value is
compared with the user-specified expected signature value. If they match, the test
passes; if not, the test fails.

See Also

• Previewing and Inserting the LogicBIST Implementation on page 1034 for information
on determining the mission-mode and self-test-mode encodings

The LogicBIST Clock Controller
The LogicBIST clock controller operates as follows:

• When the design is in mission mode, the clocks operate normally.

• When the design is in a non-LogicBIST scan mode, the clocks operate normally.

• When LogicBIST self-test is active,

◦ The clock controller gates the clock signal to the functional design logic as directed
by the LogicBIST controller.

◦ A free-running BIST clock must be available, running at the desired scan frequency,
for the duration of the LogicBIST test operation.

LogicBIST self-test supports multiple clock configurations, each of which uses its own
clock controller logic structure. For more information, see LogicBIST Clock Control on
page 1006.

The LogicBIST Control and Data Signals
The LogicBIST-specific control and data signals in a LogicBIST implementation are
described in the following topics:

• The LogicBIST Operational Modes

• The LBIST_EN and START Signals

• The STATUS_0 and STATUS_1 Signals

• The Scan-In and Scan-Out Signals

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1002

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 30: The LogicBIST Architecture
LogicBIST Architecture Overview

Feedback

The LogicBIST Operational Modes
LogicBIST self-test can operate in the following modes:

• ATPG mode—This mode is used only for core-level seed and signature computation in
TestMAX ATPG. TestMAX ATPG accesses state elements (via a scan chain) through
core-level scan ports during this process; the LogicBIST FSM is unused.

This mode is activated when the LogicBIST test-mode encoding is applied. The
LBIST_EN and START signals are not used.

• Autonomous mode—This mode can be used after the seed and signature values have
been applied to the design. All BIST operations perform autonomously, as controlled
by the LogicBIST FSM. This is the mode that is simulated and ultimately used in silicon
operation.

This mode is activated when the LBIST_EN and START signals are asserted while the
mission-mode test-mode encoding is applied.

The LBIST_EN and START Signals
The LBIST_EN and START signals work together as follows:

• The LBIST_EN signal is used only when the mission-mode test-mode encoding is
applied. When this signal is asserted in mission mode, the design enters autonomous
LogicBIST operation mode. Any DFT logic associated with the LogicBIST self-test
mode (wrapper chains, test points, and so on) is enabled.

• When the START signal is de-asserted (regardless of the state of the LBIST_EN
signal), the LogicBIST FSM is unclocked and asynchronously held in reset to the idle
state.

• When the LBIST_EN signal is asserted while the START signal is de-asserted, the
pattern counter and MISR are reset to all-zeros.

• LogicBIST self-test begins when the START signal is asserted while the LBIST_EN
signal is already asserted. The test runs to completion as long as the START signal
remains asserted. If the START signal is de-asserted during the test, the test halts and
the LogicBIST logic returns to its idle state.

• When the LBIST_EN signal is de-asserted, any DFT logic associated with the
LogicBIST self-test mode (wrapper chains, test points, and so on) is disabled.

Because all reset signals inside the LogicBIST IP are generated from the START signal,
no connection to a functional reset signal is needed.

The START signal is synchronized to the BIST clock, as shown in Figure 481, to avoid
metastability issues. Due to the synchronizer delay, the pattern counter and MISR are

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1003

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 30: The LogicBIST Architecture
LogicBIST Architecture Overview

Feedback

reset even if the LBIST_EN and START signals are asserted at the same time. The
metastability registers are included in scan testing.

Figure 481 Synchronization of the START Signal to the BIST Clock

START

LogicBIST
enabled

meta1 meta2

CLK

EN

CLKO

ICGTST

CLK

FSM state
registers

These signals are used in autonomous mode.

See Also

• Enabling DFT Logic During Autonomous Self-Test on page 1015 for more information
on how test-mode signals are used in a LogicBIST design

The STATUS_0 and STATUS_1 Signals
The STATUS_0 and STATUS_1 signals indicate the status of autonomous self-test.
When the LBIST_EN signal is asserted, the two-bit bus {STATUS_1, STATUS_0} has the
following possible values:

• 00: LogicBIST logic idle or inactive

• 01: LogicBIST test running

• 10: LogicBIST test complete and passed

• 11: LogicBIST test complete and failed

These signals are used in autonomous mode.

Figure 482 shows the status signal behavior when self-test completes and passes. The
passing status is held until START is de-asserted.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1004

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 30: The LogicBIST Architecture
LogicBIST Architecture Overview

Feedback

Figure 482 Status Signal Behavior When Self-Test Completes and Passes

RUNNING

STATUS_0

STATUS_1

IDLE PASS

START

IDLE

LBIST_EN

Figure 483 shows the status signal behavior when self-test completes and fails. The failing
status is held until START is de-asserted.

Figure 483 Status Signal Behavior When Self-Test Completes and Fails

RUNNING

STATUS_0

STATUS_1

IDLE FAIL

START

IDLE

LBIST_EN

The status signals are combinationally derived from the self-test FSM state. For details on
monitoring them from your functional logic, see Monitoring the Self-Test Status Signals on
page 1046.

The Scan-In and Scan-Out Signals
A LogicBIST implementation requires at least one user-defined scan-in signal. (For
designs with IEEE 1500 logic, the WSI signal serves this purpose.)

When the design is in ATPG mode, key LogicBIST registers (pattern counter, shift counter,
START synchronizer, PRPG, and MISR) are placed in a scan chain driven by the first
user-defined scan-in signal. This allows TestMAX ATPG to access the registers during
LogicBIST seed and signature computation.

For other test modes, this scan-in port is used as a regular scan-in port.

Figure 484 shows how TestMAX ATPG accesses the scannable LogicBIST access chain
in ATPG mode.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1005

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 30: The LogicBIST Architecture
LogicBIST Clock Control

Feedback

Figure 484 Scan Chain Access to the LogicBIST Logic

STATUS_0 STATUS_1

LogicBIST controller

FSM

Decompressor

Compressor

MY_SO0CARE PRPG

MISR

MY_SI0

START

Shift counter

START synchronizer

Pattern counter

LBIST_EN

drc_en
(ATPG mode)

TCM

See Also

• Enabling DFT Logic During Autonomous Self-Test on page 1015 for details on how the
drc_en (ATPG mode) signal is generated

LogicBIST Clock Control
LogicBIST clock control is described in the following topics:

• Overview of Clock Configurations

• External Clocks

• OCC-Controlled Clocks With Default Capture Behavior

• OCC-Controlled Clocks With Weighted Clock Capture Groups

• External and Internal Clocks in the Same Design

Overview of Clock Configurations
LogicBIST self-test supports the following three clock configurations:

• External (port-driven) clocks

Use this configuration when all clocks are driven by input ports and there are no on-
chip clocking (OCC) sources, such as phase-locked loops (PLLs).

• OCC-controlled clocks with default capture behavior

Use this configuration when there is a single OCC-controlled clock or multiple OCC-
controlled clocks that do not interact during capture.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1006

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 30: The LogicBIST Architecture
LogicBIST Clock Control

Feedback

• OCC-controlled clocks with weighted clock captures

Use this configuration when there are multiple OCC-controlled clocks that interact or if
there is an asynchronous set or reset signal in your design.

If there is minimal communication between asynchronous clock domains, you can
use test points to block the capture paths between those domains. This can reduce or
eliminate the need for clock weights.

All clocks in the design must use the same configuration. If you have a mix of external
and OCC-controlled clocks, you must use an OCC controller for the external clocks. If you
have an asynchronous set or reset in your design, you must disable it or use weighted
clock captures—even for a single clock.

External Clocks
If the design has no on-chip clocking (OCC) sources, then all clocks are external (driven
by input ports). Figure 485 shows how the clock controller passes all clocks transparently
when LogicBIST self-test is inactive.

Figure 485 External Clocks When LogicBIST Self-Test Is Inactive

LogicBIST clock
controller

CLK1

CLK2

LogicBIST
IP

Functional
logic

CLK3

When LogicBIST self-test is active, if the design contains multiple scan clock domains, the
clock controller drives all scan clock domains with a single BIST clock. The non-BIST clock
input ports do not clock any scan chains.

Figure 486 shows how the clock controller drives all scan clock domains with the
LogicBIST clock when LogicBIST self-test is active (gated under the control of the
LogicBIST controller). CLK1 is selected as the BIST clock.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1007

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 30: The LogicBIST Architecture
LogicBIST Clock Control

Feedback

Figure 486 External Clocks When LogicBIST Self-Test Is Active

LogicBIST clock
controller

CLK1

CLK2

LogicBIST
IP

Functional
logic

CLK3

BIST clock

Caution:
When the design contains multiple external clocks, you must ensure that cross-
domain paths meet timing in LogicBIST mode because the clock trees are
driven by a single port but might have different latencies.

The LogicBIST clock controller logic structure is shown in Figure 487. (The figure is
intended to show the logic function; actual implementation might vary.)

Figure 487 External Clock Controller Structure

D Q
G
LAT

CLK1

CLK2

CLK3

BISTCLK

D Q
G
LAT

D Q
G
LAT

D Q
G
LAT

CLK1

CLK2

CLK3

LogicBIST clock controller

Self-test mode
clock enable

Mission-mode
clock enable

OCC-Controlled Clocks With Default Capture Behavior
When you have a DFT-inserted OCC controller in your design, the tool uses an OCC
controller design with additional LogicBIST clock control logic. The ATE clock is used as
the BIST clock.

In autonomous mode, the OCC controller operates normally, except that the clock pulses
are determined by a pulse pattern signal (lbist_clk_enable[]) instead of the clock chain.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1008

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 30: The LogicBIST Architecture
LogicBIST Clock Control

Feedback

The width of this bus is the same as the clock chain length. By default, the clocks use a
single-pulse pattern. You can also specify a programmable pattern, as described in Using
Programmable LogicBIST Configuration Values on page 1054.

In ATPG mode, the pll_bypass signal of the OCC controller is asserted to use the ATE
clock for TestMAX ATPG.

The OCC controller logic is shown in Figure 488.

Figure 488 LogicBIST OCC Controller

ref_clk pllclk

ate_clk

pll_bypass

test_se
test_mode
occ_reset

Functional
logic

(ATPG mode)

LogicBIST
IP

intclkDFT-inserted
OCC

controller

CLKI

PLL
CLKO

Clock chain

2'b10

(LogicBIST mode)

lbist_clk_enable[*]

If you have multiple OCC-controlled clocks in your design, all clocks capture in each
pattern. If capture paths exist between the clock domains, you must use weighted-clock
captures as described in the next section, or you must block the capture paths using RTL
logic or test points.

Some limitations apply to designs with OCC controllers. See Chapter 33, LogicBIST
Limitations and Known Issues.”

OCC-Controlled Clocks With Weighted Clock Capture Groups
By default, all OCC clocks capture in each LogicBIST pattern. If capture paths exist
between clock domains, additional logic is required to selectively enable non-interacting
capture clocks in each pattern. This avoids capturing an X value from an asynchronous
clock domain that is also clocked in that pattern.

To implement this logic, you separate clocks into groups and assign a weight to each
group. In each pattern, a single clock group is selected for capture, proportionally to the
weight values.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1009

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 30: The LogicBIST Architecture
LogicBIST Clock Control

Feedback

In the following example, clock domains A2 and B1 do not interact with each other and can
be grouped together. Clock domains A1 and B2 have less logic than A2+B1 and can have
a lower weight than A2+B1 to capture less often.

Figure 489 LogicBIST OCC Controller With Weighted Capture Groups
Capture

probability:
25%

Capture
probability:

25%

Capture
probability:

50%

Functional
logic (A1)

Functional
logic (A2)

Functional
logic (B1)

Functional
logic (B2)

pllclkA1

ate_clk

intclkA1
intclkA2pllclkA2

intclkB1

DFT-inserted
OCC

controller

DFT-inserted
OCC

controller

PLLA
CLKO1
CLKO2

LogicBIST
weighted

clock
gating

LogicBIST
weighted

clock
gating

pllclkB1
pllclkB2

PLLB
CLKO1
CLKO2 intclkB2

Because LogicBIST does not use the clock chain registers, they are repurposed for
clock group selection during LogicBIST self-test. In each pattern, the clock chains load a
pseudorandom value from the PRPG. This value feeds a weighted clock group selector
that enables the pulse pattern for one of the capture groups, as shown in Figure 490.

Figure 490 Weighted Capture Groups Logic Structure

Capture
probability:

25%

Capture
probability:

25%

Capture
probability:

50%

(LogicBIST mode)

Clock chain

2'b10

Clock chain

0 <= X < 32
32 <= X < 96

96 <= X < 128

Weight-enabled
clock patterns

Pulse
pattern
logic

Pulse
pattern
logic

DFT-inserted
OCC

controller

DFT-inserted
OCC

controller

Functional
logic (A1)

Functional
logic (A2)

Functional
logic (B1)

Functional
logic (B2)

lbist_clk_pattern[*]

The comparator value is seven bits. Thus, you must have at least seven clock chain bits in
the design; additional bits are not used for clock selection. In addition, all OCC controller
clocks must have the same clock chain length.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1010

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 30: The LogicBIST Architecture
LogicBIST Clock Control

Feedback

The clock pulses are determined by a pulse pattern signal instead of the clock chain.
The width of this bus is the value specified with the -cycles_per_clock option of the
set_dft_clock_controller command. By default, the clocks use a single-pulse pattern.
You can also specify a programmable pattern, as described in Using Programmable
LogicBIST Configuration Values on page 1054.

Table 57 shows the minimum clock chain length as a function of clock count.

Table 57 Minimum Total Clock Chain Length in a LogicBIST
Design

Number of OCC clocks Minimum clock chain length

2 4

3 3

4 to 6 2

7 or more 1

Additional limitations apply to designs with OCC controllers. See Chapter 33, LogicBIST
Limitations and Known Issues.”

See Also

• Configuring Clock and Reset Weights on page 1027 for details on configuring clock
weights

• Simplifying the Weighted Clock/Reset Logic on page 1056 for details on simplifying the
comparator logic

External and Internal Clocks in the Same Design
If your design uses both external (port-driven) and internal (OCC-controlled) clocks, you
must control the external clocks with a DFT-inserted OCC controller. If the clock domains
have capture interactions, you must also use weighted clock capture groups.

Figure 491 shows a design with one external clock and one internal clock using weighted
clock capture groups.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1011

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 30: The LogicBIST Architecture
Isolating the Design During LogicBIST Self-Test

Feedback

Figure 491 Using OCC Control for External Clocks

Functional
logic (A)

Functional
logic (B)

pllclkB

LogicBIST
weighted

clock
gating

DFT-inserted
OCC

controller
CLKA

CLKI

PLLB
CLKO

clkA

ATECLK

REFCLK

For more information, see Specifying OCC Controllers for External Clock Sources on
page 542.

Isolating the Design During LogicBIST Self-Test
When LogicBIST self-test is active, it generates and applies the test data autonomously
(on-chip). ATE data is not available to control the design input ports, and the ATE does not
observe the design output ports.

As a result, the design must be isolated on-chip during LogicBIST self-test. Its inputs must
be controlled to avoid X capture; its outputs should be observed to ensure coverage.

The following topics describe two design isolation methods:

• Isolating the Self-Test Design Using Core Wrapping

• Isolating the Self-Test Design Using Test Points

• Comparing the Two Isolation Approaches

Isolating the Self-Test Design Using Core Wrapping
You can use the core wrapping feature to insert a wrapper chain that isolates the design
during self-test. Wrapper chains inherently provide this needed isolation.

With this approach, the LogicBIST test mode becomes an inward-facing mode that drives
LogicBIST-generated data into the input wrapper chain and incorporates the captured
output wrapper chain data into the MISR, as shown in Figure 492.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1012

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 30: The LogicBIST Architecture
Isolating the Design During LogicBIST Self-Test

Feedback

Figure 492 Isolating the Self-Test Design Using Core Wrapping

Core
logic

CORE
wrp_si1 wrp_so1

CLK

test_si1 test_so1

Wrapper chain
Scan Chain

PRPG LogicBIST FSM MISR

If your design already implements wrapper chains, you use this approach by default.

If most of the I/O ports in your design are registered, you can reuse the existing I/O
registers to build the wrapper chain, which minimizes area. This is called the maximized-
reuse flow.

If the self-test design drives top-level logic that cannot tolerate pseudorandom output data
during self-test, you can specify safe values to be driven at the outputs during self-test.

See Also

• Configuring Wrapper Chain Isolation Logic on page 1028 for details on using wrapper
chains for self-test isolation

Isolating the Self-Test Design Using Test Points
To reduce area, you can use test points instead of core wrapping to provide boundary
testability. The core_wrapper target of automatic test point insertion inserts force_01 test
points at the inputs and observe test points at the outputs, as shown in Figure 493.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1013

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 30: The LogicBIST Architecture
Isolating the Design During LogicBIST Self-Test

Feedback

Figure 493 Isolating the Self-Test Design Using Test Points

Internal
CLK

Core
logic

CORE

CLK

test_si1 test_so1

F O

Scan chain

PRPG LogicBIST FSM MISR

Multiple test points can share a single test point register, which reduces the area.

Use this isolation method only if your design is not already core-wrapped.

See Also

• Configuring Test Point Isolation Logic on page 1030 for details on using test points for
self-test isolation

Comparing the Two Isolation Approaches
Table 58 compares the two isolation approaches.

Table 58 Comparison of the Two Self-Test Isolation Approaches

Core wrapping Test points

Primary benefit “Free” for core-wrapped designs Minimal area for unwrapped designs

Controlled by Current test-mode encoding Dedicated test-point control signal

Provides INTEST? Yes Yes

Provides EXTEST? Yes No

Provides transparent
(unisolated) ATPG
mode?

Optional
(see Top-Down Flat Testing With
Transparent Wrapped Cores on
page 503)

Yes
(deassert the isolation test-point control
signal)

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1014

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 30: The LogicBIST Architecture
Providing Testability for LogicBIST Self-Test

Feedback

In general,

• Use core-wrapping isolation if your design already uses core wrapping for hierarchical
test reasons.

• Use test-point isolation if your design does not require core-wrapping capabilities.

Providing Testability for LogicBIST Self-Test
During LogicBIST self-test, no X values can be captured during testing. If an X value
reaches the MISR, it recirculates and spreads within the MISR, corrupting its value. The
following topics describe ways to keep the design clean of X values:

• Enabling DFT Logic During Autonomous Self-Test

• Blocking Internal X Sources

• Ensuring Testability for Reset Signals

• Ensuring Testability for Integrated Clock-Gating Cells

Enabling DFT Logic During Autonomous Self-Test
When a LogicBIST core performs autonomous self-test, its LBIST_EN signal is asserted
while its test-mode signals are set to the mission-mode encoding. To ensure that testability
logic inside the core is enabled during autonomous self-test, the LogicBIST test-mode
output of the test control module (TCM) is asserted during self-test:

Figure 494 shows the TCM logic for a core-wrapped design.

Figure 494 Test Control Module (TCM) in a Core-Wrapped LogicBIST Design

CORE

test_mode1

test_mode2

LBIST_EN

Mission_mode
wrp_if
wrp_of
lbist

drc_en
(ATPG mode)

always @(LBIST_EN or test_mode1 or test_mode2)
begin
 {Mission_mode, wrp_if, wrp_of, lbist, drc_en} = 0;

 case ({test_mode2, test_mode1})
 3'b00: if (LBIST_EN)
 lbist = 1'b1; // autonomous mode
 else
 Mission_mode = 1'b1; // mission mode
 3'b01: wrp_if = 1'b1;
 3'b10: wrp_of = 1'b1;
 3'b11: begin
 lbist = 1'b1; // ATPG mode
 drc_en = 1'b1;
 end
 endcase
end

TCM

The TCM self-test output enables all testability logic controlled by the DFT-inserted TCM,
such as reconfiguration MUXs, wrapper chains, and so on.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1015

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 30: The LogicBIST Architecture
Providing Testability for LogicBIST Self-Test

Feedback

DFT Logic Intended for Self-Test Only

If you have testability logic in your design that should be enabled only during self-test
operation (autonomous and ATPG modes), then enable it using the LBIST_EN signal
instead of a test-mode signal.

During DFT insertion, any features that use LBIST_EN as the control signal are enabled
from the self-test-mode output decoded by the TCM, as shown in Figure 495. Any existing
RTL logic connections to the LBIST_EN signal source are also remapped to this self-test-
mode output.

Figure 495 Self-Test Assertion Logic for Self-Test-Only DFT Signals

LBIST_EN

Existing RTL
testability logic
(optional)

Self-test-only
DFT-inserted
testability logic

test_mode1
test_mode2

TCM

Existing RTL
testability logic
(optional)

LBIST_EN

DFT insertion

lbist

Caution:
The self-test-mode output of the TCM is not synchronized, registered, or
guaranteed glitch-free. Any logic connections made to it (including test points)
must be handled accordingly.

DFT Logic Intended for Both Manufacturing Test and Self-Test

By default, global DFT logic enabled for manufacturing test modes is also enabled during
self-test operation (autonomous and ATPG modes).

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1016

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 30: The LogicBIST Architecture
Providing Testability for LogicBIST Self-Test

Feedback

The tool automatically inserts self-test assertion logic for the following DFT signals:

• The self-test mode output of the test control module (TCM)

• Test-mode signals for OCC controllers

The tool does not insert self-test assertion logic for the following DFT signals:

• Test-mode signals for test points

• Constant signals (set_dft_signal -type Constant)

To assert these signals during self-test, you must insert a force_0 or force_1 user-defined
test point that uses LBIST_EN as the control signal:

dc_shell> set_test_point_element -control_signal LBIST_EN \
 -type force_1 my_test_mode
This results in the assertion logic shown in Figure 496. The test point also asserts any
existing RTL logic connections to the signal source.

Figure 496 Self-Test Assertion Logic for Unasserted DFT Signals

LBIST_EN
Existing RTL
testability logic
(optional)

DFT-inserted
testability logic

test_mode1
test_mode2

my_test_mode

TCM

Existing RTL
testability logic
(optional)

my_test_mode

DFT insertion

lbist

For ports that are not connected before executing insert_dft, when a
set_test_point_element is placed, you get the following warning message:

Warning: Skipping test point at location tp_tm. Port is not connected.

As described in, Using -type Constant versus Using -type TestMode on page 224, the
Constant signal type is not guaranteed to describe the signal’s expected (or required)
state during mission mode. However, you can insert a test point to meet the design
requirements, if needed.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1017

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 30: The LogicBIST Architecture
Providing Testability for LogicBIST Self-Test

Feedback

Blocking Internal X Sources
LogicBIST designs must be X-clean. If a scan cell captures an X value, the signature value
in the MISR is corrupted and the self-test results are useless (despite what coverage might
be reported). If you have X sources inside your design, you must block them during self-
test operation.

TestMAX ATPG provides features to identify X sources. For DRC, you can set the X2
violation severity to warning to identify scan cells that capture X values. During seed and
signature computation, M740 violations report patterns in which the MISR captures X
values.

Possible X sources include:

• Unwrapped or unisolated input ports

During self-test, input ports must block external X values from being captured. You can
use core wrapping or isolation test points, as described in Isolating the Design During
LogicBIST Self-Test on page 1012.

Caution:
Avoid sharing functional input ports with DFT signals (such as scan-in
or scan-enable signals) if possible. DFT signals are not wrapped during
core wrapping, and inserting isolation test points that do not interfere with
manufacturing test requires careful attention to detail.

• Nonscan cells

If you have scan cells that capture values from nonscan cells, you might be able to
use the loadable nonscan cell feature in TestMAX ATPG to prevent the nonscan cells
from driving X values into the scan cells. For more information, see “Using Loadable
Nonscan Cells” in TestMAX ATPG and TestMAX Diagnosis Online Help.

• Black boxes

If you have unmodeled macro cells or memories without ATPG models, and any
outputs of these blocks reach a scan cell, you must insert X-blocking logic at the
component outputs by inserting test points or modifying the RTL.

• Timing exceptions

Scan cells that are endpoints of timing exceptions capture X values. You can use test
points to prevent these X values from being captured.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1018

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 30: The LogicBIST Architecture
Providing Testability for LogicBIST Self-Test

Feedback

Ensuring Testability for Reset Signals
Asynchronous reset (and set) signals are defined using the set_dft_signal command:

set_dft_signal -view existing_dft -type Reset \
 -port RSTN -active_state 0

These signals are similar to clocks in that they cause sequential cells to capture a value.
As a result, you must ensure that there is no capture interaction between clock and reset
signals during LogicBIST operation.

If you have OCC-controlled clocks, you must use weighted clock capture groups to
allocate capture cycles between clocks and reset signals.

If all clocks are external (port-driven), you can choose either of the following:

• Insert OCC controllers for the external clocks and use weighted clock capture groups to
allocate capture cycles between clocks and reset signals.

Because clocks and resets are separated into groups that avoid capture interactions,
this method provides coverage of the reset network but might increase pattern count
for a given coverage.

• Use the external clock controller and disable the reset signal during LogicBIST
operation.

Because all clocks capture on every cycle, this method improves clock capture
efficiency but does not provide coverage on the reset network.

Caution:
Do not define any asynchronous reset signal with this method. Instead,
define the reset source as a constant signal. For TestMAX ATPG in
manufacturing test modes, you must manually define the reset signal.

Figure 497 shows the weighted clock/reset logic structure.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1019

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 30: The LogicBIST Architecture
Providing Testability for LogicBIST Self-Test

Feedback

Figure 497 Using Weighted Capture Groups for Reset (or Set) Signals

0 <= X < 122
122 <= X < 128

Functional
logic

Clock capture
probability:

95%

Reset
probability:

5%

(LogicBIST mode)

Weight-enabled
clock/reset signals

Pulse
pattern
logic

DFT-inserted
OCC

controller

Clock chain

Scan enable (from
LogicBIST FSM)

1'b1
(inactive

value)

0

11

0
RSTN

BIST clock
pattern
7'b1000

000
1

0

When LogicBIST operation is active,

• The reset signal is asserted when LBIST_EN is asserted but START is de-asserted.
(Because of the synchronizer delay on the START signal, this condition always occurs.)

• When START is asserted, the test begins. Within each self-test pattern,

◦ The reset signal is de-asserted during scan shift.

◦ The reset signal is controlled by the clock/reset weight decoder during scan
capture.

• The reset signal is reasserted when the test completes.

• The reset signal is controlled by the functional logic when LBIST_EN is de-asserted.

For a design with multiple reset signals, you typically include all reset signals in a single
reset group.

If your design uses external clocks, see Specifying OCC Controllers for External Clock
Sources on page 542.

See Also

• OCC-Controlled Clocks With Weighted Clock Capture Groups on page 1009 for details
on how weighted capture groups work

Ensuring Testability for Integrated Clock-Gating Cells
If you have or are inserting integrated clock-gating (ICG) cells, LogicBIST requires a
dedicated scan-enable signal for ICG test pins. The tool automatically inserts testability
logic for ICG cells identified by DFT insertion. Figure 498 shows the clock-gating cell
testability logic structure.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1020

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 30: The LogicBIST Architecture
Providing Testability for LogicBIST Self-Test

Feedback

Figure 498 LogicBIST Testability Logic for Clock-Gating Cells

SE_CG

LogicBIST mode active

1'b1
(active value)

0

1

0

1

CLK

EN

CLKO

UICG1TST
D
SI
SE

Q

SECG CLK

EN

CLKO

UICG2TST
Scan enable

(from LogicBIST FSM)

When LogicBIST operation is active,

• The clock-gating scan-enable signal is asserted during scan shift.

• The clock-gating scan-enable signal is controlled by a dedicated DFT-inserted
testability scan cell (SECG in Figure 498) during scan capture.

If you declare multiple clock-gating scan-enable signals, the tool inserts a separate control
register for each signal declaration.

Caution:
Clock-gating cells require a dedicated scan-enable signal. For details, see
LogicBIST Limitations and Known Issues on page 1068.

If you have instantiated clock-gating cells in your RTL, they must be identified so they are
controlled during self-test. See Inserting LogicBIST in Designs With Clock-Gating Cells on
page 1033 for details.

Discrete-logic clock-gating cells have no test pin, so no testability logic can be inserted for
them.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1021

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

31
Using LogicBIST Self-Test

To use LogicBIST self-test, you specify the desired number of compressed chains and
scan patterns to run. The tool synthesizes the scan and BIST circuitry and writes the
architectural information to the SPF file. The TestMAX ATPG tool then computes seed and
signature values, which are used for both testbench simulation and autonomous device
self-test operation.

This chapter includes the following topics:

• Configuring LogicBIST Self-Test

• Previewing and Inserting the LogicBIST Implementation

• Computing the Seed and Signature Values in TestMAX ATPG

• Setting the Seed and Signature Values in Synthesis

• Simulating Autonomous BIST Operation

• Integrating the Self-Test Logic into the Functional Design Logic

• Example LogicBIST Scripts

Configuring LogicBIST Self-Test
LogicBIST configuration is described in the following topics:

• Defining the LogicBIST Control Signals

• Defining the LogicBIST Scan-In Signal

• Defining the LogicBIST Self-Test Mode

• Configuring the PRPG and MISR Lengths

• Configuring the Pattern Counter and Shift Counter Lengths

• Configuring the Self-Test Capture Clock Timing

• Configuring Clock and Reset Weights

• Controlling Self-Test Through IEEE 1500 Logic

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1022

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 31: Using LogicBIST Self-Test
Configuring LogicBIST Self-Test

Feedback

• Configuring Self-Test Isolation Logic

• Inserting LogicBIST in Designs With Trailing-Edge Flip-Flops

• Inserting LogicBIST in Designs With External Chains

• Inserting LogicBIST in Designs With Clock-Gating Cells

Defining the LogicBIST Control Signals
You can define the LogicBIST-specific signals (LBIST_EN, START, STATUS_0,
STATUS_1) on existing ports using the following signal types:

set_dft_signal -view spec -port my_enable -type lbistEnable
set_dft_signal -view spec -port my_start -type lbistStart
set_dft_signal -view spec -port my_status0 -type lbistStatus_0
set_dft_signal -view spec -port my_status1 -type lbistStatus_1

You can also define these signals on internal pins using the -hookup_pin option.

The LBIST_EN and START signals cannot be defined on the same source object within
the design because ATPG mode requires that they be separately controllable at the design
level. However, they can both be driven by the same signal external to the design.

If you do not define these signals, the tool automatically creates them using the following
signal port names: LBIST_EN, START, STATUS_0, STATUS_1.

See Also

• The LogicBIST Control and Data Signals on page 1002 for details on how the control
and status signals work

Defining the LogicBIST Scan-In Signal
A LogicBIST implementation requires at least one user-defined scan-in signal. Define it on
an existing input port:

set_dft_signal -view spec -port {SI1} -type ScanDataIn

This signal is used for ATPG mode, which is described in The LogicBIST Operational
Modes on page 1003. No user-defined scan-out signal is required.

Defining the LogicBIST Self-Test Mode
Synthesis commands and command options related to LogicBIST self-test contain the
word “logicbist”. To enable LogicBIST self-test insertion, use the following command:

dc_shell> set_dft_configuration -logicbist enable

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1023

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 31: Using LogicBIST Self-Test
Configuring LogicBIST Self-Test

Feedback

To insert LogicBIST self-test in your design, define a test mode with a usage of
logicbist. Then, use the set_logicbist_configuration command to configure the
self-test configuration parameters.

The following example script is for a design that uses core wrapping for boundary
testability:

define scan clocks
set_dft_signal -view existing_dft -type ScanClock \
 -timing {45 55} -port CLK1

enable self-test insertion
set_dft_configuration -logicbist enable

define the uncompressed inward-facing mode and its
corresponding inward-facing scan compression mode
define_test_mode WRP_IF -usage wrp_if
define_test_mode LBIST -usage logicbist

configure uncompressed scan mode
set_scan_configuration -test_mode WRP_IF -chain_count 2

configure LogicBIST self-test mode
set_logicbist_configuration \
 -base_mode WRP_IF -test_mode LBIST \
 -clock CLK1 \
 -chain_count 32

You must explicitly configure the LogicBIST codec using the -chain_count or
-max_length option of the set_logicbist_configuration command; there is no default
for these options.

If your design has multiple scan clocks, you can use the -clock option to specify which
clock to use for LogicBIST operation. The specified clock must be previously defined as
a scan clock using the set_dft_signal command. The default is the first-defined scan
clock.

Note that the test-mode encoding of the self-test mode is not actually applied to the design
during in-place self-test; it is applied only during seed and signature computation in the
TestMAX ATPG tool. For details, see The LogicBIST Operational Modes on page 1003.

Configuring the PRPG and MISR Lengths
By default, the tool chooses the PRPG and MISR register widths based on the scan
architecture. To specify a particular width for the PRPG or MISR register, use the following
options:

set_logicbist_configuration \
 -prpg_width width_value \
 -misr_width width_value

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1024

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 31: Using LogicBIST Self-Test
Configuring LogicBIST Self-Test

Feedback

The minimum width value is a function of the number of compressed chains in the self-test
mode. The specified width must be large enough to satisfy the following requirement:

width_value*(width_value-1)/2 >= num_compressed_chains

Configuring the Pattern Counter and Shift Counter Lengths
By default, the tool creates a pattern counter register with a width of 8, which allows up to
256 patterns. To specify a particular width for the pattern counter register, use the following
option:

set_logicbist_configuration \
 -pattern_counter_width width_value

By default, the tool sizes the shift counter register according to the longest shift chain in
the design. In most cases, this is sufficient. To change the shift counter width, use the
following option:

set_logicbist_configuration \
 -shift_counter_width width_value

Configuring the Self-Test Capture Clock Timing
During self-test, the scan-enable signal is generated by the self-test controller according
to the timing programmed into its finite state machine (FSM) logic. To control the timing
relationship between shift and capture operations, you must configure how this logic is
implemented.

Capture Window Duration

To specify the duration of the capture window, set the following application variable:

set_app_var test_logicbist_capture_cycles num_cycles

where num_cycles is the duration in BIST clock cycles.

The default of this variable is 1, which is suitable for single-pulse designs without OCC
controllers.

For designs with OCC controllers, you must set this variable to a sufficiently large value to
allow all at-speed capture clock pulse sequences to be issued, then to allow all registers to
settle and be ready for scan shifting.

Use the following formula to compute the recommended value for your design:

test_logicbist_capture_cycles =
 ((P_ate_clk * 2)
 + (P_fast_clk * (5 + num_capture_cycles))) / P_ate_clk

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1025

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 31: Using LogicBIST Self-Test
Configuring LogicBIST Self-Test

Feedback

where

P_ate_clk = period of ATE clock
P_fast_clk = period of slowest OCC-controlled clock
num_capture_cycles = cycle count C specified by
 set_clock_controller_configuration -cycles C

Figure 499 shows an example where test_logicbist_capture_cycles is set to 4.

Figure 499 Capture Cycle Timing Example

BIST clock

Slowest OCC
input clock

Scan enable

Slowest OCC
output clock

test_num_capture_cycles == 4Te
xt

Adding Capture Window Margin for Scan Enable

If your scan-enable signal has a higher insertion delay than one or more of your scan
clocks, then you might need to add margin to the deassertion of the scan-enable signal.

To do this, set the following application variable to the number of BIST clock cycles of
margin to add:

set_app_var test_logicbist_se_deassert_delay num_cycles

The margin is added before scan-enable deassertion and after scan-enable assertion.
Figure 500 shows an example where test_logicbist_se_deassert_delay is set to 1.

Figure 500 Capture Window Scan-Enable Signal Margin Example

BIST clock

Slowest OCC
input clock

Scan enable

Slowest OCC
output clock

test_logicbist_se_deassert_delay == 1

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1026

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 31: Using LogicBIST Self-Test
Configuring LogicBIST Self-Test

Feedback

Configuring Clock and Reset Weights
If your design requires weighted clock capture groups, use the -occ_clock_weights
option to define them:

set_logicbist_configuration ... \
 -occ_clock_weights {{weight1 clock1 [clock2 ...]} \
 {weight2 clock3 [clock4 ...]} \
 ...}

The -occ_clock_weights option takes a list of group definitions, where each group is a
list containing a weight value followed by the OCC-controlled clock signals in that group.

If you also have asynchronous reset or set signals, specify their weights with the
-reset_weights option using the same group syntax. Typically there is a single reset
group.

For example,

set_logicbist_configuration \
 -occ_clock_weights {{80 UPLL/CLKO CLK33} {44 CLK266}} \
 -reset_weights {{4 RSTN1 RSTN2}}

Caution:
The signals in a -reset_weights specification must be defined as resets using
the set_dft_signal -type Reset command.

The weight values must be positive integers. There is no fixed scale for the weights; each
group's capture probability is relative to the sum of all clocks and reset group weights.
Each group is given a weight, which has a normalized resolution of 1/128. The number
128 comes from 7 flops of the PRGP LFSR which counts in a random order from 1 to 128.

Therefore, the most accurate total weight values are from 1 to 128.

In the earlier example, the OCC clock weight {44 CLK266} specifies that in a series of 128
patterns, 44 patterns activate CLK266 in a random order.

You can also specify two special weight values, always_on and always_off, for clocks
that should always pulse or never pulse, respectively. These values do not affect the sum
of all numeric clock and reset group weights.

If you use reset weights, you must run the update_fault -reset_au command in the
TestMAX ATPG tool before performing seed and signature analysis.

To determine how noninteracting clocks can be grouped, you can perform clock grouping
analysis in the TestMAX ATPG tool. For details, see "Clock Grouping" in the TestMAX
ATPG and TestMAX Diagnosis Online Help.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1027

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 31: Using LogicBIST Self-Test
Configuring LogicBIST Self-Test

Feedback

Configuring Self-Test Isolation Logic
The following topics describe how to configure logic that isolates your design from
surrounding logic during self-test operation:

• Configuring Wrapper Chain Isolation Logic

• Configuring Test Point Isolation Logic

Configuring Wrapper Chain Isolation Logic
Wrapper chains inherently provide the isolation needed by self-test operation. If your
design already implements wrapper chains, no further action is needed. Otherwise, you
can enable and configure wrapper chains.

To use wrapper chains for self-test isolation, do the following:

1. Enable both the core wrapper and LogicBIST clients:

set_dft_configuration -wrapper enable -logicbist enable
2. Define global DFT signals, wrapper configuration settings, and LogicBIST configuration

settings.

Any logic between the I/O ports and wrapper chain cannot be tested by LogicBIST
self-test. To minimize such logic, either use the simple wrapper flow, or use the
maximized-reuse flow and specify a low value for the -depth_threshold option of the
set_wrapper_configuration command.

3. If the self-test design drives top-level logic that cannot tolerate pseudorandom output
data during self-test, specify safe values for the output wrapper cells:

global:
set_wrapper_configuration -class core_wrapper \
 -safe_state 0 ;# or 1

per-port:
set_boundary_cell -class core_wrapper \
 -ports port_list -safe_state 0 ;# or 1

4. Define the uncompressed wrapper modes, scan compression modes, and LogicBIST
self-test modes:

define_test_mode WRP_IF -usage wrp_if
define_test_mode WRP_OF -usage wrp_of ;# if needed
define_test_mode DFTMAX -usage scan_compression
define_test_mode BIST -usage logicbist

5. When configuring the LogicBIST test mode, reference the inward-facing uncompressed
test mode as its base mode:

set_logicbist_configuration -test_mode BIST -base_mode WRP_IF ...

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1028

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 31: Using LogicBIST Self-Test
Configuring LogicBIST Self-Test

Feedback

The LogicBIST test mode becomes an inward-facing mode that drives LogicBIST-
generated data into the input wrapper chain, and incorporates the captured output
wrapper chain data into the MISR. As with other DFT signals, LogicBIST-specific signals
(LBIST_EN, START, STATUS_0, and STATUS_1) are not wrapped.

When the core wrapper and LogicBIST clients are both enabled, the following core
wrapping behaviors change:

• The tool no longer creates the outward-facing wrp_of mode by default; you must
explicitly define it with the define_test_mode -usage wrp_of command. This allows
core wrapping to be used only for self-test isolation and not full hierarchical test.

• In the maximized reuse core wrapping flow, dedicated wrapper cells are added for

◦ Ports associated with feedthrough paths.

◦ Ports that drive black-box cells that have no CTL model.

You can suppress wrapper cells on these ports by assigning them a wrapper cell type
of none:

set_boundary_cell -class core_wrapper -type none -ports {port_list}
Note the following requirements and limitations when using core wrapping with LogicBIST
self-test:

• If you have functional ports reused as scan ports, you must isolate them with user-
defined test points. The tool does not wrap these ports.

For simplicity, it is best to avoid this where possible.

• If your design has feedthrough paths, restrictions apply to the use of shared wrapper
cells on them. For details, see SolvNet article 2506549, “Feedthrough Path Caveats in
Maximized-Reuse Wrapped LogicBIST Designs.”

• The tool-created wrapper clock (wrp_clk) is not controlled by the BIST clock controller
(OCC or non-OCC) and cannot be used. To avoid this, ensure that it is not present in
the wrapper preview report.

See Also

• Isolating the Self-Test Design Using Core Wrapping on page 1012 for details on how
core wrapping provides design isolation

• Example Core Insertion Script Using Core Wrapping on page 1048 for an example
script

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1029

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnet.synopsys.com/retrieve/2506549.html
https://solvnet.synopsys.com/retrieve/2506549.html

Chapter 31: Using LogicBIST Self-Test
Configuring LogicBIST Self-Test

Feedback

Configuring Test Point Isolation Logic
If your design is very area-sensitive and is not already core-wrapped, you can isolate the
design using test points instead of a wrapper chain.

Note:
If the I/O ports in your design are mostly registered, a maximized-reuse wrapper
chain might require less area than adding test points.

To use test points for isolation, enable and configure the core_wrapper target of
automatic test point insertion. For example,

enable automatic test point insertion
set_dft_configuration -testability enable

enable and configure the core_wrapper target
set_testability_configuration \
 -target core_wrapper \
 -control_signal LBIST_EN

In this example, because the core_wrapper target uses LBIST_EN as the control signal,
the test points isolate the logic during self-test but not manufacturing test.

The core_wrapper target provides additional configuration features and options. For
details, see Configuring the Core Wrapper Test Point Target on page 313.

See Also

• Isolating the Self-Test Design Using Test Points on page 1013 for details on how test
points provide lightweight design isolation

• Connecting the Self-Test Signals to the Functional Design Logic on page 1042 for
details on how the tool uses LBIST_EN as a control signal

• Example Core Insertion Script Using Test-Point Isolation on page 1049 for an example
script

Controlling Self-Test Through IEEE 1500 Logic
If you insert IEEE 1500 test-mode control and LogicBIST self-test together in the same
design, the tool implements logic to control self-test entirely through the IEEE 1500
interface.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1030

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 31: Using LogicBIST Self-Test
Configuring LogicBIST Self-Test

Feedback

In this architecture,

• The pattern count, shift count, seed, and signature values are driven by the TMCDR.

In designs with OCC controllers, the OCC capture mask is driven by the TMCDR.

• The control signals (START and LBIST_EN) are driven by the TMCDR.

• The status signals are captured for observation by the TMCDR.

Configuration

To properly allocate the TMCDR bits, all four self-test value widths must be explicitly
specified. For example,

Enable both IEEE 1500 and LogicBIST insertion
set_dft_configuration -ieee_1500 enable -logicbist enable

Specify self-test value widths so that CDR bits are allocated
set_logicbist_configuration ... \
 -pattern_counter_width 12 \
 -shift_counter_width 6 \
 -prpg_width 18 \
 -misr_width 18
Any signals definitions of the following types are ignored:

lbistEnable
lbistStart
lbistStatus_0
lbistStatus_1

Testbench Generation

After DFT insertion, the write_test command writes a self-test testbench that runs self-
test and checks the status entirely through the IEEE 1500 interface. To use it, you must
specify the values and the TMCDR register name to use for the testbench as follows:

 write_test -format stil -output bist_tb \
 -seed 110100100101010011 \
 -signature 011000011110100110 \
 -shift_counter 50 \
 -pattern_counter 250 \
 -capture_cycle {10} \
 -cdr_name CDR
The -cdr_name option specifies the name of the CDR register segment. By default,
the tool names it "CDR". If you configure a TMCDR register with the set_scan_path
command (see Customizing the IEEE 1500 Architecture on page 382), then specify that
segment name instead.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1031

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 31: Using LogicBIST Self-Test
Configuring LogicBIST Self-Test

Feedback

If you have a serial STIL file containing the seed, signature, and pattern count values,
you can use the set_logicbist_constants Tcl procedure (instead of the write_test
command) to generate the testbench. For details, see SolvNet article 2231010, “Setting
the Seed and Signature Values in a LogicBIST Design."

See Also

• Test-Mode Control Using the IEEE 1500 and IEEE 1149.1 Interfaces on page 375 for
details on implementing IEEE 1500 logic in your design

Inserting LogicBIST in Designs With Trailing-Edge Flip-Flops
The PRPG register in the LogicBIST decompressor is clocked on the leading edge. If your
design has trailing-edge flip-flops, the tool inserts retiming registers as needed.

The beginning retiming registers inserted between the LogicBIST decompressor and
trailing-edge head scan cells have a state-holding loop that is used during scan capture.

If you enable ending retiming flip-flops, the ending retiming registers inserted between
trailing-edge tail scan cells and the LogicBIST compressor are regular non-state-holding
retiming registers. They are inserted even though the path to the leading-edge MISR
register would make timing without them, so a value of begin_only is preferred for
minimal area.

Inserting LogicBIST in Designs With External Chains
External chains are scan chains that are excluded from scan compression. They are
defined using the -scan_data_in and -scan_data_out options of the set_scan_path
command to directly connect the scan chain to scan-in and scan-out ports, as shown in
the following figure.

Figure 501 External Chains in a Compressed Scan Design

External
chains

External chains are supported in DFTMAX and DFTMAX Ultra test modes. However,
external chains are not supported in LogicBIST test modes because the inputs are
unknown and the outputs are unobserved. This causes all scan elements in the external
chain to become X sources.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1032

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnet.synopsys.com/retrieve/2231010.html
https://solvnet.synopsys.com/retrieve/2231010.html

Chapter 31: Using LogicBIST Self-Test
Configuring LogicBIST Self-Test

Feedback

To avoid this, use the -test_mode option of the set_scan_path command to define the
external chain for the required test modes, but not the LogicBIST self-test mode.

For example, to define an external clock chain for all test modes except the self-test mode,

define test modes
define_test_mode wrp_if -usage wrp_if
define_test_mode wrp_of -usage wrp_of
define_test_mode bist -usage logicbist
...

must define external chain AFTER all test modes are defined,
so that all_test_modes returns the set of defined modes
foreach tm [lminus [all_test_modes] bist] {
 set_scan_path EXT_OCC_${tm} -class occ \
 -scan_data_in OCC_SI \
 -scan_data_out OCC_SO \
 -test_mode $tm
}

Inserting LogicBIST in Designs With Clock-Gating Cells
If you have or are inserting integrated clock-gating (ICG) cells, LogicBIST requires a
dedicated scan-enable signal for ICG test pins, as described in Ensuring Testability for
Integrated Clock-Gating Cells on page 1020.

To do this, define a separate signal with a usage of clock_gating:

set_dft_signal -view spec -type ScanEnable -port SE
set_dft_signal -view spec -type ScanEnable -port SE_CG \
 -usage {clock_gating}
The dedicated signal allows the tool to use a special self-test control register to control
ICG test pins during self-test. If you declare multiple clock-gating scan-enable signals, the
tool inserts a separate control register for each signal declaration.

You cannot use a single scan-enable signal with combined usages of {scan
clock_gating}, as then the signals are not independently controllable for each purpose.
Test-mode clock-gating control signals are not supported.

Existing ICG Cells in the RTL

If you have instantiated ICG cells in your RTL, they must be identified so they are
controlled during self-test. You can use any of the methods described in Instantiating
Clock-Gating Cells in the RTL on page 270 to identify the test pins.

If a test pin has an existing, non-constant connection in the RTL, then the tool-inserted
logic controls it only during self-test; the existing connections remains logically in place in
all other cases—including manufacturing test.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1033

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 31: Using LogicBIST Self-Test
Previewing and Inserting the LogicBIST Implementation

Feedback

See Also

• SolvNet article 3055862, “Defining Two LogicBIST Scan-Enable Signals at a Single
Port” for a workaround to the single-port limitation

Previewing and Inserting the LogicBIST Implementation
The following topics describe how to preview and insert LogicBIST self-test in your design,
then write out the files needed for seed and signature generation:

• Previewing the LogicBIST Implementation

• Inserting the LogicBIST Logic

• Writing Out the LogicBIST Design Files

Previewing the LogicBIST Implementation
After you have configured your LogicBIST implementation, use the preview_dft
command to preview the implementation. The preview report contains a LogicBIST section
that describes the self-test values.

Constant-Driven Values

For a design with constant-driven values, the report shows the initial values:

**
LogicBIST Compression information
**

 PRPG size: 31
 MISR size: 30
 Shift counter size: 4
 Pattern counter size: 12

 Shift counter data:
 top_U_LogicBISTController_bist/shift_count_data = 4'b1001

 Pattern counter data:
 top_U_LogicBISTController_bist/user_pattern_count_data =
 12'b000000000000
 PRPG seed data:
 top_U_decompressor_bist/user_prpg_seed =
 31'b0000000000000000000000000000000
 MISR signature data:
 top_U_compressor_bist/user_misr_signature =
 30'b000000000000000000000000000000

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1034

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnet.synopsys.com/retrieve/3055862.html
https://solvnet.synopsys.com/retrieve/3055862.html

Chapter 31: Using LogicBIST Self-Test
Previewing and Inserting the LogicBIST Implementation

Feedback

The pattern counter, PRPG seed, and MISR signature values are set to all-zeros in the
initial implementation; these values are determined later in TestMAX ATPG. The shift
counter is automatically set according to the longest scan chain length in LogicBIST mode.

The test-mode section indicates the mission mode encoding that must be asserted for
autonomous self-test. For example,

Test Mode Controller Index (MSB --> LSB)
--
TM1, TM0

Control signal value - Test Mode

00 Mission_mode - Normal

10 bist - InternalTest

01 wrp_if - InternalTest

11 dftmax - InternalTest

Information: For self-test, test mode 'Mission_mode' (opcode '00') is
used for autonomous operation, while 'bist' (opcode '10') is used for
TetraMAX ATPG DRC. (TEST-2096)

Designs With IEEE 1500

For a design with DFT-inserted IEEE 1500 logic, the report shows how the CDR bits are
allocated to the self-test values and test-mode signals using a bit-by-bit format:

**
LogicBIST Compression information
**

 PRPG size: 18
 MISR size: 18
 Shift counter size: 6
 Pattern counter size: 12

 SHIFT COUNTER CONNECTIONS:

 top_Test_Controller_1500_inst/CDR[9] connected to
 top_U_LogicBISTController_bist/shift_count_data[0]
 top_Test_Controller_1500_inst/CDR[8] connected to
 top_U_LogicBISTController_bist/shift_count_data[1]
..
 top_Test_Controller_1500_inst/CDR[4] connected to
 top_U_LogicBISTController_bist/shift_count_data[5]

 PATTERN COUNTER CONNECTIONS:

 top_Test_Controller_1500_inst/CDR[21] connected to

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1035

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 31: Using LogicBIST Self-Test
Previewing and Inserting the LogicBIST Implementation

Feedback

 top_U_LogicBISTController_bist/user_pattern_count_data[0]
...
 top_Test_Controller_1500_inst/CDR[10] connected to
 top_U_LogicBISTController_bist/user_pattern_count_data[11]

 SEED CONNECTIONS:

 top_Test_Controller_1500_inst/CDR[57] connected to
 top_U_decompressor_bist/user_prpg_seed[0]
...
 top_Test_Controller_1500_inst/CDR[40] connected to
 top_U_decompressor_bist/user_prpg_seed[17]

 EXPECTED SIGNATURE CONNECTIONS:

 top_Test_Controller_1500_inst/CDR[39] connected to
 top_U_compressor_bist/user_misr_signature[0]
...
 top_Test_Controller_1500_inst/CDR[22] connected to
 top_U_compressor_bist/user_misr_signature[17]

The test-mode section indicates the mission mode encoding that must be asserted by the
TMCDR for autonomous self-test. For example,

================================
Test Mode Controller Information
================================

Test Mode Controller Ports

test_mode: top_Test_Controller_1500_inst/CDR[0]
test_mode: top_Test_Controller_1500_inst/CDR[1]

Test Mode Controller Index (WSO --> WSI)
--
top_Test_Controller_1500_inst/CDR[0],
top_Test_Controller_1500_inst/CDR[1]

Control signal value - Test Mode

00 Mission_mode - Normal

01 bist - InternalTest

10 wrp_if - InternalTest

11 dftmax - InternalTest

Information: For self-test, test mode 'Mission_mode' (opcode '00') is
used for autonomous operation, while 'bist' (opcode '01') is used for
TetraMAX ATPG DRC. (TEST-2096)

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1036

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 31: Using LogicBIST Self-Test
Previewing and Inserting the LogicBIST Implementation

Feedback

The LBIST_EN and START signals are also driven by the TMCDR, but they are not shown
in the report.

Clock Information

The self-test section of the preview report lists the number of scan cells clocked by each
clock:

Clock to scan registers distribution
Clock source UPLL1/CLKO: drives 64 scan registers (33%)
Clock source UPLL2/CLKO: drives 128 scan registers (66%)

If you are using clock weights, the report also lists the implemented weight percentages:

OCC clock weights information
**
Group 1: Normalized Weight = 37 % : UPLL1/CLKO
Group 2: Normalized Weight = 62 % : UPLL2/CLKO
**

Inserting the LogicBIST Logic
When you are satisfied with your DFT configuration, run the insert_dft command. Do
not run an explicit incremental compile yet.

Writing Out the LogicBIST Design Files
After DFT insertion, write out the design netlist, SPF, and testbench file using the following
commands:

write out design netlist
write -format verilog -output top_no_seed_signature.vg -hierarchy

write protocol for TestMAX ATPG to calculate seed/signature
write_test_protocol -test_mode LBIST -output LBIST.spf

write testbench for Verilog simulation to validate
LogicBIST implementation
#
(this command produces bist_tb.stil)
write_test -format stil -output bist_tb

The files created by these commands serve the following purposes:

• The write_test_protocol command creates an SPF used by TestMAX ATPG to
compute the seed and signature values in ATPG mode. This SPF does not simulate
the actual autonomous LogicBIST test process; instead, it enables ATPG mode so
that TestMAX ATPG can access the LogicBIST configuration registers through scan to
evaluate seed values. OCC controllers are bypassed in the SPF.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1037

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 31: Using LogicBIST Self-Test
Computing the Seed and Signature Values in TestMAX ATPG

Feedback

• The write_test command creates a STIL pattern file that can be used to simulate the
LogicBIST logic in autonomous mode (with the test-mode signals set to mission mode
encoding). OCC controllers are enabled in the testbench.

Autonomous BIST operation cannot be simulated until you set the seed, signature,
and pattern count values, as described in Setting the Seed and Signature Values in
Synthesis on page 1040.”

For designs with IEEE 1500, you can use the set_logicbist_constants Tcl
procedure (instead of the write_test command) to write out the testbench.

The test protocol and STIL pattern files drive X values at the design inputs, which validates
that self-test is unaffected by external values.

Post-DFT DRC (running the dft_drc command after DFT insertion) is supported for
LogicBIST designs. DRC checking is also performed in the TestMAX ATPG tool during
seed and signature calculation.

If desired, you can leave your synthesis session up while you generate seed and signature
values in TestMAX ATPG. You can then return to the synthesis session to set the seed and
signature values.

Computing the Seed and Signature Values in TestMAX ATPG
To calculate the seed and signature value in TestMAX ATPG, use the initial netlist and
LogicBIST-mode SPF. For example,

read_netlist -library /project/libs/my_class.v
read_netlist top_no_seed_signature.vg
run_build top

Enable LogicBIST DRC
set_drc -seq_comp_jtag_lbist_mode light_lbist
set_drc -allow_unstable_set_reset ;# only needed if reset signal exists
run_drc LBIST.spf

Specify a particular seed value (optional)
#add_lbist_seeds 00000000000000000000000000000001

Run LogicBIST ATPG for 133 patterns and 1 capture clock cycle
run_atpg -auto -jtag_lbist {1 133 1}
run_simulation
report_patterns -all

write serial STIL file containing seed and signature values
write_patterns serial.stil -format stil -replace -unified -serial

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1038

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 31: Using LogicBIST Self-Test
Computing the Seed and Signature Values in TestMAX ATPG

Feedback

If your design contains asynchronous set or reset signals, you must apply the set_drc
-allow_unstable_set_reset setting to enable DRC to understand the reset-control
logic.

In addition, if you use reset weights, you must run the update_fault -reset_au
command in the TestMAX ATPG tool before performing seed and signature analysis.

The resulting STIL pattern file contains the seed and signature values generated by the
run_atpg command.

Caution:
You cannot use this STIL pattern file to simulate autonomous self-test, as it
contains only the computation of the signature value from the seed value.
Instead, use the STIL pattern file written out by the DFTMAX write_test
command. For details, see Figure 476 on page 996.

Choosing a Seed Value

By default, the run_atpg command uses seed values from a pseudorandom sequence of
seed values. To evaluate a new seed value, run the run_atpg command again. Identical
TestMAX ATPG sessions yield the same sequence of seed values.

You can also explicitly specify seed values using the add_lbist_seeds command. For
details, see TestMAX ATPG and TestMAX Diagnosis Online Help.

Some seed values provide better coverage than others. To find an optimal seed value, use
the find_seed Tcl procedure provided in SolvNet article 2220819, “Finding Optimal Seed
Values for the LogicBIST PRPG.”

Computing the Signature Value

The values provided to the -jtag_lbist option are: number of seed values (always 1),
pattern count, number of capture cycles (usually 1). The maximum pattern count value
is (2^pattern_count_width)-2, which allows for an additional load-only pattern at the
beginning of self-test.

After ATPG completes, the serial STIL pattern file contains the seed, signature, pattern
counter, and shift counter values for the test, provided in STIL annotation comments. The
report_patterns command also reports this information.

If the run_atpg command issues M740 (MISR X capture) violations, the resulting
signature value is invalid. For details on resolving these violations, see SolvNet article
2460245, “How Do I Debug M740 Violations (MISR X Capture) in TetraMAX?”

Note that the write_testbench command in the TestMAX ATPG tool writes a testbench
that uses ATPG mode to externally access seed and signature values. It does not write a
testbench that tests autonomous LogicBIST operation, as the write_test command does
in the DFT environment.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1039

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnet.synopsys.com/retrieve/2220819.html
https://solvnet.synopsys.com/retrieve/2220819.html
https://solvnet.synopsys.com/retrieve/2460245.html
https://solvnet.synopsys.com/retrieve/2460245.html

Chapter 31: Using LogicBIST Self-Test
Setting the Seed and Signature Values in Synthesis

Feedback

Setting the Seed and Signature Values in Synthesis
After you write the serial STIL pattern file from TestMAX ATPG, you can use the file to
set the seed, signature, and pattern counter values in your design. You can do this in the
same DFT session where you wrote out the files for TestMAX ATPG. If that session is no
longer running, reload the design from a .ddc file.

To set the values in the design to the values contained in the serial STIL file, use the
set_logicbist_constants Tcl procedure from SolvNet article 2231010, “Setting the
Seed and Signature Values in a LogicBIST Design”. Its behavior depends on the type of
seed, signature, and pattern count values used in your design:

• For constant-driven values, it modifies the netlist in memory to the desired values.

• For port-driven values, it creates a VCS command value to force the desired values at
the block ports.

• For IEEE 1500 designs, it writes a testbench that performs self-test through the IEEE
1500 interface using the desired values.

Note:
There is no automation for programmable seed, signature, or pattern count
values driven by functional logic. In this case, you must create your own
initialization protocol and testbench for simulation.

The following example shows constant-driven values being set in a netlist:
dc_shell> source set_logicbist_constants.tcl
1
dc_shell> set_logicbist_constants -file_name serial.stil
Found LogicBIST controller for 'LBIST' test mode.
Obtained data from 'serial.stil' file.

Verifying shift counter value is set to '1011'...
 Verified top_U_LogicBISTController_LBIST/shift_count_data[3] is set to logic
 1
 Verified top_U_LogicBISTController_LBIST/shift_count_data[2] is set to logic
 0
 Verified top_U_LogicBISTController_LBIST/shift_count_data[1] is set to logic
 1
 Verified top_U_LogicBISTController_LBIST/shift_count_data[0] is set to logic
 1

Setting pattern counter value to '000001100101'...

Setting PRPG seed value to '1101011000000100111100100000110'...

Setting MISR signature value to '100011110010000110000111111011'...

Once you have set the desired values, the serial STIL pattern file is no longer needed. The
LogicBIST simulation is performed using only the testbench created by the write_test
command in the tool.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1040

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnet.synopsys.com/retrieve/2231010.html
https://solvnet.synopsys.com/retrieve/2231010.html

Chapter 31: Using LogicBIST Self-Test
Simulating Autonomous BIST Operation

Feedback

For constant-driven values, you should take care when optimizing the DFT logic early in
the flow. For details, see Post-DFT Design Optimization on page 1063.

Simulating Autonomous BIST Operation
To simulate autonomous LogicBIST operation in VCS, create a testbench from the
STIL file generated by the write_test command in synthesis. To do this, use the
stil2verilog command:

% stil2verilog bist_tb.stil bist_tb
This generates a Verilog testbench file (bist_tb.v) and associated data file (bist_tb.dat).
You can then simulate autonomous operation using this testbench along with the final
netlist.

An example VCS command line is as follows:

vcs \
 -notice -Mupdate -timescale=1ns/10ps \
 +nospecify +notimingcheck +tetramax +delay_mode_zero \
 -l vcs_lbist.log \
 -v libs/class.v \
 bist_tb.v \
 top.vg

./simv -l vcs_sim_lbist.log

For other simulators, see their documentation.

The resulting simulation should complete with no errors:
% ./simv -l vcs_sim_lbist.log
Notice: timing checks disabled with +notimingcheck at compile-time
Chronologic VCS simulator copyright 1991-2014
Contains Synopsys proprietary information.
Compiler version J-2014.12-SP2; Runtime version J-2014.12-SP2; Jun 23 15:34 2
015
###
 MAX TB Version K-2015.06
 Test Protocol File generated from original file "bist_tb.stil"
 STIL file version: 1.0
###

XTB: Starting serial simulation of 0 pattern
XTB: Simulation of 0 patterns completed with 0 mismatches (time: 6144800.00 ns
,
 cycles: 61448)

 V C S S i m u l a t i o n R e p o r t

Time: 6144800 ns

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1041

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 31: Using LogicBIST Self-Test
Integrating the Self-Test Logic into the Functional Design Logic

Feedback

If the design logic is modified, the simulation should complete with unexpected values on
the STATUS_0 output:

% ./simv -l vcs_sim_lbist.log
Notice: timing checks disabled with +notimingcheck at compile-time
Chronologic VCS simulator copyright 1991-2014
Contains Synopsys proprietary information.
Compiler version J-2014.12-SP2; Runtime version J-2014.12-SP2; Jun 23 15:34 2
015
###
 MAX TB Version K-2015.06
 Test Protocol File generated from original file "bist_tb.stil"
 STIL file version: 1.0
###

XTB: Starting serial simulation of 0 pattern
>>> Error during VectorStmt pattern 0
>>> At T=6144540.00 ns, V=61446, exp=0, got=1, signal STATUS_0
>>> Error during VectorStmt pattern 0
>>> At T=6144640.00 ns, V=61447, exp=0, got=1, signal STATUS_0
XTB: Simulation of 0 patterns completed with 2 mismatches (time: 6144800.00 ns
,
 cycles: 61448)

 V C S S i m u l a t i o n R e p o r t

Time: 6144800 ns

For more information on the stil2verilog command, see “Using MAX Testbench” in
TestMAX ATPG and TestMAX Diagnosis Online Help.

Integrating the Self-Test Logic into the Functional Design Logic
The following topics describe how to integrate the LogicBIST self-test logic into your
functional design:

• Connecting the Self-Test Signals to the Functional Design Logic

• Ensuring the Required Test Mode for Autonomous Self-Test

• Monitoring the Self-Test Status Signals

Connecting the Self-Test Signals to the Functional Design Logic
To connect LogicBIST self-test logic to your functional design logic, you must connect the
signal pins shown in Table 59 to your preexisting design logic.

Table 59 Required LogicBIST Self-Test Signals

Signal type Direction Description

lbistEnable Input Enables autonomous self-test during mission mode

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1042

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 31: Using LogicBIST Self-Test
Integrating the Self-Test Logic into the Functional Design Logic

Feedback

Table 59 Required LogicBIST Self-Test Signals (Continued)

Signal type Direction Description

lbistStart Input Begins autonomous self-test

lbistStatus_0
lbistStatus_1

Output Reports current self-test status (idle, running, pass, fail)

Caution:
The lbistEnable signal must be de-asserted during manufacturing test as well
as mission mode.

In addition, you can connect the optional signal pins shown in Table 60 to your preexisting
design logic.

Table 60 Optional LogicBIST Self-Test Signals

Signal type Direction Description

lbistPatternCount Input Specifies the number of self-test patterns to run

lbistShiftLength Input Specifies the number of shift cycles in each pattern

lbistSeedValue Input Specifies the initial seed value loaded into the PRPG

lbistSignatureValue Input Specifies the expected final signature value of the MISR

lbistBurnInEnable Input Enables burn-in mode using self-test logic

lbistBurnInStopOnFail Input Specifies whether burn-in mode should stop or continue
upon failure

For LogicBIST signals connected by DFT insertion to input and output ports of the core
module, the connections should preexist (or be made manually) at the next hierarchical
level where the core is integrated, as shown in Figure 502.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1043

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 31: Using LogicBIST Self-Test
Integrating the Self-Test Logic into the Functional Design Logic

Feedback

Figure 502 Connecting LogicBIST Self-Test Port Signals at the Top Level

TOP CORE
LogicBIST

self-test logic

Functional
core-level logic

Functional
top-level

logic

LBIST_EN

START

STATUS_0

STATUS_1
TM_BIST_TP

For LogicBIST signals that connect to hookup pins inside the core module, the
connections are made inside the core during DFT insertion, as shown in Figure 503. The
hookup pins can be pins of leaf cells or hierarchical cells.

Figure 503 Connecting LogicBIST Self-Test Hookup Pin Signals Inside the Core

CORE
LBIST_EN

START STATUS_1

STATUS_0

Functional
core-level

logic

LogicBIST
self-test logic

TM_BIST_TP

You can use a mix of port-connected and hookup-pin-connected signals as needed.

If you have test points used only in self-test mode (and not in manufacturing test modes),
connect their test-mode control signal to the lbistEnable signal. This connection should
preexist (or be manually made) prior to DFT insertion, as DFT insertion does not modify
existing test-mode signal connections.

You do not need to connect any scan-in, scan-out, or test-mode signals to your functional
design logic. LogicBIST self-test automatically enables any required DFT logic during
autonomous mode, as described in Enabling DFT Logic During Autonomous Self-Test on
page 1015.

See Also

• Isolating the Self-Test Design Using Test Points on page 1013 for details on how test
points provide design isolation

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1044

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 31: Using LogicBIST Self-Test
Integrating the Self-Test Logic into the Functional Design Logic

Feedback

Ensuring the Required Test Mode for Autonomous Self-Test
Autonomous self-test is intended for operation in the device’s final functional environment
—the die has been packaged, passed manufacturing test, is installed on a circuit board,
and is powered up in its operating environment and conditions.

The self-test logic is designed to operate in this functional environment. Correspondingly,
the LBIST_EN signal enables autonomous self-test only when the test-mode signals of the
device are asserted to their mission-mode encoding.

The preview_dft and insert_dft commands report this required encoding as follows:

Information: For self-test, test mode 'Mission_mode' (opcode '00') is
used for autonomous operation, while 'bist' (opcode '10') is used for
TetraMAX ATPG DRC. (TEST-2096)

By default, the tool selects this required test-mode encoding as follows:

• In core-wrapped designs, the tool-created Mission_mode mode

• In non-core-wrapped designs, in order of highest precedence first:

◦ Unused all-zeroes encoding (created as Mission_mode)

◦ A random unused nonzero encoding (created as Mission_mode)

◦ A random standard scan test mode

Figure 504 shows a simple DFT design in its manufacturing test and functional operating
environments. In the functional (board-level) environment, the test-mode package pins are
tied to the ground plane. Thus, LBIST_EN enables autonomous self-test when asserted.

Figure 504 Test-Mode Pin Connections During Manufacturing Test and Functional Operation

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1045

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 31: Using LogicBIST Self-Test
Integrating the Self-Test Logic into the Functional Design Logic

Feedback

Caution:
Be sure that the manufactured device sets the test-mode signals to the value
required by the self-test logic. The autonomous self-test testbench written by
the TestMAX DFT tool uses the required values, assuming they will be driven
accordingly in the functional operating environment.

See Also

• Changing the Test Mode Used for Autonomous Self-Test on page 1062 for details on
specifying a nondefault test mode for autonomous self-test

Monitoring the Self-Test Status Signals
The BIST status signals, STATUS_0 and STATUS_1, are combinationally derived from
the self-test FSM state. The status encodings, shown in Figure 505, are designed so that
STATUS_1 indicates self-test completion, at which time STATUS_0 indicates the pass/fail
condition.

Figure 505 Status Signal Values for Passing and Failing Self-Test

RUNNING

STATUS_0

STATUS_1

IDLE PASS

START

RUNNING

STATUS_0

STATUS_1

IDLE FAIL

START

If you monitor the status signals using the BIST clock (or a clock synchronous to it), then

• No synchronization logic is needed.

• The status signal paths are synchronous single-cycle register-to-register paths.

• You can further process the status signals using combinational logic, as it becomes
part of the register-to-register paths.

Figure 506 shows an example of synchronous status monitoring logic.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1046

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 31: Using LogicBIST Self-Test
Integrating the Self-Test Logic into the Functional Design Logic

Feedback

Figure 506 Synchronous-Clock BIST Status Monitoring Logic
STATUS_0

STATUS_1

BIST
status

registers

Functional status
monitoring logic

BIST clock

FSM
STATUS_0

STATUS_1

BIST status
decode logic Functional status

monitoring logic

BIST clock

PASS/FAIL?

BIST completed?

Functional status monitoring logic

Functional status monitoring logic

FUNC

FUNC

If you monitor the status signals using a clock asynchronous to the BIST clock, then

• You must implement synchronization logic to monitor the status signals.

• The status signals are combinational and must be re-registered on the BIST clock.

• The transition from RUNNING to PASS toggles both status signals. Take care to avoid
race conditions between the completion (STATUS_1) and pass/fail (STATUS_0) signals
when resynchronizing the status signals.

Figure 507 shows an example of asynchronous status monitoring logic. When the
synchronized completion signal is asserted in the functional clock domain, the pass/fail
signal is registered and stable (while START remains asserted).

Figure 507 Asynchronous-Clock BIST Status Monitoring Logic

STATUS_0

STATUS_1

BIST clock

Functional clock

PASS/FAIL?

BIST
completed?

BIST
status

registers

Synchronizer registers

Combinational
status logic
(if needed)

Functional clock

PASS/FAIL?

BIST
completed?

Synchronizer registers

FSM
STATUS_0

STATUS_1

BIST status
decode logic

BIST clock

Functional status monitoring logic

Combinational
status logic
(if needed)

Functional status monitoring logic

FUNC

FUNC

When designing your interface logic, take the following into consideration: relative clock
frequencies, clock-tree skew within each domain, and relative delays in the cross-domain
status paths.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1047

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 31: Using LogicBIST Self-Test
Example LogicBIST Scripts

Feedback

Caution:
The schematics in this section are conceptual examples only. You should
implement status monitoring logic that meets your specific design requirements.

See Also

• The STATUS_0 and STATUS_1 Signals on page 1004 for details on status signal
behavior and values

Example LogicBIST Scripts
This topic provides the following example scripts:

• Example Core Insertion Script Using Core Wrapping

• Example Core Insertion Script Using Test-Point Isolation

• Example Script to Automatically Set Seed and Signature Values

Example Core Insertion Script Using Core Wrapping
This example script uses core wrapping to isolate the core during self-test. It also uses the
random_resistant testability target (see Automatically Inserted Test Points on page 303) to
improve coverage.

read_verilog ./top.v
current_design top
link
compile -scan

define DFT signals
set_dft_signal -view spec -type ScanDataIn -port {SI1}
set_dft_signal -view spec -type TestMode -port {TM}
set_dft_signal -view spec -type lbistEnable -port {LBIST_EN}
set_dft_signal -view existing_dft -type MasterClock -port CLK1 \
 -timing {45 55}
set_dft_signal -view existing_dft -type MasterClock -port CLK2 \
 -timing {45 55}
set_dft_signal -view existing_dft -type Reset -port RSTN -active 0

enable clients
set_dft_configuration -logicbist enable -wrapper enable

set_dft_configuration -testability enable
set_testability_configuration \
 -target random_resistant \
 -control_signal TM ;# enable during manufacturing test AND self-test

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1048

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 31: Using LogicBIST Self-Test
Example LogicBIST Scripts

Feedback

ensure that TM is asserted during self-test too
set_test_point_element -control_signal LBIST_EN -type force_1 TM

define and configure test modes
define_test_mode SCAN -usage wrp_if
define_test_mode LBIST -usage logicbist
set_scan_configuration -test_mode SCAN -chain_count 2 \
 -clock_mixing mix_clocks
set_logicbist_configuration -test_mode LBIST -base_mode SCAN \
 -chain_count 32 \
 -clock CLK1 \
 -pattern_counter_width 16 ;# maximum of 2^16 patterns

preview and insert DFT
create_test_protocol
dft_drc
run_test_point_analysis ;# for random_resistant target
preview_dft -show all
insert_dft

write out design netlist
write -format verilog -output top_no_seed_signature.vg -hierarchy

write test protocol for TestMAX ATPG to calculate seed/signature
write_test_protocol -test_mode LBIST -output LBIST.spf

write testbench for Verilog simulation to validate
LogicBIST implementation
#
(this command produces bist_tb.stil)
write_test -format stil -output bist_tb

Example Core Insertion Script Using Test-Point Isolation
This example uses the core_wrapper and random_resistant testability targets (see
Automatically Inserted Test Points on page 303) to isolate the core during self-test and
improve coverage, respectively.

read_verilog ./top.v
current_design top
link
compile -scan

define DFT signals
set_dft_signal -view spec -type ScanDataIn -port {SI1}
set_dft_signal -view spec -type TestMode -port {TM}
set_dft_signal -view spec -type lbistEnable -port {LBIST_EN}
set_dft_signal -view existing_dft -type MasterClock -port CLK1 \
 -timing {45 55}
set_dft_signal -view existing_dft -type MasterClock -port CLK2 \
 -timing {45 55}

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1049

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 31: Using LogicBIST Self-Test
Example LogicBIST Scripts

Feedback

set_dft_signal -view existing_dft -type Reset -port RSTN -active 0

enable clients
set_dft_configuration -logicbist enable

set_dft_configuration -testability enable
set_testability_configuration \
 -target core_wrapper \
 -control_signal LBIST_EN ;# enable ONLY during self-test
set_testability_configuration \
 -target random_resistant \
 -control_signal TM ;# enable during manufacturing test AND self-test

ensure that TM is asserted during self-test too
set_test_point_element -control_signal LBIST_EN -type force_1 TM

define and configure test modes
define_test_mode SCAN -usage scan
define_test_mode LBIST -usage logicbist
set_scan_configuration -test_mode SCAN -chain_count 2 \
 -clock_mixing mix_clocks
set_logicbist_configuration -test_mode LBIST -base_mode SCAN \
 -chain_count 32 \
 -clock CLK1 \
 -pattern_counter_width 16 ;# maximum of 2^16 patterns

preview and insert DFT
create_test_protocol
dft_drc
run_test_point_analysis ;# for core_wrapper and random_resistant targets
preview_dft -show all -test_points all
insert_dft

write out design netlist
write -format verilog -output top_no_seed_signature.vg -hierarchy

write test protocol for TestMAX ATPG to calculate seed/signature
write_test_protocol -test_mode LBIST -output LBIST.spf

write testbench for Verilog simulation to validate
LogicBIST implementation
#
(this command produces bist_tb.stil)
write_test -format stil -output bist_tb

Example Script to Automatically Set Seed and Signature Values
The following script excerpt shows how to automate TestMAX ATPG seed and signature
computation, netlist modification, and testbench creation. The commands prior to the
insert_dft command are omitted.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1050

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 31: Using LogicBIST Self-Test
Example LogicBIST Scripts

Feedback

Note:
Using the Tcl exec command requires the current process to be forked, which
can require a lot of memory when large designs are loaded.

...previous commands omitted...
insert_dft

write out design netlist
write -format verilog -output top_no_seed_signature.vg -hierarchy

write test protocol for TestMAX ATPG to calculate seed/signature
write_test_protocol -test_mode LBIST -output LBIST.spf

write testbench for Verilog simulation to validate
LogicBIST implementation
#
(this command produces bist_tb.stil)
write_test -format stil -output bist_tb

create Verilog testbench file
#
(this command produces bist_tb.v and bist_tb.dat)
exec stil2verilog -replace bist_tb.stil bist_tb

generate seed and signature value in TestMAX ATPG
#
(this command produces serial.stil)
exec tmax -shell ./tmax_bist.tcl

set seed and signature values in design and write out final netlist
set_logicbist_constants -file_name serial.stil
write -f verilog -h -o top.vg

quit

The following script is the tmax_bist.tcl script referenced by the preceding synthesis script.

read_netlist -library /project/libs/my_class.v
read_netlist top_no_seed_signature.vg
run_build top

Enable LogicBIST DRC
set_drc -seq_comp_jtag_lbist_mode light_lbist
run_drc LBIST.spf

Run LogicBIST ATPG for 133 patterns and 1 capture clock cycle
run_atpg -auto -jtag_lbist {1 133 1}
run_simulation
report_patterns -all

write serial STIL file containing seed and signature values
write_patterns serial.stil -format stil -replace -unified -serial

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1051

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 31: Using LogicBIST Self-Test
Example LogicBIST Scripts

Feedback

quit ;# required to resume execution in dc_shell

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1052

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

32
Advanced LogicBIST Configuration

This chapter describes advanced features that can be used while inserting LogicBIST self-
test circuitry into your design. These features can be used to improve self-test flexibility
and reduce the implementation area.

This chapter includes the following topics:

• Using Programmable LogicBIST Configuration Values

• Simplifying the MISR XOR Compressor

• Simplifying the Weighted Clock/Reset Logic

• Minimizing Reconfiguration MUXs Across Test Modes

• Choosing a Particular Integrated Clock-Gating Cell

• Implementing Burn-In Mode

• Implementing Power Ramp-Up and Ramp-Down Logic

• Implementing MISR Monitoring Logic

• Changing the Test Mode Used for Autonomous Self-Test

• Post-DFT Design Optimization

Handling of Combinational Paths Between Input and Output
Ports During LBIST Operation

When doing LBIST one of the requirements is to have a X-clean design, otherwise LBIST
logic might capture X values and corrupt the LBIST results. Enabling core wrapping allows
isolating the design to block external X values from being captured.

You can use the set_app_option -name dft.test_wrp_avoid_op_wrp_xvalues
-value true application option to handle combinational paths between input and output
ports to avoid X-value propagation during LBIST operation. This application option is off by
default.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1053

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Advanced LogicBIST Configuration
Using Programmable LogicBIST Configuration Values

Feedback

When you set this application option to true:

• The tool identifies all output ports which have dedicated wrapper cell due to reuse
threshold breach and all dedicated wrapper cells at the input port which are connected
to the output port.

• The tool identifies all input ports which have set_boundary_cell type none specified
and skips adding dedicated wrapper cell at the output port which is connected to the
input port via combinational logic.

Using Programmable LogicBIST Configuration Values
By default, the tool implements the LogicBIST logic with placeholder buses in the netlist for
the following values:

• User seed value - tied to logic 0 (eventually computed by TestMAX ATPG)

• User signature value - tied to logic 0 (eventually computed by TestMAX ATPG)

• User pattern value - tied to logic 0 (eventually computed by TestMAX ATPG)

• User shift value - automatically set to the longest shift chain length by DFT insertion
(but can be overridden if needed)

• User OCC clock pulse pattern - tied to a single-pulse constant mask (2’b10)

Instead of setting these to hardcoded constant values in the netlist, you can make them
programmable by driving them from ports or internal hookup pins. To do this, define DFT
signals using the following signal types:

set_dft_signal -view spec -type lbistSeedValue ...
set_dft_signal -view spec -type lbistSignatureValue ...
set_dft_signal -view spec -type lbistPatternCount ...
set_dft_signal -view spec -type lbistShiftLength ...
set_dft_signal -view spec -type lbistCaptureCycleEnable ...

For each signal type, define the signal bits in order of most-significant bit (MSB) to least-
significant bit (LSB). If fewer signals are defined than the bus width, the signals are
justified against the LSB as shown in Figure 508.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1054

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Advanced LogicBIST Configuration
Using Programmable LogicBIST Configuration Values

Feedback

Figure 508 Assigning User-Defined Signals to Bus Bits

LogicBIST controller

user_prpg_seed[0]
user_prpg_seed[1]
user_prpg_seed[2]
user_prpg_seed[3]

user_prpg_seed[30]

1'b0
1'b0

1'b0
define user seed value
(lower two bits only, MSB to LSB)
set_dft_signal -view spec \
 -type lbistSeedValue -port SEED[1]
set_dft_signal -view spec \
 -type lbistSeedValue -port SEED[0]

You can use the -port or -hookup_pin option when defining these signals. For bused
ports, you can sort in dictionary order and define them all in a single command:

 set_dft_signal -view spec -type lbistSeedValue \
 -port [sort_collection -dictionary -descending [get_ports {SEED[*]}]]

For hookup pins, define them one at a time in the required order:

define a 31-bit initial PRPG seed register
for {set i 30} {$i >= 0} {incr i -1} {
 set_dft_signal -view spec -type lbistSeedValue \
 -hookup_pin CONFIG/SEED_reg[${i}]
}

define a 32-bit MISR expected signature register
for {set i 31} {$i >= 0} {incr i -1} {
 set_dft_signal -view spec -type lbistSignatureValue \
 -hookup_pin CONFIG/SIGNATURE_reg[${i}]
}

When you define internally driven LogicBIST configuration signals, the preview_dft
command reports the connections on a bitwise basis so you can confirm their correctness.
For example,

**
LogicBIST Compression

User signals information
**

Shift counter data: top_U_LogicBISTController_bist/shift_count_data = 4'b1000
Pattern counter data: top_U_LogicBISTController_bist/user_pattern_count_data =
 4'b0000
 SEED CONNECTIONS:

 CONFIG/SEED_reg[0] connected to top_U_decompressor_bist/user_prpg_seed[0]
 CONFIG/SEED_reg[1] connected to top_U_decompressor_bist/user_prpg_seed[1]
...
 CONFIG/SEED_reg[29] connected to top_U_decompressor_bist/user_prpg_seed[29]
 CONFIG/SEED_reg[30] connected to top_U_decompressor_bist/user_prpg_seed[30]

 EXPECTED SIGNATURE CONNECTIONS:

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1055

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Advanced LogicBIST Configuration
Simplifying the MISR XOR Compressor

Feedback

 CONFIG/SIGNATURE_reg[0] connected to top_U_compressor_bist/user_misr_signat
ure[0]
 CONFIG/SIGNATURE_reg[1] connected to top_U_compressor_bist/user_misr_signat
ure[1]
...
 CONFIG/SIGNATURE_reg[28] connected to top_U_compressor_bist/user_misr_signa
ture[28]
 CONFIG/SIGNATURE_reg[29] connected to top_U_compressor_bist/user_misr_signa
ture[29]

You can use the find_seed Tcl procedure from SolvNet article 2220819, “Finding Optimal
Seed Values for the LogicBIST PRPG” to find an optimal sequence of seed values.

For port-driven signals, you can use the set_logicbist_constants Tcl procedure from
SolvNet article 2231010, “Setting the Seed and Signature Values in a LogicBIST Design”
to write out a VCS command file that forces the desired values for simulation.

Simplifying the MISR XOR Compressor
When the number of internal chains is equal to the MISR size, the XOR compressor inside
the LogicBIST compressor is automatically removed and a direct connection is performed
between the compressed scan chains and the MISR.

Set the following options of the set_logicbist_configuration command to the same
value to implement this simplification:

set_logicbist_configuration ... \
 -chain_count chain_count_value \
 -misr_width chain_count_value

There is no equivalent removal of the XOR phase shifter in the LogicBIST decompressor
because it is needed to remove correlations from the LFSR values.

Simplifying the Weighted Clock/Reset Logic
Weighted clock/reset capture groups use a seven-bit comparator/decoder driven by the
first seven bits of the clock chain (clk_chain_val[6:0]). Any arbitrary positive group weight
values can be specified, but the values are scaled (if needed) to a total weight of 128 for
implementation.

Thus, certain weight conventions simplify the comparator logic. For example,

• Two groups, each with a weight of 50%, use comparator ranges that are 64 values
wide, which requires only clk_chain_val[6].

• Groups using weights that are a multiple of 25% use comparator ranges that are 32
values wide, which requires only clk_chain_val [6:5].

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1056

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnet.synopsys.com/retrieve/2220819.html
https://solvnet.synopsys.com/retrieve/2220819.html
https://solvnet.synopsys.com/retrieve/2231010.html

Chapter 32: Advanced LogicBIST Configuration
Minimizing Reconfiguration MUXs Across Test Modes

Feedback

Weight values that result in boundary (comparator) values with a longer sequence of
least-significant zeros, like 32 (7'b0100000) or 96 (7'b1100000), require less comparator
logic than boundary values with a shorter sequence of least-significant zeros, like 34
(7'b0100010) or 98 (7b'1100010).

If your design is area sensitive, you can consider this effect while determining weight
values that meet your coverage requirements.

Minimizing Reconfiguration MUXs Across Test Modes
When you implement DFTMAX or DFTMAX Ultra scan compression alongside LogicBIST
self-test, you can align their compressed chain structures to minimize reconfiguration
MUXs.

However, the self-test registers are scannable in manufacturing test modes (to ensure that
the self-test logic itself is tested) but not in self-test mode. As a result, simply specifying
the same compressed chain count for both modes does not guarantee alignment.

To resolve this, you can define additional compressed scan chains that contain only the
scannable self-test registers, as shown in Figure 509.

Figure 509 Aligning the Compressed Chain Structures

CARE PRPG

MISR

DFTMAX or DFTMAX Ultra
manufacturing test

DFTMAX LogicBIST
self-test

set_scan_path
lbist_regs

-chain_count N
-chain_count N+1

For details, see

• SolvNet article 2656631, "Minimizing Reconfiguration MUXs in LogicBIST Designs."

• SolvNet article 2220819, "Finding Optimal Seed Values for the LogicBIST PRPG."

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1057

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnet.synopsys.com/retrieve/2656631.html
https://solvnet.synopsys.com/retrieve/2220819.html

Chapter 32: Advanced LogicBIST Configuration
Choosing a Particular Integrated Clock-Gating Cell

Feedback

Choosing a Particular Integrated Clock-Gating Cell
The LogicBIST architecture uses clock gating for the following constructs to reduce area
and power consumption:

• MISR

• PRPG

• Pattern counter

• Shift counter

• LogicBIST clock controller (external or OCC)

By default, the tool builds discrete clock-gating logic using separate latch and
combinational gate cells. To use integrated clock-gating cells (ICGs) instead, enable ICG
insertion and specify the desired ICG library cell using the following variables:

set_app_var test_occ_insert_clock_gating_cells true
set_app_var test_icg_p_ref_for_dft ICG_library_cell

Implementing Burn-In Mode
LogicBIST provides a burn-in mode feature that runs autonomous self-test continuously
as long as the START signal is asserted. The scan and capture activity stresses the tested
logic and causes continuous power draw during self-test. Power consumption can be
controlled by adjusting the clock frequency.

Burn-in operation is configured by two DFT signals. Table 61 shows how they affect self-
test while the START signal is held asserted.

Table 61 Burn-In Configuration Signals and Behaviors

Self-test success? lbistBurnInEnable signal
value

lbistBurnInStopOnFail signal
value

Pass or fail 0 (burn-in disabled) X

STATUS_0

STATUS_1
RUNNING PASS (or FAIL)

Pass 1 X (don’t-care when passing)

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1058

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Advanced LogicBIST Configuration
Implementing Burn-In Mode

Feedback

Table 61 Burn-In Configuration Signals and Behaviors (Continued)

Self-test success? lbistBurnInEnable signal
value

lbistBurnInStopOnFail signal
value

STATUS_0

STATUS_1
RUNNING PASS IDLE RUNNING

Fail 1 0 (continue on fail)

STATUS_0

STATUS_1
RUNNING FAIL IDLE RUNNING

Fail 1 1 (stop on fail)

STATUS_0

STATUS_1
RUNNING FAIL

When the lbistBurnInEnable signal is de-asserted, the LogicBIST engine runs in its normal
mode of operation to completion, generating the pass or fail indication as described in The
STATUS_0 and STATUS_1 Signals on page 1004.

The burn-in capability is not implemented by default. To implement it, specify the following
option:

dc_shell> set_logicbist_configuration -burn_in enable
Define the burn-in configuration signals on existing ports using the following signal types:

dc_shell> set_dft_signal -view spec \
 -type lbistBurnInEnable -port my_burnin_enable
dc_shell> set_dft_signal -view spec \
 -type lbistBurnInStopOnFail -port my_burnin_SOF
You can also define these signals on internal pins using the -hookup_pin option.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1059

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Advanced LogicBIST Configuration
Implementing Power Ramp-Up and Ramp-Down Logic

Feedback

If you do not define these signals, the tool automatically creates them using the following
signal port names: burnin_mode, fail_mode.

The burn-in capability is implemented by modifying existing states in the BIST state
machine rather than adding states; the area overhead is negligible.

Implementing Power Ramp-Up and Ramp-Down Logic
By default, when self-test starts, it immediately operates at the provided clock frequencies.
When self-test completes, it stops the clock to the functional logic. These abrupt changes
in functional logic activity could cause transient spikes in the power rail voltage.

However, you can use the power ramp-up and ramp-down features to smooth these
transitions in power consumption. These features are disabled by default.

Power Ramp-Up

To implement power ramp-up, specify the following option:

dc_shell> set_logicbist_configuration \
 -power_ramp_up enable
The self-test logic is augmented to shift through two “ramp-up” dummy patterns—one at
25% frequency, then one at 50% frequency—before beginning full-frequency self-test, as
shown in Figure 510.

Figure 510 Power Ramp-Up Clocking

BIST clock (out)

BIST clock (in)

START

PRPG Dummy (ramp-up) shift data Self-test operation

Scan enable (out)

25% 50%

Seed

100%

STATUS_0

STATUS_1
RUNNINGIDLE

The BIST controller creates the dummy ramp-up patterns by modulating the clock-enable
signal within the LogicBIST clock controller. The dummy patterns are a preamble to the

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1060

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Advanced LogicBIST Configuration
Implementing Power Ramp-Up and Ramp-Down Logic

Feedback

actual self-test operation; they perform no testing and are not included in the pattern count
specification. The seed value is loaded in the PRPG after ramp-up completes.

Enabling ramp-up patterns increases self-test duration by the equivalent of six full-
frequency self-test patterns. The testbench written out by the write_test command
includes this additional duration.

Power Ramp-Down

Power ramp-down requires that power ramp-up also be enabled. To implement them,
specify the following options:

dc_shell> set_logicbist_configuration \
 -power_ramp_up enable \
 -power_ramp_down enable
The self-test logic is augmented to shift through two “ramp-down” dummy patterns—one
at 50% frequency, then one at 25% frequency—after full-frequency self-test completes, as
shown in Figure 510.

Figure 511 Power Ramp-Down Clocking

FAIL

BIST clock (out)

BIST clock (in)

START

MISR Final signature valueSelf-test operation

Scan enable (out)

25%50%

STATUS_0

STATUS_1
RUNNING

100%

PASS

The dummy patterns are a postamble to the actual self-test operation; they perform no
testing and are not included in the pattern count specification. The status signals are not
asserted until ramp-down completes.

Enabling ramp-up and ramp-down patterns together increases self-test duration by the
equivalent of twelve full-frequency self-test patterns.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1061

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Advanced LogicBIST Configuration
Implementing MISR Monitoring Logic

Feedback

Implementing MISR Monitoring Logic
In designs with LogicBIST self-test, it might be useful to monitor the MISR during self-test.
For example, an on-chip microcontroller could initiate self-test, then verify that the MISR is
toggling as expected.

You can use the lbistMISROutput signal type to monitor one or more MISR bits. Usage is
as follows:

• Define the signals in downward order (the last signal defined is driven by bit zero of the
MISR).

• You can monitor a single bit (bit zero) or the entire MISR.

• To monitor the MISR using output ports, use the -port option:

set_dft_signal -view spec -type lbistMISROutput \
 -port {MISR[2] MISR[1] MISR[0]}

• To monitor the MISR using hookup pins, use the -hookup_pin option:

set_dft_signal -view spec -type lbistMISROutput \
 -hookup_pin my_MISR_check_reg[2]/D
set_dft_signal -view spec -type lbistMISROutput \
 -hookup_pin my_MISR_check_reg[1]/D
set_dft_signal -view spec -type lbistMISROutput \
 -hookup_pin my_MISR_check_reg[0]/D

You do not need to enable the internal pins flow, as the signal connection does not
affect DRC.

Changing the Test Mode Used for Autonomous Self-Test
By default, autonomous self-test operation requires that the design be placed in mission
mode when LBIST_EN is asserted. In other words, the test-mode signals must be
asserted to their mission-mode encoding. The tool chooses this encoding as described in
Ensuring the Required Test Mode for Autonomous Self-Test on page 1045.

However, if needed, you can specify that another test mode be used for autonomous self-
test operation. To do this, specify the desired test mode with the following option:

set_logicbist_configuration -self_test_mode my_selftest_mode

The specified mode must be previously defined with the define_test_mode command.
It cannot be a scan compression mode of any type (LogicBIST, DFTMAX, or DFTMAX
Ultra).

When you use this feature, references to mission mode in this documentation apply to the
specified mode instead.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1062

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Advanced LogicBIST Configuration
Post-DFT Design Optimization

Feedback

Post-DFT Design Optimization
LogicBIST self-test provides some unique considerations in the synthesis flow. BIST
is often used in area-sensitive designs. Propagating the seed and signature values as
hardcoded constants into the design logic yields an area savings, but at the cost of no
longer being able to change their values (such as for a functional ECO).

These aspects of post-DFT optimization are described in more detail in the following
topics:

• Post-DFT Optimization and BIST Constants

• Preserving the BIST Constants in a compile Flow

• Preserving the BIST Constants in a compile_ultra Flow

• Regenerating Seed and Signature Values after Design Changes

• Ungrouping LogicBIST Blocks for Additional Area Reduction

Post-DFT Optimization and BIST Constants
LogicBIST self-test requires that the values in Table 62 be specified in the design logic.

Table 62 User-Specified LogicBIST Constant Values

BIST value Hierarchical bused pins

PRPG seed design_U_decompressor_mode/user_prpg_seed[*]

MISR signature design_U_compressor_mode/user_misr_signature[*]

Pattern count design_U_LogicBISTController_mode/user_pattern_count_data[*]

Shift count12 design_U_LogicBISTController_mode/shift_count_data[*]

These values are set in the design after determining the values in TestMAX ATPG, as
described in Setting the Seed and Signature Values in Synthesis on page 1040.

By default, these BIST values are driven by constants. If post-DFT optimization
propagates these BIST constants into the design, they become permanently integrated
into the logic and their values cannot be changed, as shown in Figure 512.

12. This value is set by DFT insertion and does not need to be user-modified (unless the BIST mode scan length is
manually changed later in the flow). Accordingly, this bus name has no “user_” prefix.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1063

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Advanced LogicBIST Configuration
Post-DFT Design Optimization

Feedback

Figure 512 BIST Constant Propagation Into Block Logic

1'b0

1'b1

1'b1

n12

n34

n56

n56

This prevents you from performing design ECOs later in the flow, which would require new
seed and signature values to be set in the design.

If you use programmable (register-driven) values as described in Using Programmable
LogicBIST Configuration Values on page 1054, you do not need to worry about constant
propagation for those values.

Preserving the BIST Constants in a compile Flow
The compile command does not propagate constants into DFT-created blocks (which
have the is_test_circuitry attribute set to true) when boundary optimization is
enabled. The only way to propagate such constants is to ungroup the DFT blocks, via the
ungroup, set_ungroup, or compile -auto_ungroup command.

To preserve the BIST constants, do not ungroup the LogicBIST controller, decompressor,
or compressor blocks.

See Also

• Ungrouping LogicBIST Blocks for Additional Area Reduction on page 1067 for
information on ungrouping the LogicBIST blocks

Preserving the BIST Constants in a compile_ultra Flow
By default, the compile_ultra command propagates constants into blocks, even DFT-
created blocks (which have the is_test_circuitry attribute set to true). To preserve
the BIST constants while allowing full optimization for the rest of the logic, disable constant
propagation specifically on these pins, with a "user_" name prefix:

disable constant propagation for BIST constants
(these pins have a "user_" prefix)
set_compile_directives -constant_propagation false \
 [get_pins -of [get_cells -hier * -filter {is_hierarchical == true && \

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1064

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Advanced LogicBIST Configuration
Post-DFT Design Optimization

Feedback

 is_test_circuitry == true}] -filter {name =~ user_*}]

perform post-DFT optimization
compile_ultra -scan -incremental

These commands do not prevent constant propagation on the shift_count_data[*] bus
because the shift length set by the insert_dft command does not typically need to be
changed and can be optimized into the logic. To allow for functional ECOs that affect the
shift length, disable constant propagation on this bus too.

To propagate the constants later in the flow, ungroup the LogicBIST blocks or reenable
constant propagation for the pins, then perform an incremental compile.

See Also

• Ungrouping LogicBIST Blocks for Additional Area Reduction on page 1067 for
information on ungrouping the LogicBIST blocks

Regenerating Seed and Signature Values after Design Changes
You must regenerate the LogicBIST signature value whenever the functional or DFT logic
changes. This includes design logic ECOs and scan chain reordering or repartitioning in
layout. In addition, to improve coverage, the seed value can also be changed.

To regenerate the seed and signature values, do the following:

1. Write out the modified Verilog design netlist. You can do this from any source, such as
the Design Compiler tool, the layout tool, or a text editor.

2. Modify the TestMAX ATPG seed and signature generation script to use the modified
design netlist, then run it to write out a STIL pattern file with new seed and signature
values. See Computing the Seed and Signature Values in TestMAX ATPG on
page 1038.

When generating new seed and signature values for a design, existing seed and
signature values in the design are not considered. Accordingly,

• If the logic changes are small (such as a small design logic ECO) and you have
an optimal seed value you want to keep, specify it with the add_lbist_seeds
command.

• If the logic changes are significant (such as scan reordering), you will likely obtain
better results by finding a new seed value.

3. Read the modified Verilog netlist from step 1 into the Design Compiler tool. No timing
or DFT constraints are needed.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1065

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 32: Advanced LogicBIST Configuration
Post-DFT Design Optimization

Feedback

4. Use the set_logicbist_constants command to apply the new seed and signature
values from the STIL patterns generated in step 2. See Setting the Seed and Signature
Values in Synthesis on page 1040.

5. Write out the updated netlist, which contains new seed and signature values.

6. Reuse the original testbench to simulate the updated netlist from step 5. See
Simulating Autonomous BIST Operation on page 1041.

The following TestMAX ATPG script generates new seed and signature values for an
ECO-modified netlist:

read_netlist -library /project/libs/my_class.v
read_netlist top_eco_oldseedsig.vg
run_build top

Enable LogicBIST DRC
set_drc -seq_comp_jtag_lbist_mode light_lbist
run_drc LBIST.spf

Run LogicBIST ATPG for 133 patterns and 1 capture clock cycle
run_atpg -auto -jtag_lbist {1 133 1}
run_simulation
report_patterns -all

write serial STIL file containing seed and signature values
write_patterns serial_eco.stil -format stil -replace -unified -serial

quit ;# required to resume execution in dc_shell

The following Design Compiler script updates the design netlist with the new seed and
signature values:

(library setup not shown)

read netlist containing ECO change and pre-ECO seed/signature values
read_verilog top_eco_oldseedsig.vg
current_design top
link

set seed and signature values in design and write out final netlist
set_logicbist_constants -file_name serial_eco.stil
write -format verilog -hierarchy -output top_eco_newseedsig.vg

See Also

• SolvNet article 2231010, “Setting the Seed and Signature Constant Values in a
LogicBIST Design” to obtain the set_logicbist_constants Tcl procedure

• The LogicBIST Operational Modes on page 1003 for more information on ATPG mode
versus autonomous mode

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1066

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnet.synopsys.com/retrieve/2231010.html
https://solvnet.synopsys.com/retrieve/2231010.html

Chapter 32: Advanced LogicBIST Configuration
Post-DFT Design Optimization

Feedback

Ungrouping LogicBIST Blocks for Additional Area Reduction
After DFT insertion and seed and signature setting, you can achieve significant area
reduction by grouping the LogicBIST controller, clock or OCC controller(s), and codec
together, then ungrouping the hierarchy inside that block. This allows the control logic to
be highly optimized between those blocks while still containing the logic within a block. You
can use this technique with the compile or compile_ultra command.

The following commands perform this ungrouping. Hierarchical clock-gating cells are left
grouped. This example assumes that all cells to be grouped exist at the top level. Change
the "bist" suffix in the filter expression to match your LogicBIST test mode name.

Caution:
Ungrouping propagates the BIST constants, which prevents future modifications
to their values. Use this only when the design is finalized (including scan
reordering) or when you can rerun synthesis and DFT insertion if the design
logic changes.

group LogicBIST controller and OCC blocks together into a new
block named "LogicBIST"
group -cell_name LogicBIST -design_name LogicBIST \
 [get_cells * -filter {ref_name == LOGICBIST_CONTROLLER ||
 ref_name =~ top_DFT_clk_mux_* || name =~ *compressor_bist}]

flatten everything in the new LogicBIST block except hierarchical
clock-gating cells
set_ungroup [get_cells -hierarchical -filter {is_hierarchical == true
 && full_name =~ LogicBIST/* && full_name !~ *clkgt*}]

incrementally compile
compile_ultra -scan -incremental

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1067

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

33
LogicBIST Limitations and Known Issues

This chapter contains the limitations and known issues that apply to LogicBIST self-test.

This chapter contains the following topic:

• LogicBIST Limitations and Known Issues

LogicBIST Limitations and Known Issues
The following requirements, limitations, and known issues apply to LogicBIST self-test:

• LogicBIST settings are not stored in .ddc files; you must apply any
set_logicbist_configuration settings if you read a pre-DFT .ddc file back in.

• Designs that capture X values are not supported.

• Clock-gating cells require a dedicated ScanEnable signal defined with the -usage
{clock_gating} option of the set_dft_signal command (although SolvNet article
3055862 provides a workaround for this limitation).

If there is no such signal, no clock-gating testability logic is created. If the signal is
defined with -usage {scan clock_gating}, scan cells are hooked up to the clock-
gating testability scan-enable signal, which is incorrect.

TestMode signals cannot be used as clock-gating control signals.

• External (uncompressed) chains cannot be used in LogicBIST test modes. See
Inserting LogicBIST in Designs With External Chains on page 1032.

• Clock-gating cells with pre-existing test-mode pin connections must be identified prior
to DFT insertion. For details, see the TEST-130 man page.

• The LogicBIST test mode requires at least one user-defined scan-in signal; it is not
automatically created.

• Sharing scan-in ports with functional ports is not supported.

• You can integrate a core that contains a LogicBIST test mode, but there is no
automation provided to access the LogicBIST functionality at the integration level.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1068

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnet.synopsys.com/retrieve/3055862.html
https://solvnet.synopsys.com/retrieve/3055862.html

Chapter 33: LogicBIST Limitations and Known Issues
LogicBIST Limitations and Known Issues

Feedback

• For designs with OCC controllers,

◦ A mix of non-OCC-controlled and internal OCC-controlled scan clock domains is not
supported. In this case, you must also control the port-driven clocks with an OCC
controller.

◦ All OCC controllers must have the same clock chain length.

◦ If you are using weighted clock capture groups, there must be at least seven clock
chain bits across all clock chains in the design.

◦ Synchronous OCC controllers are not supported.

◦ User-defined OCC controllers are not supported.

◦ Existing OCC controllers inside DFT-inserted cores are not supported.

◦ External clock chains cannot be used in LogicBIST test modes. See Inserting
LogicBIST in Designs With External Chains on page 1032.

◦ You cannot use ANDOR22 library cells for the clock ORing logic. See Specifying
Library Cells for the Clock-ORing Logic on page 531.

◦ The occ_pll_bypass signal must remain at 1’b0 during the LogicBIST sequence.

• If any DFT signals use bused ports, the bus indexes must be ordered highest-to-
lowest.

• If you are using test points, you must specify an existing clock as the test point clock.
You cannot use the DFT-created default test point clock.

• The following DFT features are not supported:

◦ Pipelined scan enable

◦ DFT partitions

◦ Multiple LogicBIST test modes

◦ Domain-based scan enable

◦ Terminal lock-up latches

◦ Post-DFT DRC

◦ Hybrid flow

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1069

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 33: LogicBIST Limitations and Known Issues
LogicBIST Limitations and Known Issues

Feedback

• In TestMAX ATPG,

◦ The -observe_file option of the run_atpg command is not supported.

• In TestMAX Diagnosis,

◦ Diagnostics is not supported.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1070

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Appendixes

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1071

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

A
DFT Attributes

This appendix describes DFT-related attributes available in DFT Compiler and TestMAX
DFT tools.

The DFT attributes are listed in the following tables:

• Cell Attributes

• Design Attributes

• Pin Attributes

• Port Attributes

Note:
All attributes are undefined if the described conditions are not met.

Cell Attributes
Table 63 shows the DFT attributes for cell objects.

Table 63 Attributes of the cell Object Class

Attribute name Type Description

cell_is_test_only Boolean This attribute is true for lock-up latches, retiming
flip-flops, and pipeline registers.

dft_dont_connect_clock_gate
_of_register

Boolean This attribute is true for registers specified
with the -dont_connect_cgs_of option of the
set_dft_clock_gating_configuration command

is_test_circuitry Boolean This attribute is true for any cells inserted by the
insert_dft command.

lockup_cell_to_segment_attr String This attribute is set on lock-up latches. It takes the
form
cell_name;before|after
which describes which scan cell it is associated with
and whether that scan cell is before or after the lock-up
latch.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1072

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix A: DFT Attributes
Cell Attributes

Feedback

Table 63 Attributes of the cell Object Class (Continued)

Attribute name Type Description

retiming_flop Boolean This attribute is true for retiming flip-flops inserted by
the insert_dft command.

scan_element Boolean This attribute is set by the set_scan_element
command. It is undefined if the set_scan_element
command is not applied, even if the scan cell is
scanned by default or unscanned due to a DRC
violation.

scan_lockup Boolean This attribute is true for lock-up latches inserted by
the insert_dft command.

scanned_by_test_compiler Boolean This attribute is true for cells that are scan-replaced
by the compile -scan, compile_ultra -scan, or
insert_dft commands.
Note that this attribute is set to true for DRC-violating
cells that remain scan-replaced but are excluded from
scan chains, and it is set to false for the unscanned
registers in a shift register; thus, it is not a reliable
indicator that the cell is in a scan chain.

shift_register_flop Boolean This attribute is true for all unscanned shift-register
cells after the scanned first (head) element.

shift_register_head Boolean This attribute is true for the scanned first (head)
element of an identified shift-register segment.

test_dft_cell_is_skew_group Boolean This attribute is true for cells that are part of a scan
skew group, defined with the set_scan_skew_group
command. This attribute is set by the preview_dft
and insert_dft commands.

test_dft_xcell_violation Boolean This attribute is true for static-X cells identified
by the dft_drc command. Static-X analysis is
enabled by the -static_x_analysis option of the
set_dft_drc_configuration command.

test_scan_suppress_toggling Boolean This attribute is true for gating cells inserted by
functional output gating, which is configured by the
set_scan_suppress_toggling command.

testdb_test_cell_violated Boolean This attribute is set to true for cells that have DRC
violations. Pre-DFT DRC and post-DFT DRC both
update this attribute.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1073

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix A: DFT Attributes
Design Attributes

Feedback

Design Attributes
Table 64 shows the DFT attributes for design objects.

Table 64 Attributes of the design Object Class

Attribute name Type Description

current_dft_partition String This attribute indicates the current DFT
partition set by the current_dft_partition
command.

shift_registers_extracted Boolean This attribute is true on a design compiled
with the compile_ultra command if at least
one shift register was identified within the
design hierarchy.
This attribute is not set on subdesigns within
the hierarchy that contain identified shift
registers.

Pin Attributes
Table 65 shows the DFT attributes for pin objects.

Table 65 Attributes of the pin Object Class

Attribute name Type Description

created_by_test_compiler
created_during_dft

Boolean This attribute is true for pins created on
hierarchical cells by the insert_dft command
to route new signals.

is_clock_gate_test_pin Boolean This attribute is true for test pins of
clock-gating cells automatically or manually
identified for DFT Compiler. It is also true
for test pins of integrated clock-gating cells
instantiated in the design that have not been
manually identified. It is false for all other
pins.

signal_type String This attribute is set on leaf cell and hierarchical
cell pins that have a DFT signal type.
Possible values include:
test_scan_enable
test_scan_in
test_scan_out

An _inverted suffix on the value indicates an
inverted signal value.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1074

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix A: DFT Attributes
Port Attributes

Feedback

Table 65 Attributes of the pin Object Class (Continued)

Attribute name Type Description

testdb_autofix_d1testdb_autofix_d2t
estdb_autofix_d3testdb_autofix_d4te
stdb_autofix_d5testdb_autofix_d6tes
tdb_autofix_d9testdb_autofix_d12tes
tdb_autofix_d17

Boolean These attributes are true for pins with the
corresponding DRC violation that can be
fixed by AutoFix. These attributes are set by
pre-DFT DRC even if AutoFix is not enabled.

testdb_clock_name_and_edge_for_pin String After DFT insertion, this attribute is defined on
scan cell clock pins to indicate the test clock
name and triggering edge-timing value as
follows:
clock_source;trigger_edge
Clocks with internal pins are represented as:
clock_source:int_pin;trigger_edge

Port Attributes
Table 66 shows the DFT attributes for port objects.

Table 66 Attributes of the port Object Class

Attribute name Type Description

created_by_test_compiler
created_during_dft

Boolean This attribute is true for ports created for the
current design by the insert_dft command to
route new signals.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1075

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

B
Legacy Test Point Insertion

This appendix documents the legacy test point functionality that results when you do
not enable the testability client. For best results, use the newer functionality described in
Inserting Test Points on page 291.

The legacy test point capabilities are described in the following topics:

• Introduction

• Differences Between Newer and Legacy Test Point Features

• Test Point Types

• Force Test Points

• Sharing Test Point Scan Cells

• Automatically Inserted Test Points (Legacy)

• User-Defined Test Points Example

• Previewing the Test Point Logic

• Inserting the Test Point Logic

Introduction
Test points are points in the design where DFT Compiler inserts logic to improve the
testability of the design. The tool can automatically determine where to insert test points to
improve test coverage and reduce pattern count. You can also manually define where test
points are to be inserted.

Caution:
This section documents the legacy test point functionality that results when you
do not enable the testability client by using the following command:

dc_shell> set_dft_configuration -testability enable
It is recommended that you use the improved functionality provided by the
testability DFT client, as described in Inserting Test Points on page 291.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1076

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Legacy Test Point Insertion
Differences Between Newer and Legacy Test Point Features

Feedback

Differences Between Newer and Legacy Test Point Features
When the legacy test point functionality is used, the test point functionality differs from the
newer testability test point functionality as follows:

• During capture, force and control registers no longer hold state.

• Observe registers might be reused as control registers (because control registers no
longer need to hold state).

• The following three-state test point types are supported:

◦ control_z0, control_z1, and control_z01

◦ force_z0, force_z1, and force_z01

• The following options of the set_test_point_element command are supported:

◦ -power_saving disable | enable

◦ -test_points_per_test_point_enable tp_count

◦ -scan_source_or_sink enable | disable

◦ -source_or_sink port_pin_name

◦ -scan_test_point_enable enable | disable

◦ -test_point_enable port_pin_name

Test Point Types
user-defined test pointstest pointsThe force and control test point types allow signals within logic cones to be actively
controlled during test mode to improve the controllability of the logic. These test point
types require the insertion of a multiplexer to conditionally override the original signal
value, resulting in a slight delay and area penalty.

The observe test point type passively captures the value of selected hard-to-observe
signals to improve the observability of the logic. No additional levels of logic are inserted
along the path of the observed signal, but the extra observation logic does slightly
increase the capacitive loading of the observed signal.

Test points are described in the following topics:

• Force Test Points

• Control Test Points

• Observe Test Points

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1077

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Legacy Test Point Insertion
Test Point Types

Feedback

Note:
The test point schematics in these topics show the functional operation of the
test points. During synthesis, constant logic is simplified, and the test point logic
is optimized into the surrounding logic.

Force Test Points
Force test points are used when a value must be forced throughout the entire test session.
The following force test point types are available:

• force_0

• force_1

• force_01

• force_z0

• force_z1

• force_z01
The force_0 test pointforce_0 and force_1 test pointforce_1 test point types allow a signal to be replaced with a constant
0 or constant 1 value throughout the entire test session. These test point types are useful
when a particular signal must be forced to a known value for testability purposes. A
multiplexer is used to replace the original signal with a fixed constant 0 or 1 value when
the TestMode signal is asserted. See Figure 513.

Figure 513 Example of a force_0 or force_1 Test Point

The force_01 test pointforce_01 test point type allows a signal to be replaced with a scan-selected value
throughout the entire test session. The scan-selected value comes from a source signal
scan register, allowing the forced value to change for each test vector. A multiplexer is
used to replace the original signal with the output of this scan register when the TestMode
signal is asserted. See Figure 514.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1078

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Legacy Test Point Insertion
Test Point Types

Feedback

Figure 514 Example of a force_01 Test Point

net

TestMode

ScanIn

test_point_clock
ScanEnable

net_forced

ScanOut

D
SI
SE

Q

SRC

0

0

1

The force_z0 test pointforce_z0,force_z1 test point force_z1, and force_z01 test pointforce_z01 test point types allow either a constant value or
a scan-selected source signal value to be driven onto a tristate bus that is guaranteed to
have no other active drivers during test mode. See Figure 515.

Figure 515 Examples of force_z0, force_z1, and force_z01 Test Points

TestMode

0 or 1

net_forced

TestMode

net_forced

ScanIn

test_point_clock
ScanEnable ScanOut

0 D
SI
SE

Q

SRC

Note that the AutoFix feature of DFT Compiler uses force_0 and force_1 test points for
asynchronous signal fixing and force_01 test points for clock fixingclock fixing and for fixing clock-as-
data and X propagation.

Control Test Points
Control test points are used when a hard-to-control signal should be controllable
(selectively forced) for some test vectors but left unaltered for others. Control test points
are typically inserted to increase the fault coverage of the design. The following control
test point types are available:

• control_0

• control_1

• control_01

• control_z0

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1079

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Legacy Test Point Insertion
Test Point Types

Feedback

• control_z1

• control_z01
A control_0 test pointcontrol_0 or control_1 test pointcontrol_1 test point is built with a multiplexer, an AND gate, and a test
point enable scan register. When TestMode is not asserted, the signal always retains its
original value. When TestMode is asserted, the signal is forced with a fixed constant 0 or
1 value only when the output of the test point enable scan register selects the constant
value. This allows the test program to select either the original signal behavior, or the
constant-forced behavior on a vector-by-vector basis. This has the advantage of being
able to control the signal for some test vectors without losing the observability of the
upstream logic for the remaining vectors. See Figure 516.

Figure 516 Example of a control_0 or control_1 Test Point

net_controlled
net

0 or 1

TestMode

ScanIn

test_point_clock
ScanEnable ScanOut

0 D
SI
SE

Q

TPE

0

1

A control_01 test pointcontrol_01 test point is similar to the control_0 and control_1 test point types,
except that a scan-selected source signal value from a source signal scan registerscan register is selectively driven
onto the net on a vector-by-vector basis. As a result, the control_01 test point requires
two scan cells per control point, one for the source signal value and one for the enable
register that specifies that the source signal should be driven. See Figure 517.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1080

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Legacy Test Point Insertion
Test Point Types

Feedback

Figure 517 Example of a control_01 Test Point

net_controlled
net

TestMode

ScanIn

test_point_clock
ScanEnable

ScanOut

0

0

D
SI
SE

Q

SRC

D
SI
SE

Q

TPE

0

1

The control_z0 test pointcontrol_z1 test pointcontrol_Z0, control_Z1, and control_z01 test pointcontrol_z01 test point types allow either a constant
value or a scan-selected source signal value to be selectively driven onto a bus that might
be in a high-impedance state for some vectors but not for others. See Figure 518 and
Figure 519.

Figure 518 Example of a control_z0 or control_z1 Test Point

0 or 1

TestMode

ScanIn

test_point_clock
ScanEnable

ScanOut

0 D
SI
SE

Q

TPE

net_controlled

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1081

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Legacy Test Point Insertion
Test Point Signals

Feedback

Figure 519 Example of a control_z01 Test Point

net_controlled

TestMode

ScanIn

test_point_clock
ScanEnable

ScanOut

0 D
SI
SE

Q

TPE

D
SI
SE

Q

SRC

0

Observe Test Points
observe test pointThe observe test point type is typically inserted at hard-to-observe signals in a design to
reduce test data volume or to increase the coverage.

An observe test point is a scan register with its data input connected to the sink signal to
be observed. See Figure 520.

Figure 520 Example of an observe Test Point

ScanIn

test_point_clock
ScanEnable

ScanOutD
SI
SE

Q

OBS

net_observed

Test Point Signals
Test points use source, sink, test point enable, and control signals as shown in Table 67.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1082

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Legacy Test Point Insertion
Sharing Test Point Scan Cells

Feedback

Table 67 Test Point Signal Types

Test point type Source signal Enable signal Sink signal Control signal

force_0,
force_1

X

force_01 X X

force_z0,
force_z1

X

force_z01 X X

control_0,
control_1

X X

control_01 X X X

control_z0,
control_z1

X X

control_z01 X X X

observe X X13

The control signal is the TestMode signal that activates the test point logic.

Sharing Test Point Scan Cells
To reduce the area requirements of test point logic, DFT Compiler allows you to share the
test point enable, source signal, and sink signal scan registers with multiple test points.

You can share the same test point enable or source signal register with multiple control or
force test points. No additional logic gates are required; the scan register outputs are tied
to multiple test point logic gates. Figure 521 shows the logic for multiple control_01 test
points that share the same scan registers.

13. Test-mode signal used only if low-power XOR observability tree is enabled

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1083

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Legacy Test Point Insertion
Sharing Test Point Scan Cells

Feedback

Figure 521 Shared Scan Registers for Multiple control_01 Test Points

TestMode

ScanIn

test_point_clock
ScanEnable

ScanOut

0

0

D
SI
SE

Q

SRC

D
SI
SE

Q

TPE

Control points (control_01)

Test point enable and source signal scan registers are not shared between different test
point types.

observe test pointYou can share the same observe sink signal scan register with more than one observe
test point. DFT Compiler builds an XOR observability treeobservability treeobservability XOR tree which collapses multiple
observed signals down to a single sink signal connected to the data input of the shared
sink signal scan register. See Figure 522.

Figure 522 XOR Observability Tree For Multiple observe Test Points

ScanIn

test_point_clock
ScanEnable

ScanOutD
SI
SE

Q

OBS

Observe
points

When a device is in functional mode, every time the logic value on an observe node
changes, either from 1 to 0 or from 0 to 1, the entire fanout path through the XOR
observability tree toggles. This toggling results in unnecessary power losses.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1084

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Legacy Test Point Insertion
Automatically Inserted Test Points (Legacy)

Feedback

To avoid such losses in power, you can create a low-power observability tree for a shared
observe scan register. The observe point signals are gated with a 2-input AND gate, with a
test-mode signal used as the gating signal. See Figure 523.

Figure 523 Low-Power XOR Observability Tree For Multiple observe Test Points

ScanIn

test_point_clock
ScanEnable

ScanOutD
SI
SE

Q

OBS

Observe
points

TestMode

If a test-mode signal is defined, DFT Compiler uses it for the low-power gating signal.
Otherwise, DFT Compiler creates a new test-mode signal that is used only for low-power
observability gating.

Automatically Inserted Test Points (Legacy)
The tool can automatically insert test points to improve the testability of the design. You
can optionally specify requirements for test point insertion, such as the maximum number
of test points or the maximum additional area overhead. During DFT insertion, the tool
inserts the optimal set of test points that meets the requirements.

The following topics describe how to configure automatic test point insertion:

• Enabling Automatic Test Point Insertion

• Configuring Pattern Reduction and Testability Test Point Insertion

• Script Example

Enabling Automatic Test Point Insertion
To enable automatic test point insertion, you must first issue the following command before
pre-DFT DRC:

dc_shell> set_dft_configuration -test_points enable

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1085

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Legacy Test Point Insertion
Automatically Inserted Test Points (Legacy)

Feedback

Note:
A DFTMAX or TestMAX DFT license is required to use the automatic test point
insertion feature.

After you have enabled automatic test point insertion, you can enable and configure one
or more automatic test point targets with the set_test_point_configuration command,
as described in the following topics. To enable multiple test point targets, issue a separate
configuration command for each target.

Configuring Pattern Reduction and Testability Test Point Insertion
You can use the pattern reduction and testability automatic test point insertion targets to
improve the testability of hard-to-test logic in your design. They work as follows:

• pattern_reduction – Enables only observe points

This mode reduces the pattern count needed to achieve a given amount of test
coverage. Observe points increase the loading along the observed path, but do not
directly increase the logic depth. This mode has less impact on timing.

• testability – Enables both control and observe points

This mode improves the testability of the design by increasing the controllability of
hard-to-test logic. Keep in mind that control points insert logic along the path being
controlled. Although gate-level optimization can combine the control points with the
surrounding logic, there might be some impact on timing.

During pre-DFT DRC, performed by the dft_drc command, the tool analyzes the
design to determine the optimal set of test points. During DFT insertion, performed by
the insert_dft command, the tool inserts the test points into the design. Any needed
dedicated clock or test mode signals are created.

To enable and configure the testability or pattern reduction targets of automatic test point
insertion, use the set_test_point_configuration command as follows:

set_test_point_configuration
 -target pattern_reduction | testability
 [-control_signal control_name]
 [-clock_signal clock_name]
 [-clock_type dominant | dedicated]
 [-max_control_points n]
 [-max_observe_points n]
 [-test_points_per_scan_cell n]
 [-power_saving enable | disable]
 [-max_additional_logic_area n]

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1086

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Legacy Test Point Insertion
Automatically Inserted Test Points (Legacy)

Feedback

The -target option specifies which automatic test point insertion target to enable and
is a required option. The pattern_reduction and testability targets are mutually
exclusive.

You can use the following additional options, along with the -target option, to configure
pattern reduction or testability test point insertion:

• By default, control points use any available TestMode port previously defined with the
set_dft_signal command. To specify the TestMode signal that should activate the
test points, use the following option:

dc_shell> set_test_point_configuration ... -control_signal pin_port
The specified control signal must be defined as a TestMode signal type with the
set_dft_signal command.

• By default, the insert_dft command uses the dominant clock, which is the clock that
clocks the most sequential elements in the design, to clock the inserted test point scan
registers. In an on-chip clocking (OCC) flow, it chooses an OCC clock instead.

To specify that a dedicated test point clock signal should be used, use the following
option:

dc_shell> set_test_point_configuration ... -clock_type dedicated
This option causes a new dedicated test point clock signal, tpclk, to be created.

To specify the test clock signal that should clock the test point scan registers, use the
-clock_signal option:

dc_shell> set_test_point_configuration ... \
 -clock_type dedicated \
 -clock_signal clock_name
DFT Compiler supports the following clock name specifications:

◦ You can specify the name of a scan clock signal, defined as a ScanClock signal
type with the set_dft_signal command.

◦ In a DFT-inserted OCC controller flow, you can specify the name of a PLL output
pin. In this case, DFT Compiler maps the test point clock to the output pin of the
corresponding OCC controller during DFT insertion.

◦ In a user-defined OCC controller flow, you can directly specify the name of an
output pin of an existing OCC controller.

For more information about OCC controller flows, see Chapter 12, On-Chip Clocking
Support.”

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1087

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Legacy Test Point Insertion
Automatically Inserted Test Points (Legacy)

Feedback

• By default, automatic test point insertion is limited to a maximum of 1000 control points.
To specify a different limit, use the following option:

dc_shell> set_test_point_configuration ... -max_control_points n
This option is only valid in testability mode; it is ignored in pattern reduction mode.

• By default, automatic test point insertion is limited to a maximum of 1000 observe
points. To specify a different limit, use the following option:

dc_shell> set_test_point_configuration ... -max_observe_points n
• By default, each source, sink, or enable scan register can be shared by up to eight test

points. To specify the maximum number of test points that can share a single source,
sink, or enable scan register, use the following option:

dc_shell> set_test_point_configuration ... \
 -test_points_per_scan_cell n
For more information about sharing scan cells, see Sharing Test Point Scan Cells on
page 1083.

• To insert power-saving AND gates at the top of the XOR observability trees to avoid
excess switching power consumption during scan shift, use the following option:

dc_shell> set_test_point_configuration ... -power_saving enable
For more information about power-saving logic, see Sharing Test Point Scan Cells on
page 1083.

• To apply an area limit to the inserted test point logic, use the following option:

dc_shell> set_test_point_configuration ... \
 -max_additional_logic_area P
The value p is the percentage of the total design area that can be consumed by the
test point logic and must be a value between 1 and 50. Low-power observability logic is
included in the test point area value. If specified, the area limit applies in addition to the
test point limit.

Script Example
The following script inserts testability test points, using a test-mode control signal named
TM_TESTPOINTS.

define DFT signals
set_dft_signal -view existing_dft -type ScanClock \
 -port CLK -timing [list 45 55]
set_dft_signal -view spec -type TestMode -port TM_TESTPOINTS

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1088

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Legacy Test Point Insertion
User-Defined Test Points (Legacy)

Feedback

enable automatic test point insertion
set_dft_configuration -test_points enable

enable and configure testability test points
set_test_point_configuration \
 -target testability \
 -control_signal TM_TESTPOINTS

preview test points
preview_dft -test_points all

insert DFT logic
insert_dft

User-Defined Test Points (Legacy)
user-defined test pointsUser-defined test points provide you with the flexibility to insert control and observe test
points at user-specified locations in the design. User-defined test points can be used for
a variety of purposes, including the ability to fix uncontrollable clocks and asynchronous
signals, increase the coverage of the design, and reduce the pattern count.

The following topics describe how to implement user-defined test points:

• Configuring User-Defined Test Points

• User-Defined Test Points Example

Configuring User-Defined Test Points
You can use the set_test_point_element commandtest points, definingset_test_point_element command to specify the location and type
of user-defined test points to insert in the design during DFT insertion, as well as other
aspects of test point construction. User-defined test points can be defined at leaf pins,
hierarchy pins, and ports. These test points are then inserted during the insert_dft
command.

To define a user-defined test point, specify the test point type and list of signal pins or
ports to be forced, controlled, or observed:

dc_shell> set_test_point_element -type test_point_type signal_list
For a list of test point types and their descriptions, see Test Point Types on page 1077.

By default, any needed source, sink, and enable signals are supplied by scan registers
inserted by the insert_dft command. Each scan register is shared by up to eight source,
sink, or enable test point signals. For shared source and enable signal registers, the
same scan-selected signal value is used by all shared test points. For shared sink signal
registers, an XOR observability tree is used to combine the observed signals for capture
by the sink register.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1089

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Legacy Test Point Insertion
User-Defined Test Points (Legacy)

Feedback

You can use the following options to control user-defined test point insertion:

• By default, force and control points use any available TestMode port previously defined
with the set_dft_signal command. To specify the TestMode or ScanEnable signal
that should activate the test points, use the following option:

dc_shell> set_test_point_element -control_signal pin_port ...
The specified control signal must be defined as a TestMode or ScanEnable signal type
with the set_dft_signal command.

• By default, the insert_dft command creates a new clock signal, tpclk, to clock any
inserted test point scan registers, even when test clocks have been defined. To specify
the test clock signal that should clock the scan registers, use the -clock_signal
option:

dc_shell> set_test_point_element -clock_signal clock_name ...
DFT Compiler supports the following clock name specifications:

◦ You can specify the name of a scan clock signal, defined as a ScanClock signal
type with the set_dft_signal command.

◦ In a DFT-inserted OCC controller flow, you can specify the name of a PLL output
pin. In this case, DFT Compiler maps the test point clock to the output pin of the
corresponding OCC controller during DFT insertion.

◦ In a user-defined OCC controller flow, you can directly specify the name of an
output pin of an existing OCC controller.

For more information about OCC controller flows, see Chapter 12, On-Chip Clocking
Support.

• To specify the maximum number of test points that can share a single source, sink, or
enable register, use the following options:

dc_shell> set_test_point_element \
 -test_points_per_source_or_sink n ...

dc_shell> set_test_point_element \
 -test_points_per_test_point_enable n ...
Source, sink, or enable registers are created as needed, according to the specified
sharing limit and the number of test point signal pins provided.

• To specify that the source, sink, or enable signals should come from primary input and
output ports instead of scan registers, use the following options:

dc_shell> set_test_point_element -scan_source_or_sink false ...

dc_shell> set_test_point_element -scan_test_point_enable false ...

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1090

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Legacy Test Point Insertion
User-Defined Test Points (Legacy)

Feedback

The same source, sink, and enable signal sharing is performed, except that primary
input and output ports are created instead of scan registers.

• To specify that a specific user-supplied source, sink, or enable signal be used for a
given test point definition, use the following options:

dc_shell> set_test_point_element \
 -source_or_sink source_or_sink_name ...

dc_shell> set_test_point_element \
 -test_point_enable test_point_enable_name ...
When a user-supplied source, sink, or enable signal is specified, it is used for all test
points in that set_test_point_element command, and the previously described
sharing limit and scan register options do not apply.

• To insert power-saving AND gates at the top of an XOR observability tree to avoid
excess switching power consumption during scan shift, use the following option:

dc_shell> set_test_point_element -power_saving enable ...
Each set_test_point_element command describes a unique test point element
definition. Sharing is not performed between test point element definitions. If test points
within a limited geographic region should share the same source, sink, or enable
signals, they should all be provided in a single set_test_point_element command.
If test points across a wide geographic region should not share signals to avoid routing
congestion, they should be broken up into localized groups and specified with separate
set_test_point_element commands.

After specifying test point definitions with the set_test_point_element command, you
can report them with the report_test_point_element command, or remove them before
DFT insertion with the remove_test_point_element command. For more information
about these commands, see the man pages.

User-Defined Test Points Example
Consider the simple design shown in Figure 524 and the corresponding example using the
user-defined test points flow shown in Example 167 on page 1092.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1091

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Legacy Test Point Insertion
User-Defined Test Points (Legacy)

Feedback

Figure 524 Design Example for User-Defined Test Points

DAT1

EN

U_ANALOG
DAT0

DI DO DOUT

CLK

force_0
force_01

RESETN

RSTN

observe

In this design example, some control signals are combined using a cloud of combinational
logic, then fed to the DI input of an analog block. The DO output of the analog passes
through an output drive buffer so that it can drive a possible long route outside the block.
Because this analog block is untestable, the logic fanin to the DI input cannot be observed,
and the logic fanout from the DO output cannot be controlled.

To improve the testability of the logic around this analog block, the following user-defined
test points can be specified:

• Insert an observe test point at the DI input of the analog block to provide observability
of the data logic cone:

set_test_point_element -type observe U_ANALOG/DI
• Insert a force_0 test point at the RSTN pin of the analog block to hold the block in a

quiet, low-power reset state during the test program:

set_test_point_element -type force_0 U_ANALOG/RSTN
• Insert a force_01 test point at the DO output of the analog block to provide

controllability of the downstream logic:

set_test_point_element -type force_01 U_ANALOG/DO
A force test point is used at the DO output pin instead of a control test point. The output
of the analog block is always unknown, and there is no reason to selectively allow this
unknown value to propagate downstream. This force test point is placed at the analog
block DO output instead of the DOUT output port so that faults at the drive buffer can be
detected. If the test point was placed at the DOUT output port instead, faults between the
analog block and the output port could not be detected.

The existing clock CLK is used to clock the test point scan registers. A new TESTMODE
port is created to enable the test points.

Example 167 Example of a User-Defined Test Point Flow
Read in the design and synthesize it
read_file -format verilog ./rtl/design.v

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1092

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Legacy Test Point Insertion
Previewing the Test Point Logic

Feedback

current_design TEST
link
read_sdc TEST.sdc
compile -scan

Define the clock, reset, test-mode ports
set_dft_signal -view existing_dft -type ScanClock \
 -port CLK -timing {45 55}
set_dft_signal -view existing_dft -type Reset \
 -port RST -active_state 0
set_dft_signal -view spec -type TestMode \
 -port TESTMODE -active_state 1
set_scan_configuration -chain_count 10

Provide the UDTP specifications
set_test_point_element -type observe U_ANALOG/DI \
 -clock_signal CLK -control_signal TESTMODE

set_test_point_element -type force_0 U_ANALOG/RSTN \
 -clock_signal CLK -control_signal TESTMODE

set_test_point_element -type force_01 U_ANALOG/DO \
 -clock_signal CLK -control_signal TESTMODE

Run pre-DFT DRC
create_test_protocol
dft_drc commanddft_drc -verbose

Preview and insert DFT
preview_dft -show all -test_points all
insert_dft

Run post-DFT DRC
dft_drc -verbose
report_scan_path

Write out the netlist
write -hierarchy -format ddc -output TEST_udtp_scan.ddc
change_names -rules verilog
write -hierarchy -format verilog -output TEST_udtp_scan.v

Previewing the Test Point Logic
To preview the test point logic that the tool will implement according to your specifications,
use the following command:

dc_shell> preview_dft -test_points all

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1093

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Legacy Test Point Insertion
Inserting the Test Point Logic

Feedback

This command reports the following information:

• Test point locations

• Instance names of inserted test point flip-flops

• Clocks used by inserted test point flip-flops

• Low-power observability tree status

You can use other options of the preview_dft command with the -test_points option.

Inserting the Test Point Logic
After you define the test point insertion configuration, the insert_dft command inserts
the test point logic. Test point scan registers are placed in the lowest level of hierarchy
shared by all test points for that register.

The following additional signals are created, depending on the test configuration:

• A new test point clock signal, if a test point clock is not defined

• A new test-mode signal for force, control, and observe test points, if a test-mode signal
is not defined

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1094

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

C
Legacy RTL Design Rule Checking

This appendix documents the legacy RTL design rule checking (DRC) functionality
provided in the synthesis tool. For best results, use the newer functionality provided by the
TestMAX Advisor or SpyGlass DFT ADV tools.

This appendix includes the following topics:

• Understanding the Flow

• Specifying Setup Variables

• Generating a Test Protocol

• Running RTL Test DRC

• Understanding the Violations

• Limitations

Understanding the Flow
Figure 525 shows a typical RTL test DRC flow.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1095

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix C: Legacy RTL Design Rule Checking
Understanding the Flow

Feedback

Figure 525 RTL Test DRC Design Flow

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1096

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix C: Legacy RTL Design Rule Checking
Specifying Setup Variables

Feedback

Specifying Setup Variables
To begin preparing for RTL test DRC checking, you need to specify a series of setup
variables, as described in the following steps:

1. Set the hdlin_enable_rtldrc_info variable to true. This variable reports file names
and line numbers associated with each violation, which makes it easier for you to later
edit the source code and fix violations.

dc_shell> set hdlin_enable_rtldrc_info true
2. Make sure you define the list of searched logic libraries by using the link_library

variable.

3. Read in your HDL source code by using the read variable. The following variable reads
in a Verilog file called my_design.v:

dc_shell> read_file -format verilog my_design.v

Generating a Test Protocol
A test protocol is required for specifying signals and initialization requirements associated
with design rule checking. This topic covers the following topics related to generating a
test protocol:

• Defining a Test Protocol

• Setting the Scan Style

• Design Examples

Defining a Test Protocol
To define the test protocol, you need to

• Identify all test clock signals by using test clocksidentifying test clocksclocksidentifying test clocksthe set_dft_signal commandcommandsset_dft_signalset_dft_signal command, as shown in the
following example:

dc_shell> set_dft_signal -view existing_dft \
 -type ScanClock -timing {45 55}
Make sure you identify a clock signal as a clock and not as any other signal type, even
if it has more than one attribute. An error message will appear if you identify a clock
signal with any other attribute.

• Identify all nonclock control signals, such as asynchronous presets and clears or scan-
enable signals, using control signalssignalscontrolasynchronous signalsscan enable signalssignalsscan enablethe set_dft_signal command.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1097

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix C: Legacy RTL Design Rule Checking
Generating a Test Protocol

Feedback

You should identify the following nonclock control signals:

◦ Reset

◦ ScanEnable

◦ Constant

◦ ScanDataIn

◦ ScanDataOut

◦ TestData

◦ TestMode
For example,

dc_shell> set_dft_signal -view existing_dft \
 -type Reset -active_state 1

• Define constant logic value requirements.constant logic values, defining for test mode

If a signal must be set to a fixed constant value, use the set_test_hold commandcommandsset_test_holdset_dft_signal command,
as shown in the following example:

dc_shell> set_dft_signal -view existing_dft \
 -type constant -active_state 1

• Define test-mode initialization requirements.initialization requirements, defining

Your design might require initialization to function in test mode. Use the
read_test_protocol command to read in a custom initialization sequence. You
can define a custom initialization sequence by modifying the protocol created by the
create_test_protocol command.

Reading in an Initialization Protocol in STIL Format
The following example reads in a STIL STIL formatinitialization protocolinitialization protocolSTIL formatformatSTILinitialization protocol:

dc_shell> read_test_protocol -section test_setup my_protocol_file.spf
Example 168 shows a complete STIL protocol file, including an initialization sequence.
The initialization sequence is found in the test_setup section of the MacroDefs block.

Example 168 Complete Protocol File (init.spf)

STIL 1.0 {
 Design P2000.9;
}
Header {
 Title "DFT Compiler 2000.11 STIL output";

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1098

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix C: Legacy RTL Design Rule Checking
Generating a Test Protocol

Feedback

 Date "Wed Jan 3 17:36:04 2001";
 History {
 }
}
Signals {
 "ALARM" In; "BSD_TDI" In; "BSD_TEST_CLK" In; "BSD_TMS" In;
 "BSD_TRST" In; "CLK" In; "HRS" In; "MINS" In; "RESETN" In;
 "SET_TIME" In; "TEST_MODE" In; "TEST_SE" In; "TEST_SI" In;
 "TOGGLE_SWITCH" In;
 "AM_PM_OUT" Out; "BSD_TDO" Out; "HR_DISPLAY[0]" Out;
 "HR_DISPLAY[1]" Out; "HR_DISPLAY[2]" Out; "HR_DISPLAY[3]"
Out;
 "HR_DISPLAY[4]" Out; "HR_DISPLAY[5]" Out; "HR_DISPLAY[6]"
Out;
 "HR_DISPLAY[7]" Out; "HR_DISPLAY[8]" Out; "HR_DISPLAY[9]"
Out;
 "HR_DISPLAY[10]" Out; "HR_DISPLAY[11]" Out;
"HR_DISPLAY[12]" Out;
 "HR_DISPLAY[13]" Out; "MIN_DISPLAY[0]" Out;
"MIN_DISPLAY[1]" Out;
 "MIN_DISPLAY[2]" Out; "MIN_DISPLAY[3]" Out;
"MIN_DISPLAY[4]" Out;
 "MIN_DISPLAY[5]" Out; "MIN_DISPLAY[6]" Out;
"MIN_DISPLAY[7]" Out;
 "MIN_DISPLAY[8]" Out; "MIN_DISPLAY[9]" Out;
"MIN_DISPLAY[10]" Out;
 "MIN_DISPLAY[11]" Out; "MIN_DISPLAY[12]" Out;
"MIN_DISPLAY[13]" Out;
 "SPEAKER_OUT" Out;
}
SignalGroups {
 "all_inputs" ’"ALARM" + "BSD_TDI" + "BSD_TEST_CLK" +
"BSD_TMS" +
 "BSD_TRST" + "CLK" + "HRS" + "MINS" + "RESETN" + "SET_TIME" +
 "TEST_MODE" + "TEST_SE" + "TEST_SI" + "TOGGLE_SWITCH"’; //
#signals=14
 "all_outputs" ’"AM_PM_OUT" + "BSD_TDO" + "HR_DISPLAY[0]"
+
 "HR_DISPLAY[1]" + "HR_DISPLAY[2]" + "HR_DISPLAY[3]" +
 "HR_DISPLAY[4]" + "HR_DISPLAY[5]" + "HR_DISPLAY[6]" +
 "HR_DISPLAY[7]" + "HR_DISPLAY[8]" + "HR_DISPLAY[9]" +
 "HR_DISPLAY[10]" + "HR_DISPLAY[11]" + "HR_DISPLAY[12]" +
 "HR_DISPLAY[13]" + "MIN_DISPLAY[0]" + "MIN_DISPLAY[1]" +
 "MIN_DISPLAY[2]" + "MIN_DISPLAY[3]" + "MIN_DISPLAY[4]" +
 "MIN_DISPLAY[5]" + "MIN_DISPLAY[6]" + "MIN_DISPLAY[7]" +
 "MIN_DISPLAY[8]" + "MIN_DISPLAY[9]" + "MIN_DISPLAY[10]" +
 "MIN_DISPLAY[11]" + "MIN_DISPLAY[12]" + "MIN_DISPLAY[13]"
+
 "SPEAKER_OUT"’; // #signals=31
 "all_ports" ’"all_inputs" + "all_outputs"’; //
#signals=45
 "_pi" ’"all_inputs"’; // #signals=14
 "_po" ’"all_outputs"’; // #signals=31

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1099

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix C: Legacy RTL Design Rule Checking
Generating a Test Protocol

Feedback

}

ScanStructures {
 ScanChain "c0" {
 ScanLength 40;
 ScanIn "TEST_SI";
 ScanOut "SPEAKER_OUT";
 }
}
Timing {
 WaveformTable "_default_WFT_" {
 Period ’100ns’;
 Waveforms {
 "all_inputs" { 0 { ’5ns’ D; } }
 "all_inputs" { 1 { ’5ns’ U; } }
 "all_inputs" { Z { ’5ns’ Z; } }
 "all_outputs" { X { ’0ns’ X; } }
 "all_outputs" { H { ’0ns’ X; ’95ns’ H; } }
 "all_outputs" { T { ’0ns’ X; ’95ns’ T; } }
 "all_outputs" { L { ’0ns’ X; ’95ns’ L; } }
 "CLK" { P { ’0ns’ D; ’45ns’ U; ’55ns’ D; } }
 "BSD_TEST_CLK" { P { ’0ns’ D; ’45ns’ U; ’55ns’ D; } }
 "RESETN" { P { ’0ns’ U; ’45ns’ D; ’55ns’ U; } }
 }
 }
}
PatternBurst "__burst__" {
 "__pattern__" {
 }
}
PatternExec {
 Timing "";
 PatternBurst "__burst__";
}
Procedures {
 "load_unload" {
 W "_default_WFT_";
 V { "BSD_TEST_CLK"=0; "BSD_TRST"=0; "CLK"=0; "RESETN"=1;
 "TEST_MODE"=1; "TEST_SE"=1; "_so"=#; }
 Shift {
 W "_default_WFT_";
 V { "BSD_TEST_CLK"=P; "BSD_TRST"=0; "CLK"=P;
"RESETN"=1;
 "TEST_MODE"=1; "TEST_SE"=1; "_so"=#; "_si"=#; }
 }
}
 "capture" {
 W "_default_WFT_";
 F { "BSD_TRST"=0; "TEST_MODE"=1; }
 V { "_pi"=\r14 #; "_po"=\r31 #; }
 }
 "capture_CLK" {

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1100

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix C: Legacy RTL Design Rule Checking
Generating a Test Protocol

Feedback

 W "_default_WFT_";
 F { "BSD_TRST"=0; "TEST_MODE"=1; }
 "forcePI": V { "_pi"=\r14 #; }
 "measurePO": V { "_po"=\r31 #; }
 "pulse": V { "CLK"=P; }
 }
 "capture_BSD_TEST_CLK" {
 W "_default_WFT_";
 F { "BSD_TRST"=0; "TEST_MODE"=1; }
 "forcePI": V { "_pi"=\r14 #; }
 "measurePO": V { "_po"=\r31 #; }
 "pulse": V { "BSD_TEST_CLK"=P; }
 }
 "capture_RESETN" {
 W "_default_WFT_";
 F { "BSD_TRST"=0; "TEST_MODE"=1; }
 "forcePI": V { "_pi"=\r14 #; }
 "measurePO": V { "_po"=\r31 #; }
 "pulse": V { "RESETN"=P; }
 }
}
MacroDefs {
 "test_setup" {
 W "_default_WFT_";
 V { "BSD_TEST_CLK"=0; "CLK"=0; }
 V { "BSD_TEST_CLK"=0; "BSD_TRST"=0; "CLK"=0; "RESETN"=1;
 "TEST_MODE"=1; }
 }
}

Note:
The read_test_protocol -section test_setup command imports only the
test_setup section of the protocol file and ignores the remaining sections.

Setting the Scan Style
The scan style setting affects messages generated by test design rule checking. This is
because some design rules apply only to specific scan styles. To set the scan style, use
the following syntax for the set_scan_configuration command:

set_scan_configuration -style scan_style

You can use any of the following arguments for the scan_style value:

• multiplexed_flip_flop

• clocked_scan

• lssd

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1101

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix C: Legacy RTL Design Rule Checking
Generating a Test Protocol

Feedback

• scan_enabled_lssd

• combinational
If you do not set the scan style before performing test design rule checking,
multiplexed_flip_flop is used as the default scan style.

Design Examples
This topic contains two simple design examples that illustrate how to generate test
protocols. The first example shows how to use the set_dft_signal command to control
the clock signal, the scan-enable signal, and the asynchronous reset. The second
example describes a two-pass process for defining an initialization sequence in a test
protocol.

Test Protocol Example 1
Figure 526 shows a schematic and the Verilog code for a simple RTL design that needs a
test protocol.

Figure 526 RTL Design That Needs a Simple Protocol

module tcrm (in1, in2, in3, clk, cdn, out1, out2);
input in1, in2, in3, clk, cdn;
output out1, out2;
reg U1, U2;
wire gated_clk;

always @(posedge clk or negedge cdn) begin
 if (!cdn) U1 <= 1'b0;

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1102

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix C: Legacy RTL Design Rule Checking
Generating a Test Protocol

Feedback

 else U1 <= in1;
end

assign gated_clk = clk & in3;

always @(posedge gated_clk or negedge cdn) begin
 if (!cdn) U2 <= 1'b0;
 else U2 <= in2;
 end

assign out1 = U1;
assign out2 = U2;

endmodule

In this design, you must define the clock signal, clk. You must also specify that in3 be
held at 1 during scan input to enable the clock signal for U2. Finally, you must hold the cdn
signal at 1 during scan input so that the reset signal is not applied to the registers.

The following command sequence specifies a test protocol for the design example:

dc_shell> set_dft_signal -view existing_dft \
 -type ScanClock -timing [list 45 55] \
 -port clk

dc_shell> set_dft_signal -view existing_dft -port cdn \
 -type Reset -active_state 0

dc_shell> set_dft_signal -view spec -port in3 \
 -type ScanEnable -active_state 1

dc_shell> create_test_protocol

dc_shell> write_test_protocol -output design.spf

Test Protocol Example 2
Figure 527 shows a schematic and the corresponding Verilog code for an RTL design that
requires initialization.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1103

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix C: Legacy RTL Design Rule Checking
Generating a Test Protocol

Feedback

Figure 527 Design That Requires an Initialization Sequence

module ssug (in1, in2, clk, cdn, out1, out2);
input in1, in2, clk, cdn;
output out1, out2;
reg ff_a, ff_b, ff_c, ff_d;
wire resetn;

 always @(posedge clk) begin
 ff_b <= ff_a;
 ff_a <= cdn;
 end
 assign resetn = cdn & ff_b;
 always @(posedge clk or negedge resetn) begin
 if (!resetn) begin
 ff_c <= 1'b0;
 ff_d <= 1'b0;
 end
 else begin
 ff_c <= in1;
 ff_d <= in2;
 end
 end
 assign out1 = ff_c;
 assign out2 = ff_d;
endmodule

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1104

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix C: Legacy RTL Design Rule Checking
Generating a Test Protocol

Feedback

In this design, you must define the clock signal, clk. You must also make sure that cdn
and the Q output of ff_b_reg remain at 1 during the test cycle, so that the resetn signal
remains at 1.

If you do not initialize the design, test DRC assumes that the resetn signal is not
controllable and marks the ff_c and ff_d flip-flops as having design rule violations.

To initialize the design, you must hold cdn at 1 and pulse the clk signal twice so that the
resetn signal is at 1.

For this example, the protocol is generated in a two-pass process. In the first pass, the
generated protocol contains an initialization sequence based on the test attributes placed
on clk and cdn ports. The command sequence that defines the preliminary protocol is as
follows:

dc_shell> set_dft_signal -view existing_dft \
 -type ScanClock -timing [list 45 55] \
 -port clk

dc_shell> set_dft_signal -view existing_dft \
 -type Constant -active_state 1 -port cdn

dc_shell> create_test_protocol

dc_shell> write_test_protocol -output first.spf
The resulting protocol contains the initialization steps shown in Example 169.

Example 169 Preliminary Initialization Sequence

MacroDefs {
 "test_setup" {
 W "_default_WFT_";
 V { "clk"=0; }
 V { "cdn"=1; "clk"=0; }
 }
}

If you run test design rule checking without modifying these initialization steps, it reports
the following violation:

Warning: Reset input of DFF ff_d_reg was not controlled. (D3-1)

For the second pass of the protocol generation process, modify the initialization sequence
as shown:

1. Add the three lines shown in bold to the test_setup section of the MacroDefs block:

MacroDefs {
 "test_setup" {
 W "_default_WFT_";

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1105

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix C: Legacy RTL Design Rule Checking
Running RTL Test DRC

Feedback

 V { "clk"=0; }
 V { "cdn"=1; "clk"=0; }
 V { "cdn"=1; "clk"=P; }
 V { "cdn"=1; "clk"=P; }
 V { "cdn"=1; "clk"=0; } }
}

The added steps pulse the clock signal twice while holding the cdn port to 1. The final
step holds clk to 0 because the test design rule checker expects all clocks to be in an
inactive state at the end of the initialization sequence.

2. Save the protocol into a new file. In this case, the file is called second.spf.

3. Read in the new macro in one of two ways:

a. Reread the whole modified protocol file:

 read_test_protocol second.spf
b. Read just the initialization portion of the protocol, and use the

create_test_protocol command to fill in the remaining sections of the protocol:

 remove_test_protocol
 read_test_protocol -section test_setup second.spf
 create_test_protocol

4. After you have read in the initialization protocol, perform test DRC again. The following
violation is reported:

Warning: Cell ff_b_reg has constant 1 value. (TEST-505)

This is to be expected because the outputs of ff_a and ff_b did not reach 0. Constant
flip-flops are not included in the scan chain.

Running RTL Test DRC
After generating the test protocol, you are ready to run the test DRC process. To do this,
specify the dft_drc command at the shell prompt, as shown in the following example:

dc_shell> dft_drc
This command generates a set of report files containing all known design violations. You’ll
need to review these reports and manually fix any violations before advancing to design
compilation and scan insertion.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1106

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix C: Legacy RTL Design Rule Checking
Understanding the Violations

Feedback

Understanding the Violations
The Test DRC process checks your design to determine if you have any test design rule
violations. Before you can fix your design, you must understand what types of violations
are checked and why these checks are necessary.

This topic explains the test design rule checks that are performed on your design,
describes messages you see when you encounter test design rule violations, and
describes the methods you can use to fix the violations.

This topic covers the following:

• Violations That Prevent Scan Insertion

• Violations That Prevent Data Capture

• Violations That Reduce Fault Coverage

Violations That Prevent Scan Insertion
Scan design rules require that in test mode the registers have the functionality to operate
as cells within a large shift register. This enables data to get into and out of the chip. The
following violations prevent a register from being scannable:

• The flip-flop clock signal is uncontrollable.

• The latch is enabled at the beginning of the clock cycle.

• The asynchronous controls of registers are uncontrollable or are held active.

Uncontrollable Clocks
This violation can be caused by undefined or unconditioned clocks. DFT Compiler
considers a clock to be controlled only if both of these conditions are true:

• The clock is forced to a known state at time = 0 in the clock period, which is the same
as the “clock off state” in the TestMAX ATPG tool.

• The clock changes state as a result of the test clock toggling.

Going to an unknown state (X) is considered to be a change of state. However, if the
clock stays in a single known state no matter what state the test clock is in, the clock
will generate a violation for not being reached by any test clock.

You must use the set_dft_signal commandcommandscommandsset_dft_signalset_dft_signal command to define test clocks in your design. For
more information, see Defining a Test Protocol on page 1097.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1107

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix C: Legacy RTL Design Rule Checking
Understanding the Violations

Feedback

Also use the set_dft_signal command to condition gated clocks to reach their
destinations, as shown in the following example:

dc_shell> set_dft_signal -view existing_dft \
 -type constant -active_state 1
The violation message provides the name of the signal that drives the clock inputs and the
registers that ATPG cannot control.

If a design has an uncontrollable register clock pin, it generates one of the following
warning messages:

Warning: Clock input I of DFF S was not controlled. (D1-N)

Warning: Clock input I of DLAT S was not controlled. (D4-N)

Asynchronous Control Pins in Active State
Asynchronous pins of a register must be capable of being disabled by an input of the
design. violationsasynchronous control pinsasynchronous control pins violationsIf they cannot be disabled, this is reported as a violation. This violation can be
caused by asynchronous control signals, such as the preset or clear pin of the flip-flop or
latch, that are not properly conditioned before you run DFT Compiler. You might be able
to fix this by setting a signal as active_state that has a hold value of 0 during scan shift
or by defining a signal as active_state that has a hold value of 1. If you create all signal
definitions correctly before running DFT Compiler, this violation indicates uncontrollable registersregisters that
ATPG cannot control.

If a register has an asynchronous pin that is not controlled by an asynchronous control
signal, you get one of the following warning messages:

Warning: Set input I of DFF S was not controlled. (D2-N)

Warning: Reset input I of DFF S was not controlled. (D3-N)

Warning: Set input I of DLAT S was not controlled. (D5-N)

Warning: Reset input I of DLAT S was not controlled. (D6-N)

Violations That Prevent Data Capture
After DFT Compiler checks for violations that prevent scan insertion, the next step is to
verify that your design can get valid data during the capture phase of ATPG.

Note that ATPG does not consider timing when generating vectors for a scan design. If
you do not fix the violations in this topic, ATPG might generate vectors that fail functional
simulation or fail on the tester, although in the TestMAX ATPG tool you would also have to
override the TestMAX ATPG default settings.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1108

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix C: Legacy RTL Design Rule Checking
Understanding the Violations

Feedback

The violations are described in the following topics:

• Clock Used As Data

• Black Box Feeds Into Clock or Asynchronous Control

• Source Register Launch Before Destination Register Capture

• Registered Clock-Gating Circuitry

• Three-State Contention

• Clock Feeding Multiple Register Inputs

Clock Used As Data
When a clock signal drives violationsclock used as dataclocksused as data violationthe data pin of a cell, as in Figure 528, ATPG tools cannot
determine the captured value. Modify the logic leading to the datapath to eliminate
dependency on the clock.

Figure 528 Clock Signal Used As Data Input

If the clock and data input to a register are interdependent, you might get the following
warning message:

Warning: Clock C connects to clock and data inputs I1/I2 of DFF S.
 (D11-N)

Black Box Feeds Into Clock or Asynchronous Control
If the output of a black box indirectly feeds into the clock of a register, the register might
not be able to capture data. An example is shown in Figure 529.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1109

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix C: Legacy RTL Design Rule Checking
Understanding the Violations

Feedback

Figure 529 Black Box Feeds Clock Input

See Also

• Black Boxes on page 1116 for more information about how black boxes affect
testability

Source Register Launch Before Destination Register Capture
This topic describes the violations caused by source violationslaunch before capturelaunch before capture violationsregisters that launch new data to the
destination registers before they can capture and shift out the original data.

When two latches are enabled by the same clock but have a combinational datapath
between them, data can propagate through both latches in a single clock cycle. This
reduces the ability of ATPG to observe logic along this path. Modify the logic leading to the
affected latches to eliminate any paths affected by latches that are enabled by the same
clock.

An example of this violation is shown in Figure 530. When the clock turns off, that is,
pulses from an inactive state to an active state and then back, the second latch (U2) can
capture the value originally on port D1 or on its data pin, depending on the relationship
between the clock width and the delay on the datapath. The possibility of data feedthroughdata feedthroughunreliable capturefeedthrough
causes the destination latch (U2) to capture data unreliably.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1110

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix C: Legacy RTL Design Rule Checking
Understanding the Violations

Feedback

Figure 530 Latch-Based Circuit With Source Register Launch Before Destination Register
Capture

If multiple latches are enabled so that the latches feed through capture data, you get the
following warning message:

Warning: Clock C cannot capture data with other clocks off. (D8-N)

Registered Clock-Gating Circuitry
If you gate the register output with the same clock signal that is used to clock the register,
you cannot use the same phase of the resulting signal as a clock. An example is shown in
Figure 531.

Figure 531 Invalid Clock-Gating Circuit

The U1 output invalidly clocks register U2. The OR gate, U1, has two inputs, where one is
the output of register U3 and the other is the signal used to clock U3.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1111

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix C: Legacy RTL Design Rule Checking
Understanding the Violations

Feedback

Note that Power Compiler clock gating does not lead to this violation because Power
Compiler uses opposite edge-triggered flip-flops or latches to create the clock-gating
signals.

This circuit configuration results in timing hazards, including clock glitches and clock skew.
Modify the clock-gating logic to eliminate this type of logic.

If you implement this type of clock-gating circuitry, you get the following warning message:

Warning: Clock input I of DFF S was not controlled. (D1-N)

Three-State Contention
DFT Compiler can check to see if your RTL code contains three-state contention
conditions. If floating or contention is found, one of the following three warning messages
is issued:

Warning: Bus gate N failed contention ability check for drivers G1 and
G2. (D20-N)

Warning: Bus gate N failed Z state ability check. (D21-N)

Warning: Wire gate N failed contention ability check for drivers G1 and
G2. (D22-N)

Clock Feeding Multiple Register Inputs
A clock that feeds multiple register inputs reduces the fault coverage attainable by ATPG.
The signal can be one of the following:

• A clock signal that feeds into more than one register clock pin

• A clock signal that feeds into a clock pin and an asynchronous control of a register

The logic that feeds the same clock into multiple clock pins or asynchronous pins should
be modified so that the clock reaches only one port on the register. Figure 532 shows an
example of this violation.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1112

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix C: Legacy RTL Design Rule Checking
Understanding the Violations

Feedback

Figure 532 Clock Signal Feeds Register Clock Pin and Asynchronous Reset

If you implement this type of design circuitry, you get the following warning message:

Warning: D12 Clock C connects to clock/set/reset inputs (G1 / G2) of
DFF I. (D12-N)

Violations That Reduce Fault Coverage
Violations that can reduce your fault coverage are discussed in the following topics:

• Combinational Feedback Loops

• Clocks That Interact With Register Input

• Multiple Clocks That Feed Into Latches and Flip-Flops

• Black Boxes

Combinational Feedback Loops
An active (or sensitizable) feedback loop reduces the fault coverage that ATPG can
achieve by increasing the difficulty of controlling values on paths containing parts of the
loop.

A loop that oscillates causes severe problems for ATPG and for fault simulation. You can
break these loops by placing test constraints on the design. This creates a feedback loop
that is not active. DFT Compiler does not report violations on loops that you have broken
by setting constraints.

If you are using the loop as a latch, convert the combinational elements that make up this
feedback loop into a latch from your ASIC vendor library. Figure 533 shows this type of
loop.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1113

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix C: Legacy RTL Design Rule Checking
Understanding the Violations

Feedback

Figure 533 Highlighted Combinational Feedback Loop

If your design contains a sensitizable feedback loop, you get the following warning
message:

Warning: Feedback path network X is sensitizable through source gate G.
(D23-N)

Clocks That Interact With Register Input
A clock that affects the data input of a register reduces the fault coverage attainable by
ATPG, because ATPG pulses only one clock at a time, keeping all other clocks in their
off states. Attempting to fix this purely in the ATPG setup can result in timing hazards. Do
not use the circuit shown in Figure 534, because testing this logic requires multiple ATPG
iterations and might also require special scan chain design considerations (not discussed
here). Redesign the logic feeding the data inputs of the registers to eliminate dependency
on other clocks.

Figure 534 Clock Interacting With Register Input

If a clock affects the data of a register, you might get the following warning message:

Warning: Clock C connects to data input of DFF S. (D10-N)

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1114

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix C: Legacy RTL Design Rule Checking
Understanding the Violations

Feedback

Multiple Clocks That Feed Into Latches and Flip-Flops
The following topics describe the types of clock-gating configurations that can reduce fault
coverage:

• Latch Requires Multiple Clocks to Capture Data

• Latches Are Not Transparent

See Also

• Violations That Prevent Scan Insertion on page 1107 for more information about other
clock-gating configurations that prevent scan insertion

• Violations That Prevent Data Capture on page 1108 for more information about other
clock-gating configurations that prevent data capture

Latch Requires Multiple Clocks to Capture Data
For a latch to be usable as part of a scan chain, it must be enabled by one clock or by a
clock ANDed with data derived from sources other than that clock. Multiple clocks and
gated clocks must be ORed together so that any one of the clocks can capture data. ATPG
forces all but one clock off at any time. Latches that can capture data as a result of more
than one clock must be able to capture data with one clock active and all others off.

If your design has an OR gate with clock and data inputs, the output clock of the OR gate
has extra pulses that depend on the data input. If your design has an AND gate with more
than one clock input, the output of the AND gate never generates a clock pulse. Both of
these cases are violations, and DFT Compiler generates a warning message.

You can create valid clock-gating logic for latches if your circuitry contains an

• AND gate with only one clock input and one or more data inputs

• OR gate with clock or gated clock inputs

A combination of these valid clocking rules is shown in Figure 535.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1115

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix C: Legacy RTL Design Rule Checking
Understanding the Violations

Feedback

Figure 535 Valid Latch Clock Gating

If you generate logic that violates these clock rules, you get the following warning
message:

Warning: Clock C cannot capture data with other clocks off. (D8-N)

Latches Are Not Transparent
Latches should be transparent in certain types of scan styles. If a latch is not transparent,
ATPG might have more difficulty controlling it. This could cause a loss of fault coverage on
the path through the latch.

Black Boxes
Logic that drives or is driven by black boxes cannot be tested because it is unobservable
or uncontrollable. This violation can drastically reduce fault coverage, because the logic
that surrounds the black box is unobservable or uncontrollable. Figure 536 shows an
example.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1116

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix C: Legacy RTL Design Rule Checking
Limitations

Feedback

Figure 536 Effect of Black Boxes on Surrounding Logic

If there are any black boxes in your design, the dft_drc command issues the following
warning message:

Warning: Cell U0 (black_box) is unknown (black box) because
functionality for output pin Z is bad or incomplete. (TEST-451)

Limitations
Note the following limitations:

• The set_svf command is not supported in the RTL test DRC flow. You should
comment out any dft_drc command that performs test DRC checking on elaborated
RTL before you perform design synthesis, which generates the verification setup file.

• The compile_ultra -gate_clock -scan command is not supported in the RTL
test DRC flow. When the create_test_protocol command is run on the elaborated
RTL, subsequent compile_ultra -gate_clock -scan commands might not properly
incorporate clock-gating cells into the scan chains. You should comment out any
create_test_protocol commands performed on elaborated RTL before you perform
design synthesis with this command.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1117

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Glossary
Associated internal clocks

A set of one or more user-defined internal clocks in a clock network, each of which is
the root of a skew subdomain within its parent clock network.

ATPG
Automated Test Pattern Generation, the generation of scan data sequences used for
scan testing, with the goal of achieving as much test coverage as possible using the
smallest possible number of patterns. The test patterns contain nonfunctional data
selected to detect faults on nets in the design.

ATE
Automated Test Equipment, industrial equipment used to test semiconductor devices
by applying input stimuli, observing the device response, and comparing it against the
expected response.

BIST
Built-in self-test, design-for-test logic where both the scan data generation and the
scan data comparison logic are included in the design.

BSD
Boundary Scan Design, which refers to test logic that implements IEEE Std 1149.1.

Burn-in mode
A mode that continuously runs autonomous self-test. The scan and capture activity
stresses the tested logic and causes continuous power draw during self-test. Burn-in
operation can be configured to stop or continue if self-test fails.

CDR
Core data register, an optional register in an IEEE 1500 implementation that can
be loaded with a value after loading a corresponding instruction into the wrapper
instruction register (WIR).

Clock chain
A special scan chain segment associated with an on-chip clocking (OCC) controller
whose scanned-in values control the pulse sequence of a controlled clock.

Clock gating
A method of reducing power by shutting off clocks to circuits that are not being used.

Codec
The combination of the decompressor and compressor in a compressed scan
flow. A single design can have multiple codecs, but each codec consists of its own
decompressor/compressor pair.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1118

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Glossary

Feedback

Compressed scan
A scan methodology that uses more scan chains (called compressed scan chains)
than scan-in/scan-out pairs. A decompressor decompresses the scan-in data to drive
the greater number of scan chains. A compressor compresses the scan chain data
to drive the lesser number of scan-outs. The combination of the decompressor and
compressor wrapped around the scan chains is called the codec.

Compressed scan chains
In a compressed scan flow, the scan chains that are driven by the decompressor and
drive the compressor. There are a greater number of compressed scan chains than
scan-in/scan-out pairs.

Compressor
In a compressed scan flow, the part of a codec that compresses the scan chain data to
drive the lesser number of scan-outs.

Core
A design block that is DFT-inserted and has CTL model information about the inserted
DFT structures. Cores are used in hierarchical scan synthesis flows.

Core wrapping
See wrapped core.

CTL model
Core Test Language model, describes the characteristics of a DFT-inserted design in
STIL (IEEE Std 1450) format. This model includes information such as: DFT signals,
scan chains, test clocks and clock control, and test modes.

Decompressor
In a compressed scan flow, the part of a codec that decompresses the scan-in data to
drive the greater number of scan chains.

DFT
Design-for-Test, pertains to logic that helps the testability of a design.

DFTMAX scan compression
Scan compression implemented by the TestMAX DFT tool that uses combinational
codecs to yield high scan compression ratios.

DFTMAX Ultra scan compression
Scan compression implemented by DFTMAX Ultra compression that uses streaming
(sequential) codecs to yield very high scan compression ratios, even down to a single
scan-in/scan-out pair.

DFT partition
A DFT specification that allows the sequential cells in a design to be separated into
multiple independent partitions for the purpose of DFT insertion.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1119

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Glossary

Feedback

DRC
Design Rule Checking, checking a design against a rule set that ensures good
testability and reporting any violations of those rules.

EXTEST mode
Outward-facing test mode used to test logic external to (outside) a core, independent
of the logic inside the core. It uses the wrapper chain to drive scan-controllable values
at the output wrapper cells and capture the values at the input wrapper cells.

FSM
Finite state machine, a logic construct that moves through states (like navigating
elements in a flowchart diagram) to implement a certain logic behavior.

Hierarchical DFT insertion
Refers to a flow that performs DFT insertion in a lower level block (known as a core),
then incorporates that block’s scan structures into a higher level.
This term pertains to how DFT insertion is performed in the tool flow. Do not confuse
this term with hierarchical testing, which pertains to how manufacturing test is run on
the ATE.

Hierarchical testing
Refers to the process of testing different hierarchy levels of the design independently.
Wrapped cores are often used to enable hierarchical testing.
This term pertains to how manufacturing test is run on the ATE. Do not confuse this
term with hierarchical DFT insertion, which pertains to how DFT insertion is performed.

HSS
Hierarchical scan synthesis. See hierarchical DFT insertion.

Internal chains
The scan chains inside a block (uncompressed or compressed), as opposed to other
kinds of chains, such as boundary scan chains or core-wrapping chains.

Internal clock
A scan clock, defined on an internal pin in the design, that is the root driver of a skew
subdomain. Internal clocks can be automatically determined by the tool at multi-input
gate outputs or specified manually at associated internal clock pins within the clock
network.

INTEST mode
Inward-facing test mode used to test logic internal to (inside) a core, independent of
the logic outside the core. It uses the wrapper chain to drive scan-controllable values
at the input wrapper cells and capture the resulting values at the output wrapper cells.

Inward-facing test mode
See INTEST.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1120

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Glossary

Feedback

Leading edge
The first edge of a clock waveform definition. It is a rising edge for a return-to-zero
clock, and it is a falling edge for a return-to-one clock.

LFSR
Linear feedback shift register, a shift register whose next data word is a linear XOR
function of its current data word. The PRPG uses an LSFR to generate pseudorandom
data.

MISR
Multiple-input signature register, a recirculating shift register that XORs scan-captured
data values into the loop. After capturing all values, the MISR contains a signature
value for that test.

OCC controller
On-chip clocking controller, a DFT design structure that controls a free-running on-chip
clocking source (such as a PLL output clock) in test mode.

Outward-facing test mode
See EXTEST.

Pad cell
A special cell at the chip boundaries that allows communication with other integrated
circuits outside the chip, as opposed to an internal core cell, which makes up the core
of an integrated circuit.

Pipelined scan data
A feature that inserts additional scan registers, called pipeline registers, at the scan-in
and scan-out ports of the design to accommodate long wires between the scan chain
input and the first flip-flop and between the last flip-flop and the scan chain output.
Pipeline registers inserted at the scan-in and scan-out ports are called head and tail
pipeline registers, respectively.

Pipelined scan enable
A feature that adds a pipeline register to the scan-enable signal. It is used for transition
delay testing by making use of launch-on-extra-shift (LOES). This method of transition
delay testing requires additional circuitry to manipulate the scan-enable signals.

PLL
Phase-locked loop, an analog design block that creates a stable on-chip latency-
adjusted clock from a free-running (and possibly less stable) input clock.

Pre-DFT DRC
DRC checking run before DFT insertion, evaluates the readiness of the design for
DFT insertion. Certain types of pre-DFT DRC violations will result in scan cells being
excluded from scan chains.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1121

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Glossary

Feedback

PRPG
Pseudo-random pattern generator, uses an LSFR and an XOR phase shifter to
generate a stream of pseudorandom data values that have the appearance of random
values, but are actually a function of a seed value.

Post-DFT DRC
DRC checking run after DFT insertion, evaluates the implemented DFT functionality of
the design for correct operation.

Return-to-one clock
A clock whose value is normally high, with an active-low pulse during the clock period.

Return-to-zero clock
A clock whose value is normally low, with an active-high pulse during the clock period.

Scan cell
A sequential cell that has both functional and scan-shift modes of operation.

Scan compression
See compressed scan.

SCANDEF
A DEF file that uses a set of scan-specific constructs to describe how a design’s scan
chains can be reordered and repartitioned by a layout tool.

Scan group
A group of scan cells to be kept together in a scan chain.

Seed value
The initial value loaded into a PRPG. Different seed values result in different
pseudorandom value sequences.

Shadow wrapper
A “wrapper” around an untestable block or macrocell that allows surrounding logic
to be tested. Known values are forced at the outputs, and to improve coverage, the
values at the inputs are captured. It can be easily inserted using automatic test point
insertion.

Shared codec I/O
A feature that allows the scan-in and scan-out connections of DFTMAX cores or
codecs to be shared to reduce scan I/O requirements.

Shift register
A sequence of sequential cells in the design whose functional operation is to shift
bits through the register like a scan chain. Shift registers only need their first (head)
element scan-replaced to be stitched into a scan chain.

Skew subdomain
Part of a parent clock network that is considered to have different clock skew
characteristics than the rest of the clock network. Lock-up latches are inserted

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1122

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Glossary

Feedback

whenever a scan chain crosses a skew subdomain boundary. A skew subdomain is
driven by an internal clock pin.

SPF
STIL Protocol File, a file written out by DFT Compiler to describe DFT aspects of the
design, such as: test ports, test clocks, primary input constraints, scan chains, codecs,
and test modes. It is used by TestMAX ATPG (or other ATPG tool) for DRC and ATPG.

STIL
Standard Test Interface Language, documented in IEEE Std 1450, which is a language
used to describe the DFT capabilities of a design. It is a standard for simplifying the
number of test vector formats that automated test equipment (ATE) vendors and
computer-aided engineering (CAE) tool vendors must support.

Standard scan
A scan methodology in which there is a one-to-one relationship between each scan-in/
scan-out pair and each scan chain.

TCM
Test control module, a DFT design structure that selects the current test mode. The
input is a vector of test-mode selection signals that can have binary, one-hot, or user-
defined encodings. The output is a set of decoded one-hot enable signals, one for
each test mode encoding.

TMCDR
Test-mode core data register, a special core data register (CDR) in an IEEE 1500
implementation that takes the place of traditional port-driven test-mode signals.

Trailing edge
The last edge of a clock waveform definition. It is a falling edge for a return-to-zero
clock, and it is a rising edge for a return-to-one clock.

Weighted capture groups
An OCC-based capture method that uses comparator logic to enable one capture
group in each pattern, based on user-specified probabilities.

UPF
Unified Power Format, a standard set of commands used to specify the low-power
design intent for electronic systems, an alternative name of the IEEE 1801 Standard
for Design and Verification of Low Power Integrated Circuits.

WIR
Wrapper instruction register, a required register in an IEEE 1500 implementation that
controls what data register is selected for access.

Wrapped core
A core that has a wrapper chain along the I/O boundary of the design. Wrapped cores
are used to implement hierarchical testing capability, which allows different hierarchy
levels of the design to be tested independently.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1123

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Glossary

Feedback

Wrapper chain
A special scan chain in a core-wrapped design that consists of wrapper cells along the
I/O boundary of the design. It can operate in inward-facing or outward-facing modes
during testing to isolate the logic inside the core from logic outside the core.

Synopsys® TestMAX™ DFT User Guide
T-2022.03

1124

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Synopsys%C2%AE%20TestMAX%E2%84%A2%20DFT%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

	Contents
	About This User Guide
	New in This Release
	Related Products, Publications, and Trademarks
	Conventions
	Customer Support
	Accessing SolvNetPlus
	Contacting Customer Support

	Part 1: DFT Overview
	1 Introduction to Synopsys DFT Tools
	Key Features
	Key Benefits
	DFT Compiler and the Synopsys TestMAX Product Platform
	DFTMAX Scan Compression
	DFTMAX Ultra Scan Compression
	DFTMAX LogicBIST Self-Test
	Other Tools in the Synopsys Test and Yield Solution

	2 Designing for Manufacturing Test
	Functional Testing Versus Manufacturing Testing
	Modeling Manufacturing Defects
	Understanding Stuck-At Fault Models
	Controllable and Observable Faults
	Detecting Stuck-At Faults

	Determining Coverage
	Understanding Fault Simulation
	Automatically Generating Test Patterns
	Formatting Test Patterns

	Achieving Maximum Fault Coverage for Sequential Cells
	Controllability of Sequential Cells
	Observability of Sequential Cells

	Understanding the Full-Scan Test Methodology
	Scan Styles Supported by DFT Compiler
	Multiplexed Flip-Flop Scan Style
	Clocked-Scan Scan Style
	Level-Sensitive Scan Design (LSSD) Style
	Scan-Enabled Level-Sensitive Scan Design (LSSD) Style
	Summary of Supported Scan Cells
	Logic Library Considerations

	Describing the Test Environment
	Test Design Rule Checking Functions
	Getting the Best Results With Scan Design

	3 Scan Design Techniques
	Internal Scan Design
	Scan Cells
	Scan Chains
	Scan Cells in Semiconductor Vendor Libraries
	The Effect of Adding Scan Circuitry to a Design
	ATPG and Internal Scan
	Applying Scan Patterns
	Full-Scan Design

	Test for System-On-A-Chip Designs
	Boundary Scan Design

	4 Scan Styles
	Multiplexed Flip-Flop Scan Style
	Flip-Flop Equivalents
	Master-Slave Latch Equivalents
	Multiplexed Flip-Flop Scan Style Characteristics

	Clocked-Scan Scan Style
	Flip-Flop Equivalents
	Latch Equivalents
	Clocked-Scan Scan Style Characteristics

	LSSD Scan Style
	Single-Latch LSSD
	Single-Latch LSSD Scan Style Characteristics

	Double-Latch LSSD
	Double-Latch LSSD Scan Style Characteristics

	Clocked LSSD
	Clocked LSSD Scan Style Characteristics

	Scan-Enabled LSSD Style
	Scan-Enabled LSSD Scan Style Characteristics

	5 Scan Design Requirements
	Test Port Requirements
	Test Timing Requirements
	Test Clock Requirements
	Clock Requirements in Edge-Sensitive Scan Shift Styles
	Skew Issues
	Mixed Edges
	Multiple Clocks

	Clock Requirements in LSSD Scan Styles
	Master Scan Clock and Slave Clock
	Synchronized Clocks
	Skew Control

	Test Protocol Requirements
	Valid and Invalid Test Protocols
	Methods of Generating Test Protocols
	Reading In an Existing Test Protocol
	Creating a Fully User-Specified Test Protocol
	Inferring a Test Protocol Based on Partial Specification
	Inferring a Test Protocol
	Initialization Protocol

	Protocol Types
	Strobe-Before-Clock Protocol
	A Strobe-Before-Clock Example
	Strobe-After-Clock Protocol
	A Strobe-After-Clock Example

	Part 2: DFT Compiler Scan
	6 Getting Started
	Preparing to Run DFT Compiler
	Invoking the Synthesis Tool
	Setting Up Your Design Environment
	Reading In Your Design
	Setting the Scan Style
	Configuring the Test Cycle Timing
	Defining the DFT Signals

	Performing Scan Synthesis
	Performing One-Pass Scan Synthesis
	Performing Scan Insertion
	Configuring Scan Insertion
	Performing Pre-DFT Test DRC
	Previewing Scan Insertion
	Inserting the DFT Logic
	Performing Post-DFT Optimization
	Post-DFT Optimization in Design Compiler Wire Load Mode
	Post-DFT Optimization in Design Compiler Topographical Mode

	Analyzing Your Post-DFT Design
	Reporting
	Designing Block by Block
	Performing Scan Extraction
	Hierarchical Scan Synthesis
	Top-Down Flat Versus Bottom-Up Hierarchical
	Introduction to Test Models
	Writing Out a CTL Model at the Core Level
	Reading In and Using CTL Models at the Top Level
	Checking Connectivity to Cores at the Top Level
	Using Advanced Clock Feedthrough Analysis
	Connecting the Scan-Enable Pins of Cores
	Hierarchical Synthesis, DFT Insertion, and Layout Flows
	Linking Test Models to Library Cells
	Checking Library Cells for CTL Model Information

	Physical DFT Features in Design Compiler
	DFT Flows in DC Explorer

	7 Running the Test DRC Debugger
	Starting and Exiting the Graphical User Interface
	Exploring the Graphical User Interface
	Logic Hierarchy View
	Console
	Command Line
	Viewing Man Pages
	Menus
	Checking Scan Test Design Rules
	Examining DRC Violations
	Viewing Test Protocols

	Viewing Design Violations
	Reporting DRC Violations
	Inspecting DRC Violations
	Viewing a Violation
	Viewing Multiple Violations Together
	Viewing CTL Model Scan Chain Information
	Viewing test_setup Pin Data Waveforms

	Commands Specific to the DFT Tools in the GUI
	gui_inspect_violations
	gui_wave_add_signal
	gui_violation_schematic_add_objects

	8 Performing Scan Replacement
	Scan Replacement Flow
	Preparing for Scan Replacement
	Selecting a Scan Replacement Strategy
	Identifying Barriers to Scan Replacement
	Logic Library Does Not Contain Appropriate Scan Cells
	Support for Different Types of Sequential Cells and Violations
	Attributes That Can Prevent Scan Replacement
	Invalid Clock Nets
	Invalid Asynchronous Pins

	Preventing Scan Replacement

	Specifying a Scan Style
	Types of Scan Styles
	Multiplexed Flip-Flop Scan Style
	Clocked Scan Style
	LSSD Scan Style
	Scan-Enabled LSSD Scan Style

	Scan Style Considerations
	Setting the Scan Style

	Verifying Scan Equivalents in the Logic Library
	Checking the Logic Library for Scan Cells
	Checking for Scan Equivalents

	Scan Cell Replacement Strategies
	Specifying Scan Cells
	Restricting the List of Available Scan Cells
	Scan Cell Replacement Strategies
	Mapping Sequential Gates in Scan Replacement

	Multibit Components
	What Are Multibit Components?
	How DFT Compiler Creates Multibit Components
	Controlling Multibit Test Synthesis
	Performing Multibit Component Scan Replacement
	Disabling Multibit Component Support

	Test-Ready Compilation
	What Is Test-Ready Compile?
	The Test-Ready Compile Flow

	Preparing for Test-Ready Compile
	Performing Test-Ready Compile in the Logic Domain

	Controlling Test-Ready Compile
	Comparing Default Compile and Test-Ready Compile
	Complex Compile Strategies

	Validating Your Netlist
	Running the link Command
	Running the check_design Command

	Performing Constraint-Optimized Scan Insertion
	Supported Scan States
	Locating Scan Equivalents
	Preparing for Constraint-Optimized Scan Insertion
	Scan Insertion
	Specification Phase
	Preview
	Synthesis

	9 Architecting Your Test Design
	Configuring Your DFT Architecture
	Defining Your Scan Architecture
	Setting Design Constraints
	Defining Constant Input Ports During Scan
	Specifying Test Ports

	Specifying Individual Scan Paths

	Architecting Scan Chains
	Controlling the Scan Chain Length
	Specifying the Global Scan Chain Length Limit
	Specifying the Global Scan Chain Exact Length

	Determining the Scan Chain Count
	Defining Individual Scan Chain Characteristics
	Balancing Scan Chains
	Concatenating Scan Cells and Segments
	Multiple Clock Domains
	Multibit Components and Scan Chains

	Physical Reordering and Repartitioning
	Controlling the Routing Order
	Retiming Scan-Ins and Scan-Outs to the Leading Clock Edge
	Routing Scan Chains and Global Signals
	Rerouting Scan Chains
	Stitching Scan Chains Without Optimization
	Specifying a Stitch-Only Design
	Mapping the Replacement of Nonscan Cells to Scan Cells
	Criteria for Conversion Between Nonscan and Scan Cells

	Scan Stitching Only Scan-Replaced Cells
	Using Existing Subdesign Scan Chains
	Uniquifying Your Design
	Reporting Scan Path Information on the Current Design

	Architecting Scan Signals
	Specifying Scan Signals for the Current Design
	Selecting Test Ports
	Defining Existing Unconnected Ports as Scan Ports
	Sharing a Scan Input With a Functional Port
	Sharing a Scan Output With a Functional Port
	Controlling Subdesign Scan Output Ports

	Controlling Scan-Enable Connections to DFT Logic
	Associating Scan-Enable Ports With Specific Scan Chains
	Defining Dedicated Scan-Enable Signals for Scan Cells
	Connecting the Scan-Enable Signal in Hierarchical Flows
	Preserving Existing Scan-Enable Pin Connections

	Controlling Buffering for DFT Signals
	Suppressing Replacement of Sequential Cells
	In Logic Scan Synthesis

	Changing the Scan State of a Design
	Removing Scan Configurations
	Keeping Specifications Consistent
	Synthesizing Three-State Disabling Logic
	Configuring Three-State Buses
	Configuring External Three-State Buses
	Configuring Internal Three-State Buses
	Overriding Global Three-State Bus Configuration Settings
	Disabling Three-State Buses and Bidirectional Ports

	Handling Bidirectional Ports
	Setting Individual Bidirectional Port Behavior
	Fixed Direction Bidirectional Ports

	Assigning Test Port Attributes

	Architecting Test Clocks
	Defining Test Clocks
	Specifying a Hookup Pin for DFT-Inserted Clock Connections
	Requirements for Valid Scan Chain Ordering
	Lock-Up Latch Insertion Between Clock Domains
	Automatically Creating Skew Subdomains Within Clock Domains
	Manually Creating Skew Subdomains at Associated Internal Pins
	Manually Creating Skew Subdomains With Scan Skew Groups
	Defining Scan Chains by Scan Clock
	Handling Multiple Clocks in LSSD Scan Styles
	Using Multiple Master Clocks
	Dedicated Test Clocks for Each Clock Domain
	Controlling LSSD Slave Clock Routing

	Configuring Clock-Gating Cells
	Introduction to Clock Gating in DFT Flows
	Clock-Gating Control Points
	Configuring Clock-Gating Control Points
	Scan-Enable Signal Versus Test-Mode Control Signal
	Improving Observability When Using Test-Mode Control Signals

	Discrete-Logic Clock-Gating Cells and Integrated Clock-Gating Cells
	Inferred and Instantiated Clock-Gating Cells
	Inferring Clock-Gating Cells Using Power Compiler
	Instantiating Clock-Gating Cells in the RTL

	Choosing a Clock-Gating Control Point Configuration
	Initialization for Special Cases of Before-Latch Control Points

	Reporting Unconnected Clock-Gating Cell Test Pins During Pre-DFT DRC
	Automatically Connecting Test Pins During DFT Insertion
	Specifying Signals for Clock-Gating Cell Test Pin Connections
	Identifying Clock-Gating Cells in an ASCII Netlist Flow
	Limitations

	Specifying a Location for DFT Logic Insertion
	Creating New DFT Logic Blocks

	Partitioning a Scan Design With DFT Partitions
	Defining DFT Partitions
	Configuring DFT Partitions
	Per-Partition Scan Configuration Commands
	set_scan_configuration
	set_dft_signal
	set_dft_location
	set_scan_path
	set_testability_configuration
	set_wrapper_configuration

	Known Issues of the DFT Partition Flow

	Modifying Your Scan Architecture

	10 Advanced DFT Architecture Methodologies
	Inserting Test Points
	Test Point Types
	Force Test Points
	Control Test Points
	Observe Test Points
	Multicycle Test Points

	Test Point Structures
	Test Point Components
	Test Point Register Clocks
	Test Point Enable Logic
	Sharing Test Point Registers

	Automatically Inserted Test Points
	Enabling Automatic Test Point Insertion
	Configuring Global Test Point Insertion Settings
	Configuring the Random-Resistant Test Point Target
	Configuring the Untestable Logic Test Point Target
	Configuring the X-Blocking Test Point Target
	Configuring the Multicycle Path Test Point Target
	Configuring the Shadow Wrapper Test Point Target
	Configuring the Core Wrapper Test Point Target
	Configuring the XOR Self-Gating Test Point Target
	Configuring the User-Defined Test Point Target
	Enabling Multiple Targets in a Single Command
	Implementing Test Points From an External File
	Customizing the Test Point Analysis
	Running Test Point Analysis
	Automatic Test Point Insertion Example Script
	Limitations

	User-Defined Test Points
	Enabling User-Defined Test Point Insertion
	Configuring User-Defined Test Points
	Limitations

	Previewing the Test Point Logic
	Inserting the Test Point Logic

	Using AutoFix
	When to Use AutoFix
	Uncontrollable Clock Signals
	Uncontrollable Asynchronous Set and Reset Signals
	Uncontrollable Three-State Bus Enable Signals
	Uncontrollable Bidirectional Enable Signals

	The AutoFix Flow
	Configuring AutoFix
	Enabling AutoFix Capabilities
	Configuring Clock AutoFixing
	Configuring Set and Reset AutoFixing
	Configuring Three-State Bus AutoFixing
	Configuring Bidirectional AutoFixing
	Applying Hierarchical AutoFix Specifications
	Previewing the AutoFix Implementation

	AutoFix Script Example

	Using Pipelined Scan Enables for Launch-On-Extra-Shift (LOES)
	The Pipelined Scan-Enable Architecture
	Pipelined Scan-Enable Requirements
	Implementing Pipelined Scan-Enable Signals
	Pipelined Scan-Enable Signals in Hierarchical Flows
	Implementation Considerations for Pipelined Scan-Enable Signals
	Pipelined Scan Enable Limitations
	Excluding Elements from a Pipelined Scan-Enable Configuration

	Multiple Test Modes
	Introduction to Multiple Test Modes
	Defining Test Modes
	Defining the Usage of a Test Mode
	Defining the Encoding of a Test Mode

	Applying Test Specifications to a Test Mode
	Recommended Ordering of Global and Mode-Specific Commands
	Using Multiple Test Modes in Hierarchical Flows
	Supported Test Specification Commands for Test Modes
	set_dft_signal
	set_scan_configuration
	set_scan_path

	Multiple Test-Mode Scan Insertion Script Examples

	Test-Mode Control Using the IEEE 1500 and IEEE 1149.1 Interfaces
	IEEE 1500 Test Mode Control Architecture
	Core-Level Test-Mode Control
	Core Integration With IEEE 1500 Test-Mode Control
	Chip-Level Test-Mode Control

	Inserting IEEE 1500 at the Core Level
	Inserting IEEE 1500 and IEEE 1149.1 at the Chip Level
	Customizing the IEEE 1500 Architecture
	Configuring the WIR
	Configuring the DFT-Inserted TMCDR
	Using an Existing TMCDR
	Using WIR Test-Mode Decoding With No TMCDR
	Controlling the Test-Mode Encoding Style
	Reporting the Test Mode Encodings
	Specifying WIR Opcodes for CDRs

	Writing Test Protocols
	Script Examples
	Limitations

	Multivoltage Support
	Configuring Scan Insertion for Multivoltage Designs
	Configuring Scan Insertion for Multiple Power Domains
	Mixture of Multivoltage and Multiple Power Domain Specifications
	Reusing Multivoltage Cells
	Reusing Level Shifters in Scan Paths
	Reusing Isolation Cells in Scan Paths

	Scan Path Routing and Isolation Strategy Requirements
	Using Domain-Based Strategies for DFT Insertion
	DFT Considerations for Low-Power Design Flows
	Previewing a Multivoltage Scan Chain
	Scan Extraction Flows in the Presence of Isolation Cells
	Limitations

	Controlling Power Modes During Test
	Inserting Power Controller Override Logic
	Limitations

	Controlling Clock-Gating Cell Test Pin Connections
	Connecting User-Instantiated Clock-Gating Cells
	Script Example
	Limitations

	Excluding Clock-Gating Cells From Test-Pin Connection
	Connecting Clock-Gating Cell Test Pins Without Scan Stitching

	Internal Pins Flow
	Defining Signals on Internal Pins
	Writing Out the Test Protocol
	Limitations of the Internal Pins Flow

	Creating Scan Groups
	Configuring Scan Grouping
	Creating Scan Groups
	Example

	Removing Scan Groups
	Example

	Integrating an Existing Scan Chain Into a Scan Group
	Reporting Scan Groups

	Scan Group Flows
	Known Limitations

	Shift Register Identification
	Simple Shift Register Identification
	Synchronous-Logic Shift Register Identification
	Shift Register Identification in an ASCII Netlist Flow

	Performing Scan Extraction

	11 Wrapping Cores
	Core Wrapping Concepts
	Wrapper Cells and Wrapper Chains
	Wrapper Test Modes
	The Simple Core Wrapping Flow
	Simple Core Wrapper Cells
	Dedicated Wrapper Cell
	Dedicated Safe-State Wrapper Cell
	Shared-Register Wrapper Cells

	Simple Core Wrapper Chains

	The Maximized Reuse Core Wrapping Flow
	Maximized Reuse Core Wrapper Cells
	Shared-Register Wrapper Cells
	Dedicated Wrapper Cells

	Maximized Reuse Core Wrapper Chains
	Maximized Reuse Shift Signals

	Wrapping Three-State and Bidirectional Ports

	Wrapping a Core
	Enabling Core Wrapping
	Defining Wrapper Shift Signals
	Defining Dedicated Wrapper Clock Signals
	Configuring Global Wrapper Settings
	Configuring Port-Specific Wrapper Settings
	Controlling Wrapper Chain Count and Length
	Configuring Simple Core Wrapping
	Configuring Dedicated Wrapper Cell Clocks
	Using Shared Wrapper Cells
	Configuring Shared Wrapper Cell Clocks
	Using In-Place Shared Wrapper Cells
	Creating Separate Input and Output Wrapper Chains

	Configuring Maximized Reuse Core Wrapping
	Enabling Maximized Reuse Core Wrapping
	Applying a Register Reuse Threshold
	Applying a Combinational Depth Threshold
	Specifying Port-Specific Maximized Reuse Behaviors
	Special Cases for Register Reuse
	Using Dedicated Wrapper Cells
	Configuring Dedicated Wrapper Cell Clocks
	Defining Input/Output Clock-Domain-Based Wrapper Shift Signals
	Including Additional Scan Cells in Input and Output Wrapper Chains
	Using the Pipelined Scan-Enable Feature
	Low-Power Maximized Reuse Features
	Loading Constant Core Scan Data in EXTEST Mode
	Gating Dedicated Wrapper Cell Clocks in Non-Wrapper Modes
	Gating Scan and Wrapper Cell Clocks in Wrapper Modes

	Hierarchical Core Wrapping
	Limitations of the Maximized Reuse Flow

	Determining Power Domains for Dedicated Wrapper Cells
	Using the set_scan_path Command With Wrapper Chains
	Previewing the Wrapper Cells
	Previewing Maximized Reuse Wrapper Cells

	Post-DFT DRC Rule Checks

	Creating User-Defined Core Wrapping Test Modes
	Creating Compressed EXTEST Core Wrapping Test Modes
	Creating an IEEE 1500 Wrapped Core
	Wrapping Cores With OCC Controllers
	Wrapping Cores With OCC Clock Outputs

	Wrapping Cores With DFT Partitions
	Wrapping Cores With Multibit Registers
	Wrapping Cores With Synchronizer Registers
	Wrapping Cores With Existing Scan Chains
	Creating an EXTEST-Only Core Netlist
	Integrating Wrapped Cores in Hierarchical Flows
	Scheduling Wrapped Cores
	Integrating Wrapped Cores in a Compressed Scan Flow
	Nested Integration of Wrapped Cores
	Mixing Wrapped and Unwrapped Cores
	Top-Down Flat Testing With Transparent Wrapped Cores
	Introduction to Transparent Test Modes
	Defining Core-Level Transparent Test Modes
	Defining Top-Level Flat Test Modes
	Limitations

	SCANDEF Generation for Wrapper Chains
	Core Wrapping Scripts
	Core Wrapping With Dedicated Wrapper Cells
	Core Wrapping With Maximized Reuse

	12 On-Chip Clocking Support
	Background
	Supported DFT Flows
	Clock Type Definitions
	Capabilities
	OCC Controller Structure and Operation
	DFT-Inserted and User-Defined OCC Controllers
	Synchronous and Asynchronous OCC Controllers
	OCC Controller Signal Operation
	Clock Chain Operation
	Logic Representation of an OCC Controller and Clock Chain
	Scan-Enable Signal Requirements for OCC Controller Operation

	Enabling On-Chip Clocking Support
	Specifying OCC Controllers
	Specifying DFT-Inserted OCC Controllers
	Defining Clocks
	Reference Clocks
	PLL-Generated Clocks
	ATE Clocks

	Defining Global Signals
	Configuring the OCC Controller
	Configuring the Clock Selection Logic
	Using Latch-Based Clock-Gating Logic
	Specifying Library Cells for the Clock-Gating Logic
	Specifying Library Cells for the Clock-ORing Logic

	Configuring the Clock-Chain Clock Connection
	Specifying Scan Configuration
	Performing Timing Analysis
	Script Example

	Specifying Existing User-Defined OCC Controllers
	Defining Clocks
	Reference Clocks
	PLL-Generated Clocks
	ATE Clocks
	Clock Chain Configuration and Control-Per-Pattern Information

	Defining Global Signals
	Specifying Clock Chains
	Scan Configuration for User-Defined OCC Controllers
	Script Example

	Specifying OCC Controllers for External Clock Sources
	Using OCC Controllers in Hierarchical DFT Flows
	Integrating Cores That Contain OCC Controllers
	Defining Signals for Cores Without Preconnected OCC Signals
	Defining Signals for Cores With Preconnected OCC Signals
	Handling Cores With OCC Clock Output Pins

	Reporting Clock Controller Information
	DFT-Inserted OCC Controller Flow
	Existing User-Defined OCC Controller Flow

	DRC Support
	Enabling the OCC Controller Bypass Configuration

	DFT-Inserted OCC Controller Configurations
	Single OCC Controller Configurations
	Example 1
	Example 2
	Example 3

	Multiple DFT-Inserted OCC Controller Configurations
	Example 1
	Example 2

	Waveform and Capture Cycle Example
	Limitations

	13 Pre-DFT Test Design Rule Checking
	Test DRC Basics
	Test DRC Flow
	Preparing Your Design
	Creating the Test Protocol
	Assigning a Known Logic State
	Performing Test Design Rule Checking
	Reporting All Violating Instances
	Analyzing and Debugging Violations
	Summary of Violations
	Enhanced Reporting Capability

	Test Design Rule Checking Messages
	Understanding Test Design Rule Checking Messages

	Effects of Violations on Scan Replacement
	Viewing the Sequential Cell Summary

	Classifying Sequential Cells
	Sequential Cells With Violations
	Cells With Scan Shift Violations
	Black-Box Cells
	Constant Value Cells

	Sequential Cells Without Violations

	Checking for Modeling Violations
	Black-Box Cells
	Correcting Black-Box Cells

	Unsupported Cells
	Generic Cells
	Scan Cell Equivalents
	Scan Cell Equivalents and the dont_touch Attribute

	Latches
	Nonscan Latches

	Setting Test Timing Variables
	Protocols for Common Design Timing Requirements
	Preclock Measure Protocol
	End-of-Cycle Measure Protocol

	Setting Timing Variables
	test_default_period Variable
	test_default_delay Variable
	test_default_bidir_delay Variable
	test_default_strobe Variable
	test_default_strobe_width Variable
	The Effect of Timing Variables on Vector Formatting

	Creating Test Protocols
	Design Characteristics for Test Protocols
	Scan Style
	New DFT Signals
	Existing Clock Ports
	Existing Asynchronous Control Ports
	Bidirectional Ports

	STIL Test Protocol File Syntax
	Defining the test_setup Macro
	Defining Basic Signal Timing
	Defining the load_unload Procedure
	Defining the Shift Procedure

	Defining an Initialization Protocol
	Scan Shift and Parallel Measure Cycles
	Multiplexed Flip-Flop Scan Style
	Clocked-Scan Scan Style
	LSSD Scan Style
	Scan-Enabled LSSD Scan Style

	Examining a Test Protocol File
	Updating a Protocol in a Scan Chain Inference Flow

	Masking Capture DRC Violations
	Configuring Capture DRC Violation Masking
	Reporting Capture DRC Violation Masking
	Resetting Capture DRC Violation Masking

	14 Previewing, Inserting, and Checking DFT Logic
	Previewing the DFT Logic
	Running the preview_dft Command
	Previewing Additional Scan Chain Information
	Previewing Test Mode Information
	Previewing the DFT Design Using Script Commands

	Inserting the DFT Logic
	Scan Replacement
	Scan Element Allocation and Ordering
	Test Signals
	Pad Cells

	Post-DFT Insertion Test Design Rule Checking
	Running Post-DFT DRC After DFT Insertion
	Checking for Topological Violations
	Checking for Scan Connectivity Violations
	Scan Chain Extraction

	Causes of Common Violations
	Ability to Load Data Into Scan Cells
	Incomplete Test Configuration
	Invalid Clock Logic
	Incorrect Clock Timing Relationship
	Nonscan Sequential Cells

	Ability to Capture Data Into Scan Cells
	Clock Driving Data
	Untestable Functional Path
	Uncontrollable Asynchronous Pins

	Post-DFT DRC Limitations

	15 Exporting Data to Other Tools
	Exporting a Design to TestMAX ATPG
	Introduction to STIL Protocol Files
	Exporting Your Design to TestMAX ATPG
	Adjusting WaveformTable Timing for Delay Test
	Reading Designs With Black-Box Test Models Into TestMAX ATPG
	STIL Protocol File Procedure and WaveformTable Examples
	Limitations

	Using The SCANDEF-Based Reordering Flow
	Introduction to SCANDEF
	SCANDEF Constructs
	Generating SCANDEF Information
	Writing Out the SCANDEF Information
	Script Example

	Generating SCANDEF Information in Hierarchical DFT Flows
	Preventing Scan Optimization in a Core
	Allowing Scan Optimization in a Core
	Using SCANDEF Information in a Manual Core Integration Flow

	SCANDEF Examples
	Default (Two Scan Chains)
	Mixed Clock Edges
	set_scan_path With No Elements
	set_scan_path With Unordered Elements
	set_scan_path With Ordered Elements
	Scan Elements That Cannot Be Reordered or Repartitioned
	Unrouted Scan Groups
	Serial-Routed Scan Groups
	CTL-Modeled Core
	Inferred Shift Register
	PARTITION Name Conventions

	Support for Other DFT Features
	Limitations of SCANDEF Generation

	Verifying DFT Inserted Designs for Functionality
	Verification Setup File Generation
	Test Information Passed to the Verification Setup File
	Script Example
	Formality Tool Limitations

	Part 3: DFTMAX Compression
	16 Introduction to DFTMAX
	The DFTMAX Compression Architecture
	The DFTMAX Codec
	Decompressor Operation
	Compressor Operation
	The Congestion-Aware DFTMAX Codec

	DFTMAX Compression Requirements
	Design Requirements
	Pin Requirements

	Multicore Processing
	License Usage

	Limitations
	Current Limitations
	DFTMAX Compression Limitations

	17 Using DFTMAX Compression
	Top-Down Flat Compressed Scan Flow
	Top-Down Flat Compressed Scan Flow With DFT Partitions
	When to Use DFT Partitions in a Scan Compression Flow
	Configuring Partition Codecs
	Choosing a Partitioned Codec Insertion Method
	Per-Partition Scan Compression Configuration Commands
	set_scan_compression_configuration
	set_dft_location
	set_dft_signal

	Limitations of DFT Partitions in Scan Compression Flow
	DFT Partition Script Example

	DFTMAX Scan Compression and Multiple Test Modes
	Defining Multiple Compressed Scan Modes
	Per-Test-Mode Scan Compression Configuration Commands
	set_scan_compression_configuration
	set_scan_path

	Multiple Test-Mode Script Examples
	Multiple Standard Scan Modes and One Compressed Scan Mode
	Multiple Standard Scan and Compressed Scan Modes
	Standard Scan Flow Using Multiple Test Modes and Partitions
	Scan Compression Flow Using Multiple Test Modes and Partitions

	Excluding Scan Chains From Scan Compression
	Scan Compression and OCC Controllers
	Using Compressed Clock Chains
	Defining External Clock Chains

	Specifying a Different Scan Pin Count for Compressed Scan Mode
	Adding Compressed Chain Lock-Up Latches
	Reducing Power Consumption in DFTMAX Designs
	Reducing Compressor Power When Codec Is Inactive
	Preserving Compressor Gating Cells During Optimization

	Reducing Scan Shift Power Using Shift Power Groups
	The Shift Power Groups Architecture
	Scan-Enable Signal Requirements for Shift Power Groups
	Configuring Shift Power Groups
	Integrating Cores With Shift Power Groups in Hierarchical Flows
	Configuring the Control Chain for Shift Power Groups Cores
	Connecting Core-Level Shift Power Disable Signals
	Configuring Shift Power Groups for a Top-Level Codec

	Configuring Shift Power Groups in TestMAX ATPG
	Using Shift Power Groups With Other DFT Features
	Limitations of Shift Power Groups

	Forcing a Compressor With Full Diagnostic Capabilities
	Performing Congestion Optimization on Compressed Scan Designs
	Using AutoFix With Scan Compression
	One-Pass DFTMAX Example With AutoFix
	One-Pass DFTMAX Example With AutoFix and Multiple Test Modes

	18 Hierarchical Adaptive Scan Synthesis
	The HSS Flow
	The HASS Flow
	Preparing Cores in the HASS Flow
	HASS Integration of Compressed Scan Cores
	HASS Integration of Additional Uncompressed Scan Logic

	The Hybrid Flow
	Performing Top-Level Hybrid Integration
	Performing Top-Level Hybrid Integration with Partitions

	Using Multiple Test Modes in Hierarchical Flows
	Default Core-Level Test Mode Assignment
	User-Defined Core-Level Test Mode Scheduling

	Top-Level Integration Script Examples
	Typical HASS Flow Script
	Typical Hybrid Flow Script
	Hybrid Flow Script With Multiple Test Modes

	HASS and Hybrid Flow Limitations

	19 Managing X Values in Scan Compression
	High X-Tolerance Scan Compression
	The High X-Tolerance Architecture
	Enabling High X-Tolerance
	Scan-In and Scan-Out Requirements
	Limitations

	Static-X Analysis
	Architecting X Chains
	The X-Chain Architecture
	Enabling X Chains
	Manually Specifying X-Chain Cells
	Using the set_scan_path Command With X Chains
	Using AutoFix With X Chains
	Using X Chains in Hierarchical Flows
	Static-X Cells in the HASS Flow
	Hierarchical Blocks and X Sources

	Using the test_simulation_library Variable
	Representing X Chains in SCANDEF Files
	Passing X-Chain Information to TestMAX ATPG
	Error and Warning Summaries
	X-Chain Usage Guidance

	20 Advanced DFTMAX Compression
	Specifying a Location for Codec Logic Insertion
	Pipelined Scan Data
	Introduction to Pipelined Scan Data
	Using Pipelined Scan Data
	Enabling Pipelined Scan Data
	Automatically Inserting Head and Tail Pipeline Registers
	Specifying User-Defined Head and Tail Pipeline Registers

	Using Pipelined Scan Data With Scan Compression
	Configuring Pipelined Scan Data in a Compressed Scan Flow
	Avoiding X Capture in Head Pipeline Registers
	Adding Pipeline Stages at the Compressor Inputs

	Pipelined Scan Data Specifications
	Scan Architecture
	Scan Register Synchronization

	Pipelined Scan Data Test Protocol Format
	Pipelined Scan Data Limitations
	Hierarchical Flows With Pipelined Scan Data
	General Rules
	Pipelined Scan Data in the Standard Scan HSS Flow
	Pipelined Scan Data in the HASS and Hybrid Flows

	Sharing Codec Scan I/O Pins
	Specifying the I/O Sharing Configuration
	Determining the Fully Shared I/O Configuration
	Determining Shared Input Pin Types
	Scan-In Pins That Drive Compressed OCC Clock Chains
	Load Mode Scan-In Pins
	High X-Tolerance Enable Scan-In Pins
	Regular Scan-In Data Pins

	Adding High X-Tolerance Block-Select Pins
	Automatically Computing the Fully Shared Configuration
	Manually Computing the Fully Shared Configuration

	Codec I/O Sharing in the HASS Flow
	Codec I/O Sharing in the Hybrid Flow
	Codec I/O Sharing in the Top-Down Flat Flow
	Codec I/O Sharing With OCC Controllers
	Codec I/O Sharing With Identical Cores
	Identical Core Connections
	Specifying Identical Cores
	Using Scrambled Output Connections
	Specifying Shared Codec Inputs With Dedicated Codec Outputs

	Codec I/O Sharing With Shared Codec Controls
	Configuring Shared Codec Controls
	Specifying User-Defined Codec Enable Signals

	Codec I/O Sharing Groups
	Defining Sharing Groups in the HASS Flow
	Defining Sharing Groups in the Hybrid Flow
	Using Shared Codecs for Top-Level Logic
	Using Dedicated Codecs for Top-Level Logic

	Defining Sharing Groups for Codecs in Partitioned Cores
	Defining Sharing Groups in the Top-Down Flat Flow

	Codec I/O Sharing and Standard Scan Chains
	Codec I/O Sharing and Pipelined Scan Data
	Integrating Cores That Contain Shared Codec I/O Connections
	Integrating Shared I/O Cores
	Integrating Identical High X-Tolerance Shared I/O Cores
	Integrating Shared I/O Cores Using Shared Codec Controls
	Integrating Shared I/O Cores That Contain Shared Codec Controls

	Shared Codec I/O Limitations

	Implicit Scan Chains
	Defining Implicit Scan Chains
	Implicit Scan Chain Script Example
	Protocol Example
	Limitations

	21 DFTMAX Compression With Serializer
	Overview
	Architecture
	Serializer Clock Controller
	Deserializer Registers
	Serializer Registers

	Serializer Operation
	Higher Shift Speed and Update Stage
	Scan-Enable Signal Requirements for Serializer Operation
	Timing Paths
	Scan Clocks
	Deserializer/Serializer Update Stage Register Clocks
	Specifying a Clock for Deserializer/Serializer Registers
	Staggered Scan Clocks
	Specifying Scan Clock Ports

	User Interface
	Configuring Serialized Compressed Scan
	Deserializer/Serializer Register Size
	Serializer Implementation Flow
	Serialized Compressed Scan Core Creation
	Serializer Core-Level Flow
	User-Defined Ports for the Serializer Core-Level Flow
	Nondefault Scan Clock Timing for Core-Level Flows

	Top-Down Flat Flow
	Serial Mode and Standard Scan Mode
	Serial Mode, Parallel Mode, and Standard Scan Mode

	Top-Down Partition Flow
	Serializer Chains Dedicated to Each Partition
	Serializer Chains Concatenated Across Partitions

	HASS Flow
	Serializer Chains Dedicated to Each Core
	Serializer Chains Concatenated Across Cores

	Hybrid Flow
	Serializer Chains Concatenated Across Cores

	Serializer IP Insertion
	Configuring Serializer IP Insertion
	Serializer IP Insertion in the Top-Down Flat Flow
	Serializer IP Insertion in the Top-Down Flat Flow With Partitions
	Serializer IP Insertion in the HASS Flow
	Referencing Multiple Codecs in Compressed Scan Cores

	Serializer IP Insertion in the Hybrid Flow
	Serializer IP Insertion in the Hybrid Flow With Top-Level Partitions
	Incorporating External Chains Into the Hybrid Serializer IP Flows

	Serializer IP Insertion and Standard Scan Chains
	Limitations

	Wide Duty Cycle Support for Serializer
	Block Diagram
	Timing Diagram
	Internally Generated Clocks
	Wide Duty Cycle in a Core-Level Flow
	Wide Duty Cycle in the HASS Flow
	Wide Duty Cycle in the Hybrid Flow
	Dual STIL Flow Parallel Patterns
	Limitations

	Serializer in Conjunction With On-Chip Clocking Controllers
	OCC and SPC Chains in a Serializer Design
	Using Serializer With User-Defined OCC Controllers
	Using a Serializer Clock Controller With Multiple OCC Controllers
	Waveforms for a Serializer With OCC Controllers

	Using Integrated Clock-Gating Cells in the Serializer Clock Controller
	User-Defined Pipelined Scan Data
	Running TestMAX ATPG on Serializer Designs
	Simulation and Patterns
	STIL Protocol File
	load_unload Procedure
	UserKeywords SerializerStructures
	Chip-Level STIL Protocol File
	Core-Level STIL Protocol File

	Compressor Structures
	ClockStructures

	Debugging TestMAX ATPG Serializer DRC Errors
	Debugging R33 Through R38 DRC Errors
	Providing Guidance for R34 and R36 DRC Errors

	Pattern Translation
	Translating Parallel Mode Patterns to Serial Mode Patterns
	Performing Pattern Translation for Matching Scan Data Pipeline Depths
	Performing Pattern Translation Across Different Scan Data Pipeline Depths

	Translating Serial Mode Patterns to Standard Scan Mode Patterns

	Known Issues
	C1 Violations
	Serializer Core-Level Flow With Pipelined Scan Data Insertion

	DFTMAX Compression With Serializer Limitations
	Out-of-Scope Serializer Functionality
	DFTMAX Compression Error Messages
	TEST-1093
	TEST-1094
	TEST-1095
	TEST-1096
	TEST-1097

	Part 4: DFTMAX Ultra Compression
	22 Introduction to DFTMAX Ultra
	The DFTMAX Ultra Compression Architecture
	Usage Flow
	Hierarchical DFT Insertion
	Test Pattern Creation Using TestMAX ATPG
	Pattern Simulation

	23 DFTMAX Ultra Compression Architecture
	DFTMAX Ultra Compression Architecture
	Input Shift Register and Decompression MUX
	Control Register
	Output XOR Compression Tree and Shift Register
	Test Pattern Scan Procedure
	Scan-Enable Signal Requirements for Codec Operation

	Multiple-Input, Multiple-Output Architecture
	DFTMAX Ultra Architectures for On-Chip Clocking (OCC)
	External Clock Chain
	Compressed Clock Chain

	24 Using DFTMAX Ultra Compression
	DFTMAX Ultra Compression Requirements
	Top-Down Insertion Compressed Scan Flow
	Enabling DFTMAX Ultra Compression
	Configuring the DFTMAX Ultra Codec
	Configuring the Codec Clock

	Top-Down Insertion Compressed Scan Flow With Partitions
	Using Dedicated Scan Data Connections for Each Partition
	Using Serial Scan Data Connections Between Partitions
	Per-Partition Streaming Configuration Commands
	set_streaming_compression_configuration
	set_dft_signal

	The Multiple-Input, Multiple-Output Codec Architecture
	DFTMAX Ultra Compression and Multiple Test Modes
	Defining Multiple DFTMAX Ultra Compressed Scan Modes
	Mixing DFTMAX and DFTMAX Ultra Compression Modes
	Per-Test-Mode Streaming Configuration Options

	Using OCC Controllers With DFTMAX Ultra Compression
	Creating External Clock Chains
	Automatically Creating External Clock Chains
	Manually Specifying External Clock Chains
	Budgeting Scan I/Os and External Clock Chains

	Creating Compressed Clock Chains
	OCC Controllers and Streaming Codec Scan-Enable Constraints

	Reducing Power Consumption in DFTMAX Ultra Designs
	Reducing Compressor Power When Codec Is Inactive
	Reducing Scan Shift Power Using Shift Power Groups
	The Shift Power Groups Architecture
	Configuring Shift Power Groups
	Integrating Cores With Shift Power Groups in Hierarchical Flows
	Configuring Shift Power Groups in TestMAX ATPG
	Using Shift Power Groups With Other DFT Features
	Limitations of Shift Power Groups

	Planning, Previewing, and Inserting DFTMAX Ultra Compression
	Planning the Streaming DFT Architecture
	DFT Planner Flow Report
	DFT Planner Elements Report
	DFT Planner Limitations

	Previewing and Inserting DFT Logic
	Writing Out Test Protocols for TestMAX ATPG

	Library Cell Requirements for Codec Implementation

	25 Hierarchical DFTMAX Ultra Compression
	Overview of Hierarchical DFTMAX Ultra Compression
	Creating Cores for Integration
	Performing Core Integration
	Automatic Detection of Existing Logic Types
	Configuring Core Integration
	Configuring the Standard Scan Mode
	Configuring the Compressed Scan Mode
	Integrating Compressed Scan Cores With No Uncompressed Logic
	Compressing Uncompressed Logic
	Building Standard Scan Chains From Uncompressed Logic

	Core Integration Script Examples
	Integrating Only Compressed Scan Cores
	Integrating Compressed Scan Cores With Uncompressed Logic

	Using DFT Partitions During Core Integration
	Using Multiple Test Modes in Hierarchical Flows
	Mixing DFTMAX and DFTMAX Ultra Compression Core Modes

	26 DFTMAX Ultra Limitations and Known Issues
	DFT Synthesis Limitations
	Supported DFT Insertion Flows

	27 DFTMAX Ultra STIL Protocol File Syntax
	STIL Protocol File Contents
	STIL Protocol File Example

	28 DFTMAX Ultra Flow Naming Conventions
	Describing Existing Logic
	Describing DFT Logic To Be Inserted
	Describing Additional DFT Features
	Partitions
	Scan I/Os
	Multiple Test Modes
	Additional Naming Convention Rules

	Scan Flow Mapping

	Part 5: DFTMAX LogicBIST Self-Test
	29 Introduction to LogicBIST
	Introduction to LogicBIST
	LogicBIST Requirements
	The LogicBIST Flow

	30 The LogicBIST Architecture
	LogicBIST Architecture Overview
	The LogicBIST Decompressor
	The LogicBIST Compressor
	The LogicBIST BIST Controller
	The LogicBIST Clock Controller
	The LogicBIST Control and Data Signals
	The LogicBIST Operational Modes
	The LBIST_EN and START Signals
	The STATUS_0 and STATUS_1 Signals
	The Scan-In and Scan-Out Signals

	LogicBIST Clock Control
	Overview of Clock Configurations
	External Clocks
	OCC-Controlled Clocks With Default Capture Behavior
	OCC-Controlled Clocks With Weighted Clock Capture Groups
	External and Internal Clocks in the Same Design

	Isolating the Design During LogicBIST Self-Test
	Isolating the Self-Test Design Using Core Wrapping
	Isolating the Self-Test Design Using Test Points
	Comparing the Two Isolation Approaches

	Providing Testability for LogicBIST Self-Test
	Enabling DFT Logic During Autonomous Self-Test
	Blocking Internal X Sources
	Ensuring Testability for Reset Signals
	Ensuring Testability for Integrated Clock-Gating Cells

	31 Using LogicBIST Self-Test
	Configuring LogicBIST Self-Test
	Defining the LogicBIST Control Signals
	Defining the LogicBIST Scan-In Signal
	Defining the LogicBIST Self-Test Mode
	Configuring the PRPG and MISR Lengths
	Configuring the Pattern Counter and Shift Counter Lengths
	Configuring the Self-Test Capture Clock Timing
	Configuring Clock and Reset Weights
	Configuring Self-Test Isolation Logic
	Configuring Wrapper Chain Isolation Logic
	Configuring Test Point Isolation Logic

	Controlling Self-Test Through IEEE 1500 Logic
	Inserting LogicBIST in Designs With Trailing-Edge Flip-Flops
	Inserting LogicBIST in Designs With External Chains
	Inserting LogicBIST in Designs With Clock-Gating Cells

	Previewing and Inserting the LogicBIST Implementation
	Previewing the LogicBIST Implementation
	Inserting the LogicBIST Logic
	Writing Out the LogicBIST Design Files

	Computing the Seed and Signature Values in TestMAX ATPG
	Setting the Seed and Signature Values in Synthesis
	Simulating Autonomous BIST Operation
	Integrating the Self-Test Logic into the Functional Design Logic
	Connecting the Self-Test Signals to the Functional Design Logic
	Ensuring the Required Test Mode for Autonomous Self-Test
	Monitoring the Self-Test Status Signals

	Example LogicBIST Scripts
	Example Core Insertion Script Using Core Wrapping
	Example Core Insertion Script Using Test-Point Isolation
	Example Script to Automatically Set Seed and Signature Values

	32 Advanced LogicBIST Configuration
	Handling of Combinational Paths Between Input and Output Ports During LBIST Operation
	Using Programmable LogicBIST Configuration Values
	Simplifying the MISR XOR Compressor
	Simplifying the Weighted Clock/Reset Logic
	Minimizing Reconfiguration MUXs Across Test Modes
	Choosing a Particular Integrated Clock-Gating Cell
	Implementing Burn-In Mode
	Implementing Power Ramp-Up and Ramp-Down Logic
	Implementing MISR Monitoring Logic
	Changing the Test Mode Used for Autonomous Self-Test
	Post-DFT Design Optimization
	Post-DFT Optimization and BIST Constants
	Preserving the BIST Constants in a compile Flow
	Preserving the BIST Constants in a compile_ultra Flow
	Regenerating Seed and Signature Values after Design Changes
	Ungrouping LogicBIST Blocks for Additional Area Reduction

	33 LogicBIST Limitations and Known Issues
	LogicBIST Limitations and Known Issues

	Appendixes
	A DFT Attributes
	Cell Attributes
	Design Attributes
	Pin Attributes
	Port Attributes

	B Legacy Test Point Insertion
	Introduction
	Differences Between Newer and Legacy Test Point Features
	Test Point Types
	Force Test Points
	Control Test Points
	Observe Test Points

	Test Point Signals
	Sharing Test Point Scan Cells
	Automatically Inserted Test Points (Legacy)
	Enabling Automatic Test Point Insertion
	Configuring Pattern Reduction and Testability Test Point Insertion
	Script Example

	User-Defined Test Points (Legacy)
	Configuring User-Defined Test Points
	User-Defined Test Points Example

	Previewing the Test Point Logic
	Inserting the Test Point Logic

	C Legacy RTL Design Rule Checking
	Understanding the Flow
	Specifying Setup Variables
	Generating a Test Protocol
	Defining a Test Protocol
	Reading in an Initialization Protocol in STIL Format

	Setting the Scan Style
	Design Examples
	Test Protocol Example 1
	Test Protocol Example 2

	Running RTL Test DRC
	Understanding the Violations
	Violations That Prevent Scan Insertion
	Uncontrollable Clocks
	Asynchronous Control Pins in Active State

	Violations That Prevent Data Capture
	Clock Used As Data
	Black Box Feeds Into Clock or Asynchronous Control
	Source Register Launch Before Destination Register Capture
	Registered Clock-Gating Circuitry
	Three-State Contention
	Clock Feeding Multiple Register Inputs

	Violations That Reduce Fault Coverage
	Combinational Feedback Loops
	Clocks That Interact With Register Input
	Multiple Clocks That Feed Into Latches and Flip-Flops
	Latch Requires Multiple Clocks to Capture Data
	Latches Are Not Transparent

	Black Boxes

	Limitations

	Glossary

